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Abstract

The knowledge of the principal refractive indeces and their dependence on the
applied stress are the starting point for any experimental analysis of transparent crys-
tals. Since for strongly-anisotropic crystals and general state of stress an explicit
analytical solution can be difficult to obtain, then we need some approximated solu-
tions. Here we propose a coherent approximation procedure which generalizes results
already obtained and give a simple example of application.
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1 INTRODUCTION

The optical properties of transparent crystals can be completely described by the optical indicatrix or Fresnel ellipsoid, i.e. the
locus of normalized constant dielectric energy1,2:

Bx ⋅ x = 1 , (1)
where B is the second-order positive-definite and symmetric inverse permittivity tensor, whose principal values Bk are related
to the refractive indeces nk > 1 by

Bk = n−2k , k = 1, 2, 3 . (2)
A well-known property of (1) is that for a given direction of light propagation, each section trough the origin and orthogonal

to the light direction is an ellipse whose principal axis (Ba , Bb) represents the two different refractive indeces (na , nb) associated
with such a direction. Accordingly for any direction of propagation we have two differente rays with different velocities (va =
c∕na , vb = c∕nb), a phenomena called double refraction and which is measured by the birifringence Δ n = na − nb.
In the general case, when B has three distinct eigenvalues then there exist at most two directions, called the optic axes, such

that the ellipse degenerates into a circle and there is no birifringence; the angle 2' between these axis is called the optic angle
and we say optically biaxial a crystal with two optic axis. The plane spanned by these optic axis is called Optic plane. When B
has two equal eigenvalues the crystal is optically uniaxial and there is an unique optic axis, whereas when all the eigenvalues
are equal there are no optic axis and the material is optically isotropic. The optic angle is related to the principal values of B by
the relation

sin' =

√

B1 − B2
B1 − B3

, (3)

or other equivalent relations1,2.
The raylights generate within the crystals ”surfaces of equal phase difference” or Bertin surfaces (vid. e.g.1 and7 for a general

study) which generate, on a projection plane, families of isochromate interference fringes. On suitable planes, these fringes are
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fourth-order symmetric closed curves, the so-called Cassini-like curves; accordingly it make sense to introduce a measurable
parameter, namely the Ellipticity Ratio C , first introduced into3 and further studied in4 and5:

C = a
b
− 1 , (4)

where a > b are the semi-axes of the Cassini-like curves.
The refractive indeces, the optic angle and the ellipticity ratio can be measured experimentally by the means of optical

techniques and characterize the optical properties of a crystal.
A crystal is linearly photoelastic when B is a linear function of the stress tensor T (a relation which is credited to Maxwell):

B(T) = Bo +M[T] , (5)

where Bo denotes the inverse permittivity of the unstressed material and M is the fourth-order piezo-optic tensor. Accordingly
the refractive index, the optic angle and the photoelastic constant are function of the stress which can be expressed as:

nj(T) = noj +H(j) ⋅ T + o(‖T‖2) , j = 1, 2, 3 ,

'(T) = 'o +K ⋅ T + o(‖T‖2) , (6)
C(T) = Co + F ⋅ T + o(‖T‖2) ;

here F denotes the tensor of photoelastic constants, first introduce in4, H(j) ,K are four tensors which depend on Bo andM and
noj , 'o , Co are the corresponding values in the unstressed state.
The problem of finding the set {F ,K ,H(j)} for anisotropic materials was addressed and partially solved into4 and5 (vid. also7

for a general approach to the problem). However, for strongly anisotropic material and for general state of stress the analytical
determination of these quantities is complex6 and the analysis done there left out crystals of the Triclinic group and was limited
for other crystallographic groups to simple state of stress.
Such an approach makes sense (aside for the Triclinic case) when the stress are the result of an applied external load and are

therefore know quantities: however, one of the most important concerns in crystals for optical applications is the presence of
residual stress generated by the crystal growth process and by the subsequent cut and polishing of the crystal boule. Residual
stress are completely unknown and indeed the photoelastic-based experimental techniques are widely used in order to detect
and evaluate the presence of residual stress.
In2, §.20, an approximate technique for the evaluation of the eigenvalues of B(T) was proposed. In this paper, by using the

language and the notation of the tensor algebra, we took the same issue and arrive at a general and coherent approximation
scheme in order to obtain the quantities defined by (6) for a general state of stress and for any anisotropic material and under
weaker and more general hypothesis than in2: we further show how the relations proposed there can be obtained within our
approximation. We shall finish by studying a relevant examples for Monoclinic crystals.

1.1 Notation
We shall denote with  the vector space isomorphous with ℝ3, whose elements we denote with small boldface as a; with Lin
we denote the space of second-order tensors which map  into itself and whose typical element we denote with capital boldface
as A. With Sym and Skw we respectively denote the subspaces of symmetric and skew-symmetric second order tensors with
Lin = Sym⊕Skw. For A ∈ Lin we define its symmetric and skw-symmetric parts by:

symA = 1
2
(A + AT ) , skwA = 1

2
(A − AT ) . (7)

For any w ∈  we define its unique axial tensorW ∈ Skw as:

Wa = w × a , ∀a ∈  . (8)

We denote with Sym+ the subspace of symmetric and positive definite tensor:

Sym+ ≡ {A ∈ Sym |Au ⋅ u > 0 , ∀u ∈ ∕{0}} , (9)

With Rot we denote the group of the proper orthogonal tensors (rotations), i.e.:

Rot ≡ {R ∈ Lin |R−1 = RT , det R = 1 } ; (10)
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for any R ∈ Rot, let (� ,!) with ‖!‖ = 1 be the rotation angle and the axis of rotation, then R can by expressed by the means
of the Rodriguez formula:

Q(� ,!) = I + sin �W + (1 − cos �)W2 ; (11)
where W is the axial tensor of !. For Q ∈ Rot we shall denote the orthogonal conjugator ℚ(Q) the fourth-order tensor such
that:

ℚ(Q)[A] = QTAQ , ∀A ∈ Lin . (12)
For e ∈  , ‖e‖ = 1 we define the two projectors

P(e) = e⊗ e , P⟂(e) = I − e⊗ e , (13)

which respectively project any v ∈  on the direction e and on the plane orthogonal to e.

2 AN APPROXIMATE RELATION FOR THE EIGENVALUES OF B(T)

2.1 The eigenvalues of B(T)
We shall make use of three different and related orthonormal frames in  : a frame  ≡ {u1 ,u2 ,u3} which is related to the
crystallographic directions; a frame Σ ≡ {e1 , e2 , e3} which is the principal frame for the inverse permittivity tensor in the
unstressed state Bo and a third frame ΣB ≡ {w1 ,w2 ,w3} which is the principal frame for the inverse permittivity tensor in the
stressed state, B(T). The three frames are related by

ek = Ruk , k = 1, 2, 3 , R ∈ Rot , (14)

and
wk = Qek , k = 1, 2, 3 , Q ∈ Rot . (15)

We start from the Maxwell relation (5)
B(T) = Bo +M[T] , (16)

whereT ∈ Sym is the Cauchy stress tensor,M ∶ Sym→ Sym, is the fourth-order piezo-optic tensor,Bo ∈ Sym+,B(T) ∈ Sym+;
their components in the frame  read:

Bij(T) = Bji(T) , Boij = B
o
ji , Mijℎk = Mjiℎk = Mijkℎ , Tij = Tji . (17)

The components of (16) in the principal frame Σ, since (14) holds, are given by:

B(T) ⋅ ei ⊗ ej = B(T) ⋅ Rui ⊗ Ruj = ℚ(R)B(T) ⋅ ui ⊗ uj , (18)
= (ℚ(R)Bo +ℚ(R)M[T]) ⋅ ui ⊗ uj ;

if we set
B̂ = ℚ(R)Bo , M̂ = ℚ(R)M , (19)

whose component in the frame  are given by

B̂ij =

{

BoℎkRℎiRkj = B̂i , i = j ,
BoℎkRℎiRkj = 0 , i ≠ j ,

M̂ijlm = MℎklmRℎiRkj , (20)

then Bo andM[T] have representation in the principal frame Σ:

Bo =
3
∑

k=1
B̂kek ⊗ ek , M[T] = M̂ijℎkTℎkei ⊗ ej . (21)

The components in ΣB, which is the principale frame for B(T), are given by:

Bkℎ = B(T) ⋅ wk ⊗ wℎ = ℚ(Q)B(T) ⋅ ek ⊗ eℎ =
{

Bk , ℎ = k ,
0 , ℎ ≠ k ;

(22)

relation (22) allows to evaluate the principal values of B(T) provided the two rotations R and Q are given.
We remark that, for Triclinic crystals, the rotation R can’t be obtained in an explicit form and must be calculated either

numerically if we know the values of the components Boij or experimentally if we are able to measure the principal refraction
index or as in6 by the means of a point-dipole model.
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ForMonoclinic crystals, instead, it is customary to assume one of the vectors of  directed as the monoclinic b−axis, typically
either u2 or u3 8. In such a case R is a rotation about the b−axis whose amplitude  depends on the non-null components of Bo
and accordingly we can give the explicit expressions for the components B̂ij and M̂ijlm.
For all the other crystallographic classes, the frame  ≡ Σ (vid.8) and therefore R = I, ℚ(I) = I with B̂ij = Boij and

M̂ijlm = Mijlm.

2.2 Small stress and the infinitesimal rotation of Bo
We deal mainly with brittle crystals whose ultimate tensile stress is generally "small" and whose piezo-optic tensor has, in the
case were they are measured (vid.9), components whose values are "small" in such a way the product between stress and piezo-
optic coefficients is significatively smaller than the principal values of Bo. Accordingly it makes sense to consider situations in
which:1

‖B(T) − Bo‖ << 1 , (23)
an hypothesis which implies tacitly that the rotation tensor Q which brings Σ into ΣB represents an infinitesimal rotation.
To make thing more precise, when the angle is infinitesimal (11) reduces to

Q(� ,!) = I + �W + O(�2) ; (24)

in the frame Σ the non-null components ofW can be expressed in terms of the components !k = ! ⋅ ek by:

W21 = −W12 = !3 , W13 = −W31 = !2 , W32 = −W23 = !1 . (25)

and therefore, by (16) and (21), then (22)1 reduces, to within higher-order terms in o(�2), to

Bk = (B(T) + �(B(T)W −WB(T)) ⋅ ek ⊗ ek , (26)

whereas, to the same degree of approximation, the eigenvectors are given by:

wk = ek + �Wek = ek + �! × ek . (27)

By (16) and (26) we get, for k fixed:

Bk = Bo ⋅ ek ⊗ ek +M[T] ⋅ ek ⊗ ek
+ �(BoW −WBo) ⋅ ek ⊗ ek + �(M[T]W −WM[T]) ⋅ ek ⊗ ek (28)
= Bo ⋅ ek ⊗ ek +M[T] ⋅ ek ⊗ ek
+ 2� sym(BoW) ⋅ ek ⊗ ek + 2� sym(M[T]W) ⋅ ek ⊗ ek ,

which in the components in the frame Σ read:

Bk = B̂k +
(

M̂kkij + 2�WℎkM̂ℎkij

)

Tij . (29)

Accordingly we have these approximate values for the principal components of B(T):

B1(T) = B̂1 +1ijTij
B2(T) = B̂2 +2ijTij (30)
B3(T) = B̂3 +3ijTij .

provided we define the third-order matrixijk as

1ij = M̂11ij + 2�!3M̂12ij + 2�!2M̂13ij ,
2ij = M̂22ij + 2�!1M̂23ij + 2�!3M̂12ij , (31)
3ij = M̂33ij + 2�!1M̂23ij + 2�!2M̂13ij .

1For instance, the Lead-Tungstate PbWO4 (PWO) has a measured ultimate tensile stress Tu = 26 ÷ 32MPa 10; the piezo-optic coefficients measured in 11 are of the
orderM = 26 ⋅10−12 Pa. Since the minimum eigenvalue of Bo is, on the wavelenght range � = 375÷700 nm, Bmin = 0.189÷0.215 12, then ‖B(T)−Bo‖ ≈ MTu = 26 ⋅10−6
a value which is significatively smaller than Bmin.
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Moreover, since ΣB is a principal frame, then from (22)2 we must have:

(B(T) + �(B(T)W −WB(T)) ⋅ ei ⊗ ej = 0 , i ≠ j , (32)

which yields
M[T] ⋅ ei ⊗ ej + 2� sym(BoW +M[T]W) ⋅ ei ⊗ ej = 0 , i ≠ j . (33)

Condition (33) is equivalent, given the symmetry of B(T), to the three scalar conditions:

Aijvj = Ki , vj = �!j , i, j = 1, 2, 3 , (34)

where:

A11 = B̂2 − B̂3 + (M̂22ℎk − M̂33ℎk)Tℎk ,
A22 = B̂3 − B̂1 + (M̂33ℎk − M̂11ℎk)Tℎk ,
A33 = B̂1 − B̂2 + (M̂11ℎk − M̂22ℎk)Tℎk, , (35)
Aij = M̂ijℎkTℎk , i ≠ j ,

and
K1 = −A23 , K2 = −A13 , K3 = A12 ; (36)

from the components vk, k = 1, 2, 3 solution of (35), whose explicit expression in terms of the components of M[T] and Bo is
given by equation (85) of the Appendix B, then we obtain

� =
√

v21 + v
2
2 + v

2
3 , !k = �−1vk , k = 1, 2, 3 . (37)

2.3 The Sirotin and Shaskolskaya approximation
In2, §.20, in order to obtain an approximate formula for the eigencouples of B(T) two approximations are done, which in our
language reads:

Sk >> sup
i,j=1,2,3

{ |MijlmTlm| } , k = 1, 2, 3 , (38)

and
|Sk − Sℎ| >> sup

i,j=1,2,3
{ |MijlmTlm| } , ℎ, k = 1, 2, 3 . (39)

the hypothesis (38) is equivalent to (23), whereas (39) is a stronger one. If we set

sup
i,j=1,2,3

{ |MijlmTlm| } = O(") , (40)

where " is a small parameter, then from (35) we get:

A11 = B̂2 − B̂3 + O(") ,
A22 = B̂3 − B̂1 + O(") ,
A33 = B̂1 − B̂2 + O(") , (41)
Aij = O(") , i ≠ j ,

and accordingly from (85) we obtain, to within higher-order terms in o("2), the simpler relations (cf.2, eqn. (20.9)-Right)

v1 =
M̂23ℎkTℎk
B̂3 − B̂2

,

v2 =
M̂13ℎkTℎk
B̂3 − B̂1

, (42)

v3 =
M̂12ℎkTℎk
B̂1 − B̂2

.

and the infinitesimal rotation of order O("):

� =

√

(
M̂23ℎkTℎk
B̂3 − B̂2

)2 + (
M̂13ℎkTℎk
B̂3 − B̂1

)2 + (
M̂12ℎkTℎk
B̂1 − B̂2

)2 , (43)



6 FABRIZIO DAVÍ

with the components of ! still given by (37)2. Further, relations (20.9)-Left of2 can be obtained from (30) provided we set
vk = 0, k = 1, 2, 3 into (31). The main limitation of these is that (42) hold only for biaxial crystals with three different principal
refractive indeces.
Indeed for uniaxial crystal with e.g. B̂1 = B̂2 a different procedure was proposed into2. First it was considered the projections

of the vectors wk:

w̄1 = P⟂(e3)w1 = w1 + v2e3 = e1 − v3e2 ,
w̄2 = P⟂(e3)w2 = w2 − v1e3 = e2 + v3e1 , (44)
w̄3 = P(e3)w3 = e3 ;

then the eigenvalues of B(T) were represented as

B1(T) = B̂1 + �1 , B2(T) = B̂1 + �2 , B2(T) = B̂3 + �3 . (45)

By writing the eigenvalue problem
(Bo +M[T])wk = Bk(T)wk , k = 1, 2, 3 , (46)

in terms of the new frame {w̄k} we arrive to:

�k = M[T] ⋅ w̄k ⊗ w̄k + o("2) , k = 1, 2, 3 . (47)

Relations (47) can be recovered within our present approach provided the identification

�k =kijTij , k = 1, 2, 3 , (48)

by setting v1 = v2 = 0 into (31). In2 finally the vectors w̄1 and w̄2 were evaluated by solving the two-dimensional eigenvalue
problem for the projection ofM = P⟂(e3)M[T]P⟂(e3) on the plane orthogonal to e3. Within the present approach however these
vectors can be evaluated from their definition (44) provided the components vk be calculated from (86) and the assumptions
(38) and (39). In such a case these components reduce to

v1 =
(M̂22ℎkM̂33ij + M̂13ℎkM̂12ij)TijTℎk

(B̂3 − B̂1)M̂33ℎkTℎk
+ o(") ,

v2 =
(M̂33ℎkM̂13ij + M̂23ℎkM̂12ij)TijTℎk

(B̂3 − B̂1)M̂33ℎkTℎk
+ o(") , (49)

v3 =
M̂12ℎkTℎk
M̂33ℎkTℎk

+ o(") .

The use of (49) rather than (86) or the formulae obtained into2 accordingly depends on the role of hypothesis (39) in the desired
approach.

2.4 Refraction indeces, Birifringences and Optic angle
We write the principal refraction indeces nk(T) = B̂−2k k = 1, 2, 3, with the aid of (30) and by expanding the result about T = 0
we get

nk(T) =
1

√

Bk(T)
= 1

√

Bk

|

|

|

|T=0
− 1
2(Bk)3∕2

)Bk
)Tij

|

|

|

|T=0
Tij + o(‖T‖2) , (50)

which, after some calculation and by the means of (30), to within higher-order terms leads to

nk(T) =
1

√

B̂k

− 1
2(B̂k)3∕2

MkkijTij , k = 1, 2, 3 , (51)

since vk = 0 for T = 0; such an expression can be put in the form (6)1 provided we set:

n̂k =
1

√

B̂k

, H (k)
ij = −

n̂3k
2
Mkkij . (52)
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From (6)1, (51) and (52) the explicit expression for the principal birifringences as a linear function of the stress follows trivially:

n1 − n2 = n̂1 − n̂2 + (H(1) −H(2)) ⋅ T ,
n2 − n3 = n̂2 − n̂3 + (H(2) −H(3)) ⋅ T , (53)
n1 − n3 = n̂1 − n̂3 + (H(1) −H(3)) ⋅ T .

Likewise, from (3) and (51) we obtain the explicit expression for the optic angle (here under the hypothesis that B1(T) >
B2(T) > B3(T)):

'(T) = sin−1
√

B1 − B2
B1 − B3

= sin−1
√

√

√

√

B̂1 − B̂2 + (M11ij −M22ij)Tij
B̂1 − B̂3 + (M11ij −M33ij)Tij

. (54)

By the linearization of (54) about T = 0 we arrive at the linear representation (6)2, provided we denote 'o the optic angle in
the unstressed state and set:

Kij =
(B̂2 − B̂3)M11ij + (B̂3 − B̂1)M22ij + (B̂1 − B̂2)M33ij

2(B̂1 − B̂3)
√

(B̂1 − B̂2)(B̂2 − B̂3)
. (55)

Relation (55) clearly holds for biaxial crystal when the three eigenvalues of Bo are different; for Uniaxial crystals, were we
have two equal eigenvalues, say B̂1 = B̂2, relation (54) becomes

'(T) = sin−1
√

(M11ij −M22ij)Tij
B̂1 − B̂3 + (M11ij −M33ij)Tij

; (56)

it is easy to show that
lim
Tij→0

|

|

|

|

)'
)Tij

|

|

|

|

→ +∞ , (57)

and accordingly we cannot write (54) in the linearized form (6)2, relation (56) being an estimate within our approximation
procedure.

2.5 The Photoelastic constants tensor
Besides the Fresnel ellipsoid (1), the other surface which describes the crystal optical properties is the surface of equal phase
difference or Bertin surface which can be obtained from the Fresnel equation1. The Bertin surfaces are fourth-order surfaces
whose mathematical aspects were dealt with into7 and whose equation in the frame Σ is

z41 cos
4 ' + z42 + z

4
3 sin

4 ' + 2z21z
2
2 cos

2 ' + 2z22z
2
3 sin

2 ' (58)
− 2z21z

2
3 sin

2 ' cos2 ' −H2
‖x‖2 = 0 ;

here zk = x ⋅ ek and the parameterH , which has the dimension of a length, is defined as

H = N�
nmax − nmin

, (59)

whereN is the fringe order and � is the wave length of the light source.
The section of (58) with the crystal surface or a projection plane gives the isochromate interference fringes, fourth-order

plane curves which can be either closed or open and two-folded. The equation for a generic plane are given into7: here we
shall limit our analysis to planes which are orthogonal to the bisector of the optic axes in biaxial crystals or to the optic axis in
uniaxial and hence with z3 = zo. In both cases we have closed fourth-order curves f = f (z1 , z2 , zo) parameterized on zo that
we call Cassini-like for their similarity with the Cassini’s curves. Let {±a ,±b} with a > b be the solutions of the equations
f = f (z1 , 0 , zo) = 0 and f = f (0 , z2 , zo) = 0, then we define an ellipticity ratio3

C = a
b
− 1 > 0 , (60)

in such a way that C = 0 in uniaxial crystal. By (58), (60) and the definition of a , b, we obtain an explicit expression of C in
terms of u = sin2 ' ∈ [0 , 1]:

C(u) = 1
1 − u

√

√

√

√

1 + 2K2(1 − u)u +
√

1 + 4K2(1 − u)

1 − 2K2u +
√

1 + 4K2(1 − u)
− 1 , K = zo

H
. (61)
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By (16), then (61) depends on the stress T and therefore, for small stress we can write the expansion about T = 0:

C(T) = C(0) + )C
)T

|

|

|

|T=0
⋅ T + o(‖T‖2) , (62)

which leads, to within higher-order terms, to the linear expression (6)3 provided the identification

Co = C(0) , F = )C
)T

|

|

|

|T=0
. (63)

In order to evaluate the components Fij of the photoelastic constants tensor F we first notice that, from (61)
)C
)T

= dC
du

)u
)T

|

|

|T=0
, (64)

and then by simple calculations we get

dC
du

|

|

|T=0
= A(K ,'o) =

1
(1 − uo)2

√

N(uo)
D(uo)

(65)

+ 1
1 − uo

N,u (uo)D(uo) −N(uo)D,u (uo)

2D(uo)
√

N(uo)D(uo)
,

where uo = sin
2 'o and

N(u) = 1 + 2K2(1 − u)u +
√

1 + 4K2(1 − u) ,
D(u) = 1 − 2K2u +

√

1 + 4K2(1 − u) ;

we notice that (65) is a term which is independent on both the stress T and the piezo-optic tensor M and depends only on 'o
and on the adimensional ratio K = zo∕H .2
From (3) we have:

)u
)Tij

= )
)Tij

B̂1 − B̂2
B̂1 − B̂3

=
(B̂1 − B̂2),ij (B̂1 − B̂3) − (B̂1 − B̂3),ij (B̂1 − B̂2)

(B̂1 − B̂3)2
, (66)

and since for T = 0 it is B̂k = n̂−2k , k = 1, 2, 3, then (66), evaluated for T = 0, reduces to:

)u
)Tij

|

|

|T=0
= 1
n̂−21 − n̂−23

(
)(B̂1 − B̂3)

)Tij
−
n̂−21 − n̂−22
n̂−21 − n̂−23

)(B̂1 − B̂3)
)Tij

)||
|T=0

. (67)

From (63), (64), (65) and (67) finally:

)C
)Tij

=
A(K , sin'o)
n̂−21 − n̂−23

(
)(B̂1 − B̂2)

)Tij
−
n̂−21 − n̂−22
n̂−21 − n̂−23

)(B̂1 − B̂3)
)Tij

)||
|T=0

, (68)

and accordingly, by (30) we obtain the expression of the six components of the photoelastic constants tensor:

Fij =
A(K , sin'o)
n̂−21 − n̂−23

(

M11ij −M22ij − (M11ij −M33ij)
n̂−21 − n̂−22
n̂−21 − n̂−23

)

; (69)

for uniaxial crystals with B̂1 = B̂2 and 'o = 0, relation (69) reduces to

Fij =
A(K , 0)
n̂−21 − n̂−23

(M11ij −M22ij) . (70)

3 AN EXAMPLE

In7 we presented a detailed analysis of the changes induced on the refractive indeces, optic axes and plane induced by a generic
stress applied to an anisotropic crystal: further such an analysis was made explicit in term of analytical solution for tetragonal
crystals into4 and for anisotropic crystals of other groups in5, leaving out only optically isotropic crystals.

2To arrive at these results we assumedH = const. vid. e.g. the discussion in 7.
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However, for some groups these analysis lead to explicit solutions only for particular cases of stress, since for some state of
stress and for some crystallographic groups the analytical expression of the eigenvalues of B(T) required the solution of a full
three-dimensional eigenvalue problem. Accordingly, in these cases we gave only a qualitative estimate of the solutions.
Here, by using the approximate expression (30) for the eigenvalues of B(T), with either (42) or (85) as an estimate of the

couple (� ,!), we give the explicit expressions of the quantities (6) in a case we left out in the aforementioned papers, namely
Monoclinic crystal acted by shear stress on planes parallel to the monoclinic b− axis.
We assume that the monoclinic b− axis is parallel to the vector u2 of  . Accordingly the matrix of Bo in the frame  is

Bo ≡
⎡

⎢

⎢

⎣

B11 0 B13
⋅ B22 0
⋅ ⋅ B33

⎤

⎥

⎥

⎦

, (71)

with the principal components of Bo:

B̂1,3 =
B11 + B33

2
±
√

(
B11 − B33

2
)2 + B213 , B̂2 = B22 , (72)

and the angle  of the rotation R about u2 is given by

tan =
B13

B̂1 − B11
. (73)

In the frame  the matrix ofM is, for all classes8:

[M] ≡

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M1111 M1122 M1133 0 M1113 0
M2211 M2222 M2233 0 M2213 0
M3311 M3322 M3333 0 M3313 0
0 0 0 M2323 0 M2312

M1311 M1322 M1333 0 M1313 0
0 0 0 M1223 0 M1212

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (74)

the corresponding components M̂ijℎk being given into the Appendix.
Let � a plane parallel to monoclinic b− axis e2 whose unit normal is m = cos �e1 + sin �e3: the shear stress acting on � is

accordingly given by:
Tm2 = Tm ⋅ e2 = cos � T12 + sin � T23 . (75)

If we consider for instance only the the shear stress T12 = � then we have

B(T) =
⎡

⎢

⎢

⎣

B̂1 M̂1212� 0
⋅ B̂2 M̂2312�
⋅ ⋅ B̂3

⎤

⎥

⎥

⎦

, (76)

and we cannot write an analytical expression for the eigencouples.
In our approximation then, we have from (30):

B1(T) = B̂1 +112� ,
B2(T) = B̂2 +212� , (77)
B3(T) = B̂3 +312� ;

were the componentsk12, k = 1, 2, 3 evaluated with (31) are

112 = 2v3M̂1212 ,
212 = 2v1M̂2312 + 2v3M̂1212 , (78)
312 = 2v1M̂2312 ,

wheras the components vk, k = 1, 2, 3, given either by (85) or (42), depending on the desired approximation. If for instance we
choose (42) then

v1 =
M̂2312

B̂3 − B̂2
� , v2 =

M̂1312

B̂3 − B̂1
� , v3 =

M̂1212

B̂1 − B̂2
� , (79)
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with the infinitesimal rotation angle:

� = �

√

(
M̂2312

B̂3 − B̂2
)2 + (

M̂1312

B̂3 − B̂1
)2 + (

M̂1212

B̂1 − B̂2
)2 , (80)

As it was pointed out in7, the optic plane rotates about a direction ! which, by (79) and (80) is independent on the magnitude
� of the shear stress.
The principal refraction indeces, the change in the optic angle and in the photoelastic constant are given, by (6), (51), (55),

(69) and (74):

nk(�) = n̂k + O(�2) , k = 1, 2, 3 ,
'(�) = 'o + O(�2) , (81)
C(�) = Co + O(�2) .

Accordingly we are able to evaluate, with the proposed approximation, the infinitesimal rotation of the optic plane, the other
relevant quantities remaining unchanged to within higher-order term in the shear stress. A similar result can be obtained for the
shear stress T23.

Acknowledgments
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APPENDIX

A: The components M̂ijℎk for monoclinic crystals
For monoclinic crystals an explicit expression of the components M̂ijℎk can be done in terms of the components Mijℎk and the
rotation angle  . Provided (71)-(74) hold and since in this case the non-null components of the rotation R of an angle  about
u2 are R11 = R33 = cos , R13 = −R31 = sin and R22 = 1, then from relation (20)2 we get:

M̂1111 = cos4  M1111 + sin
4  M3333 + sin

2 2 M1313 +
1
4
sin2 2 

M3311 +M1133

4
+ sin 2 (cos2  (M1113 +M1311) + sin

2  (M3313 +M1333)) ,
M̂2222 = M2222 ,

M̂3333 = sin4  M1111 + cos4  M3333 + sin
2 2 M1313 +

1
4
sin2 2 

M3311 +M1133

4
+ sin 2 (sin2  (M1113 +M1311) + cos2  (M3313 +M1333)) ,

M̂2323 = cos2  M2323 + sin
2  M1212 − sin 2 

M2312 +M1223

2

M̂1313 = sin2 2 
M1111 +M3333 −M1133 −M3311

4
+ cos2 2 M1313 ,

− sin 2 cos 2 
M1113 +M1311 +M3313 +M1333

2
,

M̂1212 = sin2  M2323 + cos2  M1212 + sin 2 
M2312 +M1223

2
,

M̂1122 = cos2  M1122 + sin
2  M3322 + sin 2 M1322 ,
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M̂1133 = cos4  M1133 + sin
4  M3311 + sin

2 2 
M1111 +M3333 + 4M1313

4
+ sin 2 (cos2  (M1113 +M1333) + sin

2  (M1311 +M3313)) ,
M̂2233 = cos2  M2233 + sin

2  M2211 + sin 2 M2213 ,
M̂2211 = sin2  M2233 + cos2  M2211 + sin 2 M2213 ,

M̂3311 = cos4  M3311 + sin
4  M1133 + sin

2 2 
M1111 +M3333 + 4M1313

4
+ sin 2 (cos2  (M3313 +M1311) + sin

2  (M1113 +M1333)) ,
M̂3322 = sin2  M1122 + cos2  M3322 + sin 2 M1322 ,

M̂1113 = sin 2 (cos2  
M1133 −M1111

2
+ sin2  

M3333 −M3311

2
)

+ cos 2 (cos2  M1113 + sin
2  M3313 + sin 2 M1313)

− sin2 2 
M1333 +M1311

2
,

M̂2213 = sin 2 
M2233 −M2211

2
+ cos 2 M2213 ,

M̂3313 = sin 2 (sin2  
M3333 −M1133

2
− cos2  

M3311 +M1111

2
)

+ cos 2 (cos2  M3313 + sin
2  M1113 + sin 2 M1313)

− sin2 2 
M1311 +M1333

2
,

M̂1311 = sin 2 (cos2  
M1133 −M1111

2
+ sin2  

M3333 −M3311

2
)

+ cos 2 (cos2  M1311 + sin
2  M1333 + sin 2 M1313)

− sin2 2 
M1333 +M1311

2
,

M̂1322 = sin 2 
M3322 −M1122

2
+ cos 2 M1322 ,

M̂1333 = sin 2 (sin2  
M3311 −M1111

2
− cos2  

M3333 +M1133

2
)

+ cos 2 (cos2  M1333 + sin
2  M1311 − sin 2 M1313)

− sin2 2 
M1113 +M3313

2
,

M̂2312 = sin2  M1223 − cos2  M2312 + sin 2 
M2323 −M1212

2
,

M̂1223 = sin2  M2312 − cos2  M1223 + sin 2 
M2323 −M1212

2
.

B: The components vk, k = 1, 2, 3
We solve (34) with the Cramer’s rule; if we write [Aij] = [Δij] + [Sij] with

Δ11 = B̂2 − B̂3 , Δ22 = B̂3 − B̂1 , Δ33 = B̂1 − B̂2 , Sij = M̂ijℎkTℎk , (82)

then
det[Aij] = Δ11Δ22Δ33 + Δ∗ijSij + ΔijS

∗
ij + det[Sij] , (83)

where for any given invertible and symmetric matrix [Bij] we define its cofactor as:

[B∗ij] = (det[Bij])[B
−1
ij ] . (84)
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Accordingly, the solution of (34) can be written as:

v1 = (det[Aij])−1
(

− S23Δ22Δ33 − Δ22(S23S33 + S12S13) − Δ33(S22S23 + S13S12)
+ S23(S223 − S22S33 − S

2
12 − S

2
13) − S12S13(S11 + S22)

)

,
v2 = (det[Aij])−1

(

− S13Δ11Δ33 − Δ11(S33S13 + S12S23) − Δ33(S11S13 − S23S12)
+ S13(S213 − S11S33 − S

2
23 + S

2
12) + S12S23(S33 + S11)

)

, (85)
v3 = (det[Aij])−1

(

S12Δ11Δ22 + Δ11(S12S22 + S13S23) + Δ22(S11S12 + S22S13)
− S12(S213 + S

2
23 − S

2
12 + S11S22) − S23S13(S11 + S22)

)

.

For uniaxial crystals, where for instance Δ33 = 0 and Δ11 = Δ22 = Δ, relations (85) reduce to:

v1 =
−Δ(S22S33 + S13S12)

Δ2S33 + Δ(S22S33 + S11S33 − S213 − S
2
23) + det[Sij]

+
S23(S223 − S22S33 − S

2
12 − S

2
13) − S12S13(S11 + S22)

Δ2S33 + Δ(S22S33 + S11S33 − S213 − S
2
23) + det[Sij]

,

v2 =
−Δ(S33S13 + S12S23)

Δ2S33 + Δ(S22S33 + S11S33 − S213 − S
2
23) + det[Sij]

+
S13(S213 − S11S33 − S

2
23 + S

2
12) + S12S23(S33 + S11)

Δ2S33 + Δ(S22S33 + S11S33 − S213 − S
2
23) + det[Sij]

, (86)

v3 =
S12Δ2 + Δ(S12S22 + S13S23 + S11S12 + S22S13)

Δ2S33 + Δ(S22S33 + S11S33 − S213 − S
2
23) + det[Sij]

+
S12(S213 + S

2
23 − S

2
12 + S11S22) − S23S13(S11 + S22)

Δ2S33 + Δ(S22S33 + S11S33 − S213 − S
2
23) + det[Sij]

.
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