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Abstract: Size-fractionated particulate mercury (PHg) measurements were performed from November
2017 to January 2018 at Terra Nova Bay (Antarctica) for the first time. Samples were collected every
10 days by a six-stage high-volume cascade impactor with size classes between 10 µm and 0.49 µm.
Total PHg concentrations were maxima (87 ± 8 pg m−3) in November, then decreased to values ~40%
lower and remained almost constant until the end of the sampling period (~30 pg m−3). The trimodal
aerosol mass distribution reveals that from 30% to 90% of the total PHg came in the size > 1.0 µm.
Hg in the two coarse fractions was probably produced by the adsorption of oxidized Hg species
transported by air masses from the Antarctic plateau or produced locally by sea ice edges. PHg in
accumulation mode seemed to be related to gas–particle partitioning with sea salt aerosol. Finally,
average dry deposition fluxes of PHg were calculated to be 0.36 ± 0.21 ng m−2 d−1 in the accumulation
mode, 47 ± 44 ng m−2 d−1 in the first coarse mode, and 37 ± 31 ng m−2 d−1 in the second coarse mode.
The present work contributed to the comprehension of the Hg biogeochemical cycle, but further
research studies are needed.

Keywords: particulate mercury; mercury size-resolved distribution; dry deposition; meteorological
parameter; backward trajectories; Antarctica

1. Introduction

Mercury (Hg) is an element naturally occurring in the Earth. This metal continues to be of high
concern due to its intrinsic characteristic, e.g., volatility, mobility, persistence, and strong tendency to
bioaccumulate in food chains. Mercury has been considered as a Priority Pollutant by the United States
Environmental Protection Agency (US-EPA) since 1977 and it is addressed under the Heavy Metals
Protocol to the Convention on Long-range Transboundary Air Pollution that entered in force in 2003.

The atmosphere plays a key role in mercury transformation, removal, and transport to various
ecosystems, even to remote areas through long-range processes [1–3]. Sources of mercury in the
atmosphere are both natural (volcanoes, forest fire, geothermal vents, evaporation from soil and
waters) and anthropogenic (fossil fuel combustion, mining and extraction of minerals, production of
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non-ferrous metals, cement production, artisanal and small-scale gold mining, dental applications,
batteries), with the latter having contributed for the most part [4–7].

The United Nations Environment Programme (UNEP) published a new global inventory of
mercury emissions to air in 2018 [8]. In 2015, about 2220 tons of mercury were emitted in the air from
17 key sectors worldwide. These emissions are 20% higher than those estimated for 2010. In fact, the
remedial actions applied by North America and the European Union have resulted in modest decreases
in emissions, probably because of the increase of economic activity (especially in Asia) and the use of
mercury-added products that have offset any efforts to reduce mercury emissions.

Obviously, Asiatic regions (primarily East and Southeast Asia) are the largest emitters of mercury
worldwide, contributing about 49% of the global emissions, followed by South America (18%) and
Sub-Saharan Africa (16%) [8].

The chemistry of atmospheric mercury is quite complex. Typically, three forms of Hg can be
recognized in the ambient air: the gaseous elemental mercury (Hg0), the gaseous oxidized mercury
(Hg2), and the particulate mercury (PHg). Hg0 is the main species of Hg in the atmosphere (>90% of
the total atmospheric mercury [9] with residence time of about 1 year [10]); thus, it can be transported
globally, even to remote areas [11,12]. The fate of Hg0 is to be oxidized into the more reactive and
water-soluble gaseous Hg2, and/or into the particulate matter (PHg [13]). Due to its high dry deposition
velocities and scavenging coefficients [14], PHg is more important than Hg0 with respect to atmospheric
deposition, and thus to the transport of mercury from the atmosphere to the terrestrial and aquatic
ecosystems [15]. Once deposited, Hg can be methylated to methylmercury in aquatic systems, leading
to bioaccumulation and toxic effects in biota and humans [16,17].

Far from the civilized world, at least 3000 km, Antarctica is considered the last pristine environment
of the Earth. Nevertheless, it is not escaping the impact of anthropogenic emissions of several pollutants
that reaches Antarctica by long-range transport processes.

Several studies on atmospheric Hg highlighted the role of the Southern Hemisphere emissions
on the mercury input control in Antarctica with respect to the limited contributions by local active
volcanoes, geothermal events, and human activities on the continent [3,18]. The Hg cycle has unique
features in Antarctica and more in general in polar regions with respect to the lower-latitude areas [19].
The main phenomena that characterize polar regions are the so-called atmospheric mercury depletion
events (AMDEs). During springtime, gaseous elemental Hg is depleted from the lower troposphere,
since it is oxidized by halogen radicals, and deposited on the ground or bound to atmospheric particles
more rapidly than anywhere else [3]. This discovery, made in Alert (Canada) by Schroeder et al. [10],
has given a considerable boost to the research on atmospheric chemistry and on the Hg biogeochemical
cycle. A series of following research studies also reported several Hg depletion events in Antarctica
near some coastal Antarctic stations, e.g., Neumayer [20], Mario Zucchelli [21], Dumont d’Urville [22],
and McMurdo [23]. In the last decades, many studies focused on the measurements of tropospheric Hg0

concentrations in Antarctica and on the mechanism behind the AMDEs during the Antarctic springtime.
Despite to its key role in the global mercury biogeochemical cycle, PHg studies are very sporadic

with respect to Hg0 and Hg2 and very little is known about the size distribution of PHg in the
atmosphere. PHg measurements were carried out in few Antarctic areas, e.g., at Mario Zucchelli
Station [24]; at the German Neumayer station [25]; at McMurdo Station [23]; and at the South Pole [26].
Not one of these studies, which date back more than 10 years, has considered the PHg size distribution.
However, particle diameter is a key factor to estimate the Hg depositional fluxes on the ecosystems, since
it affects aerodynamic resistance, atmospheric residence time, gravitational settling, and long-range
transport [27,28]. Particle size distribution, moreover, provides valuable information on the potential
sources of PHg [7]. Several studies carried out around the world have showed a possible marine source
for PHg coarse fraction in coastal and marine areas, while in urban and industrialized regions, PHg in
fine particles showed an anthropogenic input [29,30].

The study of mercury in Antarctica is challenging due to the extreme operative conditions;
nevertheless, much efforts is necessary in order to gain more insight in some unclear environmental
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aspects, e.g., the role of the Antarctic continent in the global biogeochemical cycle of Hg and the
mechanisms characterizing the deposition of Hg to the coastal ecosystems [3].

Under the framework of the Italian Antarctic Programme, the determination of atmospheric
particulate mercury at Terra Nova Bay (Victoria Land, Antarctica, Figure 1) was carried out. To our
knowledge, this study is the first to measure the size distribution of atmospheric PHg in Antarctica
during the austral summer. Our principal goals were to: (1) measure the PHg concentrations in one of
the remote areas of the world; (2) evaluate the PHg distribution between different size fractions of
PM10; (3) characterize the summer evolution of the size-resolved PHg fractions; (4) investigate the
relationship between PHg and meteorological parameters; (5) estimate the dry deposition fluxes of
size-resolved particulate mercury; and (6) assess the potential sources of PHg at Terra Nova Bay and
the possible impact of long-range transport.
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Figure 1. Map of the sampling site (Faraglione Camp) and the Italian Mario Zucchelli Station. Wind
rose plot with the prevailing wind direction over the sampling site is also reported.

2. Results and Discussion

2.1. PHg Concentrations in Antarctica

Table 1 shows a summary of the PHg concentrations in PM10 obtained as sum of the size-segregated
fractions, and the corresponding data of the atmospheric concentrations referred both to actual (mean
temperature, 268 K and mean pressure, 954 hPa) and standard air (298 K, 1013 hPa) during the Antarctic
summer 2017–2018.



Molecules 2020, 25, 3971 4 of 20

Table 1. Atmospheric particulate mercury concentrations referred both to actual and standard air
at Faraglione Camp during the austral summer 2017–2018. Concentrations are reported as sum of
different size-segregated PM10 fractions.

Sampling Period Actual Air Volume (m3)
Standard Air

Volume b (m3)
PHg Atmospheric Concentration (pg m−3) a

Actual Air Standard Air

10/11/2017–20/11/2017 16,354 16,070 94 ± 8 95 ± 8
20/11/2017–30/11/2017 16,498 15,857 90 ± 6 94 ± 7
30/11/2017–10/12/2017 16,793 16,172 79 ± 6 82 ± 6
10/12/2014–20/12/2017 16,479 15,920 39 ± 3 40 ± 3
20/12/2017–28/12/2017 13,206 12,806 31 ± 2 32 ± 2
28/12/2017–05/01/2018 13,401 12,921 30 ± 2 31 ± 2
05/01/2018–13/01/2018 13,070 12,584 31 ± 1 32 ± 2

a
± SD computed as the square root of the sum of variances. b 298 K, 1013 hPa.

First, it can be noted that the correction computed for standard air is negligible (differences
in the range between 2% and 4%) if compared with the precision in the volume sampled (±10%).
By consequence, in the following paragraphs, results referred to actual air will be discussed.

PHg atmospheric concentrations measured at Faraglione Camp during the austral summer
showed the following values, given as means (interquartile range): Dp, <0.49 µm, 1.3 (0.61–1.6) pg
m−3; 0.49−0.95 µm, 3.5 (3.0−3.9) pg m−3; 0.95−1.5 µm, 11 (4.6−14) pg m−3; 1.5−3.0 µm, 18 (6.8−29) pg
m−3; 3.0−7.2 µm, 18 (11−20) pg m−3; 7.2–10 µm, 5.0 (3.1−5.5) pg m−3.

On average, the total PHg content in PM10 was 51 ± 27 pg m−3 with a range of 30–90 pg m−3.
The PHg concentrations obtained in the present work were compared to the literature data

available from the same and/or other Antarctic regions and from other areas worldwide (Table 2).

Table 2. Summary of atmospheric particulate mercury measurements performed at various Antarctic
locations and in other areas worldwide. NA: data not available.

Study Sites Period
Mercury

Concentrations Mean
(Min–Max), pg m−3

References

Terra Nova Bay 2017–2018 51 ± 27 (30–90) This work
Terra Nova Bay 1999–2001 12 ± 6 (~ 4–20) [21]

Neumayer station 2000–2001 NA (15–120) [25]
South Pole Nov 2000 224 ± 119 (71–660) [26]

Dec 2001 166 ± 147 (11–827)
McMurdo Oct–Nov 2003 49 ± 36 (5–182) [23]

Sweden, EU 1998–2004 8.1 ± 4.9 (1.7–19) [2,31,32]
Germany, EU 1998–2004 42 ± 29 (21–99) [2,31,32]

France, EU 1998–2004 108 ± 246 (1.0–662) [2,31,32]
Italy, EU 1998–2004 15 ± 14 (1.0–46) [32]

Spain, EU 1998–2004 30 ± 26 (9.1–86) [32]
Barrow, Alaska 1999–2004 24 ± 25 (3–116) [23]

Alert, Canadian Arctic 1995 to 2009 70 ± 65 (NA) [12]
North America ruraland

background areas 1995 to 2004 9.2 ± 15 (1.6–42) [30,33–35]

Toronto, Canada 2003–2004 NA (14.2–39.2) [32]
Chicago, USA 70 ± 67 (NA) [36]
Detroit, USA 2004 NA (1.0–1345) [37]

Mexico City, Mexico 2006 187 ± 300 (NA) [38]
Shangai, China 2017 318 ± 144 (99–611) [39]
Tokyo, Japan 98 ± 51 (NA) [40]
Seoul, Korea 2010 6.8 ± 6.5 (1.1–18.5) [29]

Global 111 ± 99 (0.6–1180) [30]
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As already stated, the measurements of Hg in Antarctica are very sporadic. Although there is
great variability, a general agreement with data previously reported can be recognized. Our data were
slightly higher, even if in the same in order of magnitude, than those reported by Sprovieri et al. [10] in
the same Antarctic site.

Compared globally, our values confirmed what was previously discovered by studying
atmospheric mercury in Antarctica, i.e., surprisingly higher concentrations of PHg (from ~4 pg
m−3 to ~660 pg m−3) with respect to those measured in urban and industrialized areas [32]. These
high concentrations of oxidized mercury species could be the consequence of phenomena occurring
in Antarctica (e.g., AMDEs) and making the Hg biogeochemical cycle unique in the world [20,23].
Measurements of Hg in Antarctic coastal areas suggested that the production of Hg oxidized species
(i.e., reactive gaseous mercury, RGM, and/or PHg) seemed to be related to gas-phase oxidative processes
activated not only by AMDEs during springtime, but also by potential oxidants (·OH, HO·2, O·, NO·3)
present in air masses originating from the Antarctic plateau and produced by photochemical reduction
processes in the snowpack [25]. These air masses enriched in oxidants and oxidized Hg species
reached the coastal areas through katabatic winds [22]. At Terra Nova Bay, Sprovieri et al. [21] also
measured very high concentrations of reactive gaseous mercury (RGM, Hg2+) in the absence of Hg0

depletion events. This Hg species tended to be dry deposited and/or rapidly scavenged by aerosol
particles [24,41]. The authors suggested a local gas-phase oxidation of Hg0 promoted by H2O2 that
shows high concentrations in the remote and clean marine boundary layer (MBL) of Antarctica. Thus,
MBL is a highly oxidant environment in polar regions where H2O2 reacts with the HONO released
from the snowpack producing OH and NO2 [42].

Finally, influences from the recent enhanced anthropogenic emissions in the Southern Hemisphere,
especially because of the widespread small-scale gold production [18], cannot be excluded.

2.2. Size-Resolved Mercury Distribution

To gain more information on the possible sources of mercury at Terra Nova Bay, the size-resolved
PHg distribution was performed. Cascade impactors with various cut-off diameters, flow rates, and
sample substrates were usually employed to study the size distribution of several constituents in
the ambient air [43]. The main issues of cascade impactors as tools to study the size distribution are
inherent to some physical phenomena or artifacts that can affect particle collection. In fact, particles
may bounce, adhere, blow off when ending up on a lower stage, or deposit in the passageways between
stages. These result in possible overlap between one impactor stage and the subsequent stage [29,43].
To overcome these issues, an inversion procedure developed by Bau et al. [43] (see below in Section 2.5)
was applied to the whole dataset. This allowed to convert the raw cascade impactor data to continuous
size distribution.

During the austral summer 2017–2018, a trimodal distribution of PHg for each sample can be
recognized, except for two samples (10–20 Nov 2017 and 20–28 Dec 2017) (Figure 2). The three “peaks”
or modes obtained can be ascribable to: an accumulation mode, PHg0.1–1.0 (0.1 µm < Dp < 1.0 µm); a
first coarse mode, PHg1.0–2.5 (1.0 µm < Dp < 2.5 µm), and a second coarse mode, PHg2.5–10 (2.5 µm
< Dp < 10 µm).The PHg concentrations in the accumulation and in two coarse fractions showed the
following results, given as mean (interquartile range): PHg0.1–1.0, 4.1 (2.4–5.6) pg m−3, PHg1.0–2.5, 39
(10–63) pg m−3, PHg2.5–10, 15(11–14) pg m−3. The highest percentages of PHg were found in the first
coarse fraction PHg1.0−2.5 accounting from ~30% to ~99% of the total particulate mercury. The other
two PHg fractions, PHg0.1–1.0 and PHg2.5–10 contributed to a less extent to the total mercury content;
the percentages varying from ~3% to ~30% and from ~20% to ~40%, respectively.
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Figure 2. Size distributions of PHg in the different size-segregated aerosol fractions collected at
Faraglione Camp (Terra Nova Bay, Antarctica) during summer 2017–2018.

In general, studies on size-resolved PHg evolutions are very limited all over the world. When
considering the PHg distribution in the PM10 in various urban, industrialized and rural areas disparate
results were obtained. Several studies [40,44–46] carried out in areas with different anthropogenic
inputs (vehicular traffic, industrial activities, metal mining) observed a bimodal distribution of PHg in
the atmospheric aerosol. They recognized a fine mode (with size in the range 0.5–1.0 µm) and a coarse
mode, the size range of the latter changing on a case-by-case basis (from 1.0–2.5 µm to 4.0–6.0 µm,
to 2.5–10 µm). Kim et al. [29], studying size-segregated PHg in two Korean cities, found a unimodal
distribution with a significant seasonal difference in the dominant size. During winter, the fine mode
with a peak in the 0.32–0.56 µm size range was dominant, while in summer, the coarse fraction
(1.0–2.5 µm size range) became more important. Li et al. [7] found a mixed situation in Beijing (China):
PHg showed a unimodal distribution in winter with a mode in the 0.56–1.0 µm size range, a bimodal
distribution in summer (two modes in the size ranges 0.56–1.0 µm and 2.5–5.6 µm, respectively), and a
multimodal distribution during spring. Han et al. [39] measured a trimodal distribution of PHg in
the ambient air with three principal fractions: a nucleation mode (<0.05 µm), an accumulation mode
(0.05–2.0 µm), and a coarse mode (>2.0 µm).

Generally, all the studies carried out on PHg size distribution highlighted the significant
contribution of the fraction with the 1.0–2.5 µm size range to the total atmospheric particulate content.

2.3. Seasonal Evolution of PHg in Antarctica

Figure 3 shows the variation of PHg during the austral summer. Total PHg concentrations were
maxima (87 ± 8 pg m−3) and almost constant during November. At the beginning of December,
PHg decreased to values ~40% lower than the spring and then remained almost constant until the end
of the sampling period (~30 pg m−3).
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Figure 3. Seasonal trend of size-segregated particulate mercury concentrations at Faraglione Camp
from November 2017 to January 2018. Error bars are referred to SD of the different PHg fraction sums,
calculated as the square root of the sum of variances.

PHg maxima during summer season were recorded in several coastal and inland Antarctic stations,
as a consequence of both AMDEs and gas-phase oxidation of Hg0 promoted by the strong oxidants
·OH, HO·2, O· or NO·3 [21–23,25,42,47].

The seasonal trend and the relative contribution of the three modes to the total particulate mercury
during the austral summer are reported in Figure 4. It can be noted that PHg1.0–2.5 (even if with a more
pronounced decrease than total mercury) is responsible of the total PHg evolution during summer,
as it is also confirmed by correlation matrix (see below in Table 3). PHg1.0–2.5, in fact, represented a
significant fraction of the total PHg, varying from ~90% at the beginning of the season to ~30% at
the end of the sampling campaign. PHg in the coarsest fraction (PHg2.5–10), showed a maximum in
mid-December, but rapidly decreased to constant values (~40% of the total PHg) until the end of season.
On the contrary, PHg0.1–1.0 counted for a very small fraction of the total PHg (from ~1% to ~30%) and
gradually increased during the sampling campaign to reach the highest values in mid-January.

Table 3. Correlation matrix (Pearson’s coefficients) among PHg size fractions and meteorological
variables (temperature, T; atmospheric pressure, P; relative humidity, RH and wind speed, Wind).
Significant correlation (p ≤ 0.05) are shown in boldface.

PHgtot 1.00 PHg2.5–10.0
PHg10.0–2.5 0.03 1.00 PHg1.0–2.5
PHg2.5–1.0 0.94 −0.28 1.00 PHg0.1–1.0
PHg1.0–0.1 −0.70 0.17 −0.78 1.00 T

T −0.81 0.33 −0.87 0.83 1.00 P
P −0.96 0.18 −0.98 0.80 0.92 1.00 RU

RH −0.60 0.44 −0.73 0.47 0.61 0.71 1.00 Wind
Wind 0.30 −0.54 0.52 −0.53 −0.29 −0.38 −0.63 1.00
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These distributions demonstrated that PHg could have different formation mechanisms. Besides
the direct emissions from natural or anthropogenic sources, Xiu et al., 2005 [13] suggested two main
formation mechanisms as secondary sources of PHg: adsorption of gaseous mercury on particles and
chemical gas–particle transformation. Generally, PHg in coarse fractions forms through adsorption
of gaseous mercury onto coarse particles generated from natural sources, such as sea salt aerosols
and dust, and mechanical processes from anthropogenic sources [29]. On the contrary, gas–particle
transformation plays a key role in the PHg formation in fine particles [13].

The atmospheric particulate matter (PM) in Terra Nova Bay for the austral summer showed a
trimodal size distribution, with an accumulation mode in 0.1–1.0 µm, and two coarse modes, one in
the range 1.0–3.0 µm and the second one in 3.0–10.0 µm. The accumulation mode accounted from
~50% to ~90% of PM in Antarctica (the two coarse modes representing from ~5% to ~35% of PM)
and increased in mid-December at the same time of the pack-ice reduction [48,49]. As reported in
literature [49,50] the sea spray contribution (Na+, Mg2+, Cl− and sea salt SO2−

4 ) dominates the coarse
fraction, whereas methanesulfonate and not-sea-salt SO2−

4 prevail in the fine particles, showing maxima
during summer, as they originate from the oxidation of dimethylsulfide emitted in the atmosphere by
the phytoplankton blooms.
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In general, if more particles from a specific PM fraction are present in the atmosphere in some
period, we can expect that there is also more fraction-bound Hg in that area. Nevertheless, the PHg size
distribution in the analyzed period did not occur in the diameter range defining the most abundant PM
fraction. This different behavior confirms PHg production mechanisms other than the only adsorption
process on particles, e.g., the chemical gas–particle transformation.

Several studies indicate that the Southern Ocean is a net source of gaseous mercury in the
Antarctic summer, especially when the pack ice melts, contributing more than half of the atmospheric
concentration [42,51]. Concurrently, a large amount of sea salt aerosol is released in the atmosphere
during the season, participating to adsorption and gas–particle partitioning events with the newly
emitted gaseous mercury [29].

This marine contribution could only partially affect the PHg distribution recorded in our work.
In fact, in the 2017–2018 Antarctic summer, the pack ice melted at the end of the sampling campaign.
Nevertheless, wide areas of the Ross Sea were ice-free in January, contributing to the evasion of great
amount of marine aerosol, which can reach the study site. This is supported by the HYSPLIT model
simulations showing air masses originating from the Southern Ocean or Ross Sea ice-free coastal areas
reaching Faraglione Camp (Figure 5d). Trying to investigate the long-range transport from anthropized
regions, we imposed an additional threshold considering only back-trajectories (TJ) points, between
100 and 1000 m, and also below 48◦S for almost 5% of the time (6 h). Results (not shown) confirm the
passage above the Tasmanian Sea closed to the Australian coasts. Selected TJ points below 48◦ S were
prevalently related to few events at the beginning of January when PHg0.1–1.0 concentrations increased.
We hypothesized that PHg0.1–1.0 increasing could be explained in terms of gas–particle partitioning of
both Hg0 and Hg2+ with the methanesulfonate and the not-sea-salt sulphate released from the sea
surface. Based on the HYSPLIT models, a contribution of the long-range transport of fine particles
from anthropized areas to the PHg size distribution at Terra Nova Bay cannot be excluded (Figure 5d).
Nevertheless, further studies are necessaries in order to confirm or refute this hypothesis.
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In November, when the pack ice covered large areas of the Ross Sea, the high levels of PHg in the
coarse fraction were probably due to other sources than the marine one. Sprovieri et al. [21] suggested a
local production of oxidized mercury species by the presence of sea ice edges during the polar summer.
Angot et al. [22] suggested the advection by katabatic winds of inland air masses from the Antarctic
plateau to coastal areas. These air masses are enriched in oxidants and oxidized Hg species produced
by reactions occurring within the shallow boundary layer on the Antarctic plateau [25] and cause the
high Hg2+ species concentrations and elevated levels of total Hg in surface snow samples recorded at
the French station Dumont d’Urville (DDU) during summer.

As highlighted by the HYSPLIT model, until January, Terra Nova Bay was affected by air masses
originating from the Antarctic plateau (Figure 5b,c) reaching the sampling site, sometimes at very high
speeds (see further in Figure 6a). We hypothesized that the high concentrations of PHg in November
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could be produced by the adsorption of oxidized Hg species on coarse particles, as these Hg species
were either transported by air masses from the Antarctic plateau or produced locally by sea ice.

Molecules 2020, 25, x FOR PEER REVIEW 12 of 20 

 

elsewhere [48,63–65]. A map of the Mario Zucchelli Station area, the Faraglione Camp and the 
volcano Melbourne is reported in Figure 1. 

 
Figure 6. Meteorological parameter variations at Faraglione Camp during the sampling period. The 
panels (a–d) show the average day to day variation of air temperature (T, °C), relative humidity (RH, 
%), pressure (P, hPa) and wind speed (W, m s−1), respectively. 

The Automatic Weather Station of the PNRA Meteo-Climatological Observatory [66] recorded 
the values of the principal meteorological parameters (air temperature, relative humidity, ambient 
pressure, wind speed and direction) close to the study area [67]. During the reference period, results 
were reported as mean (minima–maxima): temperature, −6.2 °C (−15 °C–0 °C), pressure, 953 hPa (939 
hPa–970 hPa), relative humidity, 62% (36%–98%). A general increase of air temperature and pressure 
can be observed during summer (Figure 6a,b). The relative humidity showed a less pronounced 
variation, with the lowest values in November with respect to the rest of summer (Figure 6c). 

The first part of summer was characterized by strong surface winds, reaching wind speeds of 
~25 m s−1 (~50 knots, Figure 6d). In fact, Terra Nova Bay is one of the Antarctic “confluence zones” 
between the Reeves and Priestly glaciers, and it is characterized by intense katabatic winds 
responsible for the formation of a polynya (open water area) which persists also through winter [68]. 
In December and January, winds were low (~5 m s−1) with occasionally some peaks at 10–15 m s−1 
(~20–30 knots).  

Due to the strong katabatic effects, the most frequent surface wind direction was West (~30%) or 
West-Northwest (~20%) (see the wind rose plot in Figure 1). 

3.2. Field Sampling 

The aerosol samples were collected at Faraglione Camp from November 2017 to January 2018. 
Measurements were made by five-stage high-volume cascade impactor (Tisch-Environmental, mod. 
TE-235, Analytica Strumenti, Pesaro, Italy; see Annibaldi et al. [69,70] for further details) in 
combination with a 10-μm pre-separator for the effective collection of six sub 10 μm fractions (we can 
therefore consider using a six-stage cascade impactor). The 50% cutoff aerodynamic diameters of the 
different stages are stated by the manufacturer at 10 μm, 7.2 μm, 3.0 μm, 1.5 μm, 0.95 μm, and 0.49 
μm. Particles with aerodynamic diameter smaller than 0.49 μm are collected on backup filter. The 

0

10

20

30
(d)

W
, m

s-1

10 Nov

2017

09 Jan

2018

20 Dec30 Nov

(a)

T,
 °C

-20

-10

0

940

960

980
(b)

P,
 h

Pa

0

50

100
(c)

RH
, %

Figure 6. Meteorological parameter variations at Faraglione Camp during the sampling period.
The panels (a–d) show the average day to day variation of air temperature (T, ◦C), relative humidity
(RH, %), pressure (P, hPa) and wind speed (W, m s−1), respectively.

2.4. PHg and Meteorological Conditions

Several studies carried out in several areas worldwide have highlighted the possible influence of
meteorological conditions on the temporal variation of PHg [7,24,29,52]. In this study, we examined the
relationships between PHg concentrations in the three size fractions and meteorological parameters,
such as temperature, atmospheric pressure, relative humidity, and wind speed. Therefore, the
correlation matrix with Pearson’s coefficients was calculated, and statistical results are summarized in
Table 3.

The correlation matrix highlights the significant contribution of PHg1.0–2.5 to the total PHg evolution
during summer, as previously noted. PHg1.0–2.5 was also negatively correlated with PHg0.1–1.0, and
both these two fractions showed an opposite relationship with temperature and surface pressure.

Generally, the negative correlation of PHg with temperature highlighted the deposition of mercury
on particles as main process of PHg formation. By contrast, the positive link of PHg to temperature
revealed photochemical transformation as key pathway formation of this fraction [29,53]. In the
present work, the opposite behavior of the two PHg fractions with temperature could be explained as
a seasonality effect. The temperature rising typical of summer season in association with moderately
calm winds promoted the gas-partitioning of PHg onto fine particles emitted by sea spray, contributing
to the increase of PHg0.1–1.0. The low temperature at the beginning of season promoted the oxidized
gaseous mercury species, reaching the study area through katabatic winds, to be adsorbed onto the
coarse particle surfaces [24,54].

RH seemed to have no influences on PHg distribution. Nevertheless, a quite high, even if not
significant, negative correlation with PHg1.0–2.5 can be observed. From mid-December, a change in
the two coarse fractions contribution to total PHg occurred, the latter remaining practically constant
during the same period (excepting for a slightly increase in mid-January, as result of the PHg0.1–1.0
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rising). It could be possible that a water condensation on the first coarse mode particles occurred,
causing them to grow in size [55] as RH slightly rise during summer. A similar event was reported
in our previous work on PM size distribution [48], when a shift of the 1.0–3.0 size mode in the range
of 3.0–10.0 µm was observed as RH increased during the summer 2014–2015. Further studies are
necessary in order to verify this previous hypothesis.

The other meteorological parameter strongly influencing the seasonal behavior of atmospheric
Hg is the wind [56]. As shown in Table 3, however, the correlation between median 10-day wind speed
and all the three PHg fractions was very low and not statistically significant. This lack of significant
correlations between wind and PHg concentrations suggests that influences from this parameter were
not directly related to atmospheric PHg [57]. However, deposition phenomena could occur when the
wind calmed down, explaining the PHg decrease in December.

2.5. Estimation of PHg Dry Deposition Fluxes

Besides the scavenging of atmospheric particulate mercury by precipitation (e.g., snowfall),
PHg can also be removed from the atmosphere and deposited into terrestrial and aquatic ecosystems
by physical processes (e.g., atmospheric diffusion, gravity settling), the so-called dry deposition.
PHg dry deposition is crucial to deepen our insight into the mercury biogeochemical cycle, especially
in Antarctica, and to predict the impact of deposition phenomena on fragile ecosystems. However,
despite the key role of these processes, very few studies were carried out on the size resolved
PHg deposition [58].

Dry deposition fluxes of PHg were calculated using size-fractionated deposition velocity as
computed by the global multi-scale Chemistry and Transport Model MOCAGE [59] (see below in
Section 3.6 [59]) and corresponding ambient concentrations of PHg measured in this study. PHg dry
deposition fluxes of total and size fractions during the Antarctic summer at Faraglione Camp are
shown in Table 4.

Table 4. Dry deposition fluxes of particulate mercury at Terra Nova Bay during summer 2017–2018.
The uncertainty of ±10% was considered for the dry deposition fluxes reported.

Sampling Period
Dry Deposition Flux (ng m−2 d−1)

0.1–1.0 µm 1.0–2.5 µm 2.5–10.0 µm Total

10/11/2017–20/11/2017 0.12 111 0 111
20/11/2017–30/11/2017 0.19 104 28 132
30/11/2017–10/12/2017 0.34 48 103 151
10/12/2014–20/12/2017 0.22 30 33 63
20/12/2017–28/12/2017 0.41 12 33 45
28/12/2017–05/01/2018 0.55 11 34 48
05/01/2018–13/01/2018 0.71 13 28 42

The dry deposition fluxes weighed over the 10-day sampling period for accumulation, first and
second coarse modes were (results given as mean ± SD) 0.36 ± 0.21 ng m−2 d−1, 47 ± 44 ng m−2 d−1,
and 37 ± 31 ng m−2 d−1, respectively. Results highlighted that the seasonal variation of size-resolved
deposition fluxes reflected the pattern in the seasonal variation of PHg concentrations in the three size
fractions. The relative contribution of the size-resolved deposition fluxes to the total showed that more
than 90% of the PHg dry deposition flux in summer came from particles larger than 1.0 µm. PHg0.1–1.0

dry flux was very low, contributing for less than 1% to the total season flux. Although PHg was mainly
present in the size range 1.0–2.5 µm, the PHg in the size range 2.5–10 µm contributed ~67% to the total
dry deposition in summer. Dry deposition velocities are strongly size-dependent and increase with
particle size. Therefore, dry deposition of PHg in sizes between 2.5 and 10.0 µm occupied more than
60% of the total deposition flux.

To our knowledge, there are no measurements of particulate mercury dry deposition in Antarctica.
Angot et al. [22] measured a Hg0 dry deposition velocity of 9.3 × 10−5 cm s−1 in winter at Dome C.
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The authors also reported the total (wet + dry) deposition fluxes in three Antarctic stations (Troll,
TR; Dome C, DC and Dumont d’Urville, DDU) for the year 2013 obtained through multi-model
simulations (ECHMERIT; GEM-MACH-Hg, the mercury version of the Global Environmental
Multi-scale; Modelling air quality and Chemistry model GEOS-Chem; and GLEMOS, the Global
EMEP Multi-media Modelling System): 1.0, 3.3, 2.5, and 3.9 µg m−2 yr−1 at TR, 0.8, 1.5, 0.8, and
1.1 µg m−2 yr−1 at Dome C, and 4.3, 9.7, 9.7, and 4.1 µg m−2 y r−1 at DDU according to GLEMOS,
GEOSChem, GEM-MACH-Hg, and ECHMERIT, respectively.

Since summer deposition accounted for a high proportion (50–80%) of the total annual flux
in coastal areas [22], we can greatly approximate our results to annual basis. Year-round total
PHg flux was ~3.0 µg m−2 y−1, quite similar to that predicted by the multi-model simulations in
Angot et al. [22]. It is worth noting that wet mercury deposition (which is the principal mechanism of
PHg scavenging from the atmosphere) was not considered in our rough approximation. Further studies
are necessaries in order to estimate total mercury fluxes in Antarctica and to assess the seasonality
effect on mercury deposition.

The PHg dry deposition fluxes of the present work were slightly higher than those estimated in
some remote areas (e.g., Tibetan plateau [57]; Appledore Island [52]), but one or more order of magnitude
lower than those recorded in polluted urban and suburban areas, such as Beijing [60]; Taiwan [45];
northern China [15]; some areas in Central Europe, Northern Europe and North America [61,62].

Due to limited knowledge on particle dry deposition, the used parameterization with empirical
and simplified formula could over or under-estimate the PHg dry deposition fluxes. Therefore, further
studies are necessaries to evaluate the dry deposition fluxes of particulate mercury in polar regions.

3. Materials and Methods

3.1. The Study Area

Aerosol samples were collected at Faraglione Camp (74.7161◦ S–164.1150◦ E), about 3 km southern
from the “Mario Zucchelli” Italian Station (MZS). MZS is a summer-based station, being operative from
mid-October to the beginning of February. Consequently, research field activities can be performed
only from November to the end of January. Details of the site have been reported elsewhere [48,63–65].
A map of the Mario Zucchelli Station area, the Faraglione Camp and the volcano Melbourne is reported
in Figure 1.

The Automatic Weather Station of the PNRA Meteo-Climatological Observatory [66] recorded the
values of the principal meteorological parameters (air temperature, relative humidity, ambient pressure,
wind speed and direction) close to the study area [67]. During the reference period, results were reported
as mean (minima–maxima): temperature, −6.2 ◦C (−15 ◦C–0 ◦C), pressure, 953 hPa (939 hPa–970 hPa),
relative humidity, 62% (36%–98%). A general increase of air temperature and pressure can be observed
during summer (Figure 6a,b). The relative humidity showed a less pronounced variation, with the
lowest values in November with respect to the rest of summer (Figure 6c).

The first part of summer was characterized by strong surface winds, reaching wind speeds of
~25 m s−1 (~50 knots, Figure 6d). In fact, Terra Nova Bay is one of the Antarctic “confluence zones”
between the Reeves and Priestly glaciers, and it is characterized by intense katabatic winds responsible
for the formation of a polynya (open water area) which persists also through winter [68]. In December
and January, winds were low (~5 m s−1) with occasionally some peaks at 10–15 m s−1 (~20–30 knots).

Due to the strong katabatic effects, the most frequent surface wind direction was West (~30%) or
West-Northwest (~20%) (see the wind rose plot in Figure 1).

3.2. Field Sampling

The aerosol samples were collected at Faraglione Camp from November 2017 to January 2018.
Measurements were made by five-stage high-volume cascade impactor (Tisch-Environmental, mod.
TE-235, Analytica Strumenti, Pesaro, Italy; see Annibaldi et al. [69,70] for further details) in combination
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with a 10-µm pre-separator for the effective collection of six sub 10 µm fractions (we can therefore
consider using a six-stage cascade impactor). The 50% cutoff aerodynamic diameters of the different
stages are stated by the manufacturer at 10 µm, 7.2 µm, 3.0 µm, 1.5 µm, 0.95 µm, and 0.49 µm. Particles
with aerodynamic diameter smaller than 0.49 µm are collected on backup filter. The flow rate for the
cascade impactor was 1.13 m3 min−1 (±10%). A sampling strategy of 10 days was adopted to comply
with the requirements of trace element determination [71], excepting for the last two samples for which
sampling period of eight days was applied.

Before aerosol collection, the sampler was cleaned inside and outside by repeated washings using
ultrapure water (Milli-Q, Millipore, Bedford, MA). The impactor plates were covered with slotted
6” × 7” cellulose filters, type Tisch TE-230 WH, the backup filter with an 8” × 10” borosilicate glass
filters with a tetrafluoroethylene (TFE) coat, type Pallflex® T60A20 (Pall Lifesciences Corp, Washington,
NY, USA). Both cellulose and TFE filters were decontaminated following a procedure previously
set-up [70].

To check the background contamination, blank filters (“field blanks” and “blanks as received”)
were also collected in the field approximately once every month. These were simply installed onto the
switched-off samplers for a few tens of minutes and then treated as the sample filters.

Samples and field blanks were stored in decontaminated Petri dishes (for decontamination
procedure see Annibaldi et al. [70]) at -20 ◦C until analysis.

3.3. Mercury Analysis

Mercury concentrations from each sample (membrane filters) were directly analyzed by using a
Direct Mercury Analyzer® (DMA-80, Milestone, Italy). A detailed description of the DMA-80 was
given in the study of Melendez-Perez et al. [72]. Generally, ~30 mg of each filter sample was loaded
directly into the DMA and analyzed using the following procedure. First, each sample was placed in a
sampling boat and then transferred to a combustion tube containing the catalyst. The sample was
thermally decomposed at 650 ◦C in an oxygen atmosphere for 3 min and 30 s after the drying at 200 ◦C.
Hg vapor was collected in a gold amalgamator that was heated to 650 ◦C for 3 min. The released Hg
was transported to a heated cuvette at 125 ◦C, and then analyzed by atomic absorption spectrometry
(AAS) equipped with a silicon UV/Vis spectrophotometer diode detector.

3.4. Quality Control

Accuracy of the measurements carried out in our laboratory is usually checked by the analysis
of various certified reference materials (CRMs) [71,73–76]. Since no certified reference material was
available for PHg determination in atmospheric particulate matter, the accuracy of the measurements
was checked by computing the percentage of recovery by triplicate analyses of filters spiked with Hg
standard solutions in two Hg(II) mass levels (typically, 0.30 ng and 1.0 ng). Results of the recovery test
showed the following percentages: 83 ± 2% for the filters spiked with Hg-0.30 ng, 97 ± 4% for those
spiked with Hg-1.0 ng.

The repeated determinations of PHg in the different PM10 fractions gave repeatability (expressed
as RSD%) of ± 6%.

The detection limit of the direct Hg analyzer was 0.018 ng (range, 0.018–0.025 ng).
The field blanks and the blanks as received were analyzed in the same manner as environmental

samples. Blank values corresponded, on average, to 6% of sample values (n = 6). The obtained values
for blanks were subtracted from the PHg concentration measured in each sample.

3.5. Data Inversion and Statistical Analysis

The mass size distribution of the atmospheric PHg concentrations averaged over the sampling
period was performed by applying an inversion methodology described by Bau and Witschger [43].
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This procedure bases on a deterministic method firstly set up by Twomey, 1975, and further
improved by different authors [43]. Detailed description of the inversion procedure applied to the raw
data obtained by our cascade-impactor is given in Illuminati et al. [48].

Statistical analysis was carried out using Statistica package (StatSoft; vers. 8.0). For all tests, the p
value of < 0.05 was considered as statistically significant.

3.6. Calculation of The Hg Dry Deposition Flux

PHg dry deposition fluxes were calculated by the following equation [60]:

F =
∑

CPHg ×Vd (1)

where F is the dry deposition flux of PHg, CPHg is the concentration of PHg in each size mode, and Vd

is the corresponding dry deposition velocity.
As well known, dry deposition velocity was influenced by several factors (meteorological

conditions, receptor surface characteristic, and particle size [61]. In this study, a size-resolved particle
dry deposition model developed by Nho-Kim et al. [59] were used to estimate the dry deposition
velocity for each mode. This model allows us to calculate particle dry deposition velocities as a
function of particle size, density, surface properties, and micro-meteorological conditions near the
surface. Sensitivity tests and comparison with the few published measurements showed that the
parameterization performed by Nho-Kim et al. [59] can predict reasonable deposition velocities for a
wide particle size range over different surface types, including snow and ice-covered sea. Dry deposition
velocities of 0.1, 1.4, and 2.9 cm s−1 were used for PHg0.1–1.0, PHg1.0–2.5 and PHg2.5–10.0, respectively.
These deposition velocities were calculated as in Wang et al., [60] by the global multi-scale Chemistry
and Transport Model MOCAGE over moderately rough surfaces (no snow or ice covered the study
site) under relatively mild friction velocity conditions [59]. The uncertainty of ± 10% was applied,
since the use of cascade impactor sampler could lead to possible artifacts (see above in Section 2.2).

3.7. Air Mass Origin

In order to characterize the transport pathways of air masses before they arrive at the study
site, five-day backward trajectories every three hours (from 00 to 21 UTC), were computed using the
Hybrid Single Particle Lagrangian Integrated Trajectories (HYSPLIT) model developed by NOAA and
Australia’s Bureau of Meteorology [77], for the period spanning from 10 November 2017 to 13 January
2018 when aerosols samples were collected. The back-trajectories (TJ) were calculated for six arrival
heights: 500 m, 1000 m, 1500 m, 2000 m, 3000 m, 4000 m, and 6000 m a.g.l. (above the ground level).
HYSPLIT was initialized with the National Weather Service’s National Centers for Environmental
Prediction (NCEP) Global data Assimilation System (GDAS) model data with a regular grid of 0.5◦

× 0.5◦ [78]. Errors in TJ calculations after three days are estimated in the range 10–20% of the travel
distance [79], although meteorological data with coarser spatial resolution are used.

Following Mezgec et al. [80] and Caiazzo et al. [81], the whole domain is divided into a cells
grid of 4◦ × 1◦ (long/lat) and number of points which each TJ spends within each cell was calculated.
In order to consider only TJ able to load and transport aerosols, a threshold was applied counting TJ
that spent almost 20% of the time (1 day) at heights between 100 and 1000 m. In Figure 5, only TJ
at heights 500 m, 1000 m, 1500 m, 2000 m were reported since most directly influencing particulate
aerosol distribution during the study period. The same was calculated for November, December, and
January to highlight differences in transport and provenience as summer progressed. The threshold at
20% is arbitrary, but it is assessed that changing its value of ± 10% not lead substantial differences in
results presented in Figure 5.
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4. Conclusions

During November 2017 and January 2018, size-resolved PHg distributions were measured for the
first time at Terra Nova Bay. The average PHg concentrations in PM10 was 51 ± 27 pg m−3 with a range
of 30–90 pg m−3. These results were comparable to those recorded in the same sampling site and in
other Antarctic areas. They also confirmed the surprisingly high concentrations of PHg characterizing
the continent with respect to those measured in urban and industrialized areas.

An inversion procedure applied to the whole dataset revealed that the size distribution of PHg in
PM10 was trimodal with three peaks in the range 0.1–1.0 µm, 1.0–2.5 µm, and 2.5–10.0 µm. More than half
of the particulate mercury was distributed in particle size > 1.0 µm, while PHg in the accumulation mode
contributed to a less extent to the total mercury content; the percentages varying from ~3% to ~30%.

A general decrease of total PHg was observed, with the maximum value at the beginning of
summer. The high concentrations of PHg in that period were probably related to the adsorption of
oxidized Hg species on coarse particles, as these Hg species were either transported by air masses
from the Antarctic plateau or produced locally by sea ice edges. On the contrary, the sea spray aerosol
seemed to be the main source of PHg in the accumulation mode, which showed an increase during
summer. When the pack ice melted, gaseous and/or oxidized Hg species were probably subjected to a
gas–particle partitioning with the methanesulfonate and the not-sea-salt sulphate released from the
sea surface.

The five-day air mass back trajectories also suggested a potential contribution of the long-range
transport of fine particles from anthropized areas to the PHg size distribution at Terra Nova Bay.

The opposite correlation of PHg0.1–1.0 and PHg1.0–2.5 with temperature seemed confirmed the
different formation mechanisms of the two fractions. The high negative, even if not significant,
correlation of PHg1.0–2.5 with relative humidity could explain the shift in the two coarse fractions
contribution to total PHg. In fact, it could be possible that a water condensation on the first coarse
mode particles occurred, causing them to grow in size as RH slightly rose during summer.

The estimated average dry deposition for PHg was 85 ngm−2 d−1 with PHg2.5–10.0 accounting for
more than 60% of the total deposition flux. Size-resolved deposition fluxes varied following the trend
of PHg concentrations in the three size fractions.

Our study provided important information for assessing the size distribution of particulate
mercury in Antarctica and enhanced the general understanding of the Hg cycle in remote areas.

Nevertheless, further studies, especially on the chemical composition of atmospheric aerosol, are
necessary in order to improve our understanding of Hg behavior in polar environments. The better
comprehension of the particulate mercury distribution and formation mechanisms will lead to improved
global transport and deposition models and could help refine pollution-control strategies around
the world.
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