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Abstract

Acquiring information on patients’ health status from video recordings analysis is a
crucial opportunity to enhance current clinical assessment and follow-up practices.
This PhD thesis proposes four automatic deep learning (DL)-based systems to support
the clinician in monitoring patients both in hospital and home environments.

The first proposed monitoring system is designed for preterm infants admitted to
neonatal intensive care unit (NICU). Assessing preterm infants’ limb-movement has a
strong predictive value for early diagnosing the presence of neurodevelopmental dis-
orders. Despite its relevance, preterms’ movement monitoring in NICUs is still based
on direct observation of the patient by clinicians and has, consequently, the limitation
of being qualitative and discontinuous. To support clinicians, the proposed system
automatically analyses depth video recordings acquired by a camera placed over the
infant’s crib and lays the foundation for a new paradigm of monitoring preterm in-
fants by showing promising results with a Dice similarity coefficient (DSC) of 0.88 in
joints detection and an inference time on a single board computing (SBC) device of
20 frames per second.

Visual assessment is carried out also in specialised centres for the treatment of chil-
dren with autism. In this context, the applied behaviour analysis (ABA) operator
observes the child and notes the progress made during the therapy programme. The
second monitoring system supports the ABA operator in evaluating the improvements
achieved in terms of behavioural autonomy by the autistic patient. The system au-
tomatically analyses images of the patient washing his/her hands using a camera in-
stalled above the sink in a specialised centre and provides clinicians with an index
to quantify patient’s progress and to tailor treatment protocols. Tested on data col-
lected during clinical practice, the autonomy index predicted by the algorithm differs
by one percentage point from the actual index proving to be a valuable ally for ABA
operators.

The last two proposed systems support clinicians in assessing patients while re-
habilitating with the smart walker and those suffering from dysarthria. The third
monitoring system showed in this Thesis exploits images collected by two RGB-D
cameras installed on a smart walker. Current digital assessment systems, in this clin-
ical scenario, are limited to the characterisation of specific anatomical areas (e.g., the
legs) without considering the body as a whole. The proposed DL method automati-
cally processes the RGB-D images acquired by the cameras to derive the pose of the
patient’s body while using the smart walker, achieving an error of 44.05 mm. The
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system is designed to be effective and return real-time results on low-cost hardware
(inference time=26.6 ms) providing the clinicians with an instantaneous assessment
of patient performance.

The last monitoring system involves patients suffering from dysarthria (a group of
speech disorders induced by neurodegenerative diseases). The onset of dysarthria has
a strong psycho-physical impact on both the patient and his/her relatives. Therefore,
the immediate recognition of the functional changes that the disease causes in those
who are affected with, is fundamental to allow clinicians to prescribe corrective and
compensatory strategies to the communicative disability. The proposed approach aims
to evaluate the impact of dysarthria in oro-facial muscles district and implements a
DL algorithm that analyses RGB images of patients with amyotrophic lateral sclerosis
(ALS) and stroke. The network is trained to derive the position of 68 facial landmarks
and obtains a normalised mean error of 1.79, surpassing current assessment methods
based on direct patient observation by neurologists and speech therapists. The value of
the proposed system is twofold: it guarantees an exhaustive collection of quantitative
data related to a rare pathology and it imagines a new care model for patients who,
unable to reach the reference clinical centre, may use their smartphone to conduct the
assessment from home.

Each approach implemented was developed and validated on multimedia data col-
lected during the actual clinical practice. The acquisition systems have been designed
to be easily deployed in home environment to allow the collection of details for en-
riching patient’s clinical history. Each proposed system stems from the clinical need
of having new tools to treat patients, able at collecting structured, easily accessible
and shareable information. This research will continue to be enhanced to ensure that
clinicians, who are increasingly challenged by tight working schedules, have more
time to devote to patients, to treat them better and to the best of their ability.
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Sommario

Acquisire informazioni sullo stato di salute dei pazienti a partire dall’analisi di
video registrazioni è un’opportunità cruciale per potenziare le attuali pratiche cliniche
di valutazione e follow-up. Questa Tesi di Dottorato propone quattro sistemi auto-
matici basati su apprendimento profondo (deep learning (DL)) utili a supportare il
clinico nel monitoraggio di pazienti sia in ambiente ospedaliero sia in ambiente do-
mestico.

Il primo sistema di monitoraggio è pensato per i neonati prematuri ricoverati in ter-
apia intensiva. Valutare i movimenti degli arti dei pretermine ha un forte valore pred-
ittivo per la diagnosi precoce della presenza di disturbi del neurosviluppo. Nonostante
la sua rilevanza, il monitoraggio del movimento nelle terapie intensive neonatali è an-
cora prettamente basato sull’osservazione diretta del paziente da parte del clinico ed
ha, conseguentemente, il limite di essere qualitativo e discontinuo. Per offrire sup-
porto ai clinici, il sistema proposto analizza automaticamente le video-registrazioni
di profondità acquisite da una telecamera posta sopra la culla del neonato e pone le
basi per un nuovo paradigma di monitoraggio dei nati prematuri mostrando risultati
promettenti con un Dice similarity coefficient (DSC) pari a 0.88 nel riconoscimento
dei giunti e un tempo di inferenza su un device del tipo computer a scheda singola
(single board computing (SBC)) di 20 fotogrammi al secondo.

La valutazione di tipo osservazionale non viene attuata solamente all’interno dei
reparti di terapia intensiva neonatale ma anche nei centri specializzati per il tratta-
mento dei bambini con sindrome dello spettro autistico. In questo contesto, l’operatore
specializzato in analisi applicata del comportamento (ABA) osserva il bambino ed an-
nota i progressi raggiunti nel corso del programma terapeutico. Il secondo sistema di
monitoraggio supporta l’operatore ABA nella valutazione dei miglioramenti raggiunti
in termini di autonomia comportamentale dal paziente autistico. Il sistema, grazie
ad una telecamera installata sopra al lavandino di un centro specializzato, analizza
automaticamente le immagini che riprendono il paziente nell’atto di lavarsi le mani
e restituisce ai clinici un indice utile sia alla valutazione dei progressi del paziente
sia alla maggior personalizzazione dei protocolli terapeutici. Testato sui dati raccolti
durante la pratica clinica l’indice di autonomia predetto dall’algoritmo differisce di
un punto percentuale rispetto all’indice reale dimostrandosi un alleato valido per gli
operatori ABA.

Gli ultimi due sistemi di monitoraggio sono rivolti a pazienti in età adulta e sfrut-
tano l’elaborazione automatica di immagini per supportare il clinico nel valutare i
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pazienti che si riabilitano con il deambulatore smart e quelli che soffrono di disar-
tria. Il terzo sistema di monitoraggio presentato nella tesi sfrutta le immagini raccolte
da due telecamere RGB-D installate su un deambulatore smart. Gli attuali sistemi
digitali valutativi, in questo scenario clinico, sono limitati alla caratterizzazione di
aree anatomiche specifiche (ad es., le gambe) senza considerare il corpo nella sua in-
terezza. Il metodo di DL proposto processa automaticamente le immagini RGB-D
acquisite dalle telecamere e ricava la posa del corpo del paziente che cammina con il
deambulatore raggiungendo un errore di 44.05 mm. Il sistema è studiato per essere
efficace e restituire risultati in tempo reale su un hardware economico (tempo di in-
ferenza= 26.6 ms) garantendo al clinico una valutazione istantanea delle performance
dei pazienti.

L’ultimo sistema di monitoraggio proposto coinvolge invece pazienti affetti da dis-
artria (insieme dei disordini dell’eloquio indotti dalle patologie neurodegenerative).
L’insorgere della disartria impatta fortemente a livello psico-fisico sia sul paziente
sia sui suoi congiunti per questo riconoscere immediatamente i cambiamenti fun-
zionali che la patologia causa in chi ne è affetto è fondamentale per permettere al
clinico di prescrivere strategie correttive e compensatorie alla disabilità comunicativa.
L’approccio proposto nasce con l’obiettivo di valutare l’impatto della disartria nei
muscoli del distretto bucco-facciale ed implementa un algoritmo di DL che analizza
immagini RGB di pazienti con sclerosi laterale amiotrofica e ictus. La rete è allenata
per ricavare la posizione di 68 landmark facciali ed ottiene un errore medio pari a 1.79
superando le attuali modalità valutative basate sull’osservazione diretta del paziente
da parte di neurologi e logopedisti. Il valore del sistema proposto è duplice in quanto
garantisce una esaustiva raccolta di dati quantitativi relativi ad una patologia rara e
immagina un nuovo modello assistenziale per il paziente che, spesso impossibilitato
a raggiungere il centro clinico di riferimento, può sfruttare il proprio smartphone per
condurre la valutazione da casa.

Ogni approccio implementato è stato sviluppato e validato su dati multimediali rac-
colti nella pratica clinica. I sistemi di acquisizione sono stati costruiti per essere facil-
mente riprodotti in ambiente domestico per permettere la collezione di dettagli impor-
tanti sulla storia clinica di ogni paziente. Ogni sistema proposto nasce dall’esigenza
clinica di avere a disposizione nuovi strumenti per curare i pazienti che raccolgano
informazioni strutturate, facilmente accessibili e condivisibili e si svilupperà in futuro
per garantire ai medici, sempre più provati dai ritmi lavorativi serrati, più tempo da
dedicare ai pazienti, per curarli meglio e al meglio delle proprie capacità.
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Acronyms

• Absolute MPJPE (A MPJPE)

• Accuracy (Acc)

• Adaptive moment estimation (Adam)

• Amyotrophic lateral sclerosis (ALS)

• Applied behaviour analysis (ABA)

• Artificial intelligence (AI)

• Atrous spatial pyramid pooling module (ASPP)

• Autism spectrum disorders (ASD)

• Convolutional neural network (CNN)

• Decoder (Dec)

• Deep learning (DL)

• Dense-Atrous (DeA)

• Dice similarity coefficient (DSC)

• Effective receptive field (ERF)

• Encoder (Enc)

• False positive (FP)

• Feature pyramid network extractor (FPN)

• General movement assessment (GMA)

• Height (H)

• Interquartile range (IQR)

• Mean absolute error (MAE)

• Mean Per-joint position error (MPJPE)

• Mean square error loss (LMSE )

• Neonatal intensive care unit (NICU)

• Normalized mean error (NME)
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• Overlap ratio (OR)

• Per-pixel binary cross entropy loss (LCE )

• Percentage of correct keypoints (PCK)

• Precision (Prec)

• Procrustes-aligned MPJPE (PA MPJPE)

• Rectified linear unit (ReLU)

• Recall (Rec)

• Region of interest (RoI)

• Root mean square distance (RMSD)

• Single board computing (SBC)

• Stochastic gradient descent (SGD)

• System Improvement for neonatal care (SINC)

• True negative (TN)

• True positive (TP)

• Width (W)

• World health organization (WHO)
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Chapter 1

Background and motivation

1.1 How health is changing in the digital era

We are living through years of continuous change driven by technology and continu-
ous re-invention and re-interpretation of what surrounds us in an increasingly modern
and digital key. This technology is “the accelerator of humanity” [3] and, as conse-
quence, has triggered a real revolution. This revolution is inexorable and its impact in
certain scenarios depends on the attitude with whom we embrace it: we can oppose or
we can adapt and ride the wave of change. This is even more true if we talk about artifi-
cial intelligence (AI) applications in the field of medicine and human health, a domain
where innovative technologies are becoming pervasive. Every day new applications
are devised and the technologies we dispose are continuously refined or surpassed. As
a consequence, new visions and interpretations of how AI can transform the concept
of the healthcare ecosystem arise. Some of these visions may be fright and hinder
this revolution. These are the visions that perpetuate the dominance of the machine
in the human-machine relationship. The visions that see algorithms replacing health
professionals and patients interacting with detached, dehumanised applications [4].

There is, however, another vision, the one that is prepared to accept the “complex
and amazing convergence between man and machine” [5] and that interprets tech-
nologies for what they actually represent: tools, designed and programmed by man to
support him in his daily life. In this vision, AI and in particular deep learning (DL),
that learns from data, permeate healthcare with knowledge, make it more human, and
enable it to regain a level of empathy never reached in the last century [6]. Indeed, DL-
based systems that integrate and improve human performance, of all, have the benefit
of extending the clinician’s operational capacity: supporting him/her in performing
repetitive tasks and, consequently, allowing him/her to devote more time to patients,
to deal with patients, to be able to treat more patients and do it better [7].

In addition to the undeniable advantages for the healthcare system, mainly related to
the optimisation of existing resources (and, consequently, the reduction of personnel
costs), we have to count the benefits for patients [8]. DL in health care contributes de-
cisively to the transformation of medicine into precision-medicine, which is emerging
as the medicine of the future. A medicine capable of promptly intercepting the health
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needs of the patient, thanks to the ability of algorithms to process large amounts of
data through integrative tools, and to support the clinician in prescribing therapies and
planning a follow-up tailored to the needs of the individual, who becomes an active
subject and actively involved in his/her care plan [9].

1.1.1 From Hippocrates to deep learning: how patient care
is evolving

Disease is no longer the focus of Hippocrates’ thinking and treatment, but men in their
entirety and wholeness. In order to make an accurate diagnosis, prescribe the correct
treatment and take the best possible care of the patient, Hippocrates observed, studied
and considered all aspects of human life: from food to symptomatology via the anal-
ysis of the patient’s living context and social status. This observation-based medicine
has long been the epistemological guiding principle of the medical profession [10].

As medicine has progressed, the Hippocratic method has evolved into evidence-
based medicine: a patient-centred medicine that saw in the clinician-patient dialogue
its greatest potential. Evidence-based medicine follows a sequential operational method-
ology: (i) it tracks down clinical research and/or its systematic reviews as efficiently
as possible as to have the best possible “evidence” capable of answering the formu-
lated questions, (ii) it critically evaluates the intrinsic validity of the available clinical
research and the applicability of the results to the patient under examination (iii) it
orients its decisions taking into account the needs of the patient and the available ev-
idence (iv) it makes explicit the decision and the scientific motivations that justify
it [11]. The approach of contemporary evidence-based medicine is slowly changing
with the introduction and use of new exponential technologies such as DL. This new
medicine is still evidence-based, but it is no longer based on what is evident to the
clinicians, but on the evidence that DL algorithms capture from large quantities of
data [10].

The realm of health has seen an explosive growth in the volume of multi-source
patients-related-information. Advances in technology have created -and will continue
to create- an increasing ability to collect relevant health-related measurements from
the individual patients everywhere with consumer devices. This lead to thousands or
even millions of unstructured and hybrid measurements collected on a daily basis [12].
This demographic, clinical and person’s lifestyle data, if interpreted correctly, as Hip-
pocrates pointed out, contributes to a better understanding of patient’s health status or
even clinical condition [13].

In this scenario, DL may become a valuable ally of clinicians whose analytical ca-
pabilities are not sufficient to cope with the masses of data from patients. With respect
to the more conventional methods of data analysis (e.g., standard statistical methods or
machine learning methods based on handcrafted features), DL algorithms are able to
detect, classify and quantify even the most imperceptible of recurring patterns within
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the unstructured data they analyse [14] [15]. These algorithms empowers clinicians’
ability and offers them the opportunity to perceive the advent of signs long before
disease appear and to prevent the evolution of a patients’ condition before a possible
aggravation. This would allow clinicians to timely intervene as to prescribe corrective
and compensatory therapies, leading to considerable benefits to patients and all the
actors involved in the individual’s care and assistance pathway [16].

These new technologies offer new possibilities that require to completely rethink
the way people relate to health. Following this paradigm change, research has the role
of becoming the engine of innovation. Researchers in the field of DL should imagine
and promote advanced strategies for making the actual healthcare model in line with
the digital age we are living in. They must propose increasingly innovative solutions to
enable sustainable progress in healthcare, empower the clinician-patient relationship
making it more active and bidirectional and improve all individuals quality of life
breaking down eventual economic and social barriers [17].

Our increasingly digital society tends to tell its story in images, even the few re-
maining words, in the near future, will give way to images as a mean for messages
and suggestions. Just browsing the web and social networks allows to understand the
relevance of images both as a way to communicate and as a source of knowledge about
a user or samples of users [18]. All data generated on the browser when analysed pro-
vide knowledge. From a photograph posted online, algorithms are able to re-identify
the portrayed people [19], assess their sentiment [20], their eating habits and their
lifestyle [21]. This analysis would allow to assess user behaviours and passions so as
to personalise their browsing experience.

This concept of personalisation, which is already well-established in many fields of
research, has yet to become a pillar in a medicine which is still too much based on
direct observation of the patient by trained clinicians [22]. In this respect, DL has al-
ready proved to be effective in enhancing diagnostics through automated image inter-
pretation, for example, in dermatology, radiology, ophthalmology and pathology [15].
However, too little research efforts have been spent on designing innovative patient-
monitoring solutions to allow new clinically-relevant parameters to be collected and
integrated with pre-existing knowledge about a patient.

1.2 Aim of the thesis

Considering the possibility of acquiring information about patients’ health status, from
the analysis of snapshots and video-recordings a crucial opportunity for the renewal of
medicine particularly in the context of patient’s monitoring and follow-up, the thesis
proposed four automatic and non-invasive DL-based patient-monitoring systems.
These systems, designed and tested during the actual clinical practice, exploit the
potential of DL to analyse RGB and RGB-D video recordings. Each system has been
designed to not hindering healthcare operators during their practice or not being in

3



Chapter 1 Background and motivation

D
L pipeline

R
BG

-D
 acquisitions from

 non-invasive
and non-intrusive m

onitoring system
s

D
L pipeline

D
L pipeline

D
L pipeline

C
N

N
 m

ethodologies

2D
-space lim

bs pose

Fram
es classification in "aid",

"no-aid"

3D
-space full-body pose

68 facial landm
arks position

estim
ation

M
onitoring preterm

 infants'
lim

b m
ovem

ent 

Assessing the autonom
y of

children w
ith autism

 in
w

ashing hands

M
onitoring 3D

-space patients'
posture

Assessing the progress of
dysarthria from

 the oro-facial
m

uscles analysis

C
N

N
 outcom

es
C

linically relevant outcom
es

C
hapter 2

C
hapter 3

C
hapter 4

C
hapter 5

H
om

e m
onitoring 

Specialized center m
onitoring 

H
ospital m

onitoring 

Figure
1.1:W

orkflow
of

the
proposed

thesis.
T

he
convolutionalneuralnetw

orks
(C

N
N

s)-based
m

onitoring
system

s
share

the
im

plem
entation

ofan
acquisition

set-up
based

on
R

G
B

-D
cam

eras
designed

(i)to
nothinderoperators

during
the

actualclinicalpractice
and

(ii)to
notcom

e
in

contactw
ith

the
patient’s

body.

4



1.2 Aim of the thesis

direct contact with a person’s body.

The implemented DL-based applications that will be presented in this work are de-
signed to monitor users of different ages, from infants born prematurely to adults with
neurological disorders and adolescents with autism spectrum syndrome (ASD). They
all stem from three main clinical needs: (i) making patients’ monitoring quantitative
and continuous, (ii) imagining more open and dialogue systems to quantitative data-
collection and (iii) supplementing knowledge about a patient with innovative data that
the patient can possibly collect on his/her own. The workflow of the proposed method-
ologies is showed in Figure 1.1.

The first proposed DL-based monitoring system results from a three-year research
conducted in the neonatal intensive care unit (NICU) of the “G. Salesi” Hospital in
Ancona (Italy). This study arises from the need to propose an innovative approach to
monitor the movement of the limbs of an infant born prematurely as a way to timely
detect the presence of neuro-developmental disorders [23]. The research develops
over the course of the 3 years proposing increasingly effective and efficient DL models
and culminates in the development of among the first single-board computing (SBC)
monitoring system thought for guaranteeing accuracy in prediction and sustainability
both in terms of energy consumption and costs. The value of this research is two
folds: (i) it provides advanced and non intrusive monitoring support in scenarios where
inpatient assessments mainly relies on direct observations and (ii) it echoes the need
to develop increasingly efficient models deployable in cost-effective devices, as a key
to make these advanced monitoring solutions globally accessible.

Moving on through the ages, personal autonomy skills are among the elements that
mostly affect the quality of life of the child with ASD. Hand-washing, of all the basic
autonomies, is crucial for the safety of the children and to improve their social inte-
gration. The applied behavior analysis (ABA), is a validated therapy for the treatment
of the ASD-child’s and, above all, has the benefits of improving children’s social,
communication, and learning skills [24]. During the application of the ABA program,
operators evaluate the child’s progress through observational methods, with the draw-
backs of being: subjective and non-repeatable. To overcome the limitations posed by
perspective evaluations, this research proposes a DL methodology that analyses RGB
images from a camera mounted over the bathroom sink of the “Orizzonte” centre
(Macerata, Italy), specialized in ABA therapy. The algorithm automatically classifies
whether the ASD child washes his/her hands autonomously or with the support of the
ABA operator and produces and index of autonomy whose evolution may be relevant
to monitor the progress made by each child. This research lays the foundation for the
development of a broader framework as to offer all the possible support to the ABA
operators in proposing increasingly patient-specific programmes.

From teenagers to adults, the research conducted in cooperation with the University
of Minho (Braga, Portugal) was aimed at improving the current monitoring methodol-
ogy of adults who undergo a rehabilitation program using smart walkers. This research
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proposes a DL approach to analyse multimedia data from two cameras mounted over
the smart walker as to estimate the pose of the patient’s whole-body in the 3D space.
The dual relevance of this research lies in: (i) the development of among the first 3D-
pose estimation system for the smart walker, providing clinicians with quantitative
measures to establish patient-specific rehabilitation programs (ii) the proposal of an
effective and efficient system, proving, once again, that computational efficiency and
effectiveness are key aspects that can and should be pursued as one.

The latest research proposal targets adults suffering from neurodegenerative dis-
eases (such as amyotrophic lateral sclerosis (ALS) or stroke). One of the most dev-
astating effects of ALS and stroke is dysarthria, which is the set of speech disor-
ders mainly induced by these neurodegenerative diseases [25]. Automatic evaluation
of dysarthria evolution through non-invasive oro-facial muscles assessment is rele-
vant to allow clinicians of readily identifying the instant for prescribing compensation
strategies to communicative disabilities. This research proposes a DL methodology
to estimate the position of 68 facial-landmarks from RGB images acquired during the
outpatients assessments. From the location of these landmarks, dysarthria-evaluation
indexes can be estimated as to provide clinicians with quantitative and continuously
obtainable measures.

1.3 Thesis overview

An overview of the thesis structure is proposed hereafter for the sake of readability:

• Chapter 2: presents the crucial clinical need of making continuous and quan-
titative preterm infants’ movement monitoring in NICUs as a way of timely
recognising the presence of neuro-motor disorders. Within chapter subsections,
the challenges behind the monitoring task will be analysed and a number of DL
methodologies will be proposed to gradually meet the actual needs. All the pre-
sented methods have a common root: they are all based on a pipeline consisting
of two convolutional neural networks (CNNs) the first, namely detection CNN,
is aimed at roughly estimating the position of limb-joints and connections in
space while the second, namely regression CNN, refines the previously found
predictions. The proposed approaches were implemented to process depth clips
or frames as to preserve ward’s privacy. This chapter will further give details
on the babyPose dataset-v1 and -v2 (on which the algorithms were trained and
tested): the largest publicly available annotated dataset of preterm infants’ depth
frames acquired in the actual clinical practice [26].

• Chapter 3 highlights the need to implement computer-based support systems
for ABA operators who currently assess the progress of children with ASD
through direct observation of the child coupled with paper-and-pencil assess-
ment scales. The chapter will present the use case of the autonomy of hand-
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washing (since among all the basic autonomies is crucial to preserve healthy
habits) proposing a system based on DL to quantify from RGB images analysis
if the child washes his/her hands alone or with the support of the ABA operators.

• Chapter 4 aims to exploit an efficient DL-based pipeline strategy to estimate
the whole-body human pose in the 3D space. The pipeline couples a first CNN
to estimate the 2D-space human pose and a second network to regress the joints’
coordinate in the 3D space. The DL pipeline analyses RGB-D frames resulting
from the combination of frames from two distinct cameras mounted on a smart
walker. This monitoring system is relevant as to promptly offer clinicians a
quantitative assessment of a person’s posture as to implement a preventive re-
habilitation strategies to eventual impairments.

• Chapter 5 aims to present an innovative quantitative assessments systems for
dysarthria evolution evaluation. Indeed, despite its relevance, dysarthria moni-
toring is still based on the patients’ observation by trained clinicians combined
with the compilation of rating scales. This qualitative assessment method does
not allow to perceive subtle changes in patients performance and consequently
slows down the prescription of compensatory strategies to communicative dis-
ability. To solve the need it will be proposed an end-to-end DL pipeline to
estimate the position of 68-facial landmarks from RGB frames analysis, as a
way to monitor the impact caused by dysarthria progress on oro-facial muscles.

• Chapter 6 offers an overview of the conclusions of each work from previous
chapters. Then, final considerations and open challenges of healthcare ecosys-
tem are discussed.

The chapters (i.e., chapter. 2 ÷ chapter. 5), which differs for the clinical need to be
solved i) give the reader and overview of the state of the art in the field; ii) present the
adopted dataset; iii) justify the choice of the proposed DL pipelines; iv) present the
experimental setup and evaluation metrics ; v) provide the results for evaluating the
performance of the proposed method; vi) discuss the obtained results, highlight the
limitations and conclude with the future perspective of the research.

1.4 Thesis contribution

When dealing with preterm infants, monitoring limb movement is crucial to assess
the presence of neuro-motor dysfunctions. During the three years of the doctorate, the
following publications contributed to expanding the state of the art in the field of fully-
automatic clinical support system for non-intrusive preterm infants’ movement mon-
itoring from depth video-recordings. The contribution, in journals and conferences,
focused on (i) gradually improving the DL-methodologies for depth frames and clips
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Chapter 1 Background and motivation

processing both in terms of efficacy and efficiency (ii) extensively describing the baby-
Pose dataset for enabling other researchers in the field to reproduce the experiments
and participated in the challenge of always proposing innovative support systems for
clinicians in NICUs, (iii) designing the cloud-based platform that ensures the clinician
can view the results of the analysis from the algorithms. The proposed research falls
within the framework of the System improvement for neonatal care (SINC) project1

which involves collaboration between universities, companies and the hospital as to
propose the first fully technological crib for preterm infants.

• S. Moccia, L. Migliorelli, V. Carnielli and E. Frontoni, ≪Preterm Infants’ Pose
Estimation With Spatio-Temporal Features≫. In IEEE Transactions on Biomed-
ical Engineering (2020).

• L. Migliorelli, S. Moccia, R. Pietrini, V. Carnielli and E. Frontoni. ≪The baby-
Pose dataset≫. In: Data in brief 33 (2020), p. 106329.

• L. Migliorelli, E. Frontoni, S. Moccia ≪An accurate estimation of preterm in-
fants’ limb pose from depth images using deep neural networks with densely
connected atrous spatial convolutions≫. In: Expert System With Applications
(2021).

• L. Migliorelli, A. Cacciatore, V. Ottaviani, D. Berardini, R. L. Dellaca’, E.
Frontoni, S. Moccia ≪TwinEDA: a sustainable deep-learning approach for limb-
joint detection in preterm infants’ depth images≫. In: IEEE Journal of Biomed-
ical and Health Informatics (2021).

• S. Moccia, L. Migliorelli, R. Pietrini and E. Frontoni, ≪Preterm infants’ limb-
pose estimation from depth images using convolutional neural networks≫. In:
IEEE Conference on Computational Intelligence in Bioinformatics and Com-
putational Biology (CIBCB) (2019).

• L. Migliorelli, A. Cenci, M. Bernardini, L. Romeo, S. Moccia and P. Zingaretti.
≪A Cloud-Based Healthcare Infrastructure for Neonatal Intensive Care Units≫.
In: Proceedings of the ASME 2019 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference. Vol-
ume 9: 15th IEEE/ASME International Conference on Mechatronic and Em-
bedded Systems and Applications. Anaheim, California, USA (2019).

• L. Migliorelli, S. Moccia, G. P. Cannata, A. Galli, I. Ercoli, L. Mandolini, V.
Carnielli and E. Frontoni. ≪A 3D CNN for preterm-infants’ movement detec-
tion in NICUs from depth streams≫. In: Seventh National Congress of Bioengi-
neering. Gruppo Nazionale di Bioingegneria (2021).

1https://www.regione.marche.it/Entra-in-Regione/Fondi-Europei/FESR/
Programma-Operativo-Por-FESR
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1.4 Thesis contribution

• L. Migliorelli, E. Frontoni, S. Appugliese, G. P. Cannata, V. Carnielli and S.
Moccia. ≪Improving Preterm Infants’ Joint Detection in Depth Images Via
Dense Convolutional Neural Networks≫. In: 43rd Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (2021).

• L. Migliorelli, D. Berardini, F. Rossini, E. Frontoni, V. Carnielli and S. Moccia.
≪Asymmetric Three-dimensional Convolutions For Preterm Infants’ Pose Esti-
mation≫. In: 43rd Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (2021).

• M. Carbonari, G. Vallasciani, L. Migliorelli, E. Frontoni e S. Moccia. ≪End-
to-end semantic joint detection and limb-pose estimation from depth images
of preterm infants in NICUs≫. In: 2021 IEEE Symposium on Computers and
Communications (ISCC) (2021).

Assessing the autonomy of children with ASD during the tasks of everyday life
(e.g., washing hands, brushing teeth) is crucial as to enable the ABA operators to
design children-specific programmes while capturing data relevant to improve and
expand knowledge about this syndrome. The following publications participated in the
proposal of the first non-intrusive and fully automatic autonomy assessment system for
children with ASD. The system relies upon the same RGB-D camera mounted over
the preterm infants’ crib. In this scenario the camera was installed over the bathroom
sink to film children with ASD washing their hands. Frames from RGB videos were
manually annotated and used to design a DL methodology suitable for quantifying the
level of autonomy of children in washing their hands. The research was conducted
within the COMEACASA2 project which brings together multidisciplinary expertise,
from university to industries through social cooperatives, to design innovative care
models for supporting children with ASD and their families.

• D. Berardini, L. Migliorelli, S. Moccia, M. Naldini, G. D. Angelis and E. Fron-
toni, ≪Evaluating the autonomy of children with autism spectrum disorder in
washing hands: a deep-learning approach≫ In: IEEE Symposium on Comput-
ers and Communications (ISCC) (2020), pp. 1-7.

• D. Berardini, L. Migliorelli, S. Moccia, and E. Frontoni ≪On-the-edge sys-
tems for home monitoring of the progress of children with autism spectrum
syndrome≫ In: Expert System with Applications [in submission].

Care and assistance of the elderly become essential to ensure the well-being of an
increasingly elderly population. Appropriate rehabilitation strategies aimed at pre-
serving the wellness of this population for as long as possible are crucial to meet the
challenges of ageing. With the view to innovate rehabilitation strategies while offering

2https://www.ilfarosociale.it/tag/come-a-casa/
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Chapter 1 Background and motivation

support to clinicians in the field, the following contribution deals with the proposal of
among the first smart walker non-intrusive monitoring system. The system proposes
a real-time full-body pose in the three-dimensional space. The pose is estimated from
the RGB-images collected by two cameras mounted above the smart walker. The
system, resulting from the dialogue between universities and hospital, provides for
among the first time in literature, full-body quantitative data while caring for limiting
the required computational resources.

• M. Palermo, S. Moccia, L. Migliorelli, E. Frontoni and C.P. Santos. ≪Real-
time human pose estimation on a smart walker using convolutional neural net-
works≫. In: Expert Systems with Applications (2021).

The latest contributions are again the result of a collaborative dialogue between
university and hospital and resulted in the establishment of the start-up and spin-off
AIDAPT. They are developed within the broader “Homely Care” 3 project which was
born to imagine and develop the first dysarthria remote-monitoring system for pa-
tients suffering of neurodegenerative diseases. The system analyses audio and video
recordings, that the patient independently acquires through a web application, via DL
algorithms to identify early signs of impairment.

• L. Migliorelli, F. Alborino, M. Coccia, L. Villani, E. Frontoni, and S. Moccia.
≪End-to-end facial landmark detection to characterise oro-facial impairments
in neurological patients: towards innovative techniques for the assessment of
dysarthria≫. In: the 17th International Conference on Computational Intelli-
gence Methods for Bioinformatics and Biostatistics (2021).

• L. Scoppolini Massini, L. Migliorelli, E. Frontoni, and S. Squartini ≪A deep
learning-based method for counting phoneme repetitions during a diadochoki-
nesis task for the ALS patient≫. In: IEEE Transactions on Biomedical Engi-
neering [in submission].

• L. Migliorelli, F. Alborino, E. Frontoni, S. Moccia, L. Villani, and M. Coccia.
≪Clinical validation of the Homely Care system in ASL patients≫. In: Neuro-
logical sciences [in submission].

1.5 Publications

The following publications, which are only partially related to the topic of the doctor-
ate and will not be discussed in the thesis, result from intra- and inter-VRAI research
group collaborations:

3https://aidaptsrl.com/en/products/homelycare/
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• C. Calamanti, S. Moccia, L. Migliorelli, M. Paolanti, and E. Frontoni. ≪Learning-
Based Screening of Endothelial Dysfunction From Photoplethysmographic Sig-
nals≫ In: Electronics (2019).

• D. Berardini, S.Moccia, L. Migliorelli, I. Pacifici, P. Di Massimo, M. Paolanti,
and E. Frontoni, ≪Fall detection for elderly-people monitoring using learned
features and recurrent neural networks≫. Experimental Results (2021).

• L. Antognoli, S. Moccia, L. Migliorelli, S. Casaccia, L. Scalise, and E. Fron-
toni. ≪Heartbeat Detection by Laser Doppler Vibrometry and Machine Learn-
ing≫ In: Sensors (2020).

• E. Frontoni, L. Romeo, M. Berardini, S. Moccia,L. Migliorelli, M. Paolanti, A.
Ferri, P. Misericordia, A. Mancini, and P. Zingaretti. ≪A Decision Support Sys-
tem for Diabetes Chronic Care Models Based on General Practitioner Engage-
ment and EHR Data Sharing≫. In: IEEE Journal of Translational Engineering
in Health and Medicine (2020).

• M. Salati, L. Migliorelli, S. Moccia et al. ≪A Machine Learning Approach
for Postoperative Outcome Prediction: Surgical Data Science Application in a
Thoracic Surgery Setting≫. World Journal of Surgery 45, 1585–1594 (2021).

• S. Casaccia, R. Naccarelli, S. Moccia, L. Migliorelli, E. Frontoni, and G.M.
Revel. ≪Development of a measurement setup to detect the level of physical
activity and social distancing of ageing people in a social garden during COVID-
19 pandemic≫ In: Measurement (2021).

• L. Migliorelli, S. Moccia, I. Avellino, M. C. Fiorentino and E. Frontoni, ≪MyDi
application: Towards automatic activity annotation of young patients with Type
1 diabetes≫, 2019 IEEE 23rd International Symposium on Consumer Technolo-
gies (ISCT) (2019).

• M. Bernardini, A. Ferri, L. Migliorelli, S. Moccia, L. Romeo, S. Silvestri,
L. Tiano, and A. Mancini ≪Augmented Microscopy for DNA Damage Quan-
tification: A Machine Learning Tool for Environmental, Medical and Health
Sciences≫. Proceedings of the ASME 2019 International Design Engineering
Technical Conferences and Computers and Information in Engineering Confer-
ence. Volume 9: 15th IEEE/ASME International Conference on Mechatronic
and Embedded Systems and Applications. Anaheim, California, USA. August
18–21, (2019).

• S. Moccia, L. Romeo, L. Migliorelli, E. Frontoni, and P. Zingaretti ≪Supervised
CNN Strategies for Optical Image Segmentation and Classification in Interven-
tional Medicine≫. In: Nanni L., Brahnam S., Brattin R., Ghidoni S., Jain L.

11



Chapter 1 Background and motivation

(eds) Deep Learners and Deep Learner Descriptors for Medical Applications.
Intelligent Systems Reference Library (2020).
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Chapter 2

Preterm infants’ limb movement
monitoring via depth-video
analysis

Infants’ monitoring in crib has a 100-year-old tradition. The babymonitor entered our
homes many years ago as the “son” of the old walkie-talkie radios. The tool does
not replace the presence of the parent, but is a valid support for the home monitoring
of the newborn. The babymonitor is a constantly evolving technology that follows
the changing culture and social habits. In today’s families managing a baby may
be complex. The need for extra support in managing such a hectic life stimulates
mankind to gradually create tools that are increasingly able to respond to the pressing
need. For this reason, the babymonitor has evolved from transmitting audio only to
showing video of the baby.

Monitoring preterm infants’ in NICU, and in particular their limbs movement, is
of crucial clinical importance. A babymonitor that transmits video alone to clinicians
is not enough as it needs someone to constantly review the videos and take notes on
the possible events to look out for. To overcome limitations posed by sporadic and
qualitative observations, the following chapter tells the story of a three-year research
conducted in the NICU department of the “G. Salesi” in Ancona (Italy).

The research is inspired by the babymonitor story and imagines its technologically
advanced version which embeds DL-methodologies to automatically monitor preterm
infants’ limbs movement with the view to support NICU healthcare team.

2.1 Preterm birth and the relevance of monitoring
infants’ limb-movement

Preterm birth is defined by the World Health Organization (WHO)1 as a birth before
thirty-seven completed weeks of gestation [27]. Across 184 countries surveyed, the

1https://www.who.int/news-room/fact-sheets/detail/preterm-birth
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Chapter 2 Preterm infants’ limb movement monitoring via depth-video analysis

rate of preterm birth ranges from 5% to 18% of births. From 7% to 9% of preg-
nancies are not completed by the 40th gestational week. 1% of the infants born very
preterm [28], thus before the 32 week of gestation while, the 0.5% born even before
the 28th week (and these infants are recognised as extremely preterm infants [28]). In
almost all high-income Countries, complications of preterm birth are the largest direct
cause of neonatal deaths, accounting for the 35% of the world deaths a year [29].

The infants who survive have to face a wide range of morbidities associated with
prematurity, with the frequency and severity of adverse outcomes rising with decreas-
ing gestational age and quality of care [27]. Indeed, preterm birth implies immaturity
of many organs and apparatuses, resulting in difficulty to cope with the extra-uterine
environment [29]. Compared to infants born on time, preterm infants may face serious
long- and short-term health issues mainly affecting brain, lungs and vision [30].

Timely identifying the infants at risk of developing neurobehavioural disorders is
still a challenge. The Prechtl general movement assessment (GMA) has been recog-
nized as a valuable diagnostic and prognostic tool for recognising infants at risk for
neuromotor deficits [31]. However, despite its relevance, GMs follow-up still mostly
relies on qualitative and sporadic observation of infants’ limbs directly at the crib-side.
Beside being time-consuming, this monitoring procedure (i) is discontinuous, (ii) may
be prone to inaccuracies due to clinicians’ fatigue and susceptible to intra- and inter-
clinician variability and (iii) is limited to the time when the infant is hospitalised in
NICU [32]. Sometimes this direct observation is coupled with qualitative paper-and-
pencil rating scales which, additionally, are unable to perceive subtle changes in in-
fants’ performance [33, 34]. This further results in a lack of documented quantitative
parameters to improve infants’ care plans [35].

To solve the issue of such a perspective evaluation, in the past decades, a number of
computer-based approaches was developed to support clinicians in monitoring infants’
limb. In [36] and [37], wearable sensors placed on wrists and knees are used, respec-
tively. Data from tri-axial accelerometer, gyroscope, and magnetometer (integrated in
the sensor) are processed to monitor infants’ limb movement via a threshold-sensitive
filtering approach, achieving encouraging results. Similarly in [38], jumpsuits with
embedded wearable sensors are proposed for infants’ posture and movement moni-
toring. However, practical issues may arise when using wearable sensors. Hence,
even though miniaturized, these sensors are directly in contact with the infants, pos-
sibly causing discomfort, pain and skin damage while hindering infant’s spontaneous
movements [39].

In the last couple of years, camera sensors have become valuable allies to overcome
the aforementioned limitations. Preliminary results are achieved in [40], [41] and [42]
for infant’s whole-body segmentation with threshold-based or semi-supervised algo-
rithms. However, as highlighted in [43], monitoring each limb individually is crucial
to assist clinicians in the health-assessment process and semi-supervised approaches
are hard to be brought to the actual monitoring practice.
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2.1 Preterm birth and the relevance of monitoring infants’ limb-movement

Figure 2.1: Depth-image acquisition setup. The depth camera is positioned at ∼40cm
over the infant’s crib and it does not hinder health-operator movements.

The issue has been tackled in [44, 45, 46]. Authors in [45] proposed a motion
tracking algorithm for infants’ limb-movement monitoring while [44, 46] implement
a CNN for preterm infants’ pose estimation via RGB frames. Despite their automatic
nature all these studies leverage RGB images which may pose concerns relevant to the
infants’, operators’ and parents’ privacy.

Gathering the clinical need to make continuous and quantitative preterm infants’
movement monitoring while preserving infants’ and ward privacy, the following sec-
tions present a research aimed at proposing different approaches based on CNNs to
estimate preterm infants’ limb-pose from depth clips or single-frames. Indeed, as
claimed in [47], assessing preterm infants’ limb-pose is a relevant research problem
with a view to automatize preterm infants’ GMs monitoring. The proposed approaches
were validated on data collected via a camera placed over the cribs in the NICU of the
“G.Salesi Hospital”, (Ancona, Italy). The data were acquired during the actual clinical
practice and manually annotated with the support of trained clinicians [26]. Figure 2.1
shows the acquisition set-up which was designed to not hinder healthcare operators
and parents while interacting with the infants. The camera is placed approximately 40
centimetres above the infant.

The final pipelines result from: (i) the necessity to gradually satisfy clinical (i.e.,
continuously quantifying preterm infants’ single-limb movement) and technical needs
(i.e., developing an effective and efficient monitoring system translatable into clinical
practice) (ii) extensive ablation studies and comparisons against other state-of-the-art
CNNs in closer fields (e.g., [48], [49]).
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Further details on the following sections are provided hereafter and showed in
Fig. 2.2:

• Sec. 2.2: extensively describes the babyPose dataset used to develop the CNN
models. The dataset has two versions, the first comprising 16000 annotated
depth frames while the second with 27000 frames.

• Sec. 2.3: shows the first CNN-based pipeline implemented which follows the
clinical need of developing a system to automatically and accurately monitor
single-limb movement from depth-clips analysis. The pipeline leverages two
consecutive CNNs (i.e., a main 3D detection sub-network to roughly detect
joints and joint-connections position and a 3D regression sub-network to re-
fine previously found predictions) and a joint-linking step to trace limb skele-
ton. The CNNs implement 3D convolutions for the analysis of spatio-temporal
features.

• Sec. 2.4: describes a revised version of the previously proposed pipeline. The
pipeline consists on dense-atrous (DeA) detection CNN, a DeA regression CNN
and the last joint-linking step. Both the CNNs implement 2D convolutions to
analyse spatial features only. The need to propose this new methodology based
on 2D convolutions-only, stems from the prohibitive computational complexity
of the 3D convolutions, that were found to be unsuitable for being ported in the
actual clinical practice.

• Sec. 2.5: presents a new efficient and effective CNN (namely TwinEDA) to de-
tect infants’ joints and joint-connections. TwinEDA analyses depth frames and
results suitable for being deployed on SBC device. This research has a twofold
value: (i) it demonstrates that effectiveness and efficiency can and should be
pursued as one (ii) it raises the need to exploit cost-effective devices as to dis-
tribute these advanced monitoring systems in scenarios where highly-demand
computational resources are not available.

Sections 2.3, 2.4, 2.5 are organized as follows: a paragraph listing the innovative
content of each approach and the rationale for implementing it introduces each sec-
tion. Then a method subsection follows the introduction to present each implemented
architecture in detail. The experimental protocol then provides the training details, ab-
lation studies and comparison with other architectures as to enable other researchers
in the field to reproduce the experiments. This subsection is followed by the results
subsection and by a broader discussion of these.

2.2 The babyPose dataset

The babyPose dataset was collected, annotated and used to implement and validate
the first algorithms in the literature for infant limb-pose estimation in NICUs. This
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Chapter 2 Preterm infants’ limb movement monitoring via depth-video analysis

a) b)

g) h)

e) f)

c) d)

Figure 2.3: Proof of data variability. Frames a), c), d) and e) show samples of exter-
nal occlusions caused by the presence of sheets, pillows, splints, therapy
equipment or the hands of the operator and parents. Frames f) and h) show
samples of incorrect positioning of the acquisition set-up with respect to
the crib. Frames b) and g) demonstrate variability in terms of pixel inten-
sity level.
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RS

RE
RW

LS

LE

LW

RH
RK
RA

LH
LK

LA

Figure 2.4: Preterm infant’s joint model (including joints and joint-connections) su-
perimposed on a sample depth frame. Inspired by clinical considerations,
only limb joints are considered. LS and RS: left and right shoulder, LE
and RE: left and right elbow, LW and RW: left and right wrist, LH and
RH: left and right hip, LK and RK: left and right knee, LA and RA: left
and right ankle.

is a publicly available three-year collection of preterm infants’ depth videos acquired
in the NICU of the “G. Salesi Hospital” (Ancona, Italy) with the set-up showed in
Fig. 2.1.

The dataset is publicly available2: (i) to improve studies on the relationship be-
tween movement patterns and preterm-birth short and long-term complications, (ii)
to support AI researchers that need raw data and corresponding annotation to train
their models that may lead to significant enhancement in the field of preterm infants’
movement monitoring from contactless measurements and (iii) to provide healthcare
professionals working in NICUs with decision support in the evaluation of movement
patterns. Two versions of the dataset were released: (i) the babyPose-v1 which ac-
counted 16000 annotated depth frames from 16 preterm infants and (ii) the babyPose-
v2 which adds to the previous version 11000 frames from 11 preterm infants (total
number of annotated frames= 27000).

The NICU of the “G. Salesi” Hospital admits newborn infants born at term, born
beyond term and preterm infants who require advanced care. Among infants born
prematurely in the babyPose dataset, there can be: (i) infants born with extremely
low gestational age and birth weight (i.e., among the 27, the preterm infant with the
lowest gestational age was born at 24 weeks, weighs 850 grams and is 39 cm tall), (ii)
infants with higher gestational age and weight (i.e., among the 27, the preterm infant
with the highest gestational age was born at 37 weeks, weighs 3120 grams and is 37
cm tall) (iii) infants with congenital defects, metabolic and renal diseases, complex

210.5281/zenodo.3891404
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surgical infants in the pre- and post-operative period infants with severe multi-system
organ failure. Such a variability due to the clinical condition of the premature infant
(and consequently the treatment to which the infant is subjected), gestational age,
weight and height, is accompanied by intrinsic variability of the data typical of an
acquisition conducted during the actual clinical practice. In this regard, the dataset
has frames with external occlusions, frames in which the infants is not well positioned
with respect to the camera and with variable pixel intensity. A proof of such data
variability is shown in Figure 2.3.

2.2.1 Data annotation and ethical considerations

Infants’ videos were acquired after obtaining the approval of: (i) the Ethics Committee
of the “Ospedali Riuniti di Ancona”, Italy (ID: Prot. 2019-399) and (ii) each infant’s
legal guardian who, aditionally, were asked to sign an informed consent of adhesion to
the experimentation. The video recordings (each of which had a length of 180 s) were
acquired with the Astra Mini S - Orbbec® camera, with a frame rate of 30 frames
per second and image resolution of 640x480 pixels. Considering the average preterm
infants’ movement rate [50], in accordance with the SINC clinical partners, for each
of the videos, 1 frame every 5 was extracted.

The proposed infant’s model considers each of the 4 limbs as a set of 3 connected
joints (i.e., wrist, elbow and shoulder for arms, and ankle, knee and hip for legs), as
shown in Fig. 2.4. This choice is driven by the clinical consideration that monitor-
ing legs and arms movement is of particular interest for evaluating preterm infants’
cognitive and motor development [51, 52].

Limb-joints of each frame were manually annotated with a custom-built annotation
tool, publicly available online3. For each of the infants, 1000 frames were annotated.
The supervision of the annotation procedure by the clinicians was crucial especially
in presence of challenging video frames (e.g., when the operators covered part of the
joints during the actual clinical practice).

The following sections will present some DL methodologies to analyse data from
the two versions of babyPose. The proposed studies fully respect and promote the
values of freedom, autonomy, integrity and dignity of the person, social solidarity
and justice, including fairness of access. The studies were carried out in compliance
with the principles laid down in the Declaration of Helsinki, in accordance with the
Guidelines for Good Clinical Practice.

3https://github.com/roccopietrini/pyPointAnnotator
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2.3 Preterm infants’ limb-pose estimation via spatio-temporal features analysis

2.3 Preterm infants’ limb-pose estimation via
spatio-temporal features analysis

The possibility of quantitatively assessing preterm infants’ limb-movement via CNNs
for video analysis, as highlighted in Sec. 2.1, has been unlocked by several researchers
in literature [44, 46]. All the contributions have shown that, compared to more tradi-
tional analysis methods (e.g., based on wearable sensors posed over infants’ limbs [36]
or smart jumpsuits [38]), video-based monitoring systems are non-intrusive, low-cost,
portable, and easy to use both in a clinical and domestic environment.

However, the approaches in [44, 46], besides analysing RGB data, only consid-
ered spatial features, without exploiting temporal information naturally encoded in
video recordings [53]. A first attempt of including temporal information is proposed
in [54], where RGB videos are processed by a semi-automatic algorithm for single-
limb tracking. Motion-segmentation strategies based on particle filtering are imple-
mented, which, however, relies on prior knowledge of limb trajectories. Such trajecto-
ries may have high variability among infants, especially when dealing with pathologi-
cal infants, hampering the translation of the approach into the actual clinical practice.
A possible alternative to exploit temporal information could be using 3D CNNs to di-
rectly extract spatio-temporal information from videos, which has already been shown
to be robust in action recognition [55] as well as for surgical-tool detection [56].

Thus, guided by the research hypothesis that spatio-temporal features extracted
from depth streams may boost performance with respect to spatial features alone, this
section describes the first pipeline based on 3D CNNs for estimating preterm infants’
limb pose from depth video recordings acquired in the actual clinical practice. The
pipeline has a main detection CNN whose double role consists in: (i) roughly esti-
mating the position of the joints and joint-connection and (ii) acting as a guidance for
a regression CNN which refine the previously found predictions. The last step (i.e.,
the joint-linking step) deals with tracing the limbs skeleton from the regression CNN
outcomes.

The innovative contributions of this research are summarized as follows:

1. Development of among the first DL pipeline for preterm infants’ pose estima-
tion from depth streams analysis. The pipeline exploits spatio-temporal features
for automatic limb-joints and connections regression;

2. Validation of the approach from data collected in the actual clinical practice: a
comprehensive study is conducted using 16 videos acquired in the actual clinical
practice from 16 preterm infants (i.e., the babyPose dataset-v1) to experimen-
tally investigate the research hypothesis.
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a) b)

c) d)

LK

LH

Figure 2.6: Ground-truth samples for the detection network. Samples are shown for
(b) left knee (LK), (c) left hip (LH), and (d) their connection.

2.3.1 Methods

Figure 2.5 shows an overview of the workflow of the proposed spatio-temporal pipeline
for preterm infants’ pose estimation from depth streams.

Two consecutive CNNs were exploited, the former for detecting joints and joint
connections, resulting in the so-called affinity maps, and the latter for precisely re-
gressing the joint position, resulting in the confidence maps, by exploiting both the
joint and joint-connection affinity maps, with the latter acting as guidance for joint
linking. The joints belonging to the same limb are then connected using bipartite
graph matching, following the model in Figure 2.4.

2.3.1.1 Data preparation

With the aim of extracting spatio-temporal features, temporal clips of depth frames
were adopted. Following the approach presented in [56], a sliding window algorithm
was implemented for building the clips: starting from the first video frame, an initial
clip with a predefined number (Wd) of frames is selected and combined to generate
a 4D datum of dimensions frame width (W ) x frame height (H) x Wd x 1, where 1
refers to the depth channel. Then the window moves of Ws frames along the temporal
direction and a new clip is selected.

To train the detection CNN, multiple binary-detection operations (considering each
joint and joint-connection separately) were performed to solve possible ambiguities
of multiple joints and joint connections that may cover the same frame portion (e.g.,
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a) b)

c) d)

LK

LH

Figure 2.7: Ground-truth samples for the regression network. Samples are shown for
(b) left knee (LK), (c) left hip (LH), and (d) their connection.

in case of self-occlusion). Hence, for each depth-video frame, 20 binary ground-
truth affinity maps were constructed: 12 for joints and 8 for joint connections (instead
of generating a single mask with 20 different annotations, which has been shown to
perform less reliably [48]). Sample ground-truth maps are shown in Fig. 2.6. This
results in a 4D datum of size W x H x Wd x 20. For each affinity map for joints, a
region consisting of all pixels that lie in the circle of a given radius (rd) centered at the
joint center was considered.

A similar approach is used to generate the ground-truth affinity map for the con-
nections. In this case, the ground-truth is the rectangular region with thickness rd

and centrally aligned with the joint-connection line. The regression CNN is fed by
stacking the depth temporal clip and the corresponding affinity maps obtained from
the detection network. Thus, the regression input is a 4D datum of dimension W x H x
Wd x 21 (i.e., 1 depth channel + 12 joints + 8 connections). The regression network is
trained with Wd x 20 ground-truth confidence maps of size W x H (Fig. 2.7). For ev-
ery joint in each depth frame, a region of interest consisting of all pixels that lie in the
circle with radius r centered at the joint center was considered. In this case, instead of
binary masking the circle area as for the detection CNN, a Gaussian distribution with
standard deviation (σ ) equal to 3*r and centered at the joint center was implemented.
A similar approach is used to generate the ground-truth confidence maps for the joint
connections. In this case, the ground-truth map is the rectangular region with thick-
ness r and centrally aligned with the joint-connection line. Pixel values in the mask
are 1-D Gaussian distributed (σ = 3*r) along the connection direction.
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2.3.1.2 3D detection convolutional neural network

The detection CNN (Figure 2.8) is inspired by the classic encoder (Enc)-decoder (Dec)
architecture of U-Net [57], which is however implemented as a two-branch architec-
ture for processing joints and joint connections separately. In fact, using a two-branch
architecture has been shown to provide higher detection performance for 2D archi-
tecture [48, 56]. To incorporate the spatio-temporal information encoded in infants’
depth streams, 3D CNN kernels were used. The 3D convolution allows the kernel
to move along the 3 input dimensions to process multiple frames at the same time,
preserving and processing temporal information through the network.

The detection CNN starts with an input layer and a common-branch convolutional
layer (with stride = 1 and kernel size = 3x3x3 pixels), and is followed by 8 blocks.
Each block is first divided in two branches (for joints and connections). In each
branch, two convolutions are performed: the former with kernel size = 2x2x2 and
stride 2x2x1, while the latter with kernel size = 3x3x3 and stride 1x1x1. It is worth
noting that kernel stride is equal to 1 in the temporal dimension as to avoid deteriorat-
ing meaningful temporal information. The outputs of the two branches in a block are
then concatenated in a single output, prior entering the next block. In each block of
the Enc path, the number of channels is doubled. Batch normalization and activation
with the rectified linear unit (ReLu) are performed after each convolution.

The architecture of the decoder path is symmetric to the Enc one and ends with an
output layer with Wdx20 channels (12 for joints and 8 for connections) activated with
the sigmoid function.

2.3.1.3 3D regression convolutional neural network and joint linking

The necessity of using a regression CNN for the addressed task comes from consid-
erations of previous work [58], which showed that directly regressing joint position
from an input frame is highly non linear. The regression network, instead, produces
Wdx20 stacked confidence maps (12 for joints and 8 for connections). Each map has
the same size of the input depth clip (i.e., WxH).

Also in this case, 3D convolution is performed to process spatio-temporal features.
The network consists of five layers of 3x3x3 convolutions (Figure 2.9). Kernel stride
is always set to 1, to preserve the spatio-temporal resolution. In the first 3 layers, the
number of activations is doubled, ranging from 64 to 256. The number of activations
is then kept constant for the last two layers. Batch normalization and ReLu-activation
are performed after each 3D convolution.

The last step of the limb pose-estimation task deals with linking subsequent joints
for each of the infants’ limb, which is done on depth images, individually. First, joint
candidates were identified from the output joint-confidence maps using non-maximum
suppression. This is an algorithm commonly used in computer vision when redun-
dant candidates are present [59]. Once joint candidates are identified, they are linked
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Conv (3x3)+BN+ReLU 

Stride Conv Transpose (2x2)+BN+ReLU

Concatenation
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Conv (1x1)+BN+ReLU

Enc1

Enc2

Enc3

Enc4

Dec1
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Dec3

Dec4

Wd

Wd Wd

Figure 2.8: 3D detection convolutional neural network (CNN) for preterm infants’
joints and joint-connections position estimation. It takes in input a stack of
Wd=3 depth frames and outputs 60 (Wd x 20) affinity maps. The different
colours of the convolutional blocks are coded in the legend on the bottom
of the figure.
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Wd

Affinity maps 
Wd

Wd

Conv (3x3)+BN+ReLU 

Figure 2.9: 3D regression convolutional neural network (CNN) for preterm infants’
joints and joint-connections position estimation. This network takes in
input the Wd=3 depth frames and the output of the detection network (i.e.,
60 affinity maps) and outputs 60 (Wd x 20) confidence maps.

exploiting the joint-connection confidence maps via a bipartite graph matching ap-
proach, which consists of: (i) computing the integral value along the line connected
two candidates on the joint-connection confidence map and (ii) choosing the two win-
ning candidates as those guaranteeing the highest integral value.

2.3.2 Experimental protocol

2.3.2.1 Dataset

As described in Sec. 2.2, the babyPose-v1 was used for the experiments. It consisted
of 16 depth videos (length = 180 s) of 16 preterm infants. The infants were identified
by clinicians in the NICU among those who were spontaneously breathing.

For each of the videos 1000 frames were manually annotated. Then, these 1000
frames were split into training and testing data: 750 frames were used for training
purpose and the remaining ones (250 frames) to test the network. This resulted in
a training set of 12000 samples (16 infants x 750 frames) and a testing set of 4000
samples (16 infants x 250 frames). From the 12000 training samples, 200 frames for
each infant were kept as validation set, for a total of 3200 frames.

2.3.2.2 Training settings

All frames were resized to 128x96 pixels in order to smooth noise and reduce both
training time and memory requirements. Mean intensity was removed from each
frame.

To build the ground-truth masks, rd equal to 6 pixels was selected, as to completely
overlay the joints. The Ws was set to 2 for training and 0 for testing, while Wd was set
to 3. This way, a temporal clip was 0.5 s long.

For training the 3D detection and 3D regression CNNs, an initial learning rate of
0.01 with a learning decay of 10% every 10 epochs was set while the momentum was
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equal to 0.98. A batch size of 8 and a number of epochs equal to 100 were set for
training the CNNs.

The 3D detection CNN is trained using the adaptive moment estimation (Adam) as
optimizer and the per-pixel binary cross-entropy (LCE ), adapted for multiple 3D map
training, as loss function:

LCE =
1

Wd(J+C)Ω

Wd

∑
t=1

J+C

∑
k=1

∑
x∈Ω

[pt,k(x)log(p̃t,k(x))+(1− pt,k(x))log(1− p̃t,k(x))] (2.1)

where pt,k(x) and p̃t,k(x) are the ground-truth affinity maps and the corresponding
output at pixel location x in the depth-frame domain (Ω) of channel k for temporal
frame t, J=12 and C=8 are the number of joints and joint connections, respectively.

The regression network is trained with the stochastic gradient descent as optimizer
using the mean squared error (LMSE ), adapted for multiple 3D map training, as loss
function:

LMSE =
1

(J+C)Ω

Wd

∑
t=1

J+C

∑
k=1

∑
x∈Ω

[ht,k(x)− h̃t,k(x)] (2.2)

where ht,k(x) and h̃t,k(x) are the ground truth and the predicted value at pixel location
x of the kth channel for temporal frame t, respectively.

The best model was selected as the one that maximized the detection accuracy (Acc)
and minimized the mean absolute error on the validation set, for the 3D detection and
3D regression networks, respectively. All the analyses were performed using Keras4

framework on a Intel® Xeon® Silver 4214 CPU @ 2.20GHz with 230 GB of RAM
and a NVIDIA® RTX 2080 8 GB RAM.

2.3.2.3 Ablation study and comparison with the state of the art

The performance of the proposed pipeline was compared with that of the same pipeline
for spatial features analysis only. The 2D pipeline is inspired by [48] and uses the
same architectures presented in Figure 2.8 and Figure 2.9, but with 2D spatial convo-
lution for the analysis of single-depth frames. The 2D-convolution-based CNNs were
identified as 2D detection and 2D regression CNN, respectively.

The proposed approach was further compared against Stacked Hourglass [49] and
Convolutional Pose Machine [60], which are among the most successful and well-
known approaches for human-pose estimation. For these comparisons, the corre-
sponding architectures, originally designed for RGB images, were modified to allow
depth-image processing. For all these architectures, the same training settings de-
scribed in Sec. 2.3.2.2 were implemented.

4https://keras.io/
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2.3 Preterm infants’ limb-pose estimation via spatio-temporal features analysis

For the ablation study, inspired by [61], the performance of the proposed pipeline
was compared with the detection-only and regression-only architectures. Both were
implemented in a spatio-temporal fashion (i.e., with 3D convolutions). For the detection-
only model, the affinity maps were used to directly estimate limb pose with the bipar-
tite graph matching strategy (Sec. 2.3.1.3). The regression-only model was fed with
the depth clips and trained with the confidence-map ground truth. The output was then
used to estimate joint pose with bipartite matching.

2.3.2.4 Performance metrics

To measure the performance of the detection network, as suggested in [56], both the
Dice similarity coefficient (DSC) and recall (Rec) were computed, respectively. These
are defined as follows:

DSC =
2×T P

2×T P+FP+FN
(2.3)

Rec =
T P

T P+FN
(2.4)

where T P and FP are the true joint and background pixels detected as joints, respec-
tively, while FN refers to joint pixels that are detected as background. The same
applied to joint-connections.

To evaluate the overall pose estimation, the root mean square distance (RMSD) for
each infants’ limb was assessed. For both the detection and regression network the
testing time was reported.

Two-sided t-test with significance level (α) = 0.05 was used to evaluate if signi-
ficative differences were present between the 2D and 3D pipeline in estimating limbs
pose.

2.3.3 Results

The descriptive statistics of Rec and DSC for the detection CNN are reported in Ta-
ble 2.1. Figure 2.10 shows the Rec boxplots for joints. Results are also shown for
the corresponding 2D implementation. The highest median DSC (0.94, inter-quartile
range (IQR) = 0.05) among all joints was obtained with the 3D CNN. The same was
observed for the Rec, with a median value among all joints of 0.90, and IQR of 0.09.
Note that, in the case yielding the least accurate result, which corresponds to the RH
joint, the Rec still achieved 0.88, whereas for the 2D detection network the lowest Rec
was 0.73. The same behaviour (Table 2.2 and Fig. 2.10) was observed when consid-
ering the joint-connection detection performance, with median DSC = 0.93 (IQR =
0.06) and median Rec = 0.90 (IQR = 0.11) among all connections.

The performance comparison in terms of RMSD of the different models presented
in Sec. 2.3.2.3 is summarized in Table 2.3. The highest performance (i.e., the lowest
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Chapter 2 Preterm infants’ limb movement monitoring via depth-video analysis

Figure 2.10: Boxplots of the recall (Rec) for joint (top) and joint-connection (bottom)
detection achieved with the proposed 3D pipeline. Results of its akin 2D
are shown for comparison, too. For colors and acronyms, refer to the
joint model in Fig. 2.4.
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Table 2.3: Limb-pose estimation performance in terms of median root mean square
distance (RMSD), with interquartile range in brackets, computed with re-
spect to the ground-truth pose. The RMSD is reported for each limb, sep-
arately. Results are reported for the 2D and 3D pipeline, as well as for the
3D detection-only, 3D regression-only and state-of-the-art architectures.

Right arm Left arm Right leg Left leg
RMSD

2D pipeline 11.73 (3.58) 10.54 (4.97) 11.03 (5.78) 11.50 (4.21)
Detection-only network 15.09 (3.80) 15.60 (3.87) 15.09 (3.41) 14.91 (3.49)

Regression-only network 12.39 (2.18) 11.73 (3.25) 11.95 (4.60) 12.17 (2.47)
Stacked Hourglass 13.01 (4.12) 11.95 (4.60) 11.27 (5.32) 11.95 (3.58)

Convolutional Pose Machine 12.17 (4.52) 11.73 (3.65) 11.27 (4.61) 11.95 (3.44)
3D pipeline 9.76 (4.60) 9.29 (5.89) 8.90 (5.64) 9.20 (3.99)

Figure 2.11: Boxplots of the root mean squared distance (RMSD) computed for the
four limbs separately. Boxplots are shown for the 2D and 3D pipeline.
Asterisks highlight significant differences.
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Chapter 2 Preterm infants’ limb movement monitoring via depth-video analysis

Figure 2.12: Sample qualitative results for pose estimation obtained with the 2D (left)
and 3D (right) pipeline. White arrows highlight estimation errors, mainly
due to homogeneous image intensity.
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Figure 2.13: Sample qualitative results for challenging cases. First row: one joint was
not detected due to auto-occlusion (from left to right: right shoulder, right
shoulder, right hip, right hip). Second row: one or more joints were not
detected due to external occlusion (from left to right: joint of the left
limbs, right ankle, left arm - due to healthcare operator hand presence,
and right knee and ankle - due to plaster). Last row: image noise and
intensity inhomogeneities prevented joint detection.
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RMSD) was achieved by the 3D pipeline, with a median value of 9.06 pixels (IQR
= 5.12) among the four limbs. The best performance was achieved for the right leg
(median = 8.90 pixels, IQR = 5.64 pixels). The overall computational time for the
3D pipeline was 0.06 s per image on average. The 2D pipeline always showed lower
performance, with the best and worst RMSD equal to 10.54 (left arm) and 11.73 (right
arm) pixels, respectively (median among the four limbs = 11.27 with IQR = 4.59). The
overall statistics are shown in Fig. 2.11. The results all differed significantly (p-value
< α) from those obtained with the 3D pipeline. Stacked Hourglass and Convolutional
Pose Machine got a median RMSD of 11.95 and 11.84 pixels. The detection-only and
regression-only networks showed the lowest performance, with a median RMSD equal
to 15.09 pixels and 12.06 pixels, respectively.

In Fig. 2.12, qualitative results for infants’ pose estimation are shown both for
the 2D pipeline (on the left side) and the 3D one (on the right side). The white arrows
highlight errors in pose estimation made by the 2D pipeline. Results of the 3D pipeline
for challenging cases are shown in Fig. 2.13. The first row shows samples in which
one joint was not detected due to auto-occlusion. Joints were also not detected when
external occlusion occurred (second row), due to the interaction of the healthcare-
operator with the infant or to the presence of plaster. The proposed pipeline was unable
to correctly estimate limb-pose also when image noise and intensity inhomogeneities
(e.g., due to rapid infants’ movement) were present (third row). At the same time,
however, other joints in the image were correctly estimated thanks to the joint-map
parallel processing.

2.3.4 Discussion

Monitoring preterm infants’ limb is crucial for assessing infant’s health status and
early detecting cognitive and motor disorders. However, when surveying the clin-
ical literature, there is a lack of documented quantitative parameters on the topic.
This is mainly due to the drawbacks of current monitoring techniques, which rely
on qualitative visual judgment of clinicians at the crib side in NICUs. A possible,
straightforward, solution may be to exploit contact sensors (such as accelerometers).
Nonetheless, in NICUs, using additional hardware may contribute significantly to in-
fants’ stress, discomfort and pain and, from the healthcare operators’ point of view,
may hinder the actual clinical practice. To overcome all these issues, researchers seek
for new reliable and unobtrusive monitoring alternatives, which are mostly based on
video analysis. This section described a novel pipeline for non-invasive monitoring
of preterm infants’ limbs providing an innovative approach for limb-pose estimation
from spatio-temporal features extracted from depth streams. The choice of processing
depth videos (over RGB ones) was driven by the necessity to fully protect the ward
privacy. While the rationale behind the use of 3D convolutions instead of networks
inherently capable of processing temporal information (e.g., long-short term memory
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2.3 Preterm infants’ limb-pose estimation via spatio-temporal features analysis

networks) lies on the fact that preterm infants movements may be sporadic and of
short duration.

The DL pipeline was validated on the babyPose dataset-v1, whose video recordings,
acquired in the actual clinical practice, presented several challenges such as: presence
of homogeneous areas with similar or at least continuous intensity, self- or external
occlusions and different pose of the camera with respect to the infants.

The proposed 3D detection network achieved encouraging results as shown in Fig-
ure 2.10 and reported in Table 2.1, with a median DSC of 0.94 and 0.93 for joints
and joint-connections, respectively, overcoming the detection CNN based on spatial
features only (i.e., 2D detection CNN). The network performed comparably when de-
tecting all joints and joint-connections as shown by the IQRs in Table 2.1, reflecting
the CNN ability of processing in parallel the different joint and joint-connection affin-
ity maps.

The 3D pipeline achieved improved performance (Table 2.3) in estimating infants’
pose for all limbs (median RMSD = 9.06 pixels) when compared with its akin with
2D convolutions (median RMSD = 11.27 pixels). These results suggest that exploit-
ing temporal information improved network generalization ability even in presence of
intensity homogeneity and noisy background, typical of depth images. These consid-
erations are visible in Fig. 2.12, where the 2D pipeline failed in detecting joints that
lay in portions of the image with homogeneous intensity.

Predictions of the pose estimation were computed also for the detection- (median
RMSD = 15.09 pixels) and the regression-only networks (median RMSD = 12.06 pix-
els). Despite the complexity of regressing joint and joint-connection confidence maps
from depth image clips only, the regression-only network achieved better results when
compared to the detection-only network. The lower performance of the detection-only
network may be due to the complexity in localizing joint candidates from ground-truth
binary masks, where all pixels have the same weight (Fig. 2.6). It is worth noting that
spatio-temporal features were tested for a detection-only task in [56] (even though
for surgical instrument joints in laparoscopic video). The proposed work, however,
moved forward to test joint estimation by combining the detection network with bi-
partite matching, and comparing the achieved results with the full 3D pipeline (i.e.,
3D detection and 3D regression). Despite the integration of the temporal information,
both the detection-only and regression-only network achieved lower outcomes with
respect to the full 2D pipeline. Hence, the regression-only model was barely capable
of predicting the location of joints without any guidance. Regression is empirically
too localized (i.e., it supports small spatial context) and the process of regressing from
original input image to joint location directly is challenging. By combining detection
and regression, the detection module acted as structural guidance for the regression
module by providing spatial contextual information between joints, and facilitating
the joints localization.

Stacked Hourglass and Convolutional Pose Machine achieved lower performance
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when compared to our 3D pipeline. This might be attributed to the fact that both
Stacked Hourglass and Convolutional Pose Machine are designed to process spatial
features only. Nonetheless, the 2D pipeline, which also works with spatial feature
only, overcame both Stacked Hourglass and Convolutional Pose Machine. This result
seems to confirm that the rough detection of limb joints by the detection network fa-
cilitates the regression network in regressing joint position accurately, as highlighted
in [48]. In fact, Stacked Hourglass and Convolutional Pose Machine achieved better
RMSD values when compared to the regression-only network. Hence, the benefits
brought by the introduction of 3D kernels in the regression-only network are coun-
terbalanced by the multi-scale nature of the state-of-the-art networks, which capture
both global and local information.

A straightforward limitation of this work may be seen in the estimation of occluded
joints (both in case of auto and external occlusion), as shown in Fig. 2.13 (first and sec-
ond rows). At the same time, the two-branch architecture with multiple maps allowed
to detect the other (not-occluded) joints in the image. This issue could be attenuated
with recent strategies proposed in the literature for long-term tracking [62] and con-
fidence estimation [63]. Modeling infant’s limbs through anthropometric measures
(such as limb length - already acquired in the actual clinical practice) could also help
in attenuating the occlusion issue. This would probably also make the 3D pipeline
able to tackle noisy image portions, which may be present due to sudden movement
of infants or healthcare operators (Fig. 2.13, last row). A limitation of the proposed
work could be seen is the relatively limited number of testing frames (4000), which is
due to the lack of available annotated dataset online. This, however, further motivated
the decision to release the dataset to the scientific community.
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2.4 Dense-atrous spatial-convolutional blocks to
estimate preterms’ limb-pose

In Sec. 2.3, the potential of a 3D pipeline for estimating preterm infants’ limb pose
was proved. The pipeline processed depth streams (i.e., clips with 3 subsequent depth
frames) via two spatio-temporal CNNs (i.e., 3D detection CNN and 3D regression
CNN), improving the experimental results on the babyPose-v1 dataset with respect
on its akin which processes depth frames (i.e., 2D detection CNN and 2D regression
CNN). Despite its robustness, the 3D pipeline is computationally expensive as it re-
lies on 3D convolutions to process spatio-temporal features, raising concerns relevant
to real-time and on-the-edge processing. As claimed in a recent meta-analysis [47],
despite the promising advancements in the literature, further studies are still needed to
(i) tackle the high-image variability and (ii) limit the computational resources needed,
with a view to design embedding solutions easily deployable also in a domestic envi-
ronment.

Guided by these premises, this research proposes an improved CNN-based pipeline
for estimating preterm infants’ limb-pose from the analysis of depth frames only. In-
spired by literature in closer fields [1, 64], the pipeline takes advantage of the gener-
alization power of the dense blocks [65] and atrous separable convolutions [66]. The
former strengthen features propagation throughout network layers while the latter en-
ables multiple scale information processing while keeping the resolution intact. As
proved in [1], this innovation has the potentiality of improving a CNN ability to finely
exploit semantic information by gathering fine details from a context-aware analysis,
while attaining low number of network parameters.

The improvement of the research here presented is twofold: it boosts the perfor-
mance of the 2D-pipeline for pose estimation drastically reducing the computation
cost naturally induced by the 3D convolutions implemented by the 3D pipeline.

The innovative contributions of the research are summarized as follows:

1. Improving the performance of the 2D pipeline leveraging a DeA-based convo-
lutional pathway while relying on spatial features only. The pathway couples
the dense blocks [65] and atrous separable convolutions [66] to improve the
performance of the pipeline on challenging depth images (e.g., images with low
intensity or with few joints due to the presence of several occlusions) [1];

2. Validation of the proposed approach on the expanded version of babyPose-v1.
The new dataset (i.e., babyPose-v2 dataset) counts 27 videos from 27 preterm
infants. All the videos were acquired in the NICU of the “G. Salesi” Hospital
in Ancona still from infants’ who spontaneously breathing;

3. Introducing a sustainability plan aimed at finding a solution that provides both
effectiveness and efficiency. The proposed pipeline has undergone an architec-
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Chapter 2 Preterm infants’ limb movement monitoring via depth-video analysis

tural variation process aimed at finding its own optimized variant in terms of
number of network parameters. This validation is crucial with a view to deploy
the proposed pipeline in embedding systems for on-the-edge computation.

2.4.1 Methods

Figure 2.14 shows the workflow of the proposed pipeline to preterm infants’ pose
estimation. As in Sec. 2.3, the pipeline leverages two consecutive CNNs: the first
CNN, called DeA-detection network, plays the key role of roughly detecting the joint-
and joint-connection positions from the depth frame analysis. The second CNN, the
DeA-regression network, leverages on the output of the first CNN to precisely retrieve
the joints and joint-connections position. The last step, namely the join-linking step,
exploits the outcome of the DeA-regression network to link each-limb consecutive
joints.

2.4.1.1 DeA-detection convolutional neural network

The overall structure of the DeA-detection network is shown in Fig. 2.15. The network
is fed with a depth image and outputs 20 affinity maps. It shares the same Enc-Dec
structure of the 2D and 3D detection CNN, with 8 double-branch convolutional blocks:
4 for the Enc path (which performs downsampling) and 4 for the Dec path (which
performs upsampling). In both the Enc and Dec path, each block is divided in two
branches allowing for parallel processing joints and joint-connections. Each branch
implements two convolutions (in the Enc path) and deconvolutions (in the Dec path).
The output of each single-branch is concatenated to enter in a single convolutional
block prior being newly forked.

Inspired by [1], The DeA-detection network implements a flowing pathway be-
tween the second Enc block (Enc2) and Dec block (Dec2). This pathway combines
information from the classical long-skip connections [57] and the DeA pathway that
couples atrous separable convolutions [66] and dense layers [65].

This architectural design was guided by the consideration that classical long-skip
connections between the Enc and Dec path are crucial to recover the spatial infor-
mation lost during downsampling operations. However, coupling of features from
particularly shallow (Enc) and deep (Dec) layers via long-skip connections has two
main drawbacks: (i) fails in localizing joints in challenging images (i.e., images with
noise, barely visible joints and several joints occlusion) [1] (ii) induces the semantic
gap due to multilevel features aggregation [67]. To bridge these issues, the flowing
pathway fuses feature maps from long skip-connection with those of DeA-pathway.

As shown in Fig. 2.15, DeA pathway implements dense connections between
atrous-blocks. This potentially enables smoothly information flow. Throughout dense
connections, each atrous block gets inputs from all preceding blocks and distribute its
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Figure 2.15: Graphical representation of the dense-atrous-based (DeA)-detection net-
work. The body of the network consists of 8 convolutional layers (4 layer
for the encoding (Enc) path and 4 layers for the decoding (Dec) path).
Each coloured block in a convolutional layer implements: (i) the convo-
lution operation, differing for kernel sizes (3x3 or 2x2 or 1x1), (ii) the
batch normalization (BN) and (iii) the activation function (Rectified Lin-
ear Unit (ReLU)). Inspired by [1], the flowing pathway between Enc2-
Dec2 couples the classical long-skip connection (orange) and the DeA
pathway (pink). The detail of the DeA pathway between Enc2-Dec2
(pink) is shown on the far right of the figure. The colour-coded legend is
located in the lower left corner.
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Affinity maps Conv (3x3)+BN+ReLU 

+

Atrous convolutions

Figure 2.16: Graphical representation of the dense-atrous-based (DeA)-regression net-
work. The input to the network consists of a stack with the input image
and 20 affinity maps, which are produced from the DeA detection net-
work, while the output consists of 20 confidence masks. The body of the
network consists of 6 convolutional layers. Each violet block in a con-
volutional layer implements: (i) the convolution operation (kernel size=
3x3), (ii) the batch normalization (BN) and (iii) the activation function
(Rectified Linear Unit (ReLU)).

own feature-maps to the next ones. Atrous blocks implement atrous separable con-
volutions. These convolutions deliver a wider field of view by dilating consecutive
kernel values of a factor d. Coupling atrous blocks differing for the d factor in a
dense fashion allows deeper layers to naturally gather multiple scale information to-
gether while keeping network parameters low. Herein, the atrous blocks consist of 3
subsequent convolutions sharing the same kernel size and dilation rate (d). In the pro-
posed implementation the flowing-pathway has a DeA-pathway with 3 atrous blocks
(d=1,2,3).

Batch normalization and activation with the ReLu are performed after each convo-
lutional and deconvolutional block.

As for the 2D and 3D detection to train the DeA-detection CNN 20 affinity maps
were prepared. For each joint, all the pixels lying within a circle of radius r centered
at the manually annotated joint site were constructed. Similarly, the joint-connection
ground-truth, is the rectangular region of thickness r and centrally aligned with respect
to the line linking two consecutive joints.

2.4.1.2 DeA-regression convolutional neural network and limb-skeleton
tracing

The goal of the pipeline is to predict the location of joints and connections between
them to trace preterm infants’ limb skeleton. As emerged in Sec. 2.3, directly deriving
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a pair of coordinates describing the position of the joints and the joint-connections in
space, is an hard and highly non-linear task [48]. Thus a pipeline with a DeA detection
network was exploited to crudely track the position of the joints and joint-connections
and a DeA regression network to refine the predictions of the previous CNN. The
DeA regression network implements dense blocks of atrous convolutions. This choice
derives from the hypothesis that collective knowledge of contextual information, cap-
tured via DeA layers, may guide the network on where to focus in an image enriching
its ability to correctly regress joints location [58].

The input to the DeA regression network (Fig. 2.16) is a multichannel represen-
tation consisting of a stack with the affinity maps, in output from the DeA detection
network, and the initial depth image. The output of the DeA regression CNN con-
sists in 20 confidence maps (12 for joints and 8 for joint-connections) that provide a
more precise location of joints and their connections. This mapping operation that
redistributes the binary input maps in a Gaussian manner can be performed via a non-
complex single-branch architecture designed not to burden the overall pipeline [58].

The DeA regression network has 3 atrous blocks with two subsequent convolutions
sharing the same d factor (d=1,2,3) and an output layer. As for the DeA detection net-
work, information thought the network flow in a dense fashion. Batch normalization
and activation with ReLu are performed after each convolution.

As for the 2D and 3D regression CNNs, Gaussian-distributed masks (or confidence
maps) are used to train the DeA-regression CNN. For each joint, a region consisting
of all pixels laying in the circle of radius r centered at the manual annotation site
were considered. Such region is the Gaussian distributed version of the binary mask,
with Gaussian standard deviation equal to 3r. For joint connections, the Gaussian-
distributed version of the joint-connection affinity masks are built along the connection
direction with a standard deviation equal to 3r.

As for the 3D and 2D pipeline the last step consists in linking subsequent joints to
trace the skeleton of each infants’ limb. This step exploits the output predictions from
the DeA regression network to connect subsequent joints and trace each limb-segment.
Non-maximum suppression was performed to select joint-candidates from the joint-
confidence map. Then a bipartite matching approach was implemented to choose,
among the joint candidates, the two subsequent joints to trace the limb-skeleton.

2.4.2 Experimental Protocol

2.4.2.1 Dataset

The dataset used for the proposed research expanded the babyPose-v1 by adding 11
depth videos, for a total of 27 depth videos.

For each video 1000 frames were annotated and were randomly split into training
and testing data. 750 frames were used for training and validation purposes and the
remaining 250 frames were used to test the network. Unlike the previous 2D and
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Table 2.4: Ablation study for the DeA detection network. The table shows also the
number of trainable parameters fot each of the architecture.

Architecture Parameters Ablated component
Enc2-Dec2 Enc3-Dec1

Proposed DeA detection 20881532 flowing pathway long-skip
1) 2D detection CNN 15529060 long-skip long-skip
2) DeA detection-1 37010300 long-skip flowing pathway
3) DeA detection-2 42391164 flowing pathway flowing pathway

3D pipeline for each infant, supported by the SINC clinical partners, the training and
testing frames were divided so as to maximize the differences between the two sets,
particularly in terms of poses and occlusions. The resulting dataset accounts 20250
frames to train and validate and 6750 frames to test the architectures.

2.4.2.2 Ablation study

To prove the potentiality of the flowing pathway the performance of the DeA detection
network was compared against that of the 2D detection CNN. This network shared the
same architectural design of the DeA detection network without including the DeA
pathway.

A further ablation study was conducted by varying the position of the flowing path-
way between Enc3-Dec1 while keeping the long-skip connection between Enc2-Dec2.
Moreover, inspired by [1], two flowing pathways were implemented both between
Enc2-Dec2 and Enc3-Dec1. Table 2.4 summarizes the ablation studies conducted for
the DeA detection network.

To prove the effectiveness of the densely connected atrous-based pathway ablation
studies for the DeA regression network were lead and its performance was compared
against those of its closest variant (i.e., the 2D regression CNN).

2.4.2.3 Investigation on DeA detection efficiency

Most of the research on developing CNNs to solve the task of detection, focuses on
improving estimation accuracy with few consideration the model efficiency. Devel-
oping increasingly sustainable models is crucial to ensure on-the-edge computing es-
pecially in scenarios where computational resources may not be available (e.g., in a
domestic environment). Following the considerations in [1] this work sought for a
balance between network complexity and improved performance. Thus, inspired by
[68, 69], variants of the DeA detection network based on asymmetric convolutions
were implemented. Asymmetric convolutions reduces the architectural complexity
while attaining almost unaltered performance. This is achieved by splitting, for ex-
ample, the traditional 3x3 convolution into two cascaded asymmetric convolutions of
kernel sizes equal to 3x1 and 1x3, respectively [68]. As showed in Table 2.5, firstly
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Table 2.5: Comparisons for optimizing model efficiency. The table reports the names
of the newly stated architectures, their trainable parameters and the archi-
tectural component where we applied asymmetric convolutions. The DeA
detection network was compared against its asymmetric variations. Asy-
DeA-Enc detection implements the original decoder (Dec) and DeA path-
ways while keeping the encoder (Enc) asymmetric. Asy-DeA-body imple-
ments the original DeA pathways while making asymmetric both the Enc
and the Dec. The Asy-DeA detection represents the asymmetric version of
the DeA detection.

Architecture Parameters Asymmmetric component
Enc Dec DeA pathways

Proposed DeA detection 20881532
1) Asy-DeA-Enc detection 18806460 ✓
2) Asy-DeA-Body detection 18285180 ✓ ✓
3) Asy-DeA detection 16522650 ✓ ✓ ✓

the asymmetric version of the DeA detection network (i.e., Asy-DeA detection) was
implemented, this network had the asymmetric convolutions both in the Enc and Dec
and in the DeA pathways. The second architecture, named Asy-DeA-body detection,
leveraged asymmetric convolutions both on the Enc and Dec while keeping traditional
convolutions in the DeA pathways. The last tested architecture implemented asym-
metric convolutions in the Enc only, thus we called it Asy-DeA-Enc detection.

2.4.2.4 Training settings and performance metrics

All the tested architectures follow the training settings presented in Sec. 2.3.2.2.
Frames were resized to 128x96 pixels in order to smooth noise and reduce both train-
ing time and memory requirements. Mean intensity was removed from each frame.
The detection-network family used Adam as optimizer and the per-pixel binary cross-
entropy (i.e., LCE ) as loss function. While the tested regression CNNs were trained
with the stochastic gradient descent as optimizer with the mean squared error (i.e.,
LMSE ) as loss function. Unlike the previous 3D pipeline, these losses have been read-
justed for the single-frame analysis task.

Similarly for the training settings, also the performance metrics used to evaluate the
approaches were the same of the 3D pipeline described in Sec. 2.3.2.2. Namely, the
DSC and the Rec, for the detection networks, and the RMSD for pose performance
estimation.

To accomplish the experiments the same hardware presented in Sec. 2.3.2.2 was
used (i.e., Intel® Xeon® Silver 4214 CPU @ 2.20GHz with 230 GB of RAM and a
NVIDIA® RTX 2080 8 GB RAM).
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Table 2.6: Joint-connection- and joint- detection performance in terms of median re-
call (Rec) and Dice Similarity Coefficient (DSC).

Architectures Median Rec for joint-connections Median DSC for joints Median DSC for joint-connection
Proposed DeA detection 0.89 0.90 0.89

DeA detection-1 0.89 0.89 0.90
DeA detection-2 0.88 0.89 0.89

2D detection CNN 0.87 0.89 0.89

2.4.3 Results

The results for the ablation studies are reported in the boxplots showed in Fig. 2.17
and in Table 2.6. The boxplot shows the recall achieved by the tested architectures
when detecting the joints. The three DeA architectures achieved similar results, the
highest median Rec for joints prediction was achieved by the DeA detection network
(median Rec=0.89) while the lowest by the DeA detection-2 (median Rec=0.88). The
2D detection CNN attained the lowest performance with respect to the 3 DeA-based
architectures (median Rec=0.86). This performance trend is also reflected in the re-
sults shown in the Table 2.6 which reported the median Rec for the joint-connections
and the median DSC for the joints and joint-connections, respectively.

Further investigation to find an effective and efficient model was conducted on the
DeA detection CNN which, among its 3 ablated versions, combined accuracy in pre-
diction and fewer parameters (DeA detection ∼20M parameters, DeA detection-1 ∼
37M parameters, DeA detection-2 ∼ 42M parameters). This study was conducted to
seek for reducing network computational complexity while keeping its performance
almost unchanged. Fig. 2.18 showed the boxplots of the Rec achieved by the ar-
chitectures. All the architectures achieved similar results with respect to the original
DeA detection network. The Asy-DeA-Enc detection which implemented asymmetric
convolutions in the Enc only, achieved the highest results with a median Rec= 0.894.

In support of quantitative results, samples of predictions on challenging frames for
the DeA detection network (second column) and the 2D detection CNN (third column)
are shown in Figure 2.19. The white arrows highlighted detection errors committed
by the 2D detection CNN while the white cross means that no predictions occurred.

The performance comparison in terms of RMSD of the DeA regression network
and the 2D regression network are shown Fig. 2.20. The DeA regression network
achieved the highest performance with a median RMSD=10.789 pixels among the
four limbs while the 2D regression CNN obtained a median RMSD=11.269 pixels.
Figure 2.21 showed the results achieved by the DeA regression network on frames
with different occlusions (i.e., self or external occlusions) or mispositioning of the
acquisition set-up.
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Chapter 2 Preterm infants’ limb movement monitoring via depth-video analysis

Figure 2.19: Samples of qualitative results in challenging frames for the DeA detec-
tion network (second column, images marked with a blue square) and the
2D detection CNN (third column, images marked with a yellow square).
The first column shows the original images while the second and the
third column represent the predictions of the network (red) and the corre-
sponding ground truth (blue) superimposed to the preprocessed images.
The white arrows in the third column highlight the prediction errors com-
mitted by the 2D detection CNN while the cross stands for no predictions.

50
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R
M
S
D

Right arm Left arm Right leg Left leg 

Figure 2.20: Boxplot of the root mean square distance error RMSD calculated for each
of the four limbs. The violet boxplots show the results achieved by the the
DeA regression network while the orange the results of the 2D regression
CNN. In green the median value was reported.

Figure 2.21: Samples of qualitative results achieved by the DeA-regression network
when estimating the limb-pose. Limb-pose was superimposed to the orig-
inal depth frame.
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2.4.4 Discussion

The proposed DeA detection CNN achieved encouraging results as shown in Fig. 2.17
with a median Rec for the joints of 0.89, overcoming the 2D detection network which
achieved a median Rec of 0.86.

Accompanying quantitative results in validating the research hypothesis, qualitative
results on challenging frames are showed too (Fig. 2.19). These qualitative results
visually show the predictions of both network architectures superimposed on chal-
lenging frames (i.e., frames with occlusions or homogeneous pixel intensity, etc). As
visible from the figure, the DeA detection network better delineates the infants’ limbs
in challenging frames. This suggests that introducing the flowing pathway enables the
Dec path to be enriched with all the information content lost during the information-
shrinkage operations carried out by the Enc path.

To look for the optimal network configuration, the DeA detection network under-
went different architectural variations (Table 2.4). The results showed in Table 2.6 and
Fig. 2.17 suggested that all the 3 DeA detection-based architectures performed simi-
larly and achieved increased performance with respect to the 2D detection CNN. The
lowest performance when compared the 3 DeA detection-based architectures where
achieved by the DeA detection-2 which was inspired by [1]. This network, which im-
plemented two flowing pathways, turned out to be complex enough to memorize the
training data and consequently loosing its effective capacity [70].

As claimed by [1], when dealing with CNNs which must be deployed in scenar-
ios where computational resources may not be guaranteed, considerations relevant to
model efficiency are crucial. Guided by this hypothesis further studies were conducted
on DeA detection model efficiency which had ∼17M fewer parameters with respect
to the DeA detection-1. These studies are aimed at investigating possible architectural
variations that would make the architecture lightweight while attaining unaltered its
performance. To this goal asymmetric convolutions [71] were implemented in the 3
main network parts (i.e., Enc, Dec, DeA pathways). These newly stated architectures
are reported in Table 2.5. As showed by the boxplot in Fig. 2.18 the Asy-DeA-Enc
detection achieved the same median Rec (=0.89) of the DeA detection while the low-
est performance where achieved by the Asy-DeA-Body and Asy-DeA detection with
median Rec for joints equal to 0.88 and 0.88, respectively. As pointed out by the au-
thors in [71], this decrease in performance was induced by the increase in network
depth resulting from the implementation of asymmetric convolutions which replace
the traditional convolution (e.g., kernel size= 3x3) in two consecutive convolutions
(e.g., kernel size= 3x1 and kernel size= 1x3). Hence, when training a network from
scratch, increasing its depth may pose issue related to the vanishing gradient [71].
Consequently this outcome did not deal with the Asy-DeA-Enc as the network im-
plemented asymmetric convolutions in the Enc part only, slightly increasing the DeA
detection depth.

Concerning the DeA regression network, its performance was compared with the
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ones of the 2D regression CNN (which is the closest network architecture to the one
proposed). The DeA regression network achieved the highest performance in terms of
RMSD. The quantitative results coupled with qualitative ones (Fig. 2.21) suggested
that guiding DeA regression with information collected from DeA detection and still
implementing DeA layers in the former architecture may guide the network in a more
precise joint and joint-connection localization particularly in images with inherent
(e.g., noisy image portion, joint self-occlusions) or extrinsic (e.g., external occlusions,
mispositioning of the acquisition set-up) challenges.

A limitation of the work may be seen in the test set and training set consisting of dif-
ferent portions of the same video. This issue stems from the fact that the data used to
train and validate the approach are characterized by an high variability, mainly induced
by: (i) the differences between preterm infants in terms of gestational age, weight and
height, (ii) the different clinical conditions of the infants, (iii) the presence of external
occlusions while collecting data (e.g., sheets, pillows, splints, therapy equipment or
the hands of the operators and parents...). Publicly releasing the babyPose-v2 will cer-
tainly encourage other researchers to take on the inherent challenges of this research
and to propose increasingly reliable and affordable monitoring systems.

Monitoring preterm infants’ GMs, directly in NICUs, has a strong predictive value
for early diagnosing the presence neurodevelopmental disorders. As highlighted [47],
pursuing research in preterm infants’ pose estimation is fundamental to ensure reli-
able and accessible models which guarantee continuity of care both in NICU and even
after the hospitalization. This work therefore takes conscience of the necessities in
such a delicate field as that of preterm infants’ care, and proposes a lighter version of
the pipeline based on 3D convolutions while designing architectural variations able at
improving the performance of the 2D-convolutions-based pipeline. The topics cov-
ered in this research may open new research scenarios aimed at developing embedded
monitoring solutions for on-the-edge computation. This would both break down cost
constraints in terms of computation and money, and ensure that such increasingly ad-
vanced monitoring solutions can be deployed anywhere, without barriers.
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Chapter 2 Preterm infants’ limb movement monitoring via depth-video analysis

2.5 A sustainable deep learning approach for
preterm infants limbs’ detection

Innovative technologies open up new possibilities that require the scientific commu-
nity to completely rethink the ways to approach research in e-health [72]. Promote
and actively support specific actions aimed at raising awareness in sustainable health
issues constitutes a crucial research paradigm [5]. Monitoring applications as those
proposed in the previous sections (i.e., Sec. 2.3 and Sec. 2.4) represent a clinical
and therapeutic breakthrough towards a more personalised medicine. However this
innovation must be accompanied by more responsibility in designing and developing
accessible DL-based applications.

Indeed, both the presented approaches proved to be effective in the task of preterm
infants’ pose estimation but considerations about the efficiency of such models were
barely advanced with the DeA-based pipeline. As claimed in [73], designing compu-
tationally intensive DL models (i.e., with dozens of millions of trainable parameters)
requires demanding computational, memory and energy resources, limiting the appli-
cability of such monitoring solutions to computationally resource-intensive scenarios.

In this research, responsible innovation in the medical field translates into the effi-
ciency enhancement of available resources. The innovative elements of the research
are summarized hereafter:

1. The design of the TwinEDA, a CNN conceived for being sustainable. TwinEDA
is intended to perform similarly in terms of efficacy with respect to the 2D
detection network, while being more efficient in terms of computational and
memory resources requested;

2. Deployment on-the-edge of TwinEDA via a SBC device. This allowed to assess
the viability of using our DL-based monitoring system in clinical settings with
limited resources (in terms of computational power and memory); The chosen
device is the NVIDIA® Jetson Nano, a hardware platform oriented to DL that
aims to democratize AI [74].

2.5.1 Efficiency in convolutional neural networks as a mean
to improve sustainability

In today’s DL-centric research paradigm, every advance is primarily achieved via:
increasingly large datasets to guarantee better generalisation power to the networks
and increasingly complex and inefficient models at the operational level (i.e., mod-
els with an increasing size and number of trainable parameters) [75]. These devel-
opment choices, however, have an unavoidable impact on the energy and economic
sustainability of the solutions. In fact, increasingly complex models require longer
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information-processing times, with a decisive impact on the energy needed to sup-
port the computation [76]. As a consequence, the computational resources required
to deploy these solutions must be more and more performing (and expensive), thus
colliding with the responsibility of those who conduct research in the clinical field: to
create systems that can be distributed without borders and without limits imposed by
the absence of economic and computational resources [5].

Taking responsibility for making CNN models increasingly efficient (and, there-
fore, sustainable) and possibly embed such models in inexpensive and environmen-
tally friendly computing devices, are crucial challenges to ensure that everyone enjoy
the best possible medical treatment.

The need to push the research towards the development of more sustainable DL
models has been echoed by other researchers in closer fields [73]. On-the-edge DL
applications [77, 78, 79] became pervasive in many real-world scenarios (e.g., video-
surveillance systems or self-driving cars) which required efficient applications for
objects detection and classification or people and people’s behaviour identification.
Following the paradigm of on-the-edge DL applications, the authors in [2] proposed
EDANet, a CNN for real-time semantic segmentation. EDANet has some architec-
tural peculiarities that guarantee efficiency while ensuring quite accurate performance.
EDA modules bundled 3 main architectural choices aimed at lowering network com-
plexity:

• Asymmetric convolutions [69] break the 2D convolution (kernel size = nxn)
into two cascaded 1D convolutions (kernel sizes = 1xn, nx1), saving signifi-
cantly the number of trainable parameters while keeping almost unaltered CNN
performance.

• Atrous convolutions [66] as shown in Sec. 2.4, these convolutions space out
kernel values by d zeros, where d is the dilation rate. This design enlarges the
receptive field of the kernel without increasing the number of trainable parame-
ters.

• Densely connected layers [65] allow the deepest layers of the network to re-
ceive the features of all the shallower layers. Thus subsequent layers are re-
sponsible for learning few new features.

Unlike Unet-shaped networks (such as 3D, 2D and DeA detection CNNs), EDANet
replaces the decoder with a bilinear interpolation block for upsampling features. Bi-
linear interpolation is not a data-driven operation, considerably decreasing the number
of trainable parameters.

Probing this line of research, the proposed work combines the architectural choices
of EDANet [2] and the 2D detection CNN. EDANet, although computationally sus-
tainable, performs too poorly to be translated in the clinical practice, while the 2D de-
tection CNN reaches accurate performance without caring for the efficiency. Coupling
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the strengths of both CNNs allows to define TwinEDA network that simultaneously
ensures efficiency and efficacy.

2.5.2 Methods

2.5.2.1 TwinEDA convolutional neural network

Figure 2.22 shows the TwinEDA network along with the two CNNs (i.e., EDANet
and 2D detection CNN) chosen as baseline references for designing an architecture
that is both effective and efficient. TwinEDA network combines both the architectural
peculiarities of the 2D detection CNN, which has been designed for effective preterm
infants’ joint and joint-connection detection, and the EDANet, thought for being sus-
tainable (in terms of trainable parameters and memory requirements) and performing
real-time semantic segmentation.

As in EDANet, TwinEDA, downsamples the input image via two bi-branch down
sampling blocks which concurrently exploit 3x3 strided convolutions (with stride
(s)=2) and maxpooling layers to lessen the computational cost and gather compact
contextual information. The output of the downsampling blocks enters the first two
parallel EDA modules which smoothly process joint and joint-connection informa-
tion. EDA modules consist of six and five densely connected sub-blocks, respec-
tively. Each sub-block stacks a 1x1 convolution (to reduce the number of channels),
an asymmetric 3x3 convolution and a atrous 3x3 asymmetric convolution. Asymmet-
ric atrous convolution progressively increases the d factor (d=1,2,4,8), this widens the
filter field of view allowing the retrieval of multiple scale information of the image
while keeping low the number of learnable parameters. In each EDA module, the
data flows in a dense fashion to strengthen CNN ability in expressing features while
smoothing information flow [65]. Outputs from each EDA module are combined prior
entering two parallel downsampling blocks which capture coarse contextual informa-
tion for joint and joint-connections prior entering further two parallel EDA modules.
TwinEDA shares the same paradigm of the 2D detection network, by involving chain
of bi-branch blocks reuniting in a single convolutional layer and newly forked. This
design ensures the parallel processing of joints and joint-connections without losing
the intrinsic continuity of these anatomical structures within the human body [58].

To restore the information up to the output layer, the upsampling part of the TwinEDA
shares the same bi-branch structure of the downsampling one. It combines a single
layer of 1x1 convolution and then two parallel layers, one of which implements a 3x3
up-convolution and the other one a bilinear interpolation operation. This choice re-
lies upon the hypothesis that bilinear interpolation saves computation but rises issues
relevant to inaccurate joint and joint-connection detection [2]. On the other hand,
the upconvolution blocks proposed in the 2D detection CNN are gradually trained to
precisely outline joint and joint-connections localization but are computationally bur-
densome operations. Combining demand-driven and data-driven operations solves the
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Chapter 2 Preterm infants’ limb movement monitoring via depth-video analysis

issues posed by the individual implementation of the two operations.
As for the 2D, 3D and DeA detection networks, to train the TwinEDA the 20 affinity

binary maps (i.e., 12 for joints and 8 for joint-connections) were prepared.

2.5.2.2 Deployment

The TwinEDA network has been deployed on the NVIDIA® Jetson Nano, a portable
and cost-effective hardware. The Jetson Nano used for the deployment couples 4 GB
RAM, 4-cores ARM A57 CPU with an on-board GPU with 128 CUDA cores based
on a Maxwell microarchitecture design.

To evaluate the performance of the network over the NVIDIA® Jetson Nano in
terms of prediction time for a single-depth frame, a two-step process was accom-
plished, including: (i) conversion of the model from the original format (i.e., Ten-
sorflow) to the .onnx 5 format and (ii) a subsequent conversion to the serialized Ten-
sorRTTM 6 engine format. TensorRTTM generates an optimized version of the TwinEDA
model to ensure efficient performance when deployed on the Jetson device.

2.5.3 Experimental Protocol

2.5.3.1 Dataset, training settings, performance metrics

For the experiments the babyPose-v2 dataset was used, keeping the same division into
training, testing and validation set proposed in Sec. 2.4.2.3 (i.e., 750 frames per infant
to train and validate the CNN and 250 frames to test it).

As in Sec. 2.4.2.3 and Sec. 2.3.2.2, the optimal combination of loss, learning-rate
scheduling and optimizer, was found after a grid-search analysis. As a result of this
analysis, the CNN was trained for 100 epochs with Adam as optimizer and the per-
pixel binary cross entropy (i.e., LCE ) as loss function. Concerning the performance
metrics, besides DSC and Rec, inspired by [73], to quantitatively evaluate the effi-
ciency of each model, the number of trainable parameters, the inference speed and
the model memory requirements were computed. The inference speed was assessed
both on the same hardware in Sec. 2.3.2.2 and Sec.2.4.2.4 and when deploying the
TwinEDA on the NVIDIA® Jetson Nano.

2.5.3.2 Investigation on sustainability and ablation studies

As claimed in a recent contribution [80], the entire process of developing an AI appli-
cation, from the idea, through the design of the architectures to the deployment phase
of the models, should embrace the paradigm of sustainability. This research hypothe-
sis is even more crucial if applied in such a delicate field as medicine, where patients
need to be guaranteed high-quality care. To this goal both the efficiency and efficacy

5https://onnx.ai/
6https://developer.nvidia.com/tensorrt
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2.5 A sustainable deep learning approach for preterm infants limbs’ detection

Figure 2.23: Boxplots for quantitatively evaluate the efficiency and efficacy of the
network when detecting the joints. The x-axis shows the network in-
ference rate in terms of frames per second (FPS). The y-axis shows the
performance in terms of Dice similarity coefficient (DSC) (top) and Re-
call (Rec) (bottom) for mean-joint-detection. The different colors of the
bloxplots represent the different architectures while the black line depicts
the median values, the caption is shown at the bottom of the image.
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Table 2.7: Sustainable investigation: the performance of the TwinEDA network was
compared with that of the two networks chosen as baselines for its design
(i.e., EDANet [2] and the 2D detection CNN), TwinEDA-v0 and TwinEDA-
v1. The table reported for each architecture the number of trainable param-
eters.

Architecture Parameters
TwinEDA 2.66M
EDANet 620K

TwinEDA-v0 1.61M
TwinEDA-v1 3.29 M

2D detection CNN 15.5M

of the TwinEDA network were evaluated and compared against those of closer archi-
tectures. Thus, the sustainable investigation was conducted on three architectures: the
TwinEDA, EDANet and the 2D detection CNN.

To prove the effectiveness of coupling demand and data-driven operations, as an
ablation study, two variants (among all the tests performed to find the optimal ar-
chitecture) of the TwinEDA were tested. TwinEDA-v0 and TwinEDA-v1 share the
same downsampling path of the TwinEDA and differ from each other for the upsam-
pling path. Hence, to upsample data, TwinEDA-v0 implements bilinear interpolation
while TwinEDA-v1 exploits subsequent up-convolutional blocks (with kernel size=
3x3) prior entering the output layer. The number of parameters for each of the CNN
is shown in Tab. 2.7.

2.5.4 Results

To assess the performance of the architectures in terms of efficacy we computed the
median values in terms of DSC and Rec for joints and joint-connections and reported
the results in table 2.8. TwinEDA achieves closer results to the 2D detection CNN,
with the same median values of DSC for joint-connections detection equal to 0.89.
The boxplots in figure 2.23 both show performance for joints detection in terms of
DSC and Rec and highlight the inference speed (in terms of frames per second) for
each of the architectures.

These quantitative results demonstrate how Twin architectures (particularly TwinEDA
and TwinEDA-v1) achieve similar results to the 2D detection CNN while the lowest
performance was achieved by EDANet and TwinEDA-v0. Such a trend is also re-
flected in the boxplots (figure 2.23) which combine quantitative performance with
information on the efficiency of CNNs in terms of inference time.

Regarding efficiency considerations, as shown in the boxplots and reported in Ta-
ble 2.9, the TwinEDA network reduces the prediction time for a single frame by an
order of magnitude with respect to the 2D detection network (i.e., prediction latency
of the 2D detection CNN=0.01 s and prediction latency of the TwinEDA= 0.005 s).
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Table 2.9: Model efficiency assessments in terms of inference speed (i.e., the time to
predict a single depth frame) for all the 5 tested architectures and memory
requirements occupied by each model.

Architecture Inference speed [s] Model size [MB]
TwinEDA 0.005 46.2
EDANet 0.001 8.2

TwinEDA-v0 0.002 21.5
TwinEDA-v1 0.004 60.3

2D detection CNN 0.010 186.7

Moreover, TwinEDA model has a size of 46.2 MB which, compared to the 2D detec-
tion CNN (model size=186.7 MB), is considerably smaller.

The TwinEDA was further deployed on the NVIDIA® Jetson Nano. The network
takes 0.05 s to process a single frame, paving the way to making these monitoring
devices usable in clinical practice.

2.5.5 Discussion

This research was aimed at designing a DL based monitoring system able to accu-
rately monitor the infants’ limbs-movements with special care paid to the sustainabil-
ity of such systems in terms of computational and, consequently, economic resources
employed. With this aim, the TwinEDA network for preterm infants’ movement mon-
itoring was proposed to ensure effective predictions and computational efficiency.

As shown in Table 2.8 and Fig. 2.23, the proposed TwinEDA performed similarly
with respect to the detection network in [81] with the same median DSC and an abso-
lute difference of one percentage point between the two median Rec when detecting
joint-connections. Combining quantitative results with efficiency performance (Fig-
ure 2.23 and Table 2.9) it emerges that the 2D detection CNN is dramatically slower
in predicting a frame (0.010 s) than the TwinEDA network (0.005 s) and takes up one
more order of magnitude of memory space (TwinEDA network is 140.5 MB smaller in
size and has 12.5 M parameters less). These results lead to two considerations: (i) the
complex and deep nature of the 2D detection network makes it inefficient and compu-
tationally prohibitive and (ii) the bi-branch structure that guarantees parallel process-
ing of joints and connections allows to precisely trace joints and joint-connection in
space.

EDANet represents the boundary for temporal efficiency. The TwinEDA CNN,
compared to EDANet, is slower when predicting a single frame (it takes 0.004 s
longer), has a model size and number of trainable parameters which, although con-
tained, are slightly higher (TwinEDA network is 38 MB larger in size and has more
than 2 million parameters more). As far as comparing the performance achieved by
the networks in finding the position of joints and connections, the TwinEDA network
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achieved significantly improving results (median DSC and Rec for joint-connections
detection of 10 and 17 percentage points higher, respectively). This improvement in
performance is driven by the combination of data-driven and demand-driven opera-
tions. Indeed, as previously pointed out [2], information upsampling performed via
operations of demand-driven nature only, reduces the amount of computation but does
not properly reconstruct the information lost during the shrinkage operations in the
downsampling phase.

Further comparisons were conducted to validate the TwinEDA architecture as a
trade-off between quality in results and low computational demand. To this goal the
performance of the TwinEDA network against the ones of its twins (namely TwinEDA-
v0 and TwinEDA-v1) was assessed. Of the 3 Twin-architectures, TwinEDA-v0, is the
most efficient with a model size equal to 21.5 MB, a number of trainable parameters
equal to 1.61 M and a latency time to predict a single frame of 0.002 s. However, as
depicted in Fig. 2.23 and reported in Table 2.8, the network, compared to TwinEDA,
is ineffective when detecting the positions of the joint and joint-connections (me-
dian DSC and median Rec for joint-connections detection equal to 0.80 and 0.72,
respectively). This further proves that keeping bilinear interpolation in the upsam-
pling path may limit CNN capabilities in detecting infants’ limbs. To solve the issue
of the upsampling path, the performance of TwinEDA-v1 (which implements subse-
quent mono-branch convolution operations) was tested. Introducing data-driven oper-
ations enable the TwinEDA-v1 to perform similarly with respect to TwinEDA (median
DSC and Rec one percentage point lower) and better with respect to the TwinEDA-
v0 (median DSC and Rec 8 and 13 percentage points higher, respectively). How-
ever, compared to the TwinEDA, which parallels data- and demand-driven operations,
TwinEDA-v1, is more computationally demanding (model size= 60.3 MB and number
of trainable parameters= 3.29 M). The slightly drop in latency time, with respect to
the TwinEDA, is due to a mild decrease in network depth.

Promoting equity of access to high-quality care is of primary importance, so to re-
inforce the need of making innovative technologies accessible to all, the TwinEDA
network was deployed on the NVIDIA® Jetson Nano. This device for on-the-edge
computing was designed to make AI applications computationally and cost-wise sus-
tainable. This test showed that the designed TwinEDA can be optimized and de-
ployed on this computing device and achieves acceptable performance in terms of
single-frame prediction time (i.e., inference speed= 0.05 s, 20 FPS, real-time working
threshold=0.08s, 30 FPS).

This research reframes some concepts of the development of DL models in a more
sustainable and modern way. It tries to raise the need to propose clinical applications
that guarantee effectiveness along-side with efficiency. Indeed, as highlighted in [5]
designing reliable and affordable digital technologies will be a transformative force in
the healthcare sector and this work is among the first to underline the importance of
such a paradigm shift.
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Chapter 2 Preterm infants’ limb movement monitoring via depth-video analysis

2.6 Conclusion and future perspective

Monitoring preterm infants’ limb-movement, directly in NICUs, has a strong predic-
tive value for early diagnosing the presence neurodevelopmental disorders. Despite its
relevance, monitoring spontaneous motility is mainly performed visually by trained
clinicians with the drawbacks of being subjective, time-consuming and qualitative.
To solve issues due to the visual assessments, authors in literature proposed to mon-
itor movements via wearable sensors. However, adding extra burden to a fragile and
extremely worn out body may cause additional discomfort, pain, itching. Moreover
wearable sensors may hinder infants’ spontaneous motility and may suffer from arti-
facts caused by the movement of healthcare operators and parents interacting with the
child. Vision-based systems may represent a viable alternative to wearable sensors, al-
lowing the monitoring of infant’s spontaneous motility without being in contact with
infant’s skin and leaving operators and parents free to move around the crib. In the
literature, vision-based approaches applied to the monitoring of preterm infants are
mostly based on the analysis of RGB (e.g., [44]) posing issues relevant to privacy.

With the view to overcome state-of-art limitations this chapter presents DL-based
pipelines which analyse depth clips or images collected during the actual clinical prac-
tice (Sec. 2.2). The chapter collects the story of a three-year journey and bears witness
to a maturation of awareness. The first DL pipeline (Sec. 2.3) exploited 3D convolu-
tions to estimate limb-pose from depth streams. The 3D pipeline, compared with its
akin which exploited 2D convolutions for single-depth frames analysis, proved to be
effective in the task of pose estimation. However, the computational complexity intro-
duced by 3D convolutions is prohibitive and makes the monitoring system unsuitable
for being translated in the actual clinical practice. The initial need slightly changes
and the awareness of paying more care of the energy consumption of DL-based mon-
itoring systems matures.

The 2D pipeline (Sec. 2.3), which is naturally more efficient than the 3D one, was
reviewed and architectural variations were implemented to improve its performance
(Sec. 2.4). Architectural modification (e.g., asymmetric convolutions, atrous convo-
lutions...) to lower the computation effort of the 3D pipeline while improving the
generalization power of the 2D one were investigated. This newly DeA-pipeline got
improved quantitative performance with respect to the 2D pipeline while being more
efficient with respect to the 3D one. Proving, for the first time, that starting to think
about the efficiency of neural networks is critical to large-scale deploying such inno-
vative monitoring solutions.

The first sustainable DL architecture for preterm infants’ limb-detection (Sec. 2.5)
was proposed to further lower the computational cost and memory consumption of
the 2D pipeline. The designed TwinEDA follows two main reflections: (i) health is of
general interest and any innovation should be distributed worldwide, without borders,
thus extending advanced monitoring systems even in scenarios where computational
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2.6 Conclusion and future perspective

(and, therefore, economic) resources are not guaranteed became more and more cru-
cial; (ii) as researchers we should rethink the way we relate to neural-network design,
which must be increasingly aimed at proposing sustainable solutions to limit energy
consumption. As a result, TwinEDA guarantees both the efficiency performance of
the 2D pipeline but largely decreased the computational demand as to be deployed on
a lightweight and cost-effective NVIDIA® Jetson Nano.

The approaches presented in this chapter lay the foundations for a new paradigm of
infants’ monitoring in NICUs, showing promising results. Further research is needed
to realize an integrated systems that can be optimal and widely usable both in clinical
practice and at home after the hospitalization. This work will pave the way for the
development of computer-assisted diagnosis tools to better analysing GMs and timely
recognizing signs of the presence of neurobehavioral pathologies as ASD.

65





Chapter 3

Automatic assessment of the
autistic child’s autonomy in daily
actions

The child with ASD is characterised by a different development of the central ner-
vous system than what is considered normal. This is partly based on genetics and on
environmental factors. The environment causes in these children the inability to find
the right stimuli for their diversity. This increases, in the children, the difficulties of
socialisation and ends up in creating a bubble in which ASD children find themselves
enclosed. With no possibility of communicating outside this bubble. This generates
suffering above all in the children and then in their families. The sooner this neurodi-
versity, which differs from child to child, is understood the more the child grows and
develops his/her potential.

The ABA therapy is currently the most effective in the treatment of children with
ASD. At the basis are artificial stimuli and reinforcement, to teach the child to be-
have and interact with the surrounding environment or to reduce self-injurious and
repetitive behaviours. By treating each symptom, each error in the metabolic system
with appropriate tests, a gradual change and improvement in children’s health and
behaviour verifies.

The research here presented falls within the “COMEACASA” project which deals
with the proposal of innovative intervention methodologies for children with autism.
It stems from a dialogue with ABA operators from a centre specialised in ABA ther-
apy located in Macerata (Italy). Indeed, ABA therapy is not merely applicative but
involves extensive monitoring of the child and his/her behaviour in relation to envi-
ronmental stimuli. To understand the child’s specific neurodiversity, the operators ob-
serve the child while he/she is carrying out specific tasks and design children-specific
programs. To provide ABA operators with a non-intrusive support ally, the same cam-
era used to monitor preterm infants in cribs was mounted over the bathroom sink. The
video recordings were used to quantify the children’s autonomy in the act of washing
their hands, which, of all actions, as we have learned during the COVID-19 pandemic,
is crucial to the safety of the children and those around them.
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Chapter 3 Automatic assessment of the autistic child’s autonomy in daily actions

3.1 Background and motivation

Figure 3.1: The acquisition set-up (white square, left), placed in the bathroom to
record the sink (pink square, right), consisted of an Astra Mini S-Orbbec®
RGB-D camera and a minipc Intel® NUC core i5.

Autism is a severe permanent neurodevelopmental disorder with long-term and per-
vasive effects. It affects 1 in 59 children, worldwide1. Impaired communication skills,
inability to socially interact, absence of emotional reciprocity, limited interests and
repetitive behaviors are among the major adverse implications of ASD [82].

The treatment of children suffering from ASD mostly relies upon the ABA tech-
nique. The ABA aims at modifying the child behaviour to make it functional to the
tasks of everyday life (e.g., nutrition, personal hygiene, dressing, ...) and improv-
ing child ability to relate with others. The application of this technique at an early
age allows to act effectively on the child’s behavioral processes, leading to signifi-
cant results [83]. The ABA therapy has generally three main phases: the first one
is merely the observation of child behaviour and reaction to external stimuli. Subse-
quently, the ABA therapist analyses the behavioural reactions of the child. Finally, the
ABA operator draws up a program of specific and personalized exercises to modify
the dysfunctional behavior of the child [84].

The child is constantly monitored to check the actual progress and take note, in the
form of qualitative scales, of any encountered difficulty, which may require a vari-
ation in the ABA program. However, despite its relevance, this monitoring proce-
dure still heavily relies on either direct observation or revision of video recordings
by the operators, both coupled with paper-and-pencil-rating scales [85]. This pro-
cedure, which includes both the child observation and behaviour evaluation, beside
being time-consuming, is qualitative and may be prone to inaccuracies due to operator
fatigue.

To attenuate the issue of perspective evaluation, some promising computer-assisted
approaches have been proposed in literature. The majority of them is focused on
diagnosing ASD. In [86] the authors propose a DL based algorithm that analyses eye
movement patterns from video data to discriminate between children with diagnosed

1https://www.aap.org/en-us/Pages/Default.aspx
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Chapter 3 Automatic assessment of the autistic child’s autonomy in daily actions

ASD and typically developing children. The work in [87] implements a DL framework
that analyses video of commonly performed gestures (e.g., grasping a bottle).

Few literature exists on computer-aided systems to support ABA operators in moni-
toring children with ASD during the therapy session. This may be attributed to the lack
of publicly available observational databases. Unlike DL, machine learning-based ap-
proaches, require a handcrafted-feature extraction step. This procedure, which could
be performed either manually or via specific feature extraction algorithms, may be
computational expensive, limiting the translation of such application in the actual
monitoring practice. More in general, the use of wearable sensors may alter the be-
havior of the monitored child, especially for the youngest ones.

To offer all the possible support to the operators in monitoring children with autism
during the ABA therapy, this research proposes a DL-based application to analyze im-
ages collected from an RGB-D camera. The work elects as case of study the monitor-
ing of hand-washing autonomy. Thus an RGB camera was placed over the bathroom
sink (Fig 3.1) of the “Orizzonte centre” (Macerata, Italy) which is specialised in ABA
therapy for autism2. The camera records the ABA operator intent on teaching the child
what to do to wash the hands, autonomously.

The proposed DL algorithm aims to detect, from an RGB frame, whether the child
is washing hands autonomously or with the support from the ABA operator. Then,
based on the prediction of the algorithm, an intuitive washing-hand autonomy index
is calculated.

3.2 Methods

The workflow of the proposed DL approach is showed in Fig. 3.2

3.2.1 Data acquisition protocol: the hand-washing case of
study

Personal autonomy skills are certainly one of the elements that mostly affect the qual-
ity of life of the child with ASD: being independent from assistance for personal
needs might change the future of these children and the way they relate to the environ-
ment [88]. This research considers, among the basic autonomies, that of hand-washing
which is fundamental for the safety of the person, for ameliorating social integration
and to strengthen the child’s self-esteem.

As showed in Fig. 3.1, to accomplish the goal, an RGB camera was placed on the
corner of the bathroom of the ABA centre to film over the sink. The acquisition set-
up, which consisted of an RGB camera (Astra Mini S-Orbbec®) and a minipc Intel®
NUC core i5, was installed to be imperceptible and to not distract the child during the
therapy.

2https://www.ilfarosociale.it/
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3.2 Methods

no-aid

Max pooling Conv 3x3+BN+ReLU Fully connected 

Figure 3.3: VGG16 neural network to classify aid and no-aid frames. In purple con-
volutional layers, in blue max pooling layers, in red fully connected layers.

Table 3.1: Dataset description: we used the annotated frames from 36 videos to train
and validate the architecture (70% of frames to train and 30% of frames
to validate), while the annotated frames of 1 video were used to test the
architecture.

Training set Validation set Test set
no-aid aid no-aid aid no-aid aid
3124 3470 1339 1488 201 118

36 videos from 9 children 1 video from 1 child

A custom-built python script was implemented to automatically acquire concate-
nated video sequences of 5 minutes each3. After gaining the authorization by the
children’s legal guardians, the acquisition sessions were carried out using a digital
programmable timer, for one month, six hours per 5 days (from Monday to Friday).

3.2.2 Network architecture

To classify the selected frames in aid and no-aid VGG16 network was implemented
as a trade-off between low model complexity and good predictive power.

In the original VGG16 implementation [89], the input 224x224 RGB image is pro-
cessed through 13 convolutional layers which act as features extractors. Each conv
block has filters with a quite small receptive field (3×3 pixels) and is activated by a
ReLU activation function. Every two or three convolutional blocks (depending on the
network depth), max pooling layers are used to progressively reduce the spatial size
of the feature map. Max pooling aims to lower the amount of training parameters, to
reduce the computational complexity and consequently the risk of overfitting.

The network ends with 3 fully-connected layers with 4096, 4096, and 1000 neurons,
respectively, separated by dropouts to reduce the effects of overtraining of the neural
network. The last fully connected layer is followed by a softmax layer, used to predict

3https://github.com/roccopietrini/pyOniRecorder
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Chapter 3 Automatic assessment of the autistic child’s autonomy in daily actions

the probability of the image to belong to each class of the ImageNet dataset4, the
natural-image dataset used to train originally VGG16.

To accomplish the binary classification task, the last fully connected layer (origi-
nally with 1000 neurons as the classes of ImageNet) was replaced with a fully con-
nected layer with 2 neurons (Fig. 3.3).

3.2.3 Training strategy

To train the model fine-tuning methodology was adopted. This procedure allows to
migrate the knowledge learned by VGG16 during the training on ImageNet to the
binary classification, reducing the risk of overfitting as the features extracted from
ImageNet database are very generic [90]. To this goal, the weights of the convolutional
blocks and the connections between neurons in the first two fully-connected layers
were initialized with the weights of ImageNet, while the last fully-connected layer
(i.e., the one with two neurons) was initialized with the standard Glorot initialization.

3.2.4 Hand-Washing autonomy index

The Hand-Washing autonomy index (HWI) (Eq.3.1) is computed from network pre-
dictions as:

HWI =
|N|

|A|+ |N|
(3.1)

where A := {a | child is aided in frame a} is the set of aid frames and N := {n | child
is not aided in frame n} is the set of no-aid frames.

This index is provided to ABA operators to quantify the child’s level of autonomy
during the hand-washing task. Evaluating the trend of this index over time would
allow the ABA operators to assess the progress of the child in performing the task.

3.3 Experimental Protocol

3.3.1 Dataset

The dataset used in this work consisted of 115 RGB video sequences of 5 minutes
each. The camera frame rate was 30 frames per second with image resolution of
640x480 pixels.

Of 115 total video recordings, only those in which the child and operators were
within the camera field of view for at least one frame were selected. This results in a
collection of 37 RGB videos. Considering that the hand-washing action is character-
ized by low dynamics [91], for each of the 37 videos, 1 frame every 6, was extracted.
Thus, for each video, 1080 frames were obtained.

4http://www.image-net.org/
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3.3 Experimental Protocol

Table 3.1 summarizes the division of the dataset into training, validation and testing
sets. Among the frames extracted from 36 videos, 70% were used to train the network
and 30% to validate it. The annotated frames of the remaining video were used to test
the network.

Starting from the 1080 frames in each video, frames with no-one in the camera field
of view, and with subjects performing actions different than hand-washing (e.g., dish-
washing) were manually discarded. Supported by the ABA operators, the remaining
frames were manually assigned to the aid and no-aid class using a custom-built anno-
tator5. 10 children and 6 ABA operators took part in the study.

3.3.2 Training settings

Prior feeding the network, the frames were resized to 224 x 224 pixels, for size com-
patibility with the pretrained network. To train the fine-tuned VGG16 the binary cross-
entropy loss was used. The loss was minimized in 50 epochs with SGD as optimizer
and a learning rate equal to 0.0005 decayed by a factor of 2 every 10 epochs.

The batch size was set to 64 as a trade-off between memory requirement and train-
ing convergence. The best weight configuration among epochs for each model was
retrieved according to the highest Acc on the validation set. All the analyses were
performed using Keras framework on a Intel® Xeon® Silver 4214 CPU @ 2.20GHz
with 230 GB of RAM and a NVIDIA® RTX 2080 8 GB RAM.

3.3.3 Ablation study and comparison with other
architectures

As an ablation study the performance of the fine-tuned VGG16 was compared against
the VGG16 trained from scratch. In the VGG16 trained from scratch the weights of the
convolutional blocks were initialized with He initialization while the fully-connected
layers were initialized with the standard Glorot initialization. The performance of
ResNet50, both fine-tuned with ImageNet pretrained weights and trained from scratch,
was tested too. Considering the structure and the depth of ResNet50 the binary cross-
entropy loss was minimized with Adam optimizer setting the learning rate to 0.0001.

For all the architectures, the batch size and the number of epochs, were set to 64
and 50, respectively.

The final model was chosen, among the 4 architectures, as the one with the highest
Acc in the test set.

3.3.4 Performance assessment

To assess the performance of the CNNs, the classification Acc, Precision (Preci)
(Eq. 3.2), Reci and f1-score ( f1i) (Eq. 3.3) for the i-th class (with i ∈C : [aid, no-aid])

5https://github.com/roccopietrini/pyMultipleImgAnnot
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Chapter 3 Automatic assessment of the autistic child’s autonomy in daily actions

Figure 3.4: Example of challenging frames: on the left side the child is aided by the
operator (blue square), on the right side the child washes his hands au-
tonomously (yellow square).

were computed.

Preci =
T Pi

T Pi +FPi
(3.2)

f1i =
2×Preci ×Reci

Preci +Reci
(3.3)

3.3.5 Performance assessment on challenging frames

To further validate the final classification model, further tests were conducted to assess
its performance on challenging frames selected from the original test set. Challenging
frames are those in which the child and the operator were close to each other. Samples
of challenging frames are shown in Fig. 3.4.

To quantify the proximity between the operator and the child (i.e., how close they
are to each other), it was necessary, first, to identify them within the frame. This was
done via the FASTER-RCNN detection network, which was pre-trained on the large-
scale COCO 6 dataset for natural-image detection tasks. At prediction time, in this
work, only the bounding boxes associated with the person class were retrieved.

As quantitative index of proximity was then computed the Overlap Ratio (OR)
among the two bounding boxes (i.e., the child and operator ones). The OR was defined
as:

OR =
area(P∩K)

min(area(P),(area(K))
(3.4)

where P and K identified the bounding box of the ABA operator and the child, respec-
tively.

Due to the positioning of the acquisition set-up (next to a mirror), before computing
the OR index, the FASTER-RCNN predictions were post-processed to delete the boxes
corresponding to the person detected in the mirror. The Euclidean distance of each up-

6https://cocodataset.org/
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3.4 Results

Figure 3.5: Confusion matrix for fine-tuned VGG16 (on the left side) and fine-tuned
ResNet50 (on the right side): the two best performing models.
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Figure 3.6: Boxplot of the Overlap Ratio (OR) for the no-aid class in yellow and the
aid class in blue. Median values of the two distributions are shown in red.

left corner of the predicted bounding box from the origin of the image reference frame
was computed. This allowed to select the rightmost bounding boxes excluding those
of the mirror.

Then to identify challenging frames the boxplots of the OR for the aid and no-aid
class were computed. This procedure allows to exclude all the frames with OR lower
that the minimum of the boxplot (i.e., the lowest data point excluding any outliers) of
the aid class.

3.4 Results

Table 3.2 summarizes the results achieved by VGG16 and ResNet50, both fine-tuned
and trained from scratch. The two networks trained from scratch achieved the low-
est performance when compared with their akin trained with fine-tuning technique,
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Figure 3.7: Confusion matrix of the fine-VGG16 tested on challenging frames

Table 3.2: Results of the VGG16 and the ResNet50, both with fine-tuning technique
and from scratch. Results were evaluated in terms of: class-specific classi-
fication precision (Preci), recall (Reci), f1-score ( f1i), for i ∈ [aid,no-aid]
and classification Accuracy (Acc).

Prec Rec f1 Acc
no-aid aid no-aid aid no-aid aid

ResNet50 trained from scratch 0.64 0.63 0.99 0.04 0.77 0.08 0.64
VGG16 trained from scratch 0.76 0.80 0.93 0.50 0.83 0.62 0.77

fine-tuned ResNet50 0.91 0.76 0.84 0.86 0.87 0.81 0.85
fine-tuned VGG16 0.93 0.86 0.92 0.89 0.92 0.88 0.91
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3.5 Discussion

with extremely unbalanced values of per-class metrics. ResNet50 trained from scratch
achieved the worst results with imabalanced values of Rec for the no-aid and aid of
0.99 and 0.04, respectively. VGG16 trained from scratch achieved slightly better re-
sults with Rec of 0.93 and 0.50 for the no-aid and aid class, respectively. The results
highlighted that both the architectures trained from-scratch are more confident in pre-
dicting the no-aid class with respect to the aid one.

The confusion matrices of the two best performing models (i.e., fine-tuned VGG16
and ResNet50) are shown in Fig. 3.5. Both the models did not outperform in predicting
one class with respect to the other. The fine-tuned VGG16 achieved slightly better
performance when compared to fine-tuned ResNet50, with higher values of Prec, Rec
and f1 for both the no-aid class (0.93, 0.92 and 0.92, respectively) and the aid class
(0.86, 0.89 and 0.88, respectively), with an overall Acc equal to 0.91. For the VGG16
the predicted HWI was equal to 0.62 (actual HWI=0.63).

Boxplots of the OR for the aid and no-aid class are depicted in Fig. 3.6. The
minimum of the boxplot for the aid class (0.82) was used as threshold to select chal-
lenging frames. These 192 frames, resulting from the thresholding, were the ones with
OR greater than the threshold and have been used to further validate the performance
of the fine-tuned VGG16. The confusion matrix of the fine-tuned VGG16 tested on
challenging frames is shown in Fig. 3.7.

3.5 Discussion

To support the ABA therapists during their actual practice, this research proposed
a DL-based application to monitor children with ASD while performing the hand-
washing task. By analysing RGB frames, the presented DL model detected whether
the child washed hands autonomously (no-aid class) or supported by the ABA opera-
tor (aid class).

VGG16 with fine-tuning technique was implemented as trade-off between model
complexity and accuracy in predictions. This model was compared against VGG16
and ResNet50 trained from scratch and fine-tuned ResNet50. Both the performance
of the architectures trained from scratch were unsatisfactory as the network poorly
predicted the aid class. Fine-tuning technique has improved the performance of both
the ResNet50 and VGG16 with respect to their corresponding trained from scratch.
Hence, fine-tuning allowed to migrate the knowledge of the training on the large-
scale ImageNet dataset to the classification task of interest, improving the networks
generalization ability. However, fine-tuned VGG16 showed better performance in
terms of classification Acc and per-class metrics. This may be due to the relatively
simple and shallow structure (16 layers) of VGG16 coupled with a small-size dataset.

To further validate fine-tuned VGG16, its performance was tested on the most chal-
lenging frames among the testing set. These frames were quantitatively identified as
the ones in which the ABA operator and the child were close to each other, even if
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Chapter 3 Automatic assessment of the autistic child’s autonomy in daily actions

the child performed the hand-washing task autonomously. When tested on challeng-
ing frames, fine-tuned VGG16 achieved encouraging results in predicting both the aid
and no-aid class (with only 6 out of 76, and 10 out of 100 misclassified frames for
the no-aid and aid class, respectively). This suggested that the network was able to
extract information from the frame of interest which did not solely rely on the spatial
distance between operator and child, proving to be suitable for the task.

3.6 Conclusion and future perspectives

Autism is a pervasive developmental disorder caused by an altered brain development
and can manifest with varying degrees of severity. Children with ASD may mainly
develop: (i) problems in social interactions, (ii) repetitive and stereotyped behaviors
and (iii) impaired communication skills (verbal and nonverbal). These behavioral
alterations appear from the first years of life and persist forever. No definitive cures
exist but therapies such as the ABA can help the child in achieving his/her maximum
development potential [88].

During the implementation of the ABA program, the operators observe the ASD
child and take notes on the progress or difficulties encountered to pursue the program
goals. These assessments highly depends on experience of the examiners and are
often collected in paper format undermining consultation, longitudinal examination
and data-sharing.

Several computer-assisted approaches mostly based on wearable sensors are pro-
posed in literature to overcome these qualitative evaluations and to support ABA op-
erators during the clinical practice. However, body-contact sensors are not always
appreciated and accepted by the children and may alter their behavior.

The work here proposed draws from both the experiences of the ABA operators
who participated in the development of the research and the limitations of the cur-
rent literature. It replaces wearable sensors with the same RGB-D camera used to
monitor preterm infants in Chapter 2 hidden in a corner of the bathroom and uses its
frames to automatically classify whether the child with ASD washes his/her hands
autonomously. This monitoring system represents a milestone in the non-invasive es-
timation of the progress of autistic children. Indeed, besides collecting quantitative
data useful in improving the customization of ABA protocols, lays the foundation for
largely deploying such systems in centers and at home. This will allow ABA operators
to continuously stay up to date on the progress of the children as well as parents to
feel almost in touch with the reference center for care of their children.

Autism is a complex syndrome which inevitably impacts those who are affected
and their families. There are more children with autism than previously thought be-
cause techniques for diagnosing ASD have improved. Advances in diagnosis must
therefore be accompanied by improvement in the current systems for monitoring the
progress of these children and fully assisting their families during everyday life. To

78



3.6 Conclusion and future perspectives

this goal natural extension of the work presented in this chapter will deal with the
comprehensive characterisation of stereotypical motor behaviours. Moreover, the au-
tonomy in pursuing other relevant tasks (e.g., brushing teeth) should be investigated.
All these computer-aided solutions will be included in a single framework, to expand
ABA-operators’ possibilities during their actual practice [92] and to improve these
children’s and their families’ care.
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Chapter 4

Estimating human pose from
RGB-D images acquired via a
smart walker

Silvio Garattini1 writes in his book “Il futuro della nostra salute”: “A macroscopic
change that has taken place over the last 40 years is the change in the age of the
population: fewer births, around 420000 a year, compared with 600000 deaths, which
shifts the age upwards. Life expectancy at birth is increasing: about 81 years for men
and as many as 85 for women, with the result that there are more old people than
young”.

This progressive aging of the population draw attention to the need for rehabili-
tation services as ways to reduce disability and to live as healthy a life as possible.
A rehabilitation that should no more limited to intervention in the acute phases of
pathologies as to prevent and limit damage and to preserve independence, but ex-
tend to the subsequent phases with tailored follow-ups for consolidating the results
achieved and improving independent living.

This scenario calls for finding new treatment modalities and prevention strategies
that take into account the specific needs of this fragile population in terms of safety,
personalization of treatment and support for well-being. The research described in
the following chapter was conducted at the University of Minho (Portugal) and takes
up these open challenges in the rehabilitation field. It proposes, for among the first
time in the literature, a smart walker-integrated monitoring system. The system, with
a view to provide quantitative insights to clinicians in the field, assess the 3D per-
son pose from images collected with two RGB-D cameras mounted over the smart
walker. The proposed work, which was born and developed during the first wave of
the pandemic, resumes two concepts discussed in Chapter 2 and re-applies them in a
different scenario, firstly, that of “pose estimation” here applied to the entire human
body and, secondly, the need to design solutions deployable in systems with limited
computational resources as a way to fully promote such systems worldwide without

1Silvio Garattini is an Italian scientist and pharmacologist, president and founder of the Institute for Phar-
macological Research “Mario Negri”.
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any costs barriers. The present of the proposed system concerns the possibility of
establishing personalised rehabilitation plans in hospital scenarios. The future could
provide a light-weight system that the patient takes home to continue exercising in a
controlled manner but in a familiar environment.

4.1 Background and motivation

Gait and Posture disabilities are common [93, 94], and increasing due to the ageing
population and to the global incidence of cardiovascular and/or neurological disorders,
such as cerebellar ataxia, cerebral palsy and Parkinson’s disease, among others [95,
96]. Along with cognitive impairments, individuals with disability may present a lack
of stability, affected motor coordination, poor balance, and muscle weakness, leading
to an increased risk of falls and fall-related morbidity [94, 97].

Rehabilitation is traditionally conducted by physicians and therapists over long pe-
riods of time, demanding high physical effort from rehabilitation professionals with
challenges due to variability in clinical evaluation, while being time-consuming and
prone to errors due to clinicians’ fatigue [94]. Robotics-based rehabilitation is an
evolving area that aims to improve the quality of life of motor-impaired people by
providing residual motor skills recovery based on repetitive and intensity-adapted
training. Along with assistive devices, smart walkers became a popular choice in
the context of gait rehabilitation [98, 94].

An automatic and complete spatio-temporal representation of the patients’ configu-
ration in space, based on data gathered from built-in sensors, would be highly desirable
to provide personalized care [99, 100]. It would allow the extraction of quantitative
parameters to monitor and help rehabilitation professionals evaluate patient improve-
ments, simultaneously serving as a basis for downstream human-robot interactions
and user-centered control strategies, adjusting to the patient needs in real-time.

Available smart walker solutions for patient monitoring have focused on extracting
narrow aspects, such as specific gait parameters, using specialized hardware and tra-
ditional software, with no full-body detection, and presenting fundamental limitations
when dealing with non-ideal conditions [101]. Moreover, body detection errors are
reported qualitatively, with no general validation scheme, limiting comparison across
works [101, 102, 97].

Authors in [103] used ultrasound sensors placed facing each of the patients’ legs,
to obtain a signal used to measure gait cadence. [104] also predicted this metric, but
from force sensors on the handlebars by measuring the force on each handlebar caused
by the body sideways displacement. While in [105], the authors have resorted to us-
ing laser rangefinders aimed at both legs, to obtain the shank locations on a 2D plane
parallel to the ground. Pointcloud data, obtained from a depth sensor pointed at the
subjects’ legs, was used by [102] along with traditional computer vision techniques
(e.g., clustering, Hough transform) to detect the feet locations and knee, hip and ankle
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kinematics. In the current version of the ASBGo walker, authors in [97] have also
resorted to traditional computer vision techniques based on depth and RGB frames
obtained from two independent cameras and systems. One used to monitor the sub-
jects feet and legs and another pointed at the chest for the posture, yielding multiple
full body metrics.

Although useful, all the above methods suffer from fundamental flaws when dealing
with: non-ideal conditions (e.g., feet occlusions), variable positional offsets depend-
ing on body-segments thickness or use of model assumptions, relying on multiple sub-
systems for the different body parts with no unified full-body approach, and thus not
exploiting existing movement dependencies. DL algorithms showed great potential
for human pose estimation [100, 106], being capable of providing custom-fit solutions
for the problem requirements, with low detection error, robustness to environmental
conditions while using cheap consumer hardware [107, 106]. Nevertheless, these re-
quire large amounts of labeled data to achieve good performance, which, in the case
of 3D keypoint positions, is often not trivial and time-consuming to obtain [100], and
most methods were not developed for real-time applications [108, 106, 107].

An automated solution to full-body analysis in rehabilitation scenarios has been
proposed in [99]. OpenPose [108] is used to infer the patients’ keypoints on videos
over a rehabilitation session. Features are then extracted and fed to a regression model
to produce gait metrics, with good correlation to physicians’ reports. However, the
solution does not run in real-time which is crucial for enabling these technologies to
be translated in the actual clinical practice.

This research addresses the challenges posed in literature and proposes an inno-
vative solution, based on current advances in human pose estimation using DL ap-
proaches. The work implements a non-invasive framework for an accurate, real-
time, and lightweight full-body human pose estimation deployed on the ASBGo smart
walker [97], using visual information coming from two RGB-D cameras mounted on
the equipment.

4.2 Methods

4.2.1 Acquisition set-up

4.2.1.1 ASBGo smart walker

The ASBGo smart walker [97], used in rehabilitation, will run the proposed human
pose estimation framework. It is equipped with an Intel NUC-6i7KYK (Intel Corpora-
tion, The United States) mini-pc (Intel i7 4-core 2.60GHz CPU, 8GB RAM), respon-
sible for all the high-level algorithms and GUI, while communicating with multiple
sensors used for status, patient and environment monitoring, using a ROS 1 [109]
messaging interface. During rehabilitation sessions it is tasked with running multi-
ple processes concurrently, and has to keep responsive at all times, constraining the
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Figure 4.1: Summary of the method used to relate the Xsens keypoint data to the pos-
ture camera referential. The skeleton is shown in 3D along with the point-
cloud from both cameras.

use of processing-heavy applications. This is challenging considering the lack of any
hardware accelerator (e.g., GPU).

Two Orbbec Astra RGB-D cameras are used to monitor the users and are mounted
on the front of the walker, in a configuration with complementing non-overlapping
views. The upper camera (posture) only visualizes the upper part of the body, while
the bottom camera (gait) only visualizes the legs and feet. Each obtains RGB and also
depth images with a resolution of 640x480 pixels at 30 frames per second. The depth
sensor has a range from 0 to 10 m (errors increase with the distance from the sensor).

4.2.1.2 Xsens MTw Awinda

The Xsens MTw Awinda inertial MoCap system was used to acquire ground truth
data from the subjects using the walker. It is composed of 17 wearable IMU sensors,
which communicate over wireless with a base module connected to a computer. The
proprietary Xsens MVN software uses the IMU data to drive a biomechanical model
of the subject, from which accurate positional and kinematic data are extracted.

4.2.2 Walker dataset

A custom dataset was acquired to train and validate the human pose estimation algo-
rithms: it relates RGB-D images coming from the walker cameras, with ground-truth
keypoint data (referred to as skeleton) coming from the Xsens system. A hardware
trigger was used to start the acquisition on both systems and the data were later syn-
chronized offline using timestamps saved during recording. The skeleton data were
transformed to the posture camera referential. First, the skeleton was centered on the
origin of the referential and rotated based on the orientation of an additional Xsens
IMU placed on top of the posture camera. Finally, a translation was applied, which
places the skeleton wrists on the corresponding walker handles relative to the camera.
This translation was obtained through extrinsic calibration using visual markers. The
process is summarized in Figure 4.1. With the skeleton aligned in 3D space and by
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(a) (b) (c) (d)

Figure 4.2: Processed input image (a) and depth (b) frames which will be fed to
the model. stacked Gaussian probability keypoint (c) and connection (d)
heatmaps.

Figure 4.3: From left to right: Outside view of the acquisition setup; collected data
from concatenated RGB frames overlaid with projected 2D skeleton; Con-
catenated depth frames overlaid with projected 2D skeleton; merged point-
cloud overlaid with 3D skeleton (data from the gait camera is transformed,
through an extrinsic transformation, to the posture camera referential).
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knowing the transformation between the cameras, along with the cameras’ intrinsics,
it is possible to obtain the 2D keypoint locations in each of the camera frames by pro-
jecting the skeleton to 2D using the Pinhole Camera model. This process was used to
obtain keypoint ground truth labels for the RGB and depth frames for both cameras.
The inverse process can also be used to project 2D information from each image to
the 3D space.

4.2.3 Dataset preparation

Inspired by [100] all data were down-sampled from the original 30Hz to 10Hz when
training the models, to reduce the number of similar samples, which add little addi-
tional information to the training set.

4.2.3.1 Input frames

The data used to feed human pose estimation algorithms were pre-processed by: (i)
RGB Frames from both cameras were converted to gray scale and normalized to [0,1]
range. The depth frames, were divided by the maximum range (10 m), obtaining data
between [0,1]. Normalization was preferred over standardization as it preserves the
meaning of the depth values. (ii) Posture and gait camera frames were concatenated
to create a single frame with information from both parts of the body. This method
was chosen over processing frames from each camera individually or doing feature
fusion inside the model, as this way positional relationships can be exploited, while
decreasing computational costs of processing the two frames independently. This was
only possible due to the complementing views obtained from the camera placement
on the walker. Some samples of the pre-processed data can be seen in Figs. 4.2a,
4.2b. (iii) The frames resolution was reduced, decreasing computation and memory
requirements and thus inference time. Since the subject will always be close to the
camera while using the walker, the loss of fine details should not cause a decrease in
performance, while on the other hand, increasing the percentage of the frame present
in the effective receptive field (ERF) of the model, without requiring a very deep
architecture. Finally, 2 input features, one for the depth and another for the grayscale
image, with shapes (1, H, W) were obtained.

4.2.3.2 Keypoint selection

A subset of 17 keypoints was selected from the original Xsens skeleton obtained in
the data acquisition step. A set of 16 connections were also defined between these
keypoints, following natural limb segments of the skeleton. The keypoints and con-
nections can be seen in Figure 4.3.
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4.2.3.3 Heatmaps

Gaussian probability heatmaps were created from the 2D keypoint locations. These
will be used as intermediate regularization for the model, following the human pose
estimation literature [100, 110, 111]. Keypoint heatmaps were created for each of
the keypoints, by a Gaussian probability function centered at each 2D location and
with a variance (σ ) of 3 [111]. Similarly, connection heatmaps were created between
connected keypoints by using 1D Gaussian distributed values along a connection line
between two keypoints. The stacked heatmap output features for each type can be
visualized in Figure 4.2b). This creates data samples with shapes (17, H, W) and (16,
H, W) respectively for the keypoint heatmaps and connection heatmaps.

4.2.4 Model framework

The DL model framework for human pose estimation is shown in Figure 4.4 and fol-
lows a two-stage approach. The 2D-stage is responsible for detecting keypoints and
keypoint-connections in 2D image space. The 3D-stage regresses the keypoint lo-
cations to 3D space. This two-stage architecture was chosen above methods which
directly compute the positions in 3D space [112, 106], as it is lighter to compute and
has shown competitive results in the literature [113], while being easier to optimize
since there is no internal conversion between image and cartesian spaces [112]. More-
over, it allows dealing with the multi-camera fusion problem in separate stages without
having to learn a global internal representation.

4.2.4.1 2D-stage

The 2D-stage of the model is responsible for detecting the keypoint-pixel locations
from the input image and depth frames. This is accomplished, inspired by literature in
closer fields [108, 110, 114, 115, 107, 116, 117], with a fully convolutional network.
Special attention was given to the computational cost given the hardware constraints.
The architecture is displayed in Figure 4.5.

A backbone based on the lite variants of the EfficientNet [118] architecture was
used as a general feature extractor similarly to [107], settling for the lite0 version.
The first 4 resolution feature blocks were selected, yielding multi-level features, with
dimensions from (W

2 , H
2 ) to ( W

16 , H
16 ).

Two decoder branches, with skip connections from the backbone intermediate fea-
tures [110], up-sample these representations to produce the output keypoint and con-
nection heatmaps respectively on each branch, with (W

2 , H
2 ) resolution. The bottle-

neck features ( W
16 , H

16 ) were enhanced using an atrous spatial pyramid pooling module
(ASPP) [119], to increase the ERF of the model, similarly to [117].

The bias of the last convolution layers before each output heatmap is initialized with
the method proposed by [120]. This decreases the probability of keypoint detection
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Chapter 4 Estimating human pose from RGB-D images acquired via a smart walker

in each pixel, reducing early training instability due to the inherent class imbalance
associated with the sparse heatmap values.

A shallow refining module is used to improve the keypoint heatmaps, by aggregat-
ing information from both heatmap branches. The computation is performed in half
resolution size to decrease the computational cost, and the output heatmaps are up-
sampled to the input frame size through bilinear interpolation, following [110, 117].

Finally, each keypoint location in the input frames is extracted from the refined key-
point heatmaps using the soft-argmax operator [116], along with the detection confi-
dence.

4.2.4.2 3D-stage

The 3D-stage deals with the residual linear model proposed by [113], lifting the 2D
keypoint locations from the previous stage to 3D. The 2D keypoint locations are pre-
viously normalized, projecting them from pixel locations to normalized pixel space,
while maintaining the aspect ratio. This increases training stability and generability to
different input frame resolutions. Additionally, depth information at each pixel loca-
tion was given to help resolve pose ambiguities and ease the learned problem of point
projection.

A total of 256 neurons per hidden layer were used, instead of the original 1024
neurons [113]. In a preliminary analysis, this was found to reduce overfitting while
making the model faster to train. This may be explained given the smaller number
of parameters (roughly 0.29 M for 256 neurons compared to 4 M for 1024 neurons
compared to 0.29 M for 256 neurons).

4.2.4.3 Losses

The 2D-stage of the model was trained using the integral loss proposed by [116],
where the mean absolute error (MAE) between the predicted 2D keypoint positions
and the corresponding ground truth is minimized. This is combined with a heatmap
MSE regularization term applied to all heatmaps.

As in [121], the 3D-stage was trained with a Log-Cosh loss between 3D keypoint
positions and corresponding ground truth. This loss combines the outlier robustness
of the MAE with the diminished update size for smaller error of the MSE loss.

4.2.5 Deployment

After offline training, the model was exported to .onnx. This removes most depen-
dencies while offering optimization tools to improve runtime latency. The model was
loaded to the walker existing C++ ROS 1 (Melodic Morenia) 2 environment using the
.onnx accelerator library built with the default CPU provider.

2http://wiki.ros.org/melodic
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4.3 Experimental protocol

4.3.1 Dataset details

Trial conditions followed standard gait rehabilitation procedures with the walker, and
were defined in collaboration with clinicians. Each subject was instructed to perform
27 trials composed of: 3 sequences (walking forward, cornering left, cornering right);
at 3 different speeds (0.3, 0.5, 0.7 m/s) [122]; each repeated 3 times (with the same
course) in different corridors (to maximize environment variability. The final dataset
contains a total of 378 trials, from 14 healthy subjects.

This amounts to 166k frames of synchronized data sampled at 30 Hz (92 minutes
of total recording time). Data from each subject were divided into train (9 subjects),
validation (2 subjects), and test (3 subjects) splits, resulting in ∼110 k, ∼19 k, ∼36 k
samples for each split, respectively. A sample can be seen in Figure 4.3.

4.3.2 Implementation Details

The image and depth input frames were resized from a resolution of 640x960 pixels3

to 128x224, decreasing computation and memory requirements and thus inference
time.

Models were trained in two steps. First, only the 2D-stage was trained, using the
image and depth frames as inputs to produce the intermediate 2D features: keypoint
locations and the keypoint and connection confidence heatmaps. The 3D-stage of the
model was then trained by using as input the 2D features, with that stage weights
frozen (to prevent destroying previously learned features), and outputting the 3D key-
point positions. End-to-end learning of the complete model was tried in early exper-
iments, however, it led to worse 2D heatmaps and was thus dropped, also decreasing
training complexity.

Reasonable hyper-parameters for training were found empirically and kept constant
for all models tried. The Adam optimizer was selected with an initial learning rate of
0.002 which decayed to 0.00001 over 30 epochs using a cosine-annealing schedule.
A batch size of 16 and 32 was, respectively, used to train the 2D and 3D-stages of the
model. Gradient clipping with a range of [-0.2, 0.2] was applied during training for
all models to prevent high gradient updates, especially on the first batches of training
which could destroy some of the pre-trained weights. All convolutional and fully
connected layers, except for the outputs, were followed by batch normalization and a
ReLU to activate.

Random train-time data augmentation [123] was used to increase visual variability
of the training set, decreasing over-fitting to the limited number of train samples. How-
ever, the depth frames could not be augmented with common operations (as it would
produce incorrect depth information), so only pixel dropout was applied. Occlusion

3Concatenated frames have a height of 2×480 = 960 pixels.
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Figure 4.6: Chosen percentage of correct keypoints (PCK) threshold radius of 6 pix-
els. Detection values inside the circles, for each keypoint, are considered
correctly detected.

specific augmentation was also applied following the method by [124] of adding ran-
dom occlusion objects to the image frames, with dropped depth pixels. Addition-
ally, when training only the 2D-stage, affine transformations were applied to decrease
over-fitting to frequent keypoint locations on the walker dataset. This produced slight
incoherence in the depth information, but led to better overall results.

Additional train-time regularization was applied to most layers of the model in the
form of dropout, with a percentage of 50% for all the linear layers and spatial-dropout
with a probability of 20% for the convolutional layers. A L2 weight decay parameter
with a value of 0.00001 was also added.

4.3.3 Performance metrics

The following metrics were used to assess the models performance:

• Mean per-joint position error (MPJPE): average Euclidean distance between
a ground truth position and a predicted position for each of the keypoints is
calculated after performing root joint alignment (in this case the pelvis). It
will be the most focused in this work, since most downstream patient analysis
applications use root-relative joint positions.

• Procrustes-aligned MPJPE (PA MPJPE): it was first permed a Procrustes anal-
ysis ignoring affine errors then MPJPE is computed.

• Absolute MPJPE (A MPJPE): similar to MPJPE but uses absolute positional
values relative to the camera.

• Percentage of correct keypoints (PCK): percentage of predicted keypoints with
an error below a certain threshold. As in [100] 75mm was selected for all 3D
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tests. This metric was also evaluated in 2D where a threshold of 6 pixels was
selected and can be seen in Figure 4.6.

• Inference time (latency): it was evaluated on a Nvidia Tesla T4 GPU and on
an Intel i7 - 4720HQ CPU. This is critical given the real-time nature of the
application, and refers to the time necessary to load the inputs into the device
and do a forward pass for a single sample. The results were obtained by running
inference on all samples in the test split.

4.3.4 Model variants

Alternative versions of the 3D-stage were also considered, based on ideas presented
in the literature, and in a search for the best possible configuration.

4.3.4.1 Baseline

This variant implements the original model proposed by [113]. It is similar to the de-
fault 3D-stage method but without including the depth information as input to perform
the lifting and considering the original 1024 channels per layer.

4.3.4.2 Semantic graph convolutions

Semantic Graph Convolutions network (SemGCN) [125] was tested, with the addition
of depth information for each keypoint as input. This module exploits the hierarchical
structure of the skeleton by using state-of-the-art graph convolutions that aggregate in-
formation along connected joints. The non-local layers used in the original work were
not used here as they doubled the inference time without noticeable improvements.

4.3.4.3 Projection residual

This method follows the approach by [121], extending it to a non-overlapping multi-
camera setup. Instead of learning to project the data from 2D space to 3D similarly to
the lifting methods, an explicit projection is computed and then refined, as follows.

The detected 2D keypoints in each of the camera frames are first projected to 3D
space relative to the posture camera referential, using the depth information and the
intrinsic parameters for each of the cameras, based on a Pinhole camera model. Then
it is applied an extrinsic transformation to the projected gait camera data, so it is in
the posture camera referential, this produces a rough estimate of the detected key-
point positions, but affected by fundamental flaws: (i) homogeneous pixels intensity
levels which occurs quite frequently, and make it impossible to project the affected
keypoints to 3D space; (ii) the person’s body thickness, which will produce a varying
offset for each keypoint and will be highly dependent on the subject using the equip-
ment; (iii) projection of incorrect pixels due to bad detections in 2D space, which can
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lead to unreasonable keypoint locations, especially when this occurs for points in the
background; (iv) cannot deal with keypoint occlusions, since these would be projected
incorrectly to 3D space; (v) small random error dependent on the depth sensor noise,
which reduces temporal coherence.

The 3D flawed transformation can be improved by applying a series of residual fully
connected layers to produce a globally coherent result by using spatial information
from the other keypoints.

This method provides a more principled way to fuse the depth information from
both cameras. An explicit transformation (which can be obtained through extrinsic
calibration with low error) is used instead of relying on a learned internal representa-
tion that would need retraining for different camera spatial arrangements.

4.3.4.4 Spatio-temporal feature analysis

A sequential frame approach was also tried. It aggregates temporal information from
multiple frames, as the one proposed in Sec. 2.3 and is achieved by stacking successive
frames (Wd= 4 frames) which are processed using temporal convolution blocks. These
not only aggregate local spatial information, but also temporal information.

All received frames are processed simultaneously, yielding corresponding predic-
tions for each one. In the case of the 2D-stage, the 2D convolutions are replaced with
3D convolutions, while in the case of the 3D-stage, the fully connected layers are
replaced with 1D convolutions, where the extra dimension represents time.

The 2D-stage backbone was also replaced with a similar temporal MobilenetV2 [126]
architecture (since no pre-trained temporal EfficientNet version was found). The low-
level layers also have temporal pooling operations removed (spatial pooling is still
performed), as temporal invariance is not desirable since a sequential prediction for
all 4 frames is necessary.

4.4 Results

4.4.1 2D-stage

The 2D-stage (Section 4.2.4.1) was evaluated in the following section. Examples of
features obtained for a frame of one of the test subjects can be seen in Figure 4.7.
The model not only produces the 2D keypoint locations, but also the refined key-
point heatmaps used to obtain them, and the connection heatmaps, these are compared
against the ground truth skeleton from the Xsens.

The detection error for each keypoint was further analysed through a boxplot graph
depicted in Figure 4.8. All keypoints display a relatively similar detection error, with
a mean of 3.76 pixels, corresponding to 85.27% of detections being below the chosen
detection threshold of 6 pixels, with an inference time of 11.97 ms and 37.56 ms in
the GPU and CPU respectively.
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(a) (b) (c) (d)

Figure 4.7: (a) Keypoint heatmaps, (b) Connection heatmaps and (c) 2D keypoints and
connections predicted by the 2D-stage of the model. (d) Corresponding
2D keypoint ground-truth labels. All data are overlaid on top of the input
image frame.

Figure 4.8: Boxplot per-joint error (MPJPE) for the 2D detection, across all test
frames obtained from the 2D-stage (extreme outliers were removed for
better visibility). The dashed line marks the 6 pixel threshold defined.
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Figure 4.9: Boxplot per-joint error results for the 3D detection, across all test frames,
with absolute values relative to the posture camera referential, obtained
with the complete model (extreme outliers were removed for better visi-
bility).

Table 4.1: Results summary of the 3D-stage and comparisons against the different
variants for regression from the 2D-stage keypoints. The best results are
highlighted in bold.

Method MPJPE[mm] PA MPJPE[mm] PCK@75[%] GPU latency[ms] CPU latency[ms] Parameters
2D-stage

+ Default 3D-stage 44.05 ± 0.39 33.35 ± 0.29 83.03 ± 0.48 13.43 ± 0.03 38.93 ± 0.13 1.34 M
+ Baseline 45.80 ± 0.40 34.78 ± 0.31 81.31 ± 0.5 14.68 ± 0.04 41.28 ± 0.10 5.34 M
+ SemGCN 45.85 ± 0.42 34.80 ± 0.31 81.45 ± 0.51 19.21 ± 0.03 43.86 ± 0.15 1.31 M
+ Projection Residual 48.35 ± 0.44 36.76 ± 0.39 79.88 ± 0.49 14.50 ± 0.02 39.18 ± 0.12 1.34 M

4.4.2 Complete model

Figure 4.9 depicts the 3D error for each keypoint for the complete model (Section
4.2.4) relative to the camera. An average absolute error of 59.5 mm relative to the
posture camera was obtained. A root-relative error of 44.1 mm was obtained, with
a PCK of 83.0%. The feet keypoints displayed the largest mean errors, closer to the
imposed detection threshold. After applying a Procrustes transformation, the error
is around 33.3 mm, signaling the presence of affine errors, in the form of positional
offset, rotation or scale, which when removed yield a PCK of 96.3%.

The default model was further compared with other 3D-stage alternatives explored
in Sec. 4.3.4 from the predictions of the default 2D-stage. The results are summarized
in Table 4.1. A similar performance was encountered for all models with a MPJPE ∼
46.0mm and PCK of ∼ 81.4 mm.
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(a) (b)

Figure 4.10: Predictions obtained from the model running on the smart walker, in 2D
(a) and 3D (b) spaces. Connections between the hips and legs are not
rendered in 2D due to the discontinuity between camera frames. The 3D
visualization used the RViz package from the ROS environment to render
the 3D keypoint locations relative to the walker. The posture camera
frame of reference is also displayed.

4.4.3 Deployment

The .onnx Runtime optimizations decreased the runtime latency of the model from the
original 38.9 ms to 23.1 ms, with an additional 3.5 ms to pre-process the input frames
(Section 4.2.3.1), while keeping a similar detection error.

During a normal rehabilitation session, due to other concurrent systems running, the
latency of the human pose estimation framework integrated on the ROS environment
was higher, with also higher variability, ranging from 25 ms to 70 ms (averaging 40
ms), with a mean of 40 ms. Moreover, results are published with some response delay
(around 0.3 s) given the asynchronous nature of the underlying ROS system in the
equipment.

During normal walking the model performs well, being capable of detecting the
2D and 3D keypoint locations (Figure 4.10) as expected. However, it performs sub-
optimally when confronted with body configurations that lie outside the normal train-
ing distribution (e.g., when walking on the sides of the walker, bringing the feet high
above the ground, complete feet occlusion).

4.4.4 Benchmark and ablation studies

Multiple ablation studies were conducted by removing certain components of the com-
plete pipeline, to identify the contribution of each to the overall results. The findings
are described in the next section, along with a comparison to alternative model variants
(Sec. 4.3.4).
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Figure 4.11: Results obtained when removing information from image (upper images)
and depth (lower images) inputs. The image+depth inputs for each ex-
periments are grouped in the left side, while the corresponding model
predictions (keypoint heatmaps, connection heatmaps, 2D keypoints, 3D
keypoints) are grouped in the right. 2D outputs were overlaid on the
image input. 3D ground truth keypoints are shown overlaid with higher
transparency.

4.4.4.1 Input modalities

The proposed model is not too dependent on any of the two input modalities (image,
depth). It is robust to corruption of one of the input frames, giving reasonable pre-
dictions by focusing on information from the other, even though not being explicitly
trained to do so. Examples of this can be seen in Fig. 4.11.

The model appears to be more affected by corruption of the depth input, giving low
confidence detections on the heatmaps with also higher degree of keypoint error in
the 2D space. Nevertheless, even without the depth information, it is still capable of
regressing the positions of the 3D keypoints.

On the other hand, it seems to be less affected by corruption in the input image, as
the heatmap predictions still display a well-defined shape, with high detection confi-
dence.

4.4.4.2 Backbone

The chosen EfficientNet 2D backbone performance was benchmarked against com-
monly used ResNet architecture in Table 4.2. All models achieved a similar detec-
tion error around 3.75 pixels, with slightly better results for the ResNet50 backbone
(MPJPE 2D= 3.66). However, it displayed a significantly larger latency (238.9 ms),
being 6.36 time slower when processing in CPU compared to the default EfficientNet-
lite0 option (37.56 ms), which displayed the best computation time in the CPU, being
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Table 4.2: The default EfficientNet-lite0 backbone 2D-stage performance in compari-
son with the common ResNet models. OpenPose is also compared in terms
of latency for reference (values were taken from the paper), as it is a com-
mon baseline on real-time huma pose estimation. The best results in each
metric are highlighted in bold.

Architecture MPJPE 2D [pixels] PCK 2D@6[%] GPU latency[ms] CPU latency[ms] Parameters
Default 3.73 ± 0.04 85.27 ± 0.59 11.97 ± 0.03 37.56 ± 0.13 1.05 M
ResNet50 3.66 ± 0.04 86.93 ± 0.56 15.27 ± 0.04 238.89 ± 0.66 26.8 M
ResNet18 3.88 ± 0.05 84.65 ± 0.61 11.88 ± 0.03 94.70 ± 0.35 12.1 M
OpenPose[108] - - ∼36.00 ∼10396.00 -

Table 4.3: Importance of the refine module on the 2D-stage accuracy and latency. Its
effect is investigated by removing the refine module and obtaining the 2D
keypoint locations from the keypoint heatmaps branch, and by further re-
moving the parallel connection heatmap branch. The best results in each
metric are highlighted in bold.

Architecture MPJPE 2D[pixels] PCK 2D@6[%] GPU latency[ms] CPU latency[ms] Parameters
Default 2D-stage 3.73 ± 0.04 85.27 ± 0.59 11.97 ± 0.03 37.56 ± 0.13 1.05 M

- Refine Module 4.37 ± 0.10 81.92 ± 0.71 11.02 ± 0.02 31.90 ± 0.10 1.0 1 M
- Connections Branch 4.37 ± 0.10 81.92 ± 0.71 9.07 ± 0.04 25.89 ± 0.07 0.9 3 M

faster than the light ResNet18 (94.7 ms) by 2.5 times while slightly more accurate.
The commonly used OpenPose [108], was also considered for the 2D-stage, as it

boasts good performance with real-time inference. However, this option was quickly
dropped after checking the latency on the CPU, where the authors point to a latency
around 10 s for a single frame, making it unacceptable for real-time human pose esti-
mation on the walker hardware.

4.4.4.3 Refine module

Only the keypoint heatmaps are necessary to extract the keypoint locations, which can
be extracted directly from the heatmap branch in the case where the refine module is
not used. Thus, it is possible to completely ignore the computation of the connection
heatmaps branch to increase run-time performance. Table 4.3 compares the detection
results of the keypoint 2D locations with and without using the refine module with
the default 2D-stage. Additionally, are also presented the results after removing the
parallel connection heatmaps branch entirely.

Removing the refine module yields a 17% increase in the MPJPE error which is
traded for an also 17% decrease in latency, which is improved further by 45% after
removing the connection branch altogether.

4.4.4.4 Projection residual

Figure 4.12 shows the results obtained from directly projecting the 2D keypoint lo-
cations with depth information to 3D space using the camera Pinhole model and sub-
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(a) (b)

Figure 4.12: (a) 3D skeleton obtained through keypoint depth projection using the
camera Pinhole model (the leg/feet keypoints were transformed to the
posture camera referential using the known extrinsic transformation). (b)
The skeleton obtained after the residual correction step of the Projec-
tion Residual method.

Table 4.4: Default 3D-stage lifting approach comparison with the 2D keypoint loca-
tions projection using the pixel depth and the camera Pinhole model (Pro-
jection Raw), and by further processing using the residual correction neural
network in the Projection Residual method. The ground truth 2D keypoint
locations were used as input to the regression in all methods. The best
results in each metric are highlighted in bold.

Architecture MPJPE[mm] PA MPJPE[mm] PCK@75[%] CPU latency[ms] Parameters
Default 3D-stage 36.65 ± 0.28 28.11 ± 0.24 90.64 ± 0.34 1.03 ± 0.0 0.29 M
Projection Raw 226.0 ± 4.82 179.97 ± 3.11 21.84 ± 0.33 1.13 ± 0.0 0
Projection Residual 43.42 ± 0.41 33.56 ± 0.37 84.72 ± 0.45 2.27 ± 0.0 0.29 M

sequently applying the residual correction. Table 4.4 compares these results against
those obtained with the default 3D-stage. The ground truth 2D locations were used to
decrease the noise in the results from the 2D-stage error.

The raw projection method displays a larger error, above 200 mm, with only 21.8%
of predictions having an error below the desired threshold of 75 mm. The residual
correction is capable of improving the detection substantially, to an error around 43.4
mm with 84.7% of keypoints within the detection threshold, although still higher than
the lifting approaches.

4.4.4.5 Only 3D-stage

The results from the 3D-stage were evaluated independently from the errors of the
2D-stage, by using the ground truth 2D keypoint locations as input for the regression.
These results provide the maximum performance achievable given an ideal 2D-stage
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Table 4.5: Result summary of the default 3D-stage and lifting variants when receiving
as input the ground truth 2D keypoint locations. The default 3D-stage error
when regressing from the 2D-stage predictions is shown as reference. The
best results in each metric are highlighted in bold.

Architecture MPJPE[mm] PA MPJPE[mm] PCK@75[%] CPU latency[ms] Parameters
2D-stage

+ Default 3D-stage 44.05 ± 0.39 33.35 ± 0.29 83.03 ± 0.48 38.93 ± 0.13 1.34 M
2D-ground truth

+ Default 3D-stage 36.65 ± 0.28 28.11 ± 0.24 90.64 ± 0.34 1.03 ± 0.0 0.29 M
+ Baseline 36.66 ± 0.28 26.91 ± 0.23 90.75 ± 0.34 3.98 ± 0.0 4.29 M
+ SemGCN 35.22 ± 0.28 26.25 ± 0.25 92.59 ± 0.34 4.38 ± 0.0 0.27M
+ Projection Residual 43.42 ± 0.41 33.56 ± 0.37 84.72 ± 0.45 2.27 ± 0.0 0.29 M

Table 4.6: 2D-stage results obtained using the temporal model with 4 sequential
frames, compared to the default single-frame version.

Architecture MPJPE 2D[pixels] PCK 2D@6[%] GPU latency[ms] CPU latency[ms] Parameters
Single(1 frame) 3.73± 0.04 85.27 ± 0.59 11.97 ± 0.03 37.56 ± 0.13 1.05M
Sequential(4 frames) 4.13 ± 0.06 83.41 ± 0.63 51.13 ± 0.05 554.08 ± 2.07 1.40M

and allow a less noisy comparison. Table 4.5 depicts the results and the comparison
to the complete model.

In general, all lifting methods displayed a similar level of performance (around 36
mm MPJPE) with a low latency time (<4.38 ms). The SemGCN variant obtained
overall the best results, while the projection residual approach obtained once again the
largest error.

An almost 8mm higher MPJPE (36.65 mm) was obtained when lifting from the
2D-stage keypoints with the default model, compared to using the 2D ground truth
keypoints (44.05 mm).

4.4.4.6 Temporal Model

The results obtained using the spatio-temporal stages (Section 4.3.4.4) were compared
next, starting with the 2D-stage in Table 4.6 and the 3D-stage (from 2D keypoint
predictions and ground truth in Table 4.7.

The 2D spatio-temporal model obtained slightly worse detection results, with a 2D
MPJPE of 4.13 pixels, while being noticeably slower to compute, especially on the
CPU, taking 554 ms to process 4 frames, compared to the single-frame counterpart.

The 3D-stage yielded similar performance to the default single-frame version, being
marginally worse when using the predictions from the 2D-stage, given the slightly
worse results obtained by the sequential 2D-stage. The latency of the temporal 3D-
stage is slightly higher than the single-frame model but it is overall faster since 4
frames are processed simultaneously.
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Table 4.7: 3D results obtained using the temporal model with 4 sequential frames,
compared to the proposed single-frame version, from the 2D keypoint loca-
tion predictions of the 2D-stage and ground truth. The best results in each
metric are highlighted in bold.

Architecture MPJPE[mm] PA MPJPE[mm] PCK@75[%] GPU latency[ms] CPU latency[ms] Parameters
2D-stage

+ Single(1 frame) 44.05 ± 0.39 33.35 ± 0.29 83.03 ± 0.48 13.43 ± 0.03 38.93 ± 0.13 1.34M
+ Sequential(4 frames) 46.72 ± 0.56 34.93 ± 0.41 82.61 ± 0.51 52.50 ± 0.06 554.86 ± 2.45 1.98M

2D-ground truth
+ Single(1 frame) 36.65 ± 0.28 28.11 ± 0.24 90.64 ± 0.34 1.31 ± 0.00 1.03 ± 0.0 0.29M
+ Sequential(4 frames) 36.49 ± 0.29 28.79 ± 0.23 91.01 ± 0.36 1.77 ± 0.00 1.60 ± 0.0 0.58M

4.5 Discussion

This research proposes a real-time full-body pose estimation solution for the ASBGo
smart, able to extract a compact body configuration representation, from the RGB-
D cameras stream, which can be used as prior for extracting multiple gait. Multiple
benchmarks and ablations studies were performed to evaluate and better understand
the model performance, as well as exploring competing approaches.

The ground-truth labels obtained through the acquisition method are not perfect
since the Xsens data contain no visual correlation with the camera streams during ac-
quisition, resulting in positional offsets, which is worsened by compounding errors
when relating both the referentials (Xsens calibration errors, extrinsic camera calibra-
tion, users wrist position on the handles). These errors can result in bad samples which
do not align visually with the limbs on some frames.

Depth data could be used to pre-process the frames to segment the user by applying
geometric and threshold operations, before feeding them to the models as in [102].
However, this approach was not followed since the neural networks are capable of
parsing this information from the raw frames, the additional processing overhead, and
the introduction of failure cases which would decrease the models’ robustness.

The location objective is rather ambiguous below a certain threshold, since many lo-
cations in the neighborhood could be considered correct for each keypoint. Moreover,
due to the presence of some noise in the ground truth labels, it would be impossible
to obtain no error. The wrist keypoints displayed the lowest errors, given the low
variability as the subjects are required to be grabbing the walker handles at all times,
while, the feet keypoints displayed the largest errors and presence of outliers, given
the amount of movement and possibility of occlusions.

The overall results indicate a similar performance across model variants both for
the 2D and 3D-Stages (∼ 3.73 pixels and 44.0 mm). This might indicate performance
saturation for the task, given the amount of data and the noise present in the dataset.

The model is quite robust to corruption in either the inputs (Figure 4.11), being
able to work with no depth or no image information, having to rely entirely on the
remaining input feature. In these cases, the prediction confidence is lower, with also
lower temporal consistency across frames. Although an improbable situation during
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rehabilitation settings, it shows some of the potentials of using learning-based methods
from a robustness standpoint.

Both 2D keypoint and connection heatmaps features, obtained from the intermedi-
ate objective, displayed the expected and interpretable Gaussian shape (Figure 4.7).
This suggests that the model has correctly learned the features from the secondary
regularization loss, since these are complementary to the keypoint detection objective.

The EfficientNet-lite0 feature extraction backbone displayed by far the lowest com-
putation time in the CPU (Table 4.2), being faster than the ResNet18 baseline by 2.5
times and the ResNet50 by 6.4 times. Interestingly, the ResNet backbones offer much
closer run-time performance when tested on the GPU. This might be explained by the
fact that bigger, but simpler convolution operations are used, optimized to run on the
GPU which processes large operations simultaneously. On the other hand, the Effi-
cientNet backbone separates each convolution block into multiple small steps which
are run sequentially introducing some overhead. When it comes to inference on the
CPU, the great reduction in operations in the EfficientNet modules is greater than the
overhead for the multiple sequential calls, yielding noticeably faster run-times, mak-
ing it more adequate for the walker hardware. For applications targeting the GPU, the
ResNet or its variants could be a better option.

The shallow refine module is capable of aggregating information to produce bet-
ter results overall (Table 4.3), by also using connection cues from the connection
heatmaps branch. These performance improvements come nonetheless at the cost
of an increase around 45% in latency, which was considered acceptable since it was
still within the performance requirements imposed.

The baseline lifting approach without depth information achieved similar results
as the one with depth, both in relative and absolute spaces (Table 4.1). This means
that depth is not required in this task, possibly since the poses have low variance,
ambiguous poses are uncommon and the wrist positions are almost constant, while
the depth information might not be too reliable since only a single noisy point is
considered for each keypoint. This indicates that future pipelines based solely on
RGB camera data would be possible, further decreasing the cost of hardware.

The 3D keypoints predicted by the model, despite showing similar trajectories to
those generated by the Xsens ground truth, still displayed some constant positional
offset and failure to capture the full range of motion on others. It might also predict
incorrect limb lengths, that do not correspond to the subject’s anthropometric data.

Although the leg and feet keypoints are detected on a different image reference
frame from the torso, the lifting models are capable of internally finding a way to relate
the information without the need of explicitly providing the extrinsic transformation
between camera frames.

Furthermore, it was shown (Table 4.4) the lifting approach yields better results than
the explicit projection method with residual correction. This could be explained by
the fact that the lifting method always considers the 2D location information along
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with the noisy depth values to produce the transformation. On the other hand, the pro-
jection method, although having a simplified task since the referential transformations
are computed externally, in practice, is faced with frequent cases where one or more
keypoints contain incorrect or no information due to bad projection (e.g., dead pixels,
background pixel selection, different body thickness across subjects and body parts).

Unexpectedly, the complete temporal model performed worse when benchmarked
against the single-frame counterparts (Table 4.7). Multiple reasons might have con-
tributed to this. Namely, the use of a backbone pre-trained with longer temporal se-
quences, the harder optimization process given the more complex task of also relating
temporal information, the use of a model with higher capacity given the same amount
of data which might have resulted in some over-fitting. Nevertheless, these create tem-
porally coherent results, without the need for any post-processing, preferable when
dealing with sequential data. Unfortunately, the 3D convolutions added a significant
amount of latency (> 500 ms) especially in the CPU, making them impractical for the
walker.

The model worked as expected on the smart walker (Figure 4.10b), running in real-
time while displaying similar detection performance (qualitatively speaking) to the
dataset test samples, when dealing with common walking situations used for training
and complying with the hardware requirements. However, the performance degraded
when presented with situations outside the training distribution, implying that more
diverse data is needed to train a model capable of fully performing in real-world sit-
uations. Moreover, increased latency and response delay were reported, due to the
asynchronous nature of the underlying ROS system in the equipment.

Some model ideas had to be changed or dropped entirely, as these were not correctly
supported by the .onnx framework (and also most alternatives available), and thus not
fit for the deployment scheme used. This included the use of: (i) SE attention blocks
proposed by [127] for the 2D-Stage, tried initially with promising results in terms
of performance with minimal effect on latency; (ii) EfficientNet (non-lite) versions,
which also used the SE modules; (iii) SemGCN [125] modules for the 2D to 3D
lifting.

4.6 Conclusion and future perspectives

This research presents a novel DL-based full-body pose estimation solution for the
ASBGo smart walker. It is able to extract a compact body representation from two
camera streams, which can be used for downstream tasks in patient monitoring and
enable human-in-the-loop control strategies.

The proposed DL framework allows extracting a compact representation of the full
human body, directly from inexpensive cameras and adaptable (given some training
data) to multiple setup configurations. This is in opposition to competing smart walker
solutions that rely on custom dedicated hardware, must be carefully tuned and are only
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capable of monitoring a small set of metrics (e.g., gait analysis).

Limitations in the proposed research deal with the fact that the models are trained to
produce confident predictions for data that fall inside the distribution used for training
and will produce unreasonable predictions for data that falls outside. This is still an
open issue in the DL field and thus, the need to fully benchmark deployed solutions
prior to real-world usage is highly emphasized.

Moreover extensive hyper-parameter optimization was not performed, and better
results could have been obtained with hyper-parameter search. However, given the
computational resources and the absence of specific literature in the area, this research
considered more appropriate to fairly compare different approaches, using reasonable
configurations based on values commonly found in the DL literature.

The dataset also contains relatively low variability in terms of poses and their loca-
tions on the image frames, limiting its application to general human pose estimation
problems. Data augmentation techniques were applied to the 2D-Stage to decrease
visually and positional overfitting to the common keypoint locations on the image
frames, while also collecting additional 13 k frames with irregular walking data which
brought some improvements. Nevertheless, these were not sufficient to combat model
overfitting to the overwhelming amount of common keypoint locations during walk-
ing. This made it unreasonable to explore more complex models, and fully train the
2D-Stage, as it would easily overfit. A possible solution to mitigate this problem
would involve pretraining each stage or the full model on a general human pose es-
timation dataset [128] with similar data modalities (image, depth) and then fine-tune
the last few layers on this dataset.

The use of solid models in the literature (e.g., OpenPose) for pose estimation could
be a possibility to be extensively evaluated in future but always taking into account
the computing power available. While the limited computing power may be perceived
as a limitation, on the other hand, as highlighted in Sec. 2.5, it enables to distribute
such advanced monitoring systems, without barriers due to the scarcity of economic
resources and, therefore, the impossibility of acquiring more powerful hardware.

This research lays the groundwork for building an integrative framework for evalu-
ating patients undergoing rehabilitation. The benefits of such applications are multi-
ple: (i) they allow the clinician to build personalized rehabilitation protocols, (ii) they
allow to adjust the rehabilitation program in real-time, (iii) they guarantee quantita-
tive measures without the need of using intrusive sensors. Surely further work should
be carried out to validate the proposed framework, however, promising results were
obtained on healthy participants. Future improvements will deal with: the collection
of more and variable data also from subjects with gait impairments. An extension to
the dataset is thus planned, using the same acquisition setup, during real rehabilitation
sessions. It will be used to further training the models and allow validation in clini-
cal scenarios. Moreover prior knowledge on patients’ kinematics may be provided to
neural network as to have more coherent outcomes. While, from an implementation
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point of view the combination of a single-frame 2D-Stage with a temporal 3D-Stage
was considered as to allow temporally consistent 3D outputs with low computational
time and no-response delay.
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Chapter 5

End-to-end facial landmark
detection to assess dysarthria
evolution

Always quoting the contribution of Silvio Garattini: “There is little attention paid to
the approximately 7000 rare diseases that span all specialties. These are only a few
patients per disease who nevertheless have the same right to health as those with more
common diseases”. This last research is the most recent among those presented in this
thesis and is part of the wider project “Homely Care” aimed at innovating follow-up
strategies for patients suffering from neurodegenerative disorders (e.g., ALS, spinal
muscolar atrophy, stroke...). Similarly to all the previous works, this research was
born and developed via a dialogue between a multidisciplinary team of clinicians and
engineers who work in synergy to propose a system for monitoring the evolution of
such complicated, disabling and unforgiving diseases.

The system is aimed at mapping neurodegenerative diseases progress via the mon-
itoring of dysarthria evolution which is the set of speech disorder mainly induced by
these rare diseases. “Homely Care” consists in a remotely-usable web application that
patients download on their devices. The application allows them to take video-selfies
while performing assessment tasks agreed with clinicians. The video selfies are sent
to the cloud platform to be processed by DL algorithms, which return progression
indices to the clinician viewable on a dedicated interface.

Currently, the assessment of neurodegenerative disease is carried out through di-
rect observation of the patient by neurologists and speech therapists coupled with
paper-and-pencil rating scales. Especially when dealing with such rare diseases, these
qualitative, non-homogeneous and mostly paper-based evaluations suffer from a se-
rious drawbacks: they do not allow rapid consultation and sharing of data and there-
fore undermine the possibilities of research in this field. In Homely Care, integrated
smartphone cameras and microphones become new sensors that allow the clinician to
be constantly informed about the patient’s health condition.
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5.1 Background and motivation

Dysarthria is a neurological disorder caused by the generalized weakness and spastic-
ity of the anatomical structures responsible for words and sounds production. Neu-
rodegenerative diseases (e.g., ALS), inflammatory conditions (e.g., multiple sclerosis)
and vascular pathologies (e.g., stroke) are the leading causes for dysarthria onset [25].
This disorder has different symptoms depending on the onset causes and the involved
nervous-system structures. Dysarthric patients may suffer from: (i) changes in the
strength, speed, amplitude, stability and tone of the voice, and (ii) impaired coordina-
tion of breathing, phonatory, resonatory and articulatory movements, with a pervasive
and unrelenting impact on intelligibility, prosody and speech quality [129].

The ability to communicate as to keep and extend social contacts has a strong influ-
ence on the psychic balance of these patients and on their overall well-being. The func-
tional evaluation of the evolution of dysarthria is relevant to readily identify the instant
for prescribing compensation strategies to communicative disabilities and to monitor
the evolution of the diseases for drawing up patient-specific care plans [130, 131].
With such a view, the assessment of oro-facial muscles impairments may significantly
support clinicians to early identify functional changes in patient performance and ac-
celerate the implementation of corrective and compensatory strategies [131].

Although its relevance is recognised in literature, the monitoring of oro-facial mus-
cles mainly relies upon visual inspection by clinicians. This procedure, sometimes
combined with the drafting of paper-and-pencil rating scales (e.g., Robertson Profile
for Dysarthria) [132, 133], has the drawbacks of being qualitative, non-reproducible
and highly influenced by the patients’ emotional status at the time of examination. A
possible solution to attenuate the issue of perspective evaluations has been proposed in
[134]. The authors employ electromyographic sensors placed over the facial surface
and inside the oral cavity. However, the use of such intrusive sensors makes the assess-
ment unpleasant for patients and, additionally, the complex nature of the acquisition
set-up mines its usage in the actual clinical practice.

To objectively and non-intrusively evaluate the status of patients with oro-facial im-
pairments, the work in [135] proposes a DL methodology for assessing facial align-
ment from RGB videos of patients with ALS and stroke. For stimulating the research
in the field, the authors in [135] further release their dataset, i.e., the Toronto Neuro-
Face dataset, which is the first annotated dataset in the field.

Inspired by the work in [135] and by applications of video-based facial-landmark
detection in closer fields (e.g., for evaluating depression symptoms and assessing the
presence of cerebral palsy [136]) this research present an end-to-end CNN pipeline
for facial-landmark detection in patients with ALS and stroke using the Toronto Neu-
roFace dataset.
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5.2 Methods

5.2.1 The Toronto NeuroFace dataset

Figure 5.1: Sample image with the 68-facial landmarks (green dots) and the bounding
box face annotation (black square).

The Toronto NeuroFace dataset in [135] contains RGB video recordings from 11
ALS patients (4 males, 7 females), 14 stroke patients (10 males, 4 females) and 11
healthy subjects (7 males, 4 females) that perform motor tasks (e.g., maximal mouth-
opening, lips-stretching, lip-protrusion etc.). The manual annotation of 68-facial land-
marks and face bounding box (Fig. 5.1) is performed for 3306 frames of which: 1015
frames healthy subjects, 920 frames for ALS patients and 1371 for stroke patients.

For the purpose of this work, the Toronto NeuroFace dataset was split in training,
testing and validation set keeping frames from 32 subjects to train and validate the
CNN and frames from 4 subjects (of which 2 with ALS and 2 with stroke) to test it.

5.2.2 Mask-RCNN for facial landmark detection

The pipeline for facial-landmark detection in people with ALS and stroke is shown in
Fig. 5.2 and relies on Mask-RCNN [137], which was originally designed to predict the
pose of the human body in two-dimensional space. Here, Mask-RCNN was modified
to detect facial-landmarks.

Mask-RCNN has 3 main branches: classification, bounding-box regression and
facial- landmarks position regression. Firstly, the RGB-input image is fed into a
backbone-CNN. The backbone is a ResNet50 (i.e., ResNet with 50 convolutional
layers) which acts as feature-pyramid network extractor (FPN). The FPN allows to
retrieve feature maps which couple low-resolution, semantically strong features with
high-resolution, semantically weak features. These output feature maps are fed into
a two-stage architecture. This first stage consists in a CNN, named Region Proposal
Network (RPN), which generates multiple Region of Interest (RoI). Then, each region
proposal is sent to the RoI Align layer which extracts a small feature map from each
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RoIs. Warped features in output from the RoI Align are then fed into fully connected
layers. These layers output the bounding-box coordinates and the label category (i.e.,
“face”) with the relative prediction-confidence in output from soft-max layer of the
classification branch. It is worth noting that this stage of bounding-box regression is
crucial when deploying the pipeline in scenarios (e.g, hospital wards) where empty
backgrounds may not be guaranteed. In parallel with the bounding box coordinate
regression and class assignment, warped features are also fed into the mask branch
which is a fully convolutional network properly adapted for landmarks detection task.
Particularly this branch was modified for the task of interest by adding two subsequent
strided (s=2)-transposed convolutions (with kernel sizes 3x3 and 4x4, respectively).
The last convolutional layer outputs 68-one-hot binary masks, one for each landmark.
The use of two additional transposed convolution layers allows the resolution of the
output map to be extended, making it easier for the network to locate the 68-face
landmarks.

For training, the fine-tuning technique was adopted. Thus the weights of the net-
work was initialized with the weights resulting from pre-training on the 300 Faces
In-the-Wild Challenge (300-W) dataset [138]1. This is a public available dataset of
faces captured in an outdoor and indoor environment, which shows great variability
in terms of expressions, identities, facial positions and lighting levels. This modified
Mask-RCNN fine-tuned on 300-W dataset was called 300W-N-FLMask.

5.3 Experimental Protocol

5.3.1 Training settings

The 300W-N-FLMask fine tuning was carried out in 28000 iterations. The initial
learning rate was set to 0.001 with a learning rate decay of 0.5 every 15000 and 20000
iterations, respectively. The SGD was used as optimizer. The number of maximum
subject-detection per image was limited to 1. The confidence threshold for the bound-
ing box was set to 0.75. All these training settings come from an extensive grid-search
to find the best combination of loss, optimizer, learning rate scheduling and iterations.

Online data augmentation was used to increase the size of the Toronto NeuroFace
dataset. Random brightness (with brightness factor ranging from 0.8 to 1.2) and flip-
ping (with a probability equal to 0.5) were considered. All the trainings were con-
ducted using the Amazon Web Services cloud computing.

5.3.2 Ablation studies

The performance of 300W-N-FLMask was compared against the performance of its
akin trained from scratch (N-FLMask) and the original N-MaskRCNN (i.e., without

1https://ibug.doc.ic.ac.uk/resources/300-W/
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Table 5.1: Conducted ablation studies for validating the proposed architecture for fa-
cial landmark detection in patients suffering from neurodegenerative dis-
eases.

300W-N-FLMask N-FLMask 300W-FLMask N-Mask
Pretraining 300-W x x x
Training Toronto NeuroFace Toronto NeuroFace 300-W Toronto NeuroFace

Table 5.2: Results in terms of Normalized Mean Error (NME) for each of the 4 tested
convolutional neural network (CNNs).

300W-N-FLMask N-FLMask 300W-FLMask N-Mask
NME68 1.79 2.70 3.88 13.55
NMEchin 2.62 4.81 4.39 15.31
NMEeyebrows 0.02 0.03 0.05 0.12
NMEnose 1.55 2.08 3.60 5.61
NMEeyes 1.03 0.94 3.04 5.23
NMEmouth 1.49 2.19 3.70 21.17

changing the number of convolutional layers in the branch for facial landmarks detec-
tion) trained from scratch. The performance of the proposed modified version of the
Mask-RCNN (i.e., FLMask) was tested when trained on the 300-W dataset only (i.e.,
300W-FLMask). An overview of the ablation studies in shown in Table 5.1. For each
of the ablation studies the training settings are those described in Sec. 5.3.1.

5.3.3 Evaluation metrics

To assess the performance of the tested CNNs, the Normalized Mean Error (NMEk)
was computed as follows:

NMEk =

[︃
1

NL

NL

∑
i=1

√︁
(xi − xpi)2+(yi − ypi)2

Diagbbox

]︃
·100

where k stands for the total number of images in the test set, Diagbbox is the length
of the bounding box diagonal, while NL identifies the number of landmarks, (xi, yi)
are the ground-truth coordinates and (xpi, ypi) are the predicted landmark coordi-
nates. The NMEk for the totality of 68 landmarks (NME68), for the 17 chin landmarks
(NMEchin), for the 10 eyebrow landmarks (NMEeyebrows), for the 9 nose landmarks
(NMEnose), for the 12 eyes landmarks (NMEeyes) and for the 20 mouth landmarks
(NMEmouth), were assessed.

5.4 Results

The results of the 4 tested CNNs are shown in the Table 5.2.
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The performance of the N-FLMask was compared with the performance of the N-
Mask to prove the effectiveness of the architectural variation. As visible from Tab. 5.2,
the results of the N-FLMask was significantly better than the results of the N-Mask
with a NME68 equal to 2.70 against NME68 equal to 13.55 achieved by the N-Mask.

To prove the effectiveness of the elected training protocol dealing with: (i) pre-
training on 300-W Dataset and (ii) fine-tuning on the Toronto NeuroFace dataset, the
performance of the 300W-N-FLMask was compared with that of the N-FLMask and
300W-FLMask. As showed in Tab. 5.2, the 300W-N-FLMask achieved the highest
performance with a NME68 equal to 1.79 against NME68 equal to 2.70 and 3.88 of
the N-FLMask and 300W-FLMask, respectively.

5.5 Discussion

Evaluating the evolution of dysarthria by monitoring the impact that this pathology
has on the muscles of the oro-facial district is fundamental to assessing the evolution
of the neurodegenerative disorders as ALS or stroke. However, despite its importance,
this assessment is carried out by direct observation of the patient coupled with rating
scales. This procedure, besides being qualitative e discontinuous, does not allow to
perceive fine changes in patients’ performance.

To solve issues caused by perspective assessments electromyographic sensors are
proposed in literature for evaluating the oro-facial muscles in patients suffering from
dysarthria. However, this analysis, based on sensors placed on the facial surface and
inside the oral cavity, is too invasive for the patient and can only be carried out in
controlled environments.

To overcome possible state-of-art limitations and with the aim of making quanti-
tative, simple and non-invasive the assessments of patients suffering from dysarthria,
the proposed research presents a DL methodology capable of regressing the position
of facial landmarks in subject with neurodegenerative diseases.

Comparing the results of the 300W-N-FLMask architecture with the performance
of N-FLMask and 300W-FLMask it emerged that the choice of pretraining the archi-
tecture on the 300-W dataset and then applying fine-tuning on the Toronto NeuroFace
dataset was crucial. In fact, the pre-training on the wider dataset granted the network a
higher power of generalisation while the fine-tuning allowed to refine the CNN ability
in regressing facial landmarks from pathological subjects.

The original version of the Mask-RCNN (i.e., N-Mask) got the largest error (i.e.,
the lowest performance). This suggests that varying the branch for landmarks-position
regression allowed to recover an higher level of details. It is worth noting that the chin
and mouth were the most challenging to detect, and this may depend on the major
impact that the progressive-disease has on the muscles of the oral district [135]. In
this case, the least flawed of the 4 architectures was the 300W-N-FLMask. This may
be due to the fact that the 300-W dataset, on which the network was pre-trained, had
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frames from people grimacing and therefore with oro-facial skewness.

5.6 Conclusion and future perspectives

Dysarthric patients need to clearly report to clinicians the elements useful to establish
their health condition. They must be able to communicate as to keep and extend social
contacts. This aspect has a strong impact on patient’s psychological balance and,
consequently, on his/her overall well-being.

Monitoring the evolution of dysarthria through a non-intrusive assessment of the
oro-facial musculature is of primary importance to allow the clinician to implement
preventive strategies to compensate for communicative disability. This research pro-
poses, for among the first time in literature, a CNN-based methodology to detect
facial-landmarks position in RGB images of ALS and stroke patients. As highlighted
in [135], from the position of facial landmarks it will be possible to evaluate the impact
that these neurodegenerative diseases have on the muscles involved in vital functions
such as speech articulation and breathing as to provide decision support to clinicians.
In this regard, of particular clinical interest will be the assessment of: lip protrusion,
lip stretching, maximum mouth opening, facial and mouth symmetry and how these
indexes evolve in time.

This research represents a small part of a much wider project aimed at proposing
the first remote digital assessment tool to support clinicians in mapping the evolution
of neurodegenerative diseases. The tool will include a web application that allows the
patient to take video-selfies while performing Robertson’s dysarthria profile inspired
tasks. The audio-video data stream is processed via DL algorithms which extract
indexes of progression for enabling the clinicians to soon identifying changes in pa-
tients’ performance and readily prescribing compensation strategies to communicative
disabilities.

Especially when dealing with rare diseases, having quantitative and easily acces-
sible data is relevant both (i) for establishing treatment plans specific to the needs of
individual patients and offering them the best possible care, (ii) for gaining knowledge
about such a disabling disease. Moreover, from patients’ side, travelling to the hospital
is sometimes tiring, decreases their performance during evaluations phases and has a
real cost. Systems such as the one described in this research are crucial as they enable
patients to carry out assessment at home, with familiar devices (such as smartphone
and pc) and in a familiar environment while always being in virtual contact with their
trusted clinician.
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Chapter 6

Conclusive remarks

6.1 Conclusion

This thesis chronicled a three-year journey. Three years spent inside a NICU, a center
specialized in the treatment of children with autism and neurology departments. Three
years of interdisciplinary dialogue between clinicians and engineers to imagine new
models of monitoring fragile patients who need special care.

The journey began in the NICU of the “G. Salesi” Hospital in Ancona. A neona-
tologist in front of many cribs housing preterm infants so small they fit within a hand.
The neonatologist is in front of the first crib, observes the movement of the infant and
notes the observation on the patient’s health record, moves on, to the second crib, to
the third, to the fourth and repeats the manual annotation procedure to the last crib.

The journey continues inside a center specialised in ABA therapy for treating chil-
dren with autism. There is an ABA operator sitting holding a pen and writing on a
pad of paper. He writes without looking on the paper as the gaze is fixed on a child in
front of him. We change room. The operator picks up the paper and pen and follows
the child. He puts down the pad to help the child wash his hands but picks it up again
as soon as the child finished the action.

The last stages of the journey take place within the rehabilitation medicine and
neurology departments. The situation is similar to those previously described. There
are a clinician and a patient. Facing each other. The clinician asks the patient to
perform evaluative tasks and notes what he observes on the patient’s health record.

Medicine today is still heavily based on direct observation of the patients combined
with the compilation of rating scales (e.g., [133]). This assessment procedure, besides
discontinuous, strongly depends on the experience of the examiner.

To overcome the limitations posed by qualitative and sporadic assessments, this the-
sis showed innovative monitoring systems based on the analysis of video-recordings
acquired by RGB-D cameras. The described methodologies are aimed at supporting:
(i) the neonatologist in monitoring the movement of preterm infants, (ii) the ABA op-
erators in assessing when the children with autism wash their hands independently,
(iii) the rehabilitation expert in evaluating the posture of a person during rehabilita-
tion sessions, (iv) the neurologist and speech therapist in mapping the evolution of
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neurodegenerative disease.
The national health care system is an absolutely irreplaceable and valuable asset

for public health and the health of each of us. It showed its weaknesses during the
COVID-19 pandemic due primarily to clinical staff shortages. The monitoring sys-
tems presented in this thesis was born and developed from this compelling need of
expanding clinicians’ operational capacity and will continue to be refined to further
meet patients’ needs. Patients’ voice, in fact, will become louder, and more conscious
and will make the clinician-patient relationship active and bidirectional. Patients, or
their caregivers, will be the primary collectors of data, and all of this data will be
gathered in unique, secure, easily accessible and dialoguing systems.

The benefits resulting from increased digitization of healthcare are manifold: clini-
cians will dispose a complete and structured collection of data on the patient’s history
and will be able to compare similar clinical pictures in order to identify the most ap-
propriate treatment for the patient. Patients, actively involved in their care plan, will
begin to consider health as a system and not as a pillar and that prevention is better
than cure. They will begin to trust in healthy habits and healthy relationship with the
surrounding environment as essential elements to preserve their wellbeing [18].

The need for health is much greater than the answers that are given from our health-
care system. With the current paradigms, the best standard of care cannot be guaran-
teed to those who need it. In the vision that this thesis seeks to convey, digital health
should support the healthcare system by making it more efficient, releasing energies
that will allow clinicians to engage with patients, who are increasingly participatory
and conscientious, and treat them better and to the best of their abilities [5].

6.2 Impact

During these years of pandemia, above all, we have seen our healthcare system in
trouble, overwhelmed by too many calls for help. We have seen clinicians and nurses
working prohibitively long shifts to cope with staff shortages and we have seen pa-
tients in great need of treatment but too afraid to enter hospital because of the risk of
being infected by the virus.

Health is essential, concerns everyone without distinction and must be guaranteed
to all. The events following the pandemic have forced us to think both a new concept
of “normality” and the future of the entire health system. A future in which new
technologies must be increasingly present and must both broaden clinicians capacities
and ensure continuity of care.

We can no longer afford to lose data on a rare disease. It is precisely because of its
rarity that any data must be fundamental to the progress of research. We cannot allow
a clinician to spend so many hours observing a patient because if resources are scarce,
they must be spent treating and talking with patients, not merely observing them.

This thesis was born from the desire to support clinicians during the actual clinical
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practice and to enable that patients and their families always feel cared for. All the
proposed monitoring systems, besides being non-intrusive, are developed to ensure
quantitative measurements useful in clinical practice and are designed to be easily
portable also in the home environment. Alongside the DL algorithms, the real pro-
tagonist of the thesis is the multimedia data that becomes a source of new knowledge
for a clinician. A kind of data easily available as our society is incredibly good at
generating it in large quantities and giving it away just as easily.

Of course, there is still a lot of work to largely distribute these systems as to trigger
healthcare digital transformation. For this large-scale innovations, for sure, there is no
on-off switch or precise moment when healthcare goes from being analogue to digital.
The healthcare transformation needs: dialogue, clinicians’ and patients’ preparation
for distributing innovative solutions without age and culture barriers and the entire
ecosystem adaptation which is still too much based on cumbersome mechanisms.

Once the digital transformation of the health ecosystem has taken place, we should
no longer have to imagine how defined a disease picture can be thanks to the con-
sultation and filtering of universally collected homogeneous new data or how much
knowledge could be generated by accessing thousands of similar situations in real
time as this will be part of a new everyday life. A reality in which the patient gener-
ates health-related data everywhere and the clinician receives it in a structured way. A
patient increasingly involved in his/her own care plan and increasingly responsible for
his/her own health. A reality in which the clinician no longer has to search through
piles of paper for the results of an evaluation conducted years earlier but can dialogue
more with their patients. A reality in which research becomes a bridge to strengthen
the empathic relationship between clinician and patient.

6.3 Future perspectives

At the center of every significant change in our lives today is a technology of some
kind. Thanks to technology, everything we do is always in the dimension of becoming:
everything is becoming something else. This perpetual change is the central pillar of
the modern world. Especially when we talk about health and healthcare in general,
which are issues that affect the entire world, changes are not always well received. The
very first impulse when facing with extreme digital technologies (like deep learning)
is always to reject them, stop them, ban them or at least make them difficult to use [3].
However this denial is temporary, we begin to realize that by working with technology,
by actively participating in the innovation process we can get the best out of what
technology can offer [5].

We are dealing with a total paradigm shift, a revolution that will be prominently
technological but not completely. The real and more complex transformation will be
cultural, mental. So if the trigger of this revolution is digital, the node will be human
because humans and nor algorithms are the protagonists.
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