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Abstract 

 

 

 

This dissertation describes a set of methodological improvements in the analysis of 

distributed energy systems and their design, with a particular focus on systems 

involving more than one energy vector (multi-energy systems). The question of the 

planning of such systems is becoming extremely important and needing of novel 

approaches due to an energy fruition scenario which is going to greatly mutate due 

to several changes which can be mostly reconducted to the need of making the 

fruition of energy more sustainable and with a lesser environmental impact. Such 

paradigm changes are of diverse nature: coming from both technological trends, 

social changing paradigms and an always more impellent policy commitment 

towards reducing the carbon footprint of our society. As an example they can be 

attributed to the continuously increasing penetration of renewable non-controllable 

energy conversion sources, the delocalization of energy systems into a distributed 

paradigm, and the drastic changes of the modality of the fruition of some energy 

related commodities with the increasing presence of air conditioning and electric 

vehicles for example. Given the complex nature of such problems, and therefore the 

computationally demanding nature of the models needed to gain insights about their 

workings, a renovated focus is put on obtaining models which allow for the analyses 

to be undertaken in reasonable amounts of time in this novel energy systems context 

without compromising on the necessary level of detail into the modeling. In this 

thesis, we define two potential approaches in doing so, tackling two different 

challenges that emerged from the available literature. 

           We define a novel approach for the consideration of the temporal dimension 

in the planning of distributed energy systems. Specifically, the approach aims at 

properly considering the multi-decade timespan over which a decision concerning 

the potential adoption of energy systems has to be made. In this setting where some 

relevant parameters such as the capital costs for the investments in the technologies 

might change even significantly over such long periods. The approach is 

implemented within a framework having at its core an optimization problem, solved 

through mixed-integer programming and heuristic techniques. The validity is then 

tested on a realistic test case modeled by referring to an open dataset of energy 

related consumptions for a set of households located in the United States, where the 

goal of the methodology is finding the optimal year of adoption of an electricity 
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storage system (if any) considering its dropping costs over the multi-year planning 

horizon. 

           We define a methodology to consider various sources of uncertainty within 

simulations performed by means of an already well established model: being the 

EnergyPLAN model for smart multi-energy systems. This is achieved by defining a 

framework that models a set of uncertain inputs such as the availability of solar 

radiation, the uncertainty in the user demands for space heating and sanitary hot 

water, and finally the uncertain nature of the demands of an electric vehicle fleet. 

The test case over which the methodology is tested is the city of Osimo, situated in 

Italy, which can be assumed to be a small scale multi-energy system, and about 

which much data needed for the modeling is available through its municipal energy 

company. The goal of the analyses is to understand how two different flexibility 

assets: namely a large heat pump coupled with a thermal storage system, and a fleet 

of electric vehicles equipped with smart charging, can aid in welcoming high shares 

of non controllable renewable energy sources (photovoltaic panels). This to avoid 

the feeding of a large share of electricity generation surplus to the national 

distribution system (thus increasing auto consumption) and to understand the impact 

on carbon emissions to gain a potential policy related insight. 
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Chapter 1. 

 

Introduction 
 

 

While climate change has been for years only a topic discussed by scientists and 

policymakers, now the debate is on the mouths of a much bigger audience. The 

effects of climate change are more tangible than ever, with consequences that 

directly impact both our society and economies. And this is only one of the faces of 

the drawbacks of a model of development that needs to be re-thought following a 

more sustainable approach as highlighted by the United Nations with a set of goals 

laid down in the 2030 agenda for sustainable development [1]. Within the scope of 

this thesis, the 7th and 11th goals deserve a particular interest: being them respectively 

“affordable and clean energy” and “sustainable cities and communities”. As a matter 

of fact already more than 50% of the world population already lives in urban areas 

and such quantity is projected to significantly increase in the near future [2]; to the 

point that the vast majority of the world’s population will be living in cities, making 

them also the places where the most energy is consumed. At the same time numerous 

reports from research institutions and industries indicate that we are far from 

addressing the challenges brought by climate change in an effective way, since we 

appear to be very far from the targets set in the Paris agreements [3], [4]. In this sense 

many countries and organizations have already took action by enforcing and 

constantly updating policies aimed at a deep decarbonization of our society in many 

sectors: such as carbon taxes  or impositions on the share of electricity coming from 

renewable energy sources [5]. 

For the magnitude and the urgency of the reasons described a rational usage of 

energy in urban contexts is gaining a renovated interest by the research community. 

Among energy related studies the field that deals with studying and understanding 

how the energy needs will shift in time, and therefore how to direct potential efforts 

in influencing such trends, is commonly referred to as “energy planning”. The 

practice of energy planning is then aimed at understanding how the energy scenery 

will evolve and, depending on the type of stakeholder whose interests are represented 

by the planning practice (whether an energy company, a government or a local 

community), prepare for such future in the best way possible, given the intrinsic 



 2 

uncertainties that come with it. The research on the planning of energy systems has 

been historically undertaken with the assistance of a wide variety of computer 

models to represent the workings of such very complex systems from a wide variety 

of angles, in order to understand their inherent complexities and obtain actionable 

insights needed for policy or other types of decision making.  

These models have been continuously improved through the years but a set 

of very actual paradigm changes are calling for new modelling techniques and model 

capabilities in order to provide insight on modern energy systems. Among such 

paradigm shifts lies the already mentioned continuously increasing presence of 

renewable energy sources. Several studies indicate that solar photovoltaic (PV) and 

wind electricity generation technologies capital costs are constantly dropping and 

are expected to tumble in the near future [6], [7], being already below grid parity in 

some countries regarding their levelized cost per kWh of electricity generated. 

Another potentially influential factor lies in the dropping costs of various storage 

technologies such as specifically battery technologies [8], which is again pushed by 

a fast technological development as battery powered vehicles appear again to be the 

very near future of private mobility [9]. The heavy presence of such vehicles will be 

itself a great paradigm shift, with a sector which is itself very influential in terms of 

energy requirements and emissions shifting its needs from fossil based fuels to 

electricity, posing together with the increased penetration of non controllable 

electricity generation sources significant challenges to existing electricity 

transmission and distribution infrastructures [10][11]. A last mention is needed 

regarding the already anticipated income of policies such as carbon taxes, that might 

alter the economical tradeoffs of existing technologies in a timespan which is of 

interest in energy planning practices. 

The just described scenario can be synthetized as a dramatic change of the 

scenery in energy systems design, which calls for a word above all and that word is 

flexibility. Flexibility could be granted by means of a wide set of approaches (both 

technological and social/behavioral) but one that could integrate all of such is the 

distributed energy systems paradigm: both for electricity (which has historically 

been provided under a top down centralized scheme) and all the rest of energy related 

commodities (and not only) that might be needed by a modern society in the so called 

smart multi energy systems. As a matter of fact the correct “amount” of distributed 

generation is still under debate [12] it’s beyond doubt that energy has a local 

dimension and the needs of the challenge cannot be met following a one-fits-all 

approach [13].  
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1.1 Smart distributed multi energy systems 
 

Firstly, a distinction needs to be made between the concept of distributed energy 

system and a multi energy system. The former refers to an energy system which 

generates part (or all of) the needed energy commodity close to the site of 

consumption [14]. As opposed to the predominant paradigm (at least in developed 

countries) of large producers using a complex transmission and distribution 

infrastructure (electricity being the main example) a distributed system allows to 

meet the needs of the local user by using a set of locally deployed energy conversion 

assets, cutting on distribution losses and enabling in tailoring such systems to the 

needs of the user. 

A multi energy system (MES) is the expansion of this concept to multiple energy 

vectors: as defined in [15] a MES is a system in which “electricity, heat, cooling, 

fuels, transport, and so on optimally interact with each other at various levels”. 

Following such definition a MES could be also a large scale system (e.g. a large 

district heating plant), but within the scope of thesis the focus will be put on small 

district scale MES. The benefits of a MES approach lie in the possibility of exploiting 

potential interactions between traditionally decoupled sectors, such as for example 

electricity, heating, cooling and transport in achieving better usages of primary 

energy resources and welcoming higher shares of non-controllable renewable energy 

sources [16], [17].  The concept of MES has been widely analyzed in the literature 

using a wide span of potential test cases, from groups of buildings to towns. To give 

some examples it has been widely shown how the coupling of local electricity, 

heating and cooling networks can help in better welcoming high shares of non-

controllable energy sources and lowering emissions [18][19][20][21]. The same has 

been done for the role of storage [22][23][24] and the presence of a EVs fleet 

[25][26]. All of the studies confirm the mentioned flexibility potential of the 

integration of energy vectors, allowing for the reduction of CO2 emissions and a 

greater uptake of non controllable electricity generation sources. 

For this reasons the research efforts are translating into actual demonstrational 

projects, aimed at furtherly assessing the validity of these approaches both in the 

planning [27] and in the operational/management phases of such projects [28]–[30]. 

A distributed MES thus allows to achieve of the benefits of both the two paradigms, 

cutting on transmissions losses and exploiting synergies between different energy 

related sectors in achieving solutions which are tailored to the local conditions of the 

setting under analysis. While the concept of MES can be thought of as a purely 
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“technical” paradigm there is also a paradigm shift more on the social side with the 

establishment of local energy communities, whose paradigm is currently undergoing 

regulation within the EU. In this sense a community is defined as a “legal entity 

controlled by natural persons, local authorities, including municipalities, or small 

enterprises and micro-enterprises, based on voluntary and open participation, 

whose primary objective is to provide environmental, economic or social community 

benefits rather than financial profits” [31], [32]. In this context the institution of 

such entities could furtherly help towards addressing the local dimension of energy 

needs, given the same entity would be both the user of a given demand and the 

provider of the same commodity.  

It is then clear how the distributed MES paradigm could be an asset in addressing 

some of the challenges related to energy systems, which ultimately lead to achieving 

a more sustainable society.  

A last note addresses the size of a distributed/local energy system, which is not 

clearly defined in the available literature. A study reviewed the definitions of a 

distributed energy system [33], and a further and more recent review is provided in 

[12], with the conclusion that there is really not an agreed standard on what qualifies 

a distributed/local energy system in terms of size and availability of a greater 

infrastructure connection, as long as the production is physically located close to the 

consumer. For this reason within the scope of this thesis, the size of a 

distributed/local energy system is defined as ranging from the size of a cluster of 

buildings to a small town. 

 

 

1.2 Analyzing distributed multi energy systems 
 

As anticipated distributed MES are intrinsically very complex objects to analyze 

even if only their techno-economical workings are under analysis. This lead and it is 

still leading to the development of a very wide set of models which focus on different 

aspects of such systems. They could be aimed at analyzing systems from a planning 

instead of an operational perspective; the analysis of only a given subset of 

considered energy systems/user demanded commodities; the driver of the analysis, 

whether focusing on an economical instead of an environmental aspect and so on. In 

the literature there is a vast amount of models, using different modeling approaches 

for the analysis of different aspects of distributed energy systems [34]. While some 
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of these models are only defined in terms of their mathematical definition, thus they 

have to be programmed within a proper environment, others have developed in 

software packages, some of which are commercial products and some others are 

available with a free license, up to completely open source models [35]. The 

mathematical approaches behind the models are very wide, using different degrees 

of both linear and discrete programming, and with a great importance of the 

algorithmic approach, given the inherent difficulties in tackling such demanding 

problems. 

The models that are available as self-contained software packages can be classified 

using a wide set of criteria, spanning from: the level of discretization both in the 

temporal and spatial dimensions, the ease of use also with the presence of a graphical 

user interface, the type of license under which the model is available and so on [36].  

A more comprehensive description of the distributed systems modeling scenery is 

beyond the scope of this thesis, so it’s delegated to a very abundant literature [37], 

[38][36]. 

The scope of this thesis is to propose improved approaches in techno-economic 

analysis models for distributed MES, and in this sense a broad distinction can be 

made between optimization and simulation models. In the first the best possible 

choice of a given set of parameters is computed by pursuing the minimization or 

maximization of a given criteria (or a set of them) provided the existence of some 

constraints. In an energy systems scenario this could translate in two broad categories 

of problems: optimizing design or optimizing operations. An example of a problem 

falling in the first category could be finding the optimal set of technologies to meet 

multiple user demands over a representative timespan; while an example of the 

second could be finding the best management strategy for a given set of systems in 

a similar context, but removing the option of using non owned systems. Examples 

of energy systems optimization models are: OSeMOSYS [39], [40],  H.O.M.E.R. 

[41], EnergyPRO [42] and Calliope [43]. Simulation models on the other hand just 

wish to replicate the way a physical system works, allowing for its behavior and 

evolution over time to be studied more in detail; in this case the insights regarding 

“best” solutions are drawn from a “what-if” scenarios approach. While some of the 

just mentioned optimization models are also able to just simulate energy systems, a 

model which is created exclusively for simulation purposes is the EnergyPLAN 

model [44]. 

Given the intrinsic complexity of MES in any model falling in any of the categories 

just described there is a trade-off to face regarding the level of represented detail and 
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the computational complexity in solving the model. There are a number of 

approaches for dealing with such compromise and achieve a level of detail which is 

representative enough for the insights that are sought to be still valid, and in the 

meantime limit computational effort to a manageable size. Being the already 

mentioned challenges for novel energy systems models such compromise has to be 

re-thought in order to have models able to provide insights on modern energy 

systems. 

 

1.2.1 What’s missing 

 

As highlighted in the previous paragraph many authors have reviewed and given a 

summary of the energy systems modeling scenery; among those a 2014 review study 

[45] highlights the needs to address some challenges in established paradigms in 

energy systems modeling in spite of the issues described earlier on in this chapter. 

By narrowing such challenges to the ones related to the simulation and optimization 

of energy systems two of them are raised and described. 

Regarding optimization models is highlighted how the challenge is addressing the 

changing importance of the time and space dimensions which call for an increased 

resolution, while at the same time keeping a tractable model from a computational 

perspective.  The time/space dimensions are in-fact needing a renovated interest 

given the anticipated challenges regarding the distributed dimension of energy 

(space) and the ever increasing presence of non controllable energy sources and 

parameters evolution over very large timespans which call for both an high temporal 

resolution in a long term scenario analysis paradigm [46], [47]. With simulation 

models one of the highlighted challenges regards the degree to which uncertainty is 

represented and accounted for while gaining insights from energy systems models, 

which can be distinguished in two broad types: an epistemic uncertainty which can 

be improved with an effort from the modeler in obtaining more or better data, and 

an aleatory uncertainty which can be addressed by using appropriate techniques such 

as stochastic programming or Monte Carlo based simulation approaches [48].  

The importance of the uncertainty aspect, specifically in the design of distributed 

energy systems, is also described in a separate review study [49] which goes more 

into the detail of the various sources of the uncertainties, their potential impact while 

analyzing energy systems and the available approaches in doing so. It is highlighted 

how an improper consideration of uncertainty sources within the design of 
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distributed MES could lead to suboptimal solution and/or misleading insights 

regarding the outcomes of such models. Uncertainty can be defined as “any deviation 

from the unachievable ideal of completely deterministic knowledge of the relevant 

system” [50], and the deterministic approach is actually the one that is mostly 

followed within the analysis of energy systems, making the outcomes of such models 

heavily dependent on the assumptions behind the deterministic parameters. An effort 

is then needed to characterize these sources of uncertainty in order to account for 

their impact, and the characterization strategy greatly depends on the characteristics 

of the phenomenon which is to be modeled. Such uncertainty sources could come 

from the availability of a non controllable resource (solar radiation, wind etc.), to an 

unsteady user demand, the cost of a particular technology and so on; and the 

technique used to characterize it could depend both on the characteristics of the 

phenomenon itself and the data which is available. 

Given the huge amount of uncertainty sources within the analysis of distributed MES 

a proper consideration is then key in order to obtain valuable insights, especially 

within the challenges anticipated in the first part of the introduction. 

 

1.3 Contributions to the state of the art and thesis outline 
 

Given the context introduced so far in this chapter this thesis illustrates a set of 

contributions to improve the described state of the art in the practice of analyzing the 

planning of distributed multi energy systems, both when optimization and simulation 

duties are sought. The approaches directly tackle the challenges highlighted in the 

previous paragraph, addressing the needs for a proper representation of the complex 

temporal dimension when an optimal design choice is sought, and the impact of 

uncertainties while analyzing a given context. The contributions both involve 

programming approaches and the usage of freely available energy models, and the 

proposed methodologies are tested by means of analysis performed on realistic test 

cases, which are modeled with a mix of available data and further modeling efforts. 

 The first contribution is a methodology to analyze the optimal planning of 

distributed energy systems that considers how some of the simulation parameters 

might change in time over a planning horizon of multiple decades. This is achieved 

by defining an enhanced representation of the time horizon, using two different 

timescales over which to compute the operational and strategic decision making 

phases. The model is solved by means of a custom-made heuristic algorithm, 
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allowing both the convergence to an optimal solution while keeping an acceptable 

computational tractability. The methodology is tested on a realistic test case modeled 

by means of freely available measured data, where the potential adoption of a 

technology is studied over a long-term planning horizon. 

 The second contribution is a framework that wishes to correctly assess the 

intrinsic variability of some simulation parameters within the simulation of local 

energy systems with high penetration of renewables, achieved by means of the 

EnergyPLAN model. Specifically the variability sources that are represented are the 

availability in time of the solar resource and the demands of a set of commodities 

from the users such as heating, electricity and electric mobility. A tailored approach 

is used for each of the uncertainty sources, using both data-driven and mechanistic 

approaches to represent uncertain realistic hourly distributions for the mentioned 

variables. The methodology is tested on a real test case representing a small town 

with an already heavy presence of non controllable renewable energy source, which 

configures itself as a MES. The goal of the analysis is understanding to which degree 

such high penetration (and potentially an increased one) can be used locally in order 

to increase the energy independency of the town; and also understand the main 

drivers towards reducing the carbon footprint in such high RES penetration contexts. 
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Chapter 2. 

 

A methodological approach for the long 

term planning of distributed energy 

systems 

 

2.1 Preface to chapter 2 
 

In this chapter, we introduce a methodology to assess the impact of parameters that 

exhibit a significant change over long timespans (multiple decades) and that might 

affect the optimal design of distributed energy systems. As anticipated the scenery 

regarding on energy systems will be affected by potentially game changing aspects 

such as the significant drop on the costs of some key technologies. Thus a 

methodology is needed to consider such changes while determining the optimal 

design of a distributed energy systems: a context where the decisions that are made 

will be in place for several years (more than a decade). In this chapter we then 

propose a mathematical model of the optimal design of the energy systems needed 

to meet several energy related demands of a user, by also considering parameters 

that change over time. The work has been undertaken in two parts, with a first 

activity aimed at obtaining a model to compute such optimal design for a 

representative year with a reasonable computation time. Secondly, the model has 

been expanded to include the multiple year modeling in a way that could again grant 

a reasonable computational time. This has been achieved by defining two different 

timescales over which perform analyses related to the optimal design: a yearly 

timescale with hourly resolution over which the operational strategies of the used 

technologies is computed, and a secondly a multi-decade timescales with yearly 

resolution over which the decisions regarding potential investments is computed. 

Both of the parts have been realized by coding a mathematical model in the AMPL 

programming environment. 

My role in the work described in this chapter regarded the development of the idea 

of dividing the optimization in two distinct phases (yearly and plurennial), and the 



 10 

elaboration and characterization of the case studies used to validate the approach. 

The rest of the model has been developed conjunctly with Dr. Roberto Rosetti and 

Mr. Andrea Pizzuti, which also entirely took charge of the programming activities. 

All the activities have been supervised by prof. Gabriele Comodi and prof. Fabrizio 

Marinelli, which contributed with comments and editorial assistance.  

From the activities described in this chapter we obtained two peer-reviewed 

publications: a conference paper presented at the ICORES 2019 conference held in 

Prague [51], and another conference paper presented at the ICAE 2019 conference 

held in Västerås [52]. 

 

 

2.2 Introduction and state of the art 
 

To the best of the authors knowledge the only approach available in the literature 

that tries to consider the impact of parameters changing over a multiple years 

timespan is the one proposed in [53], which integrates a previously proposed 

optimization approach [54] by the same authors takes couples the EnergyPLAN 

simulation model with an external optimization shell using evolutionary algorithms. 

The goal of the model is to study transition pathways for a national/regional scale 

energy system. On the other hand quite a few studies that wish to analyze the optimal 

design of distributed energy systems have been proposed using a wide set of 

mathematical approaches. These vary from exact techniques such as MILP to 

evolutionary or other heuristics based techniques: while the former can guarantee to 

achieve a globally optimal solution [37] they are computationally much more 

demanding than the latter, especially in the context of energy systems design, where 

the size of the problem (in terms of variables to compute) in usually very large. For 

this reason within the present study an ad-hoc heuristic approach is used, with such 

type of approaches already followed in the literature by many authors [55], both to 

address the optimal energy systems design (in terms of components size) [56], [57] 

and the optimal network configuration [58], [59].  

 The approach described in this chapter is aimed at analyzing scenarios that 

represent local energy systems challenges, and wishes to do so by using a 

metaheuristic approach (improving the one proposed in [51]) for both the multi-year 

design phase and the operational phase, thus achieving an optimal solution for both. 
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 The approach is validated with the application on a realistic scenario, that 

considers a residential user with an high penetration of non-controllable renewable 

electricity generation source (a PV system), where the decision under analysis is the 

potential purchase of an electricity storage (a battery system) considering different 

retributions for a feed-in tariff and the dropping price of the storage system in the 

years to come. The residential district is modeled by referring to a dataset which 

includes real consumption data for a set of households in the United States [60], 

measured with high temporal resolution for a whole year, from which the 

consumption data for electricity (excluding space cooling appliances), cooling and 

heating are obtained. Thus, all of the three commodities are considered in the 

analysis in order to also consider the potential role of cross-vector technologies. 

 

 

2.3 Methodology 
 

2.3.1 Case study modeling strategy 

 

In order to model the district an energy hub we adopted an energy hub modeling 

strategy as in [61], an energy hub can be defined as an integrated unit within which 

the conversion, storage and usage of different energy vectors (but also any other type 

of commodity) takes place. Thus, the energy hub has to get resources from outside 

its boundaries (e.g. natural gas, grid electricity, solar radiation…) and manipulate it 

internally by means of specific technologies in order to meet the demands of a given 

user, such technologies can already be present within the hub’s boundaries but they 

can also be purchased in order to do so by sustaining an appropriate cost. The 

operations of the energy hub are then usually simulated over a representative period 

of time, aimed at obtaining relevant insights regarding for example: costs sustained 

over the mentioned timespan, CO2 or other pollutants emissions, and potential 

investments in new technologies in order to lower the total costs. 

 The energy hub is then a general scheme that can be adapted to diverse 

settings, and this is used to model the case study that will be used to test the proposed 

methodology. As mentioned in the previous paragraph the test case is a residential 

district which needs three distinct energy vectors to properly function, thus the 

proposed energy hub is shown in Figure 1. 
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Figure 1 - Energy hub conceptualization 

 

In the Figure different types of elements are visible. Firstly the three energy vectors 

in the form of buses from which the vectors can be both withdrawn and fed in: for 

electricity, space cooling and space heating. Interacting with such buses there are 

both the technologies in charge of converting/producing the energy vectors and the 

user that absorbs them to meet the demands. Finally there are three external sources 

for three different resources: natural gas and electricity to be purchased from the 

respective distribution infrastructures, and solar radiation to power the local PV 

system. It is also considered that the electricity can be fed back to the grid given a 

proper compensation (feed-in tariff) if such electricity is produced with the PV 

panels. 

All of the elements in the energy hub have then to be quantified in order to represent 

the test case of the residential district, which means representing the demands, the 

solar energy availability and a set of realistic costs for the considered technologies 

and the purchasing of external resources from the national distribution 

infrastructures.  
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2.3.2 Proposed framework 

 

In order to solve the multi decade optimization problem a strategy to tackle the time 

dimension of the problem has been implemented in a framework, which is shown in 

Figure 2. The goal of the whole framework is to compute the optimal design for the 

energy systems needed to meet the users demand over a planning horizon of multiple 

decades, by minimizing the total costs sustained in such timespan. Such costs relate 

both to operating the already existing assets (such as maintenance costs or 

acquisition of externally purchased commodities), and also to the investments 

needed to purchase new equipment. 

 

 

 
Figure 2 - Visualization of the proposed framework 

 

 

The core of the approach, and therefore of the framework, is the modeling of the 

time horizon of interest (over which to choose potential new investments) which is 

achieved by defining two distinct time scales with different features, the approach is 

shown graphically in Figure 3, and the two timescales have the following 

characteristics: 
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• A multi-decade timescale with yearly resolution (in blue in Figure 3), over which 

to compute investment decisions that are then function of a specific year 

• A yearly timescale with hourly resolution over which to compute decisions on 

how to manage the technologies available in meeting the users demands (in 

green in Figure 3), which are defined with the same hourly resolution. 

This timespan if furtherly reduced by selecting only an appropriate number of 

time-slices in order to reduce even more the computational effort. 

 

 

 
Figure 3 - Graphical representation of the two timescales 

 

 

As shown in Figure 2 the inputs to the problem are then defined depending on the 

timescale they refer to. The user demands and the solar radiation availability are 

defined on an hourly basis for a representative year. Some other parameters may 

though be defined to vary over time on a longer time horizon, and this is the case of 

the cost of some of the technologies or for example the incurrence of new policies 

or regulations, such as for example the imposition of a carbon tax by the local 

regulation entity from a given year onwards. Finally, some parameters preserve the 

same value regardless of the passing time, and this is the case for example of the 

costs of technologies which are considered to be already mature. 

As shown in Figure 2 an intermediate step is added before solving the actual 

optimization problem and this is aimed at reducing the timespan over which the 

computation of the operational phase is performed from a year to a subset of 
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representative weeks, in order to reduce the computational burden of the whole 

analysys. This is achieved by means of a clustering procedure, similarly as in [62], 

to select weeks from the yearly timespan based on a set of features which are 

computed for each week of the available timeseries data, in this case a year. 

Specifically the technique that is used is the k-means clustering algorithm [63], 

which implementation is taken from the SciKitLearn python package. The week is 

chosen as the smaller time slice to simulate in order to properly take into account the 

role of storage technologies within the district. A common storage technology 

application lies in storing electricity surplus from non controllable renewables during 

the day for a later usage during the night (home battery system coupled with PV), 

and for this the slicing of the timespan in representative days would actually work 

fine. But other type of applications actually take advantage of offsets on a weekly 

basis, as for example in industries which exhibit much lower energy demands during 

the weekends when they’re closed. Even though within this work the framework is 

tested on a residential user scenario the time slices are kept to a week in order to 

make it more general. 

The clustering procedure works as follows: 

• The yearly timespan is sliced in weeks and to each week is assigned an identifier 

which is an integer value 

• For each of the weeks a set of features is computed: 

i) Average weekly electricity demand in kWh 

ii) Average weekly heating demand in kWh 

iii) Average weekly cooling demand in kWh 

iv) Average weekly available solar radiation in kWh/m2 

• A predefined set of clusters, meaning representative weeks, is computed by 

analyzing the similarities in the mentioned features. The number of clusters is 

arbitrarily set to 6, to hopefully represent two winter, two summer and two mid-

season weeks. 

 

Following such procedure the year intended to represent the realistic timespan over 

which to represent the district will be reduced from one year to 6 weeks, still 

maintaining an hourly resolution. 

All of the mentioned parameters are then fed as inputs to an optimization problem, 

which as mentioned is split up in two distinct problems: a strategic one where the 

investment decisions are computed, and an operational one where the different 
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systems available are scheduled in order to meet the demands of the users. The 

approach is shown graphically in Figure 3. 

Both of the two problems use a MILP (Mixed Integer Linear Programming) 

modeling approach for both the variable representing investment decisions and the 

ones representing the dispatch strategy in the operational phase. The two timescales 

are modeled by defining two distinct sets over which such variables are defined: 

• A set H to represent the year in hourly resolution, where the dimension of H 

following the dimensionality reduction is 1008 (24 hours * 7 days * 6 weeks) 

• A set Y to represent the planning horizon with yearly resolution, where the 

dimension of Y is 32 (from 2018 to 2050 

Following such definition the investments in a given technology are defined by a 

binary variable which is also function of the specific year, returning in that way also 

the optimal year of adoption of the given technology. 

Other than the ones modeling the workings of the technologies an additional set of 

constraints is enforced in order to force a realistic technological lifetime (which is 

provided as a simulation parameter for each available system) over the usage of the 

systems. The planning horizon spans multiple decades, but many of the potential 

technologies actually have a much shorter technical lifetime. Thus, if an investment 

on a given technology is made by the algorithm that same technology will have to 

be re-purchased by sustaining again its cost once its technical lifetime has expired. 

The modeling of the technologies workings follows a linear approach, with 

conversion efficiencies assumed to be constant regardless of the operating conditions 

in terms of load etc. As examples the equations representing the workings of a chiller 

and a PV panel are the following: 

 

 

𝐸𝑃𝑉(𝑠𝑧, ℎ, 𝑦) =  𝜂𝑃𝑉(𝑠𝑧) ∗ 𝐼𝑟𝑟(ℎ) 

 

 

𝐶𝐸𝐶(𝑠𝑧, ℎ) =  𝐶𝑂𝑃𝐸𝐶(𝑠𝑧) ∗ 𝐸𝐸𝐶(𝑠𝑧, ℎ) 

 

 

Where EPV(sz,h,y) is the electricity produced by a PV system, which is function of 

the PV system efficiency through its model sz, and the instant solar radiation 

available which is expressed by Irr as a function of the hour h. And where CEC(sz,h) 

is the instant cooling power produced by the electric chiller of size sz, which is a 
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function of the system itself through its COP value, and the instant electricity 

provided at the same time located with the hour h. 

While the production of the PV system is rigidly connected to the amount of 

radiation available (provided as a simulation parameter), a fully schedulable 

component like the electric chiller is controlled by computing the variable EEC of the 

electricity provided, which is bound to be between zero and the maximum cooling 

power that the chiller sz can provide given its technical specifications: this is 

expressed by means of the following equation: 

 

0 ≤  𝐶𝐸𝐶(𝑠𝑧, ℎ)  ≤  𝐶𝐸𝐶
𝑚𝑎𝑥(𝑠𝑧) 

 

The objective quantity to minimize, meaning the total costs sustained over the whole 

planning horizon, is expressed by means of the sum of two quantities: the investment 

cots Cinv and the operational costs Cop. The expression of the operational costs is the 

following: 

 

 

𝐶𝑂𝑃 =  ∑ ∑(𝐸𝑔𝑟𝑖𝑑(ℎ, 𝑦) ∗ 𝑐𝑔𝑟𝑖𝑑(ℎ, 𝑦) + 𝑁𝐺𝑛𝑒𝑡(ℎ, 𝑦) ∗ 𝑐𝑁𝐺(ℎ, 𝑦))

ℎ𝑦

 

 

 

Where Egrid(h,y) is the electricity purchased from the local distribution grid in kWh 

and cgrid(h,y) is its cost in $/kWh, which can also vary in time to represent complex 

pricing schemes or changes over long time horizons. In the same way NGnet(h,y) is 

the quantity of natural gas withdrawn from the distribution network and cng its cost. 

For the investment costs, the equation is the following: 

 

 

𝐶𝑖𝑛𝑣 =  ∑ ∑ ∑(𝐶𝑠𝑦𝑠(𝑡𝑒𝑐ℎ, 𝑠𝑧, 𝑦) ∗ 𝑋𝑠𝑦𝑠(𝑡𝑒𝑐ℎ, 𝑠𝑧, 𝑦))

𝑦𝑠𝑧𝑡𝑒𝑐ℎ

 

 

 

Where Csys(tech,sz,y) indicates the cost of a generic system, which is a function of 

tech, indicating the type of technology (whether a chiller or a boiler), sz indicating 

its size (among the ones in consideration for the given technology tech) and y 

indicating the year, for the technologies that exhibit a change in costs over the 
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planning horizon. The investment in the system is controlled by means of the binary 

variable Xsys that depends on the same set of conditions. 

The objective of the optimization is then to minimize the total costs: 

 

𝐶𝑡𝑜𝑡 =  𝐶𝑂𝑃 +  𝐶𝑖𝑛𝑣 

 

 

The whole optimization problem is split up in two sub problems, solving respectively 

the strategic and the operational phases described by the two timescales, with both 

the two problems providing a distinct contribution to total costs, which is ultimately 

the quantity to be minimized by the algorithm. 

Synthetically, the heuristic algorithm shown in Figure 4 acts as follows: 

• By solving the problem M a first trial design is obtained following a criteria 

based on the total amount of demand per energy vector over the multi-decade 

timespan. Such design returns a set of technologies which are purchased to 

hopefully meet such demands, this by following a simple conversion equation 

modeling the workings of the technologies. Then, by consequence an 

approximation of the total costs (both investment and operational) sustained is 

also returned. 

• The design obtained from the solution of problem M is then fed into the problem 

Mh where it’s tested on the hourly resolution timespan of the slices obtained as 

indicated in the previous paragraph, thus linking the two phases. The solution 

obtained in this phase can then be both feasible and unfeasible, in the case the 

technologies configuration can’t actually meet the demands on an hourly basis. 

In case the solution is unfeasible an unmet demand quantity is computed and 

used as a feedback for the next round of M. 

The algorithms then proceeds in solving the two phases iteratively until a predefined 

stopping criterion is met, at that point the solution that achieved the lowest cost is 

chosen as optimal.  
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Figure 4 - Workflow of the optimization problem solving algorithm 

 

 

2.3.4 Case study characterization 

 

The test case, which is a realistic residential district, has been modeled by 

aggregating the demands of 150 households from the already mentioned open dataset 

[60], and obtaining the relative demands (for electricity, space cooling and space 

heating) and the available radiation for a whole year with hourly resolution, thus 

recreating a realistic simulated year for the whole district. The question that the 

proposed approach aims at solving is the convenience in purchasing a battery system 

for the district, thus a pivotal importance lies in the presence of a non schedulable 

energy production system. Given that the real district already shows a heavy 

presence of PV systems, its the capacity is left unaltered. 

Once the energy demands are retrieved from the open dataset, those are then fed to 

the clustering procedure in order to sample 6 representative weeks. In the following 

Figures the energy demands for the three commodities (electricity, space heating and 

space cooling) are shown for three of the sampled weeks: a summer, a winter and a 

mid-season one. Figure 5 shows the electricity demand, Figure 6 the heating demand 

and Figure 7 the cooling demand in kW for a period of one week.  
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Figure 5 - Electricity demand of three sampled weeks 

 

 

 

 
Figure 6 - Heating demand of three sampled weeks 
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Figure 7 - Cooling demand of three sampled weeks 

 

 

 

 
Figure 8 - PV system production of three sampled weeks 
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As explained the PV system size is given as an optimization parameter and amounts 

to around 250 kWp, the system will then produce electricity depending on the solar 

radiation that is available in the actual hourly timestep. The hourly radiation is also 

given as a simulation parameter according to the sampled weeks, for the same weeks 

as in the previous figures the electricity production from the PV system is shown in 

Figure 8. 

Finally the costs for the systems involved need to be characterized. The systems 

which are considered in the analysis are the following: 

• A PV system, which size is given as an input to begin with 

• A natural gas boiler to meet the heating demand 

• An electric split system to meet the cooling demand 

• A battery system to use locally the surplus from the PV panels instead of feeding 

it to the grid 

As explained the goal of the analysis is to evaluate a potential investment in batteries 

considering the cost which is dropping in time, such drop in costs has been 

determined following the estimations in [64] and it’s shown in Figure 9 for the 

desired planning horizon. The rest of the technical parameters used in the simulations 

are shown in Table 1. 

Lastly the ageing of the PV system is also simulated by considering a drop in 

performance (being its system efficiency) of 0.3% per year; this  given the relative 

importance that the phenomenon could have in a long time horizon due to the direct 

relationship of the output of the PV system, which ultimately drives the need to adopt 

a battery system. 

 

 Boiler Split System PV Battery 

Investment 

cost  

60 $/kW 250 $/kW 500 $/kWp Figure 9 

Maintenance 

cost 

2 $/kW/y 5 $/kW/y 10 $/kWp/y 2 $/kWh/y 

Efficiency/C

OP 

95% 3 18% (system) 95% (round 

trip) 

Technical 

lifetime 

[years] 

20 20 30 15 

Table 1 - Technical and cost parameters 
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Figure 9 - Simulated drop in battery costs over the planning horizon 

 

Also as anticipated the investment in the battery system is evaluated under different 

feed-in tariff compensation schemes, because it is expected that the investment in a 

battery system would make more sense with a smaller compensation from the local 

distributor for the electricity surplus. Thus while the purchase of electricity from the 

local grid is kept constant at 0.08 $/kWh the feed in tariff is set to drop from 0.04 

$/kWh to 0.02 $/kWh with incremental steps of -0.0025 $/kWh. 

 

2.4 Results 
 

The obtained results entail the optimal design for the residential district over the 

planning horizon of 32 years. This includes as expected a boiler and a split system 

to meet respectively the demands of heating and cooling. However, focusing on the 

battery system this is not chosen by the algorithm in any of the scenarios. This means 

that even by considering the lowering costs a battery system adequate to absorb the 

surplus would still be more costly than feeding back such surplus into the main grid, 

even with a lowering feed-in tariff compensation. This is also to be ascribed to the 

performance losses of the PV system of the course of the planning horizon. 
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In order to test the correctness of the approach an additional test has been run by 

forcing the presence of a small battery storage system (50kWh of capacity with 25 

kW of charging and discharging power) in the district. All of the results are shown 

in Table 2 indicating the total costs sustained over the planning horizon in order to 

meet the demands of the district. These are reported in two columns: the C* column 

indicating the total costs without the purchase of a battery imposed, and the CB where 

this happens. 

 

 

FIT [$/kWh] C∗ [k$] CB[k$] 

0.02 5745.61 5785.39 

0.025 5745.12 5785.19 

0.03 5744.64 5785.00 

0.035 5744.15 5784.80 

0.04 5743.67 5784.60 
Table 2 - Results of the experiments 

 

 

A shown in Table 1 the solution that forces the presence of the battery is actually not 

very far in terms of life cycle costs from the one that just relies on feeding the 

electricity into the local grid, having on average a 0.7 % discrepancy between the 

two. This appears then to be very tightly related to the chosen test case, and it’s 

reasonable to think that the battery would actually have been an appropriate 

investment with small changes to some of the input parameters, as for example the 

size of the PV system, or a different tariff scheme agreed with the local grid (also for 

purchasing). As an additional proof of the validity of the battery solutions CB and 

more in general of the computations performed by the algorithm the dispatch strategy 

of one of the solutions for the battery cases is show in Figure 10. 

Even given the relative simplicity of the test case and the assumptions made it is 

already possible to gain some insights from the results. Under the current 

circumstances the district would find itself feeding the electricity surplus to the local 

grid, which could ultimately lead to a lesser carbon footprint from a larger system 

perspective. Assuming that the choices on which technologies to adopt by the users 

would be probably driven by an economic criterion (as the one represented by the 

objective function of the problem) the policy insight to gain by a potential local 

utility really lies on whether the feeding of such electricity in the local grid is actually 

bearable. 
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However it has to be considered that decision could change easily for example in the 

case of adoption of electric vehicles by the users in the district.  

 

 

 
Figure 10 - Dispatch strategy of a battery case 

 

All the simulations shown in Table 1 require a total of around 50 seconds to run on 

a moderately performant workstation (Intel Core i7 2.9 GHz with 16Gb RAM), 

which is actually a very short amount of time. The analysis could then be surely 

increased in terms of considered parameters and scenarios in order to have a more 

comprehensive approach to the decision making process. 

 

2.5 Conclusions 
 

In this chapter we presented a novel methodology for assessing the impact of 

parameters changing in time in the optimal design of distributed energy systems, 

where the time horizon of interest is the lifespan of a realistic urban district. 

Specifically the proposed approach wishes to correctly consider the changing capital 

costs while defining the optimal design of a system over a very long planning horizon 

of multiple decades. 
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This was achieved by defining a framework based on an optimization problem, 

which is solved with a novel ad-hoc heuristic algorithm that aims at minimizing the 

total costs sustained in meeting a set of energy demands of the local user. In doing 

so both the possibility of acquiring commodities (natural gas/electricity) from local 

distribution infrastructures and the purchase and deployment of new energy systems 

is considered. 

The approach is tested on a realistic test case but by referring to an open dataset 

containing real measured consumption data from a set of households, with the 

decision under analysis being the potential purchase of an electric storage system 

(batteries) to handle the surplus of renewable generated electricity, considering also 

a projected drop in costs over the planning horizon. The investment is to be evaluated 

in a scenario where a feed-in tariff for the surplus electricity is in place, and the 

compensation for the tariff is set to decrease progressively. Furtherly the ageing of 

the PV system generating the electricity surplus is taken into account by imposing a 

fixed drop in performance per each year.  

The results show that for the proposed test case a battery system is not an good 

investment, even if not so distant from the proposed solution of feeding the surplus 

electricity into the local grid in exchange for a feed-in tariff compensation. This can 

be ascribed to a set of factors; from the relative gap between the demands of the 

district and the size of the PV system which don’t allow for an adequate electricity 

surplus, to the drop in performance of the PV system itself. 
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Chapter 3. 
 

A methodological approach to improve the 

results of simulations of high renewable 

penetration local energy systems 

 

3.1 Preface to chapter 3 
 

The work described in this chapter aims at proposing an innovative approach to the 

analysis of urban districts which show an high penetration of non programmable 

renewable energy sources, and other sources of uncertainty such as user demands of 

different nature. In particular the goal is to obtain insights regarding how to deal with 

such large amount of electricity surplus form renewable source by using different 

technological approaches. This by considering both already established technologies 

like an electric heat pump and a thermal energy storage, and also a potential fleet of 

EVs equipped with smart charging. The evaluation is achieved by means of a 

framework based on the simulation model EnergyPLAN, where a real local energy 

system is analyzed and three different sources of uncertainty are considered: the 

availability of the solar resource and the demands of the users in terms of heating 

and electric mobility. Specifically the energy system is the small town of Osimo in 

Italy, about which the local municipality company of Astea kindly provided accurate 

measured data for the year 2018. The focus is put on the multiple needs of the local 

energy system within a proper smart energy system paradigm and the evaluation is 

undertook by considering only technical simulations which balance energy fluxes of 

different kind over a one year period, without taking into account the economics 

implied in doing so. 

In this work I entirely undertook the work concerned in designing the framework, 

the modeling activities, the coding and the necessary elaborations on the provided 

raw data. Professors Poul Alberg Østergaard and Gabriele Comodi contributed with 

comments and editorial assistance. 

 



 28 

3.2 Introduction and state of the art 
 

As anticipated in the introduction uncertainty will play a key role in the future’s 

energy systems, and a proper characterization and consideration in energy models 

will then become compulsory [37]. An approach relying on a limited amount of time 

slices might in fact lead to under/over estimations of several features while analyzing 

energy systems. For this reasons the following framework is proposed to handle a 

great degree of inputs, representing many sources of variability in the input 

parameters (some with an arbitrary variations and others with a proper stochastic 

feature representation), and still returning useful results in a very short amount of 

time thanks to the fast simulation capabilities of the EnergyPLAN model, which is 

developed by the Department of Planning at Aalborg University, and it can be 

obtained as a free software package with a graphical user interface. Within the 

available literature the EnergyPLAN simulation model has already been coupled 

with externally developed code in order to enhance its capabilities, as in [54] where 

an optimization model for a national scale system is proposed.  

As highlighted in [65] the EnergyPLAN model has been used mostly to analyze 

country/state level scenarios, and in a minor way local areas. By narrowing such 

studies to a municipality/town scale (the one of interest in this chapter) there are 

examples for different scenarios in Europe: in Denmark for the cities of Aalborg 

[66][67] and Frederikshavn [68][69], in Finland for the city of Loviisa [70], and 

finally in Italy for the cities of Corinaldo [71] and Altavilla Silentina [72]. In the 

mentioned studies a set of technological solutions is evaluated in the respective 

realistic scenarios with the aim of mitigating the environmental impact by means of 

different technological solutions: such as the increase of RES or the incentivation of 

CHP.  

What’s lacking is a focus on the potential beneficial impact of smart EVs in such 

high RES shares systems. This has been done already in some studies focusing on 

national/regional scale system: in [73] the integration of EVs on a national scale in 

Italy is investigated considering increasing shares of solar powered RES, but there 

is also a lot of interest regarding the integration of EVs in local energy systems, 

especially while in presence of significant RES penetration. Such as in [74] for a 

single building scale energy system, a large city in [75] or a neighborhood in [76], 

where the integration of EVs is evaluated in conjunction with the electrification of a 

DHN. 
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All of the described models use a perfect foresight approach to the input parameters, 

thus not considering the stochastic nature of some of the input parameters, and this 

is what the work described in this chapter aims at doing. The framework which is 

proposed aims at analyzing such systems by considering both the uncertainties 

entailed in the available yield from the solar systems and the ones regarding some of 

the user demands, in both cases by considering the time varying nature of the two 

quantities. 

Specifically the proposed approach is tested on a realistic test case representing a 

small town, which can be described by means of real measured data provided by the 

local municipal energy company. A first investigation on the potential deployment 

of EVs in same town has been done in [77], where the payback of the investment in 

an urban charging infrastructure by the same company is evaluated and found to be 

short even without incentives.  

The rest of the chapter is structured as follows: in 3.3 all of the proposed framework 

is described explaining in detail all of the available data and the modeling approaches 

used for each source of uncertainty, in 3.4 the results of a set of simulations are 

shown, where the goal is to investigate low carbon options for the local energy 

system, finally in 3.5 the conclusions to the chapter are drawn. 

 

 

3.3 Methodology 

3.3.1 The framework at a glance 

 

As for the work described in the previous chapter this one also proposed a complex 

framework, which is shown in Figure 11. While previously the modeling of the 

energy systems was implemented by a directly coded mathematical model, in this 

case it is delegated to the EnergyPLAN model. EnergyPLAN is capable of 

simulating the operation of very complex single-node (thus no spatial dimension 

representation) multi energy systems over the course of a year with an hourly 

temporal discretization. The simulations can be executed both by means of a 

graphical user interface or through a command line, and in both cases the input 

parameters are passed on to the model by means of plain text files.  

For this reason the rest of the framework, which is entirely based on the python 

programming language, acts as a shell that elaborates a set of inputs, provides them 
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to the EnergyPLAN model and retrieves the quantities of interest into tables once 

the model is launched externally . 

The framework is constituted of a set of blocks, where each serves a specific 

function. While an extensive description of each block is done in the following 

paragraphs a brief description of each block/functional part is the following: 

• A block that retrives solar radiation, temperature and other weather data with 

hourly resolution for the location of interest from an external web-based open 

model 

• A set of data provided by the Osimo municipality’s owned company Astea, 

regarding user demands, energy flows with the national transmission grid etc, 

measured for the full year of 2018 with hourly resolution. 

• A block to build realistic EV load patterns with hourly resolution, based both on 

data retrievable from open datasets and a set of technical assumptions 

• A demand regression block, intended to combine both the available consumption 

data and the simulated historical metereological data into a set of plausible yearly 

demand curves with hourly resolution, by using a regression model 

• A block that combines all of the available data into a set of realistic yearly 

profiles to represent variability in the simulation conditions, and therefore into a 

set of simulations to run 

• A python based EnergyPLAN parser, that feeds all of the plausible years to the 

simulation engine and simulates them automatically by means of scripting 

• A block to retrieve the results of the simulations (which are formatted into tables) 

and extrapolate tables and plots, being the actual output of the framework 
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Figure 11 - Visualization of the EnergyPLAN based proposed framework 
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3.3.2 Model of the Osimo municipality in EnergyPLAN 

 

Astea is the Osimo’s municipality energy company, and it’s in charge of managing 

a district heating network (DHN) , the two way power exchanges with the main 

transmission grid operated by Enel, and the inflow of natural gas. The DHN is 

powered by three different systems: a CHP system powered by a natural gas engine 

(1.2 MWe in size), three natural gas boilers and a small electric high temperature 

heat pump (34.5 kWe). On the electricity side within the local grid are present a set 

of distributed generation systems: the already mentioned CHP system, a small 

hydroelectric turbine, a set of PV systems operated directly by Astea (80.4 kWp in 

total) and a large amount of privately owned PV systems (estimated to around 31 

MWp in size). A graphical representation of all of the systems is shown in Figure 

12. 

 

 
Figure 12 - Schematization of Osimo's distributed energy systems configuration 

 

The data provided by Astea can then be listed as follows: 

• A year of electricity production from the directly monitored PV systems for the 

year 2018, monitored with hourly resolution in terms of average capacity factor. 

As in Figure 13. 
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• A year of thermal energy fed into the local district heating network for the year 

2018, measured in terms of waterflow and inlet/outlet temperatures with hourly 

resolution. As in Figure 14. 

• Net electricity exchanges with the main national grid (both energy withdrawn 

and fed) for the year 2018, measured with hourly resolution. As in Figure 15. 

• Capacity and average electric and thermal efficiencies for the CHP system 

(natural gas fired). 

1.2 MWe with 39.9% and 41.5% electric and thermal efficiencies respectively 

• Capacity and average thermal efficiencies for the boiler systems (natural gas 

fired). 

13.5 MWt with 95% thermal efficiency. 

• Capacity and average conversion efficiency (COP) for the electric heat pump. 

34.8 kWe with 4.6 average COP 

• Size of the PV system owned by Astea and estimate on the total size of the 

privately owned systems. 

80.4 kWp and 31 MWp respectively 

 

 

 
Figure 13 - Actual PV capacity factor in Osimo in 2018 
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Figure 14 - Actual DHN in Osimo in 2018 

 

 

 

 
Figure 15 - Actual net load of Osimo in 2018 with respect to the national grid 
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Based on the provided data described in the previous paragraph a model of the city 

of Osimo has been built and implemented in EnergyPLAN. This considers all of the 

assets managed by the local utility Astea (thus not including the heating demand 

being met by means of individual heating solutions) and also the local transport 

sector in order to later properly consider the impacts of the gradual substitution of 

the local fleet of vehicles with battery electric vehicles. 

Before actually analyzing the Osimo reference case a set of additional modeling 

efforts are needed. 

 

 

Electricity demand 

 

The electricity demand is not directly available and is then regressed based on the 

available net-load timeseries data provided by Astea. This is achieved with an energy 

balance equation computed for the whole yearly timeseries of 2018 on an hourly 

basis, the equation is the following: 

 

 

𝐷𝑒𝑙(ℎ) =  𝐸𝑐ℎ𝑝(ℎ) + 𝐸ℎ𝑦𝑑𝑟𝑜(ℎ) + 𝐸𝑃𝑉
𝐴𝑠𝑡𝑒𝑎(ℎ) +  𝐸𝑃𝑉

𝑝𝑣𝑡(ℎ) +  𝐸𝑔𝑟𝑖𝑑
+ (ℎ) − 𝐸𝑔𝑟𝑖𝑑

− (ℎ) 

 

 

Where Dele(h) is the hourly demand, ECHP(H) is the electricity produced by the CHP 

system, Ehydro(h) the electricity produced by the hydroelectric turbine, the two EPV(h) 

terms the electricity produced by Astea’s and private PV systsems respectively, and 

finally the two Egrid(h) terms indicate the electricity which is purchased and sold to 

the national grid respectively (which are respectively the positive and negative part 

of the data shown in Figure 15). This is computed on an each hour basis as indicated 

by the index h, obtaining then a new yearly distribution shown in Figure 16. The 

total electricity demand amounts to around 164 GWh for the year 2018. 
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Figure 16 - Obtained electricity demand for four sampled weeks 

 

 

DHN demand 

 

The DHN demand is obtained directly from the data shown in Figure 14 by 

accounting also for the network losses. These are estimated directly by Astea by 

confronting the thermal power fed into the network to the one which is actually sold 

to the customers. The first quantity amounts to a total of 20,3 GWh for 2018 while 

the second only to 14,21 GWh, thus the network losses amount to approximately 

30% and this is enough to model them in EnergyPLAN. 
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Transport Sector Model 

 

EnergyPLAN allows transports to be modeled in different ways depending on the 

type of fuel: whether if they’re propelled by fossil fuels or electricity. While the EVs 

demand model is described later on the model all of the other vehicles is obtained by 

referring to a public dataset provided by the Italian government [78] which lists all 

of the vehicles registered in Italy, region by region with a set of features. The dataset 

has been filtered in order to obtain all the entries regarding vehicles registered in 

Osimo, and the fuel for each type of car. The total amount of cars is of around 26500; 

the shares per each fuel type are also obtained to fit the modeling fields of 

EnergyPLAN, an approximation is done by omitting the types of fuel which cover a 

small share (less than 1% of the total) such as hybrid and battery vehicles. 

To obtain the yearly energy demands for each type of fuel two parameters have been 

used: a fixed number of km of distance driven per day (assumed to be the same for 

each category of fuel) and a consumption per distance driven in kWh/km which 

characterizes every type of fuel [79]. The resulting parameters for the model are 

shown in Table 3. 

 

 

 

 Number of 

cars 

Share on 

total park 

Specific 

consumption 

[kWh/km] 

Demand 

[GWh/year] 

Diesel 13746 ~51% 0.8 154.88 

Petrol 7467 ~28% 0.8 85.03 

Natural gas 3780 ~15% 0.65 37.01 

GPL 1625 ~6% 0.65 14.8 
Table 3 - EnergyPLAN parameters for the fossil fired transport sector 

 

 

Available energy systems & other simulation settings 

 

The energy systems managed by Astea have been all considered in the energyplan 

model, following the specifications mentioned before: 

• A 13400 kJ/s natural gas boiler is added to Group 2 (which is used to simulate 

DHNs of medium sizes) with a 95% thermal conversion efficiency. The fuel is 

set to be natural gas. 
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• A 1200 kWe CHP system is added to Group 2 with 40% electric efficiency and 

41,5% thermal efficiency. The fuel is set to be natural gas. 

• A 31080 kWp PV system (Astea’s 80 + 31000 private) is added as a variable 

renewable electricity system, using the timeseries of the real measured capacity 

factor from 2018 as distribution profile 

• A 110 kWp river hydro system is added as a variable renewable electricity again 

using the real measured data from 2018 

• A 34,8 kWe heat pump with 4,6 COP is added as a heat only production system. 

(this system is new and has never been used in 2018) 

• The access to the main electricity distribution grid is possible without limits in 

power at any given time. 

 

Finally, the simulation is set to run in a technical simulation mode, using a 

contemporary heat and electricity demand balancing strategy. Also given the 

unlimited amount of electricity that can be exchanged with the main grid the 

management strategy for the heat pump is set to balance all electricity imports and 

exports instead of only the critical excess (CEEP in EnergyPLAN).  

 

 

Other estimates on emissions 

 

The only figure used to quantify the pollution generated from the local energy system 

is the total CO2 emitted. Such total amount can be split up in three contributions: an 

amount needed to operate the stationary electricity/heat generation systems within 

the local energy system (CHP and boilers in this case), the amount ascribable to the 

transport sector and finally the amount generated in the national energy system by 

withdrawing electricity. 

The CO2 content of the fuels is left as default in EnergyPLAN, and this allows to 

obtain the first two contributions directly from a scenario run. The third contribution 

is computed externally by considering both the total amount of electricity which is 

withdrawn from the grid during the simulated year, and the amount which is fed as 

a surplus from the renewable PV systems. The CO2 generated in the central system 

is then computed by means of the following equation: 
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𝐶𝑂2
𝑔𝑟𝑖𝑑

= (∑ 𝐸𝑔𝑟𝑖𝑑
+

ℎ

−  𝐸𝑔𝑟𝑖𝑑
− ∗ 𝜂𝑔𝑟𝑖𝑑) ∗ 𝑐𝑔𝑟𝑖𝑑  

 

 

Where CO2
grid  is the total amount of CO2 emitted using the national grid, the two 

Egrid terms are the same as described before and are summed over the whole year, 

considering the grid efficiency with 𝜂𝑔𝑟𝑖𝑑 for the part that is fed as a renewable 

surplus, finally cgrid is the specific emission in kgCO2/kWh for the Italian electricity 

generation park. The grid efficiency is estimated to 95%, while the specific 

emissions are estimated to 0.347 kgCO2/kWh of electricity [80]. 

 

 

Results 

 

The Osimo base case (as it is now) is run in order to have a baseline over which to 

confront the results of the following experiments. The simulation returns a total 

amount of 126,12 kt of CO2 emitted during a year of operation, with the emission 

mostly due to the transport sector which accounts for 74,64 kt (59,2 % of the total), 

followed by the emissions in the national energy system with 41,82 kt (33,2% of the 

total) and finally the operation of the distributed energy systems with 6,63 kt (7,6 % 

of the total).  

The heating demand is met by using mostly the boilers which take up nearly half of 

it (10,71 GWh provided out of 20,3), with the rest shared among the CHP (8,79 

GWh) and the heat pump (0,79 GWh). 

As expected the upper level national grid is used both to import electricity to meet 

the demand which the CHP and PV systems cannot cover, and also to absorb the PV 

surplus when not needed. The import averages 13,85 MW throughout the year with 

a total of 121,64 GWh withdrawn; the average export is of 0,37 MW with a total of 

3,29 GWh exported. This is in line with the real measured data provided by Astea, 

which reports a total of 124,36 GWh withdrawn in 2018 and 4,02 GWh fed back to 

the grid. 

This is also shown in Figure 18, where it can be seen how often electricity has to be 

returned to the grid due to a surplus in electricity production of the PV system, which 

accentuates in the summer and especially in the two weeks in august when most of 

the factories/public offices go on holiday. 
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Figure 17 - Electricity exchanges with the national grid according to the EnergyPLAN 

simulation of the base case 
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3.3.3 The EV load model 

 

Some of the analyses that will be undertaken aim at understanding the effects of a 

potential fleet of EVs within the local energy system. Such effects could be related 

to being an additional electric load, to a substitution of part of the conventional 

vehicle fleet and potentially in serving as a flexibility asset by means of a smart 

charging infrastructure. 

EnergyPLAN models the presence of EVs both with a set of static parameters such 

as: the total yearly electricity demanded from the EVs fleet, the fraction of vehicles 

parked in peak hours etc. while modeling a smart charging equipped fleet. But also 

a timeseries curve with hourly resolution to represent how the total electricity load 

is distributed within the year on an hourly basis. 

Then, a simple model is built to obtain realistic electricity load curves with hourly 

resolution for a given size of the EVs fleet in terms of total vehicles. Such amounts 

of vehicles have inevitably to be assumed given the very small fraction of EVs within 

the actual circulating fleet (less than 1% as said before) and this is done by referring 

to official estimations done by the Italian transmission grid manager Terna for the 

year 2030 [81]. There is a total of three scenarios to represent the uptake of EVs with 

different paces: a “slow progress” scenario with 5% market penetration of EVs, a 

“mid transition” scenario with 15% and a “green revolution” scenario with 30%. 

This given the current total amount of cars of 26500 vehicles returns respectively: 

1300, 3900 and 7800 EVs. The same three levels of penetration will then be modeled 

with the model,  by simulating the hourly electricity loads for the three different EVs 

fleet sizes. 

The curves are obtained with a mixed approach, using both available measured data 

and a set of bottom-up assumptions. The part which is modeled by means of data 

concerns the charging habit of the users in terms of when the vehicles are actually 

plugged in for recharge during the day. This assumption is of particular importance, 

given that the main issue that a wide adoption of EV is causing, namely the “duck 

curve” [82] is actually due to the timing of the charging habits of the vehicles owners. 

The technical assumptions, which also contain a degree of randomness, regard some 

characteristics of the charging events themselves such as: the power requested by the 

charging stations, the distance driven by each car in a given day and finally the 

specific consumption in kWh/km. The whole approach is shown in graphically in 

Figure 18. 
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Figure 18 - Modeling approach for the generation of the EV loads 

 

 

The behavior of the user in the charging process is obtained from the same dataset 

used in Chapter 2 [5], which also reports the power absorption for the charging 

stations in the households. The data is available with a 15 minutes resolution, and by 

analyzing the electricity absorption patterns it is possible to compute the hourly 

timestep when the charging event is initiated. This is done with a distinction in two 

behaviors (by appropriately filtering the data): a weekday usage profile and a 

weekend one, which is used also to represent any public holiday. The two profiles 

are shown in Figure 19 with an hourly resolution in terms of their probability density 

function. It can be seen that the patterns return a behavior similar to the one described 

in [82], with most of the charging events initiated in the late afternoon, when 

supposedly people come back from work, and even if less pronounced the pattern is 

replicated in the weekends/public holidays. 
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Figure 19 - Charging event probability density 

 

 

Then for each charging event a unique value for the battery capacity that has been 

depleted during the day is randomly generated from the two distinct variables 

mentioned before. Both of the two are randomly generated from their respective 

distribution which is supposed to be uniform: between the values of 30 and 60 km 

regarding the distance driven daily, and between the values of 0.1 and 0.25 regarding 

the specific consumption in kWh/km over that distance. An additional degree of 

variability is introduced by supposing a fixed amount of cars from the fleet that don’t 

drive within the specific day, and that is also generated randomly from an uniform 

distribution between 0 and 10%. Finally the last parameter is the power of the 

charging station which is set to 10 kW for all of the charging events for simplicity. 

In order to generate the load curves a fleet of a fixed number of EVs is initiated 

(following the fleet sizes mentioned before) and their charging process is simulated 

throughout the whole year with hourly resolution. If for example a charge is initiated 

at 8 pm for a total 42 kWh to be recharged with a 10 kW charging station: the 

algorithm will add a 10 kWh load to the hour timestep between 8 pm and 9 pm and 

the three hours following to that, plus a 2 kWh load to the fifth hour. This procedure 

is repeated for all the charging events, for each hour, and for the whole year. As an 

example the weekly charging patterns obtained for five different weeks for an EV 

penetration of 5% (1300 vehicles) are shown in Figure 20. 
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Figure 20 – Hourly charging pattern generated for five weeks for a 5% EV penetration 

 

What described so far is simply to generate a realistic load pattern with hourly 

resolution for a fleet of EVs. EnergyPLAN accepts the electric mobility demand by 

means of two distinct set of parameters. Firstly the demand is defined by a 

normalized timeseries and a total yearly demand, which is basically an additional 

electricity demand with hourly resolution, and this is modeled as just described. 

But in order to model the workings of fleet of EVs with smart capabilities an 

additional set of parameters is needed, and both a smart charging (meaning to 

possibility to partially dispatch the meeting of the EV demand) and a vehicle-to-grid 

(meaning the EVs acting as a virtual battery storage at disposal of the local grid) 

paradigms are possible. For the simulations in this chapter only the first capability, 

the smart charging, is considered for the EV fleet. 

The parameters which are used to model the EV fleet with smart charging are 

assumed as in Table 4. 
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Parameter Value 

Capacity of grid connection 10 kW per car 

Battery storage capacity 35 kWh per car 

Maximum share of EVs driving during 

peak time 

20% 

Share of parked cars which are grid 

connected 

80% 

Grid to battery electric efficiency 90% 

Table 4 - Technical parameters for the local  EV fleet 

 

3.3.4 The weather variability model 

 

The data representing the heating demand and the solar yield is available as measured 

data from Astea only for the year 2018; for this reason a model that represents their 

inherent variability is also introduced, so to obtain a set of realistic timeseries data 

for plausible virtual years. 

The approach is to use a set of modeling techniques based on data that can be 

retrieved from the openly available model of Renewable Ninja [83]–[85], which 

provides simulated weather data for any year ranging back to 2000 using two 

different reanalysis models [86], [87] , both based on satellite data. The mentioned 

website allows to both retrieve weather data and also to simulate the production of 

virtual renewable power plants (photovoltaic and wind) by specifying characteristics 

such as position, size of the system etc., obtaining in both cases curves that span a 

year with hourly resolution. Thus both the weather data and the production of a 

virtual PV plant of 1 kWp in size are obtained for the location of Osimo (Lat: 

43,4861, Lon: 13,4824) for all of the yearly timespans available, ranging from 2000 

to 2018.  
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The solar radiation uncertainty model 

 

The uncertainty in the availability of solar radiation is simply represented by the 19 

yearly profiles obtained from the Renewable Ninja portal for the virtual 1 kWp PV 

plant, straight from the available files the profiles are obtained. Figure 21 shows the 

variability in yield for all the curves retrieved from the model for four sample 

months. It can be seen that there is already a significant degree of variability entailed 

within the curves, for this reason there are no further modeling efforts on this aspect. 

 

 

 

 
Figure 21 - Electricity yield distribution for a 1 kWp system in Osimo 
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The heating demand uncertainty model 

 

The model of the uncertainty in the heating demand is itself based on a model that 

returns the heating demand from the virtual weather timeseries obtained from the 

Renewable Ninja model. This is obtained by training the prediction of the demand 

from a set of features which are defined on an hourly basis by means of a multivariate 

linear regression model, using the Scikit learn python package. The features are 

distinguished in weather related and usage pattern related.  

Firstly the model is trained on the only year where both the demand and the weathe 

are available as measured data. The weather related features are obtained directly 

from the data provided by Astea, which provided hourly measurements for the 

greater part of 2018 for: air temperature in °C, relative humidity, air density in kg/m3 

and wind speed in m/s. Of these only the first two are used to train the model given 

the unavailability of the others from the Renewable Ninja model. In order to provide 

an additional set of potential predictors to the model the moving average value has 

been computed for both the two predictors for a set of time windows ranging from 2 

to 24 hours. In the next Figures the obtained hourly trends are shown for an example 

of two weeks period for winter, midseason and summer. 

 

 
Figure 22 - Temperature actual measured value and moving averages for two winter weeks 
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Figure 23 - Temperature actual measured value and moving averages for two winter weeks 

 

 

A second set of features is aimed at modeling the behavior of the different types of 

users over the day and across a whole week. This is achieved by defining a binary 

value for each of these features for each hour. The first two aim at identifying the 

hourly timesteps belonging to working days over the year and the other the 

weekend/public holidays days, thus for each hour of a working day the first feature 

will be equal to 1, and equal to 0 for each weekend or public holiday day, and vice 

versa for the weekend/public holiday days. A second set of binary features wishes to 

represent two behavioral characteristic of the users, being the central hours of the 

day when most of the people is awake performing activities (such as being at work) 

and two peak time intervals in the morning and in the evening (as for example when 

people wake up and prepares for work, and when people come back from it). The 

daily pattern of the last two features is shown in Figure 24. 
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Figure 24 - Custom made binary features over one sample day 

 

 

Once all of the features are defined for the whole year there is a further step, which 

is to split the demand and predictors timeseries in three subsets, to represent three 

distinct seasons being winter, summer and mid-season. 

This is done in order to train three models with three  distinct set of parameters, 

where each model represents a period in which the heating needs (and thus the 

demand of the DHN) are fundamentally different from the other. In the winter there 

is going to be a significant need of thermal energy for space heating purposes, less 

in the mid-season and finally none in the summer, where the heating is needed only 

to provide hot sanitary water. 

The data is then split into training and test set for the three models using a 80% to 

20% proportion, the performance of the three models on the test sets are shown in 

the following Figures 25 and 26, for the winter and summer weeks respectively. 

From the Figrues it can be seen that the model still doesn’t perform well in some of 

the days, but this level of accuracy can be considered more than enough given both 

the relative scarcity of data (one year of demand, and 9 months of weather data) and 

actual goal of the model: which is to represent the variability of the heating demand. 
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Figure 25 - Performance of the model on the test set on a winter week 

 

 

 
Figure 26 - Performance of the model on the test set on a summer week 
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Obtaining the virtual realistic timeseries 

 

Once the model is trained this is used to obtain realistic timeseries of the heating 

demand from the available simulated weather data, which is of 20 yearly profiles as 

for the radiation. In the following Figure 27 the average temperatures from the 

obtained simulated data are shown for each month of the year for the same location 

of the city. 

 

 

 
Figure 27 - Distribution of the temperatures in Osimo from 2000 to 2018 according to the 

Renewable Ninja model 

 

The performance of the model in regressing the heating demands of the DHN are 

shown in the following Figures 28, 29 and 30 for a winter, summer and mid-season 

week respectively. This set of 20 curves is itself used to represent the inherent 

variability in the demand for the DHN. 

Together with the 20 yield curves obtained for the PV system this returns a set of 20 

plausible virtual years for the city of Osimo. 
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Figure 28 - Performance of the model on a winter week 

 

 
Figure 29 - Performance of the model on a mid-season week 
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Figure 30 - Performance of the model on a summer week 

 

 

3.3.5 Simulations design and variability representation 

 

As shown in in the graphical representation of the framework in Figure 11 all of the 

uncertainty sources are mold in order to create a set of simulations. Some of the 

parameters will be kept constant while other will be let vary in order to create a set 

of virtual plausible scenarios, so that the obtained results will consider the inherent 

uncertainties.  

As anticipated some of the simulation parameters will be changed arbitrarily in order 

to investigate their impacts on the energy system, while others will just vary in order 

to represent their inherent variability. All of the degrees of freedom of the proposed 

analyses are shown in the Table 5. In the Table a distinction is made between 

parameters that are changed in order to perform a sensibility analysis, and the ones 

that entail an uncertainty model. 

The uncertainties sources are combined only considering the presence of different 

possible load patterns for the EVs fleet for every virtual year. From the modeling 

efforts described in the previous paragraph a set of 20 virtual meteorological years 

have been obtained, and for each of these a set of 3 (determined arbitrarily) different 

yearly charging patterns of the EVs demand is used. Thus a single set of simulations 
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to study a particular technological asset (a flexible DHN or an increased EV 

penetration) will consist of 60 simulations. 

 

 

 Sensibility analysis  Modeled uncertainty 

PV System 5 sizes for the system Modeled as in paragraph 

3.3.4 (20 curves) 

Building stock demands None Modeled as in paragraph 

3.3.4 (20 curves) 

EVs demand 3 EVs fleet sizes Modeled as in paragraph 

3.3.3 (3 curves per fleet 

size) 

Conventional 

transports demands 

4 demands according to 

the EVs fleet sizes 

None 

DHN Flexibility (HP 

and TES size) 

4 sizes None 

Other conversion 

systems 

None None 

Table 5 - Summary of the performed simulations 

 

 

 

3.4 Results 
 

In order to study the impacts of the two flexibility assets a set of experiments is 

performed.  

Firstly, with Experiment #1, the city of Osimo is simulated as it is now (in terms of 

energy systems) with the only exception being the size of the PV capacity; this in 

order to isolate the effects of its presence with the inherent uncertainty, and in order 

to understand to what degree an integration of large shares of renewables is actually 

possible.  

Secondly, with Experiments #2 and #3 the same increasing share of RES capacity is 

tested against two different flexibility providing technologies: being a more flexible 

DHN and a smart charging infrastructure for a potential fleet of EVs. In the first case 

the DHN is made more flexible by means of a large electric heat pump and a thermal 

storage system (which is currently absent), in the second the smart charging 
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infrastructure allows the EVs electricity demand to be partially scheduled in order to 

make better use a of the available electricity surplus from the PV system. 

Finally, with Experiment #4, both the two approaches are combined into the same 

scenarios in order to evaluate their coexistence in addressing the same issue. 

All of the scenarios are evaluated considering different simulation outcomes, among 

which the ones which are given the most importance are the usage of the main 

national grid (both in terms of electricity imported and exported) in order to 

understand the degree of self-consumption of the RES generated electricity, and the 

total CO2 emissions across all sectors: heating, transport and national grid usage. 

All of the results are reported as a set of boxplots showing the spread of the variable 

of interest, with each box representing a PV system size and, in the case of the 

increasing flexible DHN/EV penetration, also by differentiating this parameter.   

 

3.4.1 Experiment #1 – Increased PV penetration in Osimo  

 

As anticipated from the description of the Osimo test case the size of the current PV 

system (approximately 31 MWp) already implies the need to feed large amounts of 

electricity to the national system. In the tests, the size of the PV system is increased 

from the current 31.1 MWp by 25% at a time, up to 62.2 MWp, being double the 

current system size. 

From the following Figures 31 and 32 it can be seen how, according to the model, 

an increasingly large PV system size acts both on the amounts of both imported and 

exported electricity. As expected while increasing the size of the PV system the 

export increases while the import decreases; but the export changes at an increased 

rate with respect to the import. By doubling the size of the PV system the median of 

the export simulations would increase by 23.7 yearly GWh, while the import would 

decrease by 18.7 GWh, thus indicating that the city’s energy systems would become 

always more reliant on the need to export to the main grid to cope with the increasing 

share of RES. 
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Figure 31 - Yearly electricity export in Experiment #1 

 

 
Figure 32 - Yearly electricity import in Experiment #1 
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This can be seen also by verifying the management strategy of the local CHP system 

by confronting the heat produced with the one produced by the local boiler. Even if 

from an absolute standpoint the reduction is limited (a difference in median of around 

1.5 yearly GWh of heat, around 7.5% of the total demand), still the CHP system is 

curtailed in order to increase the local usage of the electricity produced by the RES, 

and by consequence the lack in heat production has to be taken up by the natural gas 

boilers, leading to an increase in emissions in the heating sector.  

It has to be noted that this last effect is also due to the systems management strategy 

set to be used in the model, which aims at balancing both the heating and the 

electricity energy balances. A different strategy could aim at not impacting the usage 

of the local CHP system (by prioritizing the balancing of the heat vector), thus 

reducing the need to use the fossil fired boilers, but in that case the gap between the 

import and export of electricity from the main grid would probably be even more 

pronounced. 

 

 

 
Figure 33 - Yearly CHP produced heat in Experiment #1 
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Figure 34 - Yearly boiler produced heat in Experiment #1 

   

 

Finally, it can be seen in Figure 35 that, as expected, the increasing amount of the 

PV systems capacity within the district causes a decrease of the total CO2 emissions 

generated over the simulated years, from a median of 120 kilo-tons to one of 105, 

achieving savings for around 15 kilo-tons. The emissions shown in the figure are the 

global ones, thus including the local heating and transport sector, plus the usage of 

the main national grid. Given that the effects on the heating sector are almost 

negligible this is almost entirely to be attributed to the changes in the national grid’s 

usage, with the reduction of withdrawal and the increasing feeding of green 

electricity, with emissions caused by the usage of the national grid drop from 38.7 

to 24.5 yearly kilo tons of CO2. 

Being unchanged in the present experiment, the emissions of the transport sector 

keep being the highest fraction of the total emissions, with a share that surpasses 

70% in the case with the highest PV penetration. 
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Figure 35 - Yearly CO2 emissions in Experiment #1 

 

 

3.4.2 Experiment #2 – Osimo with an increasingly flexible DHN 

 

In this experiment, the district heating network is rendered increasingly flexible by 

simultaneously increasing the size of both an electric high temperature heat pump 

and a thermal storage, in three discrete sizes. The heat pump is increased from the 

current 34.8 kWe to 400, 800 and 1200 kWe respectively in the three steps 

(maintaining the same 4.6 COP), while the TES is increased to 40,80 and 120 MWh 

of thermal energy storage capacity. Both the two systems are integrated within the 

same DHN according in the EnergyPLAN model. The range for both the two sizes 

are determined by considering the actual heating demand of the city as in Figure 14, 

the maximum sizes of both the HP and the TES in the proposed range allow to 

produce enough heating power to meet the demand of an average winter day and 

store the total of an average daily demand with the largest size in the set.  
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Figure 36 - Yearly electricity import in Experiment #2 

 

 
Figure 37 - Yearly electricity export in Experiment #2 
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In Figures 36 and 37, both the yearly electricity import and export are reported by 

distinguishing among the three degrees of flexibility of the DHN with three distinct 

boxplots. As expectable the trends in both the two quantities are the same as in the 

previous experiment, with a decreasing import and an increasing export, but also that 

the increasingly flexible DHN has nearly no effects in the two quantities.  

There is a slight increase in imported and a slight decrease in exported electricity, 

but the main driver in the two quantities is still the increasingly large PV system 

capacity. 

The most significant changes happen in the heating sector with, as one could expect, 

a significant drop in the heat produced by means of the natural gas boiler system in 

favor of the HP. On the other hand the heat produced by the CHP system still drops 

in approximately the same way as for Experiment #1 in order to furtherly use the 

renewable electricity. This is a trend that will be exhibited also in the following 

Experiments, as given the operational strategy followed by the algorithm the CHP 

has to necessarily be curtailed while increasing the size of the PV system, in order 

to make a larger use of the electricity generated. 

But regarding the gas boiler and the electric HP a thing to notice is the different pace 

in such variations while increasing the degree of flexibility of the DHN, which is the 

same while switching from one flexibility level to the next. By increasing the 

flexibility from 400 kWe/40GWh to 800/80 the heat produced by the boiler drops by 

2.15 GWh on average (across the PV system sizes) and the one from the heat pump 

increases by almost the same quantity. By applying the same flexibility increase from 

800/80 to 1200/120 the decrease/increase in the heat produced by the two system is 

of around 0.55 yearly GWh (again across all the PV system sizes): suggesting that 

as one could expect there is an upper limit to the amount of heat that can be switched 

from fossil fired to electric. 

This consideration could change by prolonging the timespan over which the TES has 

to be used, as for example by imposing a long term storage application, which is not 

yet considered but which could be an interesting further development of this analysis. 
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Figure 38 - Yearly boiler produced heat in Experiment #2 

 

 
Figure 39 - Yearly heat pump produced heat in Experiment #2 
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Regarding the yearly global emissions, shown in Figure 40, the trend is similar to 

the one observed in Experiment #1. First of all it can be noticed that the influence of 

the flexibility of the DHN is almost negligible with respect to the emissions even 

while at its largest size.  In Experiment #1 the yearly emissions in the case with the 

largest PV size had a median value of 105.5 yearly kilo-tons, while in this case they 

reach the lowest median value of 104.5 in the case with the most flexible DHN. 

 

 

 
Figure 40 - Yearly CO2 emissions in Experiment #2 

 

 

It has to be recalled that the DHN only serves a part of the heating needs of the city 

of Osimo, and the emissions of the privately owned heating sector are not reported 

in the Figure. Thus, even by greatly reducing the emissions of such sector there 

would still be a relatively low impact on the yearly global emissions even by 

deploying much larger HP or a TES system. 

As a matter of fact by analyzing the impact of the HP and TES on the emissions 

caused by using distributed production systems (CHP and boilers), which are shown 

in Figure 41, it can be seen that there is actually a significant reduction effect. By 
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analyzing the medians of the boxplots just by increasing the flexibility from the 

original of Experiment #1 to 400 kWe/40 TWh there are savings of 1.3 kilo-tons of 

CO2, almost 20% of the original amount already with the lowest size of the PV 

system. With the DHN at its highest level of modeled flexibility, and with the largest 

size of the PV capacity, the savings raise to 2.6 kilo-tons, which is almost a 35% 

savings. 

It can then be concluded that increasing the flexibility of the DHN is actually a great 

way of mitigating the emissions of the distributed energy system, but for the current 

test case the impact is just too small while making a comparison with the other 

sources of emissions. 

 

 

 
Figure 41 - Yearly CO2 emissions from the distributed generation  systems  Experiment #2 

 

 

Such superior limit to this decarbonization approach could be of course overcome 

by enlarging the DHN to reach more customers, which as explained before is a 

technological option that is not analyzed within these analyses. 
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3.4.3 Experiment #3 – Osimo with increasing penetration of EVs with 

smart charge 

 

In this experiment the goal is to investigate an increasing penetration of electric 

vehicles in the transport sector; the results are shown by means of the same three 

boxplots configuration as for the previous experiment to show the increasing EV 

penetration which is of 5%, 15% and 30%. 

By looking at the plots for the electricity imported and exported it can be already 

seen how significant is the impact of the smart EV fleet in the grid usage pattern. As 

one could expect the increased presence of EVs both increases the electricity import 

and decreases the electricity export. In particular the drop in the need to export 

reaches almost zero at the current PV system size of 31 MWp even without the need 

for the highest EV penetration. Also, the last statement is true even by considering 

all the uncertainty sources which have been included in the model, as also the 

superior whisker of the boxplot lies approximately at zero. 

 

 

 
Figure 42 - Yearly electricity import in Experiment #3 
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Figure 43 - Yearly electricity export in Experiment #3 

 

 

On the matter of the global emissions, which are shown in Figure 43, it can be seen 

how significant is the decrease with the raising share of EVs in the transport sector, 

especially if compared with the flexible DHN. Such decrease is to be attributed to 

two distinct effects: the removal of a share of vehicles propelled by fossil fuel 

engines and the presence of the battery capacity of the EVs, which helps in increasing 

the local self-consumption of the PV electricity surplus. 

The first contribution is fixed and only depends on the share of EVs, as explained 

before thus; the reduction of emissions due to just this effect is of 4.07, 12.13 and 

24.27 yearly kilo-tons for a 5%, 15% and 30% EVs penetration respectively. 

The second contribution can be obtained by removing the quantity to be attributed 

to the heating and transport sectors, in the following table both the emissions in terms 

of absolute CO2 emitted and in terms of share on the total amount are shown. 
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 31.1 MWp 38.8 MWp 46.6 MWp 54.4 MWp 62.2 MWp 

5% EV 39.87 36.27 32.72 29.18 25.62 

15% EV 42.22 38.59 35 31.45 27.89 

30% EV 45.77 42.13 38.5 34.88 31.3 

Table 6 - grid related yearly CO2 emissions [kt] in Experiment #3 

 

 

 31.1 MWp 38.8 MWp 46.6 MWp 54.4 MWp 62.2 MWp 

5% EV 34% 32% 30% 27% 25% 

15% EV 38% 36% 34% 31% 29% 

30% EV 44% 42% 40% 38% 36% 

Table 7 - share of grid related CO2 emissions on total emissions in Experiment #3 

 

 

The numbers show that while the presence of the schedulable EVs helps in increasing 

the self consumption of the electricity produced by means of RES, the emissions to 

be attributed to the usage of the national grid are actually increasing, both in absolute 

terms (Table 6) and by consequence as a share of the total emissions (Table 7). Thus 

the major effect in CO2 emissions in mitigation coming from the heavy adoption of 

EVs is (in this case) to be attributed to removing a share of conventional vehicles 

from the streets.  

While the presence of EVs equipped with smart charge does help in reducing the 

need to export electricity due to the availability of what is synthetically a large 

battery at the disposal of the local grid during the day, limiting the phenomenon of 

large surpluses during the day. However, this comes at the price of an increased 

usage of the national grid, making the local electric grid more of a passive consumer 

with respect to the national grid. 
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Figure 44 - Yearly CO2 emissions in Experiment #3 

 

 

These results also highlight the fundamental importance of all the assumptions and 

modeling efforts made so far, highlighting once more the holistic nature of energy 

systems and their workings. 

As anticipated in the introduction EVs are seen as a key asset in decarbonizing our 

society, and this appears to be true also according to these analyses, but the beneficial 

effect in the decarbonization process are mostly concentrated to a local dimension, 

with a large amount of EVs actually increasing the emissions in the traditional 

electricity production and distribution infrastructures. And this appears to be true 

also while in the presence of very high RES penetration and thus green electricity.  

But the conclusions which are drawn so far are very dependent on the set of 

assumptions and estimations going into the model, highlighting once more the 

complex nature of energy systems analyses, and the holistic approach needed to gain 

significant and reliable insights. As a first example, the greatest share of the global 

emissions is to be attributed to the conventional transport, which has just been 

estimated by means of a representative car usage and specific consumption. A mis-

estimation of such parameters could then lead to erroneous estimations of the 

beneficial impacts of EVs with decarbonization purposes. 
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A second example, related in this case to the modeling of the EV demand, lies in the 

assumptions regarding both the same parameters of daily usage but also in the hourly 

charge pattern, which is mostly concentrated in the later part of the day, when there 

is already no more solar electricity available. As explained the presence of EVs aids 

in self-consuming the electricity surplus from the PV system but it also increases the 

need to import electricity and this is due to the hourly mismatch between the demand 

and supply of electricity. An EV usage pattern more intense in the central hours of 

the day, or an increased smart charging capability with more cars parked and plugged 

in (assumptions in 3.3.3) could change even drastically the benefits of having an EV 

fleet. 

 

 

3.4.4 Experiment #4  and results recap 

 

A last set of scenarios wishes to study the simultaneous presence of both an EVs 

fleet and an increasingly flexible DHN, combining the two previous experiments. In 

this sense a set of new simulation is added to the ones just described, analyzing all 

of the combination of DHN flexibility with all the combinations of EVs penetration. 

The results are shown in the following four dimensional plots, where the quantity of 

interest is encoded by means of a color scale. The same results are shown more in 

detail in the contour plots of figures for the case of increased sizes of PV system, 

where each contour is a slice of the 4d plot at a fixed PV system size. In all the just 

mentioned plots the quantities reported are the medians of the boxplots shown so far. 

By analyzing the figures is clear that an increased PV penetration inevitably raises 

the amount of electricity which has to be fed to the national grid and thus cannot be 

auto consumed. This is true also if both the two flexibility approaches, namely a 

more flexible DHN and a smart charging equipped EV fleet, are used 

simultaneously. It’s also confirmed what emerged in the description of the previous 

experiments, that the flexible EV fleet is much more effective in reducing the exports 

than the flexible DHN. 

As shown by the color gradients in Figure 46 it then appears that the contribution of 

the flexible DHN in decreasing the electricity exports is almost negligible, but again 

this has to be attributed to its relatively small size in terms of energy demands. As 

already discussed in Paragraph 3.3.3. 
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Figure 45 - Yearly electricity exports to the national grid across all the simulations 

 

 

From the two plots regarding the yearly global emissions it’s confirmed again that 

the progressive penetration of EVs is the major driver in lowering the carbon 

footprint of the local energy system. With respect to the results of Experiment #3 the 

coexistence of both the two flexibility measures doesn’t really combine into a greater 

advantage in this sense.  

The increase of the capacity of the PV system can itself lead to a much lower carbon 

footprint but, as seen in all of the Figures the best results are achieved only with high 

penetration of EVs. By itself the increase of PV alone can lead to reductions down 

to 105.5 yearly kilo-tons fo CO2, meaning a 16.3% reduction on the current amount, 

which is computed in paragraph 3.3.2. Actually around the same beneficial effects 

can be obtained just by increasing the share of EVs, that with a 30% penetration 

return a yearly 102.9 kilo-tons of CO2, a 18.4% reduction.  
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Figure 46 - Detail of yearly exports to the national grid across all the simulations 
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As anticipated an EV adoption of this magnitude in the short term (for example 

within 2030) consists in a very optimistic scenario, driven mostly from the 

consumer’s behaviors and policies (such as incentives on the adoption of EVs) which 

are not really to be taken from the municipal energy company, whose goal might be 

to decrease its carbon footprint. 

While these results suggest the importance that the EV fleet might have in helping 

welcome higher shares of non-controllable RES mostly from a 

technical/environmental point of view, the potential decision to be taken is still 

complex, especially in a context where other technologies might be of use towards 

the same goal. As for example the just mentioned expansion of the DHN with an 

increasingly electrified supply of thermal energy. 

 

 

 

 

 
Figure 47 - Yearly CO2 emissions across all the experiments 
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Figure 48 - Detail of yearly CO2 emissions across all the simulations 
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3.5 Conclusions 
 

In this chapter we propose a framework aimed at enhancing an already well-

established energy systems simulation model, with the goal of considering many of 

the intrinsic sources of uncertainty, and thus ultimately achieving better insights 

from the model. The goal is to understand how high penetration of non controllable 

RES can be better put to use in the interest of an increased self consumption of such 

production, or the decarbonization of the local energy system 

In order to validate the framework a real case study is built with data provided by a 

municipal energy company meeting the needs of a small town in central Italy, the 

data models the energy demands of part of the city, plus the technical specifications 

of the DER assets within the local energy system. 

Most of the uncertainty sources that were considered of interest and with a potential 

significant impact on the results of the simulation of the local energy system were 

characterized by building a dedicated model. Other aspects on the other hand were 

made vary with assumptions based on the available literature and from open 

databases. Among the needs of the local energy system a potentially significant one 

which has not been included in these analyses regards the privately own heating 

sector, which could itself be a relevant source of emissions, but also a potential new 

source of flexibility by means of an expansion of the DHN network in order to reach 

more customers. The proposed framework considers such uncertainties by launching 

a large set of simulations, in order to obtain a plausible range for the parameters of 

interest towards the goal of the analysis, which are the usage pattern of the main 

electricity grid and the yearly amount of emissions. 

The simulations are then aimed at representing the operational aspect of the energy 

systems in terms of balances of energy with a fine time discretization. So the 

objective is to the meet the user demands at each timestep, without pursuing any type 

of economic goal in doing so. 

The results indicate that both an increasingly flexible DHN and a significant 

penetration of EVs can help in both increasing the auto consumption of excesses of 

electricity produced by means of RES, and also help in mitigating the overall carbon 

footprint of the local energy system. The effect is however much more significant 

with the electrification of the transport sector, both in terms of carbon emissions 

mitigation and in terms of increased auto consumption capabilities. For the case of 

the emissions, the reduction is due to both a removal of much more polluting 

conventional vehicles, which offsets the additional electricity purchased from the 
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national grid to charge the vehicles. Regarding the need to export electricity the EVs 

are again much more effective in reducing it, eliminating entirely the need to do so 

for the actual PV system capacity. 

It has to be noticed though that the benefits of the flexible DHN are small in 

comparison due to the actual size of the network and the relative impact on 

emissions. And also that some of the parameters which have been estimated and not 

let vary in these analyses actually have a potentially significant impact on the results, 

and therefore the insights gained from them. Such parameters regard both the 

modeling of the conventional transport sector and the electric one. 
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Chapter 4. 
 

Conclusions 

 

4.1 Key findings 
 

In this thesis a set of modelling approaches to tackle the gaps in the energy systems 

modelling literature were proposed. In particular the approaches were aimed at 

considering the complex impacts of the temporal dimension and of the uncertainties 

within the design and operation of multi energy distributed energy systems. As 

widely discussed in the introduction energy systems are intrinsically very complex; 

characterized by a dynamic nature over different timescales and a very large set of 

actors interacting with each other, each with its own mechanics and characteristics 

and a different impact on the outcome of the analysis performed, which as 

highlighted can point at answering to a very wide set of questions.  

For these reasons energy systems related questions need to be faced with a holistic 

approach, and the same goes for the models used to perform the analyses that wish 

to answer such same questions. The models need to be tailor made for the question 

at hand, with an appropriate compromise between the detail of representation and 

the right approximations, all of which maintaining a tolerable computation 

tractability. 

For these reasons the approaches proposed in this thesis aim at both goals, widening 

the capability of the current modelling approaches in providing insights which are 

more reliable, due to their being robust towards two challenges which are considered 

to be pivotal in the already available literature. In particular the proposed approaches 

are two; and wish to tackle the complexities inherent to the very long time dimension 

of energy related problems, and the impact of uncertainties while analysing systems 

with high penetration of non-controllable RES. 

 The first contribution, described in Chapter 2, wishes to consider the 

potential impact of parameters that might change over long timespans, such as for 

example within the technical lifetime analysed while studying the optimal planning 

of such system. Such parameters could consist for example in a particular technology 

changing in its capital costs due to technological development or economies of scale, 
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or a demand of the users evolving through time. In particular the methodology is 

tested on a test case where the adoption of an electricity storage system is evaluated 

over a long time span in a scenario representing a residential user with a large 

penetration of non-controllable renewable electricity generation (PV), which shows 

a performance degradation through the years. This type of analysis is of particular 

interest given a well-established market trend indicating a plausibly significant drop 

in battery systems capital costs. 

The results for the scenario indicate that even by considering such drop in costs a 

battery system would still not be a valid investment in a residential scenario without 

a significant increase in PV system capacity. Other than the conclusion regarding the 

economical aspect an insight is also gained from a policy perspective, indicating the 

need of incentivizing such technology. 

 The second contribution, described in Chapter 3, wishes to consider the 

impact of uncertainties in a much more complex analysis that wishes to investigate 

the best technological pathways for the decarbonisation of local multi energy 

systems of the size of a small town. The scenario is accurately modelled by 

considering different sectors of the multi energy system, being: a district heating 

network, a small CHP system, a large penetration of non-controllable RES (a PV 

system), a traditional transport sector fed by conventional fuels and a potential fleet 

of EVs. In particular the analysis wishes to uncover insights on which pathway can 

grant the most significant reduction in CO2 emissions, whether a flexibilisation of 

the local DHN, or a smart charging infrastructure for the local EVs fleet. The 

innovative aspect in the proposed approach lies in the modelling, and thus 

consideration, of a set of uncertainties related to both the supply side of the local 

energy system (uncertainty in solar electricity availability) and the demand side 

(uncertainty in heating and electric mobility demands).  

The results indicate that for the town test case under analysis a fleet of EVs in 

presence of a smart charging infrastructure is a much more effective way in dealing 

with high shares of non controllable RES with respect to a more flexible DHN. This 

leads to both a reduced carbon footprint and an increased auto consumption of the 

electricity surplus. So far the analysis lacks a consideration of the economics of both 

the two approaches, and also of other equally valid decarbonisation approaches. But 

this could already give some insights regarding a potential policy approach. While 

the investment in a smart charging infrastructure is a decision to be taken by the local 

municipality, a more centralized policy could be to incentivize such technological 

measure. 
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4.2 Future developments 
 

The developments of the approaches described in this thesis could be very diverse 

and focus both on improving the approaches themselves in adding functionalities in 

order to have an even more holistic representation of the energy case studies that 

they wish to analyse, but also combine their strengths in a single model.  

 The framework proposed in Chapter 2 could be enhanced by considering a 

large set of technologies of which to evaluated the potential investment, or a set of 

other quantities of interest that mutate over long time horizons. As for example an 

increase in energy demands, or a mutation of the same in different patterns in order 

to represent a change is user behaviours, such as for example the progressive 

adoption of air conditioning or EVs. Or, to represent how the cost of provision of an 

external resource such as grid electricity or network natural gas, that itself is very 

susceptible to costs variations through the year, could impact the optimal degree of 

decentralization for the distributed energy system. 

 The framework proposed in Chapter 3 could be enhanced by extending the 

set of represented uncertainties to include in general more of the assumed 

parameters, but more importantly the ones that showed to be influential with respect 

to the analysis outcomes described in the results: such as for example the emissions 

of the fossil fired transport sector, or the pattern of EVs usage by the citizens. A 

further improvement would consist in adding also considerations of economic nature 

to the model, in order to obtain insights regarding how the different technological 

approaches compare in terms of costs. 

 On a bigger perspective the advantages of the two models could be combined 

in a single framework aiming at answering to optimal design problems by 

considering both a wide range of uncertainties in the present time, and how these 

combine over long time horizons with parameters showing a trend over such time. 

An optimization algorithm coupled with a very detailed modelling and 

representation of the energy systems of interest, which for example the EnergyPLAN 

model can grant, could be used to obtained better insights on potential policy and/or 

investment decisions. Such comprehensive framework could for example help in 

understanding how to design an incentive while pursuing a given objective: such as 

for example the mitigation of the carbon footprint of the energy system, the islanding 

capabilities etc. 

 



 79 

  



 80 

References 
 

 

 

[1] United Nations, “Transforming our World: the 2030 Agenda for sustainable 

Development,” 2016. Available at: 

https://sustainabledevelopment.un.org/post2015/transformingourworld 

 

[2] United Nations, “World Urbanization Prospects,” 2018. Available at: 

https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf 

 

[3] Intergovernmental Panel on Climate Change, IPCC report Global Warming 

of 1.5 C: Summary for Policymakers. 2018. Available at: 

https://report.ipcc.ch/sr15/pdf/sr15_spm_final.pdf 

 

[4] McKinsey, “Global Energy Perspective 2019: Reference Case,” 2019. 

Available at: 

https://www.mckinsey.com/~/media/McKinsey/Industries/Oil%20and%20

Gas/Our%20Insights/Global%20Energy%20Perspective%202019/McKinse

y-Energy-Insights-Global-Energy-Perspective-2019_Reference-Case-

Summary.ashx 

 

[5] R. P. van Leeuwen, J. B. de Wit, and G. J. M. Smit, “Review of urban 

energy transition in the Netherlands and the role of smart energy 

management,” Energy Convers. Manag., vol. 150, pp. 941–948, 2017. 

 

[6] Fraunhofer ISE, “Current and Future Cost of Photovoltaics: Long-term 

Scenarios for Market Development.,” p. 82, 2015. 

 

[7] Joint Research Centre. European Comission, PV Status Report 2018. 2018. 

Available at: 

https://ec.europa.eu/jrc/sites/jrcsh/files/pv_status_report_2018_online.pdf 

 

[8] IRENA, Electricity storage and renewables: Costs and markets to 2030, no. 

October. 2017. Available at: 

https://www.irena.org/publications/2017/Oct/Electricity-storage-and-



 81 

renewables-costs-and-markets 

 

[9] Till Bunsen et al., “Global EV Outlook 2019 to electric mobility,” OECD 

iea.org, p. 232, 2019. Available at: 

https://www.iea.org/publications/reports/globalevoutlook2019/ 

 

[10] P. Denholm, M. O’Connell, G. Brinkman, and J. Jorgenson, 

“Overgeneration from Solar Energy in California: A Field Guide to the 

Duck Chart (NREL/TP-6A20-65023),”  November, p. 46, 2015. 

 

[11] MIT Energy Initiative, Utility of the future, vol. 36, no. 3. 2016. Available 

at: https://energy.mit.edu/wp-content/uploads/2016/12/Utility-of-the-

Future-Full-Report.pdf 

 

[12] L. Mehigan, J. P. Deane, B. P. Ó. Gallachóir, and V. Bertsch, “A review of 

the role of distributed generation (DG) in future electricity systems,” 

Energy, vol. 163, pp. 822–836, 2018. 

 

[13] S. Kelly and M. G. Pollitt, “The local dimension of energy,” Futur. Electr. 

Demand Cust. Citizens Loads, no. January, pp. 249–279, 2012. 

 

[14] K. Alanne and A. Saari, “Distributed energy generation and sustainable 

development,” Renew. Sustain. Energy Rev., vol. 10, no. 6, pp. 539–558, 

2006. 

 

[15] P. Mancarella, “MES (multi-energy systems): An overview of concepts and 

evaluation models,” Energy, vol. 65, pp. 1–17, 2014. 

 

[16] H. Lund, Renewable Energy Systems: A Smart Energy Systems Approach to 

the Choice and Modeling of 100% Renewable Solutions. Elsevier Ltd, 2014. 

 

[17] H. Lund, P. A. Østergaard, D. Connolly, and B. V. Mathiesen, “Smart 

energy and smart energy systems,” Energy, vol. 137, pp. 556–565, 2017. 

 

[18] K. Orehounig, R. Evins, and V. Dorer, “Integration of decentralized energy 

systems in neighbourhoods using the energy hub approach,” Appl. Energy, 



 82 

vol. 154, pp. 277–289, 2015. 

 

[19] Z. Zhou, P. Liu, Z. Li, and W. Ni, “An engineering approach to the optimal 

design of distributed energy systems in China,” Appl. Therm. Eng., vol. 53, 

no. 2, pp. 387–396, 2013. 

 

[20] C. Wouters, E. S. Fraga, and A. M. James, “An energy integrated, multi-

microgrid, MILP (mixed-integer linear programming) approach for 

residential distributed energy system planning - A South Australian case-

study,” Energy, vol. 85, pp. 30–44, 2015. 

 

[21] R. Renaldi and D. Friedrich, “Techno-economic analysis of a solar district 

heating system with seasonal thermal storage in the UK,” Appl. Energy, vol. 

236, no. November 2018, pp. 388–400, 2019. 

 

[22] B. P. Koirala, E. van Oost, and H. van der Windt, “Community energy 

storage: A responsible innovation towards a sustainable energy system?,” 

Appl. Energy, vol. 231, no. September, pp. 570–585, 2018. 

 

[23] X. Liu, Z. Yan, and J. Wu, “Optimal coordinated operation of a multi-energy 

community considering interactions between energy storage and conversion 

devices,” Appl. Energy, vol. 248, no. February, pp. 256–273, 2019. 

 

[24] M. Bagheri, S. H. Delbari, M. Pakzadmanesh, and C. A. Kennedy, “City-

integrated renewable energy design for low-carbon and climate-resilient 

communities,” Appl. Energy, vol. 239, no. February, pp. 1212–1225, 2019. 

 

[25] D. Fischer, A. Harbrecht, A. Surmann, and R. McKenna, “Electric vehicles’ 

impacts on residential electric local profiles – A stochastic modelling 

approach considering socio-economic, behavioural and spatial factors,” Appl. 

Energy, vol. 233–234, no. May 2018, pp. 644–658, 2019. 

 

[26] P. Cabrera, H. Lund, and J. A. Carta, “Smart renewable energy penetration 

strategies on islands: The case of Gran Canaria,” Energy, vol. 162, pp. 421–

443, 2018. 

 



 83 

[27] “MUSE-GRIDS Project.” [Online]. Available: http://www.muse-grids.eu/. 

 

[28] “DRIvE Project.” [Online]. Available: https://www.h2020-drive.eu/. 

 

[29] “plan4res Project.” [Online]. Available: https://www.plan4res.eu/. 

 

[30] “HEAT4COOL Project.” [Online]. Available: http://www.heat4cool.eu/. 

 

[31] European Commission, “Common rules for the internal electricity market,” 

2019. Available at: 

http://www.europarl.europa.eu/RegData/etudes/BRIE/2017/595924/EPRS_

BRI(2017)595924_EN.pdf 

 

[32] M. Gancheva, S. O’Brien, and N. Crook, Models of Local Energy 

Ownership and the Role of Local Energy Communities in Energy Transition 

in Europe. 2018. Available at: 

https://cor.europa.eu/en/engage/studies/Documents/local-energy-

ownership.pdf 

 

[33] G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, and W. 

D’haeseleer, “Distributed generation: Definition, benefits and issues,” 

Energy Policy, vol. 33, no. 6, pp. 787–798, 2005. 

 

[34] J. Keirstead, M. Jennings, and A. Sivakumar, “A review of urban energy 

system models: Approaches, challenges and opportunities,” Renew. Sustain. 

Energy Rev., vol. 16, no. 6, pp. 3847–3866, 2012. 

 

[35] S. Pfenninger et al., “Opening the black box of energy modelling: Strategies 

and lessons learned,” Energy Strateg. Rev., vol. 19, pp. 63–71, 2018. 

 

[36] S. Ferrari, F. Zagarella, P. Caputo, and M. Bonomolo, “Assessment of tools 

for urban energy planning,” Energy, vol. 176, pp. 544–551, 2019. 

 

[37] J. Allegrini, K. Orehounig, G. Mavromatidis, F. Ruesch, V. Dorer, and R. 

Evins, “A review of modelling approaches and tools for the simulation of 

district-scale energy systems,” Renew. Sustain. Energy Rev., vol. 52, pp. 



 84 

1391–1404, 2015. 

 

[38] G. Mavromatidis et al., “Ten questions concerning modeling of distributed 

multi-energy systems,” Build. Environ., vol. 165, no. June, p. 106372, 2019. 

 

[39] “OeMOSYS.”. Available: http://www.osemosys.org/. 

 

[40] M. Howells et al., “OSeMOSYS: The Open Source Energy Modeling 

System. An introduction to its ethos, structure and development.,” Energy 

Policy, vol. 39, no. 10, pp. 5850–5870, 2011. 

 

[41] “H.O.M.E.R.”. Available: https://www.homerenergy.com/. 

 

[42] “EnergyPRO.” Available: https://www.emd.dk/energypro/. 

 

[43] “Calliope.”. Available: https://www.callio.pe/. 

 

[44] “EnergyPLAN.”. Available: https://www.energyplan.eu/. 

 

[45] S. Pfenninger, A. Hawkes, and J. Keirstead, “Energy systems modeling for 

twenty-first century energy challenges,” Renew. Sustain. Energy Rev., vol. 

33, pp. 74–86, 2014. 

 

[46] J. Glassmire, P. Komor, and P. Lilienthal, “Electricity demand savings from 

distributed solar photovoltaics,” Energy Policy, vol. 51, pp. 323–331, 2012. 

 

[47] G. Haydt, V. Leal, A. Pina, and C. A. Silva, “The relevance of the energy 

resource dynamics in the mid/long-term energy planning models,” Renew. 

Energy, vol. 36, no. 11, pp. 3068–3074, 2011. 

 

[48] A. Der Kiureghian and O. Ditlevsen, “Aleatory or epistemic? Does it 

matter?,” Struct. Saf., vol. 31, no. 2, pp. 105–112, 2009. 

 

[49] G. Mavromatidis, K. Orehounig, and J. Carmeliet, “A review of uncertainty 

characterisation approaches for the optimal design of distributed energy 

systems,” Renew. Sustain. Energy Rev., vol. 88, no. September 2017, pp. 



 85 

258–277, 2018. 

 

[50] W. E. Walker et al., “Defining Uncertainty: A Conceptual Basis for 

Uncertainty Management in Model-Based Decision Support,” Integr. 

Assess., vol. 4, no. 1, pp. 5–17, 2003. 

 

[51] A. Bartolini, G. Comodi, F. Marinelli, A. Pizzuti, and R. Rosetti, “A 

matheuristic approach for resource scheduling and design of a multi-energy 

system,” ICORES 2019 - Proc. 8th Int. Conf. Oper. Res. Enterp. Syst., pp. 

451–458, 2019. 

 

[52] A. Bartolini, G. Comodi, A. Pizzuti, R. Rosetti, and F. Marinelli, “A 

MODEL-BASED APPROACH FOR THE LONG TERM PLANNING OF 

DISTRIBUTED ENERGY SYSTEMS,” ICAE 2019 - Proc. Int. Conf. Appl. 

Energy, 2019. 

 

[53] M. G. Prina, M. Lionetti, G. Manzolini, W. Sparber, and D. Moser, 

“Transition pathways optimization methodology through EnergyPLAN 

software for long-term energy planning,” Appl. Energy, vol. 235, no. 

November 2018, pp. 356–368, 2019. 

 

[54] M. G. Prina et al., “Multi-objective optimization algorithm coupled to 

EnergyPLAN software: The EPLANopt model,” Energy, vol. 149, pp. 213–

221, 2018. 

 

[55] Z. Abdmouleh, A. Gastli, L. Ben-Brahim, M. Haouari, and N. A. Al-Emadi, 

“Review of optimization techniques applied for the integration of 

distributed generation from renewable energy sources,” Renew. Energy, vol. 

113, pp. 266–280, 2017. 

 

[56] A. Maleki, F. Pourfayaz, and M. H. Ahmadi, “Design of a cost-effective 

wind/photovoltaic/hydrogen energy system for supplying a desalination unit 

by a heuristic approach,” Sol. Energy, vol. 139, pp. 666–675, 2016. 

 

[57] A. S. Kocaman, W. T. Huh, and V. Modi, “Initial layout of power 

distribution systems for rural electrification: A heuristic algorithm for 



 86 

multilevel network design,” Appl. Energy, vol. 96, pp. 302–315, 2012. 

 

[58] M. Ranaboldo, A. García-Villoria, L. Ferrer-Martí, and R. Pastor Moreno, 

“A meta-heuristic method to design off-grid community electrification 

projects with renewable energies,” Energy, vol. 93, pp. 2467–2482, 2015. 

 

[59] M. Ranaboldo, A. García-Villoria, L. Ferrer-Martí, and R. Pastor Moreno, 

“A heuristic method to design autonomous village electrification projects 

with renewable energies,” Energy, vol. 73, pp. 96–109, 2014. 

 

[60] Pecan Street Smart Grid Demonstration Project, “Pecan Street Final 

Technology Performance Report,” no. February, 2015. 

 

[61] M. Mohammadi, Y. Noorollahi, B. Mohammadi-ivatloo, and H. Yousefi, 

“Energy hub: From a model to a concept – A review,” Renew. Sustain. 

Energy Rev., vol. 80, no. July, pp. 1512–1527, 2017. 

 

[62] R. Green, I. Staffell, and N. Vasilakos, “Divide and Conquer? k-means 

clustering of demand data allows rapid and accurate simulations of the 

British electricity system,” IEEE Trans. Eng. Manag., vol. 61, no. 2, pp. 

251–260, 2014. 

 

[63] S. P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans. Inf. 

Theory, vol. 28, no. 2, pp. 129–137, 1982. 

 

[64] Danish Energy Agency, “Technology Data for Energy Storage,” 1385. 

 

[65] P. A. Østergaard, “Reviewing EnergyPLAN simulations and performance 

indicator applications in EnergyPLAN simulations,” Appl. Energy, vol. 154, 

pp. 921–933, 2015. 

 

[66] P. A. Østergaard, “Wind power integration in Aalborg Municipality using 

compression heat pumps and geothermal absorption heat pumps,” Energy, 

vol. 49, no. 1, pp. 502–508, 2013. 

 

 



 87 

[67] P. A. Østergaard, “Comparing electricity, heat and biogas storages’ impacts 

on renewable energy integration,” Energy, vol. 37, no. 1, pp. 255–262, 

2012. 

 

[68] K. Sperling and B. Möller, “End-use energy savings and district heating 

expansion in a local renewable energy system - A short-term perspective,” 

Appl. Energy, vol. 92, pp. 831–842, 2012. 

 

[69] P. A. Østergaard and H. Lund, “A renewable energy system in 

Frederikshavn using low-temperature geothermal energy for district 

heating,” Appl. Energy, vol. 88, no. 2, pp. 479–487, 2011. 

 

[70] K. Kontu, S. Rinne, V. Olkkonen, R. Lahdelma, and P. Salminen, 

“Multicriteria evaluation of heating choices for a new sustainable residential 

area,” Energy Build., vol. 93, no. x, pp. 169–179, 2015. 

 

[71] C. Brandoni, A. Arteconi, G. Ciriachi, and F. Polonara, “Assessing the 

impact of micro-generation technologies on local sustainability,” Energy 

Convers. Manag., vol. 87, no. 2014, pp. 1281–1290, 2014. 

 

[72] G. De Luca, S. Fabozzi, N. Massarotti, and L. Vanoli, “A renewable energy 

system for a nearly zero greenhouse city: Case study of a small city in 

southern Italy,” Energy, vol. 143, pp. 347–362, 2018. 

 

[73] S. Bellocchi, M. Gambini, M. Manno, T. Stilo, and M. Vellini, “Positive 

interactions between electric vehicles and renewable energy sources in CO 

2 -reduced energy scenarios: The Italian case,” Energy, vol. 161, no. 2018, 

pp. 172–182, 2018. 

 

[74] A. Buonomano, F. Calise, F. L. Cappiello, A. Palombo, and M. Vicidomini, 

“Dynamic analysis of the integration of electric vehicles in efficient 

buildings fed by renewables,” Appl. Energy, vol. 245, no. January, pp. 31–

50, 2019. 

 

 

 



 88 

[75] M. McPherson, M. Ismail, D. Hoornweg, and M. Metcalfe, “Planning for 

variable renewable energy and electric vehicle integration under varying 

degrees of decentralization: A case study in Lusaka, Zambia,” Energy, vol. 

151, pp. 332–346, 2018. 

 

[76] A. Chakrabarti et al., “Optimisation and analysis of system integration 

between electric vehicles and UK decentralised energy schemes,” Energy, 

vol. 176, pp. 805–815, 2019. 

 

[77] G. Comodi, F. Caresana, D. Salvi, L. Pelagalli, and M. Lorenzetti, “Local 

promotion of electric mobility in cities: Guidelines and real application case 

in Italy,” Energy, vol. 95, pp. 494–503, 2016. 

 

[78] Ministero delle Infrastrutture e dei Trasporti, “Parco Circolante dei 

veicoli.”. Available: https://www.dati.gov.it/dataset/parco-circolante-dei-

veicoli. 

 

[79] ISTAT, “Dati Utilizzo Autovetture.”. Available: 

https://www.istat.it/it/archivio/autovetture. 

 

[80] Terna S.p.A., “Analisi dei dati elettrici 2016,” 2017. 

 

[81] Terna S.p.A., “Scenari della domanda elettrica in Italia.” 

 

[82] California ISO, “Energy and environmental goals drive change,” p. 4, 2016. 

 

[83] S. Pfenninger and I. Staffell, “Renewable ninja.”. Available at: 

https://www.renewables.ninja/. 

 

[84] S. Pfenninger and I. Staffell, “Long-term patterns of European PV output 

using 30 years of validated hourly reanalysis and satellite data,” Energy, 

vol. 114, pp. 1251–1265, 2016. 

 

[85] I. Staffell and S. Pfenninger, “Using bias-corrected reanalysis to simulate 

current and future wind power output,” Energy, vol. 114, pp. 1224–1239, 

2016. 



 89 

[86] Goddard Space Flight Center, “MERRA/AS and Climate Analytics-as-a-

Service (CAaaS).”. Available: https://technology.nasa.gov/patent/GSC-

TOPS-53. 

 

[87] R. Müller, Richard; Pfeifroth, Uwe; Träger-Chatterjee, Christine; Cremer, 

Roswitha; Trentmann, Jörg; Hollmann, “Surface Solar Radiation Data Set - 

Heliosat (SARAH) - Edition 1,” 2015.. Available: 

https://wui.cmsaf.eu/safira/action/viewDoiDetails?acronym=SARAH_V001

. 

 

 

 


