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ABSTRACT

Facility Management in complex buildings requires a large amount of informa-
tion that can be stored in a functional building model. A functional building
model is a structured representation of the building including information cru-
cial for specific functions such as safety, refurbishment actions or operation
and maintenance. Surveying this kind of data, such as technical properties of
building components, is a costly process. For this reason, an advanced tool for
engineering surveys is needed. Nowadays many studies still focus on capturing
geometry, overlooking the fact that many recurring actions are conducted on
assets inside buildings. Many systems proposed exploit highly accurate survey
techniques, like laser scanning or photogrammetry, but they need long post-
processing efforts to interpret data collected. Moreover, these operations are
not pursued on site leading to inaccuracies for the incorrect interpretation of
data. Under these circumstances, the possibility of performing the majority of
operation on-site would definitely make the process more efficient and it would
reduce errors. This research proposes a system for digitization exploiting man-
machine intelligence collaboration without post-processing. To this aim, Mixed
Reality with its capability of interacting with real world is applied giving an
environment for man-machine collaboration. The capability of Mixed Reality of
overlapping digital data to the real environment makes possible checking data
directly on site. For the object recognition process the system proposed in this
research make use of Neural Network. YOLO (You Only Look Once) Neural
Networks has been chosen for its speed and multiple detection features, ideal
for real-time applications. The system has been developed and its performance
evaluated for the detection of fire protection system components. First single
Neural Network have been tested reaching always more than 85%of F1 factor.
Then the whole embedded system proposed has been tested on site to prove its
feasibility in a real-world scenario.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

The building life cycle consists of several stages: planning and design, construc-
tion and commissioning, operation, maintenance and renewal, revitalization,
decommissioning and demolition (Fig. 1.1).
Life cycle is about taking a systematic approach to balancing maintenance costs,
operating costs and replacement/refurbishment costs over the life of the asset.
The concept is simple: life cycle costs include all costs associated with building
assets from acquisition to disposal/replacement of the building itself.
For practical reasons, a typical lifespan is often used, such as 30 years or 50
years, depending on the organization and the type of facilities. Initial costs of
a building represent only 10-20 percent of total cost, depending on the life span
of the building.

Figure 1.1: Building life cycle phases [Roper and Payant, 2014].

1



Chapter 1

Figure 1.2: Building life cycle cost.

The rest of the cost, an astounding 80-90 percent, is for maintenance, op-
erating and refurbishment/replacement of components over the building lifes-
pan. Ignoring this large proportion of costs means wasting money (Fig. 1.2)
[FMLink, 2018] [Devetakovic and Radojevic, 2007] [Pärn et al., 2017].
Some others estimates show that the life cycle cost is five to seven times higher
than the initial investment costs and three times the construction cost
[Lee et al., 2012] [Shen et al., 2010] [Akcamete and Akinci, 2010].
Referring to the third phase of building life cycle model it is the long duration
that creates an information discontinuity.
When professionals are questioned about critical issues related to operational
phase management more than 50% points out information accessibility
[Liu et al., 2016]. In existing contexts in facts, as the one related to the man-
agement phase, information is often not available or not updated, while data
coherent to the current situations are essential for every further process.
As a result, a building survey is usually necessary, either as an extension or val-
idation of existing building documentation or to provide new documentation.
An essential prerequisite for FM tasks within existing contexts, is reliable func-
tional data. A building survey which fulfils the needs of a planning task will
be described as a planning-oriented building survey. Despite the many dif-
ferent fields of application for building surveying and the resulting different
demands, the representation of the building geometry is typically the most in-
vestigated aspect of a building survey. However, without relationships to other
kind of information, geometric information on its own can provide only limited

2



Introduction

information for the planner [Donath and Thurow, 2007]. Functional models of
buildings instead are crucial for O&M, refurbishment and especially emergency
management.
Today, it is not uncommon for FM and Owner Organizations to have an in-
complete concept of equipment inventories: their importance, use and how to
maintain them. Equipment inventories affect facility safety, as well as how the
facility is operated, maintained and forecasted. They also have a direct impact
on facility costs. If the equipment inventory is not accurate, the facility and
the organization will not be very effective. It is important to understand that
accurate equipment inventories affect many different aspects of building man-
agement, including management of energy, projects, operations, maintenance,
and customer service, and, therefore, they affect the overall finances of an orga-
nization. The emergency response includes the ability to identify replacement
components, the ability to accurately scope the work to repair teams or contrac-
tors, and the ability to accurately estimate the project costs for management.
The foundation to an effective O&M strategy is a component-level information
inventory [Keady, 2013].
The Facility Management (FM) field relies heavily on getting usable data from
a Building Information Modelling (BIM) model to do anything meaningful
with it. All too often, this data are not really there or are inaccurate, as
the model has not been updated with any design changes made after the de-
sign phase and is therefore not an accurate model of the facility as it is built
[Kelly et al., 2013].Clearly the role of the digital building must be to inform and
interconnect the various activities that take place within these phases to enable
more appropriate and longer-term decisions to be taken at each stage. Current
BIM software is still mainly directed at the design phase where deployment is
approaching a critical mass. As companies increasingly understand how best
to exploit the software, and its capabilities continue to increase, rapid growth
in deployment is anticipated. As the BIM vendor’s focus starts to shift further
down the building life cycle, the capability of BIM software is already moving
from design into detailing and fabrication. Similarly, in the use phase BIM
aware applications are already starting to be used to extract information from
BIM models into facilities management software. For example, maintenance
staff could access all relevant information via mobile devices with potential to
also make use of augmented reality. More strategically, an anticipated develop-
ment is the onward updating of the BIM to capture building usage, performance
and maintenance information. Necessitating that an as-is model first be created
(frequently from scratch). The effort this involves is a substantial barrier to the
deployment of BIM software in the modify phase or the use phase of older build-
ings. The automatic acquisition of the existing geometry by laser scanning and
point cloud technologies will soon help, but additional information acquisition
tools will be needed to further reduce the barrier. [Watson, 2011].
Furthermore the process of information retrieval during surveys is trying to
reach automation, both in the capture of information and in the passage of the
latter to the BIM models.
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1.2 Facility Management: an overview

Facility Management is an umbrella term under which a wide range of property
and user related functions are brought together for the benefit of the organi-
zation and its employees as a whole. FM is holistic in nature, covering every-
thing from real estate and financial management to maintenance and cleaning
[Kelly et al., 2013].
According to the International Association of Facility Managers (IFMA), Facil-
ity Management is a profession that encompasses multiple disciplines to ensure
functionality of the built environment by integrating people, place, process and
technology [Devetakovic and Radojevic, 2007].
Therefore even if FM can comprise a huge variety of disciplines here there
are some of the most common [Nazionale, 2010] [Camera di Commercio, 2012]
[Roper and Payant, 2014]:

• buildings and infrastructures;

• utility services;

• environmental services;

• mobility services;

• technical scientific consulting services;

• ICT services;

• installation and maintenance of machinery, equipment and instruments;

• social health and educational assistance;

• administrative and legal services;

• logistic systems;

• cleaning services;

• procurement;

• waste disposal;

• financial services;

• security management;

• legal services.
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Referring to building, information is critical for supporting efficient and effec-
tive management and day-to-day operations. However, the FM sector continues
to grapple with information management, predominantly due to the peculiarity
of information and its fragmentation [Pärn et al., 2017].
To take decisions related to building maintenance usually requires a high-level
integration of various types of information generated by different persons at
different times, such as maintenance records, work orders, causes and knock-on
effects of failures, etc. In particular, while planning preventive maintenance
actions, information flow through at least three different analysis nodes, respec-
tively dealing with legal, technical and administrative aspects, each of which
producing outputs that are necessary or considerably influential to others in
order to correctly process and interpret data [Cesarotti et al., 2014].
Identifying the maintenance needs involves collecting and assimilating informa-
tion from:

• regular condition surveys of the building stock;

• pre-acquisition surveys prior to any building purchase;

• the existing planned maintenance programme (or profile);

• faults and repairs notified by the building users;

• feedback from works of servicing, repairs and improvements in progress;

• existing building and service records.

Keeping track of all these required information in maintenance management
requires careful handling to avoid errors, omissions or excessive bureaucracy
[RICS, 2009]. The rapid advances in information and communications technol-
ogy (ICT) in recent years have great significance in the management of mainte-
nance. Computer databases, either networked or stand-alone, are increasingly
used to store and manipulate such information [Roper and Payant, 2014]. For
those of us who have a large inventory of older buildings with building drawings
of uncertain validity, it is worthwhile to systematically have those buildings sur-
veyed, their systems categorized and their drawings brought up-to-date.
The automation of processes could be the right means for the enhancement of
efficiency. Thanks to the support given by machines to human tasks it is possi-
ble to save time and avoid errors. Anyway, the automation intended in this work
is not the one obtained erasing human intervention but supporting it with the
aid of tailor-made applications for the automation of some process operations
instead.
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1.3 Goal and Overview: surveying of assets com-
ponents

The absence of a fully comprehensive picture of the present condition of build-
ings, especially for huge buildings stocks owner, represents a crucial issue. The
current practice of asset management is paper-based consisting of manual in-
spection and proved to be time consuming, tedious, and prone to human error.
An inventory of a water supply system, for instance, refers to detailed asset
object list information of each facility and base information of each asset object
that constitute an overall water supply system, and a group of such informa-
tional data can be called an inventory database for a water supply system. The
collection of data for inventory became even more complex with the advent of
BIM methodology. There is, on one hand the wish of describing the world ex-
actly as it is, with all its details. On the other hand, every piece of information
that has to be collected and modelled brings its own cost with it. There are a
large number of components in a building and the data collection step consists
of creating an accurate building inventory list, with various attributes that de-
fine the characteristics of these assets useful for further operations. Among the
necessary data the location is fundamental but it is not the only one. There is
a relevant amount of data that refer to the putting into service of components
and to their functional data related to utilization. This information proves to be
crucial during emergencies but also for daily operations. This is even more true
when referring to complex buildings such as stations, airports, stadium, campus
where the controls checks for the effective functioning of all safety devices is of
primary importance. Not only this since in the aforementioned environments it
is vital to maintain all the functions during operations.
The actual efforts in gathering data leads to the search for new methods for
fastening this process. For this reason researches are focusing on automatic
techniques for surveying and digitization. Among these techniques there are

• Image recognition;

• Laser scanning/lidar;

• Photogrammetry.

Anyway the majority of the researches still focus on geometry data. This kind
of information is not the only one necessary to manage construction. Functional
data are in fact essential to know the interactions between building, and more
specifically between assets and their components without loosing the connection
with the spatial information. Very few studies investigate the possibilities for
latest technology to support asset components inventory and they still share
some drawbacks.
Current surveying techniques, even when using latest technologies, still comprise
in their workflow long post processing phase to interpret data collected on site.
Even when studies propose the use of powerful algorithms for semi-automatic
interpretation of data this operation is still performed on a desktop avoiding the
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possibility of concurrent verification of data collected. On-site operations hap-
pen before the post-processing phase so there is the impossibility of recovering
data if missed.

The structure of this thesis is following:

• Chapter 2 Literature Review - description of the latest surveying tech-
niques is provided, then the use of recent techniques such as Machine
Learning and Mixed Reality, especially referring to their potentialities in
the construction industry, are presented.

• Chapter 3 Methodology - in this chapter there is a deep description of all
the technologies used in this research and the processes for their imple-
mentation inside the system proposed.

• Chapter 4 Object Recognition System - chapter 4 explain all the different
components of the Object Recognition System and its development.

• Chapter 5 Proof of concept - this chapter presents all the test completed
both related to the exploitation of Neural Network for performing object
recognition and to the feasibility test of the whole system on-site.

• Chapter 6 Conclusions
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides background information on building surveying, Machine
Learning and Mixed Reality technologies.
With the growing diffusion of BIM approach towards building data, thanks also
to a boost provided by latest regulations issues principally in Europe, surveying
needs are changed. Geometric data only are not sufficient anymore especially
in complex buildings where the management of facilities requires a multidisci-
plinary knowledge.
The Architecture, Engineering, Construction and Owner-operated (AECO) sec-
tor is simultaneously living its transition to digitization of processes. The aim
of this revolution is to increase efficiency in the construction industry where this
parameter stopped its growth 40 years ago. With this perspective research is
focusing on trying to automatize procedures exploiting new digital tools. The
state of the art presented below finds its purpose in the analysis of current
surveying techniques that aspire towards automatization of data collection and
interpretation. This investigation allowed to highlight the opportunities for
improvement in this field. As a result of this study it came out that all the
proposed methods include post-processing phase to be performed separately.
Furthermore most of the time these procedures do not gather functional data
which are the most valuable for an efficient building management. Then the
value of collecting and checking data directly on site and real time is outlined.
Moreover according to FM needs identified through literature analyses one of
the requirement for a profitable BIM model is, besides the exact localization of
building components, the presence of technical properties and details useful for
operations.
The state of the art referring to the use of Machine Learning and Neural Network
(NN) summarizes some among the most interesting uses of image recognition in
engineering fields.
Finally, Mixed Reality have been evaluated for its power in displaying informa-
tion perfectly integrated in the real world. This technology applications showed
that it is suitable for supporting operation on site leading to a man-machine
efficient collaboration.
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2.2 Surveying

2.2.1 The widespread adoption of BIM paradigm in the
AEC industry

BIM is one of the most innovative and promising technologies that are making
way in the construction industry. As far as the definition of the term is con-
cerned there is no uniqueness; the one in the National Building dates back to
2008: "BIM is a process of programming, design, construction and maintenance
that uses an informative model of a building, new or existing, which contains
all the information concerning its entire life cycle ". The definition given here
places the emphasis on the object that is created within the BIM framework.
It is about a three-dimensional parametric model of the building, in which each
element has property features and relates to other elements in compliance with
certain rules.
The digital transition that is taking place in the construction industry repre-
sents a great opportunity to enhance the efficiency of this sector that shows a
stationary if not even decreasing trend of the productivity in the last twenty
years [McKinsey Global Institute, 2017].
In the UK and all over the world the race for better results in AECO industries
has been supported by the adoption of BIM. In Europe, the adoption of BIM
has increased considerably in the last five years as BIM implementation is seen
as extremely beneficial to AECO clients [Codinhoto et al., 2013]. If its use has
begun in the United States, lately thanks to the introduction of new regulations
that require the use of electronic data formats, BIM is becoming known also in
the Old World. To support productivity growth, regulators mandated the use
of BIM to build transparency and collaboration across the industry; they tried
to reshape regulations to support productivity, to create transparency on cost
across the construction industry and to publish performance data on contractors
(Fig. 2.1) [McKinsey Global Institute, 2017].
The European Parliament in 2014 enacted a regulation in this regard.
DIRECTIVE 2014/24/EU, article 22, subsection 4 says:
For public works contracts and design contests, Member States may require the
use of specific electronic tools, such as of building information electronic mod-
elling tools or similar. In such cases the contracting authorities shall offer al-
ternative means of access, as provided for in paragraph 5, until such time as
those tools become generally available within the meaning of the second sentence
of the first subparagraph of paragraph 1. [Dir. 24, 2014]
Italian regulation followed in 2016 with the D.M. n. 560 enacted on December
1st, 2017 [D.M. 560, 2017].
This regulation poses six progressive value threshold through which the Pub-
lic Administration will be forced in the application of BIM methodology. This
means that after 2025 all public contrancts in the construction industry will be
handled through with BIM.
Figure 2.1 shows also other European regulations that in last years pushed the
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construction industry towards the adoption of BIM approaches. This general-
ized push towards the application of BIM depends upon the expectations that
are attributed to this methodology. It is expected that, in the long run, BIM
could lead to save cost caused by inadeguate interoperability by offering owners
and operators a powerful means to retrieve information from a virtual model of
a building [Shirazi and Ashuri, 2018].
What is certainly true and to take into consideration is the fact that it is mi-
rage to consider that the introduction of BIM solely, without changes in the
organisation’s processes and overall culture, will enhance communication and
facilitate decision-making [Codinhoto et al., 2013].
Anyway the implementation of BIM within processes necessarily starts from
the correct development of the information model and capturing a building’s
intricate and expanding portfolio of data requirements is complex
[Pärn et al., 2017].
For existing buildings, it might be necessary just to update pre-existing BIM (if
it had been created during Design and Construction), or to create a BIM anew.
This second situation is revealed much more common in Europe, where 80 per-
cent of residential buildings are built before 1990, but also much more perilous
due to the inaccuracy of data that have to be gathered manually through a
reverse engineering process.

Figure 2.1: Developing of BIM and FM standards
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Results show scarce BIM implementation in existing buildings yet, due to
challenges of (1) high modeling/conversion effort from captured building data
into semantic BIM objects, (2) updating of information in BIM and (3) handling
of uncertain data, objects and relations in BIM occurring in existing buildings
[Volk et al., 2014].
McArthur contends that identifying information required to inform operational
decisions is critical to configuring data retrieval techniques at the post-construction
stages [Mcarthur, 2015]. And it is well known that inconsistencies between de-
mand and availability of particular information in an as-built model incur un-
necessary expenditures. The necessity for an as-is model requires an effort that
involves a substantial barrier to the deployment of BIM usage during refurbish-
ment actions or management of older buildings [Watson, 2011].
The urgency of collecting data for the development of building model is wit-
nessed by all the efforts that the research put into the accomplishment of this
task.
The automatic acquisition of the existing data (geometric and semantic) is
mostly pursued through point cloud collecting technologies, photogrammetry
and image processing, but additional information acquisition tools will be needed
to complete the necessary information framework.
The use of laser-scanning techniques has been one of the first way to au-
tomate the collection of data and it is still widely used [Xiong et al., 2013]
[Ma and Sacks, 2016][Valero et al., 2018].
Supplementing the laser scanner data it is often image processing
[Brilakis et al., 2010] worked with point clouds and images for the recognition
of building components. Their process is made out of the following steps: 1.the
spatial correlation of the collected data, from aligned point clouds and corre-
sponding calibrated intensity images obtained by recording different scans. The
output is a structured 3D surface model that describes the general topology of
the scanned structures; 2. the recognition of visible attributes of objects using
image processing tools; the input of this step is the rendered 3D surface while
the output is the augmented 3D surface containing the recognized visual and
spatial characteristics of potential objects and the background; 3. the classifica-
tion of the objects and the adaptation of the dimensions. This process concerns
the characterization and correspondence, based on the semantic labels provided,
of an object with another, from a set of models in order to determine the type
or class of this object. Finally, with this methodology a human assisted process
is necessary, using a customized assembly interface built within a standard BIM
application which incorporates the range of possible building object types in its
internal object schema. Figure 2.2 shows the whole process proposed in this
article.
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Figure 2.2: Steps of the automated generation of parametric BIM objects from
video and laser scanning data [Brilakis et al., 2010].

[Lu et al., 2018] developed an image-driven system that seeks to effectively
detect objects and their materials in complex environments with few features
and to successfully create BIM objects represented in Industry Foundation
Classes (IFC) (Fig. 2.3). This image-driven system contains three subsys-
tems for different functions: an object recognition subsystem for recognizing
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building components (i.e., columns, beams, windows, doors, and walls), a ma-
terial recognition subsystem for recognizing surface materials, and an IFC BIM
generation subsystem for creating BIM objects in IFC. The first steps for recog-
nition are manual and applied by the operator who recognizes reference lines of
known dimensions for the subsequent steps. To recognize objects in images, a
sub-system based on the neuro-fuzzy framework was developed. The proposed
material recognition subsystem subsequently recognizes the materials according
to the classification procedure based on the extensible texture library. In this
case the real IFC is generated using ifcengine, a .net library to implement ifc
model parser. Anyway also in this case there is still need for a human interven-
tion and all the data are also worked far from site.
Also the work by Xue et al. develops a Derivative-Free Optimization (DFO)
approach for the automated generation of semantically rich as-built BIMs us-
ing 2D images (Fig. 2.4). Firstly, they formulate the as-built BIM as a con-
strained optimization problem. Secondly, the approach realizes an effective and
segmentation-free BIM generation approach. Thirdly, the approach makes use

Figure 2.3: Steps of the recognition process through an image-driven fuzzy-
system [Lu et al., 2018].

14



Literature Review

of the architecture domain knowledge and rich semantics in BIM component
libraries that are available on the Internet or elsewhere. There are two inputs of
the constrained optimization problem: the measurement data of as-built condi-
tions and the BIM components contained in libraries. The measurement data,
in this article, are 2D images that can be taken at a relatively low cost. Another
input is the BIM components (e.g., facade, wall, windows, and doors) organized
in one or multiple libraries. Then the generated BIM model is compared with
the picture by means of a similarity function for the optimization of the prob-
lem. After an iteration process of comparison an optimized enriched as-is BIM
model is obtained [Xue et al., 2018]. In this case, too, data are not processed
on site. Furthermore the generation of the first BIM model becomes complex
when the system is tested with a higher number of objects than the ones used
here. Finally, creating libraries and rules for BIM generation seems a laborious
process.
Despite all these efforts in the development of new procedures and methods for
supporting and improving efficiency in the AECO industry another important
problem to take into consideration is the fragmentation of this sector. Naturally,
planning, construction and operation of a building are a high interdisciplinary
task of different disciplines (architecture, constructional engineering, surveying
and building services). This leads to difficulties in obtaining a smooth and
continuous information flow among different parts in different stages. Notwith-
standing the mandatory introduction of electronic tool for information man-
agement actually the current procedures show that information technology is
limited in its use and application in construction, and most of the management
work is done by human labor, which is inefficient and sometimes error-prone
[Lin and Su, 2013].
The required exchange and adjustment of information between building con-
struction services often is poorly geared to each other in practical terms (e.g.
fragmented data, irregular modeling, media disruption, missing temporal agree-
ment) which leads to errors, delays and finally to higher costs [Becker et al., 2018].
The building lifecylce phase mostly affected by this is the operation phase, which
is the longest and for this reason the one that involves the highest cost.

Figure 2.4: General framework of the DFO apporach [Xue et al., 2018].
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A study by the U.S. National Institute of Standards and Technology (NIST)
showed that the annual costs associated with inadequate interoperability among
software systems was $15.8 billion [Gallaher M. and Gilday, 2004].
According to the FM representatives, data accessibility is a top problem and a
considerable amount of time is spent in finding accurate information necessary
to perform maintenance operations [Codinhoto et al., 2013][Liu et al., 2016]
[Shirazi and Ashuri, 2018].
When facility maintenance contractors are paid to survey the existing building
to capture as-built condition, owners are paying twice: once for the construction
contractor to complete the documents at the end of construction and again for
the maintenance contractor survey [East, 2007].
Data collection is furthermore a critical activity not only because of its high
operational costs and low reliability, but also because of its impact on subse-
quent phases, i.e. data processing, object recognition and modeling, that are
influenced by the data quality and level of detail [Cesarotti et al., 2014].
Anyway the information is not easy to be created in the model. In absence of
the proper processes, in fact, it is hard to match model information with prac-
tice that is the real information needs [Feng and Lin, 2017].
The BIM methodology, which is spreading fast in the AECO industry, is rec-
ognized as an opportunity to increase efficiency and BIM models as a unique
repository of building information. Consequently, BIM deployment becomes
extremely invaluable to organisations that seek to reap inherent value and effi-
ciency gains from the technology. The BIM capacity to harness valuable data
and information throughout a building’s life cycle is expressed by the following
definitions provided by the UK Government and Succar. The first one defines
BIM as: “a collaborative way of working, underpinned by digital technologies
which unlock more efficient methods of designing, creating and maintaining as-
sets” [task Group, 2012], whilst Succar [Succar, 2009] defines BIM as: “a set
of interacting policies, processes and technologies producing a methodology to
manage the essential building design and project data in digital format through-
out the building’s life-cycle.” The aim behind the development of BIM tools was
to create a building information system for information sharing regardless of
software and data location. Towards this goal, the International Alliance of
Interoperability proposed a standard that specifies object representations for
construction projects: Industry foundation classes (IFCs), the basis of BIM
methodology [Bonandrini et al., 2005].
BIM paradigm changes the way that information is managed, exchanged and
transformed with the aim of stimulating greater collaboration between stake-
holders via a single integrated model during the design and construction phases
[Eastman et al., 2011]. This integrated approach to BIM ensures a smooth flow
of information between all stakeholders. Building information modeling (BIM)
has emerged as a disruptive innovation, showing great potential to mitigate
many of the factors negatively affecting construction productivity.
[Poirier et al., 2015] tried to measure the productivity improvement given by
the BIM use because despite the well-known benefits of BIM small organiza-
tions still hesitate to invest in such a change. This reasearch’s aim was to find a
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productivity measure that could be taken into consideration by small realities,
too. The findings of this research suggest an actual productivity rate that is
superior to the estimated productivity rate across all systems and on all lev-
els with the project, where BIM was used, having the greatest productivity
ratio. Furthermore, they reviewed the key indicators of BIM’s impact on pro-
ductivity identified by Chelson [Fan et al., 2014] which are: quantity of request
for information (RFI), amount of rework, schedule compliance and change or-
ders due to plan conflicts. They identified that BIM did have an impact on
two of these indicators for the scope that it was modeled and prefabricated for
[Poirier et al., 2015].
BIM has been heralded as a facilitator for improvements also in FM efficiency
by enhancing the integration of FM related information. These improvements
are accrued during the generation and management of a facility’s digital specifi-
cation and characteristics data and cooperation between all parties involved in
both building design and operation. Consequently, BIM can overcome some of
the complexity and fragmentation experienced within the FM sector. In addi-
tion, a link from BIM models to FM databases could help to detect and diagnose
building equipment based on necessary information such as specifications and
maintenance history, which could be automatically associated with the located
equipment and delivered to the on-site personnel. Morevoer emergency manage-
ment which depends on data from a variety of sources and needs spatial details,
can find in BIM the perfect tool to efficiently store information. In the sur-
vey done by [Becerik-Gerber et al., 2011] the main task where BIM could favor
FM have been identified as: locating building components, facilitating real-time
data access, visualization and marketing, checking maintainability, creating and
updating digital assets, space management, planning remodelling, renovating or
demolishing, controlling and monitoring energy, personnel training and devel-
opment.
[Ding and Drogemuller, 2009] further reinforces these findings and reveals that
BIM enabled FM witnessed a 98% reduction in time used to update FM databases.
With regards to BIM for FM in particular, the UK Government Strategy in-
dicates that the relevant gains from BIM adoption will be perceived in the
operational stages, where more efficient processes for managing the utilisation
of public assets can be established (BIM Industry Working Group -IWG- 2011).
In order to make BIM useful for facility managers or owners, project teams
should define early on which FM information they need to include in their BIM
models, and then establish a systematic process for capturing it during the de-
sign and construction phases [Pishdad-Bozorgi et al., 2018].
[Mcarthur, 2015] defined the following ones as the challenges that must be over-
come to develop BIM models suitable for further operations: 1. identification of
critical information required to inform operational decisions, 2. the high level
of effort to create new or modify existing BIM models for the buildings, 3. the
management of information transfer between real-time operations and monitor-
ing systems and the BIM model, and 4. the handling of uncertainty based on
incomplete building documentation.
As far as the first issue is concerned decisions for building maintenance require
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integration of various types of information and knowledge created by differ-
ent members of construction teams such as: maintenance records, work orders,
causes and knock-on effects of failures, etc. Not only this, one of the key chal-
lenges in projects is the need to have sufficient information on products ready
available for any maintenance operation. Among this information it is possible
to find specifications, previous maintenance work, list of specialty professionals
to conduct work. For this reason the FM sector continues to grapple with infor-
mation management, predominantly due to the peculiarity of information and
those fragmentation.
Trying to overcome this issue [Motawa and Almarshad, 2013] developed a knowledge-
based library containing information about a building object subject to main-
tenance. They collected in the same library also the know-how so as it can be
used for diagnosis and training as well.
BIM-FM integration represents a major challenge but it would be extremely
beneficial for processing large sets of complex information typically associated
with maintaining building assets [Love et al., 2014] [Pärn et al., 2017]
[Yang and Ergan, 2017]. Several studies, in fact, posed the BIM as the fully
information management tool for the development of FM support application
[Kelly et al., 2013] [Lin and Su, 2013]. Most of them also combine the BIM
database with the power of Augmented Rality for the display on site of a series
of data, trying to accomplish the third of Mcarthur challenges [Mcarthur, 2015],
that otherwise should be retrieved among several different documents. Further-
more, among the first features of a BIM model there is the management of
space, since objects are located in a digital 3D copy of the building, and the
visualization of objects in their 3D shape exactly as they are.
The second and forth issues expressed by Mcartur [Mcarthur, 2015] can be con-
sidered together. They both refer to data collection and implementation that is
an high demanding process in term of time and money. The FM field could rely
heavily on getting usable data from a BIM model to do anything meaningful
with it. However all too often, these data is not really there or is inaccu-
rate, as the model has not been updated with any design changes made after
the design phase and is therefore not an accurate model of the facility as it is
built. Moreover most of the studies focus on the collection of maintenance data
[Motawa and Almarshad, 2013][Kelly et al., 2013] but they do not mention the
problem of having the knowledge about the status of the building which is cru-
cial especially in countries where the number of aged building is much higher
than the new construction rate.
It is believed that the main benefits from adopting BIM are yet to be seeing as
a result of its application to FM as evidence that demonstrates its benefits is
hard to produce [Codinhoto et al., 2013].
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2.2.2 Latest technologies that support building survey pro-
cedures

As new construction rates in industrialized countries stagnate, planning and
implementing refurbishment and retrofit measures in existing buildings gain in
importance. The need to have structured and semantically enriched "as-is" 3D
digital models of buildings in order to handle, more efficiently, projects of main-
tenance, restoration, conservation or modification is increasing in recent years.
“As-built” BIM is a term used to describe the BIM representation of a building
concerning its state at the moment of survey. It is usually a manual concept
that involves three aspects: firstly, the geometrical modeling of the component,
then the attribution of categories, material properties and functional data to the
components and, finally the establishing of relations between them. Current lit-
erature proposes automatic “as-built” BIM approaches that could be classified
into three main categories (Fig. 2.5):

• Heuristic approaches: in this field most of methods rely on a first
segmentation of the scene. Those approaches use a human knowledge
codification belonging to the architectural field. As a matter of example,
doors and windows are always embedded in a wall class, roofs are always
“hierarchically above” walls.

• Approaches based on context: they use relations between components.

• Approaches based on prior knowledge: this approach follows the
principle of detecting differences existing between the conditions of the
"as-built" and "as-designed". In this kind of approach, the recognition
problem is reduced to a problem of fitting or matching between the entities
of the scene and the point cloud.

• Approaches based on ontologies: this method uses a priori knowledge
of objects and environment. This knowledge is extracted from databases,
CAD drawings, GIS, technical reports or expert knowledge belonging to
particular fields. Therefore, this knowledge constitutes the basis of a
knowledge-based selective detection and recognition of objects in point
clouds. In such a scenario, the knowledge of these objects must include
detailed information on the geometry of the object structure, 3D algo-
rithms, etc.

Especially as far as existing buildings are concerned it is necessary to develop
an efficient approach, based on a first step of building survey, to develop a se-
mantically enriched digital model. Various digital tools for building capture and
auditing are available, such as 2D/3D geometrical drawings, tachometry, laser
scanning or automatic locating of images (Fig. 2.6), but they need increased
modeling and planning efforts of skillful personnel.
Semi-automated laser scanning with total stations is prevalent, although affected
with disadvantages such as high equipment cost and fragility plus extensive data
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Figure 2.5: Classification of advanced building survey techniques.

processing and modeling steps [Volk et al., 2014]. As an example of the use
of laser scanning techniques the survey work by [Mill et al., 2013] deals with
data collection of the Tallinna Tehnikakõrgkool University of Applied Sciences
(TTK/UAS) located in the capital city of Estonia. The case study provides a
critical appraisal of the process of both collecting accurate survey data using a
terrestrial laser scanner combined with a total station and creating a BIM model
as the basis of a digital management model. Traditionally, a total station is used
to record single points, even if this method is relatively time-consuming since
points are recorded one by one. Terrestrial Laser Scanning data was acquired at
26 stations, to receive information from as many parts of the object as possible
and to leave fewer hidden sections. To obtain a complete representation of the
scanned object, the scans were combined into one dataset by directly georefer-
encing the point clouds into the predetermined geodetic reference frame. Since
the level of interior detail was not high, the internal survey was accomplished
using a total station Trimble M3. Post-processing of data is the main limit of
this technique since it requires long time. In this study data processing was
divided into three different phases, the first, exterior point cloud processing, the
second, internal total station survey data processing and the third, processing
data using BIM software to create the BIM model. The surface of the build-
ing facade was modelled and located manually entirely using the laser scanning
point cloud data.
The approaches mentioned above may provide satisfactory results in the recog-
nition of elements composing a scene. But in a BIM context and in order to
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semantically enrich point clouds, it is not sufficient to detect their sub-parts
as architectural components (walls, windows, doors, etc.). An important re-
quirement is also to define the relations linking components to their attributes,
in particular, spatial relations (topological, directional, etc.) between them.
As example, if a wall is detected, it should be specified that it is connected
to the ground, in a specific position, adjacent to other walls, these last ones
having other positions, etc. And it is also necessary to specify, whether such
wall is made of stone or bricks. In effect, attributes can vary according to the
field, to the needs determined by management and to the use of the building
[Hichri et al., 2013].
Other approaches using point clouds as a starting point is beginning to spread
for the semi-automatic identification of objects. [Díaz-Vilariño et al., 2015] in
their research used an algorithm (Fig. 2.7) for the automatic detection of ceiling
lightings applied to the School of Mining Engineering at University of Vigo. The
main sections of the algorithm consist of ceiling extraction, point cloud to image
conversion, and luminaires detection. Data acquisition is performed using a Faro
Focus 3D X 330 LiDAR. The scanner is a panoramic static terrestrial LiDAR
system with a 360◦ horizontal field-of-view (FOV) and 270◦ vertical FOV. Al-
though the Faro scanner can provide additional point information such as RGB
and intensity properties based on an inner RGB sensor and LiDAR detected
power, respectively, these attributes were not used in the present work where
the algorithm is focused on geometric parameters. Ceilings are segmented from
the rest of point cloud using plane detection by means of Random Sample Con-
sensus (RANSAC) algorithm. In this case point clouds collected with the lidar
are only the starting point since after this first process point cloud belonging
are converted to images in order to apply image processing algorithms. From
this binarized images two algorithms are manually applied by an operator: flu-
orescent lightings are distinguished using a refined Harris corner detector while
a Hough transformation is applied to find circular low energy bulbs. Finally
there are aforementioned systems like the one by [Lu et al., 2018] that exploit
images rather than point clouds. Starting with the human intervention for the
definition of reference lines the neuro fuzzy network developed is capable of
recognizing building objects. Then a proposed material recognition subsystem
recognizes the materials according to the classification procedure based on the
extensible texture library.
Higher efforts for the automation of data interpretation have been done espe-
cially in recent years as can be seen from the following research studies.
[Rodriguez-gonzalvez et al., 2014] presented a methodology for automatically
reconstructing 3D complex scenarios, particularly electrical substations, us-
ing images acquired from an unmanned aerial system (UAS). The case study
was performed at an outdoor electrical substation located in Olloki, Pamplona,
Spain, a complex scenario due to the large number of elements and the large
area covered by the site. The use of a UAS permits the documentation of the
elements completely by aerial images, guaranteeing a high spatial and tempo-
ral resolution. The Photogrammetry Workbench (PW) developed is a mul-
tiplatform software with a user-friendly interface that works with terrestrial
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Figure 2.6: Semi-automatic light inventory algorithm
[Díaz-Vilariño et al., 2015].

or aerial images and considers vertical or oblique geometries. The UAS Mi-
crokopter–Oktokopter platform was used. From the high level of detail of the
elements, it is possible to model each element from the point cloud. Fig. 2.7
shows the process of modeling one of the objects existing (the intensity trans-
former) in the electrical substations. To obtain the final model, it is necessary
to segment the element and apply a noise filter. The primitives are modeled
by semi-automatic approaches of the reverse engineering field. Anyway we are
still far from an effective automation of BIM model enriching process toward a
reduction of post-processing phase of raw data.

Moving to more automation in data interpretaiton [Valero et al., 2018] pre-
sented an algorithm for automatic segmentation of individual masonry units
and mortar regions in digitised rubble stone constructions, using geometrical
and colour data acquired by Terrestrial Laser Scanning (TLS) devices. The
algorithm is based on the 2D Continuous Wavelet Transform (CWT). The case
study for testing the system proposed is the Craigmillar Castle and Linlithgow
Palace. A Faro Focus 3D Laser Scanner digitised the scene, providing 3D and
colour information, with a resolution of 3 mm and a Leica P40 Terrestrial Laser
Scanner was also used for data acquisition, delivering colour and geometric in-
formation, with a resolution of 2 mm. Data acquisition and pre-processing of
the data lead to coloured point clouds of the wall face. First, the data is con-
verted into a 2D depth map by means of an orthogonal projection on a surface
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Figure 2.7: Primitive modeling of a cylinder indicating a piece of a pipe
[Rodriguez-gonzalvez et al., 2014]

grid. This grid is calculated following a strategy based on the RANSAC algo-
rithm in the case of walls whose two principal curvatures are close to zero (i.e.
planar walls). They then used the 2D Continuous Wavelet Transform which is
a signal analysis method that is based on the convolution of the input signal
with a wavelet function at different locations along the signal and at multiple
scales. This enables the detection of the signal pattern of the wavelet function at
potentially any scale and at any location. The 2D CWT is applied to the depth
map using an estimate of the mortar joint width to define the scale of interest.
The binary image delivered by the 2D CWT contains an approximated segmen-
tation of the stones. The segmentation achieved with the described algorithm
can be used for the evaluation of materials and their associated construction
technologies. Point cloud processing phases in Figure 2.8. [Xiong et al., 2013]
presented a method to automatically convert the raw 3D point data from a
laser scanner positioned at multiple locations throughout a facility into a com-
pact, semantically rich information model. This algorithm identify and model
the main visible structural components of an indoor environment (walls, floors,
ceilings, windows, and doorways) despite the presence of significant clutter and
occlusion (Fig. 2.9). It begins by extracting planar patches from a voxelized
version of the input point cloud. Patches are found using a region-growing algo-
rithm to connect nearby points that have similar surface normals and that are
well-described by a planar model.
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Figure 2.8: Masonry point cloud processing phases [Valero et al., 2018].

The algorithm learns the unique features of different types of surfaces and
the contextual relationships between them and uses this knowledge to automat-
ically label patches as walls, ceilings, or floors. Then, a learning algorithm is
used to intelligently estimate the shape of window and doorway openings even
when partially occluded. Finally, occluded surface regions are filled in using
a 3D painting algorithm. To understand occlusions, a ray-tracing algorithm
is used to identify regions that are occluded from every viewpoint and to dis-
tinguish these regions from openings in the surface. To compare the results
from all algorithms they calculated the F1 score which is the harmonic means
of precision and recall. The average F1 score achieved is of 0.85 over 4 classes
of objects (Clutter, Wall, Ceiling, Floor) which is considered satisfactory. The
semi-automatic data interpretation and BIM modelling of existing buildings
have been discussed also by [Chiabrando et al., 2016] whose study uses cross
sections and surface extrusion from the point clouds (semi-automatic). They
worked on the digitization of a historical building, the Castle of Valentino in
Turin. They worked partially with manual modelling of BIM objects (e.g. the
foundation, walls, lunettes) starting from the basis of a mesh obtained through
point clouds (Fig 2.10, 2.11).
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Figure 2.9: Left column shows the reflectance images while the right column
shows the classification results from the surface algorithm [Xiong et al., 2013].

For the modeling it was used the Revit software which in its basic configura-
tion does not read point clouds and does not use NURBS modeling. Surely this
type of processing (semi-automatic) is time consuming and complex to realize.
Other parts of the building were modelled semi-automatically using the plugin
Scan to BIM (IMAGINiT Technologies) for Revit software, able to recognize
surfaces described by clouds of points. Though a mesh model of the room was
available, modeled from the point model into a software dedicated to the mod-
eling of clouds (3D Reshaper), the parametric model in Revit has been built
through the cloud interpretation. As for the wall surfaces most of the decora-
tive elements have been extracted the profiles from the cloud and it is operated
semi-automatic parametric modeling. The case of the columns has been treated
with the loadable families.
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Figure 2.10: Starting raw data: point clouds [Chiabrando et al., 2016].

Figure 2.11: Final BIM model [Chiabrando et al., 2016].

All of the aforementioned methods require long post-processing phase and
none of them proposed the possibility to check data directly on side avoiding
inaccuracies. Some efforts have also been put into the semi-automatic mod-
elling of building objects rather than surfaces or global geometry. Most of the
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recurrent maintenance actions are in fact conducted on assets inside buildings.
This means that all the components need to be surveyed and their data prop-
erly stored and made available. One case of trying to automate the collection
of building assets data is represented by [Quintana et al., 2018] who presented
an approach that detects open, semi-open and closed doors in 3D laser scanned
data of indoor environments. The proposed technique integrates the information
regarding both the geometry (i.e. XYZ coordinates) and colour (i.e. RGB or
HSV) provided by a calibrated set of 3D laser scanner and a colour camera. The
work presented focused on door detection, that is performed once the scanning
of a room has been completed. The output of the room scanning is composed
of a dense 3D coloured point cloud, a labelled voxel model with associated 3D
points from the point cloud; and a 3D boundary model of the room composed of
planar rectangular patches (and their associated voxels) representing the walls,
ceilings and floors. Wall elements have associated voxels that can be labelled as
either:

• Occupied: the voxel contains at least one scanned point.

• Occluded: the voxel does not contain any point and was not visible from
any of the scanning locations used to scan the room.

• Opening: the voxel does not contain any point, despite being visible from
at least one scanning location.

The detection process considers the labelling and coloured 3D points associated
with the voxels of each wall a rectangular segment. For each wall plane, a 4D
orthoimage (Fig. 2.13) for each of the scanning locations is created, and then
merged into a unified orthoimage JCD. The algorithm for detecting doors is
divided into two steps, wall area detection and door detection. Taking the or-
thoimage as input they presented an approach based on discontinuities in the 4D
RGB-D space and the knowledge of the wall area. Colour and depth components
are processed separately. This is followed by an image binarisation process, us-
ing Otsu’s global histogram threshold technique that selects the threshold to
minimize the intraclass variance of the black and white pixels. White pixels in
the orthoimage represent discontinuities in the colour-depth space, which en-
ables the detection of door frames as discontinuities in the colour domain only,
in the depth dimension only, or in both. Next all possible rectangles are defined
by two pairs of horizontal and vertical lines. The pose and size of the recognized
doors is evaluated by means of Precision, Recall and F-measure computed based
on the overlap between the areas of the ground truth (that is the correct door
placed in the true position) and recognized doors. For each of the aforemen-
tioned parameters the reached value overcome 90% proving the efficiency of the
system proposed.
Finally a similar method by [Quintana et al., 2017] have been developed for the
"Scan-to-BIM" recognition of small objects inside buildings. They proposed a
system for the detection of "small components" based on coloured point clouds
acquired by a 3D laser scanner calibrated with a digital camera and mounted
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Figure 2.12: Detection results for Simple Scenes. (Left) Original 4D orthoim-
ages. (Right) Door detection [Quintana et al., 2018].

on a mobile robot. This process started from the condition of having already
modelled the basic geometry of the building. This way walls are already present
in the information model and the recognition process can start from a coloured
point cloud associated with a modelled wall. More precisely a 4D orthoimage is
generated having for each pixel both colour (RGB) and depth. At this stage a
double way of pursuing recognition is presented: recognition with geometry and
recognition with colour. For detecting objects with geometry discontinuities the
depth image is used (Fig. 2.12). In this case a Canny filter, for edge detection,
is applied to the image. When the Canny threshold is below 0.05 a simple im-
age cross-correlation algorithm is applied that assesses the correlation between
the candidate regions with depth image models contained in the given database
of objects to be recognised. On the other hand objects that are salient in the
colour domain instead of the geometric one are detected by looking for colour
discontinuities. The matching against objects in the database established a pri-
ori is conducted by matching SURF features extracted from the colour image
models in the database with those extracted from the candidate region. With
this method some object can be recognized both with depth and colour while
for others only one kind of image processing is suitable. In the experimental test
of this method they recognized sockets, switches, fire alarms, extinguishers and
alarm signs and obtaining correlation parameters values higher than 0.55 which
is the threshold to consider the detection as a potential candidate recognition.
Even if laser scanning techniques have proven to be effective, delivering accurate
3D and colour measurements, the outcome always requires further processing to
produce understandable semantically-rich information that can be interpreted
by experts. As post-processing is performed off-site operators may be unaware
in case some data are missing and unable to integrate missing data within the
same survey mission.
Moreover recent research focused on capturing mainly geometric rather than
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semantic representations of buildings and feeding point cloud data into BIM
software. Finally most of the aforementioned techniques also are able to re-
construct only the geometry of objects without adding any semantic. New
developments intensely research process models for automated BIM modeling
from captured data (‘scan-to-BIM’) and improvements in LoD to enhance ap-
plication in existing buildings [Volk et al., 2014].
Furthermore all the methods explained here consist of complex post processing
operations that not only requires long time and therefore high costs but they
are also pursued far from the site where data are collected. This lead to an error
prone process and difficulties in the interpretation of gathered data.

2.3 Machine Learning

The problem of automatic programming is one of the central questions in com-
puter science. Paraphrasing Arthur Samuel (1959), the question is ’How can
computers learn to solve problems without being explicitly programmed?’. In
other words, how can computers be made to do what needs to be done, without
being told exactly how to do it?
Machine learning is the scientific study of algorithms and statistical models that
computer systems use to perform a specific task without using explicit instruc-
tions, relying on patterns and inference instead. It is seen as a subset of artificial
intelligence. With the emergence of deep learning, computer vision has proven
to be useful for various applications. Deep learning is a collection of techniques
from Artificial Neural Network (ANN), which is a branch of machine learning.
ANNs are modelled on the human brain; there are nodes linked to each other
that pass information to each other [Moore, 2018].
The first case of neural networks was in 1943, when neurophysiologist Warren
McCulloch and mathematician Walter Pitts [McCulloch and Pitts, 1988] wrote
a paper about neurons, and how they work. They decided to create a model of
this using an electrical circuit, and therefore the neural network was born. Skip-
ping some years already in 1958 we found the first example of pattern and shape
recognition, Frank Rosenblatt designed the first artificial neural network. An-

Figure 2.13: (a) Coloured point cloud, (b) depth image, (c) object detection for
object recognition [Quintana et al., 2017].
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other extremely early instance of a neural network came in 1959, when Bernard
Widrow and Marcian Hoff created two models of them at Stanford University.
The first was called ADELINE, and it could detect binary patterns. For ex-
ample, in a stream of bits, it could predict what the next one would be. The
next generation was called MADELINE, and it could eliminate echo on phone
lines, so had a useful real world application. It is still in use today. Despite the
success of MADELINE, there was not much progress until the late 1970s for
many reasons. 1982 was the year in which interest in neural networks started to
pick up again, when John Hopfield suggested creating a network which had bidi-
rectional lines, similar to how neurons actually work. Neural networks use back
propagation and this important step came in 1986, when three researchers from
the Stanford psychology department decided to extend an algorithm created by
Widrow and Hoff in 1962. This therefore allowed multiple layers to be used in
a neural network, creating what are known as ‘slow learners’, which will learn
over a long period of time. Since the start of the 21st century, many businesses
have realised that machine learning will increase calculation potential.
Machine learning algorithms were from the very beginning designed and used to
analyze medical datasets [Kononenko, 2001]. From then machine learning tech-
niques have been widely applied in a variety of areas such as pattern recogni-
tion, natural language processing and computational learning [Liu et al., 2017].
Game-playing applications offer various challenges for machine learning. A wide
variety of learning techniques have been used for tackling these problems. Based
on data/behavior observed in the past, machine learning methods can automate
the process of building detectors for identifying malicious activities. Machine
learning can be used to construct models for misuse as well as anomaly detec-
tion. [Lee et al., 1999] apply machine learning to detect attacks in computer
networks. They first identify frequent episodes, associations of features that
frequently appear within a time frame, in attack and normal data separately.
Frequent episodes that only appear in attack data help construct features for the
models. Ghosh and Schwartzbard [Ghosh and Schwartzbard, 1999] use neural
networks to identify attacks in operating systems. Based on system calls in the
execution traces of normal and attack programs, they first identify a number
of “exemplar” sequences of system calls. For each system call sequence, they
calculate the distance from the exemplar sequences.

2.3.1 Neural Networks for the recognition of objects

Particularly, the field of image recognition has seen an increase in development in
the recent years. In the automotive industry, for example, the use of deep learn-
ing algorithm has allowed self-driving cars to recognize lanes and other obstacles
without the need for more expensive and complex tools [Huval et al., 2015]. But
the range of applications extends also to fields in which technology is not a key
characteristic: for example in the field of arts, [Lecoutre et al., 2017], have used
a residual neural network (ResNet) to build a model capable of detecting the
artistic style of a painting with an accuracy of 62%, which could help in future
the indexing of art collections. Object detection had an explosion concerning

30



Literature Review

both applications and research in recent years. Object detection is a problem
of importance in computer vision. Similar to image classification tasks, deeper
networks have shown better performance in detection. At present, the accuracy
of these techniques is excellent. Hence it is used in many applications. Image
classification labels the image as a whole. Finding the position of the object in
addition to labeling the object is called object localization. Typically, the posi-
tion of the object is defined by rectangular coordinates. Finding multiple objects
in the image with rectangular coordinates is called detection [Moore, 2018].
Since the ML can be very versatile also its applications can be very diverse. It
is possible to find example of human behaviors recognition through the use of
You Only Look Once (YOLO) neural network and the LIRIS human activities
dataset [Shinde et al., 2018].
This research focuses more on the performance of the network rather than its
application but it is evident the use that could be done for instance for security
purposes.
Another crucial use of object recognition with Neural Network is the one pur-
sued by medicine. The support in the recognition of masses trough medi-
cal images has been largely studied and it resulted in valuable applications
[Al-masni et al., 2018] [Ali, 2019] [Wang et al., 2019a] [Wang et al., 2019b]
[Nakagawa et al., 2009].

2.3.2 The use of NN for recognition in engineering

The use of Artificial Neural Network (ANN) had a wide spread in almost all
engineering fields. Convolutional neural networks have proven to be valuable in
many application fields but the AECO industry has not exploited this tool at
its best yet [Braun et al., 2019].
[Lamio et al., 2019] studied an application of machine learning for the construc-
tion industry to categorize images of building designs into three classes: Apart-
ment building, Industrial building or Other. No real images are used, but only
images extracted from Building Information Model (BIM) software, as these are
used by the construction industry to store building designs. The dataset con-
sists of a total of 240 structural models, in which the images were extracted from
their BIM virtual representations: 4 images for each of the 60 BIM representa-
tion have been extracted, showing completely different angles of the structures.
Due to the low number of images available to validate the deep learning models,
they have been augmented randomly generating samples, processed with a com-
bination of random rotations, horizontal flips and vertical and horizontal shifts.
They chose three ML methods: the classical machine learning method chosen
for the problem described, is a combination of Histograms of Oriented Gradients
(HOG) used for feature extraction and Support Vector Machine (SVM) for the
classification task. Then they used two of the top performing deep neural net-
works architectures on the ImageNet database: the MobileNet and the ResNet.
In addition to the two pre-trained networks just described, it was also used a
Convolutional Neural Network (CNN) with a randomly generated structure and
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randomly initialized weights (not pre-trained). The choice to randomly generate
the network structure (Fig. 2.14) is

Figure 2.14: Structure of the neural network with random generated structure:
it presents 3 convolutional layers, followed by a dense layers that maps the
output of the last convolutional layer to the three classes [Lamio et al., 2019].

linked to one of the problems in building efficient neural network architec-
ture: it is often difficult to optimize and fine tune its parameters. To evaluate
their accuracy accuracy, the database of 240 images was randomly split in order
to use 80% of the database to train the models and the remaining 20% to validate
them. The results of the best model evaluation are shown: the best perform-
ing neural network was the ResNet50, with an accuracy of 97.92%± 1.32%.The
MobileNet as well scored an accuracy above 90%. Moreover, it can be seen
that the CNN with randomly generated structure performed well, obtaining an
accuracy of 89.60%. 3.39% lower than the ones obtained with the pre-trained
network, but still acceptable.The worst performing model was the HOG + SVM
approach, which scored an accuracy of only 57.19% ± 1.18%, much lower than
the worst performing neural network. The results of this research show that
despite the small size of the dataset, the deep learning models outperformed
the classical machine learning model. Furthermore they overcome the problem
of data collecting using artificial images and with further tests on real-world
images this could prove to be a valuable method to build new datasets.
[Zhao et al., 2015] propose a similar approach towards the recognition of 3D
BIM environments. To realize the retrieval and classification of a content-based
3D model, the key point is to require the extracted 3D model feature descrip-
tion is invariant and robust to translation, rotation, scale size and orientation
transformation. They used ray-based feature extraction algorithm to extract
features of a 3D model. The developed dataset included 1,814 models, covering
most types of models common found in daily life. To prevent certain types of
models from impacting the fairness of the assessment, the 1,814 models were
divided into a training set and a testing set, each with 907 models. The deep
belief network (DBN) (Fig. 2.15) constructed by restricted Boltzmann machines
applies a features matrix and classifies the models, adopting the effective train-
ing process. The process of training DBN is layer by layer. The results show
that compared with several commonly used classification methods, the method
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proposed in this paper achieved good results in the 3D model classification for
efficient BIM.
[Bloch and Sacks, 2018] used ANN for the automatic recognition of house spaces.
The aim of their research is the automatic semantic enrichment of BIM mod-
els. Starting form the collection of the dataset, 150 spaces (10 examples for
each possible label), they then chose the AZURE ML platform to implement
the network. Five features have been identified after running a filter based fea-
ture selection module in AZURE. Filter based feature selection is a process of
applying statistical measures to identify the features that are most relevant to
a specific classification problem. The five features finally isolated were: area;
number of doors; number of windows; number of room boundary lines; and
floor level offset. The set of five features selected using this procedure achieved
a maximum accuracy of 82%. They also compared the ML approach with an-
other approach: rule-inferencing. What came out was that with rule inferencing
they were able to recognize only five different types of room out of the 15 total
number. This is due to the fact that trying to identify univocal rule is not an
easy process. Working with a pairwise comparison of the spaces they built a
matrix of possible result values for each rule taken into consideration and most
of them are marked with "x" that means "may or may not be true".
This big uncertainty lead to the not very flexible results that can be obtained
by the rule-inferencing method in comparison with ML.

Figure 2.15: Structure of a DBN [Zhao et al., 2015].
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Figure 2.16: Crack detection with neural network [Cosenza et al., 2018]

Some interesting applications of ML regards diagnostic issues such as the
one from [Cosenza et al., 2018] who used semantic segmentation networks to
develop a system able to recognize wall cracks on both stone and plastered
walls (Fig. 2.16). Semantic Segmentation is the term that describes the pro-
cess by which a ROI (region of interest) Label is associated with each pixel of
the image that represents a label corresponding to a specific class. After hav-
ing collected the relevant data to define a wall crack this research deals with
modelling information trough BIM approach. The aim of this research is the
digitization of building current status. It is well known how expensive activities
necessary to collect data on existing buildings are, both in terms of costs and
in terms of human resources. This cost lead to the research for automation in
these processes and object recognition is a valuable means for harvesting data
just framing the environment.
Another growing field of action is the one regarding unmanned aerial vehicles.
There are a wide range of applications for UAVs in the civil engineering field. A
few applications include but are not limited to coastline observation, fire detec-
tion, monitoring vegetation growth, glacial observations, river bank degradation
surveys, three-dimensional mapping, forest surveillance, natural and man-made
disaster management, power line surveillance, infrastructure inspection, and
traffic monitoring. As UAV applications become widespread, a higher level of
autonomy is required to ensure safety and operational efficiency. Ideally, an
autonomous UAV depends primarily on sensors, microprocessors, and on-board
aircraft intelligence for safe navigation. For this reason there is a growing at-
tention towards the automatic recognition of objects from UAV cameras.
This is the case of [Braun et al., 2019]. In their research a system for the au-
tomatic detection of formworks in construction sites is developed. Their input
images are Unmanned Aerial Vehicle (UAV) photographs so as to integrate their
work in a modern process of site inspection. They focus on two different im-
age analysis tasks: image classification and object detection. Using a standard
GoogLeNet CNN implemented in Caffe they developed the image classification
task. To detect several formworks within an image of a construction site (Fig.
2.17), they used a CNN with DetectNet architecture, implemented in Caffe.
They gathered 9,956 formwork elements, labeled manually on pictures of three
construction sites.
Other studies focus on the differences in image perspective from UAV
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[Radovic et al., 2017]. Having the right dataset in fact is crucial for the efficient
recognition of objects. Considering that the perspective from a UAV is quite
different from the normal capturing point of pictures it is evident the need for
a specific dataset (Fig. 2.18). In their study [Radovic et al., 2017] focus on the
recognition of planes from a top view. They collected a new dataset. These
images consisted of a variety of airplane types and a wide range of image scales,
resolutions, and compositions. The total number is 267 images containing a to-
tal of 540 airplanes. The CNN chosen, a YOLO network, was able to recognize
“airplane” objects in the data set with 97.5% of accuracy. This study wants
to pose the basis for commercial and military applications of object recogni-
tion from UAV for instance in transportation-related projects, construction site
management and infrastructure asset inspections.

Figure 2.17: Detected bounding box for formwork elements on a photography
of a construction site [Braun et al., 2019].
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Figure 2.18: Airplane aerial images for object detection with YOLO
[Radovic et al., 2017].

As stated before also safety is a field where the advantages of automatic
detection technology can play an important role. Studies can be found on
the automatic detection of individual protection systems in construction sites.
[Fang et al., 2018] propose a system which uses surveillance cameras mounted
in construction sites to check the correct use of hardhat (Fig. 2.19). More
than 100,000 construction worker image frames were randomly selected from
the far-field surveillance videos of 25 different construction sites over a period
of more than a year. A total of 81,000 images from this dataset were randomly
selected to comprise the training dataset. The research trains Faster R-CNN
chosen for the mean precision values that are higher than other networks. They
trained the network taking into consideration different parameters: impact of
visual range, impact of weather, impact of illumination, impact of individual
posture, impact of occlusions. For each of these parameters they tested preci-
sion, recall and missing rate, and the research proved that the network reaches
good results in all cases (precision always higher than 90%). The experimental
results demonstrate that the high precision, high recall and fast speed of the
method can effectively detect construction workers’ non hardhat use in different
construction site conditions, and can facilitate improved safety inspection and
supervision.
Methods like this offer a significant opportunity to contribute to real-time site
monitoring and improve the safety management processes.
Enabling real-time application requires on one hand the possibility of having
an embedded system performing processes directly on site. On the other hand
the speed at which some tasks are accomplished marks the difference between
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something that is usable in real-time, leading to a man-machine parallel work-
ing, and the impossibility of using some systems for their scarce efficiency.
Object detection based on deep learning is a valuable means for real-time op-
erations in the aspects of speed and accuracy. [Tao et al., 2018] developed a
system called OYOLO, which stands for optimized YOLO. Inspired by Fully
Convolutional Network (FCN), in order to simplify the structure of the con-
volutional neural network in YOLO and reduce the amount of computation to
make object detection process faster, they remove the last two fully-connected
layers, and add an average pool instead (Fig. 2.20). They trained the network
for objects in the traffic scene (car, cyclist and pedestrian) and they add some
images captured by roads’ cameras into KITTI data set to get their own data
set. According to studies that declare the optimal ratio of training data and
testing data is 9:1, they divided the dataset in 8100 images in training set and
900 images in testing set. In the end the system the developed, the OYOLO
system performs 44ms per image, which is faster than YOLO by 18%.
As example of using these methods one can suggest different security video
systems which aims to detect violators in restricted areas, video monitoring in
airports, public spaces, working places, offices etc. Human monitoring, in fact,
is another skill that can be applied to a number of different tasks. However,
where working with this kind of applications it became necessary to face prob-
lems connected with bad image quality, complex illumination conditions, PTZ
cameras, sufficient enclosures of objects by the foreground, strict conditions im-
posed on computational and time resources given for particular algorithm
[Molchanov et al., 2017].
A major research area for real-time application is represented by the preven-
tion of accident in construction sites. Monitoring proximity between workers
and equipment (or vehicles) enables the advanced detection of potential haz-
ards, which allows for prompt feedback to involved workers. This proactive
intervention can lead workers to prepare for evasive actions, thereby reducing
the chance of an impending collision [Kim et al., 2019]. Further, systems that
exploit computer vision can recognize multiple entities without installing any
sensors and being a cost-effective and a non-invasive proximity monitoring while
complementing existing sensing technologies. Kim et al. propose a system to
check construction site (Fig. 2.21). Thanks to the mobility of Unmanned Aerial
Vehicle (UAV) the monitoring of wide areas, not viable with conventional imag-
ing devices such as surveillance or portable cameras, is enabled.
They chose a YOLO-V3 consisting of two main networks: the feature extractor
and the object detector. The feature extractor network called darknet-53 has
a deep architecture with successive 52 convolutional layers, which can extract
fine-grained features from a coarse data. In particular, this network incorporates
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Figure 2.19: Not hardhat use detection method framework [Fang et al., 2018].
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Figure 2.20: OYOLO Network structure [Tao et al., 2018].

residual skip connections in the intervals of two convolutional layers. The
object detector makes detection. The uniqueness of this network resides in its
ability to achieve detection at three different scales, thereby improving scale
invariance. The total dataset of 4,512 frames capturing construction workers
and equipment were extracted from construction site videos and labeled. Of
these, 4,114 images were used for the fine-tuning and the other data, 398 con-
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secutive images were used for testing. This test considered the three types
of object classes: construction worker; wheel loader and excavator. For the
proximity measuring this research homogenizes the 3rd coordinates of points,
thereby making distance measuring possible on a 2D image with a minimum
computation. Along this way, this method leverages a reference object whose
dimension is already known (e.g., a column foundation). After the rectifica-
tion, the proximity can be measured in a metric unit, and the struck-by hazard
can be visualized considering the unique scene scale. To evaluate the proposed
method’s accuracy in real-world applications, this research conducted two tests
on real-site aerial videos. The first tests the ability for mobile construction
entities to work a normal operation whereas the second test targets stationary
entities in a controlled environment. It results that it was a challenge to mea-
sure the proximity on the field without interrupting the site operations, while
also facing additional barriers to implementation.

Figure 2.21: Proximity monitoring proposed system [Kim et al., 2019].
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At the same time tests on real-site aerial videos showed a promising perfor-
mance of the proposed method; the mean absolute distance errors were less than
0.9m and the corresponding mean absolute percentage errors were around 4%.
Another issue, related with the real-time management, is the computational effi-
ciency in proximity monitoring as it ultimately aims at timely intervention. The
use in this research of a graphic process unit server with a 0.278s performance
lead to the consideration that this is not sufficient for real time emergency man-
agement taking into consideration the construction site vehicles average speed.
For this reason embedded systems capable of working data directly on site could
prove to be faster and more efficient for real-time applications.

2.4 Mixed Reality

2.4.1 Definition of Mixed Reality

The aim of developing real-time applications can find a valuable support in
the extended reality technologies. The arrival of Virtual-Reality, Augmented-
Reality, and Mixed-Reality technologies is shaping a new environment where
physical and virtual objects are integrated at different levels. Recent tech-
nological developments are changing the ways people experience the physi-
cal and the virtual environments. Specifically, Virtual Reality (VR) is likely
to play a key role in several industries [Berg and Vance, 2017], such as retail
[Bonetti et al., 2018] [Kerrebroeck et al., 2017], tourism [Griffin et al., 2017], ed-
ucation [Meißner et al., 2017], healthcare [Freeman et al., 2017], entertainment
[Lin et al., 2018] and research [Bigne et al., 2016]. Recent reports show that
sales of VR Head-Mounted Displays (HMD) have, for the first time, exceeded
one million in a quarter [Canalys, 2017]; the value of VR devices sold is ex-
pected to increase from US$1.5 billion in 2017 to US $9.1 billion by 2021
[CCSInsight, 2017]. The never stopping releases of standalone Virtual Real-
ity (VR), Mixed Reality (MR) Head Mounted Display (HMD) together with
the declining prices of these devices, will determine the huge increasing usage
of VR/MR.
The Real Environment is an actual setting where users interact solely with ele-
ments of the real world, whereas Virtual Environment is a completely computer-
generated environment where users can interact solely with virtual objects
in real-time. Between these extremes, we found technology-mediated reali-
ties where physical and virtual worlds are integrated at different levels. Some
of these cutting-edge technological devices are not only smaller and portable,
they are also wearable [Dieck et al., 2016] [Tussyadiah et al., 2018] and, in some
cases, are integrated into the human body. These technologies are included
in the users’ personal space to improve their experiences and extend their
sensory, cognitive and motor functions. According to Milgram and Kishimo
[Milgram and Kishimo, 1994] the conventionally held view of a Virtual Reality
(VR) environment is one in which the participant-observer is totally immersed
in, and able to interact with, a completely synthetic world. Their definition of
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Mixed Reality is the continuum in the middle between two extremes, the 100%

Figure 2.22: Virtuality Continuum Spectrum by Milgram and Kishimo.

virtual world and the 100% real world (Fig. 2.22).
Augmented Reality (AR) is then defined as any case in which an otherwise
real environment is "augmented" by means of virtual objects. The system can
also differentiate in immersive and non-immersive. Non-immersive systems are
the simplest and cheapest type of VR applications that use desktops to repro-
duce images of the world. Immersive systems provide a complete simulated
experience due to the support of several sensory outputs devices such as head
mounted displays (HMDs) for enhancing the stereoscopic view of the environ-
ment through the movement of the user’s head, as well as audio and haptic
devices. In between semi-immersive systems such as Microsoft Hololens.
Semi-immersive virtual reality refers to a specific type of VR that allows users
to experience virtual three-dimensional environments while remaining connected
to real-world surrounding visuals, auditory, smells, and haptics as well as keep-
ing control over physical objects. With semi-immersive VR, you can see what’s
going on around you and interact with the objects you need.
[Flavián et al., 2019] tried to offer a better understanding of these concepts and
integrate technological (embodiment), psychological (presence), and behavioral
(interactivity) perspectives to propose a new taxonomy of technologies, namely
the “EPI Cube”, a three-dimensional cube which can classify all the current and
potential new reality-virtuality technologies. In his theory of human-technology
mediation, Ihde [Ihde, 1990] regarded embodiment as situations in which tech-
nological devices mediate the users’ experience and, as a consequence, the tech-
nology becomes an extension of the human body and helps to interpret, perceive
and interact with one’s immediate surroundings. Presence is defined as the user’s
sensation of being transported to a distinct environment outside the real human
body. Thus, they concur with previous research and consider the technological
quality of the media as immersion (as a part of technological embodiment) and
the psychological perception of the user as the sense of presence [Slater, 2003]
[Thornson et al., 2009]. Interactivity is finally defined as the users’ capacity
to modify and receive feedback to their actions in the reality where the ex-
perience is taking place [Carrozzino and Bergamasco, 2010] [Muhanna, 2015].
They focused on what Hoffman and Novak [Hoffman and Novak, 1996] called
human-machine interactivity, where the participants interact with the mediated
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environment, which responds according to their actions.
Among all the revised taxonomies, the “Reality-Virtuality Continuum” proposed
by Milgram and Kishino [Milgram and Kishimo, 1994], has been the starting
point for researchers to classify the wide variety of realities. Real Environments
(RE) encompass the reality itself. MR was conceived as the different points of
the continuum at which real and virtual objects were merged. Consequently,
Augmented Reality (AR) and Augmented Virtuality (AV) are part of MR. MR
must no longer be the broad part of the continuum that includes AR and AV, as
noted by Milgram and Kishino (1994). It should be regarded as an independent
dimension falling between AR and AV and characterized by the total blend of
virtual holograms with the real world (Fig. 2.23). Thus the Reality-Virtuality
Continuum had been adjusted by differentiating the independent dimension of
Pure Mixed Reality (PMR) (Fig. 2.24).
Virtual content in PMR is not superimposed on the physical environment (as
in AR) but virtual objects are rendered so that they are indistinguishable from
the physical world. Visual coherence is a basic element of pure mixed reality
[Collins et al., 2017]. Users can interact with both virtual and real objects in
real-time and, simultaneously, these objects can interact with each other. This
“environment awareness” implies that not only virtual objects can act in the
real environment, but real objects can also modify the virtual elements, regard-
less of where the experience is taking place. For instance, in a pure MR, users
would not be able to see a virtual box under a table unless they bent down to
look at it; in an AR, the box would be overlaid and it would be unnecessary
to bend down. Currently, the only technological developments that can truly
be considered to be generating pure mixed realities are the holographic devices
Microsoft Hololens and the upcoming Magic Leap, which integrate virtual and
real objects in a real-time display.

Figure 2.23: New propose for virtuality continuum spectrum.
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Figure 2.24: Pure mixed reality explanation [Flavián et al., 2019].

2.4.2 Uptake of MR to real-time problems

The real-time is a valuable feature that can be exploited in several fields, es-
pecially the ones related to safety and on-site applications. As far as safety
is concerned [Kim et al., 2017] developed an application that exploits MR for
proactive accident prevention (Fig. 2.25). Their system show safety informa-
tion by means of a wearable device directly to site managers or worker. This
safety information is derived from an image-based safety assessment system.
The system comprises of three modules: vision-based site monitoring, safety
assessment, and hazard information processing and visualization modules. In
the monitoring module, global perspective images are acquired and utilized to
locate moving objects in the construction site so that the spatial relationship of
objects can be determined for calculating the safety information. The vision-
based site-monitoring module collects raw image data using a stationary camera,
specifically, a closed circuit television (CCTV), and a wearable device. On the
basis of the images from the construction site, multiple objects are tracked using
a motion-based object-tracking algorithm. Global perspective images captured
from the CCTV are used to track multiple moving objects so that hazard in-
formation can be generated. Using images and the orientation data acquired
from the wearable device, the location and heading direction of the worker are
extracted. Then fuzzy inference-based safety assessment method is used to
evaluate the safety of objects. The input variables are the proximity and crowd-
edness of each object, which are derived from the vision-based site-monitoring
module.
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Figure 2.25: hazard avoidance system [Kim et al., 2017].

The output variables are the safety levels of each object, which range from
zero (the most dangerous) to 10 (the safest). The visualization module displays
the safety information in the form of augmented reality in the wearable device.
Google Glass was utilized as the wearable device to capture the user perspective
images.
Other application of the real-time management of data with MR is the con-
struction site inspection.
[Zhou et al., 2017] proposed a MR application for rapid inspection of segment
displacement during tunneling construction. The result shows that all inspec-
tions and analyses can be conducted on-site, in real-time, and at a very low cost.
The live on-site scene can be captured by video camera, and the global coordi-
nate and virtual camera coordinate can be acquired by a tracking sub-system.
A virtual baseline model (3D CAD drawing) would be superimposed over an
onsite image in real time. Then, the combined scene will be conveyed to the end
users by a display subsystem. A widely used open source AR software package
called ARToolKitTM was used in this project to develop the on-site segment
displacement inspection system. The display of the displacement between two
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segments starts from a marker placed beside one of the segments. This leads
to the registration of a virtual model over the real displacement. The virtual
models for the segment displacement are created in AutoCAD with the same
dimensions as the designed shield segment and its threshold. Those models were
used as the baseline models. Then, the CAD files were converted to VRML files
to be loaded in the AR system.
Ammari and Hammmad [Ammari and Hammad, 2014] at the same time pro-
posed a framework for a collaborative BIM-based Markerless Mixed Reality,
focusing on the advantage of not having markers inside buildings. The frame-
work integrates CMMS, BIM, and video-based tracking in a setting to retrieve
information based on time and the location of the user, visualize maintenance
operations, and support collaboration between the field and the office to enhance
decision making (Fig. 2.26). With this system the detection and marking of a
defected building element starts with the inspector walking around the facility
for routine or scheduled inspection. After the inspector locates a defect, the
broken element is located and its ID is shown within the AR scene. BIM3R
then, gives the possibility of updating the BIM model with the information re-
trieved on site like: 1. type of the defect, 2. severity of the defect, 3. excepted
consequences, and 4. any other notes or observations.

Figure 2.26: BIM3R system architecture [Ammari and Hammad, 2014].
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All these data will be saved in XML-based database. BIM3R was developed
using Autodesk Revit 2013 for BIM modeling, Unity3D 4.2 for system devel-
opment, and D’Fusion Studio v 3.26 for creating markerless tracking scenarios.
The BIM-based modeling tool (e.g., Autodesk Revit) is used to create the 3D
BIM model, then converted to FBX format, supported by Unity3D Engine and
with sufficient building information for the purpose of visualization and data
retrieval. At the same time they saved the same BIM model as ifcXML file,
using it as a database to facilitate the data entry for the FM inspection tasks.
After that the two-way interaction relationship between the FBX file within
the user mobile application and the ifcXML model located on the server side
is necessary to update the scene with any added information collected on-site.
Video streaming data (frames) are processed using computer vision (CV) and
scenario manager tools within D’Fusion studio to create the tracking scenarios.
Information is added to the database using XML parser leading to the possibil-
ity of augmenting the building model and sharing information in real-time.

2.4.3 The use of Mixed Reality for building oriented ap-
plications

This real-time on-site display potentiality of MR can represent valuable features
also in the construction industry.
There are specific tasks that can benefit the most from this new technology. First
of all the superimposed digital representation of the project can be used for de-
sign verification [Zhou et al., 2017][Kopsida and Brilakis, 2016]. Most projects
still rely on 2D drawings, While Mixed Reality (MR) could theoretically be
the primary means of communicating design content to on-site personnel in 3D
through BIM methodology. The use of MR for design communication has been
studied through several past efforts. In the construction industry, Feiner was
the first to combine 3D Head Mounted Displays (HMDs) with mobile computing
technologies, creating a prototype that overlaid campus information on top of an
unobstructed view of a university campus [Feiner et al., 1997]. MR’s potential
as an onsite model visualization tool has also been well studied. It has been used
to visualize a 3D building model in its physical location [Honkamaa et al., 2007]
[Kopsida and Brilakis, 2016] and objects hidden behind other existing structures
[Smailagic and Siewiorek, 2004].
[Chalhoub and Ayer, 2018] proposed a study on the on-site display of electrical
conduit through holograms (Fig. 2.27). The tool they chose for MR implemen-
tation is Microsoft Hololens. They involved in the study a construction company
working with traditional procedures for the transmission of design document to
the construction site operators. Eighteen industry professionals participated in
this study, including shop electricians, managers, and site electricians. Half of
the participants had less than 1 year of experience assembling electrical conduit,
and eight of the participants had not assembled conduit in the past year. The
researchers aimed to compare the performance of each participant when using
paper, and when using MR for design information delivery. The researchers
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used a double-counterbalanced experimental design to make this comparison.
Two conduit designs were engineered for this research. Both designs used the
same prefabricated pieces in different order and orientation to create two unique
conduits. This ensured that no participant would assemble the same conduit
in both attempts, while ensuring that the assembly difficulty levels were com-
parable. If this approach had not been used and a participant would have
assembled the same conduit twice, once using paper and once using MR, their
performance could have been impacted by what they learned during their first
attempt. Moreover, if all participants started with one information delivery
method, the results could be subject to an order-induced error. Therefore, the
researchers also varied which mode of visualization was provided to a partici-
pant first. Three key behaviors were identified to measure the performance of
the participants, and enable direct comparison between the use of paper plans
and MR for conduit assembly: (1) duration to assemble conduit, (2) duration
looking at information and (3) duration to place conduit. The research proved
a significant reduction in time according to all these three indicators. Further-
more in this stydy they also assessed the quality taking into consideration the
information delivery realted to mistakes and rework. Two metrics were used in
this case: (1) the total number of mistakes; and (2) the total count of correct fi-
nal assemblies. The results were the total number of mistakes reduced by 75%,
but more importantly, reduced the amount of rework required by 72%. This
research work helps to demonstrate the benefit that MR can offer for reducing
construction errors. Moreover, after a questionnaire conducted at the end of the
experience, it results that expectancy in the benefit of MR in the construction
industry is high with more than the 50% of participants who agree or strongly
agree on sentences related to the advanteges in the use of this new tachnology.

Figure 2.27: Example of on-site visualization with Mixed Reality
[Chalhoub and Ayer, 2018].
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Design verification also lead to proactive rather than reactive defect man-
agement plan, saving useless waste of time and money. [Park et al., 2013] devel-
oped a marker-based AR method to detect defects in buildings. Starting from
a 3D model designed using ArchiCAD then it is converted to a WRL file, a
virtual reality modeling language. A marker containing the 3D design model
is made via a marker generator program, then the marker was attached on a
specified location. At this stage it is possible to read the BIM information in
the marker and to augment them onto real work place through mobile devices
such as smartphone or tablet PC. The augmentation consists of a picture taken
by the operator. This is compared with a 2D image generated from 3D BIM
model to prevent and check the possible errors, for instance of the door and
window openings as in Figure 2.28. The field application potentials of the AR
and image-matching applied inspection system can be well understood with this
research. Systems like this one are expected to enable managers to inspect and
control worker’s job performance more efficiently and also workers to confirm
their works more readily leading to a reduction in errors and therefore extra
time and unexpected cost.

Figure 2.28: Example of as-is model checking [Park et al., 2013].
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Augmented Reality have been used also to facilitate the inspection process.
AR based systems can simplify and reduce the time of inspection by providing
the inspector with instantaneous (real-time) access to the information stored
in the Building Information Modelling (BIM). However, since precise alignment
between the BIM model and the real world scene is still a challenge Kopsida and
Brilakis compared three methods for estimating the position and orientation of
the user [Kopsida and Brilakis, 2016]. Till now, for estimating the position and
orientation of the user, methods have been proposed that either use markers or
confine the user to a specific location, or use Global Positioning System (GPS)
which cannot operate efficiently in an indoor environment. The aforementioned
study presents an evaluation of different methods that could potentially be used
for a marker-less BIM registration in AR. Project monitoring is conducted by
visual inspections and the inspector needs to fill several forms, write reports
and perform extensive information extraction from drawings. Interior inspec-
tions can be even more complex (e.g. installation of Mechanical, Electrical, and
Plumbing, etc.). They compared 3 groups of methods. The first group uses
2D images taken from mobile devices and the model based AR framework, the
second group uses 3D and pose estimation data acquired from 2D images using
the LSD and ORB SLAM methods, and finally, the third group uses 3D and po-
sitioning data acquired from Microsoft Kinect and Google Project Tango which
can provide RGBD data directly. In the end they stated that compared to the
Kinect sensor, Project Tango offers a more robust motion tracking and although
the 3D reconstruction is noisier than Kinect, it can capture larger scenes and
operates more quickly, providing real-time advantages for AR inspection imple-
mentations required on busy construction sites.
The second task which can benefit from the real-time superimposed information
provided by MR is the management of work orders also during the FM phase.
Furthermore during operation speed and accuracy with which decisions can
be made in dynamic environments can be the difference between success and
catastrophic consequences, besides the efficiency improvement. According to
this [Irizarry et al., 2014] presented a scenario for the integration of augmented
reality (AR) and building information modeling (BIM) to build an ambient
intelligent environment for facility managers where mobile, natural, user inter-
faces would provide the users with required data to facilitate operations. In this
paper an ideal Ambient Intelligent environment has been proposed in which
healthcare facility management operational data requirements would be auto-
matically fetched from BIM databases of the facility, and would be augmented
as a layer of information over the real world view of the facility manager. Since
facility managers are often required to relate physical objects to database-like
text-based information, AR represents a good candidate to aid facility managers
with their routine tasks because their live view of a space could now be supple-
mented by the database information they need, all in one interface. Moreover,
since facility managers are constantly moving through the spaces they manage,
having a portable, mobile device would be beneficial if they were to employ AR
in their tasks.
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Figure 2.29: Example of information displayed on site through Mixed Reality
[Irizarry et al., 2014].

As shown in Figure 2.29 only the specific part of the information that is
required for performing the current task is displayed in the user interface. All
this information is provided from the BIM model of the facility that is the main
data repository of all the objects in the facility. A set of augmented visual steps
for fixing the leaking problem would be displayed on the tablet. The system is
BIM-based but it is also sensitive to changes in the environment and uses image
recognition to report those changes.
This system is thought to be built on a framework (based on BIM or some
other technology) that not only has been populated with all the required infor-
mation but also possesses the capability to be constantly updated to provide
real-time visual geometry guidance in the form of augmented reality. At the
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same time the European project INSITER focused on the support given to plan-
ning processes as well as production and construction workflows by interactive
MR visualization solutions and prototypes [Riexinger et al., 2018]. This project
proposes the utilization and development of MR solutions, which connect the
virtual and physical environment for self-inspection and self-instruction. Self-
inspection functionalities should enable and encourage workers and stakeholders
on site to check their own working processes and the results respectively, both
individually as well as in collaboration with others. Self-instruction features on
the other hand provide interactive guidance to any actors on site during their
working processes, preventing incorrect actions and helping the workers to rec-
tify any error immediately. The developed prototypes connect virtual models
and digital planning information based on Building Information Models with
the physical building or production site, to provide relevant data for different
stakeholders on-site. Digital planning data, such as 3D objects, BIM models
and BIM-based simulations with all its parts and assembly workflows are going
to be superimposed into the field of vision of the user to expand the perception
of reality. Within INSITER, 4D step-by-step simulations of on-site construc-
tion processes and product assembly steps within production environments have
been developed. After the creation of 4D simulations, the data can be made
available via export of the 4D simulations to the BIM or standardized file for-
mats to become available for self-instruction with the help of MR. The INSITER
IT environment includes four different layers (Fig. 2.30):

• the acquisition layer represents the gathering of on-site information.

• the adoption layer that will transfer the information into appropriate for-
mats to be stored on the INSITER BIM platform.

• the BIM layer which contain the BIM platform, combination of Postgre
SQL database, an Open BIM server and a SharePoint server.

• the application layer provides the whole INSITER toolset to interact with
the collected information to create benefits

Part of the applications are MR or AR solutions for the in-situ visualization
of digital planning or process data. Within this MR use case application, a
guided process workflow and assembly process with detailed and dynamic work
instructions has been developed and implemented to be used by assembly and
construction workers on site, see Fig 2.31. Enhanced MR visualizations, in-
cluding assembly process information, allow a high flexibility and productivity,
supporting the error-free assembly of components not only in the manufacturing
domain but also in the field of building construction [Riexinger et al., 2018].
With this method construction workers can be provided with detailed 4D BIM-
based on-site instructions. Within the described MR use case, a BIM-based
simulation of construction or refurbishment processes has been developed and
integrated.
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Figure 2.30: INSITER system structure [Riexinger et al., 2018].

The developed MR prototype enables detailed 3D scenes evaluation for any
production or construction element. Workers on site can visualize in-situ what
elements have e.g. to be attached, installed or removed for refurbishment works
or installations. Also project managers can monitor the installation work on site
and check if new machines, construction elements or MEP systems are correctly
installed.

Figure 2.31: Example of work orders displayed [Riexinger et al., 2018].
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Furthermore, one of the increasingly important application areas of AR is in
training and education (Fig. 2.32). This kind of BIM-AR integrated environ-
ment can be used for education purposes and training of the facility management
practitioners as well as students. Simulation can be used to illustrate concepts
and provide exercises that allow the learner to train in a realistic environment.
Training-based scenarios can be defined for different maintenance-related tasks
and trainees can be walked through performing them.
[Wang et al., 2017] proposed a training system called Augmented Reality oper-
ator training system (Fig. 2.33). With their system they try to overcome the
limits of the actual process of information retrieval such as not finding the right
information in a timely manner or the critical information that exists on different
platforms (e.g., paper-based specification, standalone-computers) characterized
by a lack of mobility. The technology platform that has been conceptualized
has a total of seven separate modules.

1. Remote Server Module: Remote server module consists of several experts
and a central database server.

2. Identification Module: This module uses RFID technology to identify
equipment.

3. Display module: ARvision-Stereo HMD, a prototype manufactured by
Trivisio Company, is used for display. A computer- integrated haptic
device can provide force feedback to the operator, which along with the
force-control algorithm can enable the novice to feel the simulated force.

4. Mobile Computer Module: This module is located on a high-performance,
light-weight laptop and consists of a local database, RFID antenna with
reader, and AR software.

Figure 2.32: Training information shown directly on-site [Riexinger et al., 2018].
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5. Tracker Module: AR EMS requires a means to track the user and equip-
ment’s locations within the construction site. The panel tags, static ob-
jects, and dynamic objects require multiple-trackers to be combined.

6. Input module: This module handles manipulation of the displayed digi-
tal content (e.g., clicking hypertext to browse details) and annotates the
comments. A data glove is used to manipulate a virtual 3D cursor and
yet not negatively alter equipment operation.

7. Representation module: Three types of digital content are defined—panel
tags, static object, and dynamic object.

The local database can be accessed by Sybase SQL anywhere as the database
query. All of the management data can be stored in the Sybase database. Tech-
nical imagery and data about the equipment fleet should be collected in order
to compile a comprehensive, equipment- specific database .
MR has been shown to enhance the spatial abilities among students
[Eh Phon et al., 2014] [Dünser et al., 2006]. MR was also used to teach engi-
neering students the relationship between 3D objects and their projections in
engineering graphic classes [Chen et al., 2011] and allowed students to better un-
derstand the construction site by site condition simulation [Shanbari et al., 2016]
[Issa and R.A., 2014]. MR was also used for workforce training purposes. Wang
and Dunston designed two MR training systems, one for operation and one for
maintenance of heavy construction equipment [Wang et al., 2017] [Wang and Dunston, 2007].
MR was deployed to also train crane operators [Juang et al., 2013] and for pro-
viding spatially relevant data for training architects, construction crews and
fireman on operation in large wooden buildings [Phan and Choo, 2010].

Figure 2.33: Information for site monitoring of working equipment
[Wang et al., 2017].
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The work by [Chalhoub and Ayer, 2018] too demonstrates the value of MR
for information transfer to new workers. At the end of their experiment, in fact,
it was noteworthy to see that participants with no conduit assembly experience
achieved the best times using MR, and they were also faster than the most ex-
perienced participants who used traditional paper plans.
Compared to real exercises, AR offers reduced costs and hazards and unlimited
training conditions/scenarios. This is particularly attractive in heavy construc-
tion equipment training. For example, a computer-generated virtual stockpile
or piping materials will incur only computational resource costs. In addition,
AR allows the creation of unlimited training scenarios (e.g., various terrain,
shapes and sizes of virtual stockpiles) providing flexibility without increasing
costs. The safety advantage can be realized in many situations such as the sim-
ulated fall of elevated virtual materials or equipment tipping due to lifting errors.

2.5 Conclusion

At the end of the analysis of this state of the art some drawbacks in current
surveying techniques are outlined. Despite the advent of BIM delineates new in-
formation requirements for a profitable building modeling it is still hard finding
real digital twins. This may be partially attributable to the high costs related
to the collection of data. Even the latest procedures defined by researchers still
require long post-processing phase. In addition they easily lead to inacurracies
due to the impossibility of checking collected data real-time.
The potentialities of ML and object recognition through NN can represent a
valuable solution for performing data interpretation immediately on-site. It
came out from this literature review the assessment that YOLO neural networks
are the most versatile for fast object recognition and customization, even if they
have not been exploited in construction industry yet. Furthemore this technol-
ogy would allow the identification of object type leading to a more straightfor-
ward harvesting of functional data going beyond component shape design on
which previous research has often been focused.
The MR on the other hand with the capacity of displaying information on-site
finds its best application for real time data management. This is even more true
thanks to the interaction that technician can have with holograms supporting
efficient building component survey.
The innovation proposed by this research lies in the possibility of performing
all the surveying tasks directly on site. This leads to the possibility of avoiding
post-processing phase for data interpretation. Furthermore this work focuses
on the collection of functional data rather than geometric ones. It also refers to
assets that are usually not taken into consideration by the majority of previous
research but which represent building components most affected by operational
management.
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METHODOLOGY

3.1 Introduction

In this chapter methods and technologies supporting the system development
will be described. Starting from the addressed issues of this research the specific
needs satisfied by the different tools will be outlined.
As far as Neural Network is concerned a brief explanation of all the most
widespread neural networks will follow. It follows the reasons for choosing
YOLO neural networks and all the details for the accomplishment of the training
process for custom recognition will be reported. The Darknet training frame-
work installation will be explained, including the dataset creation and finally
the setting for beginning the training phase. After these passages the validation
procedure is outlined both using the computer, as a tool for testing the goodness
of the network training, and the real-world one which includes the use of the
whole embedded system.
Later in this chapter the reader will deal with Mixed Reality technology. The
differences between Virtual, Augmented and Mixed Reality will be clarify. The
holograms features and development have been reported. In the end, the choice
of the MR tool is explained and its characteristics enlisted.
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3.2 Use cases

3.2.1 Addressed issues

Existing buildings management requires extensive information requirements on
a wide variety of different subjects. For this reason Facility Management per-
sonnel faces huge challenges in the retrieval of information. They usually on-site
rely on paper-based blueprints or on their experience, intuition, and judgment in
finding and locating building equipment such as HVAC systems and electrical,
gas, and water lines, which are located in places not readily visible. Finding the
right location of an equipment during operations is a time and labor consum-
ing action especially with newly assigned personnel and/or when an outsourced
FM group takes over responsibility for the facility, or when equipment has been
replaced or removed without the awareness of the FM personnel in charge. The
locating building components issue then becomes even more critical during an
emergency when also real-time management of information can mark the differ-
ence between a good or bad resolution of the problem [Phan and Choo, 2010]
[La Delfa et al., 2016]. Effective and immediate access of information would
minimize time and labor needed for retrieving it and help avoid ineffective de-
cisions made in the absence of information [Becerik-Gerber et al., 2011]. This
context brings out the need for building functional models. Functional models
can be digital building models including information crucial for specific man-
agement purposes that could be safety inside buildings, refurbishment action
needs, operation and maintenance just to name a few. As a consequence it
is emerging that the detailed survey of facilities components for the semantic
enrichment of geometric 3D models is urgent. Anyway data are still often col-
lected manually or by means of semi-automatic techniques for data collection
that lead to long post-processing for data interpretation. On the other hand,
however, data collection process as expressed before must be performed by ex-
pert technician and this made it costly and time consuming. The digitization
that the construction industry is facing in recent years instead has led to a
growing interest in one of the major benefits of this change: the automation of
processes. With the aim of reducing cost and trying to move towards the digi-
tization of processes this research proposes an advanced system for information
elicitation and engineering survey. This has been done exploiting the advantages
of three different technologies: Mixed Reality, BIM and Neural Network having
the aim of reducing post-processing effort in the interpretation of data thanks to
the automation of some processes and an efficient human-machine collaboration
[Naticchia et al., 2019].
Since BIM is spreading as a standard for information management, the afore-
mentioned semantic enrichment is expected to be conducted on the Asset Infor-
mation Model (AIM) populated from the as-built BIM model which would play
a beneficial role in many FM practices [Becerik-Gerber et al., 2011]. The core
innovation proposed in this research lays in the integration of several hardware
and software innovations into one system architecture:
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• Neural Networks, in the form of a trained Deep Learning Neural Net-
work which performs the recognition providing the operator with objects
features and position;

• Mixed Reality (MR) which operates as an interface between the user and
the digital information just created;

• BIM enrichment, finally data collected is translated into IFC format so as
to be added to a BIM model;

The proposed system develops efficient human-machine collaboration, employ-
ing MR as a powerful medium between human, reality and data [Corneli et al., 2019].
The visually supporting information provided by the MR tool, the possibility
of working on data directly on site and the portability of the system represent
means for increasing efficiency in survey operations.

3.2.2 Automatic inventory/survey support

The creation of BIM models of buildings, especially when talking about com-
plex structures, demands a lot of time and is also expensive. When it comes to
existing buildings, a large amount of multidisciplinary information essential for
efficient FM must be collected. This turns out to be a hard task, since usually as
built documents do not exist or are unreliable. In addition to this, some infor-
mation is difficult or impossible to find out [Scherer and Katranuschkov, 2017]
[Oesau et al., 2014]. All these aforementioned issues refer to the availability of
data that is a well-known problem especially in existing buildings
[Yang and Ergan, 2017]. For all these reasons, the first use case of this system
is the one regarding the automated acquisition of data (Fig. 3.1). In this first
case the operator on-site sends data about geometric features and building com-
ponents to the BIM database. With these data the BIM model can be updated.
The innovative contribution of this research in the survey is trying to mini-
mize the post-processing efforts. Not only does the proposed procedure want
to make building surveys faster but it also assists in resolving the information
availability issue. The support provided in this case by the MR tools resides in
the possibility of automatically detecting information on site and being able to
transmit it in real time to the database.
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Figure 3.1: Automatic inventory/survey support process.

3.2.3 Diagnosis support
The second task this system could bring benefits to is that one of diagnosis per-
formed on-site (Fig. 3.2). Correct and immediate localization of objects whose
conditions need to be assessed requires considerable effort. The mixed reality
display viewer avoids having to rely on paper documents, thus lowering the like-
lihood of introducing errors, helping in locating objects and providing all the
necessary information displayed on-site. Moreover, the MR capability to overlap
virtual reality to real things allows maintenance personnel to display attributes,
technical properties and details (e.g. component type, last maintenance opera-
tion, etc.). The diagnosis task could receive a great support also from the on
site visualization of causes analysis of defects. In this regard already exist in
literature case based libraries like the one by [Motawa and Almarshad, 2013]
which could be linked to building components and displayed on site. All the
aforementioned data start from building information databases and can then be
visualized thanks to a head-mounted display, directly on site.

3.2.4 On-site operation support
The last scenario is that of on-site operations support from expert technician.
This scenario is very similar to the diagnosis support adding the fact that during

Figure 3.2: Diagnosis on-site support process.
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Figure 3.3: On-site critical operation support process.

critical operations the maintenance operator is given the possibility of con-
sulting experts, who are off-site experts, in real time with the possibility of
sharing his view too (Fig. 3.3). In the case of standard operations, procedures
can be shown through the MR on-site. This initially implies a careful collection
of the currently in force procedures. This information in fact is part of the back-
ground to be included in the database. Having the possibility to consult the
standard procedures with this method on site, as well as reducing errors, also
shorten training time for new personnel. However sometimes it is not possible
to reduce operations to a standard procedure displayed as an object property.
For instance, in case of emergency, a standard procedure to be performed is
not always possible. These are the circumstances in which real time decision
support can be fundamental for the good success of operations. Being advised
by experienced personnel can be decisive and the powerful visualization capa-
bilities of the digital viewer allow to share information and images in real time.

3.3 Neural Networks

Since the start of the 21st century, many businesses have realised that Neural
Networks for computer vision will increase calculation potential. They span
from the automotive industry for cars self-driving to language recognition, from
face detection in social network to application that are able to recognize art
styles. As another significant application of computer vision, image change
detection plays an important role in not only civil but also military fields. The
image detection has been widely employed in remote sensing, medical diagnosis,
disaster evaluation, and video surveillance. The countless fields of application of
recognition with Neural Networks make the research on this topic more fervent
every day .
Companies struggle to stay ahead of the competition and these are some of the
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bigger projects now on the market [Morrison, 2018]:

• GoogleBrain (2012) - a deep neural network created by Jeff Dean of
Google, which focus on pattern detection in images and videos.

• AlexNet (2012) - this won the ImageNet competition by a large margin in
2012, which led to the use of GPUs and Convolutional Neural Networks
in machine learning.

• DeepFace (2014) - created by Facebook for people recognition.

• OpenAI (2015) - a non-profit organisation created by Elon Musk and
others, to create safe artificial intelligence that can benefit humanity.

• Amazon Machine Learning Platform (2015) - part of Amazon Web Ser-
vices, it shows how most big companies want to get involved in machine
learning.

• ResNet (2015) - a major advancement in CNNs.

• U-net (2015) - a CNN architecture specialised in biomedical image seg-
mentation.

Convolutional Neural Network, the kind of network chosen for this research
work, have shown satisfactory performance in processing two-dimensional data
with grid-like topology, such as images and videos. The architecture of CNNs is
inspired by the animal visual cortex organization. In the 1960s, Hubel and Wisel
[Hubel and Wiesel, 1962] proposed a concept called receptive fields. They found
that the complex arrangements of cells were contained in the animal visual cor-
tex in charge of light detection in overlapping and small sub-regions of the visual
field. The CNN topology leverages spatial relationships so as to reduce the num-
ber of parameters in the network, and the performance is therefore improved
using the standard backpropagation algorithms. Another advantage of the CNN
model is that it requires minimal pre-processing. The training procedure for a
CNN is similar to that for a standard NN using backpropagation. Instead of
setting parameters, as is the case with traditional NNs, it is only necessary to
train the filters in CNNs. Moreover, in feature extraction, CNNs are indepen-
dent of prior knowledge and human interference. The CNN structure is shown
in Figure 3.4. It is composed by a deep stacking portion and a classification
portion. The first one is an alternation of convolution and pooling layers. The
objective of the Convolution Operation is to extract the high-level features such
as edges, from the input image. Similar to the Convolutional Layer, the Pooling
layer is responsible for reducing the spatial size of the Convolved Feature. This
is to decrease the computational power required to process the data through
dimensionality reduction. Furthermore, it is useful for extracting dominant fea-
tures which are rotational and positional invariant, thus maintaining the process
of effectively training of the model. The second portion of the network starts
with a Flattening Layer which transforms a two-dimensional matrix of features
into a vector that can be fed into a fully connected neural network classifier.
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Figure 3.4: A diagram showing the different layers in a CNN [Saha, 2018].

Then there is a fully connected layer also known as the dense layer, in which the
results of the convolutional layers are fed through one or more neural layers to
generate a prediction. Finally a softmax layer, allows the neural network to run
a multi-class function for establishing the probability that each detected class is
present in the image. CNN has become a popular research topic in the past few
years. Great success has been achieved when CNNs are applied to the research
of computer vision. Detection is one of the most widely known sub-domains
in computer vision and the one exploited in this research work. It seeks to
precisely locate and classify the target objects in an image. As demonstrated
in [Szegedy et al., 2015], due to their strong abilities to capture the geometric
information such as object locations, DNNs have been widely used for detection
and have shown outstanding performance [Liu et al., 2017].
The first major success of convolutional neural networks was AlexNet, devel-
oped by Alex Krizhevsky, in 2012 at the University of Toronto. Convolutional
neural networks (CNN) are similar to other neural networks, they have weights,
biases, and outputs through a nonlinear activation. Regular neural networks
take inputs and the neurons fully connected to the next layers. Neurons within
the same layer don’t share any connections. Using regular neural networks for
images will involve a very large in size due to a huge number of neurons, result-
ing in overfitting. This cannot be used for images, as images are large in size.
An image can be considered a volume with dimensions of height, width, and
depth. Depth is the channel of an image, which is red, blue, and green. The
neurons of a CNN are arranged in a volumetric fashion to take advantage of the
volume. Each of the layers transforms the input volume into an output volume.
From the AlexNet breakthrough, many new uses have arisen for CNNs, many
of which go beyond image classification and rely on segmentation. Fully Convo-
lutional Networks (FCNs) represent the underlying model of recent attempts to
solve semantic segmentation using CNNs. These architectures omit the use of
fully connected layers. As well as being faster, this approach generates segmen-
tation maps from images of any size, (as opposed to the fixed-size constraint of
fully connected layers) [Moore, 2018] [Abiodun et al., 2018].
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Figure 3.5: LeNet Network structure [Chatterjee, 2016].

The subsequent is a list of the most famous Fully Convolutional Neural Net-
work:
- LeNet
No discussion of the CNN architectures can begin without this. A ground-
breaking algorithm that was the first of its kind and capability, in-terms-of
object classification. Originally trained to classify hand written digits from 0˘9,
of the MNIST Dataset. It comprises of 7 layers (Fig. 3.5), all made of trainable
parameters. Its input is a 32X32 pixel image, which is comparatively large in
size with regards to the images present in the data sets on which the network
was trained. The activation function applied is Rectified Linear Unit () func-
tion. The layers are arranged in the following manner:The First Convolutional
Layer consist of 6 filters of size 5X5 and a stride of 1 (stride is the number of
pixels shifts over the input matrix). The Second Layer is a “sub-sampling” or
average-pooling layer of size 2X2 and a stride of 2. The Third Layer is also
a Convolutional layer consisting of 16 filters of size 5X5 and stride of 1. The
Fourth Layer is again an average-pooling layer of size 2X2 and stride of 2. The
Fifth Layer is connecting the output of the fourth layer (400 parameters) to a
fully connected layer of 120 nodes. The Sixth Layer is a similarly fully-connected
layer consisting of 84 nodes, deriving from the outputs of the 120 nodes of the
fifth-layer. The Seventh Layer ( or the last layer) consist of classifying the out-
put of the last layer into 10 classes related to the 10-digits that it was primarily
trained to classify. Implementation of this architecture, on the data sets, using
various libraries, would reach an accuracy of around 98.9%. However, when it
came to processing large size image and classifying among a large number of
classes of objects, this network fails to be effective in terms of computation cost
or accuracy [LeCun et al., 1998].

- AlexNet
AlexNet, the winner of the ImageNet ILSVRC-2012 competition, was designed
by Alex Krizhevsky, Ilya Sutskever and Geoffery E. Hinton (Fig. 3.6). It is
able to reduce the top-5 error rate (when the target label is one of the top 5
predictions, the 5 ones with the highest probabilities) to 15.3 % compared to the
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Figure 3.6: AlexNet Network structure [Chatterjee, 2016].

error rate of the runners-up of that competition which attained an error rate of
26.2%. The network is similar to the LeNet Architecture, but has a large number
of filters compared to the original LeNet, and thus was able to classify among
a large class of objects. Moreover, it used “dropout” instead of regularization,
to deal with overfitting. Dropout essentially decreases the size of the number of
parameters to be accounted for during the process of training/learning. Let us
define the layers in short. It takes in input a color (RGB) image of dimension
224 X 224. First, a Convolution Layer (CL) of 96 filters of size 11 X 11 and
stride 4. Next, a Max-Pooling Layer (M-PL) of filter size 3 X 3 and stride =
2. Again, a CL of 256 filters of size 5 X 5 and stride = 4. Then, a M-PL of
filter size 3 X 3 and stride = 2. Again, a CL of 384 filters of size 3 X 3 and
stride = 4. Again, a CL of 384 filters of size 3 X 3 and stride = 4. Again, a
CL of 256 filters of size 3 X 3 and stride = 4. Then, a M-Pl of filter size 3 X 3
and stride = 2. The output of the last layer, when converted into input-layer
like for the Fully Connected Block consists of 9261 nodes, fully connected to a
hidden layer with 4096 nodes. The first hidden layer is again fully connected
to another hidden layer consisting 4096 nodes. This last hidden layer is fully
connected to the output layer implementing “softmax regression” of 1000 nodes
[Jansen and Zhang, 2007].

- VGGNet 16
This particular network architecture was the runners up of the ILSVRC-2014
competition, designed by Simonyan and Zisserman (Fig. 3.7). It was able to
achieve a top-5 error rate of 5.1%. Though it might look complicated with a
whole bunch of parameters to be taken care of, it is actually very simple. Devel-
opers prefer it highly, when it comes to feature extraction because of the simple
pattern that it follows. The basic hyperparameters regarding the filter size and
the strides for both of the convolution layer and the pooling layer are constant:
CONVOLUTION LAYER has filters of size 3 X 3 and stride = 1 and the MAX-
POOLING LAYER has filters of size 2 X 2 and stride = 2. These layers are
applied in a particular order throughout the network. Only the number of filters
defined for each convolution block differs.
It takes in a color (RGB) image of 224 X 224 dimensions. As shown in Figure
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3.7 the structure of this network is an alternation of convolutional and max-
pooling network growing in dimension. The output of the last Pooling Layer is
fed into a fully connected hidden layer consisting of 4096 nodes. This is again
fully connected to another hidden layer consisting again of 4096 nodes. This is
fully connected to an output layer implementing “softmax regression”, classify-
ing among 1000 classes of objects. That was a lot of layers. It thus has nearly
140 millions parameters to handle, which makes the task, of implementing this
network, challenging.
However, weights of pre-trained VGGNet are easily available, and can be used
by developers in their project [Simonyan and Zisserman, 2014].

- GoogleNet / Inception
The GoogleNet or the Inception Network was the winner of the ILSVRC 2014
competition, achieving a top-5 error rate of 6.67%, which was nearly equal to
human level performance. The model was developed by Google and includes a
smarter implementation of the original LeNet architecture (Fig. 3.8). This is
based on the idea of inception module. The basic idea behind the modules is
that, instead of implementing convolutional layers of various hyperparameters
in different layers, we do all the convolution together to output a result con-
taining matrices from all the filter operations together. This is an image of a
simple inception module with various convolutional layer implemented together.
The concatenated output consists of results from all the convolution operation.
Notice that one layer of convolution containing filters of size 1 X 1 is imple-
mented. This reduced the size of the image on which a further convolutional
layer, containing filters of size 5 X 5, is applied. The reason behind this is that,
the total number of computation units is reduced to a large extent. With the
GoogleNet network a Convolutional Layer of 16 filters of size 1 X 1 is applied
first, before the implementation of the Convolutional Layer of 32 filters of size
5 X 5, the size of the matrices decreases to 28 X 28 X 16 and then the second
convolution is done. Thus the total number of computations is:

Figure 3.7: VGGNet 16 Network structure [Das, 2017].
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Figure 3.8: GoogleNet Network structure [Szegedy et al., 2015].
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28x28x16(output of first convolutional layer)∗
1x1x192(size of the weight matrices of the first convolutional layer)

+28x28x32(output of the second convolutional layer)
∗5x5x16(size of the weight matrices of the second convolutional layer)

≈ 2.4million + 10.0million
≈ 12.4million

(1)

This number is significantly lower than than the 120 million weights ob-
tained without the first 1x1 filter. Thus, over all the total cost decreases. The
last layers are fully connected network layers followed by “softmax regression”
for classification in the output layer [Szegedy et al., 2015].

- ResNets
Probably after AlexNet, the most ground-breaking development in the field of
CNN architecture development occurred with ResNet or Residual Networks.
This is based on the idea of “skip-connections” (Fig. 3.9) and implements heavy
batch-normalization, that helps it in training over thousands of layers effectively,
without degrading the performance in the long run. The problem rose with the
training of deeper networks. The issue of “vanishing gradient” where repeated
multiplication being done, as the gradient is being back-propagated, makes the
gradient infinitely small. This results in degradation of performance. The idea
that was infused in this architecture was “identity shortcut connection” that
implies transferring the results of a few layers to some deeper layers skipping
some of the other layers in between. Figure 3.10 shows this network structure.

Figure 3.9: Skip-connection idea applied to ResNets [Chatterjee, 2016].
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The intuition behind it, was that the deeper layers should not produce higher
training errors than its shallower counterparts. The skip-connections were done
to implement this idea. This 1001 layer deep ResNet achieved a top-5 error rate
of 3.57%, which actually beats human level performance on the dataset.

- You Only Look Once (YOLO)
The network structure looks like a normal CNN, with convolutional and max
pooling layers, followed by 2 fully connected layers in the end. Some comments
about the architecture (Fig. 3.11): it was crafted to evaluate PASCAL VOC,
YOLO uses 7x7 grids (SxS), 2 boundary boxes (B) and 20 classes (C). This
explains why the final feature maps are 7x7, and also explains the size of the
output (7x7x(2*5+20)). Use of this network with a different grid size or different
number of classes might require tuning of the layer dimensions. The authors
mention that there is a fast version of YOLO, with fewer convolutional layers.
The sequences of 1x1 reduction layers and 3x3 convolutional layers were inspired
by the GoogLeNet (Inception) model. The final layer uses a linear activation
function. All other layers use a leaky RELU [Redmon et al., 2016].
The recognition of small objects pursued by this research takes place by means
of pre-trained neural networks. The objectives of this recognition process are:

• detecting the right location of the object;

• identifying the right type of object (e.g. fire extinguisher size).
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Figure 3.10: ResNets Network structure [Chatterjee, 2016].
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Figure 3.11: YOLO Network structure [Redmon et al., 2016].

Several types of neural networks exist and the YOLO is the one chosen for
this project. The choice of using YOLO networks depends on some features of
this type of network:

• the speed which is 45 frames per second;

• the simultaneous prediction of multiple bounding boxes;

• the simultaneous prediction of multiple label confidence score;

• it is open source.

Among all the types of neural networks that exist the YOLO, which are able
to perform classification and localization in one-step, is the one chosen for this
project. This choice depends upon the speed of this kind of NN which is 45
frames per second; making the snapshots processed in real-time, with negligible
latency of a few milliseconds. Furthermore, the YOLO can predict multiple
bounding boxes and scores simultaneously. Finally, it is an open source so-
lution. In this project, a pre-trained YOLO is used. In order to customize
the recognition process it is possible to re-train the last level of the network
[Naticchia et al., 2019].

3.4 YOLO Neural Networks

The YOLO project started in 2016 with the aim of reframing object detection
as a single regression problem, straight from image pixels to bounding box co-
ordinates and class probabilities. This was in contrast to the previous complex
pipeline of R-CNN that first generate potential bounding boxes in an image
and then run a classifier on these proposed boxes. The YOLO network uses
features from the entire image to predict each bounding box. It also predicts all
bounding boxes for an image simultaneously. This means the network reasons
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globally about the full image and all the objects in the image. The image is
divided into a S xS grid. If the center of an object falls into a grid cell, that grid
cell is responsible for detecting that object. Each grid cell predicts B bounding
boxes and confidence scores for those boxes. These confidence scores reflect how
confident the model is that the box contains an object and also how accurate it
thinks the box is that it predicts. If no object exists in that cell, the confidence
scores should be zero. Otherwise the confidence score is equal to the Intersec-
tion Over Union (IOU) between the predicted box and the ground truth. Each
bounding box consists of 5 predictions: x, y, w, h, and confidence. The (x, y)
coordinates represent the center of the box relative to the bounds of the grid
cell. The width and height are predicted relative to the whole image. Finally
the confidence prediction represents the IOU between the predicted box and any
ground truth box. Each grid cell also predicts C conditional class probabilities,
Pr(Class|Object). These probabilities are conditioned on the grid cell contain-
ing an object. For evaluating YOLO on PASCAL VOC, the parameters are S
= 7, B = 2. PASCAL VOC has 20 labelled classes so C = 20. Yolo architecture
is more like FCNN (fully convolutional neural network) and passes the image
(nxn) once through the FCNN and output is (mxm) prediction [Morrison, 2018].
YOLO is a single convolutional network that simultaneously predicts multiple
bounding boxes and class probabilities for those boxes. YOLO trains on full
images and directly optimizes detection performance. This unified model has
several benefits over traditional methods of object detection. First, YOLO is
extremely fast. This network runs at 45 frames per second with no batch pro-
cessing on a Titan X GPU and a fast version runs at more than 150 fps. This
means it can process streaming video in real-time with less than 25 milliseconds
of latency. Furthermore, YOLO achieves more than twice the Mean Average
Precision (mAP) of other real-time systems. Secondly, YOLO reasons globally
about the image when making predictions. Unlike sliding window and region
proposal-based techniques, YOLO sees the entire image during training and test
time so it encodes contextual information about classes as well as their appear-
ance. YOLO makes less than half the number of background errors compared
to Fast R-CNN (Fig. ??). Third, YOLO learns generalizable representations of
objects. When trained on natural images and tested on artwork, YOLO out-
performs top detection methods like DPM and R-CNN by a wide margin. Since
YOLO is highly generalizable it is less likely to break down when applied to
new domains or unexpected input [Redmon et al., 2016].
After the first development of YOLO the same developers worked to improve
some shortcomings focusing mainly on improving recall and localization while
maintaining classification accuracy. With YOLOv2 they were looking for a more
accurate detector that was still fast. Instead of scaling up the network, they
simplified the network and then made the representation easier to learn. The
new features of YOLO V2 were:

• Batch Normalization. It leads to significant improvements in convergence
while eliminating the need for other forms of regularization. By adding
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Figure 3.12: Performance comparison between Fast R-CNN and YOLO
[Redmon et al., 2016].

batch normalization on all of the convolutional layers in YOLO they get
more than 2% improvement in mAP. Batch normal- ization also helps reg-
ularize the model.

• High Resolution Classifier. All state-of-the-art detection methods use clas-
sifier pre-trained on ImageNet. For YOLOv2 they first fine tune the classi-
fication network at the full 448x448 resolution for 10 epochs on ImageNet.
This gives the network time to adjust its filters to work better on higher
resolution input. This high resolution classification network gives us an
increase of almost 4% mAP.

• Convolutional With Anchor Boxes. YOLO predicts the coordinates of
bounding boxes directly using fully connected layers on top of the convo-
lutional feature extractor. They remove the fully connected layers from
YOLO and use anchor boxes to predict bounding boxes.

First we eliminate one pooling layer to make the output of the network’s con-
volutional layers higher resolution. They also shrink the network to operate on
416 input images instead of 448x448. YOLO’s convolutional layers downsam-
ple the image by a factor of 32 so by using an input image of 416 the output
feature map is of 13x13. Using anchor boxes there is a small decrease in ac-
curacy. YOLO in its first version only predicted 98 boxes per image but with
anchor boxes YOLO v2 model predicts more than a thousand. Without anchor
boxes our intermediate model gets 69.5 mAP with a recall of 81%. With anchor
boxes our model gets 69.2 mAP with a recall of 88%. Even though the mAP
decreases, the increase in recall means that our model has more room to im-
prove [Redmon and Farhadi, 2017]. They propose a new classification model to
be used as the base of YOLOv2. It is called Darknet-19, has 19 convolutional
layers and 5 maxpooling layers. Darknet-19 only requires 5.58 billion operations
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to process an image yet achieving 72.9% top-1 accuracy and 91.2% top-5 accu-
racy on ImageNet.
Then in 2018 they released YOLOv3 that is able to predict an objectness score
for each bounding box using logistic regression with the performances expressed
in Figure 3.13. This should be 1 if the bounding box prior overlaps a ground
truth object by more than any other bounding box prior. If the bounding box
prior is not the best but does overlap a ground truth object by more than some
threshold they ignore the prediction. Each box predicts the classes the bound-
ing box may contain using multilabel classification. They do not use a softmax
as we have found it is unnecessary for good performance, instead they simply
use independent logistic classifiers. During training we use binary cross-entropy
loss for the class predictions. This formulation helps when we move to more
complex domains like the Open Images Dataset. In this dataset there are many
overlapping labels (i.e. Woman and Person). Using a softmax imposes the as-
sumption that each box has exactly one class which is often not the case. A
multilabel approach better models the data. Their network uses successive 3x3
and 1x1 convolutional layers but now has some shortcut connections as well and
it is significantly larger. It has 53 convolutional layers so they call it Darknet-53
(Fig. 3.14) [Redmon and Farhadi, 2018].
There have developed also a fast version of YOLO designed to push the bound-
aries of fast object detection. Fast YOLO uses a neural network with fewer
convolutional layers (9 instead of 24) and fewer filters in those layers. Other
than the size of the network, all training and testing parameters are the same
between YOLO and Fast YOLO. The final output of our network is the 7 x
7 x 30 tensor of predictions [Redmon et al., 2016]. The YOLO chosen for this
research is the Yolo v2 Tiny (Fig. 3.15) which has fewer parameters than Yolo
v1. Its network structure is composed of 9 convolution layers and 6 maximum
pooling layers [Li et al., 2018].

Figure 3.13: YOLO v3 speed/accuracy tradeoff [Redmon and Farhadi, 2018].
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Figure 3.14: Darknet-53 [Redmon and Farhadi, 2018].

Figure 3.15: YOLO Tiny v2 structure [Li et al., 2018].
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3.5 YOLO training process

The inputs of a Neural Network are weighted and summed as shown in Figure
3.16. The sum is then passed through a unit step function, in this case, for a
binary classification problem. A perceptron can only learn simple functions by
learning the weights from examples. The process of learning the weights is called
training. The model values are initialized with random values during the begin-
ning of the training. The error is computed using a loss function by contrasting
it with the ground truth. Based on the loss computed, the weights are tuned at
every step. The training is stopped when the error cannot be further reduced.
The training process learns the features during the training [Moore, 2018].
In order to customize a neural network for the recognition of a specific object
this needs to be re-trained. Two processes can be followed:
- doing a training from scratch;
- using a pre-trained network and exploiting the tansfer learning.
As the deep neural network is not sensitive to the features, the models trained for
some special purposes can be used or partially integrated into the new model
with the help of transfer learning. In this way, the time and hardware cost
would be significantly reduced, making the deep neural network more practi-
cal. Thus, researchers and professionals introduce transfer learning to store the
knowledge gained from solving one problem and applying it to a different but
related problem. Convolutional neural networks can be designed from scratch
and subsequently trained on various datasets to achieve optimal performance.
This approach requires a large amount of time, even when there are sufficient
hardware resources. Transfer learning uses a machine learning algorithm (e.g.
CNN) as an extractor of features which are then fed into another classifier
[Kolar et al., 2018].

Figure 3.16: Neural Network general structure [Moore, 2018].
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For training process in this research the Darknet neural network framework
has been used as advised by YOLO developers [Redmon and Farhadi, 2018].
In the following paragraphs the training process will be explained starting from
the essential tool of the training framework.

3.5.1 The training framework

In order to train the network it is necessary to have a training environment.
The following ones are all the necessary requirements [AlexeyAB, 2019]:

• Windows or Linux;

• CMake >= 3.8 for modern CUDA support;

• CUDA;

• OpenCV >= 2.4;

• cuDNN >= 7.0;

• GPU with CC >= 3.0;

• on Linux GCC or Clang, on Windows MSVC 2015/2017/2019.

Since this project involves the use of YOLO neural network it has been decided
to use the training platform advised by the developer of the network itself:
Darknet-19 [Shinde et al., 2018]. Darknet is an open source neural network
framework written in C and CUDA. It supports CPU and GPU computation
[Redmon, 2018].
In order to install Darknet it is necessary to set the proper environment. This
consists mainly in the installing of a development system and the aforemen-
tioned dependancies [Redmon, 2016]. The development system is Visual Studio
installed with its default options. The dependencies are CUDA, cuDNN and
OpenCV.
Starting from CUDA, the version installed is the 9.1. This installation requires
also the installation of the NVIDIA Graphics Drivers if not yet on the pc.
The second installation to be done is cuDNN version 7.0.
Finally it follows the installation of OpenCV 3.4.0.
After having done all this installations Darnet needs to be compiled with the
following procedure:

1. Start Microsoft Visual Studio

77



Chapter 3

2. Open the darknet.sln

3. set x64 and Release (Fig. 3.17)

Figure 3.17: Visual studio setting for Darkent compilation: x64 bit and Release
version.

4. Include cudnn.lib in your Visual Studio project (Fig. 3.18).

Figure 3.18: Visual studio setting for Darkent compilation: including cudnn.lib.

5. Build > Build darknet.

At this moment the darknet.exe is generated inside the folder.
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Figure 3.19: Inserting OpenCV, CUDA and cuDNN in the darknet.exe folder.

Finally darknet needs to be prepared for using OpenCV, CUDA and cuDNN.
The bin file has to be placed in the same folder of darknet.exe (Fig. 3.19). Bin
and include folders have to be inserted also in CUDA folder if they are not
already there. Finally a new Windows variable cudnn has to be created (Fig.
3.20).

Figure 3.20: Creation of the new Windows variable for cudnn.
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3.5.2 The Dataset creation

The dataset to train the network to recognize a specific object must have spe-
cific features. With the aim of identifying only the right object (e.g. fire extin-
guisher) the dataset will include at least one image for every existing type of
fire extinguisher, considering that, to be efficient, the network should be able to
recognize the object in every situation. This means that if for the same object
it is possible to find different shapes they must be all included into the dataset.
Furthermore it has to be taken into consideration that the recognition is per-
formed according to different environmental conditions such as lighiting or view
point. All these factors must be considered when collecting pictures for a new
dataset. In order to successfully recognize the object at the first attempt the
dataset should contain a high number of pictures of the same object. It is a
hard task to define a minimum number because it depends also upon the object
specific features. Something red usually on top of a white surface, like a fire
extinguisher, would be easier to recognize in comparison to a white socket on a
white wall. Furthermore the network would not be able to recognize the type
of object only by the overall appearance or shape. For this reason, identifying
object components that determine its type and working on the recognition of
them could represent a valuable solution. According to the COCO dataset ap-
proach choosing images with the object in context improve the recognition of it
in real scenarios [Lin et al., 2014]. For this reason pictures with the objects in
their common context have been preferred in this research.
The presence of multiple objects in the same pictures is another parameter that
improves the performance of the network. For instance it is common in some
countries (e.g. UK) that the most common configuration requires two fire extin-
guishers one next to the other. The same reasoning can be done for emergency
signals since there could be more than one in a corridor and also it is plausible
to have different signals indicating different kind of exit close to each other.
Another parameter taken into consideration is the perspective. As pointed out
by Radovich et al. [Radovic et al., 2017] even if the object is present in a dataset
the point of view is a fact that counts. For this reason the pictures chosen in
this research represent a plausible perspective from an operator walking inside
a building. At the end of this chapter it is possible to see some pictures of the
datasets used in this work.
The chose of starting with fire extinguishers and emergency signs depends only
upon the fact that the fire protection system is one of the facility most subjected
to periodic checkings. The system proposed can be generalized for every equip-
ment asset inside buildings. Collecting pictures for the dataset can be a tough
task. As stated before it is not only having images of the objects themselves but
it involves also inserting them in the right context. Moreover collecting origi-
nal images is always a time consuming task. There have been defined different
techniques to gather pictures, amoong them the most used are the following
ones:

1. crowdsourcing;
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2. web scraping.

Generally speaking the crowdsourcing regards all the possible processes to ob-
tain information or input into a particular task or project by enlisting the ser-
vices of a large number of people, either paid or unpaid, typically via the In-
ternet. The benefits of this kind of process as far as the dataset creation for
NN training is concerned are more than one. Unlike datasets shot in controlled
environments crowdsourcing brings in diversity which is essential for generaliza-
tion [Laptev and Gupta, 2016]. In fact collecting images from people enhances
the possibilities of having different context, lighting and also object features.
Moreover crowdsourcing splits the task of collecting images among several par-
ticipants and this means an easier task to accomplish but also a bigger number
of items collected with less effort. In this research the method used was more
inspired by the crowdsourcing than a real implementation of it. In this case
the task was not spread by internet but among people in the department and
acquaintances outside the university.
On the other hand the digital era has brought with it an enormous explosion
of data. The latest estimations put a number of more than 3 billion photos on
Flickr, a similar number of video clips on YouTube and an even larger number
for images in the Google Image Search database [Deng et al., 2009]. For these
reasons another common technique used to increase the number of pictures is the
web scraping. In this case three popular sites have been exploited: 1. Google;
2. Flickr (already used in other research like [Everingham et al., 2015]); 3. In-
stagram. As far as Google is concerned a phyton script has been used for web
scraping images [Github, 2019].
The script needs one or more keyword for the research and the desired number
of images has to be set. Since search engines usually limit the number of images
retrievable one method to expand the query is the use of synonyms. To further
enlarge and diversify the candidate pool, it is also advisable to translate the
queries into other languages and in this case we used both Italian and English
definitions [Deng et al., 2009]. After performing several Google queries the pro-
cess of filtering the noisy results have been performed [Ordonez et al., 2011].
In this way only the more relevant pictures have been kept. The other contri-
bution for the harvesting of a large set of images has been the searching and
downloading of images on Flickr. Flickr is an image and video hosting service
with more than 3.5 million new images uploaded daily. Also in this case the
expedient of using translation in different languages of the keyword have been
used. The exact same thing has been pursued with Instagram which is a photo
and video-sharing social networking. The only difference in this case was that
looking for images in Instagram requires the use of the hashtag, a metadata tag
for social networks.
As the dataset must include thousands of pictures, a common technique consist
in the usage of both original pictures, from real buildings in this case, and graph-
ically re-edited photos. The process of editing the original photos for the dataset
is called augmentation. Data augmentation gives ways to increase the size of
the dataset. Data augmentation introduces noise during training, producing
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robustness in the model to various inputs. This technique is useful in scenarios
where the dataset is small and can be combined and used with other techniques.
The percentage of original images and modified images has been studied in order
to obtain a trained network with good performances [Montserrat et al., 2017].
After a comparison between the result of different training done with different
dataset that are 100% , 50% and 25% made out of augmented images the result
is that, if the number of object poses is the same, the 50% is the best amount of
augmented images. On the other hand when the comparison is among different
numbers of poses of the object the higher the number of images (even if all
augmented) the better the performance. These are matters to take into consid-
eration when deciding the number, and therefore the percentage, of augmented
images.
There are various ways to augment the images as described in the following list
[Moore, 2018]:

• Flipping: the image is mirrored or flipped with respect to a horizontal or
vertical direction;

• Random cropping: Random portions are cropped, hence the model can
deal with occlusions;

• Shearing: the images are deformed to affect the shape of the objects;
• Zooming: zoomed portions of images are trained to deal with varying

scales of images;
• Rotation: the objects are rotated to deal with various degrees of change

in objects;
• Whitening: the whitening is done by a Principal Component Analysis that

preserves only the important data;
• Normalization: normalizes the pixels by standardizing the mean and vari-

ance;
• Channel shifting: the color channels are shifted to make the model robust

against color changes caused by various artifacts.

There can be also other variations not mentioned like for instance the resize
and the distortion. Other methods also exist that can be considered a way of
augmenting the data. These involve the generation of fake images overlapping
real images of the object to recognize on top of an image of a plausible context
[Jeong et al., 2018].
In this work the augmentation involves only the modification of the whole pic-
ture according to the list of possible operations mentioned above. These trans-
formations have been performed with the help of a custom MatLab script. This
tool gives the possibility to automatically modify the photos, choosing what
transformations must be performed, the starting dataset and the number of
images to be created. Not only this, the script also automatically modifies the
bounding box, an instance that will be explained later in this section. The
custom script applies the following transformations with these parameters:
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• Pixels transformation

– Resize: image, minValue, maxValue, probability
– Shifting: image, hueShift, saturationScale, saturationShift, valueScale,

valueShift, probability
– Additive noise: image, percentagePixels, probability

• Geometric transformations

– Rotate: image, annotations, minValue, maxValue, objectCornerRa-
dius, probability

– Zoom: image, annotations, minValue, maxValue, probability
– Crop: image, annotations, minValue, maxValue, probability

There are also ready available scripts to run the augmentation [Augmentor, 2019]
but the reason why a customized one has been used is that with it also the
bounding box are coherently modified avoiding the need of labelling a huge
amount of pictures afterwards.
The creation of the dataset involves also labelling all the images. Labeling de-
fines the approach of marking all regions of interest in a set of pictures and
defining the type of marked region [Braun et al., 2019]. Creating the label in-
volves both the design of the bounding box around the object to recognize and
attaching the correct label to it. This operation could be performed in many
different ways both manually and with the aid of software tools.
In the case performed in this thesis we worked using a tool that supports the
manual drawing of the bounding box and which gives the possibility of adding
a label to every single box according to the category of the object involved in
the recognition (Figure 3.21) [VoTT, 2019].
This tool gives the possibility to choose the right output format according to

the kind of network chosen. The output for the YOLO network is a .txt file,
with the coordinates of the boxes and the label attached to them as shown below.

The final task to complete the dataset is the definition of the train and test
sets of images. The train set is defined by a .txt file listing all the images that
will be used for training. On the other hand the test list of images, also defined
by a .txt file, will be used after the training phase to verify the performances of
the network.
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Figure 3.21: Bounding box design with VoTT software.

3.5.3 Training the network
After having created the dataset the training session can start.
There are some files to set before starting the process:

• the .cfg file of the network chosen

• the .data file

• the .names file

• the .weights file

As far as the .cfg file is concerned some parameters have to been taken into
consideration for training a customized network. The parameters to check are
[Tijtgat, 2017] [AlexeyAB, 2019]:

• batch = 64, this means we will be using 64 images for every training step;

• subdivision = 8, the batch will be divided by 8 to decrease GPU VRAM
requirements. If you have a powerful GPU with loads of VRAM, this
number can be decreased, or batch could be increased. The training step
will throw a CUDA out of memory error so you can adjust accordingly;

• classes = 1, the number of categories we want to detect;

• filters = (classes + 5)*5.

The .data file is the file that the software reads to train the network. It contains
all the paths to the other necessary files for the training process as show in
Figure 3.22.
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Figure 3.22: .data file for network training

The classes parameter is the number of different objects for the training
process, the train is the path of the train list of images, the valid is the path
for the test list of images, names is the path for the .names file and finally the
backup define the name of the backup folder where all the weights created will
be saved.
The .names file (Fig. 3.23) is the file that contains the name of the tag inside
the images of the dataset. The tags are identified by the row number inside the
file.

Figure 3.23: .names file containing name tags.

The weights have to been chosen according to the network that one wants
to train. Choosing the weight file means that the network used is a pre-trained
network with a general dataset (CoCo, PascalVoc or others). It would be pos-
sible also not to choose any weights file and in that case the network will be
trained from scratch and it will not profit from the transfer learning process.
The training command line can be sent from Windows Power Shell, a command-
line shell with associated scripting language. To be in power of letting the train
start the command has to be sent inside the folder where the executable of
Darkent is located. The the command line will be as follows (Fig. 3.24):

Figure 3.24: Training command line
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where the paths of the .data file, the .cfg file and .weights file are defined.
The -map > log.txt command is an output request so as to have the trend of
the mean average precision and the loss mapped on a chart.
During the training of the network on one hand it is possible to see in a chart
(Fig. 3.25) the mean average precision (mAP) increasing in value. On the other
hand, there is the calculation of the loss function by means of Equation 1. The
loss function only penalizes classification error if an object is present in that grid
cell. It also penalizes bounding box coordinate error only if that predictor is
“responsible” for the ground truth box (i.e. has the highest IOU of any predictor
in that grid cell).
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The output of the training process therefore are:

• the chart with the mAP progress in red and the Avg progress in blue (Fig.
3.25);

• the log file with all the operations executed to train the network (Fig.
3.26), it contains the report of all the epoch, with the avg and mAP
values;

• the backup folder which contains the weights of the trained network saved
at predefined stages (1000 epochs this case).

Looking at Figure 3.26 line third:

• 411267 indicates the current training iteration/batch;

• 1.623754 is the total loss;
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• 2.182349 avg is the average loss error, which should be as low as possible;

• 0.000100 rate represents the current learning rate, as defined in the .cfg
file;

• 0.469000 seconds represents the total time spent to process this batch;

• The 26321088 images at the end of the line is nothing more than 9778 *
64, the total amount of images used during training so far.

Figure 3.25: Output chart of the training process
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Figure 3.26: Output log file of the training process

Looking then at the Region Avg line the meaning of the values is the follow-
ing:

• Region Avg IOU: 0.428098 is the average of the IOU of every image in
the current subdivision. A 32,66% overlap in this case, this model still
requires further training.

• The Avg Recall: 0.347826 is defined in code as recall/count, and thus a
metric for how many positives YOLOv2 detected out of the total amount
of positives in this subdivision. In this case only one of the eight positives
was correctly detected.

• count: 23 is the amount of positives (objects to be detected) present in
the current subdivision of images (subdivision with size 8 in our case).
Looking at the other lines in the log, it can be noticed that there are also
subdivisions that only have 6 or 7 positives, indicating there are images
in that subdivision that do not contain an object to be detected.

The training process can be stopped when the average loss reaches an acceptable
value. In that case even if the mAP has not reached good results going on with
the training will not lead to better performances. It is hard to find in literature
the exact value under which the average loss can be considered low enough. As a
rule of thumb, according to what found in other customize network experiences,
over one zero after the point everything is considered acceptable (e.g. 0.02 or
less).

3.5.4 Validation process

The most common indexes used for the evaluation of Neural Network perfor-
mances are precision (Eq. 2) and recall (Eq. 3) [Li et al., 2018] [Hamledari et al., 2017]
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[Deng et al., 2009] [Montserrat et al., 2017] [Quintana et al., 2018] [Everingham et al., 2015].

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

True Positives (TP) and False Positives (FP) are the number of objects
correctly and incorrectly predicted, respectively, as the object of interest. Simi-
larly, True Negatives (TN) and False Negatives (FN) are the number of objects
correctly and incorrectly recognized as background. Because the precision and
recall rates cannot be reported for scenes without any actual positives, the im-
ages taken into consideration contain at least one instance of the objects of
interest [Hamledari et al., 2017].
To compute the mean Average Precision (mAP), the Precision and Recall are
required. Precision is the ratio of correctly predicted positive observations to
the total predicted positive observations. Recall is the ratio of correctly pre-
dicted positive observations to all the observations in actual class. For each
class, a Precision/Recall curve is obtained by varying the threshold parame-
ter from 0 to 1. The average precision is defined as the area under the curve.
The Mean Average Precision (mAP) is computed by averaging the AP value for
all classes. The previous process is repeated obtaining the AP for each class
[Montserrat et al., 2017].
Besides the calculation of Precision and Recall also the F1 parameter has been
measured. This metrics is frequently used in pattern recognition performance
assessment [Quintana et al., 2018]. F1-measure is a measure that combines Pre-
cision and Recall, using a kind of weighted average (Eq. 4).

F = 2
Precision ∗Recall
Precision+Recall

(5)

89



Chapter 3

Figure 3.27: Output of the validation process pursued on a desktop and following
evaluation for Precision and Recall calculation.

The validation for all the training processes pursued has been done using
the same test dataset so as to make the tests comparable. Moreover the first
tests have been conducted on a desktop so as to assess the performance of the
custom neural network with the same kind of input data as the training one.
Figure 3.27 shows the output of the test and the evaluation about the result for
the calculation of precision and recall. The third colum shows the confidence
score for every single object detected marked by its bounding box.
Figure 3.28 shows the command line for the validation of the customized net-
work. Within the line it is possible to find the path to the .data file; the path to
the YOLO network structure; the path to the chosen weights for the validation
process. As stated before in this chapter, in fact, the training produces a num-
ber of weights file according to the saving settings of the Darknet framework.
In this research two Darknet frameworks have been set, one saved the weights
every 1000 iterations, the other did it every 100 iterations. This depended upon
the possibility of reaching the weights closest to the maximum mAP obtained
by the network training. With this aim for every validation it has been selected
the weights closer to the number of iteration that had obtained the higher mAP.
Finally in the command line it is possible to see a threshold setting. This is
the minimum confidence score to be taken into consideration for showing the
recognition result.
Following the validation done on a desktop a real-world scenario validation was
unavoidable to start testing the feasibility of the system. Figure 3.29 shows
one of this tests conducted in the DC3 laboratory at Politechnic University of
Marche. In this case in addition to confidence score, TP, TN and FP and FN
another parameter has been registered. The lag between sending the picture
to the embedded system and the recogniton performed. This is fundamental
in order to assess the possibility of using the system for real-time applications
directly on site.

Figure 3.28: Command line for the validation procedure of the customized net-
work.
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Figure 3.29: Real-world validation of the customized network for fire extin-
guisher recognition.

3.6 Mixed reality

Mixed reality is the result of blending the physical world with a digital represen-
tation. Advancements in sensors and processing are giving rise to a new area of
computer generated input from environments. The interaction between comput-
ers and environments is effectively environmental understanding or perception.
Environmental input captures things like a person’s position in the world (e.g.
head tracking), surfaces and boundaries (e.g. spatial mapping and spatial un-
derstanding), ambient lighting, environmental sound, object recognition, and
location. Now, the combination of all three, computer processing, human input,
and environmental input, sets the opportunity to create true mixed reality expe-
riences (Fig. 3.30). Movement through the physical world can be transferred to
movement in the digital world. Boundaries in the physical world can influence
application experiences in the digital world. Without environmental input, ex-
periences cannot blend between physical and digital realities. The experiences
that overlay graphics on video streams of the physical world are augmented
reality. The experiences that occlude your view to present a digital experience
are virtual reality. As you can see, the experiences enabled between these two
extremes is mixed reality [Microsoft, 2018e]:

• starting with the physical world, placing a digital object, such as a holo-
gram, as if it was really there.

• starting with the physical world, a digital representation of another person
shows the location where they were standing when leaving notes. In other
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words, experiences that represent asynchronous collaboration at different
points in time.

• starting with a digital world, physical boundaries from the physical world,
such as walls and furniture, appear digitally within the experience to help
users avoid physical objects.

In Pure Mixed Reality (PMR), users are placed in the real world and digital
content is totally integrated into their surroundings, so that they can interact
with both digital and real contents, and these elements can also interact among
them (Fig. 3.31) [Flavián et al., 2019].

3.6.1 Holograms that overlap reality

Holograms are objects made of light and sound that appear in the world, just as
if they were real objects. Holograms add light to the world, which means that
a person sees both the light from the MR tool display and the light from your
surroundings. Holograms can have many different appearances and behaviors.
Some are realistic and solid, and others are cartoonish and ethereal. Holograms
can highlight features in your surroundings, and they can be elements in an
app’s user interface.

Figure 3.30: Mixed reality experience as the combination of three inputs: com-
puter processing, human input, and environmental input [Microsoft, 2018e]

.
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Figure 3.31: Differences between Virtual, Augmented and Mixed Reality with
regard to the connection with real environment [Haueiss, 2017].

Holograms can also make sounds, which will appear to come from a specific
place in the surroundings. Not only an hologram can be placed precisely in the
world and walking around it, also it will appear stable relatively to the sur-
rounding world. Using a spatial anchor to pin that object firmly to the world,
the system will even remember where it has been left once back. Holograms can
also be set to follow the user. Two meters is usually the most optimal distance
between the user and the hologram (Fig. 3.32).
Holograms are not only about light and sound; they are also an active part
of the world since they can even interact with the surroundings. For example,
it is possible to place a holographic bouncing ball above a real table. Holo-
grams can also be occluded by real-world objects. For example, a holographic
character might walk through a door and behind a wall, out of the user sight
[Microsoft, 2018a].
There are some tips that developers must follow for integrating holograms and
the real world:

• Aligning to gravitational rules makes holograms easier to relate to and
more believable.

• Many designers have found that they can even more believably integrate
holograms by creating a "negative shadow" on the surface that the holo-
gram is sitting on.

To ensure maximum comfort on head-mounted displays, it is important for de-
signers and developers to create and present content in a way that mimics how
these cues operate in the natural world. Users see the world of mixed reality
through lenses working as displays powered by the headset. Developing Mixed
Reality apps mostly means placing holograms in your world that look and sound
like real objects. This involves precisely positioning those holograms at places
in the world that are meaningful to the user. Spatial mapping makes it possible
to place objects on real surfaces.
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Figure 3.32: Optimal distance range for placing holograms [Microsoft, 2018a].

This helps anchor objects in the user’s world and takes advantage of real
world depth cues. Users can touch and manipulate holograms directly with one
or both hands much like they do with real world objects. Designing content for
mixed reality requires careful consideration of color, lighting, and materials for
each of the visual assets used. This means incorporating as many of the visual
cues as we can that help us (in the real world) understand where objects are,
how big they are, and what they are made of [Microsoft, 2018b].
One possible tool for the creation of Mixed Reality applications is Unity. Unity
is a cross-platform game engine developed by Unity Technologies and used to
develop video games for PC, consoles, mobile devices and websites. In order to
work with Mixed Reality inside a Unity project there are a small set of Unity
settings that need to be manually changed for Windows Mixed Reality. These
are broken down into two categories: per-project and per-scene. Otherwise
Microsoft developed the Mixed Reality Toolkit (MRTK) which is now at his
version no. 2. The MRTK v2 with Unity is an open source cross-platform
development kit for mixed reality applications. All of the core building blocks
for mixed reality applications are exposed in a manner consistent with other
Unity APIs. They are:

• Camera: when you wear a mixed reality headset, it becomes the center of
your holographic world. The Unity Camera component will automatically
handle stereoscopic rendering and will follow your head movement and
rotation when your project has "Virtual Reality Supported" selected with
"Windows Mixed Reality" as the device.

• Coordinate systems: which is fundamental for precisely positioning and
orienting holograms at places in the world that are meaningful to the user.

• Gaze: conceptually, head-gaze is implemented by projecting a ray from
the user’s head where the headset is, in the forward direction they are
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facing and determining what that ray collides with. In Unity, the user’s
head position and direction are exposed through the Unity Main Camera,
specifically.

• Gestures and motion controllers: there are two key ways to take action on
your gaze in Unity, hand gestures and motion controllers in HoloLens and
Immersive HMD. You access the data for both sources of spatial input
through the same APIs in Unity.

• Voice input: with the KeywordRecognizer, your app can be given an array
of string commands to listen for. With the GrammarRecognizer, your app
can be given an SRGS file defining a specific grammar to listen for. With
the DictationRecognizer, your app can listen for any word and provide the
user with a note or other display of their speech.

• Persistence: The WorldAnchorStore is the key to creating holographic
experiences where holograms stay in specific real world positions across
instances of the application. This lets your users pin individual holograms
or a workspace wherever they want it, and then find it later where they
expect over many uses of your app.

• Spatial sound: spatial Sound, in Unity, is enabled using an audio spatial-
izer plugin.

• Spatial mapping: this topic describes how to use spatial mapping in a
Unity project, retrieving triangle meshes that represent the surfaces in the
world around a HoloLens device, for placement, occlusion, room analysis
and more.

There are other key features that many mixed reality applications will want to
use that are also exposed to Unity apps:

• Shared experience

• Locatable camera

• Focus point

• Tracking loss

• Keyboard

Once the holographic Unity project is ready for testing, the following step is
to export and build a Unity Visual Studio solution. With that VS solution in
hand, it is possible to run the application in one of three ways, using either a
real or simulated device [Microsoft, 2018d]:

• Deploy to a real MR device;

• Deploy to an emulator;
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• Deploy to a simulator.

Whether you’re creating a tailored experience just for Mixed Reality or porting
an existing VR game, Unity has also unlocked access to an entirely new range
of Mixed Reality devices.

3.6.2 The MR tool

The MR tool chosen for this project is the Microsoft Hololens (Fig. 3.33). This
device is a wearable computer that draws holograms on the environment where
the user is. User interaction is quite realistic because it is done through gestures
and voice commands. All features of the glasses are inside the device, including
CPU, GPU and an Holographic Processing Unit (HPU), letting the user move
freely in any environment. The holography that HoloLens R© produces can be
classified as mixed reality (MR) [Adams and Hannigan, 2018].
The list of all the technical features of the Hololens is following [Microsoft, 2018c]:
- Display
HoloLens has see-through holographic lenses (Fig. 3.34)

• Optics See-through holographic lenses (waveguides);

• Holographic resolution 2 HD 16:9 light engines producing 2.3M total light
points;

• Holographic density >2.5k radiants (light points per radian);

• Eye-based rendering Automatic pupillary distance calibration.

- Sensors
HoloLens has sensors for understanding its environment and user actions (Fig.
3.34)

• 1 inertial measurement unit (IMU);

Figure 3.33: Microsoft Hololens [Microsoft, 2018c].
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• 4 environment understanding cameras;

• 1 depth camera;

• 1 2MP photo / HD video camera;

• Mixed reality capture;

• 4 microphones;

• 1 ambient light sensor.

- Power

• Battery Life;

• 2-3 hours of active use;

• Up to 2 weeks of standby time;

• Fully functional when charging;

• Passively cooled (no fans).

- Processors

• Intel 32-bit architecture with TPM 2.0 support (Fig. 3.34);

• Custom-built Microsoft Holographic Processing Unit (HPU 1.0) (Fig. 3.34).

- Memory

• 64 GB Flash;

• 2 GB RAM.

Even though Micorsoft Hololens is an outstanding piece of technology with
very robust computer vision techniques to position virtual object in the real
world and a system that reconstruct the mesh of our environment in real-time,
it is only at his first developer version and so designers have to cope with a few
limitations while designing an UI/UX for it. For instance, the device has a very
narrow field of view, so content is rapidly disappearing from the user frustum
view. It is important to provide feedback in the main view of where the content
has been left out or use tag along techniques to ensure that it is always a glance
away from users. Moreover, HoloLens is not suited to display content closer
than 85 centimeters, which prevents users from observing holograms up close.
In the case of our application this only have a small impact on the user comfort
but nothing critical [Fonnet et al., 2017].
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Figure 3.34: Hololens display, sensor and processor [Microsoft, 2018c].

3.7 Collected information storing

Data collected during the survey must be stored with a format which allow their
further use. After the lately widespread adoption of BIM approach it is essential
that data can be linked or returned to BIM objects. At the same time in the
case of information production an attempt to replicate the process of writing
an .ifc file from skratch can be complex because of relations between entities
and the need to use Express schema. Moreover it happens often that specific
object inside buildings are not linked to a specific IFC entity and this lead to
difficulties in classifying the information.
For this reason and in order to have more freedom in classes definition the pro-
cess proposed in this research take into consideration the use of .xml format.
Extensible Markup Language (XML) is a markup language that defines a set
of rules for encoding documents/information in a format that is both human-
readable and machine-readable. The W3C XML (Extensible Markup Language)
is a profile (subset) of SGML (Standard Generalized Markup Language, ISO
8879 - 1986) designed to ease the implementation of the parser compared to a
full SGML parser, primarily for use on the World Wide Web. It is a textual
data format with strong support via Unicode for different human languages.
Although the design of XML focuses on documents, the language is widely used
for the representation of arbitrary data structures such as those used in web ser-
vices. XML uses tags to label, categorize, and organize information in a specific
way. Markup describes document or data structure and organization. Content,
such as text, images, and data, is that part of the code that the markup tags
contain. XML is not limited to a particular set of markup — you create your
own markup to suit your data and document needs. The flexibility of XML has
led to its widespread use for exchanging data in a multitude of forms. One of
the most useful functions of XML involves classifying information. Giving your
tags meaningful names that actually reflect the content makes it easier to work
with the information.
An example of an .xml file collecting data on a detected fire extinguisher is re-
ported in Figure 3.35. Among all the data contained in the file the one pointed
out by the red arrows are the most significant. They are the confidence score
reached by the recognition process, the type of object recognized, the coordi-
nates for inserting the object indside the building according to the process and
the reference point that will be described in Chapter 4, Section 4.4.
Classifying the information as shown here makes it possible the storage, the
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Figure 3.35: Example of .xml format file for data transfer.

search and the retrieval with ease. Moreover, XML excels at allowing to cre-
ate rules for the format of your data. Using either Document Type Definitions
(DTDs) or XML Schemas it is possible to validate data, to ensure the accuracy
of the collected information, ensure that the information gathered is in the most
usable format for our needs.
Finally .xml files can be made to converge into a BIM server where all data
can be gathered, including BIM models, and they can be queried for further
operations.

3.8 Conclusion

This chapter starts from the definition of AECO industry issues addressed by
this research and the explanation of use cases that can benefit from the system
proposed. Among them the first scenario is the one developed with this research
since it represents also the first necessary step so as to collect all the functional
data fundamental to pursue the following operations.
With the aim of collecting building components data the use of neural network
for object recognition has been investigated. YOLO neural networks have been
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chosen for their good results in multiple object detection and their speed, which
represents a crucial feature in real-time applications.
Among those networks the one used is YOLO tiny V2 which is more efficient with
small datasets. The training framework for the neural network is Darknet-19,
following the network developer directions. Starting from the dataset collected
from both shot and collected pictures in this case the images need to be prepared
for the training. The operations to pursue are the augmentation, if necessary,
and drawing the bounding box and assigning the class to the objects in the
pictures that one wants to recognize. The following step is the preparation of
four files essential for training: .data file, .names file, .cfg file and .weights file
only in case of using pre-trained network. At the end of the training the cus-
tomized network is tested and precision, recall and F1 performance parameters
calculated.
Finally in this chapter the role and features of MR have been explained. The
possibilities provided by the holograms capability of overlapping and interacting
with real world objects gives a big visualization power on-site. This means on
one hand that information can be easily displayed to technicians, on-site and
in real-time. On the other hand the interaction with real object and surfaces
brings the user into a MR immersive realistic experience keeping the contact
with the surrounding environment. These features lead to a profitable man-
machine collaboration that this research aims to exploit in order to improve
efficiency during building survey operations.
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Figure 3.36: Example of fire extinguisher dataset as a set of pictures.
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Figure 3.37: Example of signs dataset as a set of pictures.
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OBJECT RECOGNITION SYSTEM

4.1 Introduction

In this chapter the developed methodology of the whole system will be detailed.
Starting from the system architecture every component will be described both
in terms of its technical features and in terms of the role it plays. Everything has
been divided into two main environments: the MR environment and the Real
environment. This division depends upon the different nature of the different
parts. Some pieces of the architecture are hardware, devices like the Hololens,
some others are software or applications developed through scripts, such as the
recognition application or the MR. For this reason and in order to facilitate
the understanding the differences between what is real and what is digital this
division has been preferred.
Then in this chapter the communication between different hardware compo-
nents will be detailed. The Hololens and the Raspberry communicate by means
of a network socket. The Hololens is connected directly to the wireless hotspot
created by the Raspberry. The piece of information that flows from the hololens
to the Raspberry consists in the image containing the object that has to be rec-
ognized and the information retrieven by the recognition procedure response is
the class and location of the detected objects. The recognition process converts
pictures into information that can enrich a BIM model.
Finally the simulation of the steps performed by a technician has been given.
The basic assumption is that the technician performs an indoor on-site survey.

4.2 Object Recognition System development

The development of the object recognition application started from the defi-
nition of all the components of the system. Defining the system architecture
entails in the first place the identification of both the hardware parts and the
information flow.
In this research, the field of action was divided into two different environments:
mixed reality environment and real environment (Fig. 4.1). The first one refers
to all the software components while the second is composed by the hardware
units and the real world objects. They will be deeper described in the following
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paragraphs.
One of the most valuable advantage of the system proposed is its feature of
being wearable on-site. Thanks to the Neural Compute Sitck Movidius, which
gives the possibility to run neural networks locally, and the mixed reality, which
allows the visualization and verification of data in real-time, the post-processing
phase for interpretation of collected data is eliminated.

Figure 4.1: System architeture.

4.2.1 Mixed Reality environment
The MR environment (Fig. 4.1) comprises all the software elements and inter-
faces of the system.
The approach proposed in this research starts from the hypothesis that a geo-
metric BIM model of the building already exists. This could be the product of
a translation in a 3D building information modeling of previous CAD drawings,
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for instance in existing buildings, or coming from advanced techniques for geo-
metric surveys like the ones presented in the literature review.

4.2.1.1 BIM model

The system starts with the geometric BIM model of the environment. This
model is supposed to be lacking of semantic and functional data, assets and
components of technical details that must be automated generated by the sur-
vey procedure.

4.2.1.2 MR platform

The Mixed Reality environment is setup and configured by means of the soft-
ware development platform, Unity in this case, that allows the development of
applications for MR devices.
The recognition application was developed in Unity, using the programming
language C#. Two tools are necessary in order to develop and install the ap-
plication for the Hololens. The Mixed Reality Toolkit has to be installed in
Unity. This allows to develop a Mixed Reality Environment for Hololens in
Unity. The second necessary tool is Visual Studio which is used both for editing
and debugging C# scripts and for deploying the application on the Hololens.

Figure 4.2: Connection menu.

4.2.1.3 Hololens application

The developed recognition application pursues the following tasks:
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1. it connects to the Raspberry equipped with Movidius Neural Compute
Stick (NCS);

2. it reads and interprets the data about the position of the operator in the
virtual scene which is represented by the virtual model of the building;

3. it keeps track of the position of the gaze (the point that the operator is
looking at) in order to place the identified component;

4. it records a list of positions of the operator, because of the time interval
between the dispatch of the image and the information comeback. With
the list of positions it would be possible to locate the object in the right
position. The time interval has to be set with a predefined value so as
it would be possible to know exactly which position in the list should be
taken;

5. it sends the streaming video (or snapshots to the embedded system;

6. it reads the recognition response provided by the neural network (bounding
box coordinates, object type and photo id);

7. it selects among many objects in a predefined library the correct type
according to the type specified in the recognition response;

8. it locates the recognized object as hologram inside the scene;

9. it provides the possibility of modifying the object type or its position
manually;

10. it provides the possibility of adding objects manually.

The scene inside the application includes the imported building model. De-
spite Autodesk Revit provides the common interchange FBX format, in this case
a seamless integration has been realized among the BIM model and the serious
virtual game engine, building up a specific tool, defined “IFC loader”. It allows
importing contextual, geometrical and material properties data from the BIM
model once exported in IFC XX format. It consists of an Asset for the virtual
reality engine, constituted by several C# scripts aimed at importing the main
data from the IFC model. This tool allows also the automatic update of the
data in the virtual engine whenever a modification is made in the original Revit
model. Once added the building model, the user interface and the application
operations must be developed. Game objects, drop-down lists, menus, rules and
behaviors have been added. The first menu for the connection between the MR
tool (Hololens) and the Embedded system as explained in detail in section 4.3
and shown in Figure 4.2. In Figure 4.5 it is possible to see the main menu of
the application. Since the capture of snapshots from the Hololens the quality
of the image is not very high the menu options are explained below:

• "Connection information" the fuchsia box contains information about the
connection with the embedded system;
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• "Hide menu" for showing or not the menu in the scene;

• "Show meshes" for showing or not the result of the Hololens spatial map-
ping process;

• "Show room", this shows the user the digital model of the room where
the technician is performing the recognition process displaying modeled
spaces (walls, floors and ceilings);

• "Catch rotation";

• "Catch Position", this and the previous options are used to locate the user
with precision inside the room; the complete process will be explained in
section 4.4.

Game objects can be visualized through holograms of the object classes detected
by the recognition process. Rules and Behaviors are used to develop the steps of
the recognition procedure and to assign features to the holograms. An example
of rule is that the fire extinguisher hologram can be located only on a wall and
at a reasonable height from the ground.
The language to develop the application is C# (Fig. 4.3 and Fig. 4.4). Once
the application is ready it has to be deployed inside the MR, i.e. Hololens. The
tool for textual editing, compiling and deploying the application to be used with
the Hololens is Visual Studio. In this case Unity2017 and Visual Studio 2017
have been used.

Figure 4.3: Excerpt of the script for the connection with the Raspberry inside
the Unity development framework.
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Figure 4.4: Script for FE hologram insertion in Visual Studio 2017.

4.2.1.4 Database

The same digital environment is the place where data are transferred to a BIM
server, the database. As far as the BIM model enrichment is concerned it de-
pends upon the kind of information. It could be not necessary to recreate the
IFC format of information with some data that could be exploited better inside
a DB. On the other hand other data could be more useful if inserted in the BIM
model, especially for visualization inside spaces. However the data translation
to the IFC format has not to be considered essential in order to use information
efficiently. On the other hand the method chosen for storing collected informa-
tion as been expressed in 3.7.

4.2.2 Real environment

The real environment (Fig. 4.1) is composed by all the hardware tools exploited
in this research plus the possible real world scene the user would see.
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Figure 4.5: Application menu.

4.2.2.1 Microsoft Hololens

Microsoft Hololens is the head-mounted display chosen to show the MR envi-
ronment on site and to act as an interface between the Mixed Reality displayed
and the operator. Its technical features have been deeply explained in para-
graph 3.6.2. The capabilities provided by Microsoft Hololens and exploited by
the proposed system are resumed here:

1. displaying information on site through the overlapping of the virtual word
and the real one;

2. providing spatial information thanks to its sensors;

3. allowing to perform the data enrichment process on site and in real time;

4. giving the possibility of checking the data directly on site.

Another task performed by the Hololens is to take pictures of the real world,
framing the object that must to be recognized. Then the pictures was sent to
the embedded system by means of the application inside the device. Finally,
once the response comes back the application running on the Hololens it places
the hologram of the recognized component inside the space.

4.2.2.2 The embedded system

The choice of performing the recognition process through an embedded system
comes from the will of avoiding the use of building Wi-Fi on one hand and the
corresponding increased latencywhen for a response from a server system on the
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other.
Depsite the fact that the majority of buildings have Wi-Fi networks installed
that can be exploited by this system, one of the aim of this research was not
to rely on systems already present nor to equip the building with any kind of
sensors or tags. The hypotesys is that the process can be pursued even if the
technician is entering the building for its first time and without the need for
preliminary operation inside the spaces.
The embedded system developed by this research is made of two components:
the Raspberri Pi 3 B+ and the Intel Movidius Neural Compute Stick (version 1).

4.2.2.3 Raspberry

The Raspberry Pi 3 B+ belongs to a series of small single-board computers.
All models feature a Broadcom system on a chip with an integrated ARM-
compatible central processing unit (CPU) and on-chip graphics processing unit
(GPU). The Raspberry Pi 3 Model B+ has the following technical features:

• Quad core 64-bit processor clocked at 1.4GHz;

• 1GB LPDDR2 SRAM;

• Dual-band 2.4GHz and 5GHz wireless LAN;

• Bluetooth 4.2 / BLE;

• Higher speed ethernet up to 300Mbps;

• Power-over-Ethernet capability (via a separate PoE HAT).

The operating system installed is Raspbian 14. In this system the Raspberry
works mainly as an interface between the Hololens and the Movidius, and as
a hardware support for the latter. It is the means that allows the transfer of
images taken on-site to the Movidius to be processed.
Furthermore the Raspberry Pi can be used as a wireless access point, running
a standalone network. This can be done using the inbuilt wireless features of
the Raspberry Pi 3. This feature has been used for avoiding the use of a local
Wi-Fi inside the building. The hololens, infact, is directly connected to the
wireless created by the Raspberry and this is their means of communications as
explained later in section 4.3.

4.2.2.4 Movidius

Intel Movidius Neural Compute Stick (NCS) is a tiny fanless USB drive de-
signed to learn efficiently implement and run deep neural networks. The NCS
is powered by the low power high performance Movidius Visual Processing Unit
(VPU) (Fig. 4.6). The VPU inside the Movidius Neural Compute Stick is
the Intel Movidius Myriad VPUs. They are full-fledged system-on-chips (SoC)
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designed specifically for on-device computer vision and neural network appli-
cations. Myriad VPUs have dedicated architecture for high quality image pro-
cessing, computer vision, and deep neural networks, making them suitable to
drive the demanding mix of vision-centric tasks in modern smart devices. The
first Movidius (they are now at the second version) used in this research project
came with 12 Streaming Hybrid Architecture Vector Engine Cores that can run
computations in parallel (Fig. 4.6).
The benefits of choosing the NCS for running Neural Networks can be resumed
as follows:

• real-time on device inference, cloud connectivity not required;

• energy-efficient CNN processing;

• all data and power provided over a single USB type A port

• the possibility of running multiple devices on the same platform to scale
performance.

There are three steps involved in running deep learning models on edge de-
vices powered by Intel NCS (Fig. 4.7):

1. Training the model on a GPU-based infrastructure using TensorFlow or
Caffe;

2. Optimizing the trained model as a compiled graph to run on Intel Movid-
ius;

3. Loading the graph onto the device for inferencing.

There are several NNs that can be used within the Movidius and they depend
also upon the platform used for transferring the network inside the Movidius.
In this research Tensorflow has been used and the following ones represented
the networks already tested:

• Facenet based on inception-resnet-v1;

• Inception v1, v2, v3,v4;

• Inception ResNet v2;

• Mobilenet V1 1.0;

• TinyYolo v2 via Darkflow transformation;

• VGG 16 (Configuration D);

• SSD Inception v2;

• SSD Mobilenet v1, v2.
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In this case TinyYolo v2 has been used for its well assessed higher speed and its
better performances in recognizing objects.
In order to make the customized CNN usable with NCS it is necessary to convert
them using the Movidius Neural Compute Software Development Kit (NCSDK).
Intel NCS can be attached to an Ubuntu 16.04 PC or a Raspberry Pi running
Raspbian Stretch OS, as in this case.

Figure 4.6: Movidius processor[Intel, 2019a].

Figure 4.7: Movidius training and use [Intel, 2019b].
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4.2.2.5 On-site technician

The technician on-site performs the survey wearing the Hololens. In this first
development the technician has to take a picture of the scene including the ob-
ject he wants to recognize. The picture is taken through the air-tap gesture
with the hand held upright, similar to a mouse click or select. This is used in
most HoloLens experiences for the equivalent of a "click" on a UI element after
targeting it with Gaze.
With future developments of the application this step could be eliminated and
becoming automatic.
The technician can perform also another task. In case of failed recognition of
the object the operator on-site will have the possibility of manually inserting
the building component choosing among a library of possible objects.

4.2.2.6 Real world scene

The real-world scene reported in the architecture is the surrounding environ-
ment that the on-site technician is called to interpret. For this reason it has
been included into the system architecture, because it is the object of the recog-
nition process itself.

4.3 Data transfer

Developing this architecture a main issue comes to light: the communication
between different devices. Among these communication issues the main one was
represented by the channel Hololens-Raspberry.
Each frame captured from Hololens camera video stream had to be sent to the
Raspberry Pi. Single frames has been preferred to video stream for the following
reasons:

• it’s easier to associate each photo with its 3D-information obtained at the
instant of the shot;

• there is no need for the support of Real Time Protocol required by video
streaming that could degradate the performance of the Hololens Device,
already in charge of overlapping reality with holograms in real-time;

• neural networks inputs for object recognition are single frames.

Each frame captured by the Hololens goes through the following steps Fig. 4.8:

i. sending pre- processing;

ii. sending;
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iii. receiving;

iv. sending post-processing;

v. pre-processing for neural networks;

vi. neural network inference;

vii. send back NN output to Hololens.

Steps (i) and (iv) can be jpeg-compression, cropping and/or scaling. Steps (v)
depends on the NN. Exchanging data between Hololens and Raspberry required
the development of a custom socket over a WiFi network between Raspberry
(hotspot) and Hololens (client). The socket can be either TCP or UDP. Table
1 ?? shows possible configurations. Data rate is in the worst case, 30 MBps,
its measured range is about 50± 20 Mbps (uncertainty is due to unpredictable
network events in both TCP or UDP socket).
Since the chosen NN YOLOv2 unit expects a float number and received frames
are in byte format, a pre-processing step, (v), performs the conversion from byte
to float.
Since the purpose is to recognize objects inside pictures, the Raspberry sends
back to Hololens (through the socket) bounding boxes defined by x,y,w,h (re-
spectively the x and y coordinates of the bouding box center and the width and
height of the box) and the frame id (used by Hololens to retrieve the saved 3d
information of the frame to place the hologram in the three-dimensional space).
Filtering will take place only in Raspberry to reduce Hololens work.

Table 4.1 Performance tests, each one elaborate 150 photos. (a) Total time for
sending raw photos (cropping and scaling timens are neglected, max 10 ms.
(b) cropped from 869x504 photo, (c) scaled from 896x504.

Size [Kb] Times [ms]

Resolution raw jpeg encoding sending total total (a)

1408x792 3’340 154 94 5 99 111

896x504 1’350 60 46 2 91 45

416x416(b) 519(b) 24 29 0.8 46 17

416x416(c) 519 32 45 1.1 62 17

416x234(c) 292(b) 23 36 0.8 46 10
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Figure 4.8: Image steps through the recognition process.

4.4 Automatic survey process

In this paragraph the whole survey process will be explained in depth.
Before starting describing the process on-site two specifications have to be given.
The system proposed in this research starts from a pre-existing geometric 3D
building model of the construction object of the survey. This can be derived from
a straightforward translation of pre-existing cad drawings or semi-automatic ge-
ometric survey techniques as exposed in Chapter 2. The reason of this assump-
tion is that many researches focus on the collection of geometric data while still
few studies have been pursued on the collection of functional data especially as
far as assets under maintenance are concerned.
The second specification is that the connection between Hololens and Raspberry
is not inserted in the process representation in Figure 4.11. This procedure has
to be done before starting the survey. After connecting the Hololens to the
Raspberry network the socket for the communication has to be set with the
connection menu (Fig. 4.2). At this point the technician is ready to start the
survey.
According to what explained in the previous paragraph the first step of the pro-
cess (Fig. 4.11) is setting the 3D building information model of the construction
object of the survey. Once inside the building the survey starts from a specific
room. The second task is loading the model of the room. This operation can
be done in several different ways: the room could be equipped with a tag, the
number of the room displayed outside can been recognised or the space can be
searched among a pre-defined library. This latter method is the method chosen
in this case.
Then after entering the room the model alignment is the following task. This
operation is performed in two steps: set position and set rotation. Set position
adjusts the position of the room model through the selection in the real scene of
an agreed point. The selection of the point means indicating the correct point
with the gaze and then air-tapping (like the left click in the computer) inside
the Hololens display. The selection process is repeated for the rotation setting
of the model. Also in this case there is an agreed point. In order to assess
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the correctness of the alignment an automatic procedure of standard deviation
calculation provides an alarm in case this procedure has to be repeated.
Once this procedure is done the real recognition of the object starts. First
of all the object has to be framed by the technician. Then another air-tap is
necessary as it represents the recognition procedure trigger. This movement
automatically takes a picture, send it to the Raspberry and makes the picture
recognition starts. The Tiny YOLOv2 input is a 416x416x3 tensor, correspond-
ing to the frames to be processed (416x416 is resolution, 3 is number of float for
pixel). The network (loaded on Movidius) processes this input and returns an
output of 13x13x[(C+5)x5]. The frame is divided in 507 cells of same width and
height, for each cell it finds 5 bounded boxes and for each of them it calculates:
width, height, horizontal and vertical distance from top left corner; objecti-
ness which is the probability of an object to rely in this bounding box (not a
particular type of object, just an object); C probabilities indicating the object
category in the bounding box. Then it filters bounding boxes with objectiness
lower than a fixed threshold and, for the rest ones, filter those object categories
having probability lower than an arbitrary threshold.
This recognition data are then sent back to the Hololens and specifically to the
recognition application. It reads the response and then it displays as an holo-
gram the bounding box around the object and the object category (Fig. 4.10).
If everything is correct it is possible to go ahead, otherwise the recognition
procedure has to be performed again. If everything is correct the application
places an hologram of the object inside the space. If the placement is correct it
is possible to continue if there are other objects inside the room, otherwise the
process is over.
The room alignment has to be done just once for every room. On the other hand
the recognition procedure has to be performed for every object whose data has
to be collected. Since the YOLO is able to perform multiple recognition for each
picture assets, components inside the same photo are recognized simultaneously
within just one recognition procedure.
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Figure 4.9: Position (the blue square) and rotation (the red circle) points.

Figure 4.10: Bounding box and object category at the end of the the recognition
procedure.
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Figure 4.11: Recognition process steps.
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4.5 Conclusion

This chapter illustrates the components of the system proposed. They are di-
vided into MR environment components, referring to digital components, and
real environment parts, mainly hardware, like the Hololens or the embedded
system composed by the Raspberry and the Movidius. The choice of composing
the system like this derives from technical features of the objects, expressed also
in Chapter 3 and resumed here, and the role they play is explained in depth.
After explaining system components the data transfer solution has been de-
tailed. The choice of working only with the network provided by the Raspberry
came from the will of avoiding the use of local Wi-Fi for data transmission. Even
if the majority of big constructions, such as universities, airports, stations, are
already equipped with diffuse Wi-Fi connections one of the strength of the sys-
tem proposed relies in its autonomy. Furthermore this connection guarantees
an easier way to send and receive data between the MR tool and the embedded
system.
Finally the on-site process has been exposed, from entering the building till data
collection is performed. The following ones are the automatic steps:

• loading of the room model

• the whole recognition procedure, from sending the snapshot to the Rasp-
berry, transferring it to the Movidius and analysing the frame;

• sending back to the Hololens the information;

• visualizing both the bounding box and the object category;

• positioning the hologram.

On the other hand the steps that the technician has to perform manually are:

• setting the model;

• setting position and rotation for room alignment;

• taking a snapshot of the scene where the object that has to be recognized
is.

The object recognition procedure is all automatic, starting just with an air-
tap that activate the capture of the image, its delivery to the embedded system
and the NN exploitation. Also the display of the recognition response is all
automatic leaving to the technician the task of confirming or not the results.
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PROOF OF CONCEPT

5.1 Introduction

After the development of the system, as explained in Chapter 4, a proof of con-
cept for testing the use of the whole system has been produced. In this chapter
this feasibility test will be detailed.
It started from the customization of Neural Network, Tiny YOLOv2 in this case.
For training the network the process started with images collection. Then sev-
eral training sessions have been pursued in order to investigate the right number
of pictures for an efficient object recognition. Finally customized networks have
been validated in order to verify if their performances were compliant to the
mAP obtained by the training.
Those tests have been done both on a desktop and in real environment. The
real environment chosen have been one of the buildings of Politechnic University
of Marche.
Finally a test using the whole system have been performed at DICEA Depart-
ment.

5.2 Neural Network training

The realization of the first proof of concept of the whole system started from
the training of Neural Networks.
The following paragraphs will describe three moments of NN training: the
dataset creation, the training sessions and the validation procedure. The col-
lection of pictures for the dataset have been pursued following the methods
explained in paragraph 3.5.2.
As far as the training sessions are concerned several experiments have been done
working with different types of datasets.
Finally the validation procedure has been performed as already explained in
3.5.4.
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5.2.1 Datasets creation

The correct dataset to train the network should have specific features and it has
to include at least one image for every existing type of object. This is due to
the fact that the customized network has to be able to recognize the component
no matter its external appearance, which could vary according to the object
taken into consideration. Differences in geometric features and external aspect
have to be included, as well as all the plausible points of view of the object. As
expressed by [Radovic et al., 2017] the point of view of the object deeply affects
an efficient object recognition.
The number of pictures for obtaining a customized network depends upon the
number of objects or object types, plus the features of the component itself. For
instance it is easier to detect a fire extinguisher, which is a red cylinder on a
white wall, than electronic sockets.
In order to enlarge the dataset it has been made up of both original pictures
and graphically re-edited photos. Training have been done with both datasets
containing only original pictures and datasets with re-edited photos. The pic-
tures coming from real scenarios have been taken with smartphones cameras.
Dimensions can be mixed in datasets since the network chosen re-sizes pictures
before performing recognition.
In this research two objects have been introduced into the datasets:

• Object 1: fire extinguisher;

• Object 2: emergency signal.

Among the pictures referring to emergency signals there was a distinction be-
tween different types of item (Fig. 5.1):

• Emergency sign;

• Emergency sign door;

• Emergency sign man;

and the total number of original images for every type of emergency sign is
reported in Table 5.2. The total number of original pictures have been divided
into 8 datasets as expressed in Table 5.1:
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Figure 5.1: From left to right: emergency sign door, emergency sign man, emer-
gency sign images categories.

These collections of images have been combined in different datasets for dif-
ferent training sessions. Starting from the dataset containing all the images of
the fire extinguisher, in order to investigate network training performances, this
was subsequently broken down into multiples of 100 (Table 5.4). In addition to
this it has been created 4 datasets with both original images and augmented
ones. In Table 5.3 it is possible to see the proportions between original and re-
edited photos for two datasets referring to emergency signs and the two datasets
for fire extinguishers. Finally one last dataset (COMBINED DATASET) has
been formed by the combination of Dataset 500 of fire extinguishers and Dataset
7 and 8 about emergency signs. This last dataset have been used for training
the network for the recognition of both objects categories at the same time.

Table 5.1 Dataset composed by original images.

Object Dataset Number and origin of images

Dataset 1 175 original images from UnivPM and
Flickr

Dataset 2 118 original images from University of
Edinburgh

Dataset 3 286 images from Google

Dataset 4 127 images from Google

Dataset 5 270 images from Google

FIRE EXTINGUISHER
(total 1000 images)

Dataset 6 24 images from Instagram

Dataset 7 45 images from UnivPMEMERGENCY SIGNS
(total 581 images) Dataset 8 536 images from Google
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Table 5.2 Emergency signs categories original images.

EMERGENCY SIGNS IMAGES

Emergency sign Emergency sign door Emergency sign man

53 images 76 images 452 images

Next paragraph will depict all trainings performed with different combina-
tion of the aforemetioned datasets.

5.2.2 Training sessions and results

Several training sessions have been performed using the aforementioned datasets.
All these trainings have been done exploiting pre-trained tiny YOLOv2. The
chosen network came from a trainining with CoCo dataset and thus pre-trained
weights have been used. In all cases the customized parameters of the .cfg file
were: batch=64, this means we will be using 64 images for every training step;
subdivision=8, the batch will be divided by 8; classes=1, the number of cate-
gories we want to detect; filters=30, from formula in Paragraph 3.5.3; learning
rate=0.001, advised by the developer of YOLO in order to avoid false minimum
point.
Training n.2 was performed using a not pre-trained tiny YOLOv2 and this means
that no pretrained weights have been used. In this case the network starts with
random weights that will be improved during the training session itself.
Finally for emergency signs training the filter parameter was changed since it
depends from the number of classes. For this reason it was set equal to 40. For
the training with the combined dataset (fire extinguishers + emergency signs)
it was 45 (4 different classes).

Table 5.3 Dataset with both original and re-edited pictures.

Object Dataset Original and re-edited images

Dataset 350
350 images, 175 original pic-
tures plus 175 coming from a
just rotation augmentation

FIRE
EXTINGUISHERS

Dataset 4000 4000 images, only 175 original

Dataset 9 1373 images, 539 original and
834 from re-editing

EMERGENCY
SIGNS

Dataset 10 310 images, 155 original and
155 from augmentation

124



Proof of concept

Table 5.4 Fire extinguisher training datasets from combination of original
images dataset.

Training Dataset Dataset combination

Dataset 1000 all images of fire extinguishers

Dataset 100 images taken from Dataset 1

Dataset 200 images taken from Dataset 1, Dataset 6
and 1 image from Dataset 2

Dataset 300 images taken from Dataset 1, Dataset 6
and 101 images from Dataset 2

Dataset 400 images taken from Dataset 1, Dataset 6,
Dataset 2 and 83 images of Dataset 3

Dataset 500 images taken from Dataset 1, Dataset 6,
Dataset 2 and 183 images of Dataset 3

Dataset 600 images taken from Dataset 1, Dataset 6,
Dataset 2 and 283 images of Dataset 3

Dataset 700
images taken from Dataset 1, Dataset 6,
Dataset 2, Dataset 3 and 97 images of
Dataset 4

Dataset 800
images taken from Dataset 1, Dataset 6,
Dataset 2, Dataset 3, Dataset 4 and 70 im-
ages of Dataset 5

Dataset 900
images taken from Dataset 1, Dataset 6,
Dataset 2, Dataset 3, Dataset 4 and 170
images of Dataset 5

The following one is the list of all the training session for fire extinguishers
only with the results in terms of MaP reached:

• TRAINING 1 → 1000 original pictures taking the total of images about
fire extinguishers. Maximum mAP reached 89%.

• TRAINING 2 → 1000 original pictures taking the total of images about
fire extinguishers. Maximum mAP reached 90,80%.

• TRAINING 3 → Dataset 100 original pictures taken among the photos
of the first dataset. Maximum mAP reached 89,11%.

• TRAINING 4 → Dataset 200 original pictures taken partially from Dataset
1 plus Dataset 6 plus 1 picture of Dataset 2. Maximum mAP reached
92,86%.
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• TRAINING 5 → Dataset 300 original pictures taken from Dataset 1 plus
Dataset 6 plus 101 picture of Dataset 2. Maximum mAP reached 98,91%.

• TRAINING 6 → Dataset 400 original pictures taken from Dataset 1 plus
Dataset 6 plus Dataset 2 plus 83 pictures from Dataset 3. Maximum mAP
reached 99,30%.

• TRAINING 7 → Dataset 500 original pictures pictures taken from Dataset
1 plus Dataset 6 plus Dataset 2 plus 183 images from Dataset 3. Maximum
map reached 73,43%.

• TRAINING 8 → Dataset 600 original pictures pictures taken from Dataset
1 plus Dataset 6 plus Dataset 2 plus 283 images from Dataset 3. Maximum
map reached 82,73%.

• TRAINING 9 → Dataset 700 original pictures taken from Dataset 1 plus
Dataset 6 plus Dataset 2 plus Dataset 3 plus 97 images from Dataset 4.
Maximum map reached 82,73%.

• TRAINING 10 →Dataset 800 original pictures taken from Dataset 1 plus
Dataset 6 plus Dataset 2 plus Dataset 3 plus Dataset 4 plus 70 images
from Dataset 5. Maximum mAP reached 76,68%.

• TRAINING 11 → Dataset 900 original pictures taken from Dataset 1 plus
Dataset 6 plus Dataset 2 plus Dataset 3 plus Dataset 4 plus 170 images
Dataset 5. Maximum mAP reached 78,13%.

• TRAINING 12 → Dataset 350, 175 original pictures taken from Dataset
1 plus 175 photos coming from a simple augmentation of the first dataset
(just rotation with different degrees). Maximum mAP reached 94,95%.

• TRAINING 13 → training with 4000 pictures only 175 original coming
from Dataset 1. Maximum mAP reached 16,43%.

This is instead the list of all the training session for emergency signs only with
the results in terms of MaP reached:

• TRAINING 14 → training with Dataset 9, 1373 pictures, 539 original
and 834 from re-edited photos. Maximum mAP reached 86,40%.

• TRAINING 15 → training with Dataset 7 and 8, 581 original photos.
Maximum mAP reached 80,98%.

• TRAINING 16 → training with Dataset 10, 310 original photos, 155
original and 155 from augmentation. Maximum mAP reached 84,46%.

Finally there is the training of the combined dataset:
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• TRAINING 17 → COMBINEDDATASET, union of Dataset 500, Dataset
7 and Dataset 8. Maximum map reached 71,98%.

After training the customized networks have to be validated so as to verify
their performances.

5.2.3 Training sessions validation

The validation has been executed according to the procedure described in Para-
graph 3.5.4. As far as trainings from 1 to 11 are concerned the validation dataset
used has been always the same. It contained 100 original pictures. The choice
of using the same dataset for all these validations led to a direct comparison
among performances.
Other trainings used the validation rule advised by YOLO developers. It estab-
lishes the use of 86% of the whole dataset for training and 20% for validation.
Another parameter to take into consideration was the level of confidence thresh-
old for the validation. It has been set equal to 60% for all the validation pro-
cesses. For the validation process it has been taken into consideration Precision,
Recall and F1 (Section 3.5.4), calculated from the number of true positive, false
positive and false negative obtained within the total of images. Figure 5.2 re-
ported an example of a validation sheet of a network.
In order to perform the validation it was necessary to select one weight file.
The weight files were saved every 1000 iterations. For this reason the weight file
selected for the validation has always been the closest to the maximum mean
average precision obtained. All the mAP values, total number or iterations and
weight file chosen can be checked in Table 5.8.
Table 5.8 reported also all the validation parameters obtained that take into
consideration the total number of instancies in the validation dataset. Since
some pictures could shows more than one object the number is reported in Ta-
ble 5.8.
Figure 5.3 shows the maximum mAP values obtained for every training session.
On the other hand Figure 5.4 displays the values of precision, recall and F1
calculated through the validation process. Following these calculations it ispos-
sible to express some observations:

• it can be seen that all the F1 values are acceptable since they are higher
than 80%;

• an high percentage of image augmentation deeply worsen the performances
of the network;

• moderate percentage of image augmentation are still acceptable.

Also the kind of augmentation affects the dataset and the real-world perfor-
mance. It is in fact pointless performing an augmentation that produces images
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graphically far from what is the typical image of the components object of recog-
nition. For instance it would be unlikely to see a fire extinguisher upside down,
so when setting rotation maximum degrees it would be reasonable to stop be-
tween -15◦ and +15◦ .

Figure 5.2: Validation sheet reporting the bounding box, true positive, false
positive, false negative and calculating performance indexes.

Moreover from these validations it is evident that the higher the number of
pictures the better the performances is not true, with or without augmentation.
Following these validations that have been carried on computers, real-world
test have been performed so as to verify customized network performances with
changing boundary conditions.
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Table 5.5 Training validations.

TRAINING 1

Total number of FE = 277 TRUE POSITIVE 271

FALSE POSITIVE 6

FALSE NEGATIVE 6

no. of iterations 1754

mAP max 89.00% PRECISION 0.97834

validation weights last RECALL 0.97834

mAP weights 88.74% F1 0.97834

TRAINING 2

Total number of FE = 277 TRUE POSITIVE 266

FALSE POSITIVE 8

FALSE NEGATIVE 11

no. of iterations 1614

mAP max 90.80% PRECISION 0.9708

validation weights 13000 RECALL 0.96029

mAP weights 90.60% F1 0.96552

TRAINING 3

Total number of FE = 277 TRUE POSITIVE 273

FALSE POSITIVE 32

FALSE NEGATIVE 4

no. of iterations 1614

mAP max 89.11% PRECISION 0.89508

validation weights 421100 RECALL 0.98556

mAP weights 84.76% F1 0.93814

TRAINING 6

Total number of FE = 277 TRUE POSITIVE 266

FALSE POSITIVE 8

FALSE NEGATIVE 11

no. of iterations 8558

mAP max 99.30% PRECISION 0.9708

validation weights 419000 RECALL 0.96029

mAP weights 94.97% F1 0.96552
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Table 5.6 Training validations.

TRAINING 7

Total number of FE = 277 TRUE POSITIVE 267

FALSE POSITIVE 8

FALSE NEGATIVE 10

no. of iterations 10989

mAP max 73.43% PRECISION 0.97091

validation weights 422000 RECALL 0.9639

mAP weights 73.13% F1 0.96739

TRAINING 14

Total number of ES = 432 TRUE POSITIVE 406

FALSE POSITIVE 63

FALSE NEGATIVE 26

no. of iterations 491000

mAP max 86.40% PRECISION 0.86567

validation weights 491000 RECALL 0.93981

mAP weights 86.40% F1 0.90122

TRAINING 15

Total number of ES = 158 TRUE POSITIVE 145

FALSE POSITIVE 26

FALSE NEGATIVE 13

no. of iterations 441000

mAP max 80.98% PRECISION 0.84795

validation weights 441000 RECALL 0.91772

mAP weights 80.98% F1 0.88146

TRAINING 16

Total number of ES = 224 TRUE POSITIVE 200

FALSE POSITIVE 44

FALSE NEGATIVE 24

no. of iterations 482000

mAP max 84.87% PRECISION 0.81967

validation weights 457000 RECALL 0.89286

mAP weights 84.46% F1 0.8547
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Table 5.7 Training validations.

TRAINING 17

Total number of OBJECTS = 421 TRUE POSITIVE 376

FALSE POSITIVE 76

FALSE NEGATIVE 45

no. of iterations 434000

mAP max 71.98% PRECISION 0.83186

validation weights 434000 RECALL 0.89311

mAP weights 70.76% F1 0.8614
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Table 5.8 Training validations.
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Figure 5.3: Maximum mAP for every network training (except Training 13).X
axes is the number of images in the dataset used for the training.
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Figure 5.4: Precison, Recall and F1 values coming from networks validation.
Training number on the x axes.
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5.3 Testing the Neural Network performances

With the aim of testing the network in real world conditions it has been per-
formed a test inside the Politechnic University of Marche premises. The building
used for the test is denominated Blocco Aule Sud (BAS) (Fig. 5.5). It is a struc-
ture with a longitudinal development (Fig. 5.6) and three of its perimeter walls
are curtain walls. This means that light conditions can be very adverse espe-
cially when using mixed reality device like the Hololens for taking pictures of
the object that has to be recognized. Additionally testing good performances
with changing light conditions is one of the main worries about systems that
work with images.
Another interesting thing that has to be taken into consideration with the pro-
posed system is the point of view of the object since it could affect a good
performance in recognition.
The test has been done with all the embedded system as can be seen in Figure
5.7.
The network has been always able to recognize the object although with differ-
ent level of confindence (Tab. 5.9 and Tab. 5.10). Less than 10% of the object
have obtained a value of level of confidence lower than 60%.
In 9 cases the recognition did not worked at the first attempt. This was due not
to light condition but to the chosen point of view. When the white label usually
on top of fire extinguisher was not visible the network struggled in recognize the
object at the first attempt.
Photos of the point of view that worked for the recognition are reported at the
end of this chapter.

Figure 5.5: BAS building.
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Figure 5.6: First floor corridor showing the longitudinal development.

136



Proof of concept

Figure 5.7: Embedded system including Movidius, Raspberry and Hololens.
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Table 5.9 Neural Network performances test results (Ground and First floors).

Floor Number of FE Level of Confidence

FE 1 88%

FE 2 53%

FE 3 99%

FE 4 98%

FE 5 53%

FE 6 99%

FE 7 93%

FE 8 89%

FE 9 98%

FE 10 98%

FE 11 96%

FE 12 99%

FE 13 92%

FE 14 92%

GROUND
FLOOR

FE 15 99%

FE 1 95%

FE 2 99%

FE 3 97%

FE 4 96%

FE 5 99%

FE 6 99%

FE 7 93%

FE 8 82%

FE 9 99%

FE 10 89%

FIRST
FLOOR

FE 11 96%

138



Proof of concept

Table 5.10 Neural Network performances test results (Basement floor).

Floor Number of FE Level of Confidence

FE 1 99%

FE 2 61%

FE 3 68%

FE 4 82%

FE 5 55%

BASEMENT
FLOOR

FE 6 98%
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Figure 5.8: Fire extinguishers at ground floor (in red) plus pictures points of
view (in blue).
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Figure 5.9: Fire extinguishers at first floor (in red) plus pictures points of view
(in blue).
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Figure 5.10: Fire extinguishers at basement floor (in red) plus pictures points
of view (in blue).
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5.4 Testing of the system

A final feasibility test has been performed regarding the whole system.
This test took place inside the DICEA Department, Politechnic University of
Marche. This test run again through the steps explained in section 4.4. The
process started with the connection to the embedded system for performing
the recognition procedure (Fig: 5.11). The following step was loading the BIM
model and select the right room. After these steps the room alignment was
performed. This task is pursued manually and it is composed by two steps:
set position (Fig. 5.12) and set rotation (Fig. 5.13) of the room model. In
the figures about those steps it is possible to see the setting points, the blu
square for psitioning and the red circle for rotation. Those points are located
manually by the technician inside the room. Then an automatic procedure
gives back an alarm if the alignment between the BIM model and the mesh
produced by the Hololens goes over a fixed threshold. The recognition procedure
is completely automatic and it starts with the air-tap gesture inside the display
of the Hololens. This operation takes a snapshot, then it is automatically sent to
the embedded system (Raspberry-Movidius), analyzed and data are sent back
to the Hololens. The visualization of the bounding box around the object and
the confidence score is automatic as well as the insertion of the hologram inside
the scene. In Fig. 5.14 it is possible to see the hologram positioned inside the
room and in Fig. 5.15 the technician view without the BIM model displayed. In
this case the object was recognized at the first attempt with a confidence score
of 89.70%.

Figure 5.11: Application interface for Hololens connection to embedded system.
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Figure 5.12: Set position task.

Figure 5.13: Set rotation task.
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Figure 5.14: Positioning of the hologram inside the scene.

Figure 5.15: Real-World scene referring to Fig 5.14
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5.5 Discussion

The proof of concept of the system developed has highlighted some drawbacks:

• the creation of the dataset is an expensive procedure. With this research
it has been estimated that 500 pictures are necessary for a single object
category. In case of complex building with hundreds of different asset
components necessary images numbers can become massive and therefore
difficult to manage.

• training of combined network able to recognize more than one category
object showed that when it is the same network that recognize more than
one object the performance decrease in comparison with single object cat-
egory network trained with the same number of images. This suggest that
it could be useful to work with network in series (every network recognize
one object) instead of multi-category single network. One future develop-
ment could investigate the performances of these two different approaches.

• Pictures of some specific objects can be difficult to retrieve both in real
world taking pictures and with web scraping.

• The validation of the network require long time especially for real world
test. The on-site neural network performance validation must be done at
the end of every training and this involves high costs.

In order to improve the system proposed further steps can be performed:

• the network could be enriched with other objects categories;

• the room alignment can be performed by means of an automatic procedure;

• further operations on the hologram of the recognized object could be added
to the application.

The first further step should be the introduction of other objects categories.
According to the use of the whole system there could be the need for more
categories also referring to different assets or a more detailed identification of
object types. Furthermore the best process for the achievement of this aim has
to be investigated. The identification of the fire extinguisher type, for instance,
could be performed with the recognition of the entire object or of its components
(e.g. the identification of the manometer means that the trype is a CO2 fire
extinguisher). Another aspect to take into consideration is the NN performance.
Adding a second object lightly changed the performance; increasing the number
of objects could deeply affect the correct response of the network. In this case
the use of several NN in parallel could be decisive.
As far as the second improvement is concerned, the mesh generated by the
Hololens and the one generated from a BIM model could be automatically com-
pared for room alignment. In order to generate a mesh from the BIM model of
the building, first attempts have been done using the software Unity.
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Finally the application could be enriched with further operation in order to
complete the inventory with the information that can not be retrieved automat-
ically. It would be useful adding the possibility of inserting data not collected
automatically by the network such as the last revision for the fire extinguisher.
The same system could be also thought and then used for the periodic check to
asset conditions.
As regards verification of the system on-site the first goal is performing the test
on a huge number of objects in real-world conditions. This would lead to a more
precise definition of performances of the system with different light conditions
and various type of objects (fire extinguishers can slightly change aspects).
Lastly more tests have to be done for the correct localization inside rooms, and
secondly inside the building. Despite the great potentialities of the Hololens,
the drift suffered by the device still represents a problem in complex build-
ings. Large spaces or repetitive layouts deeply affect the performance of this
device that could be supported by added sensor for enhancing its potentialities
[Garon et al., 2017].

5.6 Conclusion

In this chapter the real working of the system is exposed.
First of all the network training started from images collection. Several different
datasets have been created with both original and re-edited pictures so as to
test different methods for network training. According to the different features
in the various datasets 17 trainings have been performed.
Following the training the new customized network have been validated using
precision, recall and F1 as evaluation parameters. Validation results demon-
strates that best training performances do not depend upon the higher number
of pictures. At the end of these tests 500 has resulted the number of pictures
sufficient for obtaining good performances with customized networks.
Subsequently a real-world test has been pursued in order to test the network
with the embedded system and different light conditions. Also in this case the
network performed well with all the object recognized and less that 10% with a
level of confidence lower that 60%.
Finally the whole component recognition process has been tested in real-environment
showing the feasibility of this system usage.
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Figure 5.16: Fire extinguishers point of view during BAS test, basement
floor.First row, left to right FE1, FE2, FE3. Second row FE4, FE5, FE6. Third
row FE7.

148



Proof of concept

Figure 5.17: Fire extinguishers point of view during BAS test, ground floor.First
row, left to right FE1, FE2, FE3. Second row FE4, FE5, FE6. Third row FE7.
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Figure 5.18: Fire extinguishers point of view during BAS test, ground floor.First
row, left to right FE11, FE12, FE13. Second row FE14, FE15.
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Figure 5.19: Fire extinguishers point of view during BAS test, first floor.First
row, left to right FE1, FE2, FE3. Second row FE4, FE5, FE6. Third row FE7,
FE8, FE9.
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Figure 5.20: Fire extinguishers point of view during BAS test, first floor.First
row, left to right FE10, FE11.
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CONCLUSIONS

6.1 Conclusions

This research work started from the critical issue of the lack of a surveying cor-
responding to actual situation for existing buildings. This is particularly urgent
for huge buildings stocks owners, such as Public Administrations. Furthermore
relying on updated functional models of buildings is of primary importance in
complex constructions (e.g. stations, airports, hospitals).
Moreover information accessibility is seen by the majority of the professional
as the most urgent issue to solve for achieving a higher efficiency in the sector.
Information related to existing building is often not available or not updated,
while data coherent to the current situations are essential for planning opera-
tions.
Current researches still focus mainly on the geometric aspects of construction
and little attention is given to building assets components which are the ones
more often subjected to maintenance operations.
The relationships between geometrical and functional data are instead essential
especially for emergency management.
Even new approaches such as the BIM one struggle to emerge because their
potentialities rely on the presence of structured data. Developing as-built or
as-is building model is an expensive task and even if some automation is start-
ing to improve processes costs have not been reduced significantly since long
post-processing phases are still required for data interpretation.
The proposed system wants to exploit the man-machine intelligence collabora-
tion in order to avoid the long post-processing phase of data collected. The
man contribution is the expert knowledge while the machine is use for its speed
and reliability. All the operations are performed on-site so as to avoid the post-
processing phase and giving the technician the opportunity of checking data
collected directly.
The system development started with investigation on new technology that
could work as an interface between technician and information. Mixed Real-
ity with its possibility to overlaps holograms to the real world and allowing
interaction with digital data and real environment resulted the best choice.
Then Neural Networks applications on object recognition have been studied.
YOLO came out to be the most performing for object recognition in real-time.
The developed system is composed by several components that can be divided
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into Mixed and real Environment. The object recognition application have been
built for Microsoft Hololens. This application exploits YOLO neural network
for object detection. With the aim of having a system that worked on-site the
recognition is performed in an embedded system which includes a Raspberry
and a Neural Compute Stick Movidius.
At the end of the development validation tests have been carried on in order to
verify networks performances.
Finally the performed feasibility test was able to show the possibility of using
this system on-site.

6.2 Research Contributions

The innovation proposed by this research lays in the combination of different
new technologies for an on-site survey of building components. The result is the
exploitation of man-machine parallel working and the profitable combination of
mixed reality and NN.
The use of YOLO Neural Networks lead to the following results:

• a dataset for fire protection system components has been created and it
can be used not only for facility management purposes and shared with
the community;

• this study systematized the information for YOLO neural network cus-
tomization;

• the right number of images for YOLO customization has been investigated
and instructions on this provided to who may be interested in training his
own neural network.

Furthermore a method for connecting Hololens and Raspberry has been devel-
oped using the latter as a computing device for YOLO running. The Hololens
object recognition application allows to give semantic to building components
recognized and to generate functional data.

6.3 Suggestions for future RD

Future developments of the system could be represented by:

• adding object categories to the dataset and training more customized net-
works;

• verify the performances of the use of single object neural network in series
or one multi-object neural network;

• testing the capabilities of new MR device, in particular Hololens2 that is
supposed to be equipped with an AI processor on board;
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• developing the possibility inside the application of modifying objects and
manually add information;

• automatize the technician localization inside the building.

One further comparison that can be done is the improvement of the system per-
formance using artificial intelligence services in cloud that widen the computing
power.

155



BIBLIOGRAPHY

[Abiodun et al., 2018] Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V.,
Mohamed, N. A. E., and Arshad, H. (2018). State-of-the-art in artificial
neural network applications: A survey. Heliyon, 4(11):e00938.

[Adams and Hannigan, 2018] Adams, S. S. and Hannigan, F. P. (2018). Ad-
vances in Human Factors in Energy: Oil, Gas, Nuclear and Electric Power
Industries. 599:69–77.

[Akcamete and Akinci, 2010] Akcamete, A. and Akinci, B. (2010). Potential
utilization of building information models for planning maintenance activities.

[Al-masni et al., 2018] Al-masni, M. A., Al-antari, M. A., Park, J. M., Gi, G.,
Kim, T. Y., Rivera, P., Valarezo, E., Choi, M. T., Han, S. M., and Kim, T. S.
(2018). Simultaneous detection and classification of breast masses in digi-
tal mammograms via a deep learning YOLO-based CAD system. Computer
Methods and Programs in Biomedicine, 157:85–94.

[AlexeyAB, 2019] AlexeyAB (2019). https://github.com/AlexeyAB/
darknet.

[Ali, 2019] Ali, M. (2019). Artificial neural network based screening of cervical
cancer using a hierarchical modular neural network architecture ( HMNNA )
and novel benchmark uterine cervix cancer database. Neural Computing and
Applications, 31(7):2979–2993.

[Ammari and Hammad, 2014] Ammari, K. E. and Hammad, A. (2014). 2014 -
Collaborative BIM-based Markerless Augmented Reality Framework for Fa-
cilities Maintenance - Ammari.pdf. pages 657–664.

[Augmentor, 2019] Augmentor, G. (2019). Images augmentor. https://
github.com/mdbloice/Augmentor.

[Becerik-Gerber et al., 2011] Becerik-Gerber, B., Jazizadeh, F., Li, N., and
Calis, G. (2011). Application areas and data requirements for bim-enabled
facilities management. Journal of construction engineering and management,
138(3):431–442.

[Becker et al., 2018] Becker, R., Falk, V., Hoenen, S., Loges, S., Stumm, S.,
Blankenbach, J., Brell-Cokcan, S., Hildebrandt, L., and Vallée, D. (2018).
Bim – towards the entire lifecycle. International Journal of Sustainable De-
velopment and Planning, 13(1):84–95.

156

https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
https://github.com/mdbloice/Augmentor
https://github.com/mdbloice/Augmentor


BIBLIOGRAPHY

[Berg and Vance, 2017] Berg, L. P. and Vance, J. M. (2017). Industry use of
virtual reality in product design and manufacturing: a survey. Virtual reality,
21(1):1–17.

[Bigne et al., 2016] Bigne, E., Llinares, C., and Torrecilla, C. (2016). Elapsed
time on first buying triggers brand choices within a category: A virtual reality-
based study. Journal of Business Research, 69(4):1423–1427.

[Bloch and Sacks, 2018] Bloch, T. and Sacks, R. (2018). Comparing machine
learning and rule-based inferencing for semantic enrichment of BIM models.
Automation in Construction, 91(July 2017):256–272.

[Bonandrini et al., 2005] Bonandrini, S., Cruz, C., and Nicolle, C. (2005).
Building Lifecycle Management, International Conference on Product Life-
cycle Management. Plm, 2005(January 2005):461–471.

[Bonetti et al., 2018] Bonetti, F., Warnaby, G., and Quinn, L. (2018). Aug-
mented reality and virtual reality in physical and online retailing: A review,
synthesis and research agenda. In Augmented reality and virtual reality, pages
119–132. Springer.

[Braun et al., 2019] Braun, A., Jahr, K., and Borrmann, A. (2019). Formwork
detection in UAV pictures of construction sites. eWork and eBusiness in
Architecture, Engineering and Construction, pages 265–271.

[Brilakis et al., 2010] Brilakis, I., Lourakis, M., Sacks, R., Savarese, S.,
Christodoulou, S., Teizer, J., and Makhmalbaf, A. (2010). Toward automated
generation of parametric BIMs based on hybrid video and laser scanning data.
Advanced Engineering Informatics, 24(4):456–465.

[Camera di Commercio, 2012] Camera di Commercio, R. (2012). Il mercato
pubblico dei servizi FM.

[Canalys, 2017] Canalys (2017). Media alert: Virtual reality headset shipments
top 1 million for the first time.

[Carrozzino and Bergamasco, 2010] Carrozzino, M. and Bergamasco, M.
(2010). Beyond virtual museums: Experiencing immersive virtual reality in
real museums. Journal of Cultural Heritage, 11(4):452–458.

[CCSInsight, 2017] CCSInsight (2017). Clear potential for virtual reality head-
sets after a slow start.

[Cesarotti et al., 2014] Cesarotti, V., Benedetti, M., Dibisceglia, F., Di Fausto,
D., Introna, V., La Bella, G., Martinelli, N., Ricci, M., Spada, C., and Varani,
M. (2014). Bim–based approach to building operating management: a strate-
gic lever to achieve efficiency, risk-shifting, innovation and sustainability. In
Proc. Conference: XVIII International Research Society for Public Manage-
ment (IRSPM) Conference, at Ottawa, Canada.

157



Chapter 6

[Chalhoub and Ayer, 2018] Chalhoub, J. and Ayer, S. K. (2018). Using Mixed
Reality for electrical construction design communication. Automation in Con-
struction, 86(May 2017):1–10.

[Chatterjee, 2016] Chatterjee, H. S. (2016). Various types of convolutional neu-
ral network. https://towardsdatascience.com/various-types-of-convolutional-
neural-network-8b00c9a08a1b.

[Chen et al., 2011] Chen, Y. C., Chi, H. L., Hung, W. H., and Kang, S. C.
(2011). Use of tangible and augmented reality models in engineering graphics
courses. Journal of Professional Issues in Engineering Education and Prac-
tice, 137(4):267–276.

[Chiabrando et al., 2016] Chiabrando, F., Sammartano, G., and Spanò, A.
(2016). Historical buildings models and their handling via 3d survey: From
points clouds to user-oriented hbim. International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences - ISPRS Archives,
41(September):633–640.

[Codinhoto et al., 2013] Codinhoto, R., Kiviniemi, A., Sergio Kemmer, and Ce-
cilia Gravina da Rocha (2013). BIM-FM Implementation: An Exploratory
Invesigationtation. 2(June):1–15.

[Collins et al., 2017] Collins, J., Regenbrecht, H., and Langlotz, T. (2017). Vi-
sual coherence in mixed reality: A systematic enquiry. Presence: Teleopera-
tors and Virtual Environments, 26(1):16–41.

[Corneli et al., 2019] Corneli, A., Naticchia, B., Cabonari, A., and Bosché, F.
(2019). Augmented Reality and Deep Learning towards the Management of
Secondary Building Assets. Proceedings of the 36th International Symposium
on Automation and Robotics in Construction (ISARC), (Isarc).

[Cosenza et al., 2018] Cosenza, E., Salzano, A., Menna, C., Asprone, D., and
Serra, M. a. (2018). Digitalizzazione del danno sismico di edifici su pi-
attaforma BIM attraverso tecniche di intelligenza artificiale. Ingenio, 2:1–17.

[Das, 2017] Das, S. (2017). Cnn architectures: Lenet, alexnet, vgg,
googlenet, resnet and more. . . . https://medium.com/analytics-vidhya/cnns-
architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5.

[Deng et al., 2009] Deng, J., Dong, W., Socher, R., Li, L.-j., Li, K., and Fei-fei,
L. (2009). ImageNet : A Large-Scale Hierarchical Image Database. 2009
IEEE Conference on Computer Vision and Pattern Recognition, pages 2–9.

[Devetakovic and Radojevic, 2007] Devetakovic, M. and Radojevic, M. (2007).
Facility management: a paradigm for expanding the scope of architectural
practice. International Journal of Architectural Research: ArchNet-IJAR,
1(3):127–139.

158



BIBLIOGRAPHY

[Díaz-Vilariño et al., 2015] Díaz-Vilariño, L., González-Jorge, H., Martínez-
Sánchez, J., and Lorenzo, H. (2015). Automatic LiDAR-based lighting inven-
tory in buildings. Measurement: Journal of the International Measurement
Confederation, 73:544–550.

[Dieck et al., 2016] Dieck, T, M. C., Jung, T., and Han, D.-I. (2016). Map-
ping requirements for the wearable smart glasses augmented reality museum
application. Journal of Hospitality and Tourism Technology, 7(3):230–253.

[Ding and Drogemuller, 2009] Ding, L. and Drogemuller, R. (2009). Towards
sustainable facilities management. In Technology, Design and Process Inno-
vation in the Built Environment, pages 399–418. Spon Press.

[Dir. 24, 2014] Dir. 24 (2014). Directive 2014/24/EU of the European Parlia-
ment and of the Council. Official Journal of the European Union.

[D.M. 560, 2017] D.M. 560 (2017). Decreto Ministro MIT n. 560 del
1.12.2017.pdf.

[Donath and Thurow, 2007] Donath, D. and Thurow, T. (2007). Integrated
architectural surveying and planning Methods and tools for recording and
adjusting building survey data. 16:19–27.

[Dünser et al., 2006] Dünser, A., Steinbügl, K., Kaufmann, H., and Glück, J.
(2006). Virtual and augmented reality as spatial ability training tools. ACM
International Conference Proceeding Series, 158:125–132.

[East, 2007] East, W. (2007). BIM for Construction Handover. Journal of
Building Information Modeling.

[Eastman et al., 2011] Eastman, C., Teicholz, P., Sacks, R., and Liston, K.
(2011). BIM handbook: A guide to building information modeling for owners,
managers, designers, engineers and contractors. John Wiley & Sons.

[Eh Phon et al., 2014] Eh Phon, D. N., Ali, M. B., and Halim, N. D. A. (2014).
Collaborative augmented reality in education: A review. Proceedings - 2014
International Conference on Teaching and Learning in Computing and Engi-
neering, LATICE 2014, pages 78–83.

[Everingham et al., 2015] Everingham, M., Eslami, S. M. A., Van Gool, L.,
Williams, C. K. I., Winn, J., and Zisserman, A. (2015). The pascal visual
object classes challenge: A retrospective. International Journal of Computer
Vision, 111(1):98–136.

[Fan et al., 2014] Fan, S.-L., Skibniewski, M. J., and Hung, T. W. (2014). Ef-
fects of building information modeling during construction. , 17(2):157–166.

[Fang et al., 2018] Fang, Q., Li, H., Luo, X., Ding, L., Luo, H., and Rose,
T. M. (2018). Automation in Construction Detecting non-hardhat-use by
a deep learning method from far- fi eld surveillance videos. Automation in
Construction, 85(May 2017):1–9.

159



Chapter 6

[Feiner et al., 1997] Feiner, S., Maclntyre, B., and Webster, A. (1997). A Tour-
ing Hachine: Prototgping 3D Hobite Augmented Reatitg Sgstems for Exp-
toring the Urban Environment. Personal Technologies, pages 208–217.

[Feng and Lin, 2017] Feng and Lin (2017). Smoothing Process of Developing the
Construction MEP BIM Model - A Case Study of the Fire-Fighting System.
(Isarc).

[Flavián et al., 2019] Flavián, C., Ibáñez-Sánchez, S., and Orús, C. (2019). The
impact of virtual, augmented and mixed reality technologies on the customer
experience. Journal of Business Research, 100(January 2018):547–560.

[FMLink, 2018] FMLink (2018). Reducing the total cost of ownership through
a lifecycle approach. https://fmlink.com/articles/reducing-the-total-cost-of-
ownership-through-a-lifecycle-approach/.

[Fonnet et al., 2017] Fonnet, A., Alves, N., Sousa, N., Guevara, M., and Mag-
alhães, L. (2017). Heritage BIM integration with mixed reality for building
preventive maintenance. EPCGI 2017 - 24th Encontro Portugues de Com-
putacao Grafica e Interacao, 2017-Janua:1–7.

[Freeman et al., 2017] Freeman, D., Reeve, S., Robinson, A., Ehlers, A., Clark,
D., Spanlang, B., and Slater, M. (2017). Virtual reality in the assess-
ment, understanding, and treatment of mental health disorders. Psychological
medicine, 47(14):2393–2400.

[Gallaher M. and Gilday, 2004] Gallaher M., O’Connor A., D. J. and Gilday, L.
(2004). Cost Analysis of Inadequate Interoperability in the U . S . Capital
Facilities Industry.

[Garon et al., 2017] Garon, M., Boulet, P. O., Doironz, J. P., Beaulieu, L., and
Lalonde, J. F. (2017). Real-Time High Resolution 3D Data on the HoloLens.
Adjunct Proceedings of the 2016 IEEE International Symposium on Mixed
and Augmented Reality, ISMAR-Adjunct 2016, pages 189–191.

[Ghosh and Schwartzbard, 1999] Ghosh, A. K. and Schwartzbard, A. (1999). A
study in using neural networks for anomaly and misuse detection. In USENIX
security symposium, volume 99, page 12.

[Github, 2019] Github (2019). Darknet: yolov3workflow. https://github.
com/reigngt09/yolov3workflow/tree/master/1_WebImage_Scraping.

[Griffin et al., 2017] Griffin, T., Giberson, J., Lee, S. H. M., Guttentag, D.,
Kandaurova, M., Sergueeva, K., and Dimanche, F. (2017). Virtual reality
and implications for destination marketing.

[Hamledari et al., 2017] Hamledari, H., Mccabe, B., and Davari, S. (2017). Au-
tomation in Construction Automated computer vision-based detection of
components of under-construction indoor partitions. Automation in Con-
struction, 74:78–94.

160

https://github.com/reigngt09/yolov3workflow/tree/master/1_WebImage_Scraping
https://github.com/reigngt09/yolov3workflow/tree/master/1_WebImage_Scraping


BIBLIOGRAPHY

[Haueiss, 2017] Haueiss, P. (2017). 8 major challenges the australian vr indus-
try is facing right now. http://patriciahaueiss.com/8-major-challenges-the-
australian-vr-industry-is-facing/.

[Hichri et al., 2013] Hichri, N., Stefani, C., De Luca, L., Veron, P., and Hamon,
G. (2013). From point cloud to BIM: a survey of extisting approaches. ISPRS
- International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XL-5/W2:343–348.

[Hoffman and Novak, 1996] Hoffman, D. L. and Novak, T. P. (1996). Marketing
in hypermedia computer-mediated environments: Conceptual foundations.
Journal of marketing, 60(3):50–68.

[Honkamaa et al., 2007] Honkamaa, P., Siltanen, S., Jäppinen, J., Woodward,
C., and Korkalo, O. (2007). Interactive outdoor mobile augmentation using
markerless tracking and GPS. Proceedings of the Virtual Reality International
Conference VRIC Laval France, pages 285–288.

[Hubel and Wiesel, 1962] Hubel, D. H. and Wiesel, T. N. (1962). Receptive
fields, binocular interaction and functional architecture in the cat’s visual
cortex. The Journal of physiology, 160(1):106–154.

[Huval et al., 2015] Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W.,
Pazhayampallil, J., Andriluka, M., Rajpurkar, P., Migimatsu, T., Cheng-Yue,
R., Mujica, F., Coates, A., and Ng, A. Y. (2015). An Empirical Evaluation
of Deep Learning on Highway Driving. pages 1–7.

[Ihde, 1990] Ihde, D. (1990). Technology and the lifeworld: From garden to
earth. Number 560. Indiana University Press.

[Intel, 2019a] Intel (2019a). Intel R© movidiusTM neural compute stick.
https://movidius.github.io/ncsdk/ncs.html.

[Intel, 2019b] Intel (2019b). Introduction to neural compute stick movidius.
https://movidius.github.io/ncsdk/index.html.

[Irizarry et al., 2014] Irizarry, J., Gheisari, M., Williams, G., and Roper, K.
(2014). Ambient intelligence environments for accessing building information:
A healthcare facility management scenario. Facilities, 32(3):120–138.

[Issa and R.A., 2014] Issa, I. M. and R.A., R. (2014). Enhancing Spatial and
Temporal Cognitive Ability in Construction Education Through Augmented
Reality and Artificial Visualizations. Computing in civil and building engi-
neering, pages 955–1865.

[Jansen and Zhang, 2007] Jansen, K. and Zhang, H. (2007). Scheduling mal-
leable tasks. Handbook of Approximation Algorithms and Metaheuristics,
pages 45–1–45–16.

161



Chapter 6

[Jeong et al., 2018] Jeong, H. J., Park, K. S., and Ha, Y. G. (2018). Image
Preprocessing for Efficient Training of YOLO Deep Learning Networks. Pro-
ceedings - 2018 IEEE International Conference on Big Data and Smart Com-
puting, BigComp 2018, pages 635–637.

[Juang et al., 2013] Juang, J. R., Hung, W. H., and Kang, S. C. (2013). Sim-
Crane 3D+: A crane simulator with kinesthetic and stereoscopic vision. Ad-
vanced Engineering Informatics, 27(4):506–518.

[Keady, 2013] Keady, R. A. (2013). Financial impact and analysis of equipment
inventories. Facilities Engineering Journal.

[Kelly et al., 2013] Kelly, G., Serginson, M., Lockley, S., Dawood, N., and
Kassem, M. (2013). BIM for Facility Management: a review and a case
study investigating the value and challenges. 13th International Conference
Applications of Virtual Reality, (October):30–31.

[Kerrebroeck et al., 2017] Kerrebroeck, H. V., Brengman, M., and Willems, K.
(2017). Escaping the crowd: An experimental study on the impact of a virtual
reality experience in a shopping mall. Computers in Human Behavior, 77:437–
450.

[Kim et al., 2019] Kim, D., Liu, M., Lee, S., and Kamat, V. R. (2019). Automa-
tion in Construction Remote proximity monitoring between mobile construc-
tion resources using camera-mounted UAVs. Automation in Construction,
99(April 2018):168–182.

[Kim et al., 2017] Kim, K., Kim, H., and Kim, H. (2017). Image-based con-
struction hazard avoidance system using augmented reality in wearable de-
vice. Automation in Construction, 83(April):390–403.

[Kolar et al., 2018] Kolar, Z., Chen, H., and Luo, X. (2018). Automation in
Construction Transfer learning and deep convolutional neural networks for
safety guardrail detection in 2D images. Automation in Construction, 89(May
2017):58–70.

[Kononenko, 2001] Kononenko, I. (2001). Machine learning for medical diag-
nosis: History, state of the art and perspective. Artificial Intelligence in
Medicine, 23(1):89–109.

[Kopsida and Brilakis, 2016] Kopsida, M. and Brilakis, I. (2016). BIM regis-
tration methods for mobile augmented reality-based inspection. eWork and
eBusiness in Architecture, Engineering and Construction - Proceedings of the
11th European Conference on Product and Process Modelling, ECPPM 2016,
(September):201–208.

[La Delfa et al., 2016] La Delfa, G. C., Monteleone, S., Catania, V., De Paz,
J. F., and Bajo, J. (2016). Performance analysis of visualmarkers for in-
door navigation systems. Frontiers of Information Technology and Electronic
Engineering, 17(8):730–740.

162



BIBLIOGRAPHY

[Lamio et al., 2019] Lamio, F., Farinha, R., Laasonen, M., and Huttunen, H.
(2019). Classification of Building Information Model (BIM) Structures with
Deep Learning. Proceedings - European Workshop on Visual Information
Processing, EUVIP, 2018-November.

[Laptev and Gupta, 2016] Laptev, I. and Gupta, A. (2016). Hollywood in
Homes : Crowdsourcing Data. 1:510–526.

[Lecoutre et al., 2017] Lecoutre, A., Negrevergne, B., Yger, F., Noh, Y.-K., and
Zhang, M.-L. (2017). Recognizing Art Style Automatically in painting with
deep learning. Proceedings of Machine Learning Research, 77(2016):327–342.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.
(1998). Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324.

[Lee et al., 2012] Lee, S.-K., An, H.-K., and Yu, J.-H. (2012). An extension of
the technology acceptance model for bim-based fm. In Construction Research
Congress 2012: Construction Challenges in a Flat World, pages 602–611.

[Lee et al., 1999] Lee, W., Stolfo, S. J., and Mok, K. W. (1999). A data mining
framework for building intrusion detection models. In Proceedings of the 1999
IEEE Symposium on Security and Privacy (Cat. No. 99CB36344), pages 120–
132. IEEE.

[Li et al., 2018] Li, G., Song, Z., and Fu, Q. (2018). A New Method of Image
Detection for Small Datasets under the Framework of YOLO Network. Pro-
ceedings of 2018 IEEE 3rd Advanced Information Technology, Electronic and
Automation Control Conference, IAEAC 2018, (October 2018):1031–1035.

[Lin et al., 2018] Lin, J.-H. T., Wu, D.-Y., and Tao, C.-C. (2018). So scary, yet
so fun: The role of self-efficacy in enjoyment of a virtual reality horror game.
New Media & Society, 20(9):3223–3242.

[Lin et al., 2014] Lin, T.-y., Maire, M., Belongie, S., Bourdev, L., Girshick, R.,
Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., and Dollár, P. (2014).
Microsoft COCO: Common Objects in Context. pages 1–15.

[Lin and Su, 2013] Lin, Y.-c. and Su, Y.-c. (2013). Developing Mobile- and
BIM-Based Integrated Visual Facility Maintenance Management System.
2013.

[Liu et al., 2016] Liu, R., Asce, A. M., Issa, R. R. A., and Asce, F. (2016).
Survey : Common Knowledge in BIM for Facility Maintenance. 30(2010).

[Liu et al., 2017] Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi,
F. E. (2017). A survey of deep neural network architectures and their appli-
cations. Neurocomputing, 234(December 2016):11–26.

163



Chapter 6

[Love et al., 2014] Love, P. E. D., Matthews, J., Simpson, I., Hill, A., and
Olatunji, O. A. (2014). Automation in Construction A bene fi ts realiza-
tion management building information modeling framework for asset owners.
Automation in Construction, 37:1–10.

[Lu et al., 2018] Lu, Q., Lee, S., and Chen, L. (2018). Image-driven fuzzy-based
system to construct as-is IFC BIM objects. Automation in Construction,
92(March):68–87.

[Ma and Sacks, 2016] Ma, L. and Sacks, R. (2016). A cloud-based BIM platform
for information collaboration. ISARC 2016 - 33rd International Symposium
on Automation and Robotics in Construction, pages 581–589.

[Mcarthur, 2015] Mcarthur, J. J. (2015). A building information management (
BIM ) framework and supporting case study for existing building operations
, maintenance and sustainability. 118:1104–1111.

[McCulloch and Pitts, 1988] McCulloch, W. S. and Pitts, W. (1988). Neuro-
computing: Foundations of research. pages 15–27.

[McKinsey Global Institute, 2017] McKinsey Global Institute (2017). Reinvent-
ing Construction: A Route To Higher Productivity. McKinsey & Company,
(February):20.

[Meißner et al., 2017] Meißner, M., Pfeiffer, J., Pfeiffer, T., and Oppewal, H.
(2017). Combining virtual reality and mobile eye tracking to provide a natu-
ralistic experimental environment for shopper research. Journal of Business
Research.

[Microsoft, 2018a] Microsoft (2018a). Holograms. https://docs.microsoft.
com/en-us/windows/mixed-reality/hologram.

[Microsoft, 2018b] Microsoft (2018b). Start designing and prototyping. https:
//docs.microsoft.com/it-it/windows/mixed-reality/design.

[Microsoft, 2018c] Microsoft (2018c). Unity development overview. https://
docs.microsoft.com/en-us/hololens/hololens1-hardware.

[Microsoft, 2018d] Microsoft (2018d). Unity development overview.
https://docs.microsoft.com/it-it/windows/mixed-reality/
unity-development-overview.

[Microsoft, 2018e] Microsoft (2018e). What is mixed reality? https://docs.
microsoft.com/en-us/windows/mixed-reality/mixed-reality.

[Milgram and Kishimo, 1994] Milgram, P. and Kishimo, F. (1994). A taxon-
omy of mixed reality. IEICE Transactions on Information and Systems,
77(12):1321–1329.

164

https://docs.microsoft.com/en-us/windows/mixed-reality/hologram
https://docs.microsoft.com/en-us/windows/mixed-reality/hologram
https://docs.microsoft.com/it-it/windows/mixed-reality/design
https://docs.microsoft.com/it-it/windows/mixed-reality/design
https://docs.microsoft.com/en-us/hololens/hololens1-hardware
https://docs.microsoft.com/en-us/hololens/hololens1-hardware
https://docs.microsoft.com/it-it/windows/mixed-reality/unity-development-overview
https://docs.microsoft.com/it-it/windows/mixed-reality/unity-development-overview
https://docs.microsoft.com/en-us/windows/mixed-reality/mixed-reality
https://docs.microsoft.com/en-us/windows/mixed-reality/mixed-reality


BIBLIOGRAPHY

[Mill et al., 2013] Mill, T., Alt, A., and Liias, R. (2013). Combined 3D build-
ing surveying techniques - terrestiral laser scanning (TLS) and total station
surveying for BIM data management purposes. Journal of Civil Engineering
and Management, 19(Supplement 1):23–32.

[Molchanov et al., 2017] Molchanov, V. V., Vishnyakov, B. V., Vizilter, Y. V.,
Vishnyakova, O. V., and Knyaz, V. A. (2017). Pedestrian detection in video
surveillance using fully convolutional YOLO neural network. Automated Vi-
sual Inspection and Machine Vision II, 10334:103340Q.

[Montserrat et al., 2017] Montserrat, D. M., Lin, Q., Allebach, J., and Delp,
E. J. (2017). Training object detection and recognition CNN models using
data augmentation. IS and T International Symposium on Electronic Imaging
Science and Technology, pages 27–36.

[Moore, 2018] Moore, S. (2018). Deep learning for computer vision.

[Morrison, 2018] Morrison, H. M. H. P. J. E. J. (2018). History of machine learn-
ing. https://www.doc.ic.ac.uk/~jce317/history-machine-learning.
html#top.

[Motawa and Almarshad, 2013] Motawa, I. and Almarshad, A. (2013). A
knowledge-based BIM system for building maintenance. Automation in Con-
struction, 29:173–182.

[Muhanna, 2015] Muhanna, M. A. (2015). Virtual reality and the cave: Tax-
onomy, interaction challenges and research directions. Journal of King Saud
University-Computer and Information Sciences, 27(3):344–361.

[Nakagawa et al., 2009] Nakagawa, M., Kondo, T., Kudo, T., Takao, S., and
Ueno, J. (2009). Three-dimensional medical image recognition of cancer of
the liver by the revised radial basis function (RBF) neural network algo-
rithm. Proceedings of the 14th International Symposium on Artificial Life
and Robotics, AROB 14th’09, pages 385–388.

[Naticchia et al., 2019] Naticchia, B., Corneli, A., Carbonari, A., and Bosché,
F. (2019). Augmented reality application supporting on-site secondary build-
ing assets management. (July).

[Nazionale, 2010] Nazionale, O. (2010). Il boom del facility management in
Italia nel primo decennio del XXI secolo.

[Oesau et al., 2014] Oesau, S., Lafarge, F., and Alliez, P. (2014). Indoor scene
reconstruction using feature sensitive primitive extraction and graph-cut. IS-
PRS Journal of Photogrammetry and Remote Sensing, 90:68–82.

[Ordonez et al., 2011] Ordonez, V., Kulkarni, G., and Berg, T. L. (2011).
Im2text: Describing images using 1 million captioned photographs. In Shawe-
Taylor, J., Zemel, R. S., Bartlett, P. L., Pereira, F., and Weinberger, K. Q.,
editors, Advances in Neural Information Processing Systems 24, pages 1143–
1151. Curran Associates, Inc.

165

https://www.doc.ic.ac.uk/~jce317/history-machine-learning.html#top
https://www.doc.ic.ac.uk/~jce317/history-machine-learning.html#top


Chapter 6

[Park et al., 2013] Park, C. S., Lee, D. Y., Kwon, O. S., and Wang, X. (2013).
A framework for proactive construction defect management using BIM, aug-
mented reality and ontology-based data collection template. Automation in
Construction, 33:61–71.

[Pärn et al., 2017] Pärn, E. A., Edwards, D. J., and Sing, M. C. P. (2017).
Automation in Construction The building information modelling trajectory
in facilities management : A review. Automation in Construction, 75:45–55.

[Phan and Choo, 2010] Phan, V. T. and Choo, S. Y. (2010). Augmented
Reality-Based Education and Fire Protection for Traditional Korean Build-
ings. International Journal of Architectural Computing, 8(1):75–91.

[Pishdad-Bozorgi et al., 2018] Pishdad-Bozorgi, P., Gao, X., Eastman, C., and
Self, A. P. (2018). Planning and developing facility management-enabled
building information model (FM-enabled BIM). Automation in Construction,
87(February 2017):22–38.

[Poirier et al., 2015] Poirier, E. A., Staub-french, S., and Forgues, D. (2015).
Automation in Construction Measuring the impact of BIM on labor pro-
ductivity in a small specialty contracting enterprise through action-research.
Automation in Construction, 58:74–84.

[Quintana et al., 2017] Quintana, B., Prieto, S. A., Adan, A., and Bosché, F.
(2017). Scan-To-BIM for Small Building Components. 20321(July):29–36.

[Quintana et al., 2018] Quintana, B., Prieto, S. A., Adán, A., and Bosché, F.
(2018). Automation in Construction Door detection in 3D coloured point
clouds of indoor environments. Automation in Construction, 85(October
2016):146–166.

[Radovic et al., 2017] Radovic, M., Adarkwa, O., and Wang, Q. (2017). Object
recognition in aerial images using convolutional neural networks. Journal of
Imaging, 3(2).

[Redmon, 2016] Redmon, J. (2013–2016). Darknet: Open source neural net-
works in c. http://pjreddie.com/darknet/.

[Redmon, 2018] Redmon, J. (2013–2018). https://github.com/pjreddie/
darknet.

[Redmon and Farhadi, 2017] Redmon, J. and Farhadi, A. (2017). YOLO9000:
Better, faster, stronger. In Proceedings - 30th IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, volume 2017-Janua, pages
6517–6525.

[Redmon and Farhadi, 2018] Redmon, J. and Farhadi, A. (2018). YOLOv3: An
Incremental Improvement.

166

http://pjreddie.com/darknet/
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet


BIBLIOGRAPHY

[Redmon et al., 2016] Redmon, J., Girshick, R., Farhadi, A., and Dataset, A.
(2016). You Only Look Once : Unified , Real-Time Object Detection.

[RICS, 2009] RICS (2009). Building maintenance: strategy, planning and pro-
curement, Royal Institution of Chartered Surveyors.

[Riexinger et al., 2018] Riexinger, G., Kluth, A., Olbrich, M., Braun, J. D., and
Bauernhansl, T. (2018). Mixed Reality for On-Site Self-Instruction and Self-
Inspection with Building Information Models. Procedia CIRP, 72:1124–1129.

[Rodriguez-gonzalvez et al., 2014] Rodriguez-gonzalvez, P., Gonzalez-aguilera,
D., Lopez-jimenez, G., and Picon-cabrera, I. (2014). Automation in Construc-
tion Image-based modeling of built environment from an unmanned aerial
system. Automation in Construction, 48:44–52.

[Roper and Payant, 2014] Roper, K. and Payant, R. (2014). The facility man-
agement handbook. Amacom.

[Saha, 2018] Saha, S. (2018). A comprehensive guide to convolutional neural
networks — the eli5 way. https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

[Scherer and Katranuschkov, 2017] Scherer, R. J. and Katranuschkov, P.
(2017). Bimification: How to create bim for retrofitting. In Proceedings of the
Joint Conference on Computing in Construction (JC3), Heraklion, Greece.

[Shanbari et al., 2016] Shanbari, H., Blinn, N., and Issa, R. R. (2016). Using
augmented reality video in enhancing masonry and roof component compre-
hension for construction management students. Engineering, Construction
and Architectural Management, 23(6):765–781.

[Shen et al., 2010] Shen, W., Hao, Q., Mak, H., Neelamkavil, J., Xie, H., Dick-
inson, J., Thomas, R., Pardasani, A., and Xue, H. (2010). Systems integra-
tion and collaboration in architecture, engineering, construction, and facilities
management: A review. Advanced Engineering Informatics, 24(2):196 – 207.
Enabling Technologies for Collaborative Design.

[Shinde et al., 2018] Shinde, S., Kothari, A., and Gupta, V. (2018). YOLO
based Human Action Recognition and Localization. Procedia Computer Sci-
ence, 133(2018):831–838.

[Shirazi and Ashuri, 2018] Shirazi, A. and Ashuri, B. (2018). Past, Present, and
Future of BIM-Enabled Facilities Operation and Maintenance. Proceeding of
Construction Research Congress 2018, 2010(1):461–471.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very
Deep Convolutional Networks for Large-Scale Image Recognition. pages 1–14.

[Slater, 2003] Slater, M. (2003). A note on presence terminology. Presence
connect, 3(3):1–5.

167



Chapter 6

[Smailagic and Siewiorek, 2004] Smailagic, A. and Siewiorek, D. P. (2004).
Wearable computing. Mobile Computing Handbook, pages 3–23.

[Succar, 2009] Succar, B. (2009). Building information modelling framework:
A research and delivery foundation for industry stakeholders. Automation in
Construction, 18(3):357–375.

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going
deeper with convolutions. Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 07-12-June-2015:1–9.

[Tao et al., 2018] Tao, J., Wang, H., Zhang, X., Li, X., and Yang, H. (2018). An
object detection system based on YOLO in traffic scene. Proceedings of 2017
6th International Conference on Computer Science and Network Technology,
ICCSNT 2017, 2018-Janua:315–319.

[task Group, 2012] task Group, P. C. (2012). Government Construction Strat-
egy Final Report to Government by the Procurement / Lean Client Task
Group July 2012 Report of the Procurement / Lean Client Task Group.
(July).

[Thornson et al., 2009] Thornson, C. A., Goldiez, B. F., and Le, H. (2009).
Predicting presence: Constructing the tendency toward presence inventory.
International Journal of Human-Computer Studies, 67(1):62–78.

[Tijtgat, 2017] Tijtgat, N. (2017). Customizing yolo. https://timebutt.
github.io/static/how-to-train-yolov2-to-detect-custom-objects/.

[Tussyadiah et al., 2018] Tussyadiah, I. P., Jung, T. H., and tom Dieck, M. C.
(2018). Embodiment of wearable augmented reality technology in tourism
experiences. Journal of Travel research, 57(5):597–611.

[Valero et al., 2018] Valero, E., Bosché, F., and Forster, A. (2018). Automa-
tion in Construction Automatic segmentation of 3D point clouds of rubble
masonry walls , and its application to building surveying , repair and main-
tenance. Automation in Construction, 96(August):29–39.

[Volk et al., 2014] Volk, R., Stengel, J., and Schultmann, F. (2014). Building
Information Modeling (BIM) for existing buildings - Literature review and
future needs. Automation in Construction, 38:109–127.

[VoTT, 2019] VoTT, G. (2019). Labelling tool. https://github.com/
microsoft/VoTT.

[Wang et al., 2019a] Wang, H., Jiang, C., Bao, K., and Xu, C. (2019a). Recog-
nition and Clinical Diagnosis of Cervical Cancer Cells Based on our Improved
Lightweight Deep Network for Pathological Image. Journal of Medical Sys-
tems, 43(9).

168

https://timebutt.github.io/static/how-to-train-yolov2-to-detect-custom-objects/
https://timebutt.github.io/static/how-to-train-yolov2-to-detect-custom-objects/
https://github.com/microsoft/VoTT
https://github.com/microsoft/VoTT


BIBLIOGRAPHY

[Wang et al., 2019b] Wang, Q., Bi, S., Sun, M., Wang, Y., Wang, D., and Yang,
S. (2019b). Deep learning approach to peripheral leukocyte recognition. PLOS
ONE, 14(6):1–18.

[Wang and Dunston, 2007] Wang, X. and Dunston, P. S. (2007). Design, strate-
gies, and issues towards an Augmented Reality-based construction training
platform. Electronic Journal of Information Technology in Construction,
12(June 2006):363–380.

[Wang et al., 2017] Wang, X., Dunston, P. S., and Skibniewski, M. (2017).
Mixed Reality Technology Applications in Construction Equipment Opera-
tor Training. Proceedings of the 21st International Symposium on Automation
and Robotics in Construction.

[Watson, 2011] Watson, A. (2011). Digital buildings - Challenges and opportu-
nities. Advanced Engineering Informatics, 25(4):573–581.

[Xiong et al., 2013] Xiong, X., Adan, A., Akinci, B., and Huber, D. (2013).
Automatic creation of semantically rich 3D building models from laser scanner
data. Automation in Construction, 31:325–337.

[Xue et al., 2018] Xue, F., Lu, W., and Chen, K. (2018). Automatic Gener-
ation of Semantically Rich As-Built Building Information Models Using 2D
Images: A Derivative-Free Optimization Approach. Computer-Aided Civil
and Infrastructure Engineering, 33(11):926–942.

[Yang and Ergan, 2017] Yang, X. and Ergan, S. (2017). BIM for FM: Informa-
tion Requirements to Support HVAC-Related Corrective Maintenance. Jour-
nal of Architectural Engineering, 23(4):04017023.

[Zhao et al., 2015] Zhao, Z. K., Wang, L., and Xu, N. (2015). Deep belief net-
work based 3D models classification in building information modeling. Inter-
national Journal of Online Engineering, 11(5):57–63.

[Zhou et al., 2017] Zhou, Y., Luo, H., and Yang, Y. (2017). Implementation
of augmented reality for segment displacement inspection during tunneling
construction. Automation in Construction, 82:112–121.

169


	Acknowledgements
	Abstract
	Table of contents
	List of tables
	List of figures
	Acronyms
	Introduction
	Background and Motivation 
	Facility Management: an overview 
	Goal and Overview: surveying of assets components 

	Literature Review
	Introduction 
	Surveying 
	The widespread adoption of BIM paradigm in the AEC industry 
	Latest technologies that support building survey procedures

	Machine Learning
	Neural Networks for the recognition of objects
	The use of NN for recognition in engineering

	Mixed Reality
	Definition of Mixed Reality
	Uptake of MR to real-time problems
	The use of Mixed Reality for building oriented applications

	Conclusion

	Methodology
	Introduction 
	Use cases
	Addressed issues
	Automatic inventory/survey support
	Diagnosis support
	On-site operation support

	Neural Networks 
	YOLO Neural Networks 
	YOLO training process 
	The training framework 
	The Dataset creation 
	Training the network 
	Validation process

	Mixed reality 
	Holograms that overlap reality 
	The MR tool 

	Collected information storing
	Conclusion

	Object Recognition System
	Introduction
	Object Recognition System development
	Mixed Reality environment
	BIM model
	 MR platform
	Hololens application
	Database

	Real environment
	Microsoft Hololens
	The embedded system
	Raspberry
	Movidius
	On-site technician
	 Real world scene


	Data transfer
	Automatic survey process
	Conclusion

	Proof of concept
	Introduction
	Neural Network training
	Datasets creation
	Training sessions and results
	Training sessions validation

	Testing the Neural Network performances
	Testing of the system
	Discussion
	Conclusion

	Conclusions
	Conclusions
	Research Contributions
	Suggestions for future RD


