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A first parallel programming approach in basins of attraction
computation

P. Belardinellia,∗, S. Lencia

aDICEA, Polytechnic University of Marche, 60131 Ancona, Italy

Abstract

The paper focuses on the development of a numerical code for the computation of basins of attrac-

tion by using the parallel programming. Two different approaches based on the massage passing

interface (MPI) standard are presented; the performance analysis presented encourages to use a

massive communication between nodes only for a few-cores architecture. The critical issues aris-

ing from the study of a generic dynamical system are discussed while the computation of basins is

performed on a benchmark system described by the Duffing’s equation. We paid attention at the

optimization of the computing time as well as the work time load on each node in order to develop

a performing and portable code. For the presented codes, both the scalability with an implemen-

tation on a professional cluster and the capabilities of the parallelism in the elaborations of basins

with a large set of initial conditions have been tested.
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1. Introduction and motivations

The analysis of nonlinear systems of differential equations is a common task for scientists and

engineers of many disciplines, often with the aim to look more carefully at complicated phenomena

in their own fields [1]. In particular the study of dynamic attractors and of their basins of attraction

represents a key point to get an overall description of the problem and to predict the behaviour in

several conditions [2, 3, 4].

Due to the large computational costs, several attempts have been done to improve the elaboration

techniques for building basins of attraction. The full processing of all trajectories by means of a

long-time numerical integrations is a widely applied algorithm; beside, other routines have been

developed to reduce the computational effort. Numerous modifications of the cell-to-cell mapping

method introduced by Hsu in [5, 6] have been proposed in order to avoid as much as possible long-

time integrations. Recently, Dick [7] has proposed a parallelized version of the multi-degrees-of-

freedom cell mapping able to exploit the parallel threads in multicores modern computers. An

application of this method has been tested for a dynamical integrity analysis in a coupled linear

oscillator and nonlinear absorber system [8].

Here we undertake the computation of basins of attraction, by addressing first the computation

itself, looking to develop an efficient algorithm to perform the whole calculation of the trajecto-

ries. The powerful tool we want to use, by taking a conscious look at the applicability and at the

performances, is the parallel programming in the framework of the high performance computing

(HPC). Unfortunately, the step from an “old style” programming to a parallel writing of a code,

represents a big deal and it means often to rewrite completely existing software. A deep motivation

to drastically switch the programs constructs, especially in large scale problems, is represented by

the evolution of the calculators architecture. From the early 1970s, we have assisted to an ever in-

creasing performance improvement of computers and computer graphics with a growing feasibility

to have access at these resources. The empirical law that summarize the trend (directly correlated

to the number of transistors in microprocessors) was elaborated in 1965 by Moore [9]. Recently,

due to both technological and economic limit, the trend is not respected any more, thus the core fre-

quency and performance will not grow following the Moore’s law any longer. The roadmap of chip

manufactures is now to reinterpret the Moore’s law and to increase the number of cores in order to

maintain the architectures evolution. In past years a comfortable way to increase the performance

of software was simply to wait the newest and powerful processor in the market: no lines in the
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code were modified and the code was speeding-up [10]. Today the hardware evolution imposes a

different approach to get better performance and the programming becomes the key [11]. Since the

parallel programming is strictly correlated to the hardware, it is a little bit involved: message pass-

ing, threads, use of accelerators and GPU are examples of techniques that must be implemented

to take advantage of the newer machines. In this work we exploit the MPI programming interface

[12] to develop a parallel code for the computation of basins of attraction. We present two schemes

of implementation based on a real-time synchronization between the computing nodes or with a

posteriori processing.

As a benchmark of our codes we chose the Duffing equation since it can describe many nonlinear

systems, and it can provide an approximate description of many others [13, 14, 15]. It is also an

easy benchmark with large amount of results; for example, a study of this equation focused on the

basins of attraction and dynamical integrity can be found in [16].

The paper is organized as follows: in section 2, after an overview on dynamical systems, we

discuss the method to apply the parallel programming to the basins computation. The results

carried out on the benchmark model are shown in section 3, while we state our conclusions in

section 4 that round up the paper.

2. Proposed approaches

2.1. Dynamical systems

In the following we briefly introduce some definitions and concepts in order to clearly present

the discussion.

We consider a non-autonomous initial value problem (henceforth IVP) given by: ẏ = f(t, y)

y (t0) = y0

(1)

This is a system of ordinary differential equations in time t with f : Ψ ⊂ R× Rn → Rn, where n

is the spatial dimension of the problem and dot stands for the time derivative. The equation must

satisfy the (1)2 that represents the initial condition (t0, y0) in the domain of f. It is also convenient

to introduce the evolution function (or flux) of the dynamical system

Φ : [t0, tmax]×Ψ→ Rn, (2)
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being tmax the maximal time for which the IVP exists. The flux Φ (·, t0, y0) defines a solution

curve (or trajectory, or orbit) [17], and it is a solution for the Cauchy problem (1): Φ̇ = f(t,Φ (t, t0, y0))

Φ (t0, t0, y0) = y0

. (3)

The flux allows to define the attracting set: A, a closed subset of Rn, is an attracting set if ∃ a

neighbourhood V of A such that ∀y ∈ V ⇒ Φ (t, t0, y) ∈ V and ∩Φ (t, t0, y) = A, ∀t ≥ t0. The

domain of attraction (basin of attraction) of an attracting set A is defined as the
⋃

t≤0 Φ (t, t0, y),

∀y ∈ V [18]. The operative way to perform the computation of a basin of attraction is to evolve,

forward in time and starting from a specific time t0, the set of all the initial conditions, by looking

for their attracting sets.

2.2. The discretized system

In previous subsection we provided mathematical definitions, that involved sets or subsets of Rn.

To permits practical implementation, it is obvious that we have to simplify, namely to discretize

both in time and in space, the problem.

For a generic non-periodic system, the number of the elaborations is determinated by the spatial

dimension of the initial conditions. This set is discretized by means of a number of cells of fixed

size, and the whole (hyper)volume of each cell refers to an unique initial condition commonly that

in its centroid. Clearly the density of the cells determines the resolution with which the problem is

approximated, and we have to take care of the competition between the precision (that requires a

large partition sets) and the computational cost, in terms of both time and resources.

The discretization process introduces implicitly errors. From the point of view of the starting

conditions, all the points belonging to a specific cell are assimilated to a unique initial condition

and consequently the result of its time integration will be only one. But really do all the points

within the cell belong at the same basins? In the compact internal part of a basin generally this

does not entail any kind of problems, but the boundaries and the fractal parts are largely affected

by the size of the domain discretization. By reducing the cell size, the error in the membership

on a wrong basin can be reduced, but never eliminated. Furthermore, also the identification of the

attractors depends on the grid, although to a minor extent. Since it is nothing else that a set of

points with specific properties, directly follows, from the size of the cells related to these points, a

sort on uncertain on the attractor determinations. From the one side, a very filled domain, helps to
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obtain better results, but, from the other side, this can overcharge the available resources, especially

for a large sets of initial conditions and for high dimension systems.

Finally, also the evolution in time, performed with a time integration, requires a steps subdivision.

The timing path from the starting t0 up to the attractor can require numerous steps especially for

chaotic attractor [19]. The previous facts, even more, address the problem approach towards the

parallel computing.

2.3. Code architecture

Computing tens, hundreds, thousands or millions of times almost the same evolving system, it

may seem for its own nature a parallelizable process. This is only in part true since the attractors

belong to the system itself and, in some way, must be shared between all the several computations.

The concept in which we have organized the code is quite simple and sketched in Figure 1. There

are three main characters involved in the process: the mere computation is done by the comput-

ing tasks, a master process denominated master of the initial conditions distributes the work and

collects the results,; finally, another master, namely the master of the attractors, picks up the in-

formation about the attractors and acts a sort of coherence operation. Ideally being the number

of computing task equal to the number of initial states to be investigated, we could collect all the

needed information almost at the same time. Several operating problems inhibits a pure paral-

lelization. First of all we remark that up to here we have spoken in terms of processes and tasks but

not of cores or nodes; the software should, somehow, make the most with the hardware capabili-

ties, by exploiting all its characteristics. This permits, by establishing a concurrency of processes,

to avoid long queues of tasks. One could think that the management of the computational tasks

is redundant since we could assign in blind mode to the “workers” a slice of the initial conditions

set. But several factors lead to a different time in each computation, e.g. the discover of a new

attractor, the match with an old attractor, a diverging orbit, and so on, thus one further issue is the

balancing of work. We have also to keep in mind that the MPI implementation generates a spread

of processes well defined in the code initialization but there are some others numerous unknown

processes defined by the operating system that can be scheduled within the running of our software

and that can delay or modify the operation order.

The master of the initial conditions (from here called P0) plays the role of a scheduler rules

probing the status of the nodes and distributing the initial conditions to elaborate. However the

first dispatch of works does not require a status query since the slave processes are free. The P0
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acts preliminary a discretization of the range of initial conditions to be elaborated, knowing both

the system and the grid dimensions.

task0 task1 task2 ... task n-2 task n-1

computational tasks
master

i.c.
master

attractors

Figure 1: Organization of the tasks for a multi-cores environments.

Each available worker, in its free state, is waiting instructions from the master while at the end

of a computation declares its status and communicates the result. If all the initial conditions have

been sent to the workers, further requests of work are killed in order to permit the message passing

finalization. Since the memory of each process is private, and the performance of a remote memory

access defined in the standard MPI-2 requires too many barriers and large windows of reading, we

have to exchange information trying to optimize the time. In view of the above, the communica-

tion is based on nonblocking send (MPI Isend) and blocking receive (MPI Recv), includind a test

function on the slaves prior to reuse variables under update [20]. We look for to scale the software

up to a large numbers of cores, thus we have decided to do not use any broadcasting and gathering

collective functions to avoid implicit barriers and interruptions due to hardware problem. The only

synchronous constrain is thus a wait for the actual receipt by the master of the result.

As soon as an initial conditions is received by a computation tasks (P1, P2, ... Pn-2), a routine for

ordinary differential equations based on a C library [21], integrates ahead in time the system.

Within the process the method used to compute the trajectory is based on [22], but since the

memory of each process cannot be shared, the processes are completely independent. The classical

optimization for loops, the hierarchical use of the memory and the common compiling optimization

flags have been adopted, as usual in an high performance computing.

As previously discussed, the MPI is not deterministic in time and however the discovery of

attractors cannot be a priori assigned or scheduled. We have to deal with the redundant discovery

of attractors in similar or dissimilar instants of time. Diverging orbits can be considered converging

towards the same infinite attractor and the information can be sent directly to the master without

problems.

6



Sharing the information about the attractors represent one of key points of the software. Two

variants of the code have been tested to handle with this. In both codes the master of attractors (P

n-1) is the chief in charge of to collect and to manage the information. The two codes differ in

the way they gather and assembly the data in order to finally obtain one single coherent basins. A

functional scheme for the code “A” is shown in Figure 2. Process P n-1 collects the attractors by

means of I/O operations on file avoiding from the one side the bottleneck in the case of synchronous

discovery, and from the other a barrier for the computing tasks. The weaknesses are represented

by: i) The synchronization is done only at the end of the whole process introducing a further

operation. ii) There are I/O operations commonly slowly in a standard network interconnecting

nodes.
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attractors
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Figure 2: Schematic functional drawing for the code “A”. Each circle represents a process, while hatched zones are

I/O operations.

The code “B” follows the scheme of Figure 3. The synchronization happens at each new dis-

covery of an attractor. The process P n-1 merges in a database all the information and further

performing an update of all the computing nodes. Drawbacks of this approach are: i) The database

update is quite slow and a pure serial operation. ii) The update operations break the normal com-

puting work performed by the slaves. iii) A coherence between P0 and P n-1 is still mandatory to
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fix the results received prior a full update. iv) The traffic is larger than that of the code “A”. v) The

computational time depends on the time instants in which an attractor is discovered. The idea of

the code “B” is try to instruct all computing nodes as soon as possible and avoid further communi-

cation with the attractors database. By doing this all the remaining computations are coherent and

can be sent directly as a final result.
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Figure 3: Schematic functional drawing for the code “B”. Each circle represents a process.

3. Results

3.1. Benchmark model

We test the developed software using the Duffing equation [13] as a benchmark:

ÿ + 2ζẏ − y + γy3 = F cos Ωt. (4)

Since the aim of the paper is not a thorough investigation of the eq. (4), we fix all the parameters

(see Tab. 1).
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parameter value description

ζ 0.025 Damping ratio

γ 1 Nonlinear stiffness

F 0.065 Exitation amplitude

Ω 1.15 Exitation (circular) frequency

Table 1: Parameters for the Duffing’s equation

Equation (4) is not in the form of eq. (1)1, but it can be easily written as a system of two first

order equations (n = 2 and y = {y1, y2}T ): ẏ1 = y2

ẏ2 = −2ζy2 + y1 − γy3
1 + F cos Ωt

(5)

where y1,2 are respectively the displacement and the velocity of the system. In Fig. 4 we show the

basins of attractions for the system (4) obtained with our parallel code “A”. The figure, by means

of a sequence of images, illustrates the variation of the basins with respect to the starting time

t0. Each color represents a basins of attraction of a specific attractor. Since the periodicity of the

benchmark problem, the basins, after a period 2π, are coincident.
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Figure 4: Basins of attraction for the system (4) with y1 ∈ [−1.4, 1.4] , y2 ∈ [−1, 1]. Initial time varying with steps of

2π/10. The spatial grid is composed by 2000× 2000 points.

t0 = 0

t0 = 0.628

t0 = 1.256

t0 = 1.884

t0 = 2.512

t0 = 3.141

t0 = 3.768

t0 = 4.396

t0 = 5.024

t0 = 5.652

t0 = 6.283

3.2. Code scalability and performances

In this part of the paper we report the results obtained running both the codes on the cluster Eurora

of CINECA. As described in the introduction, the performances of a parallel code are strictly

correlated with its hardware implementation. For this reason we briefly describe the machine

architectures to better understand and interpret the results. The cluster is not an homogeneous

machine composed by 64 compute nodes (32 slower nodes with a 2 eight-core Intel(R) Xeon(R)

CPU E5-2658 @ 2.10GHz and 32 faster nodes with 2 eight-core Intel(R) Xeon(R) CPU E5-2687W

@ 3.10GHz) and 128 accelerators (64 nVIDIA Tesla K20 (Kepler) + 64 Intel Xeon Phi (MIC)) not

used by the software. Finally the network interface is an high-performance network Qlogic QDR

(40Gb/s) Infiniband.

Since the architecture presents faster and less performing CPU, the results must be interpreted

knowing which cores are actual involved in the computation. In spite of the prevision the execu-

tion on a mixed architecture does not mean a great lose of performance since we have to take into

account also the network and the communication time. However, to carried out relevant statistical
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data, we impose the constrain of a maximum of 15% of slow cores and mediate the results on three

executions. Fig. 5 shows the execution time of the benchmark model elaborated with the code “A”

using three discretization grids. Increasing the number of cores the computational time decreases.

We observe that the slope is reducing progressively moving towards higher number of cores, pri-

marily due to the rise of time spent on communications. The behaviour is similar for all the grid

dimensions but we get a greater advantage with a larger grid dimensions. A comparisons between

the two kinds of codes described in section 2 is illustrated in Fig. 6 with the same arrangement of

Fig. 5. The simulations lead to a different behaviour without an ever decrescent trend as happens

with code “A”. The curves present an U-shape with a minimum. Increasing the number of cores

we have first an increasing of the performance but then we assist to worst performances. This

trend is due to the updating of all the nodes with the attractors informations that, for large amount

of computing nodes, became too heavy. The position of the minimum, as expected, is related to

the problem dimension and indicates the saturation of the communication with respect to the work

load. For a few-cores application the performance of code “B” are better than code “A”, and in-

creasing the dimension of the grid the advantage became more visible, e.g. up to about 30 cores

for a dimensions of 30002 the code “B” performs the computation of the basin in less time.
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Figure 5: Computational time as function of the number of cores for our parallel code “A” using three different

discretization grids.
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Figure 6: Computational time as function of the number of cores for our parallel code “B” (black lines) using three

different discretization grids. To facilitate the comparison, the results of Fig. 5 are also reported with light gray lines.

The heterogeneousity of Eurora machine is an excellent test to verify the time execution balance

on the nodes. Ideally, an equal distribution of the computing work (for a 2D spatial dimension) is

given by (m × n)/(c − 2) where m,n are the grid dimensions and c the total cores number. As

previously described in section 2, a fixed load distribution is not a good choice due to the several

unknowns within the time execution and the hardware characteristics and performances. Even by

using a perfect homogeneus machine an equal division lead to large delay and random execution

times. Figs. 7-8 plot load balance curves as function of the number of computational core utilized.

Performing the running of the code only on the slow nodes type, we report the degree of dispersion

of the load balance in Fig. 7. The upper and lower curves represents the minimum and maximum

values of the initial conditions elaborated, while the dotted central lines is the ideal balancing.

With a mixed structure of fast and slow computing nodes the execution is unbalanced: the fast

cores performs much more elaboration introducing skewness in the data (see Fig. 8). We underline

that also in this configuration the time balance is optimal, mostly thanks to the larger number of

job done by the faster cores. It justifies the choice of a master scheduler, and the resulting time

difference between the nodes is only of few second and only caused by the MPI initialization and

finalization. A very good time balancing is obtained, and this means exploiting at the maximum

all the cores. The results showing the timing in two different architecture settings are reported in
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Tab. 2. Even with a large discrepancy in the number of data elaborated (∆i.c.) the gap time ∆t

difference is less than one second. We can also note that the use of fast computational cores gives

a little improvement of the performances, and we obtain a reduction of the total elaboration time

(the sum of the time occurred for all the tasks), as well as a decrease of the the maximum time.
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cores

number

n. fast

computational

cores

n. slow

computational

cores

elaboration

time [sec]

time max

core [sec]

time min

core [sec]
∆t

ideal

balance

n. i.c.

max

n. i.c.

min
∆i.c.

128 0 126 61977 500.54 498.86 2.28 31746 32563 30527 2036

128 32 94 61432 496.67 493.6 3.07 31746 45373 26742 18631

Table 2: Report of the elaboration statistics for two hardware configurations. Discretized grid of 2000× 2000.

It is worth to note that in parallel code the mixing of communication operations and pure elab-

oration makes not so easy to establish the real advantage in the heterogeneous machine. In view

of above we report a bar chart (Fig. 9) showing how the computing time is distributed. The data

are obtained instrumenting the code by means of the software scalasca [23]. Since the procedure

introduces numerous instructions, it slows the software. For this reason the data have been col-

lected in different executions with respect to the simulation shown above and they were primarily

finalized to a code optimization.
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Figure 9: Bar chart showing the distribution of computing time for the code A. The inspected grid is 2000 × 2000.

The lower bar is a zoom of the USR part in the upper bar.

The MPI slice involves the messaging operations between nodes, the COM operations are in-

structions that interacts with others containing parallel constructs while the USR part of time con-

tains pure local operations. The figure refers to the code “A” for a grid of 2000 × 2000. The code

“B” reports almost the same results with a slight increasing of time percentage involving the MPI

operations: COM (1.1%), USR (84.3%) MPI (14.6%). A further zoom on the elaboration slice

shows that the major part of the time is involved in the step-by-step integrations demonstrating a

good efficiency of the software for the specific purpose.

4. Conclusions and further developments

We have investigated the application of parallel programming to the basins of attraction computa-

tion. Several issues related to the inner seriality of the problem have been addressed. Two parallel

codes and their proprieties have been presented. The results show that for large scale problems,

only for a low number of cores an instantaneous synchronism between the nodes is preferred to

increase the performance.

The scalability and portability of the code has been tested performing an optimal time balance

load on the computing nodes. We believe that our approach can be consider only the first step in

the application of parallel programming to the study of the dynamical system. The paper wants to

give some skill, rules and results to better deal with large scale problem characterized by a deep

seriality.
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The computational time as function of the number of cores shows that the problem takes advan-

tage by the use of the parallel programming and good performance can be obtained also in small

clusters.

The major drawback is represented by the wasting of memory due to the MPI copies of the

software and the use of sparse matrix is under evaluation.

Further implementation will regard the use of an hybrid MPI-openMP infrastructure; moreover

taking advantage of GPU and accelerators in the critical sections of the software the performance

can be improved. However with a so heterogeneous architecture, not always available, we will

introduce a complex and not full stable programming that requires the user an high knowledge of

the machine, thus we have to find a compromise between complexity and performance.
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