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A B S T R A C T   

The accumulation of amyloid-beta peptide (Aβ) and the failure of cholinergic transmission are key players in 
Alzheimer’s disease (AD). However, in the healthy brain, Aβ contributes to synaptic plasticity and memory acting 
through α7 subtype nicotinic acetylcholine receptors (α7nAChRs). Here, we hypothesized that the α7nAChR 
deletion blocks Aβ physiological function and promotes a compensatory increase in Aβ levels that, in turn, 
triggers an AD-like pathology. 

To validate this hypothesis, we studied the age-dependent phenotype of α7 knock out mice. We found that 
α7nAChR deletion caused an impairment of hippocampal synaptic plasticity and memory at 12 months of age, 
paralleled by an increase of Amyloid Precursor Protein expression and Aβ levels. This was accompanied by other 
classical AD features such as a hyperphosphorylation of tau at residues Ser 199, Ser 396, Thr 205, a decrease of 
GSK-3β at Ser 9, the presence of paired helical filaments and neurofibrillary tangles, neuronal loss and an in
crease of GFAP-positive astrocytes. 

Our findings suggest that α7nAChR malfunction might precede Aβ and tau pathology, offering a different 
perspective to interpret the failure of anti-Aβ therapies against AD and to find novel therapeutical approaches 
aimed at restoring α7nAChRs-mediated Aβ function at the synapse.   

1. Introduction 

Alzheimer’s disease (AD) is the most common neurodegenerative 
disorder affecting the elderly, but its intricate pathophysiology has 
prevented the discovery of effective therapies. The Cholinergic and the 
Amyloid-β (Aβ) Hypotheses represent the two main etiopathological 
theories proposed to explain the onset and progression of the disease. 
The Cholinergic Hypothesis (Appel, 1981) has been supported by several 
evidences indicating that cholinergic transmission is affected in early 
AD. Indeed, loss of cholinergic neurons in the nucleus basalis of Mey
nert, decrease of choline acetyltransferase (ChAT) activity and reduction 
of nicotinic receptors (nAChRs) have been highly correlated with 

dementia and its progression (Burghaus et al., 2000; Dickson et al., 
1995; Engidawork et al., 2001; Kuhn et al., 2015; Mufson et al., 2007; 
Strada et al., 1992; Whitehouse et al., 1981). 

On the other hand, the Aβ Hypothesis (Hardy and Allsop, 1991) 
posits that the increase and accumulation of Aβ represent the primum 
movens in AD pathophysiology, responsible of synaptic dysfunction 
triggering downstream events leading to dementia [reviewed in (Guli
sano et al., 2018a)]. 

A third leading actor in this conundrum is tau, a microtubule- 
associated protein involved in microtubule assembly and stabilization 
(Wang and Mandelkow, 2015) whose activity and function is regulated 
by different types of post-translational modifications such as 
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phosphorylation, ubiquitination or glycosylation (Martin et al., 2011). 
Interestingly, tau shares numerous characteristics with Aβ since both 
proteins form insoluble deposits, i.e. senile plaques and neurofibrillary 
tangles (NFTs), respectively (Glenner and Wong, 1984; Grundke-Iqbal 
et al., 1986), and can aggregate in soluble oligomers whose increase has 
been highly related to AD severity (Fá et al., 2016; Hölttä et al., 2013; 
Lasagna-Reeves, 2012; Sengupta et al., 2017). According to the classic 
Aβ Hypothesis, tau hyperphosphorylation is triggered by Aβ but, 
recently, it has been demonstrated that the two proteins might act 
independently or concomitantly to impair synaptic plasticity and 
memory (Fá et al., 2016; Puzzo et al., 2020), probably converging onto 
common targets such as amyloid precursor protein (APP) (Puzzo et al., 
2017; Wang et al., 2017). 

Although pre-clinical and clinical data continue to support both the 
Cholinergic and the Aβ hypotheses, therapeutic strategies aimed at 
increasing ACh transmission are not able to act as disease-modifying 
drugs, and approaches expected to cure the disease by decreasing Aβ 
levels have failed so far. In particular, cholinesterase inhibitors used to 
treat cognitive symptoms in early to moderate AD patients (Anand and 
Singh, 2013) do not induce a long-term improvement of cognition and 
the treatment is not always effective (Connelly et al., 2005; Lemstra 
et al., 2007). Also, a variety of nAChR agonists, although promising in 
preclinical studies, had a limited efficacy when experimented in clinical 
trials, probably for the rapid nAChRs desensitization (Picciotto, 2000). 
The outcome of clinical trials with anti-Aβ drugs is even more puzzling 
since the success obtained in animal models of AD has not been repli
cated in humans. Active and passive immunization against Aβ as well as 
the use of drugs aimed at preventing Aβ formation have failed, either not 
showing efficacy or inducing severe side effects [for a review see 
(Gulisano et al., 2018a)]. Notwithstanding these discouraging results, 
anti-Aβ therapies are still under investigation with the intent to treat 
patients in the very early asymptomatic phase of the disease, or to select 
Aβ-responders based on a personalized approach. However, the latest 
unsuccessful trials with the anti-Aβ antibody aducanumab and the BACE 
inhibitor elenbecestat (see www.alzforum.org) are emblematic and 
confirmed that the Occam’s razor strategy “if Aβ increases in AD pa
tients, clearing Aβ from the brain is the solution” might not be the right 
choice against AD (Gulisano et al., 2018a; Herrup, 2015; Puzzo et al., 
2015a,b). 

It is undeniable that AD patients present an increase of Aβ and 
hyperphosphorylated tau, as well as an impairment of cholinergic 
transmission (Gulisano et al., 2018a; Ferreira-Vieira et al., 2016; Selkoe 
and Hardy, 2016). On the other hand, the observation that in the healthy 
brain Aβ exerts a physiological function mediated by cholinergic re
ceptors (Gulisano et al., 2019) might offer a new perspective to tackle 
the intricate pathophysiology of AD (Puzzo et al., 2015a,b). Indeed, a 
variety of studies have demonstrated that Aβ enhances neurotransmitter 
release (Gulisano et al., 2019; Koppensteiner et al., 2016; Lazarevic 
et al., 2017) – for a review see (Puzzo et al., 2015a,b) - and facilitates 
long-term potentiation (LTP) and memory formation (Garcia-Osta and 
Alberini, 2009; Morley et al., 2010; Palmeri et al., 2017; Puzzo et al., 
2011, 2008; Ricciarelli et al., 2014) through α7nAChRs. In fact, pico
molar concentrations of Aβ bind α7nAChRs with high affinity (Wang 
et al., 2000) exerting an agonist-like action that regulates synaptic 
function (Dineley et al., 2002; Gulisano et al., 2019; Lawrence et al., 
2014; Lazarevic et al., 2017; Mura et al., 2012; Oz et al., 2013; Puzzo 
et al., 2011, 2008). Therefore, a genetic or pharmacological deletion of 
α7nAChRs prevents the Aβ-induced enhancement of short- and 
long-term synaptic plasticity as well as memory (Gulisano et al., 2019; 
Puzzo et al., 2011, 2008). 

These observations inspired this work that aimed at understanding 
whether the Cholinergic and Aβ hypotheses might be unified looking at 
the disease from a different perspective summarized in one question: 
what are the consequences of a failure of Aβ physiological function when 
its endogenous receptor, i.e. α7nAChR, does not work properly? 

2. Material and methods 

2.1. Animals 

We used WT (C57BL/6 J; RRID:IMSR_JAX:000664) and α7-KO 
(B6.129S7-Chrna7tm1Bay/J; RRID:IMSR_JAX:003232) purchased from 
The Jackson Laboratory. Histology was also performed on hippocampal 
slices from 3×Tg mice (APPSwe, PS1 M146 V, and tauP301 L) geneti
cally engineered by LaFerla and colleagues at the Department of 
Neurobiology and Behaviour, University of California, Irvine (Oddo 
et al., 2003). Colonies were established in the animal facilities at Uni
versity of Catania and Università Cattolica del Sacro Cuore. Housing 
conditions were controlled maintaining stable hygrometric and thermic 
conditions (50 %; 21 ◦C ± 1 ◦C) on 12 h light/dark cycle with ad libitum 
access to food and water. 

All the experiments were performed according to the local Institu
tional Animal care and Use Committee (approval #327/2013-B, 
#119− 2017-PR, #626− 2016-PR) and the European Communities 
Council Directives (2010/63/EU). Experiments complied with the 
ARRIVE guidelines and were conducted to minimize animal suffering. 
To reduce number of animals, we used males for electrophysiological 
recordings, sex-balanced animals for behavioral experiments, western 
blotting and ELISA, females for histology and immunohistochemistry. 
Animals were used at different ages according to our scientific work 
plan, as detailed in the specific sections. 

2.2. Electrophysiological field recordings 

Extracellular electrophysiological field recordings were performed 
on transverse hippocampal slices as previously described (Gulisano 
et al., 2019; Puzzo et al., 2017). After cervical dislocation, hippocampi 
were removed and cut (400 μm thickness) by a manual tissue chopper. 
Slices were transferred to a recording chamber and perfused (1− 2 
mL/min) with ACSF (composition in mM: 124.0 NaCl, 4.4 KCl, 1.0 
Na2HPO4, 25.0 NaHCO3, 2.0 CaCl2, 2.0 MgCl2, 10.0 Glucose) kept at 29 
◦C and continuously bubbled with an O2/CO2 mixture at 95 % and 5%. 
Slices were allowed to recover for 120 min prior to recording. Field 
excitatory postsynaptic potentials (fEPSPs) were recorded in CA1 stra
tum radiatum by a glass capillary filled with ACSF in response to stim
ulation of the Schaffer collaterals by a bipolar tungsten electrode. Basal 
synaptic transmission (BST) was assessed by stimulating with a series of 
increasing voltage pulses (from 5 to 35 V) to select healthy slices to be 
used for electrophysiological recordings. For Paired pulse facilitation 
(PPF) experiments, slices were perfused with the NMDA receptor 
antagonist (2R)-amino-5-phosphonovaleric acid (APV; 50 μM) for 45 
min. Two pulses with a time interval of 10, 20, 30, 40, 50, 100, 200, 500, 
and 1000 ms were delivered and fEPSP responses were recorded. In 
another series of experiments, we studied LTP. Baseline was elicited 
every minute, by stimulating at a voltage able to evoke a response of 35 
% of the maximum evoked response in BST. After 30− 45 min, slices with 
a stable baseline (slope variation ± 5%) were recorded for 15 min before 
to induce LTP by a theta-burst (TBS) stimulation, i.e. 3 TBS trains 
delivered with a 15 s inter-train interval with each train consisting in 10 
× 100 Hz bursts with 5 pulses per burst with a 200-ms interburst in
terval, at the test pulse intensity. Recordings were performed and 
analyzed offline in pClamp 10 (Molecular Devices, Sunnyvale, CA, USA). 
PPF was plotted as the percentage of the synaptic response of the second 
against the first delivered stimulus. LTP was plotted as fEPSP (normal
ized as % of baseline) vs. time (min). 

2.3. Drugs 

In a series of experiments, hippocampal slices were treated with 
α-bungarotoxin (α-BTX; Sigma-Aldrich, 10 μM), methyllycaconitine 
(MLA, Sigma-Aldrich, 10 μM), murine anti-Aβ antibody M3.2 (Covance, 
catalog #SIG-39155, 2 μg/mL) before tetanic stimulation. MLA was 
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dissolved in DMSO, aliquoted, stored at − 20 ◦C. All drugs were diluted 
in ACSF to the desired final concentration right before electrophysio
logical experiments, according to previous studies (Gulisano et al., 2019; 
Puzzo et al., 2008). 

2.4. Behavioral studies 

Fear Conditioning (FC) was performed as previously described 
(Puzzo et al., 2017). The apparatus consisted in a conditioning chamber, 
connected to an interface (Kinder Scientific, USA), located in a 
sound-attenuating box (Campden Inst., UK) with a computer fan 
installed in one side to provide a background white noise. A webcam 
mounted on the top of the chamber allowed video recording of the 
experiment. The floor, made of 36-bar insulated shock grid, was cleaned 
after each test with 70 % ethanol and water. The protocol lasted 3 days. 
Mice were handled every day for about 5 min before the experiment. 
During the first day the animal was placed in the conditioning chamber 
for 2 min prior to the conditioned stimulus (CS) delivery. CS was a tone 
(2800 Hz and 85 dB) delivered for 30 s. In the last 2 s of the tone, the 
mouse received a foot shock as an unconditioned stimulus (US) through 
the electrified grid floor (0.7 mA for 2 s). After the CS/US pairing, the 
mouse was left into the chamber for 30 s before to be placed in the home 
cage. Twenty-four hours after training (day 2), the mouse was placed 
back in the conditioning chamber for 5 min to evaluate contextual fear 
memory. Forty-eight hours after training (day 3) animals were placed in 
the conditioning chamber to evaluate cued fear memory. To this end, a 
novel context was created by using an acrylic black box with a smooth 
flat floor sprayed with vanilla odorant. After 2 min (pre-CS test), the 
mouse was exposed to the same tone used during the training for 3 min 
(CS test). Freezing (absence of movement except for that needed for 
breathing) was manually scored during the three days by two different 
operators and the averaged value was used to perform the analyses. 

Novel Object Recognition (NOR) was performed as previously 
described (Gulisano et al., 2018b). The arena was a white plastic box (50 
× 35 × 45 cm) placed on a lab bench. A webcam, connected to the 
computer, was fixed on the wall. The NOR protocol was performed in 5 
days: 3 days of habituation, 1 day of training (T1) and 1 day of testing 
(T2). Objects were designed by a computer aided design software (Sol
idworks, France) and printed in polylactic acid with a Prusa i3-inspired 
3D printer of our design. After each trial, the box and the objects were 
cleaned with 70 % ethanol and dried with absorbent paper. During the 
first day (habituation to the arena), the mouse was put into the empty 
arena and allowed to explore it for 10 min. During the second and the 
third day (familiarization with objects), the mouse was put into the 
arena containing two different objects, randomly chosen among our 
object collection and changed from day to day, for 10 min. During the 
fourth day, NOR training session (T1) was performed. The mouse was 
put into the arena and allowed to explore for 10 min two identical ob
jects placed in the central part of the box, equally distant from the 
perimeter and the center. During the fifth day (24 h after T1), the mouse 
underwent the second trial (T2) to test memory retention for 10 min. 
Mice were presented with two different objects, respectively a “familiar” 
(i.e. the one used for T1) and a “novel” object. For Novel Object Location 
(NOL), the mouse was put into the arena and allowed to explore for 10 
min two identical objects placed in one side of the box. On the day after, 
the location of one object was changed and the mouse underwent the T2 
for 10 min. For both NOR and NOL experiments, animal exploration - 
defined as the mouse pointing its nose toward the object from a distance 
not > 2 cm - was measured in T2. We analyzed: i) percentage exploration 
of familiar vs. novel object; ii) discrimination (D) index, “exploration of 
novel object minus exploration of familiar object/total exploration 
time”; and iii) total exploration time. Mice with a total exploration time 
< 5 s were excluded from analysis. 

2.5. Determination of aβ levels 

Briefly, hippocampal tissues from 12 M α7 KO and WT mice were 
sonicated in lysis buffer (10 μL/mg tissue) containing 5 M guanidi
ne− HCl/50 mM Tris, pH 8.0). Sonicates were then diluted ten-fold with 
Dulbecco’s PBS containing 1× protease inhibitor cocktail (Sigma). 
Levels of murine Aβ (1–42) were measured by enzyme-linked immu
nosorbent assay (ELISA) using commercial kits (Thermo Fisher Scienti
fic, cat# KMB3441) following manufacturer’s instructions. All assays 
were performed on F-bottom 96-well plates (Nunc, Wiesbaden, Ger
many). Tertiary antibodies were conjugated to horseradish peroxidase. 
Wells were developed with tetramethylbenzidine and measured at 450 
nm. 

2.6. Western blotting on hippocampal homogenates 

Western blot (WB) analysis was performed as previously described 
(Gulisano et al., 2019; Li Puma et al., 2019) with minor modifications. 
Whole hippocampi from 9 and 12 months-old WT and α7 KO mice were 
homogenized in RIPA buffer (Thermoscientific) in the presence of 
phosphatase and protease inhibitors (Thermoscientific), and sonicated 3 
times for 10 min on ice. Protein concentrations were determined by 
Bradford protein assay (Biorad) and 40 μg of total proteins were then 
loaded onto 4–15 % Tris-glycine polyacrylamide gels (Biorad) for elec
trophoretic separation and then transferred onto 0.45 or 0.22 μm 
nitrocellulose membranes (Amersham Biosciences, Buckinghamshire, 
UK). Membranes were blocked for 1 -h, at RT, in either a solution of 5% 
nonfat dry milk in Tris-buffered saline containing 0.1 % Tween-20 
before incubation overnight at 4 ◦C with the following primary anti
bodies: mouse 4G8, that recognizes residues 17–24 of Aβ and the same 
sequence in APP full length (BioLegend San Diego, California, USA; 
1:1000); mouse C-term APP Y188 (Abcam; Cambridge UK; 1:1000); 
mouse M3.2 (BioLegend; 1:1000), that recognizes residues 10–15 of 
murine Aβ and the same sequence in APP full length; mouse pTau Ser199 
(Thermo fisher Scientific; 1:1000); rabbit pTau Ser396 (SAB; Signalway 
Antibody Co., Ltd.; 1:1000); rabbit pTau Thr205 (SAB; 1:1000); rabbit 
pGSK-3β Ser9 (Cell Signaling; 1:1000). Mouse anti-GAPDH (Abcam; 
1:5000), rabbit total GSK-3β (Cell signaling; 1:1000) and mouse Tau-5 
(Thermo fisher Scientific; 1:1000) were used as loading controls. After 
incubation with HRP-conjugated secondary antibodies (Cell Signaling 
Technology) visualization was performed with ECL plus (Amersham 
Biosciences) using UVItec Cambridge Alliance. Molecular weights for 
immunoblot analysis were determined using Precision Plus Dual Color 
Standards (Biorad). 

2.7. Tissue preparation for microscopy studies 

For histology, NeuN and GFAP immunohistochemistry, fresh brains 
were removed, immersed in 10 % formalin for 72 h and then transferred 
in 4% PFA in phosphate buffer until use. For PHF-1 immunohisto
chemistry, animals were anesthetized by intraperitoneal injection of a 
cocktail of Zolazepam plus Tiletamine (120 mg/Kg) and Medetomidine 
(80 μg/Kg), and perfused through the ascending aorta with a flush of 
physiological saline followed by 4% paraformaldehyde. Brains were 
removed and post-fixed in 4% PFA in phosphate buffer for 5 days. 

Sections (50 μm thickness) were sequentially cut with a Vibratome 
within 2.350 and 1.725 mm lateral range and processed for immuno
histochemistry or histological stains. 

2.8. Congo Red stain 

Congo Red stain was performed as previously described (Wilcock 
et al., 2006). Sections were incubated for 20 min in a fresh prepared 
alkaline saturated NaCl solution. Briefly, NaCl was added to an 80 % 
ethanol solution while stirring, until the formation of an undissolved 
NaCl layer (about 5 mm thick) and 1% NaOH 1 M was added before use. 
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Sections were then incubated in 0.2 % Congo Red solution (Sigma-Al
drich) for 30 min and rinsed five times in 95 % ethanol. 

2.9. Bielschowsky stain 

Bielschowsky silver stain was performed as suggested by the manu
facturer (Bielschowsky silver stain kit, VitroVivo Biotech, cat.#VB- 
3015). Briefly, sections were incubated in pre-warmed 40 ◦C Silver Ni
trate solution for 18 min, washed in distilled water and then incubated 
with silver ammonium solution at 40 ◦C for 30 min. Subsequently, slices 
were placed in the developing solution for 75 s and in 1% ammonium 
hydroxide solution for 60 s. Slices were then washed in distilled water 
and incubated in 5% sodium thiosulfate solution for 5 min. 

2.10. Immunohistochemistry 

Antibodies. The following primary antibodies were used: mouse anti- 
PHF-1 (1:50) detecting tau Ser396/Ser404 phosphorylation sites 
(generous gift of Dr. Peter Davies); mouse anti-NeuN (1:100; Millipore, 
cat.#MAB377); mouse anti-GFAP (1:350; Sigma-Aldrich, cat.#G3893). 

Immunofluorescence. Immunofluorescence was performed as previ
ously described (Melone et al., 2019). Sections were incubated in 10 % 
NDS (1 h), followed by a solution containing PHF-1 primary antibody 
overnight at RT. Sections were rinsed in Tris (0.5 M buffered saline, pH 
7.4) incubated first in 10 % NDS (15 min), and then in a solution con
taining the secondary antibody (Alexa Fluor 488, 1:230; Jackson) for 2 h 
at RT. Sections were washed in Tris, mounted, and coverslipped with 
propyl-gallate 0.1 M in glycerol-PBS solution (9:1). Omission of the 
primary antibodies in sections from each experimental group resulted in 
a lack of specific staining in the corresponding channel (negative con
trol). To quench lipofuscin autofluorescence, at the end of immunoflu
orescence protocols, sections were incubated for 5 min in 0.1 % Sudan 
Black dissolved in 70 % alcohol. To minimize procedural variability, 
sections from all experimental groups, were exposed to immunofluo
rescence procedure in parallel. 

Immunoperoxidase. Immunoperoxidase was performed as previously 
described (Melone et al., 2019). For both NeuN and GFAP optimal 
detection (i.e. immunoreactivity against the background level) was 
determined by testing different conditions (e.g., inclusion or exclusion of 
detergents, and a range of dilutions for primary antibodies) in a set of 
pilot trials. Sections were treated with H2O2 (1% in Tris for 25 min) to 
remove endogenous peroxidase activity, rinsed in Tris and then incu
bated in 10 % NGS (1 h) followed by a solution containing NeuN or 
GFAP primary antibodies (overnight at RT). Sections were rinsed in Tris 
and incubated first in 10 % NGS (15 min) and then in a solution con
taining biotinylated secondary antibody (1:180; Jackson) for 2 h at RT. 
Subsequently, they were rinsed in Tris, incubated in avidin-biotin 
peroxidase complex (ABC Elite PK6100, Vector), washed in Tris, and 
incubated in 3,3′diaminobenzidine tetrahydrochloride (DAB; 0.05 % in 
0.05 M Tris buffer, pH 7.6 with 0.03 % H2O2). Then, sections were 
washed, mounted, and coverslipped with dpx mounting medium. 
Method specificity was assessed by substituting NeuN and GFAP primary 
antibodies with Tris, resulting in the absence of immunoreactivity. To 
minimize procedural variability, sections from all experimental groups, 
were exposed to immunoperoxidase procedure in parallel. 

Data collection and analysis. 
For confocal microscopy, PHF-1 immunolabeled sections were 

scanned with a Leica SP2 TCS-SL microscope. For 20x of CA1, micro
scopical fields were acquired as 512 × 512 pixel images (pixel size of 
750 nm) with pinhole 1.4 Airy unit, and to improve signal/noise ratio, 4 
frames of each image were averaged. For quantitative microscopy of 
stratum oriens (so), stratum pyramidalis (sp), and stratum radiatum (sr), 
microscopical fields were acquired as 512 × 512 pixel images (pixel size 
of 465 nm) with a planapo 63 × objective (numerical aperture 1.4) and 
pinhole 1.0 Airy unit. To improve signal/noise ratio, 4 frames of each 
image were averaged. CA1 microscopical fields were randomly selected 

(8 microscopical fields/layer/4 sections from 2 animals for each 
experimental group). To avoid the influence of the acquisition param
eters (i.e. photomultiplier gain and offset) on fluorescence intensity, all 
microscopical fields from all conditions were scanned and acquired with 
the same setting. As previously described (de Vivo, 2010), photo
multiplier gain and offset were set so that the brightest pixel was just 
slightly below saturation, and the offset such that the darkest pixels were 
just above zero. To avoid the effects of the surface-depth gradient on 
immunodetection (Melone et al., 2005), all microscopical fields were 
acquired at a z-axis level yielding the maximum brightness of immu
nopositive profiles (de Vivo, 2010; Melone et al., 2005). 

For quantitation of intensity, randomly selected subfields of 32 × 32 
μm from the original microscopic fields (Melone et al., 2019) (32 for 
each experimental group/layer; with a total of 96 subfields for each 
condition) were used. 

Optimal visualization of immunoreactivity was achieved by setting 
the threshold value to the mean pixel value over the field under study in 
WT and α7 KO groups (Melone et al., 2005). Intensity of threshold 
subfields was calculated by Image J (Schneider et al., 2012). Number 
and mean size of immunoreactive puncta of each subfield were obtained 
by transforming images to binary mode and calculated using Image J 
(Bozdagi et al., 2000; Bragina et al., 2006; Schneider et al., 2012). For 
PFH-1 positive neuronal-like cells, intensity of 2–4 regions of interested 
(ROI) within the cytoplasm, was calculated (area between 30 and 40 
μm2) (de Vivo, 2010). For the intensity of PHF-1 positive dendritic-like 
profiles, value was extracted by plotting intensity pixel values along the 
major axis of profiles using Image J (Melone et al., 2019). 

For light microscopy studies, hippocampus and CA1 of Congo Red 
and Bielschowsky stained sections were acquired at 4 × and 20 × and at 
4 × and 40 × original magnifications, respectively (4–6 sections/2 an
imals for each experimental group). For NeuN and GFAP studies, 
hippocampi of immunostained sections were acquired at 4 ×, and at 40 
× for quantitative studies in so, sp, sr. NeuN and GFAP positive cells 
were manually identified, and to estimate the density of cells, the area of 
microscopical fields (18 microscopical fields/layer/6 sections from 3 
animals for each experimental group; with a total of 54 fields for each 
condition) was calculated by Image J. 

2.11. Statistics 

All experiments were performed by researchers blind with respect to 
treatment. All data were expressed as mean ± standard error mean 
(SEM). Statistical analysis was performed by using different tests, based 
on preliminary analyses of normal distribution. ANOVA for repeated 
measures was used to analyze PPF and LTP (120 min of recording after 
tetanus). One-way ANOVA with Bonferroni’s post-hoc correction was 
used for PPF single time intervals. Two-tailed t-test was used for analyses 
of behavioral parameters, NeuN and GFAP immunohistochemistry. One 
sample t-test was used to compare D with zero in NOR and NOL. Given 
the non-normal distribution of data, assessed by D’Agostino & Pearson 
normality, we used Mann-Whitney test for ELISA and PHF-1 immuno
reactivity; Mann-Whitney and Kruskal-Wallis One Way tests for WB 
experiments. Systat 9, Graphpad Prism 8, and Sigmaplot 14 software 
were used for statistical analyses. The level of significance was set at P <
0.05. 

3. Results 

3.1. Synaptic plasticity and memory are impaired in 12-month-old α7 KO 
mice 

The role of α7nAChRs in cognitive functions (Picciotto, 2000) relies 
on their ability to modulate synaptic function through the regulation of 
glutamate release (Cheng and Yakel, 2015). Thus, we first evaluated 
whether their genetic deletion affected paired-pulse facilitation (PPF), a 
form of short-term plasticity that might reflect release probability. PPF 
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resulted unchanged in slices from α7 KO mice at 3, 6 and 9 months of 
age, but was increased at 12 months (M) compared to slices from 
age-matched WT animals (Fig. 1A). We then investigated long-term 
plasticity by recording LTP at hippocampal CA3-CA1 synapses. Poten
tiation was normal in hippocampal slices from animals at 3 M and 6 M in 
both genotypes (Fig. 1B). An initial deficiency of LTP was present at 9 M, 
even if it was less pronounced in respect to the impairment found at 12 
M (Fig. 1C). Thus, we chose to conduct the rest of this study on 12 M 
animals. 

The observation that release probability and plasticity were impaired 
in an age-dependent manner, prompted us to study different types of 
memory known to be impaired in AD (Puzzo et al., 2014a). Evaluation of 
contextual fear memory 24 h after training showed that the amount of 
freezing behavior was impaired in 12 M α7 KO compared to WT controls 

(Fig. 1D), whereas no differences were found in amygdala-dependent 
cued fear memory (Fig. 1E). 

We then evaluated recognition and spatial memory through Novel 
Object Recognition (NOR) and Novel Object Location (NOL) tasks. An
alyses of Discrimination index (D = exploration of novel object minus 
exploration of familiar object/total exploration time) showed an 
impairment of memory in 12 M α7 KO (Fig. 1F). Comparison of D with 
zero confirmed that only WT mice were able to discriminate between the 
old and the novel object or its different spatial location. No differences 
were detected in total exploration time between the two groups of mice 
(Fig. 1G). 

Open field test showed that locomotor activity and anxiety-like 
behavior were not affected (Fig. 1H,I), suggesting that the impairment 
of memory found in α7 KO was not due to motor or motivational defects. 

Fig. 1. Synaptic plasticity and memory are impaired in 12-month-old α7 KO mice. A) PPF changed in slices from 12 M α7 KO but was unaltered at other ages (P 
= 0.010 in 12 M α7 KO vs. WT; N = 9 slices from 6-7 3-month-old animals; N = 7 slices from 5-6 animals at other ages). B) LTP was normal in slices from α7 KO at 3 
M and 6 M (P > 0.05 compared with age-matched WT). TBS = theta-burst stimulation. N = 7 slices from 5-6 animals for each condition, here and in C. C) LTP was 
impaired in slices from 12 M α7 KO (F(1,12) = 35.1837, P < 0.0001) compared with age-matched WT. A slight impairment of LTP was present at 9 M (F(1,12) = 10.883, 
P < 0.006 vs. 9 M WT; F1,12 = 12.212, p = 0.004 vs. 12 M α7 KO). D) Contextual fear memory was impaired in 12 M α7 KO mice (t(18) = 3.06, P = 0.007; N = 10/10. 
E) No differences were detected in cued fear memory (t(18) = 0.722, P = 0.479). F) Discrimination index (D) was impaired in 12 M α7 KO mice (NOR: t(27) = 2.92, P =
0.007; N = 15 WT/12 α7 KO; NOL: t(27) = 5.882, P < 0.0001; N = 12 WT/10 α7 KO). WT but not α7 KO mice were able to learn (P < 0.0001 D vs. zero). G) Total 
exploration time was similar among genotypes (NOR: t(27) = 0.143; P = 0.887; NOL: t(20) = 0.543; P = 0.887). H-I) No differences were present in exploratory and 
anxiety-like behavior tested by the open field task (t(20) = 1.081, P = 0.293 for % time spent into the center; t(20) = 1.632, P = 0.118 for number of entries into the 
center; N = 10 WT/12 α7 KO). *P < 0.05, **P < 0.01, ****P < 0.0001, #P ∕= 0. Data expressed as mean ± SEM. 
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Thus, α7 KO mice showed an age-dependent impairment of hippo
campal synaptic plasticity and memory. 

3.2. The lack of endogenous α7nAChRs induces an increase of Aβ 
production and APP expression 

The impairment of synaptic plasticity and memory found in α7 KO 
mice might be due to the sole alteration of cholinergic transmission. In 
fact, the impairment of LTP was also present in hippocampal slices from 
wild type mice acutely treated with drugs inhibiting α7nAChRs, such as 
α-BTX and MLA (Supplementary Fig. 1). However, this scenario is also 
compatible with the hypothesis that the cognitive phenotype is triggered 
by the failure of Aβ-mediated synaptic homeostasis. Indeed, in a situa
tion in which Aβ is not able to adequately exert its physiological func
tions through α7nAChRs, a feedback mechanism might occur, inducing a 
compensatory increase of Aβ production overtime. High levels of Aβ 
might in turn be responsible for the impairment of synaptic plasticity 
and memory found in α7 KO mice. To test this hypothesis, we evaluated 
whether the age-dependent damage of LTP and memory was paralleled 
by changes in Aβ production. We performed the enzyme-linked immu
nosorbent assay (ELISA) for mouse Aβ42 on hippocampal homogenates 

from 12 M α7 KO and WT mice and confirmed that the deletion of 
α7nAChRs induced a significant increase of the peptide levels (Fig. 2A). 
Because Aβ is produced by APP cleavage, we next verified whether this 
feedback mechanism acted through a modification of APP expression. 
We found an increase of APP full-length expression in 12 M α7 KO 
hippocampi (Fig. 2B,C) that was confirmed by 3 different antibodies: 
Y188, 4G8, and M3.2. Furthermore, 4G8 (recognizing both human and 
murine Aβ) and M3.2 (specific for murine Aβ) allowed detecting a 24 
KDa band, presumably corresponding to soluble aggregates (i.e., pen
tamers), that was significantly increased in α7 KO hippocampi (Fig. 2D, 
E). However, Congo Red staining did not reveal the presence of hippo
campal senile plaques (Fig. 2F). 

To further confirm that the increase of Aβ contributed to the 
impairment of synaptic plasticity found in hippocampal slices from 12 M 
α7 KO mice, we investigated whether neutralization of Aβ by a treatment 
with the murine anti-Aβ antibody M3.2 rescued LTP. We found that 
M3.2 (2 μg/mL for 20 min before tetanus) restored LTP in slices from 12 
M α7 KO mice (Fig. 2G). Notably, the same treatment impaired LTP in 
slices from wild type mice (Fig. 2G). 

Overall, these findings suggest that the absence of α7nAChRs triggers 
an age-dependent increase of soluble Aβ and APP, which parallels the 

Fig. 2. Aβ levels and APP expression increase in 12 M α7 KO mice. A) ELISA revealed an increase of Aβ42 levels in hippocampal homogenates from α7 KO 
compared with WT mice (Mann-Whitney Rank Sum Test, P = 0.036, N = 3 and 4 animals, respectively). B) Western blot analysis comparing the expression of APP in 
hippocampi from WT and α7 KO animals at 9 M and 12 M assessed by 3 different antibodies, i.e. 4G8, Y188 and M3.2. C) Bar graphs showing the results of the 
densitometric analysis of the Western blots reported in (B) indicated a significant increase of APP expression in hippocampi from 12 M α7 KO mice compared to WT 
(Kruskal-Wallis One Way Analysis of Variance on Ranks, P = 0.038 for Y188, N = 5 for each condition; P = 0.040 for 4G8, N = 6 for each condition and P = 0.046 for 
M3.2; N = 5 for each condition). GAPDH expression level was used as loading control here, in D and E. D) An increase of a ≈ 25 kDa band, presumably representing 
Aβ oligomers, was detected in 12 M α7 KO hippocampi either when using the 4G8 (Kruskal-Wallis One Way Analysis of Variance on Ranks, P = 0.035, N = 5 for each 
condition) or E) the M3.2 antibody, specific for murine Aβ (Kruskal-Wallis One Way Analysis of Variance on Ranks; P = 0.030, N = 4 for each consition). APP KO 
mice were used as negative controls both in D and E. F) No plaques were detected using Congo red staining in α7 KO hippocampal slices. Hippocampal slices from 
3×Tg mice were used as a positive control. Upper panels: 4 × magnification, scale bar 100 μm; Lower panels: 20 × magnification, scale bar 50 μm. G) The anti-Aβ 
antibody M3.2 rescued LTP in 12 M α7 KO hippocampal slices (F(1,12) = 7.063, p = 0.021 vs. α7 KO vehicle-treated slices; N = 6/8 from 5-6 animals), whereas it 
impaired LTP in WT slices (F(1,11) = 21.730, p = 0.001 vs. WT vehicle-treated slices; N = 7/6 from 5-5 animals). TBS = theta-burst stimulation. *P < 0.05. Data 
expressed as mean ± SEM. 
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impairment of synaptic plasticity and memory, with no plaque 
formation. 

3.3. The lack of endogenous α7nAChRs triggers tau hyperphosphorylation 
through GSK-3β modulation 

Tau hyperphosphorylation and accumulation of paired helical fila
ments (PHF) leading to NFTs formation represent hallmarks of AD brain 
lesion highly correlated with cognitive impairment (Iqbal et al., 2005). 
Here, we first investigated whether α7nAChRs deletion modified tau 
phosphorylation at different residues known to be associated with 
neurodegeneration and AD, i.e., Ser 199, Ser 396, and Thr 205 (De 
Chiara et al., 2019; Neddens et al., 2018). Western blotting analysis 
showed a significant increase of pTau expression at Ser 199 and Ser 396 
(Fig. 3A), and Thr 205 (Fig. 3B) in hippocampi from 12 M α7 KO mice 
compared to WT. In a series of complementary experiments, we found 
that pTau (Ser 199 and Thr 205) was not modified in hippocampi from 9 
M α7 KO mice compared with age-matched WT (Supplementary Fig. 2). 

We then turned our attention onto glycogen synthase kinase-3β 
(GSK-3β), considered a crucial molecule in AD, being a possible mo
lecular link between Aβ and tau pathology (Llorens-Martín et al., 2014). 
In particular, we focused on GSK-3β auto-inhibitory phosphorylation 
site on Ser 9 whose dysregulation induces an abnormal activation of 
GSK-3β leading, in turn, to tau hyperphosphorylation (Hanger and 
Noble, 2011). We found a decrease in Ser 9 phosphorylation of GSK-3β 

in hippocampi from α7 KO mice (Fig. 3C) that paralleled the increase of 
tau phosphorylation. 

3.4. The lack of endogenous α7nAChRs causes tau accumulation and 
deposition in neurofibrillary tangles 

We then investigated the presence of PHFs in hippocampal slices, 
suggestive for a more advanced stage of pathology. We used a PHF-1 
antibody (a generous gift of Dr. Peter Davies) that detects Ser396/ 
Ser404 phosphorylation sites, known to be associated with NFT forma
tion (Götz et al., 2001). 

Confocal microscopy revealed an increased PHF-1 immunoreactivity 
(IR) in the CA1 area of 12 M α7 KO hippocampi compared to WT 
(Fig. 4A), particularly evident in the CA1 stratum pyramidalis and stratum 
radiatum (Fig. 4B). Analyses of PHF-1 IR revealed an increase of mean 
size positive puncta in the stratum oriens, neuronal-like cells in the 
stratum pyramidalis, and dendritic-like profiles in the stratum radiatum 
(Fig. 4C-E). Consistently, Bielschowsky silver staining detected an in
crease of intraneuronal NFTs in the hippocampus and neocortex from α7 
KO (Fig. 4F). 

Overall, these data indicated that α7 KO mice present a dysregulation 
of tau phosphorylation resulting in an increase of PHFs and NFTs. 

Fig. 3. Tau is hyperphosphorylated and 
GSK-3β dysregulated in hippocampi from 12 
M α7 KO mice. A) Representative images of 
WB assay (cropped images based on MW here 
and in the following panels) for the expression 
of phosphorylated tau (pTau) at Ser 199 and at 
Ser 396 performed on hippocampi from 12 M 
WT and α7 KO mice. On the right, bar graphs 
showing the increase of pTau Ser 199 and Ser 
396 expression in hippocampi from α7 KO 
compared to WT (Mann-Whitney Rank Sum 
Test for pTau Ser 199: P = 0.008; N = 5/5; for 
pTau Ser 396: P = 0.028; N = 4/4). Tau5, 
specific for murine tau, was used to normalize 
pTau densitometric signal from WT and α7 KO 
tissues. GAPDH was used as loading control. B) 
WB essay for the expression of pTau at Thr 205. 
Lower panel, bar graph showing the increase of 
the expression of pTau at Thr 205 in hippo
campi of α7 KO compared to WT (Mann-Whit
ney Rank Sum Test, P = 0.028; N = 4/4). C) WB 
images showing the expression of GSK-3β 
phosphorylated at Ser 9, total GSK-3β and 
GAPDH as loading control. Lower panel, bar 
graph showing the decrease of GSK-3β Ser 9 in 
α7 KO hippocampi compared to WT (Mann- 
Whitney Rank Sum Test; P = 0.007; N = 5/5). 
*P < 0.05, **P < 0.01. Data expressed as mean 
± SEM.   
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3.5. The lack of endogenous α7nAChRs induces neuronal loss and 
increases GFAP-positive astrocytes 

Besides Aβ and tau pathology, because hippocampal neuronal loss 
highly correlates with cognitive deficits and AD progression (Donev 
et al., 2009), we evaluated whether α7 KO mice presented neuronal 
depletion. We found a decrease in the mean number of NeuN positive 
cells in hippocampal slices from α7 KO compared to WT controls 
(Fig. 5A). A statistically significant decrease was found in the stratum 
pyramidalis and stratum radiatum, whereas no differences were detected 
in the stratum oriens (Fig. 5A). 

Finally, because either the increase of Aβ and tau as well as the loss of 
neuronal function influence astrocytes (González-Reyes et al., 2017; 
Phatnani and Maniatis, 2015), we evaluated GFAP (Glial Fibrillary 
Acidic Protein) positive astrocytes. Quantification of GFAP-positive cells 
revealed an increase that was significant in all the hippocampal strata, i. 
e. oriens, pyramidalis and radiatum, in hippocampi from α7 KO compared 
to WT mice (Fig. 5B). 

Taken together, these findings suggest that α7 KO present a decrease 
of neurons and an increase of astrocytes in the hippocampus. 

4. Discussion 

In this work we showed that genetic deletion of α7nAChRs is suffi
cient to induce an AD-like pathology characterized by synaptic plasticity 
and memory impairment, Aβ and tau neuropathology, neuronal loss, 
and increase of GFAP-positive astrocytes. 

We used the α7 KO mouse model that does not overproduce Aβ due to 
manipulations of genes directly involved in its production (i.e., APP or 
presenilins). This allowed us to avoid one of the main limitations of 
research in the AD field, which is the use of models inspired by rare 
forms of inherited early onset Familial Alzheimer’s disease (FAD) 
characterized by a genetic-driven rise of Aβ production (Hardy et al., 
1998). Indeed, FAD only accounts for the 2–3 % of AD cases (Qiu et al., 
2009), whereas the prevalent form of dementia is sporadic AD, which 
affects the elderly and it is not associated with genetic mutations directly 
leading to an increase of Aβ burden (Herrup, 2015). 

We first focused on synaptic plasticity, whose disruption is thought 
to be the early pathogenetic event in AD (Selkoe, 2002). α7 KO mice 
presented an age-dependent impairment of short- and long-term plas
ticity, as indicated by the increase of PPF and the reduction of LTP, 

Fig. 4. PHFs immunoreactivity and neurofi
brillary tangles in hippocampi from α7 KO 
mice. A) Representative confocal images of 
PHF-1 immunofluorescence in the hippocampus 
from 12-15 M WT and α7 KO mice. Negative 
control represents WT sections treated with the 
same immunofluorescence protocol, omitting 
the primary antibody. Upper panels: CA1 area, 
20 ×, scale bar 50 μm; Lower panels: stratum 
oriens (so), stratum pyramidalis (pyr) and 
stratum radiatum (sr), 60 ×, scale bar 25 μm. 
Red arrows indicate intraneuronal accumula
tions. B) Bar graphs showing the increase of 
PHF-1 immunoreactivity (IR) in hippocampi 
from α7 KO (Mann-Whitney test P = 0.0002). 
On the right, analyses of PHF-1 IR in so, pyr and 
sr. C) Bar graphs showing puncta staining ana
lyses in so. Positive puncta mean size increased 
in α7 KO (P = 0.0113), whereas number of 
puncta was not modified (P > 0.99). D) Bar 
graphs showing analyses of cytoplasmic PHF-1 
IR intensity in the pyr. Positive cells increased 
in α7 KO (P = 0.0002). E) Bar graphs showing 
an increase of PHF-1 IR intensity in apical 
dendrites of the sr in α7 KO (P < 0.0001). N =
32 subfields (4 sections from 2 animals/geno
type). F) Bielschowsky silver staining showed 
the presence of silver-positive NFTs in α7 KO. 
Hippocampi from 3×Tg mice were used as 
positive control. Representative inserts showing 
a clear identifiable NFT in α7 KO and 3×Tg 
cerebral cortex (cc). Red arrows indicate intra
neuronal accumulation. Upper panels: 4 ×, 
scale bar 100 μm; Lower panels: CA1 area, 40 
×, scale bar 50 μm; Inserts: 40 ×, scale bar 50 
μm. *P < 0.05, **P < 0.01, ***P < 0.001, ****P 
< 0.0001. Data expressed as mean ± SEM.   
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resulting in memory loss. Previous studies already showed that the 
deletion of α7nAChRs caused synaptic plasticity deficits, even if at a 
later age (22–24 months) with respect to our study (Ma et al., 2014). Our 
results are consistent with data indicating that, at physiological con
centrations, Aβ requires α7nAChRs to sustain synaptic functions (Law
rence et al., 2014; Mura et al., 2012; Puzzo et al., 2011, 2008), both at 
pre-synaptic level, where it enhances release probability (Gulisano et al., 
2019; Koppensteiner et al., 2016; Lazarevic et al., 2017), and at 
post-synaptic level, where it is needed for long-lasting LTP and memory 
formation (Garcia-Osta and Alberini, 2009; Gulisano et al., 2019; Morley 
et al., 2010; Palmeri et al., 2017; Puzzo et al., 2011). 

α7nAChRs mediate the raise of pre-synaptic intracellular Ca2+ levels 
during neuronal activity, thus modulating glutamate release, synaptic 
transmission, and cognitive function (Picciotto, 2000). Hence, it was 
crucial to exclude that the observed α7 KO phenotype was exclusively 
due to the failure of cholinergic transmission, as it occurred after an 
acute pharmacological inhibition of α7nAchRs [for a review see (Yakel, 
2014)]. Our finding that the impairment of synaptic plasticity and 
memory is paralleled by the increase of APP expression and Aβ levels 
suggests that the loss of α7nAChRs might trigger a chain of events 
through a negative feedback mechanism aimed at restoring calcium 
entry inside neurons by stimulating Aβ production. This was further 
confirmed by the rescue of LTP in slices from α7 KO mice treated with 
the anti-Aβ antibody M3.2. Notably, treatment with the same antibody 
impaired LTP in slices from wild type mice, as previously demonstrated 
(Garcia-Osta and Alberini, 2009; Morley et al., 2010; Puzzo et al., 2011), 
confirming that caution is needed when proposing treatments aimed at 

decreasing Aβ levels, since the protein is physiologically needed to 
ensure synaptic function. 

Our hypothesis that α7nAChRs deletion drives Aβ elevation is sup
ported by extensive literature demonstrating a tight link between 
α7nAChRs and Aβ (Oz et al., 2013). Aβ and α7nAChRs co-localized in
side neurons or at extracellular level in senile plaques (Nagele et al., 
2002; Wevers et al., 1999) and high Aβ levels induced α7nAChR alter
ations (Dineley et al., 2002, 2001; Dougherty et al., 2003; Li et al., 2011; 
Liu et al., 2001). The lack of α7nAChRs accelerated the pathology in the 
Tg2576 mouse model of AD ensuing decrease of hippocampal ChAT 
activity paralleled by a pronounced loss of pyramidal neurons (Her
nandez et al., 2010). In 3×Tg mice a reduction of α7nAChRs was found 
in the same brain regions where intraneuronal Aβ42 accumulation 
occurred, determining cognitive deficits (Oddo et al., 2005). Interest
ingly, an increase of α7nAChR-specific antibodies, able to induce Aβ 
accumulation and memory impairment in animal models (Lykhmus 
et al., 2015), has been found in plasma samples of early-onset AD pa
tients (Koval et al., 2011). 

About the mechanisms underlying α7nAChR regulation of Aβ pro
duction, few studies focused on the ability of α7nAChRs activation to 
reduce Aβ synthesis by shifting APP processing towards the non- 
amyloidogenic pathway (Mousavi and Hellström-Lindahl, 2009; Nie 
et al., 2010; Qi et al., 2007), for example by regulating γ-secretase ac
tivity and expression (Nie et al., 2010). This enhanced the production of 
soluble APPα (sAPPα) recognized for its neuroplasticity and neuro
protective functions able to counteract Aβ neurotoxicity [for reviews 
(Buckingham et al., 2009; Hefter et al., 2020)]. Hence, the deletion of 

Fig. 5. Neuronal loss and increase of astrocytes in α7 KO hippocampi. A) Representative images of NeuN staining in the hippocampal formation of 12-15 M WT 
and α7 KO mice. Upper panels: 4 ×, scale bar 100 μm; Middle panels: stratum oriens (so) and stratum pyramidalis (pyr) of CA1 area, 40 ×; Lower panels: stratum 
radiatum (sr), 40 ×, scale bar 50 μm. On the right, bar graph showing an increase of neuronal loss in hippocampi from α7 KO (t(34) = 3.938; P < 0.0001). On the 
bottom, analyses of CA1 layers evidenced a significant loss of neurons in the stratum pyramidalis of α7 KO hippocampi (t(34) = 3.617; P = 0.001). No differences were 
detected in stratum radiatum and stratum oriens. N = 6 sections from 3 animals/genotype. B) Representative images of GFAP staining in the hippocampus of 12-15 M 
WT and α7 KO mice. Upper panels: 4 ×, scale bar 100 μm; Middle panels: so and pyr of CA1 area, 40 ×; Lower panels: sr, 40 ×, scale bar 50 μm. On the right, bar 
graph showing an increase of GFAP positive cells in hippocampi from α7 KO animals compared to WT (t(34) = 5.874; P < 0.0001). On the bottom, analyses of CA1 
layers showed an increase of astrocytes in the three layers: stratum oriens (t(34) = 4.786; P < 0.0001), stratum pyramidalis (t(34) = 4.621; P < 0.0001), and stratum 
radiatum (t(34) = 4.321; P < 0.0001). N = 6 sections from 3 animals/genotype. ***P < 0.001, ****P < 0.0001. Data expressed as mean ± SEM. 
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α7nAChRs might determine an aberrant APP processing leading to Aβ 
elevation. However, we cannot exclude that the increase of APP 
expression found in aged α7 KO mice was due to different mechanisms 
not involving a direct interaction between α7nAChRs and APP. In fact, 
since the lack of α7nAChRs prevents Aβ to exert its physiological func
tion, this might cause the unbalance of several neuroplasticity pathways 
(Gulisano et al., 2019) that, in turn, are known to influence APP 
expression and processing. See for example how cGMP levels regulate Aβ 
production during LTP by acting on BACE-1/APP approximation (Pal
meri et al., 2017). 

The increase of APP we found in α7 KO mice raises another series of 
considerations. Its occurrence in adult age might explain why α7 KO 
mice do not present a peculiar phenotype until the age of 12 months. 
Even if it is beyond the scope of this work, we can speculate that in an 
initial phase other nAChR subtypes, i.e., α4β2nAChRs, might compen
sate for the absence of α7nAChRs, a common phenomenon in genetically 
modified animal models. Moreover, it is conceivable that homeostatic 
changes occur overtime until a critical stage, when compensation is no 
longer possible. This trend mirrors the course of the disease since syn
aptic disruption is thought to begin long before the clinical manifesta
tion. Nevertheless, even if in α7 KO mice the increase of APP is aimed at 
restoring Aβ function, it eventually leads to a vicious cycle in which Aβ 
levels reach high concentrations becoming extremely neurotoxic. 

In this context, APP might exert a double role as it acts as Aβ pre
cursor and cell surface receptor (Deyts et al., 2016) able to bind Aβ and 
tau (Fogel et al., 2014; Lorenzo et al., 2000; Shaked et al., 2006; Taka
hashi et al., 2015; Van Nostrand et al., 2002). APP enhances tau phos
phorylation (Greenberg et al., 1994) and serves as a common target for 
extracellular oligomers of Aβ and tau to enter neurons and impair LTP 
and memory (Puzzo et al., 2017; Wang et al., 2017). Hence, increased 
APP expression might contribute to worsening the course of the disease 
with different mechanisms. 

As for the interplay between α7nAChRs and tau in AD, results are 
conflicting (Rubio et al., 2006). Although some works have shown that 
the increase of α7nAChRs stimulates tau phosphorylation (Ren et al., 
2007; Wang et al., 2003), most studies showed that a reduction of 
α7nAChRs is concomitant with tau hyperphosphorylation in brains of 
AD patients or animal models (Wu et al., 2010). Here, we found that 
α7nAChRs deletion induced an increased age-dependent expression of 
tau phosphorylated at Thr 205, Ser 199 and Ser 396, residues known to 
be involved in AD onset and progression. In particular, pTau at Thr 205 
seemed to be involved in tau spreading, as demonstrated in Tg/hTau 
mice injected with tau (Miao et al., 2019) and, together with pTau at Ser 
199, has been correlated with Braak stage V/VI in patients (Neddens 
et al., 2018). As for pTau at Ser 396, it is considered a key marker of tau 
hyperphosphorylation since it increases in CA1 pyramidal neurons of AD 
patients and is crucial for PHFs formation (Furcila et al., 2018; Mon
dragón-Rodríguez et al., 2014). Consistently, here we found an increase 
of its expression by WB and PHF-1 immunoreactivity at hippocampal 
level. 

These modifications of tau phosphorylation were accompanied by a 
concomitant decrease of GSK-3β phosphorylated at Ser 9, a residue 
involved in the auto-inhibitory regulation of the kinase. In line with our 
results, α7nAchR agonists reduced tau phosphorylation in vitro and in 
vivo by increasing GSK-3β activity in mouse models of AD and 
hypothermia-induced tau hyperphosphorylation (Bitner et al., 2009; Hu 
et al., 2008), effects that are reversed by selective α7nAchR antagonists 
(Hu et al., 2008). 

Another finding of our study is that α7 KO mice exhibited an increase 
of APP and Aβ levels but no senile plaques. This is in line with several 
studies demonstrating that soluble oligomers increase in the early stages 
of AD and appear more toxic than insoluble aggregates [for a review see 
(Selkoe and Hardy, 2016)]. Consistently, in animal models, low mo
lecular weight Aβ oligomers (dimers), even though unable to initiate 
plaque formation (Müller-Schiffmann et al., 2016), induce synaptic 
dysfunction and trigger the AD cascade (Kawarabayashi, 2004; Mc 

Donald et al., 2015, 2010; Shankar et al., 2008). Studies performed on 
the arcAβ mice, carrying the Swedish and the Arctic mutations, 
confirmed that insoluble Aβ deposits are not needed to initiate the 
cascade of events leading to AD as the impairment of synaptic plasticity 
and memory occurs before plaques formation (Knobloch et al., 2007). 
However, we cannot exclude that in our study the absence of plaques 
might be due to a lower propensity of murine Aβ to form insoluble de
posits, as evidenced in previous studies (Puzzo et al., 2015a,b, 2014b). 

The controversial role of Aβ deposition and its poor correlation with 
AD symptoms is also supported by several observations in humans 
showing that AD patients can manifest dementia without Aβ deposits 
and, conversely, plaques might be present in cognitively intact elderly 
subjects (Arriagada et al., 1992; Chételat et al., 2013; Delaère et al., 
1990; Driscoll et al., 2006; Iacono et al., 2009; Katzman et al., 1988; 
Sloane et al., 1997; Zolochevska and Taglialatela, 2016). 

On the contrary, tau hyperphosphorylation leading to PHFs and 
NFTs formation is highly related to cognitive impairment in AD (Nelson 
et al., 2012), as it also contributes to functional and structural alter
ations of pyramidal neurons (Merino-Serrais et al., 2011). In this 
manuscript we have shown that α7 KO mice presented all these 
tau-related pathologic signs starting at 12 months of age, concomitant to 
the increase of APP expression and Aβ levels. In this scenario, the initial 
impairment of LTP found in 9 M α7 KO animals might be interpreted as 
the result of the failure of Aβ physiological function that, when no longer 
compensated, would trigger the chain of events leading to the AD-like 
pathology at later age. 

Dementia has also been strongly correlated with the degree of 
neuronal loss especially in the hippocampus and neocortex in humans 
(Donev et al., 2009). However, AD mouse models do not always mimic 
this aspect of the disease (Wirths and Bayer, 2010). Here, NeuN exper
iments have shown a reduction of neuronal number in hippocampi from 
α7 KO mice. This might be, in part, independent from the neurotoxic 
effect exerted by Aβ and/or tau but due to the lack of α7nAChRs in view 
of their neuroprotective and trophic role. A variety of evidences re
ported that stimulation of α7nAChRs protected against glutamate 
neurotoxicity, oxygen and glucose deprivation, neuronal ischemic 
damage, and neuronal apoptosis [for reviews see (Buckingham et al., 
2009; Kume and Takada-Takatori, 2018)], suggesting a general 
pro-survival function. Notably, α7nAChR-mediated neuroprotection 
might be mediated by a direct effect on neuronal cells or an indirect 
action through glial cells. In fact, cultured astrocytes treated with 
α7nAChR agonists showed a significant reduction of inflammatory cy
tokines secretion, accompanied by a decrease in neuronal apoptosis 
(Patel et al., 2017). 

Finally, we have documented an increase of GFAP-positive astrocytes 
in α7 KO hippocampi, in line with previous reports obtained in AD 
models (Ceyzériat et al., 2018; González-Reyes et al., 2017). Astrocytes 
have a well-recognized role in modulating synaptic function by upta
king/releasing several gliotransmitters (including glutamate) and 
regulating the levels of neurotransmitters released from presynaptic 
terminals as well as glutamate receptor activity [for a review see (Ma
larkey and Parpura, 2008)]. They overexpress β-secretases and stimulate 
Aβ production (Rossner et al., 2005) but also participate in Aβ clearance 
in physiological conditions (Mulder et al., 2012; Ries and Sastre, 2016). 
Furthermore, they are involved in the activation of intracellular 
signaling leading to tau hyperphosphorylation (Chiarini et al., 2017). 
Several reports have also highlighted a crosstalk between astrocytes and 
the cholinergic system (Pirttimaki et al., 2013). Septo-hippocampal le
sions of cholinergic fibers induce astrocytosis and β-secretase over
expression (Hartlage-Rübsamen et al., 2003), whereas activation of 
α7nAChRs by physiological and pathological concentrations of Aβ trig
gers Ca2+ elevations and glutamate release from astrocytes (Lee et al., 
2014; Pirttimaki et al., 2013), thereby playing a crucial role in regu
lating neuronal activity and plasticity (Bazargani and Attwell, 2016). 
Here, the increase of GFAP-positive cells suggests an astrocyte activa
tion/remodeling (Escartin et al., 2021) that might contribute to synaptic 
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dysfunction, even if further studies are needed to better investigate the 
intricate interplay among Aβ, tau and α7nAChRs at the tripartite 
synapse. 

In conclusion, here we have demonstrated that α7nAChRs malfunc
tion might be upstream the increase of Aβ and tau in the cascade of 
events leading to AD, supporting the hypothesis that if Aβ lacks its 
endogenous receptor, a negative feedback mechanism is triggered to 
overcome the failure of its physiological function. Even if AD is a 
multifactorial disease and α7nAChRs malfunction might not be the only 
etiopathological factor, our findings contribute to understand why ACh- 
tailored therapies have a time-limited efficacy. In fact, the increase of 
ACh in the synaptic cleft by cholinesterase inhibitors or the use of AChR 
agonists might counteract the disease only for a brief period of time after 
which they might even be responsible for an exhaustion of the cholin
ergic system. Most importantly, considering the plethora of evidence 
supporting the importance of Aβ in synaptic function, anti-Aβ therapies 
might represent a paradox. In fact, they aim at decreasing the level of a 
physiological protein whose increase might have a compensatory sig
nificance. To summarize with a provocative but enlightening conceptual 
comparison, it would be as administering anti-insulin drugs in type II 
diabetes, where hyperinsulinemia is the mere consequence of a 
compensatory mechanism aimed at counterbalancing the lack of its 
function caused by receptors resistance. 

Even if further studies are needed to better delineate Aβ, tau and 
α7nAChRs crosstalk, our data suggest that the role of Aβ in AD needs to 
be reassessed, taking into account mechanisms underlying the transition 
from physiology to pathology to ensure a novel, safe and rational 
approach to patients. To this end, α7 KO mice might represent an 
interesting model to evaluate the cascade of events leading to the in
crease of Aβ without exploiting FAD human genes. 
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Pekny, M., Pellerin, L., Perea, G., Pérez-Nievas, B.G., Pfrieger, F.W., Poskanzer, K.E., 
Quintana, F.J., Ransohoff, R.M., Riquelme-Perez, M., Robel, S., Rose, C.R., 
Rothstein, J.D., Rouach, N., Rowitch, D.H., Semyanov, A., Sirko, S., Sontheimer, H., 
Swanson, R.A., Vitorica, J., Wanner, I.-B., Wood, L.B., Wu, J., Zheng, B., Zimmer, E. 
R., Zorec, R., Sofroniew, M.V., Verkhratsky, A., 2021. Reactive astrocyte 
nomenclature, definitions, and future directions. Nat. Neurosci. 24, 312–325. 
https://doi.org/10.1038/s41593-020-00783-4. 
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