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Sommario

Il settore industriale negli ultimi anni sta vivendo una radicale trasformazione legata
alle nuove esigenze del mercato. In risposta a queste ultime, la robotica sta propo-
nendo da una parte soluzioni collaborative in modo da rendere più rapida l’installazione
dei robot semplificandone la programmazione e la messa in opera e consentendo una
interazione uomo-macchina, dall’altra sta affinando le prestazioni dei robot più pro-
priamente industriali in modo da renderli sempre più veloci e accurati. In questo
secondo ambito, la versatilità e la rapidità di risposta al mercato richiesta ai produttori
alimenta quindi la ricerca di soluzioni tecniche orientate alla riduzione dei tempi ciclo
con conseguente contenimento dei costi di produzione.

I materiali, le taglie dei motori elettrici utilizzati, le architetture cinematiche e le
scelte progettuali in genere sono fattori importanti che incidono sulle prestazioni di-
namiche dei robot. Ben noto è l’esempio dei robot a cinematica parallela utilizzati
in numerosi settori per le elevate accelerazioni e velocità di esercizio che sono in
grado di sviluppare. L’alleggerimento delle parti meccaniche in movimento consente
una riduzione delle inerzie in modo da aumentare i range di velocità e accelerazione
raggiungibili. Queste scelte meccaniche comportano l’insorgere di risposte dinamiche
indesiderate, legate alla maggiore incidenza della flessibilità nella dinamica delle mac-
chine.

Il presente lavoro è focalizzato sulla dinamica dei meccanismi a cinematica paral-
lela nell’ipotesi che alcuni membri, resi più leggeri con una riduzione dello spessore
dei profili meccanici, siano soggetti a deformazione elastica. La loro cedevolezza
determina infatti errori nell’inseguimento di traiettoria oltre che differenti comporta-
menti nella stabilizzazione di posa all’inizio e alla fine del movimento assegnato.

Nel presente lavoro verranno presentati dei modelli dinamici per i link flessibili dei
robot, i quali verranno utilizzati per la creazione di due modelli elasto-dinamici di
robot a cinematica parallela a due gradi di libertà. Nel primo modello verrà appli-
cata la Formulazione Aumentata di Lagrange nella ricerca delle relative equazioni del
moto, mentre nel secondo verrà impiegato il Principio dei Lavori Virtuali con un set
di parametri minimo.

Un modello ottimale deve infatti fornire le informazioni sulla dinamica flessibile
di un robot nella maniera più efficiente possibile dal punto di vista computazionale.
Tale criterio ha orientato la scelta del modello più promettente in termini di tempo di
calcolo.

La scelta dei parametri fisici e geometrici del robot preso come esempio per lo

xi



✐

✐

“PhDthesis” — 2022/2/14 — 21:43 — page xii — #12
✐

✐

✐

✐

✐

✐

studio è stata trattata nel dettaglio considerando le problematiche che si possono ver-
ificare nel caso dell’allestimento di un banco prova, dove si suppone che la posizione
dell’end effector venga acquisita con un sistema di visione.

I parametri geometrici hanno certamente una influenza sia sui modi di vibrare dei
link flessibili che sulla geometria e dimensione dello spazio di lavoro: questi sono
stati scelti in modo da far cadere le prime tre frequenze naturali delle aste all’interno
di un range assegnato, in linea con la strumentazione disponibile nel laboratorio di
Meccatronica e Robotica Industriale (MIR) dell’Università Politecnica delle Marche.

Il modello scelto è stato prima verificato tramite un modello agli elementi finiti e
poi analizzato nel dettaglio. In particolare, è stato possibile ricavare delle mappe di
cedevolezza, le quali hanno evidenziato le regioni dello spazio di lavoro del robot a
maggiore cedevolezza, così che il progettista ne possa tenere conto in fase di proget-
tazione e durante la fase di pianificazione dei task. É stato infine valutata l’efficienza
computazionale del modello mettendolo a confronto con altri ottenuti per via numer-
ica e per via software, da cui emergono le possibilità di implementazione dello stesso
in algoritmi di controllo basati sul modello.

xii
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Abstract

In recent years, the industrial sector has undergone a radical transformation linked to
new market needs. In response to the latter, robotics is proposing, on the one hand,
collaborative solutions in order to speed up the installation of robots, simplifying their
programming and implementation and allowing human-machine interaction, and, on
the other hand, it is refining the performances of industrial robots in order to make
them faster and more accurate. In this second area, the versatility and rapidity of
response to the market feeds the manufacturers’ search for technical solutions oriented
to the reduction of cycle times with consequent containment of production costs.

The materials, the sizes of the electric motors used, the kinematic architectures and
the design choices in general are important factors that affect the dynamic performance
of robots. The example of parallel kinematic robots is well known and is used in
many sectors for the high accelerations and operating speeds that they are able to
develop. The lightening of their moving mechanical parts allows a reduction of the
inertia in order to increase the speed and acceleration ranges that they can reach. These
mechanical choices lead to the onset of undesirable dynamic responses, related to the
greater incidence of flexibility in the dynamics of the machines.

The present work is focused on the dynamics of Parallel Kinematic Mechanisms
(PKMs) under the hypothesis that some members, made lighter by reducing the thick-
ness of their mechanical profiles, are subject to elastic deformation. In fact, their
compliance determines errors in trajectory tracking as well as different behaviors in
the stabilization of pose at the beginning and at the end of the assigned movement.

In the present work, dynamic models for flexible robot links will be presented and
used to create two elasto-dynamic models of robots with parallel kinematics with two
degrees of freedom. In the first model, the Augmented Lagrange Formulation will be
applied in the search for the relevant equations of motion, while in the second, the
Principle of Virtual Works with a minimum set of parameters will be employed.

In fact, an optimal model must provide the information about the flexible dynamics
of a robot in the most computationally efficient way. This criterion guided the choice
of the most promising model in terms of computational time.

The choice of the physical and geometrical parameters of the robot taken as an
example for the study has been treated in detail considering the problems that may
occur in the case of the setup of a test bench, where it is assumed that the position of
the end effector is acquired with a vision system.

Geometrical parameters certainly have an influence both on the vibration modes of

xiii
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the flexible links and on the geometry and size of the working space: these have been
chosen so that the first three natural frequencies of the rods fall within an assigned
range, in line with the instrumentation available in the laboratory of Mechatronics and
Industrial Robotics (MIR) of the Polytechnic University of Marche.

The chosen model has been first verified by means of a finite element model and
then analyzed in detail. In particular, it has been possible to derive compliance maps,
which highlighted the regions of the robot workspace with higher compliant behaviour
so that the designer could take them into account during the design phase and during
the task planning phase. Finally, the computational efficiency of the model has been
evaluated by comparing it with others obtained numerically and via software, from
which the possibilities of implementing it in model-based control algorithms emerge.
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Chapter 1.

Introduction

1.1. Motivation

One of the main reasons for the well-being that the most developed countries are
experiencing today is the relative low cost that consumer goods have achieved in the
industrial age. Despite the progressive increase in the price of materials, which is
affected by the scarcity of resources at a global level, the technological evolution in
the automation and robotics sector has made it possible to reduce production costs
and at the same time increase product quality. Industrial robots have certainly played
a central role in this evolutionary process, allowing an ever higher level of flexibility
to meet the demand for smaller production batches.

Both serial and parallel robots are now widespread in the most varied sectors, inte-
grated in workcells for palletizing, for the enslavement of CNC machines, for handling
in general. They have pros and cons related to their intrinsic characteristics, that make
them suitable for different functions.

The advantage of using robots in manufacturing processes is related to their ability
to perform continuously and without loss of performance tasks that would be particu-
larly tiring for a human operator.

Accuracy and repeatability represent two important parameters that define the ef-
fectiveness of a robot in performing a certain operation. In particular, the latter has a
greater impact on the choice of the robot. It is the maximum error made by the robot
in returning to a previously programmed position, whereas accuracy is the error or the
difference between the desired position and the one that actually took place.

These parameters are mainly affected by three sources of error: the first one, which
has also a greater impact on the positioning of a robot end-effector, concerns control
of motors, the second is represented by the compliance of joints. Typically, it is of
lesser entity if compared with the former. The last one, which has the least impact
compared to the others, is represented by the compliance of members. Obviously,
machining tolerances induce further inaccuracies in mechanics, but the latter can be
evaluated and corrected by means of a calibration procedure.

Presently, the industrial trend is oriented towards two mainstreams: on the one
hand, applications in which robots work alongside with the operator by cooperating in

1
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Chapter 1. Introduction

various tasks, or more technically called applications collaborative robotics by means
of cobots, on the other hand, fast applications where the fundamental interest is the
reduction of the cost of production, which can be achieved by reducing the production
time while ensuring the same quality level.

An in-depth analysis of the second target reveals that, in order to carry out a task
more and more quickly, an increase of torque values or conversely a lightening of robot
links is required in order to move the robot end-effector faster, sometimes using both
solutions. These options lead to the onset of dynamic phenomena that determine a
worsening of repeatability and accuracy with a consequent decline in the performance
of the robot in trajectory tracking.

In collaborative and soft robotics, the speed of robots cannot be high for obvious
reasons but, at the same time, there is a tendency to decrease their link masses by
thinning the thickness of their mechanical parts or to reduce the latter mechanical
stiffness, in order to prevent injuries of operators when a robot accidentally hits them
during a task execution.

Therefore, an investigation and study of these aspects has the aim of improving
the operating conditions of a widespread type of robots, quantifying and taking into
account their incidence in the design of a robot and its controller.

1.2. State of art

Early research on the study and control of robots with flexible links dates back to the
seventies. Research on this topic was encouraged and guided by two sectors: Industry
and Space.

The former was mainly focused on increasing the dynamic performance of robots,
namely high velocity and acceleration, providing them with a light mechanics and
a resulting low inertia in order to reduce the cycle time of industrial operations and
improve their productivity. Analogously, the weight of the equipment is a main de-
terminant in the success of space expeditions, because cost is proportional to mass in
such field. Therefore robots with high reaches must have a slight and slender mechan-
ics.

Winfrey is one of the first authors to have addressed the flexibility in robot dynamics
[1, 2], motivated by the fact that lighter and more slender robots are more subject to
elastic deformation. He studied the deflection of the links of a four-bar mechanism
working at high speed. Moreover, a couple of years later Book in his Ph.D. dissertation
[3] began to deal with the topic of flexible robotics, proposing in the following period
many other works [4–6]. In particular in [6], a recursive approach is described for
writing the dynamics of robots with flexible links, which are assumed to have small
displacements during operation.

In the aerospace sector, the first contributions related to the vibration control of
dynamic systems can be found in [7], in which a feasibility analysis is made regarding

2
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1.2. State of art

an active damping system that acts on a robot in order to attenuate the vibrations
associated with the handling of a payload. Krishnamurthy and Chao [8] presented a
dynamic model of two cooperating manipulators with the same kinematic structure
based on two flexible links with two revolute joints and a rigid link grasped by the
two end-effectors in a closed kinematic scheme. For other studies concerning these
issues the scientific literature offers many other readings: Cyril et al. [9], Gouliaev
and Zarrazhina [10], who studied flexible manipulators used for space applications,
whereas a control method that uses input shaping was presented by Swada [11] in
order to eliminate the vibrations acting on the arms of manipulators.

Another field in which flexible robotics found application is nuclear power plants,
in particular many examples can be cited: concerning the storage of waste, Jansen
[12] studied a long-reach-manipulation system for waste storage tank remediation and
Kress [13] dealt with the modeling and control of a waste tank cleanup manipulator.
Recently, Dubus, David and Measson [14] have investigated the application of a long
reach elastic link inspection robot for the International Thermonuclear Experimental
Reactor (ITER).

Another application in which aspects of flexible robotics are investigated is reported
by Lin and Fu [15] and Chang and Fu [16], who analyzed a flexible manipulation
system for automated deburring operation; in addition, the study of the dynamics of
machines moving at high speed was treated using finite element models by Yang and
Sadler [17] and Imdad Imam [18].

1.2.1. Serial Kinematic Machines (SKMs)

It can be noted from the mentioned works that their authors divided themselves into
the study of flexible manipulators with serial or parallel kinematics.

Among the many studies in the literature, Oakley [19] presents a model for a 2R
robot with a mass at the proximal end that acts as a payload and presents also the
design of a non-linear controller for vibration suppression. In this study the proximal
link is considered rigid whereas the distal one is considered flexible; in particular,
the deformation of such link is modeled using the modal superposition, which will
be addressed deeply in the following of the present work. Analogously, De Luca
and Siciliano [20, 21] present a model for a 2R serial robot using the Assume Mode
Method to model the deformation of the robot links, but unlike Oakley, they assume a
flexibility for both robot links.

Many other works on the topic are proposed, such as the one of Paden et al. [22],
who use finite element formulation for the modeling of the link deformation, whereas
a work about an algorithm to solve the inverse dynamics of a 2R robot with both
flexible links is proposed by Asada [23].
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Chapter 1. Introduction

1.2.2. Parallel Kinematics Machines (PKMs)

Although most of the authors have worked on mechanisms with serial kinematics,
several studies on parallel kinematics machines are available in the literature, albeit
to a lesser extent: in particular one of the first studies presented, as previously men-
tioned, is the one of Winfrey and Imdad [18,24], who focused their study on a four-bar
mechanism subject to dynamic loads because of the high speed. A further study by
Turcic [25] presents a study on a four-bar mechanism in which the deformation of the
links is modeled using a finite element formulation while the dynamics equations are
obtained using the Lagrangian approach.

A work on a more complex manipulator was presented by Gasparetto [26], in par-
ticular he presented a general model applied to a five-bar mechanism where all the
links are flexible. Deformation is modeled using a finite element approach, while the
equations of motion are obtained by means of the principle of virtual works.
A different approach was presented by Briot and Khalil in [27], where they wrote the
elastodynamic equations of a flexible five-bar linkage by means of the Principle of
Virtual Power.
Wang [28] presented an approach for modeling parallel kinematics manipulators through
sub-structures, in particular the deformation of the members is modeled using a finite
element approach and the equations of motion are determined through the Lagrange
augmented formulation approach.

A method similar to that of Gasparetto was proposed by Vidoni [29], whereas Mah-
moodi [30] proposed a work in which the shape functions associated to the flexible
links are evaluated in such a way that they best represented the dynamic behavior of
the system, expressed as a function of the payload mass ratio on flexible mass links.
The dynamics equations of the manipulator were obtained using the Lagrange for-
mulation, and the dynamic response of the manipulator, whose model is obtained by
superimposing different shape functions, is compared with a FEM model.

1.2.3. Modeling techniques

Another relevant aspect in the study of flexible robotics, which has a direct connection
with the different kinematic architecture of manipulators, is the availability of differ-
ent methodologies aimed at modeling the deformation of flexible links. Focusing on
the most widespread approaches, they are: Assume Mode Method (AMM), Finite
Element Method (FEM) and Lumped Parameter Method (LPM):

• The Assume Mode Method, which will be discussed in detail later, was used for
example by Cannon [31], Chalhoub [32] and Siciliano [20]; this method estab-
lishes that the deformation of a flexible link associated to the dynamic effects is
the sum of several suitably weighted functions; the latter are dependent on the
links boundary conditions, namely how they are constrained at their ends. Since
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each function corresponds to a way of vibrating and a finite number of modes
is always used to approximate the link elastic behaviour, a problem can arise
because an error is introduced in the deformation modeling due to the neglect-
ing of high frequency modes of vibration. This effect, called spillover", was
studied by Balas [33], who proposes a control algorithm as well as discussing
its effects.

• The Finite Element Approach was used for example by Nagarajan [34], Tokhi
[35], Theodore [36] and [37]. The latter compared it with the Assumed Modes
Method. Regarding FEM, it was highlighted that the precision of the model is
related to the number of elements in which the flexible links are divided, the
increase of which also leads to an increase in the computational load, while
regarding AMM, and/or to the degree of the shape functions [38]. This second
approach is less common.

• Lumped Parameter Method was used for example by Zhu [39] and Khalil [40].
The main idea is a discretization of the flexible links by means of concentrated
masses, which are connected to each other by means of springs and dampers.

The mentioned references represent only a small part of the works that can be found
in the literature on flexible robotics; notably a major review was made by Dwivedy in
2006 [41].

1.2.4. Outline of the dissertation

In order to present this work in the most organic way, the following structure has been
considered:

• Chapter I opens with the reasons that motivated this work and a section with
the most relevant work at the state of the art. Cited works are organized both
chronologically (based on human challenges in different periods) and by type of
robot kinematic architecture, so that the reader can fully understand why some
authors have moved towards certain approaches over others.

• Chapter II proposes two methodologies for modeling the deformation of the
beam in small displacements. In particular, the use of Bézier polynomials is
considered and compared with exact mathematical solutions. Strengths and
weaknesses of each model have been highlighted in order to lay the founda-
tion for a conscious choice of the most suitable modeling approach.

• Chapter III introduces the main concepts needed to develop elasto-dynamic
models of parallel mechanisms. In particular, two general approaches are pre-
sented for modeling robots with flexible links. They are applied to two robots
with a parallel kinematics and with two degrees of freedom. The first approach
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that is presented exploits the Bézier polynomials to describe the deformation
of the links, while the dynamics equations are obtained using Lagrange’s aug-
mented formulation; differently, the second approach allows to model the defor-
mation of the links by means of the Assumed Modes Method, while the dynam-
ics equations are obtained through the principle of virtual works. The chapter
ends by choosing the most convenient approach in terms of efficiency so that an
effective model of a parallel kinematics machine can be proposed and analysed.

• Chapter IV represents the heart of this work. In particular, an introductory
section is focused on the writing of the elasto-dynamic model of a parallel kine-
matics manipulator two degrees of freedom. The chapter presents the values
of its geometric parameters, explaining the reasons of the choices made. The
work then continues by exposing the numerical simulation of this model, which
is compared with the results an analogous simulation based on a Finite Element
model. The last part of the chapter is dedicated to examining in detail the results
obtained for the model, finally highlighting its strengths from the point of view
of calculation time when compared to all the other models used in this work.

• Chapter V is the concluding chapter where results are summarized and some
conclusions are drawn. Eventually, some suggestions for future research are
given.

1.3. Contributions

Energy efficiency of machines, together with the need to maintain their performance
at high levels in strategic sectors such as industrial, biomedical and space sectors,
are orienting the scientific research towards systems capable of being more and more
precise, performing, but also more light and flexible, to ensure operator safety and
reduce consumption.

The concept of elaborating an elasto-dynamic model of a mechanism that, used in
a control scheme, can improve its performance in terms of static and dynamic accu-
racy and repeatability goes in the direction shown above. One of the main difficulties
encountered in modeling is the intrinsic complexity of dynamics of mechanical sys-
tems, especially when flexibility is taken into account. This work has tried to make
this modeling easier and more efficient, providing a methodology specifically suited
for parallel kinematics machines, although results are still preliminary and some im-
provements need to be made.

In addition, the issues addressed in this work can find application in industrial
robotics, with companies that have in their product portfolio fast robots with slen-
der arms and a parallel kinematics. Two well known examples can be found in Figure
1.1:
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(a) FlexPicker (b) Delta robot

Figure 1.1.: Industrial robots with slender links. Courtesy of ABB (left) and Fanuc
(right)

This work provides an integration to the basic theory of dynamics of continuous
systems when it is applied to parallel kinematic machines, showing its advantages and
disadvantages.

1.4. Publications arising from the research

• Carbonari, L, Brillarelli, S, Palpacelli, M, and Callegari, M., "Analysis of a
Multibody Elastodynamic Model for Closed-Loop Kinematic Mechanisms".
Proceedings of the ASME 2019 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference. Vol-

ume 9: 15th IEEE/ASME International Conference on Mechatronic and Em-

bedded Systems and Applications. Anaheim, California, USA. August 18–21,
2019.

• Brillarelli, S, and Palpacelli, M-C, "Design of a testbench for validating multi-
body flexible modeld aimed at reducing oscillations in parallel kinematic ma-
chines withflexible links". Proceedings of the 2nd International Jc-IFToMM

Symposium in conjunction with the 25th Symposium on Theory of Machines

and Mechanisms. Tokyo, Japan. October 25–26, 2019.

• Brillarelli, S, and Palpacelli, M-C, "An effective approach to model parallel
robots with flexible links". Proceedings of the 17th IEEE/ASME International

Conference on Mechatronic and Embedded Systems and Applications (MESA),

IDETC-CIE 2021 online conference.. August 17–19, 2021.
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Chapter 2.

Modeling of a flexible beam

Many approaches can be found in the literature to model the flexibility of links in
compliant mechanical systems. In this section, two useful modeling tools are retrieved
and compared.

2.1. Bézier curve in polynomial form

The first approach proposed to model the deformation of a flexible beam is based
on the theory developed by Selig and Ding in [42] with the use of Bézier curves in
polynomial form. Figure 2.1 shows some important geometrical details. Each cross
section of the elastic beam can be localized by a reference frame attached to it with
the origin coincident with its centroid. The x and y axes are aligned with the principal
directions of the section. Each reference frame will be referred to a local reference
frame  i✉ located at the beginning of the beam.

The state of the flexible beam is described by means of a deflection screw, which
represents a small displacement from the undeformed beam to its deformed configu-
ration in terms of both rotation and translation elements: s ✏ #θx, θy, θz, vx, vy, vz$

T .

The deformation s♣µ, t& that a generic section of the beam undergoes is a function
of both the distance µ from the origin of the reference frame  i✉ along the undeformed
middle axis of the beam, in this case the z axis, and time, according to the following

{i} x

y z

{ }x

y
z

s

l
ip

Figure 2.1.: Kinematic model of the flexible beam using a Bézier curve
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Chapter 2. Modeling of a flexible beam

equation written for a beam of unit length:

s♣µ, t! ✏

n
➳

i✏0

✄

n

i

☛

µi
♣1 ✁ µ!

n✁isi♣t!. (2.1)

In equation (2.1), n represents the degree of the polynomial used and si♣t! is the
six-dimensional time dependent deflection screw related to the ith degree of the poly-
nomial. More explicitly, the expression of s♣µ, t! in (2.1) is valid only locally and
for a beam of unit length. In order to expand this approach to a beam of any length,
equation (2.1) has to be modified as follows:

s♣µ, t! ✏

n
➳

i✏0

1

♣b ✁ a!n

✄

n

i

☛

♣µ ✁ a!i
♣b ✁ µ!

n✁isi♣t!. (2.2)

The expression shown above allows to define a Bézier curve from a, taken as the
staring value along the undeformed beam, to b, considered as the final value. These
assume the values a ✏ 0 and b ✏ lf for a generic beam of length lf . Since expres-
sion (2.1) represents the local deformation of the beam in local coordinates, a roto-
translation is needed to describe the deformation with respect to a reference frame
that lies on the beam end.

Using the same approach in [42], the required transformation has the form:

0s ✏ H s♣µ, t! (2.3)

where matrixes T and H are defined as follows:

T ✏

✔

✖

✖

✖

✖

✕

0 ✁1 0

1 0 0

0 0 0

✜

✣

✣

✣

✣

✢

, H ✏

✔

✖

✕

I 0

µT I

✜

✣

✢

, (2.4)

with I a 3 ✂ 3 identity matrix and 0 a 3 ✂ 3 null matrix with all zeros. After having
defined the deformation function, the next step is the application of the kinematic
congruence using the Timoshenko beam theory. A partial derivative of equation (2.2)
provides:

s✶ ✏
d

dµ
s % Bs ✏

☎

✝

✝

✝

✝

✝

✝

✝

✆

θ✶x
θ✶y
θ✶z

v✶x ✁ θy

v✶y % θx

v✶z

☞

✍

✍

✍

✍

✍

✍

✍

✌

, (2.5)

with B defined as:
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2.1. Bézier curve in polynomial form

B ✏

✄

0 0

T 0

☛

. (2.6)

Said k a diagonal spring matrix for an infinitesimal slice of the beam, it has the
form:

k ✏ diag♣EJx, EJy, EJz, axGA, ayGA, EA", (2.7)

where E, A, Ji represent respectively the Young module, the cross section area of the
beam and the area integrals, and ax, ay are constant scalars depending on the section
shape. Moreover, n is the diagonal inertia matrix for unit of length:

n ✏ ρ diag♣Jx, Jy, Jz, A, A, A", (2.8)

where ρ is the density of the material.

It follows the expression of the potential energy:

Ep ✏
1

2

➺ lf

0

s✶

T
k s✶ dµ, (2.9)

and the expression of the kinetic energy:

Ek ✏
1

2

➺ lf

0

✾sT n ✾s dµ. (2.10)

Therefore, the Lagrangian function can be now written as:

L ✏
1

2

➺ lf

0

♣ ✾sT n ✾s✁ s✶

T
k s✶

" dµ. (2.11)

From the Lagrangian function it is possible to derive the equations of motion. Said
k✶ the following matrix:

k✶

✏ ✁BT k✁ k B, (2.12)

the resulting dynamic equation is:

ks✷

$ k✶s✶

✁ n✿s ✏ 0. (2.13)

As already demonstrated by many authors, the performance of this model are really
influenced by the choice of the polynomial degree. In order to highlight this effect,
a modal analysis of a beam can be presented as the degree of the polynomial varies.
Equation (2.13) can be written in the form:
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Chapter 2. Modeling of a flexible beam

M✿s K ✾s ✏ 0, (2.14)

so that the problem of finding the normal frequencies can be translated in a search of
the eigenvalues of the dynamic matrix A defined as:

A ✏ M✁1K.

Such analysis is applied to a beam clamped at one end and free at the other end. All
the geometrical parameter considered for the analysis are shown in table 2.1, while
the natural flexural frequencies are shown in table 2.2.

Geometrical property

length of beam l 0.3 "m#

section parameter b x h 10x0.5 "mm#

area integral Jx
b✂h3

12
"m4

#

area integral Jy
b✂h3

12
"m4

#

area integral Jz
b✂h3

12
"m4

#

section form factor ax
2

3

Young modul E 200 "GPa#

Table 2.1.: Values of the geometrical properties

Normal modes at increasing values of polynomial degree

Frequencies I II III IV V VI VII VIII

D
eg

re
e

o
f

p
o
ly

n
o
m

ia
ls n ✏ 3 11.843 2108

n ✏ 4 6.189 79.59 3690.9

n ✏ 5 5.231 36.659 5627.9

n ✏ 6 4.955 31.28 100.18 563.6 7920.5

n ✏ 7 4.82 30,338 84.548 198.15 1078.2 10570

n ✏ 8 4.7414 29.808 83.327 162.22 339.01 1858.2 13579

n ✏ 9 4.693 29.464 82.649 161.17 265.62 533.9 2976.1 16951

Table 2.2.: Values of the normal frequencies in [Hz]
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x

y

+

O

T(u+du)

N(u+du)

M(u+du)

T(u)

N(u)

M(u)

i

j

du

Figure 2.2.: Small segment of a flexible beam: internal force system

2.2. Assumed Modes Method

A second approach used in this work to model the dynamics of a flexible beam is the
Assumed Modes Method [38]. The latter allows to discretize the beam, which is a
distributed-parameter system, starting with the discretization of the boundary-value
problem in an implicit manner. It is a method that gives the opportunity to formulate
the forced response problem for a discretized system, rather than focusing only on
its free response. Typically the equations of motion of a flexible beam derive from a
Lagrangian approach. In the following, the idea of modeling the dynamic behaviour
of a flexible beam by means of a linear combination of assumed funtions is inherited
from the Assume Modes Theory.

2.2.1. Vibrating modes of a flexible beam

The response of a flexible beam in bending vibration can be found according to the
following procedure. Called v the transverse displacement of a small segment along
the y direction of the beam, as shown in Figure 2.2, the rotation equilibrium about the
z axis and the translation equilibrium along the y axis provide:

  M♣u du" ✁M♣u"  T ♣u du"du ✏ Iz

❇

2v✶

❇t2
(2.15)

 & T ♣u du" ✁ T ♣u" ✏ ρAdu
❇

2v

❇t2
(2.16)

where du is the infinitesimal segment along the middle axis of the beam, A is the
area of the cross section, ρ is the density of the material, Iz is the cross-sectional
area moment of inertia, T and M are the shearing force and the bending moment
respectively, and v✶

✏ ❇v④❇u is the slope of the beam, where the operator ♣✶" means
a derivative over u. A development of both T and M expressions in (2.16) at the
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Chapter 2. Modeling of a flexible beam

♣u ! du" section up to the first order provides:

M♣u ! du" ✏ M♣u" !

❇M♣u"

❇u
du ! ... (2.17)

T ♣u ! du" ✏ T ♣u" !

❇T ♣u"

❇u
du ! ... (2.18)

Such expressions can be used in (2.16) to replace their corresponding terms so that:

!  M♣u" !

❇M♣u"

❇u
du ✁ M♣u" ! ♣T ♣u" !

❇T ♣u"

❇u
du"du ✏ Iz

d2v✶

dt2
(2.19)

! & T ♣u" !

❇T ♣u"

❇u
du ✁ T ♣u" ✏ ρAdu

❇

2v

❇t2
(2.20)

Some assumptions are typically made in order to solve the previous equations [38]:

• small displacements are hypothesized;

• the axial load N shown in Figure 2.2 is neglected 1;

• the cross-sectional area moment of inertia Iz is neglected;

• the angular acceleration is neglected 2.

These assumptions lead to:

!  

❇M♣u"

❇u
du ✏ ✁T ♣u" (2.21)

! & T ✶

✏ ρA
❇

2v

❇t2
(2.22)

As well-known from the mechanics of materials, curvature k in the hypothesis of
small displacements is directly related to the moment according to the expression
M ✏ EIκ. It follows from (2.22) the partial differential equation for bending vibra-
tion of a beam:

✁

❇

2EIzv✷

♣u, t"

❇u2
✏ ρA

❇

2v♣u, t"

❇t2
. (2.23)

Equation (2.23) has to be solved applying the boundary conditions that depend on
how the beam is constrained and on the type of loads. It can be solved separating the
position variable u from time t as follows:

1in [43] this assumption is removed.
2a work where it’s possible to see a model with this approach is [44].

14



✐

✐

“PhDthesis” — 2022/2/14 — 21:43 — page 15 — #35
✐

✐

✐

✐

✐

✐

2.2. Assumed Modes Method

v♣u, t! ✏

✽

➳

i✏1

χi♣u! ηi♣t!, (2.24)

where χi♣u! represents the modal form, while ηi♣t! is the harmonic function related to
the ith natural frequency. By combining (2.24) and (2.23) and considering a constant
Young modulus and cross section for the beam, it follows:

✁

EIz

ρA

1

χi♣u!

d4χi♣u!

du4
✏

✿ηi♣t!

ηi♣t!
✏ λ. (2.25)

in which the partial derivative has been replaced with the total derivative because χ

depends only on u and η only on t. On the right of equation (2.25) it is easy to see
that:

✿η♣t! ✁ λ η♣t! ✏ 0. (2.26)

If λ → 0 then the two roots in (2.26) are all positive or one positive and one negative.
A positive root means a divergent solution that can’t be accepted in the hypothesis of
small displacements, therefore It must be λ ➔ 0. Further developments provide:

λ ✏ ✁ω2 (2.27)

s1,2 ✏

❄

λ ✏ ✟ jω (2.28)

η♣t! ✏ c1ejωt
( c2e✁jωt (2.29)

From expression (2.25) it is also:

λ ✏ ✁ω2

i (2.30)

✁

EIz

ρA

1

χi♣u!

d2χi♣u!

du2
✏

✿ηi♣t!

ηi♣t!
✏ ✁ω2

i (2.31)

✁

EIz

ρA

1

χi♣u!

d4χi♣u!

du4
✏ ✁ω2

i (2.32)

By applying the substitution:

β4
✏

ω2ρA

EIz

, (2.33)

it is now possible to find the equation of the ith modal form:
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Chapter 2. Modeling of a flexible beam

d4χi♣u!

du4
✁ β4

i χi♣u! ✏ 0 (2.34)

χi♣u! ✏ a0 sin♣βiu! $ a1 cos♣βiu! $ a2 sinh♣βiu! $ a3 cosh♣βiu! (2.35)

2.2.2. Boundary conditions

In order to find the natural frequencies of beam clamped at one end and free to the
other end, it is necessary to impose the corresponding boundary conditions. They are
imposed to χi♣u! as follows:

• null displacement at the clamped end: χ♣0! ✏ 0

• null rotation at the clamped end:
dχ♣0!

du
✏ 0

• null bending moment at the free end: EIz

d2χ♣l!

du2
✏ 0

• null shearing force at the free end: ✁

d

du
EIz

d2χ♣l!

du2
✏ 0

With the first three conditions it is possible to find the three integration constants
a1, a2, a3. They are all functions of an integration constant a0. The last condition
allows to obtain the natural frequency of the system. In particular, the integration
constant assumes the following values:

a3 ✏ ✁a1;

a2 ✏ ✁a0

a1 ✏ ✁

a0 sin ♣β l! $ a0 sinh ♣β l!

cos ♣β l! $ cosh ♣β l!

In (2.35) the three mentioned parameters can be replaced giving:

χi♣u! ✏ a0

✒

sin ♣βu! ✁ sinh ♣βu! ✁ cos ♣βu!

sin ♣β l! $ sinh ♣β l!

cos ♣β l! $ cosh ♣β l!
$

$cosh ♣βu!

sin ♣β l! $ sinh ♣β l!

cos ♣β l! $ cosh ♣β l!

✚ (2.36)

Finally, imposing the last condition on the shearing force at the free end, the prob-
lem can be solved by finding the natural frequencies for a clamped beam, namely:
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Normal modes

β  m✁1
! 6.2503 15.6470 26.1827 36.6517

Frequencies [Hz] 4.544 28.479 79.743 156.262

Table 2.3.: Values of normal modes

x̃ ✏ βl

2 E Iz x̃3
♣cos ♣x̃$ cosh ♣x̃$ % 1$

l3
✏ 0

where, for the first four natural frequencies in non-dimensional form it is:

x̃1 ✏ 1.8751

x̃2 ✏ 4.6941

x̃3 ✏ 7.8548

x̃4 ✏ 10.9955

In Figure 2.3 the trend of the first four modal shapes for a clamped beam is shown.
In particular, with reference to a beam of the geometrical parameters gathered in Table
2.1, the natural frequencies assume the values shown in Table 2.3.

0 l
f 
/2 5l

f 
/6l

f 
/6 l

f 
/3 2l

f 
/3 l

f

1st

2nd

3rd

4th

mode

mode

mode

mode

X
i

v

u

Figure 2.3.: Trend of the first four modes of a clamped beam
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Chapter 2. Modeling of a flexible beam

2.2.3. Damping model for a flexible beam

A more realistic model, which takes into account the natural dissipative effects of
physical systems, can be defined by adding an internal damping to the flexible beam.

In fact a damping contribution implies a loss of energy during the motion of the
beam, simulating the effect of microstructural defects, such as grain boundaries and
impurities [45].

The Kelvin-Voigt model is used in this work to model the internal damping of the
material. This model is well-known in the literature. The reader can find more ex-
amples of its application in [43, 44]. Starting from (2.23) and adding the mentioned
viscous term, it can be obtained:

ρA
❇

2v

❇t2
!

❇

2

❇u2
CIz

❇

2

❇u2

❇v

❇t
!

❇

2

❇u2
EIz

❇

2v

❇u2
✏ 0, (2.37)

where C represents the viscous-elastic coefficient. This formulation has no effect on
the value of the natural frequencies of the system. Equation (2.37), by means of (2.24)
can be written again in the form:

ρAχi♣u$
❇

2ηi♣t$

❇t2
!

❇

4

❇u4
χi♣u$CIz

❇ηi♣t$

❇t
!

❇

4

❇u4
EIzχi♣u$ηi♣t$ ✏ 0

which can be arranged as follows:

✁

EIz

ρAχ♣u$

❇

4χ♣u$

❇u4
✏

✿ηi♣t$

ηi♣t$ !
C
E

✾ηi♣t$
✏ ω2

i

2.3. Comparison between the proposed models

Some differences can be highlighted between the two models proposed in this section,
according to the theoretical material provided above. The assumed modes method
approximates the behaviour of a flexible beam by narrowing its modal content to a
certain order. High frequencies are usually neglected in favour of low frequencies,
which certainly have the highest energy content. The former have a lesser impact than
the latter in real deformations of a beam, because of more reduced amplitudes of the
deformation at high frequencies and because of the internal damping of the material.
A look at the data of Table 2.4, where the results of Table 2.2 are proposed again with
the addition of a further row based on the exact solution of the mathematical model,
reveals that a higher degree of the polynomial, equal or greater than the ninth grade,
is needed in order to have a low error for the first two normal modes (in the order of
3%).
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2.3. Comparison between the proposed models

Normal modes at increasing values of polynomial degree

Frequencies I II III IV V VI VII VIII

P
o
ly

n
o
m

ia
l

d
eg

re
e n ✏ 3 11.843 2108

n ✏ 4 6.189 79.59 3690.9

n ✏ 5 5.231 36.659 5627.9

n ✏ 6 4.955 31.28 100.18 563.6 7920.5

n ✏ 7 4.82 30,338 84.548 198.15 1078.2 10570

n ✏ 8 4.7414 29.808 83.327 162.22 339.01 1858.2 13579

n ✏ 9 4.693 29.464 82.649 161.17 265.62 533.9 2976.1 16951

Exact solution 4.544 28.479 79.743 156.262 258.31 385.88 538.95 717.54

Table 2.4.: Normal frequencies in Hz
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Chapter 3.

Formalization of the

elasto-dynamic problem

The approaches discussed in the previous chapter to model flexible beams have been
employed to develop two alternative models of a generic parallel kinematics robot, by
respectively using the Augmented Lagrangian Formulation [46] and the Principle of
Virtual Work [47]. The aforementioned approaches have been then followed to study a
parallel robot with two degrees freedom and compare the performance of the adopted
models in order to choose the most effective.

3.1. Elasto-dynamic model using Augmented

Lagrange Formulation

Before using the beam deformation model based on Bézier curves in polynomial form,
it is necessary to develop a general method to model the rigid and flexible links of a
parallel kinematic robot; this approach can be also applied to serial robots once the
appropriate considerations have been stated.

However, according to the literature, the most followed approach consists on the
writing of the motion equations obtained by means of Augmented Lagrangian Formu-
lation. As an example, Figure 3.1 shows a generic rigid beam in three-dimensional
space, thus possessing six degree of freedom.

Here, vector p0 ✏

✑

x0, y0, z0

✙T

expresses the position of the origin of frame !1✉

with respect to base frame !0✉; by using the Euler parameters, the relative orientation
of the aforementioned frames is expressed by the following rotation matrix:

Rrig ✏

✔

✖

✖

✖

✕

e0
2
! e1

2
✁ e2

2
✁ e3

2 2 e1 e2 ✁ 2 e0 e3 2 e0 e2 ! 2 e1 e3

2 e0 e3 ! 2 e1 e2 e0
2
✁ e1

2
! e2

2
✁ e3

2 2 e2 e3 ✁ 2 e0 e1

2 e1 e3 ✁ 2 e0 e2 2 e0 e1 ! 2 e2 e3 e0
2
✁ e1

2
✁ e2

2
! e3

2

✜

✣

✣

✣

✢

(3.1)

By using equation (3.1), the position of the beam centre of mass P is computed as:
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Chapter 3. Formalization of the elasto-dynamic problem

y
1

x
1

z
1

O

P

z
0

x
0

y
0

p

O
1

Figure 3.1.: A rigid beam in the space

pcm p0 Rrig

0

0

l 2

where l is the beam length. Once the centre of mass position has been calculated, its
velocity can be expressed as:

vcm p0 SRrig

0

0

l 2

where matrix S has the form:

S

0 Ωz Ωy

Ωz 0 Ωx

Ωy Ωx 0

Ω

with Ω Ωx, Ωy, Ωz
T being the angular velocity vector. The beam kinetic and

potential energy are then computed as a function of the centre of mass position and
velocity:

T
1

2
vT

cmm vcm

1

2
ΩT I Ω (3.2)

V mgT pcm (3.3)

where g is the gravity acceleration and I is the inertia matrix relative to the centre of
mass of the beam.
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3.1. Elasto-dynamic model using Augmented Lagrange Formulation

In order to account for the beam flexibility, the contributions to kinetic and potential
energy due to its deformation must be added to expression (3.2) and (3.3). As a matter
of fact, and as a result of flexibility, the generic point P will no longer belong to
the beam axis: on the contrary, it will be moved to position P , as shown by the
displacement vector s in Figure 3.2.

O
1
OOOOOO y

1

x
1

z
1

O

s

P’

P

z
0

x
0

y
0

p

Figure 3.2.: A flexible beam in the space

Said sx and sy the displacements along the axis lying on the beam section, and
sz the displacement along a direction perpendicular to the beam section, the generic
deformation expressed by using Bézier curves has already been derived in the previous
section with the equation (2.2), presented here again:

s µ, t

n

i 0

1

b a n

n

i
µ a i b µ n isi t (3.4)

Therefore, the position of a generic point of the beam is computed as:

pp p0 Rrig

0

0

µ

sx

sy

sz

where µ is the distance of point P from the origin O1 of frame 1 . The velocity of
point P is then obtained as the derivative of the previous expression as a function of
time:

vp p0 S Rrig

sx

sy

µ sz

Rrig

sx

sy

sz
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Chapter 3. Formalization of the elasto-dynamic problem

Moreover, the angular velocity ω of a generic small segment of the beam is ex-
pressed as:

ω ✏

✔

✖

✕

Ωx ! "1 0 0#Rrigθ♣µ, t%

Ωy ! "0 1 0#Rrigθ♣µ, t%

Ωz ! "0 0 1#Rrigθ♣µ, t%

✜

✣

✢

with θ♣µ, t% ✏ "θx♣µ, t%, θy♣µ, t%, θz♣µ, t%#T . The previous expressions can be written
again in the following explicit and compact form:

sd ✏

✔

✖

✖

✖

✖

✖

✖

✖

✕

Ωx ! "1 0 0#Rrigθ♣µ, t%

Ωy ! "0 1 0#Rrigθ♣µ, t%

Ωz ! "0 0 1#Rrigθ♣µ, t%

vpx

vpy

vpz

✜

✣

✣

✣

✣

✣

✣

✣

✢

(3.5)

Finally, expression (3.5) can be exploited to compute the kinetic energy of the flex-
ible beam:

T ✏
1

2
sT

d

✓

Rrig 0

0 I

✛

N

✓

Rrig 0

0 I

✛

sd (3.6)

where N is the beam mass matrix:

N ✏

☎

✝

✝

✝

✝

✝

✝

✝

✆

Jx ρ 0 0 0 0 0

0 Jy ρ 0 0 0 0

0 0 Jz ρ 0 0 0

0 0 0 A ρ 0 0

0 0 0 0 A ρ 0

0 0 0 0 0 A ρ

☞

✍

✍

✍

✍

✍

✍

✍

✌

The mass matrix also contains the normalization equation of the Euler parameters,
remembering that rotations have been modeled using a rotation matrix based on Euler
parameters.

As stated before, the potential energy due to the flexibility of the beam, which has
been discussed in Section 2.1, must be added to the gravitational energy expressed by
(3.3); therefore the total potential energy is computed as:
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3.1. Elasto-dynamic model using Augmented Lagrange Formulation

V ✏ mgT pcm !
1

2
s✶

T
♣µ, t#Ks✶

♣µ, t# (3.7)

where K is the stiffness matrix per unit length:

K ✏ diag♣EJx, EJy, EJz, axGA, ayGA, EA# (3.8)

The kinetic and potential energy of a generic robot composed by an assembly of n

links can be simply computed as:

T ✏

n
➳

0

Ti (3.9)

V ✏

n
➳

0

Vi (3.10)

where Ti and Vi refer respectively to the kinetic and potential energy of the ith link;
here, expressions (3.2) and (3.3) are used if link i is rigid, whereas expressions (3.6)
and (3.7) are used if link i is flexible. Once the robot kinetic and potential energy
have been computed, the dynamic equations of motion can be derived through the
Augmented Lagrangian Formulation:

d

dt

L

d ✾q
✁

L

dq
✁ΦT

q λ ✏ f (3.11)

where q is the generalized coordinates vector that contains the rigid position and ori-
entation parameters as well as the coefficients of the Bézier polynomial, which are
related to the deformation parameters; finally, vector ✾q express the derivatives of q as
a function of time.

Matrix Φq expresses the constraints the system is subject to, whereas vector λ

represents the generalized reaction forces necessary to comply with the kinematic
constraints.

Equation (3.11) can be finally rewritten in the following form:

★

M ✿q !ΦT
q λ ✏ ✁Γ♣q, ✾q#

Φq ✿q ✏ ✁ ✾Φq ✾q ✁ ✾Φt

(3.12)

This vector equation should be modified to include terms that apply a stabilizing
action during integration in order to monitor and regulate violations of position and
velocity constraints; this approach, proposed by Baumgarte, consists in rewriting the
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Chapter 3. Formalization of the elasto-dynamic problem

previous equation as follows:

✓

M ΦT
q

Φq 0

✛✓

✿q

λ

✛

✏

✓

✁Γ♣q, ✾q#

✁

✾Φq ✾q ✁ ✾Φt ✁ 2α ✾Φ✁ β2Φ

✛

(3.13)

where α and β respectively represent the coefficients that stabilize the position and
speed errors. In equation (3.13) the values of λ clearly differ greatly from those cal-
culated with (3.12), therefore such values are not reliable for the evaluation of the
constraint reactions of the kinematic pairs.
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3.1. Elasto-dynamic model using Augmented Lagrange Formulation

3.1.1. An application of the model to a planar PKM with

2-DOFs

The model presented in the previous section can be used to study the planar paral-
lel kinematic robot showed in the following figure. The system is composed of two
flexible beams connected in point B through a revolute joint. A revolute joint also
connects each beam to a rigid slider which is constrained on the robot frame by means
of a prismatic joint. The two sliders, considered massless, move along rails arranged
orthogonally with respect to each other.

According to the model presented in the previous section, the first step of the ap-
proximation method is the choice of the degree of the Bézier polynomial; here, a fifth
degree polynomial formulation has been chosen, because it allows to minimize the er-
ror computed in the first modal frequency. Therefore, the expression of the polynomial
given in (2.2) is:

s♣µ, t! ✏

✔

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✕

θx♣µ, t!

θy♣µ, t!

θz♣µ, t!

vx♣µ, t!

vy♣µ, t!

vz♣µ, t!

✜

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✢

✏

✏

✔

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✕

µ5 s51

l5
#

s01 ♣l✁µ"

5

l5
#

5 µ s11 ♣l✁µ"

4

l5
#

5 µ4 s41 ♣l✁µ"

l5
#

10 µ2 s21 ♣l✁µ"

3

l5
#

10 µ3 s31 ♣l✁µ"

2

l5

µ5 s52

l5
#

s02 ♣l✁µ"

5

l5
#

5 µ s12 ♣l✁µ"

4

l5
#

5 µ4 s42 ♣l✁µ"

l5
#

10 µ2 s22 ♣l✁µ"

3

l5
#

10 µ3 s32 ♣l✁µ"

2

l5

µ5 s53

l5
#

s03 ♣l✁µ"

5

l5
#

5 µ s13 ♣l✁µ"

4

l5
#

5 µ4 s43 ♣l✁µ"

l5
#

10 µ2 s23 ♣l✁µ"

3

l5
#

10 µ3 s33 ♣l✁µ"

2

l5

µ5 s54

l5
#

s04 ♣l✁µ"

5

l5
#

5 µ s14 ♣l✁µ"

4

l5
#

5 µ4 s44 ♣l✁µ"

l5
#

10 µ2 s24 ♣l✁µ"

3

l5
#

10 µ3 s34 ♣l✁µ"

2

l5

µ5 s55

l5
#

s05 ♣l✁µ"

5

l5
#

5 µ s15 ♣l✁µ"

4

l5
#

5 µ4 s45 ♣l✁µ"

l5
#

10 µ2 s25 ♣l✁µ"

3

l5
#

10 µ3 s35 ♣l✁µ"

2

l5

µ5 s56

l5
#

s06 ♣l✁µ"

5

l5
#

5 µ s16 ♣l✁µ"

4

l5
#

5 µ4 s46 ♣l✁µ"

l5
#

10 µ2 s26 ♣l✁µ"

3

l5
#

10 µ3 s36 ♣l✁µ"

2

l5

✜

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✢

(3.14)

where l is beam length.

In the present application, the flexible beams are deformed by their mutual inter-
action and by the rigid motion of the whole system. The model can be formalized
by defining all the generalized coordinates, which can be gathered in a vector called
q. The latter consists of 86 parameters as a whole, remembering that the sliders are
massless and can be considered only as kinematic constraints. For each of the two
flexible beams there are 43 parameters: 36 of them are the coefficients of the Bézier
polynomials that represent the beam deformation, 6 for each components of vector s,
and the remaining 7 completely define the pose of the local frame of reference  1✉

with respect to fixed frame  0✉; 7 parameters are justified by the choice of Euler pa-
rameters instead of Euler angles. It follows that such parameters are related by the
known normalization equation, namely φi

n ✏ ei
0
# ei

1
# ei

2
# ei

3
✁ 1 ✏ 0 with i ✏ AB
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Figure 3.3.: Example of a parallel kinematics machine with 2 degrees of freedom

or BC. According to equations (3.9) and (3.10), both kinetic and potential energies
are expressed as the sum of two terms, each of which refers to one of the flexible
beams of the system.

By performing symbolic calculations, it results easy to show that the motion equa-
tion (3.12) of the parallel mechanism of Figure 3.3 are formed by the following terms:

• M is the general mass matrix which in turns contains the individual mass matrix
of the flexible links, as well as the normalization equations. Particularly, M is
expressed as:

M ✏

✔

✕

MAB
43✂43

043✂43

043✂43 MBC
43✂43

✜

✢ (3.15)

where the size of M is 86✂ 86.

• q is the vector of generalized coordinates of size 86 ✂ 1, which is composed
of the 36 parameters sAB

ij with i ✏ 1 . . . 6 and j ✏ 1 . . . 6, the 7 parameters
xAB

C , yAB
C , zAB

C , eAB
0

, eAB
1

, eAB
2

, eAB
3

and the other 43 parameters coming from
the other link BC.

• the constraint vector Φ, whose constraint matrix Φq has been already shown in
equation (3.12) and which must satisfy the condition Φ ✏ 0, is given by the
composition of different constraints due to the three revolute joints in points
A, B and C, to the behaviour of the flexible links at their extremes and to the
actuation of the two sliders. Here it follows the description of each of these
contributions:
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3.1. Elasto-dynamic model using Augmented Lagrange Formulation

– ΦA represents the constraint vector of the revolute joint in A with the
addition of the actuation of the relative carriage (along the x axis):

ΦA ✏

✔

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✕

x✁ u

y

z

"0 1 0# Rrig,AB

✔

✖

✕

1

0

0

✜

✣

✢

"0 1 0# Rrig,AB

✔

✖

✕

0

0

1

✜

✣

✢

✜

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✢

(3.16)

– ΦC represents the constraint vector of the revolute joint in C, adding also
the actuation of the relative carriage (along the z axis):

ΦC ✏

✔

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✕

x

y

z ✁ w

"0 1 0# Rrig,BC

✔

✖

✕

1

0

0

✜

✣

✢

"0 1 0# Rrig,BC

✔

✖

✕

0

0

1

✜

✣

✢

✜

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✢

(3.17)

– ΦAB represents the constraint vector acting on the link AB, which im-
poses a null deformation (both rotation and translation) at point A with
respect to the reference frame $1✉ and null moment and shear force at the
end B of the beam, modeling the flexible link as a beam clamped at one
end and free at the other end:
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ΦAB ✏

✔

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✕

dθAB
x ♣0, t"

dµ

dθAB
y ♣0, t"

dµ

dθAB
z ♣0, t"

dµ

dvAB
x ♣0, t"

dµ

dvAB
y ♣0, t"

dµ

dvAB
z ♣0, t"

dµ

✜

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✢

(3.18)

with i ✏ 1, . . . , 6.

– ΦBC defined exactly as ΦAB , with the only change in the superscript AB

with its replacement BC.

– the last constraint ΦB given by the revolute joint in B imposes the three
scalar constraint on the position coordinates and the parallelism of local
y axes for the two kinematic chains, providing two further equations in
terms of orthogonality conditions:

ΦB ✏

✔

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✖

✕

✔

✖

✖

✖

✖

✕

u

0

✁w

✜

✣

✣

✣

✣

✢

!Rrig,AB

✔

✖

✖

✖

✖

✕

sAB
x ♣l#

sAB
y ♣l#

⑥AB⑥ ! sAB
z ♣l#

✜

✣

✣

✣

✣

✢

✁Rrig,BC

✔

✖

✖

✖

✖

✕

sBC
x ♣l#

sBC
y ♣l#

⑥BC⑥ ! sBC
z ♣l#

✜

✣

✣

✣

✣

✢

%1 0 0& R
T
flex,AB

R
T
rig,AB

Rrig,BCRflex,BC

✔

✖

✖

✖

✖

✕

0

1

0

✜

✣

✣

✣

✣

✢

%0 0 1& R
T
flex,AB

R
T
rig,AB

Rrig,BCRflex,BC

✔

✖

✖

✖

✖

✕

0

1

0

✜

✣

✣

✣

✣

✢

✜

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✣

✢

(3.19)

where Rflex,i ✏ Rx,iRy,iRz.i, with i ✏ AB or BC, is the product of
the three small rotations:
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3.2. Elasto-dynamic model by using the Principle of Virtual Works.

Rx,i ✏

✔

✖

✖

✖

✕

1 0 0

0 cos♣θi
x♣l, t"" ✁ sin♣θi

x♣l, t""

0 sin♣θi
x♣l, t"" cos♣θi

x♣l, t""

✜

✣

✣

✣

✢

Ry,i ✏

✔

✖

✖

✖

✕

cos♣θi
x♣l, t"" 0 sin♣θi

x♣l, t""

0 1 0

✁ sin♣θi
x♣l, t"" 0 cos♣θi

x♣l, t""

✜

✣

✣

✣

✢

Rz,i ✏

✔

✖

✖

✖

✕

cos♣θi
x♣l, t"" ✁ sin♣θi

x♣l, t"" 0

sin♣θi
x♣l, t"" cos♣θi

x♣l, t"" 0

0 0 1

✜

✣

✣

✣

✢

– Vector Φn ✏ $φ
AB
n φBC

n %

T gathers the two normalization equations.

Finally, vector Φ results from the composition of the vectors defined above,
namely Φ ✏ $ΦT

A ΦT
C ΦT

AB ΦT
BC ΦT

B ΦT
n %

T .

• Vector λ in equation (3.12) gathers all the reaction forces originated in the con-
straints in points A, B and C, and all the unknowns, not necessarily with an
interpretable physical meaning, related to the constraints ΦAB and ΦBC .

Further constraints can be used in the study to confine the motion of the manipulator
in the horizontal plane xz shown in Figure 3.3, avoiding deformations out of the plane,
for instance imposing null values for the coefficients of the polynomials associated to
θx and θz , letting the corresponding vector s lie on that plane.

3.2. Elasto-dynamic model by using the Principle

of Virtual Works.

As stated before, a second approach to model the flexibility of the links of a parallel
kinematic robot is the elasto-dynamic model obtained through the formulation of the
Principle of the Virtual Works.

Figure 3.4 shows a representation of a generic robot with parallel kinematics, com-
posed by an assembly of rigid and flexible links.

In the following, the axial deformation of the links will be neglected, whereas only
the deformation due to bending will be considered.

On the basis of the latter hypotheses, the resulting deformation is always perpen-
dicular to the beam axis; as a consequence, the flexible links can be modeled as rigid
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Chapter 3. Formalization of the elasto-dynamic problem
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Figure 3.4.: General scheme of a flexible PKM

elements where at their extremes a prismatic joint produces a displacement orthogonal
to each flexible link, where such displacement represents the bending deformation. In
this way, the deformation of the ith link is expressed as:

v l, t

n

i 1

χi l ηi t (3.20)

where v , composed by the scalar χi u that represents the modal form and the scalara
ηi t that represents the harmonic function related to the ith natural frequency, is
another degree of freedom of the system, whose value can be computed by solving the
dynamic equations since it depends on the stresses the link is subjected to.

Figure 3.5 shows how the stated kinematic equivalence is applied to the system of
Figure 3.4. In Figure 3.5 the links coloured in grey are flexible:
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Figure 3.5.: Kinematic equivalence applied to a generic PKM
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3.2. Elasto-dynamic model by using the Principle of Virtual Works.

This approach models the flexible links of a robot as they were rigid. However, the
number of joints is increased, which in turn augments the complexity of the whole
dynamic system. The payoff of this method is that the accuracy of the solution rises
with the number of joints introduced in the modeling phase.

The position equations of the robot showed in Figure 3.5 are derived in the follow-
ing. Although the system is composed by three links, it that can be modeled by an
assembly of m parts, which in turn are divided in n rigid links (indicated with b) and
k flexible links (indicate with c):

a0,1  b0,1  ci,1  vi1♣ci,1".. cn✁1,1  cn,1  vn,1♣cn,1"  ta ✏ p

a0,2  c0,2  v0,2♣c0,2"  bi,2  ... bn✁1,2  bn,2  tb ✏ p

a0,3  b0,3  bi,3  ... bn✁1,3  cn,3  vn,3♣cn,3"  tc ✏ p

In order to determine the passive joints as a function of the active joints, the follow-
ing equations can be written:

a0,1  b0,1  ci,1  vi1♣ci,1".. cn✁1,1  cn,1  vn,1♣cn,1"  ta ✏

a0,2  c0,2  v0,2♣c0,2"  bi,2  ... bn✁1,2  bn,2  tb

a0,1  b0,1  ci,1  vi1♣ci,1".. cn✁1,1  cn,1  vn,1♣cn,1"  ta ✏

a0,3  b0,3  bi,3  ... bn✁1,3  cn,3  vn,3♣cn,3"  tc

a0,2  c0,2  v0,2♣c0,2"  bi,2  ... bn✁1,2  bn,2  tb ✏

a0,3  b0,3  bi,3  ... bn✁1,3  cn,3  vn,3♣cn,3"  tc

The latter represents a system of nonlinear equations, which depends on the defor-
mation parameters. Therefore, the kinematic problem presented before becomes:

f♣q, θ, v" ✏ 0 (3.21)

From equation (3.21), it is possible to obtain the velocity problem as its time deriva-
tive:

Jx ✾p ✏ Jq ✾q  Jv ✾v

When matrix Jx has full rank, it can be inverted to solve the linear system to com-
pute the Cartesian velocity ✾p as a function of a known ✾q. In the same way, matrix Jq

must have full rank in order to compute the actuated joint velocities as a function of
known Cartesian velocities. Finally, the acceleration problem can be obtained as the
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Chapter 3. Formalization of the elasto-dynamic problem

time derivative of the velocity problem:

Jxp Jqq Jqq Jvv Jvv Jxp

Here, similar considerations can be made regarding matrices Jx and Jq in order to
solve the direct and inverse acceleration problem and respectively compute p and q

as a function of known vector v. Apart from Jv , matrices Jx and Jq both depend on
passive joint velocities.

3.2.1. Dynamic model

In this section, the dynamic equations of motion will be computed by means of the
Principle of Virtual Works and the D’Alambert principle, as also done in [47, 48].
According to this method, a generic rigid link is subjected both to inertia forces and
inertia moments which, by means of the D’Alambert principle, are considered external
actions.
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Figure 3.6.: Dynamics behaviour of a generic PKM

Therefore, by considering with ci,1 the ith flexible link on the first leg, taken as a
reference, the displacement of its generic segment located at the distance u from one
end is obtained by following the kinematics of the leg from the fixed frame adding
the rigid displacement of the link itself plus its lateral deformation vi,1 u . Thus, the
generic position of this element with respect to frame 0 is expressed as:

ri a0,1 b0,1 u vi,1 u

The acceleration of the element can be easily obtained by deriving the latter expres-
sion twice as a function of time.
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3.2. Elasto-dynamic model by using the Principle of Virtual Works.

According to D’Alembert principle, the computed acceleration represents the ex-
ternal force which is responsible for the beam deformation. The virtual displacements
associated to this force can be computed as:

δri ✏
❇♣a0 # u# vai

♣u$$

❇♣q, θ, v$

✔

✖

✕

δq

δθ

δv

✜

✣

✢

(3.22)

In the same way, the virtual angular displacements of the ith passive joint can be
easily derived from (3.21) as follows:

δθi ✏ ✁

✏

A✁1B
✘

♣i,:"
δqt,

with A ✏

❇f

❇θ
and B ✏

❇f

❇qt

.

(3.23)

The virtual displacement δvi in (3.22) can be easily calculated from the following
expression:

δvi♣ui$ ✏

n
➳

j✏1

χi,j♣ui$δηi,j♣t$ ✏ Xiδηi, (3.24)

The equation (3.22) can written in a compact form:

δri ✏ E2x2♣n$1"δqt (3.25)

Apart from the inertial forces due to rigid motion, the ith section is subjected to
elastic forces, damping forces and inertial deformation as showed by the following
expression:

Fui
✏ Fin

ui
# FKi

# FDi
, (3.26)

where the three forces are:

Fin
ui
✏ ✁ρA✿ridui

FKi
✏ ✁EIzR

✔

✕

0

❇

4vi♣ui, t$

❇u4

i

✜

✢ dui

FDi
✏ ✁CIzR

✔

✕

0

❇

4
✾vi♣ui, t$

❇u4

i

✜

✢ dui

. (3.27)

where R represents the rotation matrix that give the direction of the middle axis of the
link in the undeformed state. It is now possible to compute the virtual work produced
by the force Fui

for a cross sectional element and evaluate its overall effect on the
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Chapter 3. Formalization of the elasto-dynamic problem

flexible links by means of the following integral:

Lci
✏

➺ c

0

δqt
T ET Fui

du ✏ δqt
T

➺ c

0

ET Fui
du i ✏ 1 : k (3.28)

For the sake of completeness, it is worthy to compute the work of the forces acting
on by the rigid beam; by considering the term b0,i, and assuming that its centre of
gravity is placed in the middle, it is:

rGbi
✏ Rαi

✓

a

0

✛

!Rqi

✔

✕

b

2
0

✜

✢ ;

which, in turn, corresponds to the acceleration:

✿rGbi
✏ S

✿qi
Rqi

✔

✕

b

2
0

✜

✢

✁ ✾q2

i Rqi

✔

✕

b

2
0

✜

✢

Then, the virtual work is:

δrGbi
✏ SRqi

✔

✕

b

2
0

✜

✢ δqi ✏ D
♣2✂1"δqi

Said Fin
i and Min

i respectively the force of inertia and the torque of inertia, the
work of the rigid system is equal to:

W ✏

m
➳

j✏1

n
➳

i✏1

(

δqiD
T Fbi

! δqiM
in
bi

✟

(3.29)

Finally, it results that:

W ✏

m
➳

j✏1

n,k
➳

i✏1

(

δqiD
T Fbi

! δqiM
in
bi
! Lci

✟

! δqTτ ✏ 0. (3.30)

where i refers to the links of the robot.

3.2.2. An application of the model

In order to compare this approach with the one discussed in Section 3.1, an elastic-
dynamic model has been developed for the planar mechanism analyzed in Section
3.1.1.
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3.2. Elasto-dynamic model by using the Principle of Virtual Works.

The prismatic joints of Figure 3.6 are actuated, whereas the passive joints are in-
dicated with θ1, θ2; finally, the deformations are indicated as v1, v2. Particularly, the
latter have been modeled by the following equation, meaning that the first two modes
have been chosen:

v♣u, t! ✏

2
➳

i✏1

χi♣u! ηi♣t! (3.31)

The position of the end-effector B can be computed as:

r ✏ pu # R1

✔

✖

✕

l

v1♣l!

0

✜

✣

✢

(3.32)

r ✏ pv # R2

✔

✖

✕

l

v2♣l!

0

✜

✣

✢

(3.33)
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Figure 3.7.: Interpretation of the flexible links as a Revolute-Prismatic sequence of
joints

The positions obtained following the two branches must coincide:

pu # R1

✔

✖

✕

l

v1♣l!

0

✜

✣

✢

✏ pv # R2

✔

✖

✕

l

v2♣l!

0

✜

✣

✢

(3.34)

By decomposing equation (3.34) in the x and y direction, it results:
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pu  l cos ♣θ1" ✁ l cos ♣θ2" ✁ v1 sin ♣θ1"  v2 sin ♣θ2" (3.35)

v1 cos ♣θ1" ✁ pv ✁ v2 cos ♣θ2"  l sin ♣θ1" ✁ l sin ♣θ2" (3.36)

By solving equation (3.36), the passive joints can be obtained as a function of the
active joints and the active coordinates. Particularly, two solutions have been com-
puted both for θ1 both θ2, whose compact expressions are:

θ1 ✏ f♣pu, pv, v1, v2" (3.37)

θ2 ✏ f♣pu, pv, v1, v2" (3.38)

The velocity problem is obtain as the derivative of (3.33):

Jx ✾x ✏ Jq ✾q  Jv ✾v (3.39)

where:

Jx ✏

✄

l cos ♣θ1" ✁X1 c01 sin ♣θ1" l sin ♣θ1"  X1 c01 cos ♣θ1"

l cos ♣θ2" ✁X2 c02 sin ♣θ2" l sin ♣θ2"  X2 c02 cos ♣θ2"

☛

Jq ✏

✄

l cos ♣θ1" ✁X1 c01 sin ♣θ1" 0

0 l sin ♣θ2"  X2 c02 cos ♣θ2"

☛

Jv ✏

✄

X1 c01 0

0 X2 c02

☛

The derivative of equation (3.39) leads to the acceleration problem. The equations
of motion of beam CB are then finally computed as shown in figure 3.8.

Particularly, ri is the position of the infinitesimal beam element dm, whereas its
speed is ✾ri and its acceleration ✿ri :
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3.2. Elasto-dynamic model by using the Principle of Virtual Works.
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Figure 3.8.: Position of a generic cross section for a flexible link
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!R1
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0
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✾S1R1
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0
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! S2

1
R1

✔

✖

✕

ui
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0

✜

✣

✢

! 2S1R1

✔

✖

✕

0
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✜

✣

✢

!R1

✔

✖

✕

0

✿vi

0

✜

✣

✢

From ✿ri, the inertial force acting on the element can be calculated by using equation
(3.27). As for virtual displacement ri, it results that:

δri ✏

✔

✖

✕

1

0

0

✜

✣

✢

δpu ! S1R1

✔

✖

✕

ui

vi

0

✜

✣

✢

δθ1 !R1

✔

✖

✕

0

1

0

✜

✣

✢

δv1♣ui# (3.40)

where δθ1 can be calculated by equation 3.23, where i ✏ 1. Then, by considering
both the rigid and the flexible contributions, the virtual work of the beam results in:

Lci
✏

➺ c

0

δrT
i Fui

du (3.41)
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The same computations can be performed on beam AB; therefore, the total virtual
work for the whole mechanism is expressed by:

W ✏

2
➳

i✏1

!

δqT
τ ! Lci

✟

. (3.42)

3.3. Comparison of the models

The approaches presented above represent two alternative methods to model a robot
with flexible links. Since the purpose of this work is to choose the most suitable model
for a real-time control, it is necessary to investigate the performance of the proposed
solutions. In order to achieve this result, the computation time has been assessed for a
given, known trajectory.
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Figure 3.9.: Linear trajectory between two Cartesian points used for testing

Figure 3.9 shows the robot configurations as the end-effector moves according to
the planned path. Particularly, the end effector represented by point C will move along
a straight line starting from point Pstart to the final point Pend; here, the initial and
final conditions are zero-velocity and zero-acceleration.

Figure 3.10 shows the average computation time for the planned path. The mea-
sured time has been normalized with respect to the time computed when the robot is
modeled by using the Bernastein polynomial. The simulations have been performed
on a desktop computer with an Intel Core i7-6700HQ processor with a clockspeed
equal to 2.60 "GHz#.

The comparative analysis shows that the approach where the deformation of the
beam has been modeled with the assumed mode methods has the lowest computation
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3.3. Comparison of the models

time. Therefore, it has been chosen in the following to model the robot under study,
remembering the need of a light model to be computed with the final aim of a model-
based control application.
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Figure 3.10.: Comparison of computational burden for the two proposed algorithms
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Chapter 4.

Elasto-dynamic model of a

five-bar linkage

In this chapter an elasto-dynamic model for a closed loop mechanism is presented,
namely a five-bar linkage, using a Lagrangian approach with a minimum set of param-
eters. The deformations are modelled by the Assumed Modes Method. The chapter
also depicts how the robot dimensions have been chosen, according to the measur-
ing bench available in the MIR Laboratory of the Polytechnic University of Marche.
Eventually, a comparative analysis has been carried out among analytical results and
simulations have been performed with a FE model, built by means of a commercial
software.

4.1. Kinematic model of a flexible five-bar linkage

The robot object of the study is represented in Figure 4.1. It’s easy to demonstrate that
it owns two degrees of freedom by means of the well known Gruebler equation:

q ✏ 3 ncm ✁ 2 c1 ✁ c2 ✏ 2

where ncm indicates the number of movable bodies that make up the kinematics, with
c1 the kinematic pairs that leave one degree of freedom and with c2 the kinematic pairs
that leave two degrees of freedom. For a five bar mechanism there are four movable
bodies and five revolute joints belonging to the class c1.

For the sake of simplicity, only two out of the four links which compose the mech-
anism are flexible (the distal links), while the remaining two (proximal) own an ex-
tremely rigid cross section with respect to the others. This permits to focus the mod-
elling of the flexible components to only a couple of bodies, and to disregard such
aspects for the actuated ones.

Also, the system has been designed considering symmetrical lengths of the links.
The origin of the absolute reference frame is located in the centerline between points
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Chapter 4. Elasto-dynamic model of a five-bar linkage

A1 and A2. The x axis intersects such two points and it is directed towards A1, while
the z axis is perpendicular to the plane of the machine.
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Figure 4.1.: Five bars with flexible links

Since the distal arms deform during motion, the model should take into considera-
tion such effect to predict the position of the robot terminal (here identified by point
EE). The modal superposition approach is adopted in this sense, as already described
in Section 2.2.1. Therefore, each one of the two flexible links are modeled by means of
an equivalent RPR joint topology. It means that, starting from a reference rigid model
in which each distal link is connected at its extremes by means of two revolute joints,
it can be introduced a virtual body that slides laterally at the distal extreme of the link
along its transverse direction by means of a virtual prismatic joint P. The concept is
clearly shown in Figure 4.2. In such scheme, the two revolute joints R represent the
connection interfaces with the other members of the kinematic chain.

Consequently, the addition of these two new kinematic pairs implies the introduc-
tion of two new degrees of freedom which cannot be imposed during the motion of
the system. They result from a dynamic equilibrium which involves also the consti-
tutive equations which connect the forces acting on the system, including the inertia
forces, to the displacements undergone by the flexible links, which behave like bend-
ing springs. According to this statement, the kinematic scheme of the robot becomes
the one already mentioned and shown in Figure 4.2.

By referring to the scheme of Figure 4.2, it is easy to find the position of point
EE following the ith kinematic branch, with i ✏ 1, 2; in particular, said p the planar
vector from the origin of the fixed frame to point EE, the loop closure equations for
each loop O ✁ EE ✁Bi ✁Ai provide:

p ✏ ai " bi " ci " vi ♣i ✏ 1, 2$ , (4.1)

where the ith vectors for i ✏ 1, 2 are defined as:
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Figure 4.2.: Kinematic modeling of the Pentalateral with flexible arms

ai ✏ Rαi

✓

a

0

✛

; bi ✏ Rqi

✓

b

0

✛

; ci ✏ Rθi

✓

c

0

✛

; vi ✏ Rθi

✓

0

vi♣c, t"

✛

.

(4.2)

The rotation matrix Rψ about the z axis is given in a 2✂ 2 simplified formulation:

Rψ ✏

✓

cos ψ ✁ sin ψ

sin ψ cos ψ

✛

with ψ ✏ αi, qi, θi,

where the angle αi provides the direction and orientation of vector si. In the present
work α1 ✏ 0 and α2 ✏ π.

Finally vi♣c, t$ identifies the value of the deformation at the end of the ith flexible
link, which represents the translation of the passive prismatic joint added to describe
its lateral flexibility.

The Direct Kinematic Problem (DKP) consists of finding the Cartesian position of
the end-effector of the robot as a function of the rotations of the actuated revolute
joints. Such position is described by the vector indicated with p, which identifies the
position of EE with respect to the origin O of the fixed frame shown in Figure in 4.2.

Vector p can be obtained once the value of the actuated joints qi are assigned and
the lateral deformations vi are assigned, considered known from static or dynamic
analyses for both the ith flexible links. This equation is also a function of the passive
joints θi, which must be obtained as a function of the active joints. The DKP is then
formalized as:

f ♣q,θ, v$ ✏ 0, (4.3)

which can be mad explicit as follows:
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✩

✫

✪

c ♣cos θ1 ✁ cos θ2" ✁ v1♣c, t" sin θ1 # v2♣c, t" sin θ2 ✏ b ♣cos q2 ✁ cos q1" ✁ 2a

c ♣sin θ1 ✁ sin θ2" # v1♣c, t" cos θ1 ✁ v2♣c, t" cos θ2 ✏ b ♣sin q2 ✁ sin q1"

,

(4.4)

The inverse kinematics problem (IKP) consists of finding the position of the actu-
ated joints once a Cartesian position of the end-effector EE is assigned, i.e. when
vector p is known.

Since the deformation of the flexible links does not depend on the position but on
the loading conditions, at this stage it is considered that the deformation is known
in order to find the values of the actuated joints. Referring to the ith branch of the
manipulator shown in 4.2, equation (4.1) can be rearranged by isolating the actuated
joint variables, still unknown at the moment:

★

b cos ♣qi! ✏ xEE ✁ a cos ♣αi! ✁ c cos ♣θi! $ vi sin ♣θi!

b sin ♣qi! ✏ yEE ✁ c sin ♣θi! ✁ vi cos ♣θi!

. (4.5)

By squaring and adding the two scalar equations, it is possible to get rid of the actu-
ated joint variables, thus obtaining an expression that is only a function of the passive
joint variables θi and of the deformation variables vi♣c, t!, from here on indicated
without brackets to improve the readability of the equations:

A cos♣θi! $ B sin♣θi! $ C ✏ 0, (4.6)

with:

A ✏ ✁2 ♣xEE ✁ a cos αi! c ✁ 2yEEvi

B ✏ 2 ♣xEE ✁ a cos αi! vi ✁ 2yEEc

C ✏ ♣xEE ✁ a cos αi!
2
$ y2

EE $ c2
$ v2

i ✁ b2

Two solutions exist for each passive joint angle θi, each of which provides a value
for qi. The algorithm used to solve the equation (4.6) requires a verification of the
domain of the existence of the root, which must be satisfied to have real solutions.
As expected, four different configurations can be found from the combination of the
branches even if only one of them is acceptable once the assembly configuration is
known.

4.1.1. Differential Kinematics

The derivative of the loop closure equations (4.1) provides:

✾p ✏ S
✾qi

Rqi

✓

b

0

✛

$ S
✾θi

Rθi

✓

c

vi

✛

$ Rθi

✓

0

✾vi

✛

(4.7)
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where:

S
✾ψ
✏ S ✾ψ with S ✏

✓

0 ✁1

1 0

✛

and ✾ψ ✏ ✾qi, ✾θi, for i ✏ 1, 2.

The relationship between ✾p ✏ " ✾xEE , ✾yEE#
T and the vector ✾q ✏ " ✾q1, ✾q2#

T of the
actuated joint velocities can be obtained when the value of the deformations of the
members v ✏ "v1, v2#

T is known, and the strain rate vector ✾v ✏ " ✾v1, ✾v2#
T is known.

The velocities of the passive joints ✾θi can be removed from the equation (4.7) by
means of the following scalar product:

✑

c vi

✙

RT
θi

✾p ✏
✑

c vi

✙

RT
θi

S
✾qi

Rqi

✓

b

0

✛

$

✑

c vi

✙

✓

0

✾vi

✛

. (4.8)

The two equations obtained from (4.8) can be rewritten in a more compact form as:

Jx ✾p ✏ Jq ✾q $ Jv ✾v, (4.9)

where the matrices are:
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Jx ✏

✓

c cos θ1 ✁ v1 sin θ1 c sin θ1 " v1 cos θ1

c cos θ2 ✁ v2 sin θ2 c sin θ2 " v2 cos θ2

✛

, (4.10)

Jq ✏ b

✓

c sin♣θ1 ✁ q1# $ v1 cos♣θ1 ✁ q1# 0

0 c sin♣θ2 ✁ q2# $ v2 cos♣θ2 ✁ q2#

✛

, (4.11)

Jv ✏

✓

v1 0

0 v2

✛

. (4.12)

When matrix Jx has full rank, it can be inverted to solve the linear system of Carte-
sian velocity ✾p for a given ✾q. On the contrary, a full rank for Jq is required when the
joint velocity vector is searched for a given Cartesian velocity of point EE.

The conditioning of both Jx and Jq will be discussed later. The velocity of the
passive joints ✾θi can be found directly from (4.7) by means of the following scalar
product:

✑

b 0

✙

RT
qi

✾p ✏
✑

b 0

✙

RT
qi

SRθi

✓

c

vi

✛

✾θi "

✑

b 0

✙

RT
qi

Rθi

✓

0

✾vi

✛

, (4.13)

which provides a solution for ✾θi when its coefficient differs from zero; the problem
owns a singularity when the three points Ai, Bi, and EE are aligned, namely when:

tan ♣qi ✁ θi$ ✘
vi

c
. (4.14)

When the vector ✾q of the actuated joints is assigned, instead of the Cartesian veloc-
ity ✾p, the value of the passive joints can be found from (4.13) by means of (4.9).

The acceleration problem is obtained by means of a time derivative of (4.9):

Jx ✿p ✏ ✾Jq ✾q " Jq ✿q " ✾Jv ✾v" Jv ✿v✁ ✾Jx ✾p, (4.15)

where analogous considerations can be made regarding matrices Jx and Jq in order to
be able to solve the direct and inverse problem of acceleration between ✿p and ✿q, once
given ✿v, with clear meaning of all terms.

In the end, it can be noted that ✾Jv , whose expression can be easily derived from
(4.12), does not depend on the speed of the passive joints obtained from (4.13), unlike
matrices ✾Jx and ✾Jq.

4.1.2. Number of Independent Variables

The choice of a number n of modes in (2.24) determines the number of independent
variables involved in both the kinematics and dynamics models of the manipulator. A
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4.1. Kinematic model of a flexible five-bar linkage

more detailed notation is used from here on to better investigate the dynamics of the
flexible five-bar linkage.

Said vi♣ui, t! the transverse displacement of the generic cross section placed at the
distance ui from the clamped end of the ith flexible beam, as shown in Figure 4.2, a
number of 2♣n " 1! independent variables can be defined:

qt♣t! ✏

✔

✖

✕

q♣t!

η1♣t!

η2♣t!

✜

✣

✢

2♣n!1"✂1

(4.16)

where ηi ✏ $ηi,1, . . . , ηi,n%

T . The space eigenfunctions χ follow the same notation,
providing for each jth mode of the ith link the expression χi,j .
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Chapter 4. Elasto-dynamic model of a five-bar linkage

4.2. Elasto-Dynamic model

The same approach proposed in Section 3.2.1 is here exploited to model the elasto-
dynamics of the flexible five-bar linkage, whose kinematics has been already investi-
gated in the previous section.

Inertial forces, acting on the center of mass of each link, and moments can be con-
sidered as external contributions according to the D’Alembert Principle. Before tak-
ing into account the flexibility of its distal links, a five-bar linkage made of only rigid
links can be considered in order to find the most influential contribution due to inertial
terms:

Fin
bi
✏ ✁mb✿rGbi

Fin
c ✏ ✁mc✿rGci

M in
bi
✏ ✁Ib✿qi M in

c ✏ ✁Ic
✿θi

with i ✏ 1, 2, (4.17)

where where ✿rGbi
and ✿rGci

represent the acceleration vectors of the center of mass
of links b and c respectively. Inertial contributions tend to expressions (4.17) when a
null deformation vi is hypothesized for the two links of length c. The position vector
of the center of mass of all moving bodies is required in (4.17) to find acceleration
expressions. The position Gbi

of the centers of mass of the rigid links can be easily
found. On the contrary, if flexibility is taken into account, as shown in Figure 4.4, a
local study on each cross section of the flexible links must be addressed. The position
of points Gbi

and of a generic cross section of infinitesimal mass dm ✏ ρAdu, can be
found with respect to the fixed frame "O; x, y✉ as:

rGbi
✏ Rαi

✓

a

0

✛

!Rqi

✔

✕

b

2
0

✜

✢ ; ri ✏ Rαi

✓

a

0

✛

!Rqi

✓

b

0

✛

!Rθi

✓

ui

vi♣ui#

✛

(4.18)

A time derivative of both the expressions in (4.18) and a further derivative provide
the required velocities and accelerations:

✾rGbi
✏ S

✾qi
Rqi

✔

✕

b

2
0

✜

✢

✾ri ✏ S
✾qi

Rqi

✓

b

0

✛

$ S
✾θi

Rθi

✓

ui

vi♣ui&

✛

$Rθi

✓

0

✾vi♣ui&

✛

, (4.19)

and
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✏ S
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✕
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✢
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✣
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✔

✖

✕
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✿θi

Rθi

✔

✖

✕
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✜

✣

✢

✁

✾θ2

i Rθi

✔

✖

✕
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vi♣ui$

✜

✣

✢

"

"2S
✾θi

Rθi

✔

✖

✕

0

✾vi♣ui$

✜

✣

✢

"Rθi

✔

✖

✕

0

✿vi♣ui$

✜

✣

✢

. (4.20)

The force Fui
in Figure 4.4 applied to the cross section located by means of its co-

ordinates ui, vi with respect to the local frame  Bi; u, v✉ on each flexible link gathers
inertial, elastic and damping force contributions.
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Figure 4.4.: Cross section and position and dynamic loads.

51



✐

✐

“PhDthesis” — 2022/2/14 — 21:43 — page 52 — #72
✐

✐

✐

✐

✐

✐

Chapter 4. Elasto-dynamic model of a five-bar linkage

It is given by:

Fui
✏ Fin

ui
! FKi

! FDi
, (4.21)

The expression of the forces on the right of (4.21) depends on the model proposed
in (2.37), after a few arrangements of the partial differential equation due to the inte-
gration of the flexible link in a closed kinematic chain. In fact, model (2.37) changes
accordingly:

✁EIz

❇

4vi ♣ui, t%

❇u4

i

✁ CIz

❇

4
✾vi ♣ui, t%

❇u4

i

✏ ρA
vT

i ♣ui, t%

⑤⑤vi⑤⑤
✿ri (4.22)

where the term on the right assumes the following explicit form:

v
T
i ♣ui, t!

⑤⑤vi⑤⑤
✿ri ✏ b✿qi cos ♣qi ✁ θi! ✁ b ✾q

2

i sin ♣qi ✁ θi! % ui
✿θi ✁ vi ♣ui!

✾θ
2

i % ✿vi ♣ui! . (4.23)

It follows that the three forces in (4.21) are now completely defined, assuming the
expressions shown in (3.27), where the rotation matrix involved in the study is R ✏

Rθi
. The virtual work of such forces can be worked out once the virtual displacement

of their application points is obtained:

δri ✏ SRqi

✓

b

0

✛

δqi ! SRθi

✓

ui

vi♣ui%

✛

δθi !Rθi

✓

0

1

✛

δvi♣ui% (4.24)

The virtual angular displacement of the ith passive joint can be easily derived from
(4.3) by using the same approach proposed in (3.23), here recalled for the sake of
clarity:

δθi ✏ ✁

✏

A✁1B
✘

♣i,:"
δqt (4.25)

The inversion of matrix A is possible only when (4.14) is satisfied, whose relative
configuration is quite far from normal operating conditions. The virtual displacement
δvi in (4.24) can be easily found from (2.24):

δvi♣ui% ✏

n
➳

j✏1

χi,j♣ui%δηi,j♣t% ✏ Xiδηi, (4.26)

with Xi ✏ 'χi,1 χi,2 . . . χi,n(. Finally, the required expression for δrGbi
and δri

can be found as a function of the independent virtual displacements:
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δrGbi
✏ SRqi
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✕
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δqi ✏ D
♣2✂1"δqi

δri ✏ SRqi

✔

✖

✕

b

0

✜

✣

✢

δqi ✁ SRθi

✔

✖

✕

ui

vi♣ui#

✜

✣

✢

✏

A✁1B
✘

♣i,:"
δqt $Rθi

✔

✖

✕

0

1

✜

✣

✢

Xiδηi

✏ E
♣2✂2♣n$1""δqt

(4.27)

It is now possible to evaluate the virtual work produced by the force Fui
in (4.21)

for a cross sectional element, and to evaluate its overall effect on the flexible links by
means of the following line integral:

Lci
✏

➺ c

0

δqt
T ET Fui

✏ δqt
T

➺ c

0

ET Fui
i ✏ 1, 2 (4.28)

The total virtual work of the flexible five-bar manipulator is therefore:

W ✏

2
➳

i✏1

*

δqiD
T Fbi

$ δqiM
in
bi
$ Lci

✟

$ δqTτ ✏ 0. (4.29)

The arbitrariness of δqT
t in equation (4.29), after few arrangements, allows to ob-

tain a system of ordinary differential equations, written only in terms of independent
variables:

M✿qt ✏ Γ♣qt, ✾qt, t# (4.30)

where M is a 2♣n$ 1# ✂ 2♣n$ 1# mass matrix and Γ♣qt, ✾qt, t# is a vector collecting
all dynamic terms that do not depend on accelerations. Desired model accuracy or
time integration issues guide the choice of a proper number n for the modes in (4.30).

4.3. Simulation plant design

Having now a general elasto-dynamic model for a five-bars, in order to carry out sim-
ulations on a real case study, it is necessary to define both physical and geometric pa-
rameters. Their values have been designed to ensure compatibility between the equip-
ment available at the MIR Lab (Laboratory of Mechatronics and Industrial Robotics
of the Polytechnic University of Marche, in Italy) and the performance that is required
to the parallel robot.

In particular, a testbench has been conceived according to Figure 4.5, where two se-
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motors 5-bar linkage
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P-joint

SETUP 2
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Figure 4.5.: Testbench concept.

tups can be arranged in order to test the manipulator in different operating conditions.
More details will be given in the following. However, the main idea is to use a fast
camera as an exteroceptive sensor pointing towards the end-effector of the five-bar
linkage in order to acquire its position at a high frame rate. The resulting data can
be used to identify several parameters, from kinematics to dynamics, so that model-
based controls can be implemented to improve the dynamic performance of the robot.
Therefore, the features of the camera have an impact on the maximum oscillation
frequencies that can be observed for the position of the robot end-effector during its
motion, affecting its mechanical design.

The hardware mentioned above is made up of the following items:

• Basler a504k camera 1280  px ✂ 1024 "px with 500 "fps and 12 "µm ✂ 12 "µm 

pixel size, used as exteroceptive sensor for pose estimation;

• NI PXIe-1435 Camera Link Frame Grabber;

• Lens with focal length f of 50 "mm .

As already mentioned, this equipment imposes constraints on the size of flexible
members and their geometry, in fact considering that the camera has a frame rate of
500 "fps , the maximum frequency that can be detected according to the Nyquist–Shannon
sampling theorem is:

fc ✏

fs

2
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where fs is the frequency of the signal, whereas fc is the sampling rate. From this
equation, it is evident that to detect the first 3 oscillation modes of the flexible links,
their geometries must comply with the constraints imposed by the available equip-
ment. In particular, the dimension of the links has been chosen so that at least 3
natural frequencies fall under 125  Hz!, knowing that:

• the maximum sampling rate of 500  Hz! for the camera is purely theoretic and
reachable under certain strict conditions;

• the software dedicated at grabbing and processing images needs time by itself
to be executed.

The constraint imposed above can be guaranteed by choosing three parameters: the
material, namely the Young’s modulus E and the density ρ, their cross section A, and
the length of the beam. Using steel bodies with E ✏ 2e11

 Pa!, the length and the
section remain to be set.

The length of the flexible links influences both the frequencies of the links them-
selves and the manipulator workspace (for this purpose further details can be found
in [49]). In particular, by choosing a length of the flexible links equal to c ✏ 0.3  m!

and rigid links with a length b ✏ 0.13  m!, the resulting workspace is free of singu-
larities within the boundaries of the chosen assembly mode. Moreover, a significant
manipulability is also available in the robot workspace, as shown in the following
section.

With the aim of obtaining the aforementioned properties in terms of vibrations, a
rectangular section with wc ✂hc ✏ 0.5  mm!✂10  mm! is chosen. A summary of the
geometric properties is shown in Table 4.1, which shows the section of the rigid links
also.

Table 4.1.: Geometric dimension of links.

length [mm] section [mm] ✂ [mm] mass [kg] inertia [kg☎m2]
a ✏ 130 ✁ ✁ ✁

b ✏ 130 wb ✂ hb ✏ 25 ✂ 25 mb ✏ 0.634 Ib ✏ 9.25 ☎ 10✁4

c ✏ 300 wc ✂ hc ✏ 0.5 ✂ 10 mc ✏ 0.012 Ic ✏ 8.77 ☎ 10✁5

The two parameters E and C needed to compute the elasto-dynamic model pro-
posed in this work can be identified by means of experimental tests in order to find
their actual value. In this work, if not specified, it is chosen C ✏ 0.003  MPa s!, for
E a value has already been assigned.

Besides the acquisition frequency of the camera, another important parameter is the
position resolution that the camera is able to detect. As a matter of fact, the oscillation
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that the end-effector of the manipulator could be subject to, must be detectable by
the camera with sufficient accuracy. The choice of a more performing system both
in terms of frame rate and resolution would allow to investigate a higher frequency
content with a more precise measurement of the end-effector position. Accordingly,
the vertical arrangement of the camera with respect to the robot must be defined in
order to improve the measurement quality. The testbench presented in Figure 4.5
meets all these needs.

More in detail, two setups can be arranged:

• in "SETUP 1" it is assumed that the flexible links are not influenced by their
weight because in that direction the stiffness of the beams is enough to avoid
a motion out of the horizontal plane. Therefore, in this case the deformation
of the flexible links is caused only by the actuation torques and by the inertia
acting on the horizontal plane.

• in "SETUP 2", on the contrary, gravity affects the behaviour of the system, and
therefore it cannot be neglected. Such setup shows similarities with the typical
architecture of a Delta Robot: the ABB Flexpicker is an example of fast and
slender parallel robot used in many industrial applications where high dynamic
loads are involved and must be taken into account. The proposed setup allows
to simplify the study in a smaller domain without losing generality.

Finally, another important aspect is the influence of the distance of the camera with
respect to the end-effector, whose acquisition area in Figure 4.5 is shown in red. In
particular, by positioning the camera in a plane placed at a distance of 245 mm from
the end-effector, an effective frame of 75.24mm ✂ 60.16 mm can be obtained. In
such conditions the camera performs with a position resolution of about 0.059 mm in
its acquisition plane.

4.4. Compliance Analysis

Limiting the study to only the first mode for each flexible link, which is the mode with
greater amplitude, a compliance analysis can be performed.

By looking at the formulation obtained previously for the differential kinematics,
some new arrangements can be done:

✾η ✏ X✁1J✁1

v ♣Jx ✾p✁ Jq ✾q$

with X♣c$ ✏

✓

χ1,1♣c$ 0

0 χ2,1♣c$

✛

and ✾η ✏

✓

✾η1,1

✾η2,1

✛

,

(4.31)

where the actuated joint variables are kept separate from the harmonic function η.
Applying a set of deformation velocities with unit norm ✾η

T
✾η ✏ 1, it follows that:
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CN Map of the Compliance Matrix
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Figure 4.6.: Map of the condition number based on the Frobenius norm for a rigid
and a flexible five-bar linkage.

p J 1

x Jqq
T

JT
x J T

v X T X 1J 1

v Jx p J 1

x Jqq , (4.32)

Studying the matrix C JT
x J T

v X T X 1J 1

v Jx throughout the manipulator
workspace, the areas of maximum and minimum compliance are highlighted. Null
values are assigned to η1,1 and η2,1 in order to evaluate the effect of deformation ve-
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locities of links in an undeformed configuration. Figure 4.6 shows two colour maps
that represent the trend of the condition number based on the Frobenius norm for both
a rigid and a flexible five-bar linkage.

As expected, the highest stiffness is associated with configurations of the manipula-
tor where the arms are perpendicular to each other. This phenomenon is related to the
fact that the bending deformation that would occur on one link would translate as an
axial load on the other link. In the boundaries of the workspace the condition number
tends to zero since the flexible links have a relative orientation far from the most rigid
perpendicular configuration.

4.5. Results

In this section, some results about the effectiveness of the proposed elasto-dynamic
model in terms of both accuracy and computational efficiency are presented. The flex-
ible links are based on the first 4 modal forms, discussing whether they are sufficient
or not for the objective set only at the end of the study.

In particular, using a circular trajectory, the model presented has been compared
with a Finite Element model. Subsequently, the model presented has been analyzed
in detail in order to show how it behaves and how many modal shapes are needed. Fi-
nally, a comparison of all the models used in this work will conclude the investigation
in order to identify the most performing model from the computational point of view.

4.5.1. Comparing the elasto-dynamic model with finite

element model

In order to analyze the elasto-dynamic model of the robot, the law given to the torques
of the actuated joints has been derived from the inverse dynamics of a five-bar link-
age with all rigid links. The applied torques are calculated to make the end-effector
complete a circular trajectory within its workspace in the time of 1 second.

The chosen trajectory has a radius r ✏ 0.025 !m" and it is accomplished by starting
and arriving with null speed and acceleration. To model the curvilinear abscissa of the
circular path a Bézier polynomial of fifth order has been used. This polynomial has
six coefficients that can be found applying an equal number of conditions.

More specifically, the following conditions have been set:

• initial displacement pi ✏ !0.05 0.25"t

• final displacement pf ✏ !0 0.25"t

• initial and final speed equal zero

• initial and final acceleration equal zero
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By means of a Bézier polynomial the time law has been found. The torque laws
follow a preliminary study about the inverse kinematics of the robot with rigid links
followed by the use of its inverse dynamic model. Such laws are shown in Figure 4.7.

Rigid torques

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.2

0

0.2

0.4

t [s]

Nm

Figure 4.7.: Torque values obtained from a Cartesian circular motion of five-bar link-
age with rigid links

These torques have been applied both to the analytical model presented above and
to a model created in a FE simulation environment. The latter has been realized by
modeling the flexible links of the robot with 16 elements for each beam. The number
of elements has been chosen so that the code remains light from the computational
point of view but with the necessary precision to be able to describe the phenomenon
under study.

In particular, by dividing each link into sixteen elements based the "beam 189"
Ansys element, which is suitable to analyse slender structures, 33 nodes have been
obtained, each one having 6 degrees of freedom. By applying the constraints in order
to obtain a planar model, the resulting model incorporates 64 vibration modes for each
beam. The trend of the end-effector position over time for both models along the x

and y Cartesian directions is shown in Figures 4.8.

Due to the small deformation values, it is not possible to clearly see the difference
between the elasto dynamic model and the FE model taken as reference for its verifi-
cation. Therefore, the error made by the robot end-effector with respect to the planned
trajectory is shown along the x and y directions, as shown in Figure 4.9.

The overall error of the end-effector in carrying out the planned trajectory has been
calculated as:

etot e2
x e2

y (4.33)

and its trend is shown in Figure 4.10.

From the trend of the error calculated as the difference between the position of the
end-effector of the rigid robot and of the flexible robot, it is easy to verify that the order
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Figure 4.8.: Comparison of the Cartesian trajectories obtained for a FE model and the
proposed elasto-dynamic model
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Figure 4.9.: Comparison between the Cartesian trajectories for a FE model and the
proposed elasto-dynamic model in terms of Cartesian errors

of magnitude of the error of the two models is the same. The trends, as expected, have
some similarities but do not coincide. By suitably varying the damping coefficient
C, the behaviour of the elasto-dynamic model can be adjusted to be closer to the FE
model or more importantly to the data obtained from the end-effector trajectory of a
real robot.
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Figure 4.10.: Norm of the overall Cartesian error obtained by a comparison between
the FE model and the elastodynamic model

4.5.2. Analysis of the elastodynamic model

To better understand the proposed model, an analysis of its behavior with respect to a
given circular trajectory has been addressed. In this simulation the damping coefficient
is set as C ✏ 0 !MPa s" in order to have no damping effect on the flexible members.
The simulation presented in this case consists of two parts:

• Part I - the robot completes a turn of a circular trajectory in one second, with
zero speed and acceleration conditions at the beginning and end of the trajectory.

• Part II - no torques are applied to the robot (zero torques to the actuators); this
part of the simulation has a duration of eleven seconds, here the only effect
is related to the deformation energy accumulated during the motion and to the
residual speed and acceleration from the circular motion.

Therefore, the total simulation lasts 12 seconds. This value has been chosen in
order to be able to clearly see the oscillations that the robot makes after executing the
imposed trajectory. The simulation shows that, following the motion imposed by the
motors and calculated through the inverse dynamics of the rigid robot, the end-effector
moves in a position in the neighborhood of the planned one and with a certain non-null
speed and acceleration.

The presence of the a certain residual energy at the end of the motion is due to the
flexibility of the links, which store a part of the work done by the actuators under the
form of elastic displacements. Being the motion not controlled to reach the desired
position then, the system returns such deformation as oscillations which affect the
positioning precision.

Figure 4.11 shows the trend of the couples as a function of time:
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Figure 4.11.: Torques obtained by the rigid model of a five-bar linkage in following a
circular path

To analyse the behavior of the flexible links, since these are modeled with the As-
sumed Modes Method, a study of the trends of the coefficients δi is proposed since
the information on the amplitude of the oscillations of the various modes can be better
appreciated. To this end, the vibration modes of links 1 and 2 are shown in Figure
4.12.
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Figure 4.12.: Amplitude of the coefficients of the modal shapes without damping

From Figure 4.12 it can be noted that, in the first part of the simulation, the trend of
the amplitude of the coefficients is influenced by the imposed torques. Furthermore,
it can be seen that the amplitude of the coefficients of the even modes are out of phase
by 180 with respect to the odd modes. As expected, it can be also noticed that the
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deformation amplitude of the modes decreases the more the mode is at high frequency.

In the second part, there is an evident transfer of energy between the amplitude
coefficients of links 1 and 2; in particular, it can be seen that the generic ith mode of
link 1 is out of phase by 180 with respect to the same mode of link 2. This is due to
the absence of damping in this simulation.

With the introduction of damping, with a value of C 0.0003 MPa s , a trend
similar to that already described is obtained, but with fluctuations of smaller amplitude
and a period of about 3 seconds; after that, all the coefficients reach a value of zero
amplitude, which causes the end-effector of the robot to stop oscillating.

The previous considerations can be summarized by means of Figure 4.13, which
shows the trend of the coefficients δi for a simulation with damping.

0 2 4 6 8 10 12

-2

0
2

x10-3

t [s]

Amplitude of 
1,1 

mode 1
 

0 2 4 6 8 10 12 t [s]
-5

-5

0

x10-5 Amplitude of 
1,2 

mode 2
 

0 2 4 6 8 10 12 t [s]

-5

0

5

x10-6 Amplitude of 
1,3 

mode 3
 

0 2 4 6 8 10 12 t [s]
-1
0
1
2

x10-6 Amplitude of 
1,4 

mode 4
 

-2
0
2

x10-3

0 2 4 6 8 10 12 t [s]

Amplitude of 
2,1 

mode 1
 

-5

0

5

0 2 4 6 8 10 12 t [s]

x10-5 Amplitude of 
2,2 

mode 2

0 2 4 6 8 10 12 t [s]

-5
0
5

x10-6 Amplitude of 
2,3 

mode 3

0 2 4 6 8 10 12 t [s]
-2

0

2

x10-6 Amplitude of 
2,4 

mode 4
 

Figure 4.13.: Amplitude coefficients of modal forms with damping

Finally, it is worth noticing that in both simulations the amplitude of the modes are
negligible starting from the third one ( 10 5 and even less for the damped simula-
tion). Therefore, the position of the end-effector EE can be described with sufficient
accuracy using the superposition of the first two vibration modes, which are the preva-
lent ones during dynamic operations.
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4.5.3. Algorithm efficiency

After having examined and compared the elasto-dynamic model from the point of
view of deformation, the present chapter closes the study by comparing it with all
the models used while carrying out this work: a FE model and a model based on the
Bézier polynomials.

The comparison is aimed at identifying the calculation time of the model in order
to understand if this can in the future be used in a real-time controller.

In order to make this comparison, two types of tests have been carried out, corre-
sponding to two different load conditions.

In the first type of load, a small initial deformation of the flexible links is applied
to the models, and the simulation is performed in direct dynamics for a small time
interval. The average time obtained from one hundred simulations were performed.
The calculator in use is a personal computer having a processor Intel Core i7-6700
HQ with a clockspeed of 2.60 GHz , which yielded the results in Figure 4.14.
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Figure 4.14.: Computation time comparison between several models for a small ini-
tial deformation

For the second load case, only the acceleration of gravity has been applied to all the
bodies of the model g, without applying any torque to the actuators. Also in this case,
a campaign of direct dynamics simulations have been performed for a small interval
of time with the same computer. The mean values of the computation times for these
simulations lead to the result presented in Figure 4.15.

From the results shown above, it is possible to conclude that the model based on the
Assumed Modes is the most performing in terms of computation time.

In particular, the diagrams show that the model with damping can be calculated in
0.01 s time and therefore could be applied in real-world scenarios. Naturally more
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Figure 4.15.: Computation time comparison gravity acceleration applied

investigation on a physical testbench can validate the results obtained in this work or
provide suggestions for improving its behavior and computational efficiency.
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Chapter 5.

Conclusion and Future works

5.1. Conclusion

In this work an effective approach for the modeling of parallel kinematics robots with
flexible links has been presented. In particular, starting from the description and anal-
ysis of the methods that describe the dynamics of the deformation of the robot links,
different types of elasto-dynamic models for parallel kinematics robots have been de-
veloped.

The proposed elasto-dynamic models differ from each other since: in the first, the
deformation is described by means of a Bézier polynomial and the equations of mo-
tion of the elasto-dynamic model are obtained using the Augmented Formulation of
Lagrange, whereas in the second, the deformation is evaluated using the Assumed
Mode Method and the dynamics equations are obtained through the Principle of Vir-
tual Works.

Having presented the two models highlighting their intrinsic characteristics, the sec-
ond approach mentioned above has been chosen. In fact, it has demonstrated the great-
est performance in terms of computation time required to be solved. Afterwords, by
virtue of this feature, the kinematics and dynamics of a five-bar linkage with flexible
links and a kinematic architecture similar to that of a well-known family of industrial
robots have been modelled.

The choice of the physical and geometric parameters to be used in the model has
been discussed. As a matter of fact, their values are linked to the performance of a
testbench conceived to identify the kinematic and dynamic parameters of the robot,
based on the equipment available at the MIR Laboratory of the Polytechnic Univer-
sity of Marche. More in detail, the performance of a fast camera belonging to the
measuring bench clearly influences the workspace of the robot and the performance
which can be detected through the available instrumentation. Therefore, the design of
the flexible links followed some guidelines with accordance to the performance of the
instrumentation.

Furthermore, the chosen model has been verified by means of a Finite Element
model, from which it has emerged that some similarities exist regarding deformations,
especially with respect to the order of magnitude. However such study needs further
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investigation, so that the behavior is as faithful as possible.

Several studies have been presented on the chosen model in order to show its char-
acteristics and potential; in particular, a link compliance map has been presented in
order to identify the areas in which the robot is most compliant inside its workspace,
so that a designer can take them into account in the design or planning phase of a
task. Finally, the work ends by comparing all the models presented from the compu-
tational point of view in order to determine which of them may be considered the best
candidate for use in model-based real-time controls.

5.2. Future Works

As mentioned in the introduction, the results of flexible robotics may find application
in many fields, from which the industrial sector can benefit most.

This work has been mainly focused on the development of an elasto-dynamic model
of parallel kinematics machines and the simulations presented have been conceived to
answer the needs of the industrial sector considering applications of industrial robots.
In this context, an aspect of considerable interest concerns the improvement that could
be obtained through model-based controls of industrial machines with high dynamic
performance in trajectory tracking. The hypothesized workbench proposed in the
present work has been conceived in order to allow kinematic calibration and identifi-
cation of dynamic parameters. Such operations have considerable interest in real ap-
plications, where mechanical calibration is usually preliminary to the commissioning
of a machine. Moreover, the knowledge of an identified elastodynamic model allows
to improve the trajectory tracking, extending the range of applicability of a machine
to increasingly extreme conditions of use. The results obtained from the computation
of the proposed elastodynamic model seem compatible with these purposes.

Therefore, one of the most important activities that can be planned as a future work
is the mechanical calibration and identification of the parameters of the proposed elas-
todynamic model. Hence, a validation of the model is needed by means of a physical
testbench in order to fulfill the calibration requirements.

Another aspect of strong interest from an industrial point of view consists in study-
ing how this model behaves following the application of a certain payload, analysing
the effect of change in its value. This represents a crucial aspect, since the task of any
robot clearly consists in moving a tool installed at the robot end-effector to perform a
specific task.

As already mentioned, the elastodynamic model presented in this work is only a
preliminary model that takes into account only partially the deformation that a flexi-
ble link can exhibit in dynamic conditions. For instance, large displacements can be
considered and axial constraints can be introduced to model its physical behaviour.

Finally, the idea of compliant systems in industry is certainly more oriented to-
wards the emerging field of collaborative robotics, where humans and machines share
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5.2. Future Works

the same workspace collaborating in a common task. The definition of advanced com-
pliance models could favor the development of more collaborative applications, where
the machine can react with compliance in the eventual physical interaction with hu-
mans.
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Appendix A.

Normalization of the deformation

To determine the last integration constant, the normalization condition of the modes
of vibrations can be exploited. The well-known proof of orthogonality of the shape
functions is reported below, finally arriving at the normalization condition that can be
used to determine the last coefficient of the 2.36

A.1. Orthogonality of the modes

Starting to :

✁

d2EIzv✷♣u, t"

du2
✏ ρA

d2v♣u, t"

dt2
(A.1)

and replace v ✏ χδ♣t" ✏ χejωit in the last equation:

d2

du2
EIzχ✷

♣u"✟
✟✟ejωit
✏ ω2

i ρA✟
✟✟ejωit

Considering the "r" and "s" modes of vibrating with r ✘ s we have:

m♣u" ✏ ρA

d2

du2
EIzχ✷

r♣u" ✏ ω2

rm♣u" χr

d2

du2
EIzχ✷

s♣u" ✏ ω2

sm♣u" χs

Taking the first and multiplying by the way χs we get:

➺ l

0

χs♣u"
d2

du2
EIzχ✷

r♣u" du ✏ ω2

r

➺ l

0

m♣u" χs♣u" χrdu (A.2)

Taking the left member and integrating it by parts two times we obtain:
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Appendix A. Normalization of the deformation

χs♣u!

d

du
EIz

d2χr♣u!

du2

✞

✞

✞

✞

l

0

✁

dχs♣u!

du
EIz

d2χr♣u!

du2

✞

✞

✞

✞

l

0

#

➺ l

0

EIz

d2χs♣u!

du2

d2χr♣u!

du2

(A.3)

Considering a stuck beam we have that χ♣0! ✏ 0 χ✶

♣0! ✏ 0,therefore by substitut-
ing these conditions we obtain:

χs♣l!
d

du
EIz

d2χr♣l!

du2

T♣l"

✁

dχs♣l!

du
EIz

d2χr♣l!

du2

M♣l"

#

➺ l

0

EIz

d2χs♣u!

du2

d2χr♣u!

du2

Where:

• T♣l! is the shear at the free end

• M♣l! it’s torque to the free end

Now repeating the same operation for χs♣u! and by comparing we obtain:

χs♣l!
d

du
EIz

d2χr♣l!

du2
✁

dχs♣l!

dx
EIz

d2χr♣l!

du2
#

➺ l

0

EIz

d2χs♣u!

du2

d2χr♣u!

du2
(A.4)

χr♣l!
d

du
EIz

d2χs♣l!

du2
✁

dχr♣l!

du
EIz

d2χs♣l!

du2
#

➺ l

0

EIz

d2χr♣u!

du2

d2χs♣u!

du2
(A.5)

Considering that the shear and the torque at the free end are null and remembering
the right member of the A.2 we have that:

➺ l

0

χs♣u! ω2

rm♣u! χr ✏

➺ l

0

χr♣u! ω2

sm♣u! χs♣u!

♣ω2

r ✁ ω2

s!

➺ l

0

χs♣u! χr♣u! m♣u! ✏ 0

This equation, being ωs ✘ ωr proves that the form functions χr♣u!χs♣u! they are
normal to each other.

♣ω2

r ✁ ω2

s!

➺ l

0

χs♣u! χr♣u! m♣u! ✏ 0 s ✘ r (A.6)

On the other hand, in the event that r ✏ s we have that the modal forms are equal
and therefore the integral in A.6 is not null; then the integral can be set equal to one in
order to normalize the last unknown coefficient during the impositions of the boundary
conditions
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A.1. Orthogonality of the modes

➺ l

0

χ2

r♣u! m♣u! ✏ 1 s ✏ r (A.7)
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