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Abstract 
 

Evolution of technologies both in the fields of in situ investigations and Finite Element modeling 

strongly enhanced the possibility to understand the dynamic behavior of  structures,  allowing a 

periodic or continuous analysis of their response to environmental, anthropic, and exceptional actions 

and the formulation of accurate hypotheses about their future behavior, which is fundamental for 

ensuring their safety.  

In particular, this thesis is focused on the application of a non-destructive methodology for structural 

health assessment which has become quite popular nowadays, which is based on the acquisition of 

vibrational data and the extraction of the modal parameters applying Operational Modal Analysis 

techniques. These methods result very effective and also very suited in case of historic masonry 

structures, due to the non-invasiveness and cheapness of the instrumentation necessary for the 

monitoring activity. 

Different examples of operational modal analysis applied  for the evaluation of the health state of 

concrete and masonry structures are proposed into this work in order to highlight the potentiality of 

method. Moreover, they constitute the basis for the main theme of the thesis, which is the acquisition 

and interpretation of the results of over one year of continuous monitoring of the two symmetrical bell 

towers of the Cathedral of Santa Maria Annunziata of Camerino (Central Italy).  

The monitoring activity target is the evaluation of the dynamic behavior of the two towers after the 

damages occurred during the seismic events of 2016 and the consequent reinforcement interventions. 

The experimental data are acquired in continuous using four triaxial MEMS accelerometers installed, 

two for each structure, on two opposite corners of the bell cells. Data processing is managed with an 

automatic system, purposely implemented in Matlab© environment, which elaborates the time 

histories and executes OMA analysis to track the modal characteristics of the structures and their 

evolution in time. Correlation with environmental factors allows to discern the effect of climatic 

conditions on the variations of modal frequencies and damping. 
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Abstract 
 

L'evoluzione tecnologica, sia nel campo delle indagini in situ che della modellazione agli elementi 

finiti, ha fortemente aiutato nella comprensione del comportamento dinamico delle strutture, 

consentendo un'analisi periodica o continua della loro risposta ad azioni ambientali, antropiche ed 

eccezionali e la formulazione di previsioni accurate sul loro comportamento futuro, aspetti 

fondamentali per garantirne la sicurezza. 

Questa tesi, in particolare, si concentra sull'applicazione di una metodologia non distruttiva per la 

valutazione della salute strutturale che è diventata molto popolare oggigiorno, basata 

sull'acquisizione di dati vibrazionali e sull'estrazione dei parametri modali tramite l’applicazione 

delle tecniche identificative dell’Analisi Modale Operativa. Questi metodi risultano molto efficaci e 

molto adatti anche nel caso di strutture murarie storiche, per la non invasività e l'economicità della 

strumentazione necessaria per l'attività di monitoraggio. 

In questo lavoro vengono proposti diversi esempi di analisi modale operativa applicata per la 

valutazione dello stato di salute delle strutture in calcestruzzo e muratura al fine di evidenziare le 

potenzialità del metodo. Inoltre, costituiscono la base per lo sviluppo di quello che è il  tema 

principale della tesi, ovvero  la raccolta e l’interpretazione dei dati derivanti da oltre un anno di 

monitoraggio continuo dei due campanili simmetrici della Cattedrale di Santa Maria Annunziata di 

Camerino (Italia centrale). 

L'obiettivo dell'attività di monitoraggio è la valutazione del comportamento dinamico delle due torri a 

seguito dei danni avvenuti durante gli eventi sismici del 2016 e dei conseguenti interventi di rinforzo. 

I dati sperimentali vengono acquisiti in continuo utilizzando quattro accelerometri MEMS triassiali 

installati, due per ogni struttura, su due angoli opposti delle celle a campana. L'elaborazione dei dati 

è gestita con un sistema automatico, appositamente implementato in ambiente Matlab©, che elabora 

le cronologie ed esegue analisi OMA per tracciare le caratteristiche modali delle strutture e la loro 

evoluzione nel tempo. La correlazione con i fattori ambientali permette di discernere l'effetto delle 

condizioni climatiche sulle variazioni delle frequenze modali e dello smorzamento. 
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1 Introduction 
 

1.1 Research context 

In the recent years Italy has been struck by numerous catastrophic seismic events, which strongly 

affected the country at economic level but also from human point of view [1–5]. The severity of the 

situation strongly sensitizes the public opinion and especially the technicians towards the necessity to 

reach a higher level of security of structures and infrastructures. Italy is famous throughout the world 

because of its enormous cultural heritage, which is composed in large part of masonry historical 

buildings of the more different typologies (churches, towers, arch bridges…). Unfortunately, this 

constructive field is also the one which results the more affected by seismic events, because of the 

intrinsic characteristics of the masonry structures, which usually leads to their cracking and, often, 

collapse [6–9]. 

The first step in the process of preservation and consequent interventions is obviously a deep 

knowledge of the health status of the constructions, in order to highlight eventual vulnerabilities 

linked to aging of materials, lack of connections, localized or diffused damage…[10,11]. The 

engineering branch which focuses over these features is known as Structural Health Monitoring 

(SHM). It can be defined as a systemic approach whose objective is that to identify and locate 

eventual anomalies of the structures and evaluate their evolution over time.  

Among the variety of techniques which have been proposed into this field, in the last years, thanks to 

the technological progress, a non-destructive method emerged over the others, because of the 

countless advantages it offers in terms of economy of the investigations and practicality: Ambient 

Vibration Testing (AVT). This is an SHM methodology based on the evaluation of the dynamic 

response of a structure based on the acquisition and analysis of the vibration of the structure itself.  

It is based on the concept that, when a particular occurrence modifies the structural configuration, this 

modification influences the modal response, and so a variation occurs in the modal properties (modal 

frequencies, damping ratio and mode shapes). Vibration data can be acquired following two dynamic 

test approaches: Experimental Modal Analysis (EMA), where the source of the vibrations is known 

and measured [12], and Operational Modal Analysis (OMA), which is the main theme of this 

discussion, and it is based on the concept of vibration induced by white noise (caused by 

environmental agents or human activities) [13–15]. Different methodologies and algorithms are 

proposed in this context and are finalized to threat acceleration data and extract modal characteristics 

in frequency [16] or time domains [17,18].  
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A classical approach is the one summarized in Fig. 1-1: 

 
Fig. 1-1 - Classic workflow for OMA process 

This scheme allows a quite rapid identification of the parameters of a structure, able to descript its 

actual condition. Nowadays civil engineering is focusing on the possibility to apply a continuous 

monitoring of the buildings, with the installation of fixed systems which acquires vibration data 

during the entire life of the structure, so that, in case of new constructions (especially the strategical 

ones) it is spreading the custom of designing monitoring system integrated into the structure itself 

[10,19]. 

These scenarios require the elaboration of automatic systems [20], able to manage enormous 

quantities of data, evaluating the variation in the modal parameters practically in real-time, with the 

idea of sending alerts when a significant change occurs. 

1.2 Objectives and main contributions 

The theme discussed in this thesis regards the different applications of OMA techniques to assist civil 

engineering in the context of SHM. Different techniques are presented and analyzed, always showing 

their utility in practical cases. 

The discussion is developed starting from the classic application of this methodology to operative 

structures in order to evaluate their health state, analyzing both the case of a damaged structure than 

the one where no particular anomalies are evident.  
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Then the possibility to couple dynamic tests to the classic method of Finite Element modelling has 

been analyzed, in order to evaluate the potentiality of this method and the possibility to integrate 

clustering procedure in the context of modal updating, where the validation criteria has been 

established from vibration analysis results. 

At least, from all the previous experiences, an automatic procedure for the management of continuous 

monitoring of structure is proposed. This system is based on the acquisition of data through a 

particular type of accelerometric sensors, which is recently developing, and which interprets the the 

excitation in a completely electronic way: MEMS accelerometers. The system, installed on the two 

bell towers of Camerino Dome, in Macerata Province, is acquiring data from over a year. The 

automatic procedure, developed in Matlab, elaborates data in order to execute a modal tracking of the 

main modal parameters. The effects of environmental agent is considered and their influence is 

removed from the results, in order to make a prevision of the evolution of the main modal 

characteristics to be compared with the real behavior and so highlight eventual anomalies. The main 

steps are illustrated in Fig. 1-2. 

 
Fig. 1-2 - Main processing steps of a classical vibration-based health monitoring system 

1.3 Organization of the thesis 

Here is a summary of how the discussion is organized: 

Chapter 1 consists in the introduction, where an overview of the context of the thesis is described in 

order to show the state of the art and present the main themes for the field. The main objectives and 

contribution are listed. 

Chapter 2 provides an introduction to SHM, considering the fields of application, the main techniques 

adoptes and a brief description of the dynamic monitoring instrumentation (sensors and converters) 

and introducing some concept of signal theory necessary for data elaboration. 
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Chapter 3 presents a brief review of the mathematical models of dynamic systems and the theoretical 

basis of the modal identification analysis implemented. So, the most known algorithms are explicated 

both for frequency domain analysis (Peak Picking, Frequency Domain Decomposition, Enhanced 

Frequency Domain Decomposition) than time domain (Stochastic Subspace Identification in the 

Covariance based and Data-Driven forms). 

Chapter 4 presents two practical cases where an arch bridge and the cover of Fiumicino Airport have 

been monitored in order to determine their main dynamic characteristics in operative conditions. In 

particular the stays of the arch bridge were damaged because of a car accident, so the assessment of 

the health conditions of the structure were necessary.  

Chapter 5 presents a methodology particularly used nowadays in the context of Finite Element 

Modeling, which consists in the tuning of the material parameters of a structure by comparison with 

the dynamic data elaborated through OMA techniques. The first part of the chapter considers the case 

of a manual procedure of model updating of four bell towers damaged during Emilia seismic events of 

2012. The second case proposes an automatic calibration process based on Genetic Algorithms (GA) 

to update the model of Ostra Civic Tower on the basis of the data coming from two different 

monitoring campaigns. 

Chapter 6 describes the main theme of the research and consists in the analysis of the data of the 

continuous monitoring of the bell towers of Camerino Dome, with acquisition of data using MEMS 

sensors. The automatic data processing algorithm, implemented in Matlab©, is described in all of its 

step. The algorithm processes data, then two clustering procedure are used one after the other to 

extrapolate the modal characteristics from each of the acquisitions files. These data are then correlated 

with environmental parameters and  an autoregressive method is applied in order to filter these effects 

from the tracked modal characteristics. Modal tracking of frequencies and damping ratios for the first 

four modes of both the towers are successfully implemented. 
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2 Structural Health Monitoring (S.H.M.): 

Background and Tools 
 

2.1 Introduction to SHM 

Structural Health Monitoring (SHM) is a field of engineering whose aim is the identification and 

evaluation of damage, which can be defined as a modification occurred into a system which 

compromise its current and future performances [1].  

From the above definition, it appears clear that the identification process, and the successive 

interventions strategies, presuppose the knowledge of two different temporal states of the investigated 

system, an initial one, where damage is absent or in the early stages, to be compared with the 

condition in which damage occurs or is evolving. Therefore, the structure or mechanical system status 

needs to be checked during time, through periodical monitoring activities, executed with different 

methodologies depending on the different operative factors and necessities, whose purpose is that of 

supplying information useful to assess the health status of the object. These features make SHM a 

multidisciplinary field, involving the collaboration of different actors (structural engineering, 

electronics and computer sciences, …) in order to produce the technologies for acquisition and 

management of information, analysis of the data and establishment of the intervention strategy.  

In civil and earthquake engineering, the target is to provide a structure with an adequate margin of 

safety against damage, in particular against of significant events such as earthquakes. For this reason, 

a control of the health condition of the structure becomes advisable and necessary for the safety of 

buildings [7]. Among the multiple possible approaches present in SHM world, this thesis is focused 

on one methodology, nowadays particularly popular in the civil engineering field, because of the 

numerous advantages it gives in terms of economy and operativity: Ambient Vibration Testing 

(AVT).  

This discipline, that found is first application in industrial and aerospace engineering, approached  

civil field during the ‘80s, when vibration-based system started to be installed for the assessment of 

structures like bridges and buildings. AVT uses the analysis of the vibrations caused on structure by 

different factors (anthropological or environmental) in order to extract the properties useful to 

describe the dynamic behavior of the system. The basic idea is that modal parameters, such as 

frequencies, mode shapes and modal damping, are based on the physical properties of the whole 
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structure such as mass, damping and stiffness. Subsequentially, when damage occurs and diffuses it 

modifies also the corresponding modal properties.  

Possible application of SHM vibration-based techniques, which will be practically shown in Chapter 4 

and Chapter 6, are: 

• maintenance or structural safety evaluation of existing structures; 

• rapid evaluation of conditions of damaged structures after an earthquake; 

• estimation of residual life of structures; 

• repair and retrofitting of structures; 

• maintenance, management or rehabilitation of historical structures, thanks to the non-

invasiveness .of the instrumentation and the possibility to not interrupt the activities in the 

building; 

2.2 SHM Classifications 

According to Rytter (1993) the procedure for evaluation of damaged condition of a system is 

composed of  five steps [5]: 

1. Assessment of damage existence; 

2. Localization of damage; 

3. Evaluation of damage typology; 

4. Measurement of damage extension; 

5. Estimation of residual life of the system. 

Monitoring activity can produce results able to satisfy the previous five points. On the basis of the 

followed approach monitoring can be categorized in three ways: 

1. Strategies dependent on time [8], comprising: 

• Short-term monitoring, in which measurements are executed at a specific moment, 

in order to evaluate changes in structural behavior, due to deficiency or damage 

occurrence. The repetition of short-time monitoring campaigns takes the name of 

periodic long-term monitoring. 

• Long-term monitoring definition states that continuous monitoring of a structure is 

considered to be “long term” when the monitoring is carried out over a period of 

years-to-decades. Preferably, long term monitoring should be carried out over the 

life of the structure. Recent advances in sensor technology, data acquisition, 

computer power, communication systems, data and technologies now make it 
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possible to construct this type of system. Long-term monitoring should be 

considered if the monitored quantity changes slowly (e.g. temperature) or if the 

loads are not predictable (e.g. natural hazards such as floods, hurricanes or 

earthquakes). 

• Triggered monitoring defines an activity where data are collected in case a specific 

event manifests, usually recognized because a particular parameter exceeds a fixed 

threshold (e.g. the level of acceleration surpasses a specific value in case of 

earthquakes). The sampling interval for each data collection depends on the 

dynamic nature of the studied phenomena. 

2. Strategies dependent on structural size: 

• Local monitoring is the observation of local phenomenon, such as strain or crack 

opening. Local monitoring is not able to determine the health of the whole structure. 

Still, in combination with global monitoring methods, local monitoring approach 

can be a useful to evaluate the severity of detected damages. 

• Global monitoring is defined as the observation of global phenomena of structures. 

A typical application is the monitoring of modal parameters, such as frequencies, 

mode shapes and damping of the structure and to correlate the test results with the 

outcome of FE-analysis. The challenge is then to create a “damaged” FE-model so 

that the monitored results comply with the FE-analysis. 

3. Strategies dependent on sampling rate: 

• Static monitoring is used for measurements of phenomena such as deflection, 

inclination, settlements, crack widths, temperature, and humidity. These are quasi- 

static since they vary slowly over the time.  

• Dynamic monitoring is performed with a much higher sampling rate compared to 

static monitoring. It is usually used for measurements of accelerations in order to 

control the dynamic structural response. 

2.3 SHM applications 

Nowadays an always major interest towards SHM methodology, testified by technical literature and 

practical applications, due to the technological evolution, comporting the miniaturization and a 

lowering of the costs for digital instrumentation, and the always growing diffusion and development 

of internet  which allows the remote control of the systems and data exchange. 

In recent times a popular implementation of SHM provide for the installation of specifically designed 

systems integrated in the structures since construction stage, in order to monitor the structure during 
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the works. In this way, monitoring become a tool to manage safety risks during construction, as 

incomplete structural systems are typically vulnerable and exposed to accidents and hazards. 

Moreover, the validity of the assumptions made during design calculations regarding the forces, 

reactions, displacements, and drifts that a structure is expected to experience during its construction 

can be checked and confirmed. Feedback regarding the behavior of the new structure are constantly 

provided so that, if necessary, it is possible to modify the projects before the completion of works. 

Once integrated the system will assess the health status of the structure for all its lifetime, with the 

possibility, in case of smart system, of sending alert messages in case of alteration of the condition or 

immediately check the safety conditions so far as an exceptional event (such as earthquake) happens.  

Apart for the case of new buildings, the main adoption of SHM regards the health assessment for 

existing structures, and in particular Cultural Heritage buildings, whose preservation is one of the 

main objectives in the structural engineering field nowadays. In these sense possible examples of 

SHM usage are short-time monitoring with the purpose of evaluating the current capacities of 

investigated structure from the dynamic characteristics extracted. The analysis and interpretation of 

such data would provide critical information about the current load and responses as well as remaining 

fatigue life. A particular type of application is the calibration of Finite Elements models, especially in 

case of historical buildings: in this case the data analysis is oriented towards the definition of the 

material parameters of the structure, which are tuned in order to reproduce the structural response. 

Once the models are correctly updated they can be subdued to linear and non-linear analysis in order 

to verify/identify damage mechanism and evaluate the state of the building, with the possibility of 

planning of interventions. 

In this context, a great innovation can be represented by a coupled system of continuous monitoring, 

with automatic interpretation of data, providing the actual dynamic characteristics of the structure in 

real-time, and systematic process of model updating, so that the health status of the building is always 

checked.   

2.4 The measurement processes 

SHM comprises a large variety of techniques, everyone of them specifically designed to analyze a 

particular phenomenon, consequently the monitoring system need to be designed to adapt to the 

different purposes. 

For all of the possible cases, being the monitoring short time or continuous, static or dynamic, the 

instrumentation is always composed of a certain number of sensors (different typologies can be 



11 
 

coupled if required), data acquisition devices, a storage unit and at last a data processing system to 

visualize, analyze and interpret the acquired data. 

In Fig. 2-1 the typical scheme of a monitoring system is presented. As it is observable, the first step 

consists in the choice of the correct instrumentation: high-quality measurements represent the first 

fundamental step for a successful modal identification.  

 
Fig. 2-1 - Data acquisition system setup 

The second branch is constituted from the acquisition device: the function of any sensor is the 

conversion of a physical quantity into an electrical one, typically voltage. Then, the electrical signal in 

the form of voltage is transferred to the data acquisition hardware for digitization. 

At last, there is the data processing, for which different techniques are available. In general, this step 

is composed of a pre-processing phase, where data are checked and eventual disturbances (linked to 

the instrumentation itself or to errors in the measurement process) are removed, and then the real 

analysis of the data with extraction of the interested parameters. 

From now on, being the thesis focused on the dynamic monitoring, reference will be made only to the 

equipment and the techniques used in this context. 

2.4.1 Instrumentation 

Instrumentation includes deciding on the quantities to be measured and the selection of the type of 

network (wired vs. wireless), the choice of the transducers and their positions. The last decade has 

been characterized by substantial effort in the development of wireless sensor networks for structural 

testing and health monitoring. Even if a number of wireless sensing solutions are currently available, 

offering attractive advantages such as the reduction of costs and installation time associated to the use 

of cables, they have not fully replaced wired systems. Nowadays a wired solution is the best way for a 

continuous monitoring system because of the absence of problems related to power consumption. 

The sensor type depends on the application. Typical sensors are accelerometers, strain gauges, fiber 

optics, and laser. The measured motion is typically very small at a low frequency. Therefore, the 

sensitivity of the sensor has to be high.  
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2.4.2 Data Acquisition Hardware 

Sensors data, that usually acquire an input analog signal expressed in terms of electric voltage, need to 

be converted in digital format in order to be stored and processed. Different types of A/D converters 

can be found on the market, and a first distinction can be made between dedicated solutions (Fig. 

2-2a), where the instrumentation is practically ready for use and equipped with an acquisition 

software, and customizable solutions (Fig. 2-2b), based on programmable hardware and usually 

adopted by expert users. 

 
Fig. 2-2 - Dynamic data acquisition system 

As already said, Analog-to-Digital Converters (ADC) are devices whose function is that of transform 

a continuous signal registered by sensors into digital sequences representing the signal in terms of its 

amplitude. The conversion is based on the discretization of time (sampling) and signal amplitude 

(quantization).  

The main characteristics to consider for an ADC device are: 

• resolution, defined as number of bits the converter can use for signal representation; 

• noise level, computing the number of bits noise occupies for zero input (e.g. only the last two 

bits are typically corrupted by noise in good quality 24-bit digitizers); 

• dynamic range, usually expressed in dB, and defined as the ratio between the largest and the 

smallest value the ADC can acquire without significant distortion; 

• The sampling rate (𝑓𝑠) is the number of samples acquired per second, where the frequency 

range investigable is defined as the maximum rate of the ADC. Usually, in civil applications, 
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being the interesting range for these structures comprised between 0 and 100 Hz, a maximum 

sampling rate 200 Hz can result satisfactory. 

2.4.3 Transducers 

Dynamic vibration-based tests data are usually acquired using accelerometric sensors. Among the 

different types of accelerometers available on the marker in the following two subsections, the two  

main categories will be presented: piezoelectric accelerometers and MEMS. 

The choice of the sensors is usually based on a series of considerations: 

• the expected amplitude of the motion to be measured; 

• the type of investigated structure (e.g., masonry, reinforced concrete, steel, etc.);  

• the available budget.  

For the case studies proposed in this dissertation, both the typologies of accelerometers are used, in 

particular, in the short-term monitoring applications piezoelectric ones are adopted, due to the major 

precision, while in the continuous case triaxial MEMS accelerometers have been experimented. 

2.4.3.1 Piezoelectric accelerometers 

Piezoelectric sensors are devices with the function of converting a mechanical quantity into an 

electrical quantity. This characteristic is due to the use of specific materials having piezoelectric 

properties, so the ability to accumulate electrical charges when subdued to some form of external 

excitation, with the number of charges proportional to the applied shock. The origin of  the 

piezoelectric component can be natural (quartz) or man-made (polycrystalline ceramics, such as 

barium titanate) [25]. 

 
Fig. 2-3 - Piezoelectric sensor from PCB 393B12 series 
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In piezoelectric accelerometers the crystal is coupled to a mass, so, when an input acceleration is 

applied at the base of the sensor, the inertia force associated to the mass causes a deformation of the 

crystal. The piezoelectric material generates an electric charge, proportional to its deformation, which 

is transmitted to a signal conditioner which read the input in terms of voltage. This object can be 

remote, such as in charge-mode sensors, or built-in as for the Integrated Electronics Piezo-Electric 

(IEPE) accelerometers. IEPE accelerometers offer a number of advantages, in respect to charge mode, 

such as simplified operation, lower cost, resolution virtually unaffected by cable type and length (long 

cables can be used without increase in noise, loss of resolution, or signal attenuation), and therefore, 

nowadays, they are the more used in the piezoelectric category. For this kind of sensors the signal 

cables is also entrusted with the power supply function, therefore, the signal is high-pass filtered to 

remove the frequencies close to DC.  

For selecting the most appropriate sensor for the required application, the main characteristics to be 

considered are reported below: 

• Sensitivity which is the smallest variation detectable in measurement; because of the low 

amplitude of motion and the limited frequency range of the structure under test, high-

sensitivity accelerometers are necessary. Sensitivity is usually defined by the gain of the 

sensor, so the possibility to amplify the signal before digitalization (for example, 10 V/g), to 

minimize the limitative effects of electrical noise over the detection of the smallest signals. In 

fact, electrical noise limits the smallest detectable signal, so a high gain should be preferred 

since an amplified signal minimizes the noise effects associated to the transmission over 

cables; 

• dynamic range (DR) of a sensor (often expressed in dB), which is the ratio between the 

largest and the smallest measurable signal: 

𝐷𝑅 = 10 ∙ log (
𝑉𝑚𝑎𝑥,𝑠

𝑉𝑛,𝑠

)

2

 (2.1) 

where 𝑉𝑚𝑎𝑥,𝑠 and 𝑉𝑛,𝑠 respectively represent the maximum voltage signal and the noise floor 

of the sensor. A 120–140 dB dynamic range is usually very suitable, since it well adapts itself 

with the average resolution at 24-bit most of the digitizers are equipped with; 

• resolution, that represents the smallest variation in the input physical quantity perceived in 

the sensor output, usually expressed in absolute terms or as a percentage of the full-scale 

range. It indicates the maximum and minimum physical values the sensor can; 

• linearity, that is the trend there should be in the conversion between the input and output 

measurement: ideal sensor should behave linearly, but a deviation component is always 
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present. Such deviation should be as limited as possible and it is expressed by the percentage 

of nonlinearity, that for high performances accelerometers should be lower than 1%.  

2.4.3.2 MEMS accelerometers 

Thanks to the fast evolution of the micro-machining in the last decade, enabling the creation of 

mechanical components with sizes of few micrometers, new devices, known as Micro Electro 

Mechanical Systems (MEMS), have been developed. This technology rapidly diffused also in the 

vibration analysis field, leading to the diffusion of MEMS accelerometers. Compared to the classical 

piezoelectric sensors, MEMS has the advantage of smaller dimensions and cheaper prices [21]. 

 
Fig. 2-4 - MEMS accelerometers: MonoDAQ-E-gMeter (a) and internal configuration (b) 

This type of sensor (Fig. 2-4) is constituted of a moving mass, linked to flexible tethers, creating an 

electronic system equivalent to the spring mass system of piezoelectric technology. When the mass 

moves, the displacement is measured through the variation of the differential capacitance registered 

between three electrodes, two of which are fixed, and one is moving. The moving electrode, in quite 

conditions, stand fixed in mid position between the other two components, and so the output 

differential results zero. Instead, when an acceleration intervenes, the mass displaces because of 

inertia modifying the distance in respect to the fixed electrodes. The output capacitance is converted in 

terms of accelerations, for example, if the MEMS is oriented vertically and therefore subdued to 

gravity, the offset in that direction will be equal to 1g. 

As concerns the accelerometers present on the market, the triaxial version is pretty common, and their 

reliability is assured from different studies in literature [21,22], also when they are configurated in 

arrays [23]. 

2.4.4 Signal Processing 

The quality of signals is very important for a satisfactory analysis and a good identification of the 

dynamic behavior of a structure. Good quality of the acquisitions requires a correct setting of the 
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instrumentation before executing the measurements and an appropriate processing of acquired data 

before the application of identification methods. 

The first fundamental step consists in the definition of a correct value for the sampling frequency. 

Representing the number of samples acquired in one second, sampling frequency must fit the 

examined structure. Known the frequency range of interest for the structure under analysis, the 

Nyquist Theorem establish: 

𝑓𝑠 > 2 ∙ 𝑓𝑀 (2.2) 

where 𝑓𝑠 is the sampling frequency and 𝑓𝑀 is the maximum frequency in the sampled signal, and  

𝑓𝑁 = 𝑓𝑠 2⁄  (2.3) 

is the so-called Nyquist frequency. 

Fig. 2-5 shows the phenomenon of aliasing, caused by a too low value of the sampling frequency, that 

causes the reconstruction of a “false” waveform after digitization of the continuous signal (e.g. a high-

frequency signal appearing as a low-frequency one). Because it is not possible to correct the erroneous 

effect of aliasing after conversion, usually A/D converter are equipped with an anti-aliasing filter.  

 
Fig. 2-5 - Aliasing. True signal (3.5kHz), Aliased signal (0.5kHz) 

Among the so-called pre-processing operations, necessary to clean the signal before identification, the 

most common are filtering and decimation. 

Filtering operations are often necessary to remove unwanted frequency components from signals. 

Digital filters are usually classified as: 

• low-pass, which excludes all frequencies above a certain threshold; 
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• high-pass, that eliminate the frequencies below a fixed values (e.g. remotion of frequencies 

near DC); 

• band-stop, excluding the frequencies defined in the filter band; 

• band-pass, cleaning the frequencies outside the range established for the filter. 

As already stated, signals are acquired with a sampling rate higher than the range of interest for the 

analysis. Decimation (or down-sampling) is therefore used to resample the acquired signals to a lower 

sampling frequency. Assuming, for example, that data are acquired with a sampling frequency of 

100hz, using a Decimation Factor of 2 transforms the signal in a time history with 50 data per second 

(50 Hz). 
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3 Operational Modal Analysis: Methodologies 
 

3.1 Modelling of the dynamic behavior of linear systems 

3.1.1 Spatial and modal models 

3.1.1.1 Spatial formulation 

The Spatial Model of a multi-degree of freedom (MDOF) system can be described through the well-

known second order differential equation (Eq. 3.1): 

𝑀𝑞̈(𝑡) + 𝐶𝑞̇(𝑡) + 𝐾𝑞(𝑡) = 𝐹(𝑡) = 𝐵 ∙ 𝑓(𝑡) (3.1) 

Where M, K and C are respectively the Mass, Stiffness and Damping matrices, and 𝑞̈(𝑡), 𝑞̇(𝑡), q(t) are 

the vectors of accelerations, velocities and displacements, associated to each of the single degrees of 

freedom (SDOF) composing the system. F(t) is the vector of the exciting forces, acting over the 

considered system, which can be written as the product of a matrix B, containing all of the inputs, and 

a vector f(t), where the application points are listed. It is assumed that the system is formed of planar 

rigid bodies, so that the matrices are squared [N-by-N], and all the functions are expressed in 

continuous time domain and referred to the same instant t. 

Due to the uncertainties linked to damping and its modelling, it is common practice to assume a 

proportional approach in the evaluation of  the decaying responses, considering a linear relationship 

between mass and stiffness, as proposed by Rayleigh. The following simplifications allow to express 

damping as a linear combination between M and K  (Eq. 3.2) [24]: 

𝐶 = 𝑀 ∙ ∑ 𝑎𝑏

𝑏

∙ [𝑀−1 ∙ 𝐾]𝑏 → 𝐶 = 𝛼𝑀 + 𝛽𝐾 (3.2) 

This system of second-order differential equations finds its solution in time domain applying Duhamel 

integral.  

Due to the complexity of solving the problem associated to MDOF system in time domain, being the 

solution dependent from the dynamic responses of the single SDOF components, a SDOF oscillator 

will be considered to illustrate the representation of the Spatial Model, which is described by Eq. 3.3: 

𝑚 ∙ 𝑞̈1(𝑡) + 𝑐 ∙ 𝑞̇1(𝑡) + 𝑘 ∙ 𝑞1(𝑡) = 𝑓1(𝑡) (3.3) 
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where 𝑞1(𝑡) is the response of the oscillator subjected to an arbitrary force 𝑓1(𝑡), and 𝑞̇1(𝑡) and 𝑞̈1(𝑡) 

are the two derivatives (first and second) of 𝑞1(𝑡), respectively. The application of Duhamel 

convolution integral (Eq. 3.4) together with the imposition of null values for the initial displacement 

and velocity, allows to find a solution of the problem. 

𝑞1(𝑡) = ∫𝑓1(𝑡) ∙ ℎ1(𝑡 −  𝜏) ∙ 𝑑𝜏 , 𝜏 > 0

𝑡

0

 (3.4) 

In the Eq. 3.4 the function ℎ1(𝑡 −  𝜏), defined by following relation, is the response of the system in 

the instant t − τ, caused by a unitary impulse generated in the instant τ (Eq. 3.5): 

ℎ1(𝑡 −  𝜏)  =  
1

𝑚 ∙ 𝜔1𝑑

∙ 𝑒−𝜔1𝜉(𝑡 − 𝜏) ∙ sin[𝜔1𝑑 ∙ (𝑡 −  𝜏)] ,         𝑡 > 𝜏 (3.5) 

Where 𝜔1𝑑 is the damped frequency, defined in Eq. 3.6: 

𝜔1 = √𝑘/𝑚 → 𝜔1𝑑 = 𝜔1 ∙ √1 −  𝜉2 (3.6) 

The damping value (c) in Eq. 3.3 is related to the known damping coefficient (𝜉) of the system by the 

following equation: 

𝑐 = 2 ∙ 𝜉 ∙ 𝑚 ∙ 𝜔1 (3.7) 

Duhamel integration procedure practically consists in dividing the force the system is subdued as a 

sequence of impulses (or better of impulsive functions) and then summating the responses calculated 

for every single impulse. However, being the dynamic response dependent from the responses of the 

various SDOF systems, a more convenient strategy is to solve the problem transferring it into 

frequency domain and so using the Modal Domain, as it is usually named. 

3.1.1.2 Modal formulation 

Modal formulation is a methodology which allows the conversion of a system, composed by N 

coupled second order differential equations, into an equivalent set of the same number of independent 

differential equations, representing the displacements as a linear combination of N independent 

vectors, usually named modes of vibrating, that will be indicated as 𝜑𝑘 from now on.  

Considering a non-damped system having the same mass and stiffness characteristics of the previous 

one, whose behavior is expressed in Eq. 3.8 and whose solution takes the form of Eq. 3.9, it is 

observable that its vibration modes are similar to those of the system where proportional damping 

hypothesis is assumed. 
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𝑀𝑞̈(𝑡) + 𝐾𝑞(𝑡) = 0 (3.8) 

𝑞(𝑡) = 𝜑𝑘 ∙ 𝑒𝜆𝑘∙𝑡 (3.9) 

Solving the eigenvalue problem, it is possible to extract the eigenvalues −𝜆𝑘
2  and their corresponding 

eigenvectors 𝜑𝑘 (Eq. 3.10): 

𝜆𝑘
2 ∙ 𝑀 ∙ 𝜑𝑘 + 𝐾 ∙ 𝜑𝑘 = 0 ↔ 𝐾 ∙ 𝜑𝑘 = −𝜆𝑘

2 ∙ 𝑀 ∙ 𝜑𝑘 (3.10) 

These quantities, are strictly linked to the dynamic properties of the system, being 𝜆𝑘 correlated to the 

non-damped angular frequencies (𝜔2) (Eq. 3.11), and being the eigenvectors intimately related to the 

structure vibration modes, usually corresponding to the columns of the so-called Modal Matrix (Φ) 

(Eq. 3.12). 

𝜆𝑘 = 𝑖 ∙ 𝜔𝑘 (3.11) 

Φ = [⋯ 𝜑𝑘 ⋯],           𝑘 = 1. . . 𝑁 (3.12) 

Introducing the orthogonality property of Φ in respect to the mass and stiffness matrices (Eq. 3.13), it 

becomes possible to separate the equations of the MDOF non-damped system of Eq. 3.8. Moreover, 

by multiplying Eq. 3.8 for Φ𝑇 leads to the transformation of matrices M and K into diagonal matrices 

(Eq. 3.13), respectively called Modal Mass Matrix (𝑀𝑑) and Modal Stiffness Matrix (𝐾𝑑), and with 

𝑚𝑘  and 𝑘𝑘  indicating the elements of the matrices associated to the k-th DOF. 

ΦT ∙ M ∙ Φ = [
⋱

mk

⋱

]      ΦT ∙ K ∙ Φ = [
⋱

kk

⋱

]               (3.13) 

So, the non-damped angular frequency for one of the SDOF of the MDOF system is obtainable like in 

the case of the of the free response of the 1-DOF oscillator (Eq. 3.14): 

𝜔𝑘 = √
𝑘𝑘

𝑚𝑘

 (3.14) 

Extending the discussion to the more general case of damped vibration systems, the orthogonality 

property must be extended also to the Damping Matrix (C) and also under the assumption of 

proportional distributed damping in the whole system. These leads to the expression of Eq. 3.15: 

ΦT ∙ C ∙ Φ = [
⋱

𝑐𝑘

⋱

] = [
⋱

2𝜉𝑘𝑚𝑘𝜔𝑘

⋱

]               (3.15) 

It is observable that, under the previous hypothesis, the Modal Damping Matrix (𝐶𝑑) comes from a 

linear combination of modal matrices 𝑀𝑑 and 𝐾𝑑. 
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From Eq. 2.9, the free dynamic response problem for  proportional damped MDOF systems takes the 

form of a series of individual equations like in Eq. 3.16: 

𝜆𝑘
2 + 2𝜉𝑘𝜔𝑘𝜆𝑘 + 𝜔𝑘

2 = 0 (3.16) 

Solving these N expressions associated to the liner system of Eq. 3.8, and relating the obtained 

eigenvalues to those of non-damped angular frequencies and to the damping coefficients leads to: 

𝜆𝑘 , 𝜆𝑘
∗ = −𝜉𝑘𝜔𝑘 ± 𝑖√1 −  𝜉𝑘

2 ∙ 𝜔𝑘 (3.17) 

This makes possible to express the general solution of Eq. 3.1. for the system q(t) as a linear 

combination of the modes of vibration in Modal Space (Eq. 3.18). 

𝑞(𝑡) = ∑ 𝜑𝑘 ∙ 𝜂𝑘(𝑡)

𝑁

𝑘=1

 (3.18) 

Applying the superposition of the effects principle it is possible to convert a linear equation system 

with proportional damping into a system of independent second-order differential equations, whose 

solution derives from a linear combination of the singular vibration modes (Eq. 3.19): 

𝑚𝑘 ∙ 𝜂̈𝑘(𝑡) + 𝑐𝑘 ∙ 𝜂̇𝑘(𝑡) + 𝑘𝑘 ∙ 𝜂𝑘(𝑡) = 𝑓𝑘(𝑡),           𝑘 = 1. . . 𝑁     (3.19) 

Where: 

• 𝜂̇𝑘(𝑡) and 𝜂𝑘(𝑡) are the first and second derivative of the modal coordinate η(t); 

• 𝑚𝑘, 𝑘𝑘 and 𝑐𝑘 are the modal components of the modal matrices described in Eq. 3.13 and 

3.15, respectively; 

• 𝑓𝑘 is the modal component of the input excitation associated to k-th DOF, expressed in Eq. 

3.20. 

𝑓𝑘(𝑡) = 𝜑𝑘
𝑇 ∙ (𝐵 ∙ 𝑓(𝑡)) ∙ 𝐼 (3.20) 

By reconnecting to what was expressed in Eq. 3.13, the relation existing between the modal matrix 

and the transformation of M and K in their diagonal version is explicable by the follows:  

[𝑀𝑑]𝜂̈(𝑡) + [𝐾𝑑]𝜂(𝑡) = 𝑓𝜂(𝑡)       {
𝜂(𝑡) = 𝛷−1 ∙ 𝑞(𝑡)

𝑓𝜂(𝑡) = 𝛷𝑇 ∙ 𝐵𝑓(𝑡) ∙ 𝐼
 (3.21) 

Consequentially, the vibration modes, solution of the eigenvalues problem, can be defined introducing 

a scale factor, which allows to obtain the Unit Modal Mass Matrix (Eq. 3.27): 

𝜂̈(𝑡) + [
⋱

𝜔𝜂
2

⋱

] 𝜂(𝑡) = 𝛤𝜂(𝑡)  →  𝜂̈(𝑡) + 𝜔𝜂
2 ∙ 𝜂̇(𝑡) = 𝛤𝜂(𝑡) (3.22) 
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In which 𝛤𝜂(𝑡) is the Participation coefficient used to recognize the modal component equivalent to 

each SDOF in the normalization process. 

From what emerges from the introduction to the Modal Model, the relations found applying the 

Duhamel Integral in the Spatial Space (Eq. 3.3) can be formulated as follows: 

𝜂(𝑡) = ∫𝑓𝜂(𝜏) ∙ ℎ(𝑡 −  𝜏) ∙ 𝑑𝜏,           𝑡 > 0

𝑡

0

 (3.23) 

ℎ(𝑡 −  𝜏) =
1

𝑚𝑘 ∙ 𝜔𝑑𝑘

∙ 𝑒−𝜔𝑘𝜉(𝑡 − 𝜏) ∙ sin[𝜔𝑑𝑘 ∙ (𝑡 −  𝜏)] ,            𝑡 > 𝜏 (3.24) 

The function ℎ(𝑡 −  𝜏), in parallel with what emerged from Eq. 3.4 and  Eq. 3.5, makes possible to 

interpret the output response in the Modal Space as a filter, formed by the sum of the history of input 

𝑓𝜂(𝜏), which allows to obtain an impulse response function completely defined by the mass (𝑚𝑘), the 

natural frequency (𝜔𝑘), and the damping ratio (𝜉𝑘), that are defined as in Eq. 3.25. 

𝜔𝑑𝑘 = 𝜔𝑘 ∙ √1 −  𝜉2 

(3.25) 
𝜉𝑘 =

𝑐

2𝑚𝑘𝜔𝑑

       𝑎𝑛𝑑         𝜔𝑘 = √
𝑘𝑘

𝑚𝑘

 

3.1.2 Frequency response models 

Operating in frequency domain instead of the time one is an alternative and simpler way to approach 

the dynamic problem expressed by Eq. 3.1. This methodology consists in the application of the 

Fourier Transform in order to convert the system of second order-differential equations into a set of 

algebraic equations. 

3.1.2.1 Frequency response models 

Starting from the 1-DOF system represented through Eq. 3.3, the application of Fourier Transform 

leads to:  

−𝑚 ∙ 𝜔2 ∙ 𝑄1(𝜔) + 𝑐 ∙ 𝑖 ∙ 𝜔 ∙ 𝑄1(𝜔) + 𝑘 ∙ 𝑄1(𝜔) = 𝐹1(𝜔) (3.26) 

in which the functions 𝑄1(𝜔) and 𝐹1(𝜔) are the Fourier transforms functions of 𝑞1(𝑡) and 𝑓1(𝑡) . 

The structural response of the system is written in its explicit form as:  
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𝑄1(𝜔) =
𝐹1(𝜔)

−𝜔2 ∙ 𝑚 + 𝑖 ∙ 𝜔 ∙ 𝑐 + 𝑘
= 𝐻1(𝜔) ∙ 𝐹1(𝜔) (3.27) 

where 𝐻1(𝜔), corresponding to the Fourier Transform of the impulse function ℎ1(𝑡 −  𝜏) in Eq. 3.5, 

is the Frequency Response Function (FRF) of SDOF system, which can be alternatively expressed as: 

𝐻1(𝜔) =
1

−𝜔2 ∙ 𝑚 + 𝑖 ∙ 𝜔 ∙ 𝑐 + 𝑘
=

1 𝑚⁄

𝜔1
2 − 𝜔2 + 2 ∙ 𝑖 ∙ 𝜉 ∙ 𝜔 ∙ 𝜔1

 (3.28) 

The division of the numerator and denominator for the mass (m), and substituting the terms          

𝜔1 = √(𝑘 𝑚⁄ ) and 𝑐 = 2 ∙ 𝜉 ∙ 𝑚 ∙ 𝜔1, allow to rewrite Eq. 3.28 in the form of Eq. 3.29, highlighting 

once again that the FRF results a complex function, with amplitude (𝐴 = √(𝑅𝑒2 + 𝐼𝑚2)) and phase 

(𝑓 = tan−1(𝐼𝑚 𝑅𝑒⁄ )) , where Re stands for the real part and Im for the imaginary one. 

𝐻1(𝜔) =
1 𝑘⁄

1 + 2𝑖𝜉 [
𝜔1

𝜔
] − [

𝜔1

𝜔
]
2 (3.29) 

It can be observed that: 

• for low level of damping, the FRF has its maximum amplitude in 𝜔 = 𝜔1 ∙ √1 −  𝜉2, which 

can represent an acceptable natural frequency; 

• when excitation is low, inertial mass and damping results negligible, the FRF tending to the 

value of 1 𝑘⁄ ; this fact implies a quite constant trend of the amplitude plot and a value of 

phase close to zero.  

• for values of exciting frequency close to the natural one, a peak is found (with phase value 

which jumps from 0° to 180°),  and the phenomenon is called Resonance. In this case the 

response is totally imaginary and practically related only to damping forces. Sharper shapes 

of the amplitude curves correspond to lower damping levels (Figure 1). 

 
Figure 1 - Amplitude and phase of the Frequency Response Function of 1-DOF system 
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The relation between input forces and the system response can be defined through the application of 

Fourier Transform to the terms 𝑞𝑖(𝑡) and 𝑓𝑖(𝑡) in Eq. 3.1, transforming them in the [N-by-1] vectors 

𝑄𝑁(𝜔) and 𝐹𝑁(𝜔) of Eq. 3.30: 

𝑄𝑁(𝜔) = 𝐻(𝜔) ∙ 𝐹𝑁(𝜔) (3.30) 

The components 𝐻𝑖𝑗(𝜔) of the [N-by-N] matrix 𝐻(𝜔), appearing in the above equation, represents the 

FRF corresponding to the response of a coordinate i when subdued to a generic force applied in a 

coordinate j of the system. This matrix is related to the structural characteristics of the system by Eq. 

3.31: 

𝐻(𝜔) = [−𝜔2 ∙ 𝑀 + 𝑖 ∙ 𝜔 ∙ 𝐶 + 𝐾]−1 (3.31) 

3.1.2.2 Frequency response models in the Modal Space 

Extending the concepts expressed by Eq. 3.30, the structural response of a MDOF system can be 

rapidly evaluated in frequency domain, by rewriting the afore-mentioned expression as follows: 

𝑄𝜂𝑘(𝜔) = 𝐻𝜂𝑘(𝜔) ∙ 𝐹𝑘(𝜔) (3.32) 

and considering that in the Modal Domain the elements 𝐻𝜂𝑘(𝜔) of the FRF matrix can be written as: 

𝐻𝜂𝑘(𝜔) =
1

𝜔𝑘
2 − 𝜔2 + 2 ∙ 𝑖 ∙ 𝜉𝑘 ∙ 𝜔 ∙ 𝜔𝑘

 (3.33) 

So, the complete FRF matrix can be expressed with generalized coordinates recurring to the vibration 

modes (Eq. 3.34): 

𝐻(𝜔) =  Φ ∙ 𝐻𝜂(𝜔) ∙ Φ𝑇 = ∑ 𝐻𝜂𝑘 ∙ 𝜑𝑘 ∙ 𝜑𝑘
𝑇

𝑁

𝑘=1

 (3.34) 

in which 𝐻𝜂 is a diagonal matrix composed by FRFs calculated in the Modal Space, normalized 

respect to the modal mass matrix. This process leads to the construction of a FRF matrix which is 

related to the principal modes of vibration of the system, as it is marked by Eq. 3.35: 

𝐻𝜂(𝑖,𝑗)(𝜔) = ∑
[𝜑𝑖]𝑘 ∙ [𝜑𝑗]𝑘

𝜔𝑘
2 − 𝜔2 + 2 ∙ 𝑖 ∙ 𝜉𝑘 ∙ 𝜔 ∙ 𝜔𝑘

𝑁

𝑘=1

 (3.35) 

One of the advantages which emerges from the use of the Modal Domain formulation, apart for the 

lower computational cost, stands in the possibility to reduce the number of vibration modes necessary 

for the analysis of the structural response, considering only the modes associated to lower frequencies, 

which are also the more interesting for the characterization of the dynamic behavior of the structure. 
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Moreover, combining the results regarding the response of the system for the model space (Eq. 3.18) 

and the ones described by Eq. 3.33, it is possible to write the output response of the MDOF linear 

system, when known forces acts over it, as: 

𝑄(𝜔) = ∑ 𝜑𝑘 ∙ 𝐻𝜂𝑘(𝜔) ∙ 𝐹𝑘(𝜔)

𝑁

𝑘=1

 (3.36) 

Considering that the FRF can be also seen as the Fourier Transform of the impulse response function 

(IRF) defined by Duhamel integral in Eq. 3.4, the 𝐻(𝜔) matrix can be written as the ratio of the 

spectrum of the output data 𝑄(𝜔) and the spectrum of the input force system 𝐹(𝜔). Consequently, a 

system composed by a SDOF system excited by several harmonic inputs, whose nominal frequency is 

𝜔𝑝, it is possible to express the FRF as follows:  

𝐻(𝜔) =
𝑄(𝜔)

𝐹(𝜔)
=

1 𝑘⁄

1 + 2𝑖𝜉 (
𝜔𝑝

𝜔𝑛
) − (

𝜔𝑝

𝜔𝑛
)

2 (3.37) 

It can be observed that when 𝜔𝑝 tends to nominal natural frequency 𝜔𝑛 of the system, the Resonance 

phenomenon takes place, with the phase which jumps from the 0 to π and the response which becomes 

purely imaginary and related to the damping forces. Matrix 𝐻𝑖𝑗(𝜔) is expressed as:  

𝐻𝑖𝑗(𝜔) = ∑𝐻𝑖𝑗𝑟 =

𝑁

𝑟=1

∑
𝑅𝑖𝑗𝑟

𝑗𝜔𝑝  −  𝜆𝑟

+
𝑅𝑖𝑗𝑟

∗

𝑗𝜔𝑝  −  𝜆 ∗𝑟

𝑁

𝑟=1

 (3.38) 

𝜆𝑟 = −𝜉𝜔𝑛 ∓ 𝑗𝜔𝑛√1 − 𝜉2 𝑎𝑛𝑑 𝑅𝑖𝑗𝑟 =
𝜑𝑖𝑟𝜑𝑗𝑟

𝑗2𝜔𝑑𝑟𝑚𝑟

 (3.39) 

in which the complex roots of the equation, so the values 𝜆𝑟, are the system poles, furnishing 

information about the damped frequencies (imaginary part) and damping ratios (real part), while 𝑅𝑖𝑗𝑟  

are the so-called residuals containing the mode shapes coefficients. Due to the symmetry of the matrix 

𝐻𝑖𝑗(𝜔), it is possible to extract the mode shape associated to a specific frequency just knowing one 

row or one column associated to that defined natural frequency [25].  

3.1.3 State-Space models 

Linear-time invariant (L.T.I.) systems dynamic problem, under the assumption of proportional 

damping and the consequent orthogonality of the eigenvectors, can be solved operating a separation of 

the differential equations describing the problem, whose solution produces a set of vibration modes 

which are equal to those characterizing a non-damped structure. In real cases, it appears obvious, that 
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these conditions are not met, being the damping distribution not proportional to mass and stiffness and 

sometimes even occurring the case of localized damping.  

The application of identification method in order to extract modal parameters in operational 

conditions, where also noise disturbance in data acquisition is to be considered, requires an adaptation 

of the formulation, which pass through the construction of a stochastic state-space model. 

All the steps, starting from equation of motion, passing for the discretization of collected time series, 

until arriving to the formulation of a discrete stochastic model, which allows to execute modal 

identification also in systems affected by random noise and subjected to unknown input forces, are 

synthetized in the scheme of Fig. 3-1. 

 
Fig. 3-1 - Genesis of the stochastic state-space-model used for general applications 
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3.1.3.1 Continuous-time state-space model 

The description of a N dofs structural system in state-space is formulated with the well-known Eq. 

3.40: 

𝑀𝑞̈(𝑡) + 𝐶𝑞̇(𝑡) + 𝐾𝑞(𝑡) = 𝐹(𝑡) = 𝐵𝑁𝑢(𝑡) (3.40) 

In which: 

• M, C and K are respectively the [N-by-N] matrices of mass, damping and stiffness; 

• F(t) is the [N-by-1] vector of external forces, that can be seen as the product of the input 

matrix (B) for the vector of points of application (u), both of them continuous in time. This 

product takes into account the possibility, which often occurs, that not all of the N dofs of the 

system are excited, so the u(t) vector of dimension m < N, reduces the number of considered 

nodes, and the presence of an active force over them is indicated by the zero and ones 

elements matrix 𝐵𝑁 of size [N-by-m]. 

Defining a state vector x(t), composed by the vectors of displacements and velocities, and the matrices 

P and Q (Eq. 3.41), it is possible to transform the MDOF system formed by N second-order 

differential equations into an equivalent set of n = 2N first order differential equations, independent 

among themselves.  

𝑥(𝑡) = [
𝑞(𝑡)
𝑞̇(𝑡)

] ;   𝑃 = [
𝐶 𝑀
𝑀 𝐶

] ;   𝑄 = [
𝐾 0
0 −𝑀

] ;   𝐹(𝑡) = 𝐵𝑁(𝑡) ∙ 𝑢(𝑡) (3.41) 

Matrices P and Q, which are modal matrices, result orthogonal, as it is seen in Eq. 3.42, so that the 

property of mass, damping and stiffness are not affected by the transformation produced by the next 

steps: 

𝛹𝑇 ∙ 𝑃 ∙ 𝛹 = [
⋱

𝑎𝑘

⋱

] ;    𝛹𝑇 ∙ 𝑄 ∙ 𝛹 = [
⋱

𝑏𝑘

⋱

] (3.42) 

The compact form of Eq. 3.40 after these substitutions is formulated as such: 

𝑃 ∙ 𝑥̇(𝑡) + 𝑄 ∙ 𝑥(𝑡) = [
𝐵𝑁

0
] ∙ 𝑢(𝑡) (3.43) 

Applying the classical solution for q(t), as expressed in Eq. 3.9, [17,26] the problem is written as 

follows: 

𝑄 ∙ 𝛹 = −𝑃 ∙ 𝛹 ∙ 𝛬𝐶  (3.44) 
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𝛬𝐶  is the matrix of eigenvalues while Ψ is the matrix of eigenvectors (the (*) symbol indicates the 

complex conjugate of the found values). 

𝛬𝐶 = [
𝛬 0
0 𝛬 ∗

] , 𝛹 = [
𝛩 𝛩 ∗

𝛩 ∙ 𝛬 𝛩 ∗∙ 𝛬 ∗
] (3.45) 

For which the relation with the vibration modes is expressed as: 

𝛬 = [
⋱

𝜆𝑘

⋱

] ;  𝛩 = [⋯ 𝜑𝑘 ⋯],         𝑘 = 1. . . 𝑁 (3.46) 

Applying the orthogonality condition also to matrix 𝛬𝐶   the form is clearly that of a diagonal matrix.  

𝛬𝐶 = −[
⋱

1 𝑎𝑘⁄

⋱

] ∙ [
⋱

𝑏𝑘

⋱

] (3.47) 

3.1.3.1.1 State equation 

State-space model is well known system in the field of Civil Engineering, often adopted for the 

identification of modal parameters in structure where viscous damping approach is assumed.  

At the base of the model, where time is assumed as continuous (as symbolized by subscripts “C”), it is 

necessary to define a state equation (Eq. 3.48), which can be obtained multiplying both terms of Eq. 

3.44 for the inverse matrix 𝑃−1: 

𝑥̇(𝑡) = 𝐴𝐶 ∙ 𝑥(𝑡) + 𝐵𝐶 ∙ 𝑢(𝑡) (3.48) 

• Matrix 𝐴𝐶, of size [n-by-n] with n = 2N, is named state matrix, while 𝐵𝐶  is the input matrix, 

of size [n-by-m], which are defined as follows: 

𝐴𝐶 = −𝑃−1 ∙ 𝑄 = [
0 𝐼

−𝑀−1𝐾 −𝑀−1𝐶
] 

(3.49) 
𝐵𝐶 = 𝑃−1 ∙ [

𝐵𝑁

0
] = [

0
𝑀−1𝐵𝑁

] 

• x(t) is the state vector with dimensions n.  

The relation between 𝐴𝐶 and matrices 𝛬𝐶  and 𝛹 is expressed in Eq. 3.50 and, due to the equality with 

the results of Eq. 3.44, it emerges that it is possible to extract every modal characteristic regarding a 

system from matrix 𝐴𝐶: 

𝐴𝐶 = −𝑃−1 ∙ 𝑄 = −𝛹 ∙ 𝑑𝑖𝑎𝑔[1 𝑎𝑘⁄ ] ∙ 𝛹−𝑇 ∙ 𝛹𝑇 ∙ 𝑑𝑖𝑎𝑔[𝑏𝑘] ∙ 𝛹−1 (3.50) 
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𝐴𝐶 = 𝛹 ∙ 𝛬𝐶 ∙ 𝛹−1 ↔ 𝐴𝐶 ∙ 𝛹 = 𝛹 ∙ 𝛬𝐶 

3.1.3.1.2 Observation equation 

In operational conditions, it results impossible to directly measure the responses of every dof of the 

structure, so it is common practice to acquire data regarding l points (with l < n), and then assume 

these points as reference for the analysis. In regard of state-space formulation this means that a second 

equation is required in order to correlate the output of the generalized N-DOFs system with the 

measured values coming from data collection. 

This second equation, expressed in Eq. 3.51, is usually called observation equation: 

𝑦(𝑡) = 𝐶𝑎𝑞̈(𝑡) + 𝐶𝑣𝑞̇(𝑡) + 𝐶𝑑𝑞(𝑡) (3.51) 

Where: 

• y(t) is the measurement vector with dimensions l; 

• 𝐶𝑎, 𝐶𝑣, 𝐶𝑑 are respectively the output location matrices (of size [l-by-N]) for accelerations, 

velocities and displacements; these matrices, whose role is to map the instrumented DOFs, 

are composed by zeros or ones elements; 

From Eq. 3.40, remembering the definition of the state vector x(t), observation equation can be written 

in its compact form as: 

𝑦(𝑡) = 𝐶𝐶 ∙ 𝑥(𝑡) + 𝐷𝐶 ∙ 𝑢(𝑡) (3.52) 

Where the [1-by-n] output matrix 𝐶𝐶 and the [1-by-m] direct transmission matrix 𝐷𝐶  are: 

𝐶𝑐 = [𝐶𝑑  −  𝐶𝑎𝑀−1𝐾 𝐶𝑣  −  𝐶𝑎𝑀
−1𝐶𝑁] 

(3.53) 
𝐷𝑐 = 𝐶𝑎𝑀−1𝐵𝑁 

3.1.3.1.3 State-Space Model 

Once the state-space equation (Eq. 3.48) and observability equation (Eq. 3.52) are defined, it is 

possible to elaborate the State-Space model, described by Eq. 3.54. From this model it is possible to 

correlate the response y(t) of a system when subdued to a deterministic excitation u(t). From the 

previous considerations it is highlighted the importance of the state matrix 𝐴𝐶, containing all the 

modal information, and of the state vector x(t), from which the model order is established as twice the 

number of DOFs of the considered system. 

𝑥̇(𝑡) = 𝐴𝐶 ∙ 𝑥(𝑡) + 𝐵𝐶 ∙ 𝑢(𝑡) 
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𝑦(𝑡) = 𝐶𝐶 ∙ 𝑥(𝑡) + 𝐷𝐶 ∙ 𝑢(𝑡) (3.54) 

3.1.3.2 Discrete-time state-space model 

Experimental campaigns consist in storage of data in operational conditions, using different 

transducers, which acquire analog signal, that are then converted in digital ones through A/D 

converters in order to be stored and analyzed by calculators. Due to the working modalities of the 

instrumentation, it is obvious that the continuous time hypothesis, assumed up till now, needs to be 

substituted considering time as discrete, in order for the model to better fit the nature of the data.  

The continuous time function 𝑥(𝑡), 𝑦(𝑡) and 𝑢(𝑡) of Eq. 3.54 are so replaced by series of values 𝑥𝑘, 𝑦𝑘  

and 𝑢𝑘,  which are defined in the discrete time instant 𝑘𝛥𝑡, with k ∈ ℕ and 𝛥𝑡 is the adopted sampling 

interval: 𝑥𝑘 = 𝑥(𝑘 ∙ ∆𝑡). 

Discrete-time state-space model is represented by the following equation: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 
(3.55) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 

Because of  Zero Order Hold assumption (ZOH) [27], which impose constant values of two 

consecutive discrete time interval, the continuous-time model matrices 𝐴𝐶, 𝐵𝐶 , 𝐶𝐶, 𝐷𝐶  are related with 

their owns discrete-time matrices 𝐴, 𝐵, 𝐶, 𝐷 by the Eq. 3.56: 

𝐴 = 𝑒𝐴𝐶∆𝑡          𝐵 = ∫ 𝑒𝐴𝐶𝜏𝑑𝜏𝐵𝐶

∆𝑡

0

 
(3.56) 

𝐶 = 𝐶𝑐            𝐷 = 𝐷𝑐  

Applying McLaurin decomposition over the second term of A definition in Eq. 3.56, the relation with 

the continuous time matrix 𝐴𝐶 can be expressed as follows: 

𝐴 = 𝑒𝐴𝐶∙∆𝑡 = 𝐼 + (𝐴𝐶 ∙ ∆𝑡) +
(𝐴𝐶 ∙ ∆𝑡)2

2!
+

(𝐴𝐶 ∙ ∆𝑡)3

3!
+ ⋯ (3.57) 

and substituting the eigenvalues decomposition of Eq. 3.50, it is evident that eigenvectors of matrix 𝐴 

are equal to the eigenvectors of matrix 𝐴𝐶 (Eq. 3.58): 

𝐴𝐶 = 𝛹 ∙ 𝛬𝐶 ∙ 𝛹−1 
(3.58) 

𝐴 = 𝑒𝐴𝐶∙∆𝑡 = 𝑒𝛹∙𝛬𝐶∙𝛹−1∙∆𝑡 = 𝛹 ∙ 𝑒𝐴𝐶∙∆𝑡 ∙ 𝛹−1 = 𝛹 ∙ 𝛬𝐶 ∙ 𝛹−1 

Being the matrix 𝛬𝐷 composed by the eigenvalues of the state matrix A (Eq. 3.59). 
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𝛬𝐷 = [
⋱

𝜇𝑘

⋱

] ; 𝜇𝑘 = 𝑒𝜆𝑘∙∆𝑡 ↔ 𝜆𝑘 =
ln(𝜇𝑘)

∆𝑡
 (3.59) 

3.1.3.3 Stochastic processes 

In the context of Operational Modal Analysis, the assumption of known input excitation often decays, 

so it becomes impossible to express them in deterministic form, and it is necessary to apply a 

stochastic process, which also allows to consider the effects of noise into the model.  

Considering a certain variable, time dependent, which assumes different values during a process at 

different time instant t, a stochastic process allows to describe the variable through a set of n (with n 

→ ∞) random time dependent functions which are designed on the basis of the different realizations of 

the given variable during the observation process.  

In practical applications [28], stochastic processes are considered: 

• stationary, the statistical properties staying constant during time; 

• zero-mean, being the average values of the residuals equal to zero, thanks to the de-trending 

process raw data are subdued; this property involves that in operational modal analysis 

application covariance functions and correlation functions coincide; 

• ergodic, because the statistical averages of the properties of the measured signals converge 

practically everywhere with the temporal averages. Stationarity becomes a necessary 

condition for ergodicity. This property A necessary condition for ergodicity is therefore 

stationarity. Ergodicity can also be a property of correlation when there is convergence 

between the temporal and statistical autocorrelation function. 

The autocorrelation function furnishes a measure of the similarity between the original signal with its 

time-shifted version, so it provides the correlation of the time signal with its past and future values. 

When stationarity of the process is considered, the autocorrelation is only linked with the time-lag 

and practically gives information of the rapidity of the evolution of the process in time. 

The correlation matrix stochastic process 𝑦(𝑡) with 𝑛𝑦 components, under the assumption of 

continuous time, can be expresses as: 

𝐸𝑦𝑦(𝜏) = 𝐸[𝑦(𝑡)(𝑡 + 𝜏)𝑇] = lim
𝑇→∞

1

𝑇
∫ 𝑦(𝑡)(𝑡 + 𝜏)𝑇𝑑𝑡

+𝑇 2⁄

−𝑇 2⁄

 (3.60) 

where 𝛴𝑦𝑦(𝜏) is a [𝑛𝑦-by-𝑛𝑦] square matrix depending on considered time-lag (τ) and with 

autocorrelation or cross-correlation values as elements in the diagonal  
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Transferring the signal in discrete time, the correlation function is only defined for t ≥ 0, and the Eq. 

3.60 takes the form: 

𝐸𝑦𝑦(𝜏) = 𝐸[𝑦𝑘 ∙ 𝑦𝑘+𝜏
𝑇] = lim

𝑛𝑡→∞

1

𝑛𝑡

∫ 𝑦𝑘 ∙ 𝑦𝑘+𝜏
𝑇

𝑛𝑡−1

𝑡=0

 (3.61) 

where: 

• E[•] is the expected value of correlation for the y(t) time history, which converge to the 

average value for t → ∞; 

• 𝑦𝑘  is the value of 𝑦(𝑡) at the time instant 𝑘 ∙ ∆𝑡. 

A particular characteristic of the autocorrelation function is its natural tendence to zero value in 

relation to the irregularity of the time series involved, where to a higher level of irregularity 

corresponds a faster decay. Autocorrelation functions for zero mean stationary stochastic processes 

are symmetrical functions with maximum value equal to the standard deviation of the process and 

centered in the origin (τ = 0). 

Cross-correlation function, instead, provides the information about the level of  correlation  between 

two different time signals y(t) and x(t) (the limit in Eq. 3.62 is necessary because in real application 

the number of samples is limited): 

𝐸𝑦𝑥(𝜏) = 𝐸[𝑦𝑘 ∙ 𝑦𝑘+𝜏
𝑇] = lim

𝑛𝑡→∞

1

𝑛𝑡

∫ 𝑦𝑘 ∙ 𝑦𝑘+𝜏
𝑇

𝑛𝑡−1

𝑡=0

 (3.62) 

3.1.3.4 Stochastic discrete-time state-space model 

Due to the presence of noise in data acquisition, and due to the impossibility of deterministically 

measure this agent, it become necessary to consider this stochastic component in the discrete-time 

state-space model. Practically two vectors 𝑤𝑘 and 𝑣𝑘,  representing noise, are added to the Eq. 3.55, 

so the model is written as follows: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 
(3.63) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑣𝑘 

Both of the added components are assumed to be zero-mean, implying the following properties for the 

covariance matrices, calculated for two arbitrary time instants p and q: 

([
𝑤𝑝

𝑣𝑝
] [𝑤𝑝

𝑇 𝑣𝑝
𝑇]) = [

𝑄 𝑆

𝑅 𝑆𝑇] (3.64) 
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𝐸 ([
𝑤𝑝

𝑣𝑝
] [𝑤𝑞

𝑇 𝑣𝑞
𝑇]) = 0      𝑝 ≠ 𝑞  

Correlation matrices associated to the vectors 𝑤𝑘 and 𝑣𝑘 are assumed to be equal to zero, for every 

time instant 𝜏 = 𝑞 −  𝑝 ≠ 0. So this means that every new observation is not linked to the previous 

one. Random stochastic process like this is defined white noise. 

Another important aspect of the stochastic process is that, during experimental tests, the excitation 

working over the structure is non deterministically measured, and so the discrete vector 𝑢𝑘 cannot be 

known. From here a very strong hypothesis is made, which consists in including the unknown action 

into the white noise term, approximating the stochastic discrete-time state-space model as in Eq. 3.65: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑤𝑘 
(3.65) 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 

A necessary clarification regarding white noise assumption should be made: without this hypothesis, 

when the input excitation contains some dominant frequency components, these values will be 

identified as poles of the state matrix 𝐴 and it will result indistinguishable in respect to the effective 

natural frequencies of the system. 

3.1.4 Auto-spectra and cross-spectra functions 

The hypothesis of zero-mean value and normal distribution of the input excitation, at the basis of 

stochastic process theory, is a  property that very commonly manifests itself in different natural 

phenomena and also finds confirmation also in the Central Limit Theorem, asserting the tendency to 

the Gaussian distribution of the sum of high number of independent random variables with 

independent distribution. Adding the stationarity and ergodicity conditions assures the dependency of 

the autocorrelation function only from the time interval 𝜏 = 𝑡𝑗  −  𝑡𝑖, but its independence from the 

time instants 𝑡𝑖 and 𝑡𝑗. So, auto-correlation function is defined as: 

𝑅𝑥𝑥(𝜏) = lim
𝑇→∞

1

𝑇
∫ 𝑥𝑒(𝑡) ∙ 𝑥𝑒(𝑡 + 𝜏)𝑑𝑡

+𝑇 2⁄

−𝑇 2⁄

 (3.66) 

where 𝑥𝑒(𝑡) is a realization of the stochastic process depending only on time-lag. 

Transposition of the autocorrelation function in the frequency domain, by mean of the Fourier 

Transform, produces the so-called auto-spectrum function, which quantifies how the energy content 

of the signal, expressed in frequency terms, is distributed : 
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𝑆𝑥𝑥(𝜔) = ∫ 𝑅𝑥𝑥(𝜏)

+∞

−∞

∙ 𝑒−𝑖∙𝜔∙𝜏𝑑𝜏 (3.67) 

In particular, in case of white noise, the energy value coincides with the variance. 

Same considerations are valid in the definition of the cross-correlation (Eq. 3.68) and the cross-

spectrum functions (or cross-spectral density function) (Eq. 3.69): 

𝑅𝑥1𝑥2
(𝜏) = lim

𝑇→∞

1

𝑇
∫ 𝑥1𝑒(𝑡) ∙ 𝑥2𝑒(𝑡 + 𝜏)𝑑𝑡

+𝑇 2⁄

−𝑇 2⁄

 (3.68) 

𝑆𝑥1𝑥2
(𝜔) = ∫ 𝑅𝑥1𝑥2

(𝜏)

+∞

−∞

∙ 𝑒−𝑖∙𝜔∙𝜏𝑑𝜏 (3.69) 

It is worth to mention that the auto-spectrums are function with real components coming from the 

product between a complex number and its complex conjugate. The cross-spectrums, on the contrary, 

are complex functions. 

Considering a vector 𝑦(𝑡) containing various stationary stochastic processes, the correlation matrix 

can be defined by the follows: 

𝑅𝑦(𝜏) = 𝐸[𝑦(𝑡)𝑦(𝑡 + 𝜏)𝑇] = lim
𝑇→∞

1

𝑇
∫ 𝑦(𝑡)

+𝑇 2⁄

−𝑇 2⁄

𝑦(𝑡 + 𝜏)𝑇𝑑𝑡 (3.70) 

That, under the assumption of white noise as input excitation source can be written as: 

𝑅𝑦(𝜏) = 𝑅𝑦 ∙ 𝛿(𝜏) (3.71) 

in which 𝑅𝑦 in a [𝑛𝑖-by-𝑛𝑖] constant matrix and 𝛿(𝑟) is the Dirac Delta Function characterized by the 

following properties: 

𝛿(𝜏) = 0   𝑖𝑓  𝑡 = 0  

(3.72) 
𝛿(𝜏) = 0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 

∫ 𝑓(𝑡) ∙ 𝛿(𝑡 −  𝑎) ∙ 𝑑𝑡 = 𝑓(𝑎)
+∞

−∞

 

This property of the 𝛿(𝑟) function implies the input spectrum is a constant matrix equal to 𝑅𝑦 and 

subsequentially the energy of input signal results distributed with uniformity along the frequency axis. 

The concept previously described is summarized  in Eq.3.73, which links the spectrum of input 

response 𝑆𝑢𝑢 and the output one 𝑆𝑦𝑦. 
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𝑆𝑦𝑦(𝜔) = 𝐻(𝜔) ∙ 𝑆𝑢𝑢(𝜔) ∙ 𝐻𝐻(𝜔) (3.73) 

The system transfer function 𝐻(𝜔) and the constant matrix becomes the only variable influencing the 

output spectrum of a white noise input process (Eq. 3.74): 

𝑆𝑦𝑦(𝜔) = 𝐻(𝜔) ∙ 𝑅𝑝(𝜔) ∙ 𝐻𝐻(𝜔) (3.74) 

Moreover, if the cross-correlation are zero, which means the statistic independence between the input 

signals, the constant matrix becomes a diagonal matrix and so the contribution provided by a general 

k-mode on any elements of the output spectrum results from the following expression (Eq. 3.75): 

𝑆𝑞(𝑖,𝑗)

𝑘(𝜔) = ∑
[𝜑𝑖]𝑘 ∙ [𝜑𝑗]𝑘

𝜔𝑘
2  −  𝜔2 + 2 ∙ 𝑖 ∙ 𝜉𝑘 ∙ 𝜔 ∙ 𝜔𝑘

∙ 𝑅𝑝 ∙
[𝜑𝑖]𝑘 ∙ [𝜑𝑗]𝑘

𝜔𝑘
2  −  𝜔2 + 2 ∙ 𝑖 ∙ 𝜉𝑘 ∙ 𝜔 ∙ 𝜔𝑘

𝑁

𝑘=1

 (3.75) 

In [26] it was introduced the formulation of Eq. 3.76 which links the output spectral matrix, written as 

a superposition of the structural modes, and the vector 𝑔𝑘, called operational reference vector, which 

depends on all modal parameters, the input location and the input correlation matrix: 

𝑆𝑦𝑦(𝜔) = ∑
𝜑𝑘 ∙ 𝑔𝑘

𝑇

𝑖𝜔 −  𝜆𝑘

+

𝑁

𝑘=1

𝜑𝑘 ∗∙ 𝑔𝑘
𝐻

𝑖𝜔 −  𝜆𝑘

+
𝑔𝑘 ∗∙ 𝜑𝑘

𝑇

−𝑖𝜔 − 𝜆𝑘 ∗
+

𝑔𝑘 ∗∙ 𝜑𝑘
𝐻

−𝑖𝜔 − 𝜆𝑘 ∗
 (3.76) 

Decomposing the output spectrum can produce four different poles (𝜆𝑘,− 𝜆𝑘, λ∗ and −λ∗ ) for every 

structural mode. A solution to this problem consists in the use of the Positive or Half-Spectrum 

function , resulting from the limitation of the Discrete Fourier Transfer (DFT) function only to 

positive time-lags, when applied to correlation matrix: 

𝑆𝑦𝑦
+ (𝜔𝑗) =

𝑅𝑦𝑦(0)

2
+ ∑ 𝑅𝑦𝑦(𝑘 ∙ ∆𝑡) ∙ 𝑒−𝑖𝜔𝑗𝑘∆𝑡

𝑗

𝑘=1

 (3.77) 

Similarly to the case of the FRF or the transfer function, even the Positive Spectrum can be subdued to 

modal decomposition [29], assuming the following structure: 

𝑆𝑦𝑦
+ (𝜔) = ∑

𝜑𝑘 ∙ 𝑔𝑘
𝑇

𝑖𝜔 − 𝜆𝑘

+

𝑁

𝑘=1

𝜑𝑘 ∗∙ 𝑔𝑘
𝐻

𝑖𝜔 − 𝜆𝑘

 (3.78) 

3.2 Output-only modal identification techniques 

Identification of modal parameters, as already stated, can be performed in accordance with two 

different approaches: the first, known as EMA, where the excitation causing the measured structural 
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response is known, and the second, known as OMA, where it is hypothesized that the unknown 

excitation is assimilable with white noise, allowing all the simplification previously exposed. 

In particular, taking into account that usually the measured vibrations during experimental campaigns 

are provoked by environmental agents (wind, temperature variations, earthquakes…) or anthropogenic 

activities (like traffic, …) which can be assumed as white noise process, and due to the advantages 

OMA instrumentation offers in terms of economy and practicality of use, the output-only techniques 

is usually preferred. 

In the following paragraphs the output-only methodologies [25,28,30–36] used in the study of the 

structures presented in this thesis, developed both in frequency domain (based on the spectral 

estimation of the structural response) than time domain (based on the correlations or on the 

projections of the collected output responses), will be explained. 

3.2.1 Identification methods developed in the frequency domain 

3.2.1.1 Peak Picking method 

Peak Picking (PP) method is the first among modal identification technique for characterization of 

civil structures. It is a methodology developed in frequency domain, whose theoretical basis was 

introduced for the first time in [25] and then implemented for practical applications [37], confirming 

the effectiveness of ambient vibration test in the study of dynamical behavior of civil structures [38].  

Two conditions are at the basis of a successful identification of the modal parameters recurring to PP 

method: 

• structural modes associated to well-separated natural frequencies; 

• slightly damping of modes;  

The estimation process practically consists of a visual inspection of the magnitude of the power 

spectrum of the process, plotted over a magnitude vs. frequency chart. So, when structural modes 

frequencies are close, the method is not able to distinguish between the contributions of different 

modes [25].  

3.2.1.1.1 Identification of the natural frequencies 

The construction of the spectral matrix of a MDOF system excited by white noise requires the 

knowledge of the FRF matrix, standing Eq. 3.79: 

𝑆𝑞(𝜔) = 𝐻(𝜔) ∙ 𝑅𝑝 ∙ 𝐻𝐻(𝜔) (3.79) 
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When damping is low, the corresponding natural frequencies are well approximated by the damped 

resonant frequencies of the system, found in correspondence of maxima of the FRF matrix. 

Due to the nature of white noise processes, it is quite clear that it is possible to extract natural 

frequencies from the analysis of the auto-spectra function (or power spectral density function), 

defined in Eq. 3.80: 

𝑃𝑆𝐷𝑖(𝜔𝑘) = ∑ 𝑃𝑆𝐷𝑖(𝜔𝑘)

𝑁

𝑘=1

 (3.80) 

In particular, in order to assure the identification of all natural frequencies during dynamic tests, in 

[37] it is suggested the use of the averaged normalized power spectrum density (ANPSD) of all 

measurement points, as expressed in Eq. 3.81: 

𝐴𝑁𝑆𝑃𝐷(𝜔) =
1

𝑙
∑𝑁𝑃𝑆𝐷𝑖(𝜔) =

1

𝑙
∑[

𝑃𝑆𝐷𝑖(𝜔)

∑ 𝑃𝑆𝐷𝑖(𝜔)𝑁
𝑖=1

]

𝑙

𝑖=1

𝑙

𝑖=1

 (3.81) 

in which l is the number of instrumented DOFs and 𝑁𝑃𝑆𝐷𝑖  are the normalized spectrum associated to 

each DOF obtained by Eq. 3.80. In fact, averaging the elements in the of the spectrum matrix 𝑆+ (𝜔), 

as suggested, eliminate the risk of not identifying all of the resonant frequencies, in case of the 

presence of a reference DOF on one of the nodes of a vibration mode, condition which does not allow 

mode identification. 

3.2.1.1.2 Identification of vibration modes 

In case of well-separated natural frequencies and low damping values, the diagonal elements of FRF 

matrix, formulated in modal domain (Eq. 3.82), in proximity of resonant frequencies are characterized 

by high values.  

𝐻(𝜔) = Φ ∙ 𝐻𝜂(𝜔) ∙ Φ𝑇 = ∑ 𝐻𝜂𝑘 ∙ 𝜑𝑘 ∙ 𝜑𝑘
𝑇

𝑁

𝑘=1

 

(3.82) 

𝐻𝜂(𝜔) = 𝑑𝑖𝑎𝑔 [
1

𝜔𝑘
2  −  𝜔2 + 2 ∙ 𝑖 ∙ 𝜉𝑘 ∙ 𝜔 ∙ 𝜔𝑘

] 

Consequently, near a natural frequency 𝜔𝑘, k-th element of 𝐻𝜂, can be approximated to the contribute 

given by the corresponding k-th mode as expressed in Eq. 3.83: 

𝐻𝜂(𝜔) = 𝜑𝑘 ∙
1

𝜔𝑘
2  −  𝜔2 + 2 ∙ 𝑖 ∙ 𝜉𝑘 ∙ 𝜔 ∙ 𝜔𝑘

∙ 𝜑𝑘
𝑇 = 𝜑𝑘 ∙ 𝑐1 ∙ 𝜑𝑘

𝑇 (3.83) 
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So, this element of the FRFs matrix is scalar complex value 𝑐1which is function of the natural 

frequency, damping and mode shape. Taking Eq. 3.79 and considering Eq. 3.83, it is possible to write 

the spectrum as follows: 

𝑆𝑦(𝜔𝑘) = 𝜑𝑘 ∙ 𝑐1 ∙ 𝜑𝑘
𝑇 ∙ 𝑅𝑢 ∙ 𝜑𝑘 ∙ 𝑐1 ∗∙ 𝜑𝑘

𝑇 = 𝑐1 ∙ 𝑐1 ∗∙ 𝜑𝑘 ∙ 𝑐2 ∙ 𝜑𝑘
𝑇 (3.84) 

with the complex 𝑐2 = 𝜑𝑘
𝑇 ∙ 𝑅𝑢 ∙ 𝜑𝑘. Compacting the coefficients, Eq. 3.84 becomes: 

𝑆𝑦(𝜔𝑘) = 𝑐3 ∙ 𝜑𝑘 ∙ 𝜑𝑘
𝑇 (3.85) 

which highlights the mutuality for a given frequency 𝜔𝑘 between the columns of the spectral matrix 

and the configuration of the mode associated to 𝜔𝑘.  

This means that for a reference DOF the property of Eq. 3.86 is valid: 

𝑆𝑦(𝜔𝑘)(𝑟𝑒𝑓,𝑟𝑒𝑓) = 𝑐 ∙ (𝜑𝑟𝑒𝑓)𝑘
∙ (𝜑𝑟𝑒𝑓)𝑘

𝑇
 (3.86) 

and the same can be applied also to the other components:  

𝑆𝑦(𝜔𝑘)(𝑗,,𝑟𝑒𝑓) = 𝑐 ∙ (𝜑𝑗)𝑘
∙ (𝜑𝑟𝑒𝑓)𝑘

𝑇
 (3.87) 

At least the ratio between the previous expression is calculated (Eq. 3.88), producing a complex 

number which allows the calculation (in instrumented DOFs) of the components of the structural 

modes, corresponding to a frequency 𝜔𝑘, through the use of just two sensors. 

𝑇𝑗,𝑟𝑒𝑓 =
𝑆𝑦(𝜔𝑘)(𝑗,,𝑟𝑒𝑓)

𝑆𝑦(𝜔𝑘)(𝑟𝑒𝑓,𝑟𝑒𝑓)

=
(𝜑𝑗)𝑘

(𝜑𝑟𝑒𝑓)𝑘

 (3.88) 

Because of the complex nature of the cross-spectrum, it is possible to establish, from the value of the 

phase, if the i-th and ref-th move in the same or in the opposite direction, where the first condition 

manifests for phase equal to 0°, while the second for phase equal to 180°.   

3.2.1.2 Frequency Domain Decomposition method 

As already mentioned in the previous paragraphs, an identification process based on Peak Picking 

method can incur in some limitations: 

• difficulty in the detection of the spectrum peaks; 

• separation of closely spaced modes; 

• the estimation of the modal damping ratio with higher accuracy. 

In order to overcome these problems, in  a new method, called Frequency Domain Decomposition 

(FDD) [32,39], then improved in [16]. The method assimilated the concept of Modal Domain, 
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producing a strong improvement to other already effective techniques, proposed in the past for the 

analysis of dynamic behavior of structures subjected to environmental inputs  and the modal 

parameters extraction from FRF through Complex Mode Indication Function (CMIF) [40].  

The FDD method consists of a frequency domain non-parametric technique operating through the 

factorization of the output spectrum matrices constructed with the Welch method [41]welch and 

practically it identifies, for each frequency, the single contribution given by the vibration modes 

associated to the spectral amplitude for that given frequency. 

As already stated in the previous chapter regarding modal analysis, the general response 𝑦(𝑡) of an 

excited structure can be seen as the superposition of n vibration modes (each one with its mode shape 

𝜙𝑖), where 𝜂𝑖 designates the modal coordinate: 

𝑦(𝑡) = 𝜙1𝜂1(𝑡) + 𝜙2𝜂2(𝑡) + ⋯+ 𝜙𝑛𝜂𝑛(𝑡) = [Φ]{𝜂(𝑡)} (3.89) 

After computing the correlation function 𝑅𝜂𝜂(𝜏)  according to Eq. 3.90, in which it is expressed in its 

modal coordinate in time domain, the Spectral matrix 𝑆𝑦𝑦(𝜔) is calculated through the FFT of the 

response y(t) (Eq. 3.91):  

𝑅𝜂𝜂
+ (𝜏) = 𝐸[𝑞(𝑡 + 𝜏)]𝑞(𝑡)𝑇 = 𝐸[Φ𝜂(𝑡 + 𝜏)]𝜂(𝑡)𝑇Φ𝑇 = [Φ]𝛴𝜂𝜂

+ (𝑡)[Φ]𝑇 (3.90) 

𝑆𝑦𝑦(𝜔) = [Φ]𝑆𝜂𝜂(𝜔)[Φ]𝐻 (3.91) 

Thanks to the orthogonality property of the modal matrix Φ (and subsequentially of the mode shapes 

contained in it) and to the assumption of white noise excitation, the modal coordinates are 

uncorrelated and the power spectral density matrix 𝑆𝑦𝑦(𝜔) results diagonal, allowing the factorization 

through Singular Value Decomposition (SVD) [26,32].  

3.2.1.2.1 Singular Value Decomposition 

Singular Value Decomposition (SVD) is an algorithm allowing the decomposition of a generic matrix 

𝐴 ∈ ℂ𝑛×𝑚 (with n > m) as product of three matrices as follows: 

𝐴 = [𝑈][𝑆][𝑉]𝐻          𝑤𝑖𝑡ℎ    𝑆 = [
𝑆1

0
] (3.92) 

where: 

• 𝑈 ∈ ℂ𝑛×𝑛 and 𝑉 ∈ ℂ𝑚×𝑚 are matrices containing the right and left singular vectors of matrix 

A; in particular, the columns of U contain the eigenvectors of 𝐴𝑇𝐴, while in V are contained 

the eigenvectors od 𝐴𝐴𝑇; 
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• 𝑆 ∈ ℂ𝑛×𝑚 is a rectangular matrix, from where the diagonal matrix 𝑆1 ∈ ℂ𝑛×𝑛 can be 

extracted; into 𝑆1 non-null singular values, defining the rank of matrix A and so the number 

of linearly non-dependent rows and columns, are positioned in decreasing order. 

Standing the hypothesis posed in [39]: 

• excitation constitutes by white noise; 

• orthogonality between mode shapes; 

• lightly damping of the structure 

it is possible to apply FFD method starting from the estimation of the half positive spectral matrix 

(Eq. 3.93), based on the measured data; executing the SVD on the 𝑆𝑦𝑦
+ (𝜔) matrix, allows to 

decompose the spectral matrix as a combination of auto-spectral density functions, each one 

associated to an SDOF. Consequently, the first singular value ordinate is the auto-spectrum of the 

dominant mode for the considered frequency. The other SVs result negligible, and all the k dominant 

modes can be detected through the peak of the first SV.  

𝑆𝑦𝑦
+ (𝜔) = [𝑈(𝜔)] ∙ [𝑆𝑛] ∙ [𝑈(𝜔)] (3.93) 

In case of modes associated to well-separated frequencies, the most important auto-spectra segments 

will be located near the resonant frequencies, while the plots of other SVs will not show significant 

peaks. In case of near modes, instead, there will be more SVs presenting well visible peaks in 

proximity of the resonant frequencies. 

After definition of a natural frequency, the first singular vector 𝑢1, coming from matrix U, defines the 

mode shape of the dominant mode (Eq. 3.94), while it is possible to neglect the contributions given by 

other modes. 

𝜙̂ = 𝑢1 (3.94) 

3.2.1.3 Enhanced Frequency Domain Decomposition method 

Enhanced Frequency Domain Decomposition (EFDD) is an identification technique specially 

designed in order to surpass the limitation of FDD linked to the estimation of damping, proposed by 

[32,42]. Even if the main purpose of the method development was to increase the accuracy in damping 

ratio evaluation, also the confidence in natural frequency estimation improved, thanks to the definition 

of an interval frequency range where the frequency peaks associated to the first singular value results 

dominant. 
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Fig. 3-2 - Typical modal domains associated to structural modes [43]  

Once a resonant peak is detected, its modal domain is defined through the auto-spectral density of the 

correspondent SDOF system in the domain. Then Modal Assurance Criterion (MAC) [44,45] is 

adopted as index (Eq. 3.95) in order to evaluate the consistency of the singular vectors of the values 

around the peak and the mode shape of the resonant peak itself. 

𝑀𝐴𝐶 =
(𝜙1

𝑇 ∙ 𝜙2)
2

(𝜙1
𝑇 ∙ 𝜙1)(𝜙2

𝑇 ∙ 𝜙2)
 (3.95) 

The MAC index, which variates between 0 and 1, furnishes an evaluation of consistency between two 

mode shapes, where the value 0 indicates orthogonality between the tested mode shapes, while 1 

indicates perfect similarity between two mode shapes, which differ only for a scale factor.  

When MAC, calculated between the mode shape of the resonant peak and the other test vectors, is 

close to unity, all these tested points can be included into the modal domain. In order to not discard 

mode, having very high correspondence with the resonant mode shape but not equal to 1, a threshold 

of the MAC values should be fixed [32].  

After the modal domain definition, mode shape estimation is executed through averaging of the 

singular vector present into the domain. Applying the reverse FFT function to reconvert the selected 

given modes to time domain, allows to extract damping ratios from the auto-correlation functions 

calculated for a structure composed of a set of SDOF systems. 

In fact, the auto-correlation function of a SDOF system excited by white noise is proportional to its 

impulse response, defined as [24]: 

ℎ(𝑡) = 𝑐𝑒−𝜉𝑘∙𝜔𝑘∙𝑡 sin(𝜔𝑘𝑡) (3.96) 
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where c is a constant and 𝜉𝑘 and  𝜔𝑘 represent respectively the damping ratio and the circular 

frequency.  

3.2.2 Identification techniques implemented in the time domain 

After the description of the identification techniques developed in frequency domain, in the next 

paragraphs the most popular time domain identification technique will be presented: the Stochastic 

Subspace Identification (SSI) method [26,28,33]. Two algorithms, based on this method, will be 

analyzed, both operating under the assumption of discrete-time state-space representation: are 

parametric identification techniques developed in the time domain: the Covariance-driven SSI (SSI-

Cov), as described in [33] based on the construction of the correlation matrix, and the Data-driven SSI 

(SSI-Data) introduced in [28] based on the projection of the recorded response time series. 

3.2.2.1 Covariance-driven Stochastic Subspace Identification method 

The SSI-Cov method is a parametric technique, operating in time domain, which operates the dynamic 

identification adopting the state-space model to fit the behavior of the investigated structure, under the 

hypothesis of white noise excitation and linear time-invariant property of the representing system. 

This task is performed estimating the system matrix 𝐴, the output matrix 𝐶 and the model order 𝑛 

from the output responses [33], as also described in the practical application reported in [46]. 

Because the dynamic tests are quite often performed in “multi-setups” configuration, the responses on 

acquired for the instrumented DOFs are measured with different times. Moreover, some DOFs 

remains constant for the different acquisitions, and are the so-called reference channels (in number 

pair to l), while r other positions are variable. The choice of the reference sensors is very important 

and must be evaluated, before the installation, on the basis of the level of redundance of information 

provided by the sensors themselves: sensors located in positions which results symmetrical to the 

nodes of an expected mode tend to produce the same information in terms of frequencies and damping 

ratios to those extracted from sensors posed on the nodes of a mode; in these cases it is possible to not 

use these acquisition in the building of correlation matrices, in order to decrease the computational 

weight.  

So, during acquisitions, for each instant k, a column vector 𝑦𝑘
𝑟𝑒𝑓  of the accelerations registered for l 

reference DOFs, and a column vector 𝑦𝑘  of the responses for the r instrumented DOFs needs to be 

defined. Then it is possible to proceed with the definition of the covariance matrix of output 𝑦(𝑡): 

𝐸 [𝑦𝑘+𝑖 ∙ 𝑦𝑘
𝑟𝑒𝑓𝑇

] (3.97) 
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Eq. 3.98 display the Toeplitz matrix, which is composed of [𝑛0𝑖-by-𝑛𝑟𝑖] blocks, where 𝑛0 is the 

number of the selected outputs and 𝑛𝑟 corresponds to all channels:  

𝑇1|𝑖
𝑟𝑒𝑓

=

[
 
 
 
 𝑅𝑖

𝑟𝑒𝑓
𝑅𝑖 − 1

𝑟𝑒𝑓

𝑅𝑖+1
𝑟𝑒𝑓

𝑅𝑖
𝑟𝑒𝑓

⋯ 𝑅1
𝑟𝑒𝑓

⋯ 𝑅2
𝑟𝑒𝑓

⋮ ⋮

𝑅2𝑖 − 1
𝑟𝑒𝑓

𝑅2𝑖 − 2
𝑟𝑒𝑓

⋱ ⋮

⋯ 𝑅𝑖
𝑟𝑒𝑓

]
 
 
 
 

 (3.98) 

Each block is formed of the correlation functions, associated to positive time-lags whose values 

variate from 𝑙∆𝑡 to (2𝑖 −  𝑙)∆𝑡,  and represented by 𝑅1
𝑟𝑒𝑓  to 𝑅2𝑖 − 1

𝑟𝑒𝑓  . 

Through factorization, which can be executed recurring to the SVD algorithm (Eq. 3.99) 

𝑇𝑖 = 𝑈 ∙ 𝑆 ∙ 𝑉𝑇 = [𝑈1 𝑈2] ∙ [
𝑆1 0
0 0

] ∙ [
𝑉1

𝑇

𝑉2
𝑇] = 𝑈1 ∙ 𝑆1 ∙ 𝑉1

𝑇 (3.99) 

the Toeplitz matrix (Eq. 3.98) is written as: 

𝑇1|𝑖
𝑟𝑒𝑓

= [

𝐶𝐴𝑖 − 1𝐺𝑟𝑒𝑓 𝐶𝐴𝑖 − 2𝐺𝑟𝑒𝑓

𝐶𝐴𝑖𝐺𝑟𝑒𝑓 𝐶𝐴𝑖 − 1𝐺𝑟𝑒𝑓
⋯ 𝐶𝐴0𝐺𝑟𝑒𝑓

⋯ 𝐶𝐴1𝐺𝑟𝑒𝑓

⋮ ⋮
𝐶𝐴2𝑖 − 2𝐺𝑟𝑒𝑓 𝐶𝐴2𝑖 − 3𝐺𝑟𝑒𝑓

⋱ ⋮
⋯ 𝐶𝐴𝑖 − 1𝐺𝑟𝑒𝑓

] (3.100) 

but the single block alone is not sufficient to solve the identification problem. Due to the redundance 

of system 𝑇1|𝑖
𝑟𝑒𝑓 , but being the single block not enough for the resolution of the identification problem, 

the Toeplitz matrix is decomposed as follows: 

𝑇𝑖 = [

𝐶
𝐶 ∙ 𝐴
⋯

𝐶 ∙ 𝐴𝑖 − 1

] ∙ [𝐴𝑖 − 1 ∙ 𝐺𝑟𝑒𝑓 ⋯ 𝐴 ∙ 𝐺𝑟𝑒𝑓 𝐺𝑟𝑒𝑓] = 𝑂𝑖 ∙ 𝛤𝑖
𝑟𝑒𝑓  (3.101) 

in which: 

• 𝑂𝑖  is the observability matrix, formed by a column of i blocks with [𝑛0-by-𝑛𝑟] size; 

• 𝛤𝑖
𝑟𝑒𝑓  is the controllability matrix, composed by a row of i blocks with [𝑛0-by-𝑛𝑟] size. 

Comparison between Eq. 3.99 and Eq. 3.102 highlights the possibility to deduce the observability and 

the controllability matrices splitting the outputs of the SVD into two parts: 

𝑂𝑖 = 𝑈1 ∙ 𝑆1
1 2⁄  

(3.102) 
𝛤𝑖 = 𝑆1

1 2⁄
∙ 𝑉1

𝑇 
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The expressions of Eq. 3.102 leads to the extraction of matrix C, obtainable from the first 𝑛0 lines of 

the observability matrix 𝑂𝑖 , and matrix A, which derives from resolving the least squares problem 

expressed in Eq. 3.103, Eq. 3.104 and Eq. 3.105: 

[

𝐶
𝐶 ∙ 𝐴
⋯

𝐶 ∙ 𝐴𝑖 − 2

] ∙ 𝐴 = [

𝐶 ∙ 𝐴
𝐶 ∙ 𝐴2

⋯
𝐶 ∙ 𝐴𝑖 − 1

] ↔ 𝑂̅ ∙ 𝐴 = 𝑂 (3.103) 

𝐴 = [

𝐶
𝐶 ∙ 𝐴
⋯

𝐶 ∙ 𝐴𝑖 − 2

]

†

∙ [

𝐶 ∙ 𝐴
𝐶 ∙ 𝐴2

⋯
𝐶 ∙ 𝐴𝑖 − 1

] ↔ 𝐴 = 𝑂̅† ∙ 𝑂 (3.104) 

𝑤ℎ𝑒𝑟𝑒    𝑂̅ = [

𝐶
𝐶 ∙ 𝐴
⋯

𝐶 ∙ 𝐴𝑖 − 2

] , 𝑂 = [

𝐶 ∙ 𝐴
𝐶 ∙ 𝐴2

⋯
𝐶 ∙ 𝐴𝑖 − 1

] (3.105) 

Where: 

• 𝑂̅ contains the first 𝑙 ⋅ (𝑖 −  1) lines of 𝑂𝑖; 

• 𝑂 contains the last 𝑙 ⋅ (𝑖 −  1) lines of 𝑂𝑖;.  

• the symbol (•)†represents the Moore-Penrose pseudo-inverse operational function.  

Subsequently, the modal parameters can be extracted with easiness from matrices 𝐴 and 𝐶, performing 

the eigenvalue decomposition of the obtained system matrix 𝐴 (Eq. 3.106): 

𝜆𝑘 =
ln(𝜇𝑘)

∆𝑡
 →  𝑓𝑘 =

|𝜆𝑘|

2𝜋
;       𝜉𝑘 = −

𝑅𝑒(𝜆𝑘)

|𝜆𝑘|
 (3.106) 

In conclusion, the mode shapes 𝜙𝑘 are calculated as the product of matrix 𝐶 and the corresponding 

eigenvectors 𝜓𝑘 of the matrix 𝐴, as shown below: 

𝑉 = 𝐶𝛹 ↔  𝜙𝑘 = 𝐶𝜓𝑘 (3.107) 

Being the solutions of the state-space model represented by complex conjugate pairs, only the 

eigenvectors of matrix A associated to eigenvalues with positive imaginary components are chosen for 

mode shape extraction. Subsequentially, for a state-space model having model order equal to n, a 

maximum of 𝑛 2⁄  solutions are possible.  

The establishment of a correct model order for the state-space is a crucial step of the method. In fact, 

due the presence of residual values of singular values associated to higher modes, caused by 

inaccuracy in the measurement process or the manifestation of non-linear effects, and because the 

SVD of Toeplitz matrix does not allow to decide the model order a priori, the most used strategy 

consists in the building many models, with increasing model orders (where the maximum is chosen as 
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two times the number of expected physical modes) and extract the modal parameters from each model 

until arriving to the maximum order.  

The negative effect of this procedure stays in the fact that high model orders comport the possible 

estimation of modes with no physical meaning (called noise or spurious modes), because caused by 

the noise content in the acquisitions. To solve this problem, the common practice consists in recurring 

to a chart, where all the natural frequencies extracted from the various model for all the considered 

order are reported, in order to be compared: this plot is called stabilization diagram (Fig. 3-3). 

 
Fig. 3-3 - Example of stabilization diagram to differentiate between stable poles (blue points) and unstable poles 

(purple crosses) 

Inspection of this diagram allows to separate the stable modes, recognizable because of the alignment 

of the poles having consistent parameters, from the unstable ones. 

3.2.2.2 Data-driven Stochastic Subspace Identification method 

The second implementation of SSI method is the Data-driven Stochastic Subspace Identification (SSI-

Data) method [28,47], which is an algorithm implemented in two different commercial softwares: 

MACEC [48], a toolbox developed in Matlab© environment by University of Leuven, and ARTeMIS 

[49], a commercial program implemented by research group in the University of Aalborg. 
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SSI-Data method estimates the state-space model directly from the acquired accelerations time series, 

substituting the step in which the covariance matrix is built, with the projection of the row space of 

“future” outputs into the row space of “past” outputs, after its reorganization into the Hankel matrix. 

The algorithm assumes the application of the non-stationary Kalman Filter  and then develops 

following the next steps: 

1. organization of the collected responses into a Hankel matrix; 

2. estimation of the observability matrix in two consecutive time instants; 

3. extraction of the modal parameters after the definition of the system matrix 𝐴 and the output 

matrix 𝐶. 

3.2.2.2.1 Kalman filter 

The Kalman filter plays a fundamental role on the development of SSI-Data method, but, because of 

the complexity of the theory regarding this theme, it will be illustrated only examining the main 

concepts necessary for implementation of the time domain method.  

No steady Kalman filter is meant to provide an optimal estimation of the state vector 𝑥̂𝑘+1 applying 

the expressions of the Eq. 3.108 in an iterative way considering the observation of  the  outputs 

(matrix A and C), the statistical properties (G and 𝑅0) up  at  time instant  k,  the  initial  state  

estimate 𝑥̂0 = 0 and  the initial covariance of the state estimates 𝑃0 = 𝐸[𝑥̂𝑘𝑥̂𝑘
𝑇] = 0.         

𝑥̂𝑘+1 = 𝐴 ∙ 𝑥̂𝑘 + 𝐾𝑘 ∙ (𝑦𝑘  −  𝐶 ∙ 𝑥̂𝑘) 

(3.108) 𝐾𝑘 = (𝐺 −  𝐴 ∙ 𝑃𝑘 ∙ 𝐶𝑇) ∙ (𝑅0  −  𝐶 ∙ 𝑃𝑘 ∙ 𝐶𝑇)−1 

𝑃𝑘+1 = 𝐴 ∙ 𝑃 ∙ 𝐴𝑇 + (𝐺 −  𝐴 ∙ 𝑃𝑘 ∙ 𝐶𝑇) ∙ (𝑅0  −  𝐶 ∙ 𝑃𝑘 ∙ 𝐶𝑇)−1 ∙ (𝐺 −  𝐴 ∙ 𝑃𝑘 ∙ 𝐶𝑇)𝑇 

in which 𝐾 and 𝑃 are the Kalman filter gain matrix and the Kalman state covariance matrix, 

respectively [28,50,51]. 

The column of past outputs block-Hankel matrix 𝑌𝑝 can be analyzed simultaneously through a set of 

non-steady Kalman filters and the estimated state vectors can be organized into an archive. The past 

measured responses, contained into this bank, can be linearly combined and then used to construct 

Kalman filter state sequence 𝑋̂𝑖  [28,51]: 

𝑋̂𝑖 = (𝑥̂𝑖 𝑥̂𝑖+1 ⋯ 𝑥̂𝑖+𝑁+1)  ∈  𝑅𝑛𝑥𝑁   (3.109) 
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3.2.2.2.2 Factorization and Projection matrix 

Starting from the sensors configuration, it is possible to express the matrix 𝑦𝑘  with (𝑘 = 0,1… 𝑁,𝑁 →

∞) containing the discrete samples as follows: 

𝑦𝑘 = [𝑦𝑚
𝑛 ] = [

𝑦1
𝑛

𝑦2
𝑛

⋮
𝑦𝑙

𝑛

] =

[
 
 
 
𝑦1

0 𝑦1
1

𝑦2
0 𝑦2

1

⋯ 𝑦1
𝑁

⋯ 𝑦2
𝑁

⋮ ⋮
𝑦𝑙

0 𝑦𝑙
1

⋱ ⋮
⋯ 𝑦𝑙

𝑁]
 
 
 

 (3.110) 

After the data are organized as shown in Eq. 3.110, it is possible to build the block-Hankel matrix (𝐻), 

which is a matrix constant along its anti-diagonal elements, having size [2i-by-N]. In practical 

application, the i value is set as 𝑁 = 𝑗 − (2𝑖 −  1) (with j is the total number of collected points) so 

that all the available data can be used during the following projection phase.  

Indicating with l the number of available channels, Hankel matrix sizes are 2 ∙ 𝑖 ∙ 𝑙 ∙ 𝑁, and it is 

possible to subdivide it into two parts (Eq. 3.111): the past matrix (𝑌𝑝
𝑟𝑒𝑓

)  and the future matrix (𝑌𝑓). 

𝐻0|2𝑖 − 1 =
1

√𝑁 ∗

[
 
 
 
 
 
 
 

𝑦0

𝑦1

⋮
𝑦𝑖 − 1
𝑦𝑖

𝑦𝑖+1

⋮
𝑦2𝑖 − 1]

 
 
 
 
 
 
 

=
1

√𝑁 ∗

[
 
 
 
 
 
 
 

𝑦0 𝑦1

𝑦1 𝑦2

⋯ 𝑦𝑁 − 1

⋯ 𝑦𝑁

⋮ ⋮
𝑦𝑖 − 1 𝑦𝑖

⋱ ⋮
⋯ 𝑦𝑖+𝑁 − 2

𝑦𝑖 𝑦𝑖+1

𝑦𝑖+1 𝑦𝑖+2

⋯ 𝑦𝑖+𝑁 − 1

⋯ 𝑦𝑖+𝑁

⋮ ⋮
𝑦2𝑖 − 1 𝑦2𝑖

⋱ ⋮
⋯ 𝑦2𝑖+𝑁 − 2]

 
 
 
 
 
 
 

= [
𝑌0|𝑖 − 1

𝑌𝑖|2𝑖 − 1

] = [
𝑌𝑝

𝑌𝑓
] (3.111) 

The subscripts of 𝑌0|𝑖 − 1 and 𝑌𝑖|2𝑖 − 1 indicate the first and last block-element in the first column of the 

𝐻 matrix used to define the past and future matrices dimension. A second separation is operated 

neglecting the first block-row from the future matrix 𝑌0|2𝑖 − 1 and moving this block at the end of the 

past matrix 𝑌0|𝑖, as shown in Eq. 3.112 

𝐻0|2𝑖 − 1 =
1

√𝑁 ∗

[
 
 
 
 
 
 
 

𝑦0

𝑦1

⋮
𝑦𝑖

𝑦𝑖+1

𝑦𝑖+1

⋮
𝑦2𝑖 − 1]

 
 
 
 
 
 
 

=
1

√𝑁 ∗

[
 
 
 
 
 
 
 

𝑦0 𝑦1

𝑦1 𝑦2

⋯ 𝑦𝑁 − 1

⋯ 𝑦𝑁

⋮ ⋮
𝑦𝑖 𝑦𝑖+2

⋱ ⋮
⋯ 𝑦𝑖+𝑁 − 1

𝑦𝑖+1 𝑦𝑖+2

𝑦𝑖+2 𝑦𝑖+3

⋯ 𝑦𝑖+𝑁

⋯ 𝑦𝑖+𝑁+1

⋮ ⋮
𝑦2𝑖 − 1 𝑦2𝑖

⋱ ⋮
⋯ 𝑦2𝑖+𝑁 − 2]

 
 
 
 
 
 
 

= [
𝑌0|𝑖 

𝑌𝑖+1|2𝑖 − 1

] = [
𝑌𝑝

+

𝑌𝑓
−] (3.112) 

The system matrices for the state-space model can now be estimated. 

Following data organization, the projection, which make the information contained in the past matrix 

useful for future prediction, is so defined: 
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𝑃𝑖 = [
𝑌𝑖|2𝑖 − 1

𝑌0|𝑖 − 1

] =
𝑌𝑓

𝑌𝑝

= 𝑌𝑓𝑌𝑝
𝑇(𝑌𝑝𝑌𝑝

𝑇)
†
𝑌𝑝 (3.113) 

From Eq. 3.113 it is highlighted the function of removing uncorrelated noise, carried out, in a similar 

way, by projection and covariance. Moreover, the projection matrix can be also assimilated with the 

product of the extended observability matrix 𝑂𝑖  and the Kalman filter state sequence 𝑋̂𝑖. 

𝑃𝑖 = 𝑂𝑖 ∙ 𝑋̂𝑖 (3.114) 

Due to the difficulties in computation, in practical applications this step is numerically computed 

through QR-factorization of the 𝐻 matrix as described in [33], which shortly consists in decomposing 

the H matrix and compressing it (Eq. 3.116) into smaller triangular matrix R, containing the 

information about the system. 

𝐻0|2𝑖 − 1 = [
𝑌𝑝

𝑌𝑓
] = 𝑅 ∙ 𝑄𝑇 (3.115) 

  

𝐻0|2𝑖 − 1 =
𝑙 ↕
𝑙𝑖 ↕

𝑙(𝑖 −  1) ↕
(

𝑅11 0 0
𝑅21 𝑅22 0
𝑅31 𝑅32 𝑅33

) ∙    (

𝑄1
𝑇

𝑄2
𝑇

𝑄3
𝑇

)
↕ 𝑙
↕ 𝑙𝑖
↕ 𝑙(𝑖 −  1)

 

(3.116) 

    ↔
     𝑙𝑖

↔
𝑖

↔
𝑙(𝑖 −  1)

↔
𝑁

 

Substitution of Eq. 3.116 in Eq. 3.114 makes the projection matrix 𝑃𝑖  expressed as follows: 

𝑃𝑖 = (
𝑅21

𝑅31
)𝑄1

𝑇  (3.117) 

And subsequentially the Projection matrix 𝑃𝑖 − 1 is computed as: 

𝑃𝑖 − 1 = (𝑅31 𝑅32) (
𝑄1

𝑇

𝑄2
𝑇) (3.118) 

The projection matrices 𝑃𝑖  and 𝑃𝑖 − 1 once available decrease considerably the QR-Factorization 

computational cost, making the system matrices and the modal parameters easy to estimate.          

From [28], 𝑃𝑖can be factorized as: 

𝑃𝑖 = [

𝐶
𝐶 ∙ 𝐴

⋮
𝐶 ∙ 𝐴𝑖 − 1

] [𝑥̂𝑖 𝑥̂𝑖+1 ⋯ 𝑥̂𝑖+𝑁+1] = 𝑂𝑖 ∙ 𝑋̂𝑖 (3.119) 

where the SVD of 𝑃𝑖  matrix is: 
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𝑃𝑖 = 𝑈 ∙ 𝑆 ∙ 𝑉𝑇 = [𝑈1 𝑈2] ∙ [
𝑆1 0
0 0

] ∙ [
𝑉1

𝑇

𝑉2
𝑇] = 𝑈1 ∙ 𝑆1 ∙ 𝑉1

𝑇 (3.120) 

𝑃𝑖  matrix order results n, coming from the product of the n columns matrix 𝑂𝑖  by a n rows  matrix 𝑋̂𝑖, 

and so result the order of the problem and the dimensions of matrix A (being also n the number of 

different non-zero after decomposition of matrix 𝑃𝑖).  

Factorization of matrices 𝑂𝑖  and 𝑋̂𝑖 produces: 

𝑂𝑖 = 𝑈1 ∙ 𝑆1
1 2⁄  

(3.121) 
𝑋̇𝑖 = 𝑂𝑖

† ∙ 𝑃𝑖 

The definition of a new projection, moving down a block row from past matrix to the one of future 

outputs, is needed for the identification of matrices A and C (Eq. 3.122): 

𝑃𝑖 − 1 =
𝑌𝑓

−

𝑌𝑝
+

= 𝑂𝑖 − 1 ∙  𝑋̇𝑖+1 (3.122) 

And its decomposition gives: 

𝑃𝑖 − 1 = [

𝐶
𝐶 ∙ 𝐴

⋮
𝐶 ∙ 𝐴𝑖 − 2

] [𝑥̂𝑖 𝑥̂𝑖+1 ⋯ 𝑥̂𝑖+𝑁] = 𝑂𝑖 − 1 ∙ 𝑋̂𝑖+1 (3.123) 

From which the Kalman filter state sequence 𝑋̂𝑖+1 is obtained: 

𝑋̂𝑖+1 = 𝑂𝑖 − 1
† ∙ 𝑃𝑖 − 1 (3.124) 

From the computation of the successive sequences, only based on data, a system with more equations 

than unknown variables are obtained, where the system matrices can be extracted from, fixing the 

time instants to i and i+N-1: 

[
𝑋̂𝑖+1

𝑌𝑖|𝑖
] = [

𝐴
𝐶
] 𝑋̂𝑖 + [

𝑊𝑖

𝑉𝑖
] (3.125) 

where Y𝑖|𝑖 is a Hankel matrix with only one block row and W𝑖, V𝑖 can be treated as the residuals of an 

optimization problem. Since the Kalman state sequences and the outputs are known, and the residuals 

are uncorrelated with 𝑋̇𝑖, the set of equations can be solved for 𝐴 and 𝐶 in a least square sense: 

[
𝐴
𝐶
] = [

𝑋̂𝑖+1

𝑌𝑖|𝑖
] 𝑋̂𝑖

† (3.126) 

The identification problem is now theoretically solved, with the modal parameters which can be 

deduced following the procedure described for the SSI-Cov technique. 
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One last consideration can be appointed: in operative conditions, sometimes it is useful to introduce 

two weighting matrices 𝑊1 and 𝑊2 (Table 3-1) which are multiplied by the value of the data to be 

decomposed into singular values of the SSI-Data method (Eq. 3.127): 

𝑃̅𝑖 = 𝑊1 ∙ 𝑃𝑖 ∙ 𝑊2 (3.127) 

This weighting operation introduces a transformation of state vector coordinates which lead to 

identical identification results of the process.  

Table 3-1 - The variant weighting matrices in: PC - main component, CVA - canonical analysis 

Variation W1(il • il) W2(N • N) 

UPC 𝐼 𝐼 

PC 𝐼 𝑌𝑝
𝑇 ∙ (𝑌𝑝 ∙ 𝑌𝑝

𝑇)
−1 2⁄

∙ 𝑌𝑝
𝑇  

CVA (𝑌𝒇 ∙ 𝑌𝒇
𝑇)

−1 2⁄
 𝐼 
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4 Short-term monitoring and OMA 

identification for assess the health status of 

operative structures 
 

In the previous sections, the main concept regarding SHM and one of its most popular technique have 

been exposed. Into this chapter two practical cases, where dynamic monitoring and OMA 

identification techniques have been successfully applied for the assessment of health status of 

operative structures, will be presented, in order to show the potentiality and most of all the versatility 

of this methodology. The examined structures are respectively an arch bridge and the cover of an 

airport hangar, both realized in concrete. In the first case, the purpose of the activity was the 

evaluation of the capacities of the bridge after it was damaged due to a car accident. In the second 

case, the antenna supporting the hangar cover have been monitored to extract the modal parameters, 

describing their dynamic behavior, in order for these data to be compared with the ones relative to the 

experimentation of a new type of sensors, which are being tested on this structure.  

4.1 Identification procedure 

4.1.1 Data acquisition and pre-processing 

The monitoring activities have been executed through a sensor network was composed 21 monoaxial 

piezoelectric accelerometers characterized by a maximum measurement range of 8 g, a sensitivity of 

1000 mV/g and a bandwidth range from 0.8 to 100 Hz. The digitization process and synchronization 

of measurements was automated through 7 A/D converter with 24 bits of resolution, 120 dB of 

dynamic range and provided with anti-aliasing filter. Every registration had a duration between 30 to 

60 minutes, and data were collected with a sampling frequency of 1000 Hz.  

Once all the time histories have been acquired, the data are processed as follows: 

• Evaluation of the frequency content of the signals through FFT algorithm; 

• Application of 0.5Hz-100Hz bandpass filter in order to eliminate frequencies that are not of 

interest for the characterization of the building; 

• Elimination of time sequences with anomalous peaks; 
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• Data resampling, the frequency of which is reduced from 1000 Hz to 100 Hz (field in which 

the frequencies of interest for civil structures are usually found), with the application of a 

decimation factor of 10.  

In the subsequent phases of the dynamic identification the decimation process was repeated in order to 

identify the most significant modes for the analyzed structures. 

The data are then processed through an identification software capable of extracting the dynamic 

parameters of the structure, natural frequencies and modal shapes, making an estimate of the damping 

associated with the selected modes. 

4.1.2 Modal parameters extraction 

The identification software operates through the SSI (Stochastic Subspace Identification) algorithm in 

the time domain [33], estimating the Frequency Response Function (FRF) of the system from which 

the modal parameters are extracted. 

The procedure for selecting the real modes is based on the values of the modal parameters obtained 

for each order of the chosen model; it provides for the introduction of comparison parameters, of 

which an acceptance threshold value can be cautiously established. Three parameters are introduced, 

corresponding to the three modal parameters, namely frequency (f), modal form (φ) and damping ratio 

(ξ), to which a criterion for comparison of the modes is associated. 

𝛥𝑓 =
|𝑓1  −  𝑓2|

𝑓
< 1% (4.1) 

Δ𝜉 =
|𝜉1  −  𝜉2|

𝜉
< 5% (4.2) 

𝑀𝐴𝐶(𝜑1, 𝜑2) =
|𝜑1

𝑇 ∙ 𝜑2
∗|2

(𝜑1
𝑇 ∙ 𝜑1

∗)(𝜑2
𝑇 ∙ 𝜑2

∗)
> 95% (4.3) 

where the M.A.C. (Modal Assurance Criterion) allows you to compare the modal forms calculated at 

the different orders of the model. 

If all the selection criteria are exceeded, the pole is defined as stable. At each order of the model this 

estimate is made and, through the stabilization diagram, the structural modes are aligned, eliminating 

the purely numerical modes. 
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4.1.3 Mode shapes representation and validation 

For each of the examined structures, a modal model was created in order to schematically represent 

the structure in question. This model does not contain any information on materials and boundary 

conditions but allows to detect how each monitored point moves at each natural frequency. 

Each point is associated with information relating to the modulus and phase of each modal vector, in 

order to identify how the various sensors, move each other reciprocally (in phase or counterphase) 

In the plotting of the modal forms the following assumptions were made: 

• Rigid behavior in the plane of the various decks; 

• Modal forms referring only to the x and y axes (plane); 

• The points at the base of the building that were not monitored were assumed with zero 

displacement (wedged at the base). 

Validation of mode shapes was ascertained through M.A.C., in accordance with the expression of Eq. 

4.3. 

4.2 Modal Identification of the Arch Bridge on Garigliano 

River after damage of its strays 

4.2.1 Description of the case study 

The structure object of the dynamic experimentation is an arched bridge (Fig. 4-1) with an inferior 

road built in Minturno on the Garigliano river km 156-250 S.S. 7 "Via Appia". The bridge is made of 

reinforced concrete. and it is composed of a central span with span of about 50.85 m, and two shore 

spans, with spans of about 12m, for a total length of about 75m; the width of the deck is about 9 m. 
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Fig. 4-1 - Arch Bridge on Garigliano River 

The convention adopted for naming the stays is shown in Fig. 4-2. By convention, the words "Right 

Arch" are adopted for the arch where the damaged forestay is located, and "Left Arch" for the other. 

 

Fig. 4-2 - Denomination of stays 

4.2.2 Sensors layout and photographic documentation 

The first part of the monitoring activity has been focused on the evaluation of the global behavior of 

the bridge. The test was carried out by varying the position of the sensors as indicated in Fig. 4-3÷Fig. 

4-5, and finally made synchronous in order to maximize the information obtained. In particular, the 

synchronization is made possible through three sensors always left in the same positions during the 



55 
 

various tests, such as Nr. 15, Nr. 18, Nr. 43. 

 
Fig. 4-3 - First sensors layout 

 
Fig. 4-4 - Second sensors layout 

 
Fig. 4-5 - Third sensors layout 
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Then the dynamic behavior of the single stays has been investigated, positioning an orthogonal triad 

of sensors on each of the stays and acquiring vibration data. The orientation of the sensors that form 

the measurement triad is shown, as a function of the inclination of the stays (Fig. 4-6). 

 
Fig. 4-6 - Orientation of the sensors placed on the stays 

4.2.3 Identification process 

4.2.3.1 Preliminary evaluation of the frequency contents of signals 

The frequency contents of the signals, extrapolated through the FFT algorithm are shown below (Fig. 

4-7÷Fig. 4-9): 

 
Fig. 4-7 - FFT of the signals of the first acquisition  
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Fig. 4-8 - FFT of the signals of the second acquisition  

 
Fig. 4-9 - FFT of the signal of the third acquisition 
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From these elaborations it is possible to notice that the predominant frequencies, for the global 

structure, are located  in the 0-20 Hz range, which is the interval where the analysis focus. 

4.2.3.2 Identification of Frequencies and Damping ratios  

The first part of the analysis is focused on the identification of the modal parameters describing the 

global structural behavior of the bridge. By applying the previously described identification algorithm 

(SSI) over the acquisitions acquired for the schemes of Fig. 4-7÷Fig. 4-9, the following stabilization 

diagram is obtained (Fig. 4-10). 

 
Fig. 4-10 - Stabilization diagram - sample rate 50 Hz 

Table 4-1 shows the main natural frequencies identified while Fig. 4-11Errore. L'origine 

riferimento non è stata trovata. shows the complexity plot of the estimated frequencies. 

Table 4-1 - Main experimental frequencies of the bridge and related modal dampings 

Frequency 

[Hz] 

Damping 

[%] 

3.689 2.106 

4.909 1.905 

5.641 1.293 

10.760 1.894 
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12.428 0.983 

22.774 1.598 

 

 

 
Fig. 4-11 - Complexity plot of the estimated modes 
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4.2.3.3 Mode shapes representation and validation 

The modal model that schematically represents the structure is shown in Fig. 4-12: 

 

Fig. 4-12 - Experimental model indicating the measurement positions 

By overlapping the results, obtained by applying the analysis techniques described in Section 4.1.3  to 

the acquired data, it was possible to identify mode shapes illustrated in Fig. 4-14, whose validation is 

assured by the results shown into the AUTOMAC diagram (Fig. 4-13). This matrix, correlating the 

obtained mode shapes with themselves, confirms their consistency modes and the decoupling of 

resulting modes, as it is evident looking at the low values of the terms outside the principal diagonal 

of the matrix. 

 
Fig. 4-13 - AUTOMAC of the estimated frequencies 
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Fig. 4-14 - Mode shapes 

The visualization of the mode shapes, as expectable, highlights a predominance of the vertical flexural 

behavior, as it is possible to observe for the first five modes, while, for modes linked to frequencies 

higher than 20 Hz a transversal displacement component starts to manifest. 
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4.2.4 Dynamic identification of the stays  

The second part of the analysis focused on the evaluation of the single stays state, with Table 4-2 

which shows the frequencies relating to the first modes of vibration of the stays, obtained through the 

dynamic identification techniques illustrated in the previous paragraphs. The numbering is that 

indicated in Fig. 4-2. 

Table 4-2 - Frequencies identified for the various stays 

Stay Mode f [Hz] ξ [%] Complexity [%] 

01 
1 60.626 0.544 0.884 

2 63.505 0.636 0.656 

02 
1 16.445 0.693 0.033 

2 17.105 0.445 0.282 

03 
1 14.346 1.631 0.000 

2 35.962 0.893 0.000 

04 DAMAGED 

05 
1 6.445 1.674 0.686 

2 28.944 0.164 0.241 

06 
1 8.305 0.213 0.781 

2 20.566 0.277 0.036 

07 
1 30.622 0.493 3.703 

2 48.731 0.427 1.398 

08 
1 6.851 0.933 0.029 

2 31.222 3.069 1.194 

09 
1 49.314 3.320 0.000 

2 66.718 1.182 0.000 

10 
1 6.541 2.200 0.363 

2 16.138 0.404 0.004 

11 
1 9.162 2.441 0.000 

2 22.273 1.284 0.000 

12 
1 7.668 1.645 0.000 

2 20.324 0.878 0.000 
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13 
1 9.191 1.505 0.366 

2 16.136 1.067 0.003 

14 
1 14.903 1.267 0.001 

2 16.776 3.526 0.112 

15 
1 15.598 6.193 0.006 

2 16.932 1.593 0.013 

16 
1 9.907 8.987 0 

2 15.893 2.899 0.008 

17 
1 15.962 1.665 0.465 

2 18.576 3.288 0.010 

18 
1 14.195 0.935 4.721 

2 15.912 2.081 0.023 

19 
1 8.012 1.744 2.711 

2 38.865 0.628 0.104 

20 
1 49.351 3.554 0.000 

2 66.910 0.839 0.000 

21 
1 6.411 2.925 0.104 

2 16.785 0.286 0.000 

22 
1 6.719 3.291 0.669 

2 30.757 0.453 0.000 

23 
1 6.403 1.584 1.549 

2 16.084 0.287 0.256 

24 
1 6.445 1.674 0.686 

2 15.364 0.892 0.254 

25 
1 8.746 0.494 1.113 

2 20.870 0.188 0.052 

26 
1 13.98 1.295 0.015 

2 38.558 0.729 0.123 

27 
1 15.119 0.421 3.309 

2 15.491 0.402 0 

28 1 59.099 0.400 9.824 
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2 60.676 0.402 0.016 

A part for some cases,  a certain correspondence is observable in the frequencies values associated to 

the symmetrical stays,  with values of frequencies which tend to decrease with the increment of stays 

length.  

The mode shapes, instead, are all of the flexural type, perpendicular to the direction of development of 

the forestay. 

4.3 Modal Identification of Hangar Morandi Cover 

4.3.1 Description of the case study 

 
Fig. 4-15 - Morandi Hangar Nr.3 in Fiumicino Airport 

The structure that is the subject of the dynamic experimentation is the roof of the 3 Hangar of 

Fiumicino Airport, designed by the engineer Riccardo Morandi (Fig. 4-15Errore. L'origine 

riferimento non è stata trovata.). It is a roof with dimensions of approximately 200m x 85m, made 

with reinforced concrete beams. with curvilinear development. From the extrados of the latter stand 

out, for a height of about 15 m, 37 reinforced concrete antennas, which act as a support for the roof, to 

which they are connected by three stays made in cap. The antennas are connected in pairs by means of 

a beam at the top, with the exception of the trio of antennas on the left of the diagram shown in Fig. 

4-16. The diagram highlights the monitored antennas. In this report the antennas are identified, with 

convention starting from the right side, with a number from 01 to 37, while the stays are indicated 
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with a letter. 

 
Fig. 4-16 - Naming of the elements and layout of the systems monitored on 26.06.2020 (in red) and on 23.07.2020 

(in blue) 

4.3.2 Sensors layout and photographic documentation  

4.3.2.1 Monitoring campaign on 26.06.2020 

The test was carried out by positioning the sensors as indicated in Fig. 4-17 and Fig. 4-18, and 

subsequently synchronizing the acquired time histories, in order to maximize the information 

obtained. In particular, the synchronization is made possible through some sensors always left in the 

same positions during the various tests, such as those connected to the control units C15, C16, C17 

and C43. Some images of the sensor installation are shown in and. 

In the case of the first scheme, shown in Fig. 4-17, the sensors were positioned at the head of Antenna 

10 and at the base of the individual stays, at a variable altitude between 0.85 and 1.30 m. 
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Fig. 4-17 - First sensors layout for 26.06.2020 monitoring 

In the second diagram, illustrated in Fig. 4-18,only the portion of the structure connected to the 

Antenna 10 has been considered, but placing a triad of sensors at the base of this, at an altitude of 

about 1.00 m. 
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Fig. 4-18 - Second sensors layout for 26.06.2020 monitoring  

4.3.2.2 Monitoring campaign on 23.07.2020 

The test was carried out by positioning the sensors as indicated in (Fig. 4-19÷Fig. 4-22), and 

subsequently synchronizing the acquired time histories, so as to maximize the information obtained. 

In particular, the synchronization is made possible through some sensors always left in the same 

positions during the various tests.  

In the case of the first scheme, shown in Fig. 4-19Errore. L'origine riferimento non è stata 

trovata., the sensors were positioned at the head of Antenna 28 and at the base of the individual stays, 

at a variable altitude between 0.85 and 1.30 m. 
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Fig. 4-19 - First Sensors Layout for 23.07.2020 monitoring 

In the second diagram, illustrated in Fig. 4-20, the triad of sensors connected to the C43 control unit 

has been moved near the base of Antenna 27, at an altitude of about 1.00 m, so as to deepen the study 

of this antenna, and to have more knowledge of its interaction with the Antenna 28, to which it is 

connected. 
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Fig. 4-20 - Second sensors layout for 23.07.2020 monitoring  

The third diagram, in Fig. 4-21, provided for the installation of the C43 control unit and the sensors 

connected to it at the base of the Antenna 28, again at an altitude of about 1.00 m.  
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Fig. 4-21 - Third sensors layout for 23.07.2020 monitoring 

The last sensor layout, shown in Fig. 4-22Errore. L'origine riferimento non è stata trovata., had 

the purpose of evaluating the behavior in the transverse direction of the Antenna 28 and its interaction 

with adjacent structures. The triads of accelerometers connected to the control units C17, C18 and 

C19 were then installed at the feet of Antennas 28, 29 and 30, again at an altitude of about 1.00 m. 

The other sensors were instead fixed on the stays connected to Antenna 28.  
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Fig. 4-22 - Fourth sensors layout for 23.07.2020 monitoring 
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4.3.3 Identification process 

4.3.3.1 Preliminary evaluation of the frequency contents of signals acquired on 

26.06.2020 

The frequency contents of the signals registered during the first day of the monitoring campaign, 

extrapolated through the FFT algorithm are shown below Fig. 4-23 and Fig. 4-24: 

 
Fig. 4-23 - FFT of the signals of the first acquisition on 26.06.2020 
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Fig. 4-24 - FFT of the signals of the second acquisition on 26.06.2020 

As it possible to see, even in this case, as it is expectable, the frequencies of interest are located in the 

frequency range between 0 and 20 Hz, which is the one where the investigation have been focused.  

4.3.3.2 Preliminary evaluation of the frequency contents of signals acquired on 

23.07.2020 

The frequency contents of the signals registered during the second day of the monitoring campaign, 

extrapolated through the FFT algorithm are shown below (Fig. 4-25÷Fig. 4-28): 
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Fig. 4-25 - FFT of the signals of the first acquisition on 23.07.2020 

 
Fig. 4-26 - FFT of the signals of the second acquisition on 23.07.2020 
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Fig. 4-27 - FFT of the signals of the third acquisition on 23.07.2020 

 
Fig. 4-28 - FFT of the signals of the fourth acquisition on 23.07.2020 
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Also the antennas numbered from 27 to 30 shows a behavior similar to that found for the structure 

monitored on the first day. Even in this case the most interesting peaks are concentrated in the range 

between 0 and 20 Hz.  

4.3.4 Identification of Frequencies and Damping ratios through 

Analysis of Data Acquired on 26.06.2020 

By applying the previously described identification algorithm (SSI), the following stabilization diagram 

is obtained (Fig. 4-29): 

  
Fig. 4-29 - Stabilization diagram - sample rate 6.25 Hz 

Table 4-3 shows the main natural frequencies identified while Fig. 4-30 shows the complexity plot of 

the estimated frequencies. 

Table 4-3 - Main experimental frequencies of Antennas 09 and 10 and related modal dampings 

Frequency 

[Hz] 

Damping 

[%] 
Mode Shape 

1.894 0.622 Translational X 

2.784 0.485 Flexural Z 

4.685 0.304 Translational X + Flexural Z 
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Fig. 4-30 - Complexity plot of the estimated modes 

4.3.4.1 Mode shapes representation and validation 

The experimental model (EM) elaborated for Antennas 09 and 10 and the stays connected to them, 

that schematically represents the structure, highlighting the positions of the monitored nodes is shown 

in Fig. 4-31. 

 
Fig. 4-31 - Experimental model indicating the measurement positions of 26.06.2020: sensor diagram n.1 (a) 

sensor diagram n.2 (b) 

Through the application of SSI to the overlapped results, following the procedure described 

previously, it was possible to identify the following mode shapes, associated to the modal parameters 

reported in Table 4-3 (Fig. 4-32): 
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Fig. 4-32 - Mode shapes 

The AUTOMAC diagram (Fig. 4-33) correlating the mode shapes with themselves, proves the validity 

of the extrapolated results. 

 
Fig. 4-33 - AUTOMAC of the estimated frequencies 

4.3.5 Dynamic identification of the stays monitored on 26.06.2020 

Table 4-4 shows the frequencies relating to the first proper way of vibrating the stays, obtained 

through the dynamic identification techniques illustrated in the previous paragraphs. The results of the 

stays are juxtaposed with each other, so as to highlight the similarity of the results. 
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Table 4-4 - Frequencies identified for the various stays connected to Antennas 09 and 10 

Stay 

Antenna 09 Antenna 10 

Frequency Damping Complexity Frequency Damping Complexity 

[Hz] [%] [%] [Hz] [%] [%] 

A 3.208 0.914 0.683 3.306 0.679 0.371 

B 1.762 3.03 1.542 1.814 1.089 0.211 

C 1.119 3.476 2.47 1.083 1.972 0.042 

The mode shapes associated with these frequencies were found to be of the flexural type, while, by 

passing to the analysis of modes higher than the first, coupling with a transverse component of the 

motion is observed. 

4.3.6 Identification of Frequencies and Damping ratios through 

Analysis of Data Acquired on 23.07.2020 

By applying the previously described identification algorithm (SSI), the following stabilization 

diagram is obtained (Fig. 4-34) for data acquired over Antennas from Nr. 27 to Nr. 30. 

 
Fig. 4-34 - Stabilization diagram - sample rate 6.25 Hz 

Table 4-5 shows the main natural frequencies identified while Fig. 4-35 shows the complexity plot of 

the estimated frequencies. 
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Table 4-5 - Main experimental frequencies of the bridge and related modal dampings 

Frequency 

[Hz] 

Damping 

[%] 
Mode shape 

1.897 0.368 Translational X 

2.690 0.580 Flexural Z 

4.584 0.399 Translational X + Flexural Z 

 

Looking at the values of extracted modal parameters, and making a comparison with the results of the 

first part of the monitoring campaign, the similarity of the results is clear, with modal frequencies 

values, whose variation in respect to those found for Antennas Nr. 09 and Nr. 10, are practically null. 

 

 
Fig. 4-35 - Complexity plots of the estimated modes 
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4.3.6.1 Mode shapes representation and validation 

Fig. 4-36 illustrates the EM of the structure, where the colored points represents the positions where 

the sensors have been fixed. 

 
Fig. 4-36 - Experimental model indicating the measurement positions of 23.07.2020: sensor diagram n.1 (a) 

sensor diagram n.2 (b) sensor diagram n.3 (c) sensor diagram n.4 (d) 

By overlapping the results, obtained by applying the analysis techniques described above to the 

acquired data, it was possible to identify the following mode shapes (Fig. 4-37) : 
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Fig. 4-37 - Mode shapes 

Finally, the AUTOMAC diagram is shown (Fig. 4-38), which correlates the modal forms obtained 

with themselves, assuring the consistency of results. 

 
Fig. 4-38 - AUTOMAC of the estimated frequencies 

Even in this case, a comparison between the dynamic behaviors of the two analyzed systems shows 

strong similarities, with the principal components of displacements for the first two modes which are 

practically the same. 
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4.3.7 Dynamic identification of the stays monitored on 23.07.2020 

Table 4-6 shows the frequencies relating to the first proper way of vibrating the stays, obtained 

through the dynamic identification techniques illustrated in the previous paragraphs. The results of the 

stays are juxtaposed with each other, so as to highlight the similarity of the results. 

Table 4-6 - Frequencies identified for the various stays 

Stays 

Antenna 27 Antenna 28 

Frequency Damping Complexity Frequency Damping Complexity 

[Hz] [%] [%] [Hz] [%] [%] 

A 3.335 1.711 0.141 3.290 0.956 0.485 

B 1.798 2.747 0.470 1.779 1.818 0.071 

C 1.079 4.609 0.571 1.042 6.647 0.388 

Even for the stays of this second system of stays, the mode shapes associated with these frequencies 

were found to be of the flexural type, with the manifestation, when passing to the analysis of higher 

modes, of a transversal component of motion. 
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5 OMA Identification for Model Updating of 

Finite Elements models of historical buildings 
 

Another field where OMA techniques result particularly effective is that of historical masonry 

structure, where, thanks to the reduced dimension of the instrumentation, economy and low impact on 

the artistical heritage, this methodology find always major application. In particular it will be 

examined one of the most proficient function of this method, which consists in the optimization of 

Finite Elements models of this building, through a process of calibration of the materials parameters 

for matching the dynamic characteristics extracted from vibrational data. Thanks to this model 

updating process it is possible to tune FE models so that the analysis provides more accurate results 

useful for the preservation of the Cultural Heritage (CH).  

Two are the presented case studies: the first one is about the calibration of parameters of four bell 

towers damaged by earthquake, for whom the model updating was done manually [52]; the second 

case proposes an innovative procedure of model updating, also applied to a tower, automated through 

the use of Genetic Algorithm (GA) [53].   
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5.1 Manual calibration approach: the case study of four 

bell towers in Ferrara (FE) province, struck by Emilia 

Earthquake in 2016 

 
Fig. 5-1 - Towers location - Ferrara Province 

The short-time AVT methodology is applied in order to carry out the dynamic identification of four 

masonry bell towers. To highlight dynamic parameters the acquired time histories were studied both 

in time and in frequency domains, with the aim to compare the two methodologies. The obtained 

parameters were then used to update the NMs of each tower. As other authors did [14,54,55], the 

process of model updating was conducted focusing on the modification of some uncertain materials’ 

parameters, in particular Young’s Modulus, in order to have a match of the first natural frequencies 

and mode shapes between FEMs and OMA. The towers studied are situated in the northern part of 

Italy in the Emilia-Romagna region, precisely in Ferrara province (Fig. 5-1), and they are: 

• San Giorgio Cathedral Belfry in Ferrara; 

• San Benedetto Church Belfry in Ferrara; 

• Matildea Tower of the Santa Maria church in Bondeno; 

• Pomposa Abbey Belfry in Codigoro. 
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5.1.1 Geometrical and historical description of the case studies 

5.1.1.1 San Giorgio Cathedral Belfry 

The first presented bell tower rises in front of the Trento-Trieste square in the old town of Ferrara, on 

the south side of the cathedral. The cathedral dates back to the early XII century, while the actual 

belfry’s building process started only in 1412 under the government of Nicolò III d’Este, after that 

seismic event of 1495 and 1570 damaged the old two little towers that stood on the sides of the 

presbytery. The structure was erected between 1412 and 1844 but, due to economic matters, the 

construction was never completed, so it still lacks the initially designed cuspid on the roof. During the 

years the structure experienced different changes, considering that it was born as isolate tower but in 

1703 at the behest of Papa Clemente XI a choir was built beside it and a series of horizontal passages 

were realized on the vertical walls. However, the bell tower returned to be isolated in 1944, after a 

bombing during the II Word-war that struck down the choir. The tower has a square plan of 11.70 m 

sides and a maximum height of 50.78 m. By observing the structure, we can notice four overlapping 

modules (nuts) whose sides length, constant from the bottom to the top, is approximately 11.7 m. The 

modules are separated by majestic trabeations, supported by enormous corner columns. The 

intermediate floors of the two first modules are in wooden, while the others are made by masonry 

cross vaults, except for the 6th, which has a masonry barrel vault. The cover floor is a not accessible 

wooden pavilion. The walls are 1.2 m thick, constituted by bricks clamped following the state of the 

art, with aligned horizontal courses made with good quality mortar. The bricks are covered with rose 

and white limestone. The thickness remains constant for all the vertical development of the belfry. In 

all the modules, on the southern side of the tower we can notice arc openings (two for each floor). The 

arcs are supported by circular columns with diameters varying between 0.75 and 0.9 m. The same 

architectural order is present on the other sides but without any openings. Only the last module has a 

different style, with wider arc openings located on every side of the bell cell. On the west side of the 

tower, there are remains of the old choir of the church (Fig. 5-2). As many of the towers in Ferrara, 

this one is not in perfect balance since it is inclined of 2° in East-West direction and 0.5° in North-

South direction; the inclination is mainly caused by the sandy soil where the city rises up. 
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Fig. 5-2 - Geometrical configuration of San Giorgio church belfry in Ferrara 

5.1.1.2 San Benedetto Belfry 

The isolated belfry of San Benedetto Church arises in the homonymous Square in Ferrara, and it is 

located on the North-East side of the Church, whose construction started in 1496 thanks to Ercole I 

d’Este and Andria Bishop after that Benedictine monks abandoned Pomposa Abbey because of a 

malaria epidemy. The belfry was built starting from 1621, based on the design proposed by Giovanni 

Battista Aleotti, and was concluded in 1646. During World War II, the church was destroyed but the 

tower remained unscathed. During the years the bell tower was damaged by a series of storms, the 

most serious one occurred in 1842 provoking the collapse of the upper part. The structure was also 

damaged by the seismic events of 2012 that lead to the opening of numerous vertical cracks in both 

North and South walls.  

The tower is 52.45 m tall and presents a squared cross-section plan (7.33 x 7.33 m), which remains 

constant till the last floor (where the second bell cell is located), where the section decreases to the 

size of 5.7 x 5.7 m. Even though the outer perimeter remains constant up to the second floor, the walls 

taper on the inside from 1.40m to 0.88m, while the last floor they consist of 0.45m. There are only 

two masonry cross vault slabs inside the tower, respectively to 32.37m and 39.7m, connected by a 

steel stair (Fig. 5-3). 
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The walls are made of solid and regularly disposed bricks, and with an effective joint offset. Like the 

one  previously described, this tower also has an evident inclination [56], due to the development of 

foundation’ settlement right after the start of the construction works. The building is tilted by 0.5° 

along North-South direction and 3.07° along East-West direction, which leads to a displacement of the 

top of the tower of 0.49 m in the North-South direction and 2.82 m in the East-West one. The 

inclination increased after the 2012 Emilia earthquakes, as reported by the study of [57] that identified 

an increase of the upper displacement of 18mm. After the 2012 earthquake a series of steel chains 

were installed at different levels to secure the structure and the foundation was reinforced using 

micro-plies to prevent a further increase of the inclination.    

 
Fig. 5-3 - Geometrical configuration of San Benedetto church tower in Ferrara 

5.1.1.3 Matildea Tower 

Matildea belfry arises on the side of Maria Vergine Church, which is the main religious building in 

the city of Bondeno. The church was built in 1114 thanks to a donation made by Matilde of Canossa. 
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The tower’s building process started around the XII century and was concluded at the beginning of the 

XV century. At the beginning the tower was composed by only two floors (with a height of 12 m) and 

it was not meant to be a belfry, but it had the aim both to sight and to defend. Two other floors were 

added later thus the tower reached a height of 30 m becoming a belfry. This development is also 

testified by the last-gothic style of the bell cell, typical of the latest part of the XIV century. The 

structure of the tower has a squared cross-section that is constant up to the last floor, with sides of 7.2 

m long and a maximum height of 30 m. On the north and east sides, the tower is linked to the church 

by thin walls. For what concerns the floors constructive typology, there are cross masonry floors on 

the first two levels, made with solid bricks, while in the third and the fourth levels the floors are made 

of wood with orthogonal warping. The cover floor is formed by visible wooden trusses. The walls of 

the tower are made of solid bricks, with a double case structure that accommodates the stairs in its 

middle. The external thickness is around 1.05 m for the first three floors, while it decreases to 0.9 m in 

the remaining three. For the inner part of masonry, the thickness is constant and equal to 0.45 m. The 

bell cell, that is free of bells, is characterized, on every side, by ogival arcs that encase three-light 

windows with pointed arches. The ogival arches are supported by little columns, surmounted by oculi 

(Fig. 5-4). 

 
Fig. 5-4 - Geometry configuration of Matildea tower in Bondeno 
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5.1.1.4 Pomposa Abbey Belfry 

This tower is part of the complex of the Benedictine monastery of Pomposa, located in the 

municipality of Codigoro, and it is a typical example of Romanic architecture. The abbey was built on 

the remains of a little church of which the construction year is unknown, even though the first traces 

of its presence date back to IX century, while the bell tower was built-in only 1063 by architect 

Deusdedit. The belfry did not undergo through many modifications through the years: the first 

restoration work dates in 1879, when it was necessary to reconstruct the roof cone because of its 

failing caused by a lightning bolt; in this occasion the walls were also reinforced through the 

application of steel chains, posed at floors’ levels. During the last years a foundation settlement 

caused the inclination of the building due to the weight of the structure (around 1800 tons).  

The belfry is 48 m tall, with a squared cross-section, whose sizes at the base are 7.60 x 7.60 m 

degressive with the height. The structure is composed by nine modules, surmounted by a conical 

shape cover of 11.69 m in height and 6.35 m in diameter.  The building lands on a truncated pyramid 

base composed of marmoreal elements.  The external walls are made of red and yellow solid bricks, 

with some fragments of marmoreal parts. Its thickness varies from 1.34 m to 0.59 m. Openings of 

different shapes are presents on the facades, their size and the number increasing up to the top in order 

to decrease the weight of the structure. The floors are made of wood with orthogonal warping at all 

levels, except for the bell cell floor where a concrete ceiling is present. The levels are connected 

through wooden stairs, and the tower is connected at its base to the monastery by thin walls (Fig. 

5-5Errore. L'origine riferimento non è stata trovata.). 
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Fig. 5-5 - Geometry configuration of Pomposa abbey tower in Codigoro 

5.1.2 Ambient vibration testing 

This type of structures, along with all the historical masonry buildings, is usually studied by applying 

linear and nonlinear analysis on FEMs, since Numerical Models (NMs) give the chance to operate 

significant simplifications on historical structures due to the impossibility to clearly identify the 

spandrels and piers for their irregular geometry [11]. In most cases, FEMs seemed to be able to 

reproduce the real behavior but to be sure on the accuracy of the results all the parameters as the 

properties of materials and each connection between the elements should be known. During the last 

few years, the most common technique used to overcome these issues is the AVT, which consists of 

the monitoring of vibrations of the buildings under ambiental noises as wind, traffic etc., in order to 

identify the real dynamic behavior. The monitoring is performed by using accelerometers placed on 

the most relevant positions of the structure that are probably most involved by the motion. After 

recording and filtering the data, the results are processed and then used to produce an Experimental 
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Model (EM). The EM response is compared with the preliminary response of the NM, which is then 

refined, by focusing on the unclear parameters, in order to fit the experimental results. In this section 

each phase is shown starting by the monitoring campaign, passing through the analysis of the data and 

to finish with the construction and calibration of the NMs. 

5.1.2.1 Acceleration sensors layout and data acquisition settings 

The sensors network used in the survey campaign was composed of 8 uniaxial accelerometers, with a 

sensitivity of 1V/g and a measurement range of 8g, connected to two 4-channels modules NI9132 

AC/DC with a 24-bit resolution, 102dB dynamic range and anti-aliasing filter related to a multi-

channel data acquisition system CompacDAQ-9132.  

The configuration was set in the most favorable way to detect the translational and torsional 

components of displacements of the towers [19]. With this aim, the sensors were positioned to the 

corners or close to them, depending on the accessibility of the areas. To acquire the largest number of 

measurements with only a few accelerometers, different acquisitions were carried out by keeping 

some sensors fixed in the highest reachable position for the towers and modifying the positions of 

other sensors at each acquisition. The accelerometers were fixed with bi-component resin to make 

sure they were properly connected to the structure, and to prevent damages on the building. The 

different sensors layout is shown in Fig. 5-6. 
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Fig. 5-6 - Wired accelerometric sensors schemes 

The registration time for vibrations varied from 20 min to over 1 h, in order to respect Rodriguez 

condition [58] which imposes an acquisition duration of at least 2000 times the expected period for 

the structure, so capturing was long enough to eliminate the influence of possible non-stochastic 

excitations that may occur during the tests. Raw data were originally acquired with a sample rate of 

1000 Hz.  

5.1.2.2 AVT Data processing  

The data were elaborated to obtain the dynamic characteristics. The first operation was to clean the 

data by all the noise applying a low pass filter. Then, in order to decrease the computational time, raw 

data were re-sampled through a decimation, before the real signal processing, obtaining the final range 

of 0 – 6.25 Hz, consistent with the frequencies range of the analyzed structures. 

Different algorithms are suitable to process the data; in this work the identification of the frequencies 

of the four belfries was conducted through two different methods, the Enhanced Frequency Domain 
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Decomposition (EFDD) and the Stochastic Subspace Identification (SSI), in order to compare the 

results [59].  

In the application of both the methods, we realized that the ideal condition in the definition of a mode 

is that the eigenvector that describes the mode shape is composed of all real values: satisfying this 

condition  means that for every vibration cycle, being the phase equal to 0° or 180°, the maximum 

deflection of all the parts of the structure is reached at the same time and so it is possible to adopt a 

proportional damping model. However,  because of the effect of measurement errors and signal noise, 

the occurrence of aliasing and leakage in the signal post-processing, identification errors, or 

asymmetries linked to gyroscopic effects or non-linear behavior, is it possible to incur in complex 

modes [60]. Consequently, the criteria adopted for the selection of the modal frequencies was that the 

chosen ones should have been those with the lowest level of complexity, which can be measured 

through the calculation of the so-called Mode Complexity Factor (MCF) [39,61]: 

𝑀𝐶𝐹𝑟 = 1 −
(𝑆𝑥𝑥 − 𝑆𝑦𝑦)

2
+ 4𝑆2

𝑥𝑦

(𝑆𝑥𝑥 + 𝑆𝑦𝑦)
2  (5.1) 

where: 

• r subscript indicates the considered mode; 

• 𝑆𝑥𝑥 = 𝑅𝑒{𝜓𝑟}
𝑇𝑅𝑒{𝜓𝑟}; 

• 𝑆𝑦𝑦 = 𝐼𝑚{𝜓𝑟}
𝑇𝐼𝑚{𝜓𝑟}; 

• 𝑆𝑥𝑦 = 𝑅𝑒{𝜓𝑟}
𝑇𝐼𝑚{𝜓𝑟}. 

 

5.1.2.3 Enhanced Frequency Domain Decomposition 

The EFDD is an improved version of the classical Frequency Domain Decomposition (FDD) 

technique, which uses a single line from the Fast Fourier Transform (FFT) for the estimation of the 

natural frequency and does not calculate the modal damping. The EFDD method consists in 

identifying a Single Degree of Freedom (SDOF) Power Spectral Density (PSD) function in the 

proximity of a peak of resonance, highlighted through the Peak Picking method (like in FDD), and 

then transporting it back to the time domain with the Inverse Discrete Fourier Transform. 

In EFDD method the measured responses are linked to the unknown input through the relationship 

expressed by Eq. 5.2: 

[𝐺𝑦𝑦(𝜔)] = [𝐻(𝜔)][𝐺𝑥𝑥(𝜔)][𝐻(𝜔)]𝑇    (5.2) 

where: 

• 𝐺𝑥𝑥  is the [r-by-r] PSD matrix of r inputs; 
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• 𝐺𝑦𝑦 is the [m-by-m] PSD matrix of m responses; 

• 𝐻(𝜔) is the [m-by-r] Frequency Response Function (FRF) matrix, with the overbar 

indicating its complex conjugate, while the superscript T stands for the transpose. 

The Gyy matrix is composed by the vectors of the modal shapes associated to the modes concurring at 

a particular frequency. Through a process known as Singular Value Decomposition (SVD), this form 

of the matrix is decomposed into a set of eigenvalues and their corresponding eigenvectors, which are 

an approximation of the mode shapes. This decomposition process leads to the identification of the 

SDOF models of the problem [62]. Then the natural frequency is calculated on the base of the number 

of zero-crossing as dependent from time, while the modal damping is evaluated from the logarithmic 

decrement of the normalized correlation function associated to the SDOF system. Considering also 

modal damping, EFDD allows a more accurate estimation of both natural frequencies and mode 

shapes, in comparison with FDD [63]. 

In Fig. 5-7 the singular values of the PSD matrix of response for every tower are shown and the modal 

frequencies, and associated damping ratios, are highlighted. 

 
Fig. 5-7 - Graphs for EFDD method 

From the EFDD results it is clearly remarkable (Fig. 5-7) that the frequencies are in the range of 1÷5 

Hz. As may be expected, the Matildea tower is the most rigid one (f1=1.472 Hz), due to its little height 
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and its double box structure, whereas San Benedetto appeared to be the most deformable tower 

(f1=0.762 Hz), since it has only two floors that interrupt the elevation. At a first sight, it is observable 

that, apart for San Benedetto, all the towers frequencies display the same trend: the first two 

frequencies are in the range 1÷1.5 Hz (Fig. 5-7), with percentage differences around 3.1-2.9%, for San 

Giorgio Belfry (Fig. 5-7a) and Matildea Tower (Fig. 5-7c), and 6.8% for Pomposa Abbey Belfry (Fig. 

5-7d): the proximity of the first two frequencies is typical of symmetrical structures. The third 

frequency is in an intermediate position among the first two ones and the 4th and 5th ones, which also 

result very close to each other (with percentage difference always inferior to the 10%). The 

differences presented by the tower of San Benedetto are most likely generated by its high inclination, 

in this case the distance among the first two frequencies is 72% while the third is also close to the 4 th 

and the 5th (Fig. 5-7b). 

5.1.2.4 Stochastic Subspace Identification 

The SSI method [33], instead, is applied in the time domain. It is the most used identification 

technique among the OMA methodologies. It mainly consists of the application of a mathematical 

model which upgrades its parameters in order to match the raw time series data characteristics. It is 

based on the conversion of the second order problem, expressed by the dynamical equation, into a set 

of two equations, through the construction of State Space models: the “state equation” (Eq. 5.3) and 

the “observation equation” (Eq. 5.4), here expressed in their discretized form: 

{𝑥̂𝑘+1} = [𝐴]{𝑥̂𝑘} + [𝐵]{𝑢𝑘} (5.3) 

{𝑦𝑘} = [𝐶]{𝑥̂𝑘} + [𝐷]{𝑢𝑘} (5.4) 

where: 

• [𝐴] is the matrix of input physical information; 

• [𝐵] is the matrix of input statistical parameters; 

• [𝐶] is the discrete output matrix; 

• [𝐷] is the direct output transmission matrix; 

• 𝑥𝑘 = 𝑥𝑘(∆𝑡) is the discrete-time vector containing the sampled displacement and velocities; 

• {𝑦𝑘}, {𝑢𝑘}are the vectors of sampled input and output. 

 Other parameters describing the dynamic system are considered as deterministic and should not be 

subdued to the variations linked to excitation changes. 

The frequencies and damping ratios of the four structures, extracted through the application of the SSI 

method, are shown in Fig. 5-8, where the Singular Value Decomposition (SVD) graphs are reported. 
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Fig. 5-8 - SVD graphs for SSI method 

As seen before for the EFDD, in this case, all the towers frequencies display the same trend, apart for 

San Benedetto: the first two frequencies are in the range 1÷1.5 Hz (Fig. 5-8), typical of symmetric 

towers, with percentage differences around 2.7-2.8% for San Giorgio Belfry (Fig. 5-8a) and Matildea 

Tower (Fig. 5-8c), and 8.3% for Pomposa Abbey Belfry (Fig. 5-8d), the third frequency is located in 

an intermediate position among the first two ones and the 4th and 5th ones, which also result very near 

between themselves (with percentage difference always less than 10%).  

5.1.2.5 Comparison and validation of the experimental results  

A first comparison between the results produced using both methodologies was operated in terms of 

frequencies, damping ratios and complexity. In particular, the comparison between the frequencies is 

expressed through the formula [64]: 

∆𝑓𝑖[%] = |
𝑓𝑖,𝑆𝑆𝐼 − 𝑓𝑖,𝐸𝐹𝐷𝐷

𝑓𝑖,𝑆𝑆𝐼

| ∙ 100    (5.5) 

where 𝑓𝑖,𝑆𝑆𝐼 and 𝑓𝑖,𝐸𝐹𝐷𝐷 are the natural frequencies for the i-th mode, obtained with the SSI and EFDD 

methods. In the following parts of the work, in the comparisons among the analytical and 

experimental frequencies, the subscript SSI will be assigned to the experimental ones, while the 

EFDD will correspond to the NM ones.   
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It became clear that both methods provided approximately the same frequencies, in fact the 

differences are lower than 2% except for the 2nd frequency of the San Benedetto belfry where the 

difference is of ~5.3% (Fig. 5-10). The results that are more different instead concern the complexity 

and the damping, as also the study of [65] shows.  

It is notable that, even though the maximum difference in terms of frequencies never exceeds the 5%, 

there is no coincidence between damping ratios extracted from EFDD and SSI, with these last ones 

that are always more elevate, except for the 2nd and 4th values of Pomposa Belfry. This particular 

aspect can probably be linked to the low intensity of the measured excitations, that do not allow to 

obtain reliable measures of the damping ratios [66]. 

The third comparison was operated on the mode shapes associated to the first five modes analyzed for 

each tower, which are reported in Fig. 5-9÷Fig. 5-12. As stated in many studies on towers, it has been 

noted that the first two modes are usually translational while the third appears to be rotational, as we 

may also notice in these cases, except for San Benedetto in which the third modal shape is not 

translational but flexural in Y-direction, as seen in the first mode. This difference may be traced back 

to the inclination of the tower that is just this direction; the last two frequencies instead are flexural for 

all the models. It is possible to observe a good level of correspondence between SSI and EFDD 

results. 

This feature is also confirmed through a validation process, operated applying MAC [39,61], a tool 

used in case of complex modes to execute a comparison between the modal vectors describing a 

modal shape, providing an indication about the consistency of a mode shape. It is calculated as the 

normalized scalar product of the two sets of vectors {𝜑𝐴}, which is the compatible analytical modal 

vector associated to the r mode, and {𝜑𝑋}, which is the test modal vector associated to the q mode: 

𝑀𝐴𝐶(𝑟, 𝑞) =
|{𝜑𝐴}𝑟

𝑇{𝜑𝑋}𝑞|
2

({𝜑𝐴}𝑟
𝑇{𝜑𝐴}𝑟)({𝜑𝑋}𝑞

𝑇{𝜑𝑋}𝑞)
   (5.6) 

The scalar results are arranged in the MAC matrix, whose optimal configuration is that of values near 

or equal to 1 for the principal diagonal and equal to 0 outside of the diagonal, assuring the perfect 

independency of the modes. 

The MAC was used in this work for the validation process of the modes selected with the EFDD and 

SSI methods, and to assure the coherence of results through the comparison between the results 

produced by these different methodologies [59]. This last operation was conducted through a variation 

of the MAC criterion: the CrossMAC. Like in the classical MAC criterion, every possible 

combination of analytical and test vector, associated to the i-th mode are checked, but the improved 

version of the consistency correspondence criterion is calculated using as sets of rows and columns of 
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the MAC matrix, modal shape vectors coming from different sets of modes. This makes the method 

particularly suitable for evaluate the affinity between test models and FEM models [45]. CrossMAC 

matrices are reported in Table 5-1÷Table 5-4, as can been seen the data oscillate between 63% and 

99.80% a sign that the two methods have identified very similar modes. 

Due to the good correspondence of the results between the two methodologies, the identification 

process was considered satisfactory thus we decided to use only the parameters extracted from the SSI 

approach as the ones for the definition of the experimental model for the following calibration of the 

NMs. 

Table 5-1 - San Giorgio Belfry - Modal Identification results 

San Giorgio Belfry 

 EFDD Method SSI Method Comparison 

Mode f [Hz] ξ [%] Complexity 
[%] f [Hz] ξ [%] Complexity 

[%] 
Δf       

[%] 
Δξ      

[%] 
CrossMAC 

[%] 

φ1 1.029 0.633 3.028 1.030 1.133 0.629 0.100 0.500 96.20 

φ2 1.061 0.787 0.262 1.060 1.356 0.065 0.090 0.569 96.80 

φ3 3.213 0.774 0.296 3.213 0.865 0.082 0.000 0.091 99.80 

φ4 4.697 0.107 0.198 4.656 3.322 15.049 0.870 3.215 87.50 

φ5 4.760 0.127 4.074 4.703 4.186 5.596 1.200 4.059 76.30 
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Fig. 5-9 - San Giorgio Belfry - Comparison between EFDD and SSI mode shapes 

Table 5-2 - San Benedetto Belfry - Modal Identification results 

San Benedetto Belfry 

 EFDD Method SSI Method Comparison 

Mode f [Hz] ξ [%] Complexity 
[%] f [Hz] ξ [%] Complexity 

[%] 
Δf       

[%] 
Δξ      

[%] 
CrossMAC 

[%] 

φ1 0.762 0.620 4.834 0.759 0.990 0.609 0.390 0.370 96.20 

φ2 1.311 0.251 5.913 1.380 3.393 4.284 5.260 3.142 72.00 

φ3 2.781 0.650 0.774 2.781 1.089 3.498 0.000 0.439 97.70 

φ4 2.849 0.423 11.605 2.858 1.388 3.539 0.320 0.965 92.90 

φ5 2.994 0.831 0.435 2.982 1.159 6.170 0.400 0.328 97.50 
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Fig. 5-10 - San Benedetto Belfry - Comparison between EFDD and SSI mode shapes 

Table 5-3 - Matildea Tower - Modal Identification results 

Matildea Tower 

 EFDD Method SSI Method Comparison 

Mode f [Hz] ξ [%] Complexity 
[%] f [Hz] ξ [%] Complexity 

[%] 
Δf       

[%] 
Δξ      

[%] 
CrossMAC 

[%] 

φ1 1.472 0.347 1.284 1.478 0.990 0.609 0.410 0.643 94.10 

φ2 1.514 0.342 6.493 1.513 3.393 4.284 0.070 3.051 92.10 

φ3 4.240 0.378 11.001 4.206 1.089 3.498 0.800 0.711 92.90 

φ4 4.978 0.248 4.947 5.011 1.388 3.539 0.660 1.140 83.10 

φ5 5.130 0.036 9.658 5.140 1.159 6.170 0.190 1.123 63.20 
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Fig. 5-11 - Matildea Tower - Comparison between EFDD and SSI mode shapes 

Table 5-4 - Pomposa Abbey Belfry - Modal Identification results 

Pomposa Abbey Belfry 

 EFDD Method SSI Method Comparison 

Mode f [Hz] ξ [%] Complexity 
[%] f [Hz] ξ [%] Complexity 

[%] 
Δf       

[%] 
Δξ      

[%] 
Cross-MAC 

[%] 

φ1 0.959 0.488 0.041 0.939 2.884 1.089 2.090 2.396 73.50 

φ2 1.024 0.755 0.853 1.024 0.660 0.539 0.000 0.095 96.30 

φ3 2.753 0.876 38.643 2.754 0.899 1.924 0.040 0.023 72.80 

φ4 3.549 3.164 15.282 3.493 1.694 4.607 1.580 1.470 64.00 
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φ5 3.586 0.086 3.977 3.516 3.281 5.206 1.950 3.195 65.32 

 

0  
Fig. 5-12 - Pomposa Abbey Belfry - Comparison between EFDD and SSI mode shapes 

5.1.3 Model updating process  

5.1.3.1 Preliminary FE modeling 

After obtaining the real dynamic behavior, the next step is represented by the construction of the NMs. 

In this study the four bell towers were analyzed using FEM, that were created using the MidasFea© 

software (Fig. 5-13).  The models were carried out starting with the representations of their geometry, 

paying special attention to all the geometrical characteristics that may affect their dynamic behavior 

such as the openings, the walls thickness, etc.  Afterward, the geometries were discretized using 4-

nodes tetrahedral solid elements, to whom were assigned, after a visual inspection and historical 
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analysis of the typology of masonries, the material parameters reported in the Italian Code [67]. In 

Table 5-5 are reported the number of elements, the number of nodes and the degrees of freedom for 

each model.

 
Fig. 5-13 - Towers NMs: a) prospective views; b) section views 
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Table 5-5 - Key features of the meshed solids 

Belfry Number of elements Number of nodes Degrees of freedom 

San Giorgio 349750 79284 235512 

San Benedetto 141904 32735 97323 

Matildea 315743 69491 204996 

Pomposa 136017 34337 102450 

 

As may be observed in (Fig. 5-13Errore. L'origine riferimento non è stata trovata.) the masonry 

cross vaults, the masonry stairs and the wood roofs were modeled, due to their contribution on the 

stiffness. The other (secondary) structural elements as the wood floors were not modelled but were 

taken into account by applying their dead loads on the walls. All the belfries were considered fixed at 

the basis and isolated since the thin walls that connect Pomposa and Matildea Towers with the relative 

churches are irrelevant. These towers were all built with masonry brick and lime mortar except for the 

San Giorgio bell tower where the bearing structure of bricks is covered by white and rose calcareous 

stones.  

Table 5-6 reports the elastic parameters assigned to NMs at the early stage of this study; the values 

were taken following the Italian Code considering the lowest Knowledge Level (KL1). These 

parameters according to the thickness of the mortar and conservation status were corrected by 

applying the coefficients of the Table.C8.5.II of [68].  

Table 5-6 - Elastic parameters of the preliminary models 

KL E [MPa] Ν γ [kN/m3] 

Solid bricks with lime mortar and square blocks (only for San Giorgio) 

1 2175 0.4 20 

Solid bricks and lime mortar 

2 1500 0.3 18 

The NMs were tested by modal analysis using the Lanczos method to identify the dynamic behavior. 

The first five modal shapes and the characteristic of their dynamic motion for each tower are reported 

in Fig. 5-14 and Table 5-7. 
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Fig. 5-14 - Mode shapes of towers preliminary model. 
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Table 5-7 - Modal properties of towers preliminary NMs 

San Giorgio Belfry 

Mode Frequency 
NM [Hz] 

Mass 
Tran-X 

NM 
[%] 

Mass 
Tran-Y 

NM 
[%] 

Mass 
Rot-Z 
NM 
[%] 

φ1 0.964 49.57 11.86 0.00 

φ2 0.966 11.54 50.32 0.00 

φ3 2.637 0.00 0.00 5.30 

φ4 3.811 0.00 21.11 0.00 

φ5 4.186 21.02 0.00 0.00 
 

San Benedetto Belfry 

Mode Frequency 
NM [Hz] 

Mass 
Tran-X 

NM 
[%] 

Mass 
Tran-Y 

NM 
[%] 

Mass 
Rot-Z 
NM 
[%] 

φ1 0.765 0.27 54.02 0.00 

φ2 0.766 53.73 0.27 0.00 

φ3 3.046 20.42 0.00 0.00 

φ4 3.061 0.00 19.52 0.00 

φ5 3.117 0.00 0.00 0.00 
 

Matildea Tower 

Mode Frequency 
NM [Hz] 

Mass 
Tran-X 

NM 
[%] 

Mass 
Tran-Y 

NM 
[%] 

Mass 
Rot-Z 
NM 
[%] 

φ1 1.555 13.51 43.23 0.00 

φ2 1.575 43.44 13.39 0.00 

φ3 4.425 0.01 0.04 0.00 

φ4 5.376 20.40 0.49 0.00 

φ5 5.465 0.58 20.27 0.00 
 

Pomposa Belfry 

Mode Frequency 
NM [Hz] 

Mass 
Tran-X 

NM 
[%] 

Mass 
Tran-Y 

NM 
[%] 

Mass 
Rot-Z 
NM 
[%] 

φ1 0.869 44.12 2.95 0.00 

φ2 0.891 2.84 44.17 0.00 

φ3 3.057 18.87 4.84 0.00 

φ4 3.079 5.12 18.81 0.00 

φ5 3.383 0.00 0.00 0.00 
 

 

Comparing the numerical with the experimental results, we can notice some differences especially in 

terms of frequencies; in Table 5-8 we reported the percentage errors between experimental and 

numerical frequencies. Those results confirm that visual analysis and the use of Code materials 

parameters are not enough to obtain models that truly represent a building’s behavior due to all the 

uncertainties that there can be. 

Table 5-8 - Comparison between experimental and preliminary numerical models’ frequencies 

 San Giorgio Belfry S. Benedetto Belfry Matildea Tower Pomposa Belfry 

Mode Δf [%] Δf [%] Δf [%] Δf [%] 

φ1 6.41 0.39 50.97 9.38 



108 
 

φ2 8.87 41.57 48.58 12.99 

φ3 17.93 9.53 37.72 11.04 

φ4 18.15 7.44 15.46 13.24 

φ5 10.99 4.11 16.20 5.66 

5.1.3.2 Calibration process 

The preliminary results highlight the necessity of a recalibration of the NMs’ parameters [54], in order 

to have correspondence between experimental and numerical models in the modal shapes associated 

with each vibrational mode. The modal updating procedure was executed in an indirect way, through 

the modification of the mechanical properties of masonry, varying the values of the (elastic) Young’s 

Modulus E and the density ρ of materials and paying attention to the stiffness of the floors. We opted 

for an iterative procedure to manually update the parameters, which consists in modifying the stiffness 

characteristics of the NM in order to make the frequencies coincident from an engineering point of 

view. The process ran for each tower is illustrated below. 

5.1.3.2.1 San Giorgio Cathedral Belfry 

The first consideration made in San Giorgio Belfry model updating was to increase the frequencies of 

all modes in order to have coincidence with the experimental evidence, while the modal shapes seem 

to be well represented. For this purpose, the first operation related to the increase of the stiffness of the 

angular columns, that appear to be formed by squared stone blocks connected with a good quality 

mortar, and the integration of rigid links at the level of the floors for which the stiffness was not 

certain. As concerns the vaulted ceiling and the arcs, considering the constructive techniques of the 

time, we assumed an increase of the density to a value equal to 23 kN/m3 and a modulus of 2250 MPa. 

Those changes produced a raise of the torsional component, associated with the third mode.  

Table 5-9 - San Giorgio Belfry - Comparison between experimental and calibrated NMs frequencies 

Mode fEXP [Hz] fNM [Hz] Δf [%] 
Mass Tran. X 

[%] 

Mass Tran. Y 

[%] 

Mass Rot. Z 

[%] 

φ1 1.030 1.023 0.680 55.86 6.23 0.06 

φ2 1.060 1.061 0.090 6.16 55.71 0.00 

φ3 3.213 3.056 4.890 0.00 0.00 5.12 

φ4 4.656 4.576 1.720 2.50 18.68 0.00 

φ5 4.703 4.812 2.320 18.33 2.67 0.00 
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Fig. 5-15 - San Giorgio Belfry - Comparison between experimental and numerical mode shapes after calibration 

In the second step, we tried to increase the third mode shape. For this purpose, we augmented the 

elastic module of the last nut, in order to differentiate it from the inferior part that may be less resistant 

due to the many changes suffered over the years as seen in the Section 5.1.1.1. This process also leads 

to obtain a better matching with the bending modal shapes characterizing the 4th and 5th  mode. The 

final results are reported in Table 5-9 and Fig. 5-15. 

5.1.3.2.2 San Benedetto Belfry 

This case clearly shows that in addition to the differences of frequencies there is also a discrepancy of 

modal shapes between the numerical and experimental models, in the 3rd and 4th modes. In order to 

correct those, we considered the possible influence of the inclination, through the Elastic Module 

reduction of half tower in East-direction, since it appears less compressed; this allowed to match the 
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modal shapes. Subsequently to get closed frequencies, the Young’s Modulus was decreased by 

moving towards the high part of the tower, considering the poor quality of its masonry, related to the 

lower normal stresses present in this zone. The stiffness of the cell bell was reduced more than in 

other parts, for its poorer quality provoked by the exposure to weather conditions. The result of the 

calibration procedure is reported in Table 5-10 and Fig. 5-16. 

Table 5-10 - San Benedetto Belfry - Comparison between experimental and calibrated NMs frequencies 

Mode fEXP [Hz] fNM [Hz] Δf [%] Mass Tran. X 
[%] 

Mass Tran. Y 
[%] 

Mass Rot. Z   
[%] 

φ1 0.759 0.737 2.900 0.00 53.33 0.00 

φ2 1.380 1.372 0.580 52,75 0.00 0.00 

φ3 2.781 2.866 3.060 0.44 19.35 0.03 

φ4 2.858 2.868 0.350 19.48 0.45 0.00 

φ5 2.982 2.994 0.400 0.02 0.04 0.00 
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Fig. 5-16 - San Benedetto Belfry - Comparison between experimental and numerical mode shapes after 

calibration 

5.1.3.2.3 Matildea Tower 

The first step of the recalibration process was to decrease the numerical frequencies which results 

slightly higher than the experimental ones. The strategy adopted implicate a reduction of the Young’s 

Modulus assigned to the masonry constituting the higher block of the tower.  

In the second step, in order to represent in a realistic way, the deterioration of the mechanical 

properties of the structure [69], we adopted for the bell cell an elastic Young’s Modulus equal to 1000 

MPa, which highlights the severity of the damage suffered by the structure due to the seismic event of 

2012. In Table 5-11 and Fig. 5-17 differences between the numerical model and the experimental data 

are shown. 
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Table 5-11 - Matildea Tower - Comparison between experimental and calibrated NMs frequencies 

Mode fEXP [Hz] fNM [Hz] Δf [%] Mass Tran. X 
[%] 

Mass Tran. Y 
[%] 

Mass Rot. Z    
[%] 

φ1 1.478 1.478 0.000 8.52 45.17 0.00 

φ2 1.513 1.511 0.130 44.23 8.21 0.00 

φ3 4.206 3.917 6.870 0.09 0.02 0.12 

φ4 5.011 4.767 4.870 3.37 15.86 0.00 

φ5 5.140 5.169 0.560 15.46 3.32 0.00 

 

 
Fig. 5-17 - Matildea Tower - Comparison between experimental and numerical mode shapes after calibration 
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5.1.3.2.4 Pomposa Abbey Belfry  

At a first glance, the exam of the results in terms of frequencies displayed how difficult it is to 

differentiate the frequencies associated with the first two modes, and the necessity to reduce the third 

one. 

The first step of the calibration [70] consisted in removing the conical cover of the tower. During the 

AVT, that part of the tower was not instrumented due to access difficulties, thus it was considered a 

dead load in order to eliminate its influence on the first modes. This expedient permitted a better 

identification of the first two translational modes, and a significant increment of the frequency 

associated with the fourth one.  

The following step of the calibration aimed to increase the gap between the first two frequencies and 

to reduce the third one. In order to achieve this goal, the first step consisted in the increment of the 

stiffness of the lower part of the tower, that resulted less damaged during the preliminary visual 

inspection. The following operation has been the assignment of different properties to the materials in 

the X and Y direction with the aim of better simulating the bigger degradation endured by the East - 

West facade due to the seismic events and atmospheric agents. At last, the Elastic Young Modulus of 

the top level of the tower has been reduces, because of the worse quality of masonry and the negative 

effect of lower normal stresses in this part of the tower.  

The modal shapes and the difference between the numerical and experimental data, obtained at the 

end of the last step, are reported in Table 5-12 and Fig. 5-18. 

Table 5-12 - Pomposa Abbey Belfry - Comparison between experimental and calibrated NMs frequencies 

Mode fEXP [Hz] fNM [Hz] Δf [%] Mass Tran. X 
[%] 

Mass Tran. Y 
[%] 

Mass Rot. Z   
[%] 

φ1 0.939 0.934 0.530 45.67 0.06 0.00 

φ2 1.024 1.018 0.590 0.05 45.57 0.00 

φ3 2.754 2.818 2.320 0.02 1.31 0.04 

φ4 3.493 3.433 1.720 23.62 0.02 0.00 

φ5 3.516 3.487 0.820 0.03 24.11 0.00 
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Fig. 5-18 - Pomposa Abbey Belfry - Comparison between experimental and numerical mode shapes after 

calibration 

5.1.3.3 Validation of mode shape through CrossMAC matrix 

The model updating process seemed to produce a good match between the experiment and NM, both 

in terms of frequencies [71] and modal shapes [72,73]. To be sure of the outcome’s reliability, the 

mode shapes produced by the NMs were compared with the corresponding ones deriving from the 

modal identification executed through the SSI estimation methodology, using the Cross MAC 

explained in §5.1.2.5. The results for each tower are presented in Table 5-13. 

Even though the results are not satisfying, in particular from the fourth mode where the values are in 

the ranges of 0.01÷0.3, we obtained an improvement of the results during the iterative step by step 

process, which proofs that the adopted procedure is correct. 
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Table 5-13 - Cross-MAC between experimental and numerical mode shapes after calibration 

San Giorgio Belfry 

Mode fEXP 
[Hz] 

fNM 
[Hz] 

Δf 
[%] 

CrossMAC 
[%] 

φ1 1.030 1.023 0.68 89.70 
φ2 1.060 1.061 0.09 86.30 
φ3 3.213 3.056 4.89 100.00 
φ4 4.656 4.576 1.72 68.30 
φ5 4.703 4.812 -2.32 66.70 

 

San Benedetto Belfry 

Mode fEXP 
[Hz] 

fNM 

[Hz] 
Δf 

[%] 
CrossMAC 

[%] 

φ1 0.759 0.737 2.90 99.20 
φ2 1.38 1.372 0.58 63.80 
φ3 2.781 2.866 3.06 4.80 
φ4 2.858 2.868 0.35 9.60 
φ5 2.982 2.994 -0.40 14.90 

 

  
Matildea Tower Belfry 

Mode fEXP 
[Hz] 

fNM 
[Hz] 

Δf 
[%] 

CrossMAC 
[%] 

φ1 1.478 1.478 0.00 84.70 
φ2 1.513 1.511 0.13 97.20 
φ3 4.206 3.917 6.87 38.40 
φ4 5.011 4.767 4.87 0.50 
φ5 5.14 5.169 0.56 35.20 

 

Pomposa Abbey Belfry 

Mode fEXP 

[Hz] 
fNM 
[Hz] 

Δf 
[%] 

CrossMAC 
[%] 

φ1 0.939 0.934 0.53 73.50 
φ2 1.024 1.018 0.59 96.30 
φ3 2.754 2.818 2.32 72.80 
φ4 3.493 3.433 1.72 5.40 
φ5 3.516 3.487 0.82 1.50 

 

 

The discrepancy of the results is probably related to an inhomogeneity of the material’ properties, due 

to cracks, followed to the seismic events occurred in recent years, and to localized deterioration of the 

connections among the bricks, forming the masonry wall, whose effects would be probably better 

represented through the usage of anisotropic material [71], taking into account the influence of shear 

modulus (G) and the variations of the elastic modulus in the three spatial direction. This will be the 

subject of future works. 
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5.2 Automatic calibration approach via Genetic 

Algorithms: the case study of Ostra Civic Tower 

Within this framework, the present work aims to provide a contribution to the field of structural 

assessment and damage identification of historic masonry structures by proposing an iterative 

updating procedure based on Genetic Algorithms (GA) to build a reliable reference model of a 

heritage tower located in Central Italy for future comparative analyses and health monitoring [59,74].  

For the purpose of this work, the genetic algorithm provided by the open-source finite element solver 

Code_Aster© is employed to automatically find the optimal values for the unknown material 

properties of the investigated tower, starting from the model calibrated against 2018 experimental 

results and then updated to match the behaviour identified with 2019 measurements [75–80]. To better 

assess the efficiency, accuracy and reliability of the proposed approach, the dimensionality of the 

problem is upscaled by increasing the number of updating variables to be determined, thereby 

allowing to take into account also the uncertainties associated with the modelling of masonry as an 

isotropic or orthotropic material. Without artificial intelligence, such a detailed study would not be 

possible. 

In addition to this introductory section, the remaining of the work is organized as follows. Section 

5.2.1 describes the tower history and the outcome of the geometric and material surveys; Section 5.2.2 

focuses on the identification of the modal parameters of the structure through OMA techniques; 

Section 5.2.3. presents and discusses in detail the model updating process using GAs. Finally, Section 

5.2.4. summarizes the main conclusions that can be drawn from the work.  

5.2.1 Ostra Civic Tower: description of the case study 

5.2.1.1 Historical survey  

Located about 40 km away from Ancona, Ostra is one of the typical villages of the Marche region, in 

Central Italy. Lying on a hill, overlooking the river Misa Valley, it is said that Ostra was founded by 

the exiles of the Roman Empire and its original name, till 1881, was Montalboddo. Destroyed during 

Goths invasion, the village was rebuilt, and during the Middle Age, it was surrounded by a protective 

wall, 1200 meters long, interspersed with square section towers, nine of those still existing today. 

Nowadays, the centre of the city life is represented by the central Piazza dei Martiri, located in the 

upper part of the historic centre, where the most important buildings, such as Palazzo Comunale, San 

Francesco Church, La Vittoria Theatre, are found. Among them, the most emblematic building of the 

city – case study of this work – stands: Ostra Civic Tower (Fig. 5-19). Built in the XVI century, this 
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tower is also known as “Clock Tower” because of the ancient clock gears still present today, even if 

no longer in operation. 

 
Fig. 5-19 - Ostra Civic Tower localization. 

 According to historical sources [81,82], the belfry tower was originally connected to San Giovanni 

Church (Fig. 5-20a). The two buildings had autonomous origins: the church was mentioned for the 

first time in archival documents in 1454, while the tower was built in 1552 at the behest of the 

magistracy. The bell, hosted today by the third order of floors, dates to 1631. 
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Fig. 5-20 - San Francesco Church and the Tower before bombardments (a) and a view of the central square to 

the present days (b). 

With its architecture and double staircase, the church closed the fourth side of the square, making it an 

elegant “living room”. The interior of the structure treasured various artworks, including many 

altarpieces such as that of Andrea Sacchi (1599/1661) depicting San Bonaventura da Bagnoregio and 

San Tommaso d'Aquino (today stored at the Superintendence of Urbino). Though, following the aerial 

bombardments occurred in 1944 during the II World War, only the church façade and the civic tower 

survived.  

Because of the precarious conditions of the structures, it was decided to intervene by demolishing the 

rests of the façade and strengthening the tower. Façade demolition led to the uncovering of the 

foundations of the tower walls and of the external staircase of the building, making them prone to 

degradation phenomena due to atmospheric agents and pollutants. Therefore, foundation works were 

promptly carried out along with the recovery of the base walls. Parts of the external walls and 

battlements damaged by the bursts of artillery bullets were also restored. 

After the works, a new architectural arrangement of the square became indispensable. Some projects 

envisaged creating a decent background, in harmony with the palaces that frame the town square and 

erecting a building that could replace the beautiful (demolished) façade and which could form, 

together with the civic tower, a single majestic and harmonious architectural complex (Fig. 5-20b). 

5.2.1.2 Geometrical and material survey 

With an overall height of 30 meters (before the interventions executed in 1950, when the foundations 

were partially uncovered and the top part was added, the original height was 25 meters), the Civic 

Tower of Ostra is a historical masonry structure featuring four main parts: the basement, the central 

body, the bell cell and the top roof (Fig. 5-21). In what concerns the parts belonging to the original 
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tower, the bell cell is unchanged, while the central body is partially reconstructed, as the changes of 

the masonry texture reveal. 

The basement consists of a truncated pyramid, whose lower base measures approximately 7.30 x 7.50 

m2, while the upper base is about 5.30 x 5.60 m2. This part develops up to a height of 9.55 meters, 

culminating in an embattled balcony. Hereon, the parallelepipedal central body starts, keeping the 

same shape for additional 9.50 meters. Then, the cross section of the tower slightly reduces at the level 

of the bell cell and remains unchanged till the embattled enlargement of the upper part.  

The tower results composed of five floors: the first three are connected through spiral staircases 

starting from the ground level, while the last two orders of floors are reachable using an iron ladder. 

The clock mechanism is located on the second floor, whereas the bell cell occupies the third level, 

whose perimetral walls are pierced by single-light arched windows, one per side. The entrance is 

located on the main façade (north-east oriented), which overlooks Piazza dei Martiri. 
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Fig. 5-21 - Geometrical survey of the investigated tower: front views (top) and CAD sections (bottom). 

The survey allowed to distinguish different construction features and materials across the tower (Fig. 

5-22). Particularly, the bearing walls, whose thickness ranges from 1.1 meters in the lower part (first 
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floor) to 0.6 meters in the upper part (last floor), resulted built with solid brick masonry and thin 

mortar joints. As for the basement walls, their remarkable thickness let infer the presence of an inner 

rubble core between brick outer layers, though no investigation could be performed to confirm the 

hypotheses about their internal morphology. The structural interventions undergone by the tower 

include the reinforced concrete slabs constituting the floors, whose thickness varies from 0.11 meters 

to 0.27 meters, the concrete columns built to reinforce the corners at the third level, and the iron tie-

rods installed after the 1997 seismic events of Umbria-Marche region aimed at restraining possible 

out-of-plane mechanisms. No worrying cracks nor other structural damages were detected during the 

visual inspection. 

 
Fig. 5-22 - Excerpts from the photographic survey of the tower:(1) trapdoor accessing the upper level and 

connecting iron ladder; (2) close-up of the 4th level brickwork; (3) concrete slab of the 3rd floor with ladder 

opening;(4) particular of the reinforcement intervention with tie rods; (5) close-up of the 2nd level internal 

brickwork; (6) external brickwork of the 1st level; (7) basement brickwork; (8) spiral staircase at the entrance 

level. 

5.2.2 Ambient vibration testing  

Given its non-destructive nature, Ambient Vibration Testing (AVT) has become a common in situ 

investigation technique for the estimation of dynamic parameters associated with the global behavior 

of historical structures. This tool results extremely useful to collect reliable experimental data and 
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increase the level of knowledge of the structure whenever its historical value may pose limitations to 

the application of other diagnostic techniques for the system’s characterization. By deploying a set of 

sensors at selected locations and capturing the vibration response of the structure to random ambient 

excitations (traffic, wind, human walking, micro-tremors), the dynamic features of the system, namely 

natural frequencies (f), damping ratios (ξ) and mode shapes (φ), can be extracted and used to better 

interpret the actual behaviour of age-old constructions, which are often highly complex and 

mechanically diverse.  

In the last years, numerous works showed the potentiality of vibration monitoring through 

accelerometric sensors in the study of the dynamic behavior of historical buildings, both for short-

term [71,72] and long-term applications [83]. Indeed, besides the economic benefits associated with 

the possibility of using freely available environmental excitations, AVT allows to perform rapid 

screenings of the structural fitness under real operational and boundary conditions. Moreover, the 

processing of the acquired vibration data enables the construction of an Experimental Model (EM) of 

the structure, which provides the dynamic parameters that the Numerical Model (NM) has to match to 

realistically reproduce the structural response [73]. 

5.2.2.1 Field testing procedure 

In order to characterize the dynamic behaviour of the Civic Tower of Ostra, two field dynamic testing 

campaigns in operational conditions were conducted in June 2018 and in February 2019. The sensor 

network was composed of four triaxial piezoelectric accelerometers, with an integrated MEMS tilt-

meter system for correction of errors due to inclination, characterized by a maximum measurement 

range of 8 g, a sensitivity of 1000 mV/g and a bandwidth range from 0.8 to 100 Hz. The digitization 

process was automated through an A/D converter with 24 bits of resolution, 120 dB of dynamic range 

and provided with anti-aliasing filter. The synchronization between sensors was ensured by a 4-

channel Sync Hub connecting the accelerometers to the PC for data storage. 
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Fig. 5-23 - Instrumentation used for the ambient vibration tests. 

In both campaigns, three setups were used to measure the response of the tower in 8 selected points 

evenly deployed on the opposite corners of four levels (Fig. 5-24). Each setup consisted of four 

accelerometers: two were fixed on the top floor and kept as reference sensors, while the remaining 

two were moved downward in each acquisition so as to record the vibration processes of the tower 

along the three directions of the 8 identified points, allowing to catch all the meaningful modal 

displacements of the structure, including torsional components. It is noted that the sensor layouts for 

the signal acquisition were established in accordance with the results of a preliminary numerical 

modal analysis coupled with an Optimal Sensor Placement (OPT) procedure [19,84], with the intent 

of identifying the best position for the accelerometers to maximize the quality of the AVT information 

despite the limited number of available sensors.  

To comply with Rodriguez’s indications [58], the total duration of the acquisition was set longer than 

2000 times the estimated fundamental period of the structure: indeed, every registration lasted around 

40 minutes, thereby assuring the elimination of the possible influence of non-stochastic excitations. 

Moreover, to guarantee a high frequency resolution for the spectral density estimation, a sampling 

frequency of 1024 Hz was adopted, resulting in 2,457,600 datapoints per time series.  
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Fig. 5-24 - Sensor layouts and corresponding acceleration time series for 2018 and 2019 dynamic testing 

campaigns (blue, green and red colours indicate signals in x, y and z direction, respectively). 
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5.2.2.2 Operational modal analysis  

5.2.2.2.1 Data processing 

The extraction of the dynamic features of the tower (i.e., natural frequencies f, damping ratios ξ and 

mode shapes φ) was performed through the application of Operational Modal Analysis (OMA) 

techniques, using the acceleration time series acquired in operating conditions through the afore-

mentioned contact sensor network. Many are the output-only dynamic identification approaches 

available in the literature that can be adopted for this purpose, both in the time and in the frequency 

domain [13,52,59,85]. Yet, regardless of the strategy, a pre-processing stage is needed before further 

data elaboration in order to remove residual noise and possible trends from the vibration signals, filter 

undesired frequency components, minimize leakage errors and eventually down-sample the time 

series to reduce the subsequent data processing time. 

As for the present work, the pre-processing operation was executed through a Matlab© script, 

applying a 10th order Butterworth low-pass filter to the raw signals. Then, the cleaned data were 

down-sampled, passing from a spectral resolution of 1024 Hz to 100 Hz. As observed in analogous 

structures, the frequency content of interest for the tower fell in the range 0-10 Hz, thus data were 

further decimated with a factor of 8, reducing the analyzed range to 0-12.5 Hz. Finally, the pre-

processed signals were analyzed through the Stochastic Subspace Identification (SSI) method 

available in the commercial software ARTeMIS [49]. 

5.2.2.2.2 Theoretical background on SSI-based methods  

The SSI method can be considered as one of the principal approaches for the extraction of modal 

parameters from output-only vibration data. The large attention lately received by SSI methods is 

likely due to the fact that these techniques are apt to accurately identify closely spaced modes and 

especially suited to be automated [13]. For the sake of completeness, only a brief description of this 

modal identification procedure is provided hereafter; for further details the reader is referred to [33]. 

SSI can be implemented in two classic forms: covariance driven (SSI-cov) and data driven (SSI-data). 

Working in the time domain, the SSI method starts from the construction of a State Space model, 

where the second order equation of motion is converted into a system composed of two linear 

equations, called respectively “state equation” Eq. 5.7 and “observation equation” Eq. 5.8, which in 

the case of ambient vibration testing (unknown input) read: 

𝒙𝑘+1  =  𝑨𝒙𝑘  +  𝒘𝑘  (5.7) 

𝒚𝑘 = 𝑪𝒙𝑘  +  𝒗𝑘 (5.8) 
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where: 

• k is the generic time instant; 

• 𝒙 ∈ ℛ𝑛𝑥1 is the discrete-time state vector; 

• 𝒚 ∈ ℛ𝑙𝑥1 is the vector containing the l output measurements; 

• 𝑨 ∈ ℛ𝑛𝑥𝑛 is the system matrix that describes all the dynamic information of the system; 

• 𝑪 ∈ ℛ𝑙𝑥𝑛 is the corresponding output matrix; 

• 𝒘 ∈ ℛ𝑛𝑥1 is a white noise vector process representing disturbances and modelling 

inaccuracies; 

• 𝒗 ∈ ℛ𝑙𝑥1 is another white noise vector process representing the measurement noise due to 

sensor inaccuracy. 

These equations represent the discrete-time state space form of the dynamics of a linear-time-invariant 

system under unknown excitation. Particularly, Eq. 5.7 models the dynamic behavior of the physical 

system, whereas Eq. 5.8 controls which part of the dynamic system can be observed in the output of 

the model. The core of the process aims at identifying the system dynamic matrix A by fitting the 

state-space model to the experimental data. In case of SSI-Cov method, the modal estimates are 

obtained from the Singular Value Decomposition (SVD) of the block Toeplitz matrix, a matrix 

gathering the covariances of the measured output time series; while in case of SSI-data, the modal 

identification is performed starting from the SVD of the block Hankel matrix, a matrix containing past 

and future output measurements.  

Like all parametric system identification techniques, a user-defined integer is required to process the 

data, i.e. the maximum model order. In principle, the model order must be twice the number of the 

modes that are needed to describe the dynamic response of the system. Notwithstanding, to identify 

weakly excited modes, it is often necessary to consider larger model orders which can lead in turn to 

the appearance of many spurious modes associated to the noise content of the measurements. To 

overcome this issue, different SSI analyses with a range of candidate model orders can be carried out 

trying to identify the model order that better fits the experimental data and leads to the best 

stabilization diagram. The latter is an order-frequency plot in which the estimated physical (structural) 

and computational (spurious) modes are represented as poles and discriminated based on the 

fulfilment of user-specified requirements (e.g. maximum allowed deviation between successive 

models in terms of modal frequencies, damping ratios and MAC values). If the model order is high 

enough, a repeated trend of stable poles will appear in the SSI output diagram, allowing the estimation 

of the structural modes characterizing the system.  
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5.2.2.2.3 Modal results  

In both dynamic testing campaigns, five vibration modes were identified in the frequency range 0-10 

Hz: two close-spaced translational modes (φ1) and (φ2) in x and y directions, respectively, featuring 

in-phase modal components; one torsion mode (φ3); and two dominant double bending modes (φ4), 

(φ5) in the xz and yz planes, respectively. As expected, the first two vibration modes exhibit relatively 

high frequency values compared to those featured by typical historical masonry towers. This outcome 

is imputable to the low aspect ratio (λ = 4) characterizing the tower object of study as well as to the 

increased stiffness resulted from the past restoration works. 

The estimated natural frequencies and damping ratios, used for the following calibration process, are 

reported in Table 5-14 for both campaigns, together with the Mode Complexity Factor (MCF) 

associated to each mode. This value is a scalar that lies in the range 0%-100% and quantifies the 

degree of complexity of a mode shape, namely how much the modal vector differs from a real-valued 

one [39,60,86]. Real-valued mode shapes feature complexities close to 0 (MCF = 0%), while mode 

shapes with predominant imaginary components exhibit complexity values close to 1 (MCF = 100%). 

The dispersion of the real and imaginary parts of each mode is further analysed by plotting their 

components in a two-dimensional polar coordinate system, namely through the complexity plots, as 

illustrated in Fig. 5-25. It is observed that in the first dynamic testing campaign, the first three mode 

shapes, as well as the last one, are close to monophase vectors (components are aligned along the 

horizontal direction) and only the fourth mode has a higher complexity, whereas in the second 

dynamic testing campaign the modal components of both the third and fourth modal vectors present 

greater complexities. This slight difference between the MCF values of the two campaigns is probably 

associated to the different level of ambient excitations present during the AVTs which might have 

affected the signal-to-noise ratio introducing some inaccuracy in the modal estimates. However, it is 

worth mentioning that the actual mode shapes of a physical system are never exactly monophase 

vectors, thus some degree of complexity is always expected in the experimental modes. 

Table 5-14 - Global modal parameters identified for EM 2018 and EM 2019. 

 2018  2019 

Mode f [Hz] ξ [%] MCF [%]  f [Hz] ξ [%] MCF [%] 

φ1 2.082 0.817 3.929  2.092 0.762 3.320 

φ2 2.156 0.893 0.178  2.165 0.787 0.370 

φ3 6.293 0.578 2.765  6.302 0.666 11.241 

φ4 6.442 2.423 12.471  6.449 3.397 19.642 
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φ5 6.941 2.463 2.053  6.872 2.739 4.851 

 

 
Fig. 5-25 - Complexity plots of the identified experimental modes for EM 2018 (a) and EM 2019 (b).  

To drive the accurate selection of the structural modes, a cross-validation was performed by 

comparing the modes identified with the SSI modal estimator against the ones extracted through 

another OMA technique operating in the frequency domain, namely the Enhanced Frequency Domain 

Decomposition (EFDD) [55,56]. The close pairwise correspondence of the five vibration modes 

estimated in each campaign is visually highlighted in Fig. 5-26, where the mode shapes from the two 

modal estimators are superimposed, and also confirmed by the values of the Modal Assurance 

Criterion (MAC) reported both in Fig. 5-26 and in Table 5-15. As well-known in the literature, the 

MAC is a statistical indicator used to measure the degree of similarity between mode shape vectors 

[45]: the closer the values are to 1 (MAC = 100%), the higher the correlation between modes and vice 

versa. 
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Fig. 5-26 - Mode shapes of 2018 and 2019 EMs identified with SSI method (in blue) and cross-comparison with 

the respective mode shapes identified with EFDD method (in red). 

Table 5-15 - MAC between mode shapes identified with SSI and EFDD methods: (a) EM 2018 and (b) EM 2019. 

a) b) 

CrossMAC 
2018 

SSI 

2.082 
Hz 

2.156 
Hz 

6.293 
Hz 

6.442 
Hz 

6.941 
Hz 

E
FD

D
 

2.082 
Hz 1.000 0.000 0.000 0.032 0.002 

2.155 
Hz 0.002 0.998 0.001 0.000 0.024 

6.305 
Hz 0.003 0.002 0.867 0.028 0.001 

CrossMAC 
2019 

SSI 

2.092 
Hz 

2.165 
Hz 

6.302 
Hz 

6.449 
Hz 

6.872 
Hz 

E
FD

D
 

2.090 
Hz 0.999 0.001 0.001 0.034 0.003 

2.165 
Hz 0.003 0.997 0.002 0.000 0.027 

6.301 
Hz 0.004 0.002 0.812 0.006 0.003 
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6.459 
Hz 0.036 0.000 0.039 0.924 0.021 

6.950 
Hz 0.001 0.026 0.002 0.010 0.980 

 

6.443 
Hz 0.034 0.001 0.061 0.891 0.020 

6.893 
Hz 0.002 0.028 0.002 0.008 0.943 

 

 

Analysing in depth the global modal parameters estimated in 2018 and 2019, no significant change is 

found in terms of frequency values (f) as the percentage variations recorded between corresponding 

modes are less than or equal to 1.0% (Table 5-16), meaning that the global dynamic behaviour of the 

tower remained unchanged in the period elapsed between the two campaigns. As concerns modal 

damping (ξ), relatively high percentage variations are found when comparing the damping ratios of 

corresponding modes between 2018 and 2019, with a maximum difference greater than 20% for the 

4th mode (Table 5-16). Unlike frequencies, damping values are much more prone to be affected by 

measurement uncertainties and random error sources. Still, all the estimated values are consistently 

under 5% in each campaign, allowing to infer that, in the present case, the observed scatter is not 

associated with incipient damage mechanisms, but it is related to the intrinsic complex nature of this 

modal parameter.  

Table 5-16 - Percentage variation between modal frequencies and damping ratios of EM2018 and EM2019. 

Mode 
fEM18 

[Hz] 

ξEM18 

[%] 

fEM19 

[Hz] 

ξEM19 

[%] 

Δf 

[%] 

Δξ 

[%] 

φ1 2.082 0.817 2.092 0.762 0.478 -7.218 

φ2 2.156 0.893 2.165 0.787 0.416 -13.469 

φ3 6.293 0.578 6.302 0.666 0.143 13.213 

φ4 6.442 2.423 6.449 3.397 0.109 28.672 

φ5 6.941 2.463 6.872 2.739 -1.004 10.077 

In what concerns the experimental mode shapes estimated from 2018 and 2019 AVT data (Fig. 5-27), 

their configuration is consistent over time and clearly points out the typical behavior of a monolithic 

cantilever beam with rigid constraint at the base. The principal components of displacement result 

well-defined for each mode and a nearly perfect correlation is found between corresponding mode 

pairs. The cross-validation process operated through the MAC matrix (Table 5-17) also proves the 

modes to be consistent, well-decoupled and accurately identified from both field campaigns. 
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Fig. 5-27 - Comparison between mode shapes of EM 2018 (in blue) and the corresponding ones of EM 2019 (in 

red). 

Table 5-17 - MAC between EMs mode shapes identified with SSI method. 

CrossMAC  
2018-2019 

EM19 

2.092 
Hz 

2.165 
Hz 

6.302 
Hz 

6.449 
Hz 

6.872 
Hz 

EM
18

 

2.082 
Hz 0.992 0.000 0.001 0.037 0.001 

2.156 
Hz 0.003 0.995 0.004 0.001 0.026 

6.293 
Hz 0.002 0.000 0.981 0.077 0.018 

6.442 
Hz 0.030 0.000 0.110 0.990 0.010 

6.941 
Hz 0.005 0.025 0.009 0.002 0.971 

 

5.2.3 Numerical modelling and updating via Genetic Algorithm 

The uniqueness and complexity of heritage structures make the understanding of their actual 

behaviour a true challenge. By updating FE models with OMA information, one can reproduce as 

closely as possible the measured response of the structure and carry out a reliable condition 

assessment. The process consists in updating the system matrices of the FE model (mass, stiffness and 

possibly damping matrices) till the difference between experimental and numerical modal data is 
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minimized. If the FE model is not adequately representative of the reality, structural assessment 

cannot be performed. 

Despite the degree of maturity of existing modal-based updating techniques for the calibration of 

realistic numerical models, experience has shown that the updating process is not trivial especially 

when trying to upgrade these procedures for damage localization purposes [65,87]. First and foremost, 

the FE model for updating requires a level of detail sufficient enough to represent both geometric and 

structural forms. Moreover, the number of parameters to update should be selected in order to 

guarantee a well-conditioned problem, independent of the contingent state of the structure and easily 

replicable in nearly real-time to evaluate possible global and local changes with respect to the 

reference modal data. The determination of reasonable initial values for the updating parameters, 

together with the definition of their lower and upper bounds, also plays an important role to guarantee 

the convergence of the iterative process and the physical significance of the final updated parameters.  

Rooted in these considerations, a modal-based updating procedure relying on Genetic Algorithms 

(GA) is hereafter presented and employed to calibrate a realistic FE model of the masonry tower under 

investigation and establish baseline information for future comparative analyses at global and local 

level. 

5.2.3.1 Preliminary FE model 

An initial 3D FE model (NM0) of the tower was built using MidasFea© in order to preliminary assess 

the meaningful dynamic characteristics of the structure. The peculiar geometry of the tower, which is 

one of the parameters that mostly affects its global dynamic response, required a very high degree of 

detail in the modelling process of the different elements and construction features like openings, wall 

thickness, geometrical irregularities, etc. Particular attention was given to the reproduction of the 

rubble-filled masonry of the basement of the tower as well as to the concrete floors of the higher 

levels which were considered as rigid diaphragms in their plane. As concerns secondary elements, like 

stairs, deformable wooden floors, clock mechanism and bells, they were not explicitly modelled, but 

their influence was accounted for as added masses. 

Once the geometry of the tower was defined (Fig. 5-28), all the solids composing the model were 

discretized as 4-node tetrahedral elements, whose mesh size was set equal to 0.3 m, resulting into a 

model with 21,726 nodes, 78,926 volume elements and 67806 DOFs. Considering the tower as a 

cantilever beam, rigid constraints were applied at the base. 
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Fig. 5-28 - FE modelling of the Civic Tower of Ostra: (a) Assonometric view, (b) Bottom view at foundation level 

At first, a three-group material discretization was applied, modelling each material as homogeneous 

and isotropic, with Young’s modulus (E), Poisson’s ratio (ν) and mass density (γ) chosen according to 

the Italian Technical Standards for Structures [67]. The initial values assumed for the afore-mentioned 

elastic parameters are reported in Table 5-18. It is noticed that in the definition of the elastic modulus 

of the concrete, a 30% reduction was considered, because of the uncertainties linked to aging effects, 

while for the rubble masonry properties the values suggested in the Italian code [67] for irregular 

masonry were assigned. 

Table 5-18 - Elastic properties of the initial FE model. 

Material 
E 

[MPa] 

ν 

[-] 

γ 

[kN/m3] 

Masonry 1800 0.20 18 

Concrete 18000 0.20 25 

Filling 1100 0.20 18 

A preliminary modal analysis, implemented through the Lanczos method [88–91], was carried out on 

the initial FE model to evaluate the dynamic properties of the tower and quantify the residuals 

between numerical and experimental modal parameters. The results from this first step are reported in 

Table 5-19, where the remarkable differences between actual experimental frequencies (EM) and 

calculated numerical frequencies (NM0) of the not yet calibrated model are highlighted. 
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Table 5-19 - Preliminary numerical results (NM0) and differences with the experimental frequency values (EM). 

Mode 
fNM0 

 [Hz] 

TNM0 

 [s] 

Eff. Mass 

Direction 
X [%] 

Eff. Mass 

Direction 
Y [%] 

fEM18 

[Hz] 

fEM19 

[Hz] 

|ΔfEM18-

NM0| 

[%] 

|ΔfEM19-

NM0| 

[%] 

φ1 1.509 0.663 35.80 0.00 2.082 2.092 27.52 27.87 

φ2 1.536 0.651 0.00 35.72 2.156 2.165 28.76 29.05 

φ3 5.012 0.200 0.02 0.00 6.293 6.302 20.36 20.47 

φ4 5.821 0.172 21.21 0.00 6.442 6.449 9.64 9.74 

φ5 5.883 0.170 0.00 29.38 6.941 6.872 15.24 14.39 

With respect to the mode shapes (Fig. 5-29), their main displacement components present a good 

visual correlation with their experimental counterpart, being the first two modes translational in the x 

and y direction, respectively, the third mode a torsional one, and the last two being dominant bending 

modes in the xz and yz planes.  

 
Fig. 5-29 - Frequencies values and mode shapes resulting from modal analysis operated on the preliminary FE 

model. 

On the other hand, the comparison of the degree of consistency between numerical and experimental 

modal vectors in terms of MAC values (Table 5-20) shows a fair correlation only for the first two 

fundamental modes of the tower, while higher modes feature quite a poor (4th and 5th modes) or no (3rd 

mode) correlation either using 2018 or 2019 modal data as comparative metric. 

 



135 
 

Table 5-20 - MAC between numerical and experimental mode shapes: (a) NM0-EM 2018 and (b)NM0-EM 2019. 

NM0 stands for preliminary numerical model. 

a) b) 

CrossMAC 

EM18 

2.082 
Hz 

2.156 
Hz 

6.293 
Hz 

6.442 
Hz 

6.941 
Hz 

N
M

0 

1.509 
Hz 0.776 0.023 0.016 0.038 0.003 

1.536 
Hz 0.002 0.815 0.002 0.002 0.040 

5.012 
Hz 0.004 0.006 0.221 0.000 0.003 

5.821 
Hz 0.010 0.000 0.054 0.522 0.011 

5.883 
Hz 0.042 0.007 0.091 0.019 0.650 

 

CrossMAC 

EM19 

2.092 
Hz 

2.165 
Hz 

6.302 
Hz 

6.449 
Hz 

6.872 
Hz 

N
M

0 

1.509 
Hz 0.825 0.025 0.000 0.066 0.005 

1.536 
Hz 0.001 0.672 0.007 0.003 0.026 

5.012 
Hz 0.050 0.038 0.026 0.029 0.029 

5.821 
Hz 0.005 0.003 0.031 0.476 0.020 

5.883 
Hz 0.005 0.025 0.124 0.000 0.447 

 

 

5.2.3.2 GA-based model updating  

As mentioned in the Introduction, iterative model updating procedures aim at calibrating an FE model 

through the solution of an inverse problem based on modal analysis, where corrections are applied to 

local physical and/or mechanical parameters of the FE model by setting an objective function and 

searching for the optimum solution till the difference between experimental and numerical modal data 

is minimized. To overcome the limitations inherently associated to manual or approximate updating 

processes, a genetic algorithm (GA) implemented in Code_Aster© software environment [92] was 

used in this work to calibrate the FE model of Ostra Civic Tower.  

The genetic algorithms are inspired by Darwin’s theory and are based on the process of natural 

selection. These algorithms are considered robust tools for solving optimization problems and explore 

diverse regions of interest by running the same problem on different conditions and allowing to locate 

with high probability the global optimum without getting trapped into local minima [74,88,93,94]. 

They are part of a stochastic method that “mimics” the evolution through combinations of random 

mutations and natural selection in order to find optimal numerical values of functions. A better 

understanding of the methodology can be achieved through the description of the updating process 

scheme as it was implemented.  

NM and EM were initially imported and read by Code_Aster©, where a condensed experimental 

model (CEM) containing the frequency and mode shape data belonging to the five estimated modes 

was created. Then, CEM data were projected onto the NM (Fig. 5-30) in order to upscale the EM 
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DOFs. This operation enabled the possibility to visualize and interact with the data onto a 3D model 

while also creating the dependencies for the displacement calculations between the existing nodes of 

the NM with respect to the data of the EM.  

 
Fig. 5-30 - Workflow for the projection of the experimental data onto the NM for the genetic algorithm updating, 

with measured nodes highlighted. 

Once the projection was done, a preliminary modal analysis was performed, generating the initial 

population for the values of the unknown material properties to be considered in the calibration 

process. Upper and lower bounds of physical significance were also set for each updating parameter 

based on values retrieved from the literature and belonging to analogous structures. Any value within 

the bounds was a candidate solution. 

For each iteration, the fulfilment of convergence criteria established beforehand was progressively 

checked using a very strict two-term objective function that accounted for both frequencies and mode 

shapes residuals between EM and NM models, as reported below: 

𝛥𝑓 +  Δ𝑐𝑟𝑜𝑠𝑠𝑀𝐴𝐶 =  √∑(
𝑓𝑒𝑥𝑝

𝑖 − 𝑓𝑛𝑢𝑚
𝑖

𝑓𝑒𝑥𝑝
𝑖

)

2𝑛

𝑖=1

 + √∑(1 − 𝑀𝐴𝐶𝑖)2

𝑛

𝑖=1

 ≤  0.05 (5.9) 

The model updating process was set to stop either when the residual tolerance of two consecutive 

steps reached 1e-4 or after 2000 evaluations (Fig. 5-31), hence ensuring the stability of the iterative 

solution.  
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Fig. 5-31 - GA-based model updating flowchart. 

5.2.3.3 Calibration process 

5.2.3.3.1 Twelve-group discretization approach 

To account for the visible variability of the masonry properties across the tower and better tune the 

model dynamic response, the number of updating parameters was increased by further discretizing the 

preliminary FE model into twelve parts, or solid groups (Fig. 5-32). The GA-based updating process 

was then repeated by employing as reference modal data the frequencies and MAC values of the five 

vibration modes estimated from both the 2018 and 2019 AVT measurements, and iteratively varying 

the elastic parameters assigned to each of the twelve parts till the residuals between numerical and 

experimental modal data were minimized. The final number of updating parameters thus greatly 

exceeded the initial number considered in the preliminary assessment.  
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Fig. 5-32 - Updating variables for the twelve-group discretization of the FE model. Each material group is 

named as “X” followed by a subscript composed by a number (from 00 to 12) which stands for the group and a 

letter (“M” is masonry, “C” is concrete and “F” is the filling material). 

The elastic properties of the twelve parts were attributed considering two different behavioural models 

for the materials: in the first stage all materials were modelled as homogeneous and isotropic, 

requesting the solution of a thirty-six parameters convergence problem (3 x 12 = 36), whereas in the 

second stage the masonry material was modelled as orthotropic due to its complex and non-

homogeneous internal structure, leading to the calibration of one hundred-thirteen updating 

parameters  (masonry: 10 x 11 = 110; concrete: 3 x 1 = 3). It is remarked how the complexity and high 

dimensionality of the optimization problem could not be tackled via a manual updating procedure but 

required a sophisticated algorithm capable of dealing with large and multi-dimensional problems.  

Reasonable variation ranges for the material parameters were assigned to each part in accordance with 

the values provided by the Italian Technical Standards for Structures [67] as well as with the values 

retrieved from the literature for analogous materials and in light of the outcome of the condition 

survey. The established upper and lower bounds [95–97] are summarized in Table 5-21 and Table 
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5-22 for the isotropic and orthotropic cases, respectively. The initial population of updating variables 

used in the GA-based updating process was randomly selected within these bounds.   

Table 5-21 - Lower and upper bounds for isotropic elastic properties (E is the Elastic Young’s Modulus, ν is the 

Poisson’s ratio and γ is the mass density). 

Material 

E 

[MPa] 

Min - Max 

ν 

[-] 

Min - Max 

γ 

[kN/m3] 

Min - Max 

Masonry 600 - 3300 0.01 – 0.45 15 - 20 

Filling 600 - 2400 0.01 - 0.45 15 - 20 

Concrete 27000 - 32000 0.01 – 0.45 23 - 26 

 

Table 5-22 - Lower and upper bounds for orthotropic elastic properties (G is the shear Modulus, while the 

subscripts L, N and T indicate Longitudinal, Normal and Tangential components respectively). (*) Concrete 

stayed as isotropic material. 

Materi
al 

EL 

[MP
a] 

EN 

[MPa] 

ET 

[MPa] 

GLN 

[MPa] 

GLT 

[MPa] 

GTN 

[MPa] 

νLN 

[-] 

νLT 

[-] 

νTN 

[-] 

γ 

[kN/m3

] 

 Min-
Max 

Min-
Max 

Min-
Max 

Min-
Max 

Min-
Max 

Min-
Max 

Min-
Max 

Min-
Max 

Min-
Max 

Min-
Max 

Mason
ry 

600- 

3300 

600- 

3300 

600- 

3300 

230- 

1400 

230- 

1400 

230- 

1400 

0.01- 

0.45 

0.01- 

0.45 

0.01- 

0.45 
15-20 

Filling 
600- 

2400 

600- 

2400 

600- 

2400 

230- 

1400 

230- 

1400 

230- 

1400 

0.01- 

0.45 

0.01- 

0.45 

0.01- 

0.45 
15-20 

Concre
te 27000-32000 (automatically calculated) 

0.01- 

0.45 
23-26 

The main scope of this GA-based model updating procedure, run first considering 36 variables 

(isotropic material) and then accounting for 113 unknowns (orthotropic material), was to produce a 

refined baseline model closely representative of the initial experimental target and that could be 

speedily updated with new data to serve as a future digital twin of the physical structure for predicting 

its performance against different scenarios. Hence the need of collecting data from two distinct AVT 

campaigns. In the second updating phase against 2019 experimental data, an in-depth sensitivity 

analysis [98,99], was also conducted to evaluate the influence of every single material parameter on 

the outcome of the updating process. In light of the results, although reducing the number of 
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unknowns is common practice in the literature [77], it was decided to continue calibrating the model 

through the proposed GA-based procedure and keep all the afore-mentioned parameters as updating 

variables, given the greater computational efficiency of the proposed method and considering this the 

only solution for a future extent of this study to the damage localization field. 

5.2.3.3.2 Model updating results 

The optimal mechanical parameters obtained downstream the GA-based updating process of the 

isotropic FE model of Ostra Civic Tower are reported in Table 5-23. It is interesting to notice that the 

final values of the material properties are consistent with the expected ranges and clearly reflect the 

visible masonry changes resulting from past interventions and restoration works. Particularly, the 

Young’s moduli of the masonry tend to decrease from the basement (reinforced during the 1950s 

restoration works) to the central body (which was only partially reconstructed) and increase again 

towards the upper part of the tower (added later), reading values consistent with those reported in the 

Italian code [67]. 

Table 5-23 - Optimal values for the material parameters of the isotropic FE models after calibration and 

successive updating. 

 2018 NM 2019 NM 

Updating 
parameter 

E 

[MPa] 

ν 

[-] 

γ 

[kN/m3] 

E 

[MPa] 

ν 

[-] 

γ 

[kN/m3] 

X01M 2036 0.18 15 2092 0.17 15 

X02M 2112 0.22 15 1960 0.24 15 

X03M 1278 0.21 15 1074 0.22 15 

X04M 1325 0.20 16 1220 0.20 16 

X05M 1267 0.23 15 1113 0.28 15 

X06M 2471 0.18 20 3133 0.17 20 

X07M 3289 0.19 20 3288 0.19 20 

X08F 2396 0.18 20 2399 0.18 20 

X09M 2667 0.19 20 2521 0.17 20 

X10M 3052 0.20 20 3282 0.21 20 

X11C 27615 0.26 24 27037 0.25 23 

X12F 1681 0.21 20 1470 0.21 20 

Analogous observations can be drawn for the updating parameters calibrated through the GA-based 

updating process of the orthotropic FE model of the tower, whose results are reported in Table 5-24 
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and Table 5-25. The optimal values obtained for the elastic moduli of the masonry material feature a 

similar trend of variation as compared to the isotropic FE model, being consistent with the range of 

values expected from the visual assessment of the masonry quality. Meaningful values are found as far 

as the material density is concerned, whereas consistent but slightly larger variations are obtained for 

the Poisson’s ratios.  

Table 5-24 - Optimal values for the material parameters of the orthotropic FE model after calibration against 

2018 EM modal data. (*) Concrete stayed as isotropic material. 

Updating 

parameter 

EL 

[MPa] 

EN 

[MPa] 

ET 

[MPa] 

GLN 

[MPa] 

GLT 

[MPa] 

GTN 

[MPa] 

νLN 

[-] 

νLT 

[-] 

νTN 

[-] 

γ 

[kN/m3] 
 

X01M 2148 2007 1784 1005 894 970 0.20 0.19 0.19 15 

X02M 2188 2238 2125 679 911 981 0.18 0.20 0.20 15 

X03M 2449 1877 1726 552 784 663 0.20 0.28 0.19 15 

X04M 1800 1033 1941 625 939 999 0.21 0.19 0.18 15 

X05M 1822 1343 2103 627 825 415 0.18 0.18 0.17 15 

X06M 1607 2091 2439 1258 1168 1077 0.17 0.19 0.16 19 

X07M 2300 3248 2410 1357 988 1392 0.19 0.19 0.20 20 

X08F 1974 2387 2283 515 511 712 0.20 0.20 0.18 20 

X09M 2079 1898 2074 1034 1116 870 0.19 0.17 0.20 20 

X10M 1700 2978 2322 972 991 991 0.22 0.16 0.21 20 

*X11C 27345 (automatically 
calculated) 0.31 24 

X12F 2007 2212 2118 345 558 748 0.17 0.19 0.20 20 

 

Table 5-25 - Optimal values for the material parameters of the orthotropic FE model after updating with 2019 

EM modal data. (*) Concrete stayed as isotropic material. 

Updating  

parameter 

EL 

[MPa] 

EN  

[MPa] 

ET 

 [MPa] 

GLN 

[MPa] 

GLT 

[MPa] 

GTN 

[MPa] 

νLN 

[-] 

νLT 

[-] 

νTN 

[-] 

γ  

[kN/m3] 
 

X01M 2145 2031 1908 946 916 1022 0.21 0.20 0.20 15 

X02M 2121 2397 1882 636 950 996 0.18 0.20 0.21 15 

X03M 2294 1909 1761 460 725 614 0.18 0.27 0.19 15 

X04M 1682 967 1946 564 924 1036 0.22 0.19 0.17 15 
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X05M 1694 1301 2133 528 770 338 0.18 0.17 0.16 15 

X06M 1615 2092 2230 1374 1122 1221 0.17 0.18 0.16 20 

X07M 2327 3297 2508 1400 1092 1391 0.19 0.19 0.20 20 

X08F 1711 2397 2351 563 516 772 0.20 0.21 0.18 20 

X09M 2048 1956 2143 1038 1116 899 0.20 0.18 0.21 20 

X10M 1743 3016 2507 1126 1054 1054 0.19 0.16 0.20 20 

*X11C 27106 (automatically 
calculated) 0.33 25 

X12F 2035 2201 2060 330 542 795 0.17 0.20 0.20 20 

The frequency results obtained from the modal-based FE model updating of Ostra Civic Tower 

through GA are exposed in Table 5-26 and Table 5-27. For both material modelling approaches, the 

comparison between EM and NM frequency values is more than satisfactory, being the absolute value 

of their relative errors always under 4%, with the largest percentage error in correspondence of the 4th 

mode, error that consistently reduces if an orthotropic material is considered for masonry. In general, 

the orthotropic model allows to better tune the frequencies of the fundamental global modes of the 

tower and to closely reproduce the frequencies of higher modes, which are notably more sensitive to 

localized damage.     

Table 5-26 - Comparison between 2018 experimental (EM) and numerical (NM) frequencies for different 

material modelling approaches and different updating parameters.   

Mode 
fEM18 

[Hz] 

fNM18 [Hz] 

36 
variables 

(Isotropic) 

fNM [Hz] 

113 variables 
(Orthotropic) 

Eff. Mass 

Direction 
X [%] 

Eff. Mass 

Direction 
Y [%] 

|ΔfEM18-

NM18| 

[%] 
(Isotropic) 

|ΔfEM18-NM18| 

[%] 
(Orthotropic) 

φ1 2.082 2.070 2.084 34.14 0.01 0.58 0.10 

φ2 2.156 2.111 2.137 0.01 33.53 2.09 0.88 

φ3 6.293 6.245 6.284 0.26 0.00 0.76 0.14 

φ4 6.442 6.693 6.516 29.89 0.11 3.90 1.15 

φ5 6.941 6.839 6.907 0.12 29.25 1.47 0.49 
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Table 5-27 - Comparison between 2019 experimental (EM) and numerical (NM) frequencies for different 

material modelling approaches and different updating parameters.   

Mode 
fEM19 

[Hz] 

fNM19 [Hz] 

36 
variables 

(Isotropic) 

fNM19 [Hz] 

113 variables 
(Orthotropic) 

Eff. Mass 

Direction 
X [%] 

Eff. Mass 

Direction 
Y [%] 

|ΔfEM19-

NM19| 

[%] 
(Isotropic) 

|ΔfEM19-NM19| 

[%] 
(Orthotropic) 

φ1 2.092 2.079 2.091 33.94 0.00 0.62 0.05 

φ2 2.165 2.123 2.143 0.00 33.41 1.94 1.02 

φ3 6.302 6.277 6.229 0.41 0.06 0.40 1.16 

φ4 6.449 6.645 6.510 29.22 0.03 3.04 0.95 

The numerical mode shapes corresponding to the FE model calibrated with the optimal values of the 

material parameters are displayed in Fig. 5-33 and Fig. 5-34. Similar considerations can be drawn in 

this case. Indeed, a very good agreement is visually observed between experimental and numerical 

mode shape configurations: the 1st and 2nd mode are in-phase translational modes in x and y 

directions, respectively, the 3rd mode is torsional, while the 4th and 5th modes result dominant bending 

modes in the xz and yz planes.  
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Fig. 5-33 - Numerical mode shapes after calibration using isotropic material modelling. 
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Fig. 5-34 - Numerical mode shapes after calibration using orthotropic material modelling. 

The direct cross-validation between EM and NM mode shapes through the MAC further proves the 

good agreement between experimental and numerical counterparts, being all five modes very well 

correlated (MAC > 95%) and decoupled, as demonstrated by the low values of the out-of-diagonal 

elements of the Cross-MAC matrix (Table 5-28). It is worth highlighting the relevance of the achieved 

results: in fact, the majority of FE model updating techniques applied in the literature typically result 

into much higher relative errors between experimental and numerical frequencies and, in the rare 

instances in which a two-term objective function is adopted, into MAC values sensibly lower than 

80% for higher order modes.  
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Table 5-28 - CrossMAC between EMs and calibrated NMs considering isotropic and orthotropic materials:  

(a)NM 2018 with isotropic material, (b) NM 2019 with isotropic material, (c) NM 2018 with orthotropic 

material, (d) NM 2019 with orthotropic material. 

a) b) 

CrossMAC 

EM18 

2.082 

Hz 

2.156 

Hz 

6.293 

Hz 

6.442 

Hz 

6.941 

Hz 

N
M

18
_i

so
 

2.070 Hz 0.976 0.011 0.001 0.018 0.002 

2.111 Hz 0.021 0.969 0.000 0.000 0.026 

6.245 Hz 0.000 0.000 0.972 0.015 0.015 

6.693 Hz 0.035 0.002 0.011 0.965 0.001 

6.839 Hz 0.003 0.015 0.005 0.010 0.960 

 

CrossMAC  

EM19 

2.092 

Hz 

2.165 

Hz 

6.302 

Hz 

6.449 

Hz 

6.872 

Hz 

N
M

19
_i

so
 

2.079 Hz 0.962 0.016 0.000 0.019 0.000 

2.123 Hz 0.040 0.963 0.002 0.002 0.027 

6.277 Hz 0.001 0.000 0.958 0.010 0.024 

6.645 Hz 0.033 0.001 0.011 0.966 0.002 

6.789 Hz 0.006 0.017 0.006 0.024 0.960 

 

c) d) 

CrossMAC  

EM18 

2.082 

Hz 

2.156 

Hz 

6.293 

Hz 

6.442 

Hz 

6.941 

Hz 

N
M

18
_O

rt
ho

 

2.084 Hz 0.981 0.005 0.001 0.018 0.002 

2.137 Hz 0.013 0.977 0.000 0.000 0.027 

6.284 Hz 0.000 0.000 0.959 0.014 0.006 

6.516 Hz 0.033 0.002 0.013 0.957 0.005 

6.907 Hz 0.002 0.010 0.001 0.002 0.965 

 

CrossMAC  

EM19 

2.092 

Hz 

2.165 

Hz 

6.302 

Hz 

6.449 

Hz 

6.872 

Hz 

N
M

19
_O

rt
ho

 

2.091 Hz 0.979 0.004 0.000 0.021 0.001 

2.143 Hz 0.019 0.981 0.003 0.001 0.028 

6.229 Hz 0.001 0.000 0.963 0.011 0.013 

6.510 Hz 0.031 0.001 0.009 0.971 0.020 

6.693 Hz 0.003 0.011 0.001 0.002 0.968 

 

 

5.2.4 Discussion 

The results obtained in Section 4 show that GA-based model updating approaches can be profitably 

coupled with AVT techniques to simulate the realistic behaviour of masonry structures despite the 

limited information available about the internal morphology of structural elements and the unknown 

mechanical properties of constituent materials. Although from a theoretical standpoint, due to the 

heuristic nature of the method, it is impossible to ensure that all the local minima – from which the 

global minimum is recovered – are found during the updating process, the method has been proved 

effective, robust, and less computationally demanding than conventional global sensitivity analyses. 

The adopted optimization process also corroborated the hypothesis of using an isotropic model to 

realistically describe the behaviour of large-scale masonry structures, which is quite a common 

simplification in the literature [85,100]. This was possible thanks to one of the main innovative 
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aspects of this work, namely the exploitation of an automatic procedure capable of handling a very 

large number of unknowns, which enabled to consider as variables all the meaningful parameters 

describing the orthotropic behaviour of the masonry material and to compare the goodness of the 

simulated modal response against the one obtained from the isotropic model. Overall, although the 

orthotropic approach produced slightly better results in terms of final modal residuals, the 

improvement was not as marked as it could be expected. Due to the complexity of orthotropic 

modelling when dealing with unconventional historical structures in both linear and non-linear fields, 

resorting to the isotropic assumption can allow to greatly reduce the computational effort inherent to 

the calibration process and subsequent analyses, without compromising the accuracy and reliability of 

the results. Finally, it is worth stressing that, unlike most of current FE model updating techniques, the 

method herein proposed does not run into difficulties when tackling a great number of parameters and 

has been demonstrated feasible even when the number of subproblems to solve grows exponentially, 

confirming its suitability to be employed as preferred tool to optimize the control of the structural 

integrity at global and local level.  
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6 Automatic OMA identification process for 

long-time monitoring 
 

6.1 The case study: Camerino Dome twin bell towers 

In the previous chapters, different applications of OMA identification techniques have been showed, 

confirming the potentiality of this method in the assessment of the health state of structures (as 

demonstrated for the identification of Morandi Hangar cover and damaged stays of Garigliano River 

bridge) and also the possibility to improve the knowledge about mechanical properties of structures, 

and in particular historical ones, towards model updating processes conducted manually at first, and 

through automatic process as in the case of Ostra Civic Towers.  

Now, in this section, on the basis of the previous experiences, the main core of this thesis is presented, 

consisting of the definition of an automatic procedure for continuous analysis of dynamic monitoring 

data, to be coupled to all the previous mentioned application, in order to know have the conditions of 

a monitored structure always under check, through a modal tracking of the main structural modes, 

which also considers the effects of environmental agents. 

A particular application of this technique is the system, composed of four MEMS accelerometers, 

installed on the 4th of February 2020 in the bell towers of the Cathedral of Santissima Maria 

Annunziata of Camerino. This monument suffered severe damage during the seismic sequence of 

2016 that stroked Central Italy, leading to reinforcement interventions that made the church an iconic 

case study for the development of a continuous monitoring system.  

The automatic procedure for modal parameters tracking is implemented in Matlab©, using the 

toolboxes available in this programming environment, and the results of over one year acquisition and 

data analysis are presented in the following sections.  
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6.1.1 Localization and History 

 
Fig. 6-1 - Localization of the city of Camerino (a) and a view of Santissima Maria Annunziata Cathedral (b) 

The city of Camerino (Fig. 6-1a) arises on a hill (661 m a.m.s.l.) of the Macerata Province, in the 

Marche region (Italy). In the main square is locate the Cathedral (Fig. 6-1b) nowadays known as 

Santissima Annunziata of Camerino, originally built during the V century d.C. as a Roman basilica 

dedicated to San Giuseppe. Starting from XIII century, according to the historical documentation, the 

structure is subject to great alterations because of the Swabian devastations and the evolution of the 

economy and demography of the city. The renovation culminated with the restoration works following 

the complete collapse of the bell tower caused by an earthquake in 1279. New restyling operations 

started between 1748-1749, when the XIII century façade was completely rebuilt with baroque 

canons.  

Due to the 1799 seismic events, the building was destroyed, thus re-building works started under the 

direction of Andrea Vici. This project contemplated the complete reconstruction of the church with a 

Latin-cross planimetry and the expansion of the square in the front. 

After a stop, due to the French occupation in 1807, the restoration works were resumed 10-20 years 

later and the Cathedral assumed the shape we observe nowadays, with the two robust symmetrical 

belfries and the front gallery. The works finished in 1832, when the church was consecrated to 

Santissima Annunziata.  

Other earthquakes occurred in the following years (i.e., 1873, 1897, 1979) and only after the seismic 

events of 1997 steel curbs were installed in the roof. 
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6.1.2 Geometrical and Material Survey 

The geometrical and material surveys of the Church were operated through laser scanning technology, 

which allowed to extract the planimetry, the lateral views and the sections of the building.  From the 

right aisle, it is possible to access the relative tower, otherwise the left tower (Fig. 6-1b) is accessible 

through a door from the outside.  

The towers are symmetrical, with a peak height of 40.8 meters above the countryside level, with an 

irregular octagonal cross-section and a planimetric footprint of around 7.40 x 6.92 m2. The belfries 

floors stand at around 25 m of altitude and present four vast arch opening on the sides (Fig. 6-1b). 

Several types of masonry texture, the presence of opening and different heights of the foundations 

constitutes vulnerability elements which contributed to reach the level of damage which is observable 

in Fig. 6-2. 

 
Fig. 6-2 - Crack patterns and material surveys 
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6.2 Preliminary Finite Elements Model 

All the information obtained from geometrical and material survey of the structure have been used to 

create a preliminary, not calibrated, FE model of the church complex, realized into Midas FEA© 

software. This model, as it is common practice in SHM field [52,101,102], is used to conduct a first 

modal analysis aimed to restrict the frequency range to be considered during the identification 

process, and to make a preliminary evaluation of the most sensitive point where the sensors of the 

monitoring system should be positioned. 

 

Fig. 6-3 - Mode shapes resulting from modal analysis over non calibrated FE model 

 As it is possible to see from the results illustrated in Fig. 6-3, four modes are expected in the 

frequency range 0 - 10 Hz, all of them involving the two towers, with the zones near the peaks being 
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the ones subdued to the largest displacements, as it was easily expectable. Modes 1 and 3 involve the 

structure in its integrity.  

Focusing on the bell towers, the first two modes show a marked translational component of 

displacement, which tend to be coupled by a rotational movement for higher modes. It is peculiar to 

observe how the mode shapes of the two towers seem to be antiphasic. From this consideration and 

because of the duality of the investigated structure, in order to have a better comprehension of the 

dynamic behavior of both the towers (indicated, in Fig. 6-4, respectively with subscript “Sx” for the 

left one and “Dx” for the right one), after pre-processing operations, the script extracts the modal 

parameters about the two towers separately.  

6.3 Ambient Vibration Testing - Instrumentation and 

sensors layouts 

The start of the continuous monitoring process has been preceded from a short-time acquisition, 

necessary to assess the actual health status of the two towers and fix the initial conditions in terms of 

modal characteristics. This operation has been executed using 18 monoaxial piezoelectric 

accelerometers, of the PCB 393B12 series, characterized by a sensitivity of 10 V/g, connected to 

Dewesoft© Krypton 4-ch A/D converters. The accelerometers have been fixed through mounting 

supports in groups of three orthogonal sensors, each one monitoring a spatial direction (X, Y, Z). For 

each of the towers, three adjacent corners, at height of around 4m above the bell cell floor, were 

chosen as location, two of the three points in proximity of the positions of MEMS sensors (Fig. 6-4). 

This acquisition lasted 40 minutes with a sampling frequency of 100 Hz. 

 
Fig. 6-4 - Sensors layouts: respectively the continuous monitoring system (in green) and the short-time 

monitoring system (in blue). 
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The continuous monitoring system is composed of four triaxial MEMS accelerometers (of the 

MonoDAQ-E-gMeter), installed in pairs on two opposite corners of the towers (Fig. 6-4). All the 

sensors are connected in chain, assuring the synchronization of the measures. The system is set to 

acquire a time history with a duration of 20 minutes every hour, with a sampling frequency of 100 Hz. 

When the continuous acquisition process stops, acquisition on trigger activates (Fig. 6-5) and, in case 

of  events, registrations start with sampling frequency of 1000 Hz and duration of 90 seconds of pre- 

and 90 seconds of post-triggering. 

 
Fig. 6-5 - Example of acquisition in trigger modality: Cartoceto (PU) seismic event on 29.10.21 at 12:53:10 - 

Magnitude 4.1  

Data are stored in a physical unit located on site and also charged online for the analysis process. 

Environmental data, concerning external temperature, external humidity, and wind speed, are 

collected through a weather station positioned in the proximity of the structure, available for 

consultation on the site http://app.protezionecivile.marche.it/sol/info.sol?lang=it. 

6.4 The automatic identification procedure 

6.4.1 Flow-chart of the method 

Matlab© environment provides a series of modules and toolboxes specifically designed for treatment, 

analysis of signals and identification of systems. Thanks to these powerful tools it is possible to 
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implement a program able to manage a large series of accelerations time histories and extract from 

them the principal modal characteristics of the investigated structure: modal frequencies (f), damping 

ratios (ξ) and mode shapes (φ).  

Stored data are saved in a dedicated file format, so when they are loaded in Matlab© environment 

they are at first converted to text file and a script provide to the organization of data channels, 

ordering the columns of the file and eventually reorganizing the orientation of axis. 

Another file containing all the geometrical information of the structure (nodes positions, connections 

and boundary conditions)  useful for the creation of the experimental model and the successive 

visualization of mode shapes is also imported and a simplified scheme of the building, also showing 

the reference nodes, is generated (Fig. 6-6). 

 
Fig. 6-6 - Geometrical model with highlighted reference nodes. 

Then, after the setting of the analysis parameters, the program starts to process each of the acquisitions 

files, following the procedure summarized in Fig. 6-7.  
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Fig. 6-7 - Flowchart of the proposed methodology 
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The process is inspired to the ones described in [103], and consists of two consecutive step of 

analysis:  

1. a first step where, SSI-cov method is applied to each data file, after the execution of pre-

processing operations, and modal parameters are calculated for different model orders. 

Always in this first block, spurious poles elimination is conducted, applying two different 

sets of validation criteria; 

2. second step where the previous formed sets are subjected to k-means clustering analysis to 

choose the modes which result more similar to the one automatically identified from 

preliminary monitoring data. 

Then modal characteristics are correlated with environmental data (external temperature, relative 

humidity and average wind speed) and their effect is removed applying linear regressive methods. 

In the following paragraphs the steps of the proposed methodology are discussed with more detail. 

6.4.2 Preliminary modal identification  

Data acquired in the preliminary monitoring activity, executed through the piezoelectric sensors, are 

also imported in the program at its start. After a brief pre-process, consisting in detrending, filtering 

and decimation of the signal to the 0-12.5 Hz frequency range, the data are subjected to two 

consecutive identification processes: 

1. the first process is executed in frequency domain, applying an automatic EFDD 

identification, which highlight the most significant modes; 

2. the second step is operated in time domain, recurring to SSI-Cov method implemented with 

the automatic algorithm used for modal tracking process of the continuous monitoring data, 

which will be exposed in the following paragraphs.  

The modal parameters, that will become the targets of the k-means clustering analysis, operated in 

“post-processing step”, are chosen through and iterative procedure of comparison of each j-th modal 

frequencies and mode shape found in time domain with the i-th parameter found in frequency domain, 

until the minimization of the objective function expressed in Eq. 6.1 [53,103]: 

𝛿𝑖,𝑗 =  |
𝑓𝐸𝐹𝐷𝐷

𝑖  −  𝑓𝑆𝑆𝐼
𝑗

𝑓𝐸𝐹𝐷𝐷
𝑖

| + (1 −  𝑀𝐴𝐶𝑖,𝑗)  (6.1) 

In Table 6-1 are reported the identified frequencies for the first four modes. The comparison is 

calculated as follows: 
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Table 6-1 - Comparison of  the modal frequencies of the towers identified from preliminary monitoring data.  

Mode 𝒇𝑺𝒙 [Hz] 𝒇𝑫𝒙 [Hz] ∆𝒇 [%] 

φ1 1.805 1.719 4.76 

φ2 2.318 2.218 4.31 

φ3 4.218 4.198 0.47 

φ4 5.906 5.848 0.98 

The corresponding mode shapes are shown in Fig. 6-8. From these preliminary results is immediately 

obvious how the two towers, even if symmetric, have two dynamic behaviors quite different, with the 

right tower characterized from frequencies values lower in respect to the left and more evident 

torsional component already from the lower modes. This feature also confirms the goodness of the 

initial assumption of applying the OMA identification on the data of the two structures separately. 

 
Fig. 6-8 - Target frequencies and mode shapes obtained from short-time monitoring data analysis 
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6.4.3 Pre-Processing of long-term monitoring data 

Once the continuous monitoring acquisition are imported and the columns of the files are organized, a 

dedicated subroutine takes care of the pre-processing operations, which consists of: 

1. Detrending: acquired signals can sometimes show polynomial trends, not intrinsic to the 

data, which can eventually interfere with data analysis. Such patterns are removed applying a 

linear detrending to the vectors of data (Fig. 6-9); 

 
Fig. 6-9 - Example of detrending of data acquired with one triaxial sensor 

2. Filtering: using “designfilt” function two digital filters are created, a high-pass filter to 

remove disturbance factors for frequencies comprised between 0 and 0.5 Hz, and a low-pass 

finite input response (FIR) filter based on “Kaiser” window (Fig. 6-10) to remove all the 

undesired frequency components from the signal in the range of interest.  
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Fig. 6-10 - Low-pass filter with cut-off frequency at 12.5 Hz (a); Kaiser Window (b) 

3. Decimation: being the range of interest for the lower modes comprised between 0 and 12.5 

Hz, a decimation factor of 8 is applied and data are resampled in the new range. A new 

filtering process is executed in order to remove eventual disturbance given from the 

resampling operation. 

6.4.4 Automatic modal parameters identification process 

6.4.4.1 Stable poles identification 

6.4.4.1.1 SSI-cov method and stabilization diagram 

Pre-processed data are passed, one-by-one, to a sub-routine implementing SSI-cov method [33] able 

to build a State Space model for the system. Into this space, the second order equation of motion is 

converted into a system composed by the so-called state equation (Eq. 6.2) and observation equation 

(Eq. 6.3), which result linear: 

𝒙𝑘+1  =  𝑨𝒙𝑘  +  𝒘𝑘  (6.2) 

𝒚𝑘 = 𝑪𝒙𝑘  +  𝒗𝑘 (6.3) 

where: 

• k is the generic time instant; 

• 𝒙 ∈ ℛ𝑛𝑥1 is the discrete-time state vector; 

• 𝒚 ∈ ℛ𝑙𝑥1 is the vector containing the l output measurements; 
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• 𝑨 ∈ ℛ𝑛𝑥𝑛 is the system matrix that describes all the dynamic information of the system; 

• 𝑪 ∈ ℛ𝑙𝑥𝑛 is the corresponding output matrix; 

• 𝒘 ∈ ℛ𝑛𝑥1 is a white noise vector process representing disturbances and modelling 

inaccuracies; 

• 𝒗 ∈ ℛ𝑙𝑥1 is another white noise vector process representing the measurement noise due to 

sensor inaccuracy. 

From this system it is easy to extract the modal parameters, being them contained into the matrix A 

and C: the eigenvalues of 𝐴 (𝜇𝑘) are the poles of the discrete-time state-space model, related to the 

ones of the continuous-time model (𝜆𝑘);  among these poles, those with positive imaginary 

components are used to get the natural frequencies (𝑓𝑘) and the modal damping ratios (𝜉𝑘), through 

Eq. 6.4: 

𝜆𝑘 =
|𝜇𝑘|

Δ𝑡
⇒ 𝑓𝑘 =

|𝜆𝑘|

2𝜋
 ; 𝜉𝑘 = −

𝑅𝑒(𝜆𝑘)

|𝜆𝑘|
 (6.4) 

As already stated in Chapter 3, in practical applications it is not possible to know from the start what 

is the order value that better fit the description of the dynamic behavior of the monitored structure. So, 

the easiest way to overcome this issue is that of overestimating the modal order, imposing a maximum 

value at least two times greater than the number of expected physical modes, and calculate all the 

responses for each of the steps if incrementation of the model order (starting from the minimum level 

imposed till the max). In particular, in order to reduce the computational cost of calculating modal 

parameters for every model orders, as it is a diffused practice [103], solutions were calculated between 

minimum and maximum model order with a step of five orders. 

Due to the use of high model orders, it is very common to introduce among solutions those related to 

only numerical modes (also called spurious poles or noise modes), having no physical meaning, and 

caused by excessive noise content or inaccuracies in the modelling operations. To discern between the 

physical and noise modes, as already stated in §3.2.1.3, the most adopted method is that of creating 

and interpreting stabilization diagrams, which consists of charts designed with frequencies on the 

abscissa axis and model orders on the ordinate axis, where all of the solutions for the increasing order 

are reported (Fig. 6-11).  
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Fig. 6-11 - Stabilization diagrams 

The interpretation of the stabilization diagram is suitable to be handled through clustering procedures 

as already demonstrated from various works present in literature [104,105]. These procedures are 

mainly devoted to recognizing stables poles on the stabilization diagram that maintain consistency in 

terms of natural frequency, mode shape and modal damping. These poles are those which more 

frequently appears for the various orders, and usually, due to the similarities of the modal features 

they are associated, they manifest a vertical alignment. On the contrary, spurious poles tend to be 

scattered throughout the diagram [26]. 

6.4.4.1.2 Elimination of spurious poles 

Various aspects, linked to the instrumentation (low level of signal-to-noise ratio (SNR), low number 

of sensors) and to the overestimation of the model order, can negatively influence the quality of the 

stabilization diagram, where a high number of spurious poles can appear. It becomes necessary to 

remove these spurious poles, in order to have more accurate results, with identification of physical 

modes. 

The first discrimination that can be done is based on some considerations regarding damping ratios:  

• in normal operating conditions the behavior of the structure is strictly stable, and the 

structure is lightly damped, which implies that the damping ratio corresponding to a 

structural mode should be positive [106];  

• highly damped modes (for instance, with a damping ratio larger than 10%) are not realistic 

quite for sure caused by noise content of the signal [105,107].  

Therefore, a first way to eliminate unstable poles is that of fixing a damping ratio threshold, so that 

poles associated to negative damping ratio or high damping (i.e., damping exceeding a 10% threshold, 
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which seem a conservative value for Civil Engineering structures under ambient and/or operational 

excitations) are discarded (Fig. 6-12). 

 
Fig. 6-12 - Damping check  for removal of spurious poles (b) from the ones identified (a).  

6.4.4.1.3 Validation criteria 

Once most of all spurious poles are removed from stabilization diagram, the subsequent step is aimed 

at detecting the set of modal estimates related with the same model. To do so, the clustering approach 

have been implemented using tolerance values checking the variability of the modal parameters for 

increasing model order of the state-space model (Eq. 6.5).  

The check is generally performed on the variation of the natural frequencies, damping ratios and mode 

shapes (using MAC index and comparing mode shapes estimates obtained for consecutive model 

order). This approach is quite effective, and it is also implemented in well-known commercial 

software used for dynamic tests and OMA analysis. The main disadvantage of this approach is related 

to the number of the tolerance values that need to be tuned requiring a strong human interaction 

during the analysis. 

𝛿𝑓 = |
𝑓i,n − 𝑓j,n+∆n

𝑓i,n

| ∙ 100 ≤ 𝜀𝑓 

(6.5) 𝛿𝜉 = |
𝜉i,n − 𝜉j,n+∆n

𝜉i,n

| ∙ 100 ≤ 𝜀𝜉  

𝑀𝐴𝐶(𝜑𝑖,𝑛 , 𝜑𝑗,𝑛+∆𝑛) =
|𝜑𝑖,𝑛 ∗ 𝜑𝑗,𝑛+∆𝑛|

2

‖𝜑𝑖,𝑛‖
2

2
‖𝜑𝑗,𝑛+∆𝑛‖

2

2 ≥ 𝜀𝑀𝐴𝐶  
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Once also validation criteria are applied (Fig. 6-13), matrices containing all the candidate modal 

parameters, for each model order, are subdued to a second process of clustering, described in the next 

section. 

 
Fig. 6-13 - Reduction of poles after application of validation criteria (b) after removal of spurious poles with 

damping check (a) 

6.4.4.2 “k-means” clustering analysis 

The clustering process herein adopted is based on the definition and on the use of  k-means clustering 

analysis [108,109]. It is a partitioning method, available in Matlab© environment, where a function 

“kmeans” groups data into k mutually exclusive clusters giving back a value identifying the cluster for 

each observation, where the observation and corresponding data are treated as an object occupying a 

space. Function "kmeans” tries to organize the different partitions in order to maximize the distances 

between different clusters and minimize those between the elements of the same one. The 

requirements are a distance metric, adaptable to the data type, and the definition of a number of 

clusters to be built. Unlike hierarchical clustering, which operates on the differences between the 

pairs observation in the data, k-means clustering operates on actual observations, creating only a 

single level of clusters, rather than a multilevel hierarchy of clusters.  

Each cluster in a k-means partition consists of member objects and a centroid or center (Fig. 6-14). 
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Fig. 6-14 - k-mean cluster and centroids 

All of the modal characteristics associated to the stable poles extracted for the different model orders, 

through the procedures described in the previous sections, are grouped into a matrix, which is subdued 

to the k-means clustering. The number of the k partitions is selected pair to the number of the target 

parameters, in order to separate the different parameters. Distances from the centroids are calculated 

automatically  through Euclidean Distance metric and, once the groups are formed the four partitions 

having the higher number of elements are chosen. The frequencies here contained become the 

candidate parameters to be tracked. At least, these characteristics, and the relative mode shapes 

vectors (calculated and stored during the previous identification process) are compared with the target 

parameters, starting from the one which is the nearest to the centroid of the partition, using a two 

terms iterative functions, very similar to the one proposed for the GA process for calibrating Ostra 

Civic Tower, accounting both for frequencies variation both for mode shapes (Eq. 6.6) [103,104] : 

𝛿𝑖,𝑗 =   |
𝑓𝑇𝑎𝑟𝑔𝑒𝑡

𝑖  −  𝑓𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠
𝑗

𝑓𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠
𝑖

| + (1 −  𝑀𝐴𝐶𝑖,𝑗)  (6.6) 

 

6.4.4.3 Preliminary modal tracking results 

At the conclusion of this first section of the script modal tracking of modal frequencies relative to the 

first four modes for both the tower are printed (Fig. 6-15Errore. L'origine riferimento non è stata 

trovata.). Because of interruption of the service due to malfunctioning of the alimentation system, 

some gap are evident in the images. Morover, being the structure located into a non-accessible zone of 
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the city, due to the life risk of accessing the area after the seismic event, the excitation level is often 

too low to permit a satisfactory analysis of data. 

 
Fig. 6-15 - Modal tracking of the frequencies associated to the first four modes: left tower (a), right tower (b) 

From Table 6-2, where the mean values for frequencies and damping ratios are reported, it is possible 

to observe a good correspondence between the identified parameters and the target ones. Moreover, 

the differences in the dynamic behaviors of the two towers is pretty evident, especially for the first and 

third modes, where the gaps are respectively equal to 8.31% and 4.19%. Damping ratios are also quite 

different between themselves, but they result consistent being the values decremental for higher 

modes. 

Table 6-2 - Modal parameters identified for the bell towers and comparison 

 Left Tower Right Tower Comparison 

Mode  fmean [Hz] ξmean [%] fmean [Hz] ξmean [%] |Δf| [%] |Δξ| [%] 

φ1 1.890 1.240 1.733 1.700 8.31 37.10 

φ2 2.226 0.990 2.258 0.860 1.44 13.13 

φ3 4.275 0.450 4.096 0.460 4.19 2.22 

φ4 5.927 0.590 5.877 0.430 0.84 27.12 
 

An interesting phenomenon, highlighted plotting the modal tracked frequencies, is that of the so called 

“freezing condition” (Fig. 6-16), observable on 15.02.2021, day in which the minima temperatures of 
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the period were registered, for both towers. This event consists in a sudden increment of the 

frequencies values due to the increment of stiffness due to the freezing of water particles contained in 

the micro-pores of masonry. As expected, the phenomenon stopped as soon as the temperatures started 

going up and frequencies assumed their trends once again [19,20]. 

 
Fig. 6-16 - Freezing condition in correspondence of the minimum temperature value on 15.02.2021 

6.5 Environmental effects on modal parameters 

In order to develop a successful damage detection process, it is fundamental to detect modal 

characteristics which are strictly linked only to structure. In operative conditions it is evident that this 

is not possible, due to the presence of external factors, mainly constituted by environmental agents, 

such as temperature, humidity and wind, which obviously affects the identified parameters, often 

causing significant variations. Many works report practical examples describing the effects of external 

factor on modal parameters: daily fluctuations of the first natural frequency due to temperature 

variations were observed in many monitoring activities [110], with range of variations of the 

eigenfrequencies also around 5% of the nominal values [18,87,111–113].  

So, it is clear that a correct process of modal tracking should be depurated of these effects. This 

requires a deep knowledge of the factors influencing the structure and more importantly how they are 

linked and in what measure to the modal parameters [112]. The correlation between modal properties 

and environmental effects is usually carried out through a class of algorithms called input-output 

models [113–117].  
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Input-output models are applied in order to establish a relation, usually through linear regression, 

between various sets of external factors, usually constituted by the continuously monitored 

environmental and operational agents exciting the structure, and the extrapolated parameters, in 

particular modal frequencies and damping ratios. Different datasets are needed in order to truly 

understand how and how much each output parameter is influenced by the variation of the input ones, 

so that the model is trained to predict the future outcome of a response parameter starting from known 

inputs (like in the so called “static method”), or to evaluate the output for a previous time step (like in 

“dynamic method”). 

This procedure, once perfectioned, allows to recognize the occurrence of variation in the structural 

behavior (in particular of damage) through the comparison between the predicted data (or “expected”) 

and the ones coming from elaboration of real measured data.  

6.5.1 Multiple Regression Analysis 

As already mentioned in the previous section, Multiple Regression Analysis (MRA) is the most 

common statistical tool adopted for elaboration of input-output models. MRA is a technique which 

allows to evaluate the dependency between a variable and one or more independent factors, usually 

known as predictors. For applications in the context of SHM linked to civil engineering, modal 

parameters (frequencies and damping) are considered as variable and their dependence from 

environmental agents (the predictors) is investigated. The correlation between these factors, once 

established, make possible to predict the outcome of the variable in response to the values assumed by 

the predictors. Also, because of the difference in the percentage of contribution each predictor has on 

the evolution of the output variable, weight coefficients are applied to the independent variables in the 

prediction formulation. 

Given a variable y, dependent only by a single predictor, denoted as x, the regression relationship 

which can be instituted between these two factors is defined as “simple regression”, expressed under 

the formulation of Eq. 6.7: 

𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜀 (6.7) 

Where: 

• 𝜃0 is a the regression parameter known as “intercept”; 

• 𝜃1 is the so-called “regression coefficient”; 

• 𝜀 is called “prediction error” or “residual” and calculates the difference between actual and 

predicted values of y.  
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Due to the polynomial formulation, Eq. 6.7 can be modified through the addition of non-linear terms, 

which is quite an advantage in those cases where the modelling of curvilinear effects becomes 

necessary to correctly estimates the independent variable behavior. The “simple regression” is then 

expressed as shown in Eq. 6.8: 

𝑦 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 + 𝜀 (6.8) 

When more then one predictor are used for the correlation problem, the process is known as “multiple 

regression” (Eq. 6.9): 

𝑦 = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2+. . . +𝜃𝑛𝑥𝑛 + 𝜀 (6.9) 

Eq. 6.7 and Eq. 6.9, valid for expressing the relationship between a certain number of predictors and 

one dependent variable, can also be adapted to the case of more dependent variables, through the use 

of multivariate polynomials, for whose definition the following form can be used: 

𝑦 = 𝑋𝜃 + 𝜀 (6.10) 

Where: 

• y is a [n-by-1] column vector containing the n measures (yk) of the dependent variable (y); 

• X is a [n-by-p] matrix that connects n dependent values of the corresponding p selected 

predictors; 

• θ is a [p-by-1] column vector formed by the p parameters weighting the contribution of each 

independent variable; 

• ε is the [n-by-1] column vector of the prediction errors (εk) that account for measurement 

errors of the element of y and for the effects of other variables not explicitly considered in the 

model.  

Regarding the term accounting for prediction of errors, ε , two properties are attributed to this 

parameter, expressed in Eq. 6.11: 

𝐸[𝜀] = 0 
(6.11) 

𝐶𝑜𝑣[𝜀] = [𝜀 ∙ 𝜀𝑇] = 𝜎𝜀
2 ∙ 𝐼 

Where: 

• E[•] is the expected value operator; 

• [•]T means transpose;  

• I represent the Identity matrix [n-by-n].  
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This implies that the mean value for 𝜀 is zero and that the errors are independent (also their variance is 

constant). 

The selection of the most prominent parameters for the development of a model that correctly 

reproduce the evolution of the dependent variables becomes fundamental, and so the best estimation 

of the θk parameters is required. Generally, the problem is solved recurring to the well known Least 

Squares (LS) method, where the model parameters 𝜃̂ are estimated through the minimization of the 

sum of the squared errors (Eq. 6.12): 

𝜃̂ = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 (6.12) 

During the operations, a common practice consists in the normalization of input and output data, 

which usually is done removing the mean values from each measurements and dividing for the 

variables standard deviation as in Eq. 6.13: 

𝑥̃𝑘 =
𝑥𝑘 − 𝑥̅

𝜎𝑥

  ;   𝑦̃𝑘 =
𝑦𝑘 − 𝑦̅

𝜎𝑦

 (6.13) 

In this way, the origin of the x and y axes corresponds to the “center of gravity” of the data and the 

regression line slope represents the correlation coefficient [118]. 

As the LS method minimizes the sum of the squares of the equation errors, a first quality criterion is 

the value of the Loss Function (LF): 

𝐿𝐹 =
1

𝑁
∑ 𝜀𝑘

2

𝑁

𝑘=1

 (6.14) 

where N is the total number of samples, and the prediction errors are obtained as the difference 

between experimental and estimated values of the output variable. 

Alternatively, in Eq. 6.15, the coefficient of determination R2, expressed as the ratio between two 

variances [119], is proposed as criterium for the evaluation of the quality of the regression model: 

𝑅2 =  1 −
∑ 𝜀𝑘̂

2𝑁
𝑘=1

∑ (𝑦𝑘 − 𝑦̅)2𝑁
𝑘=1

=
∑ (𝑦̂𝑘 − 𝑦̅)2𝑁

𝑘=1

∑ (𝑦𝑘 − 𝑦̅)2𝑁
𝑘=1

 (6.15) 

This coefficient assess the percentage of variation a single predictor has over the total variation of one 

of the considered dependent variables: if the tendency is towards zero, the output variable and the 

considered predictor are quite independent, while a value tendent to one, means that the predictor is 

the only factor accountable for the dependent variable modification. 

In this kind of applications, where the acquisition of dynamic data and environmental ones is not 

executed simultaneously, the use of the so-called dynamic regression models, accounting for the 
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influence of inputs measured at previous time instants, results the most convenient strategy. So, a 

dynamic regression relationship (formulated as in Eq. 6.16) is established between the dependent 

variable at time 𝑘 and values of a single predictor at current time k as well as at (p - 1) previous time 

instants:  

𝑦𝑘 = 𝜃0 + 𝜃1𝑥𝑘 + 𝜃2𝑥𝑘 − 1+. . . +𝜃𝑝𝑥𝑘 − (𝑝 − 1) + 𝜀𝑘 (6.16) 

Where: 

𝑋 = ⌈

𝑥1 ⋯
𝑥2 ⋯

𝑥1 − (𝑝 − 1)

𝑥2 − (𝑝 − 1)

⋮
𝑥𝑛

⋱
⋯

⋮
𝑥𝑛 − (𝑝 − 1)

⌉ (6.17) 

As concerns the environmental parameters selected as predictors, into this work, as it is usual practice 

in literature temperature (external) [°C], relative humidity [%] and average wind speed [m/s] are 

selected, and their influence over frequencies and damping (assumed as dependent variables) is 

studied. During the correlation process, whose results for frequencies are reported in Fig. 6-17, in the 

establishment of the relationship describing the variation of damping ratios (Fig. 6-18), also the 

dependence by frequency has been taken into account, so the regression has been operated using four 

parameters as predictors. 
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Fig. 6-17 - Correlation of frequencies with environmental data 
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Fig. 6-18 - Correlation of damping with frequencies and environmental data 

It is possible to observe a linear increment of frequencies values with the increment of temperature, 

while the relationship with relative humidity is the opposite. As it is remarkable in the first two 

modes, frequencies tend to decrement when wind speeds grow, and this trend is reversed for the last 

two identified modes. It is also evident the high level of uncertainty which characterizes the third 

mode correlation. This occurrence is more likely linked to the low level of Signal to Noise Ratio 

(SNR), being the Cathedral located in a not accessible area of the city which reflects in a lack of 

external sources of excitation. 
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6.6 Monitoring activity results 

At last, the autoregressive model is applied to the data. The training operation, having the objective to 

establish the dependencies necessary to make a prevision of the modal parameters output from the 

environmental conditions, is operated over the 80% of data, collected between the first day of 

monitoring till the end of April 2021. The prevision is then elaborated over the remaining data. The 

results for frequencies modal tracking, for both towers, is illustrated in Fig. 6-19, where the 

provisional data (in black) are superimposed over the original identified frequencies. 

 
Fig. 6-19 - Modal tracking of frequencies after removal of environmental effects (in black) 

In Table 6-3 are reported the average values for the tracked provisional frequencies. Their comparison 

shows the same trend of §6.3.4.3, confirming the consistency of results of the automatic procedure. 

Table 6-3 - Comparison of the twin towers modal parameters after removal of environmental effects 

 Left Tower Right Tower Comparison 

Mode  fpred,mean 
[Hz] 

ξpred,mean 
[%] 

fpred,mean 
[Hz] 

ξpred,mean 
[%] |Δf| [%] |Δξ| [%] 

φ1 1.892 1.270 1.737 1.690 8.19 33.07 

φ2 2.222 1.030 2.251 0.880 1.31 14.56 

φ3 4.281 0.470 4.100 0.480 4.23 2.13 

φ4 5.919 0.610 5.878 0.450 0.69 26.23 
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Conclusions 
 

The thesis is focused on the application OMA in the context of vibration-based SHM  in order to 

assess the health conditions of different kinds of structures, from infrastructures to cultural heritage 

buildings.  

Starting from an overview of the most common OMA algorithms, the main methodologies for 

application of identification process are illustrated: Peak Picking and FDD methods, developed in the 

frequency domain, and the SSI-Cov and the SSI-Data methods, implemented in the time domain. 

Then practical examples of applications of these methods are presented in Chapter 4 and Chapter 5. 

The analysis of the health status of a bridge and an airport hangar cover are showed, at first. Then 

another possible use of the technique, more suited for historical buildings analysis, is presented and a 

possible new automated approach for model updating of FE model is proposed. All these examples 

are meant to furnish a clear understand of the methodology that converged in the elaboration of the 

main theme of the research: the implementation of an automatic algorithm able to manage the data 

coming from the continuous dynamic monitoring of the bell towers of the Dome of Camerino, a 

monument strongly affected by the seismic events of Central Italy. In this context an element of 

innovation is constituted by the type of sensor adopted for the monitoring activity, which are MEMS 

based accelerometers, a pretty new type of sensors which are starting to be used in civil engineering 

applications, due to their advantages in terms of economy and easy installation. 

The proposed algorithm, developed in Matlab© environment, is able to identify the main modes of the 

structure, through the application of SSI-Cov method. A particular clustering analysis is adopted in 

order to extract the physical modes of the structure, based on k-means clustering analysis, having as 

target parameters those coming from the automatic analysis of data acquired on the date of installation 

of the continuous monitoring system through the classical methodology. 

For each of the tower the first four modes are successfully identified. Then data are correlated with 

environmental parameters for the removal of the effects linked to these agents. 

The success of the automatic process also confirms the validity of MEMS sensors for long-term 

applications. 

At last, due to the potentiality of the proposed methodology possible future development could be the 

implementation of another module for damage detection, able to provide possible damage scenarios, 

useful for preservation of structures and designing of interventions. Moreover, the coupling of this 
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algorithm with genetic algorithm model updating procedures could provide finite elements models 

always updated which can produce important information on the health status of monitored structures. 
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