
UNIVERSITÀ POLITECNICA DELLE MARCHE, ANCONA, ITALIA

POLYTECHNIC UNIVERSITY OF MARCHE, ANCONA, ITALY

DOCTORAL THESIS

Basins of attraction and dynamical
integrity of nonlinear dynamical systems

in high dimensions

Author:
Nemanja ANDONOVSKI

Supervisor:
Prof. Stefano LENCI

Polytechnic University of
Marche, Ancona, Italy

Co-supervisor:
Prof. Ivana Kovačić
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Basins of attraction and dynamical integrity of nonlinear dynamical systems in
high dimensions

by Nemanja ANDONOVSKI

One of the consequences of rich dynamics in nonlinear systems is the multi-stability,
i.e. the coexistence of various stable states (attractors), which can have different ro-
bustness. Typical example of stable attractors, but very unsafe for practical applica-
tions, are those with riddled basins of attraction. To examine and eventually quantify
this sensitivity to initial conditions, we can study the shape, size and compactness
of basins. However, when the dimension of the dynamical system increases, it is no
longer sufficient to analyse arbitrary cross-sections to get the global overview of the
dynamics, and a full-dimensional basins have to be determined. Due to lack of analyt-
ical methods, numerical computations are required to discover basins. Those numer-
ical techniques applied to strongly nonlinear systems, with six or more state-space
variables - that are main goal of this PhD thesis - demand considerable amounts
of computing power, available only on High-Performance Computing platforms.
With the aim to minimize computing requirements, we developed a software to
adapt basin computations to small, affordable cluster computers, and with minor
modifications utilizable also on larger ones. Our approach is based on Simple Cell
Mapping method, modified to reduce the memory requirements, adjust integration
time and overcome some discretization drawbacks. The resource intensive parts of
computations are parallelized with hybrid OpenMP/MPI code, while less demand-
ing operations are kept serial, due to their inherit sequential nature. The modifica-
tions we advised, that address disadvantages of originally proposed method, and
the parallelization, are classified under common name - Not So Simple Cell Map-
ping (NSSCM). As intended, the program computes full six-dimensional basins of
attraction within reasonable time-frame, with the adequate accuracy to distinguish
compact parts of basins, but not to fully disclose fractal basin boundaries. Visual in-
spection of results can demonstrate how some basins that look robust in some cross-
sections may be very narrow or do not exist in other dimensions, directly altering
the robustness of corresponding attractors. Anyhow, the proper robustness analy-
sis must be performed to include entire state-space window. Robustness is quanti-
fied by dynamical integrity measures, that exploit previously determined basins by,
roughly speaking, computing the largest geometrical objects that can fit inside.

The whole development and computation approach, together with the results
in form of basins of attraction and dynamical integrity, are the topic of this thesis,
structured in a way to provide full insight into our research development. The first
Chapter introduces the High-Performance Computing (hardware and software plat-
forms, algorithm design methodology and overall efficiency), that is followed by the
second one which deals with the serial and parallel methods to compute basins of
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attraction, coronated with the main effort of our research - Not So Simple Cell Map-
ping. The third Chapter introduces the concepts and defines the dynamical integrity
measures, which closes theoretical part of thesis. Then, on the test system consist-
ing of three coupled Duffing oscillators, the computational efficiency and accuracy
of NSSCM approach is discussed and validated by comparison with more accurate,
but significantly slower Grid of Starts method.

Final chapters demonstrate applications of NSSCM and integrity analysis on two
examples: sympodial tree model with first-level branches; and rotating hub with
two pendulums. Dynamics of those strongly nonlinear systems is studied system-
atically to demonstrate why classical stability analysis is not sufficient to uncover
the properties of global behaviour. Integrity analysis and inspection of certain low-
dimensional cross-sections of full-dimensional basins showed the complex behavior
of those systems, which cannot be determined otherwise.

With the approach described in this thesis, and when sufficient computing re-
sources are available, one can compute dynamical integrity for an interval of rele-
vant system parameter(s) and get the most valuable representation of system safe-
ness - integrity erosion profiles.



ix

Acknowledgements
First of all, I thank my parents Svetlana and Dragan, for their patience and support.
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Chapter 1

INTRODUCTION

For engineering applications where change of some initial conditions may occur dur-
ing the exploitation period (due to disturbances like noise, shocks, etc.), it is partic-
ularly important to determine the robustness of the steady state behaviour, which
is governed by the size and shape of the regions where the basins of attraction (in
further text simply basins) are compact. Quantitatively, how much basins are robust
can be detected with several dynamical integrity measures [1–5].

The classical stability analysis methods [6–8] allow only to determine the local be-
haviour of the system dynamics, results that the basins are the key tool to determine
global behaviour. Due to their complexity, the basins and derived integrity measures
can be computed only numerically [9], in most cases. In this respect, trends are to de-
termine them for strongly nonlinear systems with, at least, six state-space variables
(dimensions). The increased dimensionality causes that the numerical computations
become highly demanding for computer resources [9–12]. Thus, the contemporary
research efforts are focused on developing methods for the exploitation of High Per-
formance Computing (HPC) resources, as conventional computers cannot cope with
such large-scale computing tasks.

For certain integrity measures (e.g. the Local Integrity Measure [4]), the fractal
parts of the basins [13] can be overlooked, because the only relevant property is the
distance from an attractor to the nearest point on the basin boundary. This is a con-
sequence of the fact that in these regions the dynamics are practically unpredictable
and thus they do not contribute to the robustness of the steady-state attractor (i.e.,
they do not belong to the safe basin, which is the compact subset of the basin that can
be safely used in practical applications). Therefore, for basins computation oriented
toward dynamical integrity analysis, there is no need to determine rigorously these
regions of the phase-space. Under such conditions, it is possible to consider the full-
dimensional basin of attraction computations with affordable HPC platforms, with-
out resorting to expensive hardware. The accuracy of the computed results is rough,
but can give meaningful information on the general structure of the volume occu-
pied by the relevant basins. The computation and analysis of the full-dimensional
basins is an aspect of nonlinear systems that has not yet been sufficiently developed.
The value of basins for better understanding of dynamics is recognized and their
analysis constitutes the main goal of our research.

Therefore, the first part of work presented in this thesis is dedicated to develop a
software that can be used by scientists and engineers who have access to affordable
HPC solutions and need to examine basins of attraction. It is envisioned to com-
pute crude approximation of basins and to prepare the data for numerical analysis
and visualization. The resulting approach is developed by the systematic examina-
tion of various numerical methods for the computation of full-dimensional basins.
It offers balance between computing requirements and accuracy of basins, at low
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development costs - which is a distinguished feature of the proposed approach and
the second goal of the work.

Visual inspection of results can demonstrate how some basins that look robust
in some cross-sections may be very narrow or not exist in other dimensions, di-
rectly altering the robustness of the corresponding attractors. Anyhow, the proper
robustness analysis must be performed to include the entire considered part of state-
space. Numerical measures of dynamical integrity (that exploit previously deter-
mined basins) quantify the robustness by computing the largest compact geometri-
cal objects that can fit into the compact parts of basins. Those objects are defined by
the distance metrics [14] used to measure the distance between discretization units
(cells) and basin boundaries. To reduce computational efforts, we employ chess-
board (Chebyshev) distance to get the edge length of hyper-cubes, instead of much
more resource demanding computation of hyper-spheres with Euclidean distance -
which is the last goal we intend to discuss in this thesis. In cases when sufficient
computing resources are available, with the approach described in this thesis one
can compute a dynamical integrity measure for the interval of system parameter(s)
values and get the most valuable representation of system safeness - integrity ero-
sion profiles.

The reader is invited to acknowledge this thesis as a summary of our work pre-
viously published in [15], [16] and [17], expanded with some additional content to
provide full insight to our research and analysis process. The chapters are struc-
tured in such way to explain all theoretical requirements to understand and apply
the methods used.

Foremost, the results presented herein are based on the computations on a large
scale, and to understand the computing process, in Chapter 2 the reader is intro-
duced to the concepts of High-Performance computing. Due to the variety of HPC
platforms and basin computation methods, each with distinct advantages and draw-
backs, we analyse the parallel computing architectures, their performance and pro-
gram design methodology. Also, the programming models for two major platforms,
clusters and computational graphic cards (GPU) are presented briefly.

In Chapter 3, we debate global analysis by the compatibility of basin computa-
tion methods with various HPC platforms. Upon establishing the necessary foun-
dations, we proceed to the main part of our research - computation of full, six-
dimensional basins of attraction. As there is never-ending discrepancy between ac-
curacy and computational efficiency, we examined how to get useful results within
reasonable time-frame. Considering the computational platforms that were avail-
able to us, we discuss the optimal method to compute basins on small clusters - The
Not So Simple Cell Mapping (NSSCM). Moreover, it is described and demonstrated
how NSSCM can be used also on larger clusters, by introducing the minor modifica-
tions.

Some applications of basins for dynamical integrity analysis is presented in the
Chapter 4, where we define integrity measures and their computation process.

Within the Chapter 5, the computational efficiency and accuracy of NSSCM ap-
proach is discussed and validated. The NSSCM results are compared to those ob-
tained with the method of Grid of Starts, which is more accurate but significantly
slower method. The confrontation of results is performed on the test system consist-
ing of three coupled Duffing oscillators [18].

Chapter 6 with certain examples demonstrates the applications of NSSCM and
integrity analysis on two systems: a sympodial tree model with first-level branches
[19]; and a rotating hub with two pendula [20]. Dynamics of those strongly nonlin-
ear systems is studied systematically to demonstrate why classical stability analysis
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is not sufficient to uncover the properties of their global behaviour. Integrity analysis
and inspection of certain low-dimensional cross-sections of full-dimensional basins
showed the complex behavior of those systems, which cannot be determined other-
wise.

Final remarks, short summary of our work and potential future developments
are discussed in the closing Chapter 7.
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Chapter 2

HIGH-PERFORMANCE
COMPUTING

In the recent decade, very powerful computing platforms became accessible to the
scientific and engineering community. The complex problems that do not have
closed form solutions, can now be directly solved numerically, by sheer force of
super-computers. However, it is not an easy task to handle such power. Basin
computations suffer from the dimensionality curse, which is an exponential growth
of computational time caused by the increase of the problem dimensionality. This
Chapter 2 is therefore dedicated to provide understanding of HPC platforms and
programming models, which is absolutely necessary to understand the extent of
computing problems caused by dimensionality, and how to face them. Without
knowledge described herein, anybody who is not specifically educated in HPC pro-
gramming would certainly be caught into one of the numerous traps of parallel com-
puting.

2.1 High-Performance platforms

A general idea to speed-up the computations is to connect multiple computing enti-
ties into a network that acts as a single system, which can run one or more programs
that are divided into numerous parallel tasks. This concept and its various imple-
mentations are usually referred as multiprocessors. In most cases, this type of mas-
sive parallelization satisfies the requirements necessary to compute most problems
encountered in scientific and engineering applications. The parallelization aims to
speed-up the serial execution by a dividing either instructions or data between con-
current processing units.

To efficiently carry out parallelization process of an algorithm, it is necessary to
determine what type of parallelization can be achieved. Task parallelism [21, 22] oc-
curs in cases where a sequence of instructions can be divided into multiple, parallel
and independent operations - each task may run same or different code over same
or different data. A counterpart situation, the data intensive computations are those
where large number of data elements have to be processed in the same way [21, 22]
- one sequence of instruction is executed over multiple parallel data elements.

Another analogous way to look at parallelism is through logical concepts of
stream concurrency defined in Flynn’s taxonomy [23–25], which coincide with mul-
tiprocessor organization. Namely, a program is a sequence of commands/instruc-
tions executed by processors - the instruction stream. The flow of data that is being
manipulated by commands from an instruction stream is called a data stream. The
execution model of the sequential computer is then referred as Single Instruction,
Single Data stream (SISD), with the program flow like in Fig. 2.1a. In this manner,
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the data parallelism is referred as Single Instruction, Multiple Data streams (SIMD),
schematically presented in Fig. 2.1b. The Multiple Instruction, Single Data stream
(MISD) model (Fig. 2.1c) is rarely used in practice, only for some special type of
problems, like error control [23–25]. Although the MISD is an “opposite" concept
to SIMD, it is not the equivalent of task parallelism. At various degrees, majority of
actual programs and computation problems are not strictly data or task parallel. The
problems described with Multiple Instruction, Multiple Data streams (MIMD) often
combine parallelization on both data and instruction levels [26], illustrated in Fig.
2.1d. Certain problems, such as Fast Fourier transform or some sorting procedures,
also benefit when a program can switch between data and task parallel execution
models during runtime.

SISD MISD

SIMD MIMD

Single

Instruction

Stream

Multiple

Instruction

Stream

Single

Data

Stream

Multiple

Data

Stream

FIGURE 2.1: Flynn’s Taxonomy.

The hardware implementations of multiprocessors, which can efficiently execute
data intensive computations are general purpose graphics cards. Multi-purpose plat-
forms called clusters are much more versatile and can handle well the task parallel
and MIMD execution models, and to a certain degree also the SIMD computations.

2.1.1 Cluster computers

Clusters are computers formed from a large number of closely centralized nodes
connected with local high-speed interconnections. A node is an autonomous part
of a cluster, which can be viewed as a stand-alone computer consisting of at least
one CPU and its private Random Access Memory (RAM). Nodes can have multiple
cores, CPUs and even a GPU attached to it. The CPUs of one node cannot access to
memory of another node directly - data have to be exchanged through proper com-
munication channels. This memory model is called distributed, therefore clusters
are distributed memory computers/systems. Modern clusters often have multiple cores,
within each node, which share common local memory. Cluster implementations
with multi-core nodes are highly versatile computing platforms and their number
and computing power increase each year. The list of currently most powerful clus-
ters is available in [27].
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2.1.2 General purpose graphic cards

Graphical image processing is a very data intensive operation [22, 28]. Accelera-
tor graphic coprocessors are being intensively used to aid CPU in visualizing the
graphic content. When CPU encounters a graphically intensive part of the program,
it forwards data and instructions to GPU that have an electronic circuitry optimized
for efficient image processing. Price for being specialized for certain tasks is that
GPU is highly inflexible and unable to function on its own.

A special branch are Computational GPUs (or General Purpose GPUs) that uti-
lize a high number of simple cores (stream processors, shaders) which are able to
conduct general computations, while retaining high performance in data intensive
applications [28, 29]. Graphical coprocessors are fabricated on a separate (graphic)
card, supplied with high-performance RAM due to high demand for data.

In this thesis, when mentioning GPU, we will refer to the general purpose graph-
ical coprocessor cards.

2.1.3 HPC platforms at our disposal

For our research, we had two HPC platforms available for exploitation. The first,
smaller one is a part of University cluster with 16 single-core nodes (Intel R© Broad-
well, 2.4 GHz) with 2 GB RAM each. It was mainly used during a development
period, as the computations with it is outside reasonable time-frame for systems
where transient behaviour is either long or have high amplitudes.

When the software was completed, we had submitted a project proposal to get
the access to CINECA [30] resources. The proposal was approved and the basins and
integrity measures presented in this thesis are computed under the ISCRA C-type
project IsC66 DIAHIDD. During the project life-time, we had access to the MAR-
CONI A2 [31] cluster, composed of 3600 nodes, each with one Intel R© Xeon Phi7250
(KnightLandings), 1.4 GHz processor (68 cores) and 96 GB of RAM.

For brevity, in the following text, the University cluster will be referred as CL-U
and CINECA one as CL-C.

2.1.4 Performance of multiprocessors

A principal matter for high-power computing systems is how well extensive tasks
can be accomplished. However, for high performance, it is not enough to have par-
allelization on massive scale [21, 24, 25, 28, 29, 32–34]. The utilization of resources
depends on compatibility of algorithm with the hardware platform, implementa-
tion of algorithm, scheduling of tasks, rate of data transfers, etc. Relevant perfor-
mance measures and most important factors that can downgrade performance are
discussed in the following section. In cases of downgraded performance, the reader
is referred to literature to get more precise information on how to detect and resolve
particular issues.

2.1.4.1 CPU and GPU performance

When comparing the performance of processing units, usually their speed is a rele-
vant factor. Unfortunately, the term speed of a processor does not have a determi-
nate meaning. It may refer to several measures that quantify some of the processor
characteristics. The reason for this is the rich complexity of micro-architectures that
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differ even between processors of the same manufacturer and family. Current tech-
nologies of manufacturing processors with multiple cores, additionally complicates
comparison of different processors.

The number of instructions per second [22, 24] is one of the measures used, but
for processors with complex instruction set it is not an accurate measurement. In-
structions have unequal size, resulting in variable execution time for each instruc-
tion. A more common and precise speed measure is the number of system state
updates per second, namely clock speed or frequency (GHz) [22, 24]. A clock speed
also does not give definite comparison quantities, since some processors may finish
certain actions in fewer clock cycles than others. Thus, even equal clock speeds of
different processors do not guaranty that they will do an equal amount of work.

Benchmark programs are used to get somewhat accurate comparison of perfor-
mances for various systems or components. They may test performance of overall
systems or a single component in various workload situations. In this way, pro-
cessors can be compared on how well they perform at certain task. For scientific
computing where data is mainly floating-point numbers, a measure how well sys-
tem (or single component) perform is represented through floating-point operations
per second (FLOPS) [21, 22, 24].

Graphical coprocessors are highly specialized hardware and their high perfor-
mance limits the flexibility. Metrics for GPU performance are same as for processors,
but direct comparison of processors versus general-purpose GPUs is vague because
each is designed to be efficient at different type of tasks [22, 29].

2.1.4.2 Data transfer performance

Drops of overall computer performance is often caused by data transfer bottlenecks,
where data is not supplied fast enough or in low quantities required for high percent
of utilization of computing resources. Performance of data transfer is governed by
two factors, latency and channel width [24]. Latency is time in seconds that takes
to access the data. Width is the amount of information that can be transferred at
once. Combined, is a measure called bandwidth that quantifies transfer capacity by
the amount of data that can be transferred per unit of time.

2.1.5 Performance issues

Parallelization consequences, hardware restrictions and programming approaches
influence performance, correctness of results and program propagation. Beside gen-
eral cases, certain issues manifest only in operations with local memory, others dur-
ing remote data communication.

2.1.5.1 Overheads

Overhead [22, 28, 33] is a common name for conditions that avert a processor from
actual computations. Algorithmic overheads or excess computations are parts of the
program that are difficult to or cannot be parallelized at all. In those cases, a par-
allel algorithm can be either much more complex than sequential or it must be run
sequentially on only one processor. Communication overhead (interprocess inter-
action) is time that processors spend on data transfer instead of computations. It
includes reading, writing and waiting for data.
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Idling is a state of processing elements at which no useful computations are done.
Reasons for idle time of processors might be synchronization requirements, over-
heads or load imbalance.

2.1.5.2 Bottlenecks

A situation where a processor efficiency downgrades as a result of insufficient mem-
ory bandwidth is called memory wall [22]. Computations where performance is con-
strained by transfer rates of memory are referred as memory bound [33]. In multipro-
cessor systems, bottlenecks [21, 24] can also be caused by poor load balance, where
the whole system waits idle for one processor to finish computations.

2.1.5.3 Dependencies

Often for certain computations to advance, data from previous iterations is required.
Such cases are called data dependent [21]. Parallelization is interrupted by the task
that must wait for data to continue. Other types of dependencies exist, but are not
significant from scientific programmer perspective.

2.1.5.4 Result preservation

In parallel program, order of execution is changed in comparison to sequential one
[34]. Some operations that are sequentially executed one after another, now may
be executed parallelly. Order of execution can cause change of accuracy on some
systems due to number truncation or rounding off on different places in program.
To avoid such errors, it is required to check if results are consistent during change in
order of execution.

2.1.5.5 Synchronization errors

A very common type of errors manifest with shared memory when threads are not
time synchronized [34]. A program executes correctly, since there is no actual bug,
but the results may be incorrect. Timing of threads impacts if those errors happen or
not, even in cases when synchronization is not explicitly imposed.

The first type of incorrect results may occur when one thread starts to work on
data from another thread that have not yet finished with computations. A barrier
can be instructed to ensure that the thread will wait for another one to finish.

Result inconsistency can also happen when a thread is scheduled to work on the
part of data already processed by another thread. To avoid this issue, a programmer
can explicitly protect access to data of another thread.

Race condition is a conflicting state when multiple threads try to simultaneously
update the same variable. Without access synchronization, a variable update may
not be as it is intended. To resolve race conditions, reading and writing to a shared
variable should be enclosed in a critical section that permits only one thread at time
to manipulate data. Critical sections are implemented as atomic instructions. One
atomic instruction is a sequence of instructions that manipulate the shared vari-
able. At any given time, only one atomic instruction is allowed to be executed by
a whole computer system, and it must be executed entirely before any other instruc-
tion (breaking the parallel execution).
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2.1.5.6 Variable scope issues

Certain variables may be declared to be shared between all threads or private to
each thread. If declared incorrectly, the shared variable may not be updated when
necessary and private may be updated by a wrong thread [34].

2.1.5.7 Program propagation impediments

In deadlock situations, two or more processes keep waiting for a resource from each
other and none of them can make any progress [21, 28, 29]. The resource in those
cases can be a message send/receive operation, synchronization instructions or ac-
cess to remote device or memory. Conditions under which deadlocks happen are
when the resource is mutually exclusive (only one process may use it), when process
that use the resource requests another resource (hold and wait condition), in cases
when the resource cannot be released without a process action (no pre-emption con-
dition) and when multiple processes in a circular chain wait a message from another
one.

Livelocks are similar situations, where two or more processes fail to progress be-
cause they indefinitely keep responding to resource requests, without actually grant-
ing access to the resources [22, 35].

The case when one process sends a message to another process that continuously
denies it or when the process constantly tests if a condition is satisfied [35], is called
busy waiting. The first process keeps resending the message or checking the condi-
tion state and cannot continue with useful work.

In cases where processes are scheduled by another entity, starved process [22, 35]
is one that is ready to continue, but the scheduler ignores it.

2.2 Parallel program design

In multi-core environments there is no certainty that some parallel operations will
be executed at exactly same time or in the exactly specified order without losing
parallelization or introducing idle waiting time (explicit barriers). For example, in
a parallel program, one core might supply certain data to another core too late or
too early. The program code does not report any error (since there is none), yet it
produces an incorrect output due to the loss of data coherency or processors stay
unnecessary idle. Order of thread execution is scheduled by the operating system,
and it can be different on each runtime. Consequently, a parallel program does not
have the same order of instructions on each runtime, making the de-bugging process
difficult [21, 22, 28, 29, 32]. Step-by-step debugging and data tracing is obviously
not a feasible solution for checking errors and flow of parallel programs. There-
fore, significantly more attention must be invested in a methodical design to prevent
parallelization issues, mentioned in Section 2.1.5. The design methodology will be
described in order to minimize parallel program flaws and bugs due to a common
bad practice during programming while maintaining decent level of simplicity and
efficiency [29, 32]. A more detailed approach to design of parallel algorithms may
be found in [21, 25, 28].
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2.2.1 Design methodology

To get from a problem specification to an effective parallel algorithm, it is crucially
important to rely on design methodology and not on pure creativity of a program-
mer. Anyway, creativity is of great importance even when following a methodi-
cal approach. It allows to increase the range of the options considered, distinguish
bad alternatives from good and to minimize backtracking from bad choices. Design
flaws easily compromise parallel program performance. As most of (parallelizable)
problems can be parallelized in multiple ways, the methodical design helps to char-
acterize most favourable solution [21, 28, 29, 32, 33].

2.2.1.1 Partitioning - problem decomposition

The first step before starting to design a parallel program, is to determine if a prob-
lem is inherently parallel by its nature or if it may be parallelized [21, 32, 33]. Par-
titioning serve to recognize parallelization opportunities in the problem. Data and
operations are decomposed into smaller (independent when possible) tasks. If de-
composed tasks are not independent, they have to communicate data according to
dependencies.

Domain decomposition is a technique where the data set of the problem is divided
into independent pieces. Next step is to associate tasks to the partitioned data set. A
complementary technique, the functional decomposition, focuses on dividing the com-
putations into smaller disjoint tasks. In case when the decomposed tasks correspond
to the partitioned data, the decomposition is complete. By nature of many problems,
this is not possible. In those cases, the replication of data or task set (creating a pri-
vate copy of "problematic" entity for each parallel process) must be considered. Even
when it is not necessary, it might be worth to replicate data or instructions to reduce
communication.

Before proceeding to the next steps of the parallelization, consult the following
guidelines to ensure that there are no obvious design flaws:

1. to increase flexibility in the following design stages, there should be at least
one order of magnitude more tasks than processors in the system;

2. consider both decomposition techniques and identify alternative options;

3. scalability can be compromised with larger problems if there are redundant
computations or data input/output after partitioning;

4. it is hard to allocate the equal amount of load to each processor if tasks are not
comparable in size;

5. to properly scale, with the increase in a problem size, the number of task
should grow, rather than size of an individual task.

2.2.1.2 Communication design

A flow of data is specified in the communication stage [32] of design. In general,
tasks can execute parallelly, but it is rare that they are independent. Proper commu-
nication structures are required to efficiently exchange data between parallel tasks.
A goal of the communication design process is to allow efficient parallel execution,
by acknowledging what communication channels and operations are required and
eliminating those which are not necessary. Communication channels for parallel al-
gorithms obtained by functional decomposition correspond to the data flow between
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tasks. For domain decomposed algorithms, the data flow is not always straightfor-
ward, since some operations might require data from several tasks.

Local communication structures are used when a task communicate only with
a small number of neighbouring tasks. Global communication protocols are more
efficient when many tasks communicate with each other. Communication networks
can be structured, where tasks form a regular composition and unstructured where
the task are arbitrarily arranged. If an identity of communication pairs varies during
the program execution, communication is dynamic and for unchangeable identities,
it is static. In synchronous communication information exchange is coordinated,
but for asynchronous communication structures, data is transferred with no mutual
cooperation.

The following check-list is proposed to avoid overheads and scalability issues
arising from an inefficient communication layout:

1. for a scalable algorithm, all tasks should perform a similar number of commu-
nication operations;

2. when possible, arrange the tasks so that global communication can be encap-
sulated in a local communication structure;

3. evaluate if communication operations are able to proceed parallelly;

4. evaluate if tasks can execute parallely and if communication prevents any of
the tasks from proceeding.

2.2.1.3 Agglomeration

One of the principal requisites for an efficient execution is a level of matching be-
tween hardware and software. In an agglomeration stage [32] the algorithm from
previous phases is adapted to be homologous to the computer system used for com-
putation. It is known that it is useful to combine (agglomerate) a large number of
small tasks into fewer task larger in size or to replicate either data or computation.
Reduced number of tasks or replication can substantially reduce communication
overheads.

A revision of parallel algorithm attained by a decomposition and communication
design phase can be optimized by the following agglomeration procedure:

1. reduce communication cost by increasing task locality (ratio of remote/local
memory access);

2. verify that benefits outweigh the costs of replication or limit scalability;

3. a task created by agglomeration should have similar communication costs as a
single smaller task;

4. evaluate if an agglomerated algorithm with less parallel opportunities execute
more efficiently than a highly parallel algorithm with greater communication
overheads;

5. check if granularity (size of tasks) can be increased even further, since fewer
large task are often simpler and less costly;

6. evaluate modification costs of parallelization and strive to increase possibilities
of code reuse.
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2.2.1.4 Mapping

The final stage of the design is to decide how to map task execution on processors
[32]. Since there is no universal mechanism to assign a set of tasks and required
communications to certain processors, two strategies are used to minimize execu-
tion time. The first option is to map tasks to different processors in order to increase
a parallelization level. Other option that increase locality, is to map tasks that com-
municate often to the same processor/node. Those strategies are conflicting and
a trade-off must be made to achieve optimal performance. A favoured strategy is
problem specific and use of task-scheduling or load balancing algorithms can be
used to dynamically manage task execution.

2.2.2 Design evaluation

Before starting to write the actual code, a parallel design should be briefly evalu-
ated according to performance analysis criteria discussed in [32, 33]. For example,
some simple performance analysis should be conducted to verify that the parallel
algorithm meets performance requirements and that is the best choice among cer-
tain alternatives. Also, to be considered are the economic costs of implementing and
possibilities for future code reuse or integration into a larger system.

2.2.3 Software solutions

The packages presented herein are not only solutions available on the market, but
are widely used and supported by user community and developers. For larger jobs
it might be useful also to get familiar with load balancing, task scheduling and man-
agement [36]. For other nonlinear phenomena, not considered in this thesis, e.g.
Computational Fluid Dynamics, there are already well-developed software and cus-
tomizable packages. We consider solutions for HPC programming in C/C++ and
Fortran for implementation of the basin of attraction and integrity measure compu-
tations. Other parts of a global analysis and visualization of results is done with
mathematical environments.

2.2.3.1 OpenMP

OpenMP (Open Multi-Processing) [28, 29, 37] is an API that supports programming
with shared memory in C, C++ and Fortran languages. It offers an intuitive, multi-
threading method of parallelization, where one main thread (master) forks when
a parallelizable part of a code is encountered. The work is then divided among a
number of secondary (slave) threads. There can also be multiple levels of forking.
Threads of same level execute same code over a designated portion of total data.
It is usually used in combination with other parallel software when is possible to
parallelize work inside nodes.

2.2.3.2 Message Passing Interface

MPI [28, 29, 38] is a standard that defines syntax and semantics of library routines
used for writing message-passing programs in C, C++ and Fortran. It operates on
a variety of parallel architectures, but is major standard for programming of dis-
tributed memory systems, such as clusters. A message passing with MPI is not so
intuitive approach to parallel programming and requires more attention than multi-
threading approach with OpenMP.
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Parallelization is achieved by creating one master and numerous slave tasks
(ranks) at program runtime. Each rank runs own instance of a MPI program. Within
the code, it is specified what parts are executed or skipped by certain ranks. In this
way, each rank has own instance of data structures that are not shared with other
ranks (although the structures are declared under the same name). To access some
remote data, the rank have to explicitly request it.

The core of MPI is based on communication by passing messages between ranks.
The simplest form of information exchange is by send/receive operations. One rank
would request some data, other rank has to acknowledge this request and send re-
quired data back. The first rank then has to appropriately receive the message con-
taining the requested information.

Beside point-to-point communications as send/receive, there are collective com-
munication operations, where all (chosen) ranks participate. When large number
of ranks have to exchange data, it is much more efficient to use collective message
passing.

Synchronization of execution can be explicitly imposed by instructing barriers
or implicitly by using blocking communication. Neither rank is allowed to pro-
ceed until all ranks execute the explicit barrier instruction. Blocking communication
prevents receiving rank to continue until the message is received. Asynchronous
communication can be achieved by using a non-blocking message passing or by us-
ing probe instructions. With probe instructions, ranks check if there is a pending
message. When the message is there, a probing rank receives it, when not, rank
continues with execution.

A message exchange is done within a communicator structure that defines com-
munication privileges. It is used to specify what ranks will participate in certain
communication operations.

A technique often used, also by us, is hybrid programming, where MPI ranks are
used for inter-node parallelization and OpenMP threads for intra-node forking.

2.2.3.3 CUDA and OpenCL

Compute Unified Device Architecture (CUDA) [28, 29, 39] is programming envi-
ronment developed to efficiently map a data parallel task to a GPU structure. The
GPU program is separated in parts run by CPU (host) and data intensive functions
(kernels) that are executed on GPU (device).

Beside memory allocation that hold transfer of data between CPU and GPU
memories, a programmer has to specify how threads are organized inside the ker-
nel. The kernel grid is organized in two levels. The top level is organization of thread
blocks within the grid. On the second level threads are arranged inside a block. Each
block of the same grid has the same number and structure of threads. Latest GPUs
support three-dimensional organization of threads within the block. Execution con-
figuration of the kernel is further divided into smaller units – wraps, which represent
the collection of threads which executes at once. A mechanism called thread sched-
uler decided which wrap will be executed. This execution model efficiently exploits
memory and core organization of GPU even in cases when a programmer poorly
organize the kernel grid and memory allocation. Kernel execution requires large
amounts of data and access to it is very time-expensive - a programmer should or-
ganize data so that neighbouring threads in wrap use equally organized data in
memory (consecutive threads should use consecutive memory locations).

Open Computing Language (OpenCL) [28, 29, 40] is cross-platform program-
ming environment that provide standardized support for computers with multiple
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processors, GPUs and other computing units. It provides methods to efficiently as-
sign tasks and exploit all the resources of heterogeneous computing platforms. An
execution model of OpenCL programs are slightly more complex, but very similar
to CUDA.

2.2.3.4 Mathematical and visualization software

Parts of a global analysis with low computing load are performed with software
packages like Wolfram Mathematica [41] and MathWorks Matlab R© [42]. It is note-
worthy to mention that Matlab offers possibility to massively parallelize certain
functions with GPU. The low-dimensional cross-sections (2D/3D) can be visualized
in, for example, ParaView [43] or similar programs for data analysis and presenta-
tion with parallel capabilities.
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Chapter 3

GLOBAL ANALYSIS

Complex behaviour of nonlinear systems can occur even when small nonlinearities
are introduced or exist in the system. Analyses of those motions can be very difficult
since the mathematical tools that provide closed form solutions for nonlinear sys-
tems either do not exist, are valid only for specific families of systems or expressed
with special functions [44, 45]. In higher dimensions, the analytical solutions can be
obtained in even less cases, directly supporting the development of various numer-
ical methods to compute the solutions.

The basins of attraction (required for dynamical integrity calculation) also have
to be detected numerically in the majority of cases. A process to discover them con-
sists of solving the systems of first-order differential equations for a large number
of initial conditions. Due to a dimensionality curse, we were forced to search for
the fastest computational way that is compatible with the computing platforms that
were at our disposal. For that purpose, we have analysed basin computation meth-
ods already developed in the past. Due to numerous obstructions associated with
HPC platforms, we discuss the principal method we used for computations, how to
overcome some of its innate drawbacks and the parallelization of resource demand-
ing parts according to the methodology described in the previous Chapter 2.

3.1 Analysis of dynamical systems

Majority of natural systems are in fact nonlinear [6, 7], but an initial clue of overall
dynamics can be sometimes obtained by analyzing the corresponding linear system.
With analytical methods available for linear systems, it is fairly easy (from compu-
tational point of view) to determine stable and unstable behaviour of the solution.
However, the similarities between linear and nonlinear system depend on the mag-
nitude of nonlinearities, where higher nonlinearity produce more diverse collection
of behaviours, such as quasi-periodicity, deterministic chaos, solitons, fractals, rid-
dled basins, pattern formation, etc. In order to determine which of those diverse
behaviors are present in the system, a nonlinear analysis combines an analytical ap-
proximation, numerical calculations and experimental data. Another, important task
is observation of system behavior during the change of some system parameters,
since in many cases it can lead to the change in topology of the system (qualitative
change).

Moreover, nonlinear systems may have arbitrary number of steady motions,
some of which are stable and some of which are unstable. If trajectories converge
towards a certain steady state, it is called attractor, while it is called a repellor if
trajectories diverge away from it. A basin of an attractor consists of the all initial
conditions that converge to the associated attractor forward in time. The goal of a
global analysis is to get a global behaviour of system, expressed in terms of at-
tractors and their respective basins. However, this is not a self-sufficient process -
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it is accompanied with analysis of time series, frequency responses and parameter
variation (bifurcations) [11].

Nonlinear systems can be represented mathematically through systems of par-
tial or ordinary differential equations. For global analysis, the most interesting are
dynamical systems which can be reduced to a system of differential equations of the
first order [7]. The most important family are systems of second order differential
equations, ensuing from the Newton’s second law of motion, which can easily be
reduced to the first order systems. The dimension of the resulting system (not to be
confused with mechanical degrees of freedom) is equal to the number of first order
differential equations. Each dimension in this case corresponds either to the coordi-
nate or velocity that appears in the system. This representation gives possibility to
use well developed numerical techniques [46] to integrate the equations. Solutions
then can be analysed as trajectories in multi-dimensional state space.

Although the behaviour may be complex, numerical methods are able to com-
pute fairly accurate results [9]. Difficulty comes with the increase in system dimen-
sion, as a number of required computations increases exponentially. Therefore, to
numerically analyse dynamical systems with large dimension, it is necessary to re-
sort on powerful computational computer systems, which heavily really on mass
parallelization of computation. Currently, a multidimensional global analysis is fo-
cused on building basins in more than four dimensions. Six-dimensional systems
are examined contemporary while eight-dimensional ones present a challenge for
both computation and visualization.

3.1.1 Poincaré sections and maps

The analysis of a n-dimensional continuous system can be simplified by reducing
it to a (n − 1)-dimensional discrete one[8, 47]. By taking an (n − 1)-dimensional
surface (Poincaré section), traverse to the flow, the transformation rule, obtained by
following trajectories from the current intersection to the subsequent one, is called
a Poincaré map. In the associated discrete system, the properties of orbits are pre-
served and the dynamics of the original system can be analysed in lower-dimensional
state-space.

Apart from some specific cases (for example the so called stroboscopic Poincaré
map for periodic systems, see Fig. 3.1b), there is no strict procedure to choose the
section and create a Poincaré map. In a general case, the one-sided Poincaré sec-
tion (all intersection signs are equal) is favored wiht a respect to a two-sided one. A
Poincaré section can be taken at different locations, consequently, different Poincaré
maps are constructed for the considered system. However, a differentiable transfor-
mation from one Poincaré map to another usually exists, and the maps on the differ-
ent sections exhibit the same qualitative dynamics (number and stability of steady
states), because these are properties of the systems and do not depend on how we
analyze them [8, 47].

Figure 3.1a shows how a Poincaré sections can be placed for autonomous sys-
tems with a periodic orbit. Maps constructed in this way are also referred to as
return maps. For a non-autonomous system where the period of an excitation term
is known, the stroboscopic map is obtained by taking the values of state variables at
subsequent periods T, like in Figure 3.1b.
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a)

Poincaré section

z

x

y

b)

Stroboscopic Poincaré section

T 2T 3T

t

x

y

FIGURE 3.1: Poincaré sections for a) return map and b) stroboscopic
map.
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3.1.2 Classification of attractors and basin boundaries

Properties of fixed points are very well illustrated in literature and well know to en-
gineers, therefore they are not discussed herein. In nonlinear systems, especially the
driven ones, other type of steady state solutions also appear quite often - periodic,
quasi-periodic and strange/chaotic. This happens in the systems we have examined
and thus, they will be briefly presented (for rigorous definitions, the reader is re-
ferred to [6, 8, 47]). For the multi-stable systems, it is also important to examine the
nature of boundaries that separate basins of attraction.

3.1.2.1 Periodic attractor (limit cycle)

The closed orbit of a flow y(t) = f(xinitial , t) that passes through the same point
x0 in state-space on each successive time period T, so that f (x0, t) = f (x0, t + T)
and f (x0, t) 6= f (x0, t + T) for 0 < t < T, is a periodic orbit of period T. When
there are no nearby periodic solutions, the particular periodic orbit is isolated, and
if trajectories approach it forward in time, it is an attracting limit cycle (periodic
attractor). Those correspond to a fixed point of a Poincaré map. Periodic solutions
can also return to the same point after n multiple of driving term TF for periodically
excited systems, namely T = nTF. Then the corresponding Poincaré map returns
to the same point after n iterations, and the limit cycle is referred to as n-periodic
limit cycle. In Fig. 3.2a a 3-period limit cycle is plotted for illustrative purposes. The
(arbitrary) location of the Poincaré section is shown in Fig. 3.2b, and the resulting
map (the intersection of the attractor trajectory with the Poincaré section) is plotted
in Fig. 3.2c.
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FIGURE 3.2: Periodic attractor (of period three): a) trajectory, b) lo-
cation of Poincaré section and c) attractor intersection with Poincaré

section.

3.1.2.2 Quasi-periodic attractors

Orbits that are characterized by at least two incommensurate frequencies (ωi/ωj
is irrational) and are periodic separately for each one frequency are named quasi-
periodic [6, 47]. The trajectory is often described by y(t) = f(x0, ω1t, ..., ωnt), where
m1ω1 + ... + mnωn = 0 only when all mi = 0, and mi are integers. Then, the trajecto-
ries lie on the surface of a hyper-torus and never repeat to themselves due to aperi-
odicity. The example of quasi-periodic trajectory in Fig. 3.3a intersects the Poincaré
section located in the state-space as in Fig. 3.3b, providing the closed curve reported
in Fig. 3.3c). The initial points on this curve do not return to themselves.
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FIGURE 3.3: Quasi-periodic attractor: a) trajectory torus, b) location
of Poincaré section and c) torus intersection with Poincaré section.

3.1.2.3 Strange and chaotic attractors

The attractors with a fractal (non-integer) dimension in state-space are called strange
[6, 47]. They are mostly associated with chaotic behaviour, which is not always the
case. The chaotic behavior is actually a property of a collection of trajectories, char-
acterised with divergence of nearby trajectories and so-called sensitivity to initial
conditions. Without rigorous definitions, the requirements for chaos are the follow-
ing conditions:

• exponential divergence of nearby trajectories;

• trajectories never intersect;

• trajectories remain bounded within some part of state-space;

• recurrence (sooner or later the trajectories will get close - but never coincide
with the initial conditions)

• density of periodic orbits (periodic orbits approach arbitrarily close to every
point in the state-space)

An exemplary trajectory of a strange (also chaotic) attractor is presented in Figure
3.4a. The Poincaré section (here stroboscopic) of the chaotic attractor (Figure 3.4c)
shows a structured cloud of points that is confined in state-space and points seam to
randomly appear within it.
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FIGURE 3.4: Chaotic attractor: a) trajectory, b) location of stroboscopic
Poincaré section and c) trajectory intersection with Poincaré section.
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3.1.2.4 Fractal structures

In nonlinear dynamics, another phenomena occurs, associated with non-integer di-
mension of its objects - the fractality [13]. Fractal curves are not smooth, but geo-
metrically irregular or an uneven shape of non-integer dimension, repeated over all
magnifications - from large to infinitesimally small. An example of a fractal struc-
ture is theKoch snowflake [48]. It is generated starting from a triangle, where on each
iteration the middle third of each straight edge is replaced with two segments of
equal length, and repeated infinitely. Figure 3.5 shows the first several iterations in
the construction and how the segment are arranged.

1st iteration

2nd iteration

3rd iteration

4th iteration

FIGURE 3.5: Fractal curve - Koch snowflake.

3.1.2.5 Basin separation

In cases where multiple attractors coexist, basins can be separated by smooth or frac-
tal curves, or hyper-surfaces, depending the system dimension. Another possibility
is that basins may be riddled [13, 49]. It means that the border between basins is
not a curve (neither smooth nor fractal) and points in infinitesimally small hyper-
sphere around certain initial condition do not necessarily converge to the same at-
tractor. Numerically, fractal boundaries and riddled basins can only be assumed up
to the computer precision. Figure 3.6 shows examples of numerical approximation
of smooth and fractal boundaries (on the left) and riddled basins (on the right).

3.2 Basins of attraction computation

Due to finite precision of digital computers, numerical procedures use discrete repre-
sentation of continuous spaces. Consequently, numerical methods used to compute
basins can be divided into two major categories by the discretization technique. The
first type of methods use points as discretization entities, which are often not suit-
able as the regions between points remain undefined. To avoid possible issues with
undefined regions, the majority of methods (second category) divide the state-space
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Basin boundaries

smooth

fractal

riddled basins

FIGURE 3.6: Basins with smooth and fractal boundaries (left), and
riddled basins (rigth).

into the collection of small hyper-volumes, commonly called cells [11]. With the
cell representation, whole hyper-volume inside a cell is approximated with only one
point, usually its center (center-point method). Contemporarily, it is also required to
choose the finite portion of the infinite state-space, the window or cell-space, where to
build the basins. Improper choice of a window with respect to cell size may lead to
incorrect results due to poor precision or to unrealistic computational time if the pro-
posed precision is too high. In general, the computation of basins highly depend
on the balance between resource consumption and accuracy of results.

It is noteworthy to mention the other contemporary approaches aimed in similar
direction, namely the basin entropy [50, 51] and the basin stability [52–54]. Even so
are modern and effective methods they are not within the scope of this thesis.

3.2.1 Grid of Starts

The method named Grid of Starts or Grid of Initial Conditions [55] is based on the
very definition of basins of attraction. Upon the discretization process, each point or
cell that exists in the state-space window is directly integrated. Each initial condition
is separately (independently) integrated until its trajectory gets close to the attractor.
The closeness is a property that can be defined arbitrarily, in a manner that satisfies
the condition - the trajectory that is close to the attracting one will eventually con-
verge to it. In this manner, the accuracy of basins depends only on the integration
error.

Considering the definition of the method, integration time will be directly influ-
enced with the length of transients. This is the main drawback of this approach - the
process is very resource intensive (CPU time) with high-dimensional, although it is
strongly parallelizable.

3.2.2 Cell Mappings

Despite the accuracy and reliability of the GS method, it is a very time-inefficient
method in higher resolutions. The Cell Mappings [11, 12] are group of methods specif-
ically developed to reduce the computation time of basins. A basic idea is to approx-
imate the continuous trajectories with a Poincaré map for periodic and autonomous
systems. For CM methods, the map is obtained by integration over short-time period
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and recording the cells where trajectories intersect the Poincaré section. The collec-
tion of those image cells constitute a map, and any continuous trajectory (within a
state-space window) can be followed by its iteration. Consequently, by the analysis
of the map, the dynamics of the associated continuous system can be determined.

Simple Cell Mapping. It is the original concept on which many modifications are
devised. In SCM, the (Poincaré) maps obtained as described in Section 3.1 are anal-
ysed to find a periodic loops, which correspond to discrete approximation of steady-
state solutions of continuous systems. All other cells are then classified as transient,
which correspond to basins of attraction. This method significantly speeds-up the
computations for basins, on the expense of accuracy - the SCM is unable to disclose
fractalities or chaos and basin boundaries are relatively crude. For non-autonomous
systems, especially those periodically excited, the SCM often gives incorrect results
due to the different periodicity of attractors and stroboscopic Poincaré section, low
basin robustness and large transient amplitudes.

Generalized Cell Mapping. Contrary to the definition of maps, where each cell has
single image cell, the GCM algorithm accepts multiple images. Transition from one
to another cell is governed by a probability function which leads to Markov chains
for a deterministic and stochastic systems. Abundant literature on Markov chains
provides means necessary to examine GCM and discover invariant sets, manifolds
of saddle-like equilibrium states, basins of attraction and their boundaries.

Interpolated Cell Mapping. The ICM method [56] uses the coarse SCM solutions
to refine the invariant sets. Interpolation is performed without integrating the dif-
ferential equation when the SCM solution is on a sufficiently small grid so that the
underlying dynamics of the system is smooth enough for interpolation.

Improved and modified Cell Mapping methods. Due to high versatility of CM meth-
ods, many modification and improvements are devised, from which only few are
listed. In [57], the ICM is improved to refine also the basin boundaries. An answer
to the dimensionality problem is presented in [58], and some further examples of
improved and modified cell mapping methods can be found in [59–61].

3.2.3 Discussion on parallelized basin computing methods

For higher-dimensional systems (more than 4D) it is inevitable to resort on HPC,
considering the number of integrations required to do to discover basins of attrac-
tion. Consequently, the leading efforts to speed-up the basin computation explore
possibilities to massively parallelize the integrations. This is a data intensive task
[29], so the most (but not the only) attempts to parallelize computations are done for
shared memory computers and GPUs, which are designed to handle such problems.
Herein, we discuss parallelized methods, their advantages and drawbacks, in order
to determine which one is the best candidate for computation of full-dimensional
basins for 6D dynamical systems on cluster HPC platforms.

One of those basin computation method aimed for HPC is described in [62],
where the algorithm for Parallel Multi-Degree of Freedom Cell Mapping simultaneously
examine multiple trajectory sequences. This method does not output the full basin
of attraction - only the portrait of the selected 2D cross-section, hence it is not a good
candidate for our purpose.

Clustered Simple Cell Mapping method [63] computes separate 2D solutions and
joins them in the post-processing to form a global picture of dynamics. Solutions
are joined by examining the border cells. By increasing the dimension number of
cells that need examination drastically increases, since the touching region becomes
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a hyper-surface. Consequently, the low scalability for higher-dimensional systems
prevents us to implement this method.

One of the successful attempts to truly parallelize computations on massive,
HPC scale is done in series of articles [10, 64–66], where the authors performed
extensive analysis and provided an algorithm how to use GS efficiently on clus-
ter computers, and its application for dynamical integrity analysis for 4D systems.
However, the course of our research was directed by CL-U platform described in
Section 2.1.3, which does not have enough computing power to handle the GS com-
putations for 6D systems.

Currently, the most advanced and developed HPC method for a global analysis
is Hybrid Cell Mapping [12], developed to work efficiently on GPUs. The mix of SCM
and GCM algorithms uncover global dynamics, and then in backward manner, the
subdivision and interpolation techniques refines images of attractors. As we are
neither concerned in accurate representation of attractors, nor have access to GPU,
the HCM algorithms, in our case, have no particular advantages over original SCM.

Therefore, the SCM is the best candidate since:

• it discovers full-dimensional basins of attraction for 6D systems (suitable to
compute dynamical integrity measures);

• no additional resources are spent on precision of attractors and fractal phe-
nomena;

• it computes the results within a reasonable time-frame even on small clusters,
thanks to highly parallelizable map creation.

3.2.4 Simple Cell Mapping

The full process of SCM method was developed by C. S. Hsu and extensively anal-
ysed in [11]. Herein, we summarise it, since it is a foundation of our work. Readers
familiar with SCM may skip this part and proceed to the next Section 3.2.5 where we
discuss parallelization and ways to overcome some of the innate drawbacks.

3.2.4.1 Definition of cell-space

The SCM uses the cell discretization scheme, described in Section 3.2. Each regular
cell is represented with a positive integer called cell number. A region outside the
chosen window, namely the union of all outer attractors, including the infinity, is
represented with the cell number 0 - a predefined cell called sink. Cell numbers can
be transformed into cell coordinates and further to the real coordinates. The correla-
tion between coordinates and cell numbers can be seen in Figure 3.7 for a generic ex-
ample where (−2, 2) intervals of continuous state-space are discretized with six cells
per dimension. The choice of cell coordinates is not unique and may be chosen as
wanted (e.g. {−2,−1, 0, 1, 2, 3} or {1, 2, 3, 4, 5, 6} instead of {0, 1, 2, 3, 4, 5}). As well,
the initial corner and direction of cell indexing is arbitrarily chosen. It changes only
the coordinate transformation functions, however, the system dynamics remains the
same.

The precision (number of cells per dimension) is also an arbitrary choice. How-
ever, in 6D increase of accuracy (i.e. decreasing the size of a cell) leads to exponential
increase in number of cells, which drastically add up to the computing requirements.
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FIGURE 3.7: Cell discretization scheme.

3.2.4.2 Poincaré map creation

To create the map, all initial conditions (cell center-points) are integrated and the
cells where trajectories intersect the Poincaré section are recorded. Those cells are
named image cells, and the mapping is constituted when each cell have the corre-
sponding image computed. On the left in Figure 3.8, is the initial cell-space with the
(stroboscopic) Poincaré section where image cells are captured, and on the right is
the resulting discrete mapping.

T

t

x

y

Discrete mapTrajectory discretization

FIGURE 3.8: Process of creating the discrete map by capturing image
cells on stroboscopic Poincaré section.

The result of the integration stage of SCM is a mapping function, constituted as a
multi-dimensional square matrix, where the number of the image cell is reported in
each entry. A 2D generic example for the mapping function is shown in Figure 3.9.

To store the map in computer memory it is more suitable to transform the image
cell matrix into an one-dimensional array. Indices of the array then correspond to cell
numbers and array elements to image cells. For example, matrix in Figure 3.9, can
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14 11 11 0

10 11 11 11

6 11 11 11

6 6 7 8

FIGURE 3.9: Generic example of 2D mapping function.

be transformed into the array {6, 6, 7, 8, 6, 11, 11, 11, 10, 11, 11, 11, 14, 11, 11, 0}, when
the initial corner is lower left and direction of coordinate is from the left to the right.

3.2.4.3 Map analysis

By iterating the map it is now possible to follow the trajectory of each cell and anal-
yse the global dynamics of the system. For example, iteration of the map from Fig.
3.8 correspond to the real trajectory shown in Fig 3.10.

T 2T 3T

t

x

y

initial cell 1st iteration 2nd iteration 3rd iteration

FIGURE 3.10: An example for approximation of the real trajectory
with a discrete map.

The map analysis algorithm requires additional information to determine and
house data about global dynamics. In the original SCM, those information are imple-
mented as separate arrays or an array of structured data, by assigning the following
attributes to each cell:

• image cell number - a positive integer number representing the next cell in the
sequence;

• periodicity number - a number of iterations required for the associated attractor
to make a full loop;

• step number - a number of iterations required to reach the attractor (transient
behaviour);

• group number - a number representing periodic group association (basin of at-
traction).
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TABLE 3.1: Unravelling algorithm - map iteration.

FOR(z = 1 ... NC){
stp = 0
IF(z.group == unprocessed){

z.group = elaborating
b = z
WHILE(b.group == unprocessed){

stp++
b=b.image

}
}
IF(b.group == elaborating) NEW_GROUP ()
ELSE OLD_GROUP ()

}

The algorithm which determines the global behaviour of a Poincaré map is called
unravelling or Forward Sort [11]. The analysis starts from the first unprocessed cell.
The map is then iterated until a new periodic loop (periodic group) is discovered or
an old one encountered. Then, the algorithm appropriately labels all cells in the cur-
rent sequence. The analysis continues from the next unprocessed cell, terminating
when all the cells have been elaborated. Pseudo-codes for unravelling algorithm is
divided in three parts, in Table 3.1 for unravelling, Table 3.2 for an old group subrou-
tine and in Table 3.3 for a new group subroutine. The algorithm uses the following
variables and constants:

• z - currently examined cell

• b, e and d - auxiliary cell variables

• NC - total number of cells in the cell-space

• stp and i - auxiliary counters for number of steps

• gmax - number of currently discovered periodic groups

Cell attributes in the pseudo-code are accessed by naming the property after a
cell number (e.g. cell.attribute). It is important to consider that the sink cell is
always predefined: it maps to itself, its cell number is 0 and group number is 1.

At the end of the unravelling algorithm each cell has all its attributes determined.
Cells with the step number equal to zero, are cells from the invariant sets, and all
other are transient, constituting the basins of attraction. It is worth pointing out that
for the map, since it comes from a space discretization, all the attractors (periodic,
quasi-periodic and chaotic) are approximated by periodic orbits of the map. Of
course, increasing the number of cells discretizion, will increase the period of the
approximating orbits for quasi-periodic and chaotic attractors, but the orbits will
remain periodic.

3.2.5 Not So Simple Cell Mapping for clusters

The nature of SCM, namely the discretization with short-time integration, results in
some inconsistencies of results, especially with driven non-autonomous dynamical
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TABLE 3.2: Unravelling algorithm - old group sub-routine.

OLD_GROUP (){
z.group = b.group
z.period = b.period
z.step = stp + b.step
e = z
FOR(j = 1 ... stp - 1){

e = e.image
e.group = b.group
e.period = b.period
e.step = step - j + b.step

}
}

systems. The impact of long and/or high-amplitude transients and aperiodic invari-
ant sets, together with crude precision, can sometimes lead to inaccurate or even an
incorrect global picture of the examined systems. Initially unaware of those draw-
backs, we remained determined to compute dynamical integrity even on a small,
low-cost cluster. Thus, we dedicated the first part of our research to overcome those
drawbacks retaining computational efficiency of the original algorithm and paral-
lelize very resource demanding map creation.

The resulting approach, named Not So Simple Cell Mapping, is a collection of mod-
ifications we devised to the original SCM method. The improvements are aimed to
speed-up the computation via parallelization and to extend the range of dynam-
ical systems that can be examined. In this section, thus, we discuss in detail: ad-
vantages of parallelization on cluster computers; memory restrictions; adaptability
of integration time for map creation; transient problems; and discretization issues.

3.2.5.1 Integration parallelization

The goal of integrations is to compute the images of all cells contained in the selected
state-space window. So the system has to be solved for a quite large number of initial
conditions. Herein, we discuss parallelization on cluster computers according to the
methodology presented in Section 2.2.1; for GPU algorithms the reader is referred to
[12].

It is evident that parallel opportunities are found by domain decomposition,
since the cell-space can be partitioned into smaller parts, and the tasks consist of
associated cells for integration. Those integrations are mutually independent (SIMD
computations), so it is possible to achieve very high levels of parallelization, mean-
ing that scalability is very high.

Also, the consequence of mutually independent integration is that there is no
communication between parallel tasks, excluding the need for design of communi-
cation structures and agglomeration.

Actual efficiency of parallelization strongly depends on the proper mapping of
parallel tasks to the hardware - the number and distribution of tasks should be im-
plemented according to the configuration of cluster nodes. For the clusters with one
core per node, like CL-U, parallelization is implemented by assigning one MPI rank
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TABLE 3.3: Unravelling algorithm - new group sub-routine.

NEW_GROUP (){
i = 0
d = z
IF(d == b){

gmax++
z.group = gmax
z.period = stp
z.step = 0
e=z
FOR(j = 1 ... stp - 1){

e = e.image
e.group = gmax
e.period = stp
e.step = 0

}
}
ELSE{

WHILE(b \neq d){
i++
d = d.image

}
gmax++
z.group = gmax
z.period = stp - i
z.step = i
e=z
FOR(j = 1 ... i - 1){

e = e.image
e.group = gmax
e.period = stp - i
e.step = i - j

}
FOR(j = i ... stp - 1){

e = e.image
e.group = gmax
e.period = stp - i
e.step = 0

}
}

}
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to each node. In other words, the number of parallel tasks (MPI ranks) is equal to
number of nodes.

Further parallelization can be achieved on clusters with multi-core nodes (e.g.
CL-C), where the OpenMP multi-threading is initiated within each MPI rank. Then,
the number of parallel tasks is equal to the total amount of cores - number of nodes
multiplied with number of cores per node.

Some processors have the Hyper-Threading R© technology [67], where the single
core can manage multiple threads, which can increase the level of parallelization
even more. Theoretically, the speed-up should be equal to the number of parallel
tasks, but it is somewhat less due to the technical restrictions of the multi-core sys-
tems [28, 29].

3.2.5.2 HPC view on map analysis

The cell mapping array is a set of strongly connected components [12] and algo-
rithms that disclose attractors work on inherently serial principle of the Depth-first
Search [68], which cannot be parallelized easily. A possibility to parallelize map
analysis is presented in [69]. The algorithm checks if every cell belongs to some in-
variant set or not. For each cell, the map is iterated until it returns to the initial cell,
meaning that the cell is periodic, or the number of iterations exceeds the predefined
maximal value, meaning that the cell is transient (or in some cases that belongs to
a chaotic invariant set). However, this algorithm finds only periodic cells and their
periodicity. Additional post-processing is required to sort those cells to the corre-
sponding periodic groups, to discover if invariant sets are attracting or not, and
the most important, to sort transient cells to the corresponding basins of attraction.
The post-processing anyway must be executed sequentially for result consistency, to
prevent multiple enumeration of an unique invariant set by multiple parallel tasks.

Moreover, the parallelization is achieved by allowing multiple tasks to access
each cell. On shared memory systems, as GPU, this does not present large obstruc-
tion, as data is easily accessible to each parallel task (all data is stored in local mem-
ory). On distributed memory systems, all data which is stored in local memory of
other nodes (remote data) have to be communicated through designated channels.
For map analysis with large number of cells, the accessing to remote data creates
overwhelming communication overheads. Contrary to the parallelization goal, with
the increase of parallel tasks, the efficiency of the algorithm on clusters with this
many communications, drops with the increase in parallelization level. A conse-
quence of large redundancy is that a parallel map analysis is then drastically slower
in comparison to the implementation of the sequential approach with the unravel-
ling algorithm.

Up to our knowledge, an efficient parallel algorithm for map analysis does not
yet exists, thus this part of global analysis is left to be sequential. Fortunately, it
is considerably faster process than the map creation and it does not significantly
prolong the global analysis procedure.

3.2.5.3 RAM requirements

As it is established what data is required to analyse the map, let us now discuss
the memory requirements for it. First, we stress that we are not considering saving
numbers on mass storage devices because it will require a lot of accesses that are
very slow and unacceptably increase the computational time. Thus, to be efficient
in time we can save only on RAM. Next, we observe that storing a map made of p
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TABLE 3.4: RAM requirements (in GB) as a function of precision p
and dimension d for 8-bytes data type and, within round brackets,

for 4-bytes data type (where it is possible).

dimension p=30 p=40 p=50 p=100

4 0.0064 (0.0032) 0.02 (0.01) 0.05 (0.025) 0.8 (0.4)

5 0.194 (0.097) 0.82 (0.41) 2.5 (1.25) 80

6 5.82 (2.91) 32.78 (16.39) 125 8′000

7 175 1′311 6′250 800′000

8 5′249 52′429 312′500 80′000′000

cells (precision), in dimension d requires saving (in RAM) pd numbers (one per cell),
each number in the range from 1 to pd (the image cell number). This means that,
theoretically, we need pd × x× 10−9 Giga-bytes (GB) if we use a x-bytes data type.

Limiting our considerations to an 8-bytes data type (which is typical for clusters),
this entails having the minimum RAM requirements illustrated in Tab. 3.4. For
example, if we have 16 GB of RAM in our cluster, and we need at least 40 cells
precision, we cannot go above dimension six. To date, having 8 dimensions (still
with p = 40) is impossible because 52.4 Tera-bytes (TB) of RAM are not available on
common cluster.

We observe that for low precisions and/or low dimensions, it is sufficient to use
4-bytes data type. More precisely, this is true if pd < 232. In this case, the RAM
requirements are reported in the brackets in Tab. 3.4.

In addition to storing the map, we need to store the basins of attraction, too. Ac-
tually, the original SCM method beside basins, also stores periodicity and transient
behaviour of each cell. Beside the image cell number, these require to save three in-
teger numbers more for each cell containing, respectively, the label of the basin, the
periodicity and the transient. For the first, a 1-byte number is sufficient (assuming
that we have less than 256 attractors, which is commonly the case); for the second,
a 2-bytes number is required (assuming that the transient will last less than 65′536
map iterations); for the third, at least 2-bytes are required (assuming that we can
approximate a chaotic attractor with a 65′536 period attractor). This requires storing
pd × 5× 10−9 GB, which is comparable to the memory requirements for storing the
map.

When only the basins are required, we can skip saving periodicity and transients,
thus reducing the memory requirements to pd × 1× 10−9 GB, which is just 1/8 of
the values reported in Tab. 3.4 and it is a more affordable.

3.2.5.4 Prolonged integration time

For periodically excited systems with strong nonlinearities, the mapping function
with image cells captured in early transient phase, is often unable to recreate the
steady state dynamics accurately enough. It is a consequence of large transient am-
plitudes that escape a predefined state-space window, and/or low basin robustness
due to fractalities or its narrow size in certain dimension(s).

When trajectories escape the predefined phase-space window during transient
behaviour, it can happen that image cells are being captured in those external re-
gions. Origin cells (and their external images) are then attributed to the basin of the
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sink, regardless if their real corresponding trajectories converge (after longer time
interval) to an attractor inside the window or not. Consequently, in this cases the
mapping function does not have the valid information to emulate system dynamics.

For some systems, and for certain choices of investigated phase-space regions,
this happens for the majority of initial conditions, and it is necessary to overcome
this problem. An intuitive solution could be to extend the considered state-space
window until every relevant initial condition has an image cell inside it. In the case
that we examined, this was not practical solution - the RAM size prevented us from
increasing the number of considered cells, needed to capture images of enough rel-
evant cells. Consequently, it was not possible to properly reconstruct the system
dynamics.

The feasible solution was to hybridise SCM with GoS, and prolong the integra-
tion time to allow the escaping trajectories to reenter the predefined region of state-
space. The integration interval is extended to an integer multiple of system periods,
which in the most cases is quicker than it is required for GoS to approach the at-
tractor. The integration is extended up to the re-entry to the considered phase-space
window or when the solution remains outside the window for a sufficiently large
time - meaning that one has indeed approached an external attractor.

For certain dynamical systems (or specific parameter values), especially in cases
when fractal basins boundaries occur (but not exclusively), compact parts of less
robust basins can be very narrow in some phase-space dimensions. Consequently,
the mapping created in an early transient phase often misses those narrow or fractal
parts of a basin and assigns cells to a nearby (the more robust) basin. Possible rem-
edy is to prolong the integration time to capture the image cells closer to the steady
state, where trajectories pass close enough not to miss the narrow or fractal parts of
basin.

Evidently, the robustness of the SCM method for strongly nonlinear systems par-
ticulary those periodically excited, depends collectively on the integration time and
the cell size. Prolonged integration time can remedy some problems, but has to be
maintained the shortest possible, or otherwise it would be more suitable to use the
GoS method. Regarding the cell size, it has to be kept sufficiently small to repre-
sent dynamics of the system accurately enough and simultaneously not too small to
overload memory with large cell-space. Those factors have to be considered care-
fully and brought into the balance; otherwise the benefits of fast computation with
SCM could be lost.

3.2.5.5 Disconnected periodic orbits

As we use original SCM to analyse the mapping function, the ability of capturing
invariant sets (also unstable ones) is inherited from the properties of discrete maps
(thoroughly discussed in [11]). To compute those mapping functions, the SCM im-
plements the center-point method [11], where the whole interior of a cell is repre-
sented by the point at its center. The image cells are thereby computed by the in-
tegrations originating from those points. Consequently, an error occurs, as the end
point of the computed trajectory hardly coincides with the image cell center (that
is the initial state for computation of another image cell). The errors can be mini-
mized by reducing the cell size, which directly increases memory requirements, and
therefore is impractical to achieve since we are yet exploiting near all the available
hardware capabilities.

As the error can be only minimized, but not eliminated, it propagates and grows
over the map iterations, to the magnitude that can outgrow the size of cell. When
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it happens, the real (obtained with direct integration) and approximated (obtained
with SCM) trajectory do not overlap any more. This difference culminates with the
SCM reporting separate periodic orbits, which together represent a single attractor.
We name them disconnected periodic orbit. The second source of the disconnected pe-
riodic orbits is the integration time, namely the position of a stroboscopic Poincaré
section. Aperiodicity of quasi-periodic and chaotic attractors results in out of phase
intersections with the Poincaré section. Consequently, all trajectories associated with
those motions are also out of phase and the unravelling algorithm sorts them as
separate, distinct periodic attractors. The example in Fig. 3.11 illustrates a quasi-
periodic attractor reported with several separate SCM periodic orbits, each one col-
ored differently.

FIGURE 3.11: Disconnected periodic orbits: generic example of sepa-
rate periodic SCM groups that should represent single quasi-periodic

attractor.

It is worth emphasizing that while for periodic orbits this problem can be theo-
retically resolved by reducing the cell dimensions (i.e. increasing the accuracy), this
is not the case with quasi-periodic and chaotic attractors. For higher resolutions, the
number of cells that approximate trajectories of those orbits increases, consequently
increasing also the number of disconnected periodic orbits.

Since with the clusters considered herein increasing the cell is not a feasible op-
tion (as we are yet exploiting almost the maximum accuracy allowed by available
hardware), and since in any case for quasi-periodic and chaotic attractors this strat-
egy does not solve the problem, we need another way to overcome it or, in other
words, to connect disconnected periodic orbits. Practically, we need to a posteriori
check all periodic orbits (as discovered by SCM) and to verify if two (or more) of
them are actually the same real periodic orbits (as obtained by direct independent
numerical integration). Once two (or more) periodic attractors of SCM are found to
be the same, they are merged (connected) and their basins (previously discovered by
SCM) merged as well.

To address the previous problem, we introduce the Connecting Post-processing
Algorithm (CPA), which is a procedure that sequentially examines and joins the dis-
connected periodic orbits discovered by raw SCM, according to the pseudo-code in
Table 3.5. The search starts on line CPA_1, from the periodic group with identifier 2,
as the group number 1 is reserved for the sink, which does not require an analysis,
up to the last periodic group enumerated with g_max. In the line CPA_2 the initial
conditions are prepared for the integration - the variable current_x takes the real
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TABLE 3.5: Connecting Post-processing Algorithm.

CPA_1 FOR(current_g = 2 ... g_max)
CPA_2 current_x = p_cells[current_g]
CPA_3 FOR(1 ... connect)
CPA_4 current_x = integrate(current_x)
CPA_5 current_z = convert(current_x)
CPA_6 IF(current_z.grp > current_g)

correct_grp[current_z.grp]= current_g
CPA_7 IF(current_z.grp < current_g)

correct_grp[current_g ]= current_z.grp

coordinates of arbitrary periodic cell center, from the periodic orbit scheduled for
examination (value of current_g. The loop on line CPA_3 then counts the periods of
the real trajectory integration, previously specified by the user, controlled with the
value of connect constant. On each loop iteration, one step of integration is executed
in line CPA_4. If the integration error is smaller than the size of a cell, the group num-
bers of the initial condition p_cells[current_g] and the computed cell (current_z
obtained on the line CPA_5) are (should be) equal, which is - the real and SCM ap-
proximated trajectories traverse same cells. The lines CPA_6 and CPA_7 test those
conditions and assign correct groups otherwise. We have settled that when multiple
groups are designated to merge, the group with lower identifier is the correct one.

Once the corrections have been determined, the array with calibrated groups is
broadcasted to all ranks. From this point, each rank parallelly updates basin infor-
mation for cells stored in own local memory.

As the CPA, after initial testing, has been proven to be tremendously faster than
integration and the analysis, we decided to leave it not optimized for the sake of
simplicity. We are well aware that it does some redundant work, as neither loop is
interrupted in case when all correct groups are determined before the last iteration.
Also, the CPA does not examine repelling and saddle orbits, which are represented
as SCM periodic groups, but are unstable and thus do not have basins of attraction.

The CPA is the last modification to the original SCM that we devised. As those
improvements are not changing the overall logic of SCM, they are all-together re-
ferred to as Not So Simple Cell Mapping. The differences between the SCM and
NSSCM at each part of a computation process are summarized in Table 3.6. The
nonlinear systems considered in it are those with the relatively short transient time
and without a high transient amplitudes, namely, the systems for which we can find
an adequate Poincaré section and state-space window for the computations.

3.2.5.6 NSSCM performance vs. accuracy discussion

Now, after considering all the aspects of HPC and basin computation method, it
is natural to give some concluding comments on the NSSCM and basin computa-
tions. Foremost, it is the method aimed at full high-dimensional basins of attrac-
tion, which favors the accuracy sacrifice in order to get the results within a realistic
time-frame. However, the balance between accuracy and computational load is the
most important factor when the 6D basins are involved in the analysis. Moreover,
for the nonlinear systems with long transients, it can happen that neither one con-
temporary method cannot deliver results within acceptable time-frame.
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TABLE 3.6: Stages and properties of SCM and NSSCM computing
process for dynamical systems with relatively short transient time
and without high transient amplitudes. Results with asterisk sign (*)

are available on demand.

Computing stage SCM NSSCM

Image cell computation

(periods of integration)
single adjustable

Map post-processing

(result of analysis)

• basin

• periodicity

• transients

• basin

• periodicity*

• transients*

Attractor validation none CPA

Solvable dynamical systems
• autonomous

• non-aut. periodic

• autonomous

• non-aut. periodic

• non-aut. driven

On clusters and distributed memory computers in general, it is even more diffi-
cult to make a proper balance, as the map analysis may require overwhelming com-
munication overheads. A suggestion is to start with rough precision and refine the
computations in case that preliminary results do not animate the dynamics properly.
In other cases, the solution may be to increase integration time or precision. From
computational point of view, sometimes is not possible to determine full 6D basins
in reasonable time-frame, even with low precision.

However, even in low precision, the roughly determined basins can be very use-
ful to determine dynamical integrity accurately enough. In the following chapter,
we proceed to define integrity measures and discuss how basin computation with
NSSCM can be applied to calculate them.
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Chapter 4

DYNAMICAL INTEGRITY

In mechanical, civil and building engineering, the safety is traditionally addressed
in a simple way - increase the safety factor for critical parts of the structure/machine.
In modern applications, from micro/nano to macro scale, this way of safety design is
becoming obsolete [70]. Moreover, it is not just enough to determine if some steady
motion is stable or not. There are several rising questions: for what range of sys-
tem parameters particular steady states exist; what is the impact of initial states on
the steady-state dynamics; what is the magnitude of disturbances that will lead to
change of steady-state behaviour; how actually large are the safe regions around the
exploited steady-state; how to control imminent erosion of system safety? Answers
to those questions can be interpreted through the robustness of the attractors. The
higher the robustness, the safer an attractor is for practical applications.

A possible way to examine attractor robustness is via dynamical integrity. Evo-
lution of integrity measures gives the erosion profiles, which show the variation of
attractor robustness during the variation of some system parameter. The key tool to
calculate integrity measures are basins of attraction. This chapter is therefore ded-
icated to summarize the most important dynamical integrity measures and proce-
dures how to compute them. Further on, the reader might be interested in methods
to control erosion of system robustness, for what we refer to the [4, 71], as this subject
is out of the scope of the thesis.

4.1 Safe basin and erosion profiles

The very definition of basins of attraction encloses all the initial condition that con-
verge to a particular attractor. However, not all of them are safe for practical ap-
plications. The regions of state space that encompass initial conditions which are
preferred for exploitation are referred as safe basins. Nonetheless, a strict definition
of the safe basin is not uniquely established. It can be defined according to tolerance
to fractalities, by the analysis of transient or steady-state dynamics, etc. In general,
it can be roughly defined as the set of initial condition (in phase-space), sharing a
given (desirable) property. Converging to a given attractor is the property we con-
sider when dealing with basins of attraction.

An example could be to address the safe basin as a collection of all initial con-
ditions, which forward in time converge to the attractors inside a particular well.
A drawback of this definition is that it ignores trajectories that temporarily escape
the potential well during transient dynamics. An alternative definition [72] excludes
those initial conditions whose trajectories are not confined inside the potential well
during transient behaviour. Moreover, if multiple attractors co-exist inside the par-
ticular well, the safe basin in this case is comprised of an union of competing basins.
Both definitions are based on a claim that the safe basins are property of potential
wells, not of the attractors. The advantage of the first definition is that procedures to
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determine those safe basins are straightforward, with already well-established meth-
ods described in Chapter 3. The second definition requires time consuming checking
of the position of trajectories along transient dynamics. Lastly, the updated defini-
tion for a true safe basin is introduced in [73] to include the phase of excitation for
driven systems. Hence, the true safe basin is the intersection of all safe basins when
the phase ranges over the period of excitation.

Next, we are interested to explore the quantitative side of basin safety. Associ-
ated with the definition of the safe basin, there are several integrity measures estab-
lished, of which we summarize and compare the three most widely used. Moreover,
the integrity measures can be used to study the evolution of safe basins by varying
the system parameter(s). The resulting plots of particular integrity measure evolu-
tion dependent on systems parameter (e.g. excitation frequency or amplitude) gives
an erosion profile, which is useful to evaluate how the structural safety changes. This
addresses the practical stability, where eroded regions of stable solutions are de-
termined. Erosion of the safe basin in general is an unwanted phenomenon, and
integrity analysis can ultimately help to control the penetration of a dangerous at-
tractor basins and delay the erosion.

4.2 Global Integrity Measure

A normalized magnitude of the previously defined safe basin (e.g. the area of 2D
basins) is the Global Integrity Measure (GIM). It is the most intuitive integrity measure,
however, it neither considers the position of the attractor within the basin nor it rules
out possible fractalities into account, in this sense not providing a measure of the
usable compact part of the safe basin.

4.3 Local Integrity Measure

The Local Integrity Measure (LIM) is a normalized distance from the attractor to the
nearest basin boundary. It is a local property of the attractor and rules out the fractal
parts. A drawback is that for attractors with a complex structure (e.g. chaotic), LIM
is hard to compute, since the distance has to be measured from all points and the
minimium has to be taken. Also, there might be a larger compact part of the safe
basin that is not centered on the attractor.

4.4 Integrity Factor

The Integrity Factor (IF) is the radius of the largest hyper-sphere entirely inside the
safe basin. From engineering point of view this is the most useful integrity measure,
since the fractalities are ruled out and the largest compact part of safe basin is taken
into account.

4.4.1 Alternative distance metrics for Integrity Factor

To find the sphere radius that measures IF, it is necessary to compute the distance
transform matrix [14], and extract the highest value for each safe basin. For high-
dimensional systems, computing the Euclidean distance can be very computation-
ally intensive. Herein, we consider the alternatives to reduce the computational
load. Since it is unavoidable to compute the distance matrix, we discuss the differ-
ent distance metrics.
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Starting from the definition of the Minkowski distance between the vectors x and
y, in a n-dimensional normed vector space

dist(x, y) =

(
n

∑
i=1
|xi − yi|p

) 1
p

,

for the p = 2, we have the Euclidean distance (which corresponds to a hyper-sphere),
namely

dist(x, y) =

√
n

∑
i=1
|xi − yi|2.

Now we are concerned with reducing the number of mathematical operations
to compute the distance. For the Euclidean case, we have the n power of 2 and
one square root operations. We can eliminate the root and the power operations by
choosing either p = 1 or p = ∞.

The p = 1 case is called Manhattan, or alternatively taxicab, city block, snake or
rectilinear distance. Formulated with

dist(x, y) =
n

∑
i=1
|xi − yi|,

it is the sum absolute distance between components of two vectors.
The Chebyshev or chessboard distance is the limiting case when p = ∞

dist(x, y) = lim
x→∞

(
n

∑
i=1
|xi − yi|p

) 1
p

=
n

max
i=1
|xi − yi|,

where the distance is the maximal absolute distance between vector components.
The difference between the distance transform matrices can be seen on the ex-

ample in Fig. 4.1. The distances are measured from the origin cell enumerated with
0.

a)

√
2 1

√
2

1 0 1
√

2 1
√

2 b)

2 1 2

1 0 1

2 1 2 c)

1 1 1

1 0 1

1 1 1

FIGURE 4.1: Example of distance transform matrices for a) Euclidean,
b) Manhattan and c) chessboard distance metrics.

To make the correlation between the Euclidean and discrete metrics (Manhattan
and chessboard), we adapt the formulation of a circle in discrete spaces as a set of
points with a fixed distance (radius) from the origin. The comparison of the circles
in Euclidean, Manhattan and chessboard metric spaces is presented in Fig. 4.2a-c,
respectively, and they are compared to each other in Fig. 4.2d.

The equivalence between the Manhattan and chessboard metrics does not hold
in dimensions higher than two. For example, a discrete sphere (generalization of the
circle in 3D) with the chessboard distance metric is a cube, but with the Manhattan
distance is an octahedron.
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a) b)

c) d)

FIGURE 4.2: Circles in a) Euclidean, b) Manhattan, c) chessboard met-
ric space, and d) comparison.

Considering the number of nested loops required to calculate the distance trans-
form matrix in high-dimensional spaces, it is preferable to use the chessboard dis-
tance metric. Therefore, instead of a hyper-sphere for computation of IF, we use the
hyper-cube to reduce computational load.

4.5 Low-dimensional example of integrity measures

Fig. 4.3 shows an example that demonstrates the differences between integrity mea-
sures. The relevant attractor is marked with the red point and the area covered with
its basin is colored in black. The area covered with other colors represent the basins
of unwanted attractors. If the entire black basin is considered safe, the integrity is
quantified with GIM, which is measured as the area of a whole basin within the
window. LIM is the radius of the largest circle that originates at the attractor and
touches the nearest basin boundary, as plotted in Fig. 4.3b. Safe basins for IF with
the Euclidean metric are shown in Fig. 4.3c and with the chessboard in 4.3d.

a) b) c) d)

FIGURE 4.3: Integrity measures for green point attractor a) whole
basin - GIM, b) LIM, c) IF (spherical) and d) IF (cube).
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Chapter 5

NSSCM discussion: validation and
performance

Development and application of the NSSCM approach is the central part of our work
and this thesis. As it is not an entirely new method, but it represents an extension
of SCM, it is useful that we discuss its performance, advantages over the original
method and the settings under which NSSCM is a valid approach to compute full-
dimensional basins for 6D nonlinear systems.

5.1 Test dynamical system

To validate the NSSCM approach and evaluate the resulting performance, we exam-
ine a paradigmatic dynamical system without a related concern about a precise engi-
neering background of the parameters used in modeling. The test system is adopted
from [18], and is composed of three coupled Duffing oscillators, one of which one is
harmonically excited. It is well-known to exhibit rich nonlinear behaviour, allowing
us to check if NSSCM is able to determine it. For more information on Duffing-like
nonlinear systems, please see, for example [74–78].

5.1.1 Equations of motion

The three degree-of-freedom nonlinear system composed of three coupled Duffing
oscillators (FDO) [18], one of which being forced by a periodic excitation, is mathe-
matically modelled by the following system of six first-order differential equations:

ẏ0 = y1, (5.1)
ẏ1 = F sin(ωt)− y0 + αy2 − ε(1− βy0

2 + y0
4)y1, (5.2)

ẏ2 = y3, (5.3)
ẏ3 = −(1 + α)y2 + α(y0 + y4)− ε(1− βy2

2 + y2
4)y3, (5.4)

ẏ4 = y5, (5.5)
ẏ5 = −y4 + αy2 − ε(1− βy4

2 + y4
4)y5, (5.6)

where y0, y2 and y4 are the respective displacements of oscillators, and y1, y3 and
y5 are their respective velocities. The parameters are defined in [18], where ε > 0
denotes the degree of nonlinearity, α ≥ 0 is the coupling factor (α = 0 means de-
coupling, α = 1 means maximum coupling) and β is the parameter that determines
the magnitude of the term with the cubic nonlinearity. The parameters F and ω
denote amplitude and frequency of the excitation.
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5.1.2 Attractors

For testing, we consider a multi-stable region that exists for the excitation magni-
tude F = 0.75, frequency ω = 1.4 and the parameter values α = 0.1, ε = 0.5 and
β = 3.1. Within the state-space window yi = (−3, 3), five attractors are discovered
with direct integration. To illustrate them, we capture the intersecting points of their
trajectories and the Poincaré section. Since the FDO system is non-autonomous, the
adequate choice for the Poincaré section is the stroboscopic one, with sampling time
at integer multiples of the excitation term period. Furthermore, to visualize sampled
points, we have to extract low-dimensional 2D or 3D cross-sections. Those are in Fig.
5.1a-d: a) y0-y1-y2; b) y0-y2; c) y0-y1; and d) y1-y2.

a) b)

y0

y2

c)

y0

y1

d)

y1

y2

FIGURE 5.1: Stroboscopic Poincaré sections of FDO attractors.

It is evident that under harmonic excitation, the majority of FDO system attrac-
tors are quasi-periodic. However, to determine system behaviour more precisely,
further conclusions can be made from the information that basins of attraction pro-
vide.

5.2 Computation accuracy vs. performance

Before analysing the basin’s structure, first we examine the validity and efficiency of
the NSSCM approach. To discuss it, we consider the following characteristics and
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compare them to direct integration with GoS:

• the number and type of attractors;

• accuracy of basins;

• computational time-frame.

The fundamental factor that must be considered is that SCM (and to certain ex-
tent also the NSSCM) may not compute basins accurately enough due to low res-
olution or inadequate integration time, improper Poincaré section choice or simply
the dynamical system is not suitable for CM methods. Moreover, for specific set-
tings, SCM/NSSCM may accurately computes attractors, but not necessarily also
their basins.

The GoS discovers only those attractors (and consequently basins) that exist in
the considered low-dimensional cross-section(s). Thus, there are likely unaccounted
attractors that remain undiscovered with the GoS, unless the full-dimensional basins
is computed - which we aspire to avoid with the GoS, due to large computational
requirements.

To validate efficiency we impose a standard to which the NSSCM and GoS are
compared in terms of computational time: the time-performance is expressed with
the number of excitation periods required to discover basins. For the GoS, it stands
for the number of periods which a trajectory requires to approach close enough to
the corresponding attractor, and for the SCM/NSSCM, the integration interval at
which image cells are captured (the position of the stroboscopic Poincaré section).
This is a valid hypothesis when the same numerical ODE solver is used for both
cases.

In general, the GoS follows each trajectory until the distance between the trajec-
tory and an the attractor becomes what is considered to be small enough, to rate it as
convergent. In other words, the GoS integration time depends on the transient inter-
val, which depends on the initial conditions. To decrease computational load, in our
case, GoS was restricted to the integration time of maximum 75 excitation periods,
meaning that a possibly less accurate criterion for the condition of convergence to
an attractor was enforced.

To give a definitive conclusion if the NSSCM approach is valid and efficient,
we compare attractors and basins computed with the SCM/NSSCM to the nominal
GoS performance of 75-period long integration time and five discovered attractors
at ω = 1.4. The resolution of computations with NSSCM is 40 cells per dimen-
sion, so the considered full-dimensional window of the phase-space consists of to-
tal 406 (4′096′000′000) cells. The GoS computations are performed on a 2D cross-
sections with grid of 40x40 initial conditions for low, and 150x150 for high resolu-
tion. The Table 5.1 summarises how the number of the discovered attractors with
the SCM/NSSCM changes depending on the integration time, and how long it takes
for the SCM/NSSCM to discover the basins accurately enough to compute IF.

With the plots of the 2D cross-section y0-y2 with fixed y1 = 0.825, y3 = 0.825,
y4 = 1.575, y5 = 0.825, given in Fig. 5.2 we illustrate the data from Table 5.1. For
the integration time of a single excitation period, the basins in Fig. 5.2a are not
accurate enough to distinguish compact parts, required to compute IF, although the
NSSCM precisely discovered the attractors. For the integration time of three periods
the outcome is fairly the same, therefore it is not plotted. Slightly less fragmentation
is achieved for the integration time of six periods, however, still with unsatisfactory
accuracy for all basins, as it can be seen in Fig. 5.2b.
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TABLE 5.1: Accuracy of basin computed with the SCM/NSSCM for
test system, depending the integration time.

integration period SCM attractors NSSCM attractors basin accuracy

1 6 5 very low

3 10 4 very low

6 17 5 low

12 47 4 average

15 8 5 good

The further increase of the integration time to 12 periods, gives significantly
more accurate basins in terms of their compact parts. However, in this case the
SCM/NSSCM nature and low accuracy resulted in that the two attractors were as-
similated (red and purple), as shown in Fig. 5.2c. This might have happened for two
reasons (which do not exclude each other). The first one is the consequence of low
discretization accuracy: in certain dimension(s), trajectories of two attractors may
be close to each other. If this distance is smaller than the cell size, the SCM cannot
recognize them as separate ones.

a) b) c)

FIGURE 5.2: Impact of integration time on the SCM/NSSCM accu-
racy on cross-section y0-y2 with y1 = 0.825, y3 = 0.825, y4 = 1.575,
y5 = 0.825 at ω = 1.4, for the computational time of a) 1, b) 6 and c)

12 periods.

In some cases, quasi-periodic attractors have such SCM-periodicity that for a
particular integration time, neither cell from their periodic groups is present on the
stroboscopic Poincaré section chosen for SCM. Consequently, the basin of the miss-
ing attractor is assimilated within other basin(s).

For the integration time of 15 periods, the basin computed with the NSSCM (Fig.
5.3a) are in good agreement with the GoS in same resolution (Fig. 5.3b), considering
the basin parts without fractalities. The high-resolution basins plotted in Fig. 5.3c
are determined with drastically higher computational time. However, the structure
of the compact parts in all resolutions is practically the same. Therefore, with respect
to the integrity factor, having the results in a significantly higher resolution does not
bring any particular advantage.

A further note is on the raw SCM and its improved version - NSSCM. One of
the NSSCM features is prolonged integration time, which is illustrated with an ex-
ample in Fig. 5.2. To compute an accurate basin, increasing integration time is an



5.3. Structure of full-dimensional basins in 6D 45

a) b) c)

FIGURE 5.3: Basin accuracy on cross-section y0-y2 with y1 = 0.825,
y3 = 0.825, y4 = 1.575, y5 = 0.825 at ω = 1.4, computed with a) the
NSSCM over 15 periods, and over 75 periods with GoS in b) low and

c) high resolution.

TABLE 5.2: Execution time-frames of each NSSCM phase on CL-C for
integration time of 15 excitation period.

NSSCM number threads parallel tasks execution time

phase of nodes (per node) (nodes×threads) (in seconds)

integration 32 256 8192 18328

map analysis 1 1 1 360

CPA 1 1 1 224

file I/O 1 1 1 850

IF 1 256 256 3691

unavoidable necessity for driven non-autonomous systems, which is a consequence
of transient behaviour.

By looking at the SCM column of Table 5.1, it is evident that without the CPA
part of the NSSCM, basins would be indistinguishable and it would be very difficult
to understand which SCM attractor/basin pairs correspond to the physical counter-
part.

To justify the low-resolution computations with NSSCM, let us consider actual
execution times required for each step of NSSCM, summarized in Table 5.2, for a
FDO system integrated for the time interval of 15 periods.

By taking into account the 15-period long integration time of 5.1 hours with 8192
parallel tasks, it is clear how much computational resources are saved by using
NSSCM instead of GoS. Also, even with significantly more parallel tasks, the in-
tegrations are far more demanding than the map analysis and CPA - together 10
minutes sequentially. To conclude, the NSSCM indeed is an efficient approach to
determine a full-dimensional basin for 6D nonlinear systems by using cluster com-
puters oriented to a dynamical integrity analysis with IF.

5.3 Structure of full-dimensional basins in 6D

It should be duly noted that a basin is a global characteristic of a system. Thus,
information obtained from arbitrary low-dimensional cross-sections cannot be re-
garded as global; the full-dimensional basins must be considered. To illustrate it,
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we examine the basins structure, with an emphasis on compact parts as the pivotal
characteristic required to determine a dynamical integrity with IF.

The aforementioned is discussed by confronting: a full-dimensional basin com-
putations with the NSSCM in resolution with 40 cells per dimension (total 406 =
4′096′000′000 cells), where image cells were captured at stroboscopic Poincaré sec-
tion located at time-step of 15 excitation periods; and GoS for specific 2D cross-
sections with 40x40 and 150x150 initial condition grids, with the integration time
restricted again to 75 periods.

Let us take first into the consideration the 2D cross-section y0-y1 with y2 = 2.775,
y3 = −0.225, y4 = 1.125, y5 = 0.075. A plot in Fig. 5.4a is extracted from a full-
dimensional NSSCM basin, and the plots computed with GoS in low and high reso-
lution are shown in Fig. 5.4b-c. The cross-section shows two large compact basins,
without the intrusion of any other basin or fractalities. Moreover, the border be-
tween them is what can be considered as a smooth curve from a numerical point of
view.

NSSCM (40x40) GoS (40x40) GoS (150x150)

-2 0 2

2

0

-2

y0

y1

-2 0 2

2

0

-2

y0

y1

-2 0 2

2

0

-2

y0

y1

FIGURE 5.4: Basins of test system in 2D y0-y1 cross-sections with large
compact parts at y2 = 2.775, y3 = −0.225, y4 = 1.125, y5 = 0.075.

The compactness is reduced within the regions where basins are tangled. Exam-
ples are shown in Fig. 5.5 (y0-y1 cross-section with fixed y2 = 0.825, y3 = 0.825,
y4 = 0.825, y5 = 0.825) and Fig. 5.6 (y0-y1 cross-section with fixed y2 = −0.075,
y3 = 1.425, y4 = −0.525, y5 = 1.275).
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FIGURE 5.5: Cross-sections with both tangled and compact basins
for ω = 1.4 at 2D y0-y1 cross-sections with large compact parts at

y2 = 0.825, y3 = 0.825, y4 = 0.825, y5 = 0.825.

Moreover, at the regions where basins are tangled, riddled and/or have frac-
tal boundaries, cells can contain segments belonging to different basins, which is
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FIGURE 5.6: Cross-sections with both tangled and compact basins
for ω = 1.4 at 2D y0-y1 cross-sections with large compact parts at

y2 = −0.075, y3 = 1.425, y4 = −0.525, y5 = 1.275.

a characteristic of a cell discretization procedure, and is not related to computing
approaches. Thus, the accuracy inevitably decreases, as neither approach is able to
precisely decide which one is the proper basin, for those cells that encompass frag-
ments of multiple basins. Those circumstances are not necessarily disadvantageous,
because the IF calculations does not consider disputable cells for the compact basin
due to their vicinity to distinctly separate basin(s).

Such setting occurs in the cell-space region y0-y1-y2, with remaining coordinates
set to be y3 = −1.425, y4 = −1.425, y5 = −1.425. For example, it is clear from Fig.
5.7 for y2 = −0.225, Fig. 5.8 for y2 = 0.075 and Fig. 5.9 for y2 = 0.375, which neither
basin (on those cross-sections) is noteworthy compact in comparison to those in Fig.
5.4.
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FIGURE 5.7: Basin for ω = 1.4 at region with substantial fractal parts
and basin intermittency, y0-y1-y2 with y3 = −1.425, y4 = −1.425,

y5 = −1.425 at cross-section with y2 = −0.225.

Complexity of high-dimensional systems also downgrades integrity with the
likelihood of abrupt basins structure changes for low coordinate step in some di-
rection. Moreover, this phenomenon often occurs together with tangled basins and
fractal boundaries. For an example, lets inspect the basin’s structure for the small
change in y2 direction of the y0-y1 cross-section, with fixed y3 = 1.725, y4 = −1.575,
y5 = 0.975. The basins for y2 = −2.625 are plotted in Fig. 5.10.

How the basin’s structure changes when a coordinate is varied by one cell (∆y2 =
0.15), is shown in Fig. 5.11 for y2 = −2.475. It can be seen that basins from cross-
section in Fig. 5.10 are replaced with basins of other attractors. Those basins also
have smaller compact parts.
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FIGURE 5.8: Basin for ω = 1.4 at region with substantial fractal parts
and basin intermittency, y0-y1-y2 with y3 = −1.425, y4 = −1.425,

y5 = −1.425 at cross-section with y2 = 0.075.
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FIGURE 5.9: Basin for ω = 1.4 at region with substantial fractal parts
and basin intermittency, y0-y1-y2 with y3 = −1.425, y4 = −1.425,

y5 = −1.425 at cross-section with y2 = 0.375.
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FIGURE 5.10: Basin for ω = 1.4 at y0-y1 with y3 = 1.725, y4 = −1.575,
y5 = 0.975, where structure of basin changes abruptly, on cross-

section y2 = −2.625.
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FIGURE 5.11: Basin for ω = 1.4 at y0-y1 with y3 = 1.725, y4 = −1.575,
y5 = 0.975, where structure of basin changes abruptly, on cross-

section y2 = −2.475.

Another change of the y2 coordinate for a single cell results in a drastic increase
of basin robustness. This change is illustrated in Fig. 5.12, where y2 = −2.325.
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FIGURE 5.12: Basin for ω = 1.4 at y0-y1 with y3 = 1.725, y4 = −1.575,
y5 = 0.975, where structure of basin changes abruptly, on cross-

section y2 = −2.325.

After analysis of the basin’s structure, we can give a brief conclusion. Consid-
ering that basin boundary and cells close to fractal basin parts are not within a safe
basin defined by IF, we are not concerned to precisely distinguish basins in those re-
gions. Those cells are considered as unwanted initial conditions regardless to which
basin they belong. Moreover, drastic changes in basin’s structure demonstrate ne-
cessity to compute a full-dimensional basin for a proper global analysis. Conse-
quently, the low resolution NSSCM method is a valid approach for computing full-
dimensional basins oriented to the robustness analysis with IF.

5.4 Dynamical integrity

Up to this point, the discussion was about the computing approach for a discovery
of full-dimensional basins of six-dimensional nonlinear systems. As it has been es-
tablished that NSSCM is indeed a time-efficient and accurate enough method, now
we discuss its application to determine dynamical integrity.
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TABLE 5.3: Integrity factors (with chess-board distance metric) for
FDO basin within state-space yi = (−3, 3), expressed as hyper-cube

edge length (in number of cells).

attr. color blue gray purple green red

IF 5 6 6 5 6

To supplement the claims from the previous Section 5.3 and to demonstrate the
necessity to compute full-dimensional basins in order to determine dynamical in-
tegrity, we examine basin compactness on the 3D cross-section y0-y1-yz = 2 with
fixed y3 = −0.075, y4 = −0.075, y5 = −0.075.

Let us first consider a 2D cross-section at y2 = −2.175, where the basin colored
in gray is compact and dominant over the blue one. A plot in Fig. 5.13a shows this
cross-section extracted from the full-dimensional basin computed with the NSSCM.
The high-resolution plot computed with GoS is shown in Fig. 5.13b. Its spatial
position within the 3D cross-section is plotted in Fig. 5.13c.

Now, we can examine if the gray basin is indeed robust and compact. To do it, we
traverse the 3D cross-section in y0, y1 and y2 directions (pointed with black arrows in
Fig. 5.13) and visually inspect the 2D slices highlighted with the red square contour.

From Figures 5.13d-f, with the slices at y0 = −1.425, y0 = −0.075 and y0 = 1.575,
it is apparent that the basin colored in blue is dominant and with a larger compact
part than the gray one. Similar settings are also seen on the slices at y1 = −1.425,
y1 = −0.075 and y1 = 1.575, plotted in Figures 5.13g-i and y2 = −1.425, y2 = −0.075
and y2 = 1.575 in Figures 5.13j-l. Moreover, in certain regions the gray basin is not
present, like in Fig. 5.13k.

Furthermore, there is neither information about other basins not present in the
examined cross-sections nor about the structure in other regions of state-space. Also,
it is not possible to visually inspect a whole 6D state-space and it is clear that in
general the analysis in low-dimensional cross-sections cannot provide all necessary
information. Therefore, the only reliable way to determine the robustness of high-
dimensional systems is a full-dimensional analysis.

Actual compactness of the basin for the FDO system is summarised in Table 5.3.
It shows the edge length of the largest 6D cube that can be fitted inside each basin
present in the state-space yi = (−3, 3).

However, the IF (or any relevant integrity measure) computed for a single value
of a system parameter is not globally useful information by itself. A proper anal-
ysis comes in the form of erosion profiles - plots that illustrate how an integrity
measure behaves when a system parameter is changed. Unfortunately, to generate
those plots for a high-dimensional system, one needs to recompute full-dimensional
basins for each parameter value, draining large amounts of computation resources.
Although the plotting of erosion profiles would round-up this thesis, it was not pos-
sible to compute it with the limited computing resources. Nevertheless, compu-
tations demonstrated within this thesis can give us a valuable information which
attractors are robust for the application at particular frequencies.
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FIGURE 5.13: Compactness change of FDO basins within 3D cross-
section y0,y1,yz = 2 with fixed y3 = −0.075,y4 = −0.075,y5 = −0.075.
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Chapter 6

EXAMPLES

Aimed to determine the global behavior and crown it with computation of dynam-
ical integrity, we examine dynamics of two examples in this chapter, the models of
a sympodial tree with first level branches (STREE) and a rotating hub with two
attached pendula (RHUB).

The sympodial tree model with first level branches is examined in collaboration
with Prof. Ivana Kovačić1, whose research group is working on theoretical and ex-
perimental research on tree behaviour.

In collaboration with PhD Zofia Szmit2, we provide basins of attraction for the
system examined in [20]. This system was the first step of the research of behaviour
of helicopter blades that is an ongoing effort of this research group.

The key intention of this chapter is to illustrate basin complexity for those ex-
ample dynamical systems. Foremost, brute force bifurcation diagrams are plot-
ted to isolate multi-stable regions, convenient for building the basins of attraction.
Those plots show intersecting points of steady-state trajectories with a stroboscopic
Poincaré map, for an upsweep and downsweep excitation frequency quasi-statical
change. Although the multi-stable regions are isolated this way, it is not certain
if all the attractors are discovered. To capture all the attractors, we build a full-
dimensional basin.

Then, the basin structure for each example is visually inspected on various low-
dimensional cross-sections. However, the global properties of the basin are deter-
mined by computing the integrity factor (with a chessboard distance metric), which
represents the magnitude of safe basins compactness.

6.1 Sympodial tree model with first-level branches

The interest in studying dynamics of trees comes from their ability to endure variety
of detrimental natural conditions. To be appropriately exploited for engineering
applications, this resilient behaviour needs to be understood first. So far, two main
approaches to model trees are: as a combination of rigid body elements (e.g. [19, 79–
81]); and as elastic bodies with finite element method, as in [82, 83]. Some of the
experiments that supplement those theoretical studies are presented in [83], while
certain engineering applications are summarized in [84].

We analyse the basins of attraction and dynamical integrity of the periodically
excited nonlinear model of the sympodial tree with first-level branches [19]. The
results of this analysis can be used as a foundation to examine behaviour of slender
structures subjected to conditions analogous to those acting on trees in nature. The
analysis presented herein is a summary of preliminary work published in [17] and

1Faculty of Technical Sciences, University of Novi Sad, Serbia
2Lublin University of Technology, Lublin, Poland
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is still an ongoing research, which is related to some of the rich nonlinear behaviour
of this model.

6.1.1 Equations of motion

The model under examination, presented in Fig. 6.1 is adopted from [19], with the
addition of the periodic torque of magnitude M and angular frequency Ω, applied to
the element representing the tree trunk. Two identical branches with mass m1, length
l1 and diameter D1 are attached to the trunk with the corresponding parameters m,
l and D. The trunk can perform rotations around the axis of the hinge that attaches
it to the base, and is connected to the ground by a spring with stiffness coefficient k
and a viscous damper with damping coefficient b. Viscous dampers and springs also
connect branches to the trunk, and their respective coefficients are labelled by b1 and
k1. The generalized coordinates are defined as the absolute angles, ϕ for the trunk
and ψ1, ψ2 for the branches, and are measured against the respective equilibrium
positions, as shown in Fig. 6.1b. The equilibrium angle of the branches with respect
to the trunk is defined by the branching angle α.

a)

� �

M sin(�t)

b,k

b1,k1b1,k1

D,l,m

D1,l1,m1D1,l1,m1

b)

��

��

�

FIGURE 6.1: Model of sympodial tree with first-level branches, a)
model properties, b) generalized coordinates.

To properly mimic characteristics of the sympodial tree, two additional param-
eters are introduced to the model: the lateral branching ratio λ = 1/2 [85], which
describes the proportion of the cross-sectional area for successive segments; and the
slenderness coefficient s = 3/2 [85, 86], which relates the length and the diameter of
each element. Then, the remaining model parameters are defined as follows: the
diameter ratio D1/D = λ1/2, the length ratio l1/l = λ1/2s, the mass ratio m1/m = λ4/3,
the stiffness ratio κ = k1/k, the dimensionless damping coefficient ζ = b/2l

√
3/km

and the damping ratio β = b1/b. Consequently, the governing system of equations is
derived in the following dimensionless form:
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FIGURE 6.2: Trunk segment brute force bifurcation diagram for ζ =
0.02 in excitation frequencies interval ω = (0, 3.6)

−2κ(ψ1 + ψ2)− 4βζ(ψ̇1 + ψ̇2)

−3λ5/3ψ̇2
2 sin(α− ϕ + ψ2) + 2(1 + κ)ϕ + 4(1 + 2β)ζ ϕ̇

+3λ5/3ψ̇2
1 sin(α + ϕ− ψ1) + 2(1 + 6λ4/3)ϕ̈

+3λ5/3ψ̈1cos(α + ϕ− ψ1)− 3λ5/3ψ̈2 cos(α− ϕ + ψ2) = 2M cos(Ωt), (6.1)
2κϕ + 4βζ ϕ̇ + 3λ5/3 ϕ̇2 sin(α + ϕ− ψ1)− 2κψ1

−4βζψ̇1 − 3λ5/3 ϕ̈ cos(α + ϕ− ψ1)− 2λ2ψ̈1 = 0, (6.2)
2κϕ + 4βζ ϕ̇− 3λ5/3 ϕ̇2 sin(α− ϕ + ψ2)− 2κψ1

−4βζψ̇2 − 3λ5/3 ϕ̈ cos(α− ϕ + ψ2) + 2λ2ψ̈2 = 0. (6.3)

To examine basins of attraction, the Eqs. (6.1-6.3) are transformed into a sys-
tem of six first-order ordinary differential equations by introducing y0 = ϕ, y1 =
ϕ̇, y2 = ψ1, y3 = ψ̇1, y4 = ψ2, y5 = ψ̇2. The transformed system is more suitable for
numerical simulations and the analysis of attractors and the corresponding basins
in phase-space, herein not reported due to a cumbersome form caused by strong
nonlinearities.

6.1.2 Bifurcation diagrams and attractors

With dimensionless damping coefficient values adopted from [19] in the interval
ζ = (0.02, 0.03), we can realistically represent tree dynamics. Hence, we search for
multi-stability regions by plotting the trunk segment frequency-amplitude diagrams
for ζ = 0.02 in Fig. 6.2, ζ = 0.025 in Fig. 6.3 and ζ = 0.03 in Fig. 6.4. The plots show
the angular displacement y0 and the angular velocity y1 in the excitation frequency
interval ω = (0, 3.6).

Considering that it is not possible (with HPC platforms at our disposal) to achieve
acceptable resolution of full-dimensional basins for large 6D state-space windows,
we look for multi-stable regions without high (resonant) amplitudes.

Such regions of interest exist within the excitation interval: ω = (1.4, 1.7) for ζ =
0.02, plotted in Fig. 6.5; ω = (1.5, 1.65) for ζ = 0.025 in Fig. 6.6; and ω = (1.54, 1.64)
for ζ = 0.03 in Fig. 6.7.
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FIGURE 6.3: Brute force bifurcation diagram for ζ = 0.025 in excita-
tion frequencies interval ω = (0, 3.6)
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FIGURE 6.4: Brute force bifurcation diagram for ζ = 0.03 in excitation
frequencies interval ω = (0, 3.6)
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FIGURE 6.5: Brute force bifurcation diagram for ζ = 0.02 in excitation
frequencies interval ω = (1.35, 1.75)

a)

1.50 1.55 1.60 1.65 1.70
ω

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

y0

b)
1.50 1.55 1.60 1.65 1.70

ω

0.2

0.4

0.6

y1

FIGURE 6.6: Brute force bifurcation diagram for ζ = 0.025 in excita-
tion frequencies interval ω = (1.47, 1.7)
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FIGURE 6.7: Brute force bifurcation diagram for ζ = 0.03 in excitation
frequencies interval ω = (1.52, 1.64)

Before analysing the bifurcation diagrams in Figures 6.5-6.7, it is important to
notice that the regions around bifurcation points are characterized with apparent
multi-stability. Down-sweep trajectories have very long transients, which makes
it very difficult to numerically compute the actual steady-state. Consequently, it
falsely seams that a QP attractor coexist with a PR one, but in fact those trajectories
are still being in a transient phase, which eventually settles on the PR attractor.

This (numerical) phenomenon resembles the case of ghost attractors that can
happen near bifurcations when some attractor disappears catastrophically [87, 88].
Trajectories linger within the state-space where the attractor existed for a very long
(transient) time. Those trajectories resemble the structure of the former attractors
and it can falsely lead to the conclusion that a particular steady-state still exists. This
conclusion was made by looking at the decrease rate of the transient amplitudes.
Namely, the difference could not be noticed (neither numerically nor visually), un-
less the compared amplitudes were several thousand of periods apart. The very
slow (but steady) decreasing tendency made us conclude that the trajectories con-
verge to the a PR attractor. Theoretically, this and similar issues could be eliminated
by a longer integration, however our numerical tools were not able to compute tra-
jectories for such long time periods (more than hundred thousands of periods).

For example, some of the frequencies where this phenomenon occurs are in Fig.
6.5 near ω = 1.65, in Fig. 6.6 near ω = 1.64, in Fig. 6.7 near ω = 1.615 and in Fig. 6.8
near ω = 2.95 and ω = 3.155.

Consequently, also the region in Fig. 6.8 is not multi-stable, and therefore not
considered for basins building, although it has rich nonlinear behavior: a widespread
QP motion with short PR windows for some frequencies.
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FIGURE 6.8: Brute force bifurcation diagram for ζ = 0.02 in excitation
frequencies interval ω = (2.9, 3.2)

The similar phenomenon also occurs near the bifurcation points where two PR
attractors with different periodicity are involved, as in Fig. 6.5 at ω = 1.4 or in Fig.
6.6 near the frequencies ω = 1.52 and ω = 1.58.

By looking at the bifurcation diagrams, we see that for the system of equations
(6.1-6.3), we have three types of steady-state responses: period one (PR1), period
three (PR3) and quasi-periodic. Within multi-stable regions, we have PR1-PR3, PR1-
QP and PR3-QP combinations of the coexisting attractors. Those multi-stable regions
and attractor combinations that exist are summarised in Table 6.1. For ζ = 0.02, near
ω = 1.6, we were not able to confirm if it is a ghost or the QP attractor - beside PR3
attractor - direct integration shows a trajectory that behaves as a QP steady state,
while both NSSCM and GoS report only PR3 behaviour (no multi-stability). Conse-
quently, leading to the conclusion that QP is a repellor, which often cannot be dis-
covered with the basins of attraction searching methods. Some regions exist for very
narrow band of frequencies, thus, they are represented with a single ω value only.
Moreover, the exact values of frequencies where bifurcation points occur are numer-
ically difficult to be precisely determined, thus the values of ω interval boundaries
are approximate.

TABLE 6.1: Summary of multi-stable regions of STREE system and
combinations of coexisting attractors.

ζ = 0.02
ω = (1.4, 1.525) ω = (1.525, 1.545) ω = (1.545, 1.57)

PR1-PR3 PR1-QP PR1-PR3

ζ = 0.025
ω = (1.515, 1.575) ω = 1.5755 -

PR1-PR3 PR3-QP -

ζ = 0.03
ω = (1.545, 1.595) - -

PR1-QP - -

To illustrate the steady-state dynamics within the state-space window yi = (−3, 3),
we plot the corresponding attractors for the values of ζ and ω that were considered
for building the basins.
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For ζ = 0.02, at the frequency ω = 1.45, the PR1 attractor coexists with a PR3
one. The projections of their trajectories (PR1 colored in blue and PR3 in red) on the
y0, y1 and y0, y2 plane are plotted in Fig. 6.9.
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FIGURE 6.9: Trajectories of PR1 (blue) and PR3 (red) attractors, pro-
jected on a) y0, y1 and b) y0, y2 plane, obtained for ζ = 0.02, ω = 1.45.

For the frequency ω = 1.53, there is a combination of PR1 and QP multi-stable
behavior, which is plotted in Fig. 6.10 on the Poincaré sections in the y0, y1 and y0,
y2 plane.
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FIGURE 6.10: Poincaré sections of PR1 (blue) and QP (red) attractors
in a) y0, y1 and b) y0, y2 plane, obtained for ζ = 0.02, ω = 1.53.

Another PR1-PR3 behaviour is observed for ζ = 0.025 at the excitation frequency
ω = 1.55. In Fig. 6.11, which illustrates projections on the y0, y1 and y0, y2 planes,
the trajectory of the PR1 attractor is colored in blue and of the PR3 in red.

The settings where the PR3 and QP attractors exist simultaneously happen for
ζ = 0.025 in a very narrow frequency band near ω = 1.5755. The points at which
those attractors intersect Poincaré sections in the y0, y1 and y0, y2 plane are plotted
in Fig. 6.12, (PR3 colored i blue and QP in red).
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FIGURE 6.11: Trajectories of PR1 (blue) and PR3 (red) attractors,
projected on a) y0, y1 and b) y0, y2 plane, obtained for ζ = 0.025,

ω = 1.55.
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FIGURE 6.12: Poincaré sections of PR3 (blue) and QP (red) attractors
in a) y0, y1 and b) y0, y2 plane, obtained for ζ = 0.025, ω = 1.5755.
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For a higher value of damping, ζ = 0.03, only one multi-stable region is detected.
Within it, there is a PR1 attractor, whose intersections with the Poincaré section y0,
y1 and the y0, y2 plane colored in blue in Fig. 6.13, while a QP is colored in red.
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FIGURE 6.13: Poincaré sections of PR1 (blue) and QP (red) attractors
in a) y0, y1 and b) y0, y2 plane, obtained for ζ = 0.03, ω = 1.58.

6.1.3 Basins of attraction: structure and integrity

Long transients with high amplitudes cause significant difficulties for precise com-
putation of the global steady-state behaviour for STREE system. GoS requires on
average 250 period long integrations to determine a basin with adequate certainty.
It is utterly unacceptable in 6D for a full-dimensional basin analysis. Thus, we have
to accept that there may be some cross-sections with less accurate basins than pre-
ferred. When this situation happens on a gross part of the basin, the computations
must be prolonged. In our case, the sufficient basin accuracy was achieved for inte-
grations over 24 periods.

Basin are computed on the CL-C cluster, with computational setting (the number
of parallel tasks per a NSSCM stage) the same as in Table 5.2. Computations of
image cells lasted about 7 hours, map post-processing 11 minutes, basin file writing
15 minutes and computation of integrity factor from 2 to 5 hours (longer time was
required for more robust basins). Certain properties of the computed attractors (with
the SCM, NSSCM and GoS) and the basin for examined settings are summarised in
Table 6.2.
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TABLE 6.2: Properties of STREE attractors and basins.

attractors integrity factor

(SCM/NSSCM/GoS) (number of cells)

ζ = 0.02 PR1 - PR3 PR1 (12)

ω = 1.45 13 / 3 / 2 PR3 (4)

ζ = 0.02 PR1 - QP PR1 (12)

ω = 1.53 10 / 4 / 2 QP (4)

ζ = 0.025 PR1 - PR3 PR1 (15)

ω = 1.55 4 / 2 / 2 PR3 (3)

ζ = 0.025 PR1 - QP PR1 (14)

ω = 1.5755 6 / 3 / 2 QP (3)

ζ = 0.03 PR1 - QP PR1 (18)

ω = 1.58 3 / 2 / 2 QP (3)

What the examination of the bifurcation diagrams showed and the integrity anal-
ysis confirmed (Table 6.2, integrity factor), is that the PR1 motion is predominant
behavior of the STREE system. To visualize this setting, we examine basins struc-
ture for conditions that may occur in nature. With this simple tree model, we can
consider wind as a source of non-zero initial angular velocities, beside its influence
as harmonic excitation. This illustrates the impact of initial conditions on the global
behaviour of the system (6.1-6.3) and how it influences the measures of dynamical
integrity, and consequently its overall robustness.

Thus, we take into account the motion with zero initial angular displacements3,
which may be regarded as wind conditions. Now, we examine the behaviour of
each segment by looking at its basin structure - the relationship of displacement and
velocity (angular) under different initial configurations. For clarity of figures, the
axes are not drawn in the following sections 6.1.3.1, 6.1.3.2 and 6.1.3.3, and all the
plots show the yi = (−3, 3) state-space window.

6.1.3.1 Basin structure for PR1-PR3 attractor combination at ζ = 0.02 and ω =
1.45

It is evident from Fig. 6.14 that only small portion of initial conditions lead to PR3
steady-state. It requires to increase the magnitude of initial angular velocity of trunk
itself (y1) and right branch (y5), while the left branch (angular velocity y3) does not
have particular influence.

The left branch y2-y3 cross-section area is, for higher initial condition magni-
tudes, roughly equally covered with both P1 and P3 basins, as shown in Fig. 6.15.
However, it is the consequence of inaccuracies caused by large amplitudes, where
SCM/NSSCM cannot precisely determine trajectories. In reality those cross-sections
(validated with direct integration) show no traces of a P3 basin.

3the exact zero values could not be achieved as a consequence of the discretization scheme



64 Chapter 6. EXAMPLES

y3 = 0.075 y3 = 0.825 y3 = 1.575 y3 = 2.325

y 5
=

0.
07

5
y 5

=
0.

82
5

y 5
=

1.
57

5
y 5

=
2.

32
5

FIGURE 6.14: Basin structure of trunk segment in y0-y1 plane, for ζ =
0.02 and ω = 1.45), with the change in initial magnitude of branches
angular velocities y3 and y5, while initial angular displacements are
y2,4 = 0.075 (close to zero). In blue is basin of the PR1, in red of the

PR3 attractor.
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FIGURE 6.15: Basin structure of left branch segment in y2-y3 plane, for
ζ = 0.02 and ω = 1.45, with the change in initial magnitude of trunk
and right branch angular velocities y1 and y5, while initial angular
displacements are y0,4 = 0.075 (close to zero). In blue is basin of the

PR1, in red of the PR3 attractor.
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It is evident from Fig. 6.16 that the magnitude of the initial angular velocity of
the trunk has a major impact on steady-state behaviour of right branch segment.
The motion is principally P1 with some P3 regions where the initial magnitudes of
y3 and y5 are higher than of y1.
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FIGURE 6.16: Basin structure of right branch segment in y4-y5 plane,
for ζ = 0.02 and ω = 1.45, with the change in initial magnitude of
trunk and left branch angular velocities y3 and y5, while initial angu-
lar displacements are y0,2 = 0.075 (close to zero). In blue is basin of

the PR1, in red of the PR3 attractor.

6.1.3.2 Basin structure for PR3-QP attractor combination at ζ = 0.025 and ω =
1.5755

The specific case where the STREE system have a PR3 and QP attractors happens
only in the very narrow frequency band around ω = 1.5755 for ζ = 0.025. The PR3
behaviour of the trunk segment is evidently dominant over the QP motion, which
may be seen in Fig. 6.17.

The global behaviour of the branches is quite similar to each other. We can con-
clude from Figures 6.18 and 6.19 that the QP steady-state of both branches is on a
par with PR3 only when the initial magnitude of the trunk angular velocity is close
to zero. Otherwise, the PR3 is a predominant attracting behaviour.
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FIGURE 6.17: Basin structure of trunk segment in y0-y1 plane, for
ζ = 0.025 and ω = 1.5755), with the change in initial magnitude of
branches angular velocities y3 and y5, while initial angular displace-
ments are y2,4 = 0.075 (close to zero). In blue is basin of the PR3, in

red of the QP attractor.
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FIGURE 6.18: Basin structure of left branch segment in y2-y3 plane,
for ζ = 0.025 and ω = 1.5755, with the change in initial magnitude
of trunk and right branch angular velocities y1 and y5, while initial
angular displacements are y0,4 = 0.075 (close to zero). In blue is basin

of the PR3, in red of the QP attractor.



6.1. Sympodial tree model with first-level branches 69

y1 = 0.075 y1 = 0.825 y1 = 1.575 y1 = 2.325

y 3
=

0.
07

5
y 3

=
0.

82
5

y 3
=

1.
57

5
y 3

=
2.

32
5

FIGURE 6.19: Basin structure of right branch segment in y4-y5 plane,
for ζ = 0.025 and ω = 1.5755, with the change in initial magnitude
of trunk and left branch angular velocities y3 and y5, while initial
angular displacements are y0,2 = 0.075 (close to zero). In blue is basin

of the PR3, in red of the QP attractor.
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6.1.3.3 Basin structure for PR1-QP attractor combination at ζ = 0.03 and ω = 1.58

The case with ζ = 0.03 expectedly shows that higher damping greatly suppresses
irregular motions, such as QP for ω = 1.58. In Figure 6.20 plotted for the trunk
segment steady-state behaviour we see only traces of the QP basin, which was small,
but clearly present, in case with lower damping (ζ = 0.025) and similar frequency
(ω = 1.5755) in Fig. 6.17.
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FIGURE 6.20: Basin structure of trunk segment in y0-y1 plane, for ζ =
0.03 and ω = 1.58), with the change in initial magnitude of branches
angular velocities y3 and y5, while initial angular displacements are
y2,4 = 0.075 (close to zero). In blue is basin of the PR1, in red of the

QP attractor.

In comparison with a less damped case, we notice from Fig. 6.21 and 6.22 that
QP basins (for low values of the trunk initial velocity) is still compact, however it
covers a smaller part of the examined region.

6.2 Rotating hub with two pendulums

Rotating structures such as jet engine turbines, helicopter blades and wind turbines,
are very important in aerospatial and mechanical engineering. The authors of [20]
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FIGURE 6.21: Basin structure of left branch segment in y2-y3 plane, for
ζ = 0.03 and ω = 1.58, with the change in initial magnitude of trunk
and right branch angular velocities y1 and y5, while initial angular
displacements are y0,4 = 0.075 (close to zero). In blue is basin of the

PR1, in red of the QP attractor.
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FIGURE 6.22: Basin structure of right branch segment in y4-y5 plane,
for ζ = 0.03 and ω = 1.58, with the change in initial magnitude of
trunk and left branch angular velocities y3 and y5, while initial angu-
lar displacements are y0,2 = 0.075 (close to zero). In blue is basin of

the PR1, in red of the QP attractor.
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examined a system composed of two pendula attached to a hub, which rotates in a
horizontal plane. In addition to the published analysis, herein we provide the exam-
ples of basin and dynamical integrity for several values of the excitation frequency
for this system.

6.2.1 Equations of motion

The considered model of a rotating structure is shown in Fig. 6.23, and is composed
of two pendula symmetrically attached to a hub placed in a horizontal plane. The
hub with a radius R and a moment of inertia J0 is hinged in its center by a nonlinear
spring with the stiffness coefficient k, k∗ (k is the coefficient of the linear and k∗ of
the cubic polynomial terms). The pendula are modeled as lumped masses attached
to a rigid and massless rods with length l1 and l2, connected to the hub by a hinged
Duffing-like joint. Masses of pendula are m1 and m2, while viscosity and stiffness
of the nonlinear spring in joints are denoted by c1, k1, k∗1 and c2, k2, k∗2, respectively.
The generalized coordinate ψ is defined as the absolute angle of hub rotation. The
coordinates ϕ1 and ϕ2 are measured as relative angles of the pendula with respect to
a coordinate system attached to the center of the hub. In addition, the hub is excited
with a harmonic torque of magnitude M.

FIGURE 6.23: Model of rotating hub with two pendula.

By introducing dimensionless time τ = ω∗01t, where ω∗01 =
√

k1/m1l2
1 is natural

frequency of the right pendula, we get the equations of motion in the following
dimensionless form:
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(1 + γ1 + γ2)ψ̈ + ζhψ̇ + 2
γ1

δ1
δ̇1ψ̇

+2
γ2

δ2
δ̇2ψ̇ +

γ1

δ1
cos β1 ϕ̈1 +

γ2

δ2
cos β2 ϕ̈2 +

γ1

δ2
1

cos β1δ̇1 ϕ̇1

+
γ2

δ2
2

cos β2δ̇2 ϕ̇2 +
γ1

δ1

d
dτ

(cos β1)ϕ̇1 +
γ2

δ2

d
dτ

(cos β2)ϕ̇2 + κhψ + Khψ3 = µ,(6.4)

ϕ̈1 + δ1 cos β1ψ̈ + δ1
d

dτ
(cos β1)ψ̇ + cos β1δ̇1ψ̇− δ1

dδ1

dϕ1
ψ̇2

− cos β1δ̇1ψ̇− δ1
d

dτ
(cos β1)ψ̇ + ζ1 ϕ̇1 + ω2

01ϕ1 + κ1ω2
01ϕ3

1 = 0, (6.5)

ϕ̈2 + δ2 cos β2ψ̈ + δ2
d

dτ
(cos β2)ψ̇ + cos β2δ̇2ψ̇− δ2

dδ2

dϕ2
ψ̇2

− cos β2δ̇2ψ̇− δ2
d

dτ
(cos β2)ψ̇ + ζ2 ϕ̇2 + ω2

02ϕ2 + κ2ω2
02ϕ3

2 = 0, (6.6)

where j = 1, 2 and

ω0j =
ω∗0j

ω∗01
, δ0j =

R
lj

, δj =
Rj

lj
=
√

δ2
0j + 1 + 2δ0j cos ϕj

cos β j =

√√√√1−
δ2

0j

δ2
j

sin2 ϕj, γ0j =
mjl2

j

J0
, γj = γ0jδ

2
j , κj =

k∗j
k1

,

κh = γ01k, Kh = γ01k∗, ζ j =
cj

mjl2
j ω∗01

, ζh =
ch

J0ω∗01
, µ =

M
J0ω∗201

. (6.7)

Equations (6.4-6.6) are transformed into the system of six first-order ordinary
differential equations by introducing the following relations: y0 = ψ, y1 = ψ̇, y2 =
ϕ1, y3 = ϕ̇1, y4 = ϕ2, y5 = ϕ̇2. The transformed systems is not reported due to its
very cumbersome form.

6.2.2 Bifurcation diagrams and attractors

The brute force bifurcation diagrams in Fig. 6.24 show two multi-stability regions
for the parameter values δ11 = 0.24, δ22 = 0.26, γ01 = 0.0444, γ02 = 0.0444, κ1 = 0.5,
κ2 = 0.5, ω1 = 1, ω2 = 1, ζ1 = 0.1, ζ2 = 0.1, ζh = 0.1, κh = 1, Kh = 1 and the
excitation term in the form µ cos ωt with the amplitude µ = 0.3.

The multi-stable region (without resonant amplitudes) that can be examined by
adequate resolution with the NSSCM exists in the excitation frequency interval ω =
(1.2, 1.65), as plotted in Fig. 6.25.

Three PR1 attractors exist within the yi = (−3, 3) window. The projection of
their trajectories on the y0-y1, y2-y3 and y4-y5 planes are plotted in Figures 6.26-6.28
for ω = 1.4, ω = 1.5 and ω = 1.6, respectively.

6.2.3 Basins of attraction: structure and integrity

It is evident that for the chosen parameter values, and the excitation frequency in-
terval ω = (1.2, 1.65), three PR1 distinct steady-state motions compete within the
yi = (−3, 3) window. To determine if any of them is predominant and what is their
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FIGURE 6.24: Brute force bifurcation diagrams of RHUB system for
ω = (0, 2.4).
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FIGURE 6.25: Brute force bifurcation diagrams of RHUB system for
ω = (1.2, 1.65).
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FIGURE 6.26: Trajectories of RHUB system attractors for ω = 1.4 in-
side yi = (−3, 3) window, projected on a) y0-y1, b) y2-y3 and c) y4-y5

plane.
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FIGURE 6.27: Trajectories of RHUB system attractors for ω = 1.5 in-
side yi = (−3, 3) window, projected on a) y0-y1, b) y2-y3 and c) y4-y5

plane.
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FIGURE 6.28: Trajectories of RHUB system attractors for ω = 1.6 in-
side yi = (−3, 3) window, projected on a) y0-y1, b) y2-y3 and c) y4-y5

plane.

robustness relative to each other, we compute full-dimensional basins for the exci-
tation frequencies ω = 1.4, ω = 1.5 and ω = 1.6. Moreover, we can also observe
the basin on particular low-dimensional cross-sections. An example of the basin
cross-section evolution (for varying excitation frequency ω) and the comparison of
NSSCM and GoS computations is shown in Fig. 6.29.

Measures of integrity factor computed with a chessboard distance metric in Ta-
ble 6.3 show directly why integrity analysis and ultimately erosion profiles are the
significant factor in development of an engineering system. Considering that the
examined frequencies are from the middle of multi-stable interval (no bifurcations
around), it is not intuitive that a sudden change in the attractor robustness can oc-
cur. However, it does happen. At the frequencies ω = 1.4 and ω = 1.5, the basins
color-coded in blue and gray have larger compact parts than the purple one. With a
small frequency change to ω = 1.6, the purple basin suddenly becomes much more
compact, compared to other basins and its previous state. An interesting fact is that
the blue and gray basins have a matching level of basin compactness, even when the
overall robustness changes. Those facts precisely tell how will the system behave in
practical applications, which classical stability analysis cannot show.

Considering that the window size is 40 cells per dimension and the largest hyper-
cube that can be accommodated within basin is 8 cells wide, it can be concluded that
neither basins is very robust within the yi = (−3, 3) window. The cause(s) of low
basin robustness/compactness (tangled basins, penetration of fractal tongues, etc.)
can be examined visually on low-dimensional cross-sections.
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FIGURE 6.29: Comparison of basin computed with NSSCM (full-
dimensional basins in resolution of 40 cells per dimension) and with
GoS (2D cross-sections in low and high resolution) for ω = 1.4,
ω = 1.5, ω = 1.6 on y0-y1 cross-section with y2 = 0.375, y3 = 0.375,

y4 = 0.375, y5 = −0.375.

TABLE 6.3: Integrity factors (with chess-board distance metric) for
RHUB basin within state-space yi = (−3, 3), expressed as hyper-cube

edge length (in number of cells).

attr. color blue gray purple

IF for ω = 1.4 7 7 4

IF for ω = 1.5 7 7 6

IF for ω = 1.6 4 5 8
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6.2.3.1 Hub basin structure

The hub is the only segment subjected to the external excitation, thus we are inter-
ested in inspecting the basin structure at the cross-section y0-y1, where the initial
states of the pendula segments are close to zero, namely y2−5 = 0.075. It is evident
from Fig. 6.30a that for the frequency ω = 1.4, the gray basin takes up most of the
area, however, it has the compactness very similar to the purple one.

ω = 1.4 ω = 1.5 ω = 1.6
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FIGURE 6.30: y0-y1 basin cross-section of hub segment with y2−5 =
0.075 for a) ω = 1.4, b) ω = 1.5 and c) ω = 1.6.

For the frequencies ω = 1.5 and ω = 1.6, Figures 6.30b and 6.30c confirm that the
compactness of the purple basin increases. Furthermore, Fig. 6.30 shows that hub
motion will in most cases converge to the attractors colored in gray and purple, from
which it can be expected that the initial states within the blue basin have significant
impact on the pendula.

6.2.3.2 Pendula basin structure for ω = 1.4

As the pendula segments represent very delicate machine elements and are often
susceptible to failures (e.g. crack failures of helicopter rotor blades [89, 90]), it is com-
pelling to examine more closely regions of the basin that testify about their steady-
state behaviour. Thus, we consider the evolution of pendula basin structure on the
respective y2-y3 and y4-y5 cross-sections with the change of the initial states of the
hub segment.

The right pendula, with a shorter length of massless rod (δ11 = 0.24) for the
frequency ω = 1.4 converges to periodic steady-states colored in purple for the ma-
jority of initial states plotted in (entire) Fig. 6.31. However, due to entanglement, its
compactness is not significantly higher than the one of other basins.

The left pendula, with longer length of massless rod (δ11 = 0.26) for the fre-
quency ω = 1.4 has qualitatively similar basins borders (Fig. 6.32). However, the
basin within those borders are different. It means that the pendula will have differ-
ent steady-state behaviour for the same respective initial states (it will not be sym-
metric).

6.2.3.3 Pendula basin structure for ω = 1.5

For ω = 1.5, the pendula repeat mirrored steady-state behaviour for same respective
initial conditions. We see the increased presence of the basin colored in blue from
Figures 6.33 and 6.34, so that all three basins are similarly robust at this frequency.



6.2. Rotating hub with two pendulums 79

y0 = −2.175 y0 = −0.975 y0 = 0.075 y0 = 1.125 y0 = 2.325

y 1
=
−

2.
17

5
y 1

=
−

0.
97

5
y 1

=
0.

07
5

y 1
=

1.
12

5
y 1

=
2.

32
5

FIGURE 6.31: Basin structure of right pendula segment in y2-y3 plane,
for ω = 1.4, with the change in initial magnitude of hub initial states
y0 and y1, while initial states of other pendula are close to zero y4,5 =

0.075.
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FIGURE 6.32: Basin structure of left pendula segment in y2-y3 plane,
for ω = 1.4, with the change in initial magnitude of hub initial states
y0 and y1, while initial states of other pendula are close to zero y2,3 =

0.075.
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FIGURE 6.33: Basin structure of right pendula segment in y2-y3 plane,
for ω = 1.5, with the change in initial magnitude of hub initial states
y0 and y1, while initial states of other pendula are close to zero y4,5 =

0.075.
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FIGURE 6.34: Basin structure of left pendula segment in y2-y3 plane,
for ω = 1.5, with the change in initial magnitude of hub initial states
y0 and y1, while initial states of other pendula are close to zero y2,3 =

0.075.
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6.2.3.4 Pendula basin structure for ω = 1.6

At the frequency ω = 1.6, the purple PR steady-state is the predominant motion for
both pendula. Moreover, we see from Figures 6.35 and 6.36 that for this frequency,
only the basins of blue and gray attractors are mirrored, confirming the stronger
robustness of the purple basin reported in Table 6.3.
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FIGURE 6.35: Basin structure of right pendula segment in y2-y3 plane,
for ω = 1.6, with the change in initial magnitude of hub initial states
y0 and y1, while initial states of other pendula are close to zero y4,5 =

0.075.
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FIGURE 6.36: Basin structure of left pendula segment in y2-y3 plane,
for ω = 1.6, with the change in initial magnitude of hub initial states
y0 and y1, while initial states of other pendula are close to zero y2,3 =

0.075.
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Chapter 7

CONCLUSIONS

This thesis is a summary of efforts directed towards the goal to numerically examine
basins of attraction for high-dimensional systems governed by first-order differen-
tial equations, present in nonlinear dynamics. The purpose of the basin analysis is to
determine robustness of attractors and safeness of the dynamical system, which can
be examined by using the approach of dynamical integrity. Computing of (dynam-
ical) integrity measures is a very (resource and time) demanding numerical process
that requires:

• to integrate a dynamical system for all initial conditions within the considered
state-space;

• check to what attractor each initial condition converges;

• and compute distance transform matrix to get the largest compact part of basin.

Moreover, to precisely determine system safeness, this process has to be repeated for
a relevant interval of a system parameter(s). The results are in the form of erosion
profiles - the plots which show robustness of the attractors related to the system
parameter values.

7.1 Development of NSSCM approach

Initial computations had taken unreasonable amount of time on modern personal
computers, so the analysis had to be migrated to High-Performance Computing
platforms. For the development of software, a small portion of University cluster
was available. As the basin computations were still taking too much time with tra-
ditional Grid of Starts method, it was necessary to employ a faster approach, the
Simple Cell Mapping. However, it is a two-stage method, with each computational
phase being compatible with the opposite type of HPC platforms. This problem is
addressed by parallelization of only a resource consuming part - the integration of
dynamical system (map creation). Parallelization is implemented by assigning one
MPI rank to each node of a cluster. Later, with the access to the CINECA cluster
MARCONI, which had multi-core nodes, the parallelization is hybridized by multi-
threading with OpenMP inside each MPI rank. The post-processing of the map and
search for attractors and the corresponding basins is left sequential, as it is not a par-
allelizable algorithm, and more importantly - even sequentially is drastically faster
than the map creation, which justifies this decision.

As SCM is an approximate method that originally creates a map during transient
motion (to reduce computing costs), several problems occur. The issue of transient
trajectories that escape a predefined state-space is solved by prolonging integration
time to allow those trajectories to reenter the window. It happens in majority of
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examined cases that trajectories reenter much before than they arrive on the neigh-
bourhood of attractor. In other words, the integration time is longer, but still much
shorter than required with GoS. Prolonged integration time introduced with NSSCM
gives a possibility to compute more accurately the basins of externally excited sys-
tems.

The disconnected periodic orbit problem is a propagation of an approximation
error or a discretization issue arising from the position of a stroboscopic Poincaré
section. It causes the SCM to report multiple, separate periodic orbits that should
represent a single physical attractor. The problem is resolved by introducing ad-
ditional post-processing. It connects disconnected periodic orbits by following real
(unapproximated) trajectories emerging from already discovered periodic cells and
confront them with the encountered ones.

The collection of aforementioned improvements and the parallelization of the
original SCM is named Not So Simple Cell Mapping, as the process of computing the
attractor and basins is unchanged. The development of NSSCM constitutes the main
goal of this thesis, which allows the user to accurately compute basins of attraction
for driven nonlinear systems in 6D state-space. Without NSSCM improvements, the
basins obtained with the original SCM would be practically indistinguishable due
to a large number of disconnected attractors and incorrect image cells computed at
an early transient phase.

7.2 Chessboard integrity factor

Once the basin computation approach is established, the attention was moved to a
dynamical integrity analysis. The measure of an attractor robustness is defined as
a largest geometrical object that can be found inside each basin. The intuitive ap-
proach is to search for a hyper-sphere, but this requires the calculation of a distance
transform matrix with the Euclidean distances from each cell to the nearest basin
boundary. In our work, a less compute intensive Chebyshev (chessboard) metric
distance is used, so the integrity factor is defined with a hyper-cube instead of a
sphere. A further decrease in computational time of the distance matrix transform
is achieved by parallelization with OpenMP.

However, without the access to computing resources to compute erosion profiles,
we are constrained to compute integrity factor for only few values of the relevant
system parameter (excitation frequency). Nevertheless, this way did allow us to
draw important conclusions about the system dynamics than the classical stability
analysis would do.

7.3 Viability of NSSCM approach

The efficiency of NSSCM and the value of basins and integrity analysis is illustrated
on the harmonically excited dynamical system composed of three coupled Duffing-
like oscillators.

The reliability of the NSSCM is demonstrated by comparing the accuracy of
basins computed via SCM, NSSCM and GoS in various settings. For shorter inte-
grations, the overall basin accuracy obtained via SCM/NSSCM was low. The in-
tegration time of 15 excitation periods gave a satisfactory accuracy with NSSCM,
which is significantly faster than GoS computations that required at least 50 periods
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(for this dynamical system). Moreover, the SCM computed a high number of dis-
connected attractors making the basins indistinguishable, which was resolved with
CPA of the NSSCM.

With the 8192 parallel tasks the integrations lasted about 5 hours with NSSCM. It
clearly shows how much full-dimensional basin computation is actually demanding,
and why it is crucial to avoid GoS for 6D system. On the other hand, the map post-
processing (basin detection and CPA), implemented sequentially, lasted less than 10
minutes, proving not to be a resource and time consuming process. Computation
time of the distance transform matrices could not have been anticipated, because
it directly depends on the robustness of attractors. Namely, the larger the compact
part of basins, the longer iterations are required to determine the integrity factor.
Considering that the integrity analysis lasted more than one hour with 256 parallel
tasks, it is evident that the choice of the chessboard distance instead of the Euclidean
metric is justified.

The complex structure of basins is the main cause for the necessity to deter-
mine them throughout whole the state-space window, not just on an arbitrary cross-
section. It has been shown that the basin can be large and compact on some cross-
sections, while being noticeably fractalized in other regions of the state-space. More-
over, it has also been demonstrated that for a small coordinate change in some di-
rections, the basins structure may change drastically. Altogether, it confirms that
the computation of full-dimensional basins is unquestionably required to determine
global behaviour.

As it is not possible to visually inspect basins in a 6D state-space, the values of
the integrity factor were used to illustrate the robustness of attractors relative to each
other.

7.4 Global dynamics of sympodial tree model with first level
branches

A sympodial tree model has been analysed for the parameter values that correlate
with the properties of a real tree. It was very resource consuming to determine
steady-states precisely and the basins of attraction due to the long transients. With
the NSSCM, an acceptable accuracy of basins was achieved for the integration time
of 24 excitation periods. It is significantly faster than the GoS method, which re-
quired about 250 periods for accurate results.

The integrity analysis showed that a periodic motion with the period one is
a predominant steady-state behaviour of this dynamical system. It is accompa-
nied with either PR3 or QP attractor within multi-stable intervals. The influence
of initial conditions on global behaviour that belong to secondary attractors is lo-
calized mostly near origin. Moreover, these claims are confirmed by the analysis of
low-dimensional cross-sections and with low basin compactness in comparison to a
much higher value of the integrity factor for the basin of a PR1 attractor.

7.5 Global dynamics of rotating hub model with attached
pendulums

An important conclusion about the system composed of a rotating hub and two at-
tached pendula with unequal lengths, is that some basin can be more robust than the
others, but not necessarily in the regions where the system is exploited in practice.
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Dynamics of this system is periodic in any combination of the parameter values
that were examined and there were three competing PR1 attractors in multi-stable re-
gions. The integrity analysis showed lesser compactness of one particular attractor,
however, its basins were equally distributed on cross-section that were considered
valuable for practical applications.

Moreover, it has been shown that the steady-states of pendula are mirrored,
meaning that it will not have the same global behaviour for the same initial states.
In other words, the basin structure of both pendula is qualitatively the same, but the
respective areas are covered with the basins of another attractors.

7.6 Closure and future work

Hereby the thesis is concluded, with the strong belief that our work has made some
progress toward more a efficient global analysis for examining safeness of nonlinear
systems. However, several possibilities remain open for future efforts

• an efficient parallel algorithm for a map analysis, which would allow high
scalability to large clusters, leading to a better accuracy and precision of basins;

• an efficient parallel algorithm for distance transform matrix computations, re-
gardless the distance metric;

• computation of basin erosion profiles, which can provide better understanding
of high-dimensional system safeness in practical applications.
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