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Audio Metric Learning by using Siamese
Autoencoders for One-Shot Human Fall Detection

Diego Droghini, Stefano Squartini, Senior Member, IEEE, Emanuele Principi, Leonardo Gabrielli,
and Francesco Piazza, Senior Member, IEEE

Abstract—In the recent years, several supervised and unsu-
pervised approaches to fall detection have been presented in the
literature. These are generally based on a corpus of examples of
human falls that are, though, hard to collect. For this reason,
fall detection algorithms should be designed to gather as much
information as possible from the few available data related to the
type of events to be detected. The one-shot learning paradigm
for expert systems training seems to naturally match these
constraints, and this inspired the novel Siamese Neural Network
(SNN) architecture for human fall detection proposed in this
contribution. Acoustic data are employed as input, and the twin
convolutional autoencoders composing the SNN are trained to
perform a suitable metric learning in the audio domain and, thus,
extract robust features to be used in the final classification stage.
A large acoustic dataset has been recorded in three real rooms
with different floor types and human falls performed by four
volunteers, and then adopted for experiments. Obtained results
show that the proposed approach, which only relies on two real
human fall events in the training phase, achieves a F1-Measure
of 93.58% during testing, remarkably outperforming the recent
supervised and unsupervised state-of-art techniques selected for
comparison.

Index Terms—Human Fall Detection, Siamese Neural Net-
works, One-Shot Learning, Deep Learning, Computational Audio
Processing

NOMENCLATURE

RHF Real Human Fall.
SHF Simulated Human Fall.
FAS Floor Acoustic Sensor.
MFCC Mel-Frequency Cepstral Coefficient.
k-NN k-Nearest Neighbors.
SNN Siamese Neural Network.
MSE Mean Squared Error.
GMM Gaussian Mixture Model.
UBM Universal Background Model.
MAP Maximum a Posteriori.
GMS Gaussian Mean Supervector.
SVM Support Vector Machine.
OCSVM One-Class Support Vector Machine.
CNN Convolutional Neural Network.
MLP Multi-Layer Perceptron.
ReLU Rectifier Linear Unit.

I. INTRODUCTION

The continuous and unprecedented growth rate of the elderly
world population is one of the primary aspects of concern for
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society and governments. Nowadays, about 8.5% of people in
the world are more than 65 years old [1], [2]. Although the
average life of the world population is getting longer, elderly
people may not necessarily live a healthier life. Indeed, 37.5
million falls require medical interventions and more than 600
thousand are cause of death every year worldwide. In partic-
ular, the population segment most affected by this problem
is composed of elderly over 65 years that, combined with
the growing mobility of the population, are more frequently
left alone in their homes without aid in the case of need.
Moreover, since falls are the leading cause of death and
hospitalizations for older adults, this phenomenon leads to a
substantial increase of the cost of healthcare [3], [4].

It is not surprising, thus, that the research community
is encouraged, even by governments, to find reliable and
performing solutions to minimize the damage caused by the
human fall problem. This is also confirmed by the presence in
the literature of several contributions dedicated to this specific
topic [4]–[9]. In fact, in the past few years, a variety of systems
have been presented. One way to divide the methodologies
for approaching the fall detection problem is based on the
placement of the sensing devices [4]. The main categories
are wearable, vision, and environmental, with each category
presenting their own advantages and disadvantages. Wearable
systems do not suffer from ambient condition, but people may
forget to wear them, and they are not operational during the
charging time, thus, some people may consider them annoying.
Furthermore, a device must be installed on each person to be
monitored. An environmental sensor may be used to avoid this
kind of problems, but with other limitations. Vision systems,
although they are actually environmental sensors, deserve a
dedicated category because of many systems proposed in the
literature based on them [4]. This category includes several
types of sensors like, e.g., cameras for which the major
limitations are field-of-view constraints, lighting condition,
positioning of multiple cameras and lack of privacy. The envi-
ronmental sensors category includes several types of sensors.
For example, radar doppler based systems used in [10] raise
fewer privacy concerns, but they suffer from reflection and
blind spots. In particular, for a data-driven system, another
aspect that should not be underestimated is the need for a re-
training when changing the environment to be monitored or
even just some of its components such as the arrangement of
furniture as happens in [11]. All this implies that there is no
optimal choice, which is instead, a compromise that depends
on the type of environment that is monitored as well as on
personal sensitivity of the subjects under monitoring.
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From a different point of view, another significant distinc-
tion between fall detection systems can be made based on the
type and amount of data used for the algorithm development
[5]. In fact, the problem can be approached either as supervised
or unsupervised based on the availability of data in the hands
of the researchers as well as their goals. Most state-of-the-art
methods tackle the problem under fully supervised conditions
assuming they have enough data for falls. Almost all falls
are simulated with professional mannequins [12], [13] or by
people with adequate protections [14], [15] that however may
not correctly emulate an actual fall. Although this approach
leads to accurate results, there is no guarantee that it will
generalize well in real situations. Other researchers opt for
approaches based on outlier/anomaly detection [16]–[18] be-
cause of the large availability of data that can represent normal
activity. However, it is challenging to define what “normal
activities” are for such approaches, and the risk is to raise
several false alarms. Perhaps the situation that most closely
approximates reality is a hybrid between the previous ones, in
which a large amount of data representing the normality are
easily available, with just a few samples of RHF and eventually
some related synthetic or simulated data. In these situations,
supervised approaches that suffer from strong data imbalance
have to apply subsampling [19] or weighting [5] techniques
to mitigate this effect. Thus, the need to find an effective way
to exploit the few available falls data is evident.

The human fall classification system presented here extends
in several regards a work by the same authors [20]. Both works
employ a FAS to detect indoor human fall by using only few
examples for training. In this work, we depart from the original
neural network architecture to improve classification results,
as later explained. The training and the evaluation are based on
a dataset, that has been largely increased in size and environ-
mental conditions to assess the algorithm on a more complex
and realistic scenario. A thorough comparison is provided on
the new dataset including supervised [21], unsupervised [22]
and one-shot learning [20] techniques previously proposed by
the authors.

The outline of the paper is the following: Section 2 presents
an overview of the recent literature on fall detection algorithms
based on environmental sensors and the principal works related
to the techniques employed in this work. Section 3 motivates
the proposed approach and presents the contribution of the pa-
per. Section 4 describes the proposed fall detection algorithm.
Section 5 describes the experiments conducted to evaluate the
performance of the approach. Finally, Section 6 concludes the
paper and presents future developments.

II. RELATED WORKS

As mentioned above, several fall detection systems have
been presented in the literature, the majority of which are
based on wearable accelerometers or smart cameras. For
further details on these technologies, the reader can refer to the
surveys mentioned above [4]–[9]. Here, we focus on solutions
employing audio signals.

Among them, Cheffena [23] propose a supervised fall de-
tection algorithm based on smartphone microphones. The falls

were performed and recorded from different volunteers with
a smartphone placed within 5 m from them. This system may
not work when the person is far or in a different room. The
author has evaluated different types of features and supervised
algorithms, reaching an accuracy of 98% with spectrogram
features as the input of an artificial neural network. Popescu
et al. [15] proposed a 2-stage threshold-based method using
a microphone array. The first step is to compute the energy
of the acquired signal. Then, if the value exceeds a threshold,
a sound localization is performed to remove possible false
alarms. In the end, if the sound was detected from above
a specific height, the alarm is removed. The human falls
for testing were performed by only one stunt actor falling
on a mattress. In [16], Khan et al. present an unsupervised
algorithm based on a microphone array of two elements. The
algorithm encompasses a source separation and localization
block to reduce the effect of background noise. Then, an
OCSVM was trained on MFCCs of non-fall events only, in
order to distinguish normal sound events from abnormal ones.
The authors validated the algorithm using simulated falls of
persons only in presence of a television that produced the
interfering sound. The results, given in terms of Area Under
Curve, are 99.28% and 97.38% without interference and with
75% interference respectively. Collado et al. [24] present
a comparison with 7 binary supervised machine learning
methods, using 10 standard audio features like the energy of
the signal, zero-crossing, spectral centroid, etc. They assessed
the performance on a dataset composed of falls performed
by a stunt actor. The non-fall class was represented by a
human conversation and television background. Due to the
strong classes unbalance, they have sub-sampled the non-fall
class, getting the same number of instances of the fall class. In
this context, a Logistic Regression approach achieved the best
results of 93.3% in terms of F1-Measure. Differently, Irtaza
et al. [25] show a Support Vector Machine approach trained
on Acoustic-Local Ternary Patterns features. Similarly to [24],
the problem of an unbalanced dataset has been faced by under-
sampling the non-fall class. In this case, the non-fall class is
represented by human activity sounds and falling of objects,
while they have used human fall sounds recorded with the aid
of human subjects.

Several hybrid approaches that use more than one sensor at a
time are present in the state-of-the-art. For example, Zigel et al.
[13] use an energy-based event detection algorithm in which
the floor vibrations are monitored. When an event is detected,
vibration and sound features are extracted from these events
and classified based on a quadratic classifier that discriminates
human fall from other events. The dataset is composed of
sounds of dropped objects and SHF by using a mimicking
doll. In [26] a solution based on wearable accelerometers
and microphones has been proposed. The solution employs
empirical rules to detect a fall and validate it combining
the sound pressure information utilizing fuzzy logic. The fall
instances for training have been performed by volunteer falling
on a soft rubber foam mat to cushion the impact of falls.

As shown above, although the literature provides several
supervised and unsupervised approaches, no solution has been
proposed exploiting one-shot learning for fall detection, to fill
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the gap between simulated falls and scarcely available real
human falls. One-shot or few-shot methods have been recently
revived in other application fields. The Siamese approach was
introduced by Bromley et al. [27] for signature verification
and later also used in [28] for face verification. Both works
are based on a supervised framework. Regarding the one-shot
learning approach, the Siamese framework was first employed
by Koch et al. [29] for image recognition. In [30], an attention
mechanism over a learned metrics is used. In that work,
the authors propose so-called Matching Networks trained by
showing only a few examples per class for each minibatch
in order to mimic the few-shot task by subsampling classes
in a meta-learning perspective. In the audio field, one-shot
approaches have been rarely used up to now. Lake et al. [31]
proposed a hierarchical Bayesian acoustic-based approach to
model the way a person learns a word of a new language
from a few examples. They use a Hierarchical Hidden Markov
model that induces the set of phone-like acoustic units directly
from the raw unsegmented speech data in a completely unsu-
pervised manner, identifying segments that should be clustered
together and learning a set of phone-like acoustic units for the
language. Manocha et al. [32] proposed a method based on
Siamese networks for audio Content-based Representations.

A. Motivation and Contribution
As mentioned above, the fall detection task is very chal-

lenging due to the difficulty in retrieving examples for human
fall modeling. Falls simulated by using a dummy may not
represent properly real human falls, because they cannot
recreate falls in which arms are used to mitigate the impact.
Moreover, the use of protections, such as mattresses, knee
pads or foam during the acquisitions of falls performed by
volunteers, can significantly modify the samples, especially in
the audio field.

The contribution of this work is threefold: first, we introduce
a different computational intelligence architecture to improve
detection. Then, we augment the dataset presented in [20] to
assess fall detection methods in a complex scenario. Finally,
we compare the new method with previous methods on the
new dataset.

Our previous work [20] was based on twin convolutional
neural networks trained as a Siamese neural network. In this
architecture, the networks share the last layer used for com-
puting the distance between their outputs, and they are trained
by using the contrastive loss as a cost function in order to
minimize the distance among positive samples and maximize
the distance among negative samples. In this work, we modify
the architecture and the training procedure. We exploit a neural
network to extract low-dimensionality information that is fed
to a classifier. Specifically, a Siamese Convolution Autoen-
coder (SCAE), composed of twin convolutional autoencoders
is employed. Its latent space is forced to learn a metric between
sample pairs. This, in turn, requires introducing an additional
regularization term. The role of the neural network, thus, is to
compress the information into a low-dimensionality space that
allows efficient classification, demanded to a k-NN classifier.
Furthermore, proper selection of training pairs allows one-
shot learning and mapping of simulated falls into real falls,

applying a transformation directly into the latent space. The
network, thus, learns to generate similar outputs with either
real or simulated falls, increasing the reliability of the classi-
fier, leveraging the higher availability of simulated falls.

For what concerns the dataset, the one used in our previous
work [20] was composed of recordings of falling objects, daily
life sounds and human falls simulated with a manikin. These
were recorded in a small empty room with stoneware tile floor.
The new recordings have been performed in two additional
rooms with different geometry, propagation, and absorption
characteristics. These have been selected for their reduced
propagation of the waves to the FAS: one room is paved with
a fitted carpet floor, while in the other, the FAS is placed
beyond a soundproof wall. We also recorded other objects
and daily life sound types in addition to those present in the
previous dataset. Finally, real human falls were reproduced by
volunteers without additional protections. This dataset allows
a more exhaustive experimental evaluation of the Siamese
approach highlighting its effectiveness in a one-shot learning
framework with respect to other state-of-the-art methods.

III. DATASET

The performance of the proposed approach has been eval-
uated on a corpus of audio events corresponding to falls of
several objects and daily life sounds recorded in different
conditions and rooms1. The dataset used in a previous work
[20], created by the authors and hereafter named A3Fall-v1.0,
has been extended to form a more complete one. In this
section, a detailed description of the extended dataset will be
given, from now on, referred to as A3Fall-v2.0.

A. Recording Setup

Since this is an extension of a dataset already created
by the authors, the same instrumentation has been used.
The recording equipment comprises a Presonus AudioBox
44VSL sound card connected to a laptop and two types of
microphones:
• the FAS previously introduced is a special device de-

signed to capture efficiently the audio waves transmit-
ted through the ground. Briefly, it is composed of a
membrane in direct contact with the floor. Thus, an
inner container amplifies the vibrations which are then
captured by a microphone. For further details and in-
depth analysis, please refer to [33];

• a linear array of three aerial microphones, not used in
this work.

Both the FAS and the aerial microphones are based on AKG
BL 400 prepolarized condenser microphones. These have a
frequency range of 40-14 kHz (±10 dB) and 13.5 mV/Pa
sensitivity (at 1 kHz). They introduce 1% THD at 115 dB-A
and their SNR is 62 dB-A. Signals were sampled at 44.1 kHz
with a resolution of 32 bits.

The A3Fall-v1.0 dataset was collected in a room, hereafter
named R0, obtained from a cantilever beam structure, thus,
particularly suitable for the propagation of acoustic waves.

1The data set is available upon request to the authors.
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Differently, the recordings of A3Fall-v2.0 have been per-
formed in 2 different rooms with the following characteristics:
• the first is a university auditorium room (R1) in which the

flooring is covered with carpet. This makes it particularly
suitable for evaluating system performance on surfaces
with acoustical behavior that can reduce the impact sound
transmitted through the floor and in the air; all the
recordings were performed near the auditorium stage in
an area of 8×3 m.

• a recording studio (R2) was selected as the second room
for its particular characteristics. Here, it was possible
to make the acquisitions by placing the sensors in the
live room while the audio events were performed in the
control room. In particular, the sensors were positioned
immediately behind the soundproof wall with the window
overlooking the live room. The size of the live room is
5×7 m, while the size of the control room is 3×8 m.

All SHFs were recorded in R0, while all RHFs were
recorded in R1 and R2. This simulates a real-world ap-
plication, with R0 being a laboratory room, where a large
number of recordings can be obtained easily; R1 and R2 being
deployment rooms, where only a few recordings, including one
RHF, can be obtained. A one-shot fall detection system can,
thus, be deployed to several rooms without the need to build
a dataset as large as it would be required by a completely
supervised approach.

B. Composition
As previously mentioned, the A3Fall-v2.0 dataset includes

the A3Fall-v1.0. The dataset is therefore composed of record-
ings realized in 3 different rooms. In Table I the composition
of the dataset is summarized. As it can be seen, the same
objects used in A3Fall-v1.0 were also used in the new dataset.
Moreover, in the R1 and R2 other every-days objects have been
recorded, for a total of 12 different object fall classes and 1420
instances. The manikin doll has been used only in R0: here
the manikin was dropped 44 times, 31 of which form upright
position while in the remaining ones, it was overturned from a
chair. In R1 and R2 a total 80 human falls have been performed
by 4 people. These falls were performed in different ways:
forward, backward and on the side, trying to use the arms to
cushion the fall. As in R0, also in R1 and R2 all events were
performed from 1, 2, 4 and 6 m away from the FAS. As shown
in Table I daily life sounds have been recorded in both rooms,
which include: human activities as, i.e., footsteps, human and
phone conversation, dragging objects and so on; classic, rock
and pop music played from loudspeakers; television shows
like newscast and satiric. In this work we did not include pet
sounds or noise generated by outdoor events such as sirens,
thunders and cars. The SNR was evaluated as the ratio between
the power of the signal (falls and daily life) and the noise
floor introduced by the recording devices. The average SNR
for objects and human falls is 29 dB, while for the daily life
sounds is 10 dB.

IV. PROPOSED METHOD

The proposed fall classification system is composed of three
main parts that will described in this section. First, the features

TABLE I: Composition of the A3Fall-v2.0 dataset.

Class R0 R1 R2
Nr. of occurrences

Basket 64 40 40
Fork 64 40 40
Ball 64 40 40

Book 64 40 40
Bag 64 30 40

Chair 96 40 40
Table 0 40 40

Guitar Slide 0 40 40
Nipper 0 40 40
Keys 0 40 40
Hook 0 40 40

Coat Hook 0 40 40
Manikin Doll 44 0 0
Human Fall 0 40 40

Total length (s)
Daily life 2530 9055 5550

are extracted from a raw audio file and later they are used to
train a Siamese Neural Network. The network embeddings, or
latent space, learns a metric that is used by a k-NN classifier
to discriminate human falls from non-human falls.

A. Feature Extraction Stage

In the feature extraction stage, the raw audio signals are
processed to extract Log-Mel coefficients. Such features have
been chosen for their popularity in computational audio anal-
ysis [34]–[36]. The first steps for obtaining Log-Mels consist
in dividing the signal in frames 40 ms long and overlapped
by 20 ms, and applying the Fast Fourier Transform to them.
Then, each frame is filtered with a filter-bank composed of
40 triangular filters equally spaced in the mel-space, and the
energy of each band is calculated. The final coefficients are
obtained by applying the logarithm operator to each energy
value. This results in a 40 × N matrix X that represents the
input to the neural network, where N is the number of frames.

B. Metric Learning Stage

The second stage is based on a Siamese Neural Network for
learning a non-linear similarity metric. The SNN is directly
trained on semantic similarity information and aims at model-
ing the relationships between classes in order to extract more
robust features. The proficiency of a SNN mostly depends on
the objective function used to train the network as well as the
training set selection strategy. Part of our contribution consists
in defining these two aspects.

The proposed neural network architecture, depicted in
Fig. 1, consists in a Siamese Convolutional Autoencoder. The
Siamese architecture comprises twin convolutional autoen-
coders that share both the topology and the weights values.
As described later, their difference is that in the training phase
they are shown two different examples of the training set.
Each convolutional autoencoder is composed of an encoder
that applies a transformation to the input and projects it
into the latent space and a decoder that performs the reverse
operation. The encoder, thus, represents a parametric function
Se(·) : R40×N → RM , while the decoder the function Sa(·) :
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Fig. 1: The architecture of the SCAE network for metric learning and robust feature extraction. The loss terms used for training
the network are shown.

RM → R40×N , where M is the dimension of the vector at
the output of the encoder. The encoder includes convolutional
layers alternated with max-pooling layers, followed by fully
connected layers, and it ends with a hidden layer representing
the mapping of the inputs. Before the fully connected layers,
average pooling is applied along the time dimension of the
features map related to the last convolutional layer. This makes
the network independent of the temporal length of the input
signals. The decoder part is mirrored with respect to the
encoder.

Denoting with Xi the Log-Mel matrix extracted from the
i-th audio signal and with I = {X1,X2, . . . ,XP } the set of
Log-Mel matrices used for training, the objective of the SCAE
is learning a projection metric Se(·) : R40×N → RM from
pairs of positive and negative examples (Xi,Xj) with i 6= j.
Each pair is assigned a corresponding label Yij , whose value
is 0 when Xi and Xj are from the same distribution (positive
example) and is 1 otherwise (negative example). In the training
phase, Xi and Xj are used respectively as the input to the first
and second autoencoder of the Siamese architecture. The two
sets P and N defined below represent respectively all the pairs
of positive and negative examples in the set I:

P = {(Xi,Xj) : i 6= j,

Xi,Xj ∈ I come from same distribution}, (1)

N = {(Xi,Xj) : i 6= j,

Xi,Xj ∈ I come from different distributions}. (2)

The training of the SCAE is performed on the set of pairs
T = P ∪ N and it consists in finding a set of weights w of
the SCAE that minimizes the following loss function:

Lw(Yij , (Xi,Xj)) = Lc(Yij ,S
w
e (Xi),S

w
e (Xj))

+ Lc(Yij ,S
w
a (Xi),S

w
a (Xj))

+ E[‖Sw
e (Xi)− Sw

e (Sw
a (Xi))‖2]

+ E[‖Sw
e (Xj)− Sw

e (Sw
a (Xj))‖2].

(3)

The first term represents the contrastive loss function [28]
calculated at the end of the encoder network and it has the
following form:

Lc(Yij ,S
w
e (Xi),S

w
e (Xj)) = (1− Yij)

1

2
(Dw)2

+ Yij
1

2
{(max(0,m−Dw)}2,

(4)

Dw = ‖Sw
e (Xi)− Sw

e (Xj)‖ , (5)

where Dw is the Euclidean distance between the two mappings
performed by the encoder. The term m > 0 is the margin that
makes pairs from different distributions (i.e., with Yij = 1)
contribute only if their distance is greater than m.
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The loss function comprises also three terms that include
Sw
a (·), i.e., the output of the autoencoder. The first is the

contrastive loss function between the two signals reconstructed
at the end of the autoencoder, that is Sa(Xi) and Sa(Xj).
This is possible thanks to the average pooling layer previ-
ously mentioned. In fact, by using this layer, the autoencoder
reconstructs a signal with fixed time dimension regardless
of the length of the inputs, allowing the Euclidean distance
Dw = ‖Sw

a (Xi)− Sw
a (Xj)‖ to be computed. An alternative

solution would have been to equalize the dimension of the
inputs by zero-padding them. The reconstruction of the zero-
padded portion, however, would have biased the value of the
Euclidean distance and have a detrimental effect in the training
phase.

The introduction of the temporal average pooling layer
prevents the autoencoder to reconstruct the input signal.
This is a fundamental feature that forces the autoencoder to
engage in robust feature learning. In the proposed method,
this behavior has been encouraged by introducing the two
MSE terms E[‖Sw

e (Xi)−Sw
e (Sw

a (Xi))‖2] and E[‖Sw
e (Xj)−

Sw
e (Sw

a (Xj))‖2] that force the network to produce the same
representation when the input is Xi (respectively Xj) or its
reconstruction Sw

a (Xi) (respectively Sw
a (Xj)).

As previously mentioned, another crucial aspect of SNN is
the selection of training pairs. The fall detection system should
be able to work reliably with as few RHF examples as possible.
It is, thus, necessary to train the network to take full advantage
of the limited available information. The similarity between
SHF and RHF can be exploited, since the cardinality of the
SHF set is higher. Several strategies for pairs selection can
be envisioned. Let F be the set of real and simulated human
falls, and O be the set of all other samples, i.e., those coming
from the daily life sounds and objects falls distributions. We
can compose the following sets:
• PF , i.e., the positive samples composed only of samples

in F ;
• NF , i.e., the negative samples composed of a sample in
F and a sample in O;

• PO, i.e., the positive samples composed only of samples
in O;

• NO, i.e., the negative samples composed of samples in
O belonging to different distributions.

We can now define four pairs selection strategies as:
• P-N -PAIRS strategy: the network is trained with P =
PF ∪ PO as positive examples and N = NF ∪ NO as
negative examples;

• P-PAIRS strategy: the network is trained with P = PF ∪
PO and N = NO;

• N -PAIRS strategy: the network is trained with P = PO
and N = NF ∪NO;

• NO-PAIRS strategy: the network is trained only with P =
PF and N = NO.

In the last case the SHF and RHF samples are used only for
training the classifier, later introduced.

The best pairs selection strategy should allow the network
to learn identifying RHF and SHF as one class, and to project
real falls, during normal operation, in the hyper-plane region

that was assigned to RHF and SHF. The MSE regularization
term should allow the network to learn this mapping in the
latent space.

C. Classification Stage

The latent space of the network provides information to a
metric-based classifier that discriminates falls from non-falls.
Specifically, the entire training set is transformed using the
encoder function Se(·). Moreover, we apply this transforma-
tion also to some instances of SHF previously left out of the
training set of the SCAE, thus obtaining a total number of
templates for the human fall equal to

Thf = Tshf + Trhf , (6)

with Tshf the number of SHF from R0 and Trhf the total
number of RHF templates selected from R1 and R2 used in
SCAE training, two in our case. To train the k-NN classifier, a
set of templates composed of Thf instances has been selected
for each other class in order to obtain a balanced training
set. Besides, the parameter K of the classifier has been set
to Thf . Finally, a human fall is detected if there is at least
one human fall template in the set of Thf neighbors related
to the sample under test at that moment. This classification
technique has been used to reduce the miss rate, which is
of greater importance compared to false alarm rate in fall
detection applications.

V. COMPARATIVE METHODS

In this section, the methods compared with the proposed
work are summarized. The first method is based on a binary
SVM. It uses a GMM, trained on a large corpus of audio
events with the Expectation Maximization algorithm to model
the acoustic space (UBM). Then, for each audio segment, the
MAP algorithm is used to calculate a GMS from MFCCs.
Further details are given in [21]. This method is employed with
two datasets, a balanced training set (simply called SVM from
now on) and an unbalanced training set (One-shot-SVM from
now on) for direct comparison with the proposed approach. A
second comparative method is the unsupervised variation of
the previous one based on OCSVM [22]. The third method is
the Siamese approach reported in [20], from now on, called
Original Siamese. It consists of a simple SNN instead of
SCAE thus equivalent to the encoded part of the proposed
autoencoder architecture, but without the average pooling layer
preceding the fully connected layers. In [20], the algorithm
was evaluated on a simpler scenario as several human falls
were used during training. In this work, the method operates
in a one-shot learning framework. Since SHFs were not used
in this method, the pairs generation technique consists in the
combination of the non-human fall data and the available
template of RHF in order to compose the positive P and
negative N as indicated in Eq. 1 and Eq. 2. Furthermore, a
threshold-based classifier is used. A human fall is detected if
the sample is mapped within a radius from a real human fall
template.
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VI. EXPERIMENTS

This section presents the results of the experimental evalu-
ation. Firstly, we describe the creation of the datasets for each
one of the compared methods. Then we present preliminary
experiments related to the pair selection strategy. These set
of experiments give insights on the embedding of real and
simulated falls in the latent space. Finally, the best pair
selection strategy is taken, and a random search is performed
to optimize the classification performances.

All the experiments have been performed on the dataset
described in Section III, but signals have been downsampled
to 8 kHz since the majority of their energy is concentrated
below 4 kHz, as discussed in [33]. Moreover, their resolution
has been reduced to 16 bits. All the following experiments
have been conducted with 120000 pairs on average between
folds for training the SCAE. Results are expressed in terms of
F1-Measure, calculated from the normalized confusion matrix,
cumulative of all the folds. The same metric has also been used
to optimize the results shown in Section VI-C. This choice
was made to give more weight to false negatives than false
positives, as the test set is highly unbalanced, being composed
from 6973 non-human fall events and 390 human fall events
in total. In particular, since the daily life recordings have been
divided into segments of 5 seconds each, the non-fall events
are composed of 5275 daily life sounds instances and 1698
object fall events.

A. Data Splitting

Firstly, the A3Fall-2.0 dataset has been split into 5 folds
for cross-validation: in particular, the data related to the R0
room without SHFs have been used only for training and used
in each fold. Differently, the samples related to R1 and R2
without RHFs have been split into 5 folds with 20% for test
and 80% for the training set. Both simulated and real human
falls have been treated differently, based on the algorithm
under examination:

• SCAE: for the proposed approach, one RHF per room
has been randomly selected for each fold and then added
to the related training set. Differently, SHFs have been
split in 5 folds with 80% for train the SCAE, while
the remaining 20% has been left out from the training
set of the Siamese network but used only to train the
classifier as explained in Section IV-C. The pairs for
training the SNN have been generated keeping balanced
all the combinations between the classes.

• OCSVM: since this is a completely unsupervised method,
both real and simulated human falls have been removed
from the training set.

• SVM: since this is a completely supervised method, the
RHFs have been split in 5 folds with 20% for test and
80% for train and then added to the respective sets.

• One-shot-SVM: in order to keep this experiment com-
parable with the proposed method, the same selection
carried out for the SCAE has been used for training the
SVM, i.e., with just one real human fall sample for each
environment to monitor.

TABLE II: Hyper-parameters used in the preliminary experi-
ments, and their value.

Parameter Value Parameter Value
CNN layer Nr. 3 Drop rate 0%
Kernel shape [4×4, 4×4,

4×4]
CNN Padding Same

Kernel Nr. [4, 4, 4] Batch Size 512
MLP layers Nr. 3 MLP Act. ReLU2

MLP layers dim. [40, 512, 2] Optimizers Adadelta
Max pool shape [1×2, 2×3,

2×3]
Weight

Initializers
Glorot

Uniform

• Original Siamese: the same sets used for SCAE have
also been used for this approach. The only difference
is that the SHFs were not used because they are not
contemplated by this method.

B. Preliminary Experiments

Several strategies have been introduced for pairs selection.
Preliminary experiments aimed at studying their influence
on the templates generated in the latent space and fed to
the classifier. Experiments have been performed with a fixed
autoencoder architecture, having a hidden layer composed of
2 neurons to simplify visualization of the mapping between
input samples and the latent space. Table II reports the hyper-
parameter of that network. Figures 2 and 3 show how training
and test samples are encoded by the network, after training
is completed, according to the four pairs selection strategies.
The mappings in Fig. 2a, Fig. 2c, Fig. 3a and Fig. 3c are then
used to train the related k-NN classifier. The final decision
boundaries are reported in all figures: the data found in the
white area are classified as human fall. Comments related to
the four strategies follow:
• by using P-N -PAIRS (Fig. 2(a,b)), the network manages

to cluster distributions during training, however, it does
not perform equally well with the test set and maps RHFs
to a different area. Knowledge of a few human falls is
not exploited properly;

• by using the N -PAIRS strategy (Fig. 2(c,d)), the con-
trastive loss tries to increase the distance between human
fall instances and all other classes, but without grouping
them together (no positive examples were generated).
This results in poor classification performance;

• by using NO-PAIRS (Fig. 3(a,b)), the SCAE spreads the
simulated human fall signals in the hyperplane (Fig. 3a),
thus, the clustering operated by the classifier leads to too
many false alarms as shown in Fig. 3b;

• finally, by using P-PAIRS (Fig. 3(c,d)), the SCAE clus-
ters RHFs and SHFs, thus, learning an efficient repre-
sentation. The SHFs left out of the SCAE training can
be used as additional templates for training the k-NN
classifier.

Overall, the last strategy seems to obtain best results. The
results for these preliminary experiments are reported in Ta-
ble III.

2In the decoder, an additional CNN layer with tanh activation function
has been used to ensure a good reconstruction.
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(a) P-N -PAIRS training set. (b) P-N -PAIRS test set.

(c) N -PAIRS training set (d) N -PAIRS test set

Fig. 2: Training (a,c) and test (b,d) samples projected in the latent space by the encoder, colored according to their class. RHF samples are
shown as a star, some SHF are used for training the SCAE (green crosses, SHF (SCAE)) while some are only used for training the k-NN
classifier after passing through the encoder (turquoise crosses, SHF (KNN)). Samples falling in the white area are classified as human falls.

TABLE III: Preliminary F−1-Measure results for different
pairs generation strategies.

Technique Result in R1 Result in R2 Overall
P-N -PAIRS 55.17% 64.74% 60.13%
N -PAIRS 76.20% 67.53% 72.05%
NO-PAIRS 91.71% 89.88% 90.97%
P -PAIRS 92.54% 92.54% 92.54%

C. Optimized results

Considering the results of the preliminary experiments, a
random-search of 50 different configurations was performed,
according to Table IV, to optimize the hyper-parameters
of the SCAE approach with the P-PAIRS strategy. The

same random-search was performed for the Original Siamese
method, also optimizing the radius of the classifier used
with this approach. For the SVM based methods a grid-
search strategy has been adopted to optimize the param-
eters. In particular the parameters assumed values in the
ranges {2−5, 2−3, . . . , 215} for C (SVM) and ν (OCSVM),
{2−15, 2−13, . . . , 23} for γ (both SVM and OCSVM) and
{1, 2, . . . , 64} for the number of mixtures of the UBM.

Fig. 4 shows the results obtained for each approach. The
completely supervised SVM method is not directly comparable
with the others due to different training and test set, but it is
reported for completeness. Although the dataset is balanced,
the performance is significantly lower compared to the other
methods. Moreover, it is evident that using the extremely
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(a) NO-PAIRS training set. (b) NO-PAIRS test set.

(c) P-PAIRS training set. (d) P-PAIRS test set.

Fig. 3: Training (a,c) and test (b,d) samples projected in the latent space by the encoder, colored according to their class. RHF samples are
shown as a star, some SHF are used for training the SCAE (green crosses, SHF (SCAE)) while some are only used for training the k-NN
classifier after passing through the encoder (turquoise crosses, SHF (KNN)). Samples falling in the white area are classified as human falls.

TABLE IV: Hyper-parameters optimized in the random-search
phase and their range.

Parameter Range Distribution
CNN layer Nr. [1-3] Uniform
Kernel shape [1x1-8x8] Uniform

Kernel Nr. [1-32] Uniform
MLP layers Nr. [1-2] Uniform

MLP layers dim. [1-4096]% Log-uniform
Max pool shape [0x0-3x3] Uniform

Drop rate [0-0.2]% Uniform

unbalanced dataset for a supervised approach, as the one used
for the Siamese network, leads to a very large degradation
of the performance. Indeed, the One-Shot SVM reaches an
overall F1-Measure of only 14.72%. In cases where an ex-

tremely unbalanced dataset is available, it is better to exploit
a completely unsupervised method such as the OCSVM,
achieving a score of about 72%. The best performing method
is the SCAE that reaches a 93.58% of F1-Measure, outper-
forming the Original Siamese of 3.25%. The improvement was
significant for p < 0.002 according to one-tailed z-test [37].
The remarkable results obtained by both the Original Siamese
and SCAE methods show that the use of Siamese framework is
very powerful in this type of scenario, where limited real data
is available but simulated data can be exploited. In Table V and
Table VI the normalized confusion matrices for the Siamese
based approach are reported, showing that the miss rate of the
proposed method is less than 4% compared to the Original
Siamese method. In terms of false alarm rate, it has increased
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One-Shot SVM

OCSVM
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22.96%
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93.58%

90.33%
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71.9%

81.77%

Overall Room1 Room2

Fig. 4: F1-Measure results for all compared methods.

TABLE V: Normalized confusion matrix of the Original
Siamese approach. Absolute values are shown in brackets.

Human Falls Objects
Human Falls 90% (6283) 10% (690)

Objects 9% (37) 91% (353)

TABLE VI: Normalized confusion matrix of the SCAE ap-
proach. Absolute values are shown in brackets.

Human Falls Objects
Human Falls 91% (6362) 9% (611)

Objects 4% (17) 96% (373)

by 1%, resulting in a good reliability. Since there are many
instances of daily life sounds in the dataset, the low number
of false alarms indicates that this approach could also be used
as a detection system.

VII. CONCLUSION

This paper described the extension of a previous work by
the same authors [20] and its results. Among the novelties,
a new data set has been collected starting from the one used
in the previous work. The recordings of the original A3Fall-
v1.0 dataset have been extended with new events recorded

in two new rooms. Moreover, in order to test the system, the
dataset was augmented with 80 human falls performed by four
actors. In this article, the authors have shown that the proposed
method outperforms the other four comparative methods and
that the same algorithm may be used not only as a classifier
but also as a detector. In this more realistic scenario, the
preeminence on the Siamese framework for one-shot learning
with respect to conventional methods has been shown. A
further improvement in performance has been achieved with
an extension of the method previously proposed in [20]. It
is composed of 3 stages: Log-Mel feature extraction, metric
learning employing a Siamese autoencoder neural network
named SCAE and, in the end, a final decision stage based on a
k-NN classifier. The network exploits the few information on
the real fall by using a particular strategy of pairs generation
for the SCAE training. In doing so, the system learns how
to transform the available simulated human fall instances to
create a more suitable set of templates that can be used to train
the final classifier. Although the system seems to be reliable
because of the low miss rate, the false alarm rate, of just about
3 false alarms raised every 2 real human falls, may even so
be annoying for some users. To reduce this problem, several
techniques could be employed. For instance, the system could
be extended to include algorithms for fall recovery recognition
able to detect whether a person is continuing his normal
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activity or if he/she is still lying on the ground.
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