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ABSTRACT Many engineering fields, such as automotive, aerospace, and the emerging challenges towards
industry 4.0, have to deal with Real-Time (RT) or Hard Real Time (HRT) systems, where temporal constraints
must be fulfilled, to avoid critical behaviours or unacceptable system failures. For this reason, estimation of
code’s Worst-Case Execution Time (WCET) has received lots attention because in RT systems a fundamental
requirement is to guarantee at least a temporal upper bound of the code execution for avoiding any drawbacks.
However, until now there is no approved method to compute extremely tight WCET. Nowadays, indeed, HRT
requirements are solved via hardware, using multi-cores embedded boards that allow the computation of the
deterministic Execution Time (ET). The availability of these embedded architectures has encouraged the
designers to look towards more computationally demanding optimal control techniques for RT scenarios,
and to compare and analyze performances also evaluating a tight WCET. However, this area still lacks
deep investigations. This paper has the intent of analysing results regarding the choice between three of
the most established optimal controls (LQR, MPC, SDRE), providing the first link between WCET analysis
and control algorithms performances. Moreover, this work shows how it is also possible to obtain a minimal
ET solution for the nonlinear SDRE controller. The results might be useful for future implementations and
for coping with Industry 4.0 emerging challenges. Furthermore, this approach can be useful in control system
engineering field, especially in the design stage for RT or HRT systems, where temporal bounds have to be
fulfilled jointly with all the other application’s specifications.

INDEX TERMS Real time systems, optimal control, control systems, Worst Case Execution Time, digital
implementation, SDRE.

I. INTRODUCTION

The embedded hardware systems used for control appli-
cations are becoming more and more performing to meet
the growing needs, in terms of computational performances,
required by the increasing complexity of control tasks, for
which they are appointed in real-world applications. Many
engineering fields, such as automotive, aerospace, and in
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recent years also the emerging challenges towards industry
4.0, have been already using Real-Time (RT) or Hard Real-
Time (HRT) systems to deal with event-triggered and time-
triggered tasks [1]. This is because of the increasing number
of sensors and even more sophisticated control algorithms,
require that the system cannot lose deadlines, especially if
they involve safety concerns. The management and imple-
mentation of these algorithms are distributed among different
tasks running on the embedded system while RT or HRT
temporal constraints must be fulfilled as well, to avoid critical
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behaviours or unacceptable system failure. Therefore, these
HRT systems must be designed according to the resource
adequacy policy, providing sufficient computing resources to
handle both the specified worst-case load and fault scenario.
However, in order to achieve even more demanding objectives
to control systems, the linear controllers have to be overcome
because in most of the control applications the PID is still
the most used controller. For example, in an industrial envi-
ronment, linear control algorithms are preferred to facilitate
the PLC to save resources since it has to manage different
architectures and respects different RT constraints. Whereas
in the Automotive field, RT or HRT systems are used to
guarantee security and performance to the vehicles and they
often use nonlinear controllers due to the need to handle
complex dynamics models [2]. For example advanced models
of two-wheeled vehicles, such as those proposed in [2] for an
all-wheel-drive vehicle, or in [3] for single-tracked vehicle,
require at least seven coupled nonlinear equations of motion.
Nevertheless, to achieve even more sophisticated Industry
4.0 objectives and to control new forthcoming systems, not
in trivial fashion, the widely used PID linear controller has to
be overcome. To satisfy the temporal constraints and to guar-
antee correctly working systems, research on timing analysis
of RT systems started many years ago and has been focused
on the Response Time Analysis (RTA) [4], [5], which refers
to the time that a message requires to be sent and received.
Indeed, many works have been devoted to the development
of methods based on deterministic RTA, for an estimation of
the code ET. Even though many factors have been considered,
it is still difficult to analyze a real system using those meth-
ods. One of the main reason is the unpredictable randomness
of the Central Processing Unit (CPU) scheduling which can-
not be accurately modelled. Because of these deficiencies,
usually, some degrees of pessimism are added to the model
as a price for indeterminism, and the Worst-Case Execution
Time (WCET) is evaluated. The WCET has received lots
of attention because, in RT or HRT critical systems, it is
a fundamental requirement to at least guarantee a temporal
upper bound for the code execution and avoid any drawbacks.
However, until now, there is no approved method to compute
extremely tight WCET, as shown in [6]. Nowadays, HRT
requirements can also be solved via hardware, using multi-
cores embedded boards that allow the computation of the
deterministic Execution Time (ET). In these boards, the run-
ning task is considered on a single thread, there is no CPU
scheduling and each routine has a dedicated core. There are
different companies specialized in HRT embedded boards,
amongst them, a few years ago the benefits of XMOS technol-
ogy have been pointed out in comparing with other boards [7].
This allows us to calculate with deterministic certainty,
the Best Case Scenario (BCS) and Worst Case Scenario
(WCS) with native tools by the workbench. The availability
of this embedded architecture has encouraged the designers
to look towards more computationally demanding optimal
control techniques for RT scenarios and to compare and anal-
yse performances also evaluating a tight WCET. Indeed, this
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area still lacks in-depth investigations while plenty of papers
have been produced in the literature addressing the imple-
mentation of different control laws on single-core embedded
architectures [8]. Therefore, the aim of this paper has been
primarily to compare optimal control techniques through per-
formance and ET analysis. This was possible by exploiting
the HRT board characteristics, and it has been proposed a
method to evaluate in a deterministic way the Execution
Time required by the controller’s implementations. Further-
more, once evaluated both performance and ET of three most
used optimal controls, in the light of this novel, proposed
analysis, it has been possible to improve the execution time
of the State Dependent Riccati Equation (SDRE) nonlinear
controller. The improvements are related to implementation
issues and it has been proposed a method to achieve a minimal
ET solution, useful for control regulation problems, which
decrease the computational effort required by the SDRE non-
linear control algorithm. Amongst various control techniques,
the optimal controls ranging from linear to advanced linear
up to nonlinear, have been considered. In embedded system
energy saving is crucial due to limited energy availability
and optimal controls allow to accomplish control tasks also
taking into account energy minimization. Moreover, optimal
controls can handle systems which have strong dynamics
couplings, even with significant non-linearities where the
need to manoeuvre the systems in a non-trivial fashion to
achieve good performances is required. They can also be used
to open-loop trajectory optimization, e.g. in robotics, where
they are extremely useful for robot’s motion-planning [9].
This paper focuses mainly on discrete-time implementa-
tions [10], being those of greater interest for practical appli-
cations. Discrete-time version of Linear Quadratic Regulator
(LQR) [11], Model Predictive Control (MPC) technique [12]
and nonlinear technique based on the State Dependent Riccati
Equation (SDRE) [13] have been considered and analyzed
with an HRT board. The control laws have been tested first in
a simulation environment and then applied to an experimental
set-up using the HRT board based on XMOS technology.
To this purpose, a motorized four-wheeled mobile robot has
been built, it is equipped with an inverted pendulum mounted
on top of and joined by means of a rotational joint. A control
law has to keep the pendulum in balance while having the cart
tracking the desired position in space. The system’s sensing is
accomplished providing data by an optical encoder measuring
the angle of the pendulum, and by a distance sonar sensor
tracking the cart position w.r.t. a fixed obstacle.

The remainder of this paper is organized as follows:
in Section II an overview of related work is presented,
Section III introduces the linear and nonlinear discrete
models of the cart-pendulum system in state-space form;
Section IV recall the theory behind the optimal control laws
used to stabilize the system and provides some simulation
results; in Section V a new minimal ET solution for nonlinear
SDRE controller is presented while Section VI describes the
hardware platform and the sensors used in the real control
application. Section VII describes the differences regarding
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the implementation between classic SDRE and the minimal
ET solution proposed. The Simulations and Experimental
results are shown in Section VIII are shown, and Section IX
concludes the paper.

Il. RELATED WORK

In this subjects, most relevant works are presented consid-
ering the issues discussed above. Engineers of computer
science have investigated a lot of methods to achieve a
deterministic estimation of the WCET. The determination
of upper bounds on ET is a necessary step in Real-time
Computing (RTC) which refers to systems subject to RT con-
straints. Different work [14]-[17], highlight the importance
of the predictability’s timing behaviour for RT embedded
systems. Some work propose static and probabilistic analysis
of the WCET as shown in [18], [19] and [20], while the
probability response time distribution of periodic tasks on a
uniprocessor system was developed in [21]. The approaches
can be either pragmatic with a simulation [17] or based on the
statistic methods [14]. Another possibility is to use estimation
algorithms, to obtain a prediction of the future execution
timing [15]. However, most existing analysis methods are
based on deterministic RTA, and there is still no approved
method to compute extremely tight WCET [14], [15].
Several tools and algorithms are available on the market that
allow calculating the ET of the tasks with some degree of
pessimism. Nevertheless, these tools can ensure reliability in
HRT system only considering a higher limit that exceeds in
every task the real WCET [22], [23]. In the field of embedded
system, these problems are overcome using micro-controllers
developed to HRT problems. Amongst various producers,
the XMOS family has been chosen because deemed suitable
for the novel analysis carried out in this paper and introduced
in the section above. Indeed, until now at best knowledge
of the authors, there are no works focused on the WCET
of the control algorithms used for RT or HRT applications
which aims to improve the controllers’ feasibility. In liter-
ature, progress based on sensor selection in control design
receives a substantial interest in the last few years. For exam-
ple, in [24] a Linear-Quadratic-Gaussian (LQG) control is
applied to a Maglev suspension and it has been pointed out
the significance of achieving also, for RT scenario, even
more performing solutions to combine multi-objective opti-
mization through an adequate sensor choice. Regarding the
control techniques, different works deal with optimal con-
trol laws and suggest a discrete implementation on micro-
controllers [10]. Some works are focused on the evaluation
of the performances of these optimal controllers, mainly in
simulation and sometimes also experimentally. In [25] the
study was performed on a simulated model of an inverted
pendulum, and it has been shown that the LQR algorithm
works better for stabilization problems and disturbance rejec-
tion, while the MPC controller is more suitable for the tra-
jectory tracking task. In [26], two optimal control techniques
such as LQR and SDRE, have been applied to a double
inverted pendulum on a cart and these were investigated
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and compared. In particular, simulations reveal the supe-
rior performance of the SDRE over the LQR under strong
nonlinear conditions, and some improvements that could be
provided by the Neural Networks, which compensates model
mismatching in the case of LQR. Differently in [27] was
tested a DC motor speed controller. The simulations show
that the control efforts are lower in PID and LQR than in
MPC, but the MPC outperforms for reference tracking and
constraints handling. In [28], assuming the same linear con-
trol parameters, the effectiveness of the SDRE control over
the LQR control is demonstrated despite a more complex
design. Besides, in [29] traditional optimal strategies such as
LQR and SDRE are investigated when applied to the control
of spacecraft formation flying. In this case, the accuracy and
the cost of maintaining the requested orbital configuration are
evaluated, and the analysis shows as the SDRE allows to bet-
ter take into account the real dynamics at an increasing level
of approximation. However, despite the above-mentioned
analyzes and comparisons performed on these techniques,
a timing analysis seems not has been deepened. In this regard,
this paper aims to propose a novel approach to evaluate
control techniques by a thorough analysis of both the compu-
tational performances and the WCET of the optimal control
algorithms taking into account the already well-known val-
idated implementations. The analysis carried out on an RT
experimental set-up (a cart-pendulum mobile robot depicted
in Fig.1) has the intent of showing results regarding the choice
between three of the most established optimal controls, pro-
viding the first link between WCET analysis and the control
algorithms performances. Moreover, a novel minimal ET
solution for the nonlinear SDRE controller is proposed. These
results might be useful also for future implementations to
solve Industry 4.0 challenges, where Multi-Agents Systems
have to collaborate and exchange messages without loose
deadlines in RT. Indeed, the tendency to bring the calculation
of CPS towards the edge computing, and therefore on low-
cost and lower performance embedded devices, as described
in [30], [31], requires the use of less computationally
demanding control algorithms. Otherwise, once designed an
SDRE nonlinear controller based on the system model, it is
possible to develop more easily a digital twin to monitor-
ing parameters and system’s conditions in broader function-
ing range and to apply a predictive maintenance procedure,
as proposed in [32]. However, the proposed analysis could
be useful in control systems engineering especially during
the control’s design stage for RT or HRT systems, where
temporal bounds have to be fulfilled jointly with all the other
application’s specifications.

Ill. CART-PENDULUM MODELS

In this section, the model of the cart-pendulum robotic system
depicted in Figure 1 has been derived. Firstly, the non-linear
model is presented, and it is shown how to obtain both the
nonlinear State-Dependent Coefficient (SDC) Factorization,
and the discrete-time model in state-space form, which have
been used in control implementation. Then, the model derived
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has been trivially linearized for developing the LQR and MPC
linear control techniques as well. The different control laws
will be recalled in the next sections.

To obtain the above mentioned discrete-time models,
the nonlinear continuous-time dynamic equations for the
cart-pendulum system in Figure 1 has been developed
first. Then, the system has been rewritten in its state-
space linear-like form for subsequent nonlinear control
implementation.

i encoder
b HRT - board

FIGURE 1. Cart pendulum system.

A. CART-PENDULUM NONLINEAR

DYNAMIC EQUATIONS

The nonlinear equations for the cart-pendulum system in Fig-
ure 1 are known and can be summarized in a compact form
as follows:

(m+ M)¥ + (b + y)k +mLgcos ¢
—mL¢’sing = BE
—mLcospx — (Jp —i—mLz)(ﬁ +mgLsing =0 (1)

Meaning and description of the variables and physical param-
eters in Eq.(1) are listed in Table 1. The system’s control input
is the motor voltage, here defined as E, it actuates the electric
motors connected with the wheels, their dynamics generates
external forces and moments, here defined as F (see Fig. 1 ).
The modelling details of motors-cart interaction are reported
in Appendix B.

TABLE 1. Physical parameters of the cart-pendulum system.

Parameter Value Description
M [kg] 2.683 Mass of the cart
mlkg] 0.062 Mass of the pendulum
L[m] 0.303 Half the length of the pendulum
b[N/m sec] 0.15 Coefficient of friction of the cart
Inertia moment of the pendulum with respect to the
Jplke mZ] 0.0019874 CoM (centre of mass)p P

g[m/sec’]  9.8065
F[N]
z[m]

¢[rad]

R,[m] 0.0605
Mp[kg) 0.127
Ir[kgm?]  2.28e(-4)

Gravitational acceleration

Force applied to the cart

Longitudinal displacement of the cart

Angle of the pendulum from the upper vertical axis
Wheel radius

‘Wheel mass

Wheel inertia
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B. SDC FACTORIZATION OF NONLINEAR
CART-PENDULUM MODEL

The system (1) can be written in linear-like form obtain-
ing the SDC matrix. The system’s state is defined as
xs =[x, X, @, é]T, the continuous-time system’s SDC matrix
is A, (xs), the system is control-affine, its input matrix is B, ,
the output matrix is C,; while © = E is the control input.
Therefore the linear-like form of the system can be written as:

X = Acr,l (x5) x5 + Bcnl (xs) u
y = Cc,,lxs (2)

The variables x, x represent the cart’s distance and the
linear velocity respectively, while ¢, qb are the pendulum’s
angular displacement and angular velocity, respectively.
Appendix A, explains how to derive a SDC matrix solution.
The SDRE control technique, has been chosen for consis-
tency of analysis, wishing to focus the paper on optimal
control methods. By manipulating equations (2) following
recommendations are given in Appendix A, the system matri-
ces become the follows (3), as shown at the bottom of the
next page, where for reasons of space the dependence on the
state (A, (x5)) of has been here omitted with s3 = sin (x3),
3 = cos (x3) and . = (J, +mL>)(M +m)—m>L? cos? (x3).
To ease the reading, the matrices A, (x;), B, (Xs) can been
arranged as:

0 1 0 0 0
0 a a a b
Acnl (xs) = 0 82 83 i4 Bc,,/(xs) = 81
0 aw a4z aw b4y
4
where
(b + y)J, +mL?)
ay = — L ©)
Nl
sin (x3) cos (x3)m2L>?
a3 = — TR TR 2 8 ©6)
X3Mnl
mL sin (x3)x4(J,, + mL?)
ar = & ©)
Nnl
mL(b + y)cos (x3)
s = v ®)
Ml
mgL sin (x3)(M + m)
agz = 9
X31nl
272 o
m* L~ sin (x3) cos (x3)x4
agqg = — (10
Nnl
J, + mL?
by ="+——8 (11)
Nnl
mL cos (x3)
by = ——8B (12)
Nnl

In order to implement the nonlinear controller on the
proposed board for computational performance and WCET
analysis, the discrete-time non linear model of (3) is derived
by using the Euler method with sampling time AT, giving
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rise to following discrete-time model:

xslk + 1] = Ay, (x5) x51k] + By, (x5) ulk]

YIk] = Cxlk] (13)
with u[k] = E[k] and discrete-time matrices
1, AT 0, 0
0, 14+ ATay,, ATars, ATa
A, (x5) = 0 . 22 | 23 N T24 ’
| 0, ATay, ATayy, 1+ ATay
0
ATh 1 0 0 O
Bayry = | "o | €= [0 0 1 0} 4
_A Thyq

In (14) the terms a;;,b;; are the elements of continuous matri-
ces A, B.,, described in the equations (5) to (12).

C. DISCRETE-TIME CART-PENDULUM LINEAR MODEL

This subsection, briefly introduces the discrete-time linear
model here used to design the linear optimal control strategies
described in the following Section. The model is obtained
from the equations of motion (1) under small perturbation
hypothesis ¢ =~ 0 around the upright position, and hence
cos(¢p) = 1, sin(¢p) ~ ¢, > >~ 0. The resulting linear
dynamics is:

(m+M)i+ b+ y)i+mLp =BE

—mLi— Uy +mLH)$+mgLp =0 (15)

From (15), it is trivial to derive the discrete-time state space
model using Euler method with sampling time AT It has the
form:

xslk + 11 = Aq x5[k] + By ulk]

where

b+ y)Up+mL?)

ary = (18)
Nnl
m2L2g
ayy = — (19)
Nl
mL(b + y)
ap = =2V (20)
Nl
mgL(M + m)
agy = 85— T @1)
Nnl
J +mL2
by = L —— (22)
Nnl
mL
bat = ——R (23)
Nl

where k is the sampling instant and the terms a;j, b;; are
elements of the matrices A.,,;, B, in (3).

IV. OPTIMAL CONTROL LAWS

The present section is devoted to briefly recall the theory
behind the three different optimal control techniques consid-
ered in this work to regulate the upright pendulum position
of the cart-pendulum robotic system. The controllers have
been used both in simulation and on the experimental set-up.
In order to ease the paper, some implementation details which
require longer description are given in the appendix, while
only necessary conceptual steps for a clear understanding
are presented below. Moreover, considering the issues related
to this work, different control features will be pointed out
because useful for further performance’s analysis. We refer
to the discrete-time version of the three methods. The linear
techniques LQR and MPC, make use of the model (16). The

ylk] = Cx[k] (16) .
nonlinear SDRE control uses model (13).
with u[k] = E[k] and matrices
_1, AT 0, 0 A. THE DISCRETE-TIME LQR
A, = 0, 1+ ATapn, ATaz, O The LQR design technique is well known in modern optimal
d = . . L
0, 0, L AT control theory and has been widely used in many applications.
_0, ATayy, A Tays, 1
) 1) LQR FUNDAMENTALS
B, = A Thy, L= 1 0 0 0 a7 In LQR theory a stabilizable discrete-time linear system:
0 0 0 1 0
_A Thyay x[k 4+ 1] = Ax[k] + Bul[k] (24)
[0, 1, 0, 0
0 b+ y)Up+ mL?) m2L2g 53 C3 mL x453(Jp + mL?)
_ |7 ’ X
o= o, g g I
0 mL(b 4+ y)c3 mgLs3s(M +m+ &) m2L? x453 c3
L ' Nnl ’ X3Mnl ' Nnl
0
Jp +mL?
1 0 0 O
BC,,[ (xS) = nn(l) ’ CC,,[ = [0 O 1 O} (3)
mL c3
L Nnl
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where x[k] is the state vector and u[k] the system’s input,
the optimal inear control problem is to determine the linear
optimal feedback matrix K,,; € R™" where n, m are the
state and input vectors dimension respectively, such that:

up = Kopr x (25)

we refer to (16) as the discrete-time linear plant model (24). In
this paper, the state feedback controller is designed using the
linear quadratic regulator and the discrete-time linear model
of the system (16). Here, the infinite-time regulation problem
has been solved to guarantee stability for further performance
and WCET analysis. This solution leads to search for optimal
control u; which minimizes the following cost function:

1 o
) =5 Y (] Quxic+uf Rewy) (26)
k=0

where Qy, R; are the state and input weighing matrices
respectively, they are symmetric and positive defined, and k
is the sampling instant. In order to ease the paper readability,
the subscript s in the state vector (x;) has been omitted. It has
been demonstrated that the optimal control input uy is given
by:

up = —R7'By" Pxy = —Kopixi 27

where the matrix P is the solution of the Discrete Algebraic
Riccati Equation (DARE) problem:

P=Q+A;"PA;—A;"PBs(R+ By PB;) 'BTPA; (28)

Then, once computing off-line the DARE the linear optimal
control input is obtained as well.

2) LQR FEATURES

In the conventional LQR design method, the DARE prob-
lem (28) is solved using numerical or iterative methods. For
regulation problems, the DARE is solved once. Although,
the LQR provides a simple solution its application is lim-
ited to linear systems or a linear approximation of nonlinear
systems. Linear approximations are quite simple to handle
in regulation problems, but for trajectory tracking problems,
the LQR finds limits when dealing with not negligible non-
linearities. Often the solution can be found linearizing the
system in a subset of the trajectory points along the whole
trajectory but this is time-consuming whit respect to other
techniques involving nonlinear controllers [39].

B. DISCRETE-TIME MPC

MPC has become a widely used control in the last decades,
especially in industrial applications because of its versatility
and capability to perform industrial process optimization. The
linear MPC approach has been here considered to undertake
a common comparison framework. A comprehensive theory
of the MPC can be found in [12], but it is out of the scope
of this paper. Thus, here the main implementation steps have
been recalled, while more details are given in Appendix C.
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1) MPC FUNDAMENTALS

For discrete-time MPC implementation, we refer to the dis-
crete time plant model (16). The MPC theory is based on the
extended model (53) reported in Appendix C, and is derived
by defining an augmented state x.[k], wherein the variable
Aulk] becomes the new input to be controlled in place of
ulk]. How to derive the extended model and all the related
mathematical manipulations is detailed in the appendix C.
As for the other optimal controllers, the optimal control input
Aulk] is obtained by minimizing a cost function J, defined
as follow:

J=R;—Y)'(R,— Y)+ AUTRAU (29)

where, the first term (Ry, — Y)T(R; — Y) is related to the
minimization between the predictive output Y and the set-
point Ry, while the second one AU TRAU is referred to the
size of AU. Indeed, R = r,l, and r,, is used as a tuning
parameter for closed-loop performance. The optimal AU
minimizing the cost function J holds:

AU = (®T® + R 'oT (R, — Fx,[k]) (30)

where (®7® + R)~!®TR; represents the set-point change,
while —(®T® + R)"!®TF is the state feedback control
within the framework of predictive control, where the F
matrix meaning is derived from the extended model formula-
tion given in Appendix C.

2) MPC FEATURES

The optimal input AU of equation (30), contains the controls
Aulk;], Aulk; + 1], ... Aulk; + N, — 1] with the receding
horizon window (N,). However, only the first sample of this
sequence needs to be implemented, i.e., Au[k;], while ignor-
ing the rest of the sequence. When the next sample period
arrives, the more recent measurement is taken to form the
state vector x,[k;y1] for calculation of the new sequence of
the control signal, as shown in the following:

Ne
Au(k)) = [10..0] (®T® + R 'oT (R, — Fx.[k])
= er(ki) - Kmpcx(ki) (3D

where K, is the first element of (®T® + R)“1®TR,, while
Kpnpe 1s the first row of —(®T®+R)"'®TF. This procedure,
when iterated in real-time gives rise to the receding horizon
control law. Moreover, the optimal input Au[k;] implies that
a discrete integrator is to be embedded in the closed-loop to
derive the right u[k] for the plant. This integration acts as a
low-pass filter on the controlled quantity making its transi-
tions smoother; indeed the predicted optimal control input at
time-instant k is obtained asu[k+1] = u[k]+ Au[k+1]. The
MPC key feature which should be highlighted is the versatil-
ity of control input implementation (31). Indeed, the derived
implementation is valid both for stabilization and trajectory
tracking problems. This means that in terms of computational
effort and WCET of the code, having a constant or variable
set-point which is changing over time does not affect the
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design and the computational effort required by the MPC
control algorithm. Indeed, in (31) K, is a constant weighting
matrix multiplied for the reference value r(k;) at the k; instant.
Thus, for each next instant, a change in the set-point value
is taken into consideration producing the respective optimal
control input u[k + 1].

C. THE DISCRETE-TIME SDRE

The SDRE strategy has become popular within the control
community over the last decade, it provides an effective
model-based method for nonlinear feedback control synthe-
sis, by allowing nonlinearities in the system states while
additionally offering good design flexibility through state-
dependent weighting matrices. Different papers have been
produced regarding the design and the implementation issues
related to the non-uniqueness of the SDC matrix factor-
ization [33], [34], this also for trajectory tracking control
problems [35]. It has been demonstrated with a correct SDC
factorization strong nonlinear behaviours can be handled as
well [36]. However, achieving a new SDC matrix design is
out of the scope of this paper and for this reason, a common
approach has been used as proposed in [37], and the latter has
been discussed in more detail in the dedicated appendix A.

1) SDRE FUNDAMENTALS

The SDRE technique here recalled has been based on the
SDC parametrization of the plant model obtained above in
(3), which represents a linear-like state space form of the
nonlinear system. The cost function to be minimized with
respect to the control u[k] is:

o0
Jw) = % > _@lk]" Q) x[k] + ulk]” RGx)ulk]) (32)
k=0
One of the key advantages offered by SDRE is the tradeoff
between control effort and state errors, and it can be achieved
through tuning of weighting matrices Q(x) and R(x). These
weighting matrices can be chosen to be either constant or state
dependent. However, in our application Q and R are assumed
to be constant matrices to simplify the implementation and
because constant matrices ensure the closed loop perfor-
mance. In this case, taking into account the finite horizon
problem, the sub-optimal control #[k] is given as:

u(x[k]) = —R™" By, (x[k])" P(x[k])x[k]
= —K(x[k]x[k] (33)

where P(x[k]) is computed at each sampling time k as the
solution of the following DARE:

P(u)=(Q + Ag,)" (k)P )Ag,, ()
— Al (R)PQ)Ba, () (RBY, ()P0 By, (i) ™!
B}, (x(k)P(x)Ag, (xi) (34)

Thus, unlike the linear case, the DARE equation has to be
solved on-line at each control iteration.
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2) SDRE FEATURES

Unlike the linear optimal control, the DARE equation must be
solved on-line at sample time k, at least for each new value of
Ag,(x[k]) and By, (x[k]). Indeed, in embedded applications
such as in our experimental set-up, the equation (34) is solved
on-line during the control actions by using iterative methods.
Generally, the P(x[k]) solution is first calculated off-line
(P(x[k])of ), with a huge number of backward iterations, until
it reaches the convergence (P(x[k]),). Then, an admissible
convergence error is set (e.g. € = 0.1) in order to evaluate
how many backward iterations the on-line DARE needs to
obtain a solution P(x[k]),, which satisfies the norm error cri-
teria ||1_D(x[k])oﬁc— P(x[k])on|l < €. Thisprocedure is repeated
for different system’s working conditions. Finally, it is found
how many backward iterations are needed to the DARE for
obtaining an almost convergence solution P(x[k])on, consid-
ering the worst case as upper bound. The larger number of
backward iterations, required by the worst case, are set and
used to solve the DARE on-line for each sampling time k.

V. PROPOSING A NEW ON-LINE MINIMAL EXECUTION
TIME SDRE CONTROL ALGORITHM

The present Section proposes a new Minimal Execution
Time SDRE (MET-SDRE) for reducing the ET in the RT
implementation of the SDRE nonlinear controller. It aims to
maintain control performance by reducing the computational
effort and therefore ET. In this work, the new solution has
been developed for control regulation problems, the idea is
based on the performance analysis experienced in this work in
term of WCET of the SDRE algorithm by means of the HRT
board. At present, limits for RT applications of the SDRE
controller are generally related to the convergence time of
the DARE (34) solving, which is desirable to be executed
with few backward iteratively operations. As discussed in the
previous subsection, the backward operations used to solve
the DARE equation and to obtain the P(x[k]) solution, are
generally set experimentally in order to obtain a convergence
solution in every possible system’s working condition. This
leads to having a large ET of the SDRE control algorithm
because the WCS has to be considered as an upper bound
to guarantee a correct regulation in every case, even if a
convergence solution of (34) can be obtained sometimes with
a smaller number of backward iterations.

In particular, in our experimental set-up the closed-loop
cycle was set to 20ms which can be considered as our RT tem-
poral constraint. Within that time (20ms) the micro-controller
must be able to solve the DARE (34) iteratively until the
P(x[k]) solution reaches the convergence, calculate the right
control law u(x[k]) which depends on P(x[k]), manage the
data gathering from sensors and generate the PWM signal to
drive the motors. In classic SDRE approaches, considering
the RT constraint (20ms), to obtain a right control law a
convergence criterion for the solution of the DARE (34)
has to be established, as presented in Section IV-C2. Then,
it can be concluded that to solve the DARE (34) and obtain a
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convergence solution P(x[k]) with an admissible convergence
error €, at least 20 times backward iterations are needed,
considering as upper bound the WCS (when the system is
working out of the linear range). The convergent solution
P(x[k]) then, is used to produce the right control law u(x[k])
for the system.

A. MET-SDRE BACKGROUND

The MET-SDRE algorithm aims to decrease the code-ET of
the discrete-time SDRE control algorithm maintaining the
same performance. This is achieved by reducing the compu-
tation time required by the DARE (34) in the SDRE algorithm
in an adaptive way. This means the need to solve the DARE
is evaluated adaptively by introducing a sort of system’s dis-
tance from the linearity range, which is based on the degree of
similarity of the SDC state-matrices between two consecutive
sampling times. This result has been found analysing the
convergence problem of the P (x[k]) solution of the DARE
(34) related to the SDRE nonlinear control problem. The
convergence speed of the P(x[k]) depends on both the ini-
tial conditions, represented by which numerical value P the
DARE’s algorithm initializes, and on the degree of similarity
of the SDC state-matrices between two consecutive sampling
times k and k + 1, i.e. between Ay, (x[k]) and Ay, (x[k + 1]).
Regarding the numerical P initialized by the algorithm, triv-
ially, when the P(x[k+1]) solution for a certain system’s state
x[k + 1] is searched starting from a P(x[k]) = P, the DARE
solution of the previous system state x[k] is numerically close
to that of x[k + 1]. Therefore the P(x[k + 1]) solution will
converge with a less number of backward iterations with
respect to initialize the searching with a P as identity matrix or
else derived by previous sampling times x[k — i], with i > 1.
Instead, concerning the similarity between two consecutive
numerical SDC matrices, it is straightforward that, when two
SDC matrices, namely A, , (x[k]) and Ay, (x[k + 1]), depend
on two states x[k] and x[k + 1], which are numerically
close, it is expected that these SDC matrices are numeri-
cally similar. Thus, in this context, the convergence speed
of the DARE solution P(x[k]) also depends on the system’s
matrices numerical value (Aq,, Bg,, Ca, ). Therefore it is
expected that under state similarity condition x[k] >~ x[k+1],
the DARE solution at instant k + 1, namely P(x[k + 1]),
converges with a smaller number of backward iterations if
initialized as P = P(x[k]) instead of the instants k — i, with
i > 1. Taking into account these considerations, we propose
to modify the DARE solver of the SDRE control algorithm
making it adaptive with respect to the system’s state. This
means allowing it to have a faster convergence for the DARE
solution. In the following, the implementation details of the
proposed solution are explained. The computational solution
implements two basic steps that are: 1) evaluation of matri-
ces’ similarity and 2) adaptive P initialization.

1) EVALUATION OF MATRICES' SIMILARITY
In order to evaluate the similarity (or distance) between
two numerical matrices, the tools proposed in [40] have
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been used. Given a discrete-time nonlinear system repre-
sented in the linear-like form (3), considering two consecutive
instants k and k + 1, and the the corresponding consecutive
numerical SDC matrices, namely Ay, (x[k]) and Ag, (x[k +

1]), two similarity criteria (da; dy,) can be established as
follow:

dp = [|Ag, (x[k]) — Ag, (x[k + 1D

iy = Phagy — *a (35)

x[k] x[k+1] ||

where d4 represents the pure distance between two numerical
SDC matrices in two time intervals, while d,, represents the
distance between the eigenvalues of the frozen matrices in the
two time intervals. These values (d4, d;,) quantify the sim-
ilarity between SDC matrices which affects the convergence
speed of the DARE’s solution P(x[k1). In this work it has been
experimentally proven that in the linear working-range of
the experimental set-up, two consecutive states yield values
having an order of magnitude dy ~ 8 - 1072 ~ —2, dy, =~
0.5 - 10° ~ 0. Differently, when the states belong to the
nonlinear range the values become dy ~ 3 - 1074 =~
—4; dy, =~ 1.5 - 1073 ~ —5. Thus, out of the linear-range
the biggest numerical difference between two consecutive
matrices can be measured with the above introduced metrics,
the bigger the distance the larger the number of backward
iterations for solving the DARE.

2) ADAPTIVE P INITIALIZATION

As explained in the above Section, the P chosen to initialize
the SDRE algorithm affects the convergence speed of the
DARE solution P(x[k]). For this reason, an adaptive P initial-
ization based on the current system state x[k] can improve the
ET required by the SDRE algorithm. A possible solution is to
calculate off-line P(x[k]) for different working ranges (e.g.
linear and nonlinear ranges) and to define different SDRE
algorithm initialization conditions. Trivially, the proposed
methodology should be evaluated depending on the applica-
tion. In this paper, the proposed solution is applied to the cart-
pendulum mobile robot and is detailed in the Experimental
results Section VIII-C.

VIi. HARDWARE SET-UP

In this Section are presented the hardware characteristics of
the whole system and the control strategies implemented in
the HRT board to stabilize the pendulum in upright posi-
tion while the cart is maintaining the desired distance from
obstacles.

A. CART-PENDULUM ROBOTIC SYSTEM

As discussed in the Introduction section, the hardware chosen
to control the cart-pendulum system consists of the XMOS
XK-1A board, a low cost development platform intended
for exploring parallel computation. The XK-1A comprises
128KBytes SPI FLASH memory, four LEDs, and two press-
button switches. An XTAG-2 debug adapter can be connected
to a PC to debug the XK-1A operations. The XK-1A is based
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on a single XS1-L1 device in a 128TQFP package. The XS1-
L1 hosts four deterministic cores operating at 100Mhz and
it provides a tightly integrated general purpose I/O pins and
64 KBytes of on-chip RAM. The YUMO E6A2-CWZ3E
Rotary Encoder sensor provides the measure of the pendulum
angle while the HC-SR04 ultrasonic distance sensor pro-
vides precise, no contact distance measurements up to about
3 meters from the reference obstacle. It is simple to connect
the sensor to micro-controllers requiring only one I/O pin.
The DC motors are operated by the shared output voltage
provided by a Sabertooth system 2 x 12 motor driver. This
circuit can be powered with voltage ranging from 6 to 24 'V,
with up to 12 A continuous per channel. The board is used in
R/C Mode/Microcontroller mode with a PWM from 1000us
to 2000us, respectively corresponding from —12V to +12V.
The whole system is powered by a LiPo battery, 2200mAh,
3S (3 cells), with discharge rate 65C and 12V.

B. HRT CONTROL STRATEGIES

The XK-1A board of the XMOS family has been used
to implement the control algorithms described above. This
technology was developed a few years ago, and currently
new more performing boards are available from the XMOS
company but the XK-1A hardware characteristics are still
appropriated for this paper. The closed-loop controls are
based on the direct measures of the cart position (x) and the
pendulum angle (¢) provided by the sensors. At each sample
time the controllers compute the feedback control law and
the optimal voltage (u[k]) to be applied to the motors driver
(i.e. the sabertooth device), in order to keep the pendulum in
balance (¢ = 0) while maintaining the cart to the desired
x position. The sensors are directly connected to different
I/O pins of the board. The three different control strategies
have been entirely coded on the XK-1A XMOS board: where
at each of the four deterministic cores has been assigned a
task. The core 1 runs the task 1 that manages the gathering
of data from the position sensor. The core 2 hosts the task
2 that manages the gathering of data from the encoder for the
feedback on the ¢ angle. Both tasks are in charge of making
available their data, through the respective channels, to the
task 3. This latter runs on core 3 and retrieves the sensor data
from the proper channel every 20ms, within this time laps
task 3 must compute the control law and send the message
to the task 4 running on core 4 which generates the PWM
to drive the motors. All the tasks are parallel and their ET is
computed statically by means of the TimeAnalyzer, a feature
provided by the development environment XTimeComposer
of XMOS. The synchronization between the cores operations
has been achieved by calculating statically the computing
time of each task.

VII. CLASSIC SDRE AND MET-SDRE NONLINEAR
IMPLEMENTATIONS

In this subsection the implementation of the algorithms
regarding the classic SDRE and the proposed MET-SDRE
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algorithm solution, in the HRT board are explained in more
detail.

A. CLASSIC SDRE ALGORITHM

Regarding the classic SDRE algorithm, common features
have been already explained in Subsection IV-C2. In this
part, the classic SDRE implementation used for stabilization
problems on the cart-pendulum mobile robot is analyzed in
more detail. Further implementation issues and feasibility
aspects have been deeper discussed in [33], [38], where are
given also the guidelines regarding the construction of the
SDC matrix when the SDRE solvability condition is violated.
The implementation steps are the following:

i) The DARE (34) is solved off-line until the ﬁ(x[k])oﬁ
reaches the convergence imposing specific system condition
(e.g. ¢ = 0.06 rad and ¢ = 0rad/s).

ii) The necessary backward iterations for on-line imple-
mentation are found as discussed in Subsection I'V-C2. It has
been experimentally found that within 20 backward iterations
the norm error criteria imposed as || P(x (kDo — P(x[kD2oll <
€ with ¢ = 0.1 was satisfied. This test, was repeated for
different points of work of the cart-pendulum mobile robot to
guarantee a consistent control law u(x[k]) during the experi-
mental phase.

iii) Every sample time k, the SDRE control algorithm
solves the DARE (34) 20 times backwards iteratively.

B. MET-SDRE ALGORITHM

The idea of this MET-SDRE solution has been achieved
through the WCET analysis experienced in this work and it
aims to improve the classic SDRE approach in terms of ET.
In the following, the implementation steps are listed below:

i) The linear working range of the system has been esti-
mated through experimental tests, e.g. in our case the linear
working range of the cart-pendulum is ¢, < ¢ < ¢uy,
namely boundary conditions, where in our experimental set-
up ¢, = —4° and ¢y = 4°.

ii) It has been calculated off-line a convergence solution
P(x[k]) 1000 in 1000 backward iterations for the three different
boundary conditions of the system ¢ = —4°, 0°, 4°. These
solutions have been named Py,,, Pge, Py, -

iii) The previous solutions have been used to initialize the
adaptive DSDRE control algorithm to reach a faster conver-
gence speed depending on the system’s working range.

In Figure 2, the flow chart of the MET-SDRE control algo-
rithm is shown. The initialization of the Algorithm is com-
posed by the reading of the initial system’s output (¥p) and
the computation of the state (Xp), then the matrix Py is chosen
based on the initial state (X). The periodic control task in this
implementation last 20ms, it consists of the computation of
the current state based on the output acquisition Y. In order to
compute the DARE convergent solution P(x[k]), the number
of backward iterations i is set based on the current pendulum
angle ¢. Then, if ¢ belongs to the linear range i = I;,, other-
wise i = Iys. In our case, the values of I,, = 3 and Iy = 10
are found experimentally following the proposed procedure
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FIGURE 2. Flow chart of the MET-SDRE algorithm. In the Figure T and F
state respectively for True and False.

in Section V. Finally, the control input u(X} ) is computed, and
the periodic task stops upon termination decided by the user.

VIll. PERFORMANCE'S ANALYSIS AND WCET OF THE
OPTIMAL CONTROL ALGORITHMS

In this section, the simulation and experimental results
regarding the cart-pendulum robotic system (Fig. 3) subject to
the three above mentioned controllers are shown. The control
performance is evaluated under different working condition
of the real robot. The control parameters are introduced in
Subsection VIII-A, while in Subsection VIII-B the simula-
tions are compared with experimental results to demonstrate
the validity of controllers’ implementation. Lastly in Sub-
section VIII-C the experimental results are presented and
discussed, with related performances and WCET analysis.

A. CONTROL PARAMETERS

Each controller has been designed and tuned to stabilize the
cart-pendulum around the pendulum’s vertical position while
maintaining a certain distance from obstacles detected by the
sonar and for disturbance rejection. All the tuning parameters
are chosen to obtain a control system which first achieves
as small as possible oscillations around the vertical position,
secondly it maintains the desired x position and finally to
have it also has a certain reactivity to disturbances. The values
of the weighting matrices and tuned parameters used by the
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FIGURE 3. Cart-pendulum prototype developed by the authors.

controllers in all the simulations and experimental tests are
given below.

1) LQR
- The values of weighting matrices for the cost function (26)
of the discrete-time LQR control are:

R=1;
500.0, 0.0, 0.0, 0.0
_ | 0.0, 100.0, 0.0, 0.0
Q= 0.0, 0.0, 500.0, 0.0
0.0, 0.0, 0.0, 100.0

(36)

2) MPC

- The controller is designed on the linear system plant in
(16) with predicted horizon N, = 50 and receding horizon
N, = 3, while the control weight is set to r, = 0.5

3) SDRE

- The values of weighting matrices for the cost function (32)
of the discrete-time SDRE control have been selected as those
of LQR to better compare the controllers performance:

R=1;
500.0, 0.0, 0.0, 0.0
0.0, 100.0, 0.0, 0.0
Q= 0.0, 0.0, 500.0, 0.0 (37)
0.0, 0.0, 0.0, 100.0

B. SIMULATION RESULTS

This subsection briefly presents the simulation results of
the cart-pendulum regulation problem. For showing the con-
sistency of simulations with responses of the experimental
setup, simulations have been compared with experimental
results. For brevity, we reported the comparing results with
only one of the controllers analyzed, that is the SDRE.
Figure 4 shows the comparative results of the pendulum’s
¢ angle when the SDRE controller is applied. In Figure 5
the comparative results for the cart position x are showed,
lastly in Figure 6, the control effort U in both cases are
compared. The trend over time shown in the figures, high-
lights similar oscillations in term of amplitude, frequency
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FIGURE 4. SDRE control of the cart-pendulum: comparison of simulated
and experimental results of angle ¢ within similar boundary conditions.
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FIGURE 5. SDRE control of the cart-pendulum: comparison of simulated
and experimental results of cart position x within same boundary
conditions.

and phase. Furthermore, small deviations between simulated
and real system can be noticed in cart and pendulum direction
changes, this may be attributed to the not perfect modelling
of the tyre-floor contact point (tyre slip conditions). However,
despite the small predictable mismatches between model and
reality, by focusing on Figure 6 it can be noticed as the control
input seems to be the same in both cases. This proves the
effectiveness and consistency of the controller implementa-
tion in the HRT board. Besides, it is appropriate to point out
that the achievement of perfect model matching with reality
is out of the scope of this work.

C. EXPERIMENTAL RESULTS

This subsection is devoted to describe the experimental
results obtained by applying optimal control laws in different
working conditions of the experimental set-up in a RT sce-
nario. The experiments concern the performance evaluation
for the regulation problem of a cart-pendulum system. The
challenge is: balancing the pendulum in a vertical position
(pitch angle ¢ = 0) while the cart maintains a desired position
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FIGURE 6. SDRE control of the cart-pendulum: comparison of simulated
and experimental results of control input U within same boundary
conditions.

in space (x). In the design phase, the regulation around a fixed
set-point is the primary goal to achieve by any control system.
The second one is often the trajectory tracking, in which
the control law forces the closed-loop response to follow
a specified reference, generally time varying. Though the
trajectory tracking is not the subject of this investigation,
it will be shown how some considerations on it can be inferred
in terms of WCET, considering the implementation of the
algorithms adopted. For evaluating performance and WCET
of the considered optimal controllers on regulation problems
two experiments have been carried out. In the first one,
the system works within the linearity range of the pendulum’s
vertical unstable equilibrium point, which is ¢ = 0. For our
system, it has been experimentally proofed that the range is
—4° < ¢ < 4°. The second experiment aims to evaluate
the performance of the optimal controllers when nonlinear
behaviours arise. In our case this happens by choosing the
initial condition of the ¢ angle out of the linear region.
During experiments, continuous monitoring of the WCET is
performed by implementing the control Algorithms in the
XMOS board. Furthermore, computational efforts required
to the microcontroller by the control laws are taken into
account.

1) TEST 1 - LINEAR WORKING CONDITIONS

The Figures 7, 8, 9 show the comparison of control results
respectively for the pitch angle ¢, the cart position x and
control input U in linear working conditions. Overall, all the
controllers accomplish the regulation task stabilizing the sys-
tem around ¢ = 0 with small oscillations mainly due to phys-
ical limits of the experimental set-up. A comparative analysis
of the controllers in terms of a) ET, and b) performance,
is detailed as follows. Regarding the point a), Table 2 reports
the code execution BCS and WCS values, which have
been computed using the XMOS development environ-
ment xTimeComposer for each of the task executed by the
board, including those related to the control algorithms.
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FIGURE 7. Experimental results of three optimal control strategies (LQR,
MPC, SDRE) for the cart-pendulum in linear conditions; trend of pitch
angle ¢.
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[sec]

FIGURE 8. Experimental results of three optimal control strategies (LQR,
MPC, SDRE) for the cart-pendulum in linear conditions; trend of cart
position x.

U
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FIGURE 9. Experimental results of three optimal control strategies (LQR,
MPC, SDRE) for the cart-pendulum in linear conditions; trend of control
input U.

The WCS provides the values of the WCET for each task, this
analysis gives the possibility of setting the temporal upper
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TABLE 2. Code execution BCS and WCS values computed for
accomplished tasks.

Algorithm BCS WCS
Encoder acquisition 0.00331ms 0.00331ms
Motor and PWM driver  1.50025ms  2.00025 ms
Sonar acquisition 1.58035ms  6.57300ms
LQR 1.90454ms 4.01384ms
MPC 2.06109ms  4.55033 ms
SDRE 11.9710ms  12.5170ms
MET-SDRE 3.25336 ms  8.15412ms

bound limit for RT or HRT applications. A first aspect to
be noticed from Table 2, even if it is quite obvious, but
here it has been quantified, is that for regulation problems
LQR and MPC algorithms require less time to be executed.
The SDRE requires instead almost four times the WCET in
respect to the previous ones. This first result suggests that
attention must be taken, in terms of ET, in using nonlinear
algorithms, as the SDRE, for linear tasks. This becomes even
more notable in higher order MIMO systems because the
ET of the DARE solution is related to the system’s order,
as well as with the initial conditions. In classical applications
where a single microcontroller must execute more tasks (e.g.
sensors acquisition, control, etc.), a high WCET of the control
algorithm could lead to critical situations. These temporal
constraints are crucial in HRT applications. Differently, using
the MET-SDRE controller previously introduced the algo-
rithm ET decrease. In particular as long as the system is
working within linear conditions the BCS value obtained can
be comparable to the linear controllers and with respect to
classic SDRE it decreases significantly. Regarding the point
b), related to the performance analysis, it can be noticed
that under linear conditions the LQR performs similar to the
SDRE disregarding the ET, while the MET-SDRE keeps the
same performance of SDRE as expected. For visualization
reason, here the MET-SDRE performances, are not plotted
because they match with the classic SDRE and they will be
given for the second test. Figure 7 shows how the stabiliza-
tion is reached for both the LQR controller and SDRE con-
troller. However, focusing on Figure 8 it is possible to notice
that, when using LQR controller, the cart position x is kept
with a constant bias from the set-point. It happens because
the LQR controller gives priority to the angle stabilization,
indeed it has been demonstrated that in nonlinear systems
when the state has coupling dynamics (as e.g. in our case
where the ¢ and x behaviours are strictly related) a linear
LQR cannot manage them perfectly [28]. However, some
works sustain that in terms of performance SDRE approach
provide at best a quite limited and case dependent, benefit
over LQR [29]. Therefore LQR is often preferable due to
its less computational effort especially in application where
system’s nonlinearities are negligible. Finally, the MPC takes
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more time to reach the steady-state condition with respect
to the others and when reached is not able to well regulate
the cart position x within 25 seconds. This may be because
of determining the value of the control signal, the MPC
analyzes the whole prediction horizon (N,). As a result,
the control effort is smoother but the system is also less
reactive because the disturbance rejection task is averaged
for the entire time horizon. Therefore the prediction horizon
should not be too long, because it slows down the reaction of
a controller to disturbances in the system, though this feature
is interesting in some cases. Indeed, the control signal of
MPC controller is smoother than the others (Fig. 9) and this
may be important, especially in an industrial environment,
during the start-up phases of plants and actuators, because
these systems are adversely affected by sudden changes in
the control signal. Moreover, this control strategy has less
impact on energy consumption because the power required
for a hypothetical actuator is less. Therefore, the prediction
horizon N, is an important tuning parameter that must be
set case by case. Lastly, regarding trajectory tracking tasks,
the MPC controller has advantages in terms of design and
ET. This because the MPC control algorithm implementa-
tion is valid both for constant and variable system’s refer-
ence signals. Therefore, the WCET of the MPC calculated
in Table 2 for control regulation problem would remain the
same also for the trajectory tracking problem. Differently,
the LQR design phase in case of trajectory tracking issues is
pursued [27], [39].

[deg]

iy I
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FIGURE 10. Experimental results of three optimal control strategies (LQR,
MPC, SDRE) for the cart-pendulum in nonlinear conditions; trend of pitch
angle ¢.

2) TEST 2 - NONLINEAR WORKING CONDITIONS

Figures 10, 11, 12 show the trends over time of the pitch
angle ¢, the cart position x and the control input U. In this
case, not all the controllers can accomplish the regulation
task stabilizing the system around ¢ = 0, for this reason
in Figures 10, 11, 12 the divergent trends for the linear
controllers are obtained. Also in this second test, a com-
parative analysis of the controllers in terms of a) ET, and
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FIGURE 11. Experimental results of three optimal control strategies (LQR,
MPC, SDRE) for the cart-pendulum in nonlinear conditions; trend of cart
position x.
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FIGURE 12. Experimental results of three optimal control strategies (LQR,
MPC, SDRE) for the cart-pendulum in nonlinear conditions; trend of
control input U.

b) performance, has been detailed. Regarding the point a)
related to the ET values of the controllers, there are no
changes from the previous test, but some insights regarding
the MET-SDRE are given. For BCS and WCS values we
always refer to 2. What should be pointed out is that the
WCS value for the MET-SDRE has been obtained during
this second test. Indeed, it is trivial to figure out that the Best
Case Execution Time (BCET) is related to test no. 1, while
the Worst Case Execution Time (WCET) is related to test
no. 2. In the first case, under linear conditions (test no. 1),
referring to the control performance, the MET-SDRE, being
based on classic SDRE, can achieve superior performance
(e.g. in terms of disturbance rejection and robustness) with
respect to linear controllers such as LQR or MPC. At the same
time, referring to the execution time (ET), the MET-SDRE
has BCET of about 3 ms, similar to that of the LQR and MPC
linear controllers, while the classic SDRE requires about
12 ms under the same conditions, that means 4 times more.
Secondly, in test no. 2 the MET-SDRE and the classic SDRE
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FIGURE 13. Experimental results of nonlinear optimal controllers (SDRE
and MET-SDRE) for the cart-pendulum in nonlinear conditions; trend of
pitch angle ¢.
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FIGURE 14. Experimental results of nonlinear optimal controllers (SDRE
and MET-SDRE) for the cart-pendulum in nonlinear conditions; trend of
cart position x.

are proven to be the only control strategies able to stabilize the
system while LQR and MPC lose control. At the same time,
in the second scenario, the MET-SDRE decreases the algo-
rithm’s WCET of about 35% with respect to the classic SDRE
(as in Table 2), by maintaining the same performance as well.
This result is due to its adaptive nature, indeed, as discussed
in section V, the number of backward iterations of the DARE
(34) and then the ET of the control algorithm are based on the
current state of the system. Then, when nonlinear behaviours
arises the biggest difference between two consecutive SDC
matrices Ay, (x[k]) and Ag, (x[k 4 1]) requires solving the
DARE (34) with more iterations to obtain a convergent solu-
tion P(x[k]). Regarding the point b) instead, which is related
to the performance analysis, the system nonlinearities are
triggered by imposing to the pendulum an angle ¢ = 11°
out of the linear range. The linear controllers (LQR, MPC)
are obviously not able to perform the regulation task. Indeed,
in Figure 10 it can be noticed how the MPC tries to approach
the reference value (¢ = 0) but the control law is not fast
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FIGURE 15. Experimental results of nonlinear optimal controllers (SDRE
and MET-SDRE) for the cart-pendulum in nonlinear conditions; trend of
control input U.

enough and the cart diverges from the position x = 0,
as shown in Fig. 11. A similar result is obtained with the LQR
even if the controller tries within 5 seconds to stabilize the
pendulum but because of the large oscillations (Fig. 10) the
control is lost. Differently, the SDRE and the MET-SDRE,
within 2 seconds are able to bring the system near to the
equilibrium point and stabilize the pendulum (with small
oscillation around ¢ = 0) in 5 seconds. The performance
of these two nonlinear controllers are shown separately from
the others to evaluate better the similarity of their behaviour.
They are presented in Figures 13, 14, 15, where respectively
are compared the pitch angle ¢, the cart position x and the
control input U for the classic SDRE and the proposed MET-
SDRE. It can be noticed in these figures, that the MET-SDRE
achieves the same performance as classic SDRE implemen-
tation but decreases the algorithm’s WCET. There is a small
time-shift on the Figures 13, 14, 15 which depends on three
factors: on the acquisition instant, on the small error which
might be between the two initial angles ( ¢ = 11°) and on
the possible reading lag introduced by the sonar. However,
it is trivial to see how the MET-SDRE performances are
consistent with its classic version. The performance analysis
of SDRE, LQR and MPC instead, are shown in the Figures 10,
11, 12. Here, only the nonlinear controller (SDRE) is able
to manage the increasing dynamics coupling of the system
under nonlinear conditions. This is expected, indeed, when
the systems dynamics become complex or the disturbances
forces the system to work out of the linear range. In this case
the MPC and LQR performance are overcome by the SDRE.
Indeed, the SDRE taking into account system’s nonlinearities
can better handle the system dynamics as also experienced
in [28], [34].

IX. CONCLUSION

The advancement in electronics, computing and communica-
tion technologies have made it feasible to extend the applica-
tion of embedded systems to more critical applications, such
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as automotive, avionic and many others. Often, they involve
Hard Real Time (HRT) requirements, where systems must
be designed according to the resource adequacy policy and
must provide sufficient computing resources to handle the
specified worst-case computational load and fault scenario.
The HRT embedded resources, as shown in this work, mostly
are required by the control algorithms and the implemen-
tation of nonlinear control laws are often computationally
demanding. For this reason in some cases, the performances
are not suitable because of specification on application con-
straints. However, in order to achieve even more demanding
objectives to control systems, the linear controllers have to
be overcome because in most of control applications the PID
is still the most used controller. In this work, a method has
been provided to evaluate in a deterministic way the Execu-
tion Time required by the controllers’ implementations for
embedded devices with HRT characteristics. Implementation
solutions for discrete-time linear and nonlinear optimal con-
trol techniques have been carried out with encouraging per-
spectives. Once evaluated both performance and ET for three
of the most used optimal controllers, this work shows how to
improve the execution time of the SDRE nonlinear controller,
by proposing a new method named MET-SDRE. With the
MET-SDRE, in terms of ET, a Best Case Scenario (BCS)
comparable with linear controllers have been achieved. The
Worst Case Scenario (WCS) has been improved by 35% with
respect to the common approach maintaining the same per-
formance. In general, the results obtained, could be useful in
the filed of control systems engineering especially during the
design stage in RT and HRT systems, where temporal bounds
have to be fulfilled also taking into account all the other
functional specifications. In future, further investigation is
required in order to prove the performance of these solutions
on higher-order systems.

APPENDIX A

SDC FACTORIZATION FOR SDRE DESIGN

In this appendix, the design flexibility for the SDC matrix
is discussed, and general recommendations are provided to
derive a correct factorization. The extended linearization, also
known as SDC factorization is the process of factorizing a
nonlinear system into a linear-like structure which contains
SDC matrices. Considering the cart-pendulum model in (2),
this can be generally written as:

x(1) = f(x) + B(x)u() (38)

where f(x) = A(x)x. Without loss of generality, the ori-
gin x = 0 can be assumed as an equilibrium point, such
that £(0) = 0. Under this assumption, a continuous non-
linear matrix-valued function A(x) always exists such that
fx) = A(x)x, where A(x) is a n x n matrix found
by mathematical factorization and it is nonunique when
n > 1. Because of this non-uniqueness of the A(x) matrix,
in literature different works have been proposed methods
to improve the system stability performances through the
factorization process. For example, in [37] a method has
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been proposed to design the SDC matrix when working with
a conforming system. In [36], it has been studied how a
different factorization of the A(x) matrix can affect stabil-
ity performances. Another possible SDC parameterization
solution is given in [34] and [28], where in both cases
an inverted pendulum has been controlled with SDRE for
both the swinging-up and stabilization. However, in this
work, the focus is not to investigate a new parameteri-
zation method but to carry out a comparative analysis of
control algorithms execution time, in particular LQR, MPC
and SDRE. Consequently, a classic approach regarding the
design flexibility has been followed, as proposed in [37].
The parameterization steps adopted to derive the SDC matrix
in (3) are presented below with related motivations. Con-
sidering a nonlinear systems and under the assumption of
x = 0 being an equilibrium point. The SDC A(x) matrix
terms can be state-independent or state-dependent. In case
of state-independent terms, named also ‘“‘bias”, it can be
handled to satisfy the assumption f(0) = A(0)x(0) = 0 by
augmenting the system with a stable state:

(1) = —rz(1) (39)
so that the bias can be factorized as:
b(t
b(r) = 202 (40)
Z

which converges to zero only when z = 0.

Differently, regarding state-dependent terms non-unique
solutions can be adopted. Defining A(x, @)x as an infinite
family of SDC parameterization, in general, terms which do
not converge to zero as the state approaches zero, violates the
fundamental condition f(0) = 0 outlined above. Like biases,
these terms prevent a direct factorization of f (x) into A(x, o)x
but they can be handled as discussed above. However, it is
more desirable to capture their state dependency in the proper
element of the matrix A(x, «). For example, supposing to have
a system with two state variables, where equations are given
by:

X1 = Blx1 +x2)
Xy = cos(xy) 41)

where 8 can be considered as a bias term, discussed above,
the SDC matrix A(x) has the form:

Alx) = [ P ’3} “2)

cos(x;) O
The cosine term of the A(x, o) matrix it is desirable to be
nonzero to reflect the state dependency. A solution could be
to re-arrange the cosine function as:

cos(xy) = [cos(x1)) — 1] + 1 43)

where [cos(x1) — 1] approaches to the origin when x| goes
to zero and can be factorized as:

cos(x1) = [—cos(x)lcf — l]xl (44)

and the remaining term +1 of equation (43) can be handled
like a bias.
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TABLE 3. Physical and electrical parameters of the motor HN-GH35GMA.

Parameter Value Description
Tstalt [N m] 0.44 Stall torque
Tstaui[A] 1.4 Stall current
K:[Nm/A] % = 0.3152 Torque constant
K[V sec /rad] "~ 0.4090 Back electromotive force constant
R,[Q] 7.49 Armature resistence
B,,[N rad/ s] 0.007 viscous friction
J[km?] 0.0018 Inertia rotor
E[V] Excitation voltage
APPENDIX B
THE MOTOR MODEL

The four-wheeled robot is powered by four identical motors
which provide the total force F acting on it. The first order
model in Laplace domain has been derived by means of
an identification process which has provided the following
transfer function:

1.7469

Q(s) K,
= = (45)
E(s) l+1s 1+0.70738s

where (s), E(s), are respectively the Laplace transform
of the angular velocity and the excitation voltage of the
motor, while K),,7, are respectively the gain constant and the
mechanical time constant of the motor. In the time domain we
have:

. 1 K,
o) =——owl)+ —E@) (46)
™ ™
Knowing that ® = % = £ jR’ and w = I’% the (46) can be
rewritten w.r.t. the force acting on the robot as:
J K J
YKy 5% (47)
(tp Ry) T, R:

Then, the force equation is replaced in the system model (1)
where the term 8 = ((TJPII{{;)), and y = er_RE' The parameters
K, and 7, are found through the identification process, R, is
the wheel radius. The rotor inertia J is calculated by adopting
the reduced order model of the DC motor, where the electrical

time constant is neglected. Since K, and R, are measured, and

K; is computed as a good approximation as ZYZ’ZI’I’ , it is possible
to compute the viscous friction B, with:
K;
Ky=——F——— (48)
KiK.+ Ry By,
Then J can be computed with:
R.J
. (49)

=
K; K, + Ry By,

the physical and electrical parameters are completely defined
and listed in table 3.

APPENDIX C

MPC EXTENDED MIODEL DERIVATION

In order to derive the extended model let consider the follow-
ing extended state vector x,:

x[k] = [ Ax,k1” ylk1" 17 (50)
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Using the iteration of the model (16) and by considering that
xs[k] = Ag xs[k— 1]+ By ulk — 1], the following relationships
can be easily obtained:

Axglk + 1] = Ay Axs[k] 4+ By Aulk] (51)
Ylk + 11 = ylk] = C(xslk + 1] — x4[k]) = CAxg[k + 1]
= CAyAxg[k] 4+ CByAulk] (52)

equations (51) and (52) can be combined as below:

Axglk +11 | Ag O,T,, A xg[k] By
[ sk + 11 }‘ [CAd Iqqu vik] ]+[CBJA”
(53)

where for simplicity, it has been rewritten matrices as follow:

T
Aez[Ad Om}

CAy Iy
By
B, = |:CBd i| Ce= [Om Iqxq] (54)

with 0, a g X dim(x;) zero matrix and g the number of the sys-
tem outputs, i.e. the number of rows of y. Thus, equation (53)
can be written in a compact form, and adding the equation to
extract the y[k] component, yields the extended system:

X[k + 1] = Acx.[k] + B, Aulk]
Ykl = Cexelk] (55)
Considering the extended model (50) Let us assume a

sampling instant k” and define the predicted output vector
Y and the vector of the input trajectory AU as follows:

Y = [ylk+1k17,  ylk+2k17, ...,  ylk+N, k1" 17
(56)

AU = [Aulk), Aulk+1], ..., Aulk+N.—171"
(57)

where the variable N, is the length of the prediction window
and N, is the length of the receding window with No < N),.
It can be proven by using the model (54) iteratively that the
output vector Y can be expressed in compact form as:

Y = Fx[k]+ ®AU (58)
where
[CA,
CA,?
F=|cA? (59)
| CAMN
[ CB. 0 0
CA.B, CB, 0
d=| CA.B, CA.B. 0
. . 0
|CAM 1B, CA /N 72B, CA/Nr—NeB,
(60)

For a given set-point signal r(k;) at sample time k;, within
a prediction horizon the objective of the predictive control
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system is to bring the predicted output as close as possible to
the set-point signal, where we assume that the set-point signal
remains constant in the optimization window. This objective
is then translated into a design to find the ‘best’ control
parameter vector AU such that an error function between the
set-point and the predicted output is minimized. Assuming
the data-vector which contains the set-point information as:

Np

—
R, =[11..1] r[ki]. (61)

The cost function J that reflects the control objective is
defined as:

J=R,—Y)'(R,—Y)+ AUTRAU (62)

where the first term is related to the minimization between
the predictive output and the set-point, while the second is
referred to the size of AU.
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