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Abstract

In the thesis, studies on nonlinear dynamics of a homogeneous and isotropic
beam are performed. Partial differential equations of motion of a straight
planar beam model are derived, taking into account extensibility and shearing
effects, longitudinal, transverse and rotational inertia as well as different curva-
ture definitions. For special boundary conditions (like hinged-simply supported
beam with an axial spring) approximate method of multiple time-scales is im-
plemented to catch various dynamic phenomena of the system, wherein free
dynamics and forced-damped vibrations are represented by backbone curves
and nonlinear frequency response curves, respectively. In the structure axial-
transverse oscillations are coupled and the importance of combination of two
modes, for instance in internal resonance, is shown. Analytical considera-
tions are supported by numerical model elaborated in commercial software
Abaqus_CAE®. Initially, the linear behaviour of the beam model in frequency
module is tested and then backbone curves and stable frequency response curves
with use of transient dynamic explicit module are obtained. Time-dependent
simulations with path-following and shooting methods are used and outcomes
are compared with analytical results. Apart from sophisticated theoretical
approaches, a basic validation tests on the Euler-Bernoulli beam prototype
are done. Nonlinear dynamics of kinematically excited prototype with various
boundary conditions in axial direction is executed experimentally. Harden-
ing/softening phenomena and jumps between stable solutions are observed in
analytical and numerical solutions, as well as in experiments. Study on non-
linear dynamics of a beam ends with conclusions and further developments are
suggested.

xi



Figure 1: Graphical abstract.
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Sommario

Questa tesi di dottorato analizza la dinamica non lineare di una trave omoge-
nea e isotropa. Sono state inizialmente ricavate le equazioni differenziali alle
derivate parziali del moto per un modello di trave rettilinea nel caso piano,
tenendo conto degli effetti dell’estensibilità, di taglio e dell’inerzia longitudi-
nale, trasversale e rotazionale, e per diverse definizioni di curvatura. Per le
particolari condizioni al contorno scelte (trave incernierata – semplicemente
appoggiata con una molla assiale), é stato utilizzato il metodo alle scale tem-
porali multiple (multiple time-scales) per cogliere i differenti fenomeni dinam-
ici nel sistema, dove le vibrazioni dinamiche libere e forzate con smorzamento
sono rappresentate rispettivamente da curve backbone e da curve non lineari
di risposta in frequenza. In questo lavoro sono state accoppiate vibrazioni lon-
gitudinali e trasversali, mostrando ed analizzando l’importanza dell’interazione
di due modi, ad esempio per fenomeni di risonanze interne. I risultati analitici
sono state integrati con un modello numerico realizzato nel software commer-
ciale Abaqus_CAE®. Inizialmente, il comportamento lineare del modello della
trave é stato esaminato nel modulo in frequenza e successivamente, utilizzando
il modulo dinamico esplicito, sono state ottenute le curve backbone e le curve
non lineari di risposta in frequenza stabili. Le simulazioni numeriche hanno us-
ato i metodi di path-following e shooting. I risultati delle simulazioni sono stati
confrontati con le soluzioni analitiche e dimostrano la conformità di entrambi
i metodi. Oltre alle sofisticate analisi teoriche, sono stati effettuati alcuni test
preliminari di laboratorio su un prototipo di trave di Eulero-Bernoulli al variare
delle condizioni al contorno in direzione longitudinale. La dinamica della strut-
tura reale è stata testata sperimentalmente forzando il sistema cinematicamente
nella direzione trasversale con diverse ampiezze di eccitazione e condizioni al
contorno. Sono stati osservati fenomeni di non linearitá quali hardening e soft-
ening e salti tra soluzioni stabili. Tali effetti sono stati riscontrati sia negli
studi analitici sia in quelli numerici, nonché negli esperimenti sul prototipo.
Infine, il lavoro é completato dalle conclusioni e dai possibili sviluppi futuri del
problema.
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Streszczenie

W pracy doktorskiej dokonano analizy dynamiki nieliniowej belki. W układzie
płaskim wyprowadzono cząstkowe równania różniczkowe ruchu, biorąc pod
uwagę efekty rozciągania i zginania ze ścinaniem bezwładność wzdłużną, po-
przeczną i obrotową; a także różne definicje krzywizny. Uwzględniając wybrane
warunki brzegowe (belka swobodnie podparta z poosiowym elastycznym ele-
mentem), zastosowano metodę wielu skal czasowych i zbadano różne zjawiska
dynamiczne w układzie. Na podstawie uzyskanych rozwiązań analitycznych
wyznaczono drgania swobodne oraz wymuszone badanej struktury oraz krzywe
szkieletowe i nieliniowej charakterystyki amplitudowo częstotliwościowe.
W pracy wykazano możliwość sprzężenia drgań wzdłużnych i poprzecznych,
a następnie przeprowadzono analizę interakcji dwóch postaci drgań. Rozważa-
nia analityczne zostały uzupełnione przez model numeryczny wykonany
w komercyjnym oprogramowaniu Abaqus_CAE®. Na początku zbadano dy-
namikę układu w zakresie liniowym w module frequency, a następnie wykorzys-
tując modułu dynamic explicit wyznaczono krzywe szkieletowe oraz narysowano
wykresy stabilnych odpowiedzi amplitudowo-częstotliwościowej. W obliczeni-
ach zastosowano metodę strzelania oraz metodę podążania za ścieżką stabil-
nego rozwiązania. Wyniki porównano z rozwiązaniami analitycznymi wykazu-
jąc zgodność obu metod. Oprócz wyrafinowanych teoretycznych analiz wyko-
nano stanowisko laboratoryjne uwzględniające smukłą belkę i zmienne warunki
brzegowe w kierunku wzdłużnym. Dynamika rzeczywistej struktury została
zbadana eksperymentalnie wymuszając układ kinematycznie w kierunku poprze-
cznym z różnymi amplitudami wymuszenia oraz warunkami brzegowymi. Zjawi-
ska nieliniowości obserwowano w postaci sztywnych i miękkich charakterystyk
rezonansowych oraz przeskoków między stabilnymi rozwiązaniami. Efekty zosta-
ły zaobserwowane w badaniach analitycznych i numerycznych, a także w ekspery-
mencie. Pracę zakończono wnioskami i planowanym przyszłym rozwojem za-
gadnienia.
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Chapter 1

Introduction

Cables, beams and shells are the most common structural elements in engineer-
ing. They are used in large-scale to design buildings, bridges; are indispens-
able automotive components; at the micro-scale are used every day in sensors
and controllers in cell phones and many other devices. Beams and shells are
subjected to optimization and wise solutions are often proposed for design pur-
poses. This requires careful theoretical and experimental examination.
The development of modern structures requires scientific description with

more and more accurate mathematical models. Their behaviour is described
with high accuracy in various dynamical conditions. Nowadays, a lot of at-
tention is paid to nonlinear dynamics of those structures, for example beams
under different boundary conditions, like clamped-clamped, cantilever, hinged-
hinged, hinged-simply supported and so on. Despite the complexity of the
problems, advanced software for mathematical manipulations, and more pow-
erful hardware, allow us to analytically attack those models, by covering all
geometrical effects and associated complex nonlinear and non-homogeneous
dynamic boundary conditions. We will study a particular case of a beam with
arbitrary boundary conditions in axial direction and we will consider the dy-
namic behaviour of such a system with three different approaches: numerical,
analytical and experimental.

1.1 Motivation
In real structures ideal constraints (i.e. those that exactly eliminate the dis-
placements or rotations) do not exist; for example constraints of the hinges, a
beam has susceptibility to deformation and can be reduced to sliding support
with a robust axial elastic element. It is well known that nonlinear dynamics
of any structure depends on initial and boundary conditions, and it is worth to
check how the axial spring stiffness changes the behaviour of the new arrange-
ment. As it will be shown in Section 1.3 there are only a few publications on
this topic and therefore the expected rich nonlinear dynamics of the system as
well as its applicability motivated us to work on it.
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Chapter 1 Introduction

Second, equally important motivation is the coupling between axial and
transversal displacements. Commonly, the differential equations of motion
which describe vibrations of the beam are focused only on lateral displace-
ments and associated bending-shearing deformations. The simultaneous con-
sideration of the longitudinal and transverse terms of the beam increases the
level of difficulty of the problem. However, it shows the importance of inter-
actions, which for some cases can be omitted and in critical parameters they
completely change the behaviour of the structure.

1.2 Objectives
The objectives of the work are:

• to accurately derive the partial differential equations of motion for a sim-
ply supported beam with particular consideration of various boundary
conditions in longitudinal direction and their effects on dynamical re-
sponse;

• to propose several strategies, based on finite element method, for free
and forced-damped nonlinear dynamics investigation of the mechanical
systems;

• to properly design an experimental prototype beam, to subject it to large
amplitude vibrations together with multifarious longitudinal elastic sup-
ports of the system;

• to compare analytical, numerical and experimental results

• to examine sensitivity of the parametric response of the beam to small
variations for design purposes,

• to analytically, numerically and experimentally detect variations in hard-
ening/softening dichotomy.

1.3 State of the art - beams dynamics
Origins of the study on beams dynamics is dated back to 1654-1782 to Jacob
and Daniel Bernoulli. Jacob realized that the curvature of deformed beam is
proportional to bending moment along the spam, while his nephew, Daniel
derived the differential equation of motion for an oscillating beam. Their ex-
travagant at that time model was examined by Leonard Euler by cross checking
various conditions of loading and related to them deformation shapes [1]. The
established beam model is the most common one and recognized under dif-
ferent names: classical beam theorem, the Euler-Bernoulli beam theory, Euler

2
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beam theory or Bernoulli beam theory. The Euler-Bernoulli beam links bend-
ing curvature-bending moment relation and is the simplest theorem commonly
used in engineering. The balance of strain energy due to bending and kinetic
energies due to transverse speed gives relatively good results for low modes of
slender beams. Higher order modes reduces length of the half-waves as in case
of thick (non-slender) beams where other effects becomes stronger. The his-
torical draft of the Euler-Bernoulli beam and derivation can be found in many
well recognizable books for example [2–8].
The first improvement of classical beam theory was proposed by Rayleigh

in 1877 [9]. He observed that the angular displacement of the beam element
is a lateral deformation derivative, infinitesimally small with respect to the
infinitesimally small beam element. The angular speed is a derivative of angular
deformation with respect to time. Then, by multiplying the square of angular
velocity by a half of inertia of the segment and integrating those terms over
beam lenght gives a kinetic energy, which correspond to rotatory inertia. In
other words, he took into account the effect of beam cross-section rotational
inertia which supplement the kinetic energy [10]. In 1937 [11], the Rayleigh
beam model was used to study fixed-free conditions.
The Rayleigh beam theorem was extended by Timoshenko in 1921 [12] and

1922 [13]. To the Euler-Bernoulli beam a shearing and rotation effects were
implemented, this improvement highlights differences for higher order modes
of oscillations as well as thick beam and remains fully compatible with results
for slender beams. Over the time the Timoshenko beam gained popularity
becoming the reference for non-slender beams.
Kruszewski performed theoretical analysis of the cantilever and free-free

beams using Timoshenko teorem for the first three modes [14]. Traill-Nash and
Collar distinguished five boundary conditions and analyzed beams dynamics
under combined arrangement as follows: cantilever, free-free (symmetric and
anti-symmetric modes), simply supported-free, simply supported (symmetric
and anti-symmetric modes), clamped-clamped (symmetric and anti-symmetric
modes). Authors also considered more general study but with simplifaications
by neglecting rotatory inertia or assuming infinite shear stiffness. They vali-
dated results experimentally and numerically for non-slender beams, Table 1.1
shows investigation discrepancies [10].
In [15], Herrmann investigated forced Timoshenko beams by reducing general

problem of forced motion to free vibration problem. Based on orthogonality of
the principal modes the problem has been resolved with time-dependent bound-
ary conditions by Mindlin and Goodman [16, 17]. Study on beams dynamics
aroused increasing interest, for example, Dolph analyzed hinged-hinged and
free-free shearable beams including rotatory inertia in dimensionless form [18].
Huang compared classical beam vs Timoshenko model for clamped-free beam

3



Chapter 1 Introduction

Table 1.1: Experiment vs theoretical beam models: comparison of natural fre-
quencies for non-slender beams [10].

Beam

models

First

natural Frequency

Second

natural frequency

Euler-Bernoulli from +14% to +26% from +78% to +133%

Timoshenko from −1% to +2% from −1% to +6%

and drawn dimensionless correction in natural frequencies as a radius of gyra-
tion function [19].
A discussion on the shear coefficient in Timoshenko’s beam theory for differ-

ent cross-sections has been done by Cowper, in [20].
Dawson presented approximate bending and shear deflections using a series

of simple beam functions. For this purpose he used Rayleigh-Ritz method and
compared it to analytical solutions for the five bending modes of Timoshenko
beam. He concluded that his method can be extended to initially twisted
beams, for which an analytical solution does not exist [21]. Indeed, next year,
together with Carnegie, he reported natural frequencies and associated modal
shapes of pre-twisted cross section along the length up to 90 degrees for first
three bending modes [22].
The effect of shear flexibility and rotatory inertia on the natural frequencies of

uniform beams was captured in an energy approach by Carr for hinged-hinged,
fixed-free, free-free, fixed-fixed, fixed-hinged and free-hinged beams [23]. He
omitted the difficulty of using simple functions by linking the shear flexibil-
ity and the effect of rotatory inertia relations. That approximation hardly
changes the natural frequencies with respect to the exact solutions obtained by
transcendental frequency equations for higher modes.
Atluri reconsidered Timoshenko beam model and introduced to nonlinear

equations of motion terms which arise from longitudinal and rotatory inertia,
caused by large amplitudes of oscillations. Dynamics of hinged beam with
no axial restraints was considered by using Galerkin method and modal ex-
pansion [24]. He applied the perturbation procedure of multiple time-scales
to derive frequency-amplitude relations and proved that nonlinear natural fre-
quency decreases as the amplitude of oscillations increases in the hinged-simply
supported beam, contrary to previous works which neglected the axial inertia
effect [25–28]. Also Mei built, incorrect for this purpose, a finite element model
of large displacements [29,30]. Prathap and Varadan drew conclusions from the
errors of their predecessors and formulated the classical problem of the large
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1.3 State of the art - beams dynamics

amplitude transverse vibration considering key inertia terms for a hinged beam
with axial restraints (hinged-hinged). They used the exact nonlinear curvature
expressions, nonlinear equilibrium equations and not averaged axial force gen-
erated due to immovability of supports. Although, they ignored longitudinal
inertia forces to simplify analysis, of course this assumption has a much lower
impact on the hinged-hinged beam’s dynamics than in the case of a simply
supported beam [31]. Simultaneously, Crespo da Silva and Glynn went over
the formulation in a planar system and dealt with flexural-flexural-torsional
modes of inextensible beams [32]. Using perturbation analysis the nonlinear
frequency response curves were drawn for the first, second and third modes of
a cantilever beam [33].
Two years later, Hutchinson was exploring an exact solution for the natural

frequencies of solid elastic cylinders in free configuration [34]. He described
the problem by three-dimensional equations considering radial, tangential and
axial displacements, and then plotted frequency spectra of even and odd modes
in diameter to lenght ratio-natural frequency and compared with experiments
reported by [35]. Results were in a very good agreement. Next, he extended his
work to comparison of Euler-Bernoulli and Timoshenko beams exact solutions
in free-free configuration with an Pochhammer-Chree approximate solutions
[36] and reconsidered a shear coefficient in diameter-to-length, Poisson’s ratio
and frequency relations.
From our point of view, Luongo et al. presented very interesting research on

nonlinear dynamics of planar shear-indeformable as well as shear-deformable
beams in 1986 and 1987 [37, 38]. Latter investigation were preceded by sev-
eral considerations on the free nonplanar vibrations of inextensional beams [39]
and planar unshearable beams [40]. They employed perturbation method for
among others hinged-hinged and hinged-simply supported beams in the neigh-
borhood of the resonant frequencies (first and third) and drawn frequency re-
sponse curves distinguishing stable and unstable solutions. As in [24], their
examination shows hardening and softening phenomena for axially restrained
and unrestrained beams, respectively.
After a decade, Crespo Da Silva returned with a reconsidered classical beam

model wherein flexure along two principal directions, torsion and extension
are formulated. The shearing effect due to bending was neglected. Effects of
all geometric nonlinearities, which arise from mid-plane stretching, mechanical
curvature as well as inertia terms were considered in [41] and then applied
to variational approach to obtain equations of motion and boundary condi-
tions associated with them. Consequently the nonlinear response of clamped-
clamped and clamped-hinged beams were determined using perturbation anal-
ysis [42]. Due to method restrictions distance between reinforcements had been
restrained. Nevertheless, nonlinear inertia and curvature in the analysis were
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Chapter 1 Introduction

involved in the nonlinear analysis.
In the late XX and beginning of the XXI centuries scientists were focused

on possibilities of nonlinear response using beam-like systems. Various already
established methods were applied to achieve more attractive dynamics of the
structures and to obtain full control over structures as:

• Beams application in micro-electro-mechanical systems e.g. electrome-
chanical switches [43]; coupling linear and nonlinear elastic forces with
the nonlinear electric forces generated by the capacitors to study static
and dynamic behaiour of the devices [44]; inspection on different beam
shapes for piezoelectric energy harvesting [45]; and mode localization of
two doubly clamped microbeams with mechanical link [46].

• Rotating structures, wherein a canteliever beam with coupled through
the stretch/chordwise deformations and weak linearly uncoupled flapwise
deformations [47]; consideration on the preset angle of the beam and
nonconstant angular speed [48] and a tip mass [49]; vibration control of
rotating composite beams and blades [50].

• Health morthing of beam-type and plate-type structures using natural
frequencies methods, corresponding mode shapes, curvature mode shape
methods and combined method [51]. It enables damage detection, localize
and investigate the value of the defect [52,53].

• Interaction between bending modes for initially straight, buckled or mod-
erately curved beams [54–57]. For example, Avramov et al. studied
nonlinear strain-displacement model of hinhed-hinged beam with peri-
odic lateral force. They applied the multiple time scales method to the
system and inspected almost-periodic beam oscillations, bifurcation di-
agrams and Poincare sections in [54]. In [55], Lacarbonara and Rega
investigated two-to-one, three-to-one and one-to-one internal resonance
of the one-dimensional slender beam which was buckled by prescribed
end-displacement. They were focused on analysis of integer ratios be-
tween eigenfrequencies of clamped–clamped buckled beams as well as
suspended cables, and then determined cases where the non-linear in-
teractions which might trig resonant non-linear normal modes. Emam
and Nayfeh also considered clamped-clamed beam, but in their approach
the axial static load (beyound the critical value) initially deformed beam
and transverse harmonic excitation were imposed around the primary
resonance. They detected orbits of period -one; -two; -four; -eight; and
snaptrough motion in [56]. Next Lacarbonara et al. considered the kine-
matically excited, imperfect curved hinged-hinged beam with a torsional
spring subjected to one end [57]. Two main parameters were varied (tor-

6



1.3 State of the art - beams dynamics

sional spring stiffness and amplitude of initial half-sinusoidal deformation
in rest configuration) to find flexural modal interactions and then display
mode shapes functions, frequency force curves of one-to-one auto para-
metric resonance of the first two modes and particular cases of weakly
localized responses.

• Effect of additional mass on the beams dynamics [49,58–60]. Pakdemitli
and Nayfeh analyzed a hinged-hinged beam with a grounded spring-mass
system attached to the beam along the spam [58]. They used two per-
turbation approaches: averaging Lagrangian over the fast time scale then
derived the modulation equations and the method of multiple time scales
applied directly to the partial differential equations together with associ-
ated boundary conditions. Using both methods they analyzed the lowest
five linear natural frequencies for selected mass-spring suspensions and
then nonlinear responses of the lowest two frequencies of the structure
were investigated for a free and forced-damped oscillations. Whereas,
Lacarbonara and Camillacci analysed nonlinear normal modes of the
hinged-hinged beam undergoing axis streching and carrying the lumped
mass in [59]. Cubic inertia and weak cubic geometrical nonlinearities
were assumed in the beam model and analysis was performed in two
cases (i) away from internal resonances and (ii) near to three-to-one in-
ternal resonances. Parametric resonances of the unshearable and inex-
tensible simply supported beams with tip mas were analyzed with use of
the multiple time scales method and compared with experimental results
in [60]. Authors highlighted that increase of the tip mass produced a
more pronounced softening effect in simply supported beam, it was in
contrary to behaviour of a cantilever beam. Moreover, they observed
single-mode nonperiodic behaviors near the particular boundary of the
resonance tongue, which were particularly interesting from mechanical
point of view.

• Stretching forces in simply supported beams. The axial forces imposed
by small deflection of boundary conditions affects natural frequencies
which decrease for odd modes, while for even modes can either increase
or decrease [61]. In case of the hinged-hinged beams, the response of the
slighty streached beam has demonstrated hardening behaviour [62].

In recent years novelty on coupling in transverse-longitudinal vibrations of
hinged-simply supported beams with an axial spring was developed by two re-
search groups. The first led by Yabuno, Lacarbonara et al. explored knowledge
about excited beams [63–66]. Three models of a planar beams-spring system,
excited by kinematic excitation were studied analytically and experimentally
in [63]. The frequency response curves of the hinged-hinged and hinged-simply

7



Chapter 1 Introduction

supported beam represented hardening and softening behaviour for the first
bending mode, respectively. Particularly those experiments, by testing differ-
ent spring stiffness will be extended in Chapter 4 of the thesis. Next, in [64] the
hinged-singed beam with time-varying horizontal displacement of the one end
were dynamically tested by finite element method for different axial to flexural
stiffness ratios. In the next approach the beams’ tip was also axially excited
(via periodic motion of a shaker’s head), where the sliding support was linked
by a linear spring. The passive control method for changing the nonlinear
characteristics of the frequency response curve by a change of spring stiffnes
without shifting the linear unstable region were proposed in [65]. Finally, the
hinged-simply supported beam-spring-tip mas system was mounted on sliding
trolley and then excited by periodic movement of the slip table in the axial di-
rection. They highlighted that third-order analysis based on the multiple time
scales is not able to quantitatively capture the frequency response curves of
the structure and therefore they introduced a fifth-order analysis to get results
coherent with experiment.
Since 2016, nonlinear free vibrations, various curvature definitions, analyti-

cal, numerical and experimental methods were dealt with by Lenci and Rega
et al. [67–78]. They started from deriving a set of partial differential equa-
tions of motion and associated boundary conditions based on a linear elastic
behaviour of the material, kinematic of shearable and extensible beam element,
and balance equations including axial, transversal and rotatory inertia. Using
perturbation methods, they investigated the free oscillations for the first bend-
ing mode by neglecting axial displacements in linear order equations in [67] and
including them in nonlinear coupled axial-transverse motion [68]. The analyti-
cal model was validated with use of the finite element simulations by comparing
backbone curves in [70]. Discrepancies in the system responses based on dif-
ferent curvature definitions (mechanical and geometric) were examined in [71].
Free and forced oscillations of the simply supported beam with boundary condi-
tions like inclined (linear) roller at the free end with no spring were considered
in [72] and also isochronous beam with inclined support sliding on an arbitrary
path were developed in [73]. In subsequent the path following finite element
method [74,75] and the multiple time scale method [76] were used in studies on
forced-damped nonlinear oscillations of the planar, initially straight beam with
an axial spring for the primary resonance as well as higher order resonances [77].
The most recent work is on experimental test and its finite element method
counterpart is presented in [78] and through this doctoral thesis, nonetheless
development on this topic is still in progress.
The thesis is organized as follows. In Chapter 2 the multiple time scales

method up to third order of approximation is applied directly to the coupled
partial differential equations of motion of the Timoshenko beam with associated
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1.3 State of the art - beams dynamics

boundary conditions. Numerical model is performed in Chapter 3 and includes
four numerical methods of analyzing the beams dynamic: free linear oscilla-
tions, nonlinear oscillations based on time histories, path following and shoot-
ing methods implemented for forced-damped vibrations (explicit in simulation
time). The experimental test of the kinematically excited beam is reported
in Chapter 4 and collectively results for analytic, numeric and experiment are
compared in Chapter 5. The thesis ends in Chapter 6 with conclusions, the
advantage of studies and future developments .
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Chapter 2

Analytical approach

In this chapter analytical modeling of the beam will be presented, wherein lin-
ear behaviour, balance and geometrical nonlinearities are combined in order to
derive an exact planar beam model, described by a set of three partial differen-
tial equations of motion. Origin of the most general case of a finite length beam
is presented in Section 2.1. In Section 2.1.2 considerations will be devoted to
various types of boundary conditions and finally a perturbation method will
be applied to the beam model under hinged-simply supported type of bound-
ary conditions. Analytical part will be summarized by frequency response
and backbone curves together with a discussion on higher order resonances of
beams.

2.1 Beam model

2.1.1 Beam element definition
Let us consider an initially straight beam of length L (0 < Z ≤ L) in rest
configuration, with a constant cross section A and second order of area J .
Beam’s linear elastic material properties are defined by: Young modulus E,
density ρ and shear modulus G. Parameter G implies that Poisson’s ratio ν
and shear factor ξ are also invariable.

The beam element is placed in a plane described by two orthogonal axes
Z, X. The displacements are dependent on time T . Initially undeformed
configuration is along the Z axis, its deformation in (Z, X) plane is defined
by W (Z, T ) and U(Z, T ) displacements. A cross section of the beam can also
rotate of an angle θ(Z, T ), see Figure 2.1. By analyzing kinematics of the beam
element we find that:

• the axial stretch of elementary segment S′ and the axial strain ê are

S′ =
√

(1 +W ′)2 + U ′2, ê = S′ − 1. (2.1)

where primes denote partial derivative with respect to the coordinate Z,

11



Chapter 2 Analytical approach

• the slope angle ϕ satisfies

cosϕ = 1 +W ′

S′
, sinϕ = U ′

S′
, tanϕ = U ′

1 +W ′
, (2.2)

• the shear strain γ is described as a difference between slope angle and
rotation of cross section of the beam element

γ = θ − ϕ. (2.3)

The beam model can be devoid of shear effect in case γ = 0. It will not
be studied here. In our analytical studies only shearable beams (γ 6= 0)
will be investigated. A generalized formula captures both slender and
non-slender structures.

Two different definitions of a curvature can be assumed; first, the most com-
monly used is the mechanical curvature

km = dθ

dZ
= θ′, (2.4)

second, more general description is the geometrical curvature [6, 69, 79, 80],
which can be written as follow

kg = dθ

dS
= θ′

S′
= θ′√

(1 +W ′)2 + U ′2
. (2.5)

For inextensible beams S’=1, and thus geometrical and mechanical curva-
tures coincide for both shearable as well as unshearable beams. Thus, for small
elongation km and kg are close. However, as lateral deformation increases cur-
vatures km and kg differ. In this work we apply the definition of curvature kg
to a beam model which brings nonlinearities to the system, and is appropriate
for a large amplitudes of coupled axial-transversal oscillations of the beam.
The constitutive law is assumed to be linear elastic, without coupling between

different deformations:

• axial force - along the deformed beam element, related to axial stiffness
EA and elongation strain

N = EAê; (2.6)

• shear force - perpendicular to the distorted segment, product of shear
strain and shear stiffness GA

V = GAγ; (2.7)
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2.1 Beam model

Figure 2.1: Kinematics of extensible-shearable beam element [76].

• bending moment given by curvature strain multiplied by bending stiffness
EJ

M = EJkg. (2.8)

The previous constitutive laws imply that the only nonlinearities are of geo-
metrical nature.

Figure 2.2: Coplanar forces of the deformed beam element [76].

Figure 2.2 presents forces acting on the beam element. When the strain
forces and external forces are decomposed along the three coordinates hori-
zontal, vertical and rotational. They give the following equilibrium (balance)
equations:

(N cosϕ+ V sinϕ)′ = ρAẄ + CW Ẇ + PW (Z, T ), (2.9)
(N sinϕ− V cosϕ)′ = ρAÜ + CU U̇ + PU (Z, T ), (2.10)

M ′ − V S′ = ρJθ̈ + Cθ θ̇ + Pθ(Z, T ), (2.11)
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Chapter 2 Analytical approach

where dot ˙( ) corresponds to time derivative ∂()
∂T . CW , CU and Cθ are linear

viscous damping coefficients, they can be extended to higher order nonlinearity
for some purposes [81–85]. PW (Z, T ), PU (Z, T ), Pθ(Z, T ) are time dependent
external excitations. Material property ρA is mass per unit length in rest
configuration and ρJ depicts second moment of inertia of the cross-section of
undeformed beam. A set of material properties EA, GA, EJ , ρA and ρJ is
constant in the rest reference configuration.
Substituting equations (2.1)-(2.3), (2.5) and (2.6)-(2.8) into (2.9)-(2.11) we

obtain a set of partial differential equations of motion of the exact planar beam
model

ρAẄ + CW Ẇ + PW (Z, T ) =EA
[√

(1 +W ′)2 + U ′2 − 1
]

1 +W ′√
(1 +W ′)2 + U ′2

+GA
[
θ − arctan

(
U ′

1 +W ′

)]
U ′√

(1 +W ′)2 + U ′2


′

, (2.12)

ρAÜ + CU U̇ + PU (Z, T ) =EA
[√

(1 +W ′)2 + U ′2 − 1
]

U ′√
(1 +W ′)2 + U ′2

−GA
[
θ − arctan

(
U ′

1 +W ′

)]
1 +W ′√

(1 +W ′)2 + U ′2


′

, (2.13)

ρJθ̈ + Cθ θ̇ + Pθ(Z, T ) =

EJ θ′√
(1 +W ′)2 + U ′2

′

−GA
[
θ − arctan

(
U ′

1 +W ′

)]√
(1 +W ′)2 + U ′2. (2.14)

The above presented planar beam model is exact and includes [76]:

• axial, bending and shear deformations;

• axial, transversal and rotatory inertia;

• geometrical (not mechanical) curvature [71,79];
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2.1 Beam model

• external forces and damping.

The proposed planar model is almost geometrically exact, the only simplifica-
tions are plain deformation of the cross-section and disregard of the transverse
strain. In Section 2.1.2 the boundary conditions will be introduced. Afterward
their nonlinear dynamics will be analytically examined by the perturbation
method in Section 2.2.

2.1.2 Boundary conditions
Scleronomic constraints

Boundary conditions of beams constraint position, angle by reacting force or
momentum. For example eliminaring the lateral displacement of the beam
end is called simply supported, while the blockade of lateral and longitudi-
nal displacement is named hinge. Restriction of rotation and displacement
in axial and transverse directions is the clamped boundary condition. Latter
three types of boundary conditions are scleronomic - independent of time [86].
Those scenarios can be used to define a lot of conditions of the beams, like:
clamped-clamped, clamped-hinged, clamped-simply supported, clamped-free
(cantilever beam), hinged-hinged, hinged-simply supported and hinged-free (ro-
tating structure).

Rheonomic constraints

Whereas, rheonomic bounds are dependent on time and they cover boundary
conditions related to additional components of the system like inertia, spring,
damper or defined by time-dependent function of the beam point position or
equivalent. Combinations of scleronomic and rheonomic boundary conditions
have numerous schemes.
We are interested in investigating the nonlinear dynamics of the beam with

one end hinged and the second end simply supported with an additional axial
spring. The system is shown in Figure 2.3, where dashed (solid) thick line
represents initially straight (deformed) beam. Lateral beam’s deflection causes
support movement in −Z direction, which means tip deformation and spring
extension. The linear elastic element with stiffness ks is axially grounded. Note
that the system has the symmetry axis X = 0. Considerable stiffness of the
spring causes the bigger resistance to axial shortening of the system. Three
different cases for Z = L are possible for the considered configuration:

• ks = 0: axially unrestrained beam, the end is free to move horizontally;

• ks =∞ → W (L, T ) = 0: axially restrained beam, hinged;

• 0 < ks < 0: movable/axially unrestrained beam, supported-spring node.
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Chapter 2 Analytical approach

Without losing generality (0 ≤ ks ≤ 0), boundary conditions of the beam-
spring system are

U(0, T ) = 0, U(L, T ) = 0, (2.15)

M(0, T ) = 0, M(L, T ) = 0, (2.16)

W (0, T ) = 0, N(L, T ) cosϕ+ V (L, T ) sinϕ+W (L, T )ks = 0. (2.17)

Recalling equations (2.5) and (2.8), assumption of momentum absence at the
ends can be expressed in the form:

θ′(0, T ) = 0, θ′(L, T ) = 0. (2.18)

Figure 2.3: Configuration of the beam-spring system.

The dynamics of provided analytical model of the beam in Section 2.1.1
together with foregoing boundary conditions will be studied thoroughly in Sec-
tion 2.2.

2.2 Multiple time-scales method
In this section, we study analytically by multiple time-scales method the non-
linear resonance phenomenon, which occurs when the frequency of excitation
is near the nth linear (transversal) frequency of the beam, corresponding to a
bending mode. For example, the multiple time-scales can be related to measure-
ments with different sampling rate of office temperature. The first time-scale
t0 corresponds to the temperature change every hour. If we look at it in a
week interval, temperature early morning is the lowest then increases to the
warmest moment of the day (afternoon) and then decreases (daily oscillation),
see Fig. 2.4a. Variation of temperature is repeatable. When the measurement
is recorded once a week, for the highest daily temperature, it also changes
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2.2 Multiple time-scales method

on yearly domain as displayed in Fig. 2.4b (slow time-scale t1). Differences
are caused by changes in the season: winter, spring, summer, autumn and
again from the beginning. Slower time-scales could correspond to the maxi-
mum yearly temperatures recorded over a period of decades t2, centuries t3,
millenium t4 and so on (Fig. 2.4c).

(a)

(b)

(c)

Figure 2.4: Temperature change in different time scales T0, T1, T2.

Now, we are interested in employing the perturbation method in the consid-
ered structure, in particular in applying it directly to the set of three partial dif-
ferential equations of motion (2.12)-(2.14) and associated boundary conditions
(2.15)-(2.18). In brief the method can be described as follows. A prerequisite is
the expansion of the sought solution in Taylor series, then multiple time-scales
are introduced. First, the fast time-scale and then gradually slower scales, that
allows to describe behaviour of certain phenomena after long transients are
introduced. In practice it may happen that some terms (e.g. forcing-damping)
can be reorganized and moved to higher order terms of expansion. In subse-
quent stages, partial differential equations, transformed into ordinary differen-
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tial equations are ordered by the power of perturbation. Then, the problem
is solved, step by step, accordingly to successive time-scales (each problem of
higher order is based on previous, lower solutions). In the calculation process,
secular generating terms have to vanish. For this purpose solvability condi-
tions must be implemented. Computations end with modulation equations or
frequency response curves and graphical representation of results [6, 87–92].
Following above-established rules, we consistently expand partial differen-

tial equations of motion (2.12)-(2.14) and boundary conditions associated with
them (2.15)-(2.17) in Taylor series up to the third order perturbation terms:

ρAẄ + CW Ẇ + PW (Z, T ) = EA

(
W ′ + 1

2U
′2 − U ′2W ′

)′
+

+GA
(
U ′θ − U ′2 + 2U ′2W ′ − U ′W ′θ

)′
, (2.19)

ρAÜ + CU U̇ + PU (Z, T ) = EA

(
U ′W ′ + 1

2U
′3 − U ′W ′2

)′
+

+GA
(
U ′ − θ − U ′W ′ + 1

2U
′2θ − 5

6U
′3 + U ′W ′2

)′
, (2.20)

ρJθ̈ + Cθ θ̇ + Pθ(Z, T ) = EJ

(
θ′ −W ′θ′ − 1

2U
′2θ′
)′

+

+GA
(
U ′ − θ −W ′θ − 1

2U
′2θ + 1

6U
′3
)
. (2.21)

Boundary conditions are

U(0, T ) = 0, U(L, T ) = 0, (2.22)

M(0, T ) = 0, M(L, T ) = 0, (2.23)

W (0, T ) = 0,

W (L, T )ks + EA

[
W (L, T )′ + 1

2U
′(L, T )2 − U ′(L, T )2W (L, T )′

]
+

+GA
[
U(L, T )′θ(L, T )− U(L, T )′2 + 2U(L, T )′2W (L, T )′

−U(L, T )′W (L, T )′θ(L, T )] = 0. (2.24)

Note that intention of using Taylor expansion is not approximation of the
problem but approximation of the solution. However, we are aware that this
procedure leads to an approximation of the beam model (up to the order of
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expansion). In Sections 2.2.1 and 2.2.2 our attention will be paid to examples
where natural frequencies of excitation is near the first flexural resonance as
well as higher order modes.

For our problem we introduce the fast time-scale t0 and two slow time-scales
t1 and t2:

t0 = T, t0 = εT, t0 = ε2T, (2.25)

where ε is a small bookkeeping parameter. Damping coefficients are manually
shifted to ε2 and the excitation terms to ε3:

CW = ε2cW , CU = ε2cU , Cθ = ε2cθ, (2.26)

PW (Z, T ) = ε3p̂W (Z, T ), PU (Z, T ) = ε3p̂U (Z, T ),
Pθ(Z, T ) = ε3p̂θ(Z, T ). (2.27)

As it will be seen, this maneuver moves the above-mentioned terms to the third
order perturbation equations. At this moment we assume p̂W (Z, T ) = 0 and
p̂θ(Z, T ) = 0, as a consequence we limit external excitation only to X-direction
and rewrite equation (2.27) in the form:

ε3p̂U (Z, T ) = ε3Pvδ

(
Z − L

cz

)
cos (ΩT ) , (2.28)

where Dirac delta δ
(
Z − L

cz

)
is a space dependent function and cos (ΩT ) in-

volves variation in time with frequency Ω. The Pv decribes amplitude of con-
centrated force applied to the beam at distance L

cz
from the origin of the co-

ordinate system in Z direction. Dimensionless constant cz can vary from 1 to
∞. For example cz = 2 defines concentrated force in midpoint, cz = 4 moves
it to quarter of the beam (Z = 0.25L), while cz = 1 represents force applied to
the beam’s tip (Z = L) [93].

Solutions of the problem are sought up to third order in the forms:

W (Z, T ) = εW1(Z, t0, t1, t2) + ε2W2(Z, t0, t1, t2) + ε3W3(Z, t0, t1, t2), (2.29)

U(Z, T ) = εU1(Z, t0, t1, t2) + ε2U2(Z, t0, t1, t2) + ε3U3(Z, t0, t1, t2), (2.30)

θ(Z, T ) = εθ1(Z, t0, t1, t2) + ε2θ2(Z, t0, t1, t2) + ε3θ3(Z, t0, t1, t2). (2.31)
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Derivatives with respect to time T undergo a chain rule and can be written in
the form:

Ẇ = (D0 + εD1 + ε2D2)W, (2.32)

Ẅ = (D2
0 + 2εD0D1 + ε2(2D0D2 +D2

1))W, (2.33)

U̇ = (D0 + εD1 + ε2D2)U, (2.34)

Ü = (D2
0 + 2εD0D1 + ε2(2D0D2 +D2

1))U, (2.35)

θ̇ = (D0 + εD1 + ε2D2)θ, (2.36)

θ̈ = (D2
0 + 2εD0D1 + ε2(2D0D2 +D2

1))θ, (2.37)

where Dj denotes ∂
∂tj

[88]. We substitute Eqs. (2.26), (2.28)-(2.37) into partial
differential equations of motion (2.19)-(2.21) and associated boundary condi-
tions (2.15)-(2.18), collect them in order of ε perturbation. As a consequence
we obtain three sets of rearranged equations:

First order
EAW ′′1 − ρAD2

0W1 = 0, (2.38)

GA(U ′1 − θ1)′ − ρAD2
0U1 = 0, (2.39)

EJθ′′1 −GA(θ1 − U ′1)− ρJD2
0θ1 = 0. (2.40)

Boundary conditions:

U1(0, T ) = 0, U1(L, T ) = 0, θ′1(0, T ) = 0, θ′1(L, T ) = 0, W1(0, T ) = 0,
(2.41)

EAW ′1(L, T ) + ksW1(L, T ) = 0. (2.42)

Second order

EAW ′′2 − ρAD2
0W2 = 2ρAD0D1W1 −GA(θ1U

′
1 − U ′21 )′ − 1

2EA(U ′21 )′, (2.43)
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GA(U ′2 − θ2)′ − ρAD2
0U2 =

= 2ρAD0D1U1 − EA(U ′1W ′1)′ +GA(U ′1W ′1)′, (2.44)

EJθ′′2 −GA(θ2 − U ′2)− ρJD2
0θ2 =

= 2ρJD0D1θ1 +GA(W ′1θ1) + EJ(W ′1θ′1)′. (2.45)

Boundary conditions:

U2(0, T ) = 0, U2(L, T ) = 0, θ′2(0, T ) = 0, θ′2(L, T ) = 0, W2(0, T ) = 0,
(2.46)

EAW ′2(L, T ) + ksW2(L, T ) +

+1
2EAU

′2
1 (L, T )−GA[U ′21 (L, T ) + θ1(L, T )U ′1(L, T )] = 0. (2.47)

Third order

EAW ′′3 − ρAD2
0W3 = cWD0W1 + ρA(D2

1 + 2D0D2)W1 +
+2ρAD0D1W2 − EA(U ′1U ′2 − U ′21 W

′
1)′ +

−GA(2W ′1U ′21 + θ2U
′
1 − 2U ′2U ′1 − θ1W

′
1U
′
1 + θ1U

′
2)′, (2.48)

GA(U ′3 − θ3)′ − ρAD2
0U3 = cUD0U1 + pvδ

(
Z − L

cz

)
cos (ΩT ) +

+ρA(2D0D2 +D2
1)U1 + 2ρAD0D1U2 +

+EA
(
U ′1W

′2
1 − U ′1W ′2 −

1
2U
′3
1 − U ′2W ′1

)′
+

+GA
(
−1

2θ1U
′2
1 − U1W

′2
1 + U ′1W

′
2 + 5

6U
′3
1 + U ′2W

′
1

)′
, (2.49)

EJθ′′3 −GA (θ3 − U ′3)− ρJD2
0θ3 = cθD0θ1 + ρJ

(
2D0D2 +D2

1
)
θ1 +

+ρJ2D0D1θ2 +GA

(
1
2θ1U

′2
1 −

1
6U
′3
1 + θ2W

′
1 + θ1W

′
2

)
+

+EJ
(

1
2θ
′
1U
′2
1 − θ′1W ′21 + θ′2W

′
1 + θ′1W

′
2

)′
. (2.50)

Boundary conditions:

U3(0, T ) = 0, U3(L, T ) = 0, θ′3(0, T ) = 0, θ′3(L, T ) = 0, W3(0, T ) = 0,
(2.51)
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EAW ′3(L, T ) + ksW3(L, T ) +
+GA[−θ1(L, T )W ′1(L, T )U ′1(L, T ) +

+θ2(L, T )U ′1(L, T ) + U ′2(L, T )θ1(L, T )] +
+(EA− 2GA)[U ′2(L, T )U ′1(L, T )−W ′1(L, T )U ′21 (L, T )] = 0. (2.52)

2.2.1 Primary resonance

First order solution

The first order equations are constituted by two separate eigenvalue problems,
which are independent (because to this order we are in the linear regime). The
longitudinal problem involves the axial displacement W1, while the bending is
oriented in the transversal direction, and involves coupling between U1 and θ1.
The solutions is represented by time and space dependent functions:

W1(Z, t0, t1, t2) =
[
Λre(t1, t2)eiωnt0 + Λim(t1, t2)e−iωnt0

]
Ŵ1,n(Z), (2.53)

U1(Z, t0, t1, t2) =
[
Are(t1, t2)eiωnt0 +Aim(t1, t2)e−iωnt0

]
Û1,n(Z), (2.54)

θ1(Z, t0, t1, t2) =
[
Are(t1, t2)eiωnt0 +Aim(t1, t2)e−iωnt0

]
θ̂1,n(Z), (2.55)

Functions Ŵ1,n(Z), Û1,n(Z) and θ̂1,n(Z) represent the nth modal shapes and
are given by:

Ŵ1,n(Z) = sin (snZ) , (2.56)

Û1,n(Z) = sin
(
nπZ

L

)
, θ̂1,n(Z) =

(
nπ

L
− Lρω2

n

πGn

)
cos
(
nπZ

L

)
. (2.57)

The nth circular frequencies of the system in the axial and transversal direc-
tion are given by, respectively,

ω2
n = sn

√
EA

ρA
, (2.58)

ω2
n = AG

2Jρ + π2n2(E+G)
2L2ρ −

√
[AGL2+π2Jn2(E+G)]2−4π4EGJ2n4

2JL2ρ , (2.59)
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where the parameter sn is determined by the transcendental equation for
the nth natural frequency (2.58) and corresponding mode shape (2.56). The
trigonometric problem is related to boundary conditions (2.41)-(2.42) and is
given by:

AEsn cos (snL) + ks sin (snL) = 0. (2.60)

which is a consequence of the boundary conditions (2.41) and (2.42) applied to
the modal shape (2.60). In this section we are focused only on primary reso-
nance of the bending mode, thus to the first order solution lateral deformations
are much larger than longitudinal ones. This is the same approach used in [69],
and thus we assume:

W1(Z, T ) = 0, (2.61)

This is reliable when the frequencies ratio is very high (ω
2
n

ω2
n
>> 1), and reduces

the difficulty of equations to solve. Note that, because of the rescaling (2.26)
and (2.27), damping and external excitation do not appear in the equations of
this order.

Second order solution

The second order equation (2.43) supplemented by (2.46)-(2.47) depends on
different powers of frequency components as well as shape functions. The key
to solve partial differential equations is to decompose frequencies of right hand
side and then collect them. It allows to calculate derivative with respect to time
t0 and as a result reduce partial differential equation to ordinary differential
equations, which are easy to solve. The result of the second order problem is a
sum of solutions given by:

W2(Z, t0, t1, t2) = W2a(Z, t1, t2) +W2b(Z, t1, t2)e2iωnt0 +
+W2c(Z, t1, t2)e−2iωnt0 , (2.62)

where

W2a(Z, t1, t2) = −Aim (t1, t2)Are (t1, t2)
(
En2π2 − 2L2ρω2

n

)
×

×
2nπZ + L

(
ksL
EA + 1

)
sin
( 2nπZ

L

)
4EL2nπ

(
ksL
EA + 1

) , (2.63)
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W2b(Z, t1, t2) = −
Are (t1, t2)2 (

π2En2 − 2L2ρω2
n

)
√
E ksL
EA sin

(
2L√ρωn√

E

)
+ 2L√ρωn cos

(
2L√ρωn√

E

) ×
× 1

16
√
EL (En2π2 − L2ρω2

n)
×
[
4π2En2 sin

(2√ρZωn√
E

)
+

+2πE ksL
EA

n sin
(

2πnZ
L

)
sin
(2L√ρωn√

E

)
− 8ρω2

nL
2 sin

(2√ρZωn√
E

)
+

+4π
√
ELn

√
ρωn sin

(
2πnZ
L

)
cos
(2L√ρωn√

E

)]
, (2.64)

W2c(Z, t1, t2) = Aim (t1, t2)2

Are (t1, t2)2 W2b(Z, t1, t2). (2.65)

The second order equations (2.44)-(2.45) and related to them boundary con-
ditions (2.46) depend on first slow time-scale t1. The secular generating terms,
which contains e±iω0t0 must be eliminated. For this purpose the following
solvability conditions are applied:∫ L

0

[
GA

(
Ũ ′2 − θ̃′2

)′
− ρAD2

0Ũ2

]
U1dZ =

∫ L

0
(2ρAD0D1U1)U1dZ, (2.66)∫ L

0

[
EJθ̃′′2 −GA

(
θ̃2 − Ũ ′2

)
− ρJD2

0 θ̃2

]
θ1dZ =

∫ L

0
(2ρJD0D1θ1) θ1dZ.(2.67)

integrating by parts

GAŨ ′2U1|L0 −GAŨ2U
′
1|L0 −GAθ̃′2U1|L0 +GAθ̃2U

′
1|L0 +∫ L

0

[
GA

(
Ũ2U

′′
1 − θ̃2U

′′
1

)
− ρAD2

0Ũ2U1

]
dZ =∫ L

0
(2ρAD0D1U1)U1dZ, (2.68)

EJθ̃′2θ1|L0 − EJθ̃2θ
′
1|L0 +GAŨ2θ1|L0 +∫ L

0

[
EJθ̃2θ

′′
1 +GA

(
θ̃2θ1 − Ũ2θ

′
1

)
− ρJD2

0 θ̃2θ1

]
θ1dZ =∫ L

0
(2ρJD0D1θ1) θ1dZ. (2.69)

Adding up Eqs. (2.68)-(2.69) and applying boundary conditions (2.46) then
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2.2 Multiple time-scales method

collecting terms with respect to Ũ2 and θ̃2 we get:∫ L

0

[
GA (U ′1 − θ′1)′ + ρAω2

nU1

]
Ũ2dZ +∫ L

0

[
EJθ′′1 −GA (θ1 − U ′1) + ρJω2

nθ1
]
θ̃2dZ =∫ L

0
(2ρAD0D1U1)U1dZ +

∫ L

0
(2ρJD0D1θ1) θ1dZ. (2.70)

Note that functions in the square brackets are identical as Eqs. (2.39)-(2.40)
in the first order (linear) problem and reduce left hand side

0 =
∫ L

0
(2ρAD0D1U1)U1dZ +

∫ L

0
(2ρJD0D1θ1) θ1dZ. (2.71)

It immediately gives
∂Are
∂t1

= 0, ∂Aim
∂t1

= 0, (2.72)

consequently amplitudes do not depend on the slow time t1, although they
depend on second slow time-scale, Are(t2) and Aim(t2).

Now equations (2.44)-(2.45) are simplified to

GA(θ2 − U ′2)′ + ρAD2
0U2 = 0, (2.73)

EJθ′′2 −GA(θ2 − U ′2)− ρJD2
0θ2 = 0, . (2.74)

Solutions of these homogeneous equations are already presented in(2.54)-(2.55),
thus we write second order solution:

U2(Z, t0, t2) = 0, θ2(Z, t0, t2) = 0. (2.75)

Third order solution

In the third order solution, instead of solving equations (2.49)-(2.50), only
D2Are(t2) and D2Aim(t2) need to be determined. For this purpose, similarly
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to second order solution, we apply following solvability conditions:∫ L

0

[
GA (U ′3 − θ′3)′ − ρAD2

0U3

]
U1dZ =∫ L

0

[
ρA2D0D2U1 +GA

(
−1

2θ1U
′2
1 + U ′1W

′
2 + 5

6U
′3
1

)′
+

+EA
(
−U ′1W ′2 −

1
2U
′3
1

)′
+ cUD0U1 +

+ pvδ

(
Z − L

cz

)
cos (ΩT )

]
U1dZ, (2.76)

∫ L

0

[
EJθ′′3 −GA (θ3 − U ′3)− ρJD2

0θ3
]
θ1dZ =∫ L

0

[
ρJ2D0D2θ1 +GA

(
1
2θ1U

′2
1 −

1
6U
′3
1 + θ1W

′
2

)
+

+ EJ

(
1
2θ
′
1U
′2
1 + θ′1W

′
2

)′
+ cθD0θ1

]
θ1dZ. (2.77)

Reducing left hand side of Eqs. (2.76)-(2.77) by integrating by parts, substi-
tuting boundary conditions (2.51) and equations of the first order (2.39)-(2.40)
we obtain

∫ L

0

[
ρA2D0D2U1 +GA

(
−1

2θ1U
′2
1 + U ′1W

′
2 + 5

6U
′3
1

)′
+

+EA
(
−U ′1W ′2 −

1
2U
′3
1

)′
+ cUD0U1 +

+ pvδ

(
Z − L

cz

)
cos (ΩT )

]
U1dZ +∫ L

0

[
ρJ2D0D2θ1 +GA

(
1
2θ1U

′2
1 −

1
6U
′3
1 + θ1W

′
2

)
+

+ EJ

(
1
2θ
′
1U
′2
1 + θ′1W

′
2

)′
+ cθD0θ1

]
θ1dZ = 0. (2.78)

Equation (2.78) contains resonant (e±iωnt0) and non-resonant terms (e0, e±2iωnt0 ,
e±3iωnt0). Non resonant terms enable to solve third order solution in frequency
domain and associated mode shape, but it is out of our interests. We are fo-
cused only on the amplitude of the nth nonlinear resonance. The frequency of
excitation Ω is decomposed on a sum of natural circular frequency ωn and an
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additive detuning parameter ε2σ, thus we write:

ΩT =
(
ωn + ε2σ

)
T = ωnT + ε2σT = ωnt0 + σt2. (2.79)

By performing cumbersome computations on (2.78), decomposing and col-
lecting with respect to frequencies and then extracting terms containing eiωnt0

and e−iωnt0 we obtain two ordinary differential equations. Their expressions are
very long and can not be reported here, therefore we arrange them in general
notation:

ic1
∂Are
∂t2

+ ic2Are + 4c3A2
reAim + 1

2pve
iσt2 sin

(
nπ

cz

)
= 0, (2.80)

−ic1
∂Aim
∂t2

− ic2Aim + 4c3A2
imAre + 1

2pve
−iσt2 sin

(
nπ

cz

)
= 0, (2.81)

where

c1 = ρωn
J
(
Gn2π2 − L2ρω2

n

)2 +AL

G2Ln2π2 ,

c2 = ωn

[
cθ

(
Gn2π2 − L2ρω2

n

)2
2G2Ln2π2 + cU

L

2

]
. (2.82)

After substitution any beam properties, functions c1 and c2 have real positive
values. The c1 involves inertia, while c2 contains damping coefficients. The key
factor is c3, which depends on system properties (A, E, G, J , ks, L, ρ) and on
the order n of the considered resonance.

Analytical frequency response curves

For determining frequency response curves of equations (2.80)-(2.81) it is con-
venient to introduce the polar form of the complex amplitudes:

Are(t2) = 1
2a(t2)eiβ(t2), Aim(t2) = 1

2a(t2)e−iβ(t2). (2.83)

Then we rewrite (2.80)-(2.81), separating real and imaginary the modulation
equations are found:

∂a

∂t2
= −c2

c1
a− pv

c1
sin
(
nπ

cz

)
sin (σt2 − β), (2.84)

a
∂β

∂t2
= c3
c1
a3 + pv

c1
sin
(
nπ

cz

)
cos (σt2 − β). (2.85)
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Introducing variable

γ(t2) = σt2 − β(t2) ⇒ ∂γ(t)
∂t2

= σ − ∂β

∂t2
, (2.86)

the system (2.84)-(2.85) becomes

∂a

∂t2
= −c2

c1
a− pv

c1
sin
(
nπ

cz

)
sin (γ), (2.87)

a
∂γ

∂t2
= σa+ c3

c1
a3 + pv

c1
sin
(
nπ

cz

)
cos (γ). (2.88)

After sufficient long transient period, motion becomes steady state and ampli-
tude and phase angle are constant, that leads to:

∂γ(t)
∂t2

= 0, ∂a(t)
∂t2

= 0 (2.89)

Solving equation (2.87) with respect to sin (γ) and equation (2.88) with respect
to cos (γ) we get:

sin (γ) = − c2a

pv sin
(
nπ
cz

) , cos (γ) = −
a
(
c3a

2 − c1σ
)

pv sin
(
nπ
cz

) . (2.90)

From the Pythagorean trigonometric identity [94], sin2(γ) + cos2(γ) = 1 we get
the frequency response equation:

p2
v sin2

(
nπ

cz

)
= c22a

2 + a2 (c3a2 − c1σ
)2
. (2.91)

Equation (2.91) can be transformed in the simpler form:

σ =
c3a

2 ±
√

P 2
v

a2 sin2
(
nπ
cz

)
− c22

c1
. (2.92)

Analyzing free nonlinear oscillations, excitation pv = 0, and damping (cU = 0
and terms cθ = 0 → c2 = 0) are assumed. This provides the backbone equation:

σ = c3
c1
a2 = cba

2, (2.93)

Representation of function (2.93) on amplitude-frequency response plot is so
called backbone curve. The backbone curve represents a nonlinear behaviour of
the studied system and the nonlinear correction coefficient cb is a fingerprint
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Figure 2.5: Examples of hardening, linear and softening backbone curves.

of the structure. Analyzed model with cubic nonlinearities has three various
features [95]:

• cb > 0 : nonlinear natural frequency increases together with the ampli-
tude of the oscillation a - hardening phenomenon;

• cb = 0 : natural frequency is independent of a- singular case when beam
has linear nature (only up to third order of amplitude);

• cb < 0 : contrary to hardening, nonlinear natural frequency decreases
with the increment a - softening behaviour.

The dichotomy between hardening vs softening is illustrated in Fig. 2.5. Ex-
amples of nonlinear correction coefficients (cb), backbone curves and frequency
response curves in dependence on spring stiffness ks, which is the most impor-
tant (for us) mechanical parameter, will be presented in Chapter 5.
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2.2.2 Higher order resonances
Dynamics of the beam depends not only on physical properties of the struc-
ture, but also on frequency, and nature of excitation which may influence the
behaviour of the system. Mostly, studies on nonlinear dynamics are limited
to the lowest frequencies and their modal shapes, because they are the most
prominent modes at which the object vibrates, and all the higher frequency
modes have relatively smaller amplitudes of deformation. In our opinion they
are important as well, and it is worth to analyze and better understand them.
Related to nth natural frequencies linear mode shapes of the beam are ar-

ranged in nth half-waves [96]. Symmetric modes (n = 2 + 2k) have a node in
the midpoint of the beam. Therefore, in the analytical model they have to be
triggered asymmetrically and it also eliminates cases of excitation only in the
modal node. For example, the fourth mode (n = 4) can not be triggered at
cx = 3/4, cx = 2 or cx = 4 as well as the sixth (n = 6) mode will not disclose
under conditions cx = 6/5, cx = 3/2, cx = 2, cx = 3/2 or cx = 6 and so
on. These assumptions are important only for forced-damped vibration, free
dynamics do not have above mentioned requirements. The analytical approach
presented in Section 2.2.1 is valid also for higher order resonances and will not
be repeated here, but a few different approaches will be presented on this topic.
In real structures the first mode has the highest amplitude and next are lower

for the same energy of the external excitation in respective resonat frequencies
[77,97]. For this reason, a lot of authors are focused only in vicinity to the first
natural frequency. In [59], Lacarbonara and Camillacci presented higher order
mode shapes and their responses for higher order resonances of the hinged-
hinged beam with additional lumped mass along the span. Additional mass
distribution helps to soften frequency response curves: the lumped mass to the
midpoint (quarter) reduces hardening behaviour of odd modes (1st, 2nd, 3-rd
and 5-th) modes. All investigated six modes have hardening nature.

Experimental and analytical studies on first three flexular modes of a clamped-
clamped microbeam resonator by Jaber et al. also demonstrate always hard-
ening nature [98]. The authors excited each mode shape of the microbeam
through different electrode configurations along the beam: full length (first
mode), half of the length (second mode) and two third (1/3+1/3) on the sides.
Amplitude-frequency plots show that full and two third electrodes are not able
to excite (in the same phase) the second mode. On the contrary the half elec-
trode is available to trig three modes.
Nonlinear resonance for higher order modes will be presented in Section 5.
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Finite element method

In mechanics of deformable bodies, the finite element method is a numerical
technique wherein a continuous elastic structure is discretized by finite number
of basic one-, two-dimensional or spatial elements. A one-dimensional element
can be represented by a linear segment linking two nodes and their deformations
are available along one axis (one direction), for example extension and com-
pression of the beam. In planar variant, geometry can be discretized by beam
elements, triangle or quadrangle defined on a plane by 2, 3 or 4 nodes, respec-
tively. In planar problem all nodes have two (compatible in directions) degrees
of freedom (DOF) and elements can be rotated. 3D shapes are commonly dis-
cretized by hexagonal/tetragonal volume elements, triangular/quadratic shell
or beam elements in the space. Furthermore, we can manipulate the size of
finite elements to better overlap (interpolate) geometry and design the shape of
the structure in the rest configuration. In general, higher number of elements,
as a consequence higher order degrees of freedom, provide a better approxima-
tion of the solution, althought it brings a higher computational cost. It leaves
a great deal of freedom to discretize the system. All above mentioned elements
can be interconnected at nodes and are able to interact between each other
and represent an advanced structures with nonhomogeneous material proper-
ties [99,100].
In this Chapter we will use the commercial software Abaqus_CAE® to build

the finite element model. Next we will perform linear modal analysis and
transient in time computations for large amplitudes on oscillations for nonlinear
system. Outcomes of simulations will be compared with analytical results and
thoroughly discussed in Chapter 5.

3.1 The design of numerical model
The system is constituted by 100 equal-length linear beam elements (101 nodes),
with appropriate boundary conditions, placed in 3D space (X, Y , Z). Linear
beam is discretized by 2-node elements of B31 type. One end of the beam is
located in the origin (0, 0, 0) and second point defines the length of the struc-
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ture (0, 0, L). External forces/moments and deformations/rotations can be
applied to each of nodes or pieces of elements. Therefore boundary conditions
of simply supported beam (2.15)-(2.17) are satisfied by restraining deforma-
tions of nodes 1 (Z = 0) and 101 (Z = L), see Fig. 3.1. By blocking nodes
displacement in the Y -direction and rotation around around the X and Z, we
reduce the spatial arrangement to the plane (X,Z). The linear elastic element
ks is made in Springs/Dashpots module by linking beam’s axially unrestrained
tip and the origin of coordinate system. Spring force is linearly proportional
to deformation and follow the axis of the undeformed beam.

Figure 3.1: Finite element model of a hinged-simply supported beam. Num-
bered circles are nodes, and solid horizontal lines represent beam
elements.

The finite element method is characterized by dimensional calculations. In
our considerations we will focus on beams with two different geometrical rela-
tions:

• structure of square cross-section with a length over least radius of gyration
(the thickness in a more susceptible direction) ratio equal to 10, let us
call this case T ;

• a configuration S describes the object of high slenderness coefficient
length to thickness almost 100.

Table 3.1: The steel beam T - parameters. The shear factor consistent
with [20].

Beam Cross Density Young Poisson’s Shear Spring

length section modulus ratio factor stiffness

L[m] A [mm2] ρ [kg/m3] E [GPa] ν [-] χ [-] ks [N/m]

0.5 50× 50 7850 210 0.3 0.85 0 ≤ ... ≤ ∞

Mechanical parameters of the beam T are listed in Table 3.1. These prop-
erties are used in theoretical considerations and can be freely changed. The
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idealized theoretical model T does not take into account any additional trans-
lational/rotatory inertia subjected to the beam, although it will be done using
the appropriate interaction function as in example S. It will be used to adjust
the numerical model to physical boundary conditions which coincide with the
laboratory prototype. The properties of the S will be experimentally deter-
mined in Section 4.1.

3.2 Linear analysis

Natural frequencies of the finite element model of the simply supported beam
with an axial spring are determined by linear Lanczos perturbation technique [101].
The Abaqus_CAE® solver generates linear responses within a few seconds, thus
we analyze the first ten natural frequencies and associated mode shapes.
As it is possible to see in Fig. 3.3 and Fig. 3.2, the natural frequencies

which correspond to mode shapes in axial direction increases for restrained
end (ks = ∞) with respect to free to move tip. The first longitudinal mode
changes from third to fourth natural mode. The spring increases stiffness of the
structure, while the mass matrix is constant. Consequently the mode shapes
in axial direction differ. On the another hand flexural modes are not affected
by the stiffness of the axial spring, and thus transerval natural frequencies
and corresponding mode shapes do not change. For lateral oscillations the
longitudinal deformations are much smaller and in linear regime are neglected.
To better understand this effect we vary boundary conditions in axial di-

rection by changing the spring stiffness ks and report natural frequencies in
Tab. 3.2. In our study the key parameter is ks and to analyze results we
introduce dimensionless parameter κ related to the beam tensile stiffness:

κ = ksL

EA
(3.1)

3.3 Nonlinear dynamics

3.3.1 Free dynamics

In this section the free nonlinear oscillations of the finite element model are
studied for large amplitudes. The main aim is to perform simulations and then
build the backbone curve. In the procedure we investigate unforced and slightly
damped vibrations and then correlate the amplitude of displacement and the
nonlinear vibration frequency.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.2: From the first (a) to tenth (j) mode shapes of the hinged simply-
supported beam with no spring (ks = 0). Longitudinal modes are
3rd, 6th and 9th. Dots represent deflected nodes and deformed lines
are beam elements.

Numerical computations are based on beam model T and transient explicit
simulations are made in three steps:

1. Defining midpoint displacement U0 = 30mm and gradually deforming
the structure in the first mode shape. The transverse shape of the beam
is close to the first mode presented in Figures 3.3a and 3.2a. However
the nonlinear normal mode is different that the linear one [55, 102–105].
The example of Figure 3.4 shows that large deformation in X-direction
entails displacement of the nodes in Z direction in the case of hinged-
simply supported beam.

2. Quenching of vibrations (closure of the transient). Here and in the pre-
vious point the damping coefficient is high.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.3: From the first (a) to tenth (j) mode shapes of the hinged hinged
beam (ks = ∞). Longitudinal modes are 4th, 7th and 10th. Dots
represent deflected nodes and deformed lines are beam elements.

3. Change the linear bulk viscosity parameter to 0.06, relase the lock and
recording the displacement U of node 50. The time history lasts 1 second.
An example is shown in Fig. 3.5

The small damping introduced to the system has two advantages: stabilize
numerical computations and slowly decrease amplitude of oscillations. Thanks
to this, not one but many amplitudes can be analyzed in one simulation. De-
creasing amplitude causes change in period of oscillations. Figure 3.6 displays
examples of two zooms of time histories where amplitudes are about 2.3 mm
and 0.7 mm.

The outcomes are subjected to amplitude frequency analysis as follow. Lo-
cal maxima are picked from the time history and then a time distance between
closest two peaks, one before Tn−1 and one after Tn−1, is divided by two. This
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Chapter 3 Finite element method

Table 3.2: Natural frequencies of the beam-spring system (T). Label b (l)
represents bending (longitudinal) mode shape.

Mode shape/natural frequency [Hz]

Mode

No.
κ = 0 κ = 0.25 κ = 1 κ = 5 κ = 10 κ =∞

1
1st b

461.47

1st b

461.47

1st b

461.47

1st b

461.47

1st b

461.47

1st b

461.47

2
2nd b

1764.5

2nd b

1764.5

2nd b

1764.5

2nd b

1764.5

2nd b

1764.5

2nd b

1764.5

3
1st l

2586.1

1st l

2824.3

1st l

3340

3rd b

3720.4

3rd b

3720.4

3rd b

3720.4

4
3rd b

3720.4

3rd b

3720.4

3rd b

3720.4

1st l

4368.8

1st l

4713

1st l

5172

5
4th b

6129.3

4th b

6129.3

4th b

6129.3

4th b

6129.3

4th b

6129.3

4th b

6129.3

6
2nd l

7757.6

2nd l

7843.9

2nd l

8088.2

5th b

8833.4

5th b

8833.4

5th b

8833.4

7
5th b

8833.4

5th b

8833.4

5th b

8833.4

2nd l

8979.1

2nd l

9483

2nd l

10343

8
6th b

11723

6th b

11723

6th b

11723

6th b

11723

6th b

11723

6th b

11723

9
3rd l

12927

3rd l

12979

3rd l

13132

3rd l

13812

3rd l

14333

7th b

14726

10
7th b

14726

7th b

14726

7th b

14726

7th b

14726

7th b

14726

3rd l

15511

value corresponds to one period Tn associated to the Unmax. This procedure
requires very dense sampling of the output together with accurate saving preci-
sion. In performed computations the time step has been set to 0.000001 seconds
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3.3 Nonlinear dynamics

(a)

(b)

Figure 3.4: Hinged-simply supported (top) and hinged-hinged (bottom)
beams T . Undeformed (green) and deformed (red) finite elements.
For U0(Z = L/2) = 30 mm the movable tip is translated about
W (Z = L) = −4.2286 mm.

Figure 3.5: Free oscillations of the beam T , ks =∞. The vibration amplitude
decreases logarithmically with time.

and coordinates of each point are saved with 9 decimal digits. At the end set
of amplitude peaks is transformed from time domain to frequency domain (one
over period). This procedure is done automatically and the backbone curve
Unmax(1/Tn) is built very fast. Of course we are aware that computed fre-
quency is affected by several numerical approximations, the initially deformed
beam does not reflect nonlinear modal shape and another unwanted higher
order modes take part in computations. In spite of this, it will be shown in
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(a)

(b)

Figure 3.6: Two intervals of the time history of the beam T , ks = ∞,
U0(Z = L/2) = 30 mm. Red circles correspond to consecutive am-
plitude peaks Umax (a) and time period T (b).

Section 5 that this procedure gives approximate results, but reliable in the
sense of the hardening/softening dichotomy.

3.3.2 Forced vibrations - path-following method
Previous numerical computations present the linear and nonlinear free dynam-
ics of the Timoshenko beam T . In this section we are focused on constructing
the full frequency response curve of the system for large amplitudes of forced-
damped vibrations in the neighborhood of the primary resonance.
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3.3 Nonlinear dynamics

(a)

(b)

Figure 3.7: Results of simulation: gradually change frequency of excitation (a)
and steady state motion (b). The hinged-hinged beam T , κ = ∞,
Pv = 40799.2 N.

In this section we assume as in Eq. (2.28) a concentrated force Pv imposed
to the center point of the beam (cz = 2) and oriented vertically. The amplitude
of excitation Pv is assumed to represent 1 mm static deflection of the hinged
simply-supported beam (0.2% of the beam’s length and 2% of its thickness).
Any different type of excitation can be applied in this general procedure, with
full freedom of other frequency ranges - for instance higher order resonances or
multifrequency excitation.
The simulation is composed of 163 computational steps (dynamic explicit),
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(a)

(b)

Figure 3.8: Forced-damped vibrations, global sweep forward Ω+ (a) and back-
ward Ω− (b) of the hinged-hinged beam T , κ = ∞, Pv =
40799.2 N, 0 Hz< Ω < 2× 461.47 Hz.

each of them is assigned to nth frequency of excitation Ωn. In the first com-
putational step the structure is loaded by static force (Ω = 0) and lasts 1
second, then in second computational step the frequency is tuned to Ω0.025 =
0.025 × 461.47 Hz, where 461.47 Hz is the first natural frequency, see Tab.
3.2. At the same time, the final deformation for previous computational step
is used as the initial shape of current computational step. The structure is ex-
cited by a sufficient number of (full) periods, during which the transient state
turns into steady state with constant amplitude (an example is reported in
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3.3 Nonlinear dynamics

Fig. 3.7a). The procedure is gradually repeated for higher frequencies Ω0.05,
Ω0.075 ... Ω1, Ω1.025 up to the highest frequency Ω2 = 2 × 461.47 Hz. Tech-
nically, fine sampling of the time history is not of great importance as in free
oscillations: although we assumed ∆t = 1

40×Ωn
to record a smooth shape of

harmonic motion in axial and transversal directions (Fig. 3.7b). The gradual
change of frequencies is called the sweep forward from minimum to maximum
frequency (double natural frequency of the first bending mode) and we name it
Ω+ (with positive sign). The sweep forward takes 80 computational steps, next
we introduce a reset step to Ω0 and then repeat whole procedure by sweeping
frequencies backward Ω− as in Fig. 3.8. The reset step is important to detect
the smallest amplitude path and a possible solution hysteresis. During Ω+ we
are able to cross the resonant frequency Ω1 and then track high amplitudes.
Using a little frequency change is essential in this approach, as by varying Ω
the structure is slightly unsettled from the stable path but this disturbance is
enough small not to loose basin of attraction and to approach another steady
state solution [106]. In fact, in case of significant change of excitation frequency,
mismatched initial conditions can cause jump to different branch or undergo
any other system attractor. In scenario of sweeping backward the jump be-
tween lower and upper branches appears in 34th second of computational time,
which correspond to Ω1.15. Further Ω− decrement results in tracking the al-
ready known solution from sweep forward. It may happen that more than two
solution paths exist, for example detached loop and; the best method to check
this is the shooting method presented in next section.
In post processing the time history is divided into segments. Frequencies

Ωn± are individually inspected for amplitude of a steady state solution. If this
condition was not reached, the calculation time has been properly extended.
For some parameters, internal resonances occur in the system and the time
history is composed of two harmonics. In this case, the peaks of the greatest
amplitude of the stabilized segment are read and sorted.
The hardening vs softening dichotomy can be detected by the present ap-

proach, and the final outcome is the full frequency response curve. Results of
numerical computations will be presented in Chapter 5. The subsequent anal-
ysis will be expanded by different cases of excitation. The presented approach
of path-following method, numerical simulation made by explicit finite element
method is very general and does not change for different more advanced struc-
tures.

3.3.3 Forced vibrations - shooting method

The last version of numerical method for plotting the frequency response curve
is the shooting method. It acts as a combination of already presented free
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oscillations and path-following methods. In the first step the beam is quasi-
statically deformed by a midpoint amplitude displacement U0m which deter-
mines the initial shape of the structure. The index m denotes amplitude U0
in millimeters. Next a harmonic excitation (Ωn) is applied to the structure.
The properly adjusted integration time leads to a stable solution of ampli-
tude Umaxm,n(U0m,Ωn). Figure 3.9 shows an exemplary number of simula-
tions, necessary to cover the test range with a pattern for min< m <max and
min< n <max. Several simulations can be carried out in parallel.

Figure 3.9: Sample distribution of initial points for shooting method: 10×10 =
100 simulations.

The set of performed simulations are reordered by the excitation frequency
and corresponding vibration amplitude. Integration process for one of cho-
sen frequencies (i.e. Ω1.425) can finish with different solution amplitudes;
notwithstanding, in most cases regroup into one or more branches as you
can see in Fig. 3.10. Two stable solutions were detected, the first value is
Umax60,1.425 = Umax30,1.425 = Umax20,1.425 = Umax10,1.425 = 0.9 mm,
while the second amplitude Umax50,1.425 = Umax40,1.425 = 39 mm and no
other branches were found, although there is no certainty that they are not
there.
It may happen that experimental or analytical predictions are known and

then the range can be specified by eliminating unnecessary starting points. It is
worth to remark that different methods can have discrepancies outputs and they
should be considered only as a hint. This strategy of drawing a full frequency
response curve is much more time consuming than the path-following method.
All simulations starts from the quasi-static computational step and in order
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3.4 Compatibility of numerical methods

to receive several solutions the initial amplitudes U0 have to be well chosen,
in vicinity to solution paths. Reduction in the differences between the initial
shapes of the beam generates more computations, but nonetheless in some cases
the specific Ωn can be thoroughly tested without sweeping forward neither
backward. On the other hand, the final deformation of the beam together with
established Ωn can be successfully used as a starting point to follow a detached
branch by semi-continuation method.

3.4 Compatibility of numerical methods
In this chapter, we first presented numerical model of a hinged simply supported
beam with an axial spring on its tip. To perform computations we chose the set
T for Timoshenko beam properties, and then the linear modal analysis has been
performed for various spring stiffnesses ks. Subsequent Sections show three
numerical approaches dedicated to study large amplitude vibrations aimed at:

• a change of oscillation period in free dynamics as a result of decreasing
amplitude, which allows to draw a backbone curve;

• the path-following method, which sweep frequencies of excitation in order
to reconstruct a frequency response curve;

• manipulating initial conditions of forced damped beam, that allows to
pump a portion of strain energy to the system and for selected parameters
check the response of the structure

Presented methods are realized explicitly in the time domain and can be
implemented to study the nonlinear dynamics of any mechanical system. The
linear modal analysis displays natural frequencies and associated linear modal
shapes, it always starts dynamic analysis and determines the target range of
the studied problem. Next, using an approximated nonlinear modal shape,
free nonlinear vibrations are performed to build the backbone curve, which
present the hardening vs softening behaviour. The frequency response curve
supplements the backbone curve for forced-damped oscillations. It can be done
by at least two procedures, path-following or shooting methods. It is possible
to use more sophisticated combination of these two methods. For example,
initially draw all achievable curves by sweeping frequency of excitation and
then scan area by guessing initial modal shapes for a given frequency. It gives
a robustness of investigated solutions measure and can detect isolated curves,
unexplored by path-following method and map them by reusing a local semi-
continuation method. Exchange information between presented methods can
allow to build the frequency response curves and collect associated nonlinear
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Figure 3.10: Time histories of numerical integration starting from top to
bottom U060,1.425, U050,1.425, U040,1.425, U030,1.425, U020,1.425,
U010,1.425, U00,1.425. The hinged-simply supported beam κ = 4,
Pv = 40799.2 N.
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3.4 Compatibility of numerical methods

modal shapes, stress pattern and so on, but the explicit simulations are time
consuming [107].
A thorough analysis will be carried out by comparing these methods first

with analytical results of a beam T and next with the laboratory dynamical
tests described in next Chapter 4.
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Chapter 4

Experimental test

A critical moment of any computation is to confront results obtained with dif-
ferent methods, e.g. numerical vs analytical methods, and understand reasons
of differences. This knowledge often helps to improve a model and achieve
very advanced solutions, tuned to each other. However, what happens if the
idealized assumptions has no reflection in practice? How the system behaves in
non-nominal conditions with some imperfections? Where and why the biggest
difference occurs? For all of those questions there is one response [108]:

Experiment is the sole source of truth.
It alone can teach us something new;

it alone can give us certainty.

It motivates authors to manufacture and then investigate a prototype in lab-
oratory. Requirements for the beam are to satisfy hinged-simply supported
boundary conditions, give the possibility to change the boundary conditions
in axial direction and enable to excite a large vibration amplitude in resonant
frequencies. For this purpose, the kinematic excitation on slip table is provided
and damping in the joints of the system are properly minimized. Additionally,
a hinge and an axial sliding support requires high stiffness in restrained di-
rections. The limitations of the measuring instruments and shaker maximum
power specifications have to be taken into account, too.
The prototype presented in Fig. 4.1 meets all the above-mentioned require-

ments. The physical model is screwed to the slip table [109]. Three massive
steel bodies hold the bearing hinge and the sliding support. The hinge is located
on the left hand side and the translatable movable shaft holds the beam on the
right. The sliding support is made of steel screws M14, supporting parts have
been covered with Teflon. The two triples are able to move along them and
hold the shaft, their interacting surfaces were also covered with thin reducing
friction sleeves. Various sets of four elastic elements can be mounted, or with
no spring leave the system simply supported. A preload in push springs makes
equivalent stiffness ks symmetrical in compression and tensile [110], during os-
cillations to avoid impacts between holding mechanism and the undeformed
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(a)

(b)

Figure 4.1: The laboratory setup mounted on the slip table top (a) and front
(b) views. The direction of kinematic excitation is marked by white
lighting arrows shape.

springs. Perpendicular positioning shaft to triple is very important, the del-
icate slant causes not surface but edge interaction and undesirably increases
resistance to movement in the layout.
The presented system is designed to best reflect the hinged-simply supported

beam with an elastic longitudinal element. The aim of experimental tests is to
examinate parameter κ. There are three ways to control beam tensile stiffness
to axial spring stiffness ratio:

1. to use one beam and change the set of springs;

2. to set constant spring and vary length/cross-section of the beam;

3. to fix longitudinal support and then swap beams with identical dimen-
sions and different material properties.

Option 1. was chosen since this approach allows easy study with comparable
vibration amplitude. The disadvantage is the system modification that involves
disassembling, replacing or removing springs and re-assembly. In this process
differences always arise.
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4.1 Setup identification

4.1 Setup identification
In the setup the parameter L is not a total length of the beam but a distance
between hinge and shaft rotation axes. The constant along the beam cross-
section A is b × h, where h describes thickens and b is width. Material of the
specimen is Plexiglass, with relatively low density to Young’s modulus ratio
[111]. High bending susceptibility together with substantial inertia helps to
achieve high amplitudes in kinematic excitation. Table 4.1 presents geometrical
dimensions and material properties of the beam.

Table 4.1: The Plexiglas beam S - parameters.
Beam Beam Beam Beam Young Poisson’s

length height width density modulus ratio

L[m] h [mm] b [mm] ρ [kg/m3] E [GPa] ν [-]

0.45 4.75 20 1245.05 3.3 0.35

Figure 4.2: Springs from the least to the most stiff (from left to right): 67 ×
28.5×1.8 mm, 100×32.5×2.5 mm, 60×35×3 mm, 43.5×33.5×3 mm,
61× 33.5× 3.5 mm.

Density of the beam was calculated by dividing mass over volume. Young
modulus has been tested on strength machine Shimadzu AGS-X 5kN [112]
(Fig. 4.3a) and for Poisson’s ratio we refer to [111]. The elastic constraints
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(a) (b)

Figure 4.3: Arrangements of tensile/compression test of the beam (a) and the
system of four linear springs on sliding support (b).

are made of four equal springs (Fig. 4.2), and have been examined individually
in the vertical position, see Fig. 4.3b. The steel block, together with movable
parts were mounted on the strength machine. The sample was replaced by a
rigid steel bar. Tests were performed in extension and compression. Fig. 4.4
shows deformation-force characteristics of four spring set, and they have linear
effective stiffness nature.
In order to minimize inertia effect of the handle, moving elements (triples,

shaft and hinge) are made of aluminum. A higher mass of the structure (with
constant stiffness) lowers the natural frequency [113] and should be taken into
account. MassMt includes axially movable components subjected to the beams
end (Z = L). The tip mass is 0.155 kg and consists of two triples, shaft and
slide sleeves. The hinge and shaft have mass moment of inertia (calculated from
geometry) I0 = 1.0928× 105 kg m2 and IL = 7.556× 106 kg m2, respectively.
The slip table has ability to control the displacement of the table top in

one direction. Its excitation is described by the amplitude ξ and frequency of
excitation Ω. A frequency can be set constant or variable in time. It allows to
test the structure by kinematic excitation in X-direction in a neighborhood of
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Figure 4.4: Compression-extension curves of four springs system and specimen
tensile test. Thick (thin) lines are experimental (linear approxima-
tion) values.

the resonance.
The last part of the identification tests is to estimate the damping coefficient

value and natural frequency. For first purpose the method of logarithmic decre-
ment is used [114]. It is one of the most basic methods in which a structure is
initially distorted in the shape of first bending mode and then the deformation
is released together with recording amplitudes for free oscillations. The mea-
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Figure 4.5: Experimental free oscillations of the beam S, ks = 29254 N/m.
Record of the the entire measurement including deflection, lock
release, out of scale measurement and amplitude decrement.

surement is performed with use non contact scanning laser Doppler vibrometer
Polytec PSV-500 [115, 116]. Scanning head is set in front of the beam (Per-
pendicular to the XZ plane) and a laser beam is focused on the marker W
(Fig. 4.1b). Oscillations velocity of the structure is recorded. Based on time
history, two successive amplitudes (peaks) of oscillations are chosen to calculate
damping coefficient in the form:

ζ ≈ 1√
1 +

(
2π

ln Unmax
Un+1 max

)2
(4.1)

Figure 4.5 shows three attempts of the test for the beam with ks = 29254 N/m.
The record of laser signal starts from manual deflecting process, then a beam
is released. At the beginning large amplitudes of oscillation causes that laser
goes beyond the marker W and loses reflection. As soon as velocity of beams
midpoint decreases below 0.6 m/s, signal is smoothly recorded with frequency
1250 samples per second. Using first four peak amplitudes, the damping coef-
ficient were calculated and outcomes are presented in Table 4.2. For all three
cases the damping coefficient increases together with amplitude. Damping in
the system is influenced by many factors like air resistance, damping inside the
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Table 4.2: Experimental values of damping; beam S, ks = 29254 N/m. Param-
eter n describes the positive amplitude of full measured half-wave.

Damping coefficient ζ [-]

Un max Test 1 Test 2 Test 3

n = 1 0.1648 0.1665 0.1566

n = 2 0.1955 0.1679 0.2422

n = 3 0.2607 0.2155 0.2481

beam material (structural damping) or interactions between joints and support.
All these issues are reduced to only one (general) value and it is highly likely
that it depends on the amplitude and is not fixed [83,85,117]. Nevertheless, the
tests were carried out in a static position of the table top. During kinematic
excitation the beam is subjected to greater aerodynamic forces, consequently
the parameter ζ can be changed. In forthcoming tests the damping factor will
be adjusted individually to each of the frequency response curve of the system.
Finally, for small velocity amplitudes FFT analysis is performed, which is

aimed to determine the natural frequency of free vibrations, see Fig. 4.6. The
most interesting first natural frequency is ambiguous and occurs in 18 and/or
20 Hz. Results may differ for manual initial deflection, despite the best efforts
in manufacturing connections, there are micro gaps in the supported part of
the holder. Micro impacts introduce noise into the system. The kinematic
excitation smooths this effect in nonlinear frequency response curves as shown
in Section 5.3.
The parameters Mt, I0 and IL additionally modify boundary conditions, as

can be seen on schematic representation of kinematically excited structure in
Fig. 4.7. The values of these parameters, together with several types of spring
and structural damping coefficients, are reported in the Table. 4.3. In the
following the specimen is linked with spring stiffness parameter and will be
featured in the form Sκ×100, for example the experimental setup with an axial
spring ks = 2167 N/m will be denoted by S3.

4.2 Testing procedure
The slip table can be used in a wide frequency band and it enables to control
vibration enviroment. The vibration exciter transforms the electrically gener-
ated and amplified signal into mechanical motion which is then transmited to
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Figure 4.6: The fast Fourier transform of experimental time histories; beam S,
ks = 29254 N/m.

the test sample by the shaker system [109]. The power generator has force lim-
itation to 35000 N, the head is able to perform peak-peak displacement about
50.8 mm and frequency of excitation has to be greater than 10 Hz. The total
moving mass is 234.95 kg and includes armature (31.5 kg), driver bar (8.45 kg),
slip table (145 kg) and carried system (50 kg). It allows to run the slip table
with maximal acceleration 147.15 m/s2 (15 g). Considering that the natural fre-
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Table 4.3: Parameters of the beam S and damping ratio of the structure.
Mt I0 IL ks κ ζ

[kg] [kg×m2] [kg×m2] [N/m] [-] [-]

0.155 1.0928× 10−5 7.556× 10−6

35629 0.05

0.1...0.3

29254 0.042

21167 0.03

7413.7 0.01

5798.5 0.008

0 (no spring) 0

Figure 4.7: The kinematically excited hinged-simply supported beam with an
axial spring, tip mas and moment of inertia.

quency of the beam is ≈ 20 Hz, we assume the frequency of excitation to range
from 15 Hz to 30 Hz. It is associated to the maximum amplitude ±4.14 mm,
which is within the range allowed by the slip table. Performing long-time tests
it is convenient to reduce critical amplitude up to 2.5 mm, which eliminates
the risk of overloading and significantly reduces electricity consumption.
Two accelerometers are used for tests, first control gauge C is fixed on the

hinges’s holder and three-axial second sensor M is located in the middle of the
beam, as shown in Figure 4.1b. Controllers are linked with Personal Computer
throught LMS, controlling and measuring systems. Figure 4.8 shows the scheme
of the experimetal setup [118,119].
Experiment started from tuning sensors, then frequency of excitation has

been swept backward (Ω−) from 30 Hz to 15 Hz and forward (Ω+) from 15 Hz to
30 Hz. Each of sweeps began/ended by two seconds of start-up and shut-down,
namely within this time the frequency of excitation is fixed and amplitude of
excitation increases to given value or decreases to 0. Between Ω− and Ω+

excitation has been deactivated for 2 seconds. Total time of full course was
308 seconds and involved acceleration, deceleration processes together with
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PC

LSM+ 

controller  

driver

controller +

measuring

 system

amplifier

accelerometer C accelerometer M

electrodynamic 

shaker

beam S

table top

Figure 4.8: The control system scheme of the slip table - top view.

Figure 4.9: Frequency of excitation diagram for a full experimental cycle. Vari-
ation of amplitude states increment/decrement sections, during a
sweep is constant.
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two sweeps (forward and backward) and pause in the middle. In the input
signal both parameters depend on time and the amplitude and the frequency
of excitation. The input function is given by

g(t) = ξ(T ) cos (Ω(T )T ) (4.2)

where ξ denotes the amplitude of excitation (displacement) and frequency of
excitation Ω(T ) is graphically presented in Fig. 4.9. One way sweep took 150 s.
It means the speed of the sweep has been set 0.1 Hz/s. The experiment has
been scheduled to examine full course (backward and forward) of each structure
together with four amplitudes of excitation: 2.5 mm, 2 mm, 1.5 mm and 1 mm.
In total it gives 48 (2× 24) experimental frequency response curves.

The constant amplitude of excitation ξ(Ω) generates logarithmic acceleration
gain together with increasing frequency of excitation. The acceleration profile
h(T ) becomes:

h(t) = 4π2

9.05778ζ(T )Ω(T )2 cos (Ω(T )T ) , (4.3)

and is represented in the standard form related to the gravity gn. Multiplying
the result by the constant 9.05778 the unit transforms into mm/s2. The cal-
culation is done automatically by the LMS software, see the profile editor in
Fig. 4.10 and selected profiles of maximum amplitudes in 4.11a,b.

Figure 4.10: The profile editor in the LMS software.

An additional validation test on the control sensor with use the vibrometer
Polytec PSV-500 was performed [115]. The constant velocity amplitude was
tested for a few frequencies and simultaneously the motion was monitored by
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(a)

(b)

Figure 4.11: Maximum amplitudes of the selected excitation profiles: displace-
ment (a) and acceleration (b).

a laser beam. The comparative study was successful for all tested frequencies.

4.3 Post processing

Outcomes of experimental test are absolute acceleration amplitudes of oscil-
lations Ëa(Ω) for accellerometer M and its phase angle ϕ(Ω) with respect to
controller C . The presumable time histories of acceleration are integrated to
get the time histories of displacement. This procedure is done by optional
function of the software. In the input displacement amplitude and frequency
of excitation C are driven. Comparing results, it is convenient to convert the
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absolute amplitude Ea(Ω) into relative amplitude Er(Ω):

Ea(Ω) = Er(Ω) + ζ cos (ϕ(Ω)) (4.4)

Figure 4.12: Frequency response curves and corresponding shift angle, S4.2.

Figure 4.12 shows preliminary experimental results for external excitation
ξ = 2.5 mm. The frequency-amplitude curves are bend toward right (hardening
nature), where the hysteresis of stable solutions appears between 26 Hz and
29.5 Hz (≈ 1.5 × ω1). The shift angle decreases together with frequency of
excitation increment. Jumps between upper and lower branches provoke a rapid
change in the shift angle ϕ(Ω). In order to distinguish the increment/decrement
if frequency change we introduce Er(Ω+) for sweep forward and Er(Ω−) for
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sweep backward.
Experimental setup is located in the laboratory of Department of Applied

Mechanics at Lublin University of Technology, and measurements were done
in changeable environment throughout the day during a few weeks. Tempera-
ture conditions (between 20°C and 30°C) have a big impact on Teflon sleeves
interaction and beam material properties. Another disadvantage in process
of building the frequency response curves was replacing set of four springs.
Despite all efforts, the system settings are different from the nominal ones,
so the beam length and inclination angle slightly changes. Additionally the
specimen tightening into hinge and shaft have not been perfect, consequently
during table top movement the beam was continuously pulled out/pushed into
handles, or mechanism of supporting part got stuck. The last doubt was about
the condition of the sliding system and its abrasion over several months of
testing. Differences in geometrical tolerance causes micro-impacts in the sys-
tem and at least differ in the damping parameters of the structure. All of the
above mentioned disadvantages affect dynamics of the system and they will be
investigated in Section 5.3.
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Chapter 5

Results

This Chapter is focused on the impact of variation an axial spring stiffness
ks on the dynamics of the system. Results for the two beams Tκ and Sκ
are shown. First, outcomes of theoretical investigation on the beam Tκ is
performed by finite element method and multiple time-scales method. Natural
frequencies, backbone curves and frequency-amplitude curves for selected cases
are compared. The analysis is not limited to primary resonance. Next, results
are then supplemented by experimental tests based on kinematic excitation of
the beam Sκ and its numerical counter part. This approach will enable to
(indirectly) compare analytical, numerical and experimental methods.

5.1 Free oscillations

5.1.1 Linear dynamics
Substituting parameters of the beam T into equations (2.58)-(2.59) the first ten
natural frequencies of the system are computed for the hinged-hinged/hinged-
simply supported beams and then compared in Table 5.1.1. From practical
point of view the discrepancy is negligible, since differences occur at higher
frequencies. It is caused by the numerical approximations and are less than
1‰. It could be improved by more accurate discretization, nevertheless results
are satisfactory for our purpose.
As mentioned before, transversal natural frequencies and corresponding mode

shapes of the structure are independent of boundary conditions, but the axial
spring is very important for longitudinal dynamics. Figures 5.1 and 5.2 display
change in natural frequency and the beam deformation ratio. The simply sup-
ported beam has the lowest natural frequency. As the parameter κ increases,
the natural frequency tends to the highest value, which corresponds to hinged-
hinged beam (κ = ∞). In vicinity κ = 0 the system is more susceptible to
changes and increasing the stiffness the sensitivity decreases.
Furthermore, the biggest longitudinal deformation of the node 101 occurs

with no spring (Fig. 5.2), while a slight change in κ shifts the largest deflection
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Table 5.1: Mode shapes and corresponding natural frequencies of the beam T .
Notation (h-ss) corresponds to hinged-simply supported boundary
conditions and (h-h) describes hinged-hinged beam.

Mode Mode Natural frequency [Hz] Difference

No. shape FEM Analytic [ ‰]

1 1st bending 461.47 461.47 0.003

2 2nd bending 1764.50 1764.57 0.040

3 1st 2586.10 (h-ss) 2586.10 (h-ss) 0.000

longitudinal 5172.00 (h-h) 5172.19 (h-h) 0.037

4 3rd bending 3720.40 3720.62 0.059

5 4th bending 6129.30 6129.35 0.171

6 2nd 7757.60 (h-ss) 7758.29 (h-ss) 0.089

longitudinal 10343.00 (h-h) 10344.40 (h-h) 0.135

7 5th bending 8833.40 8836.46 0.346

8 6th bending 11723.00 11730.10 0.605

9 3rd 12927.00 (h-ss) 12930.50 (h-ss) 0.271

longitudinal 15511.00 (h-hh) 15516.60 (h-h) 0.361

10 7th bending 14726.00 14740.10 0.957

Figure 5.1: An axial spring influence on the first natural frequency of the sys-
tem, dashed line coincides with the hinged-hinged beam T .
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5.1 Free oscillations

Figure 5.2: The axial spring influence on axial displacement of the beams end
vs maximum longitudinal deflection of the beam. Properties of the
beam T .

forward center of the beam. Finally the hinged-hinged beam has restrained
both ends and the relation W (Z = L)/Wmax(Z) goes to zero, as can be seen
from mode shape in Fig. 3.3d.

5.1.2 Nonlinear dynamics
When amplitudes of vibrations increase, the linear analysis becomes less and
less accurate. The nonlinear frequency of the system can vary together with
amplitude of oscillations [6, 90, 120] and analysis need to be extended to non-
linear dynamics. Section 2.2 was focused on derivation the frequency response
equation (2.92) and backbone curve equation (2.93) which links all geometrical
and material properties of the structure. In the first attempt to validate ana-
lytical derivation on the beam model, the comparison of backbone curves with
literature findings, based on Linsted-Poincaré method is performed in Fig. 5.3.
The results are in a very good agreement, minor discrepancies occur only for
small values of spring stiffness ks = 50000000N/m (ksL/EA = 0.012) or in the
absence of the spring ks = 0.

At this stage we are focused on the comprehensive analysis of the beam
T and check its hardening/softening behaviour for free oscillations. For this
purpose we depict the nonlinear correction coefficient cb as a function κ in Fig-
ures 5.4 and 5.5. For the first bending mode for κ = 0 the nonlinear correction
coefficient is negative. It means that the beam T0 has the softening behaviour.
For increasing spring stiffness coefficient cb(n = 1) intersects the abscissa (lin-
ear oscillations) in κ ≈ 0.018, see Fig. 5.4b. With further ks growth the cb
monotonically (for n = 1, n = 3, n = 4, n = 5) tends to the fixed value cor-
responding to the axially restrained beam. At κ ∼= 10 the difference with the
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Figure 5.3: Multiple time scales method (solid lines) vs Linsted-Poincaré
method (dashed) backbone curves for beam properties: L = 5 m,
H = 0.5 m B = 0.2 m, ρ = 7850 kg/m2, E = 2.11 1011 N/m2,
0 ≤ ks <∞, EA/L = 4.22 109 N/m [70,76].

asymptotic limit is less than 4%. For all values of ks the third, fourth and fifth
modes have only hardening nature. For the hinged-hinged beam all cb parame-
ters are positive, and they gradually increase with successive n values. In other
words, the beam T∞ have stronger hardening effect for gradually higher order
modes. Considering comparable amplitudes of oscillations for two consecutive
modes, the frequencies are shifted more to the right (+σ) with respect to the
natural (linear) one (ωn).

The cb for the second mode is principally positive (hardening), beside a
small interval around κ ' 1.382, where the curve has a singularity and goes
to ± infinity. It is caused by a denominator that crosses zero, together with a
non-zero numerator. Similar cases are detected for sixth and seventh modes,
their singular values are for κ ≈ 1.61 and κ ≈ 12.99, respectively. Due to
uncertainty of the result, our analyses in this interval will be performed by
finite element method in forced-damped case.
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5.1 Free oscillations

Figure 5.4: The nonlinear correction coefficients cb for the beam T .

For selected cases of spring stiffness the backbone curves are presented in
Figures 5.6-5.12. It directly correlate the nonlinear correction coefficient with
frequency-amplitude relations. Additionally, in Fig 5.6 analytical results are
compared with outcomes of numerical simulations performed in Section 3.3.1.
Verification of finite element method and multiple time-scales method shows
very good agreement, even though for large amplitudes there are some discrep-
ancies due to the influence of higher order modes, which has not been eliminated
in numerical simulations because of the particular initial (static) configuration
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Figure 5.5: First three singularities of the nonlinear correction coefficients for
the beam T . More cases of singular points (cb = ±∞) are expected
for higher order modes, but not for higher stiffnesses of presented
mode numbers.

from which the free vibrations start. It can mix different frequencies, e.g. n = 1
and n = 3 [121]. Inaccuracy of initial deformation shape is smoothly corrected
in time by the damping. It is however remarkable that amplitudes smaller
than 0.01 m (20% of beams thickness and 1% of the length) brings an excel-
lent agreement, higher order frequencies are disappearing fast and only one
main frequency remains. Nevertheless, very interesting phenomenon occurs for
spring stiffnesses κ = ∞ and κ = 4, for interval between 530 Hz and 545 Hz,
markers are arranged in linear trends. It can be expected that they will follow
the regular mode until the vibrations disappear, but the signal becomes again
diffused and then stabilize once again. This effect is different from other cases,
where the numerical results asymptotically tend to analytical predictions. It is
probably an additional interaction between other modes, which was not consid-
ered in analytical modeling. Furthermore, the beam Tκ with the same spring
stiffnesses will be studied in Section 5.2 where in contrary to free-damped oscil-
lations, a gradual increment of amplitude response enables to follow paths in a
wider frequency spectrum of external excitation with much smaller dispersion
of measuring points.
Free nonlinear oscillations for the second flexural mode (n = 2) of the

beam Tκ are shown in Fig. 5.7. Note that, the singularity in nonlinear correc-
tion coefficient displayed in Fig. 5.5 causes exit of some solutions from two limit
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5.1 Free oscillations

Figure 5.6: Backbone curves of the beam T , n = 1. Lines are multiple time-
scales method and dots are finite element simulations.

values related to parameters κ = 0 and κ = ∞. Relatively large values (posi-
tive and negative) of cb(κ) occur for κ ≈ 1.382, which significantly changes the
behaviour of the structure. Slightly smaller values (κ = 1.3) backbone curves
have very strong hardening nature, but for a little bit greater spring stiffness
the response of the beam represents softening behaviour (κ = 1.6). Far away
from the critical spring stiffness the structure behaves like for the first bending
mode, although amplitudes are smaller. Comparing responses of hinged-hinged
beam for σ = +86 Hz the difference is about 50%. This case will be studied in
Section 5.2.2 by the path following method.
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Figure 5.7: Backbone curves of the beam T , n = 2.

Figure 5.8: Backbone curves of the beam T , n = 3.
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5.1 Free oscillations

Figure 5.9: Backbone curves of the beam T , n = 4.

Figure 5.10: Backbone curves of the beam T , n = 5.
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The third, fourth and fifth bending modes do not have above mentioned
anomalies. For all spring stiffnesses in the range 0 ≤ k <∞ the beam represents
only hardening phenomenon, see Figs. 5.8, 5.9 and 5.10. A gradual change
in κ bends backbone curves more and more to the right for all three cases.
Large amplitudes of oscillations require getting further away from resonance
for higher order resonances e.g. amplitude 25 mm (0.5 thickness of the beam)
for the simply supported (hinged-hinged) correspond to detuning parameter
σ(n = 3) = 120rad/s, σ(n = 4) = 680rad/s and σ(n = 5) = 1040rad/s
(σ(n = 3) = 1050rad/s, σ(n = 4) = 1850rad/s and σ(n = 5) = 2800rad/s),
respectively.

Figure 5.11: Backbone curves of the beam T , n = 6.

The sixth and seventh resonant (bending) modes are also unsettled in vicin-
ity of critical spring stiffnesses, which are presented in Fig. 5.5. For precisely
selected parameter κ amplitudes of vibrations are approaching to zero, e.g.
κ(n = 6) = 1.6 ± 0.02 mm (see Fig. 5.11) and κ(n = 7) = 13.0 ± 0.1 (see
Fig. 5.12). It means that transverse oscillations near singularities vanish, which
is incomprehensible at this stage and further analysis should be done by differ-
ent methods to validate and better understand this particular phenomenon.
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Figure 5.12: Backbone curves of the beam T , n = 7.

5.2 Forced-damped vibrations
With the external exictation presence the structure possess more diversified
nonlinear dynamics than in the case of free oscillations. A response of the
nonlinear system has stable and unstable solutions, which depend on the ratio
between the natural frequencies and the frequency of excitation [87]. The dy-
namics are further influenced by initial and boundary values of the problem [3].
In this Section we consider two cases of excitation:

• to directly trigger the first bending mode (symmetric), the cyclic vertical
force is applied in the midpoint, cz = 2;

• to study first, second and third (symmetric and asymmetric) modes the
concentrated periodic force is positioned at one fourth of the span, cz = 4.

First point is an excellent way to investigate odd-modes, but at the same time
it prevents analytical even-modes analysis. For the same reason second point
is excluded for integer multiplicity of n = 4.

5.2.1 Excitation in the midpoint
Figure 5.13 shows frequency response curves of primary resonance for the beam
T . Results are obtained from frequency response equation Eq. (2.92) and

71



Chapter 5 Results

numerical simulations described in Section 3.3.2. Accordingly with previous
analysis, starting from the strongest hardening of hinged-hinged beam, then as
spring stiffness decreases the frequency response curve straightens and finally
for unrestrained beam characteristics bends slightly towards left, showing a
softening behaviour. Markers, which present numerical solutions, overlap solid
lines for detuning parameter range −50 Hz < σ < +50 Hz even for large
amplitudes. Differences increase for frequencies greater than +100 Hz. The
reasons of divergence are

• analytical approach is suitable for small values of detuning parameter,
while the range of the plot is in wide interval −0.1ω1 < σ < +ω1 [90];

• the multiple time-scales method is applied up to second order approxi-
mate solution (cubic nonlinearities), higher order approximation of the
exact beam model can possess higher accuracy of the frequency response
curves [66];

• finite element method is not limited to the individual nth mode, but
interacts simultaneously with a finite number of modes of the system [77].

Further analysis shows that upper branches of numerical solution for κ = 4
and κ = 1 are featured by two local peaks in σ = 185 Hz and σ = 340 Hz. Time
histories of those peaks are used to carry out discrete Fast Fourier Transform
(FFT) analysis [122]. Displayed in Fig.5.14b the Fast Fourier Transform (FFT)
indicates two main amplitude peaks in ω(κ = 4) = 646 Hz and ω(κ = 4) ≈
1938 Hz as well as ω(κ = 1) = 796 Hz and ω(κ = 1) ≈ 2388 Hz. Those values
correspond to the frequency of excitation (left peak) and indirectly excited
another nonlinear mode (right peak). It is worth to remark that the even
modes are not excited by external force, they interact among themselves by
nonlinear terms, for instace inertia. We also highlight that 1938/646 = 3
and 2388/796 = 3 showing that we are dealing with a 1 to 3 superharmonic
resonance. Examples on this phenomenon can be found in [123–126].
We believe that peak disturbances are cased by time sampling together with

location of the recording signal (almost at the node of the second nonlinear
bending mode) and do not have an extra mechanical background.
To better understand this phenomenon, the concentrated force is relocated

from cz = 2 to cz = 4. This manner allows to pump energy directly into even
as well as odd modes and to study more frequency response curves.

5.2.2 Asymmetrical excitation
Primary resonance

In this case, the harmonic external excitation is applied at Z = L/4, the fre-
quency range is reduced to −0.2ω1 < σ < 0.5ω1. Also amplitude of excitation
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5.2 Forced-damped vibrations

Figure 5.13: Frequency response curves: multiple time-scales method (lines)
vs finite element method (dots); beam T , n = 1, cz = 2,
Pv = 40799.2 N, ζ = 6 %.

Pv is adjusted to enforce midpoint quasi-static deflection about 1 mm (2% of
least radius of gyration) for the hinged-hinged beam T .
Frequency response curves in the neighborhood of the first bending mode

are shown in Fig. 5.15. Differences between analytical and numerical results
increase as the detuning parameter increases. Significant deviation of the curves
begins at 75 Hz for κ = 0.25 and 150 Hz for κ = 1, κ = 5 as well as κ = ∞.
For assumed amplitude of excitation and damping coefficients the bifurcation
exists for axial spring stiffness greater than 0.5% of beams tensile stiffness.
An additional jump in solution occurs for κ = 1. Time histories of points
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(a)

(b)

Figure 5.14: Steady state time history for κ = 1, Ω = 796.04 Hz and κ = 4,
Ω = 646.06 Hz (a). Time is measured for a given frequency of
excitation, preceding signal eliminates transience. Fast Fourier
transform (b) of selected time intervals: 213 points.

marked by the black diamond and circle are investigated by FFT in Fig. 5.16.
Single strong peaks are observed for points marked by rectangle and diamond.
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Figure 5.15: Frequency response curves: multiple time scales method (lines)
vs finite element method (dots); beam T , n = 1, cz = 4, Pv =
59839.5 N, ζ = 6 %.

Additionally the series marked with diamond has a negligible small peak about
1650 Hz. The circled time history has two major peaks, occurring at frequencies
ω = 654 Hz and ω = 1940 Hz, whose ratio is again 1 to 3, showing again a
superharmonic bending-bending internal resonance. Second mode participation
in time history in Ω1.2 is marginal, and the amplitude of the second peak
increases by increasing the frequency, up to the last acquired value. At Ω1.4

maximum values ratio is 6.75/16 (42%!) and for next computational frequency
Ω1.425 the maximum amplitude jumps to single-frequency solution path, where
it has only one peak in the FFT.
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Figure 5.16: Fast Fourier transform of three time histories marked by diamond,
circle and rectangle in Fig. 5.13. Time interval consists of 212

points recorded with sampling 1/ (40Ω).

Since the interval 150 Hz< σ < 200 Hz may have an additional solution,
the shooting method is used to look for further branches with lack of internal
resonance. As said in Section 3.3.3 the shooting method can be used for a prede-
fined narrow range of initial conditions and frequency spectrum. This method
saves computational time with respect to path following method, because there
is on need to start simulation from resonant frequency and follow the stable
path up to the σ = 200 Hz and then sweep backward. The investigation is
made directly in the specified range.
The initial deformations of the beam Umaxm,n(U0m,Ωn) have been set as

in Table 5.2, where m describes initial maximum deformation of the beam
midpoint (in millimeters) and n denotes the ratio of frequencies Ω/ω1.

Only underlined values of initial conditions lead to solutions presented in
Fig. 5.17. It shows how precisely the initial deformation of the structure have
to be predefined and how easily stability of the solution can be lost. Figure 5.18
displays time histories of the 26th node, despite starting nearby stable branch
after sufficient time amplitude goes to the lower non-resonant amplitude.
Nevertheless, phenomenon of nonlinear internal resonance is confirmed. The

results can be described as an additional higher order nonlinear resonance which
is built on the primary one and their frequencies ratio 1 to 3. Let us refer to
a few works, which are related to this phenomenon and are investigated by
different approaches [127–130].
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Table 5.2: Initial conditions of shooting method.
n m

1.4 45 46 47 48 49 50 51 52 53 54

1.375 40 41 42 43 44 45 46 47 48 49

1.35 40 41 42 43 44 45 46 47 48 49

1.325 40 41 42 43 44 45 46 47 48 49

Secondary resonance

Study on secondary resonance is performed with the same methods as for pri-
mary resonance, the only differences are in parameter κ and frequency of ex-
citation Ω, which is varied in between −0.05ω2 and +0.13ω2. In this case
outcomes of numerical and analytical computations are divided in two parts,
first far away from the singularity and second in its close proximity. The crit-
ical κ is about 1.382 and investigated values of the parameter are marked in
Fig. 5.19 on both sides of the singular point where the coefficient cb(κ ≈ 1.382)
goes to ±∞. In this specific range, presented technique of multiple time-scales
method does not have physical meaning, because internal resonances have not
been considered in our simulations.
Let us discuss the results presented in Fig. 5.20. All frequency response

curves have hardening nature. The smooth change between the two limit val-
ues κ = 0 and κ =∞ is broken by approaching the singular point (κ = 1.382 in
between κ = 1 and κ = 2). Out of this interval, since the multiple time-scales
and finite element methods have analogous results, we can assume their cor-
rectness. A slight change in the nonlinear correction coefficient for beams T100

and T200 generates almost indistinguishable modifications of the analytical
frequency-amplitude curves.
Frequency response curves for spring stiffnesses close to the singular point

(together with hinged-hinged and hinged-simply supported beams reported for
reference) are displayed in Fig. 5.20. Divergent results are obtained for κ = 1.5,
κ = 1.6, κ = 1.7 and κ = 1.75. In those cases the spring system has only
softening nature (see Fig. 5.21), although by decreasing spring stiffness below
the critical spring stiffness κ = 1.382 the hardening behaviour of the structure is
available as well. Nonlinear dynamics of the beam is in qualitative agreement,
approaching the singular point from larger values of spring stiffness, as we
observe the frequency response curve tilts more and more to the left, according
to the fact that the system becomes more and more softening, because cb tends
to −∞. Apart from κ = 1.75, analytical and numerical methods give equivalent
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Figure 5.17: Three stable solutions of the system T100, computations com-
pleted by the shooting method.

amplitudes in σ = 0, but unfortunately are in quantitative conflict for large
detuning parameter. Even small amplitudes of oscillations become questionable
in this particular range.
Assuming that perturbation method is correctly balanced only for Ω1(σ = 0),

we focus on the continuation by finite element method and inspect time histories
of selected points. Case κ = 1.5, n = 2 attracted our attention because it is
closest to the critical point κ = 1.382. In the plotted interval it has three sets
of points:

• −50 Hz < σ < −33 Hz, solutions of lower amplitudes of oscillations (up
to 3 mm), with analytical counterpart;

• −33 Hz < σ < +12 Hz, there is only one path of higher amplitudes which
is in qualitative agreement with analytical frequency response curves;

• +12 Hz < σ < +50 Hz, maximum amplitudes are spreaded with with no
analytical counterpart.

The three frequencies are marked by diamond, circle and rectangle are now
deeply investigated; their transient time histories and Fast Fourier Transforms
are plotted in Fig. 5.21. The diamond and circle responses start from slightly
disturbed initial conditions and stabilize smoothly, amplitudes of longitudi-
nal/transverse oscillations go to constant amplitudes within less than half sec-
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Figure 5.18: Time histories of shooting method for Ω1.375, from top to bottom:
m = 42, m = 44, m = 45, m = 46, m = 48, m = 50; the beam
T100, n = 1, cz = 4, Pv = 59839.5 N, ξ = 6 %.
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Figure 5.19: The singularity of nonlinear correction coefficient (curved line) for
the second bending mode of the beam T . Round markers corre-
spond to certain (green) and uncertain (red) investigated cases.

ond. Constant amplitudes ratios W (Z = 0.25L)/U(Z = 0.25L) are 6/195
(diamond) and 2/9 (circle). Second proportion is about 22% and clearly shows
that axial vibrations are excited. Both cases have clear peaks of amplitude,
which are related to the frequency of excitation in transverse direction and
double frequency in longitudinal one. Due to symmetry of the system the
natural periods are in ratio 1 to 0.5.
The crucial part of this work is the analysis of the case marked as a square.

Time histories show that energy transfer exists from the excited transverse
mode to an axial one and viceversa. When transverse oscillations go to maxi-
mum amplitudes the longitudinal ones are disappearing, when axial vibration
increases the flexural mode suddenly vanishes in correspondence of the maxi-
mum axial amplitudes. For third set of points, which are responsible for beating
phenomenon, maximum amplitudes in Fig. 5.21 are read (maximum amplitude
of the long time simulation), while their counter part in axial direction is zero.
The beating phenomenon occurs in the studied system when the flexural nat-
ural frequency is very close to one half of natural frequency in longitudinal
direction. Various examples of beating can be found in [131–134]. This inter-
esting mechanism is robust and repeatable not only for the first mode. The
singularities of nonlinear correction coefficient cb (see Fig. 5.5) now are un-
derstood as an interaction between axial/transverse internal resonances. The
first peak corresponds to the first longitudinal ω1-second bending ω2 modes;
second peak to the second axial ω2-sixth transverse ω6 modes; third peak to
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Figure 5.20: Frequency response curves: multiple time-scales method (lines)
vs finite element method (dots); beam T , n = 2, cz = 4, Pv =
59839.5 N, ζ = 6 %.

the third lengthwise ω3-seventh flexural ω7 modes. Besides, for continuous sys-
tem infinite number of internal resonance exists. The FFT analysis shows that
magnitude of amplitude U(Z = 0.25L) is torn between frequency of excitation
Ω and half of first natural frequency ω1 and W (Z = 0.25L) has analogous
shape.
As presented in [90, 125], to study internal resonances a dedicated pertur-

bation method have to be applied. To the best of authors’ knowledge, this
interaction is detected for the first time and can occur in any beam system
with proper dimensions relations. It shows that the consideration of extensi-
ble piece element should be taken into account in further analysis on beams.
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Figure 5.21: Frequency response curves: multiple time-scales method (lines)
vs finite element method (dots); beam T , n = 2, cz = 4, Pv =
59839.5 N, ζ = 6 %.

Deeper analysis is out of scope of this thesis, but it will be continued in near
future [135].

Third resonance

Analyses on the resonance of the fourth (third flexural) natural frequency shows
that for stiffnesses of the boundary spring the structure has only hardening
behaviour, which agrees with the results of Fig. 5.23. Numerical frequency re-
sponse curves display hysteresis for κ1 > 1 and do not have an additional mode
interactions. Comparison of two methods shows excellent agreement, and all
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(a)

(b)

Figure 5.22: Fast Fourier transform curves (a) of the last 212 recorded displace-
ment points. Subsequent transient time histories in axial and lon-
gitudinal directions (b); they represent marked points by diamond,
circle and rectangle in Figure 5.21.
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dots (corresponding to numerical simulations) cover corresponding analytical
lines. As expected, amplitudes of vibrations are smaller than those of primary
and secondary forced-damped resonances.

Figure 5.23: Frequency response curves: multiple time-scales method (lines)
vs finite element method (dots); beam T , n = 3, cz = 4, Pv =
59839.5 N, ζ = 6 %.

At this point we finish the comparison between finite element method and
multiple time-scales method results. In next Section 5.3 we will examine kine-
matically excited beam S with an additional tip mass and rotatory inertia of
hinges. Those terms change boundary conditions of the system, and therefore
procedure of analytical approach should be reconsidered, starting from the lin-
ear analysis through a new solvability conditions in the first and second order
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of solution. This is left for further developments.

5.3 Experimental verification
We analyse six cases of boundary conditions and four amplitudes of excitation
separately. The modulus of elasticity E in the numerical simulations to the
experimental natural frequency is fitted [136,137], then linear viscous damping
coefficient is adjusted to minimize the differences between the numerical and
the experimental frequency response curves. Figure 5.24 shows the natural
frequency of the beam as a function of Young modulus for the first and second
bending modes. An example of damping coefficient influence on the amplitudes
of oscillations is displayed in Fig. 5.25.

Figure 5.24: Numerical first ω1 and second ω2 natural frequencies of the hinged-
simply supported beam as a function of the Young modulus.

The damping coefficient ζ is one of the most important governing parameters
for the resonant interval, because it influences very much the maximum ampli-
tude, whereas far from resonance (17 > Ω and 25 < Ω) damping coefficient has
less importance. In fitting procedure other parameters of the systems S0-S5

like dimensions, density and Poisson’s ratio remain unchanged.
Set of six plots which contain experimental frequency response curves are

consecutively presented in Figures 5.26, 5.27, 5.28, 5.29, 5.30, 5.32. They are
ordered from the hinged simply supported with no spring, through increasing
stiffness ks up to the highest stiffness S5 of beam-spring system and tests were
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Figure 5.25: Frequency response curves for damping parameters test. Numeri-
cal results for the beam configuration S0.8, ζ = 2.5 mm, the first
natural frequency ω1 = 19.75 Hz is plotted as dot-dashed vertical
line.

done for each beam starting from the highest amplitude of excitation. More-
over, the frequency sweep has been set at first backward and then forward.
In the following tests amplitudes of kinematic excitation ξ were consequently
reduced (from 2.5 mm to 1.0 mm). The cases S0, S0.8 and S4.2 are compared
with finite element results. The comparative analysis provides the following
properties: (i) the Young modulus changes (natural frequencies shift) during
the experiments; and (ii) the damping coefficient is amplitude dependent. The
variability of both parameters are reported in plot legends. The changes are
small but nevertheless very important to reflect so well the results obtained
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on the prototype. There may be many reasons of the natural frequency and
damping coefficient change. One of them is increasing temperature during long-
lasting experimental tests. The power generator is cooled down by air flow and
the hot fluid is blown off into the laboratory room. In a daily interval the tem-
perature increases about 8 degrees of Celsius and the Plexiglas is susceptible to
temperature changes, unfortunately the temperature was not continuously reg-
istered. The second reason can be a slight pulling in/out of the beam from the
hinge and shaft, together with improving the quality of sliding surfaces during
tests. It generates a very complex problem, wherein too little information was
considered during experiment and provides the basis for further research on
this topic.
As for the Timoshenko beam T0, the specimen S0 has soft softening nature.

Analysis performed in [74] shows that the tip mass softens the characteristic in
the axially unrestrained configuration and almost does not affect commensurate
with higher stiffnesses. Curves Er(Ω±, ξ = 1.5) are shifted for about ±0.25 Hz
and responses Er(Ω±, ξ = 2.5 mm) in peak of maximum amplitudes slightly
differ (see Fig. 5.26). Numerical results fully cover the experiment, the damping
coefficient ζ grows together with ξ as well as the calculated natural frequency
ω1 decreases over the testing time. These characteristics can be compared
(indirectly) with tests performed on a simply supported bronze beam about
dimensions 0.8×10×450 mm in Figure 9 of [63], where the frequency response
curve is also bent toward left and for higher amplitudes of the oscillations
(about 15% of the beams’ length) than in our study, a jump between stable
paths occur. The significantly greater tip mas mt = 0.25 kg (tip to beam mass
ratio 7.89) may affect the stronger softening effect response as studied in [74].
Additional compliance of both experiments is a small dispersion of vibration
amplitudes for sweeping forward and backward (thermal effect). Moreover,
it can be deduced from the perfect mach of both methods (experiment vs
analytic) only very close to the resonant frequency that a distinction of relative
(experiment) and absolute (analytic) amplitudes in their analysis was ignored,
see the difference Fig. 4.12 and Eq. 4.4.
The setup S0.8 (Fig. 5.27) contains the weakest spring, this small change in

boundary conditions turns the system response into soft hardening. Shape of
experimental responses is smoother than in previous case, and again damping
coefficient grows together with ζ. However, the natural frequency is constant,
except at ξ = 1.5 mm. We attribute this minor difference to small difference
of temperature during the various tests.
Despite spring stiffness increment the response of the structure in Fig. 5.28

seems to be almost linear. It is in contrast to the analytical and numerical
results, where for the primary resonance the hardening increases monotonically
with spring stiffness. This change could be due to the temperature variation
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Figure 5.26: Frequency response curves: experiment vs numerical results;S0.
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Figure 5.27: Frequency response curves: experiment vs numerical results; S0.8.
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Figure 5.28: Experimental frequency response curves; S1.

(Young modulus), assembly error or another unexpected dynamical effect.
In fact, the stiffness of the springs system has been tested in quasi-static

conditions, but the motion of slip table acts on the beam and working elements
(sliding support). The spring stiffnesses for S0.8 and S1 are very close to
each other. Note that, in this particular case the longest springs are used (see
Fig. 4.2, case 100×32.5×2.5 mm), and it may happen that they have interacted
with the transverse movement, which could decrease dynamical stiffness. The
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estimated natural frequency ω1 = 20.75 Hz is also the highest from the tested
cases.

Figure 5.29: Experimental frequency response curves; S3.

Further increment of the axial spring stiffness bends characteristics toward
right (Fig. 5.29). In construction of S3 jumps between upper and lower stable
paths occur for ξ = 2.0 mm and ξ = 2.5 mm, and the jumping intervals are
23.4-23.8 Hz and 24.3-24.9 Hz, respectively. The local hump arise on the curves
just after one of jumps for sweep backward, ξ = 2.5.
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Figure 5.30: Frequency response curves: experiment vs numerical results; S4.2.

92



5.3 Experimental verification

The most successful experimental configuration is S4.2 (Fig. 5.30). Am-
plitude of oscillations for the biggest excitation force is 24 mm, it is 5.6% of
the beam length and 505% of the beams thickness. The hysteresis of the two
solutions appears for excitation amplitudes ξ = 1.5 mm, ξ = 2.0 mm and
ξ = 2.5 mm and their frequency intervals are accordingly: 23.3-24.9 Hz, 24.8-
29.9 Hz and 24.9-29.5 Hz. The frequency interval for the last curve is 0.23 ω1,
and the test has been repeated few times to check the results. Proper parame-
ters fit (ω1, ξ) enables to match very well the hysteresis and the corresponding
solution transitions. On the curve Er(Ω+), ζ = 2.5 mm a slight ridge has grown
between 27 Hz and 29.5 Hz. This region has been studied with the numeri-
cal simulations by recording two additional points on the beam. Figure 5.31
shows that U(Z = 0.25L) and U(Z = 0.75L) loose symmetry, it means that
the first and the second bending modes interact. According to Fig. 5.24 the

Figure 5.31: Frequency response curves obtained in numerical simulations for
three points along the beam of configuration S4.2, ω1 = 20 Hz.

frequencies ω1(E = 4.5 GPa) = 20 Hz and ω2(E = 4.5 GPa) = 75 Hz are in
ratio 3.75, and it is far from internal resonance (in linear regime). However,
considering the frequency of excitation Ω ≈ 27 Hz, the relation Ω/ω2 becomes
2.78. Assuming that the second bending mode has hardening nature (frequency
response increases together with the amplitude), it intersects frequencies rela-
tion which are precisely 3. The symmetrical excitation of the beam very poorly
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stimulate the second bending mode, which slightly modifies nonlinear modal
shape of response. The response of midpoint (modal node for n = 2) remains
undisturbed.
In order to trig simultaneously the first and the second bending modes the

symmetry in the system must be broken, for example as it has been done in
Section 5.2.2

Figure 5.32: Experimental frequency response curves; S5.

The strongest hardening behaviour of the beam-spring system is found for S5
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(Fig. 5.32), although the structural dissipation limits length of followed branches.
Similarly to the previous case soft bulges appear for 27 Hz < Ω < 28.5 Hz,
ξ = 2.5 of upper as well as lower branches. Based on performed numerical
computations, more extensive analysis of two modes interaction require in-
creasing the amplitude of excitation or change method of excitation, but due
to the restrictions imposed by shaker limitations, the experimental tests have
been completed at this stage.
Collectively analyzing the results, the summary Tab. 5.3 is built for studied

cases, where the peaks of amplitudes are selected as well as their corresponding
jump frequencies. Changes in critical frequency with increasing amplitude
show the hardening/softening dichotomy. Underlined cells mark the bifurcation
occurrence.

Table 5.3: Maximum relative amplitudes of the kinematically excited beam-
spring system.

Amplitude

of excitation
Ermax(Ω+) [mm(Hz)]

ξ [mm] S0 S0.8 S1

2.5 17.0(18.50) 19.0(20.75) 15.5(20.90)

2.0 14.0(18.75) 16.5(20.50) 13.0(20.70)

1.5 11.5(19.00) 12.5(20.25) 10.0(20.60)

1.0 8.0(19.50) 8.5(20.00) 7.0(20.50)

ξ [mm] S3 S4.2 S5

2.5 19.0(25.00) 23.5(29.50) 20.0(28.00)

2.0 16.5(23.5) 20.0(27.50) 18.0(25.50)

1.5 12.0(21.75) 15.0(25.00) 15.5(25.00)

1.0 7.5(20.75) 8.0(21.5) 10.0(22.10)

The direct frequency response curve fitting of the laboratory results shows the
dissipation and natural frequency trends for the kinematically excited beam;
they are reported in Fig. 5.33. Damping coefficient linearly grows with increas-
ing amplitude of excitation, in contrary to the preliminary results for ξ = 0
presented in Tab. 4.2. As displayed in Fig. 4.12, the absolute displacement (ve-
locity) of the system is bigger than relative displacement (velocity). Natural
frequencies were examined in three cases: softening, soft hardening and harden-
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ing; and they increase, remain almost constant and decrease, respectively. Note
that experiment from the biggest to the smallest amplitudes of excitation have
been performed. There is a high probability of slight changes in the clamps,
which affect the length of the beam and consequently the natural frequency of
the structure. However, there may be more of these disadvantages, for example
a change in temperature. Deeper discussion on results of experimental tests
has been submited to [78].

Figure 5.33: Summary of linear trends of damping coefficient (top) and natural
frequencies (bottom).
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Conclusions

Planar simply supported beams with an axial spring in one end as an adaptable
boundary condition to control nonlinear dynamic of the structure are consid-
ered in the thesis. In Chapter 2 three governing equations of motion were
derived for the structure considering axial, bending and shearing deformations
of the beam element; longitudinal, transverse and rotatory inertia; linear elas-
ticity of the material and the set of six boundary conditions having regard
to pivotal elastic element. Afterwards, the problem is expanded in Taylor se-
ries and the method of multiple time-scales is introduced, performed linear
analysis and determined the frequency response equation which describes free
as well as forced-damped nonlinear oscillations. The cubic nonlinearities are
solved up to the second order of approximation, what successfully captures
large amplitudes of vibrations for primary and higher order resonances. The
free dynamics of the system for the first seven bending modes was checked in
terms of hardening/softening dichotomy, wherein the key parameter is the ra-
tio of spring to beam tensile stiffnesses. Analytical investigations end with the
fully constructed frequency response curves of forced-damped structure for the
first three flexural modes.
In Chapter 3, as a support for cumbersome analytical calculations commer-

cial finite element software Abaqus_CAE® is used. At first the beam-spring
structure is modeled and then to confirm analytical calculations, the linear
modal analysis is performed. Three different methods were presented for test-
ing nonlinear dynamics of the system. To draw backbone curves of the nu-
merical model free oscillations of the system with an initial deformation and
a slight damping were used; approximately transforming a time history into
a frequency-amplitude arrangement the hardening/softening behaviour were
captured very well. A two transient in time types of simulation were used
to investigate nonlinear forced-damped vibrations. To build the full frequency
response curve an excitation was, gradually changed through increasing and de-
creasing frequency. Apart from the transitional state amplitudes in frequency
domain were recorded and for stronger nonlinearities or large amplitudes the so-
lution hysteresis was found. Additional solutions, unexplored by path-following
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method, in specific frequency intervals were studied by guessing an initial non-
linear modal shape. Parallel finite element computations complemented each
other.
After sophisticated studies on theoretical problem a physical prototype was

designed, manufactured and tested in Chapter 4. Presented setup is mounted
on slip table (vibration exciter) with changeable boundary conditions in the
axial direction. In the first stage, properties of the specimen and suspension
of the sliding support were tested. Next attention was paid to free oscillations
and corresponding structural damping which indeed is amplitude dependent.
Finally full experimental frequency response curves of kinematically excited
structure were drawn. Selected cases were compared with the numerical results
with identical hardening/softening behaviour, and very good agreement was
obtained.
Results of analytical calculations, numerical simulations and experimental

investigations are presented in Chapter 5. First, the natural frequencies of
beams are compared analytically and numerically for the first ten modes of
the structure with a good agreement, then influence of an axial spring on axial
beams displacement in the linear regime is highlighted. Successively nonlin-
ear free and forced-damped vibrations with the use of the nonlinear correction
coefficient, backbone curves and frequency response curves are analyzed the-
oretically up to the seventh bending mode. In the numerical simulations the
superharmonic flexural-flexural and axial-flexural resonances are detected. In
particular the latter interaction is novel in the knowledge of beam’s dynam-
ics. The experimental results are particularly useful in the investigation. They
thoroughly confirm a smooth change from softening to hardening by increasing
the stiffness of the spring, which was studied in [67–72,74–78] as well as is the
one of the main objectives of the thesis.

6.1 The advantages of presented studies
Analytical vs numerical and numerical vs experimental results are simultane-
ously compared between each other, and all three methods provide reliable
results. In both studied cases of simply supported beams T (non-slender) and
S (slender) have softening behaviour for the first bending mode. The elastic el-
ement, which is axially fixed to the beams tip, interferes only with longitudinal
mode of the linear regime without changing lateral linear frequency and asso-
ciated mode shape. Higher amplitudes of oscillation exit linear nature of the
structure and throughout geometrical nonlinearities and inertia terms link two
orthogonal directions of motion. This coupling was one of main motivations of
this work. Interaction of two modes (axial and transversal) becomes more and
more complex by analyzing different boundary conditions (κ) and higher order
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resonances (n).
All three methods for the primary resonance show compliance in the smooth

change from softening to hardening by changing the boundary conditions in
the longitudinal direction. The only suspected case is the experiment on S1,
where additional unclear external interaction appeared. When frequency of
excitation further move away from the first natural frequency, interactions be-
tween the first and second flexural-flexural modes are stimulated in numerical
simulations and experimental tests. Appropriately selected spring stiffness ks
and asymmetrical excitation of the system enabled three stable solutions paths
for a given frequency.
Investigating, with good success, higher order resonances a new phenomenon

of the internal transversal-axial resonance 2:1 was detected, which breaks mono-
tonic changes in nonlinear correction coefficient cb by singularities. In this crit-
ical case the structure is characterized by high vibration amplitudes in both
directions: longitudinal and transverse. Furthermore, occurrence of energy
transfer between those two modes is very interesting from practical point of
view as a paramount structural element for cutting-edge applications, such as
nonlinear vibration absorbers and nonlinear vibration energy harvesters among
others.
Finite element analysis shows additional phenomena, which are not included

in the analytical derivation. But, analytical considerations consist of cumber-
some calculations; require solvability conditions and integration of very complex
functions. After all the effort of deriving frequency response curves, it is easy
to examine the system for individual parameters e.g. κ, A/L, γ with little
expenditure of time. In numerical simulations it is easy to visualize the results,
but the computational time is very long for all of the presented methods for
nonlinear dynamics analysis, in particular the path-following method.
The setup presented in this work can be successfully upgraded for further in-

vestigations on boundary conditions-frequency response curves of the structure.
This requires an extension of the analytical model, in particular environmental
and boundary conditions.

6.2 Further developments
There are still a lot of challenges which need to be assessed in the future. They
are ordered from the most attractive:

• numerical, analytical and experimental study on the internal axial-transversal
resonance two to one;

• derivation analytical solutions of flexular-flexular internal resonances two
to one and three to one like in [105];
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• investigation on different configurations, including rotatory and trans-
latory inertia in boundary conditions as well as nonhomogeneous beam
properties along the beam length;

• development of multifrequency excitation;

• extension a beammodel to shearable, non-planar with the bending-bending-
twisting effects.
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