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Contrasting surface warming 
of a marginal basin due 
to large‑scale climatic patterns 
and local forcing
Naomi Krauzig1*, Pierpaolo Falco1,2 & Enrico Zambianchi1,2,3

The Mediterranean Sea is one of the first regions where sea surface temperature (SST) increase 
was linked to greenhouse effects and global warming. Due to its sensitivity to climate variability 
and its high impact on local and remote climate conditions, much effort has been made to assess 
the SST variability in the Mediterranean as a whole. However, the Mediterranean is composed of 
several basins, each of which plays a different role in its conveyor belt’s function. This study focuses 
on the basin of the Tyrrhenian Sea which represents one of the crucial areas for deep mixing of the 
Mediterranean main water masses. Thirty‑seven years (1982–2018) of satellite‑derived data were 
used to investigate the SST variability in relation to large‑scale and local forcing mechanisms. A 
significant warming trend of 0.034 ± 0.004 °C/year was found, which led to an average warming of 
1.288 ± 0.129 °C over the considered period. The observed warming presents time‑dependent spatial 
patterns as well as changes in the seasonal cycle. Our results highlight that the Tyrrhenian’s individual 
long‑term surface variability has different characteristics than the Mediterranean as a whole and 
provide insight into the relative influence of large‑scale teleconnection patterns and local air‑sea 
interaction on this variability.

SST is considered a major climatic status indicator, quantifying climatic variability and warming in the  oceans1. 
The Fifth Assessment Report of the  IPCC2 highlighted a long-term intensifying trend in global SST due to cli-
matic change and contemporary atmospheric warming.

Sea surface warming has been suggested to be directly driven by atmospheric  processes3 through increases in 
downward longwave radiation due to greenhouse gases, which are further amplified by the water vapor feedback 
and atmospheric adjustment. On the other hand, SST variability has also been linked to variations in the heat 
transport such as wave-induced thermocline changes, or a decrease in upwelling which is related to a slowdown 
of wind-driven Ekman  pumping4,5.

A different  study6 indicates that SST variability on longer timescales results from a combination of both 
atmospheric and oceanic processes. They indicated that SST is driven by intrinsic modes of atmospheric circula-
tion variability that imprint themselves upon the SST field mainly via surface energy fluxes and also by oceanic 
processes such as upwelling, entrainment, and lateral advection. Due to the thermal inertia of the upper-ocean 
mixed layer, low-frequency atmospheric variability influences SST anomalies more efficiently than synoptic 
 variability7. This low-frequency circulation variability tends to be organized into recurring large-scale patterns 
in particular geographical regions (i.e. teleconnections).

The Mediterranean Sea has proven to be particularly sensitive to global  warming8–10. Different SST warming 
trends (ranging from ~ 0.15 to ~ 0.06 °C/year)8–16 have been found in this basin depending on the time period 
considered, specific geographical area and methodology.

In a warming climate, rising SSTs appear to influence the weather and to amplify the magnitude and frequency 
of extreme  events15–19 which in turn impact communities and  ecosystems20,21. Therefore, it is significant to start 
focussing our attention on individual sub-basins, especially those with very high population density along their 
surrounding coasts. Among the Mediterranean’s basins, the Tyrrhenian is the most populated semi-enclosed 
 one22, thus one of the most potentially  vulnerable23. Furthermore, the response of the individual sub-basins to cli-
mate forcing can contribute to a much better understanding of the general response of the whole Mediterranean. 
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The fact that the Tyrrhenian Sea represents the main area of deep mixing for waters from the Eastern and Western 
 Mediterranean24 adds further significance to the investigation of this particular basin.

In addition, even though the variability of the SST has been studied extensively in the Mediterranean Sea, a 
specific evaluation for the Tyrrhenian Sea has not been carried out. To the best of our knowledge, this basin has 
only been marginally included in a clusterized SST investigation concerning the Mediterranean  Sea15. Therefore, 
we analyzed the SST variations within the Tyrrhenian Sea over the last 37 years by taking advantage of the long-
est available high resolution satellite-derived dataset from the Copernicus Marine Environment Monitoring 
Service (CMEMS).

Among the variety of available SST data, this  dataset25 provides the longest record of foundation temperature 
with high spatial and temporal  resolution16 (further details in “Methods”) which has been shown to be suitable 
for studying SST trends and anomalies at regional  scales11 with a bias less than 0.1  K26.

Results
Observed surface warming in the Tyrrhenian Sea. The temporal and spatial SST variability in the 
Tyrrhenian Sea was investigated based on the satellite-derived SST dataset from the Copernicus Marine Envi-
ronment Monitoring Service (see Methods). The overall spatially-averaged warming trend from 1982 up to the 
beginning of 2019 was 0.034 ± 0.004 °C per year (at least p < 0.05 for all presented trends) with a total warming of 
1.288 ± 0.129 °C for the 37-year period. This trend ranges spatially from a minimum value of 0.026 °C/year to a 
maximum of 0.044 °C/year (details in Supplementary Information (SI), Fig. S1(a)), which account for total SST 
increases between 0.962 and 1.628 °C across the basin.

Warming trends were not uniform throughout the different time periods (Fig. 1). To be more precise, very low 
increase rates were observed in more recent years, which differ significantly from those regarding the Mediterra-
nean Sea (Table S1). Based on the observed changes of the spatially-averaged trends, we divided the 37-year time 
series into three periods of approximately 12 years, showing that the warming trends were also spatially incon-
stant throughout the basin. For the first period (1982–1993) a warming rate of 0.058 ± 0.019 °C/year accounted 
for a strong SST increase across almost the entire basin, with a horizontal westward increasing gradient. This 
gradient changed during the second period (1994–2005) where a slightly lower warming trend led to higher SST 
in the central and the northern part of the basin and to a significant lower increase rate in the southern sector.

The last period (2006–2018) was characterized by a much lower trend of 0.030 ± 0.017 °C/year with almost 
constant SST values in the southeastern basin of the Tyrrhenian Sea (Fig. 1c). The average trend remained posi-
tive, but SST increases over 1 °C were restricted east of the Bonifacio Strait, indicating that during this period 
the (cold-core) wind-induced circulation structure known as North Tyrrhenian  Cyclone27 experienced more 
significant warming than the rest of the basin.

Figure 1.  Spatial distribution of the warming trend during (a) 1982–1994, (b) 1994–2006 and (c) 2006–2018; 
(d) yearly values of the spatially-averaged SST increase with trends per individual periods (color solid lines) and 
trend for the whole time span (black dotted line). The graphical representations were conducted using MATLAB 
2019a (https ://it.mathw orks.com/downl oads/web_downl oads/downl oad_relea se?relea se=R2019 a).

https://it.mathworks.com/downloads/web_downloads/download_release?release=R2019a
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Moreover, seasonal and monthly analyses were performed to investigate the intra-annual warming consist-
ency. The trend was clearly stronger during spring (0.042 ± 0.003 °C/year) and summer (0.052 ± 0.004 °C/year) 
than autumn (0.026 ± 0.004 °C/year) and winter (0.021 ± 0.002 °C/year). The spring/summer warming trends 
were not only higher but also had different spatial patterns (see Fig. S1), than autumn/winter, indicating that 
the Tyrrhenian Sea presents important time-dependent spatial variability. The overall SST trend was dominated 
by significant increases during the warm seasons, which lead to phenology changes in the seasonal cycle (Fig. 3, 
Fig. S2). More specifically, summer transition and duration metrics showed significant trends towards earlier 
summer onsets (− 0.658 ± 0.153 days/year) and later summer ends (+ 0.222 ± 0.146 days/year), resulting in an 
extended duration of 34.079 ± 8.301 warm summer days over the entire 37-year period (+ 0.921 ± 0.224 days /
year).

Local air–sea interaction and surface dynamics. Complex patterns of SST variability in the Tyrrhe-
nian Sea show significant local dependence and temporal fluctuations, indicating that governing processes act 
across a wide range of temporal and spatial scales. This investigation was based on ECMWF ERA5 atmospheric 
data (see “Methods”).

The best fitting multiple linear regression demonstrated that a significant part (60.8%, p < 0.001) of the 
monthly de-seasoned SST variability can be associated with variations (Table 1) of air temperature  (Tair), net 
shortwave heat flux (SWHF), total cloud coverage (TCC), mean sea level pressure (MSLP), wind speed (U), zonal 
wind component  (u10), zonal wind stress (τx) and the associated Ekman transport  (MEx,  MEy) and pumping  (MEz).

On the other hand, the lead-lag cross-correlation with net heat flux (NHF), latent heat flux (LHF), evaporation 
(E), freshwater budget (E-P-R) and moisture flux (MF) indicated that the coupled variability is characterized by 
a lagging response (of 1 month) to SST forcing.

The estimated relation of the mentioned atmospheric and oceanic parameters with the SST variability was 
investigated further through the relative magnitude and shapes of monthly and seasonal correlations, whereas 
spatial trend distributions gave further necessary indications about the potential physical mechanisms. Further 
details are available in the Supplementary Information (Fig. S3–S7, Table pointed out significant correlations).

Large‑scale atmospheric and oceanic teleconnection patterns. Regional climate trends cannot be 
understood without considering the impact of variations in large-scale atmospheric  circulation28. Large-scale 
atmospheric circulation variability can be characterized by teleconnection patterns, which feature circulation 
anomalies related to each other at large distances. In order to examine the impact of different teleconnection pat-
terns (data from the NOAA Climate Prediction Centre and from the National Center for Atmospheric Research, 
see “Methods”) on the Tyrrhenian SST, the normalized time series of the East Atlantic pattern (EA), the North 
Atlantic Oscillation (NAO) and the Scandinavia pattern (SCAND) were used for correlational analyses with the 
spatially-averaged SST time series.

Table 1.  Analyzed parameters with their annual trends and their maximum correlation coefficient with SST 
at the corresponding time lag in months (p < 0.05 in bold). The positive lag refers to a lagging response (of 
1 month) to SST forcing. Note that parameters with * are negative values based on the heat and freshwater 
budget definition.

Parameter Unit Annual trend SST correlation Lag

Tair °C 0.027 0.690 0

NHF W m−2 − 0.126 − 0.254 1

SWHF W m−2 0.138 0.344 0

LWHF* W m−2 0.029 − 0.126 –

SHF* W m−2 − 0.027 − 0.137 –

LHF* W m−2 − 0.268 − 0.356 1

TCC % − 0.012 − 0.154 0

MSLP N m−2 − 2.700 0.196 0

MF* kg m−2 s−1 − 4.890 × 10–8 − 0.326 1

E* m of water − 9.241 × 10–6 − 0.357 1

E-P-R m of water − 1.674 × 10–5 − 0.251 1

U m s−1 0.002 − 0.419 0

u10 m s−1 0.005 − 0.229 0

v10 m s−1 − 0.001 0.091 –

τ N m−2 2.345 × 10–5 − 0.196 0

τx N m−2 2.590 × 10–5 − 0.173 0

τy N m−2 − 4.459 × 10–6 − 0.118 –

MEz m s−1 − 6.685 × 10–10 − 0.183 0

MEx m2 s−1 − 1.399 × 10−4 0.132 0

MEy m2 s−1 − 3.639 × 10−4 0.186 0
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Furthermore, several  authors14,16,26,29,30 pointed out significant correlations between the SST in the Mediter-
ranean Sea and the Atlantic Multidecadal Oscillation (AMO). Therefore, the SST variability in the Tyrrhenian 
Sea has also been correlated with the AMO index in order to investigate the relationship with the natural oscil-
lation of the SST in the North Atlantic.

Among the selected large-scale atmospheric variability patterns only the EA pattern is significantly correlated 
with the SST variations (r = 0.654, p < 0.001; see Table S3). Even though the NAO index has been proven to have 
significant impacts on the Mediterranean  climate31–35, surprisingly no statistically significant correlation with 
the spatially-averaged SST in the Tyrrhenian basin was found. In particular, the NAO index exhibited very low 
(negative) and no statistical significant Pearson correlation coefficients (r = − 0.023, p = 0.891). Similarly, for the 
SCAND pattern, despite the impacts on precipitation and temperature fields of the Mediterranean  Region36, on 
annual timescales no significant correlations were found, neither with the SST time series nor with any other 
atmospheric variability pattern.

In order to capture dominant spatio-temporal features of the SST variability, EOF analysis was also applied 
to the high-resolution satellite-derived dataset. The first three EOF modes accounted for ~ 84% of the total 
non-seasonal variance of the SST. The spatial amplitude of the dominant (~ 74% of the variance) first mode 
showed positive values throughout the whole area, indicating an in-phase warming in the entire Tyrrhenian basin 
(Fig. S8). Details on the results of the EOF analysis can be found in the Supplementary Information (Fig S8–S10).

The link between the leading EOF modes of SST was investigated through correlational analysis with the 
atmospheric variability patterns (Fig. 2a). The first EOF mode displayed significant correlations with the EA 
pattern, whereas the second and third temporal modes of SST were not significantly correlated with any of the 
large-scale variability patterns on annual timescales (Table S3). The analysis also indicated a close relationship 
between decadal-scale variations of the first EOF temporal mode and the EA pattern (r = 0.806, p < 0.001), 
whereas the other two atmospheric teleconnection patterns are not significantly correlated. The second EOF 
mode of SST had a slightly significant (negative) correlation exclusively with the EA pattern, whilst the third EOF 
mode showed significant correlations with the SCAND pattern on those timescales (Table S3).

Furthermore, the correlation between the AMO index and the SST pointed out the link between the sea 
surface temperature variability in the Tyrrhenian Sea and the oscillation of the SST in the North Atlantic. In 
particular on decadal timescales, the AMO index displayed remarkably high correlation with the first EOF mode 
of the SST (r = 0.899, p < 0.001, see Fig. 2b). The spatial distribution of the overall warming trend and the cor-
relation coefficient between the SST variability and the AMO also exhibited similar patterns, especially in the 
southeastern sector and the east coast (SI, Fig. S11).

Discussion and conclusions
This study investigated the sea surface warming in the Tyrrhenian Sea and its relation to local air-sea interac-
tion as well as large-scale atmospheric and oceanic teleconnection patterns over a period of nearly four decades 
(1982–2018).

Figure 2.  Normalized annual time series of the first EOF mode of SST anomalies (red, dotted line) together 
with the (a) EA pattern (blue, dotted line) and with (b) the AMO index (purple, dotted line) during 1982–2018, 
along with their corresponding 5-year running averages (solid lines).
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A significant warming trend of 0.034 ± 0.004 °C/year was found, ranging spatially from a minimum value of 
0.026 °C/year to a maximum of 0.044 °C/year (Fig. S1(a)) across the basin. The results are in accordance with 
similar studies regarding the entire Mediterranean basin (see Table S1, in SI).

Separation on monthly and seasonal basis showed that the observed warming was dominated by high 
increases of SST during the warm seasons. Higher SST trends during spring and summer have also been men-
tioned recently for the entire Mediterranean  Sea16. The seasonally differing trends led to SST phenology shifts 
with a significant tendency towards earlier and longer summer periods (Fig. 3) that are expected to have impor-
tant ecological implications.

Noteworthy events are the extreme summer SSTs during 2003, which were on average more than 2 °C warmer 
than the long-term seasonal mean, as well as the ones during July 2006, which led to the highest monthly SST 
(27.61 °C) ever measured. Indeed, these anomalous episodes have been  classified37 as strong marine heatwaves 
with widespread impacts on marine ecosystems and expected subsequent socio-economic  consequences38.

After 2006 however, the average warming rate of SST in the Tyrrhenian Sea has been found to be slowing 
down significantly with respect to the past (Fig. 1) and to the rest of the Mediterranean  Sea14,16.

The physical processes responsible for the SST variability are of both local and hemispheric nature. These 
processes modulate the long-term variability via large-scale atmospheric and oceanic teleconnections and drive 
local variations through changes in air-sea interaction. Analysis of the basin surface dynamics and the air-sea 
energy exchanges indicated that a significant part of the SST variability can be influenced by direct variations of 
air temperature, shortwave heat flux, total cloud coverage, mean sea level pressure, wind intensity, zonal wind 
component, zonal wind stress and the associated Ekman transport and pumping. In contrast, the analysis of net 
heat flux, latent heat flux, evaporation, freshwater budget and moisture flux indicated that the SST potentially 
drives the air-sea heat flux variability in the Tyrrhenian Sea over the considered period through latent heat loss 
variations (see Table S2 and Fig. S6–S7).

Summarizing, the SST and  Tair showed simultaneous significant variations (up to ~ 2012, Fig. S4) which were 
most likely influenced by the increasing downward solar radiation. Further, in the wind-driven Ekman pumping 
may affect the spatial distribution of the warming trend. To be more specific, changes in the anticyclonic wind 
vorticity led to intensified convergence and the spatial distribution of the warming trend is influenced by the 
resulting Ekman downwelling variability (see Fig. S5). Lastly, latent and sensible heat loss displayed increasing 
trends, whilst the longwave and the net heat flux were decreasing during 1982–2018. The comparison with the 
coherent moisture flux and evaporation trend (freshwater budget decreasing trend) supports the finding that 
the air-sea heat flux variability in the Tyrrhenian Sea is SST-driven.

As for the hemispheric influences, among the selected teleconnection patterns only the EA pattern and the 
AMO are highly correlated with the long-term warming trend in the Tyrrhenian basin. In general, atmospheric 
circulation patterns have been proven to impact large-scale SST variations through attendant changes in the 
turbulent and radiative energy fluxes at the air-sea interface and wind-driven  currents6,39. In reference to the 
Mediterranean, the EA pattern has been associated with effects on the net heat budget, the air temperature and 
the  precipitation40,41. The combination of these findings suggests that the positive mode of the EA pattern influ-
enced the SST variations through advection of warm air over the basin due to intensification of the low-pressure 
center and resulted south-westerlies over the Atlantic Ocean.

The suggested linkage between the Mediterranean SST and the AMO agrees with findings from several previ-
ous  studies14,16,26,29,30. However, the absence of lag between the AMO and the Mediterranean  SST23 differs from 

Figure 3.  SST phenology changes over the study area for the 37-year study period, showing the trend of (a) the 
number of summer days, (b) the summer start date and (c) the summer end date.
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the 2-year lag for the Tyrrhenian basin. Besides the remarkably high correlation of the spatially-averaged time 
series, a strong association also exists between the spatial distributions of the overall warming trend (Fig. S1 
(a)) and the correlation coefficient between the Tyrrhenian SST variability and the AMO (Fig. S11). It is worth 
noticing that the slower warming of the Tyrrhenian Sea after 2006 coincides with the pausing phase of the AMO 
that has been pointed out  recently16. Based on these findings, the significant influence of the AMO on the SST 
tendency should be considered for SST projections, especially since the AMO is expected to shift towards a cold 
phase in the coming  years42.

In the Mediterranean, the various and complex interactions between sub-basins form the basis of its conveyor 
belt  mechanism43. In particular, the Tyrrhenian Sea is not isolated, as it interacts with the Central Mediter-
ranean in the  South44,45 and with the Ligurian Sea in the  North46–49. And yet, as was shown, the response of its 
individual sub-basins to global warming can be quite different from that of the Mediterranean Sea as a whole. 
In the case of the Tyrrhenian this response is induced by the varied balance between local and remote forcings, 
which may yield very contrasting effects. We expect this to be also true for other marginal basins of the world 
ocean and this study indicates that they need to be investigated separately in order to assess their behavior and 
their possible vulnerability.

Methods
Datasets and processing. The spatio-temporal SST variability during 1982–2018 was investigated uti-
lizing L4 satellite-derived data from the Copernicus Marine Environment Monitoring Service (https ://marin 
e.coper nicus .eu, accessed 04/2019). The very high spatial (~ 4 × 4 km) and daily temporal resolution data  set25 
was obtained by the Satellite Oceanography Group of the Italian National Research Council (CNR-GOS) 
through the reanalysis of the Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Version 5.3 
(PFV53) data set; effective for studying the Mediterranean SST with a steady bias of less than 0.1  K23. This data 
set covered the period 1981–2014 and has since then been extended and reprocessed by CMEMS, which distrib-
ute it freely under the name SST_MED_SST_L4_REP_OBSERVATIONS_010_021 in the CMEMS catalogue. A 
detailed description of the data processing can be found in the Product User Manual and Quality Information 
Document that are available in the CMEMS online  catalogue16.

The relation of the obtained SST variability with the local air-sea interaction was based on monthly time 
series of atmospheric parameters from the ERA5 dataset, the fifth generation of ECMWF atmospheric reanalysis 
which is provided by the Copernicus Climate Change Service Climate Data Store (https ://cds.clima te.coper nicus 
.eu, accessed 05/2019).

The net air-sea exchanges of heat and freshwater were estimated by summing the four heat flux components 
(net shortwave, net longwave, sensible, latent) and the three freshwater components (evaporation, precipitation, 
runoff), respectively. The budgets were defined in such a way that positive values indicate heat and freshwater 
gain for the sea.

Moreover, the wind stress (τ) and the Ekman transport (ME) along with the vertical velocities, which are 
associated with Ekman pumping, were calculated based on the wind speed (U) according to the equations:

where ρair = 1.225 kg/m3 is the air density, Cd = 1.25 × 10−3 is the drag  coefficient50

where ρsea = 1025 kg/m3 is the water density and f = 2� sin(θ) is the Coriolis parameter with θ = latitude and 
� = 7.27 × 10−5 s−1 is the earth’s angular velocity.

The spatio-temporal variability of the mentioned SST and atmospheric data was studied by analyzing the 
intra-annual and inter-annual geographical and climatological distributions of averages, anomalies and trends 
within the geographical boundaries of the Tyrrhenian Sea. If not indicated otherwise, all mentioned time series 
(daily, monthly, seasonal, yearly) were based on the spatial average of this area over the entire 37-year study 
period.

The intra-annual warming was further investigated analyzing the SST data over the winter (DJF), spring 
(MAM), summer (JJA) and autumn (SON) months, whereas metrics of SST phenology were used to assess 
changes in the seasonal cycle. More specifically, summer transition and duration metrics for each year were 
derived from daily SST data based on the first day and the number of days that exceeded the climatological 
summer mean, respectively. Hereinafter the duration of the warm summer refers to the length of the within-year 
period with SST higher than the threshold of 23.688 °C.

In order to obtain the long-term variability the strong seasonal signal was removed from the datasets to form 
de-seasoned maps and time series. This is achieved by subtracting the climatological monthly mean from each 
of the specific monthly fields.

Trend estimation and detrending were based on ordinary least squares linear regression. The corresponding 
uncertainties were defined by standard errors, whereas the statistically significance of the trends was examined 
through the Mann–Kendall  test51,52. In this work, the level of significance has been set to α = 0.05 (p ≤ 0.05), so 
that all presented trends are statistically significant at least at the 95% level.

The dominant spatio-temporal features of the SST variability were examined using Empirical Orthogonal 
Function (EOF)  analysis53, which was based on the monthly detrended and de-seasonalized SST dataset in order 
to focus on the non-seasonal modes of variability.

(1)τ = ρairCdU
2

(2)ME =

τ

ρseaf

https://marine.copernicus.eu
https://marine.copernicus.eu
https://cds.climate.copernicus.eu
https://cds.climate.copernicus.eu
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The approximate relation of the mentioned atmospheric and oceanic parameters with the SST was investi-
gated initially by multiple linear regression and lag-lead cross-correlation, whereas spatial trend distributions 
gave further necessary insight into potential physical mechanisms. Cross-correlation analysis considering the 
time lag has been shown to indicate the importance of atmospheric forcing versus SST  forcing7,54,55. Since air-sea 
interactions are expected to be spatially and seasonally dependent, the lag-lead correlations were analyzed for 
monthly and seasonally anomalies, taking into account lags from − 6 to + 6 months.

Moreover, the potential impact of low-frequency large-scale variability patterns on the SST was based on 
normalized time series of the East Atlantic pattern (EA), the North Atlantic Oscillation (NAO), the Scandinavia 
pattern (SCAND) and the Atlantic Multidecadal Oscillation (AMO). These time series are available from the 
NOAA Climate Prediction Centre (https ://www.cpc.ncep.noaa.gov, accessed 11/2019) and the National Center 
for Atmospheric Research (https ://clima tedat aguid e.ucar.edu, accessed 12/2019), respectively. Details on the 
teleconnection pattern calculation procedures are freely  available56 and further information can be found at the 
NOAA CPC and NCAR websites.

Additional, topographic data covering the area of the Tyrrhenian Sea has been used to represent the sur-
rounding mainland. This dataset is a smoothed one-sixth degree global topography distributed with the  jLab57 
MATLAB package under the name jtopo (https ://www.jmlil ly.net/doc/about _jtopo .html).

Data availability
The analyzed SST, atmospheric and teleconnection data are freely available through the Copernicus Marine 
Environment Monitoring Service (https ://marin e.coper nicus .eu), the Copernicus Climate Change Service Cli-
mate Data Store (https ://cds.clima te.coper nicus .eu) and the NOAA Climate Prediction Centre (https ://www.
cpc.ncep.noaa.gov), respectively. Whereas, the topographic dataset is provided freely by Jonathan Lilly (https ://
www.jmlil ly.net/doc/about _jtopo .html).

Code availability
All data analyses and representations were conducted using MATLAB 2019a (https ://it.mathw orks.com/downl 
oads). The generated scripts are available upon request from the corresponding author.
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