
i

UNIVERSITÀ POLITECNICA DELLE MARCHE

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE DELL’INGEGNERIA

CURRICULUM IN INGEGNERIA ELETTRONICA, ELETTROTECNICA E DELLE

TELECOMUNICAZIONI

On the use of structured codes for
cryptographic applications

Ph.D. Dissertation of:
Paolo Santini

Advisor:
Prof. Marco Baldi

Coadvisor:
Ing. Giuseppe Gottardi

Curriculum Supervisor:
Prof. Francesco Piazza

XVIII edition - new series

UNIVERSITÀ POLITECNICA DELLE MARCHE

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE DELL’INGEGNERIA

CURRICULUM IN INGEGNERIA ELETTRONICA, ELETTROTECNICA E DELLE

TELECOMUNICAZIONI

On the use of structured codes for
cryptographic applications

Ph.D. Dissertation of:
Paolo Santini

Advisor:
Prof. Marco Baldi

Coadvisor:
Ing. Giuseppe Gottardi

Curriculum Supervisor:
Prof. Francesco Piazza

XVIII edition - new series

UNIVERSITÀ POLITECNICA DELLE MARCHE

SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE DELL’INGEGNERIA

FACOLTÀ DI INGEGNERIA

Via Brecce Bianche – 60131 Ancona (AN), Italy

"How many years must some people exist
before they’re allowed to be free?

And how many times can a man turn his head
and pretend that he just doesn’t see?

The answer, my friend, is blowin’ in the wind,
the answer is blowin’ in the wind"

Blowing in the wind, Bob Dylan

Abstract

The upcoming advent of quantum computers poses a serious threat on most of mod-
ern public key cryptosystems, which are commonly based on hard mathematical prob-
lems such as the integer factorization or the discrete logarithm. It has indeed been
proven that quantum algorithms can be used to solve such problems in polynomial
time. Thus, we strongly need to move to a class of new cryptographic primitives, con-
structed upon mathematical problems for which no efficient quantum solver exists.
For this reason, the corresponding schemes are normally defined post-quantum.

Code-based cryptosystems are among the most promising ones. Security of such
schemes is based on hard problems arising from the coding theory, such as that of
decoding a random linear code, which is a well known NP-complete problem, for
which no efficient quantum solver is known. Despite a largely recognized security,
the main drawback of code-based cryptosystems is represented by the large public
key sizes. Indeed, in such schemes the public key is the representation of an error
correcting code, whose length must be sufficiently large to guarantee correction of
a non trivial amount of errors. The most meaningful example is that of the original
McEliece cryptosystem, named after its inventor Robert McEiece that, in 1978, de
facto initiated the area of code-based cryptography. The original McEliece proposal,
based on Goppa codes, is still essentially unbroken, and additionally yields to a very
low algorithmic complexity. However, the scheme, due to its large public key size,
has experienced very few practical applications.

In this work we investigate solutions to address the public key size problem. A
common strategy is that of replace the original choice of Goppa codes with a more
convenient family of codes (for instance, codes correcting more errors or admitting a
compact representation). A well assessed strategy to face this issue is that of relying on
codes having a large and known automorphism group: in such cases, indeed, the whole
code can be completely represented by a bunch of its codewords. Thus, when codes
of this type are used to derive the public key, compactness in the code representation
may be achieved, with the obvious result of reducing the public key size.

However, this choice may represent a security flaw, since it the end it consists in
adding some constraints to the employed code which, to enable correct correction,
necessarily needs to already have a significant amount of structure. In a few words,
this choice somehow reduces the security of the scheme, in a way that depends not
only on the chosen family of codes, but also on the strength of the imposed geomet-
ric symmetry. While this fact certainly represents a major issue for some families

ix

of algebraic codes, it is not the case for pseudo-random codes, i.e., codes that ad-
mit a random-like fashion design. The most significant case is that of Low-Density
Parity-Check (LDPC) codes, codes whose only constraint is that of being represented
through a sparse parity-check matrix (i.e., with a low number of set entries). This
property guarantees the existence of efficient probabilistic decoding techniques, that
can correct non trivial amount of errors with an algorithmic complexity that grows
linearly with the code length. When such codes are employed, a regular geometrical
structure can be safely introduced to obtain very compact keys and, at the same, high
algorithmic efficiency, without no significant security reduction. However, with re-
spect to algebraic codes, LDPC codes are characterized by a completely new venue of
attacks, which come from the sparse inner structure and from the intrinsic probabilistic
nature of the decoder.

In this work we investigate the use of such codes in modern public key cryptosys-
tems. We describe the main properties of LDPC decoding techniques, and provide
methodologies to assess their error correction performances. We describe crypto-
graphic primitives based on LDPC codes and analyze both classical and modern crypt-
analysis techniques.

x

Foreword

During my period at Dipartimento di Ingegneria dell’Informazione of Università
Politecnica delle Marche as a Ph.D. student, I had the pleasure to work in the research
groups leaded by the professors Marco Baldi and Franco Chiaraluce. They have intro-
duced me to the area of coding theory and, in particular, to that of code-based cryp-
tography. During these years I had the possibility to collaborate with other important
universities such as the University of Zurich, Switzerland, and the Florida Atlantic
University, USA. In particular, I spent almost three months at the Math Department
of FAU, where part of this thesis was developed through the collaboration with Prof.
Edoardo Persichetti. The contents of this thesis have been partially included in the
following publications.

• M. Baldi, F. Chiaraluce, J. Rosenthal, P. Santini and D. Schipani, "Security
of generalised Reed–Solomon code-based cryptosystems," in IET Information
Security, vol. 13, no. 4, pp. 404-410, 7 2019.

• M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, P. Santini, “A Finite Regime
Analysis of Information Set Decoding Algorithms”, in MDPI Algorithms 2019,
Volume 12, Issue 10.

• M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, “Ledakem:
A post-quantum key encapsulation mechanism based on QC-LDPC codes”, in
Post-Quantum Cryptography - 9th International Conference, PQCrypto 2018,
Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings, pages 3–24, 2018.

• M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, “LEDAcrypt:
QC-LDPC Code-Based Cryptosystems with Bounded Decryption Failure Rate”,
in Baldi M., Persichetti E., Santini P. (eds) Code-Based Cryptography. CBC
2019, Lecture Notes in Computer Science, vol11666.

• P. Santini, M. Battaglioni, F. Chiaraluce, M. Baldi, “Analysis of reaction and
timing attacks against cryptosystems based on sparse parity-check codes”, in
Baldi M., Persichetti E., Santini P. (eds) Code-Based Cryptography. CBC 2019,
Lecture Notes in Computer Science, vol11666.

• P. Santini, M. Battaglioni, M. Baldi and F. Chiaraluce, "Hard-Decision Iterative
Decoding of LDPC Codes with Bounded Error Rate," ICC 2019 - 2019 IEEE

xi

International Conference on Communications (ICC), Shanghai, China, 2019,
pp. 1-6.

• P. Santini, M. Baldi, and F. Chiaraluce: “Assessing and countering reaction
attacks against post-quantum public-key cryptosystems based on QC-LDPC
codes”. In: Cryptology and Network Security - 17th International Conference,
CANS 2018, Naples, Italy, September 30 - October 3, 2018, Proceedings. pp.
323–343 (2018).

xii

Contents

1 Introduction 1
1.1 Main contributions of the thesis . 4

2 Preliminaries 7
2.1 Notation . 7
2.2 Public key cryptography . 7
2.3 Coding theory . 8
2.4 Hard problems from the coding theory 11

3 McEliece and Niederreiter cryptosystems based on algebraic
codes 13
3.1 Modern solutions based on Goppa codes 15
3.2 Information Set Decoding . 16

3.2.1 Quantum ISD . 20
3.3 Cryptosystems based on Generalized Reed-Solomon Codes 21

3.3.1 The BBCRS scheme . 22
3.4 A variant of the BBCRS scheme . 24

3.4.1 Security analysis . 25
3.4.2 Concrete instances and comparison with other schemes 27

4 Bounds on the error correction of LDPC codes 31
4.1 Decoding LDPC codes . 32

4.1.1 The error correction capability of a BF-decoder 35
4.1.2 An improved bound on the error correction capability 36
4.1.3 Error sets and failure probability for one BF iteration 41

5 A general framework for codes with regular geometric structure 49
5.1 Reproducible and quasi-reproducible codes 50
5.2 Pseudo-rings induced by families of permutations 52

5.2.1 Known examples of reproducible rings 56
5.3 A general form for codes in reproducible form 58

5.3.1 Reproducible codes from Householder matrices 62
5.3.2 Reproducible codes from powers of a single function 63

5.4 Code-based schemes from quasi-reproducible codes 65
5.5 Defeating DOOM . 66

xiii

Contents

6 LEDAcrypt 69
6.1 The secret key in LEDA . 71

6.1.1 LEDAkem . 73
6.1.2 LEDApkc . 74
6.1.3 Achieving IND-CCA2 security 74

6.2 Q-decoder . 76
6.2.1 Choice of the Q-decoder decision thresholds 78
6.2.2 Relations with QC-MDPC code-based systems 80

6.3 Security analysis . 81
6.3.1 Attacks based on exhaustive key search 81
6.3.2 Attacks based on Information Set Decoding 82
6.3.3 Weak keys in LEDA cryptosystems 84

6.4 Statistical attacks . 86
6.4.1 A general model for statistical attacks 87
6.4.2 The GJS attack . 87
6.4.3 General statistical attacks . 89

6.5 Countering statistical attacks . 93
6.5.1 Ephemeral keys . 93

6.6 Long term keys . 95

7 Conclusions 101

xiv

List of Figures

4.1 Tanner graph example . 32
4.2 Comparison of the DFR resulting from Monte Carlo simulations with

our bound for a code with p = 9851, v = 25, g = 4, and different
threshold values. 47

4.3 Comparison of the DFR resulting from Monte Carlo simulations with
our bound, for a code with p = 8779, v = 13, g = 6, and different
threshold values. 48

6.1 Distribution of the DFR as a function of the syndrome weight, for two
regular (w, v)-regular LDPC codes, decoded through BF with imax =
5 and b = 15. The weight of the error vectors is t = 58; for each code,
107 decoding instances have been considered. 90

6.2 Simulation results for (v, w)-regular codes with n = 5000, k = 2500,
for t = 58 and for error vector belonging to ensembles E(n, t, 0, j),
for j ∈ [1, . . . , n − 1]. The parameters of the codes are v = 25,
w = 50 for Figure (a), v = 20, w = 40 for Figure (b); the decoder
settings are imax = 5 and b = 15. The results have been obtained
through the simulation of 109 decoding instances. Grey, blue, green,
black and red markers are referred to pairs of columns with number of
intersections equal to 0, 1, 2, 3, 4, respectively. 92

xv

List of Tables

3.1 System performance comparison for SL = 2180: (a) Goppa code-
based system, (b) BCRSS with m = 1 and z = n − k, (c) Berger-
Loidreau. 28

3.2 System performance comparison for SL = 2260: (a) Goppa code-
based system, (b) BCRSS with m = 1 and z = n − k, (c) Berger-
Loidreau. 28

3.3 BCRSS performances for m = 1.2, SL = 2180 and SL = 2260. . . . 29
3.4 BCRSS performances for m = 1.3, SL = 2180 and SL = 2260. . . . 29
3.5 BCRSS performance for m = 1.8, SL = 2180 and SL = 2260. 30
3.6 Original GRS code-based system performance for SL = 2180 and

SL = 2260. 30

4.1 Estimated tM for randomly generated (v, 2v)-regular QC codes . . . 41

6.1 Parameter sizes for LEDAkem instances with ephemeral keys. 94
6.2 LEDAkem with ephemeral keys – Sizes in bytes of the key pair (at rest

and in memory), of the encapsulated secret and of the shared secret,
as a function of the security parameter and the number of circulant
blocks n0 . 94

6.3 LEDAkem with ephemeral keys – Running times for key generation,
key encapsulation and key decapsulation, followed by the total time
needed for a key exchange without considering transmission times,
as a function of the security parameter and the number of circulant
blocks n0, on an Intel Skylake i5-6600 at 3.6 GHz.
The figures are taken employing the completely portable reference
implementation in ISO C11, compiled with GCC 6.3.0, employing
-march=native -O3 as optimization parameters 95

6.4 Parameters for the LEDAkem and LEDApkc employing a two-iteration
Q-decoder matching a DFR equal to 2−64 and a DFR equal to 2−λ,
where λ equals 128, 192, 256. 98

6.5 LEDApkc – Sizes in bytes of the key pair, and the minimum and max-
imum ciphertext expansion overhead, as a function of the security pa-
rameter and of the decryption failure rate provided by the choice of
the parameters of the underlying QC-LDPC code 98

xvii

List of Tables

6.6 LEDApkc – Running times for key generation, encryption and decryp-
tion assuming a plaintext message to be encrypted with size 1KiB.
Execution times on an Intel Skylake i5-6600 at 3.6 GHz are reported
as a function of the NIST category and of the decryption failure rate
provided by the choice of the parameters of the underlying QC-LDPC
code.
The figures are taken employing the completely portable reference
implementation in ISO C11, compiled with GCC 6.3.0, employing
-march=native -O3 as optimization parameters 99

xviii

Chapter 1

Introduction

The first use of term cryptograph dates back to the 19-th century, due to Edgar Al-
lan Poe, in the novel The Gold Bug. The term refers to a message whose real meaning
is hidden, and cannot be recovered without the knowledge of some secret, which is
necessary to disclose the real cryptograph information. Mankind has, since ancient
times, resorted to this kind of techniques: for instance, one of the oldest techniques
to obtain a cryptograph is the "Caesar cypher", named after its inventor Julius Cae-
sar. This method, obtained by replacing the letters of the alphabet in a fixed (and
secret) order, was used by the Roman emperor to safely transmit orders to the army
officers. Another famous historical example is that of the so called "Babington Plot":
the plan orchestrated to kill the Queen Elizabeth I was fully discovered with the aim
of Thomas Phelippes, a cryptanalyst that decrypted the letters exchanged between the
conspirators (one of them being Mary Stuart, Queen of Scots).

Generally, the study of techniques that are used to create a cryptograph is known as
cryptography, while cryptanalysis refers to the methods which can disclose the hid-
den message without knowing the secret. Nowadays, we use cryptographic techniques
everyday: every time we send a message, we connect to a site, we make an online pay-
ment, our communications are protected by a cryptographic protocol. Undoubtedly,
our lives have significantly improved because of the opportunities provided by means
such as Internet, smartphones, IOT technologies, etc: without cryptography, the whole
digital world would collapse.

Cryptographic protocols divide into symmetric and asymmetric schemes. The first
ones allow two parties to establish secure communications, provided that they have
already shared a common secret, which is used to perform both encryption and de-
cryption. On the contrary, asymmetric schemes, sometimes called public key cryp-
tosystems, allow two (or more) parties to safely exchange messages even if no secret
has already been shared. These techniques are, for instance, at the base of communi-
cations over the Internet (via HTPPS), in which they are employed to provide authen-
tication and to safely instantiate trusted channels. The main difference between these
two paradigms is in the fact that asymmetric cryptosystems require a pair of keys:
the public key can only be used to perform encryption, while the secret key is used to

1

Chapter 1 Introduction

decrypt. The keys are generated as a pair, in the sense that ciphertexts produced with
a specific public key can be decrypted only via the paired secret key. The rationale of
this mechanism is based on the concept of trapdoor: in a proper cryptosystem, recov-
ering a plaintext from a ciphertext requires on average a huge effort, but becomes easy
with the knowledge of the secret key.

Formally, each cryptosystem is based on some mathematical problem, which must
be generally hard to solve, apart from some particular instances. First, the secret key
is chosen to provide an easy instance of the problem; then, its structure is hidden
into that of the public key, which must not reveal any useful information and, thus,
must be indistinguishable from a random sequence. An adversary trying to attack
the scheme can be modeled as an algorithm trying to solve an arbitrary instance of
the underlying mathematical problem: the system is considered secure if the expected
number of operations performed by such an algorithm is below some sufficiently large
security threshold. With the use of the secret key, the hard instance represented by the
ciphertext can be turned into an easy instance, and can thus be efficiently solved:
finding such a solution corresponds to perform decryption.

The majority of the public key cryptosystems that we use nowadays is based on clas-
sical hard problems such as that of finding the factorization of large integers (RSA),
or on that of solving the discrete logarithm (Diffe-Hellman key exchange). How-
ever, recent results show that these problems can be efficiently solved by a quantum
computer, that is, a machine that exploits the quantum mechanic to increase its com-
putational capacity. Roughly speaking, a quantum computer uses quantum bits (called
qubits) to perform parallel computations, by taking simultaneously into account many
configurations of the input variables: for certain mathematical problem, this property
can be exploited to devise algorithms which run significantly faster than their classical
counterparts. This is the case of Shor’s algorithm, proposed in 1994 [1], which can
be used to efficiently (i.e., in polynomial time) factor integers and to compute discrete
logarithms. As a consequence, systems such as RSA and Diffie-Hellman cannot be
considered adequate anymore because, to guarantee acceptable security levels, the re-
quired public keys would become massive (in the order of tens of gigabytes). For this
reason, the National Institute for Standardization and Technology (NIST) has initi-
ated the process to standardize a new class of cryptographic primitives [2,3], provided
with post-quantum security, i.e., able to withstand cryptanalysis performed through
quantum algorithms. The NIST initiative, which has started in 2016, consists in a
"competition", in which teams of researchers from all over the world have submitted
proposals to undergo evaluation. NIST criteria for deciding the "winners" are based
on both security and efficiency analysis; the competition is divided into three rounds
and, at the end of the third round, the "survived" algorithms will be standardized.
Post-quantum cryptosystems are based on a whole new and wide class of mathemat-
ical problems, which includes, for instance, multivariate, lattices, coding theory and

2

isogenies problems: for all of these problems, an efficient quantum solver is unlikely
to exist.

Code-based cryptosystems, initiated by McEliece in 1978 [4], are among the oldest
public key schemes. These schemes are mostly based on the problem of decoding
a random linear code, proven NP-hard in 1978 [5], for which no efficient quantum
algorithm is currently known [6]. The McEliece cryptosystem, named after its inven-
tor, is based on error correcting codes, i.e., codes equipped with an efficient decoding
algorithm that can correct a non trivial amount of errors. The secret key is obtained
by randomly picking a code with such properties, while the public key is derived by
obfuscating its structure into that of a code which is made indistinguishable from a
random one. Encryption is performed by corrupting a codeword with a fixed amount
of intentional errors: an adversary trying to decipher is faced with an instance of the
general decoding problem, while the legitimate user can rely on the hidden structure
of the secret code to efficiently decode (and, thus, recover the original codeword).

The original McEliece proposal was based on Goppa codes, a class of binary error
correcting errors: after more than 40 years of cryptanalysis, this scheme is still essen-
tially unbroken. Despite its largely recognized security, however, the McEliece cryp-
tosystems has encountered scarce applications, because of its public key size which
is significantly larger than that of some competing solutions. To address this issue,
researchers have tried to design cryptosystems based on codes with a compact repre-
sentation, with the goal of obtaining reductions in the key size. For instance, we can
mention quasi-dyadic codes [7] and Quasi-Cyclic (QC) algebraic codes [8]. This kind
of solutions, however, is normally deemed as not promising, since the addition of a
geometrical structure to an algebraic code seriously threatens the scheme security [9].
Roughly speaking, satisfying both algebraic and geometrical constraints results in a
secret code that, in many cases, can efficiently be deducted from the public one.

This idea of quasi-clicity then been extended to codes of a different nature, namely
the Low-Density Parity-Check (LDPC) codes [10–13] and their recent variant known
as Moderate-Density Parity-Check (MDPC) codes [14]. The family of LDPC codes,
introduced by Gallager in 1963 [15], is particularly interesting because of the possibil-
ity of having a random-like design which, at the same time, guarantees the existence
of efficient decoding techniques. In such a case, the geometrical structure does not
arise security issues: the resulting schemes are thus provably secure and, benefiting
from the compact representation, have small public key sizes. However, the price to
pay is represented by the fact that LDPC codes, differently from algebraic codes, do
not admit efficient bounded distance decoders. Thus, decoding of LDPC is normally
characterized by some failure probability. When employed in cryptosystems, the re-
sulting decryption procedure is then characterized by some failure probability as well,
which may be exploited by an opponent to mount so-called reaction attacks [16–19].
To avoid these attacks, the failure probability needs to be provably low; however, the

3

Chapter 1 Introduction

required values (which, for practical applications, are smaller than 2−128) are far away
from those that we can reach with numerical simulations, such that only theoretical
arguments can be provided to guarantee this feature. For all these reasons, the use
of LDPC in cryptography represents an interesting, and surely challenging, matter of
study.

In this manuscript we investigate the use of structured LDPC codes in code-based
cryptosystems. We first analyze LDPC codes from the decoding perspective, and
introduce methodologies and tools which guarantee the design of efficient decoding
techniques with provably low failure probabilities. We then introduce the general
framework of reproducible codes, that is, codes admitting a compact representation.
We then embed LDPC into this framework to describe LEDAcrypt [20], one of the
algorithms that is currently under evaluation in the NIST competition. We provide
insights on the main cryptanalysis techniques that can be used against this family of
codes and describe the design criteria of LEDA instances.

1.1 Main contributions of the thesis

In the following list the main contributions of this thesis are reported.

Chapter 3

• Proposal of a McEliece variant based on Generalized Reed Solomon (GRS)
codes.

Chapter 4

• Study of the total error correction capability of LDPC codes, under parallel Bit
Flipping (BF) decoding.

• Definition of an analytical upper bound of the DFR of LDPC codes, for one
iteration of BF decoding.

Chapter 5

• Introduction of the concept of reproducible codes as a generalization of codes
with compact representation.

• Definition of general properties of reproducible codes.

Chapter 6

• Introduction of new design criteria for QC-LDPC codes based cryptosystems.

4

1.1 Main contributions of the thesis

• Introduction of a new efficient decoding algorithm for QC-LDPC codes.

• Generalization of known statistical attacks against QC-LDPC codes based cryp-
tosystems.

5

Chapter 2

Preliminaries

In this section we recall some basic notions of coding theory and cryptography,
which will be useful to provide a general background of the topics we treat in this
manuscript.

2.1 Notation

For q being a prime power, we will use Fq to denote the finite field with q elements.
The sum in the binary field (i.e, q = 2) will somehow denoted with ⊕, to avoid con-
fusion between integers and elements over a finite field.
Vector and matrices will be denoted with bold lower and upper case letters, respec-
tively. Given a vector a, we use ai to denote its entry in the i-th position. For a matrix
A, we will use ai,j to denote its entry in the i-th row and j-th column. The length-n
vector formed by all zeros will be denoted as 0n; in analogous way, 0k×n denotes the
null k × n matrix. The identity matrix of size k is denoted as Ik.

For a setA, we denote its cardinality, i.e., the number of its elements, as |A|; a $←− will
denote the fact that a is randomly picked among the elements of A. Given a set J and
a vector a, we denote with aJ the vector formed by the entries of a which are indexed
by J . For a matrix A, we use AJ to denote the matrix formed by the columns of A
that are indexed by J . The cartesian product of two sets A and B, i.e., the set of all
couples (a, b), with a ∈ A and b ∈ B, is denoted as A×B.
For a function f(x), we will write g(x) = O

(
f(x)

)
if asymptotically f(x) tends to

g(x); the definition can be straightforwardly be adapted to the case in which f(x) is a
multivariate function.

2.2 Public key cryptography

A public key cryptographic scheme is a protocol in which two parties can establish
a secure communication, even if they do not posses any shared secret. Public key
cryptosystems make use of a pair of keys, which we call public key and private key and
denote respectively as pk and sk; the first one is used to perform encryption, while the

7

Chapter 2 Preliminaries

latter one is used to perform decryption. Cryptanalysis of the scheme may be devoted
to recover the secret key and/or to decrypt an intercepted ciphertext. The security
of the scheme is commonly associated to the concept of computational security; this
property is captured by the so called Security Level or security parameter λ, with the
following meaning: a scheme reaches λ-bits security if any attack requires more than
2λ operations. The number of operations required to attack a cryptosystem is also
sometimes referred to as work factor.

Formally, a public-key encryption scheme is described as a triple of algorithms:

i) a Key Generation algorithm which, on input the security parameter λ, returns the
key pair {sk, pk};

ii) an Encryption algorithm which takes as input a message m and the public key
pk and returns the ciphertext x; some randomness may additionally be provided
as input;

iii) a Decryption algorithm that, on input a ciphertext x and the secret key sk, returns
either a message m or a failure ⊥.

Many cryptographic primitives rely on hash functions, which can mathematically
be defined as follows.

Definition 1 An hash functionH is a function that takes as input a sequence (with no
constraints on its length) and returns a sequence of fixed length. We consider an hash
function secure, up to the security parameter λ, if finding a collision, i.e., finding two
inputs m and m′ such that H(m) = H(m′), requires a work factor larger than 2λ.
Normally, the hash image of a message is called digest.

2.3 Coding theory

In this section we provide a brief introduction to some basic concepts of coding
theory.

Definition 2 A linear code C of length n and dimension k over Fq is a linear subspace
of Fnq of dimension k. The parameters n, k and r = n − k are called, respectively,
length, dimension and redundancy of the code.

In particular, the description of a linear code can be provided in terms of two matrices,
which are defined in the following.

Definition 3 Given a linear code C with length n and dimension k, we say that G ∈
Fk×nq is a generator matrix for C if and only if

C =
{

uG| u ∈ Fkq
}
.

8

2.3 Coding theory

If G = [Ik|V], with V ∈ Fk×n−kq , we say that G is the systematic generator matrix
for C.

Definition 4 Given a linear code C with length n and dimension k, we say that H is
a parity-check matrix for C if and only if

C =
{
c ∈ Fnq s.t. Hc> = 0n−k×1

}
.

If H = [V| Ir], with V ∈ Fr×n−rq , we say that H is the systematic parity-check
matrix for C.

Remark 1 If G and H are, respectively, generator and parity-check matrices of a
code C, then HG> = 0n−k×k.

Remark 2 If G (resp. H) is a generator (resp. parity-check) matrix for C, then each
matrix in the form G′ = SG, with S ∈ Fk×kq of full rank (resp., H′ = SH, with
S ∈ Fr×rq of full rank) is a valid generator (resp. parity-check) matrix for C.

Codes are normally with respect to their error correction capability; in particular,
this concept is strongly related to that of the minimum distance of the code, which is
defined as follows.

Definition 5 Given a vector c ∈ Fnq , we define its Hamming weight, and denote it
with wt (c), as the number of its non null entries.

Definition 6 Given a vector c ∈ Fnq , we define its support, and denote it as S (c), as
the integers set defined as

S (c) = {i s.t. ci 6= 0} .

Clearly, |S (c)| = wt (c).

Definition 7 For two vectors a,b ∈ Fnq , we define the Hamming distance as

d (a,b) = wt (a − b) = wt (b− a)

Definition 8 For a code C, we define its minimum distance as

d = min
c,c′∈C
c6=c′

{d (c, c′)} .

If the code is linear, we additionally have

d = min
c,c′∈C
c6=c′

{d (c, c′)} = min
c∈C
{wt (c)} .

9

Chapter 2 Preliminaries

Remark 3 In the above definitions, we have only considered the Hamming distance,
which gives rise to the Hamming weight. However, the presented concepts are general
and can be adapted to any distance function (such as the Rank distance, the Lee
distance, etc.).

The concept of minimum distance is strongly connected to that of error correction.
First of all, we remember the Gilbert-Varshamov bound, which is frequently used as a
tight estimate of the minimum distance of a random code.

Definition 9 Given a linear code C over Fq , with length n and dimension k, the
Gilbert-Varshamov distance is defined as

d(GV) = max
{
d ∈ N s.t.

d−1∑
i=0

(
n

i

)
(q − 1)i ≤ qn−k

}
.

For random linear codes, the GV-bound is normally used as an approximation of the
minimum distance; the bound becomes tighter as the code length grows.

Codes are commonly used to correct errors that corrupt a transmitted codeword; a
typical study case is that of additive errors, i.e., such that the received word is x =
c + e, with c being a codeword and e being the error vector. In this situation, the
parity-check matrix can be used to detect error-affected codewords.

Definition 10 Given x ∈ Fnq and a parity-check matrix H ∈ Fr×nq , we call syndrome
the length-r vector s = Hx>.

By definition, a codeword has null syndrome, while an error corrupted word may have
non null syndrome. We indeed have

s = Hx> = Hc> + He>.

Then, s corresponds to the syndrome of the error vector; if e 6∈ C, then s 6= 0r. In
such a case, we say that the error has been detected. In particular, because of the
minimum distance property, it is clear that all error vectors with weight t ≤ d− 1 can
be detected.

However, error detection is commonly not employed, since codes are rather used to
correct errors. In such a case, decoding is performed through a decoding algorithm D
that, on input x, returns either a codeword or a decoding failure. From the properties
of the minimum distance, it can be seen that, given x = c + e, e can be unequivocally
determined only if its Hamming weight is lower than d/2. In all the other cases, the
decoding problem, i.e., finding e and c ∈ C such that x = c + e, may have more than
one solution.

The problem of decoding is central in coding theory, and becomes crucial in cryp-
tography. Indeed, almost all code-based cryptosystems are built on the decoding trap-

10

2.4 Hard problems from the coding theory

door, that is, on the difficulty of decoding a code with no apparent structure. In prin-
ciples, the optimal decoder is the one that, on input an n-uple x ∈ Fnq , returns a
codeword c ∈ C such that

d (c′,x) ≥ d (c,x) , ∀c′ ∈ C.

The operating principle of this decoder, which we define Maximum Likelihood de-
coder, can be easily described as follows:

1. the decoder computes the distance between the received x and all codewords of
C;

2. if there is only one codeword minimizing the distance from x, then the decoder
output corresponds to such word;

3. if there is more than one codeword at the same (minimum) distance from x,
then the decoder randomly selects one of such words.

The complexity of this decoding technique is easy to estimate: for a code with length
n and dimension k, we have

CML = O(nqk).

It is clear that this decoding technique is not efficient, since its complexity grows ex-
ponentially with the code dimension. Indeed, normally error correction is performed
only when specific families of error correcting codes are used, equipped with an effi-
cient decoding technique.

2.4 Hard problems from the coding theory

A central problem in coding theory is the Maximum Likelihood Decoding Problem,
which is defined as follows.

Problem 1 Maximum Likelihood Decoding Problem (MLDP) Given C ⊆ Fnq and
x ∈ Fnq , find

c ∈ C s.t. d (c,x) = min
c′∈C, c′ 6=c

{d (c′,x)}

Related to MLDP, we can define many other problems in coding theory; in this manuscript
we focus on the Syndrome Decoding Problem (SDP) and the Minimum Distance Prob-
lem (MDP), which we formalize in the following.

Problem 2 Syndrome Decoding Problem (SDP) Given H ∈ Fr×nq , s ∈ Frq and
t ∈ N, find e ∈ Fnq such that wt (e) = t and He> = s.

Problem 3 Minimum Distance Problem (MDP) Given H ∈ Fr×nq and w ∈ N, find
c ∈ Fnq such that wt (c) ≤ w and Hc> = 0.

11

Chapter 2 Preliminaries

It can be shown that the three above problems are somehow all related; in particular,
MDP is sometimes referred to Homogeneous SDP, since it can be seen as a partic-
ular instance of SDP with s = 0r. In particular, MLDP, SDP and MDP problems
are NP-hard [5, 21] for general codes over Fq . The implications of this fact are really
important, since it means that we cannot dispose of an efficient general decoding al-
gorithm, able to decode an arbitrary code; then, in order to dispose of codes equipped
with an efficient decoding algorithm, we need to rely on specific code constructions.

12

Chapter 3

McEliece and Niederreiter
cryptosystems based on algebraic
codes

In this chapter we introduce the first historically proposed code-based cryptosys-
tems, the McEliece [4] and Niederreiter [22] schemes, named after their inventors
and which date back, respectively, to 1978 and 1986. These two schemes can be
interpreted as two faces of a coin since they are different formulations of the same
trapdoor, and are essentially equivalent from a security point of view. In this chapter
we describe a general framework upon which the two schemes can be constructed,
briefly resume the main attack avenues and describe why they are equivalent, when
the same family of codes is used. Then, we briefly describe how algebraic codes can
fit into such schemes, and which issues arise from the use of such codes. Finally, we
present and analyze variants of the McEliece and Niederreiter cryptosystems based on
Generalized Reed Solomon codes.
Throughout the chapter, we will use L(n, k, t,D) to denote a family of codes with
length n and dimension k, equipped with an efficient decoding algorithm D that can
decode up to t errors. The set of k × k non-singular matrices over Fq will be denoted
as GLk

(
Fq
)
, while Pn will denote the ensemble of permutation matrices of size n.

The McEliece cryptosystem aaa
aaa
In the original McEliece cryptosystem, the secret key sk is

{C,S,P} $←− L(n, k, t,D)×GLk
(
Fq
)
× Pn.

Let G be a generator matrix for C; then, the public key pk is computed as

G′ = S−1GP−1.

13

Chapter 3 McEliece and Niederreiter cryptosystems based on algebraic codes

The ciphertext is in the form
c = mG′ + e,

where m ∈ Fkq , e ∈ Fnq and wt (e) = t.
To decrypt, one first computes

c′ = cP
= mS−1G + eP
= m′G + e′,

where wt (e′) = t because P is a permutation matrix. Then, since m′G ∈ C, the
decoding algorithm D is used to recover the pair {m′, e′} from which, with simple
linear algebra, the pair {m, e} can be obtained.
aaa

The Niederreiter cryptosystem aaa
aaa
In the original Niederreiter cryptosystem, the secret key sk is

{C,S,P} $←− L(n, k, t,D)×GLr
(
Fq
)
× Pn.

Let H be a parity-check matrix for C; then, the public key pk is computed as

H′ = S−1HP−1.

The ciphertext is in the form
s = H′e>,

where e ∈ Fnq and wt (e) = t.
To decrypt, one first computes

s′ = Ss
= H(eP)>

= He′>,

where wt (e′) = t since P is a permutation matrix. Then, the algorithm D is run to
recover e′; the initial error vectors is obtained as e = e′P−1.
aaa

14

3.1 Modern solutions based on Goppa codes

Equivalence of the McEliece and Niederreiter cryptosystems aaa
aaa
In the McEliece cryptosystem, the public key is obtained by hiding the structure of the
secret code C, through a scrambling matrix S and a permutation matrix P. In other
words, the public key G′ is made indistinguishable from a random matrix. In such a
case, no efficient decoding algorithm can be applied to recover e from c and, thus, the
security level of the scheme is based on the hardness of solving an arbitrary MLDP
instance.
In the Niederreiter scheme, in analogous way, the public key is obtained by obfus-
cating the structure of the secret code. Then, security of the scheme is based on the
hardness of solving an SDP instance.

When the McEliece and the Niederreiter cryptosystems are instantiated with the
same code, they are equivalent from the security point of view. In other words, it can
be easily shown that the underlying problems are equivalent, in the sense that one can
be transformed into the other in polynomial time. For the sake of simplicity, we show
this equivalence just in one case, by showing how an instance of MLDP can be turned
into an instance of SDP.

Let G be a generator matrix of a code C and suppose that, given c = mG + e,
we want to recover m and e such that wt (e) = t and mG + e = c. With linear
algebra, a parity-check matrix H for C can always be efficiently (i.e., in polynomial
time) computed from G. We can then compute s = Hc> = He>. Then, the triple
{H, s, t} corresponds to an SDP instance, whose solution is e. If we can find e, then
with linear algebra we can easily obtain m from c− e.

3.1 Modern solutions based on Goppa codes

In the original proposal, the McEliece cryptosystem was instantiated with binary
Goppa codes, which are subfield subcodes of Generalized Reed-Solomon (GRS) codes.
To obtain a binary Goppa code with error correction capability equal to t, we first
choose a polynomial g(x) ∈ F2m [x] of degree t. Then, we choose a set L =
{l0, · · · , ln−1} of n distinct elements from F2m which are non zeroes of g(x); the
set L is called support of the code. The corresponding Goppa code is defined as the
set of vectors c ∈ Fn2 such that

n−1∑
i=0

ci
x− li

≡ 0 mod g(x). (3.1)

If the polynomial g(x) is irreducible, then L can contain the whole field F2m and the
code length can be maximum (i.e., n = 2m).

To express Eq. (3.1) in a more convenient way, we can describe the code in terms

15

Chapter 3 McEliece and Niederreiter cryptosystems based on algebraic codes

of its parity-check matrix, which has the following structure

H =

1

g(l0)
1

g(l1) · · · 1
g(ln−1)

l0
g(l0)

l1
g(l1) · · · ln−1

g(ln−1)
...

...
. . .

...
lt−1
0
g(l0)

lt−1
1
g(l1) · · · lt−1

n−1
g(ln−1)

 .
By projecting H to the base field F2, we obtain the parity-check matrix of the corre-
sponding binary Goppa code with size n = 2m, dimension k = n−mt and minimum
distance ≥ 2t. Decoding of such codes can be performed through Patterson’s algo-
rithm, which takes as input g(x) and the support L and runs in time O(nt).

Despite more than 40 years of cryptanalysis, the original McEliece proposal is still
essentially unbroken, in the sense that a simple parameters update is enough to achieve
modern security levels. Indeed, the choice of Goppa codes seems to be very appro-
priate, since there is no known way to recover the secret key from the public one
(apart from a distinguisher which, however, works only in the case of very high rate
codes [23]). Then, the only known attacks against this family of codes consists in
general decoding algorithms, which we describe in the following section.

To improve efficiency and to reduce the public-key size, modern solutions based
on Goppa codes, such as the Classic McEliece submission to the NIST process [24],
do not use a permutation anymore and, instead of using a generic S to scramble the
public code, rely on Gaussian elimination to obtain the public key. In other words, the
matrices G′ and H′, which are used for the public keys in McEliece and Niederreiter,
respectively, are nowadays commonly obtained as the systematic forms of the secret
G and H, respectively. The first obvious advantage of this choice comes from the re-
duction of the public key size, since the identity matrix does not need to be published;
furthermore, this choice reduces the number of operations which are required to per-
form a complete run of the algorithm (so, it leads to a lower algorithmic complexity).
For instance, in the McEliece case, the public key is in the form G = [Ik,V], such
that

c = [m,mV] + e.

Thus, once e has been recovered through Patterson’s algorithm, to recover m it is
enough to consider the first k entries of c− e.

3.2 Information Set Decoding

In this section we describe the main cryptanalysis technique which can be used
against the McEliece and Niederreiter cryptosystems. Without loss of generality, we
focus on the binary McEliece case: given the public key G′ ∈ Fk×n2 and a vector

16

3.2 Information Set Decoding

c ∈ Fn2 , the adversary tries to determine a vector e ∈ Fn2 of weight t such that c + e
is a codeword of the code generated by G′. Since the public key does not reveal any
information about the secret key, G′ can be considered as the generator matrix of
a random code and no efficient decoding technique can be applied. In this context,
the best known algorithmic solutions to the problem are known as Information Set
Decoding (ISD).

ISD algorithms were initiated by Prange in 1962 [25], and witnessed many im-
provements along the years; some of the most well known variants are those due to
Lee and Brickell [26], Leon [27], Stern [28], Finiasz and Sendrier [29], May, Meurer
and Thomae [30], and Becker, Joux, May and Meurer [31]. We refer the interested
reader to [32] for a complete review of all the aforementioned algorithms. ISD al-
gorithms can be described either as i) solvers of the general decoding problem, or ii)
finders of low-weight codeword in a given code. Actually, these two problems are
strongly related, and each ISD algorithm can indeed be used (with some little tweaks)
in both ways. For the sake of simplicity, we will only describe ISD as algorithms to
solve the general decoding algorithms.

All ISD algorithms have a common structure in which (as hinted by the name itself)
information sets are used to solve the decoding problem; to this end, we first need to
introduce the concept of information set.

Definition 11 Given a code C of length n and dimension k, an information set is a set
J ⊆ [0;n− 1] of cardinality k such that

d (cJ , c′J) > 0, ∀c, c′ ∈ C, c 6= c′

Following from the definition, it can be easily proven that, if J is an information set
for a code C, then any generator matrix G is such that the columns indexed by J are
linearly independent; in other words, given G, then GJ is a k×k non-singular matrix.
Information sets define a unique mapping between a sequence and the corresponding
codeword, and can clearly be used to invert the encoding mapping: given c = mG,
for any information set J , we have

m = cJG−1
J .

Now, let us consider a McEliece scheme in which the secret code has minimum dis-
tance d > 2t and can, thus, correct up to t errors; let c = mG + e be an intercepted
ciphertext such that wt (e) = t. Clearly, decoding c by testing all n-uples with weight
t is unfeasible, unless t is extremely low.
Let J be an information set, and let us write

cJ = mGJ + eJ ,

17

Chapter 3 McEliece and Niederreiter cryptosystems based on algebraic codes

from which
m = (cJ + eJ) G−1

J .

We note that, if eJ = 0k, then m = cG−1
J .

ISD algorithms are based on the following main principle: guess an information set,
establish a set of candidates êJ for eJ and, for each one of them, compute (c+êJ)G−1

J

and check the correctness of the derived solution. Then, the average complexity of
such an algorithm gets estimated as

Cisd = Citer

Prguess
,

where Citer is the number of operations that are performed to test each guess and
Prguess corresponds to the probability that a guessed set J satisfies some conditions
(which vary according to the considered ISD variant).

Let m′ be a candidate solution; to verify its correcteness, it is enough to compute

e′ = c + m′G
= (m + m′)G + e. (3.2)

If m′ = m, then e′ = e and has weight t. In the other cases, we have (m′ + m)G ∈
C \ {0}n and, thus, has weight ≥ d > 2t; thus, wt (e′) > t. Then, this simple check
allows to verify the correctness of a candidate solution.
In the following, we describe the first two ever proposed ISD algorithm. Modern vari-
ants are essentially based on the same approach and furthermore, as we describe next,
they are likely to perform bad when considering quantum implementations. For there
reasons, the choice of describing only the basic ISD algorithms is actually meaningful.

Prange ISD aaa
aaa
Prange’s ISD is successful anytime the guesses information set J is such that wt (eJ) =
0. This algorithm simply consists in selecting an information set, computing m′ =
cJG−1

J and verifying the weight of e′ (obtained through Eq. (3.2)). Thus, the success
probability of an iteration corresponds to the probability that a randomly chosen J i) is
actually an information set, and ii) does not overlap with the support of e. Condition i)
corresponds to having a non singular GJ ; to derive the probability that such an event
occurs, we consider GJ as a random k × k matrix over F2, such that the probability
that it is invertible can be estimated as

Prinv = 1∏r
i=1 1− 2−i

,

18

3.2 Information Set Decoding

which, for parameters of practical interest, can be approximated as 0.2788. Then, we
need to consider the probability that the chosen information set does not overlap with
the support of the error vector; this probability can be easily obtained as

Pr [wt (eJ) = 0] =
(
n−t
k

)(
n
k

) .

We then have

Prguess = Prinv · Pr [wt (eJ) = 0] =
(
n−t
k

)(
n
k

)∏r
i=1 1− 2−i

.

When t� k, we have

prguess ≈
1

0.27882−t log2 (1− kn).

The complexity of an iteration can be estimated with the cost of inverting GJ : we
thus have

Citer = O(k3).

Lee & Brickell ISD aaa
aaa
This algorithm improves upon Prange’s ISD by allowing the chosen information set
to have a small intersection with the support of e. This comes with an increase in
the operations that are performed in a single iteration but, when such intersection is
sufficiently small, then the overall algorithm complexity gets reduced. In particular,
the size of such an intersection is measured by a parameter p, such that the success
probability becomes

Prguess = Prinv · Pr [wt (eJ) ≤ p] ,

where, again, Prinv = 0.2788 and

Pr [wt (ej) ≤ p] =
p∑
l=0

(
t
l

)(
n−t
k−l
)(

n
k

) .

Then, for each information set J , in each iteration the algorithm tests all solutions
obtained as

m′ = (cJ + y)G−1
J , y ∈ Fk2 , wt (y) ≤ p.

Normally, the algorithm is optimized with p = 2, such that the complexity of each
iteration can be still measured as Citer = O(k3).

19

Chapter 3 McEliece and Niederreiter cryptosystems based on algebraic codes

aaa

Modern variants aaa
aaa
Modern variants of ISD all follow the Lee & Brickell principle of relaxing the condi-
tions on eJ , to facilitate the information set guessing, at the cost of a limited increase
in the iteration complexity. However, we remark the fact that, for all cited variants,
the overall complexity remains an exponential function of the number of errors. In
particular, the complexity of modern variants is well approximated by the following
simple expression [33]

Cisd ≈ 2ct, c = log2

(
1

1− k
n

)
. (3.3)

Non binary ISD aaa
aaa
When codes over non binary field are considered, the ISD approach may be extended
[34]. Essentially, ISD algorithms operate in the same way as that of the binary ones.
We point out that, as the finite field size grows while all the other parameters do not
change, a light increase in the ISD’s complexity appears.

3.2.1 Quantum ISD

To understand how quantum algorithms (not) affect code-based cryptography, we
consider the results discussed by Bernstein in [6], in which Grover’s quantum al-
gorithm [35] is exploited to speed-up the information set guessing phase. Roughly
speaking, Grover’s algorithm can be used to efficiently find a root of a function: given
f : X → F2, with u roots, Grover’s algorithm can, with high probability, find one
of such roots after

√
|X|/u function evaluations in random points from X . We recall

that, by root, we mean a value x ∈ X such that f(x) = 0. The main result of [6]
consists in the fact that, given an instance of the decoding problem represented by
G ∈ Fk×n2 , c ∈ Fn2 and t ∈ N, one iteration of Prange’s ISD can be described as a
function f which, on input a set J , acts as follows

1. gives up (and returns 1) if GJ is singular, otherwise computes G−1
J ;

2. computes m′ = cG−1
J ;

3. gives up (and returns 1) if wt (m′G + c) > t;

4. returns 0.

20

3.3 Cryptosystems based on Generalized Reed-Solomon Codes

It is then clear that finding a root of f corresponds to decode c, i.e., corresponds to find
a set J such that eJ = 0k. Prange’s classical ISD evaluates f on randomly sampled
sets J , and stops as soon as a root is found; by considering Grover’s algorithm, such
a search can be sped up. Indeed, the domain of f corresponds to the number of size-k
subsets of [0;n − 1], while the number of roots of f corresponds to the number of
information sets that do not overlap with the support of e. Considering that there are
approximately 0.2788

(
n−t
k

)
such sets, and that the domain has size

(
n
k

)
, the number

of required function evaluations (i.e., the average number of ISD iterations) is√
0.2788

(
n
k

)(
n−t
k

) .

It is easily seen that this number corresponds to the square root of Pr−1
guess which we

have defined in the previous section. We point out that the complexity of each iteration
is not affected by the application of Grover (thus, still requiresO(k3) qubit elementary
operations).

When considering more advanced ISD algorithms, a precise evaluation of the actual
complexity is strongly needed. However, as stated in [6], quantum versions of these
algorithms are likely to gain, at maximum, a very reduced factor with respect to quan-
tum Prange’s ISD. Indeed, according to the analysis in [36], Lee & Brickell and all
subsequent variants, with respect to Prange, tend to increase the operations performed
in each iteration by a factor that is very close to the square root of the increase in the
iteration success probability. Then, in the end, their complexity should be very close
to the one of quantum Prange. A common and conservative solution to take into ac-
count Grover’s speed-up is that of using the square root of the classical approximation
provided in Eq. (3.3) as a lower bound to the complexity of a quantum ISD algorithm.

3.3 Cryptosystems based on Generalized
Reed-Solomon Codes

In this section we consider cryptosystems based on Generalized Reed-Solomon
(GRS) codes [37]. On the one hand, GRS codes seem natural candidates for code-
based cryptosystems, since they are maximum distance separable codes: their error
correction capability is optimum and, for this reason, they should lead to reductions
in the key size, with respect to Goppa codes. On the other hand, GRS codes have
more structure than Goppa codes and, therefore, may be less secure. The use of GRS
codes in cryptosystems has been firstly proposed by Niederreiter in 1986 in its sem-
inal paper [22]; the scheme has been successfully attacked in 1992 by Sidelnikov
and Shestakov [38], exploiting the fact that for a GRS code, differently from Goppa
codes, permutating the secret code is not enough to hide its structure. The BBCRS

21

Chapter 3 McEliece and Niederreiter cryptosystems based on algebraic codes

scheme [39] tries to address this issue, by means of a stronger masking of the secret
GRS code; however, the proposed instances have been shown to be vulnerable to a
polynomial-time attack [40].

In this section we describe a modification of the BBCRS scheme, proposed in [37];
this solution allows avoiding attacks such as those in [40,41] and, furthermore, reduces
the decryption complexity of the original BBCRS scheme. This, however, comes with
a small increase in the ciphertext length and public key size.

3.3.1 The BBCRS scheme

In this section we describe the main features of the BBCRS scheme; for the sake of
simplicity, we focus on the Niederreiter version.
aaa

Key generation aaa
aaa
The secret key is constituted by the triple, {H,S,Q}, where

• H ∈ Fr×nq is the parity-check matrix of a GRS code C, with length n and
dimension k = n− r, able to correct t = r

2 errors;

• S ∈ Fr×rq is a non-singular matrix;

• Q ∈ Fn×nq is a non-singular transformation matrix obtained as Q = R + T,
where R ∈ Fn×nq and has rank z � n, while T ∈ Fn×nq has average row and
column weight m � n. The low rank matrix R is obtained as R = a> · b,
where a ∈ Fz×nq and b ∈ Fz×nq .

The public key H′ is computed as

H′ = S−1HQ>. (3.4)

Encryption aaa
aaa
The ciphertext is in the form

x = H′e>,

where wt (e) = tp =
⌊
t
m

⌋
.

aaa

22

3.3 Cryptosystems based on Generalized Reed-Solomon Codes

Decryption aaa
aaa
To decrypt x, one first computes

x′ = Sx
= HQ>e>

= H (eQ)>

= H [e (R + T)]>

= Hb>γ + HT>e>,

where γ = ae>. It is clear that x′ is, in general, the syndrome of an error vector
whose weight is far below the error correction of the GRS code. Indeed, the matrix
Q can be considered as a random matrix over Fq , thus, the average weight of its rows
can be estimated as n q−1

q . The vector x′ corresponds to the syndrome of the vector
eQ, computed through the parity-check matrix H; in particular, eQ corresponds to
the linear combination of tp � n rows of Q. Since each one of these rows can
be considered as a random vector over Fq , then the average weight of eQ is, again,
n q−1

q : clearly, such an amount of errors cannot be efficiently corrected. To decode,
the entries of γ must be guessed: to do this, all z-uples over Fq must be considered.
Each candidate z-uple can then be tested, in order to verify its correctness (see [39]
for more details); on average, this requires testing qz/2 guesses.
Once γ has been guessed, decryption proceeds by computing

x′′ = x′ −Hb>γ
= HT>e>

= He>T.

Since eT = eT has weight ≤ m · tp ≤ t, x′′ is a correctable syndrome through the
secret GRS code. Thus, decoding of the secret code returns eT, from which the origi-
nal e can easily be recovered as e = eTT−1.
aaa

Parameters choice aaa
aaa
To have practical public key sizes, the underlying secret GRS code must have moder-
ate length; at the same time, its length must be large enough to guarantee correction
of mtp errors. To obtain such features, the desired value of m should be small. In the
same way, z should be small as well, to avoid a too complex decryption phase (indeed,
guessing of γ requires to test, on average, qz/2 candidates). However, keeping both

23

Chapter 3 McEliece and Niederreiter cryptosystems based on algebraic codes

z and m too small exposes the system to polynomial-time attacks [40], therefore a
security / performance trade-off arises. In fact, the attack in [40] can be applied only
if m and z are such that the following two conditions are simultaneously verified1 ≤ m ≤ 1 +R− 1

n −
√

8
nR+ 1

n2 < 2,

z = 1,
(3.5)

whereR = k/n denotes, as usual, the code rate. In particular, the attack in [40] is built
upon a distinguisher of GRS codes based on computing the dimension of the square
of shortenings of the public code. The squares of some of these shortenings have a
smaller dimension than that of shortened random codes of the same size, due to the
structure of the hidden private code. The core of the attack in [40] is an algorithm to
distinguish between rows of T with Hamming weight 1 and rows of T with Hamming
weight 2. In fact, for 1 < m < 2 the rows of T have Hamming weight 1 or 2.
Then, the effect of weight-2 columns of T is reverted to that of weight-1 columns
through linear combinations of columns of the public parity-check matrix. Through
these steps, the public key of an alternative system with the same private code but with
m = 1 is recovered by the opponent, who can then mount the attack in [41] against
such an alternative system to recover the private key.

To counter these attacks, the system parameters must be chosen such that conditions
(3.5) on m and z are not verified. However, this has a detrimental effect on the public
key size and complexity. In the next section we describe a variant of the BBCRS
scheme [37], which overcomes these issues with some little tweaks to the original
BBCSR proposal.

3.4 A variant of the BBCRS scheme

This scheme comes from the necessity of countering attacks against the BBCRS
scheme, without having significant increases in both m and z. The main idea behind
this variant, which we call BCRSS scheme (the acronym is formed by the initial of the
authors of [37]), consists in increasing z and, at the same time, in avoiding increases
in the decryption complexity by publishing a. The main differences with the original
BBCRS scheme are emphasized in the following.

i) The public key is
pk = {M,a},

where M ∈ Fr×kq is such that H′ = [M, Ir] is the systematic parity-check
matrix of the secret GRS code.

ii) The ciphertext is constituted by the pair

{x = He> , γ = ae>}.

24

3.4 A variant of the BBCRS scheme

iii) During decryption, guessing of γ is clearly no longer needed; this saves a factor
of qz/2 in the average decryption time.

3.4.1 Security analysis

Since a is public, the system may be exposed to the subcode vulnerability described
in [39, Sect. 3.1]. In fact, from (3.4) it follows that

H′ = S−1HR> + S−1HT>

= S−1Hb>a + S−1HT>.

An attacker could consider the following alternative parity-check matrix

HS =
[

H′

a

]
=
[

S−1Hb>a + S−1HT>

a

]
. (3.6)

Compared to H′, HS includes an additional set of parity-check equations, defined by
a, which imply that any codeword c belonging to the code defined by HS satisfies
ac> = 0. This in turn implies that S−1Hb>ac> = 0. Therefore, the constraint
imposed by the set of parity-check equations appearing in (3.6) due to H′ becomes
S−1HT>c> = 0, for any codeword c belonging to the code defined by HS . In
summary, HS as in (3.6) defines a subcode of the public code where any codeword
c satisfies S−1HT>c> = 0. If T is a permutation matrix, then the subcode defined
by HS is permutation-equivalent to a subcode of the secret code. A cryptosystem
exposing a subcode of a private GRS code is the Berger-Loidreau (BL) scheme [42].
Based on the above considerations, for the case m = 1 (i.e., for T being a permu-
tation), the security of the new system is equivalent to that of a BL scheme with the
same subcode parameters. This also makes the attack presented in [43] applicable,
and designing parameters for the BL scheme that are secure against known attacks is
related to designing secure parameters for the BCRSS scheme, in the case m = 1.
However, the dimension of such a subcode is equal to n − rank (HS) and we can
choose parameters which avoid known attacks on the subcode (which apply in case
m = 1): if we look at [43, Eq. 8], for dimension k ≥ n/2 we can avoid the attack by
requiring k − z − 1 < 2k − n+ 1.
In the end, when m = 1, a high rate R and z ≥ n − k are required, while for m > 1
the value of z can be lowered.

Another point to take into account is that, although this type of subcode attack may

be avoided, knowing a and γ facilitates decoding attacks. In fact,

[
x
γ

]
= HS · e>

and an attacker could perform syndrome decoding on the code defined by HS , rather
than the public code. Such a code has rate k−z

n < k
n , and this facilitates ISD decoding

attacks. The attack complexity decreases as long as z increases (when z ≥ k the

25

Chapter 3 McEliece and Niederreiter cryptosystems based on algebraic codes

attack becomes very simple, since an adversary can find a full rank HS with size
n × n and just invert it). To avoid these issues, optimal parameters correspond to a
large dimension k and a relatively small z.

Finally, structural attacks must be kept into account. Starting with the work of
Sidelnikov and Shestakov [38], it has been recognized that McEliece type systems
having as an underlying (disguised) structure a GRS code are insecure. The main
reason for this is that the Schur square code of a GRS code has in general a very
small dimension compared to a random code of the same dimension; furthermore, the
dimension of the Schur square is an invariant under monomial transformations (such
as permutations). Then, the Schur square can be used to distinguish a disguised GRS
codes from random codes. Indeed, the attack in [40] exploits the Schur square to attack
the BBCRS scheme, while an attack in [44] explains how to attack the BL system [42]
through the Schur square. Furthermore, recently Couvreur et al. [45] came up with
general polynomial time attacks against a large class of algebraic geometric codes and
their subcodes (and GRS codes are algebraic geometric).

The question therefore is if the Schur square of the proposed code could be dimen-
sion deficient. For this, let us consider once more the relevant equations

x = H′e> and γ = a · e>.

Combining these equations one can study a related parity-check matrix, that is

H̃ =
[

0r×z H′

−γ a

]
.

Clearly if one has efficient decoding for this parity-check matrix the system becomes
insecure. For this, we wish to comment on two extreme cases.

1. Assume that m = 1, i.e., H simply represents a disguised GRS code. Then, it
is fairly clear that the Schur square of the defined code is dimension deficient
unless the size of z is chosen sufficiently large. So, it is important that m > 1.

2. Consider the other extreme case where z = 0. Here Couvreur et al. [40] derived
a polynomial time attack in case that 1 < m < 2. Bolkema et al. [46] studied the
case ofm = 2 and they called this situation “the weight two masking of the GRS
system”. Using extensive simulations, they conjectured that over large fields the
Schur square of the public code has the expected dimension of a random code.
More recently, Weger [47] has shown that the probability that the Schur square
has maximal dimension approaches 1 as the field size q goes to infinity.

These remarks should make it clear that a distinguisher attack using the Schur
square computation becomes out of reach when m and z are chosen sufficiently large.

26

3.4 A variant of the BBCRS scheme

When z = 0 it seems that m should be chosen at least two in order to avoid distin-
guisher attacks. When z > 0, at the best of our knowledge, there is no result estab-
lishing the minimal value for m which allows avoiding the Schur square distinguisher
attack

3.4.2 Concrete instances and comparison with other
schemes

In this section we compare performances of the BCRSS scheme with those of com-
peting schemes, such as the McEliece with Goppa codes and the BL scheme. First of
all, in the BCRSS scheme the public key corresponds to kr+z(n−z) values over Fq ,
i.e is made of (kr+ zn− z2) log2 q bits. In the BL scheme using a subcode of dimen-
sion k − z, the public key size is (k − z)(r + z) log2 q bits. It follows that BL always
has a smaller key size, although for fixed z and increasing k, the difference in key size
between the BCRSS and the BL schemes decreases. When m = 1, the BCRSS and
the BL schemes require the same vale of z to achieve the same security level. There-
fore, in such a case the BL system exhibits some advantage over the BCRSS scheme
in terms of public key size. However, when m > 1, the BCRSS scheme has smaller
values of z than those used in the BL scheme, and this yields significant reductions in
the public key size.

We now focus on the encryption rate, i.e., on the maximum quantity of information
that can be sent with a single ciphertext. For the Niederreiter versions, these values
correspond to

Re =
log2

(
n
t

)
(n− k)

for the Goppa code-based system, to

Re =
log2

(
n
tp

)
+ tp log2(q − 1)

(n− k + z) log2 q
(3.7)

for the BCRSS system (considering γ of length z as part of the ciphertext), and to

Re =
log2

(
n
t

)
+ t log2(q − 1)

(n− k + z) log2 q
(3.8)

for the BL system.
In the McEliece versions, the encryption rates are k

n for the Goppa code-based
system, k−zn for BL and k

n+z for the new system. From (3.7) and (3.8) we observe
that, with the Niederreiter version, when the same set of parameters is chosen and
m = 1 (hence, tp = t), the encryption rate of the BCRSS scheme equals that of BL
with the same security level, while with the McEliece version it is higher.

On the basis of the above performance and security metrics, we can compare the

27

Chapter 3 McEliece and Niederreiter cryptosystems based on algebraic codes

Table 3.1: System performance comparison for SL = 2180: (a) Goppa code-based
system, (b) BCRSS with m = 1 and z = n− k, (c) Berger-Loidreau.

Variant n k t = tp KS (KiB) Re (Niederreiter) Re (McEliece)
(a) 4096 3004 91 400.44 0.5724 0.7334

(b) 1282 1146 68 392.89 0.3850 0.8082

(c) 1212 1062 75 342.15 0.3806 0.7525

Table 3.2: System performance comparison for SL = 2260: (a) Goppa code-based
system, (b) BCRSS with m = 1 and z = n− k, (c) Berger-Loidreau.

Variant n k t = tp KS (KiB) Re (Niederreiter) Re (McEliece)
(a) 8192 6957 95 1048.82 0.6012 0.8492
(b) 1950 1754 98 917.37 0.3798 0.8173
(c) 1788 1560 114 801.13 0.3732 0.7450

BCRSS scheme with the classical binary Goppa code-based system and the BL system
based on GRS subcodes. For such purpose, we consider some instances of these
systems approximately achieving the same security level and compare their features.
For GRS code-based systems, we consider full length GRS codes defined over Fq ,
with q = n+ 1 being a prime. Goppa code-based systems instead exploit irreducible
binary Goppa codes with length equal to a power of two.

In Tables 3.1 and 3.2, we respectively consider codes with a security level (SL) of
at least 2180 and 2260, estimated as the work factor (WF) of attacks based on ISD,
computed according to [34]. On the basis of an exhaustive search performed over the
range of parameters of interest, we report the solutions achieving the smallest public
key size (KS) expressed in kibibytes (KiB) for the classical binary Goppa code-based
cryptosystem, for the new variant of GRS code-based cryptosystem with m = 1, and
for the BL cryptosystem, using z = n−k. We can notice that the BCRSS scheme with
m = 1 is able to achieve smaller key sizes than the Goppa-based solution, and it may
have higher encryption rate in the McEliece version. The BCRSS scheme has always
higher encryption rate than BL, particularly for the McEliece version, but larger key
size.

As mentioned, m = 1 was considered as in this case the new system is comparable
to BL, but an m slightly larger than 1 is certainly preferable, to better protect the
secret code. In Tables 3.3, 3.4 and 3.5 a few values of m and z are tested and the
instances with smallest key sizes are presented. It is evident how it is possible to
achieve very interesting parameters, namely high encryption rates and compact public
keys. Considering the instances in the tables, the reduction in public key size with
respect to the Goppa code-based solution with the same security level can reach 73%.

28

3.4 A variant of the BBCRS scheme

Table 3.3: BCRSS performances for m = 1.2, SL = 2180 and SL = 2260.
SL z n k t tp KS (KiB) Re (Niederreiter) Re (McEliece)
180 10 796 634 81 67 130.09 0.5870 0.7866
180 30 886 722 82 68 172.24 0.5304 0.7882
180 50 918 740 89 74 210.43 0.4879 0.7644
260 10 1162 928 117 97 284.27 0.5894 0.7918
260 30 1222 976 123 102 435.37 0.5467 0.7796
260 50 1276 1018 129 107 408.04 0.5128 0.7677

Table 3.4: BCRSS performances for m = 1.3, SL = 2180 and SL = 2260.
SL z n k t tp KS (KiB) Re (Niederreiter) Re (McEliece)
180 10 760 544 108 83 146.06 0.5399 0.7065
180 30 810 576 117 90 186.60 0.4989 0.6857
180 50 852 594 129 99 229.80 0.4671 0.6585
260 10 1122 810 156 120 326.36 0.5399 0.7155
260 30 1200 888 156 120 389.81 0.5104 0.7220
260 50 1236 898 169 130 454.98 0.4843 0.6983

To conclude the comparison, in Table 3.6 we report two instances of the original
GRS code-based cryptosystem in [39], achieving smallest key sizes for a security
level of 2180 and 2260, respectively, and satisfying m = 1.1 · (1 + R) > 1 + R to
avoid the attack in [40]. Through the comparison with the previous tables, we observe
that, for the same security levels, the BCRSS scheme is able to achieve a reduction in
public key size by more than 50%.

29

Chapter 3 McEliece and Niederreiter cryptosystems based on algebraic codes

Table 3.5: BCRSS performance for m = 1.8, SL = 2180 and SL = 2260.
SL z n k t tp KS (KiB) Re (Niederreiter) Re (McEliece)
180 10 1092 804 144 80 298.65 0.4042 0.7296
180 30 1116 792 162 90 357.44 0.3789 0.6911
180 50 1180 852 164 91 418.54 0.3594 0.6927
260 10 1600 1168 216 120 676.31 0.4012 0.7255
260 30 1626 1154 236 131 771.67 0.3828 0.7054
260 50 1722 1268 227 126 865.19 0.3691 0.7156

Table 3.6: Original GRS code-based system performance for SL = 2180 and SL =
2260.

SL n k m t tp KS (KiB) Re (Niederreiter) Re (McEliece)
180 946 504 1.686 221 131 268.87 0.4209 0.5328
260 1422 786 1.708 318 186 639.19 0.4111 0.5527

30

Chapter 4

Bounds on the error correction of
LDPC codes

In this chapter we focus on the family of Low-Density Parit-Check (LDPC) codes,
which have been introduced by Gallager in 1963 [15]. We will only consider LDPC
codes from the reliability point of view, while their cryptographic applications will be
discussed in Chapter 6.

Roughly speaking, we say that a code C is an LDPC if its parity-check matrix H
contains a low number of set entries; in other words, a code is an LDPC when its
parity-check matrix can defined sparse. A formal definition of this class of codes is
provided in the following definition.

Definition 12 We say that a code C is an LDPC code if it can be described by a
parity-check matrix H ∈ Fr×nq such that

i) the maximum row Hamming weight is� n;

ii) the maximum column Hamming weight is� r.

A common choice is that of distributing the weights of rows and columns of H in a
"regular" way; in such a case, we say that the corresponding codes are regular.

Definition 13 We say that a code C described by a parity-check matrix H is a (w, v)-
regular LDPC code if all the rows and columns of H have weights respectively equal
to w � n and v � r.

LDPC codes that are commonly used in crypto are indeed regular, and in thesis we
will mainly focus on them.

A representation of an LDPC code can be provided in terms of its Tanner graph,
that is, an undirected simple bipartite graph G formed by the set of variable nodes
V = {v0, · · · , vn−1} and that of check-nodes C = {c0, · · · , cr−1}. The set of edges
E is defined as follows

E = {(vi, cj) ∈ V × C s.t. hj,i = 1}.

31

Chapter 4 Bounds on the error correction of LDPC codes

v0

v1

v2

v3

v4

v5

c0

c1

c2

Figure 4.1: Tanner graph example

To provide an example, the graph in Figure 4.1 is the Tanner graph of the following
parity-check matrix

H =

1 1 0 1 1 0
0 1 1 1 0 1
0 0 1 1 1 0

 .
If H is randomly picked among all r × n matrices over F2, then its Tanner graph

will contain on average rn
2 edges. For the parity-check matrix of an LDPC code, this

value is significantly smaller, i.e., |E| � rn
2 . Let N(vi) denote the neighbourhood of

vi, that is, all nodes in G that are connected to vi; with analogous meaning, we define
N(cj). Due to the definition of LDPC, we have{

|N(vi)| � r ∀vi ∈ V,
|N(cj)| � n ∀cj ∈ C.

If the code is (w, v)-regular, we furthermore have{
|N(vi)| = v � r ∀vi ∈ V,
|N(cj)| = w � n ∀cj ∈ C.

4.1 Decoding LDPC codes

The sparse nature of parity-check matrices of LDPC codes allows for efficient de-
coding techniques. In this manuscript we focus on the Bit-Flipping (BF) decoder,
originally proposed by Gallager [15]; this simple decoding technique, because of its
very low complexity (which grows linearly with the code length) has a crucial impor-
tance in code-based cryptography, as we explain in Section 6.

32

4.1 Decoding LDPC codes

A common BF decoding procedure is depicted in Algorithm 1.

Algorithm 1 BFdecoder
Input: parity-check matrix H ∈ Fr×n2 , syndrome s ∈ Fr2,

Input: maximum number of iterations imax ∈ N, threshold b ∈ N
Output: error vector estimate ẽ ∈ Fn2 or failure ⊥

1: ẽ← 0n . Error vector estimate
2: i← 0 . Number of performed iterations
3: while wt (s) > 0 ∧ i < imax do
4: F ← ∅ . Set of error-affected estimated bits
5: for j ← 0 to n− 1 do
6: σj ← 0 . Counter initialization
7: for l ∈ S (hj) do
8: σj ← σj + sl
9: end for

10: if σj ≥ b then
11: F ← F ∪ j . Position j is estimated as error affected
12: end if
13: end for
14: for j ∈ F do
15: ẽj ← ¬ẽj . Error vector estimate update
16: s← s⊕ hj . Syndrome update
17: end for
18: i← i+ 1
19: end while
20: if wt (s) = 0 then
21: return ẽ
22: else
23: return ⊥
24: end if

The BF decoding procedure is probabilistic and aims at estimating the error vector
associated to a syndrome s through a partial guessing of its set positions. Each time
a bit is estimated as error affected, the syndrome is updated by summing the corre-
sponding column of the parity-check matrix. The procedure runs through a maximum
number of iterations, and stops as soon as a null syndrome is obtained or the maxi-
mum number of iterations is reached. If, at the end of the decoding procedure, the
syndrome is not null, then we have encountered a decoding failure. Indeed, let e be
the error vector corresponding to the input syndrome; let ẽ denote the error vector
estimate as some point in the decoding process, and denote with s̃ the corresponding
syndrome. It can be easily seen that

s̃ = H(e⊕ ẽ)>.

If, at some point, we have s = 0r, this means that ẽ ⊕ e ∈ C: with overwhelming

33

Chapter 4 Bounds on the error correction of LDPC codes

probability we actually have ẽ = e, which means that the decoder has found the error
vector (and then, decoding can stop).

To understand the BF principle, we provide a simple reasoning; for the sake of
simplicity, we focus on the case of a (w, v)-regular code. Let e be an error vector of
weight t� n, with syndrome

s =
⊕
i∈S(e)

hi,

where hi is the i-th column of H; clearly, wt (s) ≤ min{r, vt}. When v � r and
t � n, we expect the weight of s to be slightly smaller than vt. In other words,
this means that few cancellations happen in the syndrome computation: indeed, the
syndrome s is obtained as the sum of a small number of columns of H which, due to
sparsity of H, overlap in a very limited number of positions. Then, let us consider a
generic j-th column and define s′ = s ⊕ hj ; because of the previous reasoning, the
following properties hold:

i) if j 6∈ S (e) then, with high probability, we have wt (s′) > wt (s);

ii) if j ∈ S (e) then, with high probability, we have wt (s′) < wt (s).

In particular, the difference between the weights of s′ and s is exactly what the BF
decoder uses as the criterion to estimate error affected positions. Indeed, let σj be
computed as in Algorithm 1; we then have

wt (s)− wt (s′) = 2v − σj .

The more σj is close to v, the larger the reduction in the weight is.

We point out that σj , which is normally called counter, can also be seen as the
number of unsatisfied parity-check equations in which the j-th bit participates: with
this description, the BF principle can be resumed in a few words. Indeed, if a parity-
check equation is unsatisfied, this means that its support overlaps with that of the error
vector in an odd number of positions. Since both the rows of H and e are sparse,
the majority of parity-check equations will overlap with the error in no more than
one position. Then, if a bit participates in a big number of unsatisfied parity-check
equations, then it is probably the only "responsible" of their parity-check values: thus,
this bit can be safely considered as error affected.

The above reasoning should make explicit (in a qualitative way) that BF-decoding
is intrinsically probabilistic; as we have already anticipated, this feature has a crucial
(negative) influence on code-based crytosystems, as we explain in Chapter 6. In par-
ticular, all currently known efficient decoders for LDPC codes fails with some non
trivial probability, which is normally assessed through numerical simulations. Indeed,
the iterative nature of the decoder makes devising theoretical models for the failure

34

4.1 Decoding LDPC codes

probability a really challenging (and quite involved) task. The existence of this prob-
ability represents a serious problem in cryptography since, as we explain in Section 6,
it opens up for the possibility of mounting key recovery attacks. To avoid this issue,
the failure probability must be kept below some value which, typically, is far beyond
the ones that can be reached through mere numerical simulations. For instance, nowa-
days applications require failure probabilities to be, at least, lower than 2−128. Thus,
providing strong and reliable theoretical tools to predict the failure probability of a BF
decoder has now become a major need in cryptography. In the following sections we
deal with this problem, and describe some ways to estimate such probability.

One final remark is about the flipping strategy employed in Algorithm 1. This
algorithm is normally referred to as out-of-place BF-decoder, since the error vector
and syndrome updates are performed after all the bits have been evaluated. A different
approach is that of in-place decoding, in which each bit is eventually flipped after its
evaluation (i.e., the counter computation). The two approaches, despite being based on
the same principles, may have significantly different performances, concerning both
error correction capacities and algorithmic complexity. In this manuscript we have
focused on the out-of-place strategy, which is normally the one actually implemented
in code-based cryptosystems.

4.1.1 The error correction capability of a BF-decoder

Historically, the first bound on the error correction capability of the out-of-place BF
decoder dates back to 2008, and is due to the work of Chilappagari et al. [48]. It is
based on the concept of girth which, for a parity-check matrix H, is defined as the
shortest cycle in the Tanner graph.

Theorem 1 For a code defined by a parity-check matrix H with girth g in which every
column has weight v, BF decoding with decoding threshold b =

⌈
v
2
⌉

allows correction
of all error patterns of weight less than{

1
2 + v

4
∑j−1
i=0

(
v−2

2
)i

if g = 4j + 2,∑j−1
i=0

(
v−2

2
)i

if g = 4j.
(4.1)

Then, in 2018 Tillich [49] established a connection between the maximum column
intersection and the error correction capability, as stated by the following theorem.

Theorem 2 Consider a code defined by a parity-check matrix for which every column
has weight at least v and with maximum column intersection is δ, which is defined as

δ = max
i,j∈[0;n−1]

i 6=j

{|S (hi) ∩ S (hj)|}.

35

Chapter 4 Bounds on the error correction of LDPC codes

Then, one iteration of BF-decoder with threshold b =
⌈
v
2
⌉

allows the correction of all
error vectors with weight t ≤ tM , where tM =

⌊
v
2δ
⌋
.

For g = 4, g = 6 and g = 8, the bounds on the error correction capability computed
according to Theorem 1 are 0, b v+2

4 c and b v2c, respectively. So, for g = 4 (4.1) is
useless. Theorem 2 can instead take into account the case of g = 4 and, if δ ≤ v

2 ,
the obtained error correction is always ≥ 1. However, Theorem 2 does not take into
account the girth of the code. Indeed, it can be easily shown that, when g ≥ 6, we
have δ = 1: in all such cases, the error correction capability is always the same, and
corresponds to

⌊
v
2
⌋
.

The bound expressed by Theorem 2 has then been improved by Santini et al. in
[50], by considering the whole parity-check matrix structure and the possibility of
employing different threshold values. We will describe these results in the following
section.

4.1.2 An improved bound on the error correction capability

The results provided in [50] are based on the concept of partial parity-check matri-
ces, which we briefly recall in the following.

Definition 14 Given H, let us consider the rows of H indexed by S(hi) and put them
into a matrix H(i). We define H(i) as the i-th partial parity-check matrix.

If the i-th column of H has weight vi, then H(i) is a vi × n matrix, and its i-th
column contains only ones. Furthermore, when decoding a syndrome s = He>, the
number of unsatisfied parity-check equations in which the i-th bit participates, which
we call counter and denote as σi, is

σi = H(i) ∗ e>,

where ∗ denotes the integer product. The partial parity-check matrices can be used
to define the error correction capability of a given matrix H; to this end, we first
introduce another quantity, which we will then use in the main result of this section.

Definition 15 Let H ∈ Fr×n2 and H(i) be the corresponding i-th partial parity-check
matrix, and denote its j-th column as h(i)

j . For z ∈ [1;n− 1], let

δ(i)(H(i), z) = max
M⊆[0;n−1]
|M |=z, i 6∈M

wt
(⊕
j∈M

h(i)
j

),
where M is a set containing the indexes of z columns of H(i), except for the i-th. We
call the maximum column intersection of order z, and denote as δ(H, z), the quantity

36

4.1 Decoding LDPC codes

defined as
δ(H, z) = max

0≤i≤n−1

{
δ(i)(H(i), z)

}
.

Basically, δ(i)(H(i), z) corresponds to the maximum weight of a vector that can be
obtained as the binary sum of z columns of H(i), except for the i-th one. Then,
δ(H, z) is obtained as the maximum weight of all such vectors, computed considering
all indexes i ∈ [0;n − 1]. It is easy to see that, in the case of z = 1, δ(H, z)
corresponds to the maximum column intersection defined in Theorem 2.

We now describe how the columns of the partial parity-check matrices can be re-
lated to the counters that are used in the BF decoder. To this end, we consider a
codeword affected by an error vector e ∈ Fn2 . We focus on a generic i-th bit, and
denote with vi the weight of the i-th column in H. We remember that σi corresponds
to the number of unsatisfied parity-check equations in which the i-th bit participates.
If that bit is affected by an error, that is, ei = 1, then we denote σi as σ(1)

i , and we
have

σ
(1)
i = h(i)

i − wt

 ⊕
j∈S(e)\i

h(i)
j

= vi − wt

 ⊕
j∈S(e)\i

h(i)
j

 (4.2)

Indeed, if an entry in
⊕

j∈S(e)\i h
(i)
j is a 1, this means that an odd number of errors

at positions other than i participate in the corresponding parity-check equation, thus
making the corresponding parity check equal to zero. In the same way, when the i-th
bit is error free, that is, ei = 0, we denote σi as σ(0)

i , and we have

σ
(0)
i = wt

 ⊕
j∈S(e)

h(i)
j

 . (4.3)

We are now ready to describe how the maximum column intersection of order larger
than 1 can be exploited to derive a bound on the number of errors that can be corrected
by one iteration of BF decoding; this result in stated in the following theorem.

Theorem 3 Let us consider a code defined by a parity-check matrix H for which every
column has weight at least v. Let t be an integer such that

v > δ(H, t) + δ(H, t− 1).

37

Chapter 4 Bounds on the error correction of LDPC codes

Then, one iteration of a BF decoder, with decoding threshold set as

b ∈ [δ(H, t) + 1, v − δ(H, t− 1)] ,

corrects all the error vectors of weight t.

Proof. One iteration of BF decoding can correct any error vector e of weight t if
there exists a value of b such that

min
e∈Fn2

wt(e)=t

{σ(1)
i } ≥ b > max

e∈Fn2
wt(e)=t

{σ(0)
j }, ∀i ∈ S (e) , ∀j 6∈ S (e) ; (4.4)

indeed, the above condition guarantees that erred bits participate in a number of un-
satisfied parity-check equations that is always larger than that of correct bits. Thus,
erred bits can always unambiguously be distinguished from correct ones.

Let us first consider a bit at position i ∈ [0, n− 1], such that ei = 1; based on (4.2),
we have

σ
(1)
i = vi − wt

 ⊕
j∈S(e)\i

h(i)
j

≥ v − wt

 ⊕
j∈S(e)\i

h(i)
j

≥ v − δ(H, t− 1), (4.5)

where wt
(∑

j∈S(e)\i h
(i)
j

)
≤ δ(H, t− 1) by definition.

Let us also consider the j-th bit, j 6= i, such that ej = 0; based on (4.3), we have

σ
(0)
j = wt

 ⊕
k∈S(e)

h(j)
k

 ≤ δ(H, t). (4.6)

By including (4.5) and (4.6) into (4.4), we obtain

v − δ(H, t− 1) ≥ b > δ(H, t), (4.7)

from which the following condition is derived

v − δ(H, t− 1) > δ(H, t). (4.8)

According to (4.7), any b ∈ [δ(H, t) + 1, v − δ(H, t− 1)] guarantees that, on the
one hand, all bits such that ej = 0 are characterized by values of σ(0)

j that never
exceed b and, thus, are not flipped; on the other hand, all bits such that ei = 1 are
characterized by values of σ(1)

i larger than or equal to b, and thus are flipped.

38

4.1 Decoding LDPC codes

When δ(H, t) is a non decreasing function of t (as it commonly happens), then
the largest value of t such that Theorem 3 is satisfied provides the maximum error
correction capability of the code. We prove in Corollary 1 that this bound on the error
correction capability improves upon the one provided by Theorem 2.

Corollary 1 For a code defined by a parity-check matrix H for which every column
has weight not smaller than v, let t(2)

M be the largest integer such that Theorem 3 is
satisfied, and δ(H, i) ≤ δ(H, j), ∀i < j ≤ t

(2)
M . Let t(1)

M denote the correction
capability of BF decoding given in Theorem 2; then, t(1)

M ≤ t
(2)
M .

Proof. Let us remind that the maximum weight of the j-th column of H(i), where
i ∈ [0, n− 1] and j 6= i, corresponds to δ(i)(H(i), 1). The following expression holds

δ(H, z) ≤ zδ(H, 1). (4.9)

Indeed, δ(H, 1) corresponds to the maximum weight of a column in any partial parity-
check matrix H(i), excluding the i-th one; when we pick and sum z columns together,
the weight of the resulting vector cannot be larger than the sum of the weights of the
selected columns, which have weight larger than or equal to δ(H, 1). From Theorem
2, we have

t
(1)
M ≤

⌊
v

2δ(H, 1)

⌋
≤ v

2δ(H, 1) ,

from which
v ≥ t(1)

M δ(H, 1). (4.10)

By taking into account (4.9), inequality (4.10) can be developed as

v ≥ 2t(1)
M δ(H, 1)

> t
(1)
M δ(H, 1) + (t(1)

M − 1)δ(H, 1)

≥ δ(H, t
(1)
M) + δ(H, t

(1)
M − 1).

This proves that any value of t(1)
M satisfies Theorem 3. Since t(2)

M is, by definition, the
maximum value of t which satisfies Theorem 3, it must be t(2)

M ≥ t
(1)
M .

Computation of the gap between t
(2)
M and t

(1)
M implies to solve (4.8). However,

computing the exact value of δ(H, z) may be prohibitively complex when n and z are
high. Indeed, in principles, all sums of z columns, for all partial parity-check matrices
H(i), need to be considered. Thus, a naive computation would require to test n

(
n−1
z

)
sums which, clearly, becomes unfeasible unless n or z are trivial. For this reason, we
consider an upper bound on δ(H, z) which, on the one hand, is expected to be tight
for sparse parity-check matrices and, on the other hand, can be easily computed.

Definition 16 Given H and the i-th partial parity-check matrix H(i), ∀i, we define
U (i)(H(i), z) = {u(i)

0 , . . . , u
(i)
z−1} as any of the sets containing the weights of the z

39

Chapter 4 Bounds on the error correction of LDPC codes

columns of H(i), except for the i-th, with the largest weights, and µ(i)(H(i), z) =∑z−1
j=0 u

(i)
j , where the sum is performed over the set of integers Z. We then define the

maximum column union of order z, denoted as µ(H, z), the quantity

µ(H, z) = max
0≤i≤n−1

{
µ(i)(H(i), z)

}
.

Lemma 1 Given a code with blocklength n defined by the parity-check matrix H, the
following inequalities hold

δ(H, z) ≤ µ(H, z) ≤ zδ(H, 1), ∀z ≤ n− 1. (4.11)

Proof. Given H(i), ∀i, the sum of the weights of z columns with the largest weights,
except for the ith, upper bounds the value of δ(i)(H(i), z). Then, the first inequality
in (4.11) easily derives from Definition 15. Furthermore, z times the weight of the
column of H(i) with the largest weight, except for the ith, cannot be smaller than the
sum of the weights of its z columns with the largest weights, excluding the ith. This
proves the second inequality.

The value of µ(H, z) can clearly be computed more easily than δ(H, z), as it only
depends on the computation of the weights of the columns of the partial parity-check
matrices. Additionally, we also have µ(H, i) ≤ µ(H, j), ∀i < j. Based on these
premises, we can use the maximum column union values to determine a lower bound
on the error correction capability of the decoder. In particular, the error correction
capability of the decoder can be underestimated as

tM ≥ max
t
{t s.t. v > µ(H, t) + µ(H, t− 1)} . (4.12)

Indeed, because of Lemma 1, condition (4.12) is always more restrictive than that
of Theorem 3; then, setting the threshold of the decoder as µ(H, tM) + 1 guarantees
the correction of all error patterns with weight up to tM . It can be shown that, with a
similar proof of that of Corollary 1 and also considering Lemma 1, the bound on the
error correction capability of the decoder defined by (4.12) is never worse than that of
Theorem 2. Notice that, for sparse matrices, we can expect δ(H, z) and µ(H, z) to
be very close, unless z assumes very large values. Indeed, the columns of the partial
matrices have weights that are much smaller than v with high probability. Then, when
summing z such columns, the expected number of cancellations is low, which means
that µ(H, z) exceeds δ(H, z) by a small quantity with high probability.

To validate our approach, we have performed numerical simulations considering
randomly generated parity-check matrices. To speed up the simulations, we have
considered codes described by parity-check matrices in the form

H = [H0,H1],

40

4.1 Decoding LDPC codes

where each matrix Hi is a circulant of weight v. In particular, a circulant matrix is
such that each row corresponds to the cyclic shift by one position of the previous row;
a formal definition of circulant matrices is provided in Chapter 5. The correspond-
ing code, which is called quasi-cyclic (QC) because of the particular structure of the
parity-check matrix, has length n = 2p and rate 1

2 . This choice is motivated by the
fact that, because of the QC structure, we just need to analyze the partial parity-check
matrices H(0) and H(p). In fact, it is straightforward to verify that, as a consequence
of the QC structure, partial matrices associated to columns belonging to the same
circulant block are formed by the same columns, but in a different order.

The results of our simulations are shown in Table 4.1; the error correction capability
has been underestimated through the maximum column union. The number of tested
matrices and the number of occurrences of each value of tM are reported in the last
column of the table. As we can see from the tables, the analysis based on the maxi-
mum column union provides results that considerably improve upon the ones obtained
through Theorem 2.

Table 4.1: Estimated tM for randomly generated (v, 2v)-regular QC codes
v p tM Th. 2 [49] tM Th. 3 No. occurrences

450 48000 13
≥ 16 31 out of 123
≥ 17 91 out of 123
≥ 18 1 out of 123

600 100000 18

≥ 22 2 out of 162
≥ 23 82 out of 162
≥ 24 75 out of 162
≥ 25 3 out of 162

600 200000 25

≥ 31 1 out of 144
≥ 32 26 out of 144
≥ 33 111 out of 144
≥ 34 6 out of 144

900 400000 34

≥ 43 2 out of 127
≥ 44 21 out of 127
≥ 45 73 out of 127
≥ 46 26 out of 127
≥ 47 5 out of 127

4.1.3 Error sets and failure probability for one BF iteration

In this section we briefly resume the results of [51], and describe an analytical
tool to assess the decoding failure probability of one BF iteration. The analysis we
describe does not require any assumption, and takes into account the parity-check ma-
trix structure to overestimate the number of error vectors of given weight that cannot

41

Chapter 4 Bounds on the error correction of LDPC codes

be corrected by the decoder. Before proceeding with our analysis, we introduce the
concept of adjacency matrix, which is at the basis of the results we discuss.

Definition 17 Given a matrix H ∈ Fr×n2 , the adjacency matrix of H, denoted as Γ,
is the n× n matrix whose element in position (i, j) is such that

γi,j =
{
|S(hi) ∩ S(hj)| if i 6= j

0 if i = j
.

We consider the first and only iteration of a BF decoder, and assume that the em-
ployed decoding thresholds may vary with the position. Thus, given [b0, b1, · · · , bn−1],
the i-th bit is flipped if and only if σi ≥ bi. We denote with U(Bn,t) the uniform dis-
tribution over the binary n-uples of weight t, and analyze the decoder behaviour when
processing a syndrome s = eH>, with e ∼ U(Bn,t). As we have described in Chap-
ter 3, having a fixed number of errors (t) is clearly a scenario of interest in code-based
cryptography. Nevertheless, once having characterized the decoder performance for a
given number of errors, it is easy to extend such a characterization to channel models
(like the Binary Symmetric Channel (BSC)) in which the statistic of the number of
errors is known. In fact, a BSC with crossover probability ρ can be straightforwardly
studied by considering that the probability that the channel introduces exactly t errors
is equal to Pr [wt (e) = t] =

(
n
t

)
ρt(1− ρ)n−t. So, denoting the error vector after the

first iteration as e′, and the decoding failure probability as Pf , for the BSC we have

Pf =
n∑
t=0

Pr [e′ 6= e | wt(e) = t] Pr [wt(e) = t],

where Pr [e′ 6= e | wt(e) = t] can be upper bounded through the method we describe
in this section. For the sake of brevity, from now on we only focus on the case in
which t is constant and fixed.

For i ∈ [0, n−1], we define fi as the binary variable obtained through the following
rule

fi =
{

0 if [(σi < bi) ∧ (ei = 0)] ∨ [(σi ≥ bi) ∧ (ei = 1)],
1 if [(σi ≥ bi) ∧ (ei = 0)] ∨ [(σi < bi) ∧ (ei = 1)].

(4.13)

In other words, when fi = 0, the decoder takes a right decision on the i-th bit. Con-
versely, when fi = 1, the decoder takes a wrong decision on the i-th bit; a wrong
decision can either be the flip of an error-free bit or the missing flip of a bit affected by
an error. The error patterns that cause a decoding error in the i-th position are defined
by the so-called error sets, which we introduce next.

Definition 18 Let H ∈ Fr×n2 be the parity-check matrix of a code with blocklength
n. We consider the first and only iteration of a BF decoder, with decoding thresholds
[b0, · · · , bn−1]. Let fi be the binary variable defined as in (4.13), for i ∈ [0;n − 1].

42

4.1 Decoding LDPC codes

Then, for z ∈ {0, 1}, we define the error set for the i-th bit as follows

Ezi,t,bi = {e ∈ Bt s.t. fi = 1| ei = z} .

As we show in the following, a fundamental quantity in establishing the error cor-
rection capability of the first iteration of a BF decoder is represented by the cardinality
of the error sets; to this end, in order to ease the notation, we define the following
quantity.

Definition 19 Let Pl,m = {p0, · · · , pm−1} be a set of distinct integers 0 ≤ pi < l,
with l ≥ m and pi 6= pj , ∀i, j. We define Pl,m as the ensemble containing all such
distinct non-ordered sets; clearly, |Pl,m| =

(
l
m

)
. Let α ∈ N and let a ∈ Nl be a

length-l vector of non-negative integers; then, we define

N a
m,α =

{
Pl,m ∈ Pl,m s.t.

m−1∑
i=0

api > α

}
.

We now introduce a property of the error sets that will be crucial in the proof of
Theorem 4 that we state next.

Lemma 2 Let H ∈ Fr×n2 be a parity-check matrix, with adjacency matrix Γ, and let
Ezi,t,bi , for z ∈ {0, 1}, be the error set for the i-th bit. We denote with γ̃(i) the vector
formed by the entries of the i-th row of the adjacency matrix Γ, except for the i-th one.
Then, we have ∣∣E1

i,t,bi

∣∣ ≤ ∣∣∣N γ̃(i)

t−1,vi−bi

∣∣∣ , (4.14)∣∣E0
i,t,bi

∣∣ ≤ ∣∣∣N γ̃(i)

t,bi−1

∣∣∣ . (4.15)

Proof. We focus on the i-th bit, characterized by a certain value of σi and flipping
threshold bi, and derive the conditions upon which the decoder takes a wrong decision
(i.e., fi = 1). We first consider the case of ei = 1: a wrong decision is taken if the
decoder does not flip the bit, i.e., if σi < bi. From (4.2), we know that the value of σi is
not lower than the difference between the weight of the i-th column (that is, vi) and the
sum of the values γi,j indexed by S(e), except the i-th index (that is,

∑
j∈S(e)\i γi,j).

If such difference is not lower than bi, then the condition σi ≥ bi is guaranteed and
the decoder flips the i-th bit. On the other hand, if vi −

∑
j∈S(e)\i γi,j < bi, σi might

be lower than bi and the decoder does not flip the i-th bit. Then, a necessary (but not
sufficient condition) to have a wrong decision on the i-th bit is∑

j∈S(e)\i

γi,j > vi − bi. (4.16)

Because of the above reasoning, E1
i,t,bi

is a subset of the error vectors satisfying (4.16).
The set S(e) \ i in (4.16) corresponds to a subset of [0, i− 1] ∪ [i+ 1, n− 1], of size

43

Chapter 4 Bounds on the error correction of LDPC codes

t− 1; furthermore, the values γi,j which are possibly selected by S(e) \ i are entries
of γ̃(i) = [γi,0, · · · , γi,i−1, γi,i+1, · · · , γi,n−1], which has length n−1. Let Pn−1,t−1

be a subset of [0, n− 1], such that the sum of the entries in γ̃(i) indexed by Pn−1,t−1

is larger than vi−bi. According to Definition 18, the number of such sets corresponds
to the cardinality of N γ̃(i)

t−1,vi−b1
. Furthermore, to each one of these subsets, we can

associate an error vector satisfying (4.16), with support

{j ∈ Pn−1,t−1 |j < i} ∪ i ∪ {j + 1 ∈ Pn−1,t−1 |j > i} .

Thus, we obtain

∣∣E1
i,t,bi

∣∣ ≤
∣∣∣∣∣∣
e ∈ Bt s.t. (ei = 1) ∧

 ∑
j∈S(e)\i

γi,j > vi − bi

∣∣∣∣∣∣

=
∣∣∣N γ̃(i)

t−1,vi−bi

∣∣∣ .
Similarly, for the case of ei = 0, we can derive from (4.3) that a necessary but not
sufficient condition for fi = 1 is bi ≤ σi ≤

∑
j∈S(e) γi,j . Similarly to the case of

e1 = 1, we have

∣∣E0
i,t,bi

∣∣ ≤
∣∣∣∣∣∣
e ∈ Bt s.t. (ei = 0) ∧

 ∑
j∈S(e)

γi,j > bi − 1

∣∣∣∣∣∣

=
∣∣∣N γ̃(i)

t,bi−1

∣∣∣ .
Based on these relationships, we can now prove the following main theorem, that

allows defining an upper bound on the decoding failure probability of one iteration of
BF decoding, when the error vector corrupting a codeword is uniformly picked over
Bt.

Theorem 4 Let H ∈ Fr×n2 be a parity-check matrix. Let e ∈ Bt, and s = eHT be
the corresponding syndrome. We consider a single BF iteration applied on s, with
decoding threshold for the i-th bit denoted as bi. Let γ̃(i) denote the vector formed
by the elements in the i-th row of Γ, except for the i-th one. The probability that the
decoder fails to decode s is upper bounded as follows

Pf ≤ min

1;

∑n−1
i=0

(
|N γ̃(i)

t−1,vi−bi |+ |N
γ̃(i)

t,bi−1|
)

(
n
t

)
 .

Proof. Let Ei,t,bi be the set of all error vectors such that fi = 1; clearly

Ei,t,bi = E0
i,t,bi ∪ E

1
i,t,bi .

44

4.1 Decoding LDPC codes

By considering that E1
i,t,bi

and E0
i,t,bi

are disjoint, as a bit may be either correct or
incorrect, and by taking into account (4.14) and (4.15), we obtain

|Ei,t,bi | =
∣∣E0
i,t,bi

∣∣+
∣∣E1
i,t,bi

∣∣
≤
∣∣∣N γ̃(i)

t−1,vi−bi

∣∣∣+
∣∣∣N γ̃(i)

t,bi−1

∣∣∣ .
Then, the probability that decoding of s = eHT fails can be upper bounded by means
of the following chain of inequalities

Pf =

∣∣∣⋃n−1
i=0 Ei,t,bi

∣∣∣
|Bt|

≤
∑n−1
i=0 |Ei,t,bi |
|Bt|

≤

∑n−1
i=0

(∣∣∣N γ̃(i)

t−1,vi−bi

∣∣∣+
∣∣∣N γ̃(i)

t,bi

∣∣∣)
|Bt|

. (4.17)

The thesis of the theorem is finally proved by considering that |Bt| =
(
n
t

)
and that

trivially Pf ≤ 1 (whereas the bound in (4.17) is not guaranteed to be smaller than or
equal to 1).

An efficient way to compute the cardinalities of such sets is described in Appendix
A, and applies only because, for LDPC codes, the entries of the adjacency matrix
are extremely low. The expression of Pf derived above is coherent with Theorem
3. Indeed, let TM denote the bound on the error correction capability: then, for all
t ≤ TM , we have

∣∣∣N γ̃(i)

t−1,vi−bi

∣∣∣ = 0 and
∣∣∣N γ̃(i)

t,bi

∣∣∣ = 0, from which Pf = 0.

The previous bound can be specialized, depending on the threshold values and on
the parity-check matrix characteristics. From now on, we consider only regular codes,
with column weight v; furthermore, we assume that the decoding threshold values are
equal for all bits, and denote this unique value as b.

Then, when v is odd and b =
⌈
v
2
⌉
, the bound on Pf provided by Theorem 4 can be

rewritten as

Pf ≤ min

1;

∑n−1
i=0

∣∣∣N γ(i)

t, v−1
2

∣∣∣(
n
t

)
 . (4.18)

The proof is omitted for the sake of brevity.

When g ≥ 6, we have
γi,j ∈ {0, 1}, ∀i, j.

In particular, for (v, w)-regular codes, each row and each column of Γ contain exactly
v(w− 1) non-zero entries. Then, the bound on Pf can further specialized; to this end,
we first consider the following lemma.

45

Chapter 4 Bounds on the error correction of LDPC codes

Lemma 3 Let a ∈ Fl2 be a vector of weight m; then, we have
∣∣N a

x,α

∣∣ = θ(l, x,m, α),
with

θ(l, x,m, α) =
{

0 if α > m or x ≤ α∑min{m,x}
j=α+1

(
m
j

)(
l−m
x−j
)

otherwise
.

The following Theorem specializes Theorem 4 to the case of a regular code with
girth larger than 4, and reformulates (4.18) for such a case.

Theorem 5 Let H ∈ Fr×n2 be the parity-check matrix of a (v, w)-regular code with
girth g ≥ 6. Let e ∈ Bt, and s = eH>. We consider a single iteration of BF decoding
applied to s, with a unique decoding threshold b. If v is odd and b =

⌈
v
2
⌉
, we have

Pf = 0 if t ≤ v−1
2

Pf ≤ min
{

1; nθ(n,t,v(w−1), v−1
2)

(nt)

}
otherwise

,

where

θ(n, t, v(w − 1), v − 1
2) =

min{v(w−1),t}∑
j= v+1

2

(
v(w − 1)

j

)(
n− v(w − 1)

t− j

)
.

Proof. The proof can be straightforwardly derived by taking into account Lemma 3.

We now compare the bounds we have derived with the results of numerical sim-
ulations. As in the previous section, we focus on the case of QC-LDPC codes with
parity-check matrix in the form

H =
[
H0 H1

]
, (4.19)

where each Hi, i ∈ {0, 1}, is a circulant matrix of size p and row/column weight v.
In this case, the matrix Γ can be written as

Γ =
[
Γ0,0 Γ0,1

Γ1,0 Γ1,1

]
,

where each Γi,j is a p × p matrix; in particular, Γ is symmetric, and this means that
Γ0,0 and Γ1,1 are symmetric as well, while Γ>0,1 = Γ1,0. Moreover, each block Γi,j
is circulant. In particular, let γ(i) be the i-th row of Γ; then, all rows γ(j) such that
bi/pc = bj/pc are identical up to a quasi-cyclic shift; this means that∣∣Ezi,t,b∣∣ =

∣∣Ezj,t,b∣∣ , ∀b, t, ∀i, j s.t. bi/pc = bj/pc ,

46

4.1 Decoding LDPC codes

Figure 4.2: Comparison of the DFR resulting from Monte Carlo simulations with our
bound for a code with p = 9851, v = 25, g = 4, and different threshold
values.

with z ∈ {0, 1}. Then, from Theorem 4 we obtain

Pf ≤ min
{

1; p Ntot(
n
t

) } ,
with

Ntot =
∣∣∣N γ̃(0)

t−1,v−b

∣∣∣+
∣∣∣N γ̃(0)

t,b−1

∣∣∣+
∣∣∣N γ̃(p)

t−1,v−b

∣∣∣+
∣∣∣N γ̃(p)

t,b−1

∣∣∣ .
To assess the accuracy of the provided bounds, let us consider some codes defined by
parity-check matrices as in (4.19). The first code we consider has p = 9851, v = 25
and g = 4; the second code has p = 8779, v = 13 and girth g = 6. We assess
the DFR achieved by a single-iteration BF decoder with different threshold values
through Monte Carlo simulations; for each value of t, the DFR has been estimated
through the observation of 100 wrong decoding instances. The comparison of the
simulation results with our bounds is shown in Figs. 4.2 and 4.3, respectively. From
the figures it results that the bound becomes tighter and tighter for decreasing values
of t.

47

Chapter 4 Bounds on the error correction of LDPC codes

Figure 4.3: Comparison of the DFR resulting from Monte Carlo simulations with our
bound, for a code with p = 8779, v = 13, g = 6, and different threshold
values.

48

Chapter 5

A general framework for codes
with regular geometric structure

In Chapter 3 we have introduced the McEliece and Niederreiter cryptosystems. We
have considered some general attacks (such as ISD algorithms), and have focused on
schemes based on binary Goppa codes and GRS codes, such as the BL [42] and the
BCRSS [37]. Despite the recognized security of these proposal, they all suffer from
large public keys which, as we have already said, is the Achille’s heel of code-based
cryptosystems.

To address this issue, a major research avenue through the years has been that of
adding some geometrical structure to the secret code and mirroring it into the public
key. In such cases, the additional public key structure can be exploited to achieve a
compact representation. When the public key has such a structure, then transmitting
only a bunch of its rows (or columns) is enough to provide enough information to
reconstruct the whole matrix. This way, the public key size gets significantly reduced.

However, when algebraic codes are used, this choice may lead to some serious
security flaws. Indeed, an algebraic code already has a very strong structure, i.e.,
has some binding relations constraining its representations. When some geometrical
structure is added, these relations become more binding, and this may compromise the
security of the private key. The most notable example of attacks against these solutions
is that in [9]. Basically, in this cryptanalysis technique, the secret key is determined
through a system of equations, which is obtained from the knowledge of the public
key; the unknowns correspond to the elements in the secret key. Some equations are
already provided by the algebraic structure of the underlying code; if we furthermore
take into account the geometrical structure, then more equations can be added to the
system. The number of solutions to the system becomes lower, such that an adversary
may be able to test all of them and recover the secret key.

This attack strategy has seriously limited trust in cryptosystems based on algebraic
structured codes; as an evidence of this fact, there are no NIST second round candi-
dates based on structured algebraic codes. However, the situation becomes completely

49

Chapter 5 A general framework for codes with regular geometric structure

different when the adopted family of codes is not algebraic and admits a random or
pseudo-random design. In these cases, the secret key has a very weak algebraic struc-
ture, and the geometrical structure can be safely added. Some well established solu-
tions use those based on random codes and LDPC codes.

In this section we generalize the idea of codes with a compact structure, by introduc-
ing the concept of reproducibility. We prove relations which guarantee the existence
of matrices with a compact representation, and provide conditions that guarantee that
such structure is invariant under matrix operations. We show how this framework en-
compasses existing families, such as those of cyclic, quasi-cyclic and quasi-dyadic
codes, and provide examples of new concrete constructions. Finally, we describe how
to instantiate cryptosystems based on such codes, with some possible benefits in de-
feating some attacks that speed-up solvers for the decoding problem (such as ISD).
The results we present in this section are partly contained in [52].

5.1 Reproducible and quasi-reproducible codes

The idea of "compactness" that we use, is captured in the following definitions.

Definition 20 Consider a matrix A ∈ Fk×nq . LetR be the set of the rows of A and let
2R be its power set. Let F = {σ0,σ1, · · · ,σ`} be a family of linear transformations
on elements of Fm×nq . We say that A is F-reproducible if A can be entirely described
as F(a), where a is an element of 2R, of cardinality m < k, called the signature set,
that is

A =

aσ0

aσ1
...

aσ`

Definition 21 Let F be a family of linear transformations and C be a linear code
over Fq . If C can be described by an F-reproducible generator matrix G ∈ Fk×nq

and/or an F-reproducible parity-check matrix H ∈ Fr×nq , then we say that C is in
F-reproducible form.

Thus, a reproducible matrix is compactly described just by its signature set and by
its family of linear functions. Consequently, having the generator matrix (and/or the
parity-check matrix) in reproducible form leads to a compact representation of the
code. The condition on the reproducibility of a matrix can be relaxed, in order to take
into account other structures that allow a compact representation.

Definition 22 Let Ai,j ∈ Fki,j×ni,jq be reproducible matrices, each with its own di-
mensions, signature set ai,j ∈ Fmi,j×ni,jq and family of linear functions Fi,j . Let A
be a matrix obtained using as building blocks the matrices Ai,j; then, we say that A
is quasi-reproducible.

50

5.1 Reproducible and quasi-reproducible codes

Definition 23 Let C be a linear code over Fq . If C can be described by a quasi-
reproducible generator matrix G ∈ Fk×nq and/or a quasi-reproducible parity-check
matrix H ∈ Fr×nq , then we say that C is in quasi-reproducible form.

It is clear that, in order to describe a quasi-reproducible matrix, we just need the
set of the signature sets of its building blocks, together with the corresponding fami-
lies of linear functions. Quasi-reproducibility generalizes the concept of reproducibil-
ity, since each reproducible code can be seen as a particular quasi-reproducible code,
with a generator matrix described just by one signature. A particular type of quasi-
reproducible codes is the one in which the blocks Ai,j are square matrices, defined by
the same family F .

We are now ready to introduce a very important notion regarding the set of repro-
ducible matrices obtained via a given family of transformations. Specifically, consider
a family of linear functions F =

{
σ0,σ1, · · · ,σ p

m−1

}
, where each σi is a p×p ma-

trix over Fq . We denote byMF,mq the set of all reproducible matrices over Fq obtained
via signatures of size m× p and F , equipped with the usual operations of matrix sum
and multiplication. Then the following results1 hold.

Theorem 6 The setMF,mq is an abelian group with respect to the sum.

Proof. Showing thatMF,mq is an additive abelian group is quite straightforward.
In fact, the signature of the sum of two matrices corresponds to the sum of the orig-
inal signatures. Commutativity and associativity follow from the element-wise sum
between two matrices. The identity is given by the null signature (i.e., the signature
made of all zeros), while the inverse of a matrix with signature a is the matrix with
signature −a.

On the other hand, it is possible to show that the set, with respect to the multiplica-
tion, is a semigroup; in this case, the only requirements are closure and associativity.
While associativity easily follows from the properties of the multiplication between
two matrices, in order to guarantee closure, we must make an additional assumption.

Theorem 7 MF,mq is a semigroup with respect to the multiplication if and only if for
every matrix M ∈MF,mq , we have

σiM = Mσi, ∀i ∈ N, 0 ≤ i ≤ p

m
− 1.

Proof. We show that commutativity is necessary first. For what we discussed above,
we only need to prove closure. Let A and B be two matrices ofMF,mq , with respec-

1For simplicity we assume σ0 = Ip, but this is not necessary and the results holds even if F does not
contain the identity function.

51

Chapter 5 A general framework for codes with regular geometric structure

tive signatures a0, b0, that is

A =

a0

a0σ1
...

a0σ p
m−1

 =

a0

a1
...

a p
m−1

 , B =

b0

b0σ1
...

b0σ p
m−1

 =

b0

b1
...

b p
m−1

 .

Multiplying these two matrices we get

C = AB =

a0B
a1B

...
a p
m−1B

 =

a0B

a0σ1B
...

a0σ p
m−1B

 =

c0

c1
...

c p
m−1

 .
Now by hypothesis

ci = a0σiB = a0Bσi = c0σi,

for all i ≤ p
m − 1. It follows that C is reproducible and defined by F .

Conversely, supposeMF,mq is a semigroup, and in particular that it is closed with
respect to multiplication. Consider again two matrices A and B and their product,
defined as in Equation 5.1. Since by hypothesis C ∈ MF,mq , and therefore is repro-
ducible, we have that ci = c0σi for all i ≤ p

m − 1. It follows that

a0σiB = ci = c0σi = a0Bσi.

Now, since equation (5.1) holds in general for every signature a0, it must be that
σiB = Bσi, which concludes the proof.

Finally, note that multiplication distributes over addition, as usual. This means that,
if the conditions of Theorem 7 are satisfied, MF,mq verifies all the requisites of a
mathematical pseudo-ring, i.e. a ring without multiplicative identity (also known as
rng). We call this the reproducible pseudo-ring induced by F over Fq .

5.2 Pseudo-rings induced by families of
permutations

In the particular case of signatures made of just one row (i.e., m = 1) and the func-
tions σi being permutations, further properties can be derived, as stated in Theorem 8.
We point out that all the results we present in this section can be generalized, in order
to consider the case m > 1, but we will not go into further details here. We first intro-
duce some additional notation, which will be useful in the remainder of this section.

52

5.2 Pseudo-rings induced by families of permutations

Since a p× p permutation corresponds to a matrix in which every row and column
has weight equal to 1, it can equivalently be described as a bijection over [0, p− 1] ⊂
N. Given a permutation matrix σi, we denote the corresponding bijection as fσi . If
the element of σi in position (v, z) is equal to 1, then fσi(v) = z. The inverse of fσi ,
which we denoted as f−1

σi , is the bijection associated to the permutation matrix σ−1
i =

σ>i ; if fσi(v) = j, then f−1
σi (j) = v. Let a = [a0, a1, · · ·] and a′ = [a′0, a′1, · · ·] be

two row vectors, such that a′ = aσi. Then, a′j = af−1
σi

(j). If instead a′> = σia>,
then a′j = afσi (j). We use fσi ◦ fσj to denote the bijection defined by the application
of fσi after fσj . In other words, fσi ◦ fσj corresponds to the permutation matrix
σiσj , and fσi ◦ fσj (v) = fσi

(
fσj (v)

)
. The identity Ip can be seen as the particular

permutation that does not change the order of the elements, and the corresponding
bijection, which will be denoted as fIp , is such that each element is mapped into itself
(in other words, fIp(v) = v).

Theorem 8 Let F = {σ0 = Ip,σ1, · · · ,σp−1} be a family of linear transforma-
tions, with each σi being a permutation, and suppose that F induces the reproducible
pseudo-ringMF,1q over Fq . Then, the following relation must be satisfied

σjσi = σfσi (j), ∀i, j ∈ N, 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1.

Proof. Since MF,1q is a pseudo-ring, we know from Theorem 7 that, for every
matrix B ∈ MF,1q and every function σi ∈ F , it must be σiB = Bσi. In particular,
the left-hand term multiplication of σi by B corresponds to a row permutation, such
that

σiB =

bfσi (0)

bfσi (1)
...

bfσi (p−1) =

 =

b0σfσi (0)

b0σfσi (1)
...

b0σfσi (p−1)

 , (5.1)

where bi denotes the i-th row of B. The product Bσi instead defines a column per-
mutation of B, and can be expressed as

Bσi =

b0σ0

b0σ1
...

b0σp−1

σi =

b0σ0σi
b0σ1σi

...
b0σp−1σi

 . (5.2)

Putting together equations (5.1) and (5.2), we obtain

σjσi = σfσi (j),

53

Chapter 5 A general framework for codes with regular geometric structure

which must be satisfied for every pair of indexes (i, j).

Starting from the result of Theorem 8, we can easily derive some other properties
that F must satisfy.

Corollary 2 Let F be a family of permutations satisfying Theorem 8. Then, F has
the following properties

1. fσi(0) = i, ∀i;

2. ∀i ∃j s.t. fσi ◦ fσj = fIp .

Proof. According to Theorem 8, we have

σfσi (0) = σ0σi = Ipσi = σi,

which can be satisfied only if fσi(0) = i, and this proves property (a).
Since each fσi is a bijection of the integers in [0, p − 1], we know that, for a fixed
value of i, there is a value j ∈ [0, p− 1] such that fσi(j) = 0. Then, we have

σjσi = σfσi (j) = σ0 = Ip.

In other words, the bijections corresponding to fσi and fσj are one the inverse of the
other, and this proves property (b).

Corollary 3 Let F be a family of permutations satisfying Theorem 8. Then,MF,1q is
a ring, which we call, by analogy, reproducible ring induced by F .

Proof. Let us show that MF,1q contains the multiplicative identity, i.e., the p × p

identity matrix. Because of Corollary 2, F is formed by p× p permutations such that
fσi(0) = i, ∀i. If we generate the element ofMF,1q corresponding to the signature
u = [1, 0, · · · , 0], we easily obtain the p× p identity matrix Ip.

Theorem 9 Let F be a family of permutations satisfying Theorem 8. Then,MF,1q is
a reproducible ring and the invertible elements of MF,1q constitute a multiplicative
group overMF,1q .

Proof. Based on Corollary 3,MF,1q is a reproducible ring provided with multiplica-
tive identity. Now, we need to prove that any non-singular matrix in MF,1q admits
inverse inMF,1q . Let us consider a matrix A ∈ MF,mq , with signature a, and let B
be its inverse. Since AB = Ip, we have

AB =

a

aσ1
...

aσp−1

B = Ip =

u

uσ1
...

uσp−1

 ,

54

5.2 Pseudo-rings induced by families of permutations

with u = [1, 0, · · · , 0] as in Corollary 3. Then we have aσiB = uσi. For i = 0, we
have u = aB. Hence, for whichever value i, we get

aσiB = uσi = aBσi,

which can be satisfied for whichever a only if σi and B commute. Because of Theo-
rem 7, this means that B ∈MF,1q .

Sum and multiplication are not the only matrix operations we consider. In Theorem
10 we analyze how transposition acts on the matrices belonging to a reproducible
pseudo-ringMF,1q .

Theorem 10 LetMF,1q be a reproducible pseudo-ring; if

f−1
σj (i) = f−1

σv (0), v = f−1
σi (j), ∀i, j s.t. 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 1

thenMF,1q is closed under the transposition operation.

Proof. Let A ∈MF,1q , with signature a, and denote as B = A> its transpose. The
i-th row of B corresponds to the i-th column of A. In particular, the i-th column of A
is defined as

ai
af−1
σ1 (i)

af−1
σ2 (i)
...

af−1
σp−1 (i)

.

Because B is the transpose of A, the i-th row of B corresponds to the i-th column of
A. Let us denote as b0 the first row of B, that is

b0 = [a0, af−1
σ1 (0), · · · , af−1

σp−1 (0)] = [af−1
σ0 (0), af−1

σ1 (0), · · · , af−1
σp−1 (0)].

Let us consider the i-th row of B, and denote it as bi; if transposition has closure in
MF,1q , then it must be

bi = [ai, af−1
σ1 (i), · · · , af−1

σp−1 (i)] = [af−1
σ0 (i), af−1

σ1 (i), · · · , af−1
σp−1 (i)] = b0σi. (5.3)

Now suppose that fσi(v) = j; then, the j-th entry of bi corresponds to the v-th entry
of b0, that is af−1

σv (0). In other words, we have bi,j = az , with

z = f−1
σv (0), v = f−1

σi (j).

In order to satisfy eq. (5.3), az must be equal to the j-th entry of the i-th column of

55

Chapter 5 A general framework for codes with regular geometric structure

A, that is af−1
σj

(i). Then, it must be f−1
σj (i) = z, that is

f−1
σj (i) = f−1

σv (0), v = f−1
σi (j),

which concludes the proof.

Depending on the properties stated in the previous theorems, the family F might
induce different algebraic structures over Fp×pq . In particular, let us consider the
case of F corresponding to MF,1q satisfying both Theorems 9 and 10. Let A be
a square matrix whose elements are picked from MF,1q . By definition, we have
A−1 = det(A)−1 · adj(A), where det(A) is the determinant of A and adj(A) is
the adjugate of A. Computing det(A) involves only sums and multiplications: this
means that det(A) ∈MF,1q ; because of Theorem 9, det(A)−1 ∈MF,1q . Computing
adj(A) involves sums, multiplications and transpositions: because of Theorem 10, we
have that the entries of adj(A) are again elements of MF,1q . This means that A−1

is a matrix whose elements belong toMF,1q , and so has the same quasi-reproducible
structure of A.

5.2.1 Known examples of reproducible rings

In Section 5.2 we have described some properties that a family of permutations F
must have to guarantee that it induces algebraic structures on Fp×pq . Well-known cases
of such objects, with common use in cryptography, are circulant and dyadic matrices.

Circulant Matrices aaa
aaa
As we have seen before, a circulant matrix is a p × p matrix for which each row is
obtained as the cyclic shift of the previous one. In particular, a circulant matrix can
be seen as a square reproducible matrix, whose signature corresponds to the first row
and the functions σi defining F correspond to πi, where π is the unitary circulant
permutation matrix with entries

πl,j =
{

1 if l + 1 ≡ j mod p

0 otherwise

Basically, the bijection representing π is defined as

fπ(v) = v + 1 mod p.

It can be easily shown that

fσi(v) = fπi(v) = fπ ◦ fπ · · · ◦ fπ︸ ︷︷ ︸
i times

(v) = v + i mod p,

56

5.2 Pseudo-rings induced by families of permutations

which leads to πp = Ip and πiπj = πi+j mod p. Since permutation matrices are
orthogonal, their inverses correspond to their transposes, and thus (πi)> = πp−i.
With these properties, we have

σiσj = πi+j mod p = σi+j mod p,

which is compliant with Theorem 8, since fσi(j) = i+ j mod p. With some simple
computations, it can be easily shown that circulant matrices satisfy Theorem 10 and
that the multiplication between two circulant matrices is commutative.

Dyadic Matrices aaa
aaa
A dyadic matrix is a p× p matrix, with p being a power of 2, whose signature is again
its first row. The rows of a dyadic matrix are obtained by permuting the elements
of the signature, such that the element at position (i, j) is the one in the signature at
position i ⊕ j, where ⊕ denotes the bitwise XOR between i and j. Then, a dyadic
matrix can be described in terms of reproducible matrices, for which each function
σi is the dyadic matrix whose signature has all-zero entries, except that at position i.
This means that σi can be described by the following bijection

fσi(v) = v ⊕ i mod p.

If we combine two transformations, we obtain

fσi ◦ fσj (v) = (v ⊕ j)⊕ i = v ⊕ (i⊕ j) = fσi⊕j (v).

Since fσi(j) = i⊕ j, this proves that the family of dyadic matrices is compliant with
Theorem 8. It can be straightforwardly proven that dyadic matrices are symmetric
(and so, satisfy Theorem 10), and that the multiplication between two dyadic matrices
is commutative.

Other reproducible pseudo-rings aaa
aaa
Circulant and dyadic matrices are just two particular cases of reproducible pseudo-
rings, and can obviously be further generalized by considering signatures that are
composed by more than one row. In addition, several more constructions can be ob-
tained. For instance, for every permutation matrix ψ and every reproducible pseudo-
ringMF,mq , induced by a family F , we can obtain a new pseudo-ring as

MF
′,m

q =
{

M′|M′ = ψMψ>, M ∈MF,mq

}
.

57

Chapter 5 A general framework for codes with regular geometric structure

The corresponding family of transformations is F ′ =
{
σ′0, σ

′
1, · · · , σ′p

m−1

}
, with

σ′i = σfψ(i)ψ
>. Proving that F ′ actually induces a pseudo-ring is quite simple;

indeed, for any two matrices A = ψMAψ
> and B = ψMBψ

>, with MA,MB ∈
MF,m, we have

A + B = ψMAψ
> +ψMBψ

> = ψ(MA + MB)ψ>,

AB = ψMAψ
>ψMBψ

> = ψMAMBψ
>,

which return matrices belonging toMF ′,mq , since MA+MB ∈MF,mq and MAMB ∈
MF,mq . In addition, if multiplication is commutative inMF,mq , then it will be com-
mutative inMF ′,mq too. To prove this fact, let us consider two matrices MA,MB ∈
MF,mq , such that MAMB = MBMA. Then, for A = ψMAψ

> and B = ψMBψ
>,

we have

AB = ψMAψ
>ψMBψ

> = ψMAMBψ
> =

= ψMBMAψ
> = ψMBψ

>ψMAψ
> = BA.

It is easy to prove that, ifMF,mq is closed under transposition,MF ′,mq is too.

5.3 A general form for codes in reproducible form

In the previous section we have described the properties that a family of functions
F must have in order to generate reproducible matrices. This opens a wide range of
possibilities for obtaining codes with compact representations. In fact, reproducible
pseudo-rings allow to design codes that can be described in a very compact manner.
Codes of this type are of interest in code-based cryptography, where small public keys
are important.

In this section we describe how to design codes with reproducible representations,
and the properties that characterize them. In particular we study how to achieve a
reproducible representation for the parity-check matrix H starting from a generator
matrix G in reproducible form. In addition, we provide intuitive methods to obtain
random-looking codes in reproducible form, starting from their parity-check matrix.
The following theorem states some properties about the parity-check matrix that are
sufficient (but not necessary) conditions for having a code with G and H in repro-
ducible form.

Let C be a linear code over Fq in reproducible form, with length n, dimension k
and codimension r = n− k, with a reproducible generator matrix G ∈ Fk×nq defined
by signature g0 ∈ Fm×nq and family of transformations F . In particular, we write

F =
{
σ0,σ1, · · · ,σ k

m−1

}
, and suppose that σ0 = In. The matrix G can thus be

58

5.3 A general form for codes in reproducible form

expressed as

G =

g0

g1
...

g k
m−1

 =

g0

g0σ1
...

g0σ k
m−1

 .
Let H ∈ Fr×nq be a parity check matrix for C and s be one of the factors of r; if r is a
prime, necessarily s = 1. Then, H can be expressed as

H =

h0

h1
...

h r
s−1

 ,

where each hi is a matrix with dimensions s× n. Since by definition GH> = 0k×r,
it must be

gih>j = g0σih>j = 0m×s, ∀i, j ∈ N s.t. 0 ≤ i ≤ k

m
− 1, 0 ≤ j ≤ r

s
− 1. (5.4)

Let us assume that g0H> = 0m×n: as we explain later, in the practical case of a
cryptographic scheme, this condition can be easily satisfied. The following theorem
considers a particular construction for a reproducible code, and states some properties
that its parity-check matrix must satisfy.

Theorem 11 Let G ∈ Fk×nq be a reproducible matrix, with signature g0 ∈ Fm×nq

(hence, m is among the factors of k) and family F =
{
σ0,σ1, · · · ,σ k

m−1

}
. For

simplicity, we suppose that σ0 = In. Let H ∈ Fr×nq , such that g0H> = 0m×r. We
denote by hj the subset of rows of H at positions {js, js+ 1, · · · , (j + 1)s− 1}. If
we can define a function f(x0, x1) : [0, km − 1]× [0, rs − 1] ⊂ N2 → [0, rs − 1] ⊂ N,
such that

hjσ>i = hf(i,j), ∀i, j ∈ N, 0 ≤ i ≤ k

m
− 1, 0 ≤ j ≤ r

s
− 1, (5.5)

then G and H> are orthogonal, i.e. GH> = 0k×r.

Proof. Since the generator matrix G is reproducible, with signature g0, we have

G =

g0

g1
...

g k
m−1

 =

g0

g0σ1
...

g0σ k
m−1

 , H =

h0

h1
...

h r
s−1

 .

59

Chapter 5 A general framework for codes with regular geometric structure

In order for G to be a valid generator matrix, it must be GH> = 0k×r, that is

gih>j = g0σih>j = 0m×s, ∀i, j ∈ N s.t. 0 ≤ i ≤ k

m
− 1, 0 ≤ j ≤ r

s
− 1. (5.6)

By hypothesis, g0 is an m× n matrix such that g0H> = 0m×r, which means

g0h>j = 0m×s, ∀j ∈ N s.t. 0 ≤ j ≤ r

s
− 1. (5.7)

Consider now the product gih>j = g0σih>j , for i ≥ 1. If we can define a function
f(x0, x1) : [0, km − 1]× [0, rs − 1] ⊂ N2 → [0, rs − 1] ⊂ N with the aforementioned
property described by (5.5), then for all couples of indexes i, j we have

σih>j = h>f(i,j),

and (5.6) is surely satisfied, since

gih>j = g0σih>j = g0h>f(i,j) = 0m×s,

where g0h>f(i,j) = 0m×s because of (5.7).
For G and H to be, respectively, generator and parity-check matrix of a code C,

some conditions have to be verified, given in Corollary 4 below.

Corollary 4 Let G ∈ Fk×nq be a reproducible matrix, with signature g0 ∈ Fm×nq

(hence, m is among the factors of k) and family F =
{
σ0,σ1, · · · ,σ k

m−1

}
. Let

H ∈ Fr×nq be a matrix such that GH> = 0k×n, and suppose that it satisfies the
hypothesis of Theorem 11. For H and G to be, respectively, the parity-check and
generator matrices of a code C with length n, dimension k and redundancy r, the
following conditions are necessary

(a) F contains k
m distinct linear transformations;

(b) k
m ≤

r
s ;

(c) for any three integers i ∈ [0, km − 1] and j′, j′′ ∈ [0, rs − 1], with j′ 6= j′′, it must
be f(i, j′) 6= f(i, j′′).

Proof. We want the reproducible k× n matrix G to be the generator matrix of a code
with dimension k: then, G must have rank equal to k. If F contains two transforma-
tions σi = σj , with i 6= j, then the rows of G obtained as g0σi are identical to the
ones obtained as g0σj . If G has some identical rows, then its rank cannot be maxi-
mum, and this proves condition (a). It is straightforward to show that this condition
can also be expressed as follows: there cannot exist three integers i′, i′′ ∈ [0, km − 1],
with i′ 6= i′′, and j ∈ [0, rs − 1], such that f(i′, j) = f(i′′, j). Indeed, if we can

60

5.3 A general form for codes in reproducible form

determine such integers, then

hjσ>i′ = hf(i′,j) = hf(i′′,j) = hjσ>i′′ ,

which results in σi′ = σi′′ .

We can then easily prove condition (b). Indeed, fix an integer j ∈ [0, rs − 1] and
consider, for all i ∈ [0, km − 1], all the images f(i, j): because of condition (a), these
images must be distinct. However, the dimension of the codomain of f(i, j) is equal
to r

s : if k
m > r

s , then (a) cannot be satisfied. This proves (b).
If H is the parity-check matrix of a code with redundancy r, then it must have rank
equal to r. If we suppose that there exists three integers i ∈ [0, km − 1], j′, j′′ ∈
[0, rs − 1], with j′ 6= j′′, such that f(i, j′) = f(i, j′′) then, because of Theorem 11,
we also have hj′σ>i = hj′′σ>i , which implies hj′ = hj′′ . If H has some identical
rows, then its rank must be < r, and this proves condition (c).

Theorem 11 and Corollary 4 allow obtaining a code in reproducible form in a very
simple way. Given a family of transformations F , a matrix H with the characteristics
required by the theorem can be found. Then, for the code C having H as parity-check
matrix, a variety of reproducible generator matrices can be found. Indeed, let G be a
generator matrix for C: by definition, since GH> = 0k×r, we know that whichever
subset g0 formed by m rows of G is such that g0H> = 0m×r. Then, g0 is a valid
signature for a reproducible generator matrix, defined by the family F . On condition
that both H and G have full rank, then they can be used to represent the code C, with
length n, dimension k and redundancy r.

In some cases, a quasi-reproducible code can be seen as a particular case of a re-
producible code (and viceversa). Let us consider a code C with length n = n0p,
dimension k = p and codimension r = (n0 − 1)p, for some integer n0 ∈ N. Let us
suppose that G is obtained as a row of n0 blocks with dimensions p× p, that is

G = [G0|G1| · · · |Gn0−1]. (5.8)

This form of the generator matrix, for instance, is adopted in LEDA and BIKE [20,53].
Suppose that G in (5.8) is in quasi-reproducible form, i.e., each Gi is an element of the
reproducible pseudo-ringMFi,miq . If the signatures have all the same number of rows
(that is, mi = m), then such a G can be characterized as a particular reproducible ma-
trix. Let us write the i-th family of transformations as Fi =

{
σ

(i)
0 ,σ

(i)
1 , · · · ,σ(i)

p
m−1

}
61

Chapter 5 A general framework for codes with regular geometric structure

and define an overall family of transformations F =
{
σ0,σ1, · · · ,σ p

m−1

}
, such that

σi =

σ
(0)
i 0p×p 0p×p · · · 0p×p

0p×p σ
(1)
i 0p×p · · · 0p×p

0p×p 0p×p σ
(2)
i · · · 0p×p

...
...

...
. . .

...
0p×p 0p×p 0p×p · · · σ

(n0−1)
i

. (5.9)

Then, it is easy to see that a matrix in the form (5.8) can be described as a reproducible
matrix obtained through F in (5.9), with signature

g0 =
[
g(0)

0

∣∣∣ g(1)
0

∣∣∣ · · · ∣∣∣g(n0−1)
0

]
,

where g(i)
0 is the signature of Gi in Eq, (5.8).

5.3.1 Reproducible codes from Householder matrices

A Householder matrix [54] is a matrix that is at the same time orthogonal and
symmetric. Let us consider a set of distinct Householder matrices ψ0, · · · ,ψv−1. We
have that, for all j = 0, . . . , v − 1, it must be ψ−1

j = ψ>j = ψj . In order to fulfill the
conditions of Theorem 11, these matrices must form a commutative group, that is

ψiψj = ψjψi, 0 ≤ i, j ≤ v − 1. (5.10)

Let us consider two sets containing all the 2v distinct binary v-tuples, i.e.{
a(i)
∣∣∣ 0 ≤ i ≤ 2v − 1, a(i) ∈ Fv2, s.t. a(i) 6= a(j), ∀i 6= j

}
,{

b(i)
∣∣∣ 0 ≤ i ≤ 2v − 1, b(i) ∈ Fv2, s.t. b(i) 6= b(j), ∀i 6= j

}
.

For the sake of simplicity, let us fix a(0) = 01×v . It is clear that these two sets
are identical, except for the order of their elements. We can now define a family of
transformations F , containing 2v linear functions σi, defined as

σi =
v−1∏
l=0

ψ
a

(i)
l

l ,

where a(i)
l is the l-th entry of a(i). Since we are considering Householder matrices

with the property (5.10), it is easy to verify that σ2
i = In, and it follows that each

function is an involution.
The family F can be used to define a reproducible generator matrix G of a code
C; a parity-check matrix for C can be the reproducible matrix H, with signature h0 ∈

62

5.3 A general form for codes in reproducible form

Fs×nq , whose rows are obtained as

hj = h0

(
v−1∏
l=0

ψ
b

(j)
l

l

)>
.

If H has full rank, the corresponding code has redundancy r = s2v , and

hjσ>i = hj

(
v−1∏
l=0

ψa
(i)

l

)>
= h0

(
v−1∏
l=0

ψb
(j)

l

)>(v−1∏
l=0

ψ
a

(i)
l

l

)>
=

= h0

(
v−1∏
l=0

ψ
a

(j)
l
⊕b(i)

l

l

)>
= hf(i,j),

where ⊕ denotes the modulo 2 sum and

f(i, j) = u, s.t. b(u) = a(i) ⊕ b(j).

It is straightforward to show that such a function satisfies the properties required by
Theorem 11 and Corollary 4. The corresponding code has length n, dimension k =
m2v and redundancy r = s2v , thus the code rate corresponds to m

m+s . In addition,
we point out that it might be possible to tune the code parameters, by selecting only
proper subsets of all the binary v-tuples, in order to form the rows of both G and H.

5.3.2 Reproducible codes from powers of a single function

In this section we present another construction of reproducible codes satisfying
Theorem 11. Let us consider an n× n matrix π such that πb = In, for some integer
b. Let v be a divisor of b; obviously, if b is a prime, then v = 1. Then, we can use
π to build a family F of k

m ≤
b
v linear transformations, where k is the desired code

dimension and m is the number of rows in a signature. Indeed, the functions in F can
be defined as σi = πvzi , where the values zi are distinct integers≤ b

v . For simplicity,
we assume z0 = 0, i.e. σ0 = In. Then, given a m × n signature g0, we can use the
family F to obtain a generator matrix G for a code C as

G =

g0

g1

g2
...

g k
m−1

 =

g0

g0π
vz1

g0π
vz2

...
g0π

vz k
m
−1

 .

63

Chapter 5 A general framework for codes with regular geometric structure

A parity-check matrix for C can be chosen in reproducible form, by taking an s × n
matrix h0, and use it to generate the parity-check matrix H as

H =

h0

h1

h2
...

h b
v−1

 =

h0

h0(πb−v)>

h0(πb−2v)>
...

h0(πv)>

 .

When H has full rank, then C has redundancy r = s bv ; the code dimension and
redundancy must be linked to the code length according to k + s bv = n.

It is quite easy to show that such a parity check matrix is compliant with Theorem
11. In fact, we have

hjσ>i = h0(πb−jv)>(πvzi)> = h0

[
πb+(zi−j)v

]>
.

If zi ≥ j, we have[
πb+(zi−j)v

]>
=
[
π2b−b+(zi−j)v

]>
=
[
πb−(bv+j−zi)v

]> [
πb
]> =

=
[
πb−(bv+j−zi)v

]>
=
[
πb−(j−zi mod b

v)v
]>

.

In the case of zi < j, we can write[
πb+(zi−j)v

]>
=
[
πb−(j−zi)v

]> [
πb−(j−zi mod b

v)v
]>

.

Thus, we have proven that

hjσ>i = h0

[
πb−(j−zi mod b

v)v
]>

= h(j−zi mod b
v),

such that the function f(x0, x1) required by Theorem 11 is defined as

f(x0, x1) = x1 − zx0 mod b

v
.

For instance, a simple construction can be obtained by choosing m = s = 1 and
k = r = n/2: the matrices G and H are two reproducible matrices, with signatures
that are row vectors of length n, and are characterized by the same number of rows
(thus, C has rate 1/2).

For what concerns property (b), we can consider the following equivalence

x0 − x′1 ≡ x0 − x′′1 mod r

s
,

64

5.4 Code-based schemes from quasi-reproducible codes

which turns into
x′′1 − x′1 ≡ 0 mod r

s
.

Then, it is clear that it must be x′, x′′ < r
s : however, this condition is quite straight-

forward, since j denotes the row index of the matrix blocks in H. In the same way,
when considering the index of the transformation σi, we have

x′0 − x1 ≡ x′′0 − x1 mod r

s
,

which turns into
x′0 − x′′0 ≡ 0 mod r

s
.

Again, in order to guarantee that the previous equivalence has no solution, it must be
x′0, x

′′
0 <

r
s . This basically means that we must have k ≤ m r

s .

5.4 Code-based schemes from
quasi-reproducible codes

The algebraic structures we have introduced in the previous sections can be used to
generate key pairs in code-based cryptosystems. For instance, let us consider a parity-
check matrix H made of r0×n0 matrices belonging to a pseudo-ringMF,mq . In order
to use H as the private key of a sparse-matrix code-based instance of the Niederreiter
cryptosystem, we must guarantee that H is sufficiently sparse: this property can be
easily achieved by choosing a family F of sparse matrices σi, which guarantee that
a matrix defined by a sparse signature will be sparse as well. In such a case, we can
obtain the public key as H′ = SH, where S is a random dense matrix, whose elements
are picked overMF,mq . Because of Theorem 7, the entries of H′ belong toMF,mq ,
thus they maintain the same reproducible structure defined by F .

If m = 1 and F is a family of permutations satisfying Theorem 8, then MF,1q

is actually a ring (see Corollary 3). Then, the secret key can be chosen as H =
[H0,H1, · · · ,Hn0−1], with Hi ∈MF,1q , while the public key can corresponds to the
systematic form of H, that is H′ = H−1

0 H. Indeed, because of Theorem 9, we have
H−1

0 ∈MF,1q , and so H′ is a matrix constituted of blocks overMF,1q .
Suppose we have a family F satisfying Theorem 10, for which multiplication in

MF,1q is commutative (see Section 5.2.1 for some examples). Then, we can use the re-
producible pseudo-ring induced byF to obtain key pairs for a McEliece cryptosystem.
For instance, we can choose H = [H0,H1], with Hi ∈ MF,1q , as the secret parity-
check matrix, and obtain a generator matrix as G = S[H>1 ,−H>0], with S ∈ MF,1q .
The matrices H and G can be used as the private and public key, respectively, for a
McEliece cryptosystem.

65

Chapter 5 A general framework for codes with regular geometric structure

When both Theorems 9 and 10 are satisfied, we can obtain a generator matrix in
systematic form, which maintains a quasi-reproducible structure. In fact, starting from
a r × n parity-check matrix H, where the elements are picked randomly fromMF,1q ,
we can use the corresponding parity-check matrix in systematic form as the public
key for a Niederreiter cryptosystem instance. In the same way, we can compute the
systematic generator matrix, and use it as the public key in a McEliece cryptosystem
instance.

The idea of using codes that are completely reproducible, and not formed by repro-
ducible pseudo-rings, opens up for the possibility of a whole new way of generating
key pairs in the McEliece cryptosystem. Indeed, once we have generated a sparse
parity-check matrix H, we can use it as the secret key. Then, a possible public key can
be obtained by taking a bunch of linearly independent codewords, and using them as
the signature of the public generator matrix. If such codewords correspond to rows of
the generator matrix in systematic form, then we obviously obtain another significant
reduction in the public key size, since there is no need for publishing the first k bits of
each one of the selected codewords.

It is clear that having the public code described by a matrix with some reproducible
structure leads to a very significant reduction in the public-key size. Indeed, once the
structure of the matrix is fixed by the protocol (i.e. dimensions, family F), the whole
public-key can be efficiently represented using just the signatures of each building
block.

5.5 Defeating DOOM

In [55], Sendrier introduced Decoding One Out of Many (DOOM), a variant of
MLDP, in which multiple decoding instances are considered: the problem asks to find
the solution of (at least) one instance among the given ones. With some abuse of nota-
tion, normally DOOM also corresponds to the name of the algorithm, introduced in the
same work [55], which allows taking into account the presence of multiple instances
to speed up the execution of ISD. In this section we discuss about the applicability of
DOOM to our more general context of reproducible codes.

When ISD is used to perform a decoding attack, the gain obtained from DOOM can
be explained as follows. Consider the public parity-check matrix H′ and a set of N
different syndromes S =

{
s(0), s(1), · · · , s(N−1)} to be decoded. Suppose that, ∀e(i)

such that H′e(i)> = s(i), there exists a bijective function that allows to obtain e(i)

from e(0) and vice-versa. We denote such a function by ψ, so that e(i) = ψ(e(0)) and
e(0) = ψ−1(e(i)). Then each pair

{
s(i),H′

}
can be considered as the input of an ISD

instance aimed at finding e(0) with weight ≤ w such that H′ψ(e(0))> = H′e(i)> =
s(i). According to DOOM, we consider Ni independent calls to an ISD algorithm: as

66

5.5 Defeating DOOM

soon as one of these runs successfully ends, the whole algorithm ends since e(0) has
been found. The corresponding gain is equal to |S| /

√
Ni = N/

√
Ni, which becomes√

N whenNi = N . Obviously, exploiting DOOM is beneficial when theNi decoding
instances have comparable complexity. This occurs on condition that e(i) = ψ(e(0))
has the same Hamming weight as e(0), or almost the same.

So, the rationale of exploiting DOOM for a decoding attack is to intercept one ci-
phertext and then try to obtain other valid ciphertexts from it, corresponding to trans-
formed versions of the same error vector. Let us consider the case in which the op-
ponent intercepts a ciphertext corresponding to an initial syndrome s(0), and wants
to recover the vector e(0) used during encryption. Then, in order to apply DOOM,
the opponent must produce other syndromes corresponding to as many error vectors
being deterministic functions of e(0). In other words, suppose that ISD returns the
solution e(i) for s(i), then it must be e(i) = Ae(0), with A being a full-rank matrix.
For instance, in the QC case, the opponent can obtain a set of p syndromes S just by
cyclically shifting the initial syndrome s(0) and the corresponding error vector e(0).

In general terms, the applicability of DOOM can be modeled as follows. Starting
from a syndrome s(0) = H′e(0)T , we want to determine a transformation Φ of the
syndrome that corresponds to a transformation Ψ of the error vector, that is

Φs(0) = ΦH′e(0)T = H′
(
e(0)Ψ

)>
= H′Ψ>e(0)T , (5.11)

where Φ and Ψ are two matrices over Fq , with size r× r and n×n, respectively. The
previous equation must be satisfied for every vector e(0); this can happen only if

∃ Φ ∈ Fr×rq , ΨFn×nq s.t. ΦH′ = H′Ψ>.

For the general class of reproducible codes, the applicability of DOOM must be
carefully analyzed. For instance, consider a code obtained with the procedure de-
scribed in Section 5.3.2, using a family of functionsF consisting of powers of a single
function. If this function is a permutation, due to Theorem 11, we have that Hσi with
σi ∈ F always results in a permutation of the rows of H. So, the opponent can build
the set S, which is used as input for the DOOM algorithm, by multiplying the initial
syndrome by the matrices σi.

However, the case in which π is not a permutation matrix is of interest. We consider

67

Chapter 5 A general framework for codes with regular geometric structure

a parity-check matrix satisfying as in Section 5.3.2, obtained as

H =

h0

h1π

h2π
2

...
hr−1π

r−1

 ,

where πr = In. In this case, the opponent is still able to produce a set S, since
equation (5.11) can be satisfied by choosing Ψ = πi; the corresponding reordering of
the rows of H is a cyclic shift by i positions. However, it results that e(i) = e(0)πi.
If π is not a permutation matrix, then generally e(i) has a weight different from that if
e(0). If we consider π, and its powers, as random matrices over Fq , then the expected
weight of e(i), for all i, is n q−1

q . Furthermore, it can be shown that the probability
that e(i) has weight comparable with t is negligible.

According to [56], we can approximate the time complexity for solving ISD on s(0)

as 2ct, where c = − log2(1− k
n) and t is the Hamming weight of s(0). Since the syn-

dromes s(i), i ≥ 1, are associated to error vectors that have weight γt, applying ISD
on them requires a time-complexity that is significantly larger than 2ct. Then, there
is no gain in considering this set of multiple instances, since the additional instances
produced by the opponent are associated to an ISD complexity that is significantly
larger than that of the original instance.

68

Chapter 6

LEDAcrypt

In this chapter we describe LEDA, which is a submission to the NIST competition
for the standardization of post-quantum primitives. LEDA corresponds to the merge of
LEDAkem and LEDApkc, two proposals to the first competition round; at the current
state of the competition, LEDA is among the candidates that have been successfully
admitted to the secoud round of the competition. The codes employed in LEDA are
QC-LDPC codes, which combine the error correction capability of LDPC codes with
the compactness and the algorithmic efficiency provided by the QC structure.

Historically, the idea of using LDPC codes in crypto dates back to 2000, and is
due to Monico, Rosenthal and Shokrollahi [10], that considered adoption of a sparse
parity-check matrix as the public key, in order to exploit sparsity to reach a compact
representation (by publishing only the positions of set entries). However, as stated
by the authors themselves, this solution is not secure, since the sparsity of the public
key may be used to recover the secret key. Furthermore, it must be considered that the
dual of an LDPC code has low-weight codewords that, with overwhelming probability,
correspond to the rows of its sparse parity-check matrix. In particular, as we describe
in this chapter, an ISD algorithm may be used to search for these codewords which,
when found, reveal rows of the secret key (which corresponds to the sparse parity-
check matrix representing the LDPC code). Remember that the complexity of ISD
grows exponentially with the weight of the searched vector: thus, such attacks can
easily be avoided by increasing the secret parity-check matrix density. However, to
maintain the low density property of the secret key, the code length must be increased
as well: if the code has no geometrical structure, this procedure will end up in having
public keys of unpractical size.

To avoid this issue, Baldi and Chiaraluce [11–13] have proposed to i) consider QC
codes, and ii) use a transformation matrix which hides the structure of the secret code
into the public one by increasing the density of low weight codewords in its dual. The
QC structure leads to very compact keys and additionally provides the possibility of
reaching very low algorithmic complexities. Differently from the case of algebraic
codes, LDPC codes do not suffer from critical attacks arising from the additional
geometrical structure. Indeed, the only known weaknesses due to the geometrical

69

Chapter 6 LEDAcrypt

structure can either be easily avoided, or do not represent an issue at all (de facto,
providing a very limited improvement in known cryptanalysis techniques).

A first attack based on the QC structure has appeared in [57]; such a procedure
exploits a particular automorphism group which exists when the circulant size is a
number whose factorization contains powers of 2, and essentially provides a polyno-
mial speed up to ISD algorithms. In any case, to counter these attacks, it is enough
to choose an odd circulant size or, to be more conservative, to choose it as a prime,
to avoid any possible attack based on factorization. Furthermore, it is known that ISD
can receive a speed-up due to the QC structure: this technique, which we have already
described in Chapter 5, is known as DOOM [55] and yields a polynomial advantage
in ISD. In any case, this advantage is non critical and can be countered by increasing
the code density (and the number of errors) by a small number.

There are however some other potential issues that appear when QC-LDPC codes
are used. First of all, differently from standard coding problems such as SDP and
MLDP, there is no NP-completeness proof on their QC versions. In other words, se-
curity of these schemes is based on the assumption that the QC structure does not
change the hardness of the problem. It must be said that, despite more than 10 years
of cryptanalysis, no efficient attack has been found, apart from DOOM: thus, this as-
sumption seems very reliable. The second problem, which at the moment is the true
Achille’s heel of these schemes, is represented by the decoding procedure. Indeed, as
we have described in Chapter 3, efficient decoders for LDPC codes are intrinsically
probabilistic. The operations that are performed depend on the relation between the
actual syndrome and the parity-check matrix; furthermore, these decoders are char-
acterized by a usually non negligible decoding failure probability. An adversary may
then mount statistical attacks, which are based on observing information such as the
decryption duration or events of decoding failure. In a CCA2 attack model, these pro-
cedures may lead to the full recovery of the secret key. As we describe in this chapter,
these attacks can be avoided at the cost of i) constant time and power implementations,
and ii) code lengths able to guarantee negligible DFR values.

In this section we give a complete description of the LEDA cryptographic suite,
by presenting its design rationale. We describe the Q-decoder, a variant of the BF
decoder which adapts to the specific code structure employed in LEDA. We describe
the whole range of attack avenues against LEDA, describing both decoding and key
recovery attacks. We focus on statistical attacks based on decoding failures, and show
that their applicability is not due to the QC structure, but mostly depend on the innate
LDPC properties. Finally, we describe a technique to bound the decoding failure
probability, and use it to derive parameters reaching different security levels.

70

6.1 The secret key in LEDA

6.1 The secret key in LEDA

We will use R to denote the ring of binary circulant matrices of size p. In a cir-
culant matrix all rows and columns have the same weight: thus, with some abuse of
notation, we will use circulant weight to denote the weight of any row or column in a
circulant. We can easily define an isomorphism ψ betweenR and the polynomial ring
F2[x]/(xp + 1): indeed, we can write ψ(A) = a(x), where a(x) is the polynomial
whose coefficients correspond to the first row of A. For any three circulants A, B and
C, the following properties then hold:

i) if A + B = C, then ψ(A) + ψ(B) = ψ(C);

ii) if AB = C, then ψ(A)ψ(B) = ψ(C);

iii) if AB = I, then ψ(A)ψ(B) = 1.

For a polynomial a(x), we define its Hamming weight as the weight of ψ−1(a(x)
)
,

that is, as the number of its set entries. We recall the following theorem, which is
employed in both BIKE [53] and LEDAcrypt [20] to guarantee efficient sampling of
invertible elements fromR.

Theorem 12 Let p be a prime number such that ordp(2) = p−1. Let g(x) be a binary
polynomial in F2[x]/〈xp+1〉, with degree> 0. Then, g(x) has a multiplicative inverse
in F2[x]/(xp + 1) if and only if it contains an odd number of terms and g(x) 6= Φ(x),
with Φ(x) = xp−1 + xp−2+ · · ·+ x+ 1.

Because of the isomorphism between circulants and polynomial, the previous theorem
(of which, for the sake of brevity, we omit the proof) is useful to sample invertible
elements inR. As we show in the following, this theorem will be crucial to guarantee
an efficient key generation in LEDA cryptosystems.

In LEDAcrypt, the secret key is parameterized by a small integer n0, the circulant
size p, the column weight v of the generated parity-check matrix and another integer
m, whose meaning will be clarified in the following. In particular, the secret key is
constituted by two matrices:

i) the parity-check matrix of a QC-LDPC code C, in the form

H = [H0,H1, · · · ,Hn0−1] ∈ Rn0 ,

where each Hi has weight dv � p. Then, the secret code is a (n0dv, dv)-regular
LDPC code;

71

Chapter 6 LEDAcrypt

ii) a transformation matrix Q ∈ Rn0×n0 , that is

Q =

Q0,0 Q0,1 · · · Q0,n0−1

Q1,0 Q1,1 · · · Q1,n0−1
...

...
. . .

...
Qn0−1,0 Qn0−1,1 · · · Qn0−1,n0−1

 (6.1)

where each row and column has constant weight m� n0p.

Starting from the secret key, we obtain a parity-check matrix of the public code C′

as
L = HQ = [L0,L1, · · · ,Ln0−1] ∈ Rn0 . (6.2)

Then, depending on which representation of C′ is used as the public key, we may build
a McEliece type scheme or a Niederreiter type one.

To guarantee full rank of L, we consider the following Theorem, which poses some
constraints on the scheme parameters.

Theorem 13 Let p > 2 be a prime such that ordp(2) = p − 1 and Q ∈ Rn0×n0 as
in Eq. (6.1). Let WQ ∈ Nn0×n0 such that its element in position (i, j) is equal to the
weight of Qi,j . Let Π(WQ) be the permanent of WQ. Then, if Π(WQ) is odd and
Π(WQ), then Q is non singular.

Proof. Since each block Qij is isomorphic to a polynomial qij(x) ∈ F2[x]/(xp + 1),
the determinant of the matrix Q is represented as an element of F2[x]/(xp + 1),
too, which we denote as d(x). If the inverse of d(x) exists, then Q is non sin-
gular. According to Theorem 12, showing that d(x) has odd weight and d(x) 6=
Φ(x) = xp−1 + xp−2 + · · ·+ 1 is enough to guarantee that it is invertible. In general,
when we are considering two polynomials a(x) and b(x), with wt (a(x)) = wa and
wt (b(x)) = wb, the following statements hold:

1. wt (a(x)b(x)) = wawb − 2c1, where c1 is the number of cancellations of pairs
of monomials with the same exponent resulting from multiplication;

2. wt (a(x) + b(x)) = wa + wb − 2c2, where c2 is the number of cancellations
due to monomials with the same exponent appearing in both polynomials.

The determinant d(x) is obtained through multiplications and sums of the elements
qij(x) and, in case of no cancellations, has weight equal to Π(WQ). If some can-
cellations occur, considering statements 1) and 2) above, we have that wt (d(x)) =
Π(WQ)− 2c, where c is the overall number of cancellations. So, even when cancel-
lations occur, d(x) has odd weight only if Π(WQ) is odd. In addition, the condition
Π(WQ) < p guarantees that d(x) 6= Φ(x), since wt (Φ(x)) = p.

72

6.1 The secret key in LEDA

In particular, the matrix Q in LEDAcrypt is chosen such that the distribution of its
weights is such that the matrix WQ is circulant. When dv is odd, this guarantees that
L has full rank and that each one of its circulant blocks is non singular.

We point out that a particular case of the framework we describe in this chapter is
that proposed by Misozscky et al. in [14], that is an ancestor of the BIKE submission
to the NIST competition, in which Q = I (and, thus, m = 1). In this case, the
code C is typically referred to as a Moderate-Density Parity-Check (MDPC) code and
C′ = C. Apart from this slight difference and a different nomenclature, there is really
no meaningful distinction in the code properties: MDPC codes can be decoded with
the same algorithm that we use for LDPC codes and share the same pros and cons.

When m > 1, the knowledge of the matrix Q can be exploited to improve the
decoding process, through a decoding technique which we define as Q-decoder. When
m = 1, the Q-decoder collapses to the classical BF-decoder.

We now proceed in describing the two algorithms which compose the LEDAcrypt
suites.

6.1.1 LEDAkem

LEDAkem is built upon the Niederreiter framework; the public key is the systematic
parity-check matrix for C′, that is

L′ = L−1
n0−1L = [M, Ip],

where M ∈ Rn0−1.
Given a weight-t vector e ∈ Fn2 , encryption is performed as

s = Le>.

To decrypt, one first computes

s = Ln0−1s
= Ln0−1L−1

n0−1Le>

= Le>

= HQe>

= H(eQ>)>

= Hẽ>,

where ẽ = eQ> is called the expanded error vector and has weight ≤ mt. Then, the
Q-decoder is used to recover e.

73

Chapter 6 LEDAcrypt

6.1.2 LEDApkc

LEDApkc is built upon the McEliece framework; the public key is the systematic
generator matrix for C′, that is

G =

I(n0−1)p

∣∣∣∣∣∣∣∣∣∣
(L−1

n0−1L>0)>

(L−1
n0−1L>1)>

...
(L−1

n0−1L>n0−2)>

 .

The ciphertext is obtained as
c = mG + e,

where wt (e) = t.

Decryption starts with the computation of

s = Lc>

= HQe>

= Hẽ>,

where, as in the previous section, ẽ = eQ>.
Q-decoding is then applied to recover e, from which m can be easily recovered by
considering the first (n0 − 1)p bits of c + e.

6.1.3 Achieving IND-CCA2 security

To achieve IND-CCA2 security, LEDApkc implements the Kobara-Imai conver-
sion, which is used to avoid issues such as malleability, i.e., the possibility for an ad-
versary to produce a valid ciphertext by modifying an intercepted one. At the current
state-of-the-art, we are not aware of attacks of this kind against cryptosystems based
on QC-LDPC codes; in any case, using IND-CCA2 conversion completely removes
potential security issues. We describe the idea of malleability attacks by describing
the case of the original McEliece scheme.

Given an intercepted ciphertext c, an adversary may proceed as follows:

1. produce ciphertexts c(i), for i ∈ [0;n − 1], where c(i) is obtained from c by
flipping the i-th bit;

2. query a decryption oracle with the ciphertexts c(i);

3. for the indexes i corresponding to decryption failures, conclude ei = 0.

This attack rationale is based on the fact that, when i ∈ S (e), then c(i) corresponds to
a codeword of the public code corrupted by an error vector of weight t − 2, and can

74

6.1 The secret key in LEDA

thus be corrected; in the other cases, the weight of the associated error vector is t+ 1,
and it cannot be corrected.

To avoid attacks of this kind, LEDApkc employs the conversion described in [58], in
which the vectors m and e are obtained through hash functions involving the plaintext
and some randomness, which is sent along with the ciphertext. After decryption, the
validity of the ciphertext is verified through a check on the hash functions. We refer the
reader to [58] for the full details of the conversion. To consider a simplified version of
the conversion, which comes with the same flavour, we analyze the BIKE-1 algorithm,
in which m is obtained as the hash of e, that is m = H(e). Decryption fails if, after
having recovered e, we have

c +H(e) ·G 6= e.

This guarantees that intercepted ciphertext are not malleable, since modifying e would
also require to sastify the condition on its hash (which is a one-way function).

The principle of malleability attacks applies in analogous way to the Niederreiter
cryptosystem. For this reason, LEDAkem comes in two different versions, whose
main difference is represented by the life of a key-pair. Indeed, when ephemeral keys
are used, each key-pair is used for just once key encapsulation. Thus, the aforemen-
tioned cryptanalysis techniques cannot be applied, because the adversary does not
have possibility of submitting multiple oracle queries. When long term keys are used,
however, this kind of attacks must be taken into account. To this end, the current im-
plementation of LEDAcrypt employes a conversion which comes from an adaptation
of the one we depict in Algorithms 2 and 3. The proposed conversion can be applied
to any Niederreiter scheme; for this reason, we have used Niederreiter.Encrypt and
Niederreiter.Decrypt to denote the encryption and decryption functions, respectively.
As we see from the algorithm, the conversion works as a sort of XOR cipher, in which
the plaintext is summed with the syndrome. In the Algorithm, Ht denotes an hash
function which outputs vectors of weight t; here the plaintext is represented by a bi-
nary message m of size nt. The proposed conversion has a really low complexity,
since it requires only computation of XORs and hash functions but, has a drawback,
increases the ciphertext size by nt bits.

Algorithm 2 Conversion.Encrypt
Input: public key H′, plaintext m ∈ Fnt2 .
Output: y(0) ∈ Fr2, y(1) ∈ Fnt2 .

1: e← Ht(m)
2: y(0) ← He> . Syndrome of the error vector
3: y(1) ← H(e)⊕m
4: return {y(0),y(1)}

75

Chapter 6 LEDAcrypt

Algorithm 3 Conversion.Decrypt

Input: y(0) ∈ Fr2, y(1) ∈ Fnt2 .
Output: plaintext ∈ Fnt2 or decryption failure ⊥.

1: if Niederreiter.Decrypt (y(0)) == ⊥ then
2: return {⊥} . Syndrome decoding has failed
3: else
4: e← Niederreiter.Decrypt (y(0))
5: m← y(1) ⊕H(e)
6: ifHt(m) == e then
7: return {m} . Integrity check is fine
8: else
9: return {⊥} . Integrity check has failed

10: end if
11: end if

6.2 Q-decoder

We briefly recall the functioning of the classical BF decoder which we have pre-
sented in Chapter 4 works as follows. At each iteration, for each codeword bit po-
sition, the number of unsatisfied parity-check equations is computed: if this number
equals or exceeds a given threshold, then the bit is flipped. The decision threshold
can be chosen in many ways: for instance, it may be constant for the whole decoding
process, or it may vary during iterations. In any case, its value and the way it is even-
tually updated strongly affect the decoder performances. A choice that usually turns
out to be one returning the lowest failure probability is that of setting the threshold, at
each iteration, as the maximum number of unsatisfied parity-check equations in which
any codeword bit is involved. In fact, a codeword bit participating in a higher number
of unsatisfied parity-check equations can be considered less reliable than a codeword
bit participating in a smaller number of unsatisfied parity-check equations. So, if the
threshold is chosen in this way, the bits that get flipped are those that are most likely
to be affected by errors.

In LEDA schemes, the expanded error vector ẽ to be corrected is influenced by the
value of Q>: ẽ is equivalent to a random error vector e with weight t multiplied by
Q>. The improved decoder that we describe takes into account the multiplication by
Q>, to estimate with high efficiency the locations of erred bits in e; for this reason,
we call it a Q-decoder.

Inputs of the decoder are the syndrome s and the matrices H and Q. The output
of the decoder is a 1 × n vector ê or a decoding failure, where ê represents the de-
coder estimate of the weight-t error vector which has been used during encryption. A
threshold criterion is adopted to compute the positions in ê that must be changed.
The decoder initialization is performed by setting ê = 0n. The decoder runs a maxi-

76

6.2 Q-decoder

mum number of iterations which we denote as imax. By denoting with b the decoding
threshold, a generic i-th iteration is described as follows

1. Compute the counters as in a traditional BF decoder: the i-th counter, which we
denote as σi, is obtained as

σj =
r−1∑
l=0

slhl,j .

Store the counters in a vector Σ = [σ0, σ1, · · · , σn−1] ∈ [0; dv]n.

2. Compute R = [ρ0, ρ1, · · · , ρn−1] = Σ ∗Q, where ∗ denotes the integer prod-
uct.

3. Define F = {j ∈ [0, n− 1]| ρj ≥ b}.

4. Update ê as

ê = ê + 1F

where 1F is a length-n binary vector with all-zero entries, except those indexed
by F .

5. Update the syndrome as

s = s +
∑
j∈F qjH>,

where qj is the j-th row of Q>.

6. If the weight of s is zero then stop decoding and return ê.

7. If i < imax then increment i and go back to step 1, otherwise stop decoding and
return a decoding failure.

As in classical BF, the first step of this algorithm computes the vector Σ. Each entry
of this vector counts the number of unsatisfied parity-check equations corresponding
to that bit position, and takes values in [0; dv]. This evaluates the likelihood that the
binary element of ẽ at the same position is equal to one. Differently from classical BF,
in step ii) the correlation r between these likelihoods and the rows of Q> is computed.
In fact, the expanded error vector ẽ = eQ> can be written as the sum of the rows of
Q> indexed by the support of e, that is

ẽ =
∑
j∈S(e)

qj .

Since both Q and e are sparse (that is, m, t � n), cancellations between ones in the
sum are very unlikely. When the correlation between Σ and a generic row qi of Q>

is computed, two cases may occur:

77

Chapter 6 LEDAcrypt

• if i /∈ S (e), then it is very likely that qi has a very small number of common
ones with all the rows of Q> forming ẽ, hence the expected correlation is small;

• if i ∈ S (e), then qi is one of the rows of Q> forming ẽ, hence the expected
correlation is large.

The main difference with classical BF is that, while in the latter all error positions
are considered as independent, the Q-decoder exploits the correlation among expanded
errors, since their positions are influenced by Q>. This allows achieving important
reductions in the number of decoding iterations.

6.2.1 Choice of the Q-decoder decision thresholds

One important aspect affecting performance of the Q-decoder is the choice of the
threshold values against which the correlation is compared at each iteration. A natural
choice is to set the threshold, for each iteration, equal to the maximum correlation
value. This strategy ensures that only those few bits that have maximum likelihood
of being affected by errors are flipped during each iteration, thus achieving the lowest
DFR. However, such an approach has some drawbacks in terms of complexity, since
the computation of the maximum correlation requires additional computations with
respect to a fixed threshold.

Therefore, as in [59], we consider a different strategy, which allows computing the
threshold values on the basis of the syndrome weight at each iteration. According to
this approach, during an iteration it is sufficient to compute the syndrome weight and
read the corresponding threshold value from a look-up table. This strategy still allows
to achieve a sufficiently low DFR, while employing a significantly smaller number of
decoding iterations.

Let us consider the l-th iteration of the Q-decoder, with syndrome s. Let ẽ(l) denote
the corresponding error vector, of weight t̃l, and let e(l) be the vector of weight tl such
that ẽ(l) = e(l)Q>.
The probability that a syndrome bit is set can be obtained as

β =
∑min{n0dv,t̃l}

j=1, j odd

(
n0dv
j

)(n0p−n0dv
t̃l−j

)(n0p
t̃l

) .

The average syndrome weight at iteration l results then in

w(l)
s = E

[
wt
{
s(l)
}]

= p · β. (6.3)

Since both the parity-check matrix and the error vector are sparse, the probability that
the syndrome has a weight which is significantly different from w

(l)
s is negligible.

78

6.2 Q-decoder

So, (6.3) allows predicting the average syndrome weight starting from t̃l. In order
to predict how t̃l varies during iterations, let us consider the i-th codeword bit and the
corresponding correlation value ρ(l)

i at the l-th iteration. The probability that such a
codeword bit is affected by an error can be written as

Pr
[
ei = 1|ρ(l)

i

]
=

Pr
[
ei = 1, ρ(l)

i

]
Pr
[
ρ

(l)
i

] =

1 +
Pr
[
ei = 0, ρ(l)

i

]
Pr
[
ei = 1, ρ(l)

i

]
−1

where ei is the i-th bit of the error vector used during encryption. After some calcula-
tions, we obtain

Pr
[
ei = 1|ρ(l)

i

]
= 1

1 + n−tl
tl

(
pci(tl)
pic(tl)

)ρ(l)
i
(

1−pci(tl)
1−pic(tl)

)mdv−ρ(l)
i

, (6.4)

where pci(tl) and pic(tl) are defined as in [60], that is

pci(tl) =
min[n0dv−1,tl]∑
j = 0, j odd

(
n0dv−1

j

)(
n−n0dv
tl−j

)(
n−1
tl

) ,

pic(tl) =
min[n0dv−1,tl−1]∑

j = 0, j even

(
n0dv−1

j

)(
n−n0dv
tl−j−1

)(
n−1
tl−1

) ,

Adding the i-th row of Q> to the expanded error vector ẽ is the same as flipping the i-
th bit of the error vector e. Hence, we can focus on e and on how its weight tl changes
during decoding iterations. The values of t̃l can be estimated using (6.3), while, due
to sparsity, those of tl can be estimated as t̃l/m.

The decision to flip the i-th codeword bit is taken when the following condition is
fulfilled

Pr
[
ei = 1|ρ(l)

i

]
> (1 + ∆)Pr

[
ei = 0|ρ(l)

i

]
, (6.5)

where ∆ ≥ 0 represents a margin that must be chosen taking into account the DFR and
complexity: increasing ∆ decreases the DFR but increases the number of decoding
iterations. So, a trade-off value of ∆ can be found that allows achieving a low DFR
while avoiding unnecessary large numbers of iterations.

Since Pr
[
ei = 0|ρ(l)

i

]
= 1− Pr

[
ei = 1|ρ(l)

i

]
, (6.5) can be rewritten as

Pr
[
ei = 1|ρ(l)

i

]
>

1 + ∆
2 + ∆ . (6.6)

Pr
[
ei = 1|ρ(l)

i

]
is an increasing function of ρ(l)

i , hence the minimum value of ρ(l)
i

79

Chapter 6 LEDAcrypt

such that (6.6) is satisfied can be computed as

b(l) = min
{
ρ

(l)
i ∈ [0,mdv], s.t. Pr

[
ei = 1|ρ(l)

i

]
>

1 + ∆
2 + ∆

}
, (6.7)

and used as the decision threshold at iteration l.
Based on the above considerations, the procedure to compute the decision threshold

value per each iteration as a function of the syndrome weight can be summarized as
follows:

1. The syndrome weights corresponding to t′l = 0,m, 2m, · · · ,mt (which are all
the possible values of t′l neglecting cancellations) are computed according to
(6.3). These values are denoted as {ws(0), ws(m), · · · , ws(mt)}.

2. At iteration l, given the syndrome weight w̄s(l), the integer j ∈ [0, t] such that
ws(jm) is as close as possible to w̄s(l) is computed.

3. Consider tl = j and compute b(l) according to (6.7) and (6.4). The value of b(l),
so obtained, is used as the decoding threshold for iteration l.

The above procedure can be implemented efficiently by populating a look-up table
with the pairs {wj , bj}, sequentially ordered. During an iteration, it is enough to
compute w̄s(l), search the largest wj in the look-up table such that wj < w̄s

(l) and set
b(l) = bj .

We have observed that, moving from large to smalle values of wj , the thresholds
computed this way firstly exhibit a decreasing trend, then start to increase. According
to numerical simulations, neglecting the final increase is beneficial from the perfor-
mance standpoint. Therefore, in the look-up table we replace the threshold values
after the minimum with a constant value equal to the minimum itself.

6.2.2 Relations with QC-MDPC code-based systems

In LEDA cryptosystems, the public code is a QC-MDPC code that admits L =
HQ as a valid parity-check matrix. However, differently from QC-MDPC code-based
schemes, the private code is a QC-LDPC code, which facilitates decoding. In fact,
decoding directly the public QC-MDPC code through classical BF decoders would
be a possibility, but the approach we follow is different. By using the Q-decoder, we
decode the private QC-LDPC code, taking into account the correlation introduced in
the private error vector due to multiplication by Q>.

Besides working over different matrices, the main difference between these two
decoding algorithms is in the use of integer multiplications in our decoder, while all
multiplications are performed over F2 in classical BF decoders. In fact, in our decoder

80

6.3 Security analysis

we perform the following operation to compute the correlation vector r

r = s ∗H ∗Q = eQ>H> ∗H ∗Q ≈ eL> ∗ L,

where the last approximation comes from the fact that, for two sparse matrices A and
B, we have A · B ≈ A ∗ B. Thus, we can say that HQ ≈ H ∗ Q. So, if we
consider classical BF decoding working over the matrix L = HQ, the counter vector
is computed as

Σ = s ∗ L = eL> ∗ L.

In the Q-decoder, the error vector is updated by summing rows of Q>, which is equiv-
alent to flipping bits of the public error vector. Hence, there is a clear analogy between
decoding of the private QC-LDPC code through the Q-decoder and decoding of the
public QC-MDPC code through a classical BF decoder. Through numerical simula-
tions we have verified that the two approaches yield comparable performance in the
waterfall region.

6.3 Security analysis

In this section we consider possible attack avenues against LEDA cryptosystems;
in particular, in this section we focus on classical attacks such as key enumeration and
ISD, and leave statistical attacks to the last part of this chapter.

6.3.1 Attacks based on exhaustive key search

Enumerating all the possible values for the secret key is, in principle, applicable to
any cryptosystem. While the cost of performing an exhaustive key search is dominated
by less computational demanding key recovery strategies in LEDA cryptosystems, we
consider partial key enumeration attacks, aiming at scanning through all the possible
H or Q sparse matrices as a support for other strategies. While there is no standing
attack benefiting from an enumeration of possible H, from the enumeration of possible
Q matrices or from the enumeration of both of them, we deem reasonable adding such
a constraint to the design of the parameter sets as a peace-of-mind measure and obtain
a system for which the said enumerations are computationally unfeasible.

We recall that H is a block circulant binary matrix constituted by 1× n0 circulant-
blocks, each of which having size equal to p bits, while n0 ∈ {2, 3, 4} and p is
a prime such that ord2(p) = p − 1 (i.e., 2p−1 mod p = 1 mod p). Q is a binary
circulant-block matrix constituted by n0 × n0 binary circulant-blocks with size p.

Considering that each row of a circulant-block of H has Hamming weight dv , a
straightforward counting argument yields]H =

(
p
dv

)n0 as the number of possible

81

Chapter 6 LEDAcrypt

choices for H. The number of possible choices for Q, denoted as]Q, can be derived
starting from the consideration that the weights of a row of each circulant block in a
block-row of Q are equal for all the rows up to a rotation of the weights of the blocks.
Such weights, denoted as {m0, . . . ,mn0−1}, allow to write the number of possible

choices for Q as]Q =

 ∏
i∈{m0,...,mn0−1}

(
p

i

)n0

.

We also consider the possibility that an attacker performs an exhaustive key search
employing a quantum computer. In such a case, the best scenario for the attacker is
that it is possible to exploit Grover’s algorithm to compute either H or Q, and test its
correctness in deriving the other matrix and the corresponding public key. Assuming
conservatively that the test can be implemented on a quantum computer, we consider
the resistance against exhaustive key search with a quantum computer to be the mini-
mum between

√
]H and

√
]Q for the search over H and Q, respectively.

For all parameters of practical interest, brute search attacks never represent an issue.

6.3.2 Attacks based on Information Set Decoding

The most computationally effective technique known to attack LEDA schemes is
represented by ISD. In particular, when QC-LDPC cryptosystems are used, ISD at-
tacks can be used to perform both decoding attacks, aimed at decrypting an intercepted
ciphertext, and key recovery attacks.

ISD decoding attacks aaa
aaa
When a message recovery attack of this kind is performed against a cryptosystem
exploiting quasi cyclic codes, such as the case of LEDA, it is known that a speedup
equal to the square root of the circulant block size can be achieved [55]. For the case
of LEDAcrypt, the speed up is measured as

√
p.

ISD key recovery attacks aaa
aaa
In the case of McEliece and Niederreiter cryptosystems instantiated with public codes
characterized by sparse parity-check matrices, ISD algorithms can also be used to
mount key recovery attacks. In the following, we describe three different attack strate-
gies; we will denote withCISD(n, r, t) the complexity of finding a codeword of weight
t in the code with length n and redundancy r.

1. In LEDA, the public key is the representation of a code C′ whose parity-check

82

6.3 Security analysis

matrix L is in the form

L =
[
L0,L1, · · · ,Ln0−1

]
,

where each block Li is a p× p circulant matrix with weight d′v ≤ dvm.
It can be shown that C′ has minimum distance ≤ 2d′v; indeed, let us consider
two distinct integers 0 ≤ i0, i1 ≤ n0 − 1, and define the p × n0p matrix C as
follows

C = [C0, · · · ,Cn0−1], with Ci ∈ Fp×p2 , Ci =

0 if i 6= i0, i1

L>i1 if i = i0

L>i0 if i = i1

.

(6.8)
It is easy to see that the rows of C are codewords of C′, as

CL> = Ci0L>i0 + Ci1L>i1 = L>i1L
>
i0 + L>i0L>i1 = 0,

where the last equality is justified by the fact that multiplication between circu-
lant matrices is commutative.

If an attacker succeeds in determining one of the rows of C, which are code-
words of the public code C′, he will be able to recover two blocks Li,Lj of
secret parity check matrix L. From such values, the attacker will be able to
determine the value of L−1

n0−1 from the blocks in the public key, and consequen-
tially derive the full secret parity matrix L.

Each one of the rows c of C has weight 2d′v , and can thus be searched by
exploiting an ISD algorithm with a cost CISD(n0p, p, 2d′v). We note that more
than a codeword with weight 2d′v is present, thus resulting in a speedup of the
codeword finding attack. To quantify the number of codewords, consider that
we have

(
n0
2
)

possible matrices C as in Eq. (6.8), each one containing p rows:
thus, the number of codewords in C′ with weight 2d′v (and the subsequent speed-
up in ISD) is obtained as p

(
n0
2
)
.

2. Another attack strategy consists in applying ISD after a puncturation of the
public code. Consider the systematic generator matrix for C′, with the form

Gsys =

Ip

Ip
. . .

Ip

∣∣∣∣∣∣∣∣∣∣
G0

G1
...

Gn0−2

 =

Ip

Ip
. . .

Ip

∣∣∣∣∣∣∣∣∣∣∣

(
L0L−1

n0−1
)>(

L1L−1
n0−1

)>
...(

Ln0−2L−1
n0−1

)>

 .

Pick a a block Gi and constitute the matrix G∗ = [Ip,Gi]. G∗ can be thought

83

Chapter 6 LEDAcrypt

as the generator matrix of a code C∗, with length 2p and dimension p, which,
we show, contains codewords of weight ≤ 2d′v . Indeed, we have

L>n0−1G∗ = [L>n0−1; L>n0−1
(
LiLTn0−1

)>] = [L>n0−1; L>i].

We thus have that the low weight codewords of C∗ reveal enough information to
reconstruct the secret key from the public key. It is thus possible to apply an ISD
technique to solve the find such codewords, with complexity CISD(2p, p, 2d′v).
Note that there are p codewords of weight 2d′v for each block Gi employed to
build G∗, therefore resulting in a speedup for the ISD equal to n0p

3. A third way to exploit ISD consists in searching for low weight codewords in
the dual of the public code, which we denote C′⊥. A valid generator matrix for
such a code is thus the L matrix, which has, by construction, low weight code-
words. Indeed, the rows of L have weight ≤ n0d

′
v It is thus possible to solve

the codeword finding problem on C′⊥ with a cost CISD(n0p, (n0 − 1)p, n0d
′
v).

Due to the quasi cyclic nature of L, the ISD cost will be reduced by a factor of
of p.

Taking into account ISD attacks is necessary, in order to derive proper parameters
for the values of t, dv andm. Essentially, using ISD complexity estimations for the de-
coding message attack will return the minimum value of t which guarantees security,
while considering key recovery attacks will return the minimum value of d′v which
guarantees security. Then, the values of dv and m can be properly chosen. However,
as we describe in the following section, the particular structure of the matrix L should
be taken into account, in order to avoid weak keys, i.e., secret keys for which ISD
attacks are facilitated.

6.3.3 Weak keys in LEDA cryptosystems

Recall Eq. (6.2): for each circulant block in L, we have

Li =
n0−1∑
j=0

HjQj,i.

It can clearly happen that the weight of some Li is lower than mdv: if such cases,
rows of L will have weight < n0mdv . Since the complexity of ISD key recovery
attacks grows with the weight of rows of L, it is then clear that, for secret keys with
this property, such attacks are facilitated. To derive a detailed analysis on the number
of actually weak keys, we should first compute the threshold row weight w̄, i.e., the
highest row weight for which the complexity of key recovery attacks is below the
target security level. Then, to ensure security of the system, we should add a rejection
sampling step in the key generation algorithm. For each secret key, we compute the

84

6.3 Security analysis

row weight of the corresponding L: if this weight is ≤ w̄, then the secret key is
discarded and a new one is generated.

In LEDA cryptosystems, with a conservative choice, this threshold value is set as
mdv: each time a secret key produces a cancellation in the computation of L, the
key is discarded. It is clear that this rejection sampling step reduces the secret key
cardinality, so the rejection ratio should be taken into account. Indeed, if this ratio
is too high, the key generation algorithm becomes inefficient (since, on average, a
huge number of keys are discarded before a valid one is generated) and, furthermore,
brute force attacks are facilitated. However, despite the conservative choice of w̄ =
mdv , for practical parameters of LEDA cryptosystems the fraction of rejected keys
is particularly low. Thus, this ensures that the aforementioned issues of efficiency
and security do not appear. In the following we provide a theoretical estimate on the
rejection ratio.

First of all, we define Pr⊕(p, v1, v2, vx) as the probability that the sum of two
random length-p vectors with weights v1 and v2 results in a vector with weight vx;
we have

Pr⊕(p, v1, v2, vx) =

(v1
v1+v2−vx

2
)(p−v1
v2−

v1+v2−vx
2

)
(pv2) , if

|v1 − v2| ≤ vx
vx ≤ v1 + v2,

vx ≡ v1 + v2 mod 2,

0, otherwise.

Let Pr(N)
⊕ (p, v, vx) be the probability that the sum of N random length-p vectors with

weight v results in a vector with weight vx. This probability can be recursively defined
as

Pr(N)
⊕ (p, v, vx)

{

0 if v(0) 6= v,

1 if v(0) = v,
if N = 1,∑p

v(N−1)=0 Pr(N−1)
⊕ (p, v, v(N−1))Pr⊕(p, v, v(N−1), vx), if N ≥ 2.

(6.9)

The above probabilities can be used to estimate the row weight distribution of L.
We remind that all the blocks Hj have row and column weight dv , while each block
Qj,i has row and column weight which we denote with mj,i. Then, each product
HjQj,i can be described as the sum of mj,i random circulant blocks with row weight
dv , and thus its weight distribution can be estimated through Eq. (6.9), withN = mj,i

and v = dv . The weight distribution of Li can then be computed as Pr(n0−1)
i (vx),

where the function Pri is defined through the following recursive expression

Pr(j)
i (vx) =

{
Pr(m0,i)

⊕ (p, dv, vx), if j = 0,∑p

vx=0

∑p

v1=0

∑p

v2=0 Pr(j−1)
i (v1)Pr(mj,i)

⊕ (p, dv, v2)Pr⊕(p, v1, v2, vx) otherwise.

85

Chapter 6 LEDAcrypt

We finally obtain the weight distribution of a row of L as

PrL(wx) =
n0−1∏
i=0

Pr(n0−1)
i (vi), ∀v0, · · · , vn0−1 s.t.

n0−1∑
i=0

vi = wx.

The rejection rate is hence estimated as

η = 1− PrL(n0mdv),

and, for practical parameters of LEDA cryptosystems, is always close to 1/2.

6.4 Statistical attacks

In this section we describe a family of attacks based on statistical analyses, namely
statistical attacks. This family includes reaction attacks, in which data is collected
through the observation of Bob’s reactions, and side-channel attacks. Historically,
this kind of attacks on QC-LDPC and QC-MDPC code based cryptosystems has been
introduced by Guo et al. in 2016 [16], by showing how to use decryption failures to
reconstruct the secret key of QC-MDPC code based cryptosystems; we will refer to
this attack as GJS (the name is the acronym of the authors last names). In 2017 the
attack has been generalized to the case of LEDA cryptosystems [18,19], by modifying
the GJS attack to take into account the presence of matrix a Q with m > 1. Finally,
these procedures have been improved, by considering the information leakage due to
other quantities, such as the number of decoding iterations [17, 61]. We point out that
all the aforementioned attacks are strictly based on quasi-cyclicity and thus, cannot be
applied to codes with a different geometrical structure.

In this section we recall the results of [62] and present a general framework which
embeds all the aforementioned attacks; furthermore, we show that the these attacks
do not strictly depend on the QC structure. Furthermore our proposed technique,
with respect to the aforementioned attacks, allows for recovering a larger amount of
information about the secret key.

One final remark regards the applicability of the results we describe in this sec-
tion to LEDA cryptosystems. As we have already said, Q-decoding on H and Q
approximates BF-decoding on L. As observed in [63], statistical attacks designed for
QC-MDPC schemes (i.e., for the case m = 1) can equivalently be applied to LEDA
cryptosystems. Because of the relation between Q-decoding and BF-decoding, the at-
tacks will be successful and will return the matrix L. Thus, from now on, for the sake
of simplicity, we will just consider the case of QC-MDPC cods decoded through BF.

86

6.4 Statistical attacks

6.4.1 A general model for statistical attacks

Let us consider a public-key cryptosystem with private and public keys sk and
pk, respectively, and security parameter λ. We denote with Decrypt(sk,x) a generic
decryption algorithm that, given a ciphertext x and sk as inputs, returns either the
plaintext m or a decryption failure. We define D(sk,x) as an oracle that, queried
with a ciphertext x, runs Decrypt(sk,x) and returns some metrics that describe the
execution of the decryption algorithm. More details about the typology of the oracle’s
replies are provided next.
An adversary, which is given pk, queries the oracle withN ciphertexts {x(i) |i = 1, · · · , N };
we denote as y(i) the oracle’s reply to the i-th query x(i). The adversary then runs an
algorithmA(KP , {x(0), y(0)}, · · · , {x(N−1), y(N−1)}) that takes as inputs pk and the
pairs of oracle queries and replies, and returns sk′. The algorithm A models the pro-
cedure that performs a statistical analysis of the gathered data and reconstructs the
secret key, or an equivalent version of it. The time complexity of this whole procedure
can be approximated as

C = αN + CA,

where α corresponds to the average number of operations performed for each query
and CA is the complexity of executing the algorithm A. The adversary is then chal-
lenged with a randomly generated ciphertext x∗, corresponding to a plaintext m∗. We
consider the attack successful if C < 2λ and the probability of m = Decrypt(sk′,x∗)
being equal to m∗ is not negligible (i.e., larger than 2−λ).

We point out that this formulation is general, since it does not distinguish between
the McEliece and Niederreiter cases. In the same way the private and public keys
might be generic. Furthermore, the above model allows for taking into account many
kinds of attacks, depending on the oracle’s reply. For instance, when considering
attacks based on decryption failures, the oracle’s reply is a boolean value which is true
in case of a failure and false otherwise. When considering timing attacks based on the
number of iterations, then the oracle’s reply corresponds to the number of iterations
run by the decoding algorithm.

6.4.2 The GJS attack

In this section we describe the GJS attack [16], in the case of a scheme employing
a CCA conversion like that in [58]. This means that the error vectors which are used
during encryption are obtained as the result of an hash function; this corresponds to
assuming that the oracle queries are all randomly generated, i.e., the error vectors used
during encryption can be seen as randomly picked elements from the ensemble of all
n-uples with weight t.

As we have already stated, state-of-the-art statistical attacks [17–19,64,65] are spe-
cific to the sole case of QC codes defined through a secret parity-check matrix in the

87

Chapter 6 LEDAcrypt

form
H =

[
H0,H1, . . . ,Hn0−1

]
, (6.10)

where each Hi is a circulant matrix of weight d′v and size p, and n0 is a small integer.
All such attacks are focused on gathering information about the existence (or absence)
of some cyclic distances between symbols 1 in H. In particular, an adversary aims at
recovering the following quantities, which were introduced in [64].

Distance spectrum: Given a vector a, with support S (a) and length p, its distance
spectrum is defined as

DS(a) = {min{±(i− j) mod p}| i, j ∈ S (a) , i 6= j} .

Multiplicity: We say that a distance d ∈ DS(a) has multiplicity µd if there are µd
distinct pairs in S (a) which produce the same distance d.

Basically, the distance spectrum is the set of all distances with multiplicity larger than
0. It can be easily shown that all the rows of a circulant matrix are characterized by
the same distance spectrum; thus, given a circulant matrix M, we denote the distance
spectrum of any of its rows (say, the first one) as DS(M).

Statistical attacks proposed in the literature aim at estimating the distance spectrum
of the circulant blocks in the secret H, and are based on the observation that some
quantities that are typical of the decryption procedure depend on the number of com-
mon distances between the error vector and the rows of the parity-check matrix. In
particular, the generic procedure of a statistical attack on a cryptosystem whose secret
key is in the form (6.10) is described in Algorithm 4; we have called the algorithm
Ex-GJS in order to emphasize the fact that it is an extended version of the original
GJS attack [64], which was only focused on a single circulant block in H. Our algo-
rithm, which is inspired by that of [18], is a generalization of the procedure in [64], in
which all the circulant blocks in H are taken into account. We present this algorithm
in order to show the maximum amount of information that state-of-the-art statistical
attacks allow to recover.

The error vector used for the i-th query is expressed as e(i) = [e(i)
0 , . . . , e(i)

n0−1],
where each e(i)

j has length p. The estimates a(0), . . . ,a(n0−1) and b(0), . . . ,b(n0−1)

are then used by the adversary to guess the distance spectra of the blocks in the secret
key. Indeed, let us define E(d,j)(n, t) as the ensemble of all error vectors having length
n, weight t and such that they exhibit a distance d in the distance spectrum of the j-
th length-p block. Then, depending on the meaning of the oracle’s reply, the ratios
a

(j)
d /b

(j)
d correspond to the estimate of the average value of some quantity, when the

error vector belongs to E(d,j)(n, t). For instance, when considering attacks based
on decryption failures, the oracle’s reply is either 0 or 1, depending on whether the

88

6.4 Statistical attacks

Algorithm 4 Ex-GJS
Input: public key pk, number of queries N ∈ N
Output: estimates a(0), · · · ,a(n0−1), b(0), · · · ,b(n0−1) ∈ Nbp/2c.

1: Initialize a(0), · · · ,a(n0−1), b(0), · · · ,b(n0−1) as null arrays of length bp/2c
2: for i← 1 to N do
3: x(i) ← ciphertext obtained through pk, using the error vector e(i)

4: y(i) ← D(sk,x(i))
5: for j ← 0 to n0 − 1 do
6: ∆j ← DS(e(i)

j)
7: for d ∈ ∆j do
8: a

(j)
d ← a

(j)
d + y(i)

9: b
(j)
d ← b

(j)
d + 1

10: end for
11: end for
12: end for
13: return {a(0), · · · ,a(n0−1), b(0), · · · ,b(n0−1)}

decryption was successful or failed. In such a case, the ratio a(j)
d /b

(j)
d corresponds to

an empirical measurement of the DFR, conditioned to the event that the error vector
belongs to E(j,d)(n, t). In general, statistical attacks are successful because many
quantities that are typical of the decoding procedure depend on the multiplicity of the
distances in DS(Hj), ∀j ∈ [0, . . . , n0 − 1]. As we show next, this property is not
strictly due to the existence of common distances, but more generally depends on the
number of overlapping ones between columns in H.

6.4.3 General statistical attacks

In this section we generalize the Ex-GJS procedure, and describe an algorithm
which can be used to recover information about any regular code. In particular, our
analysis shows that events of decoding failure i) do not strictly depend on the QC
structure of the adopted code, and ii) permit to retrieve a quantity that is more general
than distance spectra.

We first show that, for generic regular codes, there is a connection between the
syndrome weight and the DFR. This statement is validated by numerical simulations
on (w, v)-regular codes, obtained through Gallager construction [15], in which v

w =
r
n . We consider a BF decoder running for a maximum of imax iterations, with unique
decoding threshold which we denote with b. In particular, we have considered two
codes with length n = 5, 000, redundancy r = 2, 500 and different pairs (w, v),
decoded with BF Algorithm; their DFR vs. syndrome weight is shown in Fig. 6.1.

We notice from Fig. 6.1 that there is a strong dependence between the initial syn-
drome weight and the DFR and that different pairs (v, w) can lead to two different

89

Chapter 6 LEDAcrypt

Figure 6.1: Distribution of the DFR as a function of the syndrome weight, for two
regular (w, v)-regular LDPC codes, decoded through BF with imax = 5
and b = 15. The weight of the error vectors is t = 58; for each code, 107

decoding instances have been considered.

trends in the DFR evolution.

Let us now define E(n, t, i0, i1) as the ensemble of all vectors having length n,
weight t and whose support contains elements i0 and i1. Let s be the syndrome of an
error vector e ∈ E(n, t, i0, i1): we have

s = hi0 + hi1 +
∑

j∈S(e)\{i0,i1}

hj .

The syndrome weight has a probability distribution that depends on the interplay be-
tween hi0 and hi1 : basically, when these two columns overlap in a small (large)
number of ones, then the average syndrome weight gets larger (lower). Moreover,
motivated by the empirical evidence of Fig. 6.1, one can expect that the DFR ex-
perienced over error vectors belonging to different ensembles E(n, t, i0, i1) depends
on the number of overlapping ones between columns hi0 and hi1 . Then, a statistical
attack against a generic regular code can be mounted, as described in Algorithm 5,
which we denote as General Statistical Attack (GSA). The output of the algorithm is
represented by the matrices A and B, which are used by the adversary to estimate the
average value of the oracle’s replies, as a function of the pair (i0, i1). Notice that in
Algorithm 5 the oracle’s reply is denoted as y(i) and does not need to be better speci-
fied. We will indeed show in the next section that the same procedure can be used to
exploit other information sources than the success (or failure) of decryption. We now
focus on the case of y(i) being 0 or 1, depending on whether decryption was successful

90

6.4 Statistical attacks

or not. Then, each ratio aj,l/bj,l represents an empirical estimate of the probability
of encountering a decryption failure, when the error vector contains both j and l in
its support. One might expect that the ratios aj,l/bj,l are distributed on the basis of

Algorithm 5 GSA
Input: public key pk, number of queries N ∈ N
Output: estimates A,B ∈ Nn×n.

1: A← 0n×n
2: B← 0n×n
3: for i← 1 to N do
4: x(i) ← ciphertexts obtained through the error vector e(i)

5: y(i) ← D(sk,x(i))
6: S

(
e(i))← support of e(i)

7: for j ∈ S
(
e(i)) do

8: for l ∈ S
(
e(i)) do

9: aj,l ← aj,l + y(i)

10: bj,l ← bj,l + 1
11: end for
12: end for
13: end for
14: return {A,B}

the number of overlapping ones between columns j and l in H. We have verified this
intuition by means of numerical simulations; the results we have obtained are shown
in Fig. 6.2, for the case of error vectors belonging to ensembles E(n, t, 0, j), with
j ∈ [1, . . . , n − 1]. The figure clearly shows that the ratios aj,l/bj,l can be used to
guess the number of overlapping ones between any pair of columns in H.

These empirical results confirm the conjecture that the DFR corresponding to er-
ror vectors in E(n, t, i0, i1) depends on the number of overlapping ones between the
columns i0 and i1. Moreover, these results show that the same idea of [64], with some
generalization, can be applied to whichever kind of code.

We now show that even when QC codes are considered, our algorithm recovers
more information than that which can be obtained through the Ex-GJS procedure. For
such a purpose, let us consider a parity-check matrix in the form (6.10), and let γi,j
be the number of overlapping ones between columns i and j. Now, because of the QC
structure, we have

|S (hi) ∩ S (hj)| =
∣∣S (hpbi/pc+[i+z mod p]

)
∩ S

(
hpbj/pc+[j+z mod p]

)∣∣ , ∀z.
(6.11)

We now consider two columns that belong to the same circulant block in H, i.e.,
i = pip + i′, j = pip + j′, with 0 ≤ ip ≤ n0 − 1 and 0 ≤ i′, j′ ≤ p− 1; then, (6.11)

91

Chapter 6 LEDAcrypt

(a) (b)

Figure 6.2: Simulation results for (v, w)-regular codes with n = 5000, k = 2500,
for t = 58 and for error vector belonging to ensembles E(n, t, 0, j), for
j ∈ [1, . . . , n − 1]. The parameters of the codes are v = 25, w = 50
for Figure (a), v = 20, w = 40 for Figure (b); the decoder settings are
imax = 5 and b = 15. The results have been obtained through the simu-
lation of 109 decoding instances. Grey, blue, green, black and red mark-
ers are referred to pairs of columns with number of intersections equal to
0, 1, 2, 3, 4, respectively.

can be rewritten as

|S (hi) ∩ S (hj)| =
∣∣S (hpip+[i′+z mod p]

)
∩ S

(
hpip+[j′+z mod p]

)∣∣ , ∀z.
With some simple computations, we finally obtain

∣∣S(hpip+i′) ∩ S(hpip+j′)
∣∣ =

{∣∣S(hpip) ∩ S(hpip+p−(i′−j′))
∣∣ if j′ < i′∣∣S(hpip) ∩ S(hpip+j′−i′))

∣∣ if j′ > i′
. (6.12)

Similar considerations can be carried out if the two columns do not belong to the same
circulant block. So, (6.12) shows that the whole information about overlapping ones
between columns in H is actually represented by a subset of all the possible values of
γi,j . This means that the execution of Algorithm 5 can be sped up by taking the QC
structure into account.

In particular, the values of γi,j can be used to obtain the distance spectra of the
blocks in H in a straightforward way. Let us refer to (6.12), and look at two columns
hpip and hj , with j = pip + j′, where j′ ∈ [0, 1, . . . , p − 1]. The support of hpip is

φ(hpip) = {c(pip)
0 , · · · , c(pip)

v−1 }. The support of hj can be expressed as

S(hj) = {c(j)l
∣∣∣c(j)l = c

(pip)
l + j′ mod p, l ∈ [0, . . . , v − 1], c

(pip)
l ∈ S(hpip)}.

Then, we have
∣∣S(hpip) ∩ S(hj)

∣∣ = γpip,j ; this means that there are γpip,j pairs

92

6.5 Countering statistical attacks

{c, c′} ∈ S(hpip)× S(hj) such that

c′ = c+ d mod p, d ∈ {j′, p− j′}. (6.13)

It is easy to see that (6.13) corresponds to the definition of the distance spectrum of
the blocks in H; then, (6.13) can be turned into the following rule∣∣S(hpip) ∩ S(hpip+j′)

∣∣ = γ ↔ d ∈ DS(Hip), µd = γ,

with d = min{±j′ mod p}.
This proves that the procedure described by Algorithm 5 allows obtaining at least
the same amount of information recovered through the Ex-GJS algorithm, which is
specific to the QC case and guarantees a complete cryptanalysis of the system [64]. In
other words, our analysis confirms that Algorithm 5 is applicable and successful in at
least all the scenarios in which the attack from [64] works. Moreover, our procedure
allows for recovering a larger amount of information about the secret key, and thus
defines a broader perimeter of information retrieval, which encompasses existing and
future attacks.

One final remark is about the kind of information that can be used to mount sta-
tistical attacks. As already observed, events of decryption failure and the number of
decoding iterations leak information about the secret and, thus, can be used to mount
such attacks. However, due to the intrinsically probabilistic nature of the decoder,
there are other quantitites that may be considered by an adversary. In [62] Santini et
al. have shown that, for instance, the number of performed flips in the first iteration,
as well as the syndrome weight after the first iteration, can be used to successfully per-
form statistical attacks. It is very likely that these results can be extended to i) other
quantitities, and ii) all decoder iterations.

6.5 Countering statistical attacks

In this section, which concludes this chapter, we propose a methodology to design
LEDA instances which can withstand statistical attacks. The results we describe are a
brief summary of the work in [66].

6.5.1 Ephemeral keys

As we have already stated, a variant of LEDAkem uses ephemeral keys, i.e., em-
ploys key-pairs that are used for only one key encapsulation/decapsulation. This
choice completely thwarts statistical attacks, since it removes the possibility of col-
lecting a sufficiently large amount of information about the secret key. Thus, even non
negligible DFR values do not represent a security issue.

93

Chapter 6 LEDAcrypt

Table 6.1: Parameter sizes for LEDAkem instances with ephemeral keys.

λ n0 p t dv m errors out of
decodes

128
2 14, 939 136 11 [4, 3] 14 out of 1.2 · 109

3 7, 853 86 9 [4, 3, 2] 0 out of 1 · 109

4 7, 547 69 13 [2, 2, 2, 1] 0 out of 1 · 109

192
2 25, 693 199 13 [5, 3] 2 out of 1 · 109

3 16, 067 127 11 [4, 4, 3] 0 out of 1 · 109

4 14, 341 101 15 [3, 2, 2, 2] 0 out of 1 · 109

256
2 36, 877 267 11 [7, 6] 0 out of 1 · 109

3 27, 437 169 15 [4, 4, 3] 0 out of 1 · 109

4 22, 691 134 13 [4, 3, 3, 3] 0 out of 1 · 109

Then, by taking into account all the ISD attacks we have described in the previous
sections, secure LEDAkem parameters can be devised. In Tab. 6.5.1 we propose
instances for security parameter λ ∈ {128, 192, 256} and number of circulant blocks
n0 ∈ {2, 3, 4}. The decoder that we propose for such instances is the Q-decoder in
which, at each iteration, the threshold is chosen through the rule described in Section
6.2.1. The DFR of these instances has been estimated through numerical simulations
and, for the proposed instances, is in worst case in the order of 10−9.

In Tables 6.2 6.3 we show key sizes and running times with the actual implemen-
tation of LEDAkem with ephemeral keys, which can downloaded from the official
website [20], for the instances proposed in Table 6.5.1. As we see from the Table,
the parameter n0 can be adjusted to modify the trade-off between key size and run-
ning time. For instance, n0 = 2 is the optimal choice for the public key size, while
choosing n0 = 3 leads to improvements in the scheme running time.

Table 6.2: LEDAkem with ephemeral keys – Sizes in bytes of the key pair (at rest
and in memory), of the encapsulated secret and of the shared secret, as a
function of the security parameter and the number of circulant blocks n0

Security n0
Private key (B) Public key Encapsulated Shared

Parameter At rest In memory (B) secret size (B) secret size (B)

128
2 24 452 1,872 1,872 32
3 24 540 2,080 1,040 32
4 24 684 2,832 944 32

192
2 32 644 3,216 3,216 48
3 32 748 4,032 2,016 48
4 32 924 5,400 1,800 48

256
2 40 764 4,616 4,616 64
3 40 972 6,864 3,432 64
4 40 1,092 8,520 2,840 64

94

6.6 Long term keys

Table 6.3: LEDAkem with ephemeral keys – Running times for key generation, key
encapsulation and key decapsulation, followed by the total time needed for
a key exchange without considering transmission times, as a function of
the security parameter and the number of circulant blocks n0, on an Intel
Skylake i5-6600 at 3.6 GHz.
The figures are taken employing the completely portable reference
implementation in ISO C11, compiled with GCC 6.3.0, employing
-march=native -O3 as optimization parameters

Security n0
KeyGen Encap. Decap. Total exec.

Parameter (ms) (ms) (ms) time (ms)

128
2 1.374 (± 0.130) 0.046 (± 0.009) 0.340 (± 0.072) 1.759
3 0.569 (± 0.089) 0.038 (± 0.012) 0.424 (± 0.057) 1.031
4 0.884 (± 0.510) 0.043 (± 0.006) 1.305 (± 0.136) 2.233

192
2 3.725 (± 0.188) 0.092 (± 0.018) 0.950 (± 0.103) 4.768
3 1.793 (± 0.271) 0.088 (± 0.023) 1.112 (± 0.075) 2.992
4 2.759 (± 1.170) 0.112 (± 0.014) 2.065 (± 0.176) 4.936

256
2 7.644 (± 0.261) 0.176 (± 0.022) 1.276 (± 0.105) 9.095
3 4.964 (± 0.602) 0.177 (± 0.013) 1.623 (± 0.122) 6.764
4 5.649 (± 1.846) 0.217 (± 0.018) 2.752 (± 0.176) 8.618

6.6 Long term keys

When we want to use long term keys, we necessarily have to deal with statistical
attacks. As we have already said, this requires i) a constant time and power imple-
mentation, and ii) negligible DFR values. In this section we describe a methodology
to design a 2-iterations Q-decoder with negligible failure rate. Our approach is based
on the following considerations:

i) when L has full weight, then a BF-decoder operating in L is equivalent to a Q-
decoder operating on H and Q; this property can be easily proven by repeating
the computations we have shown in Section 6.2.2 and by assuming that

H ∗Q = HQ,

i.e., that the integer product between H and Q returns a matrix with entries in
{0; 1};

ii) adopting the results of section 4.1.2, we can compute the number of errors that
can be corrected by a single iteration of BF decoder operating on L. Because
of the aforementioned equivalence, this number corresponds to the amount of
errors that can be corrected by a single iteration of Q-decoder operating on H
and Q.

95

Chapter 6 LEDAcrypt

Let t̄ denote the error correction capability of a particular secret key sk. Let s = Le>

be the input syndrome, with wt (e) = t; furthermore, let ê denote the error vector
estimate after the first Q-decoder iteration. We define the number of residual errors as
t′ = wt (e + ê). When the t′ ≤ t̄, then the second iteration will always correct this
amount of residual errors and will output a vector identical to e. When t′ > t̄, there
is some probability of failure which, however, can be hardly be estimated through
theoretical arguments. Thus, we conservatively assume that t′ > t̄ always results in
a decoding failure; this assumption allows us to derive a simple upper bound on this
two iterations decoder as

DFR ≤ 1− Pr
[
t′ ≤ t̄

]
. (6.14)

We now describe how the distribution of the number of residual errors t′ can be pre-
dicted; we denote with b the employed decoding threshold in the first iteration, and
denote the vertical weight of L as v = mdv .

We use Nic to denote the number of bits that are affected by errors and get flipped
in the first iteration of the decoder, while Nci denotes the number of bits that, on the
contrary, are error free and get flipped. For the sake of simplicity, we refer to Nic
as the number of right flips and to Nci as the number of wrong flips. It is clear that
t′ = Nic +Nci. We recall the following probabilities

ρcc =
min[w−1,t]∑
j = 0, j even

(
w−1
j

)(
n−w
t−j
)(

n−1
t

) ,

ρic =
min[w−1,t−1]∑
j = 0, j even

(
w−1
j

)(
n−w
t−j−1

)(
n−1
t−1
) ,

where ρcc is the probability that a bit is error free and a parity-check equation involving
it evaluates it correctly, that is, it is satisfied, whereas ρic is the probability that a bit
is in error and a parity-check equation involving it evaluates it correctly, that is, it is
unsatisfied. As in [15, Section 4.2], [49, Section 3], we assume that in the first iteration
the parity-check equations are not correlated. An erred bit, say the i-th, is flipped and,
eventually, correctly evaluated if its counter σ(1)

i ≥ b, where b denotes the employed
decoding threshold. which happens with probability

Pric =
v∑

j=b0

(
v

j

)
ρjic (1− ρic)v−j .

An error free bit, say the j-th, is wrongly estimated if σ(0)
j ≥ b, which happens with

probability

Prci =
v∑

j=b0

(
v

j

)
(1− ρcc)j ρv−jcc .

96

6.6 Long term keys

In other words, Pric is the probability of a right flip, while Prci is the probability of a
wrong flip. Hence we have

Pr [Nic = z] =
(
t

z

)
P zic (1− Pic)t−z ,

Pr [Nci = u] =
(
n− t
u

)
Puci (1− Pci)n−t−u .

Then, the probability that e′ has weight equal to a given value t′ can be obtained as
follows

Pr [wt(e′) = t′ | wt(e) = t] =
t′∑
x=0

Pr [Nic = t′ − x] Pr [Nci = x].

Then, Eq. (6.14) can be rewritten as

DFR ≤ 1− Pr
[
wt (e′) ≤ t̄

]
= 1−

t̄∑
t′=0

Pr [wt (e′) = t′]

= 1−
t̄∑

t′=0

t′∑
x=0

Pr [Nic = t′ − x] Pr [Nci = x].

Using this method, the DFR on this two iterations simple decoder can be upper bounded.

In particular, this method can be used to design LEDA instances. Indeed, given n0,
dv , m, t and a target DFR ε, it is enough to choose t̄ and p such that

Pr
[
wt (e′) ≤ t̄

]
> 1− ε.

To guarantee the desired DFR, we propose to test the error correction capability of
each generated key: if it is lower than t̄, then the key gets discarded and a new one
is tested. With this simple additional rejection sampling step, we can ensure that the
selected keys actually yields the desired DFR. In Table 6.4 we report some instances
achieving different DFR values. We additionally report the number of key that we
have rejected in our experiments.

In Tables 6.5 and 6.6 we have reported key sizes and running times for the LEDApkc
instances proposed in Table 6.4.

97

Chapter 6 LEDAcrypt

Table 6.4: Parameters for the LEDAkem and LEDApkc employing a two-iteration Q-
decoder matching a DFR equal to 2−64 and a DFR equal to 2−λ, where λ
equals 128, 192, 256.

λ n0 DFR p t dv m t̄ No. of keys out of 100 bproviding the guaranteed DFR

128 2 2−64 35, 899 136 9 [5, 4] 4 95 44
2 2−128 52, 147 136 9 [5, 4] 4 95 43

192 2 2−64 57, 899 199 11 [6, 5] 5 92 64
2 2−192 96, 221 199 11 [6, 5] 5 92 64

256 2 2−64 89, 051 267 13 [7, 6] 6 93 89
2 2−256 152, 267 267 13 [7, 6] 6 93 88

Table 6.5: LEDApkc – Sizes in bytes of the key pair, and the minimum and maximum
ciphertext expansion overhead, as a function of the security parameter and
of the decryption failure rate provided by the choice of the parameters of
the underlying QC-LDPC code

Security n0 DFR Private key (B) Public key Min. ciphertext Max. ciphertext
parameter At rest In memory (B) overhead (B) overhead (B)

128 2 2−64 25 468 4,488 4,521 8,976
2 2−128 25 468 6,520 6,554 13,040

192 2 2−64 33 660 7,240 7,283 14,480
2 2−192 33 660 12,032 12,077 24,064

256 2 2−64 41 884 11,136 11,189 22,272
2 2−256 41 884 19,040 19,095 38,080

98

6.6 Long term keys

Table 6.6: LEDApkc – Running times for key generation, encryption and decryption
assuming a plaintext message to be encrypted with size 1KiB.
Execution times on an Intel Skylake i5-6600 at 3.6 GHz are reported as a
function of the NIST category and of the decryption failure rate provided
by the choice of the parameters of the underlying QC-LDPC code.
The figures are taken employing the completely portable reference
implementation in ISO C11, compiled with GCC 6.3.0, employing
-march=native -O3 as optimization parameters

Security n0 DFR KeyGen Encryption Decryption
parameter (s) (ms) (ms)

128 2 2−64 0.290 (± 0.008) 0.29 (± 0.00) 0.76 (± 0.00)
2 2−128 0.422 (± 0.014) 0.42 (± 0.03) 1.18 (± 0.12)

192 2 2−64 1.187 (± 0.483) 0.56 (± 0.11) 1.70 (± 0.21)
2 2−192 1.538 (± 0.043) 1.10 (± 0.11) 2.39 (± 0.07)

256 2 2−64 2.543 (± 0.037) 1.02 (± 0.09) 3.26 (± 0.44)
2 2−256 4.240 (± 0.069) 1.53 (± 0.07) 4.16 (± 0.09)

99

Chapter 7

Conclusions

In this thesis we have studied post-quantum public-key cryptosystems based on
hard problems arising from coding theory arguments. We have described classical
solutions based on Goppa codes, and have introduced a new scheme based on Gener-
alized Reed-Solomon codes. This new cryptosystem, which we have called BCRSS,
is a modification of the BBCRS scheme, which comes as a countermeasure to a recent
cryptanalysis that can efficiently recover the secret code. We have described how a
proper parameters choice, together with a little tweak to avoid high decryption com-
plexity, is enough to thwart such an attack. We have compared the performances of
the BCRSS with those of competing schemes based on algebraic codes; our results
show that this new cryptosystem represents a valid alternative to these solutions.

We have then considered the family of Low-Density Parity-Check (LDPC) codes
which, differently from algebraic codes, can efficiently be decoded only with tech-
niques that are intrinsically characterized by some failure probability. We have then
addressed the open problem of deriving reliable and easy-to-obtain estimations for the
Decoding Failure Rate (DFR) of such codes. In particular, we have analyzed one iter-
ation of the simple Bit Flipping (BF) decoder, and have derived precise and theoretical
bound on its error correction capability. We have proposed a method to estimate the
number of errors which can be corrected by a single decoder iteration; this method-
ology takes into account the parity-check matrix structure and, through the additional
decoding threshold optimization, improves upon known bounds on the error correc-
tion capability. We have then described how, with analogous tools, a mathematical
upper bound on the DFR of a single iteration can be derived. The obtained bound
does not require any assumption, is easy to compute and is sufficiently tight. We have
specialized the general expression of the bound to Quasi-Cyclic (QC) codes and to
codes with girth ≥ 6, and have justified its tightness by means of numerical simula-
tions. Despite this approach takes into account only a single iteration, we believe that
it may serve as the first step to derive reliable and assumption-free bounds which take
into account more than one iteration.

We have introduced the notion of reproducible codes, i.e., that of codes admitting
a compact representation, which encompasses well known families of codes, such

101

Chapter 7 Conclusions

as those of QC and Quasi-Dyadic. We have derived conditions on the existence of
such codes, which can be further specialized to the interesting case of reproducibility
obtained via permutations. We have provided examples of codes constructions, and
have described how to instantiate code-based cryptosystems based on such families of
codes.

Finally, we have described LEDAcrypt, a suite of crytographic algorithms based on
QC-LDPC codes which is currently under evaluation for standardization in the ongo-
ing NIST competition. We have provided a complete security analysis of the scheme,
by taking into account classical attacks, such as those based on Information Set De-
coding, and the recent family of statistical attacks. In particular, we have described a
general methodology to mount statistical attacks, and have shown how the proposed
method outperforms existing techniques. Our results confirm that, for cryptosystems
based on QC-LDPC and QC-MDPC codes, constant time and power implementations,
with negligible decryption failure rate, are a necessity. We have then described a way
to upper bound the DFR in LEDA cryptosystems, and have used this method to design
practical LEDA instances.

102

Bibliography

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer”, SIAM Journal on Computing, vol. 26, no.
5, pp. 1484–1509, 1997.

[2] Lily Chen, Yi-Kai Liu, Stephen Jordan, Dustin Moody, Rene Peralta, Ray Perl-
ner, and Daniel Smith-Tone, “Report on post-quantum cryptography”, Tech.
Rep. NISTIR 8105, National Institute of Standards and Technology, 2016.

[3] National Institute of Standards and Technology, “Post-quantum crypto project”,
December 2016.

[4] R. J. McEliece, “A public-key cryptosystem based on algebraic coding theory”,
Deep Space Network Progress Report, vol. 44, pp. 114–116, January 1978.

[5] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent intractability
of certain coding problems”, vol. 24, no. 3, pp. 384–386, May 1978.

[6] Daniel J. Bernstein, Grover vs. McEliece, pp. 73–80, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[7] Rafael Misoczki and Paulo S. L. M. Barreto, “Compact McEliece keys from
Goppa codes”, in Selected Areas in Cryptography, vol. 5867 of Lecture Notes in
Computer Science, pp. 376–392. Springer Verlag, 2009.

[8] P. Gaborit, “Shorter keys for code based cryptography”, in Proc. Int. Workshop
on Coding and Cryptography (WCC 2005), Bergen, Norway, March 2005, pp.
81–90.

[9] J.-C. Faugère, A. Otmani, L. Perret, and J.-P. Tillich, “Algebraic cryptanalysis of
McEliece variants with compact keys”, in EUROCRYPT, H. Gilbert, Ed. 2010,
vol. 6110 of Lecture Notes in Computer Science, pp. 279–298, Springer.

[10] C. Monico, J. Rosenthal, and A. Shokrollahi, “Using low density parity check
codes in the McEliece cryptosystem”, in IEEE International Symposium on
Information Theory (ISIT’2000), Sorrento, Italy, 2000, p. 215, IEEE.

[11] M. Baldi, F. Chiaraluce, R. Garello, and F. Mininni, “Quasi-cyclic low-density
parity-check codes in the McEliece cryptosystem”, in IEEE International Con-
ference on Communications (ICC 2007), june 2007, pp. 951–956.

103

Bibliography

[12] M. Baldi and F. Chiaraluce, “Cryptanalysis of a new instance of McEliece cryp-
tosystem based on QC-LDPC codes”, in IEEE International Symposium on In-
formation Theory (ISIT 2007), June 2007, pp. 2591–2595.

[13] M. Baldi, M. Bodrato, and F. Chiaraluce, “A new analysis of the McEliece cryp-
tosystem based on QC-LDPC codes”, in Proceedings of the 6th international
conference on Security and Cryptography for Networks (SCN 2008), Berlin, Hei-
delberg, 2008, pp. 246–262, Springer-Verlag.

[14] R. Misoczki, J.-P. Tillich, N. Sendrier, and P. L.S.M. Barreto, “MDPC-McEliece:
New McEliece variants from moderate density parity-check codes”, in IEEE
International Symposium on Information Theory – ISIT’2013, Istambul, Turkey,
2013, pp. 2069–2073, IEEE.

[15] R. G. Gallager, Low-Density Parity-Check Codes, PhD thesis, M.I.T., 1963.

[16] Qian Guo, Thomas Johansson, and Paul Stankovski, A Key Recovery Attack on
MDPC with CCA Security Using Decoding Errors, pp. 789–815, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016.

[17] Edward Eaton, Matthieu Lequesne, Alex Parent, and Nicolas Sendrier, “QC-
MDPC: A timing attack and a CCA2 KEM”, in PQCrypto, Tanja Lange and
Rainer Steinwandt, Eds., Fort Lauderdale, FL, USA, April 2018, pp. 47–76,
Springer International Publishing.

[18] Tomáš Fabšič, Viliam Hromada, Paul Stankovski, Pavol Zajac, Qian Guo, and
Thomas Johansson, “A reaction attack on the QC-LDPC McEliece cryptosys-
tem”, in Post-Quantum Cryptography: 8th International Workshop, PQCrypto
2017, Tanja Lange and Tsuyoshi Takagi, Eds., pp. 51–68. Springer, Utrecht, The
Netherlands, June 2017.

[19] Tomás Fabšič, Viliam Hromada, and Pavol Zajac, “A reaction attack on
LEDApkc”, IACR Cryptology ePrint Archive, vol. 2018, pp. 140, 2018.

[20] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini, “LEDAkem: Low dEnsity coDe-bAsed key encapsulation mech-
anism”, 2017.

[21] A. Vardy, “The intractability of computing the minimum distance of a code”,
IEEE Transactions on Information Theory, vol. 43, no. 6, pp. 1757–1766, Nov
1997.

[22] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding theory”,
Problems of Control and Information Theory, vol. 15, no. 2, pp. 159–166, 1986.

104

Bibliography

[23] Jean-Charles Faugere, Valérie Gauthier-Umana, Ayoub Otmani, Ludovic Perret,
and Jean-Pierre Tillich, “A distinguisher for high-rate McEliece cryptosystems”,
IEEE Transactions on Information Theory, vol. 59, no. 10, pp. 6830–6844, 2013.

[24] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Ruben Nieder-
hagen, Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, and
Wen Wang, “https://classic.mceliece.org/”.

[25] E. Prange, “The use of information sets in decoding cyclic codes”, IRE Trans-
actions, vol. IT-8, pp. S5–S9, 1962.

[26] P. J. Lee and E. F. Brickell, “An observation on the security of mceliece’s
public-key cryptosystem”, in Advances in Cryptology — EUROCRYPT ’88,
D. Barstow, W. Brauer, P. Brinch Hansen, D. Gries, D. Luckham, C. Moler,
A. Pnueli, G. Seegmüller, J. Stoer, N. Wirth, and Christoph G. Günther, Eds.,
Berlin, Heidelberg, 1988, pp. 275–280, Springer Berlin Heidelberg.

[27] J. S. Leon, “A probabilistic algorithm for computing minimum weights of large
error-correcting codes”, IEEE Transactions on Information Theory, vol. 34, no.
5, pp. 1354–1359, Sep. 1988.

[28] J. Stern, “A method for finding codewords of small weight”, in Coding Theory
and Applications, G. Cohen and J. Wolfmann, Eds., vol. 388 of Lecture Notes in
Computer Science, pp. 106–113. Springer Verlag, 1989.

[29] Matthieu Finiasz and Nicolas Sendrier, “Security bounds for the design of code-
based cryptosystems”, in Advances in Cryptology – ASIACRYPT 2009, Mitsuru
Matsui, Ed., Berlin, Heidelberg, 2009, pp. 88–105, Springer Berlin Heidelberg.

[30] Alexander May, Alexander Meurer, and Enrico Thomae, “Decoding random
linear codes in Õ(20.054n)”, in Advances in Cryptology – ASIACRYPT 2011,
Dong Hoon Lee and Xiaoyun Wang, Eds., Berlin, Heidelberg, 2011, pp. 107–
124, Springer Berlin Heidelberg.

[31] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer, “Decoding
random binary linear codes in 2n/20: How 1+1=0 improves information set de-
coding”, in Advances in Cryptology - EUROCRYPT 2012, D. Pointcheval and
T. Johansson, Eds. 2012, vol. 7237 of LNCS, pp. 520–536, Springer.

[32] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini, “A finite regime analysis of information set decoding algorithms”,
Algorithms, vol. 12, no. 10, 2019.

[33] Rodolfo Canto Torres and Nicolas Sendrier, “Analysis of information set decod-
ing for a sub-linear error weight”, in PQCrypto, 2016.

105

Bibliography

[34] Christiane Peters, “Information-set decoding for linear codes over fq”, in Post-
Quantum Cryptography, Nicolas Sendrier, Ed., Berlin, Heidelberg, 2010, pp.
81–94, Springer Berlin Heidelberg.

[35] Lov K. Grover, “A fast quantum mechanical algorithm for database search”, in
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Com-
puting, New York, NY, USA, 1996, STOC ’96, pp. 212–219, ACM.

[36] D.J. Bernstein, T. Lange, C.P. Peters, and H.C.A. Tilborg, van, “Explicit bounds
for generic decoding algorithms for code-based cryptography”, in International
Workshop on Coding and Cryptography (WCC 2009, Ullensvang, Norway, May
10-15, 2009. Pre-proceedings). 2009, pp. 168–180, Selmer Center, University of
Bergen.

[37] M. Baldi, F. Chiaraluce, J. Rosenthal, P. Santini, and D. Schipani, “Security of
generalised reed–solomon code-based cryptosystems”, IET Information Secu-
rity, vol. 13, no. 4, pp. 404–410, 2019.

[38] V. M. SIDELNIKOV and S. O. SHESTAKOV, “On insecurity of cryptosystems
based on generalized reed-solomon codes”, Discrete Mathematics and Applica-
tions, vol. 2, no. 4, 1992.

[39] Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosenthal, and Da-
vide Schipani, “Enhanced public key security for the mceliece cryptosystem”,
Journal of Cryptology, vol. 29, no. 1, pp. 1–27, Jan 2016.

[40] Alain Couvreur, Ayoub Otmani, Jean-Pierre Tillich, and Valérie Gauthier-
Umaña, “A polynomial-time attack on the bbcrs scheme”, in Public-Key Cryp-
tography – PKC 2015, Jonathan Katz, Ed., Berlin, Heidelberg, 2015, pp. 175–
193, Springer Berlin Heidelberg.

[41] Alain Couvreur, Philippe Gaborit, Valérie Gauthier-Umaña, Ayoub Otmani, and
Jean-Pierre Tillich, “Distinguisher-based attacks on public-key cryptosystems
using reed–solomon codes”, Designs, Codes and Cryptography, vol. 73, no. 2,
pp. 641–666, Nov 2014.

[42] Thierry P. Berger and Pierre Loidreau, “How to mask the structure of codes for
a cryptographic use”, Designs, Codes and Cryptography, vol. 35, pp. 63–79,
2005.

[43] Christian Wieschebrink, “Cryptanalysis of the niederreiter public key scheme
based on grs subcodes”, in Post-Quantum Cryptography, Nicolas Sendrier, Ed.,
Berlin, Heidelberg, 2010, pp. 61–72, Springer Berlin Heidelberg.

106

Bibliography

[44] Irene Márquez-Corbella, Edgar Martínez-Moro, and Ruud Pellikaan, “The non-
gap sequence of a subcode of a generalized reed–solomon code”, Designs, Codes
and Cryptography, vol. 66, no. 1, pp. 317–333, Jan 2013.

[45] A. Couvreur, I. Márquez-Corbella, and R. Pellikaan, “Cryptanalysis of mceliece
cryptosystem based on algebraic geometry codes and their subcodes”, IEEE
Transactions on Information Theory, vol. 63, no. 8, pp. 5404–5418, Aug 2017.

[46] Jessalyn Bolkema, Heide Gluesing-Luerssen, Christine Kelley, Kristin Lauter,
Beth Malmskog, and Joachim Rosenthal, Variations of the McEliece Cryptosys-
tem, pp. 129–150, 11 2017.

[47] Violetta Weger, “A Code-Based Cryptosystem using GRS Codes”.

[48] S. K. Chilappagari, D. V. Nguyen, B. Vasic, and M. W. Marcellin, “On the guar-
anteed error correction capability of LDPC codes”, in Proc. IEEE International
Symposium on Information Theory (ISIT 2008), Toronto, Canada, July 2008, pp.
434–438.

[49] Jean-Pierre Tillich, “The decoding failure probability of mdpc codes”, 06 2018,
pp. 941–945.

[50] P. Santini, M. Battaglioni, M. Baldi, and F. Chiaraluce, “Hard-decision iterative
decoding of ldpc codes with bounded error rate”, in ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), May 2019, pp. 1–6.

[51] Paolo Santini, Massimo Battaglioni, Marco Baldi, and Franco Chiaraluce, “A
theoretical analysis of the error correction capability of ldpc and mdpc codes
under parallel bit-flipping decoding”, 2019.

[52] Paolo Santini, Edoardo Persichetti, and Marco Baldi, “Reproducible codes and
cryptographic applications”, Cryptology ePrint Archive, Report 2018/666, 2018,
https://eprint.iacr.org/2018/666.

[53] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim
Güneysu, Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nico-
las Sendrier, Jean-Pierre Tillich, and Gilles Zémor, “BIKE: Bit flipping key
encapsulation”, 2017.

[54] Alston S. Householder, “Unitary triangularization of a nonsymmetric matrix”,
J. ACM, vol. 5, pp. 339–342, 1958.

[55] N. Sendrier, “Decoding one out of many”, in PQCrypto 2011, B.-Y. Yang, Ed.
2011, vol. 7071 of LNCS, pp. 51–67, Springer.

107

https://eprint.iacr.org/2018/666

Bibliography

[56] Rodolfo Canto Torres and Nicolas Sendrier, “Analysis of information set de-
coding for a sub-linear error weight”, in PQCrypto 2016, Tsuyoshi Takagi, Ed.
2016, vol. 9606 of LNCS, pp. 144–161, Springer.

[57] Mohammad Aref, Masoumeh Shooshtari, Thomas Johansson, and Mahmoud
Ahmadian Attari, “Cryptanalysis of mceliece cryptosystem variants based on
quasi-cyclic low-density parity check codes”, IET Information Security, vol. 10,
01 2015.

[58] Kazukuni Kobara and Hideki Imai, “Semantically secure McEliece public-key
cryptosystems — conversions for McEliece PKC”, Lecture Notes in Computer
Science, vol. 1992, pp. 19–35, 2001.

[59] Julia Chaulet and Nicolas Sendrier, “Worst case qc-mdpc decoder for mceliece
cryptosystem”, 07 2016, pp. 1366–1370.

[60] Marco Baldi, Marco Bianchi, and Franco Chiaraluce, “Security and complexity
of the McEliece cryptosystem based on QC-LDPC codes”, IET Inf. Security,
vol. 7, no. 3, pp. 212–220, September 2012.

[61] Thales Paiva and Routo Terada, “Improving the efficiency of a reaction attack
on the QC-MDPC McEliece”, IEICE Transactions on Fundamentals of Elec-
tronics Communications and Computer Sciences, vol. E101.A, pp. 1676–1686,
Oct 2018.

[62] Paolo Santini, Massimo Battaglioni, Franco Chiaraluce, and Marco Baldi,
“Analysis of reaction and timing attacks against cryptosystems based on sparse
parity-check codes”, in Code-Based Cryptography, Marco Baldi, Edoardo Per-
sichetti, and Paolo Santini, Eds., Cham, 2019, pp. 115–136, Springer Interna-
tional Publishing.

[63] Paolo Santini, Marco Baldi, and Franco Chiaraluce, “Assessing and countering
reaction attacks against post-quantum public-key cryptosystems based on QC-
LDPC codes”, in Cryptology and Network Security - 17th International Confer-
ence, CANS 2018, Naples, Italy, September 30 - October 3, 2018, Proceedings,
2018, pp. 323–343.

[64] Qian Guo, Thomas Johansson, and Paul Stankovski, “A key recovery attack
on MDPC with CCA security using decoding errors”, in ASIACRYPT 2016,
Jung Hee Cheon and Tsuyoshi Takagi, Eds., vol. 10031 of LNCS, pp. 789–815.
Springer Berlin Heidelberg, 2016.

[65] Alexander Nilsson, Thomas Johansson, and Paul Stankovski, “Error amplifica-
tion in code-based cryptography”, IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, vol. 2019, no. 1, pp. 238–258, Nov. 2018.

108

Bibliography

[66] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini, “Ledacrypt: Qc-ldpc code-based cryptosystems with bounded
decryption failure rate”, in Code-Based Cryptography, Marco Baldi, Edoardo
Persichetti, and Paolo Santini, Eds., Cham, 2019, pp. 11–43, Springer Interna-
tional Publishing.

109

Appendix A

In this Appendix we describe an efficient way to compute the cardinalities of the
sets introduced in Definition 19. To this end, we first formalize the problem and then
describe a method that, for the cases we are interested in, significantly improves upon
the naive exhaustive search approach.

Problem 4 Let a ∈ Nl be a length-l vector of non negative integers, and let B ⊆
[0; l − 1] be a set of size m ≤ l. Given α ∈ N, α > 0, compute

NB =

∣∣∣∣∣
{
B ⊆ [0; l − 1], |B| = m s.t.

∑
i∈B

ai > α

}∣∣∣∣∣ .
It is clear that an exhaustive search would require to generate all subsets of size m:
thus, the corresponding complexity will be equal to

(
l
m

)
. As we show with combina-

torial arguments, a simple algorithm can be devised, with a complexity that may be
significantly lower.

In particular, we obtain the number of sets that are complementary to those defined
in Problem 4, that is,

N̄B =

∣∣∣∣∣
{
B ⊆ [0; l − 1], |B| = m s.t.

∑
i∈B

aj ≤ α

}∣∣∣∣∣ ,
from which the value of NB can be straightforwardly obtained as

NB =
(
l

m

)
− N̄B .

For a setB, we denote with a(B) the vector formed by the entries of a that are indexed
by B; we define N̄ (j)

B as the number of subsets B for which the corresponding sub-
vector a(B) contains m elements, j of which are distinct, whose sum is smaller than
or equal to α. We have

N̄B =
l∑

j=1
N̄

(j)
B .

The values of N̄ (j)
B can be easily obtained, as we show next.

First of all, let ω be the number of distinct values in a, with Y = {y0, y1, · · · , yω−1}
being the set of such values in ascending order. In the same way, we define λu =

111

Bibliography

|{i s.t. ai = yu}|. As we show below, the computation of N̄B depends only on these
quantities.

Let YB be the set of distinct values that are contained in a(B). When j = 1, we
easily have

N̄
(1)
B =

∑
0≤i≤ω−1 : yi≤b αmc

(
λi
m

)
, (1)

where, as usual,
(
λi
m

)
= 0 if m > λi. When j > 1, some further considerations

must be taken into account. For a set B, let yi0 , yi1 , · · · , yij−1 be the distinct val-
ues assumed by the entries of a(B), and denote the corresponding multiplicities as
m0,m1, · · · ,mj−1. If B ∈ N̄ (j)

B , we must have

j−1∑
u=0

muyiu ≤ α. (2)

We clearly have m =
∑j−1
u=0mu, from which we obtain m0 = m−

∑j−1
u=1mu; then,

(2) can be rewritten as

myi0 +
j−1∑
u=1

mu(yiu − yi0) ≤ α.

It is obvious that

myi0 +
j−1∑
u=1

mu(yiu − yi0) ≥ myi0 +
j−1∑
u=1

(yiu − yi0).

The above condition can be turned into the following criterion: a set B associated to
the values yi0 , yi1 , · · · , yij−1 of a(B), whose sum is smaller than or equal to α, exists
if and only if

j−1∑
u=1

yiu − yi0 ≤ α−myi0 .

Let us now fix an index q ∈ [1; j − 2], and suppose that we are looking at all
sets B such that a(B) contains the values yi0 , · · · , yiq−1 with respective multiplicities
m1,m2, · · · ,mq−1. Then, imposing the constraint and summing over all subsets, we
obtain

α ≥ myi0+
q−1∑
u=1

mu(yiu − yi0) +mq(yiq − yi0) +
j−1∑
z=q+1

mz(yiz − yi0)

≥ myi0 +
q−1∑
u=1

mu(yiu − yi0) +mq(yiq − yi0) +
j−1∑
z=q+1

(yiz − yi0).

112

Bibliography

Then, the maximum value for mq is obtained as

m(max)
q = min

{
λq,

⌊
α−myi0 −

∑q−1
u=1mu(yiu − yi0)−

∑j−1
z=q+1(yiz − yi0)

yiq − yi0

⌋}
.

Finally, N̄ (j)
B can be computed as

N̄
(j)
B =

ω−j∑
i0=0

ω−j+1∑
i1=i0+1

· · ·
ω−1∑

ij−1=ij−2+1
d(i0, · · · , ij−1),

where

d(i0, · · · , ij−1) =

0 if
∑j−1
u=1 yiu − yi0 > α−myi0∑m

(max)
1

m1=1 · · ·
∑m

(max)
j−1

mj−1=1
(λi0

m−
∑j−1

i=1
mi

)∏j−1
u=1

(
λiu
mu

)
otherwise

,

(3)
where, coherently with (1),

(λi0

m−
∑j−1

i=1
mi

)
= 0 if λi0 < m−

∑j−1
i=1 mi.

We point out that, when a contains a small number of distinct elements (i.e., ω � l),
this approach becomes significantly faster than the exhaustive search on all subsets.
Indeed, first of all we clearly have N̄ (j)

B = 0 when j > ω; moreover, the number of
configurations tested by using (3) is surely smaller than mj−1. Then, for a specific
value of j, the computation of N̄ (j)

B requires to test no more than mj−1(ω
j

)
configura-

tions. Thus, we can roughly upper bound the total number of configurations that are
considered as

ω∑
j=1

mj−1
(
ω

j

)
≤

ω∑
j=1

mj−1
(
ωe

j

)j
≤ ωmω−1eω,

where e is the basis of the natural logarithmic. It can be verified that, when m,w � l,
the above upper bound is significantly smaller than

(
l
m

)
.

113

Acknowledgments

Giunto alla fine di questo percorso, ci sono numerose persone che meritano i miei
ringraziamenti. Questo periodo mi è servito per conoscere il mondo della ricerca, per
apprenderne i lati positivi (e negativi) e, probabilmente, per capire ciò che davvero
voglio fare nella vita. Dopo questi tre anni, credo che il mio bagaglio culturale si sia
notevolmente arricchito; non di teoremi e teorie matematiche, ma di esperienze vis-
sute, di luoghi visitati e di persone incontrate. Mi è sempre stata concessa parecchia
libertà, sia per le tematiche da affrontare, sia nel viaggiare il più possibile, libertà che
spero di aver ripagato adeguatamente.
Quello della ricerca è un settore fantastico, in cui regnano la completa libertà e la to-
tale uguaglianza. Veniamo giudicati per la qualità dei nostri lavori, non per estrazione
sociale, etnia o colore della pelle. Partecipiamo a conferenze in cui persone proveni-
enti da ogni parte del mondo si scambiano idee durante il giorno e alla sera si siedono
davanti ad una birra; tutto questo, parlando due lingue universali come l’inglese e
la matematica. Con umiltá accettiamo i nostri sbagli ed il lavoro fatto da altri, anche
quando magari smentiscono o migliorano i risultati da noi ottenuti. Ad una conferenza
scientifica giovani studenti ascoltano affermati ricercatori, e viceversa, perchè nella
vita non si finisce mai di imparare e, soprattutto, perchè ogni persona ha qualcosa da
insegnare agli altri, chiunque essi siano.
Sarebbe bello se il mondo fosse come una grande conferenza, in cui tutti quanti ab-
biamo le stesse opportunità, in cui ognuno ha possibilità di parola e, soprattutto, in
cui ci si ascolta a vicenda. Purtroppo, il mondo è ben distante da questo ideale (forse
utopico) e sempre più spesso, magari aizzati dalle parole di qualche politico in cerca di
consenso, tendiamo a comportarci da egoisti e da menefreghisti. È facile discriminare
chi ha meno di noi, chi non ha la voce per difendersi; è facile respingere il diverso ed
evitare il dialogo. È facile fare tutto ciò, ma non ci rendiamo conto delle opportunità
e capacità, nostre e non solo, che stiamo sprecando.
Diceva Albert Einstein, o forse qualcuno prima di lui, che "la mente è come un para-
cadute: funziona solo se si apre". Aprire la mente: in questi anni ho sicuramente
imparato a farlo, e mai smetterò. Non perchè mi servirà per scrivere articoli scien-
tifici, ma perchè penso sia la cosa più importante che noi tutti dobbiamo cercare di
fare per rendere il mondo un posto migliore.

Ancona, November 2019
Paolo Santini

115

	Hardcover
	Softcover
	Abstract
	Introduction
	Main contributions of the thesis

	Preliminaries
	Notation
	Public key cryptography
	Coding theory
	Hard problems from the coding theory

	McEliece and Niederreiter cryptosystems based on algebraic codes
	Modern solutions based on Goppa codes
	Information Set Decoding
	Quantum ISD

	Cryptosystems based on Generalized Reed-Solomon Codes
	The BBCRS scheme

	A variant of the BBCRS scheme
	Security analysis
	Concrete instances and comparison with other schemes

	Bounds on the error correction of LDPC codes
	Decoding LDPC codes
	The error correction capability of a BF-decoder
	An improved bound on the error correction capability
	Error sets and failure probability for one BF iteration

	A general framework for codes with regular geometric structure
	Reproducible and quasi-reproducible codes
	Pseudo-rings induced by families of permutations
	Known examples of reproducible rings

	A general form for codes in reproducible form
	Reproducible codes from Householder matrices
	Reproducible codes from powers of a single function

	Code-based schemes from quasi-reproducible codes
	Defeating DOOM

	LEDAcrypt
	The secret key in LEDA
	LEDAkem
	LEDApkc
	Achieving IND-CCA2 security

	Q-decoder
	Choice of the Q-decoder decision thresholds
	Relations with QC-MDPC code-based systems

	Security analysis
	Attacks based on exhaustive key search
	Attacks based on Information Set Decoding
	Weak keys in LEDA cryptosystems

	Statistical attacks
	A general model for statistical attacks
	The GJS attack
	General statistical attacks

	Countering statistical attacks
	Ephemeral keys

	Long term keys

	Conclusions
	Acknowledgments

