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Abstract 

Measuring human thermal comfort in indoor environments is a topic of interest in the scientific 

community, since thermal comfort deeply affects the well-being of occupants and furthermore, 

to guarantee optimal comfort conditions, buildings must face high energy costs. Even if there are 

standards in the field of the ergonomics of the thermal environment that provide guidelines for 

thermal comfort assessment, it can happen that in real-world settings it is very difficult to obtain 

an accurate measurement. Therefore, to improve the measurement of thermal comfort of 

occupants in buildings, research is focusing on the assessment of personal and physiological 

parameters related to thermal comfort, to create environments carefully tailored to the occupant 

that lives in it. This thesis presents several contributions to this topic. In fact, in the following 

research work, a set of studies were implemented to develop and test measurement procedures 

capable of quantitatively assessing human thermal comfort, by means of environmental and 

physiological parameters, to capture peculiarities among different occupants. Firstly, it was 

conducted a study in a controlled climatic chamber with an invasive set of sensors used for 

measuring physiological parameters. The outcome of this research was helpful to achieve a first 

accuracy in the measurement of thermal comfort of 82%, obtained by training machine learning 

(ML) algorithms that provide the thermal sensation vote (TSV) by means of environmental 

quantities and heart rate variability (HRV), a parameter that literature has often reported being 

related to both users' thermal comfort.  

This research gives rise to a subsequent study in which thermal comfort assessment was made 

by using a minimally invasive smartwatch for collecting HRV. This second study consisted in 

varying the environmental conditions of a semi-controlled test-room, while participants could 

carry out light-office activities but in a limited way, i.e. avoiding the movements of the hand on 

which the smartwatch was worn as much as possible. With this experimental setup, it was 

possible to establish that the use of artificial intelligence (AI) algorithms (such as random forest 

or convolutional neural networks) and the heterogeneous dataset created by aggregating 

environmental and physiological parameters, can provide a measure of TSV with a mean 

absolute error (MAE) of 1.2 and a mean absolute percentage error (MAPE) of 20%. In addition, 

by using of Monte Carlo Method (MCM), it was possible to compute the impact of the 

uncertainty of the input quantities on the computation of the TSV. The highest uncertainty was 

reached due to the air temperature uncertainty (U = 14%) and relative humidity (U = 10.5%). 

The last relevant contribution obtained with this research work concerns the measurement of 

thermal comfort in a real-life setting, semi-controlled environment, in which the participant was 

not forced to limit its movements. Skin temperature was included to the experimental set-up, to 

improve the measurement of TSV. The results showed that the inclusion of skin temperature for 

the creation of personalized models, made by using data coming from the single participant 

brings satisfactory results (MAE = 0.001±0.0003 and MAPE = 0.02%±0.09%). On the other 

hand, the more generalized approach, which consists in training the algorithms on the whole 

bunch of participants except one, and using the one left out for the test, provides slightly lower 

performances (MAE = 1±0.2 and MAPE = 25%±6%). This result highlights how in semi-

controlled conditions, the prediction of TSV using skin temperature and HRV can be performed 

with acceptable accuracy.  
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Chapter 1. 

 

Introduction 

 

1.1 Background and Motivation 
 

The point of departure of this work is that human perception of thermal comfort, which refers to 

the sensation of hot or cold that people experience every day, it is not perceived in the same 

manner among different humans. Given this assumption, it is expected that two people in the 

same room with specific thermal conditions, like air temperature, can experience different 

sensations: one can be pleasant, the other can be uncomfortable by feeling warm or cold. To 

prevent this situation, typically there are norms and indicators that should be respected to ensure 

the occupants a comfortable environment, in which neither hot nor cold sensation is experienced.  

The thing is that, even if the standards imposed by the norms are met, people still experience 

discomfort and in particular “thermal discomfort”. Broadly speaking, the potential impact that 

thermal discomfort has on occupants must be analysed from two points of view: in the first place, 

the prospect is that the well-being of the users is compromised or worsened, thus leading to a 

possible decrease of the users’ state of health, in the long-term period. The second problem that 

arises concerns energy costs that must be faced to maintain adequate thermal conditions, which 

are often high, and it occurs that, expensive energy costs still do not provide thermal comfort 

anyway. 

Buildings account for almost 30% of the world's total energy consumption, and 60% of this is 

due to the heating, ventilating, and air conditioning systems (HVAC). However, 89% of 

buildings cannot adequately meet thermal comfort demands for the indoor thermal environment, 

in which it is expected that more than 80% of the occupants are satisfied with the thermal 

environment [1]. These numbers above have created the specific need to renew the way of 

thinking thermal comfort assessment and building energy supply, in fact, the forthcoming trend 

is to move from a building-centered to a human-centered design.  

Thermal environments assessment relies on past research performed on human subjects, but in 

extremely controlled, and therefore often unrealistic, environments. The measurement of thermal 

comfort, and in particular of its thermal sensation (TS), implies the creation of a proper thermal 

environment for the occupant; but the point is that occupants’ thermal preference and sensation 

are dynamically changing in the real environment, because of the non-uniformity of the 

environment and to the change in the external weather [2]. Literature over the years offered a 

great number of studies that aim at estimating human thermal comfort, in terms of TS. The idea 
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behind many studies is to predict the number belonging to the 7-point scale of the American 

Society of Heating, Refrigerating and Air-Conditioning Engineers’, which is the metric adopted 

to rank human thermal comfort; each sensation is associated with a value that ranges from -3 to 

3, which corresponds to Cold, Cool, Slightly Cool, Neutral Slightly Warm, Warm, Hot [3]. The 

thermal sensation is therefore named Thermal Sensation Vote (TSV) and it is what researchers 

in the field of human thermal comfort are trying to measure with a variety of methodologies, 

experimental set-ups and different data types.  

 

Figure 1. ASHRAE 7-points scale used to express the thermal sensation vote of occupants.  

 

The innovative research aspect of human-centred design concerns the inclusion of physiological 

and personal parameters of the occupant into the measurement process, which are intended to 

capture the peculiarities of each occupant, leading therefore to a personalization of thermal 

comfort and the creation of personalized comfort models (PMC), which comes up one of the 

many aspects of the human centred design. PCM are identified as a prediction model based on 

the analysis on a single individual. Two issues need to be addressed when establishing a personal 

comfort model: improving the accuracy in predicting personal thermal comfort and minimizing 

interference to the occupant when the model is applied. Establishing a comfort model for an 

individual and choosing a limited number of sensitivity parameters to evaluate personal thermal 

comfort may be appropriate methods of ensuring the prediction accuracy and diminishing 

interference; however, literature is facing some challenges in identifying the most prominent 

parameters for PCM.  

PCM allows to appreciate individual unique differences by monitoring each occupant’s thermal 

response and these models are typically developed by means of AI algorithms, which include 

deep learning (DL) and machine learning (ML) algorithms, that are continuously trained and 

tested. In fact, PCM that rely on AI algorithms have the advantage of being continuously 

updated, in response to real-time data [3]. Researchers [15], [16], [17], [18], [19] have adopted 

a variety of machine learning methods to establish PCMs. The results show that the prediction 

accuracy of a PCM is much higher than that of the traditional PMV model when applied to 

individuals. Another aspect that should be taken into account is that occupants’ thermal 

preference and sensation dynamically changes over time, and this is mainly due to the non-

uniformity of the thermal environment inhabited by the occupant, or to a change in the outdoor 

https://www.sciencedirect.com/science/article/pii/S0378778819318584?casa_token=--VodaT83NEAAAAA:jWb55Ku49CAMhbL_1CKAkXnW148mizIbMSQJlu0gkor8oKUhOPBUf_2hnM1WWk5KRyGrD10#bib0015
https://www.sciencedirect.com/science/article/pii/S0378778819318584?casa_token=--VodaT83NEAAAAA:jWb55Ku49CAMhbL_1CKAkXnW148mizIbMSQJlu0gkor8oKUhOPBUf_2hnM1WWk5KRyGrD10#bib0016
https://www.sciencedirect.com/science/article/pii/S0378778819318584?casa_token=--VodaT83NEAAAAA:jWb55Ku49CAMhbL_1CKAkXnW148mizIbMSQJlu0gkor8oKUhOPBUf_2hnM1WWk5KRyGrD10#bib0017
https://www.sciencedirect.com/science/article/pii/S0378778819318584?casa_token=--VodaT83NEAAAAA:jWb55Ku49CAMhbL_1CKAkXnW148mizIbMSQJlu0gkor8oKUhOPBUf_2hnM1WWk5KRyGrD10#bib0018
https://www.sciencedirect.com/science/article/pii/S0378778819318584?casa_token=--VodaT83NEAAAAA:jWb55Ku49CAMhbL_1CKAkXnW148mizIbMSQJlu0gkor8oKUhOPBUf_2hnM1WWk5KRyGrD10#bib0019
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conditions. This last point is what makes the prediction of thermal comfort by means of PCM a 

challenge to be addressed.  

 

1.2 Overview of the research 
 

Recent developments in the field of wearable technologies, communications and computing, 

have made it possible to evaluate and measure the thermal comfort of occupants who are inside 

a building. However, despite the great variety of methodologies present in the state of the art, 

there are still gaps to be filled in terms of accuracy of the procedure and replicability in real-life 

contexts. In fact, due to the complexity and diversity of human behaviour and human’s different 

perception of thermal comfort, extracting meaningful information and a common set of data that 

is suitable for every occupant is a complex task. The objective of this work is to tailor a 

methodology used for measuring human thermal comfort, into real-life context, rather than 

laboratory environments that are often far from reality. For this reason, a set of experiments that 

uses a dedicated measurement process and sensors network are proposed. In particular, this 

research aims to provide:  

1. A methodology to be applied in real-life settings to improve the measurement of thermal 

comfort that could enrich the knowledge of the human-centric approach in buildings; 

2. Improve the knowledge about the challenges that can be encountered when using 

wearable devices to measure physiological parameters related to human thermal 

comfort;  

3. Determine the impact of the measurement uncertainty of the sensors network on the 

resulting measurement of thermal comfort;  

4. Define the suitability of AI algorithms in the prediction of thermal comfort using a 

heterogeneous set of data. 

 

1.3 PhD thesis context: the RenoZEB project 
 

Most of the activities described in this thesis 

work were developed within the RenoZEB 

project, “Accelerating Energy renovation 

solution for Zero Energy buildings and 

Neighbourhoods” funded by the European 

Union’s Horizon 2020 research and innovation 

programme under Grant Agreement No. 

768718. One of the scopes of the project is to 

investigate how the measurements of 

physiological parameters of occupant in buildings can be used for thermal comfort prediction 

Figure 2. Logo of the project 
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and improvement, in the framework of the work package 6 (WP6) entitled “Monitoring and 

Human-Centric Automated Control to maximize the value creation of nZEB renovation”.  

The possibility of developing this approach is justified by available human-centric technologies, 

which are moving forward the measurement of human’s health, satisfaction, level of activity and 

even stress. This information is increasingly becoming of interest because they can be coupled 

to the usual empirical parameters, e.g., air temperature, humidity, illuminance, and can provide 

a full evaluation of everyone’s experience. The human-centric approach can be used to optimize 

traditional control systems for the enhancement of human comfort and satisfaction towards the 

daily indoor environment, such as in the context of this research activity. Considering these new 

developments, RenoZEB aimed at exploring this field and test innovative solutions whose results 

may help to increase the knowledge related to human-centric approach adopted through the 

deployment of wearable solutions. 
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2  

Chapter 2. 

 

State of the art 

 

2.1 Thermal comfort measurement 
 

First of all, in order to study and try to understand thermal comfort, it is necessary to start from 

its formal definition and the existing standards adopted to measure it. The American Society of 

Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) defines thermal comfort as  

“the condition of the mind in which satisfaction is expressed to the thermal environment”; the 

definition itself suggests that is a parameter related to the perception of the single individual and 

it is related to physical, physiological, and psychological factors. The importance of measuring 

human thermal comfort is due to its connection with human wellbeing; for this reason, in the 

next sections, this aspect will be deeply investigated. In addition, there will be a detailed analysis 

of the state of the art about the methodologies adopted for measuring human thermal comfort, 

its relationship with human wellbeing and the latest methodology adopted in literature to assess 

the problem of thermal comfort personalization.  

2.2 Thermal comfort, well-being and IEQ 
 

Thermal comfort has been deeply studied in years, given its related importance to subjects’ well-

being. The wellbeing dimension has many facets and thermal comfort was proof to have a high 

impact on it. Well-being is an old concept, studied by the scientific community in relation to 

human’s health and the concept itself suggests that there is a focus on the single user, rather than 

a group of people. It is worth noting that well-being and thermal comfort are profoundly related 

to one more general parameter, which is the indoor environmental quality (IEQ). Literature has 

extensively reported the impacts that IEQ has on occupants’ health and wellbeing, especially in 

indoor environments [4].  IEQ relies on different factors which are indoor air quality (IAQ), the 

thermal comfort, the lighting environment, and the acoustic comfort. If these parameters are not 

maintained at acceptable levels, it can have a negative impact on occupants' health and work 

efficiency [5]. Extensive research has proved that thermal comfort has a significant role in 

affecting wellbeing, health, and productivity; as an example, studies highlighted that thermal 

discomfort in buildings can cause psychological stress, depression, and anxiety, as well as poor 

physical health, expressed as heart disease, insomnia, a headache, and low arousal levels.  
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Thermal comfort is a topic of interest in many types of facilities like educational, office and 

residential buildings. As an example, [6] found that inadequate indoor air temperature has the 

highest effect on occupant’s thermal comfort and therefore on productivity; another study that 

presents relevant outcomes is reported in [7]: results indicate that comfortable indoor thermal 

conditions can have beneficial impacts on workers’ well-being and productivity, such as higher 

operational rates, lower production losses, fewer sick leaves, and reduced health-related costs.  

Moreover, indoor thermal discomfort also affects human health and can be particularly critical 

in the case of susceptible subjects [8]–[10]. Depending on their age, people are subjected to 

diverse adaptive mechanisms: for example, elderly people’s health can be compromised if their 

living environment is too cold or too warm. Prolonged exposure to warm conditions can trigger 

heart-related illnesses or heart failures, while a long exposure to cold conditions gives rise to the 

lowering of body core temperature, which may conduct to drowsiness, lethargy and even 

death. Therefore, maintaining adequate thermal comfort impacts the health of occupants, besides 

their comfort or satisfaction [11].  

 

2.3 Thermal comfort models 
 

The most used thermal comfort standards are based on steady-state models or adaptive models. 

The most famous steady-state model is the predicted mean vote (PMV) model also recognized 

in literature as the Fanger’s model. This model aims to predict the mean thermal sensation of a 

group of people that are in the same environment. It is a steady-state model that refers to the heat 

balance model of the human body and is based on the computation of the PMV index, which is 

assessed in relation to 6 different parameters listed as follows: four parameters are environmental 

parameters (air temperature, air velocity, relative humidity and mean radiant temperature). The 

other two quantities are subjects’ related factors: clothing insulation and metabolic rate. Their 

assessment is regulated by two other standards, ISO 9920 and ISO 8896, respectively. The 

resulting function is expressed in Equation 1: 

  

 𝑃𝑀𝑉 = 𝑓(𝑡𝑎, 𝑡𝑟 , 𝑣𝑎, 𝑝𝑎 , 𝐼𝑐𝑙 , 𝑀) (1) 

 

Where 𝑡𝑎 is the air temperature, 𝑡𝑟 is the mean radiant temperature, 𝑣𝑎 is the air velocity, 𝑝𝑎 is 

the water vapour partial pressure, 𝐼𝑐𝑙  id the clothing insulation and 𝑀 is the metabolic rate. 

Moreover, Fanger’s model provide the Predicted Percentage Dissatisfied (PPD) index that 

estimates the percentage of people that experiences thermal discomfort.  
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Figure 3. Relationship between the PMV and the PPD. 

 

Using both indices, ASHRAE 55 dictates that thermal comfort can be achieved based on an 80% 

occupant satisfaction rate or more. The remaining percentage of people can experience 10% 

dissatisfaction based on whole-body discomfort and 10% dissatisfaction based on local 

discomfort/partial body discomfort (includes fewer factors than whole-body). 

In order to comply with ASHRAE 55, the recommended thermal limit on the 7-point scale of 

PMV is between -0.5 and 0.5. ISO 7730 expands on this limit, giving different indoor 

environments ranges. ISO defines the hard limit as ranging between -2 and +2, for existing 

buildings between -0.7 and +0.7, and new buildings ranging between -0.5 and +0.5.The PPD can 

range from 5% to 100%, depending on the calculated PMV. These comfort values will vary 

depending on where the occupant is located in the building. In order for comfort ranges to comply 

with standards, no occupied point in space should be above 20% PPD. 

The assessment of thermal comfort is usually reinforced by the surveys which compare the PMV 

values obtained from the model, with those obtained from the real sensations perceived by the 

occupants. It was observed that the PMV model underestimate the real thermal sensation of the 

people as reported in [12]. A possible explanation of this problem is that PMV index is not 

intended for considering psychological and behavioural adaptations. Thus, adaptive models have 

begun to spread. 

Adaptive models are based on collecting simultaneously data from the thermal environment and 

from the thermal response of the subject, to assess the indoor thermal conditions and to determine 

the influencing parameters that could satisfy occupants’ preferences. The adaptive approach 

refers to statistical studies conducted in buildings, and it is mainly focused on naturally ventilated 

buildings. It has been observed that people are more tolerant than what the Fangers’ model 

suggests. The adaptive approach presents a linear correlation between comfort temperature of 

the occupants indoor and the outdoor air temperature. The main idea is that occupants inside the 

building are no longer passive agents, as it appears in the PMV model, but are considered as 
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active agents that interact at all levels with the environment. This model is based on the ability 

of the occupants to adapt to environmental conditions, acting on the variables that affect them.  

In recent years, attention has been increasingly focused on the fact that the models described 

(adaptive and PMV) do not take into account the psychological aspect of the subject, and risk to 

overshadow the personal aspect that deeply influences the perception of thermal comfort. In this 

regard, new line of research that is developing more and more, is focused on PCM, whose aim 

is not to predict the average response of a large population but to focus the prediction of thermal 

comfort of the single subjects. PCM are developed in literature by introducing brand new 

parameters inside the model: in particular, they are heterogeneous set of parameters that include 

environmental, behavioural and physiological parameters.   

 

2.4 Sensors for the Measurement of Physiological Signal 

Related to Thermal Comfort 
 

To estimate the thermal comfort, expressed by the thermal sensation vote (TSV), there many 

studies in the literature, that have been conducted based on various physiological parameters. In 

particular, the trend is the migration towards a less-invasive equipment, that the user is able to 

wear and conducting at the same time the daily activities.  

There are currently several types of sensors and devices on the market which are used to measure 

physiological signals that can be related to thermal comfort. Thermal comfort can be evaluated 

from multiple physiological signals, i.e. electrodermal activity (EDA), electroencephalography 

(EEG) and electrocardiogram (ECG) signals. EDA, EEG and ECG signals can be measured using 

biomedical devices but also by low-cost wearables already available on the market. The 

difference between the two categories of sensors lies in the parameters measured, accuracy, cost, 

and the sensors being comfortable to wear for a prolonged time. EDA provides the measurement 

of changes in skin conductivity, which is associated with the activity of sweat glands that, in 

turn, reflects the activity of the central nervous system [20]. It is used in various thermal comfort-

related studies in combination with other physiological parameters (e.g. skin temperature, heart 

rate) to develop customized models to discover how humans react to different external 

environments [13]–[16].  

Human thermal comfort is also analyzed using EEG signals. These signals are collected by 

placing a helmet equipped with electrodes on the user’s head. The spectral power of EEG can be 

used to build models that discriminate different feelings associated with thermal comfort 

[17].  The user’s thermal sensation can be correlated to indices obtained from EEG. Given this 

assumption, there are researchers that are developing systems based on the brain-computer 

interface (BCI) for the control of conditioning system to obtain optimal thermal comfort 
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conditions [18]. However, EEG sensors are expensive and are not suitable for daily monitoring, 

since the user manages to wear them for up to three hours [19].  

ECG sensors, too, are often used to study human thermal comfort. ECG records the electrical 

activity of the heart using electrodes placed on specific locations of the body. The parameters 

that can be extracted from ECG for the evaluation of thermal comfort are the heart rate (HR) and 

heart rate variability (HRV). However, ECG equipment can be a source of discomfort if worn 

for a long period. ECG traces can be also extracted from 24-hour Holter monitors, which are 

portable ECG devices that record the heart’s rate and rhythm for a period of time of at least 24 

hours. The advantage of measuring HRV and HR is that they can be also extracted from 

alternative wearable sensors that are less invasive. Wearable sensors, e.g. multiparametric chest 

belts, smartwatches, smart bands, represent a good trade-off between accuracy, intrusiveness and 

user acceptance because they have become part of an individual’s daily routine [20]–[23]. They 

are also less expensive than EDA, EEG and ECG technologies. 

2.5 Measurement of Heart Rate Variability for Thermal 

Comfort 
 

Human thermal comfort is handled by thermoregulation, which is the process that allows the 

body to maintain its core internal temperature and is designed to restore the body’s homeostasis. 

This process is managed by involuntary mechanisms that take place in the brain’s hypothalamus 

and therefore, recent studies are focusing on estimating thermal comfort of individuals through 

the analysis of specific human physiological signals. In this context, the focus is on the heart rate 

variability (HRV), obtained by measuring the difference in time between two consecutive 

heartbeats of the electrocardiogram (ECG) signal. An example of ECG trace is shown in Figure 

4. 

 

Figure 4. ECG signal and distance between each R wave that generates RR intervals. 

 

However, recent findings have demonstrated that HRV can be measured in a less-invasive way, 

by collecting the photoplethysmography signal (PPG).  
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Figure 5. Example of a PPG signal (upper) compared with the correspond ECG signal 

(lower). Both methodologies can be used to measure RR intervals to derive HRV. 

 

PPG is a low-cost technique that detects blood volume changes in the blood vessels of superficial 

tissue, therefore it is a non-invasive methodology that collects physiological signal directly from 

the skin surface. Therefore, PPG signal processing provides HRV signal. HRV itself is not the 

only contributor to understand thermal comfort but needs further manipulations to extract useful 

indicators related to this issue. In fact, the power spectrum analysis provides the elements for 

analysing the balance between the sympathetic nervous system and the parasympathetic nervous 

system. High frequency (HF) components of HRV (0.15- 0.4 Hz) are supposed to be due to the 

action of the vagus nerve, while low frequency (LF) components (0.04 – 0.15 Hz) originate from 

the sympathetic nervous system. Their ratio LF/HF expresses the balance between these two 

subsystems and therefore when there is the need for an adjustment to restore an unbalancing 

condition. 

For this reason , HRV is typically analyzed in terms of time-domain and frequency-domain 

parameters after using specific processing of data [24], [25]. Time-domain parameters are 

statistical indices that evaluate the variability of the HRV signal collected and are useful to 

interpret the fluctuations during cardiac cycles. Whereas frequency domain indices are obtained 

starting from the power spectral density (PSD) of the HRV to decompose the variation of each 

HRV signal into its fundamental oscillatory components [26]. As anticipated before, most 

relevant components are obtained by computing the PSD in specific frequency bands: low 

frequency (0.04 - 0.15 Hz), high frequency (0.15 - 0.4 Hz). These frequency bands are considered 

to be linked to the thermoregulation mechanism. Thermoregulation is result of complex 

mechanisms that are modulated by mutual interactions between the sympathetic nervous system 

(SNS) and the parasympathetic nervous system (PNS). SNS is responsible for sweating and 

vascular constriction for heat generation, while PNS acts through the vagus nerve for vascular 

constriction. Frequency domain indices are linked to the activity of SNS and PNS. In fact, HF 

components are supposed to be due to the vagal activity, whereas LF components are originated 

from the SNS. The ratio between these components (LF/HF) expresses the balance between these 

two subsystems and is, therefore, subjected to variations in case of an external stimulus. Recent 
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works have developed different approaches to explore the relationship between HRV, its indices 

and thermal comfort perception. Literature works related to thermal comfort measurement 

involved in their research a variable number of participants. For example, [27]  recruited six 

participants to explore the relationship between HRV features and different environmental 

conditions; also [28] in their work, predicts the user’s thermal comfort states using HRV signal 

collected from a smartband, using a sample size of six participants. However, the sample size in 

thermal comfort studies can be also be reduced, as it is reported in [29] and [30], which tested 

their solution on a sample size of 4 and 1, respectively.  

Literature has pointed out that there is a quadratic relationship between LF/HF and thermal 

discomfort. It has been demonstrated that LF/HF increases in an uncomfortable thermal 

environment (cold, warm) and decreases in a thermally comfortable environment, as reported in 

Figure 6 and Figure 7 [22] [28] [31].   

 

Figure 6. Changes of LF/HF under different air temperature. 

 

Moreover, LF/HF is also subjected to a rise when humidity reaches high values (>80%) and 

when the air speed increases in case of low temperature [27], [28], [31]. To collect HRV data, 

different sensors are used in current literature: ECG is still the predominant methodology in 

many researches [22], [32]. However, works in literature are also exploring less invasive sensors 

like smartwatches or wristbands, which, being wireless, do not prevent users from moving freely. 

Empatica E4 wristbands are often adopted, however they are very expensive and therefore cannot 

be provided to a large population of users [25], [30], [33]. In this perspective, HRV-related works 

are developed through the use of commercially available smartwatches, which are less expensive 

and provide reliable accuracy  [34], [35].  
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Figure 7. Low- versus high-frequency (LF/HF) ratio for variation in heart rate as evaluated 

by the ECG over 5 min in three groups of subjects at different indoor temperatures. For each 

group, n = 11; for group 1 the temperature changed from 21 to 29°C, for group 2 the temperature 

changed from 29 to 21°C, and for group 3 the order was 21, 28, 30, and 24°C. LF/HF ratio means 

the ratio of absolute power in low- and high- frequency bands. 

 

2.6 Measurement of skin temperature for Thermal 

Comfort  
 

Skin temperature can be retrieved in two different ways: by using contact measurement such as 

sensors placed directly on the skin at different locations, or in an unobtrusive way, by using 

thermal images acquired by means of non-contact infrared sensors.  

Contact measurements include the employment of wearable sensors or sensors directly placed 

upon human skin. For example [36] proposed two different methodologies to predict the thermal 

comfort of occupants in terms of thermal state, using a wearable sensors. The first one is about 

a deep CNN that uses the hand skin temperature profile; the accuracy in the detection of the 

thermal state is 93.3%. The second methodology is based on a support vector machine (SVM) 

approach using six physiological features, that achieve the 90.6% of accuracy.  

[37] proposes a fuzzy control method of the indoor temperature using physiological data (skin 

temperature and heart rate) to predict the thermal sensation. The idea is to show that thermal 

sensation prediction-based control can adjust the temperature set-point by monitoring 

physiological data from the subjects without interfering with their regular works. A more 

invasive methodology is presented in [3]: a prediction accuracy of 89.2% was obtained for the 

models based on the temperature of the point 2 mm above the wrist and the skin temperatures of 

the wrist and neck.  
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Among the unobtrusive measurements [38] presents non-intrusive thermal measurements to 

predict ASHARE 7-point thermal sensation; the system provides a real-time comfort estimation 

that is able to extract and compute facial temperature features to provide personalized comfort 

models. The study highlights that the methodology can reduce the error on thermal comfort by 

64% over the traditional method (such as PMV). 

[39] proposes a non-invasive approach for automatic prediction of personal thermal comfort and 

mean time to warm discomfort using machine learning techniques. The described prediction 

framework uses temperature information extracted from multiple local body parts to model an 

individual's thermal preference, with sensing measurements that capture local body part variance 

as well as differences between body parts. The proposed thermal models were tested on subjects’ 

data extracted from an office setup with room temperature varying from low (21.11 °C) to high 

(27.78 °C). When all proposed features were used, personal thermal comfort was predicted with 

an accuracy higher than 80% and mean time to warm discomfort with more than 85% accuracy.  

 

2.7 AI for the measurement of thermal comfort  
 

Most of the work analysed in Section 2.6 and 2.7 have highlighted that AI approaches produce 

relevant results when physiological and environmental parameters are merged to forecast 

occupants’ thermal sensation. In this work, [31] it is demonstrated that, depending on the thermal 

environment, it is possible to predict the thermal state of each subject by using HRV indices with 

an accuracy up to 93.7 %, thanks to the implementation of Random Forest (RF) and Support 

Vector Machine (SVM) algorithms. Another study [40] uses Extra Trees Classifier (ET) ML 

algorithm to predict participants’ combined thermal sensation vote in response to cold 

environmental conditions: HRV features produce an accuracy of 73.04 % with an absolute error 

of 0.299; the accuracy increases up to 79.01 % when additional parameters (e.g. mean air 

temperature, mean radiant temperature, relative humidity) are added to the model. In addition to 

classification algorithms, to estimate each subject’s thermal comfort level [41] uses ML 

regression models that produce an RMSE value up to 0.04± 0.01.  

To the best of my knowledge, in literature there is a lack of studies that employ Deep Learning 

algorithms for thermal comfort prediction starting from HRV signals or in combination with skin 

temperature measurement. However, there are works that show various fields of application of 

HRV used to forecast some user-related physiological or psychological states. 

References [42], [43] trained a LSTM neural network to predict participants’ health using HRV 

data alone. They investigated time domain, frequency domain and typical HRV measures and 

were able to predict mental health with a classification accuracy of up to 83% and 73%, with 

five- and two-minute HRV. They use a novel unified deep learning framework for sleep-wake 

classification with two heterogeneous sensors which include acceleration and HRV. 

In [44] Convolutional Neural Networks (CNN) are employed to detect whether a person is awake 
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or asleep starting from HRV features. These networks can identify HRV fluctuations and relate 

them to human physiological states. Also in [45] the authors claim that Deep Learning can help 

to reveal underlying patterns in the ECG trace which otherwise could not be observed and, for 

this reason, they used a 1-D CNN that employed HRV feature maps for stress state identification, 

obtaining an accuracy of up to 89.8% [46] also uses HRV as input to train a CNN for the 

prediction of sleep scoring. 

 

 

2.8 Limitations in the state of the art  
 

The study of the state of the art provided the necessary knowledge to establish the limits of the 

current level of research concerning thermal comfort measurement through personalized 

approaches that includes new parameters.  

For example, most of the studies were carried out in very remote and highly controlled 

conditions, the results of which are often not applicable in real working contexts. Test users are 

often forced to wear a wide range of devices that cause severe emotional distress, which can 

negatively affect measurements of physiological parameters. In fact, it has been repeatedly found 

that the user's psychological state can impact the user's thermal sensation. 

Often there are studies that combine heart rate and skin temperature, but still as far as my 

knowledge is concerned, there are no studies that measure thermal comfort by combining HRV 

and skin temperature; in addition, given the variety of types of data that are collected to obtain 

customized models of thermal comfort, the literature lacks studies that use AI starting from data 

such as HRV, its features or skin temperature. 

Consequently, these gaps identified in the state of the art, provided the basis for developing this 

thesis work, which aims to measure the thermal comfort of users in indoor environments, through 

an innovative approach that includes the combination of a series of indoor parameters and 

physiological quantities measured from wearable devices and inserting the experimental 

campaigns in contexts close to the reality.  
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Chapter 3. 

 

Implementation 

 

This section is dedicated to the detailed description of the methodology developed and 

implemented to measure human thermal comfort, which has been deployed over the past three 

years through a series of dedicated experiments. Each experiment was developed with a different 

experimental set-up, which varies in terms of operational conditions of the test-rooms, 

participants, outdoor conditions and sensors employed. 

The basic principle of this research work is explained in Figure 8: all the experiments that are 

presented aim to expose the users participating in them to a variety of environmental conditions 

with the aim of causing thermal stress. The customization of the measurement takes place thanks 

to the network of sensors for the measurement of physiological parameters: it will start with a 

more invasive and complex network, ending with a minimally intrusive smartwatch, which in 

everyday life performs the same function as a common watch, easy to insert into the daily routine 

of people. Participants in the early stages of the study will be more limited in the movements and 

type of activities conducted during the tests, to try to minimize errors due to user movements or 

due to other perturbations rather than environmental conditions.  

 

Figure 8. Technical workflow of the approach used to develop personalized thermal 

comfort model, using a human centric approach.  
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Data will be extracted and processed to create heterogeneous datasets, which will be used to train 

AI algorithms, capable of providing a measure of the TSV, which represents the user's thermal 

comfort. The timeline of the studies carried out is summarized in Figure 9.  

 

 

Figure 9. Workflow followed to develop the human centric approach for measuring human 

thermal comfort. 

 

The first research is about human thermal comfort experiments conducted in controlled 

environment or test room: the definition of controlled environment, in thermal comfort studies, 

states that in controlled experiments all the parameters that belongs to the PMV model have to 

be controlled [47] and this is what occurs during the experiment conducted in the first research; 

controlled environments in literature are typically climatic chambers.   

The second and the third research are conducted in a semi-controlled test-room, which means 

that at least one of the monitored quantitates is not controlled at all [48]. For example, clothing, 

relative humidity and air velocity are kept uncontrolled and the only parameter that is controlled 

is the air temperature. The decision to implement studies conducted in progressively less-

controlled environments is because literature has repeatedly established that, in the context of a 

climatic chamber (controlled environment) it is possible to measure human thermal comfort 

integrating physiological parameters. What is missing, on the other hand, is the possibility of 

implementing the knowledge acquired in the climatic chamber into real-life settings, where the 

occupant is not bound by invasive sensors, and the thermal condition of the environment 

dynamically changes.  
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3.1  Development of a methodology for evaluating the 

correlations between thermal comfort and HRV in 

controlled environment  
 

This paragraph presents the preliminary methodology that was first implemented to start working 

with the measurement of human thermal comfort, including the measurement of physiological 

parameters. The main idea was to develop a novel measurement protocol capable of assessing 

occupants’ thermal comfort starting from physiological parameters collected while 

environmental conditions were varying, in a controlled environment such as a climatic chamber. 

The implemented methodology aims at comprehensively assessing thermal comfort perception 

of occupants to have a preliminary occupancy-related comfort perception scheme in indoor 

environment. The experimental campaign comprehends two test series conducted during heating 

and cooling seasons, respectively, for a total amount of 62 tests. All the participating subjects 

are volunteers in good health status, i.e. not affected by chronic diseases which could alter their 

environmental quality perception. The protocol includes the simultaneous collection of (i) 

physical environmental parameters, (ii) human physiological metrics, and (iii) subjective 

responses of the occupants. The measurement set-up includes different monitoring tools whose 

outputs are therefore synchronized and analyzed. More details about the measurement test 

procedure, implied tools and data analysis are given in the following sections. 

 

3.1.1 Measurement set-up 
 

The tests all took place in the same mechanically controlled environment. It is a house-like 

cubicle located within the Engineering campus of the Perugia University (Italy). The cubicle 

inner dimensions are 3 m × 3 m and the reduced volume allows to control the indoor environment 

by means of the installed air-conditioning system which is a heat pump with an inverter. The 

system provides three different levels of ventilation, i.e. low, medium, and high-speed mode, 

while no air change is provided given the short time duration of each experiment. The Southern 

wall has a rectangular window which is shaded during all the tests to keep a constant illuminance 

level provided only by the artificial lighting system of the test-room . According to collected 

data, the illuminance level provided during all the tests ranged between 237 lx and 389 lx, with 

an average value of 280 lx and a standard deviation of 25 lx. 

The internal conditions were controlled by adjustments of the HVAC operation based on the 

real-time monitoring of indoor physical quantities. In fact, the space is continuously monitored 

by means of a fixed microclimatic station located in the center of the room recording data every 

minute, and the monitoring system datalogger is equipped with a display showing instantaneous 
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values. The monitored parameters are: air temperature at both 1.1 and 0.1 m [°C] from the floor, 

relative humidity [%], superficial temperatures of floor, roof, North and South-facing walls [°C], 

black globe temperature [°C], net-radiation between glazed and opaque surfaces [W/m2], air 

velocity [m/s], concentration of CO2 [ppm], and illuminance level [lux]. The accuracies of all 

involved sensors are reported in Table 1. All the sensors are compliant with ISO 7726 [49]. 

 

Table 1. Technical information of the sensors for environmental parameters monitoring.  

Sensor Parameter monitored Accuracy 

Thermal hygrometer  Air Temperature ± 0.1°C 

  Relative humidity [%] ± 1.5% 

Surface temperature sensor Floor temperature[°C] ± 0.15°C 

  Roof temperature [°C] ± 0.15°C 

  Walls temperature [°C] ± 0.15°C 

Black globe radiant 
temperature sensor 

Mean radiant Temperature [°C] ± 0.15°C 

Hot wire anemometer Air velocity [m/s] ±0.05 m/s 

CO2 sensor CO2 concentration ±50 ppm (±2%) 

Luxmeter Illuminance [lx] ±5% 

 

Predicted Mean Vote (PMV) and Draught Rate (DR) are also computed to get a complete thermal 

comfort evaluation according to formulas provided in current international standard ISO 7730 

[50]. 

The physiological parameters of the tested subject are measured by means of three wearable 

systems: 

- The subject wears a multi-parametric belt, BioHarness 3.0. from Zephyr, with an 

attached electronic module at the thorax level for the ECG signal acquisition (sampling 

rate 250 Hz, Heart Rate accuracy ±1 bpm, operating range 25–240 bpm) [23], [51]. 

Measured data are stored within the device and downloaded at the end of the test.  

- A wireless neural headset with 14 electrodes gives the EEG signal with a sampling rate 

of 128 Hz per channel (operating bandwidth 0.16–43 Hz) [52].  

- Finally, the EDA signal is measured through a BITalino acquisition board (sampling 

rate 100 Hz, operating range 0–1 MΩ) [53]. The subject wears two EDA electrodes on 

the index and middle finger of the non-dominant hand to reduce artifacts movements, 

while the acquisition board and the sensors modules are fixed on the same arm. Open-

Source software allows waveforms acquisition through Bluetooth communication 

protocol. 

Even if the adopted wearable systems have been selected in order not to be invasive for the 

subject, attention is paid to possible discomfort perception due to these systems, as better 
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specified in the following section on experimental procedure. Personal perception about sensors 

was always asked to each subject during the test sessions and eventual discomfort conditions 

were identified as outliers of bias sources during data analysis. 

The subjective information of the subjects was collected directly in the test-room during different 

parts of the test, as it is described in detail in the following section. In this part of the survey, 

questions are developed according to ISO 10551 [54] which is focused on the thermal perception 

assessment. In particular, the sensation vote for each domain is given through a 7-points scale 

going from −3 to +3, where 0 corresponds to neutrality. Figure 10 shows the above described 

experimental set-up. 

 

Figure 10. Experimental set-up: (a)microclimatic station, (b)EEG sensor EPOC+, (c) 

Zephyr Bioharness 3.0, (d)BiTalino sensor, (e) representation of the participant during the 

experiment.  

 

3.1.2 Test procedure 
 

Two different series of measurement were performed, one during the winter season and one 

during the summer season. The winter series includes 34 participants, while 28 participants were 

involved in summer tests, providing a total amount of 62 participants. This sample size was 

estimated according to literature findings: each participant will provide a series of responses 

(personal, physiological and environmental) that will provide an appropriate amount of data to 

be analysed, in line with literature findings [55]. Participants were voluntarily recruited; they 

were affected by no pathologies and the general anthropometric information are resumed in 

Figure 11. 
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Figure 11. Anthropometric information of the participants during summer and winter tests.  

 

The two experimental sessions consist of the same experimental set-up, i.e. same test-room, same 

monitoring sensors, but they are slightly different regarding the procedure, as reported in Figure 

12. 

 

 

Figure 12. Description of the operational conditions of the two tests. 

 



 

32 

During both the campaigns, the subject is firstly exposed to a stabilization period of 20 min 

outside the test-room, in the conditioned spaces of the closest building. The space is conditioned 

at the same temperature settled in the test-room for the first part of the test which corresponds to 

the neutral state according to standards [50], [56], [57], i.e. 20 °C and 25 °C, winter and summer 

respectively. In particular, the initial values of air temperature are selected considering a classic 

level of expectations, i.e. environment belonging to II category, for subjects wearing typical 

clothes for the considered season, i.e. clothing insulation of 1.0 clo and 0.5 clo in winter and 

summer, respectively. The initial temperature set point in summer is 1 °C lower than the value 

suggested by standards, i.e. 25 °C instead of 26 °C, to guarantee reasonable time for the test 

considering the double temperature ramp, as specified later. Such initial temperature 

assumptions are necessary since no specific constraints are given to the subjects considering the 

personal attitude of everyone in wearing comfortable suites according to weather and his/her 

own personal preferences. Nevertheless, clothing information are collected in the first part of the 

survey, as specified in the above section, in order to check the validity of such assumptions 

during the data analysis process. In particular, the clothing thermal insulation of each tested 

subject is computed according to the provided list of worn garments and corresponding thermal 

insulation values provided in standard ISO 7730 [50]. 

During the stabilization period of 20 min before the test, the participant wears the chest strip for 

the ECG recording. Once in the test-room, the subject seats between the microclimatic station 

and the window, and the monitoring set-up is completed by connecting the headset and the 

electrode for the EEG and EDA signals record, respectively. These actions are made by an 

operator staying with the subject in the test-room for the whole test taking continuously notes of 

the expressed perceptions of the subject including possible complaints due to the equipment worn 

for the physiological monitoring. The operator has also the task to carefully check the actual 

indoor conditions as shown by the monitoring system in real-time to be compliant with the 

experimental procedure design. When the set-up is completed, the test starts. 

Procedure here presented is specifically tailored to collect physiological signals and subjective 

responses under varying thermal conditions. These variable conditions are provided in a single 

test-room and thus subjects' responses are observed during both temperature ramps and at 

different constant temperatures. During the first tests series, acclimatization at constant 

temperature is provided in 5 min while 25 min are accounted to reach an air temperature 

increment of about +10 K. The short time of acclimatization is chosen to limit the experiment 

duration and possible participants complains due to worn monitoring equipment. Furthermore, 5 

min is a reasonable time since initial thermal conditions are the same that the subjects 

experienced for 20 min before the test, and the space is gradually warmed up till reaching the 

final temperature of 30 °C. Once verified that physiological sensors do not bother participants, 

the duration of the second tests series is set as long as 65 min. Subjects’ response is tested under 

two temperature ramps with a longer period of acclimatization, i.e. 15 min. Summarizing, during 

winter, the measurement test lasts 40 min in total, progressively: 5 min of acclimatization at 20 

°C, 30 min of warming up with an air-conditioning set-point at 30 °C, 5 min at the same 
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temperature, but increasing the ventilation speed, i.e. from medium to high speed, and 5 min 

with the conditioning system switched off. The operator asks the subject to answer the third part 

of the survey at the end of the first period of constant air temperature at 20 °C, and at the end of 

the whole test. During summer, the test lasts 65 min in total, progressively: 10 min of 

acclimatization at 25 °C, 10 min of cooling down with an air-conditioning set-point at 18 °C, 15 

min at constant temperature, i.e. 22 °C, 15 min of warming up with an air-conditioning set-point 

at 30 °C, 15 min at constant temperature, i.e. 28 °C. The ventilation speed is settled at the high 

mode for the whole test in summer. The operator asks the subject to answer the third part of the 

survey at the end of each period characterized by stable temperature, i.e. at 25 °C, 22 °C, and 28 

°C. During the whole test and for both the seasons, the subject expresses any kind of changes in 

his/her environmental perception. 

 

3.1.3 Data analysis 
 

Due to the variety of monitoring systems adopted in the current experimental work, a first 

process of data synchronization is needed to provide exact correspondence among all the data 

time-series at disposal for the analysis, i.e. environmental data, EDA, ECG, and EEG signals. 

Physiological raw data are therefore processed to reduce signal noise, get a smooth waveform, 

and extract useful features to be correlated to the measured environmental data and subjective 

responses. These features are extracted every minute which corresponds to the environmental 

data sampling rate. Among the different physiological parameters collected, only the ECG is 

considered, since it is the parameter commonly related to thermal comfort assessment in 

literature. Given this assumption, in this research a first analysis is conducted to examine the 

correlation between the trend of the LF/HF (see Section 2.5) with the trend of some 

environmental parameters (air temperature, CO2 concentration, relative humidity, mean radiant 

temperature) and the standard comfort indicator PMV.  

The results of this analysis that will be shown in Section 4.2 suggested that environmental 

parameters are not enough to interpret human thermal comfort perception from a physiological 

point of view. Other drivers affect LF/HF, apart from environmental quantities, maybe linked to 

personal characteristics of the single subject. This behaviour suggests that the non-linearity of 

the problem should be treated with more complex and high-level algorithms. For this reason, an 

AI approach, focused on ML classification is introduced excluding environmental parameters 

and using only physiological quantities to predict the thermal sensation vote of the participants. 

This approach is applied to determine with a certain degree of accuracy the thermal sensation of 

the user that reflects whether user experiences comfort or discomfort without considering 

environmental quantities.  
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3.1.4 ECG signal analysis and validation procedure 
 

The goodness of the proposed methodology is evaluated processing the ECG signal, the derived 

HRV and its related features, including LF/HF ratio, in relation to the TSV expressed by the 

participant during the test. A preliminary analysis of the subject's replies has been performed to 

exclude data potentially affected by biases. The main criteria used for excluding data are: i) 

presence of non-coherent replies (e.g. warm sensation and warmer preference at the same time) 

or ii) complaint expressed by the participant because of prolonged sitting position. In this way, 

a dataset, where discomfort experienced by users can be correlated mainly to thermal 

dissatisfaction, has been created. Therefore, 29 out of the 62 participants are included in this 

analysis. This procedure should ensure that the main drivers that contribute to a perturbation in 

the thermal comfort of the participant, is only the variation in the thermal environment.  

For each participant, before extracting HRV, the raw signal is processed according to the 

procedure shown in Figure 13: initially a mean removal is performed, and the resulting signal is 

filtered with a bandpass filter [0.8–40 Hz] [58]. The signal passes through a 3rd order high-pass 

Butterworth filter with cut-off frequency of 0.8 Hz and the 3rd low-pass Butterworth filter with 

40 Hz of cut-off frequency in cascade. 

The following steps consists of dividing the ECG signal in 5 min consecutive windows and Pant-

Tompkins algorithm for extracting the RR intervals (also named normal-to-normal intervals) 

[59]. This algorithm, recognized in literature as reference methodology, is used to denoise the 

signal and detect QRS complexes in the ECG signal. A QRS complex indicates the presence of 

a beat and therefore its detection is useful to compute RR intervals. A bandpass filter is firstly 

applied to reduce noise, to eliminate movement artifacts, 60 Hz powerline interference and 

baseline wandering. Then a derivative filter is applied to obtain information about the slope of 

the QRS complex, followed by the squaring of the signal which highlights better QRS 

complexes. Finally, signal passes through a moving integrator. 

Then, the HRV is derived from the RR intervals measurement. In particular, time-domain 

measurements include: RMSSD defined as the square root of the mean squared difference of 

successive R-R intervals; SDANN which is the standard deviation of the R-R intervals; NN50 

that represents the number of interval differences of successive R-R intervals greater than 50 ms; 

and pNN50 which is the ratio between NN50 and the total number of R-R intervals. Fast Fourier 

Transform (FFT) is implemented to obtain frequency-domain measurements by computing the 

power spectral density (PSD) of HRV. Three frequency-domain indices are extracted from PSD: 

the very low frequency (VLF) in the range [0.01–0.04] Hz, the low frequency (LF), and the high 

frequency (HF) in the range [0.04–0.15] Hz and [0.15–0.40] Hz, respectively. Finally, the 

computed ratio between LF and HF spectral density provides LF/HF [60]. 



 

35 

 

 

Figure 13. ECG signal processing methodology and HRV features extraction. 

 

3.1.5 Analysis of environmental and physiological quantities 
 

In this paragraph there is the description of the procedure adopted to investigate how LF/HF is 

influenced by environmental parameters. After the synchronization of the signals, Pearson's 

linear correlation is applied between LF/HF and each environmental parameter history, e.g. mean 

radiant temperature (tr), air temperature (ta), relative humidity (RH), PMV, CO2 concentration 

(CO2). 

On this assumption, the correlation analysis conducted in this work first individuates windows 

of 5 min that slide of 1 min for the environmental and LF/HF signals. For each 5-min-window, 

the Pearson's coefficient between the environmental parameters and LF/HF is computed. At this 

point, a vector of Pearson's coefficient is provided for each participant's test and for each 

environmental quantity. The second step consists in considering the percentage of Pearson's 

coefficient that are greater or equal to 75% to evaluate which are the most influencing 

environmental parameters on the LF/HF signals. 

3.1.6 Supervised ML analysis 
 

To predict occupants' thermal comfort starting from the HRV and its indices, supervised machine 

learning (ML) algorithms are here implemented. In this study, six classification algorithms were 

selected: Linear Discriminant Analysis (LDA), K-nearest neighbours (KNN), Decision Tree 

(DT), Naïve Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF) classifiers. 

ML classifiers are applied to four datasets to point out what are the HRV indices that classify 

with higher accuracy human's thermal sensation vote. The first dataset consists on LF/HF; the 

second dataset comprises time-frequency indices, the third dataset is made up by frequency-

domain indices while the last one includes the entire set of estimated HRV indices. The HRV 

indices are used to train the ML algorithms to foresee the thermal sensation surveys used as label 

in the analysis. The datasets are built using the surveys and the related HRV indices of subjects 
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which have provided a realistic survey and excluding all the thermal perception assessment that 

never changed during the test. 

The classification accuracy (A) of each algorithm is computed using a 5-fold cross-validation, 

where the dataset is partitioned into 5 randomly chosen subsets (or folds) of equal size. One 

subset is used by the classifier to validate the trained model using the residual subsets. The 

procedure is replicated by 5 times, so every subset is adopted only once for the validation. The 

accuracy of the model is the average accuracy of each fold.  

3.1.7 Analysis of subjective parameters in relation to thermal 

comfort 
Individual differences in environmental perception are preliminary analysed by coupling the 

expressed thermal sensation and the corresponding measured environmental data. In particular, 

thermal perception expressed by tested subjects in both the seasons, winter and summer, are 

analysed with respect to measured air temperature. 

Thereafter, the dependency of the expressed TSV perception on subjective  characteristics 

is investigated taking into account collected personal information of the subjects, i.e. information 

given in the first part of the submitted survey. This analysis aims to point out the existing 

correlations between the characteristics of the participants, assumed as dependent variables, and 

the perceived sensations expressed through the third part of the survey, i.e. the independent 

variable. Strength of tested hypothesis is expressed by the probability value, i.e. p-value. 

3.2 Measurement procedure and data analysis for 

assessing thermal comfort in semi-controlled 

environment  
 

The methodology discussed in the previous Section 3.1 have laid the foundations for the 

development of the research activity here presented and the tuning of the methodology according 

to its purpose. The work that will be presented in this chapter is different from the previous one, 

and in particular:  

- Participants involved in the experimental campaign are working in a less controlled 

environment, closer to real-life settings; 

- Participants are free to carry out light office activities and were not constricted to stay 

on the dedicated workstation without the possibility of moving for more than one hour; 

- The experimental setup for the acquisition of physiological quantities was reduced to a 

minimally-invasive smartwatch that collects HRV; 

- In the previous work, the sampling frequency of the environmental parameters was 

limited to one sample per minute, which made it necessary to compute the HRV features 

at the same frequency with a smaller number of samples. In this case, the methodology 
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used to extract the HRV features was revised by computing a greater number of 

samples, which in turn positively affects the ML computations; 

- The dataset used to train the ML algorithms was modified, since it includes non-linear 

features of HRV and a different combination of time and frequency-domain parameters 

that has proved to provide better performance; 

- The AI algorithms adopted for computing the thermal sensation vote are used for 

regression rather than classification, since TSV is manipulated differently. 

Given the above assumptions, this second research activity developed within this PhD research, 

aims at demonstrating how the inclusion of some physiological parameters related to human 

thermal comfort measured through a minimally invasive smartwatch can help to improve the 

prediction of occupants’ TSV vote, in semi-controlled environment. In particular, the 

methodology adopted aims at exposing each occupant to different environmental conditions 

generated by a variation in air temperature, relative humidity and air velocity while collecting 

physiological and environmental parameters. 

 

3.2.1 Material and Methods 
 

This section describes the experimental procedure developed to analyse human thermal 

perception in response to different external thermal stimuli. The test took place in KUBIK 

(Bilbao, Spain), Figure 14, which is a full-scale experimental infrastructure where research and 

development activities for energy efficiency purposes are carried out. The facility is mainly used 

to develop and test new solutions that could reduce energy consumption in buildings and, at the 

same time, improve the thermal comfort experience of occupants in indoor environments. The 

building’s main functionality is its capability of creating realistic conditions for the purpose of 

analyzing energy efficiency, thanks to the intelligent management of its HVAC and lighting 

systems. A complete description of the structure is provided in [61]. The experimental procedure 

developed for the purpose of this study was performed on the first floor of the building; the 

planimetry of the floor is reported in Figure 15.  
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Figure 14. External appearance of the 

Kubik facility. 

 

 

 

 
Figure 15. Planimetry of the floor in 

the facility where the tests were 

performed. 

 

 

Respect to the previous work described in Section 3.1, more than one experiment was conducted: 

three different trials were conducted, all of which aims at exploring human thermal response to 

warm induced comfort, cold induced discomfort and transient environment conditions. The first 

trial aimed at creating cold-induced discomfort (Experiment 1), the second created warm-

induced discomfort (Experiment 2), while the third test was performed by generating a transient 

temperature variation over time (Experiment 3). The three tests, which are described in detail in 

the following sections, were built in a similar way: they all included a first stage of 

acclimatization performed in Room A and a second stage conducted in Room B in which room 

temperature, relative humidity and air velocity varied. Room A was equipped with a dedicated 

workstation consisting of a table and chair to simulate light office activities. Room A was always 

kept at a neutral temperature according to users’ sensation. The average indoor temperature 

recorded in room A was between 19°C and 21°C and the set-point of the HVAC system was 

20°C; the test performed in room A was necessary to collect the baseline analysis before the user 

is exposed to a discomfort condition in room B. To this purpose, since the ground truth is the 

TSV, the test in room A started only if the user was in comfort or not.  Room B was also equipped 

with a desk and chair to simulate light office activities. The temperature in Room B was set by 

an HVAC system controlled remotely from outside the room. Test Room B, Figure 16 , has three 

outdoor exposed elements, i.e. rooftop, west and south façades. 
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Figure 16. Picture of room B used to create a discomfort condition for the participants. 

 

3.2.2 Participants 
 

Ten volunteer participants (5 female and 5 male subjects) were recruited for Experiment 1 and 

Experiment 2, while 13 participants (7 female and 6 male subjects) were recruited for Experiment 

3. The anthropometric information of the participants is summarized in Table 2. The participants 

were required to wear their everyday clothes. The reason behind this requirement is that people 

have a different thermal sensation when wearing different clothes, therefore, this condition helps 

to preserve the subjectivity of the test, because participants’ perception is not subjected to a bias. 

The clothing thermal insulation Icl (Table 2) was computed indirectly, by summation of the 

partial insulation values for each item worn by participants. The set of garments worn by 

participants was collected and the procedure suggested by ISO 9920 was adopted to evaluate the 

Icl [62].All the participants gave written informed consent to use their personal data and were 

duly informed about the goal of the research. 

 

3.2.3 Experimental set-up 
 

Table 3 illustrates the environmental parameters recorded and the characteristics of the sensors 

installed in Room B for monitoring purposes. The measurement set-up of the sensors in Room 

B is displayed in Figure 17. ISO 7726 Standard was adopted to assess the thermal environment 

of Room B. Air temperature was measured by four thermocouples placed in different positions 

of Room B.  The thermocouples (t2, t3, t4) were mounted on the perimetral walls of the room, at 

1.4 m from the ground (Figure 17). Thermocouple t1 was instead positioned close to the 
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workstation the participants were sitting at during the experiment to record air temperature. 

Actually, three thermocouples were positioned close to the workstation at different heights (0.1 

m, 0.6 m and 1.1m). However, for the purpose of this study, only the air temperature (ta) 

measured at height 1.1m (t1) was considered [49].  The anemometer was placed at 1.25 m from 

the window and 1.10 m from the ground; the relative humidity (RH) sensor was placed at 0.7 m 

from the floor and 1.25 m from the window. The globe thermometer was placed close to the 

workstation, 1.10 m from the floor. Each sensor collected data every 5 seconds. All the data 

collected were sent to an acquisition board that saves data locally.  

Table 2. Anthropometric information of the participants involved in the tests and the 

experiments attended. 

User Gender Age 
Height 

(cm) 

Weight 

(kg) 
BMI 

Icl 

(clo) 
Race 

 Experiment 

attended  
 

1 F 26 165 64 24 0.80 Eu  1,2,3  

2 F 33 179 70 22 0.70 Eu  1,2,3  

3 M 29 187 108 31 0.67 Eu  1,2,3  

4 M 35 173 70 23 0.62 Eu  1,2,3  

5 F 25 168 57 20 0.76 Eu  1,2,3  

6 M 27 178 72 23 0.72 Eu  1,2  

7 M 37 172 68 23 0.67 Eu  1,2  

8 M 39 189 75 21 0.73 Eu  1,2  

9 F 32 161 56 22 0.67 Eu  1,2  

10 F 47 156 59 24 0.73 Eu  1,2  

11 M 27 190 88 24 0.66 Eu  3  

12 M 31 186 75 22 0.83 Eu  3  

13 F 24 178 56 18 0.80 Eu  3  

14 M 32 183 90 27 0.83 Eu  3  

15 F 27 165 62 23 0.60 Eu  3  

16 M 27 173 75 25 0.68 Eu  3  

17 F 34 179 67 21 0.85 Eu  3  

18 F 28 175 63 21 0.91 Eu  3  

Mean  31 175 71 23 0.74    
 

STD   6 10 13 3 0.09       

 

During the test, the participants were provided with a smartwatch that continuously recorded 

their HRV signal. The smartwatch model was a Samsung Galaxy Watch and the participants 

were asked to wear it on their non-dominant wrist.  The physiological parameters collected were 

saved locally on the internal storage of the smartwatch and simultaneously sent to a smartphone 

via Bluetooth communication. For the purpose of this study, a dedicated Javascript application 

was implemented. The App collected each HRV sample in real-time and displayed it on a chart 

that was uploaded in real-time. This application was useful for verifying the correct functioning 
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of the smartwatch during the acquisition and saving an additional copy of the HRV signals on 

the internal memory of the smartphone. 

Table 3. Technical information of the sensors employed to collect environmental quantities 

inside the test room B. 

Sensor Manufacturer Model Accuracy 

Air  

Temperature 

Thermo Sensor 

GmbH 

PT100 (4 wired) 

2113-1-074 

± 0,1 ºC 

Relative  

humidity 

Ahlborn FHAD46C41A ±2% of 

reading 

Air velocity Ahlborn FVAD05TOK300 ±1% of 

reading 

Globe 

temperature 

Ahlborn FPA805GTS ± 0,1 ºC 

 

 

Figure 17. Measurement set-up in Room B including furniture and sensor location. 

 

3.2.4 Thermal sensation vote 
 

During the three experiments the participants were asked to express their thermal sensation vote 

(TSV) whenever they experienced a different TSV from the previous instant. The TSV expresses 

an occupant’s thermal sensation; in this specific context, the ASHRAE 7-point scale was used, 

which is based on the measurement of how warm or cool an occupant feels. For this reason, 

during the different experiments, the participants were required to express a vote from -3 to +3, 

according to their thermal sensation. Each vote represented a particular sensation: cold (-3), cool 

(-2), slightly cool (-1), neutral (0), slightly warm (+1), warm (+2), hot (+3). TSV was not 
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collected with a specific frequency during the test, but it was expressed by the participants 

whenever there was a change in their TSV. Figure 18 (a-c) shows an example of the TSV 

collected in each experiment for a single participant. 

 

 
  

(a) (b) (c) 

Figure 18. (a) TSV trend during Experiment 1 for one participant. (b) TSV trend during 

Experiment 2 for one participant. (c) TSV trend during Experiment 3 for one participant. 

 

3.2.5 Experiment description 
The three experiments were performed on three consecutive days both in January 2020 and 

January 2021. During the three experiments the participants were sitting at a workstation and 

could perform light office activities (e.g. reading, working on the laptop). The tests were built as 

follows (Table 4): 

Cold-induced discomfort (Experiment 1). Each participant started the trial outside the test-

room, in a thermally comfortable environment (Room A). When the participant claimed to be 

thermally comfortable (which means that the TSV was equal to 0), the test started and lasted for 

10 minutes. This initial part was necessary to collect the participant’s baseline signal. The 

participant then moved inside the test-room (Room B), whose set-point temperature was set at 

15°C and the window was kept open to vary air speed and relative humidity. The test in Room 

B lasted for 15 minutes.    

Warm-induced discomfort (Experiment 2). Similarly to Experiment 1, each participant started 

the trial outside the test-room, in a thermally comfortable environment and the baseline signal of 

HRV was collected. When the participant claimed to be thermally comfortable (which means 

that the TSV was equal to 0), the test started and lasted for 10 minutes. This initial part was 

necessary to collect the participant’s baseline signal. The participant then moved inside the test-

room (Room B), whose set-point temperature was set at 26 °C. The test in room B lasted for 15 

minutes. In this case the window was kept closed, but a fan system was used to air the 

environment and facilitate the diffusion of heat around the room. 

Transient air temperature (Experiment 3). This experiment was different from the previous 

ones, because air temperature in Room B was not kept constant but varied over time. The profile 
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temperature was created as follows: Room B was previously set at 15°C for 5 minutes, then 

temperature set-point was set to heat the room up to 26°C for 5 minutes, then temperature was 

set back to 15°C. The temperature profiles created for each of the three experiments are showed 

in Fig. 5. This range of temperature variation, from +15°C to 26°C, was identified in line with a 

previous work that considered a variation from +20°C to 30°C [49]. The lower temperature was 

further decreased to induce a colder sensation environment compared to a comfort condition 

during winter season. In addition, the tests performed in the previous work were executed with 

a total duration of 40 minutes, in this work the total duration was lengthened up to 100 minutes. 

The three experiments were conducted in a silent and quiet room, isolated from external stimuli 

that could act as an interference in the measurement of HRV. This procedure should guarantee 

that the greatest perturbation to the participants’ condition is due to the variation in indoor 

temperature. In order to avoid possible motion artifacts, participants were instructed to limit wrist 

movements as much as possible and were advised to keep the hand of the arm with the 

smartwatch in a specified position indicated by a visual sign placed on the desk. Before starting 

each experiment, it was verified whether the participants were bothered by the sensor equipment 

and whether they felt comfortable in maintaining the required position at the desk.  

Table 4. Description of the three experiments conducted. 

 Room Duration Indoor Temperature 

Experiment 1 A 10 min Neutral (19 - 21 °C) 

 B 15 min Cold (15°C) 

Experiment 2 A 10 min Neutral (19 - 21 °C) 

 B 15 min Cold (26°C) 

Experiment 3 A 10 min Neutral (19 - 21 °C) 

 B 5 min 15°C 

   up to 26°C 

  5 min 26 °C 

   down to 15°C 

 

To evaluate and assess the thermal environment, the specifications and methods of ISO 7726 

Standard were followed. To evaluate the horizontal homogeneity of the air temperature, 

according to ISO 7726, the deviation between each air temperature value measured in one point 

and the mean value was compared with the multiplication of the required measure accuracy by 

the appropriate X factor equal to 4. The procedure was replicated throughout Experiment 3 in 

three different instants of time (t1, t2, t3). The deviations are reported in Table 5. Figure 19 reports 

the trends of the environmental parameters measured using the configuration of Figure 17.  
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Each participant in Experiment 3 was exposed to the same environmental conditions, as shown 

in Figure 19, which display the average trend of each parameter during Experiment 3 and the 

maximum standard deviations in three different instants of time. Figure 19 also reports the 

average trend of the mean radiant temperature (tr) and the operative temperature (top), computed 

from the formulas listed in ISO 7726. 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 19. Average profile for each environmental parameter, with the maximum deviation 

computed among all participants. (a) Air temperature in point T1. (b) Operative temperature. (c) 

Mean radiant temperature. (d) Relative humidity. (e) Air velocity.  
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Table 5. Deviations of air temperature at the different locations in test room B at different 

time instants. 

Homogeneity of the environment 

 
(°C) 

time T1 T2 T3 T4 

t1 -1.1 -0.5 -1.2 -1.2 

t2 -2.1 -0.5 -2.6 -0.1 

t3 -2.2 -0.4 -1.9 -1.4 

 

3.2.6 Data processing 
 

This paragraph contains a detailed explanation of how each signal (physiological, environmental 

and personal) collected during the three experiments, was analyzed. For each participant, the 

environmental data, physiological data and the TSV collected during the tests were processed. 

Data processing was an essential step for the extraction of the proper set of features necessary to 

predict TSV. 

 

3.2.6.1 HRV analysis 
 

HRV signal extracted from the smartwatch undergoes a process of filtering and outliers’ 

removal, since PPG-derived HRV can be deeply influenced by artifacts due to small movements 

of the arm or loose adherence of the smartwatch to the skin surface, which might generate 

unwanted sources of external light that negatively affect the PPG signal. In [34], which is a 

research activity conducted in the context of this PhD thesis, a preliminary experiment to 

compute HRV uncertainty in resting conditions was conducted. The uncertainty in the 

monitoring of HRV through the Samsung Galaxy smartwatch compared with a multi-parametric 

belt, BioHarness 3.0 was ±0.95%. Outliers were detected using a straightforward thresholding 

methodology consisting in the comparison of the actual HRV sample with the previous one and 

considering it an outlier if it differed from the previous value by more than 50% of the mean 

value of a time-window of one minute. The outliers detected were replaced with the previous 

uncorrupted interval [13], [25]. 

3.2.6.2 HRV windowing and indices computation 
 

Once the outliers were detected, the resulting HRV signal was divided into time frames built as 

follows: the first time frame corresponded to 5 minutes of the HRV signal, since this duration is 

the minimum time recommended for short-term HRV series to compute the spectral analysis 
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[26]. After the extraction of the first window, a new window was computed by appending a new 

HRV sample interval of the signal, while the oldest sample was removed from the beginning of 

the window. The process was repeated until the end of the signal [63]. According to literature 

[64], several HRV features to be extracted from the HRV signal were identified. Time-domain 

HRV features (f(HRVt)) are a collection of statistical and geometrical indices for the 

measurement of the variability in the HRV sequence that act as indices to interpret the 

oscillations of cardiac cycles. The (f(HRVt)) statistical indices computed in this study are 

SDANN, RMSSD, MEAN, MEDIAN, PNN50, PNN25. In addition, HRV studies imply the use 

of frequency-domain features (f(HRVf)), which are useful for the understanding of the 

stationarity or stability of the HRV signal. To obtain the frequency-domain analysis, the first 

power spectral density (PSD) was computed through the autoregression modeling-based method 

that has proven to provide better resolution. 

 

Table 6. Description of the HRV features extracted. 

Domain Time Domain f(HRVt) Frequency Domain f(HRVf) Non-Linear f(HRVnl) 

Name SDANN 
RMSS

D 
MEA

N 
MEDI

AN 
PNN50 PNN25 LF HF 

LF/
HF 

HF/
LF 

TP SD1 SD2 SD1*SD2 

Descript
ion 

Standa
rd 

deviati
on of 
the 
HRV 

series 

Root 
mean 

- 
squar

ed 
error 
of the 
HRV 

series 

Me
an 

valu
e of 
HRV 

Medi
an 

value 
of 

HRV 

% of 
adjac
ent 
HRV 

sampl
es 

differi
ng by 
more 
than 

50 ms 

% of 
adjac
ent 
HRV 

sampl
es 

differi
ng by 
more 
than 

25 ms 

Low 
freque

ncy 
band 
of the 
HRV 

power 
spectr

um 

High 
freque

ncy 
band 
of the 
HRV 

power 
spectr

um 

Rat
io 
of 
LF 
to 
HF 

Rat
io 
of 
HF 
to 
LF 

Total 
Power 
of the 
HRV 

power 
spectr

um  

Poinc
arè 
plot 

index 
of the 
short-
term 
HRV 

Poinc
arè 
plot 

index 
of the 
long-
term 
HRV 

Combina
tion of 

SD1 and 
SD2 

 

Each frequency band was then computed: LF (0.04-0.15 Hz) and HF (0.15 - 0.4 Hz), LF/HF, 

HF/LF and the total power spectrum (TP). Non-linear features (f(HRVnl)) were also computed 

through the Poincarè plot. The Poincarè plot is a graphical representation of an HRV time series 

along the cartesian plane: the X-axis contains one HRV sample, while the Y-axis contains the 

following HRV sample. The Poincarè plot provides two additional features obtained by adjusting 

the point cloud of the figure formed into an ellipse, obtaining SD1 and SD2. The list of all the 

HRV features computed are shown in Table 6. 

 

3.2.6.3 Thermal sensation vote processing 
 

As previously written, during the experiment TSV was not collected with a predetermined 

frequency. The participants, in fact, communicated their vote as soon as they perceived a 
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different sensation with respect to the previous one. Therefore, the TSV vector was built with 

one sample per minute. Each TSV sample used to perform the analysis was obtained by building 

TSV windows in the same time interval of the corresponding HRV window, and the final value 

was obtained by averaging the TSV window. 

  

3.2.6.4 Binary classification between comfort and discomfort 
 

Three ML classification algorithms, selected from literature, were used to predict human thermal 

comfort expressed through TSV. The algorithms are Support Vector Machine (SVM), Random 

Forest (RF) and the Extra Tree Classifier (ETC). Experiment 1 and Experiment 2 were built in 

order to investigate whether it was possible to distinguish “Comfort”, which results in TSV equal 

to 0, and “Discomfort”, expressed in terms of TSV with the remaining values of the ranking 

different from 0. In Experiment 1 the participants were exposed to a neutral environment inside 

Room A and immediately after to a cold environment inside Room B. In Experiment 2, the same 

procedure was applied, but in this case Room B generated hot-induced discomfort. The level of 

activity of the participants during the experiment, the clothing insulation and the experimental 

set-up used were the same in both rooms, therefore, the only variable that changed over time was 

the air temperature, which in turn generated a different thermal sensation vote. This part of the 

study was therefore focused on the ability of an ML classifier to distinguish between comfort 

and discomfort of the participants starting from the LF/HF, HF and LF extracted from HRV, 

which are connected to the thermoregulation mechanism. The HRV values were normalized to 

include robustness to very small standard deviations of the features and preserve zero entries in 

sparse data. In this context, the TSV that has to be predicted was manipulated in order to have a 

binary classification as follows: in both Experiment 1 and Experiment 2 every TSV different 

from 0 collected was categorized as “Discomfort” while every TSV equal to 0 was categorized 

as “Comfort”. One participant in Experiment 1 was excluded from the analysis because in both 

Room A and Room B the vote expressed was 0, so the participant did not experience any 

discomfort. 6 participants were considered for the analysis of Experiment 2, because the resulting 

TSV in Room B for 4 participants was always 0. To avoid overfitting of the three classifiers, the 

validation of the model was conducted by performing a k-fold cross-validation using 10 folds. 

The metrics for evaluating the performance of the classifiers is the accuracy (A) computed 

according to Equation 1: 

 

 

 

(1) 

 

where TP is the True Positives, TN is the True Negatives, FP is the False Positives and FN the 

False Negatives. 

𝐴 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 1 
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3.2.6.5 Prediction of thermal discomfort in transient environment in 

Experiment 3 
 

Experiment 3 was conducted to investigate the human body response under transient 

environmental conditions obtained with small step changes in air temperature profiles. The 

temperature profile created in this experiment differs from the ones in Experiment 1 and 2, since 

it is generated by creating small variations of air temperature over time, which is what typically 

happens in office buildings. The complex mechanism of thermoregulation results in a strong 

non-linearity of the features extracted from HRV and this is the reason why ML techniques can 

provide support to find relationships between non-linear variables. The data obtained from 

Experiment 3 were processed in order to create 2 different datasets: the first dataset (FH) was 

built with HRV variability features (f(HRVt), f(HRVf) and f(HRVnl); the second dataset (FH+E) 

was built by joining physiological and environmental quantities. Before using ML, the ta, RH 

and v recorded in Room B needed to be processed. This procedure was essential because 

Experiment 3 implied a transient air temperature that varied continuously during the test and, to 

proceed with the analysis, it was necessary to associate one sample of each parameter to each 

time window of HRV. For this reason, windowing was applied to each environmental quantity 

by delimiting each window with the corresponding time interval that delimits an HRV window. 

From each environmental window, the mean value was computed. This procedure can be 

explained by the fact that 5 minutes of HRV, and in particular of LF/HF, are strictly connected 

to the variation of the environmental quantities in the same time interval [65]. Five different 

regression ML and DL algorithms were used to predict the TSV of each participant in the 

transient environment: Support Vector Machine (SVM), Random Forest (RF), Multi-Layer 

Perceptron (MLP), 1-dimensional CNN and LSTM. All the algorithms were trained and tested 

using Python libraries keras and sklearn. 

An MLP artificial neural network is made of an input layer, one or more hidden layers of artificial 

neurons and an output classification layer. The network is particularly indicated for nonlinear 

problems, because of its ability to learn new relationships between parameters by updating the 

weights of the connections between the neurons of consecutive layer [66]. For the purpose of 

this research, MLP was trained with a number of hidden neurons set to 8, which is strictly 

connected with the size of the training data dimension. The regularization parameter alpha (α) 

was determined using the grid search algorithm, whose function is to take a set of possible values 

of the chosen parameters and find the best combination [64]. The grid search algorithm provided  

α = 0.01. 

The LSTM model was created as follows: the network weights were optimized by minimizing 

the loss function using the “ADAM” optimizer. The LSTM hidden layer was made by 100 

dimensions, a dropout layer to reduce overfitting, followed by a fully connected dense ReLu 

layer with 100 outputs and a final output layer to obtain one output for the regression. The model 

was trained for 15 epochs with a batch size of 50. 
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The architecture of the 1D-CNN proposed included 3 Convolutional layers, one pooling layer 

and an output layer that returns a single value to predict TSV. Each convolutional layer had 64, 

32 and 16 layers, with the ReLu activation function and was followed by a dropout layer for 

regularization. After the convolutional layers and the pooling, there was a flatten layer that 

transformed the features learned into a one-dimensional vector that was then sent to a fully 

connected layer to make regression predictions. 

The validation of  each algorithms on the two datasets was performed by using the Leave-One-

Subject-Out (LOSO) procedure, which consists in training the algorithm on all the subjects 

except one, which is used for the validation [27]. The metrics for the validation of regression 

algorithms were expressed in terms of Mean Absolute Error (MAE) and Mean Absolute 

Percentage Error (MAPE), computed as follows in Equation 2 and Equation 3. 

 

 

 

(2) 

 

 

(3) 

 

Where n is the number of observations, yi is the actual TSV and xi is the predicted TSV obtained 

from the ML model. 

3.2.7 Impact of the measurement uncertainty on the monitoring 

of thermal comfort through AI predictive algorithms 
 

One of the main aspects that come up from the study in Section 3.1 and Section 3.2 is that the 

human centric approach for measuring thermal comfort is based on the measurement of a 

heterogeneous set of data, (i.e., environmental, physiological and personal parameters such as 

the TSV). Physiological quantities are represented by HRV and its derived measurements; 

environmental quantities comprehend air temperature, air velocity or relative humidity. Personal 

information is instead represented by the TSV.  

Physiological, psychological and personal parameters are progressively included in the 

measurement setup of thermal comfort, to encourage a more customized environment carefully 

tailored to the distinct preferences of the occupants that live in it. As it was possible to appreciate 

is study of Section 3.1 and Section 3.2, personalized thermal comfort measurement typically 

requires an extensive range of sensing devices that make up a sensors network (e.g., 

thermocouples, anemometer, smartwatch). Since each sensor is properly characterized by 
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measurement uncertainty, it is significant to include in the measurement process how this 

uncertainty, associated with each parameter, affects the final measurement of thermal comfort. 

 This aspect is even more justified since, in all research fields, it is routinely accepted by the 

scientific community that the result of a measurement process promptly loses its meaning if an 

uncertainty value is not associated with it [67]. The traditional concept of measurement 

uncertainty must therefore be associated and applied to modern techniques, as in the case of 

artificial intelligence (AI) algorithms, which are finding more and more space in the 

measurement process. In support of this claim, literature reports that when small variations are 

applied to data, and variations are represented by the measurement uncertainty associated with 

the data collected, AI provides completely misleading results [68].  

Moreover, the personalization of thermal comfort by means of heterogeneous dataset, is making 

necessary the employment of AI algorithms, such as ML or DL algorithms. The reason behind 

the use of AI for personalized thermal comfort measurement is that the measured output is 

dependent on several parameters, i.e., physiological and environmental parameters, that compose 

the measurement system. 

The application of AI in the measurement of human thermal comfort in the built environment, is 

becoming preferable because the adopted dataset is composed of two categories of parameters, 

which comprise the environmental and physiological parameters. A third category is also added 

to this dataset, made up of subjective parameters, expressed by the TSV. The union of these 

quantities generates a complex and heterogeneous dataset, making necessary the employment of 

AI, which comprises models comparable to a black box [69]. There are strong non-linear 

relationships among the parameters included in this heterogeneous dataset, which suggests that 

this relationship should be explored with more complex and high-level algorithms, included in 

the AI field [65], [70]. 

AI measures its performance in terms of accuracy, which is expressed through different metrics, 

depending on the type of algorithm adopted, and the type of data being measured; for example, 

when the measured quantity is binary, or is made by discrete values, or class, performances are 

measured using accuracy, recall or precision; in case of AI used for measuring continuous 

quantities, the most used metrics are the mean absolute error (MAE), mean absolute percentage 

error (MAPE), and mean squared error (MSE). Of course, the accuracy of AI-based models, is 

strictly linked to the selected algorithm as well as the quality of the dataset, that is deeply 

connected to the uncertainty of the measured data [69], [71]. 

The method for the estimation of the uncertainty is described in the Guide to the expression of 

uncertainty in measurement (GUM) [72], which is based on the law of propagation of 

uncertainties (LPU). Given the strong non-linearity of the relationship that exists between the 

input quantities and the output quantities of AI algorithms, the evaluation of the uncertainty 

associated to the output quantity is hard to assess if the LPU should be used. When it comes to 

non-linear relationship, the GUM has proposed in its supplement [12], the evaluation of the 
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uncertainty by using the Monte Carlo method (MCM), which allows to assess the uncertainty 

even if the relationship among quantities is not linear, and the analytical equation between 

quantities is not known, but it can be assumed as black box, as happens in the context of AI 

models. The MCM represents a more practical alternative of the conventional LPU method, 

when it is not possible to effectively verify the hypothesis assumed by the LPU [71]. For this 

reason, this work studies the impact of the measurement uncertainty of a sensors network to 

measure thermal comfort, using AI models. To quantify and access the factors that affect the 

outcome of a measurement process through MCM, there are two methodologies that can provide 

this information: a sensitivity analysis and a measurement uncertainty analysis  [73]–[76]. Both 

of them are now applied to AI models, the first one to analyze how much each uncertainty 

weights on the measurement of the model’s outcome and the second to identify and quantify 

what are the main sources of uncertainties in the measurement [77]. This second part of the study 

deals with a procedure to evaluate the impact of the uncertainty of the input data on the thermal 

sensation measurement output, using the AI algorithm mentioned in Section 3.2.6. The study is 

structured as following:  

a) First of all, MCM is applied to the raw HRV signals coming from different 

participants, to see how the uncertainty in the measurement of HRV impacts the 

computation of the HRV features, since they are fed into AI algorithms, to extract 

the TSV. The standard uncertainty, associated to the measurement of HRV, chosen 

for this analysis is ± 4 ms, computed from a previous study in which the smartwatch 

was compared to a reference method while participants were sitting at rest [24]. 

This preliminary analysis can be useful to establish if measurement uncertainty of 

the smartwatch, used to assess HRV and derive its features, has the same impact 

on each participant’s data, by having similar measuring uncertainty for each 

 

b) Secondly, MCM is applied to both physiological and environmental parameters 

used as input to the AI algorithms (RF and CNN), to evaluate how the measurement 

uncertainty propagates to the output, in black box methodology such as AI 

algorithms. The uncertainty used for the environmental quantities are the standard 

uncertainty provided from the datasheet of each device, while HRV is perturbed 

with different values of uncertainty that ranges from ± 4 ms to ± 100 ms. This range 

of values is chosen because literature has highlighted that, depending on the activity 

level performed by participants is wearing the smartwatch and it is completely in 

resting conditions, the uncertainty associated to the measurement of the HRV is ± 

4 ms, while is greater than or equal to 100 ms when the user is performing a motion 

test [34], [35]. The research described in [34] and [35] were necessary since 

commercial smartwatches are not provided with precise datasheets that define the 

measurement uncertainties of the measured quantities. This is one of the problems 

being encountered in literature when it comes to working with low-cost sensors and 

often sensors that are not designed for research purposes. The results are used to 
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perform a sensibility analysis related to ± 4 ms of uncertainty, to examine the 

contribution of the uncertainties associated to the TSV measurement, in relation to 

the uncertainties of the input parameters. 

The methodology described in Figure 20 is adopted: the first assumption is that each data coming 

from a measurement process is characterized by two quantities which are the data itself and the 

associated uncertainty. Collected data from sensors network are merged together to build the 

heterogeneous dataset, that comprises the set of data and the associated uncertainties; therefore, 

when AI is applied in the measurement process, the model takes as input also the uncertainty of 

the collected data. Therefore, it is expected that the results of the AI model derive from two main 

aspects: the first one is the intrinsic structure of the algorithm, while the second one is uncertainty 

associated with the input data.  The evaluation of the impact of the uncertainty associated to the 

input data in the measurement output, when AI is applied, is a paramount result. There is one 

intermediate aspect that should be considered, which is the impact of the uncertainty of the AI 

models, that will be combined with the uncertainty of the measurement instrument. The last part 

of Figure 20 deals with two types of analysis which are the sensitivity analysis (SA) and the 

uncertainty analysis, performed by MCM.  

 

Figure 20. Conceptual description of the procedure adopted to study the impact of the 

measurement uncertainty in the context of AI model.  

 

The procedure of the MCM consists in using data, acquired through real experiments, and 

perturbing them by assigning different measurement uncertainties or perturbation. Each input 

parameter is modified, by adjusting it with a different perturbation, one at a time, while the other 
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input variables are kept unchanged. Based on the obtained results, the effect of different 

measurement uncertainties on the prediction of the TSV is observed through the simulation of 

perturbed data. The described methodology summarizes the steps to evaluate the measurement 

uncertainty of different parameters, used as input variables (or predictors) in AI algorithms, 

applied for the measurement of personalized thermal comfort, expressed through the TSV. The 

GUM supplement provides the step necessary to perform the MCM. From a general point of 

view, MCM provides a general approach to numerically approximate the cumulative density 

function (cdf) of the output of a certain quantity 𝑦 = 𝑓(𝑥). The main concept behind MCM is 

that every sample of the input quantity 𝑥𝑖, chosen from a predetermined distribution can be used. 

In this way, by taking a random sample of each input 𝑥𝑖 , from its related probability distribution 

function (pdf), it is possible to estimate a possible result of the output 𝑦 and the associated 

uncertainty. 

To explain how MCM is adapted in the context of this research, the following steps were applied: 

1) The number of trials M of Monte Carlo trials is set to 200,000. M is the number of 

output quantity values that needs to be selected; in this study, it is chosen a priori. 

Usually, a number of trials equal to 106 are considered, which is the number of trials 

that should provide a coverage interval of 95%, as reported in the GUM supplement 

[78]. Since it is commonly accepted that, the higher the number of trials, the higher 

is expected the convergence of the results, the number of Monte Carlo trials (M) was 

set to 200.000, as reported from literature [79]; 

2) M vectors 𝑥𝑖 , 𝑖  = 1, …, M, were generated, by selecting randomly from the 

probability density function (PDF) of each input quantity [𝑥𝐻𝑅𝑉 , 𝑥𝑡𝑎 , 𝑥𝑅𝐻 , 𝑥𝑣𝑎  ] in 

order to realize a set of possible input that can be associated to the input quantity. 

The random sample is obtained from a gaussian distribution, with uncertainties 

described in Table 7. 

3) For each vector generated in step 2, the corresponding output y (or TSV in this case) is 

computed, yielding to M vector output quantity values 

a. Point 3 is applied to estimate the uncertainty associate to the measurement 

of the HRV features; 

b. In addition, point 3 is applied, perturbing the features used as input in the 

ML and DL models.  

5) The representation G of the distribution function for Y is computed, starting from the 

set of M output of Y; 

6) G is used to compute an estimate 𝑦 of Y and the covariance matrix 𝑢𝑖 associated with 

𝑦; 

7) G is used to compute the appropriate coverage region for Y, for a stipulated coverage 

probability p;  

 

Table 7. Characteristics of the measurement instrument used in the test.  
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Input Quantities Manufacturer Model Type Distribution Standard Uncertainty 

Air temperature (ta) Thermo Sensor GmbH PT100 (4 wired) B Normal ± 0,1 ºC 

Relative humidity (RH) Ahlborn FHAD46C41A B Normal ±2% of reading 

Air velocity (va) Ahlborn FVAD05TOK300 B Normal ±3% of reading 

Heart rate variability (HRV) Samsung Samsung Galaxy Watch B Normal ± 4 ms 

 

In the framework of this research, there will be reference to a generical model, with a number i 

of input 𝑥𝑖  and one output 𝑦, which is the measured quantity. The input parameters used in this 

study to measure TSV, are referred to the experimental campaign presented in Section 3.2, in 

particular with reference to Experiment 3, in which participants were exposed to a transient 

variation of the indoor environmental quantities, which is the closer condition to real-life 

settings.  

 

3.2.7.1 Monte Carlo approach on HRV features 
 

In this first part of the analysis, MCM is used to estimate how the uncertainty of the device 

through which the HRV is collected, influences the computation of the HRV features, that will 

be lately used to evaluate human thermal comfort. HRV signal, which is made by the distance in 

time of two subsequent RR peaks of the ECG trace, is divided into time frames from which it is 

possible to extract some indices (or features). Each time frame is built as follows: the first time 

frame corresponded to 5 minutes of the HRV signal, which is considered the minimum time 

duration recommended for computing HRV spectral analysis. After the extraction of the first 

window, a new window was computed by appending a new HRV sample interval of the signal, 

while the oldest sample was removed from the beginning of the window; the process was 

repeated until the end of the signal. HRV features included in this study were already described 

in Section 3.2.6.1, Table 6.  

In this section, there is a first analysis made specifically on the individual features of the HRV. 

In practice, we want to assess how it is the uncertainty measurement of each feature, when the 

smartwatch is affected by a specific uncertainty in the measurement of HRV; the procedure is 

summarized in Figure 21. First of all, one HRV window of 5 minutes is considered. This window 

will be perturbed with a random sample coming from a normal distribution with mean equal to 

0, and standard deviation equal to (U), for 200,000 iterations. The perturbed HRV segment will 

be used to compute HRV features in order to establish the impact of the uncertainty. The final 

uncertainty is computed as the standard deviation of the resulting HRV, by a coverage factor k 

= 2.  For the simulation study, 13 segments (one for each participant to Experiment 3) of HRV 

of a duration of 5-minutes, were extracted from the set of experimental procedure described 
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previously. The duration of 5 minutes is required because is the minimum time required to 

compute short term HRV features.  

 

 

Figure 21. Description of the MCM adopted to evaluate the impact of the smartwatch 

uncertainty on the HRV features that will be used to measure and assess human thermal comfort. 

 

3.2.7.2 Monte Carlo approach on AI models for measuring human 

thermal comfort   
 

For this second part of the analysis, the set of HRV features, explained in Figure 22, was chosen 

[80].  Figure 22 also shows the approach used to apply MCM and AI: a set of input parameters 

was used to train RF regression algorithm and a CNN, to predict the TSV, output of the 

algorithm. Once the models are trained, the procedure consists in perturbing the input parameters 

(HRV, ta, RH, va) one at a time, with different uncertainties, maintaining constant the other 

quantities, and applying the trained model to each perturbed set of features, to obtain the final 

measurement of the TSV. It is worth noting that the current analysis is conducted locally, by 

choosing one observation of the whole dataset; the final result is therefore associated to the 

chosen observation. Characteristics of the sensors used to collect environmental parameters, and 

the measurement uncertainty employed to perturbate the different parameters are showed in 

Figure 22. 
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Figure 22. Description of the procedure adopted to apply MCM to the measurement of 

thermal comfort, with a heterogeneous set of data 

 

3.2.7.3 Sensitivity Analysis 
 

A sensitivity analysis (SA) is performed to identify and quantify what are the main sources of 

uncertainties in the measurement. Ideally, SA is the methodology for studying how the 

uncertainty of the output provided by a model, can be associated, qualitatively or quantitatively, 

to different uncertainties of the input parameters of the model [78], [81]. The GUM Supplement 

also provides the specifications for assessing the sensitivity coefficients; more in detail, it is 

explained that MCM is not sufficient to fully compute sensitivity coefficients but provides a 

methodology to compute the influence of each input quantities on the output quantity [78].  

The procedure implies that one input quantity should be perturbed, and the remaining input 

quantities should be kept at their best estimates, in order to obtain the pdf of the output quantity, 

depending only on the variable perturbed. By using this procedure, the GUM supplement 

proposes an approach that can be representative as a generalization of the approximate partial-

derivative formula; in particular, it is reported that the sensitivity coefficients can be 

approximated as the ratio of the standard deviation of the resulting model values and the standard 

uncertainty associated with the best estimate of relevant input quantity, as reported in Equation 

4: 

 
𝑐𝑖 =
𝑢𝑖(𝑦)

𝑢(𝑥𝑖)
 (4) 

 

where 𝑐𝑖 is the sensitivity coefficient, 𝑢(𝑥𝑖) is the standard uncertainty associated with the ith 

input estimate 𝑥𝑖, that contributes to the standard uncertainty 𝑢𝑖(𝑦). 
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3.3 Integration of skin temperature into thermal 

comfort measurement 
 

The last part of this thesis deals with a further experimental session, created to include in the 

personalization of the thermal comfort of occupants, an additional physiological parameter, that 

is the skin temperature. As it was possible to deduce from the study of the state of the art reported 

in Section 2.6, in all the experiments in which the skin temperature was included as a parameter 

for the measurement of thermal comfort, relationships and correlations with the final parameter 

to measure were always found. The state of the art has also shown that currently there are no 

studies that combine HRV and its features, and the skin temperature in a single dataset to measure 

thermal comfort. Rather, many studies have focused on the single temperature of the skin in 

various regions of the body, or the combination of it only with the heart rate [29], [81]–[83]. It is 

reported in [84] that skin temperature alone can be adopted to evaluate individual thermal 

sensation at air temperature range between 30°C and 39°C and that in particular accuracy up to 

93% can be reached in predicting two categories of discomfort (hot/very hot), using wrist 

temperature and Fisher discriminant analysis. The sensors used in this study are button-shaped 

thermometers directly placed on eight body parts. A combination of skin temperature and heart 

rate to develop personal thermal comfort models is used from [85]; skin temperature was 

collected by using iButton sensors placed on the wrist and ankle and  demonstrated that ankle 

skin temperature is the most predictive parameter of the set of features. Skin temperature  and 

heart rate are also employed from [86], but the scope is for detecting the effect of emotion state 

on occupant’s thermal comfort.  Consequently, since the literature has repeatedly found that both 

HRV and skin temperature taken individually can be indicators of the state of comfort or 

discomfort of the occupants, in the study that will be presented in the following sections, it is 

provided the description of an experimental campaign in which participants are exposed to 

changes in the environmental conditions of the test room, while a smartwatch and a minimally 

invasive sensor simultaneously record HRV and skin temperature. 

The aim of this study is to be able to improve the measurement of the uncertainty of the TSV, 

compared to the studies presented previously, by including the skin temperature into the 

measurement process for assessing human thermal comfort, in real-life conditions. It is worth 

pointing out the similarities and differences with previous studies: 

- The experimental campaign was conducted in the summer rather than the winter season; 

this requirement was introduced since it is reported that skin temperature in summer is 

more subjected to fluctuations that can lead to discomfort [87]; 

- The experimental set-up for physiological parameters is made of a smartwatch and a 

skin temperature sensor; 
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- To avoid that the participant may find themselves in uncomfortable situations, which 

can negatively affect the HRV measurement, participant is free to move without specific 

movement constraints to keep as still as possible the hand where the sensors are worn.  

 

3.3.1 Measurement set-up 
 

The tests took place in one room of the laboratory of Università Politecnica delle Marche 

(Ancona, Italy); the dimensions of the room are 4.8m X 2.9m x 3.0m and the planimetry is shown 

in Figure 23. The test consisted of monitoring a series of voluntarily recruited participants, while 

they are able to perform light-office activities; during the experiment, one operator was present 

to check that all sensors were functional and to control the internal conditions of the room, by 

means of a heater and a portable air-conditioning system.   

 

Figure 23. Planimetry of the test-room used for performing the experimental campaign, 

with the related dimensions and position of the equipment and the occupant during the 

experiment.  

 

The monitored parameters during the test are: relative humidity (RH), air velocity (va), air 

temperature at 0.1m (tL) , 0.6m (tM)  and 1.1m (tH), black globe temperature. The accuracies of 

the sensors are reported in Table 8. All the sensors are compliant with ISO 7726. The 

physiological parameters of the tested participant are measured by using a wearable smartwatch 

and a sensor for the measurement of skin temperature. The participant wears a Samsung Galaxy 

Watch, whose accuracy in the measurement of HRV was tested in previous studies [34], [35]; 

the smartwatch was responsible for collecting HR and HRV, with a sampling frequency of 1 Hz 

(Figure 24). Collected data are sent in real-time to a laptop that acts as gateway, using a 

Websocket connection and then data are stored locally. Skin temperature was collected by means 
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of an iButton DS1922, by placing it on the wrist of the participant through a dedicated support 

and data are retrieved at the end of the test, by using the dedicated proprietary software. 

Table 8. Technical information of the sensors for environmental parameters monitoring.  

Sensor Parameter monitored Accuracy 

Thermal-hygrometer  ta ± 0.1°C 
  RH [%] ± 1.5% 

Black globe radiant 
temperature sensor 

tr [°C] ± 0.15°C 

Hot wire anemometer va [m/s] ±0.05 m/s 

Thermocouples  tL ± 0.5°C 

  tM ± 0.5C 

  tH ± 0.5°C 

 

 

Figure 24. Measurement set-up of the experiment: (a) microclimatic station for recording 

globe temperature, (b) iButton D1922 for measuring skin temperature, (c) Samsung Galaxy 

Watch used to collect HRV, (d-e)) thermocouples used to measure air temperature at three 

different heights and the acquisition board of the National Instrument, (f) on-going test. 

 

Table 9. Technical information of the sensors for physiological parameters monitoring. 

Sensor Monitored parameters  Accuracy 

iButton tskin ± 0.5°C 

Samsung Galaxy 
Watch 

HRV ±4 ms 
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3.3.2 Measurement test procedure 
 

The current work includes outcome from an experimental campaign that took place during July 

2021. The experiment was conducted effectively on 15 participants. The involved participants 

were voluntarily recruited, and the personal information are summed up in Table 10. 

Table 10. Personal information of the sample composition that participate to the experiment.  

ID Age (yrs) Gender Weight (kg) Height (m) BMI (kg/m2) Icl 

1 24 F 54 1.61 20.8 0.41 
2 32 M 84 1.85 24.5 0.42 
3 28 F 63 1.75 20.6 0.31 
4 28 M 73 1.8 22.5 0.42 
5 27 M 90 1.9 24.9 0.44 
6 31 M 74 1.87 21.2 0.44 
7 34 F 67 1.79 20.9 0.25 
8 31 F 55 1.68 19.5 0.4 
9 22 F 75 1.7 26.0 0.41 

10 21 F 51 1.63 19.2 0.26 
11 31 M 98 1.94 26.0 0.33 
12 24 F 53 1.67 19.0 0.35 
13 30 M 64 1.73 21.4 0.44 
14 23 F 60 1.66 21.8 0.35 
15 25 F 64 1.78 20.2 0.28 

µ 27  67 2 22 0.4 
σ 4  13 0.1 2 0.1 

 

During the test, the participant is first exposed to a stabilization period of 10 minutes, inside the 

test-room, whose set-point is established at 25°C, which corresponds to the neutral state in 

summer according to actual standards [50]. Also, in this experiment, participants were required 

to wear their everyday clothes to preserve the subjectivity of the test. During this stabilization 

period, participant is required to fulfil a survey to track their personal information, including 

clothing information. In addition, during this stabilization period, the participant seats on the 

dedicated workstation and wears the smartwatch and the skin temperature sensor on the non-

preferred wrist. The clothing thermal insulation Icl reported in Table 10, was computed indirectly, 

by summation of the partial insulation values for each item worn by participants. The set of 

garments worn by participants was collected and the procedure suggested by ISO 9920 was 

adopted to evaluate the Icl.  

These actions are supervised by the operator which always stays in the test-room to check the 

correctness of the data collection, avoid possible malfunctioning of the sensors network and 

annotate unexpected movement of the participant that could lead to the measurement of 

misleading data. Then, the operator checks the thermal sensation vote of the participant, which 

is expected to be 0, since the test should start when user is at neutral condition. When all this 

information is collected, the test could start.  
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The procedure is specifically tailored to permit the user to perform its daily office activities that 

only include working on the laptop or reading a paper. The user is not forced to keep the hand in 

which there is the smartwatch in a fixed position, to avoid possible perturbation that can result 

in stressful condition due to the constraint of the experiment. In this way, it is possible to ensure 

that the only perturbation in the HRV and Tskin signal is only due to a change in the air temperature 

of the test-room.  

After the preparation phase the test starts; more in detail, the test is built as following (Figure 26 

and Figure 27):  

- Comfort segment: 5 minutes in which the subject is free to perform office activities 

(e.g., read and write on a computer). The room temperature, set at 25°C, is just recorded, 

and it is not modified. The subject will be asked to communicate its Thermal Sensation 

Vote. 

- Discomfort segment 1: 30 minutes in which the test-room is cooled down until 22°C.  

- Discomfort segment 2: 30 minutes in which the test-room is heated up until 28°C. 

It is important to specify that the participant is not informed about the procedure of heating or 

cooling down the test-room to avoid bias in thermal sensation. During the whole duration of the 

experiment the user is asked to fil a survey that indicates its TSV; also, in this experiment the 

TSV should be expressed whenever their TSV is different from the previous one.  

 

 

Figure 25. Experimental procedure. 

  

(a) (b) 

Figure 26. (a) Shape of the air temperature measured at 0.6m (t2) during the experiment. (b) 

Shape of the TSV during the experiment, for one participant.  
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3.3.3 Data analysis 
 

There are two approaches applied to build PCM: the first one is to develop a general model base 

on the LOSO approach; the second one consists of developing a model for each participant. The 

methodology will be useful for investigating and developing AI (DL and ML) algorithms that 

would predict the TSV of users, starting from HRV features, wrist skin temperature and 

environmental parameters.  

HRV features were extracted from the sequence of RR intervals collected from the Samsung 

Galaxy Watch. RR intervals were firstly filtered in order to identify outliers; the methodology 

for filtering the RR sequence consists of detrending the RR interval time series and identifying 

as outlier a sample of the time series which differs from the previous sample of a thresholds of 

20%. After identifying it, the sample recognized as outlier is substituted with the previous one. 

The filtered final RR sequence, also named HRV signal, is then used to compute HRV features.  

After HRV processing, there is the creation of the dataset that should be used to predict and 

measure the TSV to estimate the thermal comfort of the participant. At this stage, the parameters 

that are possibly included in the dataset are a bundle of physiological and environmental data; 

the detailed description of the variable computed is reported in Table 11: 

 

Table 11. List of all the variables extracted for each participant from the experimental campaign. 

Environmental  Physiological  Personal 

ta Skin temperature tskin       

TSV 

RH [%] 
Time-domain features 

MEAN MEDIAN RMSSD SDNN 

tr [°C] PNN50 NN50 PNN20 NN20 

va [m/s] 
Frequency-domain 

features 

VLF LF HF LF/HF 

tL HF/LF     

tM      

tH 
Non linear -domain 

features 
sd1 sd2 sd1*sd2   

 

 

3.3.3.1 Preliminary analysis on skin temperature and LF/HF 
 

A preliminary analysis was carried out concerning the study of the correlations between LF/HF 

and skin temperature, that are the parameters that in literature are most correlated with thermal 

comfort, and the TSV measured during the test. 
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Linear correlation between the TSV and tskin was computed, by means of the Pearson’s 

correlation coefficient. Figure 31 shows the shape of tskin against the TSV, for four randomly 

selected participants. The visual analysis, in fact suggests that the two trends are somehow 

similar.  

  
(a) (b) 

  

(c) (d) 

Figure 27. Shape of the skin temperature measured with the iButton against the TSV.  

 

It has been observed that in real-life settings, the relationship that exists between LF/HF and 

TSV is not always easily deducible, so before moving on to the adoption of LF/HF as a feature 

to be used to train the AI algorithms, it was chosen to extract an additional parameter from the 

LF/HF, to highlight its relationship with the TSV. Firstly, a visual inspection of the data obtained 

was made, comparing the LFHF trend with the TSV trend; these data are reported in Figure 28, 

where the LF/HF and TSV curves are shown. For each participant, the linear correlation was 

evaluated by means of Pearson’s correlation coefficient, and the resulting value is 14.06% 

(±29.2%).  
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(a) (b) 

 
 

(c) (d) 

Figure 28. Shape of the LF/HF against the TSV. 

  

 

Data of 4 participants were randomly selected: as can be seen from the figure, the LF/HF shows 

an oscillatory nature and often characterized by baseline drift that make it difficult to correlate it 

linearly with a more conservative quantity such as the TSV. Therefore, to make these two 

quantities comparable from a numerical point of view, it was decided to carry out further 

manipulations on the LF/HF signal to extrapolate its correlation with the TSV, as should be 

expected based on what is reported in the literature. In practice, it was decided to identify the 

instants of time within which the TSV undergoes a variation, that is a change in its value. the 

instants of time t1 and t2, that identify an time windows in which the TSV is constant, are 

identified; then the average value of LF/HF within the interval [t1,t2] is computed and it is 

associated to each sample of TSV for the window [t1,t2]. Pearson correlation between TSV and 

the new manipulated LF/HF are then computed. This new feature is included in the initial dataset 

created. 

3.3.3.2 Feature selection 
 

One of the challenges encountered in this research was mainly due to the necessity of 

individuating a reliable set of features that could possibly maximize the measurement of human 

thermal comfort in transient condition. To select the features, it is applied a procedure that 

combines two different techniques, Pearson’s correlation and feature importance provided by 

Extra Tree Classifier [88]. The features that are less important and provide lower Pearson 



 

65 

correlation coefficient with the variable to be predicted, which in this case is the TSV, is dropped 

from the dataset.  

Pearson coefficient (R) is used to compute the correlation coefficient between each feature of the 

dataset and the TSV; R ranges from -1 to 1: low correlation coefficient is applicable for value of 

R close to 0, while high positive or negative correlation is associated to R values of +1 and -1, 

respectively. Feature importance computed by means of Extra Tree Regressor, is based on the 

Gini Importance of each feature.  

 

 

3.3.3.3 Model Training and evaluation 
 

To assess the TSV of the participants that attend the experimental campaign, the TSV collected 

during the test were used to develop AI regression models that could estimate each participant 

TSV. Different algorithms were trained and tested with two different type of evaluation metrics:  

- Firstly a PCM was developed, one for each subject. It is a person-tailored model that 

consists of training and testing each model uniquely on the data belonging to the subject 

under analysis. To evaluate the performance of the algorithm, the hold-out methodology 

was adopted, that consists on using the 70% of the data to train the algorithm and make 

the validation by testing the trained algorithm on the remaining 30% of the data that 

were not included into the training.  

 

- The second approach consist of applying the LOSO approach, that was previously 

explained in Section 3.2.6.5; this method can provide a comparison with the previous 

study, to evaluate if indeed the combination of HRV and skin temperature, can overall 

provide an improvement in the performance of the algorithms. 

In both cases, the metrics for evaluating the performances of the regression algorithms are the 

MAE and the MAPE. The algorithms chosen included ML algorithms such as K-Nearest 

Neighbors (KNN), Decision Tree (DT), Support Vector Machine (SVM), Adaboost (ADA), 

Random Forest (RF), Extra Tree Classifier (ETC); DL algorithms included Multi-layer 

Perceptron (MLP).  
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4  

Chapter 4. 

 

Implementation 

4.1 Development of a methodology for evaluating the 

correlations between thermal comfort and HRV in 

controlled environment 
 

The current section deals with an analysis of the complex dataset measured during tests 

performed following the experimental campaign that took place in the controlled environment, 

for measuring the thermal sensation of the participant. The following paragraph presents 

preliminary analyses on recorded ECG signals and extracted features which are correlated to 

monitored environmental parameters. These results are then compared to literature achievements 

in the field in a view of measuring procedure validation and providing the bases for future 

developments of the study. In addition, Section 4.2.1 shows results in terms of thermal comfort 

prediction from ECG features through supervised ML algorithms.  

4.2 Preliminary analysis results 
 

Results related to the analysis of the linear correlation between environmental and physiological 

quantities are here presented. LF/HF ratio is correlated to air temperature (ta), mean radiant 

temperature (tr), CO2 concentration (CO2), relative humidity (RH) and to PMV. 

An example of the output provided for two subjects of the study is presented in Figure 29: Subject 

1 which performed the test in winter, and Subject 2 which performed the test in summer. Pearson 

coefficient is computed for time intervals of 5 min; therefore, every coefficient expresses the 

linear correlation between LF/HF and one environmental parameter taken in the same time 

interval. Figure 29 (a) and (b) shows time trends of LF/HF computed from the ECG while Figure 

29 (c) and d represent air temperature trend for the whole duration of the test. Figure 29 (e–f) 

presents values of Pearson coefficient computed every minute for each considered environmental 

parameter, through a grey-scale color palette. Lighter regions are associated to low Pearson 

coefficient while darker regions to strong correlations. Every row of Figure 29 (e) and (f) 

represents the outlined Pearson correlation coefficient between LF/HF and air temperature (R- 

ta), mean radiant temperature (R- tr), CO2 concentration (R- CO2), PMV (R-PMV) and relative 

humidity (R-RH). 
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Figure 29. (a,b) Waveform of LF/HF ratio and (c,d) air temperature in time for subject 1 (a,c) 

and 2 (b,d); (e,f) Pearson correlation coefficient computed in 5 min time interval of LF/HF and 

the respective time interval in the environmental parameter. 

 

Presented results concerning Subjects 1 and 2 are chosen to show that LF/HF trend is correlated 

to a variety of environmental parameters. In fact, subject 1 exhibits an LF/HF ratio increase 

between 10 and 15 min during the test that is strongly correlated with all the five parameters of 

interest, i.e., ta, tr, CO2, RH, and PMV. In fact, increase of the LF/HF ratio derives from the 

simultaneous increase of the correlated parameters. In the same way, it is possible to interpret 

results of Subject 2: ta and tr do not exhibit significant correlation with LF/HF especially 

considering the first LF/HF ratio observed peaks, i.e., around minute 5 and 10. This can be 

probably explained due to the small variation of the environmental parameters in the first part of 

the test, while a higher variation is presented at the end. These results put in evidence that LF/HF 

trend, in dynamic environmental conditions, is not only strictly related on one parameter, e.g., 

ta, but can be also influenced by CO2  in the room, tr, or RH. Computed Pearson coefficient 

between LF/HF ratio and both CO2 and tr, is generally above the 80% for the entire duration of 

the Subject 1 test. Moreover, R- CO2 is higher in correspondence of the peaks in LF/HF ratio at 

minute 10, 29 and 40 of the Subject 2 tests. This is an important result showing that subject's 
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comfort is not only related to Ta which is relevant for the second peak together with CO2 and tr 

but not for the first one where the LF/HF ratio waveform increase for a R- CO2 raising.  

The analysis is repeated for every participant. Then, just the Pearson's coefficient values greater 

or equal to 75% are considered as significant for the final evaluation. Table 12 presents the 

percentage of LF/HF time interval that, correlated with environmental parameter, showed a 

Pearson's coefficient greater or equal to 75%. For example, 66.4% of the air temperature time 

intervals correlated with LF/HF scored a Pearson's coefficient higher than 75% in winter, 

suggesting that there is a relationship between LF/HF and air temperature. Same considerations 

can be done for CO2 concentration, since 65.3% of the time interval has correlated more that 

75%. 

Table 12. Percentage of LF/HF signal correlated with environmental signal time interval that 

has a Pearson coefficient greater than 75%, in summer and winter. 

  Winter tests 

  tr - LF/HF ta - LF/HF CO2 - LF/HF RH - LF/HF PMV - LF/HF 

Average [%] 56.8 66.4 65.3 60.0 37.0 

Standard deviation [%] 8.1 0.5 5.0 0.6 13.9 

  Summer tests 

  tr - LF/HF ta - LF/HF CO2 - LF/HF RH - LF/HF PMV - LF/HF 

Average [%] 56.8 66.4 65.3 60.0 37.0 

Standard deviation [%] 8.1 0.5 5.0 0.6 13.9 

 

Results concerning Subject 1 and Subject 2 have been chosen because they represent the linear 

correlation between environmental quantities and LF/HF. The same level of linear correlation 

with environmental quantities can be found on 13 out of 29 subjects. The remaining subjects 

turned out to provide a weak linear correlation. Since literature has shown that LF/HF can be 

related to thermal comfort [28], [89] and that the remaining subjects had no correlation between 

LF/HF and environmental quantities, it was supposed that there are more factors that drive 

LF/HF, apart from environmental quantities, linked to the behaviour of the single subject. The 

result of this analysis confirms the complexity in representing the human perception toward the 

environmental conditions, that could be better investigated using more complex modelling 

functions, typical of the ML. For this reason, the following section explains the analysis 

conducted using ML algorithms to achieve a more accurate model of the human perception based 

on physiological features with the aim of replicating the users’ real perception recorded during 

the tests. 
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4.2.1 Machine learning results 
 

Table 13 expresses the average prediction accuracy of the classification algorithms used to 

predict the thermal sensation vote expressed from subjects that participated to the study in 

relation with HRV indices. In particular, in the first row the six classification algorithms are 

trained only using the LF/HF as input data and the thermal survey as label. The average accuracy 

of DT, KNN, LDA and RF are close to 50% while NB and SVM increases up to 76%. 

Table 13. ML classification accuracy computed as the average accuracies for each of the 29 

subjects. 

Mean ML classification accuracy [%] 

Indices DT KNN LDA NB SVM RF 

LF/HF 52 52 55 75 76 51 

Time 69 73 74 81 82 73 

Frequency 63 68 64 79 80 69 

All 72 68 77 82 84 79 

 

The second and third row show the average accuracy of the algorithms trained with a dataset 

obtained from the aggregation of time-domain and frequency-domain HRV measurements 

respectively. Accuracy has increased in both cases in all the classifiers but also in this case NB 

and SVM have provided higher accuracy, up to 82%. Moreover, it has to be pointed out that all 

algorithms classify the thermal vote with lower accuracy in the frequency domain with respect 

to time-domain indices. Finally, the accuracy of the algorithm trained with a dataset obtained 

from the aggregation of all the computed HRV indices is shown in the last row. The higher 

accuracy is reached by SVM algorithm (84%) while KNN provides the lowest performance 

(68%). 

Figure 30 compares time-trends of real expressed thermal sensation and predicted thermal 

sensation according to the developed model for one subject tested during summer as example. 

As final consideration, ML classification approaches, especially NB and SVM allow using the 

LF/HF to predict the thermal comfort vote of a user in an indoor environment even if better 

results are shown for the accuracy of time, frequency and aggregated indices. 
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Figure 30. Thermal sensation vote predicted from SVM classification model (red line) against 

the real thermal sensation vote (black dots) for one subject out of the performed summer tests as 

example 

 

4.2.2 Results of the analysis of subjective parameters in relation 

to thermal comfort 
 

This section focuses on subjectivity of the perceived IEQ moving from a preliminary combined 

analysis of environmental data measured by the indoor microclimate station and expressed actual 

sensation votes. These are continuously noted by the operator throughout the whole test being 

translated into a 7-points comfort scale ranging between −3 and +3 where 0 expresses neutral 

conditions. The proposed analysis refers to data collected every minute for all the 62 performed 

tests, for a total amount of 1360 and 1128 data for winter and summer test series 

respectivelyPresented outcomes highlight how much IEQ perception varies among different 

subjects and thus occupants in general. Physical variables ranges corresponding to specific 

sensations are wide, e.g. up to 14.6 K and 8.9 K of operative temperature interval expressing 

thermal neutrality in winter and summer respectively, and almost overlapped. 

In order to understand the reasons underneath the presented differences among expressed 

sensations combined to monitored environmental parameters, possible influences due to personal 

attributes of the subject are here investigated. In particular, the hypothesis here statistically tested 

assumes expressed IEQ satisfaction, i.e. fill-up survey part III, as dependent from personal 

characteristics of the subject gathered in survey part I. These characteristics are converted into 

markers highlighting two classes for each variable, as summarized in Table 2. Two different 

analyses are conducted by assuming groups of objective/subjective descriptors or single personal 

characteristics. Linear regression model is used to identify correlations between expressed IEQ 

satisfaction and grouped personal characteristics of the tested subject, i.e. subjective and 

objective descriptors (Table 2). Fig. 9 shows computed p-value which quantifies the goodness 

of the proposed model. The lower the p-value, the higher the significance of the tested hypothesis 

with a typically upper limit assumed equal to 0.05 to define statistically significant results. Only 
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few of the proposed correlations show up to be significant but such relations are not consistent 

throughout different tested seasons. The lowest p-value is 0.02 obtained for the hypothesis of 

objective personal parameters influencing the visual perception in winter at the beginning of the 

test. The other significant relation observed in summer still refers to the initial phase of the test, 

it has a p-value of 0.03, and concerns thermal comfort perception as depending on personal 

subjective attributes, i.e. Body-Mass-Index, education, smoking habits, and worn garments. 

Table 14 and Table 15 reports results obtained from the independent t-test conducted on thermal 

comfort sensation, assuming two classes for each personal characteristic. Significant relations 

are given by combining p-values lower than 0.05 and Cohen's d higher than 0.5 which expresses 

a medium effect size. These relations are highlighted in bold in the table. Some of the obtained 

p-values identify stronger relations even if these are never consistent throughout seasons or 

different phases of the test. Results confirm some of the most investigated correlations, e.g. 

gender and cloths are both related to thermal perception. 

Table 14. The three single personal characteristics influencing expressed TSV perception 

and related p-value and Cohen’s d, during winter tests. 

 

Table 15. The three single personal characteristics influencing expressed TSV perception 

and related p-value and Cohen’s d, during summer tests. 
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4.3 Measurement procedure and data analysis for 

assessing thermal comfort in semi-controlled 

environment 
 

4.3.1 Binary classification between comfort and discomfort 
The binary classification between comfort and discomfort was considered the baseline analysis 

of the whole test. The aim of this part was to estimate whether it is possible to distinguish 

between comfort and discomfort condition caused by an external disturbance generated by a 

sudden change in temperature, air velocity and relative humidity. In the following paragraph, the 

binary classification was tested for the cold-induced discomfort and then for the hot-induced 

discomfort. The three ML algorithms extracted from literature, i.e. SVM , RF and ET, were 

trained and tested on the single participants to see whether HRV frequency-domain indices can 

be effectively used to distinguish if a person is experiencing cold-induced discomfort or warm-

induced discomfort. This assumption is necessary in a future hypothesis of including the HRV 

measurement as a support tool for controlling indoor environment.  

Nine out of the 10 subjects were considered for the cold-induced discomfort experiment, while 

one subject was excluded for having expressed no variation in the TSV when entering Room B. 

The variation in the TSV between Room A and Room B is essential to build the dataset for the 

ML classification, since this is the only way to develop a binary classification in which to relate 

physiological quantities and TSV.  If the TSV of the participants remains 0 when exposed to 

discomfort in Room B, it is not possible to develop a model that classifies between two classes, 

because no variation of the output is recorded. From Table 16, it can be seen that the three 

algorithms performed at a high level of accuracy in distinguishing the two classes, with values 

up to 100% in the case of marked distinction and a mean accuracy of 92.2%. This result suggests 

that, with the support of ML classification algorithms, HRV features can be used to distinguish 

whether a participant is comfortable or in a discomfort condition. The same considerations can 

be made for the warm-induced discomfort classifier. Six out of the ten participants were 

included, since they provided a different TSV between Room A and Room B. As shown in Table 

17, also in this case the accuracy reached a mean value of 92.9%, suggesting that the two indices 

(LF/HF, HF and LF) can be an indicator of warm or cold induced discomfort.  
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Table 16. Accuracy of the ML classifiers in the estimation of the cold-induced discomfort 

condition. 

Accuracy (%) 

 User  

 1 2 3 4 5 6 7 8 9 Mean 

SVM 90.6 78.2 92.3 100 73.4 99 86 98.2 100 90.9 

RF 90.6 79 96.8 100 88.6 98.2 100 91.6 98.2 93.7 

ETC 90.5 72 94.5 100 86 96.5 100 92.5 98.2 92.2 

Mean          92.3 

 

Table 17. Accuracy of the ML classifiers in the estimation of the warm-induced discomfort 

condition. 

Accuracy (%) 

 User  

 1 2 3 4 5 6 7 8 9 Mean 

SVM - 80.2 86.8 100 85 - 100 - 77.7 88.3 

RF - 93.7 90.1 100 93.2 - 100 - 97.6 95.8 

ETC - 94.6 96.7 100 94.5 - 86 - 96.4 94.7 

Mean          92.9 

  

 

4.3.2 Prediction of thermal discomfort in transient environment 

in Experiment 3 

The activity here presented pointed out the necessity to think about the relationship between 

physiological, environmental parameters and the TSV as a black box that can be implemented 

thanks to ML techniques. This is the approach used in Experiment 3, which merged different 

types of datasets that included various environmental and physiological features to predict the 

TSV of each participant. Among different algorithms tested, the best results were obtained with 

the RF algorithm, against, for example, the SVM algorithm, which provided lower performances. 

The algorithms were trained using a leave-one-subject-out validation and their performance was 

evaluated in terms of MAE and MAPE. 
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The algorithms were first trained and tested by using as input only the physiological features 

previously described in Table 6. Given the higher number of computed features, the model was 

trained multiple times, combining iteratively different subsets of physiological features to 

individuate the best combinations of parameters that could provide higher performance of the 

algorithm in terms of accuracy. With this procedure it was possible to identify that the 

combination of physiological features that led to higher accuracy was made of RMSSD, MEAN, 

MEDIAN, LF, HF, LF/HF, HF/LF, SD1, SD2, SD1*SD2, that led to the creation of FH. FH was 

subsequently combined with the three environmental parameters (ta, va, RH), thus creating 

FH+E, which is showed in Table 18. The performance obtained by testing each algorithm on the 

participant that was not previously included in the training is shown in Figure 31 (a-b). The 

average MAE and the average MAPE were obtained by averaging all the MAE values and the 

MAPE values obtained from testing the algorithms on the single test participant. In particular, 

when the algorithms were trained using the dataset FH+E, both MAE and MAPE decreased 

compared to the training made only with physiological HRV features (FH), except for the 

average MAE computed from the LSTM algorithm. 

 

Table 18. Description of the dataset built for this analysis.  

Dataset 

  FH FH+E 

Features 

f(HRVt) f(HRVf) f(HRVnl) f(HRVt) f(HRVf) f(HRVnl)   

RMSSD LF SD1 RMSSD LF SD1 ta  

MEAN HF SD2 MEAN HF SD2 RH 

MEDIAN LF/HF SD1*SD2 MEDIAN LF/HF SD1*SD2 va  

  HF/LF     HF/LF     

To compare the five algorithms, accurate results were obtained by applying RF algorithms, with 

a MAE and MAPE of 1.4 and 24% respectively, when the FH dataset was used. On the other 

hand, CNN and RF provided comparable performances when using the FH+E dataset, with MAE 

and MAPE of 1.2 and 21, respectively. These results highlight how the inclusion of some user-

related features, such as HRV features, can somehow provide a prediction of the TSV of the 

participant, but, at the same time, demonstrate how the inclusion of some environmental 

quantities can lead to a better prediction of the TSV of the user in transient conditions, as it 

occurs in Experiment 3. MAE values, suggests that TSV measurement through personalized 

approach, can be made through physiological features, such as HRV, but further studies should 

be performed to try to improve the measurement, which are presented in section 4.3.4 of this 

PhD work.   
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(a) (b) 

Figure 31. (a) Average MAE computed by averaging the MAE obtained from the prediction 

of each algorithm on the single user, left out of the training. (b) Average MAPE computed by 

averaging the MAPE obtained from the prediction of each algorithm on the single user, left out 

of the training. 

Figure 32 shows the results obtained for one participant as an example; in addition, it also shows 

the trend of the PMV, which, although it is not used as a reference metric in this study and is not 

included for building the ML models, partly follows the trend of the real TSV. Furthermore, the 

figure shows that the trend of the predicted and the real TSV follows the shape of the PMV, 

although the predicted TSV deviates more from the PMV. 

 

Figure 32. Real TSV and PMV against the predicted TSV obtained from the testing on one 

user, adopting the LOSO approach. 
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4.3.3 Discussion and limitations 
 

The experiments conducted in the first research of this thesis work, described in section 3.1, are 

considered the starting point used to develop the procedure conducted in this work. In particular, 

[65] demonstrated that when the user does not perform any activity and environmental 

parameters (ta, RH and va) are more controlled, HRV features can provide accurate performance 

in the estimation of TSV. However, in this second part of this thesis, in which participants were 

allowed to carry out some light office activities,  it was possible to demonstrate how HRV 

features are only able to discern between a comfort and a discomfort condition of the participant 

and provide lower performance in predicting the TSV in transient conditions compared to [65]. 

For this reason, the effect of the combination of HRV features with environmental quantities was 

examined to test whether a combination of the two could help in the prediction of TSV. On the 

other hand, [65] highlighted that human perception cannot be interpreted in a univocal manner 

on the basis of environmental parameters, but should be analyzed through a subjective point of 

view, which, in this case, is expressed by TSV.  

For this reason, to predict TSV, it was decided to aggregate the physiological response of the 

participants (expressed by HRV features) that proved to be related to human thermal comfort 

with environmental quantities (FH+E). The evaluation of the performance of the algorithms 

suggests that features extracted from environmental parameters led to improved results 

compared to the use of HRV features alone. This result is compliant with literature, which 

suggests that environmental parameters can be helpful in the prediction of thermal comfort and 

that physiological measurements can be used as support features to develop personalized models 

[90]. Experiment 3 aims to simulate a real-life application in which users are able to perform 

light office activities while a smartwatch collects their HRV. By using FH to predict TSV, the 

MAE and MAPE values cannot provide satisfactory values of accuracy, which suggests that in 

real life conditions, different from the controlled environment created in [65], more complex 

mechanisms are present in the management of HRV. However, a step-forward in the prediction 

of TSV was made by adding environmental quantities to the HRV features, since the value of 

MAE and MAPE improved.  

The research proposed was performed in order to explore whether it is possible to build ML 

models by collecting physiological data from a smartwatch, providing a methodology that could 

predict the TSV of the participants. The LOSO approach used for testing the accuracy of the ML 

algorithms aims at creating a generalized model that does not take into account gender-related 

differences but considers only TSV as the ground truth of the model. Although the results of the 

LOSO approach highlight that a punctual, real-time prediction of TSV was not always accurate 

for the current test, it is important to underline that the results obtained from ML algorithms can 

be used to predict the overall comfort of a user. This information can point out that the overall 

thermal comfort is evaluated over a long-term period, and it is not necessary to estimate a point-

by-point trend. Given this assumption, this work tried to demonstrate how the methodology 

applied for the test, which involves a smartwatch and environmental sensors, can be further 
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explored to investigate its effectiveness in helping to predict the TSV of users in real-life 

contexts. The results obtained help to clarify that the aim of the entire work is to add 

physiological parameters in the measurement of thermal comfort to realize environments that are 

more tailored to the users that live in them. Thus, the analysis provided is helpful to investigate 

the capability of physiological quantities to predict the TSV of occupants, without taking the 

place of environmental quantities. 

 

 

4.3.4  Results of the analysis of the impact of the uncertainty of 

measurement on the HRV features 
 

4.3.4.1 Impact of the uncertainty on HRV features   
 

In this section, results of the MCM used to analyse the propagation of the uncertainty in the 

measurement of HRV that propagates to the computation of the HRV features, are shown. The 

simulated results are used to obtain the frequency histogram of each HRV features that is 

computed with the simulation, to obtain the related uncertainty. For each HRV features the 

values of the standard uncertainty computed with the MCM are showed. The frequency 

histograms that come out of one simulation for one participant are displayed in Figure 33. Table 

19 contains the uncertainty associated to the computation of each HRV features, expressed in 

percentage, among the 13 participants. It can be seen that the minimum measurement 

uncertainties is obtained when computing the MEAN feature (±0.01% of reading), while highest 

values are associated to the measurement of LF/HF and HF/LF (±0.7% of reading). Physiological 

quantities, such as HRV, can vary among participants and therefore it is interesting to understand 

the impact of the uncertainty on each feature, divided according to the related domain, among 

the different users, to see if it is possible to establish a generalized standard uncertainty 

associated to each HRV features, in relation to the value of the uncertainty of the device which 

measures it. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 33. Histogram obtained from MCM with 200,000 iterations applied to the HRV 

features: (a) MEAN, (b) MEDIAN, (c) RMSSD, (d) HF, (e) HF/LF, (f) SD1, (g) LF, (h) 

SD1*SD2, (i) SD2.  

 

The uncertainty associated with the features in the frequency domain is higher than the features 

in the time or the features in the non-linear domain. A reason that can explain this result is that 
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the frequency components are more sensitive to the uncertainty of the device (± 4 ms) because 

they physically reflect the oscillatory activity of the HRV; for this reason, it can be verified that 

a small variation of HRV can lead to a greater variation of features in the frequency domain.  

Table 19. Measurement uncertainty computed for each HRV features used to estimate the 

TSV, among the 13 participants. 
Uncertainty (%)  

ID MEAN  RMSSD MEDIAN LF HF LF/HF HF/LF SD1 SD2 SD1*SD2 

1 0.01 0.10 0.09 0.34 0.30 0.4 0.4 0.10 0.1 0.2 

2 0.01 0.08 0.09 0.31 0.25 0.4 0.4 0.08 0.1 0.1 

3 0.01 0.29 0.07 1.30 0.81 1.5 1.5 0.29 0.3 0.5 

4 0.01 0.11 0.08 0.53 0.55 0.6 0.6 0.11 0.1 0.2 

5 0.01 0.25 0.06 0.93 0.58 1.1 1.1 0.25 0.2 0.4 

6 0.01 0.10 0.08 0.30 0.28 0.4 0.4 0.10 0.1 0.2 

7 0.01 0.16 0.10 0.57 0.59 0.6 0.6 0.16 0.1 0.2 

8 0.01 0.04 0.13 0.26 0.12 0.3 0.3 0.04 0.0 0.1 

9 0.01 0.12 0.08 0.31 0.32 0.5 0.5 0.12 0.1 0.2 

10 0.01 0.24 0.06 0.92 0.58 1.1 1.1 0.24 0.2 0.4 

11 0.01 0.09 0.07 0.31 0.25 0.4 0.4 0.09 0.1 0.1 

12 0.01 0.30 0.08 0.66 0.79 1.0 1.0 0.30 0.2 0.4 

13 0.01 0.06 0.10 0.26 0.19 0.3 0.3 0.06 0.1 0.1 

           

µ 0.01 0.1 0.1 0.5 0.4 0.7 0.7 0.1 0.1 0.2 

 

4.3.4.2 Impact of the uncertainty on AI models for measuring human 

thermal comfort   
 

This section reports the results used to compute the measurement uncertainty of the TSV, using 

MCM applied to AI models, which are RF and CNN. Table 20 contains the results which 

represent the contribution of the uncertainty of each input quantity (HRV, ta, RH, va) into the AI 

model (RF and CNN), to estimate the associated uncertainty in the output TSV. Each pdf of the 

input quantity is used, one at a time, according to Monte Carlo simulation, to obtain the resulting 

pdf of the TSV. The following table contain the results of a MCM conducted by perturbing each 
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parameter, one at a time, with the respective uncertainty 𝑢𝑖(𝑦) , where 𝑖 are the perturbed 

parameters.  

Table 20. Results of MCM applied to compute the measurement uncertainty 𝒖𝒊(𝒚) of the 

measurement of the TSV, both for the RF and the CNN algorithm. The uncertainty was computed 

considering a coverage factor k equal to 2. 

 RF CNN 

 HRV ta RH va HRV ta RH va 

Standard 

uncertainty 

 

± 4 ms  
± 0,1 

°C 

±2% of 

reading 

±3% of 

reading 

± 4 

ms 
 

± 0,1 

°C 

±2% of 

reading 

±3% of 

reading 

TSV 

Estimate (µ) 

 

1  1.4 1.4 1.4 -0.5  -0.5 -1.2 -1.2 

𝒖𝒊(𝒚)  

[TSV unit] 

(σ) 

 

7.46E-14  0.2 1.78E-13 0.0105 0.015  0.015 0.126 0.029 

𝒖𝒊(𝒚)  [%] 7.24E-12  14 1.28E-11 0.8 2.825  2.9 10.5 2.5 

 

The simulation regarding the impact of the HRV uncertainty of the TSV was made for ± 4 ms. 

Since HRV measurement through smartwatches are particularly prone to motion artefacts, more 

simulations were conducted by simulating different HRV uncertainties, which are U = [4, 10, 

20, 50, 100] ms. As previously stated, this range of values was chosen since previous researchers 

have demonstrated that the measurement uncertainty of the galaxy Watch is ±4 ms in resting 

condition and it is ± 100 ms when the user is moving [34], [35]. The results of the simulations 

are showed in Figure 34: the contribution of HRV uncertainty increases after 50 ms, suggesting 

that up to this value, the uncertainty of the devices that measure HRV is still acceptable for 

assessing the TSV. On the other hand, environmental sensors that measures ta, RH and va, are 

less subjected to variations in the uncertainty of the measurement of TSV. Environmental 

quantities produce different uncertainty on the TSV, which depends on different parameters. RF 

has highest uncertainty due to the ta (𝒖𝒕𝒂(𝒚) = 14%), while CNN has highest uncertainty when 

RH is perturbed (𝒖𝑹𝑯(𝒚) = 10.5 %). This different result is explainable if we consider that the 

two algorithms perform with different rules and can be considered as black boxes.  
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Figure 34. Trend of the measurement uncertainty of the TSV, in response to different HRV 

uncertainties measurement, obtained with 200,000 iterations. 
 

 

4.3.4.3 Sensitivity Analysis 
In Table 21 the partial uncertainty budget due to each parameter is given according to GUM 

uncertainty framework; the sensitivity coefficients were evaluated by Monte Carlo simulation. 

According to the table, SA highlights that air velocity and air temperature are the parameters that 

most affect the TSV prediction, respectively for RF and CNN. RH, and HRV perturbed with ± 4 

ms are the less sensitive parameters in the measurement of TSV, while va is the parameter that 

mostly contribute to the TSV measurement uncertainty. This outcome is consistent with the test 

procedure, which implied that during the experiment, to generate thermal discomfort, window 

was opened, and participant reported to experience greater discomfort. 

Table 21. Sensitivity coefficients computed for the two algorithms. 
 

HRV 

± 4 ms 

1.87E-14 

0.004 

ta RH va 

Standard Uncertainty ± 0,1 ºC ±2% of reading 
±3% of 

reading 

Sensitivity Index RF 1.8 4.61E-13 5.8 

Sensitivity Index CNN 0.09 0.32 16.03 
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4.3.4.4 Discussion about the methodology 
 

Depending on the kind of algorithm trained, there are different quantitative results in the 

uncertainty of the TSV, using an MCM, with 200,000 iterations, in relation to the environmental 

parameters. RF provides greater uncertainty when ta is perturbed with an uncertainty of ± 0,1 ºC; 

on the contrary, CNN exhibits a higher uncertainty when RH is perturbed with ±2% of reading. 

Physiological parameter (HRV signal), when perturbed with ±4 ms of uncertainty, impacts the 

resulting TSV with 2.8% of uncertainty and > 0.001% when it comes with CNN and RF 

respectively. In addition, MCM on AI models for measuring human thermal comfort (Section 

2.2) is applied to one observation of the entire dataset, and therefore it is a local analysis that is 

strongly related to the trained model. The overall methodology presented in this section can be 

applied to brand new model, that do not include an analytical equation, to compute the 

uncertainty associated to the output of the model. 

4.4 Results of the integration of skin temperature into 

thermal comfort measurement 
 

4.4.1 Preliminary analysis on skin temperature and LF/HF 
 

First of all, the purpose of this section is to show the results of the experimental campaign 

conducted to measure thermal comfort starting from environmental and physiological 

parameters, integrating the measurement of HRV with the measurement of skin temperature. 

Since the literature has repeatedly stressed that skin temperature is an important predictor for the 

estimation of the occupant's TSV, it was first decided to estimate the degree of correlation of 

twrist with TSV in the context of this research. Pearson correlation coefficient (R) was estimated, 

and the result is that the average R among all the participants, expressed as mean ± standard 

deviation (µ±σ), is 63.9 ± 30.6; this value reports that there I medium-to-high linear correlation 

between TSV and twrist. 

However, LF/HF, which is also reported to be correlated with human thermal comfort, do not 

have the same correlation with TSV. In fact, in this case R is 14.06% (±29.2%), suggesting a 

low-to-medium correlation with the TSV. For this reason the LF/HF signal extracted was 

modified, to examine the trends and evaluate the possible compatibility with the results obtained 

in the previous studies in the literature. An example of the analysis is displayed in Figure 35, 

which displays the trend of the manipulated LF/HF, named LF/HFn . 
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(a) (b) 

  

(c) (d) 

Figure 35. Shape of the manipulated LF/HF against the TSV.  

 

LF/HFn seems to follow better the trend of the TSV after being processed; to quantify the 

relationship between TSV and LF/HFn, Pearson’s coefficient for each subject is computed: the 

average R is 20.7% (± 46.2%), which is higher respect to R computed for the original LF/HF, 

which is 14.06% (±29.2%). 

The medium correlation registered between LF/HFn  suggests that this parameter, that is related 

to the action of the ANS, is deeply related to many phenomena that occurs in human body, that 

cannot be isolated and excluded in real-life conditions; secondly, it is also worth noting that 

LF/HFn   represents an average of the original trend of LF/HF computed over a certain period of 

time; therefore, it should be hypnotized that when this parameter is put in association with human 

thermal comfort, the analysis that should be considered is not punctual but rather considering a 

longer period of time. Given the medium correlation with the output TSV, LF/HFn will be 

included in the dataset that will train AI algorithms to predict and measure the TSV.  

 

4.4.2 Feature selection  
 

In this section, results from the correlation analysis by means of the Pearson’s correlation 

coefficients (R) are displayed. Table 22 shows R computed between each parameter included in 

the initial dataset, and the variable used as ground truth of the AI algorithms, which is the TSV. 

Coherently with literature, environmental quantities such as tL, tM, tH, tr1, ta1  exhibit medium-to-
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high correlation with the TSV; on the other hand, as expected in the context of this research, 

which is conducted by subjecting the participant to a dynamic and transient change of the 

environmental conditions, linear correlation between the physiological HRV features have  a 

medium to low R. However, the most promising correlation with TSV are the one with tskin. 

Table 22. Pearson coefficients in percentage computed between the TSV and each feature of 

the dataset, expressed as mean(µ) ± standard deviation (σ), among all participants. 
 µ(%) σ(%) 

R(tskin  - TSV) 63.9 30.57 

R(VLF-TSV) 12.9 27.54 

R(LF-TSV) 14.8 27.5 

R(HF-TSV) 1.6 31.84 

R(LF/HF-TSV) 14.1 30.36 

R(LF/HFn -TSV) 20.4 47.41 

R(HF/LF-TSV) -11.2 27.16 

R(TP-TSV) 17.7 30.39 

R(MEAN-TSV) 13 43.76 

R(SDNN-TSV) 17.1 24.19 

R(NN50-TSV) 13.5 35.47 

R(PNN50-TSV) 13.5 35.47 

R(NN20-TSV) 5 32.8 

R(PNN20-TSV) 5 32.8 

R(RMSSD-TSV) 11.6 34.73 

R(MEDIAN-TSV) 14 43.44 

R(SD1-TSV) 11.58 34.73 

R(SD2-TSV) 16.38 24.3 

R(SD1*SD2-TSV) 16.88 27.17 

R(ta1-TSV) 69.32 32.41 

R(RH-TSV) -42.78 33.99 

R(va1-TSV) -9.551 33.85 

R(tr-TSV) 67.21 39.65 

R(tH-TSV) 71.1 29.55 

R(tM-TSV) 70.65 28.57 

R(tL-TSV) 70.21 29.13 

 

 

R computed in  Table 22 are the result of the average R coefficient for each participants; the fact 

that for many parameters there are values of σ comparable with the value of the µ, it suggests 

that, in addition to not having linear relationships between parameters, there is an intra-subject 

variability in the relationships that linked the TSV and physiological parameters. Consequently, 
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the selection of the features carried out by applying the methodology that uses the estimation of 

the predictor importance, is made on the entire dataset composed of the aggregation of the data 

of all the participants. In this way, the chosen dataset will represent an average behavior of the 

subjects, which allows us to take into account both subjective differences and to be able to 

generalize the applied methodology.  

 

 

Figure 36. Plot of the importance of each feature of the initial dataset computed by means 

of the Extra Tree Regression algorithm. 

 

The combination of the results obtained in Figure 36 and Table 22, tells us the common features 

to consider in the final dataset that will be used for the measurement of TSV. As explained 

previously, the predictor importance is computed by means of the Gini Importance of each 

feature: higher values of the Gini index are associated with higher importance of the feature in 

the prediction of the TSV.  

The Pearson correlation coefficients captures the linearity between the environmental parameters 

and the TSV; therefore, features such as tM , tL, ta1, tH, tr1 can be included in the dataset; however, 

the predictor importance methodology highlights relationship between the TSV and some 

physiological features, that should be considered in the dataset; the most contributing features 

that contribute to the TSV are: tM , tL, ta1, tH, tr1, LF/HFn, MEDIAN, TSKIN, MEAN,RH. The 

threshold of the feature importance was set of 0.3.  

Moreover, since  tM , tL, ta1, tH, tr1 are correlated between them with Pearson values higher than 

96%, it was chosen to keep only one variable of them, which is tM that is reported to be the 

parameter that has the greatest importance, according to Figure 36. 
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4.4.3 Thermal comfort prediction using AI 
In this experiment, the aim was to measure the TSV of each participant who experienced 

different environmental conditions, by using a dataset made of a small number of features (tM, 

tskin, LF/HFn, MEDIAN, TSKIN, MEAN, RH) . Two approaches were used: the first one consists 

on creating a PCM, one for each participants, by training and testing the algorithms on data 

coming from the same subject. Results, illustrated in Figure 37 (a-b), showed that the 3 models 

provide best average MAE (0.004±0.004, 0.003±0.001 and 0.001±0.0003, for KNN, RF and ET, 

respectively), while best MAPE was obtained by RF and ET (0.05%±0.034% and 0.02%±0.09%, 

respectively); thus RF and ET are the models that provide higher performance when predicting 

TSV by using PCM. These results may arise some concerns due to possible overfitting of the 

data, even though the 30% of the data were excluded from the training.  

   

(a) (b) 

Figure 37. (a) average MAE computed among MAE obtained from each PCM, one for each 

participant. (b) average MAPE computed among MAPE obtained from each PCM, one for each 

participant. 

 

For this reason, the LOSO approach was proposed, which uses a dataset made of data coming 

from all the participants, except for one which is used as test dataset. Results are illustrated in 

Figure 38: with this configuration, the best performance in terms of MAE is reached by 

ET(1±0.2) and the best MAPE was obtained by ET(25%±7%) and ADA(25%±6%). In the first 

place, it can be noted that the performances of the LOSO approach have decreased, compared to 
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the results obtained with the PCM. The first reason certainly concerns the different responses of 

each participant to environmental conditions. 

  

(a) (b) 

Figure 38. (a) average MAE computed among MAE obtained using the LOSO approach. (b) 

average MAPE obtained using the LOSO approach. 

 

4.4.4 Discussion about the integration of skin temperature 
The purpose of this research activity is to evaluate whether the addition of the skin temperature 

within the thermal comfort measurement chain can provide accurate measurements of the TSV 

in real-life settings.  First, it can be noted that the skin temperature acquired through a minimally 

invasive sensor has a medium-high correlation with the TSV, which expresses thermal comfort. 

It is worth commenting on the results obtained by applying the linear correlation through the 

Pearson coefficient and the predictor importance technique; features selection in regression 

tasks, is a very complex procedure, especially when the features that made up the dataset are not 

correlated, such as in this case [91]. However, Pearson coefficient (R) is used to find 

dependencies between the data, and it is a technique that best adapts when the input variables 

are made of continuous values. This is the explanation behind the high R between tskin and the 

TSV, and low R between TSV and LF/HFn. However, this result is not compatible with the output 

provided by predictor importance method, in which LF/HFn is reported to have higher 

importance than tskin; these two quantities are mainly characterized by discrete values and 

therefore they should not be compared by means of R. Therefore, predictor importance is used 

in this context as a support tool to extrapolate relationship among the input features and the 

output.  

The conditions of the test, allow the participant to carry out light-office activities, and this 

introduces additional noise to the HRV signal, and consequently this noise propagates to the 
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HRV features computation. The research presented in Section 3.2 of this work has shown that 

the combination of environmental parameters and HRV features can provide predictions of 

thermal comfort with a MAPE of 20%; however, in this research the user was instructed to limit 

the movements of the wrist as much as possible, to guarantee an uncertainty of the smartwatch 

of ±4 ms, as reported in the literature. The study in Section 3.3 on the other hand demonstrated 

when the user is on the move the uncertainty associated with TSV can increase. For this reason, 

the introduction of the skin temperature into the measurement set-up was useful and effective to 

prevent that HRV features impacts negatively on the TSV computation.   

 

5  

Chapter 5. 

 

Conclusion 
The overall aim of the current PhD thesis was to develop and validate a methodology to measure 

the thermal comfort of occupants in indoor environment and address challenges that society is 

now facing that regards the construction of a satisfactory thermal environment by means of a 

personalized human-centric approach.  

The first study (Section 3.1) is the preliminary research, performed in a highly controlled climatic 

chamber. The main results that came out from the environmental data analysis, as well as 

physiological and psychological ones simultaneously monitored during specific tests conducted 

in winter and summer, can provide with some degree of accuracy the measurement of human 

thermal comfort expressed in terms of TSV. The analysis of the ECG signal, of 29 out of the 62 

performed tests was considered. Extracted features are the ones most related to thermal comfort 

variation according to the literature, i.e., HRV and LF/HF ratio. ML algorithms have been 

applied to use the LF/HF and other indices to predict thermal sensation vote. The results confirm 

that LF/HF alone cannot provide high accuracy on the predictions but by using more HRV 

indices it is possible to predict human thermal comfort with an accuracy of 82%. 

In the second research (Section 3.2) participants were allowed to carry out some light office 

activities, it was possible to demonstrate how HRV features are only able to discern between 

comfort and a discomfort condition of the participant and provide lower performance in 

predicting the TSV in transient conditions compared to the study in the controlled environment. 

For this reason, the effect of the combination of HRV features with environmental quantities was 

examined to test whether a combination of the two could help in the TSV’s prediction. The 

evaluation of the performance of the algorithms suggests that features extracted from 

environmental parameters led to improved results compared to the use of HRV features alone. 

This result is compliant with literature, which suggests that environmental parameters can be 
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helpful in the prediction of thermal comfort and that physiological measurements can be used as 

support features to develop personalized models. Experiment 3 aims to simulate a real-life 

application in which users are able to perform light office activities while a smartwatch collects 

their HRV. By using the dataset made by physiological quantities to predict TSV, the MAE and 

MAPE values cannot provide satisfactory values of accuracy, which suggests that in real life 

conditions, different from the controlled environment created in Section 3.1, more complex 

mechanisms are present in the management of HRV. However, a step-forward in the prediction 

of TSV was made by adding environmental quantities to the HRV features, since the value of 

MAE and MAPE improved. The research proposed was performed in order to explore whether 

it is possible to build ML models by collecting physiological data from a smartwatch, providing 

a methodology that could predict the TSV of the participants. The LOSO approach used for 

testing the accuracy of the ML algorithms aims at creating a generalized model that does not take 

into account gender-related differences but considers only TSV as the ground truth of the model. 

Although the results of the LOSO approach highlight that a punctual, real-time prediction of 

TSV was not always accurate for the current test, it is important to underline that the results 

obtained from ML algorithms can be used to predict the overall comfort of a user. This 

information can point out that the overall thermal comfort is evaluated over a long-term period 

and it is not necessary to estimate a point-by-point trend. 

The Monte Carlo analysis presented in Section 3.2.7 presents an approach to assess the 

measurement uncertainty of human thermal comfort, expressed in terms of TSV, by using a 

method that comprises a heterogeneous set of data, made by physiological and environmental 

quantities, and AI models. The objective is therefore to quantify the measurement uncertainty of 

the TSV, while the user is performing light-office activities, by using GUM guidelines for 

applying MCM. A preliminary analysis was conducted to assess the impact of the measurement 

uncertainty of instrument used to collect HRV, which is a commercial smartwatch. MCM was 

applied to compute the uncertainty associated with the features extracted from HRV, which will 

be later fed into a RF and CNN model. Results have shown that among 13 participants, there is 

uncertainty values in the measurement of features that ranges from ±0.01% to ±0.7%, suggesting 

that among different users the uncertainty can be generalized. Then, MCM was applied by 

perturbing a set of parameters (HRV, ta, RH and va) to compute the uncertainty in measurement 

of the TSV, using RF model and a CNN. RF has highest uncertainty due to the ta uncertainty (U 

= 1%), while CNN have highest uncertainty when RH is perturbed (U = 10.5%). On the other 

hand, the sensitivity analysis that expresses the relationship between the TSV and the input 

parameters, highlights that va   is the parameter that causes the greatest variation on the TSV.  

Finally, the research presented in Section 3.3 was developed to obtain an improvement in the 

measurement of TSV, through the inclusion of the skin temperature, that literature has 

extensively reported being positively associated with thermal comfort. Participants were exposed 

to changes in the air temperature of the test room, in summer, while they were free to carry out 

office activities, without constraints in the movements of the arm in which the sensors were 

installed. This can both negatively affect the HRV measurement which may be subject to motion 

artifacts, but at the same time it is ensured that the only perturbation of the signal is due to the 

external conditions of the room and not to emotional factors. Skin temperature inclusion affects 

positively the computation of the TSV, compensating the uncertainty associated with the 
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movement of the wrist, since participants were not subjected to particular restrictions of the 

hand’s movements. Results have shown that PCM provides good performance in terms of MAE 

(0.004±0.004, 0.003±0.001 and 0.001±0.0003, for KNN, RF and ET, respectively), and MAPE 

obtained by RF and ET (0.05%±0.034% and 0.02%±0.09%, respectively). However, a more 

generalized approach such LOSO approach that uses a dataset made of data coming from all the 

participants, except for one which is used as test provides lower performances in terms of MAE 

(1±0.2 for the ET) and MAPE of (25%±7% and 25%±6%) for ET and ADA, respectively. The 

proposed set of experiments showed  a new measurement procedure to measure the TSV of users 

in a real and controlled environment, through a vast network of both environmental and 

physiological sensors.  
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