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ABSTRACT Modern motorcycles are evolving more and more towards complex systems by the increasing
integration of mechanical, electrical and control disciplines. All-wheel drive (AWD) vehicles have proven
effective to improve vehicle’s performances and rider’s safety. Despite this, manufacturers have developed
few AWD motorcycles and little research has been devoted to them. Obvious difficulties concern torque
distribution to the front wheel because of steering system. Nowadays, the integration of technologies eases
the implementation of front wheel drive opening new research perspectives. In this work, the dynamic
model of an AWD motorcycle with an attached rider is proposed. It represents the first symbolic analysis
investigating the effects of front wheel traction on the dynamics of a motorcycle for supporting the design
of AWDmotorcycles reducing trials and tests on prototypes. The proposed model is parametric with respect
to the motorcycle geometry, and it allows to simulate complex operating modes of the AWD, such as
cornering phenomena, taking into account coupling of lateral and longitudinal dynamics and tire-road
interactions. Unlike other works, here the authors include a full tire model by exploiting theoretical slips
of the brush model for tire’s aligning moment too, instead of applying a totally empirical representation less
suitable for a complete symbolic description. Besides, to simulate the equations of motion, the benefits and
disadvantages of using AWD with torque distribution have been pointed out introducing a new handling
ratio. Two verification procedures validate the model: one is performed theoretically, the other carries out
a comparison with a multibody software, whose model is more sophisticated, this latter embeds all main
motorcycle’s dynamics. Although radically different, being the first theoretical and the second numerical-
computational, both methods exhibit consistent behavior between them, and effectiveness of the former is
also consistent with the results of a multibody simulator under the assumptions made.

INDEX TERMS Vehicle dynamics, modeling, simulation, intelligent transportation systems, road vehicles.

I. INTRODUCTION
During the last decades, despite a few motorcycle producers
have spent efforts into proposing solutions to front wheel
drive of AWD motorcycles [1]–[3], researches on the topic
are still lacking. Although different solutions have been
developed and even more can be foreseen by using electric
propulsion, these commercial AWD vehicles have all been
conceived to overcome conditions of low traction due to
sandy or rough terrains. They use hydraulic or mechanical
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driveline to transfer a fixed portion of the drive torque to the
front wheel permanently or else when excessive slip at rear
wheel arises. These vehicles do not fully exploit the factual
potential of AWDmotorcycle. Being not conceived for smart
management of the drive torque, they are unable to adapt
the latter between both wheels in several complex dynamic
conditions. Modulating torque distribution between wheels
will give the designer more control over vehicle’s perfor-
mances and handling characteristics; this will be proven in the
paper in a simulation scenario, in which analysis of a typical
cornering maneuver will show how the AWD advantages and
drawbacks could be enhanced and mitigated, respectively,
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by torque modulation between wheels. Benefits of traction
available at the normally undriven wheel improve accelera-
tion and stability in cornering, reduces the tendency of the
rear wheel to slip and applies useful drive in the direction the
rider wants to go. Evidences of experienced riders point out
these features. The availability of suitable mathematical tools
able to capture and describe these phenomena would facil-
itate engineering development of such vehicles and migra-
tion towards these new traction solutions. This work aims
at being the first step of a broader research work, which
develops a model that can lay the foundations for subsequent
investigations of suitable control techniques from which the
AWD can benefit. Here, such a mathematical model has
been developed for supporting the design and analysis of
two-wheeled vehicles that intend to take advantage of AWD
features and to reduce trials and tests on prototypes. Regard-
ing technical solutions to deploy AWD potential, the electric
wheel drive could help migration towards full AWD exploita-
tion. It is becoming more appealing not only for cars but
also for two-wheeled vehicles. Nowadays, small and pow-
erful motors can be housed in the vehicle wheel assemblies
bringing undoubted benefits such as precise and quick torque
response, accurate drive torque control and the possibility
of getting helpful information on the wheel angular velocity
and torque by measuring the electric current absorbed by
the motor. Despite technological advances, at present AWD
motorcycles design still seems to rely on experience rather
than on an understanding of its phenomena, which instead
would allow a factual success. Before moving from an idea
to a prototype and then to a product, development of newly
conceived vehicle requires an in-depth investigation of its
distinguishing dynamics to cope in advance with limits and
strengths. This requires high-fidelity dynamic model able to
reproduce, although with approximations, the real vehicle
over normal operating conditions. Once available the equa-
tions governing the system, by focusing on specific mod-
eled dynamics, a suitably control-oriented model could be
arranged, facilitating model-based control with the purpose
of directly influence vehicle dynamics not only by steer-
ing control but also through the torque distribution between
wheels. This offers to the designer more degrees of freedom
to influence the handling, the driving comfort and safety in
a variety of conditions and situations, thus relegating the
necessity for expensive empirical testing only to the vali-
dation phase. This paper addresses the issue of defining a
viable symbolic model for describing an AWD motorcycle’s
behavior subject to torque distribution in different driving
conditions. The model is generally valid, namely it has been
developed regardless of the adopted driveline technology
for the torque distribution to the front wheel. To strengthen
model reliability, two verification procedures are adopted to
validate it. The first one validates theoretically the symbolic
model in steady-state cornering condition. The second one,
relies on multibody analysis, which as a matter of fact in
the automotive field is reputed by now as a de-facto stan-
dard, suitable to simulate the tests and the behaviors that a

real prototype would be subject to during the development
as a new product [4]; hence, the model behavior has been
further compared with a most realistic multibody-simulator,
developed in MSC Adams, richer in terms of dynamics, rigid
bodies and degrees of freedom. The symbolic model shows
consistent behavior with the multibody simulator under the
assumptions made. Finally, the benefits and disadvantages
of using AWD with torque distribution have been analyzed.
The paper is organized as follows: Section 2 introduces the
related work; Section 3 and 4 are devoted to describing
the AWD symbolic model. Section 5 describes the adopted
tire’s model. Section 6 introduces the multibody model,
Section 7 is focused on the theoretical validation of the
model, Section 8 shows comparative simulation and results.
Section 9 concludes the paper.

II. RELATED WORK
Over the years, many efforts have been devoted to developing
two-wheeled vehicles (2WVs) with rear wheel drive. The
joint progress between industrial development and mathe-
matical models’ analysis had led to a meaningful techno-
logical evolution of the 2WVs. The same did not happen
for the AWD version of these vehicles, as instead occurred
for cars. The reasons are twofold, technological and theo-
retical. To understand them better, in the following it will
be introduced both the few industrial developments of AWD
motorcycles and the main theoretical progress of the 2WVs,
up to the AWD counterpart. The idea of AWD is not new in
the field of motorcycles, indeed some early implementations
of all-terrain vehicle date back to the 60s, see e.g. the Rokon
motorcycles [1]. Then later over the years, some prototypes
have been developed. However, only few commercial propos-
als have been made, mostly involving internal combustion
engine (ICE) and with obvious mechanical difficulties in
distributing the torque through the front wheel.Without going
into details of all the prototypes, we will briefly mention
few notable products that have had commercial implications
together with their main features. Rokon manufacturer is a
long-time producer of AWD motorcycles. They are off-road
and low speed motorcycles designed for use in the most
rugged terrain. Rokon uses ICE of about 6 Hp and a combi-
nation of belt, chain and shaft drives coupled to gear boxes
to drive both front and rear wheel. Back in the early 90s,
Swedish suspension specialists Öhlins [2] started working
on a two-wheel drive system for the Japanese manufacturer
Yamaha. The system is based on a hydraulic pump driven
by the engine in the rear frame which forces oil in hoses to
a small hydraulic motor in the front wheel. It activates in
slip condition of the rear wheel; during this, the hydraulic
pump transfers the exceeding energy of the spinning tire
to the hydraulic motor of the front wheel by generating a
smooth transmission torque. It involves an additional weight
of about 8 kg. In 2004 Yamaha produced in limited numbers
the WR450 2-Trac off-road motorbike. In the same years the
two-wheel drive set-up from Öhlins has been deployed on the
Yamaha R1 sportbike. Another noteworthy manufacturer is
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the US firm Christini [3], it offers two-wheel drive conver-
sions to experience the AWD for off-road bikes and military
applications. The Christini’s AWD system delivers power
from the motorcycle transmission to the front wheel through
a series of chains and shafts, it is complicated, but it is also
fairly light and can be applied to several bikes. The transferred
torque is predefined by design. The front wheel engages with
the drive system and starts to pull as soon as the rear loses
traction. The above models have not been conceived to adapt
the drive torque between both wheels in several dynamic
conditions without slip arising. Besides, a theoretical analysis
did not follow jointly their development, probably because
of the need to investigate behaviors mainly under slip condi-
tions. Conversely, over the years this has not happened for the
2WVs, for whommany efforts have been devoted to dynamic
modeling and analysis. In this regard, the paper of Limebeer
and Sharp [5] represents a milestone about the development
of the subject concerning single track vehicles modeling and
control. They explored the subject since the mid-1850s when
the landmark publications started to appear, and the refer-
ences therein also provide a comprehensive review concern-
ing motorcycles, ranging from pioneering and simple models
to more detailed ones. For the sake of brevity, only a few
of many noteworthy works in [5] will be mentioned below,
the reader can refer to [5] for further details. Dates back to the
’70s the influential work of Sharp [6] to the theoretical anal-
ysis of motorcycle in straight-running. A linearized model
withminimum complexity that included for the first time sim-
plified tire-road interaction without aerodynamic effects and
suspension motions had been investigated for lateral stability
analysis together with influences of parameter uncertainties
on the stability. In the same years was shown the importance
of aerodynamic forces on the performance and stability of
motorcycles [7]. Some years later the same Sharp [8] tries
to investigate the effects of acceleration and deceleration
on motorcycles’ stability with a rather simplified approach
introducing longitudinal equation of motion decoupled from
the lateral equations. Some decades later, in [9] those con-
clusions were partially refuted by using a higher fidelity
multibody model but influence of acceleration or braking
on a cornering machine is still an open issue. During ’90s
extensive use of multibody simulators to evaluate the per-
formance of motorcycles has started [10], [11], besides was
laid the foundations of motorcycle’s tire modeling [12], [13].
In the following decade the contemporary empirical tire mod-
els for motorcycles was developed [14]. A comprehensive
overview of many of these models is given in [15]. During the
’2000s, Cossalter and Lot [16] present a motorcycle model
described as a set of 6 bodies for FastBike simulation pro-
gram. The literature concerning the stabilization of 2WV is
quite recent [17], [18], a double loop controller is generally
proposed to follow a road path pre-computed by strategies
such as the optimal maneuver method [19]. Later, Kooijman
and Schwab [20] have presented a wide review on bicycle
and motorcycle rider control. More recently for simulator
application a motorcycle dynamic model was derived by

using a recursive Newton-Euler [21], whereas in [22] an
alternative modeling approach based on the Jourdain’s prin-
ciple is presented to derive a mathematical description of
a motorcycle vehicle; finally, more recently in [23] it has
been shown as the roll angle linearization assumption could
be removed from rear wheel drive motorcycle models and
it has been used for investigating critical motorcycle’s falls,
such as the low side fall. As showed by the above overview,
the 2WVs has reached maturity in addressing many dynamic
aspects. By focusing instead on AWD motorcycle, at best
of authors’ knowledge, a noteworthy multibody model is
proposed in [24] where the authors analyze some handling
characteristics as well as the energy efficiency achievable by
using the torque distribution, this work shows as torque dis-
tribution does not provide significant improvement in terms
of energy saving, on the other hand it gives some clues on
good handling characteristics of an AWD vehicle negotiating
a cornering. While the dynamics of 2WVs has been investi-
gated by means of the symbolic model formulation [25] or by
computer assisted multibodymodeling (which overcomes the
difficulties in handling complex symbolic equations), AWD
dynamics still appears to be in the early stage. For this topic
indeed few existing works exploit simple AWD models with
one rigid body, e.g. in [26] it has been proposed the AWD
slip control in presence of roll angle. However, a single
rigid body model is not suitable to investigate more complex
dynamics of AWD vehicle, and a more accurate model is
advisable. A work addressing practical low-cost solutions for
the automatic engagement of the front wheel drive in an AWD
motorcycle can be found in [27]. In this general context, our
aim is to find a proper mathematical representation of the
motorcycle which describes the essential dynamics issues of
the AWD. The model is intended to facilitate the vehicle’s
dynamics control through the torque distribution between
wheels.

III. AWD MOTORCYCLE MODELING
In this section, the model of AWD motorcycle is proposed
in terms of a set of symbolic equations of motion (EOMs),
derived by using Lagrangian formulation. Generally, this
provides fully nonlinear EOMs having higher complexity of
expressions and wide operating range. Approaching the anal-
ysis of newly conceived vehicle, rather than a full complexity
model, firstly requires investigation of its distinguishing
dynamics, albeit complex, over limited operating conditions
even with approximated models, as shown by vast litera-
ture [6], [28], [29]. Accordingly, by focusing here on certain
basic operating conditions, is advisable to avoid the wide
range of vehicle’s trim conditions linked to a complex model.
Subsequently, once verified the model’s effectiveness in con-
ditions deemed basic, the roll angle linearization assumption
could be removed to widen the operating range focusing
on higher performance of the vehicle, as already showed
in [23], [30] for the investigation of rear wheel drivemotorcy-
cle’s falls. This would open the way to a further novel result
consisting of a symbolic model linearized around non-zero
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trim condition and parameterized with respect to the roll
angle, thus would allow it to perform a steady turning analysis
at higher performance and investigate on suitable controllers.
Currently this was attempted with black-box approaches on
rear wheel drive vehicles by acquiring the vehicle’s frequency
response in steady turning condition from multibody simu-
lator, by assuming that it can reproduce realistic dynamics
of the vehicle [31], [32]. The present paper focuses on the
dynamic model of AWDmotorcycle able to describe its basic
and distinguishing dynamics; it represents the first stage of
the path above mentioned for developing newly conceived
AWD vehicles. As first attempt of analysis of AWD vehi-
cles, the vertical trim condition has been chosen, afterwards,
excessive lean angles in cornering have been avoided by
means of a virtual rider controller. Thus, nonlinear EOMs
have been linearized about the vertical position. The con-
tributions of this work are different, firstly it proposes a
parametric model having the lowest allowed complexity, able
to describe with enough accuracy the dynamics of AWDvehi-
cle in complex operating modes such as cornering phenom-
ena, taking into account coupling of lateral and longitudinal
dynamics and the tire-road interactions. Besides, it shows
how to integrate into AWD symbolic model a full tire model
by exploiting theoretical slips of the brush model for tire’s
aligning moment too, instead of applying totally empirical
model less suitable for the symbolic modeling. In addition
to simulate equations of motion, the model has proven to be
effective in highlighting effects of the front wheel drive on
motorcycle’s dynamics allowing to describe the benefits and
disadvantages of using AWD with torque distribution.

The tires model plays a major role in motorcycle modeling,
in this regard a specific section will be devoted to describe a
proper model and its integration with the symbolic environ-
ment to provide the expressions of the contact forces and the
contact moments acting on the tires.

A. ASSUMPTIONS AND NOTATIONS
The model derivation makes the following assumptions:

- the motorcycle moves on a flat road surface and the
vertical dynamics and the effects of the suspensions sys-
tem have been neglected. Accordingly, it will be deemed
acceptable for our purposes those traction torques avoid-
ing abrupt vehicle’s accelerations, so that no excessive
fore-and-aft load transfer is triggered. Also, the motor-
cycle tricky phenomena such as the wheelie and the
stoppie are out of the scope of the paper;

- the rider has been modeled as a body rigidly attached to
the rear frame;

- the direction and the velocity of the motorcycle is con-
trolled by the rider acting on the steering mechanism and
on the front and rear engine torques;

- the contact forces and moments are accounted as exter-
nal forces generated by a specific tire-road interaction
model.

The motorcycle’s geometry is shown in Fig. 1. It consists
of two rigid bodies, the front and the rear one. From now on

in the paper the subscript i ∈ {r, f } will refer to the rear and
the front body respectively. The rear frame, represented by its
center ofmassGr includes the rear engine, the propellant stor-
age, either the petrol tank or the battery storage, the saddle,
the rear wheel with radius Rr and the rider. The front frame is
represented by its center of mass Gf , it is constrained to the
rear frame by means of a revolute joint, it includes the front
engine, the handlebars, the fork, the steering mechanism and
the front wheel with radius Rf . Furthermore, Fig. 1 shows
the vertical distances h and j of the two centers of mass,
their longitudinal distance k and the wheel base l + b, i.e.
the distance between the tire-road contact points P and S.
The steering mechanism is characterized by the steering head
angle ε and the normal trail t . Numerical values of parameters
have been taken from a well established model [6] and are
reported in Table 4 of Appendix B.

B. MOTORCYCLE’S RELATIVE COORDINATES
Relative coordinates define the position and orientation of
motorcycle’s bodies with respect to each other. The present
paper considers the right-handed coordinate systems (CSs)
shown in Fig. 1: 60 is the inertial CS whose XoYo-plane
represents the road surface with Zo-axis pointing downwards;
61 originates in A and rotates by the yaw angle ψ about
Zo-axis; 62 originates in A and rotates by the roll angle φ
about X1-axis; a rotation of 62 by the steering head angle
ε about Y2-axis and a translation to point B generates the
CS 63; a rotation of 63 by an angle δ and a translation to
Gf generates the CS 64. The resulting kinematics chain has
the following DoFs: the longitudinal and the lateral displace-
ments of the moving point A in 6o, respectively xo and yo,
vehicle’s angular displacementsψ ,φ, δ, respectively the yaw,
the roll and the steering angle, the front and the rear wheels
spinning θr , θf .

FIGURE 1. Motorcycle geometric parameters and reference frames.

C. MOTORCYCLE’S DYNAMICS
The dynamics of the AWD motorcycle is described by a set
of 2nd order nonlinear ordinary differential equations (ODEs)
obtained by Euler-Lagrange’s formalism (1), where the vector
of the generalized coordinates is q = [x1, y1,ψ , φ, δ, θr , θf ]T ,
and x1, y1 represent the displacements of the reference point
A in the CS 61. The term T = T (q, q̇) is system’s kinetic
energy, V = V (q) is the potential energy. Appendix A-A
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will provide the derivation of T and V needed to solve (1),
the results are summarised in (32), (37), (41), (42) and (50).
The term Qq is the vector of the generalized forces acting on
the generalized coordinates.

d
dt

(
∂T
∂ q̇

)
−
∂T
∂q
+
∂V
∂q
= Qq (1)

The full actuation of AWD motorcycle is obtained by
introducing in Qq three system’s inputs, i.e. the rear and the
front engine torques τwr , τwf , respectively applied on the
transverse axes of the rear and front wheel, and the torque
τ applied on the handlebar by the rider. The vector Qq, can
be defined as Qq = [Qx1 , Qy1 , Qψ , Qφ, Qδ, Qθr , Qθf ]

T .
It is composed of the forces and moments acting on the
motorcycle’s generalized coordinates q. They mainly arise
from the tire-road interaction and from the steering torque
effects.

FIGURE 2. External tire forces, moments and their CSs.

In Fig. 2 are shown the external forces Xi,Yi,Zi, i ∈ {r, f },
acting on the tire-road contact points P(i = r) and S(i = f ).
Furthermore, P and S are the origins of the tires CSs6Ti(XTi,
YTi, ZTi), i ∈ {r, f } with respect to which the longitudinal
and the lateral tire forces Xi, Yi are defined. In the same CSs
we assume Zi as constant vertical loads. Referring to Fig. 2,
the sum of the external forces along X1 and Y1 axes of the
moving CS 61, yields respectively the first two generalized
forces Qx1 ,Qy1 :

Qx1 = Xf cos γ − Yf sin γ + Xr ≈ Xf + Xr
Qy1 = Yf cos γ + Xf sin γ + Yr ≈ Yf + Yr (2)

The approximations made in (2) hold under the assump-
tion of small δ, which also implies small effective steering
angle γ = δ cos ε. Further detail about γ can be found
in [33].

The third generalized force Qψ is the sum of the moments
acting along Z1-axis. It can be split into two contributes, Qψ1

and Qψ2 , as shown in (3). The first one includes the moments
arising about Z1-axis because of the external tire forces Xi, Yi,
i ∈ {r, f } acting at distances b and l from point A. The second
one includes the aligning momentsMz,i, i ∈ {r, f }, arising on
the rear and the front tire contact patch [15]. The aligning
moments will be derived later in section V-B devoted to the

tire contact moments. Therefore, the term Qψ is:

Qψ =
∑2

j=1
Qψj

= (Yf cos γ + Xf sin γ )l − Yr b+ (Mzf +Mzr )

≈ Yf l − Yr b+ (Mzf +Mzr ) (3)

where the same approximation used in (2) holds. The fourth
generalized force Qφ is the sum of the moments about the
X1-axis, exerted by the tires external forces Xi, Yi, Zi and by
the overturning moment Mxi internally generated by the tire
itself, being always i ∈ {r, f }. The external forces acting on
the rear wheel do not contribute to this moment because of
their null arm, therefore Qφ is the sum of three contributes:

Qφ=
∑3

j=1
Qφj=−tδ(Zf cosφ−Yf sinφ)+Mxr+Mxf cos γ

(4)

The first term Qφ1 is the X1-component, linearized with
sin γ = γ and cos γ = 1, of the front external moment
Mef = re ∧ Fef expressed in 61. Fef is the front force with
arm re (distance from the steering axis), both computed in61.
Notice that in the front tire CS it is Fef 6Tf = [Xf ,Yf ,Zf ]T

while in an auxiliary CS 65 centered in S and oriented as
64 is re65 = [−t, 0, 0]T hence these vectors converted to
61 allow to compute Mef . The terms Qφ2 and Qφ3 in (4) are
respectively the components about X1-axis of the overturning
momentsMxr andMxf , which will be derived in section V-B.
The fifth generalized force Qδ is the sum of the moments
about the steering axis Z3 of Fig. 1, which can be split into
three contributes, Qδ1 , Qδ2 and Qδ3 :

Qδ =
∑3

j=1
Qδj

= (τ−K δ̇)+t{[(Yf sinφ−Zf cosφ) sin ε

+ (Xf −Yf γ ) cos ε]δ−(Yf cosφ+Zf sinφ)}

+Mzf cos ε cosφ (5)

The first contribute includes the torque τ which is applied
by the rider on the steering axis and the torque −K δ̇ due to
the steering damper, where K is the damping constant. The
contribute Qδ2 includes the total moment acting along Z3-
axis, generated by the external tire forces Xf ,Yf ,Zf applied
on the tire-road contact point S. It can be obtained by merely
converting the moment Mef previously considered to the
system 64, and taking the third component, linearized with
sin γ = γ and cos γ = 1. The third component Qδ3 is
the aligning moment Mzf along Z3-axis. Finally, the last two
generalized forces are related to the rear and front wheels and
can be expressed as:

Qθi = −τwi + RiXi i ∈ {r, f } (6)

where τw,i are the engine torques applied on the rear and front
wheels. The effects of the roll resisting moment are neglected
since they are countered by wheel’s traction. As can be seen,
all the generalized forces depend on the longitudinal and the
lateral tire forces Xi, Yi, on the vertical load Zi and on the

VOLUME 8, 2020 112871



A. Bonci et al.: Towards an AWD Motorcycle: Dynamic Modeling and Simulation

moments acting on the tires. The section V-B, devoted to the
tire model, will explicit these forces and moments in terms of
the kinematic variables of the vehicle.

IV. THE AWD SYMBOLIC MODEL:
EQUATIONS OF MOTION
The seven EOMs representing the AWD motorcycle’s
dynamics are reported in this section. They have been
obtained by applying to the nonlinear equations resulting
from (1) a first order Taylor expansion around vehicle’s
vertical equilibrium point {φ, δ} = {0, 0} and taking into
account that γ = δ cos ε. The first three nonlinear equa-
tions are relative to longitudinal, lateral and yaw motions
and have been obtained by solving Lagrange’s equations as
follows [30], [34]:

d
dt

(
∂T
∂ ẋ1

)
−
∂T
∂ ẏ1

ψ̇ = Qx1 (7)

d
dt

(
∂T
∂ ẏ1

)
+
∂T
∂ ẋ1

ψ̇ = Qy1 (8)

d
dt

(
∂T

∂ψ̇

)
−
∂T
∂ ẋ1

ẏ1 +
∂T
∂ ẏ1

ẋ1 = Qψ (9)

The remaining nonlinear equations relative to the motions of
the roll, the steer and of the two wheels have been obtained
by directly solving (1) with respect to the generalized coordi-
nates φ, δ, θr , θf , whose generalized forces are, respectively,
Qφ,Qδ,Qθr ,Qθf . The following linearized EOMs have been
found:

[ẍ1] (Mf +Mr )(ẍ1 − ẏ1ψ̇)−Mf kψ̇2
−Mf e cos εδ̇2

− 2(Mrh+Mf j)ψ̇φ̇ − 2Mf eδ̇ψ̇ − Xr − Xf = 0

(10)

[ÿ1] (Mf +Mr )(ÿ1 + ẋ1ψ̇)+ (Mrh+Mf j)φ̈

+Mf eδ̈ +Mf kψ̈ − Yr − Yf = 0 (11)

[ψ̈] Mf kÿ1 + (Mf k2 + Ifz cos2 ε + Ifx sin2 ε + Irz)ψ̈

+
[
(Ifz − Ifx) cos ε sin ε − Crxz +Mf jk

]
φ̈

+ (Ifz cos ε +Mf ek)δ̈ + (ify + iβf )θ̇f φ̇

+ (iry + iβr )θ̇r φ̇ + (ify + iβf ) sin εθ̇f δ̇ +Mf kẋ1ψ̇

+Yrb− Yf l −Mzr −Mzf = 0 (12)

[φ̈] (Mrh+Mf j)ÿ1 + [Mf jk + (Ifz − Ifx) cos ε sin ε

−Crxz)]ψ̈ + (Mrh2 +Mf j2 + Irx + Ifx cos2 ε

+ Ifz sin2 ε)φ̈+(Mf ej+ Ifz sin ε)δ̈ − (iry + βr i)θ̇r ψ̇

− (ify + βf i)θ̇f ψ̇ + (Mrh+Mf j)ẋ1ψ̇

− (ify + βf i) cos εθ̇f δ̇ − (Mrh+Mf j)gφ

+ (tZf −Mf eg)δ − (Ify + iβf ) cos εδθ̈f
−Mxr −Mxf = 0 (13)

[δ̈] Mf eÿ1 + (Mf ek + Ifz cos ε)ψ̈ + (Mf ej+ Ifz sin ε)φ̈

+ (Mf e2 + Ifz)δ̈ − (ify + iβf ) sin εθ̇f ψ̇ +Mf eẋ1ψ̇

+ (ify + iβf ) cos εθ̇f φ̇ + (tZf −Mf eg)φ

+ (tZf −Mf eg) sin εδ − tXf cos εδ + K δ̇ − t Yf
−Mf e cos εδẍ1 −Mzf cos ε = τ (14)

[θ̈r ] (iry + iβ2r )θ̈r + (iry + iβr )ψ̇φ̇ = −τwr + RrXr (15)

[θ̈f ] (ify + iβ2f )θ̈f + (ify + iβf )ψ̇φ̇ − (ify + iβf ) cos εφ̇δ̇

+ (ify + iβf ) sin εψ̇δ̇ = −τwf + Rf Xf (16)

where k = a cos ε+e cos ε−f sin ε and j = a sin ε+e sin ε+
f cos ε. Despite the tricky symbolism, due mainly to the full
parametric representation of EOMs, the whole system is still
described by the seven variables in q. The only quantities still
missing to be able to integrate the seven EOMs are the tire
forces Xi,Yi and the moments Mzi ,Mxi , i ∈ {r, f } which will
be provided in the following section.

V. THE TIRE MODEL
An effective simulation of motorcycle dynamics requires a
proper tire model able to describe most of phenomena aris-
ing from the tire-road interaction. This section is devoted
to compute the longitudinal and lateral tires forces as well
as the aligning and the overturning moments acting on the
tires contact points. For this purpose, the widely accepted
model conceived by Pacejka [15] has been adapted to the
AWD symbolic model. Pacejka describes the tire forces and
moments in terms of the so-called Magic Formula [15],
which are functions of the tire slip. In Pacejka’s model
the axes systems are in accordance with the standard SAE
J670 and 4976 (shown in Fig. 3a). In automotive, however,
the ISO 8855 1991 (shown in Fig. 3b) is currently adopted
as simulation-oriented standard for complex models. For this
reason, the latter has been here adopted in order to easily
compare the AWD symbolic model of the motorcycle with
the model developed by means of a multibody software.

FIGURE 3. Tire external forces and internal moments: a) std SAE, b) std
ISO.

The modeling of the tire forces and moments requires two
essential wheel’s kinematic quantities, the longitudinal slip λ
and the side slip α [15]. Such quantities are defined as follow:

λ = −
vx − ωRe

vx
α = arctan

vy
|vx |

(17)

where ω is the wheel’s angular velocity, Re is the effective
rolling radius, vx and vy are the longitudinal and the lat-
eral velocities of the tire-road contact point. Equation (17)
is generally used by multibody software. As first analysis,
the effective radius was simulated in both symbolic andmulti-
body model by using the formulation defined by Pacejka.
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Under the assumptions imposed on the motorcycle model,
it can be shown that the deformation of the tire is negligible
compared to the unloaded tire, as well as its effects. To further
simplify the symbolic implementation, the effective radius
Re is replaced with the unloaded radius Ri, i ∈ {r, f } while
the multibody model keeps the standard definition (17). This
choice simplifies the implementation without affecting the
model accuracy as proven later by comparing the two models
in simulation. In literature, the tire-road interaction has been
described by two major models which differ in the way the
longitudinal and lateral dynamics are coupled. The first one is
the completely empirical model [15] which describes forces
and moments by means of a set of Magic Formula, where the
coupling effect is taken into account by multiplying the pure
slip formulation of each dynamics with a proper weighting
function. This implies the coupling is hidden in the formula.
The second one is the semi-empirical model, it uses a subset
of Magic Formula in pure slip condition which are function
of the theoretical slip computed by the Brush model [15]. The
majority of the multibody software use the former approach,
however, the latter has been chosen in this paper coher-
ently with its purpose of preserving the representation of the
physical phenomena through a theoretical formulation, and
have proved more suitable for the symbolic formulation. The
Brush model considers the coupling effects by introducing
three theoretical slip quantities, the theoretical longitudinal
slip σxi, the theoretical lateral slip σyi and the total theoretical
slip σi, defined as follows:

σxi
1
=

λi

1+ λi

σyi
1
=

tanαi
1+ λi

σi =

√
σ 2
xi + σ

2
yi i ∈ {r, f } (18)

where λi andαi are the slip quantities given in (17) specialized
for the rear and the front wheel. These quantities are reported
in Appendix A-B. The total theoretical slip σi is precisely
the argument of the Magic Formula describing the contact
forces and moments in the semi-empirical model, these are
described in the following subsections.

A. TIRE CONTACT FORCES
The longitudinal and the lateral contact forces acting on the
tires, respectively Xi and Yi, are modeled as follows:

Xi =
σxi

σi

Zi
Zo
Xoi (σ

∗
i )

Yi =
σyi

σi

Zi
Zo
Y oi (σ

∗
i , φ

∗
i )

with
σ ∗i =

Zo
Zi
σi

i ∈ {r, f }
(19)

where Zi represents the constant vertical load acting on the
front and rear tires while Zo is the nominal wheel load [15].
The lateral contact force also includes the effect of the incli-
nation of the tire by considering the tire camber angle φ∗i ,
where φ∗r = φ and φ∗f = φ + δ sin ε. Each force in (19)
is composed of the product of three terms: a coupling fac-
tor, a load factor and an empirical Magic Formula (Xoi (σ

∗
i )

and Y oi (σ
∗
i , φ

∗
i )) describing the force in pure slip condition.

These Magic Formula are defined as:

Xoi (σ
∗
i ) = Dxi sin{Cx,i arctan[σ

∗
i Bxi

−Exi (σ
∗
i Bxi − arctan(σ ∗i Bxi ))]} (20)

Y oi (σ
∗
i , φ

∗
i ) = Dyi sin{Cyi arctan[σ

∗
i Byi − Eyi (σ

∗
i Byi

− arctan(σ ∗i Byi ))]+ Cφi arctan[φ
∗
i Bφi

−Eφi (φ
∗
i Bφi − arctan(φ∗i Bφi ))]} (21)

The values of the parameters Bxi , Cxi , Dxi , Exi , Byi , Cyi , Dyi ,
Eyi , Bφi , Cφi , Eφi and Zo used in this paper are reported
in Table 5 of Appendix B. These parameters are described
by H. B. Pacejka in his book, and are the same used by the
Adams Software. In particular, it has been adopted Pacejka’s
PAC-Motorcycle library, named PAC-MC (120/70R17-Dry).
In literature, such parameters are identified by means of
specific test bench and software, based on empirical approach
and data acquisition. A detailed description of the acquisition
procedures is described in Pacejka’s book.

B. TIRE CONTACT MOMENTS
This subsection describes the overturning and the aligning
contact moments taken into account in the generalized forces
(3), (4), (5) of the proposed symbolic model. The formulation
of the overturningmoment is based on [15] and [35], the main
contributions taken into account are due to the lateral force
and rolling effects, as shown below:

Mx,i = RiZi(qsx3
Yi
Zo
− qsx2φ) i ∈ {r, f } (22)

where Zi, Yi and Zo have been defined above. The parameters
qsx2 and qsx3 are taken from the multibody tire model, their
meanings are explained in [35] and their values are reported
in Table 5 of Appendix B; this formulation allows the pro-
posed tire model to well approximate the multibody software
model, however for a more in-deep treatment, the reader can
refer to [15]. The aligning moment is composed of three
terms, the first one depends on the lateral force effect, the sec-
ond one is related to the longitudinal force effect, also known
as the coupling term, and the last one is due to the residual
aligningmoment. The aligningmoments have been expressed
in compact form as follows [15]:

Mz,i = −triYi + Xi(Ri(ssz2(
Yi
Zo

)+ ssz3φ))+Mres,i (23)

As shown, the lateral effect is modulated by the terms tri , also
known in the literature as the pneumatic trail [15]. This trail
is described by a specific Magic Formula which is a function
of the theoretical side slip σyi and the total slip quantities σi
as follows:

tri =
σyi

σi

Zi
Zo
trRo,i (24)

trRo,i = Dti cos{Cti arctan[Btiσ
∗
i − Eti (Btiσ

∗
i

− arctan(Btiσ
∗
i ))]} cos(σyi) (25)

the values of the parametersDti ,Bti ,Cti are reported in Table 5
of Appendix B. The second term of (23) is the coupling
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effect due to the longitudinal force Xi. As done for the
overturning moment (22), the formulation of the aligning
moment has been slightly simplified compared to the Pacejka
model [15], [35], i.e. only the lateral and the roll effects have
been kept as well as the residual term Mres,i. The parameters
ssz2 and ssz3 are equivalent to those used in the multibody
tire model described in [35] and their values are reported
in Table 5 of Appendix B. Referring to the residual aligning
moment Mres,i, in order to compare its effect with the com-
pletely empirical model used bymultibody tools, the formula-
tion here proposed differs from the semi-empirical model that
is known in the literature [15]. Such difference consists in the
use of a Magic Formula depending on the theoretical slip σ ∗i ,
σyi of the Brush model. The Magic Formula is derived from
the completely empirical model (see parameters in Table 5,
Appendix B) and depends on the roll angle φ. A correction
factor (σyi/σi)(Zi/Zo) is introduced to take into account the
side slip effect and vertical load normalization, therefore the
formula reads as:

Mres,i =
σyi

σi

Zi
Zo
MRo,i (26)

MRo,i = Dresφ,i cos(arctan(Bresiσ
∗
i )) cos σyi (27)

Dresφ,i = aiφ(bi|φ| + ci) (28)

VI. THE AWD MULTIBODY MODEL
Taking into account that in many high-tech fields such auto-
motive, aerospace etc., the multibody analysis is a test-bench
to simulate tests and behaviors of real prototypes during
their development as a new product [4], the proposed model
of this new kind of vehicle will be later compared with a
higher-realistic multibody model which is here introduced.
TheMSCAdams software has been used to develop the AWD
motorcycle in a multibody environment (Fig. 4). In order
to have a test-bench as close as possible to the reality,
the vertical dynamics has been included in the Adams model,
thus, it includes both the front and rear wheel suspension
in order to pursue the best fidelity. The Adams model uses
the same linear dimensions, masses, inertia and tires model
used in the symbolic model. Therefore, under the same input
torques, suitably chosen in order to not trigger the vertical
dynamics, it is expected a similar behavior of both symbolic
and Adams models. In order to simulate the full dynam-
ics of the AWD motorcycle in the multibody environment,
at least a model consisting of four rigid bodies is required.
This model has 11 DOFs for describing the bodies relative
motion, 3 translational about the axes of the motorcycle CS
(previously marked as 61), 3 rotational (Roll, Pich, Yaw),
2 rotations about wheels revolution axes, 1 rotation about
steering axis, 1 translational along the steering axis due to
the front suspension system and 1 rotational about an axis
parallel to Y2-axis due to the rear suspension system. The road
is locked by a fixed joint to the ground CS (previously marked
as 60). The rear frame of the motorcycle has been split into
two rigid bodies: a rear frame without the wheel, including
the rear engine, the propellant storage system, the saddle and

the rider, and a second one representing the rear wheel. This
has been done to allow the insertion of tire-road constraint
in multibody environment. The same procedure has been
performed for the front frame, by splitting the front wheel
from the front frame. The position of the centers of mass and
the inertia matrices of these new bodies have been suitably
rearranged (see Table 6 of Appendix B for the multibody
model parameters). As regards to the body joints, the front
wheel is fixed to the suspension by a revolute joint which is
fixed to the fork by a prismatic joint, the rear wheel is similar,
but a second revolute joint at distance b from the wheel fixes
the suspension to the rear frame; the front and rear frames are
connected by a revolute joint about the steering axis. A steer-
ing damper is also modeled by a rotational spring damper
acting between the two frames. The motorcycle is actuated by
the torques applied to the revolute joints of both the wheels
and to the steering mechanism. These torques will have the
same profile of the control inputs of the AWD symbolic
model. The MSC Adams tire model has been implemented
to model the tire-road interaction. It uses the fully empirical
tire model, based on [15] and it is illustrated in [35]. Note that
in Adams the CS, defining tire forces andmoments, is defined
according to the standard ISO 8855, nevertheless the Adams
tire model is equivalent to the one from Pacejka [15], which
uses SAE standard, as previously shown in the tire section.
In the multibody environment, additional CSs equivalent to
those from the symbolic model (60, 61, 62, 63, 64) were
defined, so that the generalized coordinates could be mea-
sured along the same axes in both models, this allowing to
coherently compare such variables.

FIGURE 4. Multibody model of the AWD motorcycle.

VII. THEORETICAL AWD MODEL VERIFICATION
In order to validate the proposed AWD motorcycle model,
a two steps procedure has been followed. This section con-
cerns the first step and it provides the theoretical evaluation
of the balance of forces and moments acting on the vehicle in
steady turning, moreover the power balance is also verified.
The next section will describe the second step of validation,
where a comparison of the behavior of the AWD motorcycle
model with the multibody software counterpart will be made.
The first validation has followed the procedure described
in [25]. The vehicle in steady turning has been simulated and
the following three conditions have been verified in order to
hold the vehicle in equilibrium:

112874 VOLUME 8, 2020



A. Bonci et al.: Towards an AWD Motorcycle: Dynamic Modeling and Simulation

- The sum of the external forces acting on the vehicle must
equal the sum of the inertial and gravitational forces;

- The sums of the moments acting on the vehicle must
equal zero;

- The power provided to the system by the motors must
equal the power losses.

The steady state condition for the vehicle has been achieved
by means of a simple rider model controlling the driving
torque and the steering torque in order to have the motorcycle
running along a circular trajectory with a radius of curvature
of 200m at a constant velocity of 15m/s. In this state other
kinematic parameters are: roll angle φ = 7.4 deg, steering
angle δ = 0.53 deg; yaw velocity ψ̇ = 0.075 rad/s.
The rider model follows a well known schema, e.g. the one
reported in [24] and it consists of two PI (Proportional Inte-
grative) controllers with values P1 = 2, I1 = 210,P2 =
50, I2 = 150. In order to verify the first condition the
following balance equation was considered that expresses the
force error vector 1F as:

1F =
∑

i
Fi,tire +

∑
j
Mj (ωj ∧ vGj + g)+ Faero (29)

TABLE 1. Force balance - components.

where the subscript i ∈ {r, f } stands for the rear and the
front tire/wheel, while the subscript j ∈ {r, f } stands for the
rear and the front center of mass (COM) having massMj.
All the vectors of (29) are referred to the moving CS 61
and their meaning are detailed in Table 1. In the term Faero
only the drag component is considered hence the lift force,
the side force and their relativemoments have been neglected.
The importance of aerodynamic forces on the performance
and stability of motorcycles at high speeds was demonstrated
in [7] and pointed out in [5]. Generally, aerodynamic forces
are not negligible, in particular they are relevant at high
speeds. In our research, we refer to low accelerations and
not high speeds, resulting in low wind yaw angles and minor
crosswind effects, in that case much of aerodynamic effects
are negligible excepting for drag force. This is supported by
experimental data and theoretical assessment in [7]. It was
also found that in these conditions the lift force coefficient
was close to zero, therefore validating the assumptions made
in this work. Above evaluations are also confirmed by numer-
ical findings: aerodynamic side force is proportional to the
sideslip angle and the side force aerodynamic coefficient.

Since we deal with sideslip value of 0.02 rad and side force
aerodynamic coefficient that approximates zero, the contri-
bution of the aerodynamic side force is about 3% of the drag
force. Besides, the computed side force is about 2% of the
lateral force acting on the front tire-road contact point and 1%
of the lateral force acting on the rear tire-road contact point.
These results come from the evaluation of experimental data
relating to a motorcycle running a curve at a constant speed
of 15 m/s and different yaw angles. They seem to fully agree
with the assumptions made.

In Fig. 5.a is depicted the behavior of the norm of the
vector |1F|, which reaches a value of 0.4 N at steady state.
Such quantity is 0,04% of the overall force acting on the
vehicle in the steady state.

FIGURE 5. Fig (a): Time evolution of force and moment vectors’ norm;
zoomed graph: evolution in time frame 15 - 30 sec. Fig (b): Time evolution
of resulting power; zoomed graph: evolution in time frame 15 - 30 sec.

In order to verify the second condition related to the
moments balance, the following balance equation was con-
sidered that expresses the moment error 1M as:

1M =
∑
i

M i,tire +
∑
i

M i,tireint

+

∑
j

(M j,inertial +M j,grav)+
∑
i

M i,gyro +Maero

=

∑
i

(Ci − A)61 ∧ Fi,tire +
∑
i

M i,tireint

+

∑
j

(Gj−A)∧Mj(ωj∧vGj+g)+
∑
i

M i,gyro+Maero

(30)

again, the subscripts i, jmaintain the meaning defined above.
The components of (30) are detailed in Table 2. In Fig. 5.a is
depicted the trends of the norm vector |1M |, at steady state

TABLE 2. Moments balance - components.
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is stable at 0.3 Nm, which is 0.06% of the resulting moments
acting on the motorcycle. Finally, the third condition regard-
ing the power balance has been verified by considering the
power error 1P, expressed as:

1P =
∑

i
Pi,drive +

∑
i
Pi,slip +

∑
i
Pi,tire + Paero (31)

where i ∈ {r, f }. Each component of (31) is detailed
in Table 3. In Fig. 5.b is shown how the power checksum
behave, and at steady state it reaches a mean value of 0.32 W
between 15 and 25 seconds. Such value represents a 0.022%
of the power provided by the traction system of 1446 W.

TABLE 3. Power balance - components.

VIII. COMPARATIVE VALIDATION AND RESULTS
In this section, the AWD motorcycle model will be fur-
ther validated by means of comparative simulations with
the multibody software counterpart. Furthermore, simulation
tests highlighting AWD features pointed out by experienced
riders will be provided. The proposed symbolic model has
been implemented in Matlab Simulink environment. Com-
parative simulations, described in the next subsection, have
investigated model reliability and effectiveness in two note-
worthy conditions: maneuvers with roll and steering angles
exceeding the linearization range; acceleration in cornering
of AWD motorcycle when coupling dynamics is triggered.
A further subsection will provide AWD vehicle behaviors
compared with the rear-wheel-drive (RWD) vehicle.

A. CORNERING COMPARATIVE VALIDATION
Two simulations will be proposed here, namedminor steering
torque (mS) and major steering torque (MS). Both aims to
estimate errors between symbolic and multibody models by
comparing the roll angle, the steering angle and the trajecto-
ries. Before detailing simulation results, it is worth noting that
the comparison was made with a higher-realistic multibody
model than the symbolic one. Adams model includes vertical
dynamics, more degrees of freedom, is free of linear approx-
imations, and uses Adams tire model. For our purposes, it is
closest to a real AWD byke.

Fig. 6 shows the wheels input torques applied in both
simulations, that are: τwr , τwf the rear and front respectively;
the steering torques named τmS , τMS are respectively used
in mS and MS simulations. A ratio of τMS = 3τmS will be
considered. In order to avoid the overlapping of torques tran-
sients, wheels torques act after the steering torques transient,
at t = 10s. These inputs have been generated in Adams

FIGURE 6. Rear and front wheel’s torques (τwr , τwf ) and minor and
major steering torques (τmS , τMS ).

software and exported to Matlab in order to have the same
input profiles for both models.

As the multibody model has both vertical and suspension
dynamics, it is possible to quantify the fore-and-aft load trans-
fer under the acceleration generated by the torque applied
in Fig. 6. As shown in Fig. 7, the rear and front vertical
forces Fzr , Fzf have a load transfer of about 70 N from the
front to the rear frames. This clearly means a negligible force
compared with the total load of the vehicle of 2433.8 N, about
3%. It was tested that is acceptable to neglect such effects
even at 10% of load transfer, as the two models still show
compatible simulation results.

FIGURE 7. Trend of rear and front vertical forces (Fzr , Fzf ) under
moderate vehicle acceleration.

FIGURE 8. AWD models: comparisons of roll and steering angles.

Fig. 8 shows the comparison between the responses of
AWD symbolic model versus AWD multibody model for

112876 VOLUME 8, 2020



A. Bonci et al.: Towards an AWD Motorcycle: Dynamic Modeling and Simulation

the two simulations scenarios. In mS scenario the roll angle
reaches 5.5 deg while the steering angle remains limited to
1 degree. The roll error magnitude between the two models
remains below 2%, confirming expected results under lin-
earization assumptions. In the MS scenario larger steering
torque is applied, causing the vehicle to roll up to 14 deg
and to steer up to more than 2 deg, nevertheless the roll error
remains limited under 8%. On the other hand, the different
steering angle behaviors (Fig. 8) produce a trajectory error
between the twomodels as shown in Fig. 9. In the first 10 sec-
onds the trajectory error is minimal, afterwards the difference
is stressed during the activation of the wheels torque. As an
overall result, the effect of the steering error on the trajectory
appears negligible and the symbolic model performs the same
as the multibody model both under the assumptions made of
small angles and beyond them. Similar overperformance in
the roll angle was outlined in a previous work [36] related to
single track vehicle.

FIGURE 9. AWD models: trajectories comparisons.

B. AWD TESTING RESULTS
Specific simulations have been carried out in order to high-
light the effects of the front wheel drive on motorcycle’s
dynamics. Two relevant driving scenarios named d1 (entering
the curve) and d2 (exiting the curve) are here considered. The
same steering torque τs, shown in Fig. 10, is used in both
scenarios. In d1, the motorcycle is accelerated by τd1 when
approaching a curve, namely between 5 and 11 seconds when
the steering torque is increasing. In scenario d2 the vehicle
is accelerated by τd2 when coming out of the curve, namely
between 11 and 17 seconds. The simulations start with the
motorcycle in vertical trim and constant speed of 8m/s. For
each scenario, two simulations named RWD (Rear Wheel
Drive) and AWD are carried out by considering two differ-
ent driving torque distribution: in RWD the whole driving
torque is applied to the rear wheel (as in a standard motor-
cycle); in simulation AWD the 20% of the driving torque is
applied to the rear wheel and 80% to the front wheel. Fig. 11
shows the comparisons between the roll angle and yaw speed
obtained in both simulations RWD and AWD for scenario d1.
As experienced by most riders, the RWD simulation shows
that the use of a rear torque while approaching the curve is
not advisable, because it affects the roll angle and yaw speed
negatively, indeed the rear tire contact forces keep the vehicle

FIGURE 10. Steering torque τs applied in both scenarios d1, d2, while
driving torque τd1

applied in d1 and τd2
applied in d2.

FIGURE 11. Scenario d1 (entering the curve): roll angle and yaw speed
comparison between RWD and AWD.

in vertical trim, countering the desired turning, such behavior
resembles the oversteer effect. On the other hand, the AWD
simulation shows that the use of the front torque in the same
circumstances is even desirable to obtain a sharper cornering
trajectory, in fact yaw speed reaches a higher peak value than
that delivered by RWD. The same behavior affects the roll
angle. This phenomenon resembles an understeer effect.

FIGURE 12. Scenario d2 (exiting the curve): roll angle and yaw speed
comparison between RWD and AWD.

In scenario d2, when the front torque is acting (see Fig. 12
at t = 11 s), AWD yaw speed decreases slower with respect
to the RWD case, as well as the roll angle is held around the
maximum value. Here the front torque affects the behavior
negatively while the rear torque, as expected, slightly affects
the yaw speed as it appears steeper than the rising part of
the trajectory (t = [5; 11] s). This phenomenon resembles
the behavior experienced by the few AWD riders. As they
described, it’s harder to regain the vertical trim while exiting
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a curve by operating the front torque. To conclude, the sim-
ulations have shown that the use of a front drive eases the
maneuver when approaching a curve, while it may interfere
the coming out of a curve.

C. AWD HANDLING RESULTS
The front traction effect on motorcycle’s handling can be
considered advantageous or disadvantageous depending on
the rider’s intention. Indeed, if the rider accelerates with
the front torque when approaching a cornering maneuver,
a positive effect can be experienced facilitating the rider in
the maneuver. On the contrary, the effect is negative if the
front torque acts at the end of the curve, because more effort
is required to the rider to restore the vehicle’s vertical trim. In
this subsection, the vehicle’s handling is analyzed in various
simulation tests characterized by a different value of the ratio
between the steer and the roll angle. A feedback control
action ensures the vehicle to have the same longitudinal speed
along the trajectory. This control action guarantees that the
motorcycle dynamics generated by different traction ratios
is easily comparable, since it is clearly dependent by the
longitudinal speed [6]. In the simulations, different traction
distribution between rear and front wheels are tested in two
different moments of the same cornering maneuver. The steer
torque acts in all simulations from 5 to 17 seconds with the
same trajectory shown in Fig. 10. The traction torque is gen-
erated by the feedback controller, which imposes the desired
longitudinal speed from 8m/s to 12 m/s. Such speed variation
takes place in entering the curve from 5 to 11 seconds, while
at the end of the cornering it occurs from 11 to 16 seconds.
In all situations, the yaw rate differences are small (see Fig. 13
and 14), nonetheless, a higher value is reached when the front
torque acts at the beginning of the cornering maneuver.

FIGURE 13. Entering the curve: steer/roll ratio and yaw speed
comparison.

The effect of the front traction can be explained analyzing
the ratio between steer and roll angle in Fig. 13. When the
front torque is acting, this ratio is higher, which means that
lower rolling angle can be achieved with the higher steering
angle. This can be considered as a positive or negative effect
depending on the intention of the rider. The Fig. 13 and 14
show three simulations with the following values of the rear-
on-front torque ratio respectively: 0, indicating that only rear
torque applied, 0.5, i.e., half torque is applied to the rear

FIGURE 14. Exiting the curve: steer/roll ratio and yaw speed comparison.

wheel and half to the front one, 0.8, indicating 80% of the
torque on the front wheel and 20% on the rear one. The
time period when the steer torque acts is indicated by the
blue area, while the red area shows the traction action period.
When approaching the cornering maneuver at 7 seconds the
ratio in Fig. 13 has a value of 0.2, while it is 0.17 when
only the rear torque is acting. In other words, the steering
angle can be higher with the same rolling angle and hence
a smaller curvature radius can be achieved, if required by
the rider. Conversely, in the scenario of Fig. 14, the front
traction acts when the curve ends, and the effects lead to
similar consideration as the ratio is higher. The reason to
consider this last behavior as negative is based on the rider
intention to end the curve by reaching the vehicle’s vertical
trim. If the rider aims at reaching such trim with a straight
steer, this requires more effort when the front torque acts.
Because of the higher rolling angle reached halfway in the
cornering maneuver and the front torque action increasing
the ratio δ/φ, the steer angle is delayed to reach the zero roll
angle. If the rider’s goal is to force the steer angle to reach
faster the zero trim as intended, this will require more effort
to the rider. By concluding, a handling ratio is introduced to
better understand the effect of the front torque, and such effect
proves to be bivalent as it eases the rider in approaching the
cornering maneuver, whilst it hinders the rider when exiting
a curve.

IX. CONCLUSIONS AND FUTURE WORKS
In this work, an AWD motorcycle model has been outlined
and the relevant steps needed to derive the EOMs, linearized
with respect to the roll and the steering angle have been
shown. The model has been integrated with an adapted ver-
sion, but nonetheless effective, of the tire model developed by
H. B. Pacejka which describes, by means of a semi-empirical
approach, the coupling between forces and moments arising
on the tire-road contact points. The AWD motorcycle model
thus obtained has been validated in two steps; the first one
follows a theoretical approach commonly used in literature
and it proves the modeled vehicle can be driven to an equi-
librium condition. This is done by evaluating the balance
of forces and moments acting on the vehicle in a steady
state cornering maneuver; in the second step the AWDmodel
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has been compared in simulations against a richer model of
the same motorcycle, implemented in a multibody software.
The comparison in cornering condition of the two models
have shown small differences. Finally, further simulations
have been carried out to evaluate the effects of a torque
distribution on the vehicle dynamics. For this purpose an
appropriate handling ratio has been proposed. The benefits
and disadvantages of using full rear drive or AWDwith torque
distribution have been highlighted and the results agree with
factual behaviors of an AWD motorcycle experienced by
riders. Future works will aim to investigate more in-depth
the best way to use the front traction in different scenarios,
even when slip conditions occur; this will be functional to
the developing of control systems that will properly act on
the torque distribution in order to obtain improved and safer
vehicle’s behaviors without obstructing the driver.

APPENDIX A
KINEMATIC MODEL
A. KINETIC AND POTENTIAL ENERGIES
In this appendix the kinetic energy T and the potential energy
V of the system are derived.

T = Tr + Tf + Tω (32)

Tr and Tf are the kinetic energies of the rear and the front
frame, they are given by:

Ti =
1
2
Mi vi2 +

1
2
ωi
T Ii ωi i ∈ {r, f } (33)

where Mi, Ii, are the inertial properties of the two frames,
i.e. their masses and their inertia matrices respectively, vi and
ωi relate to the kinematic properties of the centers of mass
Gi and represent the square of their speed vector and their
angular velocity vector, respectively. The term Tω takes into
account the rotational extra terms not included in Ti such as
the rotations of the wheels and flywheels.

The kinetic energy of the rear frame Tr , given by (33),
depends on the speed vr of the rear mass center Gr and on
its angular velocity ωr. The vector vr is given by:

vr = vA + ωA ∧ (Gr − A) =

ẋ1 − h sinφψ̇ẏ1 + h cosφφ̇
h sinφφ̇

 (34)

where vA andωA are the speed and the angular velocity of 61.
The vector ωr is the angular velocity of 62 and holds:

ωr =
[
φ̇, sinφψ̇, cosφψ̇

]T (35)

We assume Ir as the matrix of inertia of the rear frame whose
inertia moments and inertia products are about axis parallel
to X2Y2Z2 through rear mass center. Their values are reported
in Table 4 of Appendix B:

Ir =

 Irx 0 −Crxz
0 Iry 0
−Crxz 0 Irz

 (36)

By substituting (34), (35) and (36) in (33), the rear kinetic
energy becomes:

Tr =
1
2
Mr [(ẋ1 − h sinφψ̇)2 + (ẏ1 + h cosφφ̇)2

+ (h sinφφ̇)2]+
1
2
Irx φ̇2 +

1
2
Iry(sinφψ̇)2

+ Irz(cosφψ̇)2 − Crxz cosφφ̇ψ̇ (37)

The kinetic energy of the front frame Tf depends on the
velocity vf of Gf and its angular velocity ωf . Therefore,
by considering the speed vB of the point B and its angular
velocity ωB, the velocity vf is given by:

vf = vB + ωB ∧ (Gf − B)

=



ẋ1 − ψ̇(sin ε sinφ(a+ e cos δ)+
+ e cosφ sin δ + f cos ε sinφ)− δ̇e cos ε sin δ

ẏ1 + ψ̇(cos ε(a+ e cos δ)− f sin ε)+
+ φ̇ cosφ sin ε(a+ e cos δ)+ δ̇e cos δ cosφ+

+ φ̇f cos ε cosφ − φ̇e sin δ sinφ+
− δ̇e sin δ sin ε sinφ

sinφφ̇ sin ε(a+ e cos δ)+
+ δ̇e cos δ sinφ + φ̇e cosφ sin δ+
+ φ̇f cos ε sinφ + δ̇e cosφ sin δ sin ε


(38)

The angular velocity ωf of Gf is the angular velocity of 64
and it is given by:

ωf =

ψ̇(sin δ sinφ − cos δ cosφ sin ε)+ φ̇ cos δ cos ε
ψ̇(cos δ sinφ + cosφ sin δ sin ε)− φ̇ cos ε sin δ

δ̇ + φ̇ sin ε + ψ̇ cos ε cosφ


(39)

The inertiamatrix If of the front frame, related to the principal
axes of inertia X4Y4Z4 is given by:

If = diag
[
Ifx , Ify, Ifz

]
(40)

The elements of If are reported in Table 4 of Appendix B.
By using the quantities (38), (39) and (40) the front kinetic
energy Tf becomes:

Tf =
1
2
Mf [(ẋ1−e cos ε sin δδ̇−(a sin ε sinφ+e sin δ cosφ

+ e sin ε cos δ sinφ + f cos ε sinφ)ψ̇)2

+ (ẏ1 + a sin ε cosφφ̇−e sin δ sinφφ̇ + e cos δ cosφδ̇

+ e sin ε cos δ cosφφ̇ − e sin ε sin δ sinφδ̇

+ f cos ε cosφφ̇+(a cos ε+e cos δ cos ε − f sin ε)ψ̇)2

+ (a sin ε sinφφ̇ + e sin δ cosφφ̇ + e cos δ sinφδ̇

+ e sin ε cos δ sinφφ̇ + e sin ε sin δ cosφδ̇

+ f cos ε sinφφ̇)2]+
1
2
Ifx[(cos ε cos δφ̇ + sin δ sinφ

− sin ε cos δ cosφ)ψ̇]2 +
1
2
Ify[− cos ε sin δφ̇

+ (cos δ sinφ + sin ε sin δ cosφ)ψ̇]2

+
1
2
Ifz[δ̇ + sin εφ̇ + cos ε cosφψ̇]2 (41)
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In order to compute the total kinetic energy of the system (32)
the extra kinetic energy Tω must be derived. The contribute
Tω is related to the rotation of the wheels and the engine
flywheels, it can be expressed by:

Tω =
∑

i
Tωwi +

∑
i
Tflyi i ∈ {r, f } (42)

The terms Tωwi are the kinetic energies of the rear and front
wheel not taken into account by Tr and Tf , whereas Tflyi are
the rotational energies of the engines flywheels included in
the vehicle. The contribute Tωwi can be derived by defining
ωTwi as the total angular velocity of the wheel, expressed as:

ωTwi = ωi + [0, θ̇i, 0]T i ∈ {r, f } (43)

where ωi was defined in (35) for i = r and in (39) for i = f .
The vector [0, θ̇i, 0]T is the rotational angular velocity of the
wheel, it is defined in 62 for i = r and in 64 for i = f .
The contribute Tωwi can be derived as a difference of kinetic
energies generated by ωTwi and ωi which yields:

Tωwi =
1
2
ωTTwi

ii ωTwi −
1
2
ωi
T ii ωi i ∈ {r, f } (44)

where ii is the diagonal matrix of inertia of the wheel com-
pletely defined by the polar moment of inertia iry and the
camber inertia irx = irz , whose values are reported in Table 4
of Appendix B. Finally, by solving (44) for the rear and front
wheels it yields:

Tωwr = iry(sinφψ̇θ̇r +
1
2
θ̇r

2) (45)

Tωwf = ify[(− cos ε sin δφ̇ + (cos δ sinφ

+ sin ε sin δ cosφ)ψ̇)θ̇f +
1
2
θ̇2f ] (46)

Similarly, the engine flywheels contribute Tflyi , i ∈ {r, f },
is derived by applying (44) and taking care to replace Tωwi
with Tflyi , ii with iflyi and ωTwi with ωTflyi , the latter defined
as:

ωTflyi = ωi + [0, βiθ̇i, 0]T i ∈ {r, f } (47)

where βi is the gear ratio between the wheel and the engine
flywheel and iflyi is the polar moment of inertia of the fly-
wheel. Therefore the kinetic energies of the flywheels hold:

Tflyr = iflyry (βr sinφψ̇θ̇r +
1
2
β2r θ̇r

2) (48)

Tflyf = iflyfy (− cos ε sin δβf θ̇f φ̇ + cos δ sinφβf θ̇f ψ̇

+ cosφ sin δ sin εβf θ̇f ψ̇ +
1
2
β2f θ̇

2
f ) (49)

The values of the polar moments iflyry and iflyfy are reported
in Table 4 of Appendix B.

The potential energy of the system is the sum of the poten-
tial energy of two mass centers Gr and Gf and it is given by

V =
∑

i
Vi =

∑
i
Mi g zi = Mr g zr +Mf g zf

= Mrgh cosφ +Mf g(a sin ε cosφ − e sinφ sin δ

+ e sin ε cos δ cosφ + f cos ε cos ε) i = {r, f } (50)

TABLE 4. Symbolic model - geometric and inertial parameters.

TABLE 5. Tire parameters.

where Vi is the potential energy of the mass center Gi, Mi
is the mass of the frame i, g is the gravitational acceleration
and zi is the height of Gi with respect to the ground level.
The terms zi are easily derived by considering the component
along Z1 axis of the vector (Gi − A) computed in 61.

B. REAR AND FRONT SLIP
The rear and front lateral slip αr and αf are formulated as
follows [15]:

αr = −
ẏ1 − bψ̇

ẋ1
αf = δ cos ε −

ẏ1 + lψ̇ − t δ̇
ẋ1

(51)

The longitudinal slip λr and λf are given by [15], [30]:

λi = −
ẋ1 + Riθ̇i − Ri sinφψ̇

ẋ1
i ∈ {r, f } (52)

Considering the front wheel contact point S, the front longi-
tudinal slip λi=f is approximated by putting δ = 0.

Equation (52) with i = f fixes the error appearing in [30].
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TABLE 6. Multibody model - geometric and inertial parameters.

APPENDIX B
VEHICLE PARAMETERS
See Tables 4–6.
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