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Abstract

Numerical and experimental studies of a magnetic levitation harvester are pre-

sented in the paper. The idea is based on the motion of permanent cylinder

magnet in a coil exploited for energy harvesting. The novel model is based on

a new definition of the coupling coefficient (inductive coefficient) which relates

mechanical and an electrical components. The performed static and dynamics

experimental tests show that this coefficient is a nonlinear function of the mag-

net position, and highly depends on the magnet coordinate in the coil, in such

a way that the maximum energy is obtained in a coil ends. The comparison

between classical – fixed value model – and novel nonlinear model of the induc-

tive coefficient is presented for selected cases. The most essential differences are

presented.

Keywords: magnetic levitation, energy harvesting, coupling

coefficient, experimental identification.

1. Introduction

Energy harvesting (EH), also called energy scavenging (ES), is the process of

transforming ambient energy into useful electrical energy. In the last decade, en-

ergy harvesting has received growing attention. This is due to the power reduced
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requirement of small electronic devices and wireless transmission. Usually, the5

energy is harvested from ambient resources such as: wind, solar radiation, ther-

mal resources, and vibrations (motions). Among these resources, the vibration

energy harvesters are widely used, because vibrations are the most attractive

source for energy recovery purposes. The vibrational energy harvester systems

require a mechanism that transfers a mechanical energy into the electrical one.10

The most popular method of transferring energy in vibration harvesters are:

electromagnetic, piezoelectric, electrostatic and magnetostrictive. The electro-

magnetic energy harvesters (EMEHs) are based on the Faradays law of electro-

magnetic induction, and then usually the device has coil-magnet components

[1]. The piezoelectric energy harvesters (PEHs) use mechanical strain to energy15

recovery [2]. The electrostatic energy harvesters (ESEHs) use capacitors to

transfer mechanical into the electrical energy [3]. The magnetostrictive energy

harvesting (MEH) is based on the vibration which change magnetization and on

a magnetostrictive material that produces a magnetic field while deformed [4].

Generally, electromagnetic, electrostatic and piezoelectric are the three common20

vibration energy harvesting mechanisms.

The magnetic induction harvester is one of the earliest applied systems for

energy harvesting and this type of device is studied in this work. These har-

vesters can be classified on the base of the mechanism they exploit to achieve a

relative velocity between the coil and the magnet, linear [5] or rotational motion25

[6, 7]. The recovered energy depends on the motion between the coil and magnet,

which changes the magnetic flux and then voltage is induced. The magnitude of

harvested energy can range up to kilowatts, although this highly dependents on

the size of the device [8]. A cantilever beam energy harvester with a magnetic

restoration forces used to create required behavior is presented in [9]. The high30

energy was applied to extend a bandwidth of the device. Joyce [10] proposed an

electromagnetic energy harvester consisting of a magnet mounted inside a tube

with coils. This system is dedicated to monitor the structural health of large

wind turbines. The rotating turbine blades caused the magnet sliding along the

tube and the voltage – required to structural health monitoring system – was35
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recovered.

One of the most interesting electromagnetic harvester, so called ’maglev’ is

based on the levitation phenomenon. The maglev harvesters are characterized

by their simplicity, lack of dampers and springs. Additionally, they ensure a

high reliability in work. Mann and Sims [11] proposed a simple magnetic lev-40

itation harvester. The suspension of this device consist of two outer magnets

which were orientated such that their poles were repelling the third levitated

middle magnet. They showed that the resulting magnetic restoring force could

be accurately described by a cubic nonlinearity spring characteristic, similar to

the hardening spring Duffing oscillator. However, they assumed the inductive45

coefficient, coupling mechanical and magneto-electrical fields, as fixed. The ana-

lytical and semi-analytical study of nonlinear magnetic levitation-based models

dedicated for energy harvesting is shown in papers [12, 13, 14]. However, again

the coupling coefficient was considered as constant.

In the paper present paper a new model for the coupling coefficient is pro-50

posed. It is identified on the basis of experimental quasi-static and dynamic

tests, and it describes the relationship between inductive coefficient and the

magnet’s position. This is in contrast to the literature where in many papers,

the coupling coefficient is assumed to be constant dependent on the construction

of the coil [11, 15, 16, 17, 18]. That approach may lead to inaccurate results.55

2. Harvester Maglev System

2.1. Motivation

The motivation of this our work is a research project dealing with the vibra-

tion mitigation and energy recovery. In the study, a special laboratory harvester-

absorber system based on magnetic levitation (maglev) phenomenon mounted60

in the vibration absorber (a pendulum) has been built. The photo of a labora-

tory rig is shown in Fig.1. The system allows to simultaneously reduce vibration

and recover the energy. More information about this apparatus can be found in

[19].
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Figure 1: The experimental harvester-absorber system.

The electromagnetic induction of a voltage in a coil caused by motion of the65

magnet is one of fundamental problems in physical phenomena. Therefore, the

proper description of the coupling inductive coefficient is a crucial problem from

harvesting point of view. Usually, in the literature the coupling of the electro-

magnetic and the mechanical systems are described as a constant coefficient.

However, if the fixed value of the coefficient is not properly identified, especially70

for large vibrations of the magnet, this simplification can lead to imprecise

results. Therefore, the identification of a function which describes the coupling

coefficient, based on static and dynamics experimental tests, is the main goal of

this paper.

2.2. Description of maglev element75

The maglev component of the harvester is a crucial element of the labora-

tory rig, presented in Fig.1. Therefore, in this paper, only the maglev system

is studied. The magnetic levitation harvester consists of a cylindrical non-

magnetic tube (made of plexiglass material) with two cylindrical permanent
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magnets (top and bottom) mounted inside tube on ends. The third magnet80

(moving) oscillates in the tube between the fixed magnets and experiences a

levitation force coming from each pair of magnets having magnetic poles ori-

ented to repel i.e. S − S, N −N). The coil is formed by winding wire around

the outer surface of the tube. To eliminate the air compressibility problem,

special holes on the surface tube were made. The photo of the maglev system85

is shown in Fig. 2(a), while the scheme of the electromagnetic harvester device

is presented in Fig.2(b). The moving magnet can oscillate under the excitation

of the base vibrations y(t) and then the electromotive forces (EMF) in a coil

mounted on the tube is induced.

Figure 2: The maglev system: a real view (a) and scheme (b).

The magnetic restoring force characteristic is described with help of the90

simple static displacement test. The magnetic levitation force is calibrated by

measurement the displacement between the moving and the bottom magnets

(distance db, in Fig. 2(b)) for various masses of the moving magnet. A series

of experimental measurements is presented in Fig. 3(a) where the force against

a separation distance between the magnets db is plotted. The characteristic95

from Fig. 3(a) is then transformed into the x coordinate which represents the
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distance of the moving magnet from the static equilibrium point (Fig.3(b)).

Figure 3: The levitation force plotted (a) as a static function of the separation distance be-

tween the moving and bottom magnet and (b) a force-displacement model magnetic suspension

(a hard Duffing characteristic). Distance between permanent magnets 40mm.

On the basis of this result a model of the complete magnetic suspension is

developed. The total restoring force is calculated as sum of two restoring forces.

Because the top and bottom magnets are the same, we assume the levitation100

forces between the top and moving magnet as well bottom and moving magnet

are identical. The comparison between the experiment results and the adopted

force-displacement model is shown in Fig.3(b). The mathematical model has a

form of monostable hard Duffing characteristics kx + k1x
3, Fig.3(b). For the

tested experimental setup the stiffness coefficients take values: k = 35 [N/m],105

k1 = 180000[N/m3]. A similar suspension model of the magnetic levitation effect

is proposed by Mann and Sims [11]. Note, that the suspension parameters of the

model highly depends on the distance between permanent magnets. Therefore,

a change of this distance causes essential change in the characteristic.

2.3. Electromechanical harvester110

The electromechanical model of the considered harvester is presented in

Fig.4(a). The levitation restoring force (represented by a spring) is modelled

by hard Duffing characteristics with linear k and non-linear k1 stiffness compo-

nents. Mass of the moving magnet is defined as m, while the mechanical viscous

damping is defined by the c coefficient. The displacement of the middle magnet115
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measured from its static equilibrium position is represented by coordinate x(t),

whereas the displacement of the base y(t) is the excitation, which in the present

work is assumed to be harmonic, y(t) = A sin(ωt).

Figure 4: The electromechanical harvester model (a) and electrical circuit (b).

The electrical circuit of the harvester is shown in Fig.4(b). It consists of a coil

with inductance Lc and resistance Rc. The coil is connected to the load resistor120

(Rl). This resistance can be varied in a range of 0− 10kΩ. The sum of the coil

and load resistances is named as total resistance (Rt). During oscillations of the

moving magnet, the current i and voltage U are induced.

Introducing of the relative magnet’s displacement z(t) = x(t) − y(t), the

governing equations of motion for this system have the form (g is the gravity125

field, assumed to act in the −x direction).

mz̈ + cż + kz + k1z
3 + α(z)i+mg = −mÿ, (1)

Lci̇+Rti = α(z)ż. (2)

The parameter α(z) is the coupling coefficient which is the crucial point of the

model and is described in the next section. Usually, in the literature, these equa-

tions are simplified. For vibrations with a small amplitude, the non-linearity130

defined by coefficients k1 is neglected, the parameter α is assumed as constant,

and the harvester is treated as linear[20].
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2.4. Coupling coefficient

A proper definition of the coupling coefficient is a crucial problem from

modelling point of view. This parameter characterizes how the induced voltage135

in the coil is related to the velocity of the magnet. In the literature, multiple

approaches in order to determine the coupling term can be found. The most

common method have treated the magnetic flux density as uniform over the

coil range of motion (average) [16, 17, 18, 21, 22]. This assumption leads to

a coupling factor which has a fixed value, and strongly simplifies the analysis140

of the energy harvester. The second method is an experimental determination

of α as a function of the magnet’s position. Usually, this approach is applied

for the complicated harvesters [23] but again a constant coupling coefficient is

sought. In some papers the coupling factor has been evaluated using the finite

element approach [24],[25].145

The coupling coefficient α highly depends on the magnet’s position. In order

to determine it experimentally the Eq.(2) is modified into the form:

α(z) =
Lci̇ +Rti

ż
. (3)

The signals i and ż were measured during the experiment tests. The time

derivative i̇ was numerically calculated, as the first derivative of signal i. In

α estimation, the coil inductance Lc parameter was included. However, the150

influence of the inductance is much smaller then resistance Rt which is about

1600 times larger.

Figure 5 shows a plot of the quasi-static (red) and the dynamic (blue) tests

of the coupling coefficient. The static test has been performed with the con-

stant velocity equals v = 0.016 [m/s] in positive and then negative directions. It155

means that the magnet was moved by a triangular signal. The maximal value

of α is reached close to the ends of the coil (α ≈ 60 [Vs/m], for x = −0.02 [m]

and x = 0.02 [m]).

In the dynamic test, the magnet was exited by the periodic signal with velocity

defined by: v(t) = vmax sin(2πft), where f = 0.28 [Hz] is the frequency and the160

maximum speed is vmax = 0.195 [m/s]. This characteristic (blue line in Fig.5)
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Figure 5: The coupling coefficient determined by the quasi-static test with velocity v =

0.016 [m/s] (red line) and by the dynamic test with vmax = 0.195 [m/s] (blue line).
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Figure 6: The proposed polynomial model (red) compared with the dynamic coupling coeffi-

cient (blue).

shows that maximal value of α appears for z = −0.018 [m] and z = 0.018 [m],

and equals α ≈ 80 [Vs/m].

It is worth to underline that both the static and the dynamic tests provide the

same qualitative behaviour for the curve α(z). The differences are only quan-165

titative, and come from the dynamics of the electrical circuit, due to dynamic

changes of the periodically varied signal. Note, that both tests were performed

for y(t) = 0, therefore z(t) = x(t). The static and dynamic tests have been per-
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formed for selected velocity of the magnet, being within the range of the velocity

occurring in the laboratory system shown in Fig. 1. For these parameters, the170

coil inductance and the total resistance practically do not influence the model

coupling coefficient.

As we have seen, α is far from constant, but indeed it is a nonlinear function

of the magnet position. The experimental curve α(z) has a complex expression.

Thus, for its use in the model equations (1) and (2), a polynomial approximation175

is proposed, which is easier to be implemented. It is determined by a least

squares curve-fitting technique, and has a form of odd polynomial function of

thirteenth degree

α(z) = a1z + a2z
3 + a3z

5 + a4z
7 + a5z

9 + a6z
11 + a7z

13. (4)

The parameters of this polynomial are: a1 = 8.1594e+03[Vs/m2], a2 = −1.5686e+

07[Vs/m4], a3 = 1.2748e+10[Vs/m6], a4 = −5.4551e+12[Vs/m8], a5 = 1.2841e+180

15 [Vs/m10], a6 = −1.5719e + 17 [Vs/m12], a7 = 7.8157e + 18 [Vs/m14]. This

experimentally-based definition of the coupling coefficient is presented in Fig. 6

and it is used for the further numerical analysis and comparison with the exist-

ing models.

The model coupling coefficient has been determined for harmonic excitation,185

which allows to work the harvester together with moving harmonically a pendulum-

like dynamic absorber.

3. Numerical Analysis

The comparison of the new proposed polynomial model with classical ap-

proach is the main goal of this analysis. The values of parameters are taken190

from the experimental rig: m = 0.098[kg], k = 35[N/m], k1 = 180000[N/m3], c =

0.054 [Ns/m], Lc = 1.46 [H], Rt = 2300 [Ω] and A = 0.01 [m]. All calculations

are performed with Auto07p [26], for the continuation method, and in Matlab

2015, for direct numerical simulations.

The resonance curves for the magnet’s displacement (z), the velocity (ż)195

as well as the recovered current (i) versus frequency of excitation ω are shown
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in Figs.7−9 respectively. The numerical calculation have been performed for

varying frequency ω and for fixed displacement amplitude A = 0.01 [m], so that

the amplitude of excitation force which is mAω2, changes along the resonance

curves.200

The figures on the left side Figs. 7(a)-9(a) present results obtained for the clas-

sical approach with constant coupling coefficient, while figures on the right side

Figs. 7(b)-9(b) show results for the proposed polynomial model (red colour).

Three different values of α have been selected, based on Fig.6. In order to

compare results we decided to choose small, average and large value of α from205

function determined in Fig.6. The black line corresponds to the case where the

fixed coupling coefficient has smaller value and equals to α = 5[Vs/m], the green

line to α = 30 [Vs/m] and the blue line to α = 60 [Vs/m].

Figure 7: Resonance curves of the magnet’s displacement (z), for the fixed (a) and the poly-

nomial (b) coupling coefficient model.

The unstable solutions are marked by dash-dotted lines, while the solid lines

denote the stable solutions. The points labelled as SN and PD denote the210

saddle–node and period doubling bifurcations, respectively. For the small value

of α the resonance curves obtained from the classical and proposed model are

different. Note, that resonance curves for α = 5 [Vs/m] and α = 30 [Vs/m] are

very similar, with almost overlapped curves. Near, the frequency ω = 19 [rad/s]

the first resonance peak is observed. Higher value of α and the proposed poly-215

nomial model of α reduced the resonance peak. This denotes, that α plays the
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Figure 8: Resonance curves of the magnet’s velocity (ż), for fixed (a) and polynomial (b)

coupling coefficient.

Figure 9: Resonance curves of the recovered current, for fixed (a) and polynomial (b) coupling

coefficient.

role of electrical damping. Additionally, for the large vale of α, the obtained

resonance curves are similar to the new model (see α = 60 [Vs/m] in Fig.6(a)

and Fig.6(b)). This means that for large α value, the classical model is close

to the improved description of the coupling coefficient. The same situation is220

observed for the magnet velocity resonance curve (Fig.7(a)-(b)).

Interestingly, in the range ω ≈ 58− 82 [rad/s] the loss of stability by the period

doubling bifurcation is observed and motion changes period from T to 2T . In

this region, the maximal current differs essentially while comparing both models.

In the proposed model the current can be slightly larger or smaller, depending225
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on excitation frequency, Fig.9(a) and (b).

Two parameters amplitude–frequency plots (A,ω) presented in Fig.10 show re-

gion in which motion with double period of the original orbit exist. In case of

the polynomial model this region is slightly different (Fig.10(b)).
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Figure 10: Two parameters space plot shows solution with double period, for fixed α =

60 [Vs/m] (a), and the polynomial model’s coupling coefficient (b).

In order to have a confirmation of the results obtained by the continuation230

method, the brute force bifurcation diagrams are determined by direct numerical

integrations, using the ”following attractor method”, namely the initial condi-

tion for a parameter value is the final condition for the previous value of the

parameter. The first iteration starts from [z, ż, i] = [0, 0, 0].

For small value of α = 5 [Vs/m] the increment of ω shows periodic solution with235

period T equal to the excitation period, see Fig.11. But, for the decreasing

parameter the solution changes its period from T to 2T for ω ≈ 75÷ 90 [rad/s].

Near the natural frequency ω = 19[rad/s] the first resonance peak appears which

agrees with the continuation method (see Fig.7(a)).

Similar situation is observed for α = 30 [Vs/m] in Fig.12. In this case however,240

the period 1 solution is observed for increasing ω (blue line), while for decreasing

(black line), starting from ω = 100 [rad/s], the periodic solution with period T ,

goes to period doubling 2T , and finally to chaotic motion (for ω ≈ 65÷80[rad/s],

black area in Fig.12). For frequency smaller then 65 [rad/s], the solution jumps

to periodic and the difference between two integrations is not observed.245

13



0 20 40 60 80 100

−0.06

−0.04

−0.02

0

0.02

ω [rad/s]

z 
[m

]

Figure 11: Bifurcation diagram, the magnet’s displacement vs. frequency of excitation, for

α = 5 [Vs/m], A = 0.01 [m]. The arrows show direction of numerical integration.

0 20 40 60 80 100

−0.06

−0.04

−0.02

0

0.02

ω [rad/s]

z 
[m

]

Figure 12: Bifurcation diagram, the magnet’s displacement vs. frequency of excitation, for

α = 30 [Vs/m], A = 0.01 [m]. The arrows show direction of numerical integration.

The bifurcation diagrams in Fig.13 and Fig.14 are computed, respectively,

for larger value of α = 60 [Vs/m], and for the polynomial model. The results are

very similar between each other but essentially different from the former cases.

In both diagrams, the period 1 solution is independent of the direction of the

bifurcation parameter variation. Oscillations with double period 2T occurs for250

the frequency domain ω ≈ 60÷ 85. This result agrees with the those presented

in Figs.9 and 10.
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Figure 13: Bifurcation diagram, the magnet’s displacement vs. frequency of excitation, for

α = 60 [Vs/m], A = 0.01 [m]. The arrows show direction of numerical integration.
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Figure 14: Bifurcation diagram, the magnet’s displacement vs. frequency of excitation, for α

polynomial model, and A = 0.01 [m]. The arrows show direction of numerical integration.

The above analysis demonstrates clearly that models with constant coupling

parameter α has to be carefully calibrated in order to get realistic solutions. The

influence of the coupling coefficient α (for fixed α model) on harvested energy is255

shown in Fig.15. For small excitation frequency ω = 20 [rad/s] a single solution

exists (Fig.15(a)). The maximal recovered current equals about i = 2.3 [mA]

with plateau around α ≈ 30÷ 70 [Vs/m].

However, for the higher frequency ω = 70 [rad/s], the constant parameter
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Figure 15: Bifurcation diagrams, the coupling coefficient vs. recovered current (i), for ω =

20 [rad/s] (a) and ω = 70 [rad/s] (b).

model exhibits two independent solutions with different bifurcation scenarios260

(red and black branches in Fig.15(b)). Therefore, only one solution was ob-

served on the resonance curve presented in (Fig.9(a)), where the calculation was

performed by the branch continuation method. The red branch in Fig.15(b))

leads to chaos by a cascade of a period doubling bifurcation.

4. Conclusions and Remarks265

The paper presents numerical and experimental analysis of magnetic levi-

tation harvester. The determination of the coupling coefficient, the parameter

which couples mechanical and electrical parts, is analysed in detail. In order

to get a proper description of this parameter, static and dynamic tests have

been performed. On this basis the characteristics of the coupling coefficient270

versus magnet position were obtained. The detailed experimental tests allowed

determination the polynomial model which is a new proposal with respect to

the constant coefficient model commonly used in the literature.

The obtained results show, that fixed value of coupling coefficient can be ac-

cepted, provided that it is properly chosen. The improper estimation of this275

parameter may lead to artificial solutions including chaotic motion which do

not exists in the real system.
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The obtained results show that for the tested device the recovered power reaches

about three watts. It is expected that in larger structures the harvested energy

will get higher amounts.280

The next step in this research will be the development of the analytical

method which allows a proper selection the most appropriate fixed value of the

coupling coefficient.
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