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Abstract 

District cooling systems (DCSs) belonging to multi-energy systems can be managed by 

model predictive controls (MPCs) designed to reduce the amount of electrical energy 

collected from the grid for backup cooling systems when there is a temporal mismatch 

between energy demand and availability. In this paper, a DCS recovering cold thermal 

energy from a liquid-to-compressed natural gas fuel station is used in an 8-user 

residential neighborhood to provide space cooling in summertime. In the residential 

neighborhood, there is a multi-energy system, including the DCS, photovoltaic panels, 

and backup systems based on variable-load air-to-water heat pumps. One user of the 

district was allowed to manage its energy demand with an MPC based on an artificial 

neural network (ANN). By integrating the ANN-based MPC routine in the building 

simulation environment and unlocking the energy flexibility of thermostatically 

controlled loads (TCLs) using variable setpoints, it was possible to reduce electrical 

energy consumption up to -71% with respect to a reference case with a rule-based 

control. This work highlights also the importance of the ANN training process for a 

proper representation of the TCL flexibility in the building model, which is not a trivial 

aspect to be taken into account in data driven models. 
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1. Introduction 

The heating, ventilation, and air conditioning (HVAC) sector is responsible for a 

relevant part of the electrical energy demand, and it is expected to rise up to 4000 TWh 

in 2050 [1]. Despite several solutions have been proposed to reduce peak demand in the 

air conditioning sector, such as demand side management (DSM) [2–4], new strategies 

need to be introduced to improve the overall efficiency and the recovery of different 

energy sources managed in an aggregated way [5]. With different energy sources, we 

refer not only to traditional and renewable energy sources (RESs), but also to free waste 

energy that can be available from other processes. 

An innovative technology able to fulfill the cooling demand in an efficient way, 

guaranteeing the possibility of mixing different energy sources, and even waste energy, 

is the district cooling system (DCS). DCSs allow a centralized management, production 

and distribution of cold thermal energy for space cooling. According to the EU Energy 

Efficiency Directive [6] and the Strategic Energy Technologies Information System [7], 

DCSs are considered among the best available technologies in the European Union and 

a strategic solution to achieve an increase of energy efficiency. DCSs are very flexible 

and can be easily integrated with multi-energy systems such as renewable energy 

sources (RESs), trigeneration systems, and thermal energy storages (TESs) [8,9]. 

Among the possible energy sources, waste cold energy derived from commercial, 

transport, and industry sector represents an important opportunity and would allow to 

reduce the consumption of primary energy considerably by realizing sectors coupling. 

When DCSs supply cold thermal energy to a residential district, there are architectural 

bounds and queues to respect. For instance, the geographical position of the user in the 

network can affect the service received. Additionally, there could be circumstances 

when the waste energy available in the DCS is not sufficient to meet the cooling 

demand. There is therefore a need of backup systems such as chillers and heat pumps. 

However, these systems will likely operate in the season with maximum production 
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from RESs as photovoltaic (PV) plants, that could be used to reduce the electricity 

collected from the grid. 

In this kind of scenario, where the goal is to use free energy sources as much as 

possible, and at the same time to reduce the overall primary energy consumed by the 

multi-energy system, a key role is played by the flexibility of the energy system. In 

buildings and districts, energy flexibility is a property of the system that can be 

controlled for given purposes [10–12]. Buildings can supply flexibility in different 

ways, e.g. through their thermal mass, or by adjusting the HVAC control. A way to 

unlock energy flexibility in a building lies in the use of model predictive controls 

(MPCs). MPCs are smart control systems that can help managing the different sources 

available in a multi-energy system [13–15]. The use of MPCs allows to include, in the 

assessment of the control actions, forecasts defined in a certain prediction horizon. 

Forecasts can refer to price, weather, but also to energy sources availability as well as 

energy demand. If the optimization algorithm of the MPC properly evaluates the energy 

interactions between the sources and is able to unlock the energy flexibility of the 

building, there is the possibility to meet the space cooling demand of a residential user 

with a minimum absorption of electrical energy from the grid. 

The representation of the building demand in the MPC can be based on a white, grey, 

or black box model. The first model is an accurate, physical representation of the system 

under study. It generally leads to the best results, but it can be difficult to retrieve all 

the needed information. A grey box model, instead, combines a partial theoretical 

structure with external parametric data that complete the model itself. Finally, a black 

box model consists only in a mathematical representation of the system, where each 

parameter of the model does not assume any physical meaning. In this case, the 

parameters of the model are determined by means of a training based on a data-driven 

approach. 

Peculiar examples of black box models are artificial neural networks (ANNs), 

mathematical models that transform a set of input variables into a set of output variables 

[16]. ANNs are inspired to the functioning of a biological brain: the dendrites of a 

biological network correspond to the inputs of an ANN, while the output of an ANN 

performs the same task of a biological axon. The calculation nodes of an ANN are 

referred to as neurons, in the same fashion of a biological brain. In an ANN, neurons 
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are activation functions that operate on the inputs as linear or non-linear functions and 

provide the corresponding outputs. An ANN needs to be trained before use. The training 

process requires a proper dataset of inputs and targets, which will be used to find the 

weight values of the ANN calculation nodes. With the growing availability of big data 

and the promising possibilities offered by data science [17], data mining and machine 

learning [18], ANN-based MPCs used in the building sector have the opportunity to 

improve the prediction capabilities in multi-energy systems and their overall efficiency. 

Referring to the existing literature, a comprehensive study of ANN-based MPCs 

using the flexibility of a building to optimize the management of a multi-energy system 

including free energy sources, such as waste thermal cold energy from a DCS or RESs, 

is difficult to be found. In the following, we will thus discuss relevant papers related to 

three different fields: 1) DCSs and their techno-economical optimization; 2) MPCs 

based on black box models and used in the building sector; 3) MPCs used in either 

district heating or cooling systems. The following paragraphs gather the works that 

belong to each specific field. 

Starting from the literature concerning DCSs (point 1), in 2007 Chan et al. [19] 

proposed a genetic algorithm based on local search techniques to find the optimal 

configuration of a DCS piping network. It was found that the frequency of local search 

had no clear effect on the performance of the genetic algorithm optimization for the 

piping network. In 2016, Oh et al. [20] discussed a long-term electricity consumption 

forecasting model for buildings served by DCS technology. The authors modeled an 

innovative adsorbent-based dehumidifier and an indirect evaporative cooling 

technology, using a multiple linear regression model to forecast electricity demand for 

the period 2014-2030. Results indicated that the high conservative scenario realizes the 

best potential of electricity saving of 21’096 GWh until 2030 in Singapore, with an 

overall carbon footprint saving equal to about 9491 t. In the paper by van der Heijde et 

al. [21], the mathematical and software implementation in Modelica of a thermo-

hydraulic model for district heating and cooling systems was discussed. The authors 

found good correspondence between experimental data from a controlled test setup and 

the model. In 2018, Vandermeulen et al. [22] investigated the flexibility obtainable 

from district heating and cooling systems. The authors highlighted that an important 

source of flexibility is represented by the thermal energy storages present in district 
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heating and cooling networks, found for example in the thermal inertia of buildings, 

storage units and the network. They proposed a definition of flexibility and highlighted 

that more advanced control strategies are needed to fully unlock the flexibility of district 

heating and cooling systems. Dorotić et al. [23] reported that, due to their high 

interconnectivity and number of involved technologies, optimization of heating and 

district cooling systems represents a challenging task. In their work, they developed an 

hourly based multi-objective optimization model based on two objective functions to 

be minimized: total system cost (investments and operational) and carbon dioxide 

emissions. Based on results, it was proved that, for the same level of carbon dioxide 

emissions, combined district heating and cooling systems had lower total cost with 

respect to district systems operating separately. In their paper published in 2020, 

Arabkoohsar and Sadi [24] proposed a solar-driven absorption chiller, based on 

parabolic trough collectors, used to supply district heating and cooling. The solution 

was analyzed for a year and the authors found that it offered a significant contribution 

to supply the district heating demand, e.g. the heat demand of the chiller was determined 

to be zero for one-third of the year. Sun et al. [25] analyzed the performance of three 

district heating and cooling systems working with absorption and compression chillers 

driven by waste heat of flue gas, derived from coke ovens. The authors determined that 

the first configuration (including a single and a double-effect absorption chiller, a plate 

heat exchanger, a compression chiller for ice thermal energy storage, and a liquid 

desiccant regenerator) had both the highest thermodynamic performance and the best 

financial benefit. In the paper by Sommer et al. [26], it is stated that networks used for 

simultaneous heating and cooling are a key technology to decarbonize cities. In 

particular, the authors present the concept of reservoir network, which provides 

hydraulic decoupling of transfer stations, integrates heat sources and sinks at different 

temperature levels, and is modular. A single-pipe reservoir network was therefore 

compared to a conventional double-pipe network; it was found that the electric energy 

consumed by the two systems differs by less than 1% and that the reservoir network is 

more economical than other topologies if a ring layout is used. According to Jangsten 

et al. [27], DCSs will become more common in cities as the cooling demand increases. 

The authors also highlighted that performance of such systems is often penalized by 

low temperature differences between supply and return water. Thus, they analyzed 
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operational data from both district cooling provider and chilled water systems used in 

buildings. Results indicate that low delta temperatures are mainly caused by low chilled 

water return temperature, low temperature approach of the heat exchangers and non-

optimized supply temperatures in the buildings. Sustainability, performance, and cost 

savings of DCSs were studied and improved by Anderson et al. [28] for a case study 

referred to University of Idaho. The authors carried out an exergy analysis with 

TRNSYS and the three objectives were achieved without equipment change. 

Specifically, electricity consumption was reduced to 38%, with a correspondent saving 

of 428’800 kg of carbon dioxide emissions, and an annual cost saving of 140’000 USD 

was obtained. 

As regards the use of MPCs based on black box models in the building sector (point 

2), in 2012 Ferreira et al. [29] proposed a discrete MPC that used radial basis function 

ANNs as predictive models. The feasibility of the model was demonstrated with 

experimental results obtained in a building of University of Algarve. Results showed 

energy savings greater than 50%. Similar results were expected to be obtained in the 

work presented by Ruano et al. [30] in 2016. In 2017, a supervisory controller based on 

an MPC logic was proposed by Afram and Janabi-Sharifi [31] to shift the heating and 

cooling demand of a residential building to off-peak hours. Experimental data obtained 

by an archetype house showed that the employment of variable temperature setpoints 

calculated by the MPC led to 16% cost savings respect to fixed setpoints. MPCs were 

also used to carry out an online energy optimization of a residential building with 

electric underfloor heating system [32]. Two control systems were considered: an MPC 

with constant temperature setpoint, and an MPC working with a setpoint optimizer able 

to minimize the amount of energy used. The first strategy led to a reduction of around 

1430 kWh during the heating season, while the second strategy allowed a further 

reduction of 300 kWh in a year. 

Focusing now on studies that propose the use of MPCs in district heating or cooling 

systems (point 3), an MPC strategy to meet the space heating demand of buildings 

connected to a district heating system was proposed by Aoun et al [33]. Results show 

that, compared to a conventional weather-compensation control, the MPC is cost-

efficient and able to preserve a decent indoor thermal comfort level. Another work 

related to MPCs used in district heating systems was proposed by Saletti et al. [34], 
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where an MPC was used to supply thermal energy in a school complex. Respect to a 

traditional PID controller, the MPC guaranteed a reduction in fuel consumption up to 

more than 7%, and up to 5 hours of avoided failures of the indoor comfort constraints. 

Taking into account DCSs managed with MPCs and other similar controls, in 2019 Cox 

et al. [35] proposed an ANN-based MPC coupled with a genetic algorithm optimizer to 

determine the control strategy of an ice storage installed in a DCS. Results show that 

the optimal control can reduce the operating costs of the DCS by around 16% and 13% 

under a time-of-use and a real-time pricing, respectively. In their work published in 

2020, Lyons et al. [36] highlighted the need to improve energy flexibility integration 

between district heating systems and the power grid. Thus, a model reduction technique 

based on Hankel Singular Value Decomposition was used to reproduce an extended 

district of buildings. The approach was tested in both centralized and decentralized 

systems in terms of comfort and cost and demonstrated the need to consider the ability 

of buildings to interact within a wider system in order to completely realize the potential 

benefits of intelligent MPCs. According to De Lorenzi et al. [37], it is hard to find in 

literature comprehensive frameworks for the integrated setup of smart control strategies 

coupled with new generation district heating and cooling systems. The authors therefore 

proposed a framework that involves all steps of a controller development (based on an 

MPC) for small-scale district networks. It was found that, compared to conventional 

controls, smart solutions achieved 6% reduction in cost and up to 34% reduction in 

energy consumption. 

As can be noted from the analysis of the literature, MPCs based on black box models 

(e.g., ANNs) and used in buildings have been considered and found relevant. However, 

based on the knowledge of the authors, the issues related to the use and training of 

ANNs in MPCs and their implementation in multi-energy systems were not investigated 

in detail in case that the energy flexibility of thermostatically controlled loads (TCLs) 

wants to be unlocked. Indeed, if a black box building model needs to take into account 

the TCL energy flexibility, a critical aspect lies in the selection of an adequate dataset, 

which should contain data able to represent the effect of flexibility between the 

controlled variables (indoor and outdoor temperatures, thermal gains, etc.) and the 

output of the model (e.g., cooling demand). Thus, it is important to train the ANN with 

a dataset that already accounts for the effects of flexibility in the building, even if it is 
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not trivial given the large amount of possible configurations; otherwise, the ANN would 

not be able to simulate such effects. Additionally, in multi-energy systems that use 

energy flexibility, the interaction and the prioritization of the available energy sources 

need to be carefully analyzed. In fact, several issues arise when the goal is the 

development of an MPC able to unlock the building flexibility in order to minimize the 

electrical energy consumption; in this paper, we will see that it may be impossible to 

propose a general mathematical formulation for the MPC, and that specific cases should 

be examined and solved. Given the importance that multi-energy systems could have 

in the current and future energy scenario, in this work we investigated an application of 

multi-energy system including a DCS, RESs (PV modules) and backup systems based 

on variable-load air-to-water heat pumps (AWHPs). In the residential neighborhood 

served by the DCS, one user was allowed to be managed by an ANN-based MPC having 

the goal to reduce the electricity absorbed from the grid using the energy flexibility of 

the building. Flexibility was unlocked by the supervisory MPC, that imposed optimal 

variable setpoints to the local controllers. The work focuses on the importance that 

energy flexibility assumes both in the training of black box models and in its effect in 

MPCs used to manage thermal comfort of buildings. A specific mathematical approach 

was therefore proposed for the considered case study, approach that can be also used in 

different multi-energy systems. 

The paper is organized as follows. Section 2 describes the methodology followed to 

develop the ANN-based MPC and to evaluate its performance. The case study is 

described in Section 3. In this section, the MPC formulation, its basic assumptions and 

its integration in the simulation environment are discussed in detail. The results and 

discussion of the analysis are provided in Section 4. Section 5 reports the conclusions 

of the study. 

2. Methodology 

The smart management of a multi-energy system based on sources of different nature 

(waste, RESs, fossil) can lead to a significant primary energy saving if its subsystems 

are able to interact with each other under the supervision of a high-level MPC. To be 
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really effective, the MPC should be able to estimate within a useful prediction horizon 

the availability of RESs and potential free sources such as waste energy, as well as the 

energy demand of the system. To reach this goal, the MPC must rely on a model 

representing the system under study. As outlined in the Introduction, the use of a black 

box model based on an artificial neural network (ANN) allows, respect to theoretical 

models (white and grey box models), to take advantage of the larger and larger 

availability of big data, and to perform a continuous improvement of the model itself. 

This is the reason why in this work we decided to focus our attention on an ANN-based 

MPC. Once reliable prediction data are available, an appropriate prediction horizon 

should be selected. While there is no general rule to choose the optimal prediction 

horizon, it is important to note that a too short prediction horizon could lead to a poor 

performance of the MPC because its field of action is too limited. On the other hand, a 

too long prediction horizon could be unreliable, as prediction data always have some 

extent of uncertainty. For this reason, the effect related to the choice of the prediction 

horizon extent will be discussed in the results of this study (Section 4). 

The goal of the MPC discussed in this study is to reduce the electricity taken from 

the grid by a multi-energy system consisting of a DCS, photovoltaic (PV) panels, and 

backup systems based on variable-load air-to-water heat pumps (AWHPs). The DCS 

uses waste cold thermal energy recovered from a liquid-to-compressed natural gas (L-

CNG) fuel station [38], while the AWHPs can absorb electrical energy from either the 

grid or from the dedicated PV modules. As can be noted, the system presents a mix of 

different energy sources: a RES (the PV plant), a free waste source (the cold thermal 

energy provided by the DCS), and a traditional source (the electricity collected from 

the grid, which derives from non-renewable sources for the most part). The multi-

energy system is used to satisfy the cooling energy demand of a residential 

neighborhood composed by 8 single-family houses. Each house is connected to the 

DCS and has a dedicated PV plant and AWHP. In the reference case, which we will 

refer to as baseline, the multi-energy system relies on the instantaneous availability of 

the PV modules and of the waste cold thermal energy supplied by the DCS, 

compensating the possible energy deficit through the electricity absorbed from the grid. 

In the baseline, there is no possibility to exploit the energy flexibility of the building, 
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as the local control is a traditional thermostat working within a fixed indoor temperature 

band (25.5±0.5 °C), which provides the design thermal comfort level. 

In order to evaluate its performance, in this work the ANN-based MPC was allowed 

to operate in one of the houses of the residential district, using the flexibility given by 

the indoor temperature of the building. Compared to the baseline, the ANN-based MPC 

operates as a supervisory control that communicates, at each time step of one hour, a 

variable setpoint to the local building control. The interaction between the ANN-based 

MPC and the multi-energy system will be presented in Section 3.4, and it is schematized 

in Figure 11. Since the use of a variable setpoint could worsen the design thermal 

comfort level, in Section 4 the predicted mean vote (PMV) for both the cases was also 

reported, in order to check the satisfaction of a minimum comfort quality. 

3. Case study 

The case study consists of an 8-user residential neighborhood which has a cooling 

demand to be satisfied in summertime. Figure 1 shows the plant scheme of the case 

study. As can be seen, the cooling demand of each user can be satisfied either through 

the free waste cold thermal energy provided by the DCS, or through the activation of a 

variable-load air-to-water heat pump (AWHP). The heat pump can use electrical energy 

drawn either from the grid or, when available, from dedicated PV modules. The cooling 

power available in the DCS network is recovered from the LNG vaporizer of a nearby 

L-CNG refueling station. 
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Figure 1. Plant scheme of the energy system under study, with a focus on the 

single-user configuration. The cold thermal energy recovered from the L-CNG 

vaporizer is used to fulfill a residential DCS. 

3.1 L-CNG cooling recovery 

Given the relevance of alternative fuels for vehicles and the interconnection between 

the transportation and residential sector within urban areas, the waste cold is supposed 

to be recovered from a L-CNG refueling station [38]. To evaluate its cooling power 

profile, we started from data reporting the CNG sold in a L-CNG station for the vehicle 

sector (equal to about 5400 t year-1 [39]) and considered a value of 830 kJ kgLNG
-1 for 

the energy released during the LNG evaporation [40]; in this way, 380 kWh day-1 was 

found to be the potential cold energy availability per day in a L-CNG refueling plant. 

Additionally, considering a typical probability distribution profile of a daily CNG 

refueling operation [41], the cooling power profile shows a trend as that depicted in 

Figure 2. The profile provided in Figure 2 was therefore selected as the cooling supply 

side availability for the DCS. The available cold thermal energy is supplied to the DCS 

network by means of a heat exchanger (“DCS Heat Exchanger” in Figure 1). Both the 

primary and the secondary circuits use a water-glycol mixture as heat transfer fluid; in 

the former, the cold fluid is supposed to be available at a temperature of -15 °C, while 

the temperature of the latter is -5 °C [42].  
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Figure 2. Hourly cold energy recovery from a typical L-CNG vaporizer in a fuel 

station. 

3.2 District cooling system and residential neighborhood 

Referring to Figure 1, the actual DCS network starts from the “DCS Heat 

Exchanger”. The pipes used in the network modeling are insulated and installed 

underground [43]. As for the model proposed in [38], the pipe diameters were chosen 

to maintain the fluid velocity in an acceptable range (1.5 – 2 m s-1 for the main branches 

and around 1 m s-1 for the connections with the users [44]).  

The residential district connected to the DCS is composed of 8 single-family-house 

users located in Rome, Italy (41°55’ N, 12°31’ E). The thermal characteristics of the 

buildings envelope were extrapolated from the Tabula Project [45]. Each building was 

modelled as a single thermal zone with a simple lumped capacitance structure described 

by an overall building loss coefficient (0.38 W m-2 K-1) and a total thermal capacitance 

(55 MJ K-1) [46]. 

The number of users included in the neighborhood was determined by first estimating 

the single user design cooling load [47]: the peak demand was determined to be 6.7 kWt, 

with an indoor comfort condition of 26 °C and 50% relative humidity. Then, it was 

assured that the cold thermal energy recovered by the L-CNG vaporizer was able to meet 
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the peak cooling demand of each user for at least two hours per day: this led to a number 

of 8 users to be served by the DCS, as can be seen from Figure 3. 

 

 

Figure 3. Duration curve of the cold thermal energy provided by the L-CNG 

vaporizer. 

 

The connection between the DCS network and each user was realized through a heat 

exchanger (“User Heat Exchanger”, Figure 1) in which the DCS heat transfer fluid cools 

water down to a temperature of 7 °C, if the peak cooling demand is satisfied. When the 

cold thermal energy provided by the DCS is not sufficient, the cooling demand can be 

covered by backup systems installed by each individual user. The backup systems consist 

of variable-load air-to-water heat pumps (AWHPs), whose coefficient of performance 

(COP) curve was determined with a regressive linear model that correlates outdoor 

temperature, fluid delivery temperature and load [48]. The COP curves of the AWHP are 

plotted in Figure 4. Each AWHP is connected in series with the “User Heat Exchanger”, 

as shown in Figure 1, and it can be switched on by a controller set on the comfort limit 

of the indoor temperature (25.5+0.5 °C). Fan coil units (FCUs) were used to transfer 

the available cooling power from the water circuit to the indoor air. 
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Figure 4. COP curves of the AWHP (for a fluid delivery temperature of 7 °C). 

 

The AWHPs can be powered by the electricity collected from either the grid or PV 

modules installed on the roof of each building. Each PV plant is composed of 3 arrays, 

and each array includes 10 polycrystalline-silicon panels connected in series with a 

nominal peak power of 250 We [49]. The power output of the PV plant, for a typical 

summer week in Rome, Italy, is reported in Figure 5. 

 

 

Figure 5. Electrical power output of the PV plant. 
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The DCS and the residential neighborhood were modeled in a TRNSYS simulation 

environment. Specifically, each building was modeled with Type 88, the heat 

exchangers with Type 5, the FCUs with Type 996, and the PV plants with Type 194. 

3.3 ANN for the evaluation of the cooling demand 

In the present study, the prediction data of the sources (i.e., the PV production and 

the waste cold thermal energy provided by the DCS) are supposed to be well-defined 

for the MPC, together with the outdoor temperature and the thermal gains of the 

building. The estimation methods of these sources have been discussed in Section 3.1 

and 3.2. Here, the focus is on the prediction of the cooling demand required by one of 

the houses in the residential neighborhood. 

As introduced in Section 2, an ANN used in an MPC to predict the cooling demand 

can be trained with a large amount of data, deriving from either experimental measures 

or numerical evaluations. Before training, however, it is important choosing the best 

ANN architecture that represents the system in exam under a logical-mathematical 

point of view. In the baseline, the cooling demand of one single-family house is being 

satisfied with a variable-load AWHP managed by a traditional local control, which is 

based on a ON/OFF logic. In this case, the heat pump works always near the design 

nominal capacity, equal to 6.7 kWt. In other words, the modeling of the cooling demand 

basically consists in determining when the building needs to be cooled, and this can be 

regarded as a Boolean problem. The most appropriate ANN to choose in this case is 

therefore an architecture dedicated to classification problems. 

In MATLAB, which we used to train and run our network, the ANNs used to solve 

classification problems are referred to as pattern recognition networks. Pattern recognition 

networks are feedforward networks that can be trained to classify inputs according to the 

target classes. To reduce the classification errors of the network, it is important to train 

the ANN with a proper dataset. The main variables influencing the cooling demand were 

therefore investigated: indoor setpoint temperature (Figure 6), outdoor temperature 

(Figure 7), and building thermal gains (Figure 8). Among these variables, the most 

relevant input is the indoor setpoint temperature, which strongly influences the thermal 
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behavior of the building. The next, important step involves the selection of the hourly 

data, and their number, to be used to train the ANN. A too small dataset, in fact, could 

lead to a poor general interpolating performance of the network. Too many data, on the 

other hand, could result in an overfitting of the problem. Overfitting intensifies the 

interpolating capacity of the network, thus resulting in a poor representation of the 

output when new data are provided to the ANN. To avoid overfitting, only 500 

normalized hourly data for the cooling demand (Qbuild) in the month of July were 

considered for the dataset (Figure 9). However, these data, obtained through the TRNSYS 

simulation environment representing the baseline configuration, were not based on a fixed 

indoor setpoint temperature. In fact, this would have led to a very poor performance 

prediction of the ANN, which would have not been able to learn the trend of the building 

cooling demand at different setpoint temperature values. As a result, this would have 

deteriorated the use of the energy flexibility provided by the building. To overcome this 

issue, the TRNSYS simulation environment was allowed to work at different indoor 

setpoint temperatures (24.5, 25.5, 26.5, 27.5 °C), variable on a daily basis (a different 

setpoint every day, as represented in Figure 6). In this way, it was possible to evaluate the 

cooling demand trend of the building at variable setpoint temperatures, and the data 

provided by this peculiar simulation environment were finally used to build the definitive 

training dataset of the ANN. To further reduce the possibility of overfitting issues, the 

definitive dataset was also randomly subdivided into a training set (50%), a validation set 

(30%), and a test set (20%). The validation set was used, during the error minimization 

routine, to check if overfitting occurred and to stop the training if necessary. The test 

set, instead, was used to evaluate the performance of the trained ANN. 
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Figure 6. Indoor setpoint temperature data used to train the ANN. 

 

 

Figure 7. Outdoor temperature data used to train the ANN. 

 

 

Figure 8. Thermal gains data used to train the ANN. 
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Figure 9. Cooling demand (Qbuild) data used to train the ANN. 

 

Additional precautions were taken to avoid overfitting by selecting an appropriate 

number of neurons and layers of neurons. Since it was demonstrated [11] that even one 

hidden layer of neurons is sufficient to fit complex, non-linear problems, the ANN used 

in this study consists of one hidden layer with 10 neurons (Figure 10), which are a good 

tradeoff between performance of the network and overfitting of the data. The activation 

function used in the hidden layer was a sigmoid, while the activation function used in the 

output layer was a softmax [50]. The minimization algorithm chosen for the training of 

the network was the default scaled conjugate gradient backpropagation [51]. 

 

 

Figure 10. Pattern ANN architecture used to predict the cooling demand Qbuild. 
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To evaluate the performance of the ANN, a cross-entropy approach [52] was used. 

Based on the results provided by the ANN model, the training, validation, test, and overall 

accuracy of the network were equal to, respectively, 96.0%, 94.7%, 90.0%, and 94.4%. 

Thus, it can be concluded that the cooling demand (Qbuild) estimated by the ANN is 

sufficiently accurate. However, it is worth remarking that, in order to obtain this result, 

data obtained with variable setpoints were needed, i.e. in some extent different from those 

of the baseline configuration. 

3.4 Integration of the MPC in the simulation environment 

Since the ANN allows to predict the cooling demand of a single-family house in the 

residential neighborhood, there is the possibility to design an ANN-based MPC able to 

use the demand prediction to minimize the electrical energy consumption of the 

building. Specifically, in the present study the MPC can minimize the electricity 

absorbed from the grid (Egrid) by the backup AWHP installed in building. Along with 

the cooling demand, which is a function of the indoor setpoint temperature (Qbuild= 

Qbuild(Tset)), the MPC should be allowed to know the free energy sources available in 

the system in a certain prediction horizon, i.e. the waste cold thermal energy provided 

by the DCS (QDCS) and the electricity producible by the PV plant (EPV), as well as the 

coefficient of performance (COP) of the variable-load AWHP used in the building. If 

all these quantities are known, the MPC can process an energy minimization algorithm 

and determine an optimal indoor setpoint temperature (Tset) according to the energy 

flexibility availability of the building. The optimization variable Tset is not allowed to 

assume any possible value, but its domain is limited in the set of constraints {24.5, 25.5, 

26.5, 27.5} °C, in order to guarantee a thermal comfort level comparable to that of the 

baseline. Since the MPC supervises the local control, a Tset resolution of 1 °C was used 

to reproduce the behavior of a traditional thermostat. 

However, given the nature of the multi-energy system under study, the goal of the 

MPC is not limited at calculating an optimal setpoint temperature. In fact, based on the 

availability of the free sources in the chosen prediction horizon, the MPC should also 
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evaluate for each time step if either the DSC or the AWHP are allowed to work in User 

4 (Figure 1). In summary, the supervisory MPC should provide the local control unit 

with three data for each time step: an optimal indoor setpoint temperature (Tset), a 

Boolean control for the heat exchange with the DCS (CTRLDCS), and a Boolean control 

for the functioning of the AWHP (CTRLHP). While Tset is the result of an energy 

minimization carried out for the whole prediction time, the selection of the two Boolean 

controls also depends on the actual availability of the free energy sources in the current 

time step under evaluation. In fact, there could be occurrences where there is no 

availability of the free sources in the current time step, even if they will become 

available in the following hours. In such a case, the Boolean controls determined by the 

MPC for the current time step should be CTRLDCS=CTRLHP=0. This trivial example 

highlights that the MPC cannot be based only on an energy balance referred to the 

chosen prediction horizon, but it is also necessary to carefully evaluate what happens 

in the first hour of the evaluation period, i.e. the current time step. 

Based on the aforementioned considerations, there is no possibility to write a stand-

alone objective function based on an energy balance equation and it is therefore 

necessary to subdivide the energy problem in cases. Let Qbuild be the cooling demand 

of the building for all the admissible values of Tset and tPH be the chosen prediction 

horizon for the current time step t. The evaluation time is thus comprised in the period 

[t,t+tPH]. The MPC should evaluate the cases provided in Table 1. As will be noted, 

some of these cases result in trivial mathematical problems to be solved, where it is 

sufficient to select the highest admissible Tset (i.e., 27.5 °C). Most of the cases, however, 

requires the definition of a proper energy objective function, Egrid[t,t+tPH], that must be 

minimized by the MPC optimization algorithm. 

 

Table 1. Cases managed by the MPC routine. 

Case Equations Comments 

0 Qbuild[t,t+tPH]=0; 

 

Tset[t,t+tPH]=27.5 °C, CTRLDCS[t]=0, CTRLHP[t]=0, 

Egrid[t]=0 

There is no cooling demand in the 

current time step and in the whole 

prediction horizon, for all the admissible 

setpoint values 
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1 Qbuild[t]=0, QDCS[t]=0, EPV[t]=0; 

 

Tset[t,t+tPH]=27.5 °C, CTRLDCS[t]=0, CTRLHP[t]=0, 

Egrid[t]=0 

At the current time step, there is no 

cooling demand and no free energy 

source available 

2 Qbuild[t]=0, QDCS[t]=0, EPV[t]≠0, 

find Tset[t,t+tPH] so that 

Egrid[t,t+tPH]=min(Egrid[t,t+tPH]); 

 

Tset[t,t+tPH]=Tset,min, CTRLDCS[t]=0, CTRLHP[t]=1, 

Egrid[t]=0 

At the current time step, there is no 

cooling demand, but the photovoltaic 

source is available. The optimal value of 

Tset is chosen based on the minimization 

of the energy objective function 

3 Qbuild[t]=0, QDCS[t]≠0, EPV[t]=0, 

find Tset[t,t+tPH] so that 

Egrid[t,t+tPH]=min(Egrid[t,t+tPH]); 

 

Tset[t,t+tPH]=Tset,min, CTRLDCS[t]=1, CTRLHP[t]=0, 

Egrid[t]=0 

At the current time step, there is no 

cooling demand, but the waste cold 

thermal energy provided by the DCS is 

available. The optimal value of Tset is 

chosen based on the minimization of the 

energy objective function 

4 Qbuild[t]=0, QDCS[t]≠0, EPV[t]≠0, 

find Tset[t,t+tPH] so that 

Egrid[t,t+tPH]=min(Egrid[t,t+tPH]); 

 

Tset[t,t+tPH]=Tset,min, CTRLDCS[t]=1, CTRLHP[t]=1, 

Egrid[t]=0 

At the current time step, there is no 

cooling demand, but both the free energy 

sources are available. The optimal value 

of Tset is chosen based on the 

minimization of the energy objective 

function 

5 Qbuild[t]≠0, QDCS[t]=0, EPV[t]=0; 

 

Tset[t,t+tPH]=27.5 °C, CTRLDCS[t]=0, CTRLHP[t]=1, 

Egrid[t]=Qbuild[t]/COP[t] 

At the current time step, there is cooling 

demand for at least one value of Tset, but 

both the free energy sources are not 

available 

6 Qbuild[t]≠0, QDCS[t]=0, EPV[t]≠0, 

find Tset[t,t+tPH] so that 

Egrid[t,t+tPH]=min(Egrid[t,t+tPH]); 

 

Tset[t,t+tPH]=Tset,min, CTRLDCS[t]=0, CTRLHP[t]=1, 

Egrid[t]=Qbuild[t]/COP[t]-EPV[t] if 

Qbuild[t]/COP[t] > EPV[t], 

Egrid[t]= 0 if Qbuild[t]/COP[t] ≤ EPV[t] 

At the current time step, there is cooling 

demand for at least one value of Tset, and 

the photovoltaic source is available. The 

optimal value of Tset is chosen based on 

the minimization of the energy objective 

function 

7 Qbuild[t]≠0, QDCS[t]≠0, EPV[t]=0, 

find Tset[t,t+tPH] so that 

Egrid[t,t+tPH]=min(Egrid[t,t+tPH]); 

 

Tset[t,t+tPH]=Tset,min, CTRLDCS[t]=1, CTRLHP[t]=1, 

At the current time step, there is cooling 

demand for at least one value of Tset, and 

the waste cold thermal energy provided 

by the DCS is available. The optimal 

value of Tset is chosen based on the 
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Egrid[t]=(Qbuild[t]- QDCS[t])/COP[t] if 

Qbuild[t] > QDCS[t], 

Egrid[t]=0 if Qbuild[t] ≤ QDCS[t] 

minimization of the energy objective 

function 

8 Qbuild[t]≠0, QDCS[t]≠0, EPV[t]≠0, 

find Tset[t,t+tPH] so that 

Egrid[t,t+tPH]=min(Egrid[t,t+tPH]); 

 

Tset[t,t+tPH]=Tset,min, CTRLDCS[t]=1, CTRLHP[t]=1, 

Egrid[t]=(Qbuild[t]-QDCS[t])/COP[t]-EPV[t] if 

(Qbuild[t]-QDCS[t])/COP[t]-EPV[t] > 0, 

Egrid[t]= 0 if (Qbuild[t]-QDCS[t])/COP[t]-EPV[t] ≤ 0 

At the current time step, there is cooling 

demand for at least one value of Tset, and 

both the free energy sources are 

available. The optimal value of Tset is 

chosen based on the minimization of the 

energy objective function 

 

The objective function that the MPC optimization algorithm must minimize is based 

on a general energy balance of the building, evaluated for the whole prediction horizon 

chosen. It can be written as: 

 

𝐸grid[𝑡, 𝑡 + 𝑡PH] = ∑ 𝐸grid[𝑖]

𝑡+𝑡PH

𝑖=𝑡

 (1) 

 

where, for each i: 

 

𝐸grid[𝑖] =
𝑄build[𝑖] − 𝑄DCS[𝑖]

𝐶𝑂𝑃[𝑖]
− 𝐸PV[𝑖] if 

𝑄build[𝑖] − 𝑄DCS[𝑖]

𝐶𝑂𝑃[𝑖]
− 𝐸PV[𝑖] > 0  

𝐸grid[𝑖] = 0 if 
𝑄build[𝑖] − 𝑄DCS[𝑖]

𝐶𝑂𝑃[𝑖]
− 𝐸PV[𝑖] ≤ 0  

 

Through Equation (1), for each time step t the MPC can estimate the overall electrical 

energy that the system will collect from the grid from t to the end of the prediction 

horizon (t+tPH). The minimization algorithm of the MPC must therefore find for which 

indoor setpoint temperature, Tset, the overall electricity absorbed from the grid is 

minimum. With a mathematical formulation, this can be written as: 

 

find 𝑇set[𝑡, 𝑡 + 𝑡PH] ∣ 𝐸grid[𝑡, 𝑡 + 𝑡PH] = min(𝐸grid[𝑡, 𝑡 + 𝑡PH]) (2) 
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s.t. 𝑇set[𝑡, 𝑡 + 𝑡PH] = {24.5, 25.5, 26.5, 27.5}°C  

 

The optimization problem described by Equation (2) belongs to the paradigm of 

constraint programming [53]. Referring to a general constraint satisfaction problem 

[54], this can be defined by a triplet (X, D, C) where: 

• X = Tset is the variable of the problem; 

• D = ℚ+ is the mathematical domain of the variable, in this case the field of 

positive rational numbers; 

• C = {24.5, 25.5, 26.5, 27.5} °C is the set of constraints, that in the present 

case are hard equality constraints defined in a finite domain. 

When a constraint satisfaction problem is associated to an objective function, we are 

dealing with a so-called constraint optimization problem [53]. As can be noted from 

Equation (2) and the problem cases reported above, the Tset value found by the MPC 

minimization algorithm for each time step t is referred to the whole evaluation time 

[t,t+tPH], and not to the current time step t. In other words, the setpoint temperature 

found by the MPC is a single, optimal average value that minimizes Egrid in the whole 

evaluation time. This simplification of the optimization process was necessary in order 

to guarantee acceptable calculation times for the MPC. In fact, being it based on a 

pattern recognition ANN, the Qbuild function that appears in the objective function 

described by Equation (1) is a complicated nonlinear mapping of the building cooling 

demand, that extends the optimization process significantly. The simplification, 

however, does not worsen the optimization results excessively, as they are anyway 

bounded in the set of constraints reported in Equation (2). In summary, the optimization 

problem under study is defined under a limited set of equality constraints and the 

objective function depends on one variable only. In this case, a substitution method can 

be used, i.e. Equation (2) can be solved for the four allowable values of Tset, and then 

the MPC can select the actual value of Tset that minimizes Egrid. 

Figure 11 represents a block diagram that summarizes the MPC operation and its 

interaction with the single-family house (User 4). The house, together with the other 

users and the DCS, was reproduced in a TRNSYS simulation environment. On the other 

hand, the MPC routine was written in MATLAB as for the ANN used to predict the 



24 

 

cooling demand. During the time step t, the User 4 sub-environment calls the MPC 

through a dedicated Type 155, which starts the MATLAB engine. Since the goal of the 

MPC is to find the indoor setpoint temperature that minimizes Egrid defined as in 

Equation (1), for each time step t the inputs of the MPC must be the potential free 

energy sources (QDCS and EPV) and the COP of the variable-load AWHP. The quantities 

QDCS, EPV and COP, as well as Qbuild, are not scalar values, but arrays whose dimension 

matches the prediction horizon tPH chosen for the simulation. In Figure 11, this aspect 

is highlighted by the symbolism [t,t+tPH]. The minimization algorithm of the MPC 

determines the optimal Tset value that minimizes Egrid, according to Equation (2). Then, 

the value found for Tset, along with the Boolean controls CTRLDCS and CTRLHP 

determined according to the specific problem case, are exported to the TRNSYS 

simulation environment. They are therefore used to solve the transient energy balance 

of the User 4 system for the current time step t. 

 

 

Figure 11. Block diagram of the simulation environment. For each time step t, 

User 4 sub-environment calls the MPC routine, that determines the optimal Tset over 

the prediction horizon tPH, together with the controls CTRLDCS and CTRLHP. 
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4. Results and discussion 

As discussed in Section 2, the choice of the prediction time horizon influences the 

performance of an MPC. Thus, the MPC of the present study was tested over different 

values of the prediction horizon, in order to find the one that minimizes the electricity 

collected from the grid. Taking into account the typical meteorological conditions for 

Rome, Italy, during the cooling season (from June 01 to September 30), Figure 12 

shows how the MPC performs respect to the baseline for typical values of the prediction 

horizon (6, 12, 18, 24 hours). As can be seen, the use of the MPC allows to reduce the 

electricity collected from the grid regardless of the extent of the prediction horizon. 

However, it was found that the prediction horizon value that minimizes Egrid is 18 hours. 

In this case, the MPC was able to reduce the energy absorbed from the grid by -71%. 

Along with the electricity consumption, in the present study the CO2 equivalent 

emissions of the baseline and of the MPC working at different prediction horizons were 

also estimated. Since electrical energy produced by the PV plant and cold thermal 

energy provided by the DCS were assimilated to renewable/waste sources, no carbon 

dioxide emission was associated to these sources. Under this assumption, the CO2 

emissions of the multi-energy system are only due to the electricity drawn from the 

grid. Taking into account the Italian household sector, an average conversion factor 

equal to 352.4 g of CO2 equivalent for kWh of electrical energy was considered [55]. 

For the entire cooling season, the conversion factor led to an emission of about 11 kg 

of CO2 equivalent for the baseline, and of 7, 5, 3 and 7 kg of CO2 equivalent for the 

MPC with the prediction horizons considered. The trend of the carbon dioxide 

emissions is therefore equal to that of the electricity absorbed from the grid (Figure 12) 

and reflects what already discussed in Section 2, i.e. that the best prediction horizon is 

usually a tradeoff between a short prediction time, more precise but more limited in the 

prediction capability, and a long prediction time, which provides more information to 

the control, but whose reliability could be inferior. 
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Figure 12. Electricity absorbed from the grid for different values of the prediction 

time horizon. The energy deviations are referred to the baseline. 

 

Focusing on the results obtained by the MPC for a prediction horizon of 18 hours, 

Figure 13 reports the mix of energy sources used by User 4, subdivided for the months 

considered in the cooling season. In each month, the MPC prioritizes the use of the 

waste cold thermal energy provided by the DCS. In the periods with higher availability 

of solar radiation (mainly July and August), the MPC also tries to use the electricity 

produced by the PV plant, if available. If there is no possibility to meet the cooling 

demand of User 4 with the free energy sources, the MPC allows the variable-load 

AWHP to collect the remaining fraction of energy from the electrical grid. This fraction, 

however, is limited during the cooling season. In fact, the MPC has the possibility to 

unlock the energy flexibility of the building by adjusting the variable indoor setpoint 

temperature, thus allowing a pre-cooling of the building several hours before the actual 

request of cooling demand. 
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Figure 13. Use of the energy sources by User 4 with the MPC working at a 

prediction horizon of 18 hours. 

 

To investigate in detail how the MPC operates, it is necessary to analyze the trend 

of the variable indoor setpoint temperature, as well as the availability and use of the 

free energy sources. Starting from the former, Figure 14 shows how indoor temperature 

changes for User 4 during a typical week. Referring to the baseline, it can be seen that 

the setpoint temperature is fixed at 25.5 °C, and the corresponding indoor temperature 

fluctuates in a narrow band (±0.5 °C). In the same figure, it is possible to note that, for 

a prediction horizon of 18 hours, the MPC allows the setpoint temperature to vary in 

the range 24.5-27.5 °C. For each hour, the indoor setpoint temperature used in the local 

thermostat control of the building comes from the energy optimization carried out by 

the supervisory MPC, which tries to unlock the energy flexibility of the building. As a 

consequence of flexibility, there is a wider fluctuation of the actual indoor temperature. 

By predicting a cooling demand in the hottest hours of the day, the MPC takes 

advantage of the availability of waste cold thermal energy from the DCS in the morning 

hours and lowers the setpoint temperature to obtain a pre-cooling of the building. 
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Figure 14. Indoor and setpoint temperatures during a typical week for the baseline 

and the MPC working at a prediction horizon of 18 hours (User 4). 

 

Even without the MPC, the system is able to use the free energy sources available, 

as depicted for example in Figure 15 for the cold thermal energy drawn from the DCS. 

However, this is only possible when there is a temporal match between the availability 

of the source and the cooling demand, because in the baseline there is no possibility to 

use the energy flexibility of the building. Without the MPC, the baseline is not able to 

operate a pre-cooling of the building, thus there are periods where the operation of the 

AWHP cannot be avoided (as visible in the central four days of Figure 16). In this case, 

the only way to avoid electricity absorption from the grid relies on the availability of 

the solar source. When there is a match between electricity demand and production 

from the PV plant, there is no absorption from the grid even in the baseline. In some 

days, however, this condition is not met, and the multi-energy system is forced to draw 

electrical energy from the grid, as shown in two days of Figure 17. In these situations, 

the operation of the multi-energy system and the interaction between its subsystems are 

not optimized, leading to an inadequate exploitation of the free energy sources 

available. The reduction of electrical energy consumption is therefore limited, even in 

presence of a DCS fed with waste cold thermal energy and a PV plant. 
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Figure 15. Cooling demand covered by the DCS during a typical week for the 

baseline and the MPC working at a prediction horizon of 18 hours (User 4). 

 

Figure 16. Electrical power used by the AWHP to meet the cooling demand of 

User 4 during a typical week. The curves refer to the baseline and the MPC working 

at a prediction horizon of 18 hours. 

 

Figure 17. Electrical power drawn from the grid to meet the cooling demand of 

User 4 during a typical week. The curves refer to the baseline and the MPC working 

at a prediction horizon of 18 hours. 
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The use of an MPC approach allows to reduce the overall electricity collected from 

the grid but, as visible in Figure 14, also leads to a wider variation of the indoor 

temperature. Thus, the thermal comfort level inside the building could be insufficient. 

To investigate this aspect, the predicted mean vote (PMV) of User 4 during the cooling 

season was evaluated and its trend was reported in Figure 18. As can be seen, the PMV 

trend attests a good thermal comfort level when the MPC is used: the condition 

|𝑃𝑀𝑉| ≤ 0.5 is not satisfied for 204 hours, that represent about the 7% of the entire 

cooling season considered. As a comparison, in the baseline the same condition is not 

satisfied for 108 hours (4%). It is therefore possible to conclude that the MPC is also 

able to guarantee a good thermal comfort quality. 

 

 

Figure 18. PMV trend of User 4 during the cooling season for the baseline and the 

MPC working at a prediction horizon of 18 hours. 

 

Attempting to generalize the results of the study, it is possible to state that multi-

energy systems having specific interactions between their subsystems need to be 

carefully analyzed in order to reduce the consumption of electrical energy. The presence 

of RESs or waste resources only does not guarantee an optimal utilization of the free 

energy sources, especially if there are frequent temporal mismatches between the 

sources and the demand. The development and use of a dedicated supervisory MPC, 

able to predict both the sources and the demand in a proper prediction horizon, can help 

the management of the energy systems. Through the prediction, the MPC has the 

possibility to unlock the energy flexibility provided by the building and thus to 

minimize the temporal mismatches between the free energy sources and the demand. 
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This control strategy should be effective in reducing electrical energy consumption 

even in complex, multi-energy systems. It should be also noted that MPCs based on 

black box models such as ANNs have the possibility to be trained again when new data 

are available, thus they can continuously improve the model they represent. This 

remarkable advantage, however, is counterbalanced by other issues, in particular a 

greater difficulty in training an ANN capable of managing energy flexibility properly. 

It is possible to deal with this issue by using, for the training of the ANN, an adequate 

dataset able to account for the effects of flexibility in the parameters considered; 

otherwise, the trained ANN would show poor performance in this regard, worsening 

the general performance of the ANN-based MPC. 

5. Conclusion 

This paper analyzes the energy performance of a district cooling system (DCS) 

providing waste cold thermal energy, obtained from a liquid-to-compressed natural gas 

(L-CNG) fuel station, to meet the cooling demand of a residential neighborhood 

comprising 8 single-family houses. Along with the cold thermal energy provided by the 

DCS, each house includes a variable-load air-to-water heat pump (AWHP) used as 

backup system. The AWHP can be powered either with the electricity produced from a 

photovoltaic (PV) plant or directly from the grid. One building of the residential 

neighborhood was allowed to be managed by a model predictive control (MPC), in 

order to reduce the electricity collected from the grid (Egrid) by exploiting the energy 

flexibility available in the building itself. The MPC prediction algorithm is based on an 

artificial neural network (ANN), designed and trained to evaluate the cooling demand 

of that particular user. For each time step of the simulation environment, the ANN-

based MPC tries to minimize Egrid by selecting the optimal indoor setpoint temperature, 

which represents the flexibility parameter of the system. 

Respect to the baseline case, which uses a traditional thermostatic control at fixed 

temperature, the results of the analysis show that the MPC is able to reduce the 

electricity consumption regardless of the considered prediction time horizon. 

Specifically, it was found that the prediction horizon that minimizes Egrid is equal to 18 
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hours. With this value, the electricity absorbed from the grid resulted to be -71% 

compared to the baseline. Despite allowing wider fluctuations of the actual indoor 

temperature, the MPC was also able to guarantee a good thermal comfort level; in fact, 

the assessment of the predicted mean vote (PMV) showed that the condition |𝑃𝑀𝑉| ≤

0.5 is not satisfied for only the 7% of the entire cooling season considered. 

The study highlighted that a multi-energy system, even if based on renewable energy 

and waste resources, is not completely able to reduce the consumption of electrical 

energy because temporal mismatches between the sources and the demand cannot be 

avoided. The use of a supervisory ANN-based MPC, however, can reduce the 

mismatches by unlocking the energy flexibility of the building, and thus lead to a 

minimization of electrical energy utilization. In this regard, great care should be 

dedicated to the training process of the ANN. In fact, it is important providing the 

network with data that significantly represent the case under study. In the multi-energy 

system proposed in this work, to correctly model the cooling demand, it was necessary 

to train the ANN with data based on variable indoor setpoints, condition that differs 

from the baseline in some extent. If provided with simple baseline data, the ANN would 

have shown poor performance, and the prediction of the cooling demand would have 

been unreliable.  
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Nomenclature 

Latin symbols 

COP  Coefficient of Performance 
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CTRL  Boolean control 

C  Set of constraints of the constraint satisfaction problem 

D  Domain of the constraint satisfaction problem 

E  Electrical energy (kWhe) 

PMV  Predicted Mean Vote 

Q  Thermal energy (kWht) 

T  Temperature (°C) 

t  Time (hr) 

X  Variable of the constraint satisfaction problem 

Subscripts 

build  Building 

HP  Heat pump 

PH  Prediction horizon 

set  Setpoint 

Acronyms 

ANN  Artificial Neural Network 

AWHP Air-to-Water Heat Pump 

CNG  Compressed Natural Gas 

DSC  District Cooling System 

DSM  Demand Side Management 

EU  European Union 

FCU  Fan Coil Unit 

HVAC Heating, Ventilation, and Air Conditioning 

LNG  Liquified Natural Gas 

MPC  Model Predictive Control 

PV  Photovoltaic 
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RES  Renewable Energy Source 

TCL  Thermostatically Controlled Load 

TES  Thermal Energy System 
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