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Abstract: Background: Alveolar bone defects are usually the main concern when planning implant 
treatments for the appropriate oral rehabilitation of patients. To improve local conditions and 
achieve implant treatments, there are several methods used for increasing bone volume, among 
which one of the most successful, versatile, and effective is considered to be guided bone 
regeneration. The aim of this demonstrative study was to propose an innovative analysis protocol 
for the evaluation of the effect of photobiomodulation on the bone regeneration process, using rat 
calvarial defects of 5 mm in diameter, filled with xenograft, covered with collagen membrane, and 
then exposed to laser radiation. Methods: The animals were sacrificed at different points in time 
(i.e., after 14, 21, and 30 days). Samples of identical dimensions were harvested in order to compare 
the results obtained after different periods of healing. The analysis was performed by cross-linking 
the information obtained using histology and high-resolution synchrotron-based tomography on 
the same samples. A comparison was made with both the negative control (NC) group (with a bone 
defect which was left for spontaneous healing), and the positive control (PC) group (in which the 
bone defects were filled with xenografts and collagen membrane without receiving laser treatment). 
Results: We demonstrated that using photobiomodulation provides a better healing effect than 
when receiving only the support of the biomaterial. This effect has been evident for short times 
treatments, i.e., during the first 14 days after surgery. Conclusion: The proposed analysis protocol 
was effective in detecting the presence of higher quantities of bone volumes under remodeling after 
photobiomodulation with respect to the exclusive bone regeneration guided by the xenograft. 

Keywords: Photobiomodulation; bone regeneration; xenograft; collage membrane; synchrotron 
radiation-based X-ray microtomography; histology 
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1. Introduction 

Nowadays, dental medicine is confronted with the challenge of solving large edentations 
complicated with severe bone loss through the usage of implant prosthetic restorations. To make 
such treatments successful and predictable, specific pre-requisites regarding the bone quantity and 
quality are required. Alveolar bone defects are usually caused by infections, surgical trauma due to 
aggressive extraction, periodontal diseases, or accidental trauma [1–3]. To improve local conditions 
and to give the patient the possibility to receive an appropriate implant treatment, several methods 
and biomaterials for increasing the bone volume have been tested. Bone grafting is the second most 
frequent tissue transplantation after blood, with over two million procedures reported annually 
worldwide [4]. 

One of the most successful bone reconstruction methods is guided bone regeneration. This is 
considered the most versatile and effective method for alveolar ridge augmentation [5–7], offering 
the possibility of over 5 mm bone gain in the vertical and horizontal aspect [5,8–12]. There are 
publications that report an increase of even 8.5 mm in height [5,13] by the appropriate usage of this 
technique. Regarding the bone graft materials, to harvest autogenous bone graft from the patient 
donor site is still considered the gold standard, even though it has clear limitations regarding the 
possibility of donor site complications and of subsequent morbidity [1–3]. The need to replace 
autogenous bone with other materials led to the development of allografts, xenografts, and alloplasts 
[14,15]. 

Independently of the utilized technique and materials, bone augmentation with a biomaterial 
and its simultaneous covering with a barrier membrane involve a series of regular biological process 
of osteo-induction and osteo-conduction. They also involve several cell types and signaling with 
specific timing [16,17], thus combining the potential of the materials used and their mechanical 
properties [18]. Hitti and Kerns [19] extensively described the need for a barrier membrane, which 
enhances new bone formation by preventing the rapid ingrowth of fibroblasts into a bony defect. An 
important condition for the migration of the osteogenic cells from the bone edges to the defect is 
sealing the intrabony defect with a membrane. In this case, the rate of osteogenesis exceeds the rate 
of fibrogenesis [20]. 

Increased interest is nowadays focused not only on biomaterials but also on the development of 
methods with stimulatory effects on bone cell proliferation. In this respect, photobiomodulation has 
shown promising results in stimulating cell proliferation, especially fibroblasts, macrophages and 
lymphocytes. It also promotes angiogenesis and synthesis of collagen [21–24]. Specifically, the use of 
low-level laser therapy (LLLT) for wound healing, nerve injury repair, as well as the reduction of 
inflammation and pain, was tested shortly after the invention of lasers [25]. Photobiomodulation 
using laser technology is often referred to as LLLT because the energy delivered to the tissue is much 
lower than for other laser treatments and it does not produce heating of tissue [25]. In this context, 
Pinheiro et al. [23] demonstrated that bone irradiated with low-level lasers showed increased 
osteoblastic and collagen proliferation, as well as new bone formation in comparison with non-
irradiated groups. Bone cell and tissue sensitivity to laser irradiation were also reviewed by Barber 
at al. [26], concluding that laser properties must be carefully chosen to obtain the desired effects. 
Initially, several in vitro studies were performed with laser radiation on bone cells in culture; different 
wavelengths were used (690, 830, and 632 nm), with different protocols regarding the duration, the 
frequency and the dose of radiation [27–30]. Nevertheless, they all concluded that laser therapy 
increases the number of more differentiated osteoblastic cells [27,31]. It stimulates cell proliferation, 
bone nodule formation, followed by osteogenic markers: alkaline phosphatase (ALP) gene expression 
[28], osteopontin, and bone sialoprotein [23,29]. Another similar study concluded that after 96 h the 
cell proliferation was obvious, together with higher levels of transforming growth factor-B1, and 
osteocalcin, whilst ALP levels were not significantly different between different study groups [30]. 
The same aspects have been investigated throughout many in vivo studies, using different animal 
models, wavelengths, and irradiation protocols. Most of these studies presented improvements 
during the early stages of the healing period [32], with significant differences in the calcium 
hydroxyapatite concentration, as well as in the quantity of newly formed bone and of collagen fibers 
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[33]. Other studies [34] observed increased mineralization in the laser-treated groups and increased 
levels of calcium, phosphorus, and proteins in comparison to the untreated groups [30]. 

As the effect of photobiomodulation on empty defects has been well documented in the 
literature, our interest was focused on the biological interaction between photobiomodulation and 
the guided bone regeneration technique. In this respect, the Brazilian research group of Pinheiro 
investigated protocols for improving the bone repair process using photobiomodulation. They used 
an infrared laser (wavelength 830 nm) on bone defects of rats and rabbits, which were treated 
following different protocols and using different biomaterials. One of their studies [35] reported an 
increased amount of newly formed bone after laser usage in rats’ bone defects. Another study 
revealed that in the early stages of the healing period, differences in bone organization and 
vascularization were detectable, but after 45 days the differences between the irradiated and the non-
irradiated groups became insignificant [36]. Later studies of the same research group [37] 
investigated the concentration of calcium hydroxyapatite (CHA) around dental implants placed in 
rabbits’ tibia and concluded that LLLT improved the bone healing, increasing the CHA concentration. 
However, photobiomodulation in combination with guided bone regeneration needs further study, 
because of different responses from the hosting tissues. 

Thus, the aim of this demonstrative study was to test the effectiveness of an innovative protocol 
to evaluate the effect of photobiomodulation on bone regeneration process, using rat calvarial defects 
filled with xenograft, covered with collagen membrane, and then exposed to laser irradiation. The 
analysis was performed by cross-linking the information obtained by histology and high-resolution 
synchrotron-based tomography (micro-CT) on the same samples. Comparisons with both the 
negative control (NC) group (having a bone defect which was left for spontaneous healing), and 
positive control (PC) group (in which the bone defects were filled with xenografts and collage 
membrane, without receiving any laser treatment) were made. 

2. Results 

2.1. Synchrotron Radiation-Based Micro-Tomography 

Micro-CT images of repaired sites in retrieved samples are shown in Figure 1. All tissues, except 
for mineralized bone and residual biomaterials, have been made virtually transparent. Three-
dimensional reconstructions of representative samples are shown in Figure 1a–c, Figure 1g–i, and 
Figure 1m–o, for biopsies harvested 14, 21, and 30 days after surgery, respectively. Moreover, 
representative transversal sections are respectively reported in Figure 1d–f, Figure 1j–l, and Figure 
1p–r, for the same groups of study. 

Two aspects are evident in the 3D reconstructions of the represented samples: first, the newly-
formed bone (tissue represented in red in Figure 1a–c, g–i, m–o) mainly forms on the borders and not 
in the center of the defect, and this occurs not only in the NC group, but also in the PC and +LLLT 
groups (i.e., where the xenograft is present); secondly, with the exception of the +LLLT group, an 
increase in the volume of newly-formed bone is evident in the period between the 14th and the 21st 
day after surgery. Moreover, even if the massive presence of the biomaterial prevents a fully reliable 
evaluation of the observation, it appears that after 14 days from surgery, the thickness of newly-
formed bone on the defect borders is higher in the +LLLT group than in the PC group, as indicated 
with yellow arrows in Figure 1b,c. This event is not as evident for longer amounts of time. 

However, from the simple 3D reconstructions and from the representative transversal sections 
of the repaired defects, volume mismatches in terms of amount of bone under remodeling could not 
be fully assessed; thus, we proceeded to a volumetric quantitative analysis. 
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Figure 1. Micro-CT images of repaired sites in representative retrieved samples. (a–f) Group I: 
samples harvested after 14 days: (a–c) 3D reconstructions: (a) negative control (NC); (b) positive 
control (PC); (c) treated with low-level laser therapy (LLLT); (d–f) transversal sections of the defect: 
(d) NC; (e) PC; (f) treated with LLLT. (g–l) Group II: samples harvested after 21 days: (g–i) 3D 
reconstructions: (g) NC; (h) PC; (i) treated with LLLT; (j–l) transversal sections of the defect: (j) NC; 
(k) PC; (l) treated with LLLT. (m–r) Group III: samples harvested after 30 days: (m–o) 3D 
reconstructions: (m) NC; (n) PC control; (o) treated with LLLT; (p–r) transversal sections of the defect: 
(p) NC; (q) PC; (r) treated with LLLT. In 3D reconstructions grey tissue is mature bone; red tissue is 
bone under remodeling; white tissue is xenograft biomaterial; yellow arrows point to newly formed 
bone on defect border. In the transversal sections of the defect: white tissue is xenograft biomaterial; 
colors represent mineralization of the bone proportional to the color map in the bottom. Color map: 
blue stands for low mass density; red stands for high mass density. 
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Indeed, the first step of the study was focused on the investigation of bone microarchitecture 
and on the evaluation of volume percentages (vol.%) of the different mineralized phases (bone under 
remodeling, mature bone, and xenograft biomaterial) with respect to the overall mineralized volume. 
In each harvested sample, a sub-volume fully circumscribing the defect hole was selected, producing 
the morphometric data reported in Figure 2. As shown in Figure 2a–c, the volume percentages of 
bone under remodeling with respect to the amount of mature bone increased in time. This trend was 
observed in all groups except for the laser treated one (+LLLT), where the amount of bone under 
remodeling was found to be already quite high after 14 days from the surgery. 

 

Figure 2. Quantitative morphometric analysis. (a–c) Mean volume percentages (vol.%) of the different 
mineralized phases (bone under remodeling, mature bone, and xenograft biomaterial) with respect to 
the overall mineralized volume: (a) NC group; (b) PC group; (c) +LLLT group. (d–f) Quantitative 
volumetric analysis of bone under remodeling portion, after (d) 14 days, (e) 21 days, and (f) 30 days 
from the surgery. Error bars are indicated. 

As observed considering the red phase in the 3D reconstructions of Figure 1a,g,m and based on 
the quantification reported in Figure 2, samples of the NC group present higher percentages of bone 
under remodeling than in the other groups, except at the shortest time-point, i.e., 14 days after 
surgery, when the amount of bone under remodeling was increased by using LLLT by 50% with 
respect to the NC group and by 45% with respect to the PC group. Moreover, as reported in Figure 2 
as well, for more than 14 days from surgery the amount of bone under remodeling was increased by 
using LLLT by only 10% in comparison to the PC group. One can see, in this respect, an almost 
unnoticeable increase in the 3D reconstructions of Figure 1. 

The second step of study was focused on the investigation of the relative bone mineral density 
distribution (MDDr), i.e., on the evaluation of the calcium concentration and distribution (weight%) 
in the different groups of study. Thus, the same sub-volumes previously investigated for the 
calculation of volume percentages were also investigated for the MDDr mapping. The concept and 
results referring to the complete set of indices, derived from the profile fitting, are shown in Figure 
3. A sector of the grey-level histogram for a sampling biopsy is shown in Figure 3 Panel a, with the 
peak on the left referring to the mineralized bone and the peak on the right referring to the xenograft 
filling the defect. This study was carried out using the Roschger approach [38], which was focused 
on the mineralized bone portion. The parameters investigated are indicated in Figure 3b. The results, 
derived from the profile fitting, are listed in Figure 3c. In the NC and PC groups, the peak and the 
mean values followed a similar trend, which decreases over time. This was not the case for the +LLLT 
group, where a specific trend was not present. The opposite behavior was detected when considering 
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the FWHM values—a specific trend in time was not present in the NC and PC groups, but in the 
+LLLT group, where there was a clear decreasing trend over time, with special reference from 14 to 
21 days after surgery. Finally, the high value decreased over time in all the groups. Interestingly, after 
14 days, the opposite trend was detected considering the FWHM values, while the peak, the mean 
and the low values were at their maximum in the NC group and minimum in the +LLLT group. 

 

Figure 3. Study of the relative mass density distribution (MDDr). (a) Portion of the histogram of a 
sampling biopsy: the peak on the left refers to the overall mineralized bone, the peak on the right 
refers to the biomaterial (xenograft) used to fill the defect; (b) study of the mineralized bone: the 
parameters investigated with the Roschger approach [38] are indicated. The threshold of p = 0.005 has 
been selected, as a good compromise to maintain a good sensitivity and minimize at the same time 
potential artifacts due to partial volume effects in the evaluation of MDDrlow; (c) parameters that 
derive from the profile fitting are indicated. 

2.2. Histology 

The histological examination, as shown in Figure 4, revealed interesting evidence, with different 
aspects for groups NC, PC, and +LLLT, depending on the period of healing. 

On the examined fragments harvested on Day 14, extensive areas of necrosis and hematic 
extravasation were identified in the group left for spontaneous healing (NC group, Figure 4a). The 
other two groups (PC and +LLLT, Figure 4b,c, respectively) showed homogeneous eosinophilic 
material, a “foreign body” with focal granuloma formation. The +LLLT group fragments revealed 
well-represented fibrous (young) connective tissue and low inflammatory infiltration compared to 
the rest of the groups. 

Fragments harvested at 21 days after surgery showed a reduction in inflammatory infiltration 
and foreign body granulomas (Figure 4d–f). These were predominantly located at the periphery, with 
the fibrous connective tissue embracing eosinophilic material. The NC group revealed fibrotic 
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connective tissue that included optically opaque areas and heavier inflammatory infiltrates (Figure 
4d). The +LLLT group showed bone tissue formation, with areas rich in osteoblasts (Figure 4f). 

After 30 days of healing, fibrous connective tissue was shown to incorporate homogeneous 
eosinophilic material and newly formed bone lamellas (Figure 4g–i), the osteoblasts were found in 
large numbers around the bone lamellae, and the inflammatory process was present, as highlighted 
by giant multinuclear cells. 

 
Figure 4. Histologic analysis. (a–c) Samples after 14 days of healing: (a) group NC, (b) group PC, and 
(c) group +LLLT. (d–f) Samples after 21 days of healing: (d) NC group, (e) PC group, and (f) +LLLT 
group. (g–i) Samples after 30 days of healing: (g) NC group, (h) PC group, and (i) +LLLT group. N-
necrosis; EM-eosinophilic material; CT-connective tissue; G-granulomas; Ob-osteoblasts. HE staining, 
original magnification: 10×. 

3. Discussion 

Despite the increasing success of the use of photobiomodulation in different areas, there are 
relatively few reports on their effect on bone repair that are evidence-based. However, due to the 
positive effects on bone metabolism, the use of photobiomodulation has been encouraged in clinical 
practice [39]. Renno et al. [40] and Stein et al. [29] showed a significant increase in the proliferation of 
osteoblasts after laser energy irradiation using an 830 nm diode generating 20 J/cm2. In addition, the 
laser radiation appears to accelerate the process of fracture repair and produce an increase in the 
volume of the callus formed and an increase in bone mineral density. Effects related to 
photobiomodulation include increased vascularization, increased osteoblastic activity, organization 
of collagen fibers, and changes in the mitochondrial and intracellular levels of adenosine 
triphosphate. 

In this context, numerous studies have been also conducted in animal models on the osteogenic 
properties of different biomaterials, with different outcomes [41–45]. However, photobiomodulation 
effects, in combination with biomaterials in bone defect repair processes, require further study, as 
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different responses from the host have been found. Most research has been based on animal studies, 
the most investigated type of animal being the rat, mainly in the tibia bone [46–48]. 

In the present study, as well as in a previous one [49], we evaluated the effect of 
photobiomodulation on bone regeneration process, using rat calvarial defects filled with xenograft, 
previously coated with collagen membrane and then exposed to laser irradiation. 

In vitro studies such as those conducted by Soleimani [50] and Saygun [51] showed proliferation, 
stimulation and differentiation of human mesenchymal stem cells into osteoblastic cells in the lased 
groups. In the first case, a dose of 4 J/cm2 (810 nm) was delivered, while in the second study the dose 
was halved to 2 J/cm2 (685 nm). The effects were also confirmed by Dortbudak [27]. 

Because bone has limited biological variations to react to stimuli, results may be false or over-
interpreted. For example, fibrosis and bone resorption can be the result of biomechanical instability 
as well as missing osteoconductive properties of a scaffold material. They may also be produced by 
a rapid material degradation, while biocompatibility is still preserved. Therefore, a step-wise 
approach is preferred to answer questions of biocompatibility/suitability of a novel biomaterial. 
Biocompatibility issues should be clarified using a biomechanically unchallenged situation [52], 
whereas the suitability of a material can be tested in a mechanically challenged defect, modeling long 
bones after biocompatibility has already been assessed in previous experiments. For both, the cellular 
reaction (e.g., the presence of inflammatory mono- and poly-nuclear cells) as well as the new bone 
formation at the surface and within the material are important along with the resorption of the 
material itself [53]. Reduction of inflammation due to photobiomodulation is one of the most well-
accepted effects of light therapy [54], its mechanism being evidenced by a decrease in chemical 
inflammatory mediators, (prostaglandin E2, leucocytes, tumor necrosis factor TNFα). 
Photobiomodulation can exert both an anti-inflammatory effect and a pro-inflammatory one, 
increasing mRNA expression and the protein concentration of anti-inflammatory mediators (IL-10, 
HSP72), similar to anti-inflammatory steroids [55]. An apparent contradiction has been highlighted 
between the pro-inflammatory effect of photobiomodulation in in vitro studies and the anti-
inflammatory effect found in most of the clinical studies [56]. 

In our case, the positive effects of photobiomodulation therapy in the initial stages of the bone 
defect healing were also evidenced by histological examination, which revealed significant 
differences regarding the presence of inflammatory infiltrate in different study groups: at 14 days, 
the small amount of inflammatory infiltrate in +LLLT group permits the organization of the young 
connective tissue, which acts as a precursor of the newly formed bone tissue. When analyzing the 21 
days healing period, the reduction of the inflammatory process is more obvious in PC and +LLLT 
groups. At the same time, as the formation of bone tissue occurs, the +LLLT group shows areas rich 
in osteoblasts. As the healing period increases, the differences between the analyzed groups in terms 
of inflammation are reduced, but giant multinuclear cells can still be detected. As a conclusion, it 
seems that the maximum effects of photobiomodulation appear in the early stages of the bone injury, 
when a smaller amount of inflammatory infiltrate is associated with increased bone formation. 

Our present demonstrative study also showed that photobiomodulation healed the defect better 
than when only the support of the biomaterial was present. This effect was clearly observed for short-
term treatments, i.e., 14 days after the surgery. For longer periods of treatment, the newly formed 
bone volumes became comparable in grafted defects, with or without laser treatment. Indeed, as 
shown in Figure 2d–f, the amount of bone under remodeling in defects healed with the xenograft 
support sensibly increased in volume percentages after the photobiomodulation only in the 14 days 
group, therefore not for longer periods of time. The presence of higher quantities of bone volume 
under remodeling in the +LLLT group indicated higher quantities of bone formation, as already seen 
in previous in vitro studies. Nicolau et al. [57] and Freitas [46] thus showed higher bone cell activity 
when irradiating rat femur and tibiae defects with 660 and 633 nm lasers. Khadra irradiated calvarial 
defects with an 830 nm laser and found increased soft and bone tissue in the study group [58]. Weber 
showed that the healing of autologous bone graft in bone defects was improved through 
photobiomodulation [59]. 
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Moreover, as demonstrated using the relative mass density distribution (MDDr) analysis, after 
14 days from surgery the peak, the mean and the low values were at their minimum in the +LLLT 
group and maximum in the NC group, while the opposite trend was observed for the FWHM values. 
These data, collectively considered, indicate a wider distribution of mass density after the laser 
treatment, with a preeminent presence of areas with low mineralization, i.e., with a majority of newly 
formed bone clusters. 

For longer time-points than 14 days (i.e., 21 and 30 days from surgery), when compared with the 
NC samples (in which the cavities were left empty for spontaneous healing), defects filled with 
xenografts, i.e., both the PC and the +LLLT samples, presented lower or similar volume percentages 
of bone under remodeling (i.e., less newly formed bone). This evidence was observed in Figure 1a–c, 
g–i, m–o, as well as in Figure 2a–c. This was also confirmed by previous studies [41,42]. For example, 
Takauti [31] studied the bone regeneration process in rat calvariae, with defects filled with three 
different types of biomaterials: two xenografts (deproteinized bovine bone) and one allograft 
(biphasic calcium phosphate). After eight weeks of healing, they found a greater amount of newly 
formed bone when using alloplastic materials, while cavities filled with deproteinized bovine bone 
presented higher amounts of residual graft, probably due to its slow resorption. When compared 
with control cavities, which were left empty for spontaneous healing, they concluded that defects 
filled only with blood clot presented more newly formed bone than cavities filled with xenograft, and 
a similar amount to the defects filled with alloplastic material. Their results were also confirmed by 
Rokn [42]. 

The evidence that defects left for spontaneous healing presented already after three weeks of 
healing (21 days group) more newly-formed bone than cavities filled with xenograft could most likely 
be caused by a certain delay of the healing process in the presence of biomaterials. We observed this 
delay in several of our previous studies; specifically, we observed that regenerative kinetics in in vitro 
cultures on different biomaterials showed that the bioresorption of the scaffold is more accentuated 
up to the second week of culture, while bone regeneration is delayed in time, most likely because 
cells growing onto the scaffold took longer time to adhere and then to begin proliferating [60–62]. 

Moreover, in the present study, the biomaterial may have exerted a shielding action in respect 
to photobiomodulation effects on cells, inhibiting the same regenerative action of the laser treatment, 
as shown in Figure 5. In the study carried out by Rokn [42], the 3D analysis based on cone-beam 
tomography showed no filling in the center of the spontaneously healed cavities, revealing that newly 
formed bone was concentrated only at the edges of the defect. Therefore, it becomes important to 
favor osteo-conduction and the migration of cells from the defect border, using as filler a biomaterial 
that adheres to the defect walls without carrying out any barrier and shielding action to cell migration 
or to the possible regenerating action of laser treatments. 

 

Figure 5. Micro-CT images of repaired sites in representative retrieved sample, evaluated at 30 days 
postoperatively. The borders of the defect have not been covered with bovine bone graft, thus being 
directly exposed to laser radiation. A great amount of newly-formed bone can be observed at the 
periphery of the defect, as indicated with yellow arrows. A: 3D reconstruction; B: transversal section. 
Grey tissue is mature bone; red tissue is bone under remodeling; white tissue is xenograft biomaterial. 



Int. J. Mol. Sci. 2020, 21, 778 10 of 17 

However, in our study, the quantitative volumetric analysis of bone under remodeling at the 
three time-points (14, 21 and 30 days from surgery) showed better healing when photobiomodulation 
was applied on the grafted defect than in cases where the grafted defect did not receive laser 
treatment. This effect was particularly evident for the shortest considered period of time, i.e., 14 days 
after surgery. Thus, these observations obtained using our innovative protocol of analysis highlight 
the positive effects of laser therapy on bone regeneration process, which increase the quantity of 
newly formed bone. It also suggests possible interactions with the grafting materials that could 
influence our future experimental follow-ups. 

In the present study, we selected 14, 21, and 30 days from surgery as time-points for the analysis. 
The rationale behind this choice was motivated by the fact that, when establishing follow-up periods 
of bone regeneration in rat calvarial defects, the metabolic rate of the Wistar rat must be considered: 
the smaller the animal, the higher the metabolic rate compared to that of a human: 30 days of a man’s 
life correspond to one day of rat’s life [63]. This means that shorter observation periods to obtain data 
sampling are usually required when small animals are used instead of larger ones, because they heal 
faster. Long periods of observation would potentially demonstrate that both test and control groups 
reach an advanced/complete healing of the defect, failing to disclose the beneficial potential of a 
biomaterial [64,65]. 

Therefore, considering the short-term laser treatment benefits shown in the present study, we 
plan to proceed in future experiments by stopping the +LLLT after 14 days and allowing the 
regeneration to occur beyond this period in the absence of +LLLT, checking the results with our 
experimental protocol. Moreover, another experimental follow-up will be based on additional +LLLT 
doses at periods of time shorter than 14 days, examining bone regeneration beyond this period. 

4. Materials and Methods 

4.1. Animal Model and Groups of Study 

The experimental protocol was approved by the Ethics Committee of the “Victor Babes” 
University of Medicine and Pharmacy of Timisoara (No. 129 of the 8th December 2016). The study, 
in order to minimize the number of sacrifices, included 24 Wistar rats with an average weight of 287 
g (range 247–312 g), which were randomly divided into 3 study groups: (1) the negative control (NC) 
group, having a bone defect which was left for spontaneous healing; (2) the positive control (PC) 
group, in which the bone defects were filled with xenografts and collage membrane, without 
receiving any laser treatment; and (3) the test (+LLLT) group, with bone defects filled with xenografts, 
with collagen membrane and receiving low level laser irradiation every 48 h. The Animal Facility of 
the “Victor Babes” University of Medicine and Pharmacy of Timisoara provided and housed all the 
animals in a temperature-controlled environment. The rats received water and standard laboratory 
animal chow ad libitum. A 12 h light–dark cycle was maintained throughout the experimental 
protocol. 

4.2. Surgical Procedure 

In the first session, the animals were anesthetized (5% Isofluran and O2 at 1 L/min, for induction 
in the anesthesia chamber, and after that, a facemask of 1% Isofluran and O2 at 1 L/min was delivered), 
the region around the scalp was shaved and antisepticised with betadine in order to perform the 
surgical procedure. This consisted of creating a calvarial circular defect of 5 mm in diameter, using a 
trephine bur and continuous irrigation with saline solution. To obtain the precise position of the 
defect related to skin landmarks, a surgical plastic guide was used. After the defect was created, each 
animal was treated corresponding to the study group to which it was assigned. The animals from the 
NC group were sutured and received no other treatment, to be able to observe the spontaneous 
healing of the bone defect. The animals from the PC and +LLLT groups received bovine bone graft 
(NuOss® natural cancellous and cortical bone matrix, ACE Surgical Supply, USA) into the defect and 
collagen membrane (ACE RCM6® Resorbable Collagen Membrane, ACE Surgical Supply, USA) 
covering the defect, thus ensuring the proper conditions for guided bone regeneration to take place. 



Int. J. Mol. Sci. 2020, 21, 778 11 of 17 

All animals were sutured in a two layers manner and were kept postoperatively in the same 
conditions: 22 ± 5 °C temperature and at a 50% ± 5 humidity, following an antibiotic prophylaxis 
treatment (Cefazolin 15mg/kg + Gentamicin 1.5 mg/kg) and daily clinical examination with 
evaluation of the general clinical status (heart rate, respiratory rate, body temperature, wound 
appearance and healing of the incision, posture and locomotion). 

4.3. Photobiomodulation Protocol 

Photobiomodulation using laser irradiation was performed every 48 h to animals from the 
+LLLT group, with a gallium-aluminum–arsenide laser (GaAlAs) (IRRADIA Mid-Laser®, Stockholm, 
Sweden, center wavelength of 808 nm, optical power of 450 mW). Laser irradiation was applied in 
four peripheral opposite points and in one central point of the defect, with the help of the surgical 
guide, with a frequency of 3800 Hz, 450 mW, 17 s per point, 18.9 J per treatment session. The 
photobiomodulation parameters are provided in Table 1. 

Table 1. Photobiomodulation parameters in the experimental protocol. 

Manufacturer IRRADIA Mid-Laser® Stockholm, Sweden 
Model Identifier MID-laser; Serial no 8110131-4 
Year Produced 2007 

Number and type of 
emitters  

Gallium-Aluminum–Arsenide laser (GaAlAs) laser 

Wavelength and 
bandwidth  

808 nm 

Pulse mode  CW 
Beam spot size at target  1 cm2 

Irradiance at target  450 mW/cm2 
If pulsed peak 

irradiance  
450 mW/cm2 

Exposure duration  17 s per point, 85 s per session 
Radiant exposure  24.075 J/cm2 
Radiant energy  18.9 J 

Number of points 
irradiated 

5 

Area irradiated  1 cm2 

Application technique 
Photobiomodulation was applied to the skin covering the surgical defect in four 
peripheral opposite points and in one central point of the defect (the size of the 

defect was 5 mm in diameter), using a plastic surgical guide 
Number and frequency 

of treatment sessions 
Surgery day and every 48 h after the surgery, for 14 days, 21 days, and 30 days 

respectively 
Total radiant energy 
over entire treatment 

course  

151.2 J for the 14 days group; 226.8 J for the 21 days group; 302.4 J for the 30 days 
group 

4.4. Samples collection 

The results of the study were assessed by harvesting bone samples from the animals at three 
different time points: after 14 days, 21 days, and 30 days from the surgery, in order to evaluate the 
regeneration process versus time. The specimens were all standardized at the 1 × 0.6 × 0.2 cm3 
dimensions and were fixed in no less than 9 times their own volume of 10% formalin. After harvesting 
the samples, the rats were euthanized using a Thiopental overdose. All samples were kept in formalin 
and then investigated with high-resolution X-ray tomographic (micro-CT) and histological 
examinations. 

In order to obtain objective results, the samples were randomly numbered with the aim to be 
identified only by the scientists involved in the analyses of the results. Although it was obvious which 
were the negative control samples (empty defects), the healing period was unknown. For the rest of 
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the samples, the aspect was similar, all containing grafting material and the numbering did not 
permit the assessors to know neither if the sample received photobiomodulation treatment, nor the 
healing period. 

4.5. Synchrotron Radiation-Based Micro-Tomography 

X-ray microtomography (micro-CT) of the samples was performed at the SYRMEP beamline of 
the ELETTRA synchrotron facility (Basovizza (TS), Italy). The samples were investigated using the 
following settings: isometric voxels with an edge size of 9 µm; exposure time of 1 s/projection; and 
X-ray beam energy of 19 keV. The sample–detector distance was set to 300 mm, enabling us to 
measure the phase-contrast signal. The phase-contrast configuration differs from conventional 
tomographic imaging that is based solely on attenuation contrast. Indeed, the refraction of the X-ray 
beam passing through each tissue is described by the refractive index, n(r) = 1 – δ(r) + iβ(r), where δ 
is the refractive index decrement and β is the attenuation index. As δ is sensibly larger than β, the 
phase-contrast approach is much more sensitive than the absorption approach. The refractive index 
decrement δ is proportional to the mean electron density, which in turn is nearly proportional to the 
mass density ρ (expressed as mg/cm3). 

In some cases, specifically in weakly absorbing samples or in samples consisting predominantly 
of a single phase, the real and imaginary parts of the refractive index are proportional to each other, 
i.e., δ(r) = ε∙β(r), where ε does not depend on the spatial coordinates [61,62]. As our samples consisted 
mainly of mineralized bone, i.e., a single phase with a spatially varying density, and considering the 
sample-detector distance in the near field regime [66], the previous approximation is valid, and the 
δ/β ratio has been set to 200. The complete tomographic reconstruction was performed using the 
SYRMEP Tomo Project (STP) open source software [67]. 

Afterwards, the VG Studio MAX 1.2 software (Volume Graphics, Heidelberg, Germany) was 
used to generate 3D images, where grey levels were proportional to the mass density ρ. The Scatter 
HQ algorithm with an oversampling factor of 5.0 was used to image the 2D sections and the 3D 
reconstructions. Different peaks in the gray level scale represent different phases within the samples; 
the volume of each phase was obtained by multiplying the volume of a voxel (~730 µm3) by the 
number of voxels underlying the peak associated with the relevant phase. A manually set threshold 
was applied to the histograms to separate the bone under remodeling from the mature bone, and the 
mature bone from the scaffold phase. The thresholds were set to 108 and 147, respectively. 

A morphometric analysis was performed to evaluate the volume percentages (vol.%) of the 
following phases with respect to the overall mineralized volume: bone under remodeling, mature 
bone, and scaffold. 

Moreover, the refractive index n signal, linearly proportional to the mass density, was exploited 
to compute the relative bone mass density distribution (MDDr) of each sample. As we recently 
proceeded in other studies [68], the MDDr parameters were calculated with strict reference to the 
mineralized bone portion of the histograms, with the intensities normalized, for each sample, by the 
area under the curve. The absolute values of bone mass density (calcium concentrations – weight%) 
could not be retrieved: in fact, n might be biased due to the constant ratio δ/β used in the Paganin 
phase retrieval [69]. However, as the samples were comparable in terms of size and composition, the 
relative differences in mass density distribution between them could be evaluated. Thus, the 
superscript r was used to indicate relative values for all bone mass density distribution parameters. 
Based on the Roschger approach [38], the following parameters were extracted: MDDrmean (mean 
relative mass density), MDDrpeak (most frequent relative mass density), MDDrlow (0.5th percentile) and 
MDDrhigh (99.5th percentile), and MDDrfwhm (full width at half maxima of the distribution). We 
arbitrarily selected the threshold of P = 0.005 as a good compromise between maintaining a good 
sensitivity for low and high values in the MDDr and reducing possible artifacts originating from the 
partial volume effect (when evaluating the MDDrlow). This post-processing calculation of the MDDr 
parameters was done using the PeakFit software (Systat Software, San Jose, CA,USA). 

4.6. Histology 
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The tissues obtained were fixed in 10% formalin solution, followed by a moderate descaling 
agent. The paraffin blocks resulting from the processing were used to make additional sections 
(thickness of 4 µm, Thermo Scientific™ HM 355S Automatic Microtome, Waltham, MA 02451 USA ) 
that were stained with hematoxylin and eosin (HE) and were further on examined under a Leica 
DM750 microscope (Leica Microsystems, Wetzlar, Germany). 

5. Conclusions 

We demonstrated that photobiomodulation therapy is effective in short periods; laser doses 
administrated to the defects beyond 2 weeks after surgery appeared to be not very effective. A 
possible shielding action of the xenograft on the laser action on cells was hypothesized and will be 
verified through future studies. This effect may be combined with a bone regeneration delay in the 
presence of biomaterials, as already documented in previous studies. Thus, in support of this 
hypothesis, several authors suggested the same conclusions [33,70], finding that the positive effects 
of photobiomodulation on bone healing are more obvious when applied intraoperatively, directly to 
the bone defect, prior to the grafting procedure [33]. 

In our demonstrative study, micro-CT allowed us to achieve new and relevant information, 
although a limited number of rats was included in the study. This sample size would have most likely 
not been sufficient in other experimental protocols, exclusively based on histology. The power of our 
protocol lies in the 3D nature of micro-CT analysis, based on the stacking of 1000 successive 2D 
sections (each with a thickness of about 9 µm), mapping the entire sample. This is of paramount 
importance, allowing us to minimize the number of rat sacrifices, in full respect to ethical 
international rules. Our previous studies, using the same method of evaluation, also showed the 
capacity of micro-CT technique to play a fundamental role in the advanced characterization of laser-
treated sites [71]. Another technique which can be successful for such a research strategy is optical 
coherence tomography (OCT) [49,72–74]: its advantage is that it can be applied for in vivo 
assessments, using handheld scanning probes in the oral cavity [75,76]. Moreover, good agreement 
between OCT and micro-CT analyses was found in our previous studies [77]. 

In general, the interaction between laser radiation and different types of tissues remains a major 
concern when establishing clinical protocols. Although numerous studies have been conducted on 
the effects of photobiomodulation, their comparison is difficult because of the different biomaterials, 
the variations in laser energy, dose, and duration. 
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