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1. Introduction

We met Alberto, when we were all younger, in 1998 in Paris. Since then we have had the privilege
of enjoying his friendship and sharing with him some math. It is a real pleasure to contribute to this
volume to celebrate Alberto’s fiftieth birthday.

At that time Alberto’s research was focused on the study of Liouville type theorems and related
symmetry properties for entire solutions of Ginzburg Landau systems or Allen Cahn type equations in
RN(see [25, 26]). These studies led him to the proof of the celebrated Gibbons conjecture in [27] (see
also [28]), proving that
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Theorem 1.1. [27] Let N > 1 and u ∈ C2(R2) be a bounded solution to −∆u + u(u2 − 1) = 0 such
that limx1→±∞ u(x) = ±1 uniformly with respect to (x2, . . . , xN) ∈ RN−1. Then u(x) = q(x1) on RN

where q ∈ C2(R) is a solution of the ordinary differential equation −q̈ + q(q2 − 1) = 0 on R and
limt→±∞ q(t) = ±1.

In [27], Theorem 1.1 has been proved to hold for a wide class of double wells bistable potentials
F(u) modeled on that of Ginzburg Landau. The same results had already been obtained in [40] in the
cases N = 2, 3 and then for each N > 1, independently of [27], in [16].

This kind of qualitative analysis of “rigidity” results for semilinear elliptic equations remained until
now one of the main research themes developed by Alberto. Among others, we refer to the papers
[29–38] where different aspects of this line of study have been deeply investigated for various models,
including the Allen Cahn type equations (in relation with the study of the De Giorgi conjecture [24]),
Nonlinear Schrödinger equations, quasilinear elliptic equations and Gross–Pitaevskii systems.

These symmetries are generally lost and multiple differently shaped solutions appear when one
considers non autonomous or higher dimensional problems, see e.g., [1, 2, 4–10, 12, 23, 47, 52–55]. In
Section 2 we describe some of these multiplicity results for Allen Cahn models. In particular we
emphasize how the Lagrangian structure of the problem allows to obtain infinitely many solutions
viewed as orbits of an infinite dimensional Newtonian system connecting disjoint well separated
subsets of a fixed sublevel of the related potential. An application of the same method, as done
in [11], is described for the Nonlinear Schroedinger equation in Section 3 and, related to this problem,
Section 4 is devoted to characterize metric separation properties of sublevels sets of the “potential”
functional V(u) = 1

2‖∇u‖2H1(RN ) −
1

p+1‖u‖
p+1
Lp+1(RN ), for different values of the exponent p + 1 ∈ (2, 2∗N) (see

Propositions 4.1 and 4.2).

2. Layered solutions for Allen Cahn models

Consider the Allen Cahn type equation

− ∆u(x) + Fu(x, u) = 0, x ∈ RN (2.1)

where the potential F ∈ C2(RN × R) is 1-periodic in the space variables xi, i = 1, . . . ,N, and it is of
double well type in the variable u, i.e.,

F(x, u) > F(x,±1) = 0, Fu,u(x,±1) > 0 for x ∈ RN , u ∈ R \ {−1, 1}. (2.2)

Look at the problem of finding solutions u ∈ C2(Rn) of (2.1) satisfying

lim
x1→±1

u(x) = ±1 uniformly with respect to (x2, . . . , xn) ∈ RN−1. (2.3)

Rabinowitz and Stredulinsky in [52, 53] proved that problem (2.1)–(2.3) generically admits a rich
variety of geometrically different solutions connected to each other. They first showed by variational
methods the existence of minimal solutions of (2.1)–(2.3) which are 1-periodic with respect to the
variables x2, . . . , xN . Moreover, the set of such minimal solutions, M0, is an ordered set in the sense
that if u0, v0 ∈ M0 then either u0 > v0 or u0 = v0 or u0 < v0 on RN . Hence an alternative occurs, either

i) for any y ∈ (−1, 1) there is x0 ∈ R
N and u ∈ M0 such that u(x0) = y (the graphs of the minimal

solutions foliate RN × (−1, 1)); or
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ii) M0 has a gap pair: there exist u0 < v0 ∈ M0 such that no member ofM0 lies between u0 and v0.

Note that (i) is always satisfied in the autonomous case, as for F(u) = 1
4 (u2 − 1)2 like in Theorem 1.1,

since the problem is invariant by translation. On the other hand, as proved by Rabinowitz and
Stredulinski, the case (ii) occurs generically for periodic potentials F satisfying (2.2) (see [54]).

If case (ii) occurs other solutions appear. If u0 < v0 ∈ M0 is a gap pair, they proved the existence of
another ordered family M1 of minimal solutions of (2.1)–(2.3), between u0 and v0, which are
asymptotic as x2 → ±∞ to the elements of the gap and are 1-periodic in the remaining variable
x3, . . . , xN (see Figure 1).

−1 1

u0 x1

x2

v0

Figure 1. The double connections inM1.

If the ordered set M1 has itself a gap pair, u1 < v1, the argument can be repeated to find ordered
classes of minimal solutions connecting u1 and v1 and the reasoning can be iterated to obtain higher
dimensional connections. When gaps are present inM0, variational gluing techniques were moreover
employed to construct multitransition type solutions of (2.1)–(2.3), solutions which oscillate with
respect to the variable x2, in a prescribed fashion, between the elements of the gap, being periodic in
the variables x3, . . . , xN (see the monograph [54] for an exposition of such kind of results in
connection with the Moser-Bangert Theory [14, 48]).

Unlike the rigid character of Allen Cahn’s autonomous equation, as described in Theorem 1.1, these
studies show how the solutions set of (2.1)–(2.3) may be complex when the potential explicitly depends
on the spatial variables.

The contrast between these results and the Gibbons conjecture is even more explicit considering
potentials F depending (1-periodically) only on the space variable x1. In this case any solution q ∈
C2(R) of the heteroclinic one dimensional problem

− q̈ + Fq(t, q) = 0, q(±∞) = ±1, (2.4)

generates a solutions u(x) = q(x1) of (2.1)–(2.3). The setM0 corresponds here to the set of minimal
solutions of (2.4), i.e., the set

K = {q ∈ Γ | V(q) = c ≡ inf
Γ

V}

where
Γ = {q ∈ W1,2

loc (R) | q(±∞) = ±1} and V(q) =

∫
R

1
2 |q̇|

2 + F(t, q) dt.

The minimal set K is ordered and if it has a gap pair q0 < q1 the above results give the existence of
u ∈ C2(RN) solution to −∆u + Fu(x1, u) = 0 on RN satisfying (2.2) and being asymptotic, as x2 → ±∞,
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to q0 and q1 (not depending on the others variable x3, . . . , xN). Then, even if the nonlinearity depends
only on the variable x1, differently from the autonomous case, problem (2.1)–(2.3) has solutions which
do not come from the one dimensional problem (2.4).

This result was originally obtained with L. Jeanjean in [4] (see also [5]), pointing out how
Theorem 1.1 is a particular feature of the autonomous Allen-Cahn stationary equation. In [4] a
factorized case was considered, F(t, u) = a(t)W(u) with a positive and periodic and W a double well
potential, but the arguments does not change for general potential F(x1, u) satisfying (2.2). It is worth
mentioning that in [4], the ordered structure of the minimal set K was not used and the above gap
condition, (ii), was formulated in terms of a separation property of the minimal set K :

(∗) there exists K0 ⊂ K such that, setting K j = {q(· − j) | q ∈ K0} for j ∈ Z, there result

(i) K0 is compact with respect to the W1,2(R,RN) metric,
(ii) there exists ρ0 > 0 such that if i , j then distL2(R)(Ki,K j) ≥ ρ0,

(iii) K = ∪ j∈ZK j.

Thanks to the ordering property of K and its invariance with respect to integer translations, the
existence of a gap pair in K is in fact equivalent to the property (∗). In [4] are given examples of
singularly perturbed cases verifying (∗) and, moreover, it has been proved that (∗) does not hold if and
only if K is a continuum with respect to the W1,2(R) metric, homeomorphic to R. It should be
interesting to understand, in relation with the Gibbons conjecture, what happens when (∗) is not
satisfied (see [46] for a related study).

The work in [4] was motivated by the paper of S. Alama, L. Bronsard and C. Gui, [1], where they
study a vectorial version of the Allen Cahn model. More precisely for potentials F ∈ C2(R2) satisfying

(F1) F((±1, 0)) = 0, F(ξ) > 0 for every ξ ∈ R2 \ {(±1, 0)}, D2F((±1, 0)) are definite positive and there
exists R > 0 such that ∇F(ξ)ξ ≥ 0 for |ξ| > R;

(F2) F(−ξ1, ξ2) = F(ξ1, ξ2) for any (ξ1, ξ2) ∈ R2,

they look for the existence of solutions u ∈ C2(R2,R2) to the problem

− ∆u(x, y) + ∇F(u(x, y)) = 0, (x, y) ∈ R2, (2.5)
lim

x→±∞
u(x, y) = (±1, 0) uniformly w.r.t. y ∈ R. (2.6)

Again, in their study, an important role is played by the structure of the set of one dimensional minimal
solutions to (2.5) and (2.6), Ks, the set of minima of the action V(q) =

∫
R

1
2 |q̇|

2 + F(q) dx on the class
of symmetric functions

Γs = {q ∈ W1,2
loc (R,R2) | q(±∞) = (±1, 0) and q1(−x) = −q1(x)}. (2.7)

In [1] it is proved that Ks , ∅ and if

(∗∗) Ks = {q1, . . . , qk} with k ≥ 2 and qi , q j when i , j,

then there exists a solution u ∈ C2(R2,R2) of (2.5)–(2.6) which is asymptotic as y → ±∞ to a pair of
different elements in Ks, showing the failing of Gibbons-like results for autonomous systems.

The symmetry assumption (F2) is used in [1] to gain compactness in the problem working with
the symmetric functions in Γs. That assumption was later dropped in [55], by M. Schatzman, showing
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how it is possible to overcome the lack of compactness assuming a nondegeneracy property of the one
dimensional heteroclinic connections. Precisely, letting

S = {q ∈ W1,2
loc (R,R2) | q(±∞) = (±1, 0)}, and K = {q ∈ S | V(q) = c = inf

S
V}

in [55] it is assumed that

(∗ ∗ ∗) there exists z− , z+ ∈ K such that

(i) K decomposes in the disjoint union of the sets of the translated of z− and z+:

K = C(z−) ∪ C(z+) where C(z±) = {z±(· − s) | s ∈ R};

(ii) the operators A± : H2(R,R2) ⊂ L2(R,R2) → L2(R,R2), A±h = −ḧ + D2W(z±)h, are such that
Ker(A±) = span{ż±}.

The non degeneracy condition (∗ ∗ ∗)-(ii) allows to gain compactness in the directions orthogonal to
C(z±), and in [55] this is used to obtain the existence of a solution u ∈ C2(R2,R2) of (2.5)–(2.6) such
that limy→±∞ u(x, y) = z±(x − s±) for certain values s± ∈ R.

The results in [1, 4, 55] have been obtained by variational methods. Differently from [1], where
a limit procedure throught domains in R2 bounded in the y direction was employed, in [4] the two
dimensional solutions inM1 were found as minima of a global functional.

It is useful for what follows to give a brief description of the variational framework used in [4].
Recalling the assumption (∗), solutions of (2.1)–(2.3), which are not “one dimensional”, have been
searched as minima of the (renormalized) functional

ϕ(u) =

∫
R

[
∫
R

1
2 |∇u(x, y)|2 + F(x, u(x, y)) dx − c] dy

on the set

Γ2, j ={u ∈ H1
loc(R

2) | u(·, y) ∈ Γ for a.e. y ∈ R,

lim
y→−∞

distL2(R)(u(·, y),K0) = lim
y→+∞

distL2(R)(u(·, y),K j) = 0}, j ∈ Z \ {0}.

Using Fubini Theorem, since F depends only on the variable x, the functional ϕ can be written in the
more enlighting form

ϕ(u) =

∫
R

1
2‖∂yu(·, y)‖2L2(R) + (V(u(·, y)) − c) dy (2.8)

which reveals the Lagrangian structure of the problem. The cyclic variable y plays the role of an
evolution variable and the elements u ∈ Γ2, j can be seen as test trajectories, y 7→ u(·, y) ∈ Γ, connecting
two different minimal sets, K0 and K j, of the “potential” V(u(·, y)) − c.

This point of view led in [4] to the use of minimization techniques in the spirit of earlier papers on
the heteroclinic problem for Hamiltonian systems and PDE (see [3, 50, 51]) to show that at least for
two different values of j ∈ Z \ {0}, ϕ attains the minimum in Γ2, j. After [52], we know that the ordered
structure of K implies that the values of j have to be equal to ±1 and the solutions found in [4] are in
fact elements of the setM1 described above.
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Note that, both for a single equation with nonlinearities F depending only on the variable x1 as
in [4] and for the case of autonomous systems as in [1, 55], the setM1 of minimal double heteroclinic
connections is invariant with respect to y translations. Hence M1 has not “gap-like” properties and
one cannot hope to use the arguments in [52, 53] to obtain further solutions (like higher dimensional
connections or multitransition type solutions) of this kind of problems.

Pursuing the study of the case F = F(x1, u), a different method, based on Hamiltonian identities due
the conservation of the energy conjugated to the cyclic variable y, was then developed in [6] showing
that, when (∗) holds, (2.1)–(2.3) has other (infinitely many) two dimensional solutions, heteroclinic or
homoclinic in the variable y to (locally minimal) solutions of (2.4) not belonging to K . The method
was refined and adapted in [8] to show the existence of infinitely many other solutions to (2.1)–(2.3),
called brake orbit type solutions, which have a periodic behaviour in the variable y (see also [7] where
the case of a potential F = F(x1, u) depending in an almost periodic way on x1 is studied). The
same approach was used by F. Alessio in [2] to obtain analogous multiplicity results for the problem
(2.5)–(2.6), relative to the Allen Cahn type systems considered in [1]. In [12] we finally relaxed the
symmetric assumption (F2) obtaining the same kind of solutions in the asymmetric setting considered
by M. Schatzman in [55].

We give here below a brief illustration of these “energy constrained” methods describing with some
details the main ideas in the setting studied in [2].

The fist step in [2] is to weaken the finiteness assumption (∗∗) on the minimal set Ks = {q ∈ Γs |

V(q) = c ≡ infΓs V} made in [1]. Indeed, in analogy with the assumption (∗) in [4], in [2] a weak
separation property on Ks is considered:

(∗c) Ks = K+ ∪ K− with K± , ∅ and distL2(R,R2)(K+,K−) > 0.

In Theorem 1.1 of [2], a first strenghtening of the result in [1] is given showing that if (F1) (F2) and (∗c)
are satisfied then the problem (2.5)–(2.6) admits a bidimensional solution U ∈ C2(R2,R2) satisfying

lim
y→±∞

distL2(R,R2)(U(·, y),K±) = 0. (2.9)

As in [4] this solution is obtained as a minimizer of the renormalized functional

ϕ(u) =

∫
R

1
2‖∂yu(·, y)‖2L2(R,R2) + (V(u(·, y)) − c) dy.

Note that ϕ is well defined and not negative on the space

H = {u ∈ H1
loc(R

2,R2) | u(·, y) ∈ Γs for almost every y ∈ R}.

Since ϕ(q) = 0 for all q ∈ Ks, the elements of Ks are global minimizers of ϕ onH . The bidimensional
solution satisfying (2.9) is obtained by minimizing ϕ on the space

Hc = {u ∈ H | lim inf
y→±∞

distL2(R,R2)(u(·, y),K±) = 0}.

Roughly, the element in H can be seen as trajectories y ∈ R 7→ u(·, y) ∈ Γs (continuous with respect
to the L2(R,R2) metric) and the bidimensional solution U as a minimal trajectory in Hc satisfying the
infinite dimensional gradient system

∂2
yu(·, y) = −∂2

xu(·, y) + ∇F(u(·, y))︸                       ︷︷                       ︸
V ′(u(·, y))

, u ∈ H . (2.10)
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The one dimensional action V plays the role of a potential in (2.10) and its minimal sets, K±, are
constituted by equilibria of the equation. Then U is an heteroclinic connection between the two sets.

The new step is now to observe (as done analogously in [6–8]) that since (2.10) is autonomous, an
energy is conserved along its trajectories. More precisely, by Lemma 3.10 in [2], if u ∈ H solves (2.5)
on R × (y1, y2) then

Eu(y) = 1
2‖∂yu(·, y)‖2L2(R,R2) − V(u(·, y))

is constant on (y1, y2) (see [41] for more general identities of this kind). In particular EU(y) = −c for
every y ∈ R and a different way to characterize the solution U is as a solution with energy equal to −c
connecting as y→ ±∞ the disjoint subsets K± of the level set {q ∈ Γ |V(q) ≤ c}.

The idea is to look for new solutions by varying the value of the energy and looking for solutions
connecting disjoint subsets of the correponding sublevel of the potential. Indeed if λ > 0 is small
enough, by (∗c) we obtain that for any b ∈ (c, c + λ),

(∗b) {q ∈ Γs |V(q) ≤ b} = Vb
− ∪V

b
+ withVb

± , ∅ and distL2(Vb
−,V

b
+) > 0.

The second problem considered in [2] is to show that when (∗b) holds, there are solutions u ∈ H to
(2.5) with Energy Eu = −b and “connecting” the setsVb

− andVb
+. The basic remark in the argument is

that if u is such a solution then

V(u(·, y)) = −Eu(y) + 1
2‖∂yu(·, y)‖2L2(R,R2) ≥ b for every y ∈ R

and the condition V(u(·, y)) ≥ b becomes a natural constraint in such a problem. Then, in [2] these
solutions are searched by minimizing the new renormalized functional

ϕb(u) =

∫
R

1
2‖∂yu(·, y)‖2L2(R)2 + (V(u(·, y)) − b) dy

on the space

Hb = {u ∈ H | lim inf
y→±∞

distL2(u(·, y),Vb
±) = 0 and V(u(·, y)) ≥ b for a.e. y ∈ R}.

Note that, differently for the minimum problem for ϕc on Hc, when b > c, minimizing ϕb on Hb is a
constrained problem. The advantage to require V(u(·, y)) ≥ b for y ∈ R is that this allows to say that
ϕb is well defined and positive onHb. On the other hand, if u is a minimum of ϕb onHb we have that
u solves the equations in (2.5) on a strip R × (y1, y2) only when the constraint V(u(·, y)) ≥ b is satified
with a strict inequality on (y1, y2).

In [2] it is shown the existence of a minimizing sequences of ϕb on Hb weakly convergent to a
function ub ∈ H for which there exists a transition interval (σb, τb) ⊂ R such that

(1) if [y1, y2] ⊂ (σb, τb) then infy∈[y1,y2] V(ub(·, y)) > b,

(2) lim inf
y→σ+

b

distL2(R,R2)(ub(·, y),Vb
−) = lim inf

y→τ−b
distL2(R,R2)(ub(·, y),Vb

+) = 0.

By (1), the minimality property of ub guarantees that ub satisfies the equations in (2.5) on R × (σb, τb).
By regularity, using (2), one recovers that V(ub(·, y)) → b whenever y → σ+

b or y → τ−b . Again the
minimality property of ub gives that Eub = −b for all y ∈ (σb, τb) and so that

‖∂ub(·, y)‖L2(R,R2) = 2(V(u(·, y)) + Eub)→ 0 as y→ σ+
b or y→ τ−b . (2.11)
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If σb = −∞ and τb = +∞, ub is actually a solution of (2.5)–(2.6) connecting by (2) the setsVb
±. When

σb ∈ R or τb ∈ R, it is possible to extend ub|R×[σb,τb] on R2 by reflection in the variable y with respect
to σb or τb and then by periodic continuation. By (2.11) one again obtains a solution vb of (2.5)–(2.6)
connectingVb

± with energy equal to −b.
The behaviour of these solutions can be characterized more precisely depending on the boundedness

properties of the transition interval (σb, τb).
When σb = −∞ (resp. τb = +∞), in [2] it is shown that the α-limit (resp. ω-limit) of ub is a set

K−(b) ⊂ Vb
− (resp. K+(b) ⊂ Vb

+) of critical points of V at level b and in particular b is a critical value
of V .

Then, if σb = −∞ and τb = +∞ we have that vb = ub is a solution of heteroclinic type connecting
K±(b) as y→ ±∞.

If σb = −∞ and τb ∈ R, vb is equal to ub on R×(−∞, τb] and symmetric in the variable y with respect
to τb. It defined a homoclinic type solution of (2.5)–(2.6) which emanates from K−(b) as y → −∞,
reachsVb

+ for y = τb and then symmetrically returns to K−(b) as y→ +∞. Analogously, when σb ∈ R

and τb = +∞, vb is a solution to (2.5)–(2.6) homoclinic toK+(b) and symmetric with respect to y = σb.
Finally, if both σb, τb ∈ R, vb(x, y) is equal to ub on R × [σb, τb] being symmetric in y with respect

to both σb and τb, and so periodic, with period Tb = 2(τb − σb). We say that vb is a brake orbit type
solution of (2.5)–(2.6) defining a periodic trajectory of period Tb which oscillates back and forth inH
along a simple curve connecting the two turning points vb(·, σb) ∈ Vb

− and vb(·, τb) ∈ Vb
+.

By the above observations, when b is a regular value of V , the corresponding solution has to be
of brake orbit type. As in Lemma 2.9 in [8], as a consequence of the Sard Smale Theorem, it can be
proved that the set of regular values of V is open and dense in [c, c + λ). In this sense we can say that
generically for b ∈ [c, c + λ) the corresponding solution is periodic in y, of the brake orbit type. If
otherwise b ∈ [c, c + λ) is a critical value of V , then the corresponding connecting orbit may exhibit
homoclinic or heteroclinic behaviour.

We refer to the paper with A. Zuniga [13] where the above described “constrained energy method”
is applied to obtain analogous classes of connecting type solutions in the simpler context of ODE
gradient systems of the form

q̈ = ∇W(q), q ∈ RN ,

including applications to classical cases as double well, Duffing or pendulum like potentials.
Other more recent papers obtained multiplicity results regarding periodic solutions for Allen Cahn

systems or different type of equations with related but different methods, based again on the Lagrangian
structure of the problem. We quote the nice papers by G. Fusco, G. F. Gronchi, M. Novaga [23], A.
Cesaroni and M. Cirant [21], A. Monteil, F. Santambrogio [47] and the reference therein. In particular
in [47] a general study on the geodesic problem in metric space is done. As an application the result
in [1] is recovered and the heteroclinic connection between two isolated minima q± of V is obtained as
a minimal geodesic relative to the Maupertius Jacobi distance

dJ(q−, q+) = inf
γ∈Γ(z−,z+)

∫
[0,1]

√
2(V(γ(t)) − c)‖γ̇(t)‖L2(R,R2) dt. (2.12)

Here Γ(z−, z+) is the set of path γ : [0, 1]→ Γs which are piecewise locally absolutely continuous with
respect to the L2(R,R2) metric (or, by density, the W1,2(R,R2) metric) with γ(0) = z− and γ(1) = z+. For
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the use of the Maupertius principle in the study of the periodic or the heteroclinic problem for gradient
ODE systems we refer to the paper by V. Benci [15] and the one by P. Sternberg and A. Zuniga [57].

To end this section we only briefly mention for the interested readers the papers [9] and [10] where
the problem of finding solutions depending on more than two variables was studied, with different
methods, both for the problem with F = F(x1, u) considered in [4] or the system case considered
in [1].

3. Brake orbits type solutions for NLS

In this Section we describe some applications of the above illustrated methods to non linear
Schrödinger equations. Even if the geometry of the problem is in this case very different with respect
to the one relative to the Allen Cahn models, as done in [11] the constrained energy method applies
also in this context to find and characterize families of connecting orbit type solutions, at least for a
restricted range of values of the exponent p.

In [11] we studied equations of the form

−∆v(x, y) + v(x, y) = f (v(x, y)), (x, y) ∈ RN × R (E)

where N ≥ 1 and the nonlinearity f is modeled on the power case f (v) = |v|p−1v with p + 1 subcritical
and greater than 2. This kind of equations is widely used in physical models, in particular in the study
of standing waves solutions of the corresponding nonlinear Schrödinger type equations (see [18]).

The problem of finding positive solutions v ∈ H1(RN+1) of (E) has been deeply studied and the
existence of radial solutions was first obtained by W. A. Strauss in [58]. Nearly optimal existence
results of least energy solutions for (E) was given by H. Berestycki and P. L. Lions in [18] (see also
[19]). In the pure power case, uniqueness and non degeneracy properties of solutions of (E) in H1(RN+1)
was derived by M. K. Kwong in [44] and by J. Serrin and M. Tang for more general nonlinearity in [56].

In the seminal work by N. Dancer, [22], it is studied a new class of entire solutions of (E) in the
pure power case. The starting idea is to see the ground state solution u0(x) of (E) in RN (a mountain
pass type solution) as a solution on RN+1, constant with respect to the y variable. In the pure power
case, when the ground state is nondegenerate, Dancer used bifurcation and continuation arguments to
get the existence of a continuous branch of entire positive solutions of (E) in RN+1 bifurcating from the
cylindric type solution u0. These solutions are periodic in the variable y and decay to zero as |x| → +∞.
See Figure 2.

Analogous periodic solutions were found and used, again in the pure power case, as prescribed
asymptotes in the constructions of multiple ends solutions by A. Malchiodi in [45]. These periodic
solutions have large periods and, differently from the Dancer result, emanate via the Implicit Function
Theorem, from the mountain pass solutions of (E) in RN+1. See Figure 3.

Different qualitative properties of positive solutions v(x, y) of (E) which decay to zero as |x| → +∞,
such as radial symmetry with respect to the variable x, have been described by C. Gui, A. Malchiodi
and H. Xu in [42] and by A. Farina, A. Malchiodi and M. Rizzi in [36]. In these studies, based on
moving plane techniques, is again involved the use of Hamiltonian identities, such as a conservation of
energy along the cylindrical variable y.
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x ∈ RN

y ∈ R

The RN mountain pass solution

x ∈ RN

y ∈ R

The bifurcating y-periodic solutions

Figure 2. The Dancer’s solutions.

The RN+1 mountain pass solution

x ∈ RN

y ∈ R

The 2L y-periodic solutions

x ∈ RN

y ∈ R

L

−L

Figure 3. The Malchiodi’s solutions.

Indeed, as in the preceding section for the Allen Cahn models, prescribing the decay properties of a
solution only with respect to the variable x ∈ RN , naturally gives to y the role of an evolution variable.
The periodic solutions described above belong to the space

H = L2
loc(R,H

1(RN)) ∩ H1
loc(R, L

2(RN))

and in analogy with (2.10)verify (at least in a weak sense) the Newtonian evolution equation

∂2
yv(·, y) = −∆xv(·, y) + f (v(·, y))︸                     ︷︷                     ︸

V ′(v(·, y))

, y ∈ R. (3.1)

In (3.1), V ′ is the gradient of the Euler functional relative to the problem in RN ,

V(u) =

∫
RN

1
2 |∇u|2 + 1

2 |u|
2 − F(u) dx, u ∈ H1(RN),

where F(s) =
∫ s

0
f (t) dt. We name layered solution any v ∈ H which solves (E).

The Eq (3.1) has a Lagrangian structure and the functional U = −V plays the role of the energy
potential. In this connection, any u ∈ H1(RN) which solves (E) is an equilibrium of (3.1) and the
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Dancer’s or Malchiodi’s solutions are periodic orbits of the system. As for the Allen Cahn models, if v
is a layered solution then the Energy function

y 7→ Ev(y) = 1
2‖∂yv(·, y)‖2L2(RN ) − V(v(·, y))

is constant.

In [11], we applied the constrained energy method to find connecting orbit type layered solution of
(E) with prescribed energy. This was done under slightly general assumptions on the non linearity f .
It was assumed that

( f 1) f ∈ C1(R),

( f 2) there exists C > 0 and p ∈ (1, 1 + 4
N ) such that | f (t)| ≤ C(1 + |t|p) for any t ∈ R,

( f 3) there exists µ > 2 such that 0 < µF(t) ≤ f (t)t for any t , 0, where F(t) =
∫ t

0
f (s) ds,

( f 4) f (t)t < f ′(t)t2 for any t , 0.

By ( f 1)–( f 4) the above defined functional V ∈ C1(H1(RN)) and satisfies the geometrical assumptions
of the mountain pass Theorem. Considering the mountain pass level

c = inf
γ∈Γ

sup
t∈[0,1]

V(γ(t)),

where
Γ = {γ ∈ C([0, 1],H1(RN)) | γ(0) = 0, V(γ(1)) < 0},

we have that c > 0 is an asymptotical critical level for V . As it is well known c is the lowest positive
critical level of V (see [43]). Using the definition of the mountain pass level, the assumptions on f are
sufficient to show that for any b ∈ [0, c) the sublevel set {u ∈ H1(RN) | V ≤ b} splits into the disjoint
union of two connected nonempty subsets:

{u ∈ H1(RN) | V(u) ≤ b} = Vb
− ∪V

b
+ withVb

− ∩V
b
+ = ∅, (3.2)

where Vb
− denotes the component which contains 0. In [11] we adapt the constrained energy method

described in the previous section to obtain for any b ∈ [0, c), layered solution vb of (E) with energy
Evb = −b “connecting” the sets Vb

±. Since, as remarked above, c is the lowest positive critical level
of V , any b ∈ (0, c) is a regular value of V and as discussed in the previous section, the corresponding
solution vb is a brake orbit type periodic layered solution of (E). Theorem 1.1 in [11] precisely states
the following

Theorem 3.1. [11] If f satisfies ( f 1) − ( f 4) then for any b ∈ [0, c) the equation (E) has a solution
vb ∈ C2(RN+1) with energy Evb = −b and such that

(i) vb > 0 on RN+1,

(ii) vb(x, y) = vb(|x|, y)→ 0 as |x| → +∞, uniformly w.r.t. y ∈ R,

(iii) ∂rvb(x, y) < 0 for r = |x| > 0 and y ∈ R.
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Moreover, if b > 0,

(iv) there exists Tb > 0 such that vb is periodic of period 2Tb in the variable y and symmetric with
respect to y = 0 and y = Tb.

(v) ∂yvb(x, y) > 0 on RN × (0,Tb), vb(·, 0) ∈ Vb
−, vb(·,Tb) ∈ Vb

+.

Finally, if b = 0,

(vi) v0 ∈ H1(RN+1) is radially symmetric and ∂rv0 < 0 for r = |(x, y)| > 0,

(vii) v0(·, 0) ∈ V0
+ and v0 is a mountain pass point of the Euler funcional relative to (E) on H1(RN+1).

Theorem 3.1 provides for any b ∈ [0, c) a positive layered solution vb to (E) with energy −b.
With respect to the variable x it is radially symmetric and decay to 0 as |x| → +∞ uniformly with
respect to y ∈ R. When b > 0 the solution vb is a periodic solution of period 2Tb which is symmetric
with respect to y = 0 and y = Tb and has the beaviour of a brake orbit type solution. Its trajectory
y→ vb(·, y) ∈ H1(RN) oscillates back and forth along a simple curve connecting the two turning points
vb(·, 0) ∈ Vb

− and vb(·,Tb) ∈ Vb
+. These solutions are clearly related to the Dancer’s and Malchiodi’s

solutions. When b = 0 the solution v0 belongs to H1(RN+1) and defines a homoclinic type layered
solution to 0 ∈ H1(RN). By (Vii), v0 is a mountain pass point of the Action functional to (E) on
H1(RN+1). On the other hand the mountain pass point of V in H1(RN) is an equilibrium of (3.1) at
energy −c. The Energy diagram in Figure 4 wish to summarize these considerations.

−c < E < 0 Dancer’s Solutions ≡ Brake orbits

mountain Pass in H1(RN) ≡ Equilibrium.

mountain Pass in H1(RN+1) ≡ Homoclinic orbit

−V

E = 0

E = −c

Figure 4. Energy diagram.

The application of the constrained energy method in this case is much more complicated than that
for the Allen Cahn models, due to strong lack of compactness and weak semicontinuity of the problem.
This comes from the competition among the terms ‖u‖2H1(RN ) and

∫
RN F(u) which enter in the potential

V(u) with different sign and explains why we assume in ( f 2) that p < 1 + 4/N.
The exponent p = 1 + 4/N = 2G,N − 1, where 2G,N has different critical properties due to the

Gagliardo Niremberg inequalities (see [39, 49]), see (4.7) and the related observations in the next
section. We recall that 2G,N is critical for the minimum problem inf{V(u) | u ∈ H1(RN), ‖u‖L2(RN ) = 1}
and with respect to the property of orbital stability of the solutions of (E) in H1(RN). The ground state
solution of (E) in H1(RN) is stable if and only if p + 1 ∈ (2, 2G,N), see [17, 20, 59].

When p + 1 < 2G,N the functional V exhibits the coerciveness and semicontinuous properties
sufficient to recover some of the basic properties used applying the constrained energy method for the
Allen Cahn model. In particular note that the exponent 2G,N is critical with respect to the separation of
the sets Vb

± with respect to the L2(RN) metric (see proposition 4.1 in the next section). Assuming
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p + 1 < 2G,N leads to a situation like the one in (∗b) for the Allen Cahn models where an L2 separation
between the setsVb

± is used.
We think however that the condition p + 1 < 2G,N is only technical and that a refined analisys

can lead to apply the constrained energy method to cover all the subcritical cases 2 < p + 1 < 2∗N+1
(where as usual we denote the critical Sobolev exponent 2∗n = 2n/(n − 2) for n > 2 and 2∗n = +∞ for
n = 1, 2). This will be the object of future studies. In the next section, as a fist step in this program,
we characterize the metric separation properties of the setsVb

± in relation to the value of the exponent
p + 1 ∈ (2, 2∗N).

4. Metric separation properties of sublevels of V below the MP level

A basic point in applying the constrained energy method to look for layered solutions of (E)
connecting the sets Vb

±, is to well understand how and with respect to which metrics the sets Vb
± are

separated, depending on the values of the exponent p. The present more technical section is devoted
to study this problem. This will be done relatively to the L2(RN) distance and a Jacobi type metric (see
(2.12) for the Allen Cahn model), which are naturally related with the constrained energy approach.
In fact we show that while distL2(RN )(Vb

−,V
b
+) > 0 if and only if p + 1 ≤ 2G,N we have that the two sets

have positive Jacobi distance dJ(Vb
−,V

b
+) (see (4.19)) if and only if p + 1 ≤ 2∗N+1. For the sake of

simplicity we will do this study in the power case F(u) = 1
p+1 |u|

p+1.

4.1. The functional V

We assume N ≥ 1 and 1 < p < 2∗N − 1 when N > 1 while p > 1 if N = 1. We work on the space of
radially symmetric functions

X = H1
r (RN) = {u ∈ H1(RN) | u(x) = u(|x|) on RN}

endowed with its standard norm and scalar product

‖u‖ = (
∫
RN
|∇u|2 + u2dx)

1
2 , 〈u, v〉 =

∫
RN

(∇u∇v + uv) dx.

For q ≥ 1 we denote with ‖u‖q the usual norm of the function u in the space Lq(RN). We recall that by
the Strauss Lemma (see [58]) X is compactly embedded in Lq(RN) for q ∈ (2, 2∗N).

We study the functional
V(u) = 1

2‖u‖
2 − 1

p+1‖u‖
p+1
p+1, u ∈ X.

As it is well known V ∈ C1(X,R) with

V ′(u)v = 〈u, v〉 −
∫
RN
|u(x)|p−1u(x)v(x) dx.

Thanks to the compact embedding of X in Lp+1(RN) and the weakly semicontinuity of the L2-norm, the
functional V is weakly semicontinuous on X. In fact, we have

Lemma 4.1. Let un → u and vn → v weakly in X. Then
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(i) lim
n→+∞

∫
RN
|un(x)|p+1dx =

∫
RN
|u(x)|p+1dx

(ii) lim
n→+∞

∫
RN
|un(x)|p−1un(x)vn(x) dx =

∫
RN
|u(x)|p−1u(x)v(x) dx

In particular V(u) ≤ lim infn→+∞ V(un) and V ′(u)h = limn→+∞ V ′(un)h for any h ∈ X.

4.2. The mountain pass geometry

As it is well known, the functional V satisfies the geometrical hypotheses of the mountain pass
theorem. Indeed, since p + 1 < 2∗N , by the Sobolev immersion Theorem we have

inf
u∈H1(RN )\{0}

‖u‖
‖u‖p+1

> 0,

and so
V(u) = 1

2‖u‖
2 + o(‖u‖2) and V ′(u)u = ‖u‖2 + o(‖u‖2) as ‖u‖ → 0. (4.1)

In particular there exists ρ > 0 such that

V(u) ≥ 1
4‖u‖

2 and V ′(u)u ≥ 1
2‖u‖

2 if ‖u‖ ≤ ρ. (4.2)

Moreover, if u ∈ X \ {0} then

V(su) = s2

2 ‖u‖
2 − sp+1

p+1 ‖u‖
p+1
p+1 → −∞ as s→ +∞.

Defining
Γ = { γ ∈ C([0, 1], X) : γ(0) = 0 , γ(1) , 0 and V(γ(1)) ≤ 0 }

and c = infγ∈Γ maxs∈[0,1] V(γ(s)), by the mountain Pass Theorem we infer that c ≥ 1
4ρ

2 and that there
exists a Palais Smale sequence for V at level c.
Since

(p + 1)V(u) − V ′(u)u =
p−1

2 ‖u‖
2 (4.3)

the Palais Smale sequences of V are bounded in X. Another plain consequence of (4.3) is that

if V ′(u)u = 0 then V(u) =
p−1

2(p+1)‖u‖
2 (4.4)

The existence of a critical point of V at level c is then easily deduced.

Theorem 4.1. There exists u0 ∈ X \ {0} such that V ′(u0) = 0 and V(u0) = c.

Proof. By the mountain Pass Theorem and (4.3) there exists a bounded sequence {un} ⊂ X such that
V(un) → c and V ′(un) → 0. Up to subsequence, un → u0 weakly in X. By Lemma 4.1 we deduce that
V ′(u0) = 0 and V(u0) ≤ c. To show that V(u0) = c observe that V ′(un)un → 0 and ‖un‖p+1 → ‖u0‖p+1

imply ‖un‖
2 → ‖u0‖

p+1
p+1. Since V ′(u0)u0 = 0 we also have ‖u0‖

2 = ‖u0‖
p+1
p+1. Then ‖un‖

2 → ‖u0‖
2 and so

V(un)→ 1
2‖u0‖

2 − 1
p+1‖u0‖

p+1
p+1 = V(u0). Hence V(u0) = c. �
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4.3. Sublevels of V

We characterise here some properties of the sublevel sets

Vb = {u ∈ X /V(u) ≤ b}

for level values b ∈ [0, c).
We will make use of the Gagliardo Nirenberg inequalities (see [39, 49]) which in particular imply

‖u‖p+1 ≤ KG‖u‖
θN,p

2 ‖∇u‖1−θN,p

2 for any u ∈ X, (4.5)

where KG > 0 and
θN,p = 1 − N

2
p−1
p+1 . (4.6)

By (4.5) the functional V has good coercivity properties on the bounded sets of L2(RN) when p + 1 <
2G,N where we set

2G,N ≡ 2 + 4
N . (4.7)

Indeed by (4.6), if p + 1 < 2G,N then

(1 − θN,p)(p + 1) = N
2 (p − 1) < 2. (4.8)

Then, by (4.5) and (4.8) we obtain that if ‖∇un‖2 → +∞ and ‖un‖2 ≤ C < +∞ then

V(un) = 1
2‖un‖

2 − 1
p+1‖u‖

p+1
p+1

≥ 1
2‖∇un‖

2
2 + 1

2‖u‖
2
2 −

1
p+1 K p+1

G CθN,p(p+1)‖∇un‖
(1−θN,p)(p+1)
2 → +∞.

It is useful to describe the behaviour of V along the rays in X starting from the origin.

Lemma 4.2. For any u ∈ X \ {0} setting tu =

(
‖u‖2

‖u‖p+1
p+1

) 1
p−1

we have V ′(tuu)u = 0 and

V ′(tu)u > 0 for t ∈ (0, tu) and V ′(tu)u < 0 for t ∈ (tu,+∞). (4.9)

Moreover, for u ∈ X \ {0} we have

V(tuu) =
(

1
2 −

1
p+1

) (
‖u‖
‖u‖p+1

) 2(p+1)
p−1 (4.10)

≥
(

1
2 −

1
p+1

) (
1

KG

) 2(p+1)
p−1

( ‖u‖2‖∇u‖2

)N
+

(
‖∇u‖2
‖u‖2

)2(p+1)
p−1 −N

 .
Proof. The first part of the lemma is obtained since V(tu) = 1

2 t2‖u‖2 − tp+1

p+1‖u‖
p+1
p+1 and so

d
dt V(tu) = t(‖u‖2 − tp−1‖u‖p+1

p+1) for any t ≥ 0. To derive the equality in (4.10) it is enough to perform the
computation:

V(tuu) = 1
2

(
‖u‖2

‖u‖p+1
p+1

) 2
p−1
‖u‖2 − 1

p+1

(
‖u‖2

‖u‖p+1
p+1

) p+1
p−1
‖u‖p+1

p+1
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=

(
‖u‖2

‖u‖p+1
p+1

) 2
p−1

( 1
2 −

1
p+1 )‖u‖2

= ( 1
2 −

1
p+1 )

(
‖u‖
‖u‖p+1

)2(p+1)
p−1

Finally the inequality in (4.10) follows by (4.5)–(4.6), which imply

( ‖u‖
‖u‖p+1

)
2(p+1)

p−1 ≥ ( 1
KG

)
2(p+1)

p−1 ( ‖u‖22+‖∇u‖22
‖u‖

2θN,p
2 ‖∇u‖

2(1−θN,p)
2

)
p+1
p−1

= ( 1
KG

)
2(p+1)

p−1
[(
‖u‖2
‖∇u‖2

)2(1−θN,p)
+

(
‖∇u‖2
‖u‖2

)2θN,p
] p+1

p−1

≥ ( 1
KG

)
2(p+1)

p−1

( ‖u‖2‖∇u‖2

)2(1−θN,p)
p+1
p−1 +

(
‖∇u‖2
‖u‖2

)2θN,p
p+1
p−1


= ( 1

KG
)

2(p+1)
p−1

[(
‖u‖2
‖∇u‖2

)N
+

(
‖∇u‖
‖u‖2

) 2(p+1)
p−1 −N

]
,

and the Lemma is proved. �

Remark 4.1. By continuity and Lemma 4.2, for any u ∈ X \ {0} and b ∈ [0, c), there exist unique
αu,b ∈ (0, tu) and ωu,b ∈ (tu,+∞) such that V(αu,bu) = V(ωu,bu) = b. Note that αu,b is strictly increasing
and ωu,b strictly decreasing for b ∈ [0, c). By definition V(ωu,0u) = ω2

u,0( 1
2‖u‖

2 − 1
p+1ω

p−1
u,0 ‖u‖

p+1
p+1) = 0.

Hence

ωu,0 =

(
p+1

2
‖u‖2

‖u‖p+1
p+1

) 1
p−1

=
(

p+1
2

) 1
p−1 tu,

and so for any b ∈ [0, c) we have

0 = αu,0 < αu,b < tu < ωu,b < ωu,0 =
(

p+1
2

) 1
p−1 tu (4.11)

Hence, nothing that d
dsV(su) = V ′(su)u, for any b ∈ [0, c), if u ∈ X \ {0}, there results that if t ∈

(0, αu,b] ⊂ (0, tu) then V ′(tu)u > 0 and V(tu) ≤ V(αu,bu) = b. Analogously, if t ∈ [ωu,b,+∞) then
V ′(tu)u < 0 and V(tu) ≤ b. Moreover, if t ∈ (αu,b, ωu,b), then V(tu) > b.

Therefore, if u ∈ X \ {0} and V(u) ≤ b, we have either αu,b ≥ 1 and hence V ′(u)u > 0, or ωu,b ≤ 1
from which V ′(u)u < 0.

We consider the sublevel sets ofV

Vb = {u ∈ X /V(u) ≤ b}.

By definition of the mountain pass level the set Vb is not path connected for any b ∈ [0, c). Given
b ∈ [0, c), recalling Remark 4.1, we denote

Vb
− = {tu | u ∈ X \ {0}, t ∈ [0, αu,b]} and
Vb

+ = {tu | u ∈ X \ {0}, t ∈ [ωu,b,+∞)}
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and observe that, by Remark 4.1,

Vb = Vb
− ∪V

b
+ withVb

− ∩V
b
+ = ∅ andVb

± , ∅.

Note for all b ∈ [0, c) we have u ∈ Vb
− if 1 ∈ (0, αu,b], that is when αu,b ≥ 1. Analogously, if ωu,b ≤ 1

then u ∈ Vb
+. Hence, by Lemma 4.2 and Remark 4.1, the two sets are characterised as follows

Vb
− = {u ∈ X \ {0} / αu,b ≥ 1} ∪ {0} andVb

+ = {u ∈ X \ {0} /ωu,b ≤ 1}.

Moreover, again by Remark 4.1, if b ∈ (0, c) then

u ∈ Vb
− \ {0} if and only if V(u) ≤ b and V ′(u)u > 0. (4.12)

while
u ∈ Vb

+ if and only if V(u) ≤ b and V ′(u)u < 0. (4.13)

We consider now the Nehari Manifold associated with V

N = {u ∈ X \ {0} | V ′(u)u = 0} = {tuu | u ∈ X \ {0}}.

Remark 4.2. Note that, by Lemma 4.2, we have

V(tuu) = max
t≥0

V(tu) ∀u ∈ X \ {0}

Hence, by definition, for any u ∈ N we get V(u) = maxt≥0 V(tu). By the definition of the mountain
pass level c, this implies that V(u) ≥ c for any u ∈ N . Moreover, since any nonzero critical point of V
belongs to N , by Theorem 4.1, there exists u0 ∈ N such that V(u0) = c. Therefore

inf
u∈N

V(u) = min
u∈N

V(u) = c (4.14)

from which in particular N ∩ (Vb
− ∪V

b
+) = ∅ for any b ∈ [0, c).

Remark 4.3. As a complementary property to Remark 4.2 note that for any b ∈ [0, c) the Nehari
Manifold separatesVb

− fromVb
+ in the sense that given any path γ ∈ C([0, 1], X) such that γ(0) ∈ Vb

−

and γ(1) ∈ Vb
+, there exists sN ∈ (0, 1) such that γ(sN ) ∈ N .

Indeed, if γ(0) , 0, by (4.12) and (4.13), V ′(γ(0))γ(0) > 0 and V ′(γ(1))γ(1) < 0, so that the existence
of sN follows by the continuity of the function s 7→ V ′(γ(s))γ(s) on [0, 1]. Otherwise, if γ(0) = 0,
since γ is not constant, there exists s ∈ (0, 1) such that 0 < ‖γ(s)‖ < ρ and so, by (4.2), V ′(γ(s))γ(s) ≥
1
2‖γ(s)‖ > 0. Then, the existence of sN follows again by continuity since V ′(γ(1))γ(1) < 0.

Lemma 4.3. If b ∈ [0, c) thenVb
− andVb

+ are weakly closed in X.

Proof. Let A , B ∈ {Vb
−,V

b
+}. To prove the proposition we consider a sequence (un) ⊂ A such that

un → u0 weakly in X and we show that u0 ∈ A. Since (un) ⊂ Vb we know that V(un) ≤ b. Hence by
Lemma 4.1 V(u0) ≤ b. Then, if we assume by contradiction that u0 < A we have u0 ∈ B. Consider the
path γn(s) = u0 + s(un−u0), s ∈ [0, 1]. Since γn(0) = u0 ∈ B and γn(1) = un ∈ A, by Remark 4.3, for any
n ∈ N we find sn ∈ (0, 1) such that γn(sn) ∈ N and so V(γn(sn)) ≥ c by (4.14). Since (un) is bounded
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in X there exists C > 0 such that maxs∈[0,1] ‖γn(s)‖p+1 ≤ C for any n ∈ N. Then for any s ∈ [0, 1] and
n ∈ N, we have

d
dsV(γn(s)) = V ′(γn(s))(un − u0)

≥ s‖un − u0‖
2 + 〈u0, un − u0〉 −Cp‖un − u0‖p+1

≥ 〈u0, un − u0〉 −Cp‖un − u0‖p+1.

Integrating on [sn, 1] we get

b − c ≥ V(un) − V(γn(sn)) ≥ (1 − sn)(〈u0, un − u0〉 −Cp‖un − u0‖p+1).

Since the weak convergence in X implies the convergence in Lp+1(RN) we have 〈u0, un − u0〉 −Cp‖un −

u0‖p+1 → 0 and the above inequality contradicts b < c. Hence the Lemma follows. �

Remark 4.4. Note that, by (4.3), if b ∈ [0, c) and u ∈ Vb
−, since V ′(u)u ≥ 0, then

‖u‖2 ≤ 2(p+1)
p−1 V(u) ≤ 2(p+1)

p−1 b.

In particular we obtain thatVb
− is bounded in X. Then, by Lemma 4.3,Vb

− is weakly compact in X. In
particular, if (un) ⊂ Vb

− is such that un → u0 with respect to the L2(RN) metric then u0 ∈ V
b
− and soVb

−

is also closed with respect to the L2(RN) metric.

By the Gagliardo Niremberg inequality (4.5), we obtain

Lemma 4.4. We have distL2(RN )(N , 0) > 0 if and only if p + 1 ≤ 2G,N .

Proof. Let u ∈ X \ {0} and, for ε > 0, denote uε(x) = u( x
ε
), x ∈ RN . By Lemma 4.2, tuεuε ∈ N for

tuε = ( ‖uε‖
2

‖uε‖
p+1
p+1

)
1

p−1 . Since

‖∇uε‖22 = εN−2‖∇u‖22, ‖uε‖22 = εN‖u‖22, ‖uε‖
p+1
p+1 = εN‖u‖p+1

p+1

we obtain

‖tuεuε‖2 = ‖u‖2tuεε
N
2 = ‖u‖2

(
‖∇u‖22
‖u‖p+1

p+1
+ ε2 ‖u‖

2
2

‖u‖p+1
p+1

) 1
p−1

ε
N
2 −

2
p−1 (4.15)

When p > 2G,N − 1 = 1 + 4
N we have N

2 −
2

p−1 > 0 and so ‖tuεuε‖2 → 0 as ε → 0. This shows that the
set N accumulates the point 0 with respect to the L2 metric when p + 1 > 2G,N .

It remains to show that if p + 1 ≤ 2G,N then distL2(RN )(N , 0) > 0. By contradiction assume that there
exists (un) ⊂ N such that ‖un‖2 → 0 as n → +∞. By (4.2) we have that ‖u‖ ≥ ρ for any u ∈ N and so,
in particular, ‖un‖ ≥ ρ for any n ∈ N. Then, since ‖un‖2 → 0, we have ‖∇un‖2 ≥ ρ + o(1) as n → +∞.
Hence, since by (4.5) we have

0 = V ′(un)un ≥ ‖∇un‖
2
2 + ‖un‖

2
2 − K p+1

G ‖un‖
(p+1)θN,p

2 ‖∇un‖
(p+1)(1−θN,p)
2

= ‖∇un‖
2
2(1 +

‖un‖
2
2

‖∇un‖
2
2
− K p+1

G
‖un‖

(p+1)θN,p
2

‖∇un‖
2−(p+1)(1−θN,p)
2

)

and since p ≤ 1 + 4
N implies 2 ≥ (p + 1)(1 − θN,p) (see (4.8)) we obtain

0 = V ′(un)un ≥ ‖∇un‖
2
2(1 + o(1)) ≥ ρ2 + o(1), as n→ +∞,

a contradiction. �
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Then we can give our first separation result.

Proposition 4.1. For any b ∈ [0, c) we have

distL2(RN )(Vb
−,V

b
+) > 0 if and only if p + 1 ≤ 2G,N .

Proof. Let p + 1 > 2G,N . By Remark 4.1, if b ∈ [0, c) and uε(x) = u( x
ε
), as in the proof of Lemma 4.4,

we obtain αuε,buε ∈ Vb
−, ωuε,buε ∈ Vb

+ and 0 ≤ αuε,b < tuε < ωuε,b ≤
p+1

2 tuε . In particular,
‖αuε,buε‖2 ≤ ‖ωuε,buε‖2 ≤

p+1
2 ‖tuεuε‖2 → 0 as ε → 0+, as proved in (4.15). So, if p + 1 > 2G,N , then

distL2(RN )(Vb
−,V

b
+) = 0 for any b ∈ [0, c).

Let now p + 1 ≤ 2G,N and b ∈ [0, c) and let us show that distL2(RN )(Vb
−,V

b
+) > 0. Arguing by

contradiction, assume there exist (un) ⊂ Vb
− and (vn) ⊂ Vb

+ such that ‖vn − un‖2 → 0. Since Vb
− is

weakly compact (see Remark 4.4) there exists ū ∈ Vb
− such that, up to subsequences, un → ū weakly

in X.
We claim that along the same subsequence also (vn) is bounded in X. If the claim is proved then

the Proposition follows. Indeed since ‖vn − un‖2 → 0 we have vn → ū weakly in L2(RN) and the
boundedness of (vn) in X would imply, by uniqueness, vn → ū weakly in X. Then, by Lemma 4.3,
ū ∈ Vb

+, contradicting that ū ∈ Vb
− and concluding the proof.

To prove that (vn) is bounded in X we argue in an indirect way assuming that, along a subsequence,
still denoted vn, ‖vn‖ → +∞. Since V(vn) = 1

2‖vn‖
2 − 1

p+1‖vn‖
p+1
p+1 ≤ b we derive ‖vn‖p+1 → +∞ too.

Since (un) is bounded in X, and hence in Lp+1, we obtain that there exists n̄ ∈ N such that if n ≥ n̄ then

‖vn − un‖p+1 ≥ ‖vn‖p+1 − ‖un‖p+1 ≥
1
2‖vn‖p+1.

Analogously, since ‖vn‖ → +∞ and (un) is bounded in X we can assume that n̄ is so large that if n ≥ n̄
then

‖vn − un‖ ≤ ‖vn‖ + ‖un‖ ≤ 2‖vn‖.

Using (4.5), for n ≥ n̄, it follows that

(1
2‖vn‖p+1)p+1 ≤ ‖vn − un‖

p+1
p+1

≤ K p+1
G ‖vn − un‖

θN,p(p+1)
2 ‖∇vn − ∇un‖

(1−θN,p)(p+1)
2

≤ K p+1
G ‖vn − un‖

θN,p(p+1)
2 (2‖∇vn‖2)(1−θN,p)(p+1).

Recalling that ‖vn − un‖2 → 0 and since (1 − θN,p)(p + 1) ≤ 2 when p + 1 ≤ 2G,N (see (4.7) and (4.8)),
the above inequality gives that for n large enought

‖vn‖
p+1
p+1 ≤ (2KG)p+1‖vn − un‖

θN,p(p+1)
2 (2‖∇vn‖2)(1−θN,p)(p+1)

≤ (2KG)p+1‖vn − un‖
θN,p(p+1)
2 4‖vn‖

2 ≤ 1
2‖vn‖

2.

Hence, for such values of n, V ′(vn)vn = ‖vn‖
2 − ‖vn‖

p+1
p+1 ≥

1
2‖vn‖

2 > 0, in contradiction by (4.13) with
the assumption vn ∈ V

b
+. This proves that (vn) is bounded in X and, as explained above, concludes the

proof of the Proposition. �

To study the cases p + 1 > 2G,N it is useful to observe that
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Lemma 4.5. If p + 1 ∈ (2G,N , 2∗N) and (un) ⊂ N is such that ‖un‖2 → 0 then ‖∇un‖2 → +∞.

Proof. By Lemma 4.4 the Nehari manifoldN accumulates the origin in X when p + 1 ∈ (2G,N , 2∗N). By
(4.10) we have that if u ∈ N then

V(u) = V(tuu) = 1
2 ( 1

2 −
1

p+1 )( ‖u‖
‖u‖p+1

)
2(p+1)

p−1

≥ 1
2 ( 1

2 −
1

p+1 )ν

( ‖u‖2‖∇u‖2

)N

+

(
‖∇u‖2
‖u‖2

) 2(p+1)
p−1 −N

 .
In particular if (un) ∈ N is such that ‖un‖2 → 0, since by (4.2) ‖un‖ ≥ ρ, and 2(p+1)

p−1 > N when p+1 < 2∗N ,
we obtain

V(un) ≥ 1
2 ( 1

2 −
1

p+1 )ν
(
‖∇un‖2

‖un‖2

) 2(p+1)
p−1 −N

→ +∞ as n→ +∞.

Since un ∈ N we have ‖∇un‖
2
2 = ‖un‖

p+1
p+1 and so

V(un) = ( 1
2 −

1
p+1 )‖∇un‖

2
2 → +∞

and the Lemma follows. �

Note that if u ∈ N , since ‖∇u‖22 = ‖u‖p+1
p+1, (4.5) implies

‖∇u‖22 = ‖u‖p+1
p+1 ≤ K p+1

G ‖u‖(p+1)θN,p

2 ‖∇u‖(p+1)(1−θN,p)
2

and so

‖u‖
(p+1)θN,p

(p+1)(1−θN,p)−2

2 ≥ ( 1
KG

)
(p+1)

(p+1)(1−θN,p)−2
1
‖∇u‖2

Hence, setting
σN,p =

(p+1)(1−θN,p)−2
(p+1)θN,p

,

we get

‖u‖2‖∇u‖2 ≥ ( 1
KG

)
1

θN,p ‖∇u‖1−σN,p

2 (4.16)

Note that
σN,p < 1 if p + 1 ∈ (2G,N , 2∗N+1) and σN,p = 1 for p + 1 = 2∗N+1. (4.17)

Lemma 4.4 states that when p + 1 > 2G,N there are sequences (un) inN such that ‖un‖2 → 0 and, by
Lemmas 4.5, ‖∇un‖2 → +∞. By (4.16), we get that in such cases

lim
n→+∞

‖un‖2‖∇un‖2 = +∞ if p + 1 < 2∗N+1 and

lim inf
n→+∞

‖un‖2‖∇un‖2 ≥ ( 1
KG

)
1

θN,p if p + 1 = 2∗N+1.

We have furthermore
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Lemma 4.6. Let p + 1 ∈ (2G,N , 2∗N+1]. If u0 ∈ N and u ∈ X are such that

V ′(u)u ≥ 0 and ‖u − u0‖2 ≤ ( 1
4KG

)
1

θN,p 1
‖u0‖

σN,p

then
V(u) ≥ (1

2 )p+1V(u0).

Proof. Consider first the case ‖u‖ ≥ ‖u0‖. Since u0 ∈ N and V ′(u)u ≥ 0 we have ‖u0‖
2 = ‖u0‖

p+1
p+1 and

‖u‖2 ≥ ‖u‖p+1
p+1. Hence V(u0) = ( 1

2 −
1

p+1 )‖u0‖
2 and V(u) ≥ ( 1

2 −
1

p+1 )‖u‖2, from which

V(u) − V(u0) ≥ ( 1
2 −

1
p+1 )(‖u‖2 − ‖u0‖

2) ≥ 0.

Let now assume ‖u‖ < ‖u0‖. By (4.5) we have

‖u − u0‖p+1 ≤ KG‖u − u0‖
θN,p

2 ‖∇u − ∇u0‖
1−θN,p

2 . (4.18)

Since ‖u‖ < ‖u0‖, we have ‖∇u − ∇u0‖2 ≤ ‖u − u0‖ ≤ 2‖u0‖. Thus, since ‖u − u0‖2 ≤ ( 1
4KG

)
1

θN,p 1
‖u0‖

σN,p , by
(4.18) we obtain

‖u − u0‖p+1 ≤ KG‖u − u0‖
θN,p

2 ‖∇u − ∇u0‖
1−θN,p

2

< KG‖u − u0‖
θN,p

2 21−θN,p‖u0‖
1−θN,p

< KG

(
( 1

4KG
)

1
θN,p 1
‖u0‖

σN,p

)θN,p

21−θN,p‖u0‖
1−θN,p

< 1
2‖u0‖

2
p+1 1

‖u0‖
θN,pσN,p

‖u0‖

(p+1)(1−θN,p)−2
p+1 =

= 1
2‖u0‖

2
p+1 1

‖u0‖
θN,pσN,p

‖u0‖
θN,pσN,p = 1

2‖u0‖
2

p+1 .

Hence, recalling that ‖u0‖p+1 = ‖u0‖
2/(p+1) being u0 ∈ N , we get

‖u‖p+1
p+1 ≥ (‖u0‖p+1 − ‖u − u0‖p+1)p+1

≥ (1 − 1
‖u0‖2/(p+1) ‖u − u0‖p+1)p+1‖u0‖

p+1
p+1

≥ (1
2 )p+1‖u0‖

p+1
p+1.

But V ′(u)u ≥ 0 implies ‖u‖2 ≥ ‖u‖p+1
p+1 and moreover V(u0) = (1

2 −
1

p+1 )‖u0‖
p+1
p+1 since u0 ∈ N . Then

V(u) = 1
2‖u‖

2 − 1
p+1‖u‖

p+1
p+1

≥ (1
2 −

1
p+1 )‖u‖p+1

p+1 ≥ (1
2 )p+1(1

2 −
1

p+1 )‖u0‖
p+1
p+1 = (1

2 )p+1V(u0),

and the Lemma follows. �

We have seen in Corollary 2.1 that Vb
− and Vb

+ have zero L2(RN) distance when p + 1 > 2G,N .
Lemma 4.6 allows us to show, as a final result, that the two sets are instead well separated when
2G,N < p + 1 ≤ 2∗N+1 with respect to the Jacobi distance

dJ(Vb
−,V

b
+) = inf

Γb

∫ 1

0
‖γ̇(t)‖2

√
2(V(γ(t)) − b) dt (4.19)

where
Γb = {γ ∈ AC([0, 1], X) | γ(0) ∈ Vb

−, γ(1) ∈ Vb
+, γ((0, 1)) ⊂ X \ Vb}.
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Proposition 4.2. If b ∈ [0, c) then

dJ(Vb
−,V

b
+) > 0 if and only if p + 1 ≤ 2∗N+1.

Proof. Consider first the case p + 1 ∈ (2∗N+1, 2
∗
N), and so N > 1. As in Proposition 4.1 we show that

dJ(Vb
−,V

b
+) = 0 by using dilation. For u ∈ X \ {0} and ε > 0 we set uε(x) = u( x

ε
). By Lemma 4.2,

tuεuε ∈ N for tuε = ( ‖uε‖
2

‖uε‖
p+1
p+1

)
1

p−1 and by Remark 4.1, setting

γε(t) = (αuε,b + t(ωuε,b − αuε,b))uε, t ∈ [0, 1],

we have γε ∈ Γb with, by (4.10) in Lemma 4.2,

V(γε(t)) ≤ V(tuεuε) = ( 1
2 −

1
p+1 )( ‖uε‖

‖uε‖p+1
)

2(p+1)
p−1 for any t ∈ [0, 1]. (4.20)

By (4.11) we have
0 ≤ ωuε,b − αuε,b ≤

p+1
2 tuε

and so

dJ(Vb
−,V

b
+) ≤

∫ 1

0
‖γ̇ε(t)‖2

√
2(V(γε(t)) − b) dt

≤

√
(1 − 2

p+1 )
(
‖uε‖
‖uε‖p+1

) 2(p+1)
p−1

∫ 1

0
‖γ̇ε(t)‖2 dt

=

√
1 − 2

p+1

(
‖uε‖
‖uε‖p+1

) p+1
p−1 (ωuε,b − αuε,b)‖uε‖2

≤

√
1 − 2

p+1

(
‖uε‖
‖uε‖p+1

) p+1
p−1 p+1

2 tuε‖uε‖2. (4.21)

Since ‖∇uε‖2 = ε
N−2

2 ‖∇u‖2, ‖uε‖2 = ε
N
2 ‖u‖2, ‖uε‖p+1 = ε

N
p+1 ‖u‖p+1 for ε ∈ (0, 1) we obtain

( ‖uε‖
‖uε‖p+1

)
(p+1)
p−1 ≤

(
‖u‖
‖u‖p+1

) p+1
p−1 ε

1
2(p−1) ((N−2)(p+1)−2N)

.

As in (4.15) we have furthermore that

tuε‖uε‖2 = ‖u‖2

(
‖∇u‖22
‖u‖p+1

p+1
+ ε2 ‖u‖

2
2

‖u‖p+1
p+1

) 1
p−1

ε
1

2(p−1) (N(p−1)−4)

Hence, by (4.21) we obtain that for all u ∈ X \ {0} there exists a constant C > 0 such that for ε ∈ (0, 1)
we get

dJ(Vb
−,V

b
+) ≤ C ε

1
2(p−1) ((N−2)(p+1)−2N+N(p−1)−4)

. (4.22)

Since N > 1 and p + 1 > 2∗N+1 we have

(N − 2)(p + 1) − 2N + N(p − 1) − 4 = 2(N − 1)(p + 1 − 2∗N+1) > 0,
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and (4.22) gives
dJ(Vb

−,V
b
+) = 0.

We now consider the case p + 1 ≤ 2∗N+1 and prove that dJ(Vb
−,V

b
+) > 0 for any b ∈ [0, c). We first

observe that, for u0 as given in Theorem 4.1, we have

dJ(Vb
−,V

b
+) ≤ p+1

2 ‖u0‖2

√
2(c − b) for any b ∈ [0, c). (4.23)

Indeed, for b ∈ [0, c) let αu0,b and ωu0,b be given by Remark 4.1 and define

γ(t) = [αu0,b + t(ωu0,b − αu0,b)] u0, t ∈ [0, 1].

Then γ ∈ Γb and, since tu0 = 1, (4.11) gives ‖γ̇(t)‖2 = (ωu0,b − αu0,b)‖u0‖2 ≤
p+1

2 ‖u0‖2. Hence, since
V(γ(t)) ≤ V(u0) = c for any t ∈ [0, 1], (4.23) follows.

Let now (γn) ⊂ Γb be such that∫ 1

0
‖γ̇n(t)‖2

√
2(V(γn(t)) − b) dt → dJ(Vb

−,V
b
+) as n→ +∞.

By Remark 4.3 and by continuity, for n ∈ N, there is sn ∈ (0, 1) such that γn(sn) ∈ N and
V ′(γn(t))γn(t) > 0 for any t ∈ [0, sn).

We analyse first the case in which γn(sn) is not bounded in X assuming that along a subsequence,
still denoted (γn(sn)), we have

‖γn(sn)‖ → +∞ (4.24)

By (4.24) we have in particular

V(γn(sn)) = ( 1
2 −

1
p+1 )‖γn(sn)‖2 → +∞ as n→ +∞. (4.25)

By (4.16) we know that ‖γn(sn)‖2 ≥ ( 1
KG

)
1

θN,p 1
‖∇γn(sn)‖

σN,p
2

and by Lemma 4.6, if t ∈ [0, sn) is such that

‖γn(t) − γn(sn)‖2 ≤ ( 1
4KG

)
1

θN,p 1
‖γn(sn)‖σN,p then

V(γn(t)) ≥ ( 1
2 )p+1V(γn(sn)).

By (4.25) there exists n̄ ∈ N such that (1
2 )p+1V(γn(sn)) > b ≥ V(γn(0)) for any n ≥ n̄ and so ‖γn(0) −

γn(sn)‖ >
(

1
4KG

) 1
θN,p 1

‖γn(sn)‖σN,p . Then, for any n ≥ n̄ there is s̄n ∈ (0, sn) such that

(i) ‖γn(t) − γn(sn)‖2 ≤ ( 1
4KG

)
1

θN,p 1
‖γn(sn)‖σN,p for any t ∈ (s̄n, sn),

(ii) ‖γn(s̄n) − γn(sn)‖2 = ( 1
4KG

)
1

θN,p 1
‖γn(sn)‖σN,p ,

(iii) V(γn(t)) ≥ ( 1
2 )p+1V(γn(sn)) for any t ∈ (s̄n, sn).

Since V(γn(sn)) → +∞, by (iii) we can assume that for n ≥ n̄ we have V(γn(t)) − b ≥ ( 1
2 )p+2V(γn(sn))

for any t ∈ (s̄n, sn). Hence, using (i) and (ii) we obtain∫ sn

s̄n

‖γ̇n(t)‖2
√

2(V(γn(t)) − b) dt ≥
√

(1
2 )p+1V(γn(sn))

∫ sn

s̄n

‖γ̇n(t)‖2
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≥

√
( 1

2 )p+1V(γn(sn))‖γn(sn) − γn(s̄n)‖2

=

√
( 1

2 )p+1( 1
2 −

1
p+1 )‖γn(sn)‖( 1

4KG
)

1
θN,p

1
‖γn(sn)‖σN,p

.

If p + 1 < 2∗N+1 by (4.17) we have σN,p < 1 and so the above inequality would imply

dJ(Vb
−,V

b
+) = lim

n→+∞

∫ 1

0
‖γ̇n(t)‖2

√
2(V(γn(t)) − b) dt = +∞,

in contradiction with (4.23). So the case (4.24) cannot occur when p + 1 < 2∗N+1. If p + 1 = 2∗N+1 by
(4.17) we have σN,p = 1 and the above inequality gives∫ sn

s̄n

‖γ̇n(t)‖2
√

2(V(γn(t)) − b) dt ≥
√

( 1
2 )p+1( 1

2 −
1

p+1 )( 1
4KG

)
1

θN,p .

Since dJ(Vb
−,V

b
+) = limn→+∞

∫ 1

0
‖γ̇n(t)‖2

√
2(V(γn(t)) − b) dt, this proves that the Jacobi distance

betweenVb
− andVb

+ is positive in this case.
To conclude the proof of the Proposition we have finally to consider the case in which (γn(sn)) is

bounded in X. We claim that in this case for any β ∈ [0, c) there exists dβ > 0 such that

distL2(RN )(γn(sn),Vβ
−) ≥ dβ for any n ∈ N. (4.26)

Indeed, by Remark 4.4, Vβ
− is weakly compact in X. Then for any n ∈ N there exists vn ∈ V

β
− such

that distL2(RN )(γn(sn),Vβ
−) ≥ ‖γn(sn) − vn‖L2(RN ) > 0 and (4.26) will follows if we show that

lim infn→+∞ ‖γn(sn) − vn‖L2(RN ) > 0. To this aim assume by contradiction that
lim infn→+∞ ‖γn(sn) − vn‖L2(RN ) = 0. By the weak compactness of Vβ

− and the boundedness of (γn(tn)),
there exist v0 ∈ V

β
− and u0 ∈ X such that, along common subsequences still denoted (γn(sn)) and (vn),

we have ‖γn(sn) − vn‖2 → 0, vn → v0 and γn(sn) → u0 weakly in X and strongly in Lp+1(RN). Since
‖γn(sn) − vn‖2 → 0, by weak semicontinuity of the norm we recover ‖u0 − v0‖L2(RN ) = 0. Hence
u0 = v0 ∈ V

b
−. Since V(γn(sn)) ≥ c > b and V(u0) ≤ b we then have that γn(sn) does not converge

strongly in X to u0 and so ‖u0‖ < lim infn→+∞ ‖γn(sn)‖. In particular, since by the strong convergence
in Lp+1(RN) we have ‖γn(sn)‖p+1

p+1 → ‖u0‖
p+1
p+1, we obtain

V ′(u0)u0 = ‖u0‖
2 − ‖u0‖

p+1
p+1

< lim inf
n→+∞

‖γn(sn)‖2 − lim
n→+∞

‖γn(sn)‖p+1
p+1

= lim inf
n→+∞

(‖γn(sn)‖2 − ‖γn(sn)‖p+1
p+1) = lim inf

n→+∞
V ′(γn(sn))γn(sn) = 0

which says that V ′(u0)u0 < 0 in contradiction with u0 ∈ V
b
−, by (4.13). Then (4.26) follows.

In particular (4.26) gives that for β = 1
2 (b + c) there exists dβ > 0 such that

distL2(RN )(γn(sn),V(b+c)/2
− ) ≥ dβ > 0 for any n ∈ N. (4.27)

Since V(γn(0)) = b and V(γn(sn)) ≥ c, by (4.27) and by continuity there exists s̄n ∈ (0, sn) such that

(iv) V(γn(t)) ≥ 1
2 (b + c) for any t ∈ (s̄n, sn),
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(v) ‖γn(s̄n) − γn(sn)‖2 ≥ dβ.

Using (iv) and (v), we derive

dJ(Vβ
−,V

β
+) + o(1) ≥

∫ sn

s̄n

‖γ̇n(t)‖2
√

2(V(γn(t)) − b) dt ≥

≥
√

c − b
∫ sn

s̄n

‖γ̇n(t)‖2 ≥

≥
√

c − b ‖γn(sn) − γn(s̄n)‖2 ≥
√

c − b dβ > 0

and the proposition is proved. �
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