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abstract

Myelodysplastic syndromes (MDS) are characterized by ineffective hematopoiesis and often include a dysre-
gulation and dysfunction of the immune system. In the context of population aging, MDS incidence is set to increase
substantially, with exponential increases in health care costs, given the limited and expensive treatment options for
these patients. Treatment selection is mainly based on calculated risk categories according to a Revised International
Prognostic Scoring System (IPSS-R). However, although IPSS-R is an excellent predictor of disease progression, it is
an ineffective predictor of response to disease-modifying therapies. Redressing these unmet needs, the “immu-
nome” is a key,multifaceted component in the initiation and overall response againstmalignant cells inMDS, and the
current omission of immune status monitoring may in part explain the insufficiencies of current prognostic strat-
ification methods. Nevertheless, integrating these and other recent molecular advances into clinical practice proves
difficult. This review highlights the complexity of immune dysregulation inMDS pathophysiology and the fine balance
between smoldering inflammation, adaptive immunity, and somatic mutations in promoting or suppressing ma-
lignant clones. We review the existing knowledge and discuss how state-of-the-art immune monitoring strategies
could potentially permit novel patient substratification, thereby empowering practical predictions of response to
treatment in MDS. We propose novel multicenter studies, which are needed to achieve this goal.

J Clin Oncol 38:1723-1735. © 2020 by American Society of Clinical Oncology

Licensed under the Creative Commons Attribution 4.0 License

INTRODUCTION

Myelodysplastic syndromes (MDS) represent a group
of acquired clonal disorders of hematopoietic stem
and progenitor cells (HSPCs), characterized by in-
effective hematopoiesis, peripheral cytopenias, ge-
netic instability, and an increased risk of progression
to acute myeloid leukemia (AML).1 Considering the
higher prevalence in elderly patients, the population
aging in developed countries, as well as higher di-
agnostic awareness, the incidence of MDS is set to
increase substantially in coming decades.2

Clinical outcomes can vary greatly, even between
patients considered to have the same MDS subtype.
Thus, MDS display marked heterogeneity regarding
prognosis and the risk of disease progression. To
overcome this heterogeneity, the International Prog-
nostic Scoring System (IPSS) was introduced, and
then later revised (IPSS-R), with the aim to provide
discriminatory prognostic risk assessment regarding
overall survival and risk of progression to AML.3 Al-
though the IPSS-R reliably predicts the risk of disease
progression, it is not an effective tool to predict re-
sponse to disease-modifying therapies.4 This is not
surprising, because the IPSS-R, like the original IPSS,

was developed based on clinical data from patients
with untreated MDS. Recent advances in targeted and
large-scale next-generation sequencing (NGS) have
helped to illuminate the dynamic genomic landscape
in MDS.5-7 Although none of the most common re-
current somatic mutations is disease defining, some
have an independent impact on overall survival, such
as in TP53.8 Thus, addition of molecular data to the
IPSS-R can improve its predictive power.5,8,9

Recent advances have also highlighted the role
of immune dysregulation in MDS pathogenesis but
are currently omitted from IPSS-R. This includes
both abnormal activation of innate immune pathways
and associated inflammation as well as aberrant cel-
lular immune responses of independent prognostic
value, which dynamically evolve during disease
progression.10-13 The addition of comprehensive im-
munologic data to prognostic models could, similar to
mutational data, further help to refine risk stratification
across the boundary of lower- and higher-risk MDS.
We envisage that continued clarification of the im-
mune pathways that are dysregulated in selected MDS
subtypes will improve patient stratification, improve
the use and outcomes of existing treatments and
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novel immunotherapies, and drive the development of new
targeted drugs. In this review, we highlight recent advances
in the understanding of immune dysregulation in MDS,
discuss their clinical implications and potential therapeutic
applications, and outline how immune profiling could be
implemented in future clinical trials.

PREDISPOSING AND POTENTIAL DRIVING
IMMUNE FACTORS

Smoldering Inflammation and Immunosenescence

Chronic inflammation as a result of long-lasting expo-
sure to persistent infection or sterile inflammation is a well-
established predisposing factor for cancer,14,15 and in-
creasing evidence implicates the activation of innate im-
mune signaling in age-related hematopoietic senescence,16

bone loss,17 and MDS.18 In fact, normal human aging
represents a state of chronic low-grade sterile in-
flammation, similar to that originally described as “para-
inflammation” by Medzhitov19 and commonly referred to
as “inflammaging.”20 Stressed, damaged or otherwise
malfunctioning, and/or dead cells release endogenous
inducers of sterile inflammation, including damage-
associated molecular patterns (DAMPs) like high-
mobility-group-protein B1 and alarmin S100 proteins,
which can be sensed through different receptors, such as
Toll-like receptors (TLRs) and cytosolic nucleotide-binding
domain and leucine-rich repeat pattern recognition re-
ceptors (NLRs).19,20 The physiologic purpose of the ensuing
inflammatory response early in life and adulthood is to
restore functionality and homeostasis in the tissue. How-
ever, in old age, a period in life largely not foreseen by
evolution, the continuous exposure to inflammatory stimuli/
stressors (the “immune biography”) becomes detrimental,
setting the biologic background favoring the susceptibil-
ity to age-related inflammatory disorders, autoimmunity,
and deterioration of hematopoiesis. A reduced capacity
to defend against pathogens and to initiate adaptive im-
munity is observed in aging humans, together with en-
hanced proinflammatory reactions fueled by endogenous/
self-molecular garbage.20,21 The presence of “smoldering”
inflammation in the elderly may aid the proliferation and
survival of malignant MDS clones driven by genetic alter-
ations (including a recently described condition known as
clonal hematopoiesis of indeterminate potential [CHIP]22),
subvert adaptive immunity, and alter cellular responses to
therapeutic intervention.

NLRP3 Inflammasome: A Driver of Chronic Inflammation

in MDS

Increased levels of DAMPs (eg, S100A8/9) and activated
NLR family, pyrin domain-containing protein 3 (NLRP3)
inflammasomes are evident in MDS, particularly lower-risk
disease.18,23-25 Notably, MDS HSPCs are specifically sus-
ceptible to DAMPs because they overexpress TLRs26,27

along with signal transducers, such as IRAK128 and
TRAF6.29 Ligation of S100A8/9 to TLR4 induces NF-
kB–mediated transcription of proinflammatory cytokines,
including pro–interleukin (IL)-1b and IL-18, and tran-
scriptional priming of inflammasome components.30 Once
activated, the NLRP3 inflammasome directs caspase-
1–dependent conversion of pro–IL-1b/IL-18 to their ac-
tive forms and inflammatory pyroptotic cell death.18 The
consecutive release of proinflammatory cytokines, reactive
oxygen species, and other intracellular contents into the
extracellular milieu further activates the NLRP3 inflam-
masome, driving pyroptosis of HSPCs, consequent cyto-
penias, and an inflammatory circuit (Fig 1). This milieu may
support the propagation of the MDS clone through vari-
ous pathways, including Wnt/b-catenin signaling31 or ab-
errant activation of the IL-1/p38MAPK pathway.32 NLRP3
inflammasome activation seems to be licensed by S100A8/
9 and MDS-related gene mutations and is also evident in
patients with del(5q) MDS, featuring activation of the p53-
S100A8/9-TLR4 axis.10,18,24 However, whether inflamma-
some activation is a general feature of lower-risk MDS or
particular subgroups needs to be evaluated in larger co-
horts in the future.

TLR signaling pathway activation in MDS HSPCs makes the
TLR axis a promising therapeutic target (Table 1). In ad-
dition, novel NLRP3 inflammasome inhibitors or approved
IL-1b inhibitors are in clinical development and may offer
therapeutic promise in MDS,10 which highlights the im-
portance of refined patient stratification to identify pa-
tients with prominent “autoinflammatory” features, who are
therefore most likely to benefit from inflammasome path-
way inhibition.

Somatic Mutations and Inflammatory Status

A complex and dynamic landscape of genetic mutations
and cytogenetic lesions is evident in MDS.5,33 Acquisition of
serial mutations and clonal diversification not only reflect on
disease progression but also give an indication of the (in-)
efficacy of the immune system to control outgrowth of
malignant clones, as suggested in other malignancies.34,35

Underlying smoldering inflammation could contribute to
the genomic instability and acquisition of additional mu-
tations, as shown in gastrointestinal malignancies.36,37 In
MDS, mutations affecting epigenetic modifiers (eg, TET2,
ASXL1) and RNA splicing factors (eg, SF3B1, SRSF2)
seem to represent predominantly “founder” events.33 Mu-
tations in several of these genes have been linked to
activated NLRP3 inflammasomes and enhanced innate
immune signaling.18,38-40 Such mutant gene licensing of
innate signaling pathways in myeloid progenitors may
provide the selective immune pressure conducive to ma-
lignant progression in MDS/AML. On the other hand, the
observation of founder mutations in the lymphoid lineage
raises questions about the potential effect of intrinsically

1724 © 2020 by American Society of Clinical Oncology Volume 38, Issue 15

Winter et al

Downloaded from ascopubs.org by 79.23.178.63 on May 23, 2021 from 079.023.178.063
Copyright © 2021 American Society of Clinical Oncology. All rights reserved. 



aberrant lymphocytes on the adaptive immune response
and MDS/AML pathogenesis.33,41

The intricate relationship between mutagenesis and
inflammatory processes is not limited to established
MDS. Patients with CHIP,22 a condition that likely pre-
cedes MDS and is characterized by the presence of
MDS-related mutations in DNMT3A, TET2, ASXL1, or JAK2,
were found to have an increased risk of inflammatory-related
diseases, such as coronary heart disease.42,43 Recent
studies point to the existence of shared autoinflammatory
NLRP3-related pathways in CHIP/MDS and associated

comorbidities,44 and suggest NLRP3 as a shared
genetic risk factor for MDS and paraneoplastic Sweet
syndrome.45

The other important and yet poorly investigated aspect of
MDS pathophysiology is the reciprocal effect of the (cel-
lular) immune response on frequency and type of somatic
mutations and whether these mutations induce immuno-
genic neoantigens, as shown in other malignancies.34

Because of the overall lower somatic mutation burden in
both AML and MDS compared with other types of tumors,46

the potential immunogenicity of these mutations is largely
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FIG 1. The immune contexture in myelodysplastic syndrome (MDS). Certain conditions associated with chronic immune stimulation, such as
aging, chronic infection, and autoimmune disease, may contribute to set the biologic background for MDS development (left). Chronic immune
stimulation leads to sustained TLR activation that may drive hematopoietic skewing and loss of stem cell quiescence. Initial events may induce
a “myeloid bias” of hematopoietic stem cells and multipotent progenitors, and such a bias could skew the accumulation of somatic mutations
conferring clonal advantage and/or differentiation defects toward the myeloid lineage. Elevated levels of proinflammatory cytokines, reactive
oxygen species (ROS)/reactive nitrogen species (RNS), and damage-associated molecular patterns (DAMPs) induce activation of the NLRP3
inflammasome, resulting in pyroptosis of hematopoietic stem and precursor cells (HSPCs), consequent cytopenias, an inflammasome-driven
inflammatory circuit, and an increasing dysfunction of the hematopoietic stem cell niche, including mesenchymal alterations (middle).
Subsequently, the presence of smoldering inflammation may support the propagation of premalignant clones (eg, via ROS-dependent Wnt/
b-catenin pathway) and subvert adaptive immunity (right). The immune contexture dynamically changes with disease progression. In higher-
risk MDS, an expansion of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) contributes to the suppression of antitumor
responses and immune evasion of malignant clones. Regarding CD4+ T-cell subsets, which display significant plasticity in response to changing
environmental cues, different CD4+ T-cell signatures are to be expected in MDS subtypes, with predictive value for disease progression and
response to therapy, as shown in other diseases like aplastic anemia.148 AML, acute myeloid leukemia; ASXL1, additional sex combs-like 1,
transcriptional regulator; DC, dendritic cell; DNMT3A, DNA methyltransferase 3 alpha; HIF-1a, hypoxia-inducible factor 1, alpha subunit; IL-
1R1, interleukin-1 receptor, type 1; IL-1RAP, interleukin-1 receptor accessory protein; M, macrophage; MSC, mesenchymal stromal cell; NK,
natural killer cell; NLRP3, nucleotide-binding domain and leucine-rich repeat pattern recognition receptor (NLR) family, pyrin domain-
containing protein 3; SF3B1, RNA splicing factor 3B, subunit 1; SRSF2, serine/arginine-rich splicing factor 2; STAT3-P, signal transducer and
activator of transcription 3, phosphorylated; TET2, tet methylcytosine dioxygenase 2; TLR, Toll-like receptor; TNFR, tumor necrosis factor
receptor; U2AF1, U2 small nuclear RNA auxiliary factor 1.
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unexplored. We previously adopted an algorithm to pre-
dict neoantigens and combined this with mass cytometry
to identify neoantigen-related immune signatures.47 This
initial investigation suggested that the presence of pre-
dicted neoantigens has a protective effect in patients with
lower-risk disease.

The Microbiome and Its Impact on Inflammation

and Immunome

Profound changes in the microbiota and its interaction
with the immune system are increasingly recognized to

contribute to chronic inflammatory diseases, includ-
ing hematologic disorders.48,49 Various factors can re-
duce microbial diversity and commensalism, including
treatment with broad-spectrum antibiotics, poor die-
tary patterns, drugs, chemotherapy, and environmen-
tal factors. For example, depletion of intestinal micro-
bial flora by broad-spectrum antibiotic treatment of
mice has been shown to cause a decrease in HSPC
numbers and concomitant anemia, highlighting the
intricate relationship between host-microbiome and
hematopoiesis.50

TABLE 1. Novel Therapeutic Agents Evaluating Immune Targets in MDS
Class Drug Target Patient Group Clinical Trial Reference

TLR inhibition OPN-305 (mAb) TLR2 HMA failure lower-risk
MDS

NCT02363491: phase I-II, completed 155

IRAK-1/4 inhibitor IRAK-1/4 N/A Preclinical 28

Bortezomib NF-kB pathway, TRAF6
inhibition

Lower-risk MDS with p65
activation

NCT01891968: phase II, completed 156

NLRP3
inhibition

Ibrutinib BTK inhibitor, regulator
of NLRP3
inflammasome

Higher-risk MDS Phase I, recruiting; in combination with Len
(NCT03359460) or Aza (NCT02553941)

Cytokine
inhibition

Luspatercept (ACE-
536)

TGF-b superfamily
ligands

Lower-risk MDS NCT02631070: phase III, active, not
recruiting and NCT03682536: phase III,
recruiting; luspatercept v epoetin alpha

157,158

Checkpoint
inhibitors

Ipilimumab/ nivolumab CTLA-4/PD-1 Untreated MDS,
post–HMA failure

NCT02530463: phase II, recruiting; alone or
in combination with Aza

93

Durvalumab PD-L1 Untreated higher-risk
MDS, AML

NCT02775903: phase II, active, not
recruiting; in combination with Aza

Atezolizumab PD-L1 HMA R/R MDS, HMA-
naı̈ve MDS

NCT02508870: phase I, suspended; alone
or in combination with Aza

Pembrolizumab PD-1 IPSS int-1 or higher (HMA-
naı̈ve and HMA failure)

NCT03094637: phase II, recruiting; in
combination with Aza

159

Hu5F9-G4 (5F9) CD47 R/R AML or MDS,
treatment-naı̈ve unfit
AML or higher-risk MDS

NCT03248479: phase IB, recruiting; alone
or in combination with Aza

100

NK therapies CD16/IL-15/CD33
TRIKE

CD16/CD33 High-risk MDS, R/R AML,
CD33 hematologic
malignancies

NCT03214666: phase I/II, not yet recruiting 69

Lirilumab KIR2DL1/2L3 Lower-risk and higher-risk
MDS without prior HMA
therapy

NCT02599649: phase II, completed; alone
or in combination with Aza/nivolumab

MDSC
elimination

BI 836858 CD33 R/R lower-risk MDS (HMA-
naı̈ve and HMA failure)

NCT02240706: phase I-II, recruiting 91

Vaccine
therapies

DEC-205/NY-ESO-1
fusion protein CDX-
1401

— IPSS (int-1, int-2, high),
AML

NCT03358719: phase I, recruiting 90

Potential neoantigen-
based vaccine
approach

MDS cells expressing
defined neoantigens

MDS or CCUS NCT03072498: sample collection,
recruiting

CAR T cells CM-CS1 T-cell infusion NKG2D MDS-EB, AML, MM NCT02203825: phase I, completed

Abbreviations: AML, acutemyeloid leukemia; Aza, 5-azacytidine; BTK, Bruton’s tyrosine kinase; CAR, chimeric antigen receptor; CCUS, clonal cytopenia of
undetermined significance; HMA, hypomethylating agent; int-1, intermediate-1; int-2, intermediate-2; IPSS, International Prognostic Scoring System; Len,
lenalidomide; mAb, monoclonal antibody; MDS, myelodysplastic syndrome; MDSC, myeloid-derived suppressor cell; MDS-EB, MDS with excess blasts; MM,
multiple myeloma; N/A, not applicable; R/R, refractory/relapsed; TRIKE, trispecific killer engager.
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Although no detailed study exists concerning the micro-
biome composition in MDS, the role of microbial-dependent
inflammation in the development of preleukemic myelo-
proliferation has been demonstrated recently in Tet2-
deficient mice, in which intrinsic (Tet2 deficiency–
induced IL-6Ra overexpression) and extrinsic (microbial-
induced IL-6) inflammatory cues cooperate and trigger
proliferation of highly sensitive Tet2-deficient hemato-
poietic progenitor cells.39 Clinically, overuse of antibiotics
and/or a poor dietary pattern/nutritional reserve is also
common in MDS/AML and could lead to decreases of
microbial diversity and commensalism in the gut, resulting
in compromised immune responses and increased risk of
inflammation. One study concerning relapse after allo-
geneic hematopoietic stem-cell transplantation (HSCT)
demonstrated that higher abundance of a bacterial group
composed mostly of Eubacterium limosum could de-
crease the risk of relapse and disease progression.51 Lack
of commensal microbes like E. limosum or their immu-
nomodulatory metabolites (eg, short-chain fatty acids)
can increase the risk of gut permeability and result in
translocation of pathobionts and overexpression of in-
flammatory cytokines.52 Thus, identifying microbiome
signatures that contribute to immune system deteriora-
tion in MDS may lead to novel therapeutic strategies to
control inflammation and potentially prevent disease
progression.

Immune Dysregulation in MDS: Autoimmunity

or Autoinflammation?

Although there is evidence for the presence of both innate
immune-related autoinflammation as well as adaptive au-
toimmune responses in MDS,10,53,54 these two terms are
sometimes used interchangeably, which may cause some
confusion. The term autoimmunity names a condition
associated with the presence of autoreactive T cells and
high autoantibody titers, whereas autoinflammation gen-
erally refers to a condition with dysregulated myeloid-driven
innate immune responses only. This view clearly separated
autoinflammation and autoimmunity as distinct immuno-
logic diseases. However, and this may be true for MDS,
some chronic inflammatory diseases may lie on a spectrum
from autoinflammatory to autoimmune, sharing genetic
associations and common inflammatory pathways (TLR,
PI3K-Akt, and NF-kB signaling), and connecting by vari-
able degrees of interaction between innate and adaptive
immune responses55,56 (Fig 2).

Autoimmune features were long considered as a co-
incidence rather than a predisposing factor for MDS.
Spurred from case reports and smaller studies, a large
population-based study was designed, which demon-
strated an increased risk of MDS among patients with
antecedent autoimmune disease (AID; odds ratio [OR], 2.1;
95% CI, 1.7 to 2.6) or infectious disease (OR, 1.3; 95% CI,
1.1 to 1.5), indicating that chronic immune stimulation (the
immune biography) might act as a trigger for MDS

development.57 On the other hand, AID can be a favorable
prognostic factor in patients with established MDS,54 but
additional large prospective studies are necessary to
confirm these results.

IMMUNE SURVEILLANCE, MICROENVIRONMENT, AND
MDS PROGRESSION

Immune Surveillance and MDS Progression

The immune response to cancer requires a series of
carefully regulated events that in principle should am-
plify and broaden cellular immune responses.58 Chronic
inflammation affects immune surveillance and has two
overlapping effects in MDS. On the one hand, DAMPs and/
or founder gene mutations license the NLRP3 inflamma-
some to generate an inflammatory feed-forward process
characterized by excess proinflammatory cytokines, such
as IL-1b, TNF-a, and IFN-g (Fig 1). Proinflammatory cy-
tokines may facilitate the selection of neoplastic clones by
simultaneously enhancing their growth and exhausting
non-neoplastic clones, as demonstrated by the paradoxical
effects of IL-1b on AML versus normal progenitors.32 On the
other hand, cytokine-mediated induction of immune-
inhibitory molecules like programmed cell death-ligand 1
(PD-L1) may contribute to T-cell suppression and reduced
immune surveillance.59 Furthermore, excess DAMPs
may expand myeloid-derived suppressor cells (MDSCs),60

which overproduce suppressive cytokines, such as IL-
10 and transforming growth factor-b, contributing to
the subsequent immunosuppression and ineffective
hematopoiesis.60,61

In general, low-risk disease is related to a more proin-
flammatory immune response and higher numbers of
effector-type cells, such as IL-17+ CD4+ cells,11 and higher-
risk disease is characterized by a predominantly sup-
pressive milieu with significant expansion of immuno-
suppressive cells, such as Tregs62,63 and MDSCs,12,60

accompanied by a reduction in the number and function of
bone marrow (BM) dendritic cells,64 peripheral CD8+

T cells,65 and natural killer (NK) cells66 (Fig 1). The pro-
liferative capacity of Tregs appears compromised dur-
ing earlier disease stages but is restored during disease
progression.67 A positive correlation between the num-
bers of circulating MDSCs and Tregs has been observed,
suggesting a role of MDSCs in the expansion of Tregs
and subsequent disease progression.12 Moreover, an in-
dependent prognostic value of peripheral Treg and BM
progenitor B-cell frequencies in lower-risk MDS has
been suggested.13,62 Reduced NK function in higher-risk
MDS likely supports immune evasion and disease
progression.66,68 Hence, a novel strategy to restore NK cell
function and overcome MDSC-mediated suppression in
patients with MDS has been proposed (Table 1).69 In ad-
dition, the presence of KIR haplotype A on NK cells may
represent an independent risk factor for the progression of
MDS to AML.70
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Overall, similar to the role of inflammation in the initiation of
MDS, the cellular immune response in established MDS is
multifactorial and follows a stepwise transformation from an
activated protective to a more immunosuppressive re-
sponse as the disease progresses. Discrete patterns of
cytokine expression may be evident throughout MDS
progression, and an integrative approach is required to
study specific components of MDS pathogenesis in relation
to cytokine network dynamics and immune cell states.

Microenvironment and MDS Progression

Inflammatory cues from the surroundingmicroenvironment
may actively contribute to the formation and/or mainte-
nance of a mutagenic environment in MDS and may also
suppress immune effector responses.71-74 Mesenchymal
stromal cells (MSCs) and their progeny are important
components of the HSPC niche and regulate hematopoi-
esis by cell-to-cell contact or through paracrine signals.75

MSCs undergo functional decline with systemic aging.76

This is further aggravated in MDS/AML MSCs, which have
accumulated structural, epigenetic, and functional alter-
ations, have chromosomal aberrations different from those
found in HSPCs, and display activation of key inflammatory

pathways.77-81 Interestingly, MDS hematopoietic cells can
instruct healthy MSCs to acquire MDS-like features.78 In
turn, MDS MSCs produce a variety of cytokines and other
factors (eg, S100A8/925,81) and exert immunomodulatory/-
suppressive functions that could further promote propa-
gation of malignant HSCs.25,82 Mesenchymal S100A8/9
expression has been shown to be predictive of leukemic
evolution and progression-free survival in a cohort of ho-
mogeneously treated patients with low-risk MDS, sug-
gesting molecular characteristics of the mesenchymal
niche as an important determinant of disease outcome.25

CLINICAL EXPERIENCE WITH IMMUNE INTERVENTIONS

Immunomodulatory therapies have long been used for
MDS, with benefits for selected patient subgroups. Im-
munosuppressive therapy (IST) with antithymocyte glob-
ulin (ATG), and in combination with prednisone or
cyclosporine, provides a therapeutic option for selected
lower-risk patients, particularly those with hypoplastic MDS,
a still poorly defined subgroup.83-86 The immunomodulatory
drug lenalidomide has shown a high rate of activity in lower-
risk del(5q) MDS87 but also yields sustained responses
in 26.9% lower-risk non-del(5q) MDS, while predictive
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immunologic biomarkers associated with this response are
lacking.88 Allogeneic HSCT is another type of immuno-
therapy that has long been used in MDS and could lead to
a beneficial graft-versus-leukemia effect. The success of
this therapeutic approach may also be based on its ca-
pacity to reprogram the niche-driven immune dysregu-
lation in MDS.

Although recent progress in cancer immunology and the
emergence of novel cancer immunotherapies brought
new hope for many patients with cancer, including those
with MDS and AML69,89-92 (Table 1), the overall response
rates to these therapies are variable and , 50% in the
majority of malignancies, including MDS. So far, single-
agent application of PD-1/PD-L1 as well as cytotoxic
T-lymphocyte–associated antigen 4 checkpoint inhibitors
has shown limited efficacy in advanced disease after
hypomethylating agent (HMA) failure, with variable overall
response rates as low as 0% for nivolumab (0/15),93 4%
for pembrolizumab (1/27),94 and 3.4% (1/29) to 22% (2/
9) for ipilimumab.93,95 Hence, combination strategies
with checkpoint inhibitors both in the upfront as well
as HMA-refractory setting to counteract HMA-induced
checkpoint upregulation are currently under intensive
investigation.89,92,96 Nonetheless, single-agent therapy
might display disease-modifying activity in selected pa-
tients, including elderly patients with AML.97 Recent
studies have also indicated the potential of targeting the
innate immune checkpoint CD47-SIRPa in cancer, in-
cluding hematologic cancers.98,99 So far, blocking the
interaction between the “don’t-eat me” signal CD47 and
the phagocyte inhibitory immunoreceptor SIRPa has
shown low activity in a small AML/MDS cohort (1/10), but
initial results from the combination therapy with 5-Aza are
promising.100 Altogether, there is growing evidence that
the combination of drugs with different mechanisms of
action might offer clinical benefit in MDS/AML, while the
search for reliable biomarkers for response continues.
This will require innovative and multicenter clinical trial
designs to obtain meaningful results in larger patient
cohorts.101 It is worth mentioning that reliable predictors
are also lacking for routine monotherapies. For instance,
recent studies have evaluated how mutations correlate
with clinical benefit from HMA therapy. Although earlier
studies reported a favorable effect of TET2 mutations on
response rates,102,103 this association was not confirmed
in a different cohort.104

Finding predictive biomarker(s) for response to therapy is
of particular relevance for the elderly population, which
often displays lower response and higher toxicity rates.
However, finding a magic “fits all” predictive biomarker in
MDS is an unlikely scenario, considering the complexity
of the disease and the role of several genetic, immuno-
logic, and environmental factors in its pathophysiology.
Technological advances in recent years, thanks to af-
fordable omics experiments, led to a so-called “big data

revolution.” The challenge, however, is to integrate the
massive amount of data and create computational models
to build knowledge and identify signatures that are im-
portant in patients’ stratification for immunotherapy.105 To
overcome this challenge, a more comprehensive and
combinatorial approach is necessary, which uses indi-
vidual biomarkers as part of the bigger picture rather than
the whole story.

SYSTEMS IMMUNOLOGY: A WAY FORWARD

Framework for Comprehensive Immune Monitoring in

Clinical Trials

Overall, sufficient evidence exists to support the role of the
immunome as an important and independent factor in the
stratification of patients with MDS/AML. Nonetheless, im-
mune responses against malignant clones require co-
ordination between cell types and across tissues, and
a systems immunity screening approach is necessary
to evaluate the overall “immune fitness” in cancer, as
previously shown.106 Data from recent cancer studies
highlighting the power of integrative approaches are
encouraging.105,107 Nevertheless, there is still no standard
or widely accepted method for monitoring the overall im-
mune response in hemato-oncology in general or MDS in
particular. Data from state-of-the-art immune monitoring
strategies need to be merged with clinical data and other
omics data for multiomics-driven analysis to identify robust
and predictive immune signatures and map the interac-
tion between disease-associated inflammation and po-
tentially host-beneficial cellular immune responses (Fig 3).
Multiomics-driven analysis has shown the power to identify
key molecular pathways in cancer progression and could
identify pathway-enriched cancer driver modules on the
basis of DNA, RNA, and protein data.108 For instance, web
tools like LinkedOmics provide a user-friendly platform
to explore, analyze, and compare cancer multiomics
data within and across tumor types.109 The widespread use
of NGS technologies and the maturation of cutting-
edge technologies, such as single-cell RNA-seq,110 CITE-
seq111/Ab-seq,112 and mass cytometry by time of flight
(CyTOF),113 generate large datasets that can be mined for
immunologically relevant parameters and serve as input for
integrative data analysis.

Over the last years, NGS technologies are becoming in-
creasingly important in the clinical setting for muta-
tional profiling in MDS, using comprehensive myeloid
NGS panels.114 In many clinics, multiparameter flow
cytometry (MFC) is increasingly used to reinforce MDS
diagnosis.115,116 MFC has also been extensively applied to
characterize the immune landscape in MDS11,12,60,62-67,117

and has demonstrated utility for monitoring immune-
modifying agents in high-risk MDS/AML118 or minimal re-
sidual disease monitoring, as has been shown in multiple
myeloma.119 CyTOF, which achieves an even higher res-
olution of the single-cell proteome, has been broadly
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applied in the solid cancer field to profile the tumor immune
landscape,120,121 to monitor checkpoint-blockade–induced
immune responses, and to predict response to PD-1
immunotherapy.122,123 CyTOF has also been already suc-
cessfully adopted for immunophenotypic analysis of clinical
samples in MDS,124 for prospective immune monitoring of
patients with chronic myeloid leukemia (CML),125 and to
further characterize the immune signature in a wider range
of T-cell subsets in MDS.126

There are, however, two important questions to be
addressed: (1) Which immunologic markers to use? and (2)
How will we define an immunoscore? We are still in the early
days, but resources are already available that could be used
and customized for MDS/AML. In an attempt to identify and
characterize all major human immune cell lineages in
a single assay, Hartmann et al127 have designed and val-
idated a CyTOF panel that can be incorporated into cancer
immunotherapy trials. This framework provides a set of
markers also relevant for future clinical trials in MDS and
may be extended by markers relevant for additional

immunophenotyping of immune cell subsets and HSPCs
(Appendix Table A1, online only).128-137

In solid tumors, infiltrating T cells have been generally
associated with a positive prognosis, which led to the
development of the immunoscore, a scoring system
based on the quantification of cytotoxic and memory
T cells in the tumor center and invasive margin.138,139

Although this immunohistochemical tool has demon-
strated prognostic value for solid tumors,140 it cannot be
directly applied to the MDS/AML BM microenvironment,
which lacks a clear invasive margin and a tumor core.
However, automated image analysis of BM tissues in
combination with flow cytometry and clinical parameters
has been shown useful for predicting treatment re-
sponses in CML.141 A comprehensive immunoscore for
MDS will likely be based on multivariate features derived
from genomic, transcriptomic, and proteomic data
(Fig 3; Appendix Fig A1, online only). The solid tumor
field provides examples of how such immune profiling
can be used to train predictive models and generate

Multiomics data

MDS-related somatic mutations
(eg, TET2, SF3B1, ASXL1)

Gut microbiome profiling

Neoantigen profiling

Targeted transcriptomics of
inflammatory genes

Immunome (deep phenotyping
& cytokine profiling

Clinical data

Diagnostic sampling
(PB, BM, stool specimen)
QOL/PRO assessment
Metadata collection

Computational methods

Data analysis and integration
Network-integrated data
Machine learning
Prediction models
Identify disease signatures
Identify new immune targets

Signature

Non-immunogenic IS profile

HR-MDS regimen
HMA, HSCT

Data analysis & modeling Data outputSampling & data acquisition

Autoimmune profile

Reinstate immune regulation
IST, Treg-based therapy

Autoinflammatory profile

Target innate inflammation
S100A9, inflammasome,
TLR pathways

Immunogenic IS profile

Revive immune response
Target immunogenic neoepitopes
HMA, vaccination

FIG 3. Multiomics pipeline for myelodysplastic syndrome (MDS). Implementing systems biology approaches in MDS is an unmet and urgent clinical
need not only to understand the pathophysiology of this complex disease but also to create a more personalized approach to therapy. Multiple types of
highly complex and rich omics data are being generated in large scale and are particularly helpful in risk stratification for patients with MDS and for
identifying novel therapeutic targets. Different data types, including clinical, genomic (multigene next-generation sequencing–based panels), tran-
scriptomic (single-cell RNA-seq), targeted transcriptomic (NanoString153), proteomic/immunophenotypic (CyTOF, flow cytometry), and metagenomic
(16S ribosomal RNA sequencing, high-throughput shotgun sequencing) datasets, will be combined with the development of a bioinformatics pipeline,
allowing an integrative view of the immunome in patients with MDS. The advent of new technologies like TARGET-seq,154 which combines high-
sensitivity single-cell mutational analysis and parallel RNA-seq, will further help to resolve inflammatory signatures of MDS genetic subclones and
nonmutant cells. The analytical pipeline will use customized computational methods to incorporate single-cell and bulk multiomics data, leveraging on
mathematical models to provide a holistic view of all components and modeling of biologic networks to identify disease signatures. This provides an
unprecedented opportunity to identify immune profiles, examine the association between common driver mutations and immune subtype, and better
understand how somatic mutations and immune cell activation states affect the disease course, response to treatment, and outcome. ASXL1, additional
sex combs-like 1, transcriptional regulator; BM, bone marrow; HMA, hypomethylating agent; HR, higher-risk; HSCT, hematopoietic stem cell
transplantation; IS, immunosuppressive; IST, immunosuppressive therapy; PB, peripheral blood; QOL/PRO, quality of life/patient-reported outcome;
SF3B1, RNA splicing factor 3B, subunit 1; TET2, tet methylcytosine dioxygenase 2; TLR, Toll-like receptor; Treg, regulatory T cell.
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immunoscores.142-144 Overall, this will require an expanding
computational toolbox to process, analyze, and visual-
ize the highly complex and heterogeneous datasets be-
ing generated on bulk tissue and at single-cell level
(reviewed by Finotello et al145) as well as validation of
predictive biomarkers in independent cohorts and across
MDS subtypes.

Moreover, comprehensive interrogation of cancer immunity
in MDS requires longitudinal as well as paired sampling to
evaluate the impact of a given therapy on peripheral blood
immune cells and the BM immune microenvironment.
Combinatorial agents, such as 5-Aza and lenalidomide, can
exert direct immunomodulatory effects on immune cells
and BM MSCs.79,146,147 Thus, careful dissection of the net
immunomodulatory effects of combination therapy through
serial assessment can provide adequate information re-
garding activation of alternative pathways and inform
subsequent clinical trials.

Dissecting Good and Not so Good Immune Responses

Although it is, for instance, possible that autoinflammatory
and autoimmune features are present in a single patient,
a dominant clinical representation of one of these condi-
tions is more likely. An important aspect of immune profiling
in MDS would therefore be to identify patients with MDS
with an underlying autoimmune response that could
benefit from IST or potentially Treg-based therapies to
reinstate immune regulation (Fig 3). Immune profiling may

also help to identify patients with lower-risk MDS who
harbor a signature characteristic of smoldering innate
inflammation in the absence of autoimmune disease.
These patients may benefit from novel therapies targeting
S100A8/9-related inflammasome activation or TLR path-
ways. Patients with potentially immunogenic somatic mu-
tations may benefit from novel vaccination therapies with or
without immune checkpoint inhibitors to reinstate the
beneficial immune response against dysplastic clones. On
the other hand, it is equally important to identify patients
without dominant inflammatory/autoimmune features or
immunogenic somatic mutations who are less likely to
respond to novel immunotherapies and may benefit from
other forms of therapies, such as early HSCT.

CONCLUSION

In conclusion, collection of comprehensive omics datasets
will leverage the development of a computational pipeline
specific to MDS that will help to identify key features at
various biologic levels and their interconnectivity, and to
better predict patient outcomes. To achieve this, well-
coordinated studies on large cohorts of patients are crucial
to combine known as well as potentially relevant predictive
immunologic biomarkers with clinical data. We expect that
applying validated immune signatures to routine clinical in-
vestigations will improve patients’ stratification for therapeutic
intervention and ultimately improve patient outcomes.
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APPENDIX

Patient recruitment and follow-up
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FIG A1. Integrative immunoscore for myelodysplastic syndrome (MDS). Integration of data from different omic
platforms with clinical data could identify a biomarker panel to improve stratification of patients with MDS. BM,
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Journal of Clinical Oncology

Systems Immunology: A Way Forward in MDS

Downloaded from ascopubs.org by 79.23.178.63 on May 23, 2021 from 079.023.178.063
Copyright © 2021 American Society of Clinical Oncology. All rights reserved. 



TABLE A1. Immune Cell Markers of Relevance for Future Clinical Trials in MDS
Cell Type Antigen/Marker Reference

T-cell subsets and checkpoints (Th, CTLs: naı̈ve, effector,
effector memory, central memory, regulatory T cells; NKT;
gd T cells)

CD3, CD4, CD8a, CD25, CD27, CD28*, CD38, CD45RA,
CD45RO, CD56, CD69*, CD95*, CD127 (IL-7Ra),
CD152 (CTLA-4), CD161*, CD197 (CCR7), CD223
(LAG-3)*, CD279 (PD-1), FoxP3, IL-17*, HLA-DR,
T-bet, gdTCR, TIM-3

11,13,47,59,63,65,67,126,128,129,138,148

B-cell subsets (naı̈ve, memory, plasmablasts/plasma cells) CD10*, CD19, CD24*, CD27, CD38, CD40*, HLA-DR,
IgD*

130

NK-cell subsets (cytokine-producing, cytolytic) CD8a, CD16, CD38, CD56, CD57*, CD69*, CD161*,
T-bet, NK receptors*

66,131,132

Myeloid-cell types/subsets (classic/intermediate/nonclassical
monocytes, macrophages, cDCs/pDCs, MDSCs,
neutrophils, basophils, eosinophils, mast cells)

CD11b, CD11c, CD13*, CD14, CD15*, CD16, CD33,
CD64*, CD66b*, CD117, CD123, CD203c*, CD273
(PD-L2)*, CD274 (PD-L1), FceR1a, HLA-DR

64,115,117,122,133,134

HSPCs and checkpoints (stem cells, progenitor populations) CD10*, CD34*, CD38, CD45RA, CD71*, CD90*, CD117,
CD123, CD133*, CD135 (FLT-3)*, CD273 (PD-L2)*,
CD274 (PD-L1), CD279 (PD-1), IL1RAP*

13,59,115,133,135-137

General markers CD45, CD235ab, CD61, DNA, live/dead, lineage markers
(for exclusion)

NOTE. Adapted and modified from Hartmann et al.127

Abbreviations: cDCs, conventional dendritic cells; CTLs, cytotoxic T cells; HSPCs, hematopoietic stem and precursor cells; MDSCs, myeloid-derived
suppressor cells; NK, natural killer; NKT, natural killer T cells; pDCs, plasmacytoid dendritic cells; Th, T helper cells.
*Additional markers are indicated.
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