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Abstract

Several optimization problems ask for finding solutions which define packing

of elements while maximizing (minimizing) the objective function. Solving
some of these problems can be extremely challenging due to their innate com-
plexity and the corresponding integer formulations can be not suitable to be
solved on instances of relevant size. Thus, clever techniques must be devised
to achieve good primal and dual bounds. A valid way is to rely on pricing-
based algorithms, in which solution components are generated by calling and
solving appropriate optimization subproblems. Two main exponents of this
group are the delayed column generation (CG) procedure and the sequential value

correction (SVC) heuristic: the former provides a dual bound based on the gen-
eration of implicit columns by examining the shadow prices of hidden vari-
ables; the latter explores the primal solution space by following the dynamic
of approximate prices.

In this thesis we focus on the application of SVC and CG techniques to
find primal and dual bounds for selected packing problems. In particular,
we study problems belonging to the family of cutting and packing, where the
classical BIN PACKING and CUTTING STOCK are enriched with features de-
rived from the real manufacturing environment. Moreover, the MAXIMUM

γ-QUASI-CLIQUE problem is taken into account, in which we seek for the in-
duced γ-quasi-clique with the maximum number of vertices. Computational
results are given to assess the performance of the implemented algorithms.

xi





Sommario

Un ampio insieme di problemi di ottimizzazione richiedono l’individuazione
di soluzioni che definiscono un packing di elementi, al fine di massimizzare
(minimizzare) la relativa funzione obiettivo. Risolvere all’ottimo alcuni di
questi problemi può essere estremamente oneroso a causa della loro comp-
lessità innata e le corrispondenti formulazioni intere possono non essere ap-
propriate per approcciare istanze di dimensioni rilevanti. Pertanto, il calcolo
di bound primali e duali qualitativamente validi necessita della definizione di
tecniche ingegnose ed efficaci. Una metodologia valevole consiste nell’impiego
di algoritmi basati su pricing, in cui le componenti delle soluzioni sono gen-
erate tramite la risoluzione di sottoproblemi di ottimizzazione specifici. Due
principali esponenti di questa famiglia sono la procedura delayed column gen-

eration (CG) e l’euristica sequential value correction (SVC): la prima fornisce un
bound duale basato sulla generazione delle colonne implicite tramite la val-
utazione dei prezzi ombra di variabili nascoste; la seconda esplora lo spazio
delle soluzioni primali seguendo la dinamica di prezzi approssimati.

In questa tesi ci concentriamo sull’applicazione di tecniche SVC e CG per
l’individuazione di bound primali e duali per problemi di packing selezionati.
In particolare, studiamo i problemi appartenenti alla famiglia del cutting e

packing, dove i ben noti BIN PACKING e CUTTING STOCK sono arricchiti con
caratteristiche derivanti dagli ambienti produttivi reali. Inoltre, studiamo il
problema della MAXIMUM γ-QUASI-CLIQUE in cui si cerca la γ-quasi-clique
indotta che massimizzi il numero di vertici selezionati. Risultati computazion-
ali sono presentati al fine di validare le performance degli algoritmi imple-
mentati.
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Chapter 1

Introduction

The definition of many optimization problems is suggested and/or supported
by the necessity of solving practical issues encountered in different fields, such
as economic, biologic and social environments to be not exhaustive. A broad
group of these problems can be ascribed to the family of the SET PACKING

PROBLEM (SPP) in which, given a set of elements, the objective claims to max-
imize (minimize) a cost function associated to the assortments of subsets, so
that a formal description of subset feasibility is fulfilled and the solution de-
fines a packing of the elements. More specifically, the selection of subsets must
be done in order to ensure an empty intersection between subsets so that each
element is packed at most once. According to the computational complexity
theory, the decision version of the SPP is a classical NP-complete problem and
was included in the Karp’s 21 NP-complete problems [75]. Thus, the corre-
sponding optimization problems are extremely challenging to be solved.

To give a practical application of SPP, one can refer to the CREW SCHEDUL-
ING PROBLEM in airlines. In this problem crews must be assigned to airplanes
in the fleet, so that flights can proceed in respect of the compiled timetables
and the shifts of crew members meet the specifications of the labor contract.
Crews are composed by staff members according to the skills and traits of the
employers, such as the competence in piloting different types of aircrafts and
the personal affinity with other crew members. Subsets of elements are built
on all the possible crew and plane assignments, so that crew members and
aircrafts are not shared among different concurrent flights. This corresponds
to a packing of crews and planes.

Based on the statement of SPP one can give a general abstraction of prob-
lems that emerge from very different environments, skimming from the de-
tails that are applications-dependent. However, such details can be used to
sketch an informal typology of SPP subfamilies by classifying the elements of
the packing and interpreting the meaning behind the requirements of subsets.
Among the wide family of SPPs, we focused on problems that are members
of two subfamilies: the geometric packing problems and the structure packing

problem. In the geometric packing elements are items characterized by geo-
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Chapter 1 Introduction

metric sizes that must be inserted within larger objects of limited sizes. The
feasibility of subsets is defined according to physical criteria that reflects the
practical rules of a packing, such as the whole containment of items within
boundaries or the non-overlapping between items. A noteworthy example
of geometric packing is represented by the BIN PACKING PROBLEM (BPP) in
which r-dimensional items must be placed into r-dimensional bins and the
number of employed bins for the packing is minimized.

With structure packing we refer to the group of SPPs defined on graphs that
ask for the search of graph substructures meeting packing constraints. The el-
ements of the problem are generally represented by vertices and edges of the
underlying graph, and the feasibility of subsets is established according to the
fulfillment of requirements based (for instance) on measures of distance, den-
sity and/or connectivity. An essential optimization problem of this category is
the NODE PACKING PROBLEM, also known as VERTEX PACKING, MAXIMAL

INDEPENDENT SET or STABLE SET problems [98]. Here we look for a max-
imum subset of vertices such that, for each selected vertex, the set of edges
incident on such vertex has an empty intersection with the sets of incident
edges on all the other selected vertices; that is, each edge is incident on at
most one of the selected vertices.

Our goal in this thesis is to study problems belonging to the SPP family and
devise approaches to obtain primal and dual bounds for them. In particular,
the methods implemented for SPP solution are the so called delayed column

generation technique and sequential value correction heuristic, which make use
of the concept of reduced costs (in a direct or indirect way) and are related to
the solution of pricing subproblems. A formal introduction to these methods is
given over the rest of the chapter, passing through notions of linear program-
ming and integer reformulation.

1.1 Some preliminaries on linear programming

Mathematical programming can be intended as a general advanced language
employed to describe optimization problems in a formal way. It is possible
to classify problems by looking at the "shape" of a mathematical formulation
and mathematical programming represents a valid solution methodology.

Before discussing the techniques employed in this thesis, we give some ba-
sic elements about general linear programming problem [116]. The elements
that compose a linear formulation are a vector of decision variables x ∈ Rn used
to represent the decision in a problem, an objective function cTx to be minimized
(maximized) where c ∈ Rn is the cost vector, a set of constraints Ax = b that
defines the feasible region expressed compactly, with the matrix of coefficient
A ∈ Rm×n and the coefficient vector b ∈ Rm. The set P = {x ∈ Rn|Ax = b}

2



1.1 Some preliminaries on linear programming

is called polyhedron.

Linear program (LP) are characterized by continuous variables, linear con-
straints and objective function. When the decision variables are subjected to
integrality, i.e. x ∈ Z, the result is an integer program (IP). Finally, if a formu-
lation presents both continuous and integer variables, a mixed integer pro-
gram (MIP) is addressed.

The linear programming problem P in standard form can be written as

min cTx

Ax = b

x ≥ 0.

A solution x∗ ∈ P is optimal if it satisfies all the constraints and reaches the
global minimum of the objective function.

Given the primal LP problem P , the dual formulation D reads as

max yTb

yTA ≤ cT .

Independently on the chances that one has to find an optimum solution, the
dual bounds that can be obtained via linear programming are very useful in
practice and can provide a measure of the efficiency or effectiveness of the
operational solution.

From the linear programming theory, a solution of P is optimal if all the
reduced costs are non-negative, that is

cT − yTA ≥ 0. (1.1)

Intuitively, the j-th reduced cost indicates the cost in terms of objective func-
tion value to increase variable xj by a small amount, whereas the j-th compo-
nent of the dual vector yj can be interpreted as the marginal cost or shadow price

to be paid for increasing bj by one unit. As you will see in the next sections,
reduced costs have a crucial role in column generation procedure and inspired
the sequential value correction heuristic framework.

We conclude this section by introducing an essential result from linear pro-
gramming theory that is preparatory to the comprehension of the subsequent
contents.

A solution vector x ∈ P is an extreme point of P if it is not possible to express
it as a convex combination of two other vectors v1, v2 ∈ P; that is, for any
scalar α ∈ [0, 1] there are no v1, v2 ∈ P such that x = αv1 + (1− α)v2. For any
fixed vector v ∈ P, the recession cone is defined as the set of all the directions

3



Chapter 1 Introduction

d that start from v and move indefinitely away from it without leaving P,
formally

{d ∈ Rn|Ad = 0, d ≥ 0}.

Any non-zero vector of the recession cone is called ray and those rays that
satisfy n− 1 linear independent constraints to equality are defined as extreme

rays. The extreme rays of the recession cone associated to a non-empty poly-
hedron P are referred as the extreme rays of P.

The fundamental result of linear programming theory is the following Weyl-
Minkowski theorem, also known as resolution theorem [116]:

Theorem 1. Let P a non-empty polyhedron with at least one extreme point. Given

the set of extreme points v1, . . . , v|Q| and the set of extreme rays u1, . . . , u|R| of P,

then each point x ∈ P can be expressed as

x = ∑
q∈Q

βqvq + ∑
r∈R

γrur (1.2)

with ∑q∈Q βq = 1, β ∈ R
+
|Q| and γ ∈ R

+
|R|.

Informally, theorem 1 states that each point of a polyhedron can be ex-
pressed as a convex combination of the extreme points plus a non-negative
combination of the extreme rays.

1.2 Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition principle was firstly introduced in 1960 [45]
in order to cope with large scale linear programming problems by extending
the applicability of LP solution techniques. Indeed, the general idea behind
decomposition is to exploit the structure of the problem to reformulate it in
an equivalent fashion, which is however convenient under certain points of
views (e.g. quality of linear relaxation, computational burden in solution).
The effectiveness of such technique was largely assessed throughout the years
since its first application by Gilmore and Gomory [62, 63]. Thus, the decom-
position approach became a standard methodology to whom several papers
and book chapters are dedicated [99, 118].

Let us consider the following LP, usually called compact formulation (L):

min cTx (1.3)

Ax ≥ b (1.4)

Dx ≥ d (1.5)

x ≥ 0. (1.6)

4



1.2 Dantzig-Wolfe decomposition

Let moreover assume that the polyhedron P = {x ∈ R
+
n |Dx ≥ d} is non-

empty. By theorem 1, we can substitute x ∈ P and rewrite formulation L in
the equivalent extensive formulation (RL):

min ∑
q∈Q

c̄qβq + ∑
r∈R

c̄rγr (1.7)

∑
q∈Q

āqβq + ∑
r∈R

ārγr ≥ b (1.8)

∑
q∈Q

βq = 1 (1.9)

β ∈ R
+
|Q| (1.10)

γ ∈ R
+
|R| (1.11)

where c̄q = cTvq and āq = Avq for q ∈ Q, c̄r = cTur and ār = Aur for r ∈ R.
Formulation RL has a reduced number of constraints with respect to L as

(1.5) disappeared and only the convexity constraint (1.9) is added. Neverthe-
less, the number of variables may become exponential due to the number of
extreme points (rays) and solving RL can be impractical. Hence, a column
generation procedure is usually employed to solve RL by considering only
a subset of columns, while missing columns are generated on the fly when
needed. Details about column generation algorithm are given later, we now
focus on the integer akin to the decomposition for IPs.

1.2.1 Decomposition of IP

Let us introduce the following IP (I):

min cTx (1.12)

Ax ≥ b (1.13)

x ∈ X (1.14)

where X = P ∩Z
+ and P is defined as above.

When reformulating an IP or an MIP, decomposition can be performed ac-
cordingly to two main techniques: convexification or discretization [83]. The
convexification is based on replacing X with its convex hull (conv(X)) and ex-
pressing x in terms of the extreme points and extreme rays of conv(X). How-
ever, after applying convexification the integrality constraints on original vari-
ables are still required and such variables cannot be put aside. Indeed, it is
insufficient to enforce integrality on variables β and γ to obtain an equivalent
representation of I , as its optimal integer solution could be an interior point
of conv(X). Nevertheless, a remarkable exception is given for X ⊆ [0, 1]n since
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all its integer points are vertices of conv(X). Generally speaking, to obtain a
true integer equivalent of I one must rely on discretization, which is based on
the extension of theorem 1 for the integer case [99]:

Theorem 2. Let P a non-empty polyhedron and X = P ∩Z
+. Then, there exists a

finite set of integer points v1, . . . , v|Q| ⊆ X and the set of integer rays u1, . . . , u|R| ⊆
P such that each point x ∈ X can be expressed as

x = ∑
q∈Q

βqvq + ∑
r∈R

γrur (1.15)

with ∑q∈Q βq = 1, β ∈ Z
+
|Q| and γ ∈ Z

+
|R|.

Theorem 2 allows to express each point of a polyhedron as a convex combi-
nation of integer points plus a non negative combination of integer rays. We
can then reformulate I in the equivalent extensive formulation (RI ):

min ∑
q∈Q

c̄qβq + ∑
r∈R

c̄rγr (1.16)

∑
q∈Q

āqβq + ∑
r∈R

ārγr ≥ b (1.17)

∑
q∈Q

βq = 1 (1.18)

β ∈ Z
+
|Q| (1.19)

γ ∈ Z
+
|R| (1.20)

where c̄q = cTvq and āq = Avq for q ∈ Q, c̄r = cTur and ār = Aur for r ∈ R.

1.2.2 The case of block-angular structure

It frequently happens that problems present a matrix coefficient D with a mod-
ular structure that can be exploited when applying decomposition techniques.
Let K be the set of independent blocks in which D can be partitioned. Figure
1.1 gives an insight of the block-angular structure.

We can identify |K| disjointed polyhedra Pk = {xk ∈ R
+
nk |Dkxk ≥ dk} such

that Xk = Pk ∩Z
+. Then, I can be rewritten in

min ∑
k∈K

(ck)Txk (1.21)

∑
k∈K

Akxk ≥ b (1.22)

xk ∈ Xk ∀k ∈ K. (1.23)

Proceeding by discretization over each Xk, we attain the integer reformulation
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common to refer to CG with the acceptation of delayed to highlight the pecu-
liarity of the scheme, which implicitly enumerates the columns in place of a
full a priori description of them in the formulation.

Given an LP formulation restricted to a subset of columns, namely re-

stricted master problem, a CG algorithm performs a search of columns (vari-
ables) among the ones that are not explicitly included. The search looks for
non-basic variables to be added that have reduced costs able to possibly im-
prove the objective function value. This functioning reflects the selection of
pivot elements in the simplex method and lay the groundwork on the linear
programming theory. Typically, the search of profitable columns is performed
by relying on a pricing subproblem that is fed with the values of dual variables
taken from the current optimal solution of the restricted master problem. The
solutions of the pricing subproblem are used to generate the missing columns,
which are added to the restricted master problem. The dual variables are then
updated by solving the restricted master problem and the whole loop is iter-
ated, until the global optimality of the restricted master problem is certified
by fulfilling condition (1.1).

To formalize, let us indicate RI as master problem. Moreover, let us call R̃I
the restricted master problem obtained by relaxing the integrality constraints
in formulation RI , while restricting variables βk and γk taken into account
to the subsets of integer points Q̃k ⊆ Qk and integer rays R̃k ⊆ Rk for each
k ∈ K. Finally, let us refer to the dual variables of constraints (1.25) and (1.26)
as θ and ψ, respectively.

The reduced cost of a column inRI for a fixed k ∈ K is generally expressed
as

[

(ck)T − θAk
]

vk
q − ψk ∀q ∈ Qk

[

(ck)T − θAk
]

uk
r ∀r ∈ Rk

for integer points q and integer rays r. Given a dual optimal solution (θ∗, ψ∗)
of R̃I , the k-th pricing problem Pr(k) called to find the most profitable column
for block k is:

Ωk = min
[

(ck)T − θ∗Ak
]

p − ψ∗ (1.29)

Dkp ≥ dk (1.30)

p ∈ Z
+
nk . (1.31)

For Ωk < 0 and finite, the optimal solution vector p∗ is an integer point vk
q to

be added to Q̃k. The corresponding column βk
q, with coefficients

[

c̄k
q, āk

q, 1
]T

,

is generated and added to R̃I . When Pr(k) is unbounded, p∗ represents an
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1.4 Sequential value correction heuristic

integer ray uk
q to append into R̃k. In this case, the column γk

q is generated with

coefficient
[

c̄k
q, āk

q, 0
]T

and R̃I is properly updated. Finally, if Ωk ≥ 0 for each
k ∈ K, then all reduced costs are non-negative and condition (1.1) is satisfied,
so that R̃I is solved to optimality. Clearly, the optimal value of R̃I is a valid
lower bound forRI .

Pr(k) is an IP that can be challenging to solve, thus the performance of the
whole CG procedure can be compromised. To accelerate the convergence of
the algorithm, one can rely on efficient heuristics or combinatorial algorithms
to generate profitable columns, even more than one concurrently for each pric-
ing subproblem. However, (1.1) need to be certified by solving Pr(k) exactly
for all k ∈ K.

Unfortunately, it happens quite often that the convergence of the CG proce-
dure requires several iterations, since the values of the dual variables follow
an oscillatory dynamic [51] and the optimal solution of R̃I can be degenerate.
The phenomenon of the slow convergence is generally indicated as tailing-

off effect. To overcome this issue and improve the CG performance, several
stabilization techniques have been developed, e.g. the box step method [90],
bundle methods [69] and primal-dual stabilization strategies [94, 21].

The CG procedure can be embedded in the branch-and-bound framework
to find optimal integer solutions of RI , resulting in the so called branch-and-

price scheme [15, 128]. Alternatively, algorithms based on CG and designed ad
hoc for integer programming problems have been presented in literature. Ap-
plications of integer programming CG can be found for the VEHICLE ROUT-
ING PROBLEM [48], the CREW SCHEDULING PROBLEM [50], the TRAVELING

SALESMAN PROBLEM [49], the STABLE SET PROBLEM [28] to mention a few. A
useful list of these applications is reported in [83].

1.4 Sequential value correction heuristic

The sequential value correction heuristic (SVC) is a successful technique largely
employed to obtain good primal solutions for BPP and CSP in limited amount
of time. Firstly introduced in Mukhachiova and Zalgaller [96], the SVC be-
longs to the family of sequential heuristics for BPP and CUTTING STOCK

PROBLEM (CSP) that construct one pattern per time accordingly to a cus-
tomized strategy [65, 139, 126, 77]. Indeed, it can be classified as an iterative
greedy method in which the space of search is probed following the trajectory
described by the dynamic of the so-called pseudo-prices. Recall that in the one-
dimensional CSP, which generalizes the NP-hard bin packing problem [61],
a set of small items I with length li have to be cut from large stock items of
size l, so that the corresponding demand ri is fulfilled and the total produc-
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Figure 1.2: SVC flow chart

tion waste is minimized. A more precise formalization of this combinatorial
optimization problem will be given in §2, we here contextualize to introduce
the basic notation.

In the SVC framework (see figure 1.2), a pseudo-price λi is defined as a
value associated to each item i ∈ I. After the initialization, a pattern is built
by solving an appropriate pricing subproblem in which items are inserted in
order to maximize the total sum of the selected item pseudo-prices. Such
functioning clearly recall a similarity between the pseudo-prices and the role
of the shadow prices in the CG procedure, that guide the generation of new
profitable patterns (by which the name pseudo-price derives). Once no more
items can be inserted in a pattern, an updating phase modifies the values of
the pseudo-prices by perturbing them according to formulae that generally
take into account the quality of the last computed pattern. Then, the level
of activation of the pattern is decided and if the demand is not completely
fulfilled, a new pattern is generated by iterating the process. Otherwise, the
solution found is evaluated and it is recorded as best incumbent if improv-
ing the objective function. The algorithm ends if the stopping criteria (e.g.,
time limit, number of iterations or lower bounds) are met, or alternatively the
whole process is repeated starting from the initialization of a new empty so-
lution. Typically, solutions found by the SVC algorithm describe a dynamic of
the objective function values characterized by a rapid decrease in the first iter-
ations, followed by fluctuations nearby the optimal value for the subsequent
ones.

The general description of the SVC heuristic was translated into different
implementation across the years and the main differences usually emerge in
the initialization and updating phases of the λi terms. The definitions of both
steps can be specified in a wide spectrum of possibilities that generally reflect
the features of the application and are customized on the specific problem to
achieve high performances.

10



1.4 Sequential value correction heuristic

The first application of SVC was presented by Mukhacheva and Zalgaller
[96], who proposed it in the contexts (among others) of cutting forming prob-
lems and problems of cutting totality planning with intensities of their ap-
plication. For the sake of exemplification, some details of their deterministic
implementation are reported. The exploited formulae are based on the mea-
sure of trim losses ωp of pattern p ∈ P and material consumption of each item
i ∈ I. Let λ0

i be the starting value of the pseudo-price of item i and λh
i the

corresponding value after the computation of the h-th pattern. Given a CSP
solution computed by means of first-fit decreasing (FFD) algorithm with NFDD

patterns, the authors initialize the pseudo-prices as

λ0
i =

lil

ri

NFDD

∑
p=1

a
p
i

l −ωp i ∈ I (1.32)

where a
p
i gives the number of parts i produced in pattern p ∈ P. Intuitively,

for each pattern its trim loss is distributed across the width of the part-types
that belong to it, in a way that is proportional to the number of times each
item occurs.

After that a pattern p is completed by maximizing the total values of se-
lected items, the pseudo-prices used for the following p + 1-th pattern are set
by

λ
p+1
i = λ

p
i (1−

a
p
i

ri
) +

a
p
i

ri

lil

l −ωp i ∈ I (1.33)

in which the formula defines each new pseudo-price value to be the weighted
sum of its previous value and the material consumption norm within the last
obtained pattern.

Some years later the SVC scheme was employed again by Mukhacheva et
al. [97] in one-dimensional CSP, and by Verkhoturov and Sergeyeva [131] for
the two-dimensional CSP with irregular shapes. The latter dealt the issue of
the item placement by defining the pseudo-prices as functions of the angle of
rotation and such angles are chosen in order to maximize the pseudo-price
values. Still, the formulae are deterministic, whereas in the former [97] the
method was randomized to diversify the search and prevent cycling. Indeed,
the pseudo-price formulation was modified by introducing the random pa-
rameter ξ as

λ
p+1
i =

λ
p
i ξ(bi + ri)

ξ(bi + ri) + a
p
i

+
a

p
i

ξ(bi + ri) + a
p
i

lil

l −ωp i ∈ I (1.34)
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where bi is the current residual demand of part-type i. The randomized SVC
was embedded in a modified branch-and-bound scheme and, even if it re-
quired the tuning of bounds for parameter ξ, (1.34) proved its effectiveness
by improving the performance with respect to the deterministic counterpart
(1.33).

Relevant subsequent implementations of the SVC can be found in Belov
and Scheithauer [18], where the heuristic was embedded in a cutting plane
algorithm to solve the one-dimensional CSP with multiple stock widths and
the pseudo-prices are initialized with the value of the dual variables of the LP
relaxation solution; in [17] by the same authors, in which the SVC is called to
solve the residual problem that arises after rounding the LP solutions within
a branch-and-cut-and-price scheme. This algorithm is based on strengthening
the LP relaxation of branch-and-price nodes by applying Chvátal-Gomory and
Gomory mixed-integer cuts [100]. It was applied both to one-dimensional and
two-dimensional two-stage guillotine constrained CSP.

In [19] the pseudo-prices updating phase is modified in order to balance
the distribution of large items across the sequence of generated patterns. In-
deed, the concentration of small items generally gives patterns with a high
total price and low trim-loss, that however limits the possibilities to get good
patterns with the remaining large items. Inspired by the max-len-mini-items

heuristic of Kupke [77] that limits the number of items in each pattern, the
SVC was thus changed by using pseudo-prices over-proportional to the item
widths, so that prices of large items are supported and patterns with mixed
combinations of widths are favored. The SVC heuristic in [19] is moreover
customized to deal with the multi-objective CSP, in which the minimization
of setups and open-stacks is asked along with the reduction of trim-loss. In
particular, when the attention is focused on the open-stacks minimization, the
pseudo-prices of all items with open order are multiplied by an exponential
factor, thus reducing the chance of opening new stacks.

Further employments of the SVC heuristic were presented for the two-
dimensional strip-packing problem by Belov at al. [20] and Cui et al. [40]
respectively for the orthogonal and non-oriented case, where the latter took
into account both the presence and absence of guillotine constraints. More
recently, Cui et al. [41] inherited the value correction principle for a sequen-
tial pattern-set generation algorithm designed to solve one-dimensional CSP
with setup costs. In [33] Chen et al. exploited the SVC scheme to compute both
guillotine and non-guillotine patterns for the two-dimensional BPP. Arbib and
Marinelli [12] dealt with the minimization of a convex combination of num-
ber of bins and maximum lateness in a one-dimensional BPP integrated with
scheduling features, in which orders must be fulfilled within prescribed due-
dates. The proposed price-and-branch uses primal solutions built by means
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of an SVC algorithm. Finally, in [34] a CSP with skiving option which derives
from paper and plastic film industries is investigated and an SVC heuristic is
combined with two integer programming formulations to solve two specifica-
tions of the problem.

1.5 Chapter Outline

The rest of the thesis is structured as follows:

• In chapter 2 we focus the discussion on selected geometric packing prob-
lems derived from real manufacturing scenarios that are characterized
by scheduling aspects. Looking at the representative mathematical pro-
gramming formulations for these problems, the aim is to provide a use-
ful insight to integrate two perspectives, the packing and the scheduling
ones, under a unifying framework.

• Chapter 3 is devoted to a multi-stock CSP arising in woodboard man-
ufacturing systems, in which real aspects are taken into account along
with multiple objectives. An SVC algorithm is described in detail, which
was designed with the aim of identifying sets of non-dominated solu-
tions. The quality of solutions is discussed by comparison with a bench-
mark software exploited in a real manufacturing system.

• In chapter 4 we discuss a bi-objective extension of BPP in which items
are provided with due-dates and the maximum lateness in the packing
process has to be minimized along with the number of employed bins.
The problem is coped by means of an SVC heuristic, while bi-objective
approximation results are derived from BPP heuristics with guaranteed
approximation ratio.

• Chapter 5 deals with a BPP with due-dates that embeds the presence
of items processing time in the packing operations. In this context the
completion time of a bin is dependent by the multiplicity of the items
packed within and the objective is formalized as a convex combination
of the number of used bins and the maximum lateness across the pro-
cess. An integer pattern-based reformulation solved by CG is presented
for this problem and evaluated with respect to an assignment compact
formulation in terms of continuous bound quality.

• Chapter 6 is related to a structure packing problem called MAXIMUM

QUASI-CLIQUE PROBLEM (γ-QCP). Indeed, the clique is a cohesive
structure complementary to the independent set that can be seen under
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the viewpoint of a packing problem. The γ-QCP is a combinatorial op-
timization problem in which a γ-quasi-clique, that is a clique relaxed on
the density constraint, is sought while maximizing the order of the set
of selected vertices. We present an original integer reformulation with
surrogate relaxation to achieve dual bounds by means of CG procedure.
Moreover, the connectivity issue for subgraph structures is discussed
and a new sufficient condition on solution connectivity is presented and
computationally evaluated.

• Finally, chapter 7 is devoted to the concluding remarks of the thesis and
to give some potential directions for future research.
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Chapter 2

Cutting processes optimization

The majority of the results presented in this thesis were achieved in the field
of bin packing and cutting problems, generally enriched with constraints and
features that emerge from real manufacturing scenarios and are closely related
to the scheduling of operations. In order to portray the connection that exists
in the real environments between packing (cutting) and scheduling aspects,
this second chapter want to be a non-exhaustive tentative to integrate the two
perspectives under a unifying framework, focusing on representative mathe-
matical programming models.

2.1 Introduction

In general terms, a common feature of packing problems is that they deal
with bounded geometric figures (r-dimensional compact sets) that are not de-
formable, cannot overlap, and must be placed into larger geometric figures,
either bounded or unbounded. Due to a mathematical affinity to cutting prob-
lems, where figures are components (here called small items) to be cut from
big plates (large items), these problems are gathered into the larger family of
cutting and packing problems (C&P), including such well known basic models
as KNAPSACK, PALLET LOADING, BPP. Among others, the CSP is one of the
best known C&P problems in both the practitioner community – for its prac-
tical relevance – and the research one – due to the mathematical properties
exploited for its solution. Although C&P problems usually emerge in manu-
facturing environments, related applications include issues derived from dif-
ferent contexts, such as the data packets allocation in telecommunication field
[82]. Moreover, BPP and CSP can be seen as special cases of the VEHICLE

ROUTING PROBLEM [49].
The basic CSP calls for fulfilling a given demand of small items of various

sizes, and possibly shapes, by cutting standard large items of identical size,
with the objective of minimizing the amount of unused material. It has almost
uncountable variants and extensions that depend on geometrical features, |
the dimension of the things to cut (one, two or three), their shape (rectangles,
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spheres, general convex or non-convex figures), etc. | on the technique used
to obtain the shapes, | simple or nested cuts, guillotine cuts in one or more
stages, fretwork, part rotation, leftovers reuse allowed or not etc. | on the as-
sortment of either small or large items, | of either small (one, few of many part
sizes) or large items (one, many identical, distinct or unbounded stock plates)
| and on the type of assignment of small to large items. For a comprehensive
typology, see [135]. Whatever is the variant considered, a solution of the CSP
is in general a non-ordered set of cutting patterns, each one associated with a
positive integer called activation level or run length. A cutting pattern specifies
the small items and their geometrical arrangement that must be cut from each
large item, and its run length is the number of large items to be cut in that way.

Now, cutting machines generally implement the same cutting pattern on a
single, limited pack of large items at a time and each single cut, as well as the
total process, can be organized in many ways that affect system performance.
Crucial elements for a correct management of a cutting process are:

• The way each machine implements a cutting pattern: for instance, mul-
tiple parallel cut vs single sequential cut: a sequential cutter (e.g., a pan-
tograph milling machine for irregular shapes) implements each pattern
by cutting the small items in a sequence, and different sequences may
take different time.

• The number, type and duration of set-ups, given by slitter repositioning
or other types of changeover; set-ups may occur from pattern to pattern,
so that solutions with few different patterns can be preferred to ones
with many; furthermore, switching time may depend on consecutive
pattern pairs.

• The organization of demanded production (and therefore of the patterns
it derives from) as desired by downstream plant departments: for exam-
ple, lots can be required in prescribed sequences or within given due-
dates; similarly, large items of different sizes can be subject to different
release dates.

• The finite capacity of the buffers designed to accommodate the small
items, and so to divide the production by classes (e.g., by order or
shape): in this case not all patterns and not all pattern sequences are
feasible, because they may produce an excess of some part class.

Summarizing, patterns and run lengths normally give insufficient informa-
tion to implement a solution, and a subsequent effort to organize the process
is normally required to schedule cuts after a CSP solution has been found (cut-

then-schedule). However, not only is this approach generally sub-optimal, but
also traditional CSP objectives may drive patterns and run lengths towards
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poor or even infeasible choices. With a simultaneous approach that takes
those issues into account (cut-and-schedule), CSP models are enriched in or-
der to define quality and feasibility of the schedules in which pattern and/or
cuts within patterns are organized. In such models, a solution is what we here
call a cutting plan.

The above discussion suggests that, in industrial applications, the problem
of finding an optimal cutting plan combines so many varieties that it is dif-
ficult to get a comprehensive picture. Thus, we prefer to focus here on few
issues that are common to a large amount of manufacturing environments: (i)
reduction of the number of set-ups, (ii) minimization of delays in the delivery
of the parts required, and (iii) scheduling of cut-operations when intermedi-
ate stacks have a finite capacity. This focus has the advantage of illustrating
three different fundamental ways of considering process efficiency without
getting lost in implementation details not always worth of consideration from
a scientific viewpoint.

Issue (i) deals with machine productivity and is traditionally considered a
very important cost source in manufacturing. It originates the so called PAT-
TERN MINIMIZATION PROBLEM (PMP), in which the number of set-ups, that
incur at slitter repositioning, has to be minimized.

Issue (ii) arises when material cutting not only has a local dimension of pro-
cess efficiency, but also one related to customer satisfaction, or to the synchro-
nization with other processes. In the corresponding CSP extension (CSP-DD),
lots are provided with individual due-dates and the goal, jointly with material
usage optimization, is the minimization of due-date related scheduling func-
tions: typical objectives are the minimization of maximum or weighted tardiness,
or of the number of tardy jobs.

Issue (iii) emerges because industrial production is often organized in
lots, that can be either homogeneous (namely, formed by parts of the same
size/type), or heterogeneous (for instance when different part types are
grouped to form a particular client order). Real cutting processes often try to
limit the variety of unfinished lots simultaneously present in the system. This
translates into a problem called STACK-CONSTRAINED CSP (SC-CSP), where
feasible plans are allowed to maintain a maximum number of open stacks at
any time (a stack is regarded as open as far as it is occupied by an uncom-
pleted lot). Minimizing the number of open stacks is recommended in order
to reduce the possibility of errors as well as in-process inventory [11], and
in some cases (e.g., wood-cutting) it derives from the very technical require-
ments of machines.

In this chapter we discuss representative models in which optimal/feasible
cutting plans are so defined as to cope with the aforementioned CSP exten-
sions. Specifically, after a brief historical excursus that focuses on the main
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achievements obtained to deal with CSP, we formally define in §2.2 the prob-
lem of identifying an optimal cutting plan; then, mixed integer linear pro-
gramming (MILP) formulations will be respectively reviewed, under a unify-
ing notation, for three representative CSP extensions: PMP in §2.3, CSP-DD
in §2.4 and SC-CSP in §2.5. Note that the exposition focuses on the cut-and-

schedule perspective and the dissertation could be refined by including also
the cut-then-schedule counterpart. However, this has been considered beyond
the purpose of the chapter.

2.1.1 An historical overview

In 1960, the one-dimensional version of the problem, that is, cutting shorter
bars of various given length from longer bars of standard length available
from stock, received by Kantorovich [74] a first formalization in terms of an
integer linear programming model. This model makes use of assignment vari-
ables uij that count how many parts of lot i ∈ I are produced by stock bar j ∈ J.
An extra 0-1 variable wj for each j ∈ J tells whether that bar is actually cut or
not and, summed up for all the stock bars available, all these extra variables
give the amount of material used to cut the required parts.

The assignment integer linear programming formulation report as follows:

min ∑
j∈J

wj (2.1)

∑
j∈J

uij = ri i ∈ I (2.2)

∑
i∈I

liuij ≤ lwj j ∈ J (2.3)

uij ∈ Z
+ i ∈ I, j ∈ J (2.4)

wj ∈ {0, 1} j ∈ J. (2.5)

The objective function (2.1) is defined as the minimization of the total num-
ber of employed stock bar, under the satisfaction of constraints (2.2) that im-
poses the required number of parts ri to be cut for each part-types i ∈ I. Fi-
nally, the limited length l of the stock bars obliges variables to obey integer
knapsack constraints (2.3).

This model has severe limitations, not only due to the potentially large num-
ber of variables (pseudo-polynomial with the number of part types), but also,
most of all, to the poor quality of the lower bound obtained by linear relax-
ation and the strong symmetry shown by feasible solutions. Such issues can
be related to the excessive finesse of the grain used to describe solutions, that
is actually relevant only when some additional practical aspects are integrated
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to the basic CSP definition.
One year later, Gilmore and Gomory [62] published a key reformulation

of Kantorovich’s model, based on Dantzig-Wolfe decomposition. Let aip be
the number of parts of lot i ∈ I produced with one stock item cut according
to pattern p ∈ P, where P is the set of enumerated patterns. By using the
integer variables xp to count the activation level of pattern p ∈ P, the integer
reformulation results in:

min ∑
p∈P

xp (2.6)

∑
p∈P

a
p
i xp = ri i ∈ I (2.7)

xp ∈ N p ∈ P. (2.8)

By replacing the knapsack constraints (2.3) by the convex hull of their inte-
ger solutions, the new pattern-based model drastically improved the LP lower
bound and eliminated solution symmetries. Also, it opened a way to investi-
gate on the so called integer round-up property (IRUP, [16]), that occurs when
the integer optimum z∗ equals the LP lower bound, i.e., the smallest integer
greater than or equal to the optimum value of the LP relaxation (see [86, 85]
for details).

Nevertheless, the formulation of Gilmore-Gomory has an exponential num-
ber of variables due to the number of different combinations in which a stock
item can be cut. Hence, solving its linear relaxation requires the call to a de-
layed column generation technique, which relies on the solution of a pricing
problem to generate profitable columns. In the one-dimensional case, such
pricing is modeled as an integer knapsack in which the a

p
i ’s appear as deci-

sion variables pi and are generated from the pricing solutions.
Finding exactly optimal integer solutions remained a challenge for several

years, as the column generation allows computing only the LP optimal value.
On the other hand, some heuristic approaches performed very well due to the
structural properties of rounding, especially for high-demand instances [119,
134].

A breakthrough was represented by the seminal work of Barnhardt et al.
[15] in 1996 that introduced the branch-and-price technique and allowed the
solution of one-dimensional CSP instances with hundreds of items [6].

Nowadays, the available approaches make possible to solve pure CSP in-
stances with size that widely exceed the requirements of real production sys-
tems. Thus, the attention of the research community move forward, focusing
on a wider perspective in which the technological and managerial issues of
cutting processes are taken into account. This is also merit of a spreading sen-
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sibility that recognizes the solutions of pure CSP as hardly or even impossible
to be implemented in practice, given the presence of productive constraints
and the impact of significant scheduling-related objectives [73].

2.2 General problem definition

In general terms, the problem of finding a cutting plan can be stated in this
way:

Problem 2.2.1. Find a set of patterns, their run lengths and implementation (pattern

assignment to machines and/or time instants) such that:

• the demand of all part types is fulfilled;

• the output schedule of lots is feasible and meets the desired level of performance;

• the total trim-loss is minimized.

For ease of presentation we will regard lots as homogeneous, and assume
that parts are cut from identical stock items. Formulations that generalize to
heterogeneous lots and/or stock sizes can however be obtained straightfor-
wardly.

The following list summarizes the notation used throughout the rest of the
chapter.

Data:

I: set of lots (jobs), |I| = n;

P: set of patterns (implicitly enumerated), |P| = N;

li: length of the parts belonging to lot i ∈ I (if one-dimensional);

l: stock items length (if one-dimensional);

ri: volume (number of parts) of lot i ∈ I;

di: due-date of lot i ∈ I;

T: index set of time periods dividing a given planning horizon;

a
p
i : number of parts of lot i ∈ I produced with one stock item cut according

to pattern p ∈ P.

A bar over a symbol makes it binary, giving 1 if > 0 and 0 if ≤ 0. For instance,
ā

p
i means 1 if pattern p produces one or more parts of type i, and 0 otherwise.

Note that the set T of time periods can be a decision variable, as a priori sub-
divisions can have two types of drawbacks: high computational complexity if
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2.2 General problem definition

too fine-grained, bad approximation if too coarse-grained. Moreover, the time
horizon can be divided in periods of non-equal lengths, and these lengths may
not be known in advance.

Decision variables:

Ci ∈ R
+: completion time of lot i ∈ I;

Ti ∈ R
+: tardiness of lot i: Ti = max{Ci − di , 0}, i ∈ I;

Lmax ∈ R
+: maximum lateness of any lot: Lmax = maxi∈I{Ti};

x
p
t ∈ Z

+: number of stock items cut in period t ∈ T according to pattern
p ∈ P (run length of pattern p in period t);

sit ∈ Z
+: inventory level (number of parts produced and not yet sent out)

of lot i ∈ I at the end of period t ∈ T;

θmax ∈ Z
+: maximum number of lots simultaneously in process throughout

the planning horizon;

yit ∈ {0, 1}: gets 1 if and only if lot i ∈ I is still in process in period t ∈ T;

Again, we remove indexes in case of independence, and use a bar to “bina-
rize” variables. In particular:

x̄
p
t gets 1 if and only if pattern p is active in period t;

s̄it gets 1 if and only if one or more parts of type i are still in process during
period t

T̄i ∈ {0, 1} is used to count the number of tardy jobs.

Let x, σ denote vectors collecting variables x
p
t and the remaining variables

(sit, yit, etc.), respectively. The following formulation G updates Gilmore and
Gomory’s model in order to give our problem a general framework:

min α1material-cost(x) + α2implementation-cost(x, σ) (2.9)

subject to:

∑
p∈P

a
p
i ∑

t∈T

x
p
t = ri j ∈ J (2.10)

(x, σ) ∈ R. (2.11)

The objective function (2.9) describes the convex combination of the two
cost items, where α1, α2 ∈ R

+ with α1 + α2 = 1. Equality (2.10), sometimes re-
laxed by≥ or by constraining the left-hand side within a prescribed interval, is
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Chapter 2 Cutting processes optimization

the demand constraint. Clause (2.11) is a generic form for the implementation
(e.g., scheduling) constraints, and region R varies according to application.
For identical stock sizes, the first term of (2.9) has the form

τ = material-cost(x) = ∑
p∈P

∑
t∈T

x
p
t (2.12)

and, if (2.10) is not relaxed, measures trim-loss.

When inventory levels are relevant, the demand constraint is replaced by
equilibrium equations

si,t−1 + ∑
p∈P

a
p
i x

p
t = rit + sit i ∈ I, t ∈ T (2.13)

that involve inventory variables sit. The first term of the left-hand side and the
last of the right-hand side give the amount of parts inherited at the beginning
and left at the end of the period. By considering the set T of time periods
partitioned into consecutive intervals [0, d1], [d1, d2], . . . , [dn−1, dn], [dn, dn+1],
where it is w.l.o.g. assumed 0 < d1 ≤ d2 ≤ . . . ≤ dn ≤ dn+1, and dn+1 is the
horizon length; then rit, the amount of parts of type i due by dt, is ri for i = t

and 0 otherwise.

The above formulation is actually depicted for single machine CSP, in which
patterns are sequentially implemented by the same machine. Nevertheless,
real cutting processes are commonly carried out by more complex produc-
tion systems with a structured layout. For instance, cutting operations can
be split into two stages if an upstream machine divides each stock item into
m parts, and each part is subsequently sent to one of m downstream parallel
cutting machines. Another example is given by in-house precut, a practice
especially operated by big plants that separately prepare stock material for
warehouse, which will be used in consecutive processes. Looking at real cut-
ting systems, the definition of optimal cutting plan gains features typical of
scheduling problems with multiple machines. Specifically, a CSP is related
to a parallel machine scheduling environment when machines separately and
simultaneously operate for job fulfillment on independent job portions, and
to a flow-shop environment when the cutting plan comprises a stream of op-
erations performed by subsequent cutting machines. Although we here focus
on single machine CSP, formulation G can easily be adapted to multi-machine
environments by suitably changing the definition of (some of) its components.
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2.3 Set-up minimization

2.3 Set-up minimization

The problem of finding, among all the CSP optimal solutions, one that mini-
mizes the number of patterns used and thus, for identical patterns, the set-ups
required, was first considered by Vanderbeck [127] and called the PATTERN

MINIMIZATION PROBLEM (PMP).
Referring to the general model of §2.2, the problem has overweight material-

cost(x) in objective (2.9), thence prioritizing trim-loss minimization. Integer
variables xp expressing pattern run lengths need to be coupled with 0-1 pat-
tern activation variables x̄p, that summed up on P give the total number of
patterns used:

min ∑
p∈P

x̄p (2.14)

∑
p∈P

xp ≤ τ∗

xp ≤ Up x̄p p ∈ P

xp ∈ N, x̄p ∈ {0, 1} p ∈ P

plus demand constraints (2.10) written for single period. In (2.14), τ∗ indicates
the maximum admissible material usage, and the activation constraints uses
adequate upper bounds Up on pattern run lengths.

In alternative, Vanderbeck [127] suggests one binary activation variable per
pattern and per run length; that is, z

p
x = 1 if and only if pattern p is activated

at run length x:

min ∑
p∈P

Up

∑
x=1

z
p
x (2.15)

∑
p∈P

Up

∑
x=1

xz
p
x ≤ τ∗ (2.16)

z
p
x ∈ {0, 1} p ∈ P, x = 1, . . . , Up

subject to demand constraints

∑
p∈P

Up

∑
x=1

xa
p
i z

p
x = ri j ∈ J. (2.17)

Both (2.14)+(2.10) and (2.15)-(2.17) can be derived by discretizing different
subsets of constraints in a bilinear model, based on Kantorovich and enriched
with pattern activation variables, see [5].

In general, if ∑i aixi ≤ b is valid for an integer program P , and f (y) is
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non-decreasing and super-additive, then also ∑j f (ai)xi ≤ f (b) is valid for P :
rank 1 Chvátal-Gomory cuts are for instance derived using f (y) = ⌈λy⌉ for
0 < λ < 1. Cuts to strengthen Vanderbeck’s formulation can be derived with
this technique from inequalities (2.16) and (2.17). In [127], the super-additive

functions have the form fp(y) = ⌈ py
τ∗ ⌉ − 1 for (2.16) and fp(y) = ⌈ pya

p
i

ri
⌉ − 1 for

(2.17). The derived cuts dominate Chvátal-Gomory’s, can be added without
destroying the problem structure, and are separated in pseudo-polynomial
time. Alves and Valério de Carvalho [6] propose dual feasible functions (DFF)
that dominate the function proposed by Vanderbeck and, consequently, pro-
vide sharper cuts. A DFF is a function f : [0, 1]→ [0, 1] such that

∑
µ∈H

µ ≤ 1⇒ ∑
µ∈H

f (µ) ≤ 1

for any finite set H of real numbers. Let 0 ≤ ai ≤ b with b > 0, and let primal
x fulfil ∑

n
i=1 aixi ≤ b, i.e., ∑

n
i=1

ai
b xi ≤ 1. Rewrite the inequality as

n

∑
i=1

xi

∑
k=1

ai

b
≤ 1.

Since ai
b ≤ 1, by definition of DFF we can replace it by f ( ai

b ) and stay feasible:
therefore

n

∑
i=1

xi

∑
k=1

f (
ai

b
) =

n

∑
i=1

f (
ai

b
)xi ≤ 1

is valid.
Comparison were performed on instances with up to 350 items to evaluate

the LP relaxations of the two formulations and to point out the role played
by the choice of upper bounds Up [5, 19]. In particular, the LP relaxation
of (2.14)+(2.10) is showed to be theoretically tighter, although computational
results give only evidence to a limited advantage.

A particular case of PMP, typical of situations with a fixed number of slit-
ters, occurs when a cutting pattern can never produce more than a prescribed
number u of small items. For u = 2, the feasible patterns are in one-to-one cor-
respondence with the edges of a compatibility graph G = (I, E), where (i, j) ∈ E

means that a part of type i and one of type j can be cut from the same stock
item.

McDiarmid [93] studied the special case of G = Kn, where any two parts fit
any stock length, but no three do. In this problem, a crucial role is played by
cut schedules. Since every pattern produces two parts, one can regard these
two streams of parts as if they were produced by two parallel machines. A
non-preemptive strategy is to produce the generic part type i continuously, as
soon as the relevant lot is completed. Thus, the CSP is trivial, whereas the PMP

24



2.4 The CSP with due-dates

(corresponding to maximizing the number of times two jobs end at the same
time) is proved to be NP-hard [93]. The last observation leads to formulate the
PMP in terms of SET PACKING, see [4].

A natural generalization of this problem describes the set of feasible pat-
terns as the edge set of an undirected graph Gn, whose nodes correspond to
part types. The CSP becomes then a b-matching, and hence can be solved
in polynomial time. The PMP loses instead the nice properties it has when
Gn = Kn, but, resorting to a flow model, can still be solved in polynomial time
when Gn is a split graph [4].

2.4 The CSP with due-dates

The CSP with due-date related objectives has been considered rather recently.
In 2004, Johnson and Sadinlija [73] proposed an integer programming formu-
lation to determine optimal cutting plans with ordered lots subject to due-
dates. The model uses a smart trick to get rid of the difficulty of coding 1-
machine pattern scheduling, based on the use of xp to model the length of the
p-th pattern, of additional integer variables v

p
iq and the "binarized" version v̄

p
iq.

Variables is set to 1 if the "appereance level" of part type i in pattern p is equal
to q, case in which v

p
iq is set equal to xp. Let the set Q be defined as the possible

number of copies of any item that can simultaneously belong to any pattern.

The formulation states:

min ∑
p∈P

xp (2.18)

∑
p∈P

∑
q∈Q

qv
p
iq ≥ ri i ∈ I (2.19)

∑
i∈I

∑
q∈Q

qv̄
p
iqli ≤ l p ∈ P (2.20)

∑
h≤p

xp −M(1− ∑
q∈Q

v̄
p
iq) ≤ di i ∈ I, p ∈ P (2.21)

v
p
iq −Mv̄

p
iq ≤ 0 i ∈ I, p ∈ P, q ∈ Q (2.22)

∑
q∈Q

v̄
p
iq ≤ 1 i ∈ I, p ∈ P (2.23)

∑
q∈Q

v
p
iq − xp ≤ 0 i ∈ I, p ∈ P (2.24)

M ∑
q∈Q

v̄
p
iq − ∑

q∈Q

v
p
iq + xp ≤ M i ∈ I, p ∈ P (2.25)
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xp ∈ {0, 1} p ∈ P

v̄
p
iq ∈ {0, 1} i ∈ I, p ∈ P, q ∈ Q

v
p
iq ∈ N i ∈ I, p ∈ P, q ∈ Q.

Inequalities (2.19)–(2.21) enforce, respectively, the demand fulfillment, the
knapsack constraints and the due-dates satisfaction, assuming that patterns
are indexed according to their position in the cutting sequence, e.g. p = 3
means that pattern p is cut as third in the sequence with length xp. The
block of constraints (2.22)–(2.25) set the link between variables. Specifically,
v̄

p
iq switches to 1 whenever i occurs q times in the p-th pattern, and the inte-

ger v
p
iq variable equals the pattern run length xp only in this case. The former

variables assign part type i to the p-th pattern, hence their sum over all the
possible q is ≤ 1, where value 1 is achieved if part type i occurs in the p-th
pattern, 0 otherwise. The objective function (2.18) restricts (2.9) to the first
term only, asking for the minimization of the total run length. To tighten for-
mulation, further constraints can be embedded to bound the possible values
of xp.

The formulation does not use column generation, and is quite complicated
by the frequent recourse to activation constraints and “big constants”, a prac-
tice that typically produces very weak lower bounds. In fact, the largest model
solved with this methodology has just 17 unitary lots.

Reinertsen and Vossen [113] try to overcome this limit by resorting to col-
umn generation. Their idea, previously implemented by [11] in a context
where the CSP is coupled with inventory management, uses variables x

p
t to

define the run length of pattern p ∈ P during period t ∈ T. Unitary cut times
and no set-ups are assumed. The objective is a combination of material and
scheduling cost as in (2.9), where the first term is given by (2.12) and

implementation-cost(x, σ) = ∑
i∈I

βiTi

defines the weighted sum of tardiness, with βi ∈ R
+ for each i ∈ I. Demand

constraints read as in (2.10), and recall that the set T of time periods is defined
by partitioning the planning horizon into consecutive intervals [0, d1],
[d1, d2], . . . , [dn−1, dn], [dn, dn+1], where it is w.l.o.g. assumed 0 < d1 ≤ d2 ≤
. . . ≤ dn ≤ dn+1, and dn+1 is the horizon length. Tardiness is treated as a
surplus variable in inequalities of the form

∑
p∈P

i

∑
t=1

x
p
t ≤ di + Ti i ∈ I (2.26)
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that try to confine the run length of patterns into the appropriate intervals.
Experiments show that problems with over 200 orders can be tackled in this

way. However, the model is exact provided that an early due-dates job schedule
is optimal. But this is not true in general [8], so the described approach must
be regarded as heuristic.

To get an exact formulation for CSP-DD, one can follow [11] and use lot-
sizing variables sit to control the inventory level of lot i in period t. Demand
constraints (2.10) are replaced by equilibrium equations (2.13), here reported
for readers’ convenience:

si,t−1 + ∑
p∈P

a
p
i x

p
t = sit + rit i ∈ I, t = 1, . . . , n + 1

where rit, the amount of parts of type i due by dt, is ri for i = t and 0 otherwise.
Time capacity constraints just fit run lengths into each interval:

∑
p∈P

x
p
t ≤ dt − dt−1 t = 1, . . . , n + 1. (2.27)

Inventory variables sit can get negative values: if sit < 0 (backlog), it simply
means that lot i is fed by parts produced after di. Triggering this event by a
suitable 0-1 variable yit allows then to monitor due-dates violations. Remark
that the entity of violation is measured by interval lengths, hence is an over-
estimate: for instance, if a backlog of lot i is triggered at di+1 but not later,
this just implies that Ti ≤ di+1 − di. This approximation can be reduced by
a procedure of interval subdivision which, iterated a finite number of times,
converges to an exact formulation [8]. Limited optimality gap are achieved
by embedding this formulation within a partial enumeration scheme for in-
stances with 20 lots and ri ∈ [1, 100].

Finally, the above formulation can be adapted straightforwardly to different
objective functions, such as the number of tardy-jobs ∑i∈I T̄i or the maximum
lateness Lmax [8].

2.5 The Stack-Constrained CSP

Yanasse and Pinto Lamosa [137] are credited a first attempt, dated 2007, to
address the simultaneous generation and sequencing of patterns, with the
objective of minimizing trim-loss τ while opening up to a prescribed num-
ber θmax of stacks. They formulate this integrated problem using (in our
notation) pattern run lengths xp, binary pattern activation variables x̄p, and
binary time-indexed variables x̄

p
t that assign patterns p ∈ P to positions

t ∈ T = {1, 2, . . . , |P|}. Pattern activation variables and run lengths are re-
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ciprocally constrained by
x̄p ≤ xp ≤ Up x̄p (2.28)

where, as in §2.3, Up denotes a suitable upper bound to the run length of
pattern p.

In this formulation, every pattern is assigned to a certain position via the
x̄

p
t :

∑
p∈P

x̄
p
τ = ∑

t∈T

x̄
q
t = 1 q ∈ P, τ ∈ T.

Still, not all x̄p are necessarily 1, that is, not all patterns must be used. This
is reported in the following inequality

ā
p
i (x̄

p
t + x̄p − 1) ≤ s̄it i ∈ I, t ∈ T (2.29)

involving a binary variable s̄it that takes value 1 if and only if the stack with
parts of type i is non-empty at time t. Inequality (2.29) is non-trivial provided
that pattern p produces at least one part of type i (i.e., a

p
i > 0). Its interpreta-

tion is that if p is the t-th pattern of the sequence and it is used at non-zero run
length, then the i-th stack is non-empty at time t.

Limiting the number of stacks that are open at any time t corresponds to
requiring

∑
i∈I

s̄it ≤ θmax t ∈ T. (2.30)

Inequalities (2.28), (2.29) and (2.30) are exponentially many: there are, in
fact, |P|2 inequalities of type (2.29). Also, the number of variables is > |P|2,
because of x̄

p
t . These numbers can be quite large even for small instances: for

example, n = 20 part types and 1000 patterns originate 1, 041, 980 variables
and 20, 025, 001 constraints. To handle such large numbers, [137] resort to
primal heuristics coupled with lagrangian relaxation.

A more compact formulation, where the number of constraints increases
polynomially with n, was then proposed by [9]. The formulation is based on
the idea of feasible track, a 0-1 matrix B with n rows that has the Consecutive

Ones Property (C1P) and exactly θmax 1’s per column. The C1P requires that
the column of B can be permuted so that, in any row, no 0 occurs between two
1. Every matrix of this form can be constructed as follows: (i) choose, for the
first column, an arbitrary 0-1 vector with θmax 1’s; (ii) add columns one by
one, switching exactly one 1 of the previous column to 0 and one 0 to 1, with
the condition that once a 1 is switched to 0 it never becomes 1 again. It is easy
to see that any matrix so obtained has ñ = n− θmax + 1 columns. Associate
every column bt of B with a period t ∈ T = {1, . . . , ñ}, and assign, through the
usual run lengths x

p
t , patterns p ∈ P to periods in T. The following property

holds:
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Theorem 3. A pattern sequence opens no more than θmax stacks if and only if the

patterns a of the sequence that are assigned to period t fulfil ā ≤ bt.

Proof. See [9].

By Theorem 3, a feasible sequence is encoded by integer variables xpt ful-
filling the nñ (thus polynomially many) inequalities

∑
p∈P

a
p
i x

p
t ≤ ribit = ri(φit − ψit) i ∈ I, t ∈ T. (2.31)

In the right-hand side of inequality (2.31), the entries bit of the feasible track
are written as the difference of two non-decreasing sequences of 0-1 variables
φit, ψit, where the former dominates the latter: this is a way to let the 1s of
row bi = (φit − ψit)t∈T occur consecutively, for every i ∈ I. For instance,
the difference between φ-sequence 00011111 and the ψ-sequence 00000011 is
the b-sequence 00011100. Variables φit, ψit ∈ {0, 1} thus must obey the linear
constraints

φit ≤ φi,t+1 ψit ≤ ψi,t+1 ψit ≤ φit

for all i and t, and the limit on open stacks can be written

n

∑
i=1

(φit − ψit) ≤ θmax t ∈ T.

Delayed pattern generation can be used to compute the linear relaxation. Even
if the number of variables is still non-negligible, the model can be exploited to
obtain good feasible solutions on instances with up to 20 lots.

In [92], Matsumoto et al. studied a one-dimensional CSP from the paper
tube industry that deals with error-inducing issues that can affect the han-
dling activities performed by human operators. These translate into three con-
straints of more general significance: (i) setups of each stock roll type should
be made at most once; (ii) the minimum difference in the lengths of pieces
simultaneously located on the worktable should be not smaller than a certain
threshold ∆; (iii) up to a maximum number of stacks θmax should be opened at
the same time. The authors introduce the concept of cutting group to manage
(ii) and (iii) and develop a 0-1 ILP reformulation that is heuristically solved
by means of a tabu search. Computational experiments are presented to show
the quality of the approach on both random and real instances, with n ≤ 50
and mean demand of part types up to 52.

In the special case in which every pattern cuts at most two parts, if all pairs
of part types correspond to feasible patterns, then the CSP admits a trivial so-
lution consisting of a non-preemptive cut schedule, see §2.3. With this sched-
ule, no more than 2 distinct part types are in-process at any time: so at most 2
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stacks are maintained open throughout production. The property still holds if
the compatibility graph Gn is a threshold graph, but does not hold in general
for a split graph [4].

2.6 Conclusion and future development

Implementing a cutting plan requires much more information than that ob-
tained by just solving a CSP, as pattern schedules significantly affect the ef-
ficiency (and sometimes the practical feasibility) of CSP solutions. To cope
with this issue, several extensions were defined in the CSP literature, each one
integrating a particular aspect. In this chapter we gave a general outlook to
the problem of defining an optimal cutting plan, seen as a CSP solution that
complies with given scheduling requirements. We then briefly reviewed, in
the light of an agile shared notation, MILP formulations of three main prob-
lem species: the PATTERN MINIMIZATION PROBLEM, the CSP with due-date
related objectives, and the stack-constrained CSP.

This can be seen as a starting point for further extension of the study and
additional cutting problems could be surveyed to take into consideration
non-negligible aspects in industrial processes, such as multi-machine envi-
ronments and pattern-dependent cut time. This study can be also deepened
by looking at various solution methods proposed in literature, both with a
cut-then-schedule and cut-and-schedule approach.
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Chapter 3

An SVC for a rich and real

two-dimensional woodboard cutting

problem

1

In this chapter we deal with a rich version of CSP arising from woodboard
manufacturing systems, in which real aspects are taken into account along
with multiple objectives. Due to the complexity of the problem, an SVC al-
gorithm was designed and implemented to heuristically identify a set of non-
dominated solutions. Results are then given by comparing the SVC procedure
with the previous software adopted by a leader company in production of cut-
ting machines.

3.1 Introduction

The CSP is a well-known model of real-world optimization problems arising
in manufacturing and can be summarized in a very simple way: find an efficient

way of cutting small objects from large ones.
Although clear in its statement and elegant in its formal mathematical defi-

nition, numerous variants and extensions were proposed in literature to refine
the CSP definition and shrink the gap between the theory and the practice,
suggested by the real productive conditions that typify manufacturing sys-
tems. Referring to the extensive survey proposed by Wäscher et al. [135],
variants arise whenever some assumptions defining general properties of the
problem are replaced with different ones, such as problems with multiple ob-
jectives [133], on-line versions [67] or stochastic problems [46]. Extensions

1The contents of this chapter appears in: C. Arbib, F. Marinelli, A. Pizzuti and R. Rosetti: A
heuristic for a rich and real two-dimensional woodboard cutting problem. In Proceedings of
the 7th International Conference on Operations Research and Enterprise Systems - Volume 1:
ICORES, ISBN 978-989-758-285-1, (2018) pages 31-37. DOI: 10.5220/0006534500310037

31



Chapter 3 An SVC for a rich and real two-dimensional woodboard cutting problem

instead are born if the problem is enriched with additional aspects that en-
large the boundary of the problem beyond the essence of cutting, touching
issues related to a more general perspective of the planning of operations. In
this sense, examples can be found in the pattern minimization problem [127],
pattern sequencing problem [136] or lot-sizes management [101].

Any variant (extension) is regarded of interest for the academia as far as it
requires a non-standard model and/or a novel methodological approach. Un-
fortunately, it is often hard to encapsulate reality into a single elegant mathe-
matical formulation. Moreover, it is generally recognized that the success of an
optimization method depends on the concurrency of transversal skills: one is
indeed mathematical modeling, but it is not the only one. A fundamental role
is for instance played by the bi-directional interface that must be developed to
feed the model with data and to present the solutions to decision-makers: a
development that normally requires more IT than math skills.

On the other hand, the more a model is close to operational decision, the
more attention is to be devoted to process details. Disregarding such details
(which is often done in research papers in order to capture the mathemati-
cal essence of the problem) would simply cause the software product not to
work, and the management not to buy it. For example, edge trimming is gen-
erally neglected in CSP models; but a cutting pattern that does not take it into
account, may not be realizable in practice.

While a specification on edge trimming can easily be dealt with after pro-
totype development, this is not the case of other apparently irrelevant issues.
For example, blade thickness expressed in fractions of millimeters can increase
the precision required of the packing algorithm, with important effects on its
efficiency if, as usual, it has pseudo-polynomial time complexity.
A twofold challenge has therefore to be addressed:

• On software design. Technical issues | be they expressed as constraints
or utility criteria | have both a local impact on the feasibility of cutting
patterns (number of stages, item rotation etc.) and a global one on the
cutting plan as a whole (number of patterns, cut sequence etc.). Pattern
generation algorithms can differ a lot from each other in order to take
care of the former issues, and the latter can affect the whole software
architecture.

• On decision-making. A hierarchical problem decomposition based on the
various utility criteria (e.g. first minimize trim-loss, then setups, then
open stacks) can output low-quality or even infeasible solutions. On
the other hand, combining different objectives into a single goal may
produce solutions not appreciated by all the involved decision makers.

We here propose to address this challenge by a single architectural choice
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in which patterns are generated via sequential value correction heuristic and
then used to provide a collection of non-dominated solutions.

We refer to problems with a level of detail that covers industrial specifica-
tion as a whole and puts the solution method in a condition to operate in the
plant as rich. Specifically, this chapter is devoted to a rich MULTIPLE-STOCK-
SIZE TWO-DIMENSIONAL CSP (M2D-CSP) compliant with the specification
of a family of wood cutting machines produced by SCM Group [117].

The M2D-CSP can be presented as follows. Let I be a set of n distinct rectan-
gles (part types). Each i ∈ I has width wi and height hi, and must be cut in ri

copies from a stock set J of m different (and larger) rectangles. Each j ∈ J has
width Wj and height Hj, and is available in mj copies. The cut should be done
to minimize used stock area; other objectives | such as reduction of employed
stocks, setup minimization etc. | can however be selectively or entirely con-
sidered. Given these additional criteria, our M2D-CSP can be considered as
an extension |and also a variant| of the classical CSP in the sense of [135].
Our problem has these main features:

• Cuts proceed parallel to stock item from edge to edge (guillotine cut).

• Items (either produced or in stock) can be orthogonally rotated.

• 2 and (simplified) 3-stage cuts are possible (figure 3.1): in a first stage,
a configuration c = 〈stock type, first cut orientation (horizontal or
vertical)〉 is selected, and multiple cuts are done orthogonally to orien-
tation; then the stock item is rotated by 90◦ and the stage is repeated.

• Precut is possibly allowed as a pre-processing step.

Part types admit overproduction if explicitly indicated, but demand is in
general to be fulfilled exactly. Indeed, relaxing demand constraints by over-
production can yield solutions with very small trim-loss; but a substantial
number of excess items are cut, increasing too much the necessary amount of
stock items and consequently production costs.

3.2 Literature review

Real cutting processes often deal with heterogeneous stock types. The relevant
M-CSP is handled in various ways. In [18] an exact cutting plane approach
is proposed for one-dimensional CSP with multiple stock widths. The same
problem is solved heuristically in [109]. In [138], the two-dimensional CSP in
the wood industry is addressed and a heuristic algorithm is proposed for the
multiple stock sizes case.
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Figure 3.1: a) 2-stage pattern; b) (simplified) 3-stage pattern. Dotted lines de-
limit sections, bold lines highlight the boundary of strips.

Trim-loss minimization is not the only criterion considered in an industrial
cutting process: indeed, setup costs and the number of stacks maintained
open throughout the process can affect process quality as well. Examples of
CSP seeking both setup minimization and open stack limitation can be found
in [19], where a sequential heuristic for the one-dimensional case is proposed,
and in [101], where the problem is formulated as a non-linear concave mini-
mization problem and solved through global or local procedures. Metaheuris-
tics and an exact approach that separately address the CSP with setup mini-
mization are reported respectively in [124] and [5]; moreover CSP with open
stack limitation is considered in [10] and [137].

Although industrial applications require consideration of several practical
issues, these are taken into account by very few papers; and in those cases,
very few additional issues are regarded simultaneously. Here is a list of ex-
ceptions (to the best of our knowledge):

• [84] describes a truncated Branch-and-Price algorithm to solve an M2D
guillotine CSP in woodboard cutting industry, where orthogonal rota-
tion of items and boards is allowed, and stacked boards can be cut con-
currently. The objective is to minimize a weighted combination of stock
usage, number of cutting cycles and of 3-stage cuts.

• [129] presents a 1D-CSP arising in a plastic manufacturing facility, with
five objective functions hierarchically ranked, some technical parame-
ters related to the employed cutting machines and order priorities. A
GRASP algorithm with a call to a sequential heuristic procedure is im-
plemented.
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• [35] proposes a mathematical formulation for a rich 1D-CSP in the metal
industry. The various technical constraints taken into account signifi-
cantly affect the total cost and involve trim-loss, material reusability and
cut time. Approximation algorithms based on dynamic programming
are devised.

3.3 A sequential value correction heuristic

As pointed out in §3.3.1, the basic idea behind the SVC scheme consists in
assigning a value (the pseudo-price) to each part type and generate cutting
pattern sequentially, each one with the parts not yet allocated that maximize
the total value of the pattern. After that a pattern has been computed, pseudo-
prices are conveniently updated and the process reiterated. In this application,
generated solutions are evaluated to fill a pool of non dominated solutions.
Dominance relationship are based on the following minimization criteria: to-
tal used stock area, total trim-loss, number of used stocks, number of distinct
setups, and total number of precuts (Notice that used area, trim-loss and num-
ber of used stocks measure distinct performance due the overproduction fea-
tures and the presence of stocks of different sizes).

The whole procedure is composed by three main steps, each one optimizing
a distinct performance indicator by resorting to Algorithm 1 which describes
an SVC.
The algorithm can be summarized as following:

• Step 1: SVC solves the M2D-CSP with non-batched demand, seeking
used area minimization.

• Step 2: The second step tries to reduce the number of setups by demand
rounding. In particular, the demand of each part type is aggregated by
increasing batch dimension (parameter size) and SVC is called to find so-
lutions with reduced number of setups. Starting from size = 2, the pro-
cedure is iterated for increasing values of size, chosen as the largest inte-
ger in [size + 1, max

i∈I
ri] that minimizes the area associated to the residual

demand b′. Step 2 terminates when SVC does not find any new non-
dominated solution.

• Step 3: in this phase SVC searches for solutions with reduced number of
precuts. A suitable opportunity threshold δ is used to trigger decreasing
chances of employing a precut. The procedure iterates by updating δ

until new generated solutions have no precut.
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Algorithm 1 Sequential value correction heuristic

1: procedure SVC(r, size, δ)
2: λi ← Si

3: cuts← 0
4: for i← 1 . . . N do
5: g← random(1, ρ)
6: b← r
7: S = ∅

8: repeat

9: r′ ←
⌊

b
size

⌋

10: b′ ← b mod size
11: while r′ > 0 do
12: P = ∅

13: for c ∈ C do
14: p[c]← getPattern(c, λ, δ, r′)
15: P = P ∪ {p[c]}
16: (a, cuts)← getBestPattern(P)
17: f illingPattern(a, cuts)
18: S ← a
19: h← random(1/g, g)
20: λ← updatePrices(a, λ, h)

21: b← b′

22: size = 1
23: until b > 0
24: patternSeq(S , cuts)
25: if notDominated(S) then
26: Sol = Sol ∪ {S}

3.3.1 SVC Heuristic

The SVC heuristic is the core of the algorithm and is implemented to build the
CSP solutions.

Let I′ be the set formed by the items of I and their rotated counterparts. In
its general framework, SVC starts by defining a pseudo-price λi for each part
type i ∈ I′. Each price is initialized at the item area Si. Part type demand is
batched by size, that is, stock items are stacked and each pattern is activated
at multiples of size. A partial CSP solution is obtained by sequentially build-
ing patterns through subroutine getPattern: the subroutine attempts to solve
subproblems where the sum of prices is maximized under bounded knapsack
and compatibility constraints. For each configuration c = 〈stock type, first
cut orientation〉 in the set C of all possible configurations, a cutting pattern is
generated and added to a set P. The most profitable pattern a ∈ P is then se-
lected using getBestPattern, which also set the corresponding activation level
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3.3 A sequential value correction heuristic

cuts. The f illingPattern function is implemented to insert unplaced items in
empty sections, given the residual demand and the value of cuts of the chosen
pattern. Subsequently, prices λi are updated by promoting items with high
current demand r′i and small multiplicity in a. A complete CSP solution S is
finally obtained by combining the partial solution computed for demand r′

with the one found for the residual demand b′.
In general, open stacks are not an objective to be minimized, but are limited

by the number of unloading stations that equip the cutting machine. Although
the pattern generation procedure already respects the limited availability of
unloading stations, an attempt at reducing the stacks opened by the current
solution S is made by the patternSeq procedure. The function patternSeq im-
plements a simple pattern sequencing heuristic that compares each pattern
with all the subsequent ones, and swaps pattern pairs that allow the largest
decrease of open stacks.

The current solution is added to a pool (Sol) if it fulfills all the constraints
and is not dominated by any other. The process is iterated a prescribed num-
ber N of times unless certain halting conditions hold (e.g., user stop or min-
imum used area reached). Finally, the pool Sol is filtered and reduced to a
frontier of non-dominated solutions.

It may happen that Sol consists of partial solutions only, due to insufficient
stock availability. In that case, non dominated solutions are limited to those
that fulfills the largest demand.

For the sake of conciseness, in the following we shall assume c = 〈j, H〉, i.e.,
the cut of the first stage is always parallel to the height Hj of the stock item:
the arguments presented maintain validity when replacing "horizontal" with
"vertical" and "Hj" with "Wj".

3.3.2 Patterns Generation and Selection

For a given configuration c = 〈j, H〉 ∈ C, function getPattern creates a pattern
that depends on the current prices λ and demands r′. First, for each part
type i ∈ I′ a vertical section of width wi is defined, and a bounded integer
knapsack problem is solved. The knapsack capacity is set equal to the stock
height Hj and element sizes correspond to the heights hi of the part types
selected. Clearly, only part types k ∈ I′ with wk ≤ wi, demand r′k > 0 and
prices λk > 0 are considered. Actually, each knapsack element describes a
horizontal strip containing a single item k (2-stage patterns), or multiple copies
of the same part-type (3-stage patterns) wide at most wi. In the latter case,
the maximum multiplicity mk is given by ⌊wi/wk⌋, and prices are computed
accordingly.

Let Qc be the set of sections generated so far, each one provided with a cer-
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tain activation level defined with respect to the current part type demand r′.
The pattern is obtained by solving a further bounded knapsack problem that
optimally selects sections in Qc. In particular, the knapsack capacity is equal to
Wj and knapsack elements correspond to sections, where the size and value of
element q are respectively equal to the width and price of section q (the price
of a section is the sum of the prices of items it contains). The resulting solution
provides a subset of sections Q̄c that may present overproduction. In order to
preserve the structure of the knapsack problem, only activation levels of the
elements (sections) are explicitly considered, whereas part type multiplicities
in sections are neglected; moreover, the simultaneous presence of part types
and rotated part types is not accounted for. It follows that part type over-
production is not prevented and a post-processing may be required to exactly
fulfill part type demands. Sections q ∈ Q̄c are sorted by non-increasing or-

der of the ratio Vq

Sq
, where Vq and Sq are respectively the price and the area of

section q.
Sections are possibly added to the pattern p following the prescribed order,

and demand r′ is accordingly updated. In particular, a section is discarded if
it causes demand overproduction, or overflow of the allowed limit on open
stacks. In that case, the resulting pattern p may present a residual stock area
of width Rj that can be further filled. Therefore, the whole procedure, i.e. sec-
tions generation and selection, is repeated in order to generate a sub-pattern
for the configuration c = 〈 j̄, H〉 ∈ C, where stock item j̄ has width Rj and
height Hj. The sub-pattern is placed next to p and merged with it, and the pro-
cess reiterated until the residual stock area cannot be filled any longer. Pattern
p is then added to the set P.

Once patterns are generated for each c ∈ C, the procedure getBestPattern

selects the most profitable pattern a ∈ P, that is, a pattern that maximizes
the total price of the sections it contains. Pattern a is finally added to the
partial CSP solution S with activation level cuts, computed according to the
current demand r′ and stock items availability. The pattern generation process
is iterated until the whole demand is fulfilled.

Since the presence of real-valued prices, all the above bounded integer
knapsack are solved by encoding the integer variables as binary variables and
then by using an own implementation of the algorithm for the 0-1 knapsack
described in [91].

Precut Policy

For each pattern p, function getPattern generates also a pattern p′ that contains
a precut, and then evaluates the opportunity of replacing p with p′. For a given
pattern p, the algorithm scans all the cuts of the second stage (those required
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to separate strips), choosing one whose quota h is closest to the middle of Hj,
see Figure 3.2.

Figure 3.2: Dotted lines indicate the potential cuts of the second stage. The
bold line refers to the cut closest to the middle of the stock height
Hj.

Stock item j (and pattern p) is split into new stock items jl and ju (sub-
patterns pl and pu) of sizes h×Wj and (Hj − h)×Wj, respectively; the items
that cross quota h are removed and the sub-pattern pu deleted, see Figure
3.3. Stock item ju is used to build a new pattern p′u (by the same procedure
described above), and a pattern with precut p′ is obtained by merging p′u and
pl , see Figure 3.4. If the difference between the reduced costs of p and p′

is larger than a given threshold δ, then the pattern with precut is selected;
otherwise getPattern selects p.

The value of δ is set to zero in Steps 1 and 2 of the heuristic, and is progres-
sively increased in Step 3, where the algorithm aims at producing solutions
with a decreasing number of precuts.

Figure 3.3: sub-pattern pl
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Figure 3.4: sub-patterns pl and p′u

3.4 Computational results

Table 3.1: Results without precut on ten real instances.

SVC heuristic Company software
Name n Area N #patterns CPU time ∆Area (%) ∆N (%) ∆patterns (%)

I_1 58 2403.12 304 69 26.69 1.31 1.32 2.90
I_2 83 1454.8 251 102 6.67 1.19 1.20 -6.86
I_3 141 1512.21 508 165 121.14 1.58 1.57 0.61
I_4 500 221.32 29 29 103.52 2.40 34.48 34.48
I_5 500 273.84 36 36 - - - -
I_6 747 3158.81 620 546 634.72 2.13 1.94 -14.65
I_7 759 495.92 96 96 760.08 5.45 5.21 5.21
I_8 869 2923.78 563 269 972.06 - - -
I_9 951 354.72 67 67 34.63 - - -
I_10 972 903.11 179 178 494.59 - - -

Average - 1370.16 265.30 155.70 350.46 2.34 7.62 3.61

The SVC was implemented in C++ and experiments were performed on a
Intelr Core2 Duo E8500 3.16 GHz with 8Gb RAM. The SVC heuristic has been
tested on ten real instances provided by SCM Group, with n ∈ [58, 972] and
ρ = 1.15. Results have been compared to those provided by the software
previously adopted by the company and developed by a national software
house devoted to the design of cutting optimization software. In order to be
consistent, the non-dominated solution using the minimum total stock area
has been promoted to the best solution and compared to the single solution
provided by the company own software.

Table 3.1 and 3.2 show the results for the case with disabled and allowed
precut, respectively. For each instance, the SVC performance is evaluated in
terms of total used stock area (Area), number of used stocks (N), total num-
ber of patterns (#patterns) and CPU time. The last three columns show the
percentage gaps with the results obtained by the company software (positive
values mean an improvement obtained by SVC; the symbol ‘-’ means that the
CPU time limit of three hours has been reached by the company software).

On average, the SVC heuristic reduces the total used stock area by 2.34%
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Table 3.2: Results with precut on ten real instances.

SVC heuristic Company software
Name n Area N #patterns CPU time ∆Area (%) ∆N (%) ∆patterns (%)

I_1 58 2403.12 304 80 5.92 1.64 1.64 -18.75
I_2 83 1454.8 251 105 34.55 0.79 0.80 -6.67
I_3 141 1509.24 507 152 332.28 1.18 1.18 -8.55
I_4 500 220.78 29 29 139.09 - - -
I_5 500 273.3 36 36 471.14 - - -
I_6 747 3158.27 620 524 632.56 2.08 1.13 -10.11
I_7 759 494.83 96 96 104.28 - - -
I_8 869 2908.4 566 264 549.39 - - -
I_9 951 354.72 67 67 84.11 - - -

I_10 972 903.33 179 177 1332.55 - - -
Average - 1368.08 265.50 153 368.587 1.42 1.19 -11.02

without precuts (1.42% with precuts), while the percentage trim-loss is re-
duced by a factor between 1.5 and 4. The number of used stocks is also re-
duced by 7.62% (1.19 %) on the mean. When precut is disabled, an average
reduction of 3.61% in the number of distinct patterns is achieved, although a
meaningful mean increase of 11.02% arises when precut is allowed. However,
such worsening is mainly due to the greater material usage efficiency attained
by the SVC best solution: in most of the cases, SVC computes non-dominated
solutions requiring comparable used material and less number of patterns.
The CPU time required to solve real instances is about 6 minutes on the mean,
with just few instances that exceed 10 minutes.

The heuristic was also tested on 52 benchmark instances with n ∈ [10, 250].
With the precut option disabled (enabled) the algorithm reduces trim-loss in
17.3% (15.4%) of the cases. By using the continuous lower bound of the total
requested area, the optimality of the best solution with respect to the material
usage has been certified in the 80.8% (82.7%) of the cases. Independently of the
precut policy, in 17.3% of the cases a solution with one pattern less is found,
and only 1.9% of the instances require an additional pattern.

3.5 Conclusion and future development

Mathematical programming is a powerful tool that can be used to model many
relevant industrial problems. However, those mathematical formulations are
often challenging and, in some cases, real process constraints are hard to be
modeled. This is also true for many CSP variants that try to simplify resolu-
tion by encoding just a restricted number of real-world constraints. Software
applications based on those CSP formulations may then happen to be inap-
propriate, and companies are continuously looking for tools able to deal with
the whole process features and specification.

This chapter addressed such an issue and presented an SVC heuristic to
solve a rich M2D-CSP that fulfills the specification of a family of wood cutting

41



Chapter 3 An SVC for a rich and real two-dimensional woodboard cutting problem

machines produced by SCM Group. The objectives of used stock area min-
imization and of additional criteria, as well as the fulfillment of open stack
constraints, were considered. Computational tests demonstrated the improve-
ment achieved on the previous software solution, in terms of both solution
quality and CPU time requirements.

Further research is needed to include additional optimization criteria, e.g.,
the minimization of cutting times and the management of left-overs, and to
provide an exact formulation of the pricing problem when the whole set of
specification is considered. Also, cutting processes are strongly affected by
operations scheduling: the formulation of a bi-objective rich M2D-CSP that
simultaneously minimizes a scheduling function (such as the maximum late-
ness or the weighted sum of tardiness) should then deserve investigation.
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Chapter 4

An SVC heuristic for

two-dimensional bin packing with

lateness minimization

1

In several manufacturing environments the raw material does not repre-
sent the main cost element to be taken into account, since other factors have
relevant impact on the total cost of operations. A non-negligible aspect that
deserves attention is the management of delay in productive activities, which
is strictly related to the crucial requirement of fulfilling the order due-dates.

In order to model a manufacturing system in which both the schedule
and the efficiency of operations are optimized, in this chapter we study a
bi-objective two-dimensional BPP in which we concurrently seek the mini-
mization of the maximum lateness and the number of employed bins. We
present bounds and derive approximation results under the bi-objective per-
spective from approximation algorithms for the single-objective BPP. Then, an
SVC heuristic is proposed to solve the problem and compared to benchmark
algorithms from literature.

4.1 Introduction

The r-dimensional Bin Packing Problem (rBP) is a well-known combina-
torial optimization problem [81] that calls for packing a given set I of n r-
dimensional items into a minimum number of identical r-dimensional bins.
An instance of the two-dimensional basic version (2BP) consists of rectangular
items described by positive integer widths w1, . . . , wn and heights h1, . . . , hn

and a (sufficient number of ) rectangular bins of size W × H, with W ≥ wi and

1The contents of this chapter develop the ones reported in: F. Marinelli, A. Piz-
zuti: A Sequential Value Correction heuristic for a bi-objective two-dimensional bin-
packing. Electronic Notes in Discrete Mathematics - Volume 64 (2018) pages 25-34.
https://doi.org/10.1016/j.endm.2018.01.004
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H ≥ hi, i = 1, . . . , n. In general, a packing is feasible if items are completely
contained in the bins and do not overlap each other, but a number of further
placement rules and restrictions have been investigated in the last years (see
e.g. [135] for a comprehensive survey). In this work we deal with the orthogo-

nal 2BP, where item edges must be parallel to bin edges. Both the oriented and
the non-oriented versions are considered: in the latter case, 90◦ item rotation
is allowed. Following a common notation, we will denote these problems as
2OBP, 2RBP, where O, R stand for oriented and rotation, respectively.

A 2BP solution that is optimal with respect to the efficiency of bin allocation,
may not be so attractive when its quality depends also on the way items are
allocated over time: if bins are packed in sequence and the allocation of each
item i ∈ I is seen as a task due by a date di, one can also be interested in the
optimization of due-date related objective functions (e.g., weighted tardiness,
number of tardy jobs, maximum lateness). Indeed, scheduling issues in pack-
ing problems are receiving increasing attention. For instance: [12] investigates
the minimization of a convex combination of number of bins and maximum
lateness; [8] and [113] propose Integer Linear Programming formulations to
minimize the number of bins and the weighted tardiness in one-dimensional
cutting stock. Other papers that deal with this topic are [22, 68, 110, 111, 140].

The mainstream applications of 2BP and of its cutting counterpart are truck
loading and warehousing in logistics, and cutting optimization in manufac-
turing. In these areas, the interest for scheduling issues needs not be recalled.
More applications of 2OBP can be found in telecommunications: in [82] the
authors model the downlink subframe allocation problem in Mobile WiMAX
technology as a 2OBP where items are group of data packets and bins rep-
resent time/frequency slots. A related packing-scheduling problem is ad-
dressed in [52], referred to QoS in a UMTS system with data packets obeying
to deadlines or minimizing delays.

In this chapter we consider a bi-criteria 2BP with due dates: we will refer to
this problem as 2BP-DD in general, and as 2OBP-DD, 2RBP-DD when orienta-
tion is significant. The chapter develops earlier ideas formulated in [87]: prob-
lems are described in §4.2 with a discussion of some meaningful properties; a
Sequential Value Correction heuristic (SVC-DD) for the problems addressed is
proposed in §4.4; an improved dual bound for the scheduling objective func-
tion is provided in §4.5; finally, in §4.6, non-dominated solutions computed
by the SVC-DD heuristic are analyzed and compared to those obtained by the
algorithms proposed in [22] and [110].

4.2 Problem and basic properties

In 2BP-DD, we assume as in [22] that
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Assumption 1. Filling each bin according to the relevant packing pattern requires a

known constant time τ ∈ Z
+ that does not depend on the pattern.

Assumption 2. The completion time Ci of any item i contained in the k-th bin of the

sequence equals kτ.

Rephrasing Assumption 2, all the items of a bin are simultaneously released
as soon as the bin has been packed.

Our objective calls for the minimization of both the number N of bins used
and the maximum lateness Lmax. By Assumption 2, the number of bins used
is proportional to 1

τ and to the largest completion time Cmax = maxi∈I{Ci}
of the items in I. The lateness Lmax is defined in the literature as the largest
violation of a due date, and can be a negative number. For our purposes,
however, we regard negative Lmax as equivalent to Lmax = 0, and so define
Lmax = maxi∈I{Li , 0}, where Li = Ci − di is the lateness of item i, and di is its
due-date.

A feasible packing of value (N, Lmax) = (z, ℓ) is said to be (strictly) non-

dominated if for any feasible packing of value (z̄, ℓ̄) one has either z < z̄ or ℓ < ℓ̄

(or both). Moreover, a pair (z, ℓ) is said to be weakly non-dominated if there is
no feasible pair (z̄, ℓ̄) such that z̄ < n and ℓ̄ < ℓ. For example, take π1 =

(20, 5), π2 = (18, 6), π3 = (18, 5), π4 = (21, 6): in this set π1, π2, π3 are all
weakly non-dominated, π3 is strictly non-dominated and weakly dominates
π1, π2 and finally π4 is strictly dominated by π1, π3 and weakly dominated
by π2. The general problem (viz., regardless of item orientation) can then be
formalized in this way:

Problem 4.2.1. Given a set I of n items of size wi ≤ W, hi ≤ H, each due by a

specific date di, i ∈ I, find all the item allocations to bins whose values (N, Lmax) are

strictly non-dominated.

Let us now focus on some properties of non-dominated solutions of Prob-
lem 4.2.1: specifically, on the dependence of Lmax on the filling time τ (§4.2.1),
and on upper bounds that can be obtained exploiting the relation between N

and Lmax (§4.2.2).

4.2.1 Dependence on τ

Non-dominated solutions of 2BP-DD depend on τ in a non-trivial way. Sup-
pose to draw the Pareto region for given due-dates di and variable τ. As a
general observation, the smaller the τ, the smaller the minimum Lmax, while
the minimum N does not depend on τ and is therefore unchanged. But, con-
trary to intuition, the relative positions of Pareto-optima are not necessarily
preserved as τ decreases. In fact, let I be a 2BP-DD instance with bin process-
ing time τ > 1 and due dates di , i ∈ I. Let then x1 and x2 be two solutions of
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Figure 4.1: How the Pareto region changes with τ, ceteris paribus.

I with N = z bins and minimum Lmax of

ℓ
1 = kτ − dp < hτ − dq = ℓ

2

for some k, h, p and q: that is, p and q are the critical items determining the
minimum Lmax in the respective solutions, p (q) is processed in the k-th (in the
h-th) bin, and x1 weakly dominates x2. Suppose that p and q still determine
the minimum Lmax in x1 and x2 when bin processing time is altered to τ′ = ατ.
It is easily seen that x2 now weakly dominates x1 for α such that

(α− 1)τ(h− k) < ℓ
1 − ℓ

2. (4.1)

More explicitly (see Figure 4.1), take an instance with n = 5 items of size
(w1, h1) = (9, 6), (w2, h2) = (5, 2), (w3, h3) = (8, 8), (w4, h4) = (7, 3),
(w5, h5) = (6, 6) and due-dates d1 = d2 = 1, d3 = 2, d4 = 3 and d5 = 4.
Suppose τ = 3 and W = H = 10. Consider two solutions x1 and x2, both
fitting in N = 3 bins and sequenced in this way: x1 has items 1 and 4 packed
in the first bin, items 2 and 3 in the second, and item 5 in the third; in x2,
instead, the first bin is filled with items 1 and 2, item 3 is packed in the sec-
ond, and the remaining items in the third. Then, x1 weakly dominates x2 since
ℓ1 = 2τ − d2 = 5 and ℓ2 = 3τ − d4 = 6. However x2 weakly dominates x1 for
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4.2 Problem and basic properties

0 < α ≤ 2
3 : e.g., for α = 1

3 , the minimum Lmax become ℓ1 = 1 and ℓ2 = 0.
Due-date scaling by τ is however an easier matter. In fact, an instance I

with τ > 1 is clearly equivalent to I′ with τ′ = 1 and fractional due-dates
di/τ. When due-dates are restricted to be integers, the above transformation
is of course not allowed but, as we will immediately show, the dependence
on τ can be controlled and turns out to be not excessive. Construct in fact a
scaled instance I′ with due dates

d′i = di − (di mod τ)

rounded down to the closest multiple of τ. Take two non-dominated solutions
x of I and x′ of I′ with z bins and minimum Lmax of values ℓ, ℓ′, respectively.
Then

Proposition 1. ℓ′ < ℓ+ τ.

Proof. Let Ci , Li and C′i , L′i be the completion time and the lateness of item i in
solutions x, x′. Therefore

Ci − d′i = Li + (di mod τ)

is the lateness of item i ∈ I in solution x re-computed according to the scaled
due dates. Because x′ is Lmax-optimal in the scaled problem,

ℓ
′ = max

i
{C′i − d′i} ≤ max

i
{Ci − d′i} ≤ max

i
{Li + (di mod τ)} ≤

≤ ℓ+ max
i
{(di mod τ)} < ℓ+ τ.

Proposition 1 can easily be extended to 1 < τ′ < τ, obtaining in general
ℓ′ < ℓ+ τ

τ′ . It basically states that the increase of Lmax is strictly limited to the
time required to pack a single bin. Moreover, it is easy to see that the frontier
of the strictly non-dominated solutions of I can be obtained by the set of all
the weakly non-dominated solutions of I′.

4.2.2 Upper bounds to N

Clearly, minimizing N does not correspond to minimizing Lmax: Example 2.3
in [12] shows that a solution with a minimum number N∗ of bins and Lmax =

N∗ − 1 can be converted into one with N∗ + 1 bins and Lmax = 0. However,
a strong correlation between the two objectives exists due to Assumption 2.
Indeed, given a solution of value (z, ℓ), let

Iℓ = {i ∈ I : Li < ℓ}
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denote the set of items delayed less than ℓ. For any i ∈ Iℓ, define

∆i(ℓ) =

⌊

ℓ− Li

τ

⌋

that is, τ∆i(ℓ) is the largest delay of item i that does not affect the lateness
bound ℓ: in symbols, Li + τ ·∆i(ℓ) ≤ ℓ ∀i ∈ Iℓ. Let Ci, an integer multiple of τ,
denote the completion time of i ∈ I in a solution of value (z, ℓ). The two-stage
approach of [110] embeds the same idea behind Proposition 2.

Proposition 2. For any solution of 2BP-DD with lateness Lmax = ℓ,

N ≤ max
i∈Iℓ
{Ci/τ + ∆i(ℓ)}.

Proof. By the above definition, in any solution with lateness ℓ, item i is delayed
at most τ∆i(ℓ). So its completion time cannot be more than Ci + τ∆i(ℓ), and
therefore the number N of bins of any such solution is at most max

i∈Iℓ
{Ci/τ +

∆i(ℓ)}.
Solutions of the single-objective 2BP can be exploited to obtain bounds to

non-dominated solutions of 2BP-DD. Let items be sorted by early due date
first (EDD), that is, d1 ≤ . . . ≤ dn, and let (zEDD , ℓ̄) be the value of a 2BP-DD
solution computed by a Next Fit algorithm regardless of lateness optimization.
Then:

Proposition 3. Any non-dominated solution has N ≤ zEDD bins.

Proof. Let J = {i ∈ I : Ci
τ + ∆i(ℓ̄) ≥ zEDD + 1}. Due to the Next Fit rule, if

the item in J with the smallest due-date is packed in the k-th bin, then bins
from k + 1 to zEDD contain only items of J. The statement is trivial for J = ∅.
Suppose J 6= ∅. If there exists a permutation of the items in the first k bins
with Lmax < ℓ̄, then an additional bin is useless. Otherwise, let h ∈ I be an
item defining ℓ̄ (namely, Lh = ℓ̄). A better solution can only be achieved by
exchanging h with another item i packed in one of the previous bins of the
current solution. However, di ≤ dh holds for all these items and the exchange
would imply Lmax ≥ ℓ̄.

In other words, Proposition 3 says that N and Lmax trade off only for N up
to a given threshold, beyond which Lmax increases with N.

4.3 Approximating non-dominated solutions

In multicriteria optimization, several methods were defined to exactly iden-
tify the set of non-dominated solutions. Generally speaking, such methods
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can be distinguished in scalarization-based (e.g., weighted combination, ǫ-
constraint, Tchebycheff metric) and non-scalarizing (e.g., lexicographic, max-
ordering ), see [122]. Whatever method is adopted, providing a complete de-
scription of the Pareto set is computationally challenging, and an approxi-
mated description of the Pareto set via (meta)heuristics is often an acceptable
compromise [55]. Nevertheless, any approximation raises the question of how
to evaluate the quality of the frontier found, and which approximation mea-
sures are the most adequate. In the literature, several measures were proposed
[141], but just few of them consider the worst case analysis.

To the best of our knowledge, there are two main approaches to measure
the worst case approximation of algorithms for p-criteria problems: one [54],
discussed in §4.3.1, is suitable for heuristics that produce a single solution to
be compared to the whole Pareto frontier, the other [103] is used for algo-
rithms that produce a set of solutions that do not dominate each other. In
particular, according to [103], an algorithm H is ǫ-approximated if, for every
non-dominated solution x∗, there exists a solution xH such that

f j(xH) ≤ (1 + ǫ) f j(x∗)

holds for each criterion j. However, this kind of approximation cannot be
adopted in our case (and in general when the optimal value of one of the
criteria can be zero) because the ratio Lmax(xH)/Lmax(x∗) is not well-defined.

If instead we consider the absolute error EA(H) = Lmax(xH) − Lmax(x∗),
we observe as expected that most ǫ-approximate algorithmsH2BP for 2BP can
perform arbitrarily bad, i.e., the bound EA(H2BP) ≤ τ(1 + ǫ)N(x∗) − τ is
tight. One exception is the Next Fit algorithm, where items are sorted by EDD,
which is 3-approximate for 2BP. Indeed:

Proposition 4. With the Next Fit heuristic, the absolute error of Lmax is bounded by

3τN(x∗)− τ

Proof. see [112], Corollary 3.

4.3.1 Single solution approximation

The framework proposed by [54] relies on two norm-based definitions of ap-
proximation ratio. Given an algorithm H that provides a solution xH, its per-
formance is measured as

R1(xH , x∗) =
|‖ f (xH)‖ − ‖ f (x∗)‖|

‖ f (x∗)‖ or R2(xH , x∗) =
‖ f (xH)− f (x∗)‖
‖ f (x∗)‖
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where x∗ is a non-dominated solution, f (x) ∈ Rp denotes the objective func-
tion vector and ‖·‖ is a monotone norm. Note that R1 compares the norms of
the vectors, whereas R2 evaluates the difference of vector components.

We then say that an algorithm H is Ri-approximated with µ ∈ R
+ if xH

fulfils
Ri(xH , x∗) ≤ µ (4.2)

for all non-dominated solutions x∗. As (4.2) gives a tighter definition of ap-
proximation for i = 1 than for i = 2, an algorithm H that is R1-approximated
with some µ ∈ R

+ is also R2-approximated with the same µ. Note that
this definition covers two types of approximation, one of which derives from
taking a single (heuristic, but even non-dominated) solution to represent the
whole Pareto-frontier.

Of course, the approximation ratio depends in general on the norm used. In
the following we will refer to the general norm ‖.‖q. Observe that for q = 1,
R1-approximation reads in our case

N(xH) + Lmax(xH)− N(x∗)− Lmax(x∗)
N(x∗) + Lmax(x∗)

≤ µ

that corresponds to the µ-approximation in the ordinary sense of the single
objective problem where one wants to minimize N + Lmax. As noticed in [12]
(Proposition 2.1), this problem can be approximated by heuristics for the tradi-
tional 2BP problem. In fact, 2BP can be 1-approximated both in the oriented [71]
and the non-oriented [66] case. The algorithm of [66] finds a feasible solution
within 2N∗ bins in polynomial time by performing a separation between large
and small items based on their area; it exploits as subroutines the Steinberg’s
algorithm [120] and the Next Fit Decreasing Height (NFDH) [37] procedure
designed for strip packing, whereas the algorithm of [13] is used to guaran-
tee the approximation ratio in the asymptotic case. The same absolute factor
for the oriented case is attained by the algorithm of [71], which strongly relies
on the PTAS for 2D knapsack problem presented in [14] and the techniques
for rectangle packing described in [72]. The area and the sizes of the items
are concurrently combined to identify a more extensive separation, while the
Steinberg’s and NFDH algorithms are exploited again and the asymptotic ap-
proximation ratio is ensured through the algorithm of [70] for large optimal
values.

Therefore, z2BP−N∗
N∗ ≤ 1, where N∗ is the minimum feasible number of bins

and z2BP is the number of bins used by the approximating algorithm H2BP.
For τ = 1 this guarantees an R1-approximation of Problem 4.2.1 with µ = 3
under the ‖.‖1 norm, see [12].

The definition of 1-approximation trivially implies z2BP−(N∗+k)
N∗+k ≤ 1 for any
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4.3 Approximating non-dominated solutions

k ∈ N. Now note that one can explore all the possible z-values of the Pareto-
optimal set by varying k, with at most one non-dominated solution for any
given k.

So let H2BP be a 1-approximate algorithm for 2BP returning a solution of
value (z2BP, ℓ2BP), and let (z̄ = N∗ + k, ℓ̄) be the value of a non-dominated
solution of 2BP-DD, where N∗ denotes the minimum number of bins of 2BP
and k ∈ N. For the following two results it is useful to recall that, for τ ≥ 1,
the maximum lateness of any solution can never exceed its total completion
time, i.e., for any 2BP-DD solution of value (z, ℓ) one has ℓ ≤ τz; moreover,
H2BP is 1-approximating, hence z2BP ≤ 2N∗, and therefore z2BP ≤ 2(N∗ + k)

clearly holds for k ≥ 0 and any solution ofH2BP.

Proposition 5. H2BP is R1-approximated for 2BP-DD under ‖.‖q with

µ = 2 q
√

1 + τq − 1

for any τ ≥ 1.

Proof. Writing (4.2) for 2BP-DD and i = 1, we obtain:

(1− µ) q

√

(N∗ + k)q + ℓ̄q ≤ q

√

z
q
2BP + ℓ

q
2BP ≤ (1 + µ) q

√

(N∗ + k)q + ℓ̄q.

The left inequality holds for any µ ≥ 1. As previously recalled, ℓ ≤ τz for any
2BP-DD solution: hence ℓq

2BP ≤ τz
q
2BP. Bounding z2BP via the 1-approximation

ratio ofH2BP implies, as observed, z2BP ≤ 2(N∗+ k): the right inequality then
reduces to

q

√

(1 + τq)z
q
2BP ≤ q

√

2q(1 + τq)(N∗ + k)q ≤ (1 + µ) q

√

(N∗ + k)q + ℓ̄q.

Without loss of generality, we set ℓ̄ = 0 to tighten the right-hand side. Indeed,
any valid approximation result still holds for any ℓ̄ ≥ 0. Then, the inequality
becomes

q

√

2q(1 + τq)(N∗ + k)q ≤ (1 + µ) q

√

(N∗ + k)q

and the result is easily derived.

Proposition 6. H2BP is R2-approximated for 2BP-DD under ‖.‖q with

µ = q
√

1 + 2qτq

for any τ ≥ 1.
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Proof. Adapting (4.2) with i = 2 to our case we obtain

q

√

|z2BP − N∗ − k|q + |ℓ2BP − ℓ̄|q ≤ µ q

√

(N∗ + k)q + ℓ̄q. (4.3)

Using the 1-approximation ratio ofH2BP, we have

−(N∗ + k) ≤ z2BP − (N∗ + k) ≤ (N∗ + k)

which implies
|z2BP − (N∗ + k)|q ≤ (N∗ + k)q.

Plugging this inequality into (4.3) we get

q

√

(N∗ + k)q + |ℓ2BP − ℓ̄|q ≤ µ q

√

(N∗ + k)q + ℓ̄q.

Now two possibilities arise:

1. if ℓ2BP < ℓ̄, then clearly (ℓ̄ − ℓ2BP)
q ≤ ℓ̄q and the inequality holds for

any µ ≥ 1.

2. if ℓ2BP ≥ ℓ̄, then we use ℓ̄ = 0 to tighten the inequality; then raising a
power of both sides we obtain:

ℓ
q
2BP ≤ (µq − 1)(N∗ + k)q.

Bounding ℓ
q
2BP as in Proposition 5, we further get

|τz2BP|q ≤ 2τ(N∗ + k)q ≤ (µ
q
2 − 1)(N∗ + k)q

from which the result is straightforward.

4.4 A sequential value correction heuristic

In an optimization model with exponentially many variables, solving a pric-
ing problem is fundamental for generating potentially advantageous columns.
In the 0-1 LP formulation we refer to for the 2BP problem, columns correspond
to optional bin fillings, and the advantage of choosing a particular filling is
measured by summing the shadow prices of the items that fill the bin. Such
prices are the components of an optimal dual solution that correspond to the
items at any iteration of the column generation procedure.
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4.4 A sequential value correction heuristic

In 2BP, solving the pricing problem amounts to solve a two-dimensional
knapsack problem, by far more complex than the one-dimensional knapsack
used for pricing in 1BP. To save CPU time, one can avoid the LP that is neces-
sary to resolve in order to get the exact shadow prices, and resort to a heuris-
tic evaluation of their values, called pseudo-pricing, that we will soon describe.
The idea behind a sequential value correction (SVC) algorithm for BP is then
quite simple: given a pseudo-price pi for each item i ∈ I, bins are packed se-
quentially, each one with the items | not yet allocated | that maximize the
sum of pseudo-prices. After a solution has been computed, pseudo-prices are
conveniently updated and the process iterated until some halting criterion is
fulfilled. In our implementation (here named SVC-DD and described in Algo-
rithm 2), the algorithm ends either when a convenient number P of solutions
has been computed or when both the number of bins and the maximum late-
ness of the current solution Sk close the gap with the relevant lower bounds
nLB and ℓLB (function check_optimality()).

Our implementation (here named SVC-DD and described in Algorithm 2)
differs from those proposed in [20, 42], mainly in how bins are filled and
pseudo-prices updated. Moreover, in our case the output is a set of recip-
rocally non-dominated solutions in terms of the number N of bins filled and
the maximum lateness Lmax.

Besides the efficiency and quality of solutions computed by SVC-DD (see
§4.6) it is worth noting that SVC-DD does not use any parameter except the two
(P and Pinner) for controlling the total number of solutions generated. There-
fore, differently from the algorithms for 2RBP-DD proposed in [22] and [110],
it needs neither a demanding preliminary parameter tuning nor a sensitive
analysis.

Let D be the generalized item set that for 2OBP-DD coincides with I, while
for 2RBP-DD also includes the 90◦ rotated items hi ×wi for every i ∈ I. More-
over, let zLB and ℓLB be lower bounds to N and Lmax, respectively.

4.4.1 Pseudo-price update

Due to the bi-criteria objective, pseudo-prices reflect both the packing and
scheduling quality of the solutions generated. Assume items sorted by non-
decreasing due-dates, i.e., d1 ≤ . . . ≤ dn. Initially, the function init_prices()

sets the pseudo-prices to

pi :=
WH

di + 1
+ wihi i ∈ D (4.4)

where the first term promotes urgent items, while the second increases the
price of large items.
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Algorithm 2 SVC-DD

Input: D, W, H, zLB, ℓLB

Output: solutions S1, . . . , SP

p← init_prices(D, W, H)

for k← 1, . . . , P do

Sk ← ∅

D̄ ← D
repeat

B ← ∅

[S, l(rmin), q(rmin)]← init_skyline()

repeat

D̃ ← select_items(D̄, l(rmin), q(rmin))

K∗ ← KP_Conflict(D̃, l(rmin), q(rmin))

B ← add_items(K∗)
[S, l(rmin), q(rmin)]← update_skyline(K∗)
D̄ ← remove_items(K∗)

until (l(rmin), q(rmin)) 6= (W, H)

Sk ← Sk ∪ {B}
until (D̄ 6= ∅)

if check_optimality(Sk , nLB, ℓLB) then return

if (i− 1) ≡ 0( mod Pinner) then δ← random(0, 1]

p← update_prices(Sk , p, zLB, ℓLB, δ)

After the current solution Sk has been computed, pseudo-prices are updated
in function update_prices(). First, the value of pi, i ∈ D, is increased by a factor
accounting for the unused space of the current solution Sk:

pi := pi

(

1 + δ · zLB

m

)

ω(i)−ω̄
mWH (4.5)

where ω(i) gives the value of the waste within the bin B ∈ Sk in which item
i is packed, and ω̄ = WHzLB−∑i∈D wihi

zLB
is a lower bound to the relative waste.

Since the residual of a bin generally increases with the bin relative position in
the sequence, the formula promotes late packed items with bad patterns, thus
ensuring a suitable mix of the search space. The exponent and the constant
term in the base are small fractional numbers that prevent pseudo-prices from
diverging quickly.
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4.4 A sequential value correction heuristic

Also, the pseudo-price of the tardiest item h (and possibly of its rotated coun-
terpart) is further increased by a factor proportional to the current maximum
lateness:

ph := ph

{

1 +
[

1 + δ ·
(

ℓLB

τ · zLB

)]

·
[

(Ch − ℓLB)/τ

dh + 1

] }

. (4.6)

where as usual Ch is the completion time of h in the current solution Sk. Coeffi-
cient δ is randomly selected in (0, 1] to perturb pseudo-price dynamics, and is

renewed each Pinner main iterations. The fractional factor
(

1 + δ · ℓLB
τ·nLB

)

> 1
is generally very close to 1, whereas the second component of the product
linearly grows with the current lateness of item h. Again, numbers are so de-
signed as to induce relatively small increments of the current pseudo-price.

Update (4.5) is omitted if the number z of bins in the current solution reaches
the corresponding lower bound, thus being certified optimal.

4.4.2 Bin filling

The bin filling procedure here described inserts items ofD into the current bin
B in a bottom-up fashion by iterated solution of one-dimensional knapsack
problems. At the end of each step, the upper borders of the items inserted
describe a curve that we call skyline.

Focusing on a generic step of the procedure, let D̄ ⊆ D be the set of items
not yet allocated, and let S = 〈r1, . . . , r|S|〉 (the skyline) be an ordered list of
segments associated with the bin B being filled, see Figure 4.2-4.3. Each seg-
ment rj of S (a roof of the skyline) is described by a quota q(rj) and a length
l(rj); moreover, each endpoint of rj is delimited by a wall, that is a vertical
segment joining the endpoint to the adjacent roof, or the vertical edge of the
bin, if adjacent. The skyline defines a border within B above which unpacked
items can be placed (see Figure 4.2-4.3; we assume w.l.o.g. that adjacent roofs
have distinct quotas: consecutive roofs at the same quota are merged into a
single one).

At the beginning, i.e., when B is empty, the function init_skyline() sets the
skyline to a single “ground" roof r1 with q(r1) = 0 and l(r1) = W; the bin fill-
ing process iteratively places unpacked items on the lowest roof of the skyline.
Specifically, let rmin be the roof at minimum quota in the current skyline

1. If no item can be placed on top of rmin | viz., hi > H − q(rmin) for each
i ∈ D̄ | the procedure ends.

2. Otherwise (Figure 4.2) function KP_Conflict() defines and solves a 0-
1 one-dimensional knapsack problem (KP), with knapsack capacity
l(rmin) and items in D̃ = {i ∈ D̄|wi ≤ l(rmin) and hi ≤ H − q(rmin)}:
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Figure 4.2: A skyline, with indication of a roof at minimum quota and of the
relevant knapsack; the items in a knapsack solution are ranked by
non increasing heights, starting from the highest wall of rmin | in
this case, the left one.

the items of an optimal solution K∗ ⊆ D̃ of KP are placed on top of rmin,
sorted by non-increasing heights and placed in this order starting from
the highest among the delimiting walls.

3. Then (Figure 4.3) function update_skyline() updates the skyline by
adding a new roof for each item of K∗ and possibly enlarging one roof
adjacent to rmin of an amount corresponding to the unused knapsack
capacity. The skyline update involves a new rmin, and the procedure is
iterated going back to step (1).

Items in K∗ (and possibly their rotated counterparts) are removed from D̄
and the process iterated.

For 2OBP-DD, KP is a standard 0-1 knapsack problem. For 2RBP-DD, how-
ever, it becomes a knapsack problem with compatibility constraints: in fact, at
most one item of D out of wi × hi, hi × wi can be allocated to the knapsack.
In our implementation, we use a standard knapsack solver and handle con-
flicting items heuristically: while the solution K∗ contains conflicting items,
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Figure 4.3: The skyline updated by adding the new roofs, renumbering, and
enlarging r6 to its left with the unused space (dashed area). After
update, it turns out in this example rmin = r6.

we remove from D̃ the one with smallest pseudo-price per surface unit, i.e., a
conflicting item i with minimum pi/(wihi); then we solve KP again. Although
potentially demanding in terms of CPU time, such a simple strategy performs
very well since conflicts seldom occur (roughly, in 4% of the problems solved).

4.5 Dual bounds

The strong correlation determined by Assumption 2 between the minimum
number N of bins and the minimum Lmax still holds for dual bounds, and
lower bounds to N can be exploited to build lower bounds to Lmax (see [22]).

A simple lower bound for 2OBP can easily be derived by considering the
two one-dimensional bin packing problems with bins of sizes W and H and
items of sizes w1, . . . , wn and h1, . . . , hn, respectively. Tighter bounds can be
derived by using dual feasible functions (DFF) as described in [7]:

Definition 1. A discrete function f : [0, C] → [0, C′] (with C, C′ ∈ Z) is dual
feasible if
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∑
x∈S

x ≤ C ⇒ ∑
x∈S

f (x) ≤ f (C) = C′

for any finite discrete set S.

Although such bounds are not valid for 2RBP, which is a problem less con-
strained than 2OBP, they can still be exploited provided that the instances
of 2RBP are adequately relaxed, as proposed in [36]: given an instance of
2RBP with item set I and square bins, construct an instance of 2OBP with
the item set D obtained as described in §4.4, i.e., by expanding I with the 90◦

rotated counterpart of each item. Then, for any lower bound No
LB to the 2OBP-

optimum ofD, Nr
LB =

⌈

No
LB
2

⌉

is a lower bound to the 2RBP-optimum of I . The
proposed approach can be employed also when bins of I are rectangular, by
transforming them into squares and introducing an appropriate number of
dummy items to avoid over-relaxation. However, the authors of [36] show
that Nr

LB dominates known lower bounds of 2RBP only in the case of square
bins.

A lower bound to Lmax proposed in [22] is based on the joint considera-
tion that (i) the EDD rank σ = 〈1, . . . , n〉 is optimal for min Lmax 1-machine
scheduling, (ii) the minimum time at which the k-th item in σ is sched-
uled in a combined packing-scheduling problem is at least τ times the min-
imum number of bins necessary to accommodate the first k items in the rank,
Fk = {1, . . . , k}, or anyway no less than a lower bound Nk

LB to this value.
Therefore, a lower bound to Lk is

Lk
LB = τNk

LB − dk

and the bound to Lmax is computed as

LLB = max
k=1,...,n

{Lk
LB}. (4.7)

The tighter the Nk
LB, the more LLB becomes effective, and we note here that

Lk
LB can be further tightened under simple conditions even when Nk

LB is the
optimal number of bins. In fact, LLB is obtained by computing all the terms
appearing in (4.7), as if item k were packed in the Nk

LB-th bin, even when no
feasible solution with Lmax = Lk

LB can place k in that bin.
Consider the following simple example: there are n = 8 items, with sizes

and due dates as in Table 4.1, to be packed into bins of size L×H = 1× 10 and
scheduled in time slots of length τ = 1. Items can be packed using four bins,
thus Nn

LB = 4 and formula (4.7) returns LLB = 0. No EDD rank can be packed
in four bins, though (see Figure 4.4): either the completion time increases by
one time unit as in the leftmost schedule; or, as in the rightmost, compressing
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Table 4.1: Data for an example of lower bound to Lmax.
item length li height hi due date di

1 1 1 1
2 1 2 1
3 1 3 1
4 1 4 1
5 1 6 4
6 1 7 4
7 1 8 4
8 1 9 4

the items in less bins has the effect of ‘dragging’ urgent items towards the
end of the schedule, so making an EDD rank impossible. The shortest EDD
schedule and the tightest packing (which does not admit an EDD schedule)
respectively give Lmax = 1 and Lmax = 3, hence Lmax cannot be less than 1
time unit.

Generalizing the above example, we can improve LLB. Let σ = 〈1, . . . , n〉 be
an EDD rank. Call items h and k compatible if they can share the same bin and,
for h < k, let N̄i

LB be a lower bound to the tightest packing of

• {1, . . . , i} for 1 ≤ i ≤ h (that is N̄i
LB = Ni

LB)

• {1, . . . , i, k} for h < i < k

Finally, let Ni,EDD
LB be a lower bound to the tightest packing of the first i items

of σ, subject to the condition that bins can be ordered respecting the EDD rank
expressed by σ. Then

Proposition 7. Suppose that, for some k ≤ n, Nk,EDD
LB > Nk

LB = Nk−1
LB . Let h be the

closest item that is compatible with k in the EDD rank σ, and

L′ = max

{

τNi
LB − di 1 ≤ i ≤ h

τN̄i
LB − di h < i < k

}

L′′ = max

{

τNi
LB − di 1 ≤ i < k

τ(Ni
LB + 1)− di i = k

}

Then

L̄k
LB = min{L′, L′′} (4.8)

is a lower bound to Lmax.

Proof. If Nk
LB = Nk−1

LB , then the tightest packing of {1, . . . , k} necessarily
places the k-th element with one compatible with k, say h < k. Consider the
sequence

σ̄ = 〈1, . . . , h− 1, h, k, h + 1, . . . , k− 1〉
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Figure 4.4: Lmax obtained with the tightest packing of an EDD rank (left) and
the tightest packing at all.

which is compliant with this packing. As h and k are paired in the same bin,
they can regarded as a single item due by min{dh, dk} = dh, therefore σ̄ is an
EDD rank on k− 1 items. Then, using (4.7) and recalling the definition of N̄i

LB

we obtain:

Lmax ≥ τNi
LB − di 1 ≤ i ≤ h

Lmax ≥ τN̄i
LB − di h < i ≤ k− 1

where, to alter item completion times as least as possible, h is the closest item
in σ that is compatible with k. Note that h and k are completed at the same
time and dh ≤ dk: so we do not need to specify a bound for i = k.

In alternative, we can bound Li using σ, with Ni
LB as an (optimistic) com-

pletion time of {1, . . . , i} for i < k, and Nk,EDD
LB ≥ Nk

LB + 1 for i = k:

Lmax ≥ τNi
LB − di 1 ≤ i < k

Lmax ≥ τ(Ni
LB + 1)− di i = k

Choosing the best of the two cases above, we finally obtain (4.8).
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4.6 Computational results

By Proposition 7 we get an improved lower bound L̄LB which is generally
more effective in presence of large items. At the expense of additional CPU
time, the result can be further reinforced by considering the items with both
sides exceeding half the sides of the bin:

IL = {i ∈ I : min (wi , hi) > max (
W

2
,

H

2
)}

For the 2BP, pairs in IL cannot be packed in the same bin. When computing
Li

LB, for each 1 ≤ i ≤ h the bound on the number of bins Ni
LB can be tightened

by assuming items in IL as packed in different bins, thus reducing the area
available to pack the remaining items in such bins.

As described in [110], a lower bound to Lmax can also be obtained by re-
laxing the geometrical constraints of a MILP formulation for the maximum
lateness minimization into DFFs-based inequalities which ensure that the to-
tal area of items inside each bin is dual feasible. Lower bounds obtained in
this way are generally good, see §4.6, but the approach calls for the solution
of a MILP which is usually time-consuming and poorly scalable.

We close this section by observing that the specific structure of LLB also
allows to infer the cardinality of the Pareto frontier. Let x̄ = (z̄, ℓ̄) be a feasible
solution.

Proposition 8. If z̄ = NLB + h and ℓ̄ ≤ max{LLB, τ(n̄ + k)− dn}, with h ≥ 0
and k ≥ 1, then the set of strictly non-dominated solutions contains at most h + k

points.

Proof. Let x̃ = (z̄ + k, ℓ̃) be a feasible solution. ℓ̃ ≥ τ(NLB + h + k) − dn by
(4.7) therefore x̃ is dominated by x̄, and there are at most h + k non-dominated
solution with less than z̄ + k bins.

4.6 Computational results

The SVC-DD algorithm was coded in C++ and compiled with Microsoftr

C/C++ Optimizing Compiler (version 19.11.25447). Parameters P and Pinner

were set to 103 and 102, respectively. Computational tests were performed on
a Intelr Core(TM) i7-7500U 2.90 GHz with 16Gb RAM.

The experiments were conducted on two sets IR and IB of instances. The
former derives from 28 industrial orders with up to 360 items with sizes
wi ∈ [30, 2928], hi ∈ [24, 1820] and rectangular large bins with sizes W ∈
[2200, 5600], H ∈ [1163, 2100]. For each instance, Table 4.2 reports the number
m of items, the sizes W and H of the bin, the ratio wihi

WH between bin and item
areas (min, max, and mean value) and the ratio wi

hi
between item widths and

heights (min, max, and mean value).
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Table 4.2: details of IR-instances. The complete set of instances is available from the
author.

ID n W, H min
i∈I

wi hi
WH max

i∈I
wi hi
WH avgi∈I

wi hi
WH min

i∈I
wi
hi

max
i∈I

wi
hi

avgi∈I
wi
hi

r1 11 2800, 2070 0.047 0.59 0.30 1.38 3.28 2.83
r2 14 2800, 2070 0.081 0.54 0.30 0.63 4.38 2.27
r3 24 2800, 2070 0.020 0.22 0.08 0.56 5.62 2.29
r4 27 2800, 2070 0.045 0.53 0.27 0.68 4.60 2.39
r5 28 3500, 1750 0.012 0.09 0.04 0.61 3.41 1.51
r6 30 2800, 2070 0.008 0.19 0.04 0.38 5.69 2.27
r7 33 2800, 2070 0.052 0.50 0.24 0.67 11.32 3.13
r8 42 2800, 2070 0.011 0.16 0.06 0.55 5.87 2.70
r9 49 2550, 2070 0.049 0.54 0.28 0.58 6.28 2.47
r10 61 4250, 1860 0.010 0.42 0.08 0.50 7.51 2.49
r11 63 2550, 2100 0.142 0.53 0.35 2.16 8.07 3.50
r12 67 2750, 2100 0.012 0.38 0.13 0.69 21.82 3.28
r13 69 5600, 1163 0.013 0.22 0.07 0.27 4.07 1.41
r14 83 2800, 2070 0.003 0.08 0.02 0.60 9.10 2.81
r15 84 2440, 1830 0.005 0.27 0.06 0.43 17.89 2.33
r16 86 2550, 2070 0.193 0.50 0.36 2.31 5.97 3.46
r17 87 2550, 2070 0.057 0.63 0.32 0.53 12.60 3.12
r18 98 2740, 1840 0.004 0.30 0.04 0.18 29.35 3.75
r19 119 2800, 2070 0.001 0.35 0.10 0.11 21.33 4.55
r20 141 2440, 1220 0.003 0.25 0.08 0.14 16.67 2.56
r21 164 2740, 1840 0.003 0.70 0.08 0.12 34.92 5.39
r22 186 2750, 2090 0.003 0.29 0.05 0.12 31.60 3.85
r23 215 2200, 1220 0.001 0.33 0.05 0.07 58.67 6.04
r24 218 2456, 2070 0.150 0.53 0.35 1.67 6.38 3.44
r25 238 2550, 2100 0.038 0.69 0.23 0.50 7.07 2.39
r26 257 2740, 1840 0.001 0.80 0.06 0.20 36.00 4.27
r27 314 2740, 1840 0.002 0.79 0.08 0.12 36.00 5.84
r28 352 2850, 2100 0.053 0.18 0.06 0.80 15.13 14.93

The latter was kindly provided by the Authors of [22], who added due dates
to five hundred benchmark instances reported in [23] (classes I-VI) and [80]
(classes VII-X). Each class I to X includes fifty instances grouped by ten in five
subsets, each one with n ∈ {20, 40, 60, 80, 100} items and square bins. For each
class, Table 4.3 reports the bin size, the assortment of item sizes and, according
to [22], the number of instances with NLB > 1 (column “# inst.”). The other
entries in row i give an indication of the frequency of item sizes of class i: for
example, 0.7 in the last row and column means that 70% of the items were
generated with w, h uniformly chosen in [1, 1

2 W] and [1, 1
2 H], respectively.

Due-dates for both IR and IB instances were generated by randomly pick
integers in the interval [τ + 1, τβNLB] with β ∈ {0.6, 0.8, 1.0} and the NLB em-
ployed in [22]: hence IR and IB consist of three different due-dates groups A,
B, C, amounting on the whole to eighty-four IR-instances and one thousand
five hundred IB-instances.

Although SVC-DD was specifically designed for 2RBP-DD, it performs well
also as a bin packing heuristic. Indeed, when SVC-DD is used to solve 2BP
(that requires skipping (4.6) and omitting the due-date related term in (4.4)),
competitive results are achieved in comparison to the bin packing benchmark

62
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Table 4.3: instances in IB: bin size and assortment of item sizes for each class
distribution of item sizes

Class # inst. W, H
w U(1, 10) U(1, 35) U(1, 100) U( 2

3 W, W) U(1, 1
2 W) U( 1

2 W, W) U(1, 1
2 W)

h U(1, 10) U(1, 35) U(1, 100) U(1, 1
s H) U( 2

3 H, H) U( 1
2 H, H) U(1, 1

2 H)
I 50 10 1
II 39 30 1
III 50 40 1
IV 39 100 1
V 35 100 1
VI 50 300 1
VII 50 100 0.7 0.1 0.1 0.1
VIII 50 100 0.1 0.7 0.1 0.1
IX 50 100 0.1 0.1 0.7 0.1
X 50 100 0.1 0.1 0.1 0.7

heuristics reported in [42] (see Table 4.4): solutions are in fact obtained in sim-
ilar running time (0.94 seconds on average), and the number of bins is on aver-
age 0.28% worse than that obtained with algorithm SVC2BPRF of [42]. In two
cases (classes II, IV) the improvement on SVC2BPRF is strictly positive, and in
two cases (class IV and IX) SVC-DD matches all the benchmark heuristics.

Table 4.4: SVC-DD, SVC2BPRF and best H solutions of 2BP on IB: n mean values
Class SVC-DD SVC2BPRF best H

I 19.46 19.44 19.44
II 2.50 2.54 2.48
III 13.56 13.54 13.54
IV 2.42 2.5 2.42
V 17.32 17.24 17.24
VI 2.26 2.24 2.18
VII 15.34 15.14 15.14
VIII 15.38 15.22 15.22
IX 42.38 42.38 42.38
X 9.88 9.86 9.86

Average 14.05 14.01 13.99

4.6.1 Comparison to other approaches

SVC-DD vs. MXGA

In the first part of our experiments, we compare SVC-DD on data-set IB to:

• the multicrossover genetic heuristic (MXGA) proposed in [22];

• the hybrid constraint and integer linear programming approach
(CPMIP) described in [110].

Both algorithms above are specifically designed for 2RBP-DD. For a fair com-
parison of results, we use the same value of τ (= 100) and solution analysis as
in [22, 110], adopting the performance indicators (primal-dual gaps)

63



Chapter 4 An SVC heuristic for two-dimensional bin packing with lateness minimization

GN = 100
(z− NLB)

NLB
GL = 100

(ℓ− LLB)

LLB
.

that refers to a solution (z, ℓ) with z bins and maximum lateness equal to ℓ. In
particular, for each instance we take a solution (πz) achieving the minimum N

and one (πℓ, possibly different from πz) with minimum Lmax, and then mea-
sure their quality by GN and GL. For the sake of fairness, we run SVC-DD

by using the same NLB [47] and LLB (4.7) of the benchmark algorithms. We
indicate with SVC-DD∗ the case in which the algorithm uses the dual bound
for 2RBP [36] and the improvement (4.8) of Proposition 7. Note that formulas
(4.5) and (4.6) are dependent by the employed dual bounds, thus primal solu-
tions computed by SVC-DD∗ can be different w.r.t. the ones found by SVC-DD

when using [47] and (4.7).
Table 4.5 shows the aggregated results of MXGA and SVC-DD. Each row (i.e.,

for each class of instances and due-date groups A, B, C), reports the gaps GN

and GL of πz and πℓ averaged on the class populations indicated in Table 4.3.
Numerical results show that SVC-DD largely improves the mean gaps in

the large majority of instances. Accordingly, the gap percentage improvement
(GMXGA• − GSVC-DD• )/GMXGA• is across all the groups of instances on average
26.1% in GN and 31.6% in GL for πn, 25.4% in GN and 37.1% in GL for πℓ.
Moreover, SVC-DD finds solutions with a minimum number of bins in all the
instances of classes II. When considering SVC-DD∗, our solutions further im-
prove on the mean GN between 26.23% (πℓ - group C) and 36.59% (πn - group
A), GL within 26.82% (πn - group B) and 36.55% (πℓ - group C). Additionally,
SVC-DD∗ finds the ideal point (a solution that achieves both absolute minima
N and Lmax) in all the instances of class IX.

About CPU time, though requiring the repeated solution of 0-1 knapsack
problems, SVC-DD has a mean running time of 1.46 sec. This value is two
order of magnitude less than the CPU times reported in [22], a speedup that
cannot be just ascribed to hardware configuration.

SVC-DD vs. CPMIP

SVC-DD can be just partially compared to CPMIP, since [110] focuses on Lmax

minimization and therefore gives gaps GL but no detail on packing quality.
Thus, we focus the comparison on GL for solutions πℓ.

According to Table 4.6, primal solutions πℓ provided by SVC-DD are signifi-
cantly better in all the instances, except class IX, with reduced GL values w.r.t.
CPMIP. On the mean, the gap percentage improvement is 34.2% on group A,
18.7% on group B and 16.4% on group C.

The Authors of [110] propose two different lower bounds to Lmax, the tight-
est of which computed via a Mixed Integer Linear Program (MILP). For 256
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Table 4.5: MXGA and SVC-DD solutions of 2RBP-DD on IB: GN and GL gaps (%)
MXGA SVC-DD SVC-DD∗

πz πℓ πz πℓ πz πℓ

Class (group A) GN GL GN GL GN GL GN GL GN GL GN GL

I 3.5 13.9 4.1 12.4 3.8 13.2 4.5 11.8 0.3 5.9 1.0 3.6
II 2 11.2 2 11.1 0.0 0.4 0.0 0.4 0.0 0.4 0.0 0.4
III 6.8 23.6 7.7 22 5.8 19.8 6.4 18.0 2.3 9.8 2.7 8.8
IV 4.7 17.2 4.7 17.1 0.7 3.0 0.7 3.0 0.7 3.0 0.7 3.0
V 6.2 20.2 7 17.9 5.7 16.7 6.3 15.5 1.8 8.3 2.5 5.7
VI 9.3 16.5 9.3 16.6 2.0 2.7 2.0 2.7 2.0 2.7 2.0 2.7
VII 7.5 28.2 8.9 23.5 7.7 23.8 9.1 20.5 6.7 21.5 8.3 18.0
VIII 7.9 28.3 8.8 23.3 7.9 22.4 8.6 21.3 6.6 18.8 7.2 17.8
IX 0.7 1.7 0.7 1.7 0.7 1.7 0.7 1.7 0.0 0.0 0.0 0.0
X 7.1 26.4 7.9 23.8 6.4 18.1 6.8 16.4 5.4 15.4 5.8 13.8

Average 5.6 18.7 6.1 16.9 4.1 12.2 4.5 11.1 2.6 8.6 3.0 7.4

Class (group B)
I 3.4 28.7 4.6 24.2 4.0 28.2 5.8 21.4 0.4 16.9 2.1 7.5
II 2 34.1 2.7 34 0.0 1.9 0.0 1.9 0.0 1.9 0.0 1.9
III 7.1 55 8.7 46.2 6.4 38.9 8.4 34.5 2.8 24.7 4.8 18.4
IV 4.7 35.9 4.7 36 0.7 6.2 0.7 6.2 0.7 6.2 0.7 6.2
V 6 40.7 8.1 35.5 5.8 41.1 7.6 29.1 1.9 20.7 3.8 11.5
VI 10.3 37.7 11 37.7 2.0 6.0 2.0 6.0 2.0 6.0 2.0 6.0
VII 7.8 66.7 10.2 52.2 8.1 47.8 10.0 37.3 7.1 45.8 9.1 32.6
VIII 7.8 59.4 9 49.4 8.3 46.8 10.0 37.2 7.2 39.9 8.9 31.6
IX 0.7 2.4 0.7 2.4 0.7 3.8 0.7 3.8 0.0 0.0 0.0 0.0
X 7.1 60 8.6 53.5 6.8 39.4 7.7 31.9 5.8 30.3 6.8 26.0

Average 5.7 42.1 6.8 37.1 4.3 26.0 5.3 20.9 2.8 19.2 3.8 14.2

Class (group C)
I 3.4 124.4 5.4 93 4.1 117.8 6.5 64.6 0.7 53.1 3.1 19.9
II 2 152.7 4 149.5 0.0 3.2 0.0 3.2 0.0 3.2 0.0 3.2
III 7 147.6 9.1 124.9 6.6 125.8 10.8 84.2 3.1 71.6 6.7 41.1
IV 4.7 154.2 5.3 153.2 0.7 15.2 0.7 15.2 0.7 15.2 0.7 15.2
V 6 145.1 8.8 105 6.6 96.4 9.1 71.2 2.4 57.0 5.3 28.9
VI 11 241.1 11 241.2 2.0 58.4 2.0 58.4 2.0 58.4 2.0 58.4
VII 7.8 263 10.5 209.6 8.6 167.7 12.1 132.6 7.9 116.1 11.4 89.4
VIII 8.1 328.6 10.1 273.3 8.7 226.3 10.2 169.7 7.3 202.6 8.8 135.1
IX 0.7 9.9 0.7 9.9 0.6 26.0 0.7 16.2 0.0 0.0 0.0 0.0
X 7 418.8 9 318.5 6.8 253.3 8.4 188.5 5.9 173.2 7.5 126.7

Average 5.8 198.5 7.4 167.8 4.5 109.0 6.1 80.4 3.0 75.0 4.5 51.8

instances out of 1500 in their experiment, the MILP was not able to return a
valid bound within one hour of CPU time. A valid bound for the remaining
1244 instances is computed within a mean running time of 74.91 seconds, and
in 361 cases it strictly improves (by 31.30% on average) that reported in [22].
Nonetheless, the bounds proposed in [110] do not dominate Ln

LB as computed
in [22] and with formula (4.7).

The improved version of Ln
LB achieved by Proposition 7 was computed in

0.63 seconds on average and resulted tighter than Ln
LB of (4.7) in 39 instances

(2.60% of the cases), with an improvement on this subset that ranges from
0.36% to 223.53% and an average of 22.25%. When computing Ln

LB by dual fea-
sible functions, the bound Ln

LB of [22] strictly improves in 505 cases by 9.45%
on average. Using Proposition 7, this bound is further improved from 0.27%
to 35.42% (6.97% on average) in 1.93% of the cases.

Although being valid for any dimension of rBP, Proposition 7 naturally
loses effectiveness as the dimension grows due to the correlation to |IL|. A
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Table 4.6: MXGA, CPMIP and SVC-DD πℓ solutions of 2RBP-DD on IB: GL gaps (%)
MXGA CPMIP SVC-DD SVC-DD∗

Class (group A) GL GL GL GL

I 12.4 13.9 11.8 3.6
II 11.1 2.3 0.4 0.4
III 22 22.1 18 8.8
IV 17.1 10.5 3 3
V 17.9 19.1 15.5 5.7
VI 16.6 9.3 2.7 2.7
VII 23.5 27.7 20.5 18
VIII 23.3 26.5 21.3 17.8
IX 1.7 1.7 1.7 0.0
X 23.8 20.2 16.4 13.8

Average 16.9 15.3 11.1 7.4

Class (group B)
I 24.2 23.1 21.4 7.5
II 34 2.9 1.9 1.9
III 46.2 41.7 34.5 18.4
IV 36 14.3 6.2 6.2
V 35.5 33.3 29.1 11.5
VI 37.7 12.5 6 6
VII 52.2 48.7 37.3 32.6
VIII 49.4 46.5 37.2 31.6
IX 2.4 2.4 3.8 0.0
X 53.5 40.9 31.9 26

Average 37.1 26.6 20.9 14.2
Class (group C)

I 93 69.6 64.6 19.9
II 149.5 7.2 3.2 3.2
III 124.9 91.2 84.2 41.1
IV 153.2 35.6 15.2 15.2
V 105 81.1 71.2 28.9
VI 241.2 76.9 58.4 58.4
VII 209.6 156.7 132.6 89.4
VIII 273.3 232.2 169.7 135.1
IX 9.9 10.5 16.2 0.0
X 318.5 214.5 188.5 126.7

Average 167.8 97.6 80.4 51.8

wider impact is expected to emerge in the one-dimensional case.

The best gaps GL obtained in [110] by means of the best known lower
bounds, averaged on due-date types, are 11.9% for due-date group A, 20.5%
for group B and 68.5% for group C. Our best gaps GL reached with SVC-DD∗

are 7.5% in group A, 14.6% in group B and 54.8% in group C. Summariz-
ing, primal solutions πℓ found by SVC-DD are generally better than the ones
computed by CPMIP; when embedding different lower bounds, although a
straightforward comparison has a limited meaning, the gaps observed with
SVC-DD∗ are significantly tighter than CPMIP’s. Moreover, SVC-DD∗ finds an
optimal Lmax in 620 cases out of 1500 vs. 586 cases in which CPMIP does the
same | but with a mean running time of 30.2 seconds, roughly fifteen times
that of SVC-DD∗.
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4.6.2 Pareto-analysis

Measuring solution quality by gaps GN and GL has inherent limits, as 2BP-
DD is a multi-objective problem. Moreover, for relatively large due-dates and
τ, GL results very data-sensitive: for example, with τ = 100, LLB = 5 and
di = 95, gap GL jumps from 0% (when item i is assigned to the first bin) to
2000% (when i is allocated one bin later). In order to assess the performance
of SVC-DD we then preferred two measures, that we derived from papers on
multi-objective evaluation: R̄1 and GA. The former uses the ratio R1(xH , x∗)
proposed by [54], see §4.3.1; the latter is a slight modification of the Space Cov-

ered Measure (SCM) presented by [141]. In both cases we resort to the notion of
ideal solution value, intended as the point xid = (zid, ℓid) ∈ N2 with zid = NLB

and ℓid = LLB.
Let X̄ = {x̄i = (z̄i , ℓ̄i), i = 1, . . . , p} be the set of non-dominated solutions

computed through a heuristic for 2BP-DD. Indicator R̄1 is the minimum of
R1(x̄i , xid) computed with norm ‖.‖2 among all solution values in X̄:

R̄1 = min
i∈X̄

R1(x̄i , xid) =
|
√

z̄2
i + ℓ̄2

i −
√

N2
LB + L2

LB|
√

N2
LB + L2

LB

While R̄1 is constructed after the differences of solution value norms from
the norm of the ideal point, indicator GA attempts at evaluating the area
that underlies the Pareto-frontier (as approximated by solutions in X̄). Let
xnad = (NUB, LUB) be the nadir point, where NUB and LUB are valid upper
bounds to N and Lmax respectively. A frontier is evaluated by two areas com-
puted as sums of rectangles, see Fig. 4.5: the first area underlies xid and is
given by Aid = NLB(LUB − LLB) + LLBNUB; the second is associated with X̄

and amounts to AX̄ = ∑
p
i=0 ℓ̄i(z̄i+1 − z̄i), where solution values are sorted by

increasing N and z̄0 = ℓ̄p+1 = 0, ℓ̄0 = LUB, z̄p+1 = NUB. The quality of a
heuristic frontier X̄ is then measured through the percentage gap:

GA = 100
AX̄ − Aid

Aid

GA increases as the heuristic frontier steps further from xid, and takes into
account both the quality and cardinality of X̄. Note that GA mainly differs
from the SCM of [141] in how areas are computed, but can be employed to
evaluate any bi-objective optimization algorithm. Clearly, both R̄1 and GA

equal zero only when xid is the value of a feasible packing, which implies
that the optimal frontier consists of just one solution of value xid (proving the
existence of such packing is NP-complete).

Since R̄1 is more meaningful when solution values are comparable to each
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• how many instances (#opt) out of #s are solved to optimality by SVC-DD∗

(i.e., the cases in which there is a feasible ideal point).

By Proposition 8, the Pareto-optimal set consists of very few solutions: in
our tests we found a single non-dominated solution in 1278 out of 1500 cases,
two in 210 cases and three in the remaining 6 cases. In 905 out of 1278 cases
we proved that the Pareto-optimal set consists of a single solution. SVC-DD∗

found the ideal point, and therefore certified optimality, in 590 cases, whereas
a solution with z̄ = NLB bins was found in the remaining 315 cases.

Table 4.8: SVC-DD∗ solutions of 2OBP-DD on IB: R̄1, GA(%) and structure of Pareto-
frontiers.

Group A Group B Group C
Class R̄1 GA #m #s #opt R̄1 GA #m #s #opt R̄1 GA #m #s #opt

I 0.06 4.01 8 32 16 0.06 5.05 17 22 17 0.06 5.39 21 10 5
II 0.00 0.22 0 50 45 0.00 0.42 0 50 33 0.00 0.42 0 50 33
III 0.09 7.38 6 21 10 0.10 8.99 14 14 8 0.10 10.09 27 5 4
IV 0.03 1.95 0 48 24 0.04 3.70 0 46 17 0.03 3.10 0 47 21
V 0.09 6.73 10 19 14 0.09 8.01 19 15 9 0.09 8.91 27 15 9
VI 0.04 3.03 0 48 22 0.04 2.55 2 46 19 0.04 4.12 0 46 14
VII 0.19 13.74 8 32 14 0.19 16.55 14 26 13 0.18 17.59 22 21 10
VIII 0.20 14.51 5 32 9 0.19 16.60 9 25 8 0.18 18.37 15 20 7
IX 0.01 0.36 0 49 48 0.01 0.44 0 49 49 0.01 0.51 3 46 45
X 0.10 7.92 3 21 10 0.11 9.93 11 16 8 0.10 11.11 18 13 7

Average 0.08 5.98 - - - 0.08 7.22 - - - 0.08 7.96 - - -
Total - - 40 352 212 - - 86 309 181 - - 133 273 155

The features of X̄ do not change substantially for the oriented problem
2OBP-DD (see Table 4.8): SVC-DD∗ found a single non-dominated solution
in 1241 cases, two in 250 cases, three in 8 cases and four in a single case. In
934 cases of 1241 only a single non-dominated solution exists in the Pareto-
frontier: for 548 instances our algorithm returned the ideal point, whereas in
the other 386 cases the lower bound on the number of employed bins was
reached.

On the other hand, the mean values of R̄1 and GA (referred to the same
ideal point as 2RBP-DD) more than double in all the due-date groups A,B and
C, while global mean CPU time decreases by almost 36% (from 1.46 to 0.95
sec).

Let us now describe the algorithm performance on the set IR of real indus-
trial instances. Table 4.9 shows the results for due-date group C (similar results
are obtained on groups A and B). Columns #items, #sol and CPU report the
number of items per instance, the number of non-dominated solutions in X̄

and the CPU time spent, respectively.
Real instances appear a bit more challenging than artificial ones: the mean

values of R̄1 and GA are 0.09 and 8.86, respectively: more than two times the
value observed for IB. On the other hand, the mean CPU time is 8.31 seconds:
more than five times that required for IB.
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As in IB, the vast majority of the frontiers found by SVC-DD∗ consists of
a single point, but rather than a characteristic of optimal frontiers, in IR this
feature seems to be related to some inability of the algorithm in diversification.
Indeed, we were able to certify a single-point optimal frontier in just 7 out of 28
cases, and could certify optimality in one case only. This observation suggests,
as future work, to try improving SVC-DD∗ by local search. An intuitive way to
populate X̄ can rely on exploring solutions with increasing N and decreasing
Lmax: starting from a non-dominated packing, the search could anticipate the
critical item for which Lmax = ℓ, while enforcing a controlled delay on items
with strictly positive τ∆i(ℓ), see §4.2.2.

Table 4.9: SVC-DD∗ solutions of 2RBP-DD on IR and due-date type C.

Name n R̄1 GA #sol CPU Name n R̄1 GA #sol CPU
r1 11 0.00 0.00 1 < 0.005 r15 84 0.00 1.49 1 2.83
r2 14 0.02 2.13 1 0.22 r16 86 0.08 4.74 1 4.03
r3 24 0.56 39.10 1 0.38 r17 87 0.08 8.99 1 3.64
r4 27 0.14 14.01 1 0.53 r18 98 0.00 1.49 1 3.72
r5 28 0.01 0.00 1 0.86 r19 119 0.01 3.49 2 4.70
r6 30 0.00 0.16 1 0.59 r20 141 0.10 11.75 1 6.38
r7 33 0.13 12.65 1 0.78 r21 164 0.08 8.91 1 8.17
r8 42 0.02 2.97 1 0.72 r22 186 0.01 2.66 1 10.84
r9 49 0.08 8.52 1 1.39 r23 215 0.01 4.32 1 12.98
r10 61 0.21 19.22 1 1.53 r24 218 0.07 7.85 3 23.00
r11 63 0.05 4.90 2 2.31 r25 238 0.09 8.39 3 32.84
r12 67 0.13 14.14 1 1.97 r26 257 0.01 2.72 1 18.66
r13 69 0.21 23.45 1 3.53 r27 314 0.05 7.58 1 27.52
r14 83 0.09 13.47 1 3.06 r28 352 0.21 19.04 1 55.58

Finally, the differences between oriented and non-oriented results are less
evident than in IB: for 2OBP-DD (see Table 4.10), R̄ and GA (referred to the
same ideal point as 2RBP-DD) respectively increase up to 0.12 and 11.76 on
the mean, whereas the mean CPU time decreases by only 13.96% (from 8.31 to
7.15 seconds).

4.7 Conclusions

In this chapter we considered a bi-objective extension of an orthogonal two-
dimensional bin packing problem, where items are equipped with due-dates,
and we wish to minimize both the maximum lateness of the items and the
number of bins required to pack them all. We discussed some basic proper-
ties of non-dominated solutions and their dependence by the packing time τ.
Moreover, following the definition of approximation ratios defined for multi-
criteria problem in [54], we showed how approximation algorithms for 2BP
provide approximation results also for 2BP-DD.

To solve the problem in practice, we proposed a sequential value correction
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Table 4.10: SVC-DD∗ solutions of 2OBP-DD on IR and due-date type C.

Name # items R̄1 GA #sol CPU Name # items R̄1 GA #sol CPU
r1 11 0.00 0.00 1 < 0.005 r15 84 0.00 1.40 1 1.84
r2 14 0.21 16.71 1 0.27 r16 86 0.08 4.74 1 3.78
r3 24 0.56 39.10 1 0.30 r17 87 0.08 9.42 1 3.19
r4 27 0.28 25.28 1 0.42 r18 98 0.00 1.40 1 2.36
r5 28 0.00 0.00 1 0.38 r19 119 0.28 25.46 2 3.92
r6 30 0.02 3.86 1 0.30 r20 141 0.10 12.58 1 4.89
r7 33 0.13 13.15 1 0.49 r21 164 0.09 10.94 1 6.03
r8 42 0.02 2.97 1 0.58 r22 186 0.01 3.28 1 7.78
r9 49 0.08 8.84 1 1.08 r23 215 0.01 7.44 1 8.19
r10 61 0.21 20.33 1 1.02 r24 218 0.08 8.10 3 22.36
r11 63 0.05 4.90 2 2.09 r25 238 0.08 10.62 2 38.52
r12 67 0.26 26.49 1 1.58 r26 257 0.02 5.62 2 13.73
r13 69 0.22 24.91 1 0.44 r27 314 0.06 9.09 1 20.45
r14 83 0.09 13.70 1 2.25 r28 352 0.21 19.05 1 52.06

heuristic (SVC-DD) and used a vast set of benchmark instances to compare its
performance with MXGA of [22] and CPMIP of [110]. Results show that SVC-

DD largely outperforms both algorithms, achieving in general better primal-
dual gaps in a much smaller CPU time. We further tested SVC-DD on a set
of new and more challenging instances derived from real-world orders: also
in this case our heuristic proved to achieve good results in very reasonable
computational time. Finally, we analyzed our results under a multi-objective
perspective and gave details about the structure of the heuristic frontier built
by SVC-DD, inferring also some features of the Pareto-optimal sets.

Acknowledgements

We are grateful to Julia A. Bennell that kindly provided us the instances used
in [22].

71





Chapter 5

The one-dimensional bin packing

with variable pattern processing

time

1

Integrated problems between packing and scheduling want to capture the fea-
tures of operations within real manufacturing and logistic systems, translating
practical aspects into objectives and constraints that are added to the mathe-
matical core of the problems. The choice of the level of compliance with real
systems is generally made by evaluating a trade-off between several elements,
among which the impact of practical aspects on the decision process. Neglect-
ing key features with high impact could potentially affect the implementabil-
ity of solutions, so that the entire decision process could be compromised and
nothing came of it.

A crucial aspect that is often disregarded by academics in the context of
C&P is the effect of processing time of packing (cutting) operations performed
in the implementation of patterns. Indeed, while is common in literature to
assume the packing (cutting) time of a pattern as a constant, in real systems it
could count a number of different variables that make even finding a suitable
definition an issue.

This chapter want to be one of the first attempts to study the impact of
patterns with variable processing time in the context of a one-dimensional BP,
focusing on mathematical formulations that extends the typical models for BP
with scheduling features.

1A preliminary version of this chapter appears in: A. Pizzuti, W. Wu, F. Marinelli, M. Yagiura
and Y. Hu: A pattern-based reformulation for the one-dimensional bin packing with variable
pattern processing time. In Proceedings of the Scheduling Symposium 2018 - SS2018, pages
89-94., Otaru (JPN)
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5.1 Introduction

In the one-dimensional bin packing problem (1BP) we want to find a packing
of a given set I = {1, . . . , n} of items with positive integer size {l1, . . . , ln} into
bins of identical integer size l, such that all items are completely contained in
the bins without overlapping and the number N of used bins is minimized.
Due to its relevance both in theory and practice, 1BP is considered one of the
basic and main C&P problem and a rich literature was dedicated to its study
[135].

Moreover, bin packing problems are connected to scheduling problems in
which limitations on resources are taken into account, such as the resource
constrained scheduling problem [60]: indeed, the bin size represents the avail-
ability of resource, whereas each item is intended as a job with a specific re-
source consumption.

Motivated by real applications in which the cost of time required by pack-
ing operations are more relevant than the cost of wasted space, an increasing
number of papers are recently investigating integrated problems between bin
packing and scheduling, see [12, 22, 113]. However, it is commonly assumed
that the time spent for processing each bin is constant, and to the best of our
knowledge only few papers explicitly deal with a processing time dependent
by the selected patterns [88, 39, 44]. Nevertheless, such dependency cannot
be neglected in many real applications, e.g., cutting and loading operations,
without losing an important aspect of the solution costs.

The 1BP with VARIABLE PATTERN PROCESSING TIME (1BP-VPT) was firstly
formalized in [88] to study the effects of pattern-dependent completion times:
constant set-up and packing times s and t are required to initialize the pack-
ing of each bin and to process each item, respectively. Moreover, each item
is provided with a due date di that expresses the time by which it should be
processed. It can be useful to think a 1BP-VPT solution in terms of both a
sequence of patterns and a sequence of items: the former gives the order in
which the bins are processed, whereas the latter represents the absolute posi-
tion of each item in the whole packing solution. The completion time Ci of the
item i is then defined by introducing the following notation: let bi be the posi-
tion of the bin that contains the item i in the schedule of patterns, and qi be the
absolute position of the item i in the whole schedule of the packed items. Then
Ci = sbi + tqi and the lateness of the i-th item is given by Li = Ci− di. The 1BP-
VPT objective function requires the minimization of a convex combination of
the packing and scheduling terms, formally defined as Ω = α1N + α2Lmax,
where Lmax = max

i∈I
{0, Li} and α1, α2 ∈ R

+ such that α1 + α2 = 1. Actually

α1 and α2 express the relative importance of material usage and delay penalty,
respectively. Thus, their ratio should be selected accordingly to the specific
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manufacturing must be scheduled, see [78] and [125]. The relationship with
1BP-VPT is indeed straightforward when job sizes are non-identical and by
assuming batches (jobs) as patterns (items). Nevertheless, SBM differs by 1BP-
VPT since in the former all the jobs in the same batch are generally released at
the same time, whereas in the latter the definition of Ci implies that the item i

becomes available as soon as it is processed. Moreover, in SBM the objective
function usually includes only scheduling terms, without the explicit mini-
mization of the number of processed batches. This term is directly minimized
when the minimization of the makespan is required, case that corresponds to
the minimization of the number of setups for 1BP-VPT.

In this chapter we introduce a novel pattern-based mixed integer linear
programming formulations (RVPT) for the 1BP-VPT and present a dynamic
programming algorithm to exactly solve the corresponding quadratic pricing
problem. Computational results show the improvement of RVPT in terms of
continuous bound and CPU time with respect to the continuous relaxation of
the formulation by [88].

5.2 Problem reformulation

The 1BP-VPT has been formulated in [88] by extending the well-known assign-

ment formulation [74] for 1BP. Let J be the set of available bins, with |J| = m.
For each i ∈ I and j ∈ J, the assignment of items to bins is expressed by
uij ∈ {0, 1}, i.e., uij = 1 if and only if the item i is packed within the j-th bin;
wj ∈ {0, 1} indicates the application of the j-th bin, i.e., if the j-th bin is used
then wj = 1. Variables rih ∈ {0, 1} are used to define the relative position
between the items: rih = 1 if and only if item h is packed before item i. Finally,
variables bi ∈ N \ {0} and qi ∈ N \ {0} indicate the position of the bin con-
taining the item i in the sequence of used bins, and the position of the item i

in the sequence of packed items, respectively.
The integer program (MVPT) reads as:

min Ω = α1 ∑
j∈J

wj + α2Lmax (5.1)

∑
j∈J

uij = 1 ∀i ∈ I (5.2)

∑
i∈I

liuij ≤Wwj ∀j ∈ J (5.3)

qi = ∑
j∈J

juij ∀i ∈ I (5.4)
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sbi + tqi − di ≤ Lmax ∀i ∈ I (5.5)

∀i, h ∈ I, i 6= h

qi − qh + 1 ≤ nrih (5.6)

qh − qi + 1 ≤ n(1− rih) (5.7)

bi − bh ≤ (m− 1)rih (5.8)

bh − bi ≤ (m− 1)(1− rih) (5.9)

uij, wj ∈ {0, 1} ∀i ∈ I, j ∈ J (5.10)

bi , qi ∈ N \ {0} ∀i ∈ I (5.11)

rih ∈ {0, 1} ∀i, h ∈ I, i 6= h (5.12)

Lmax ≥ 0. (5.13)

Constraints (5.2) and (5.3) are those of the 1BP assignment formulation:
(5.2) ensure the demand fulfillment, and (5.3) set the bin variables wj and
model the packing constraints. Due to (5.2), the i-th equation of (5.4) expresses
the position of the bin that contains item i, whereas constraints (5.5) bound
from below the maximum lateness. Finally, the sequences of patterns and
items are modelled by disjunctive constraints (5.6)–(5.9): when rih = 1 (5.6)
and (5.8) become redundant while (5.7) and (5.9) force item h to be processed
before i and to be packed in the same bin containing item i or in one of
the previous. Analogously, the reverse relative position between i and h is
ensured by (5.6) and (5.8) when rih = 0.

MVPT can be reformulated by integer decomposition, thus giving rise to
an alternative pattern-based integer program for 1BP-VPT that generalizes
the well-known Gilmore-Gomory formulation for 1BP [62]. A packing pattern

p ∈ P is the incidence vector ap ∈ {0, 1}n of a subset of items that satisfy the
knapsack constraint, i.e., such that ∑i∈I lia

p
i ≤ l. For convenience, we indicate

with i ∈ p the case in which a
p
i = 1. Although the sequence of items within a

single pattern affects the completion times and possibly the scheduling term
of 1BP-VPT, patterns are defined regardless the item permutations. Indeed,
due to the optimality of the Jackson’s rule for the Lmax minimization problem
[25], we can assume that the items within a single pattern are sequenced
according to the EDD (Early Due Dates) rule. For each j ∈ J, binary vectors uj

can be expressed as an integer convex combination of patterns:

uj = ∑
p∈P

x
p
j ap ∑

p∈P

x
p
j = 1 x

p
j ∈ Z

+.
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The relevant i-th component of uj is then given by uij = ∑p∈P x
p
j a

p
i = ∑p∈Pi

x
p
j ,

where Pi ⊆ P consists in the set of patterns containing item i. Thus, the refor-
mulation is defined on decision variables x, where x

p
j = 1 if the j-th bin in the

sequence is packed according to pattern p, and 0 otherwise.

Given any pattern p, let τp = t ∑i∈I a
p
i be the total packing time of a bin, and

τ
p
i = t ∑k≤i a

p
k be the packing time of a bin up to the processing of the item i.

The extended pattern-based reformulation for 1BP-VPT follows (RVPT):

min Ω = α1 ∑
j∈J

∑
p∈P

x
p
j + α2Lmax (5.14)

∑
j∈J

∑
p∈Pi

x
p
j ≥ 1 ∀i ∈ I (5.15)

∑
p∈P

x
p
j ≤ 1 ∀j ∈ J (5.16)

Ψj−1 + ∑
p∈P

τpx
p
j = Ψj ∀j ∈ J (5.17)

Ψj−1 + ∑
p∈Pi

(sj + τ
p
i + njt)x

p
j ≤ Lmax + di + njt ∀i ∈ I, ∀j ∈ J (5.18)

x
p
j ∈ {0, 1} ∀p ∈ P, ∀j ∈ J (5.19)

Ψ0 = 0, Lmax ≥ 0. (5.20)

Constraints (5.15) require, as in the pattern-based reformulation for 1BP, that
all items must be packed. Constraints (5.16) impose that at most one pattern
p is assigned to each available bin j. Equation (5.17) defines the completion
time Ψj of the bin j in terms of its processing time τp and the completion time
of the previous bin. Constraint (5.18) bounds Lmax from below: let nj be an
upper bound to the number of items that fit within the first j bins; for each
pattern p containing a given item i, either x

p
j = 0 or x

p
j = 1. In the former

case, the constraint is always satisfied and hence redundant. In the latter case,
i.e., when the item i is packed in the j-th bin according to the pattern p, the
constraint becomes Ψj−1 + sj + τ

p
i ≤ Lmax + di, where the left term correctly

defines the completion time of the item i (sj is the total set-up time up to the
j-th bin).

We remark that any optimal solution exactly satisfies the requirements
though constraint (5.15) admits overproduction. We also remark that RVPT

correctly models the problem for any dimension, provided that the definition
of patterns is accordingly adapted, and that the EDD rule adopted to define
the sequence of items within patters remains optimal for arbitrary processing
times. Moreover, RVPT can be modified to handle some alternative comple-
tion time functions, e.g. total sum of tardiness or total number of tardy jobs.
This can be easily done by updating (5.14) and properly adapting constraints
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(5.18).

As pointed out in [12], RVPT can be tightened by replacing the variable Lmax

with Ln
LB + L̃max, where L̃max ≥ 0 and Ln

LB is any valid lower bound for the
maximum lateness. A lower bound Ln

LB can be obtained by generalizing the
bound proposed by [22]: assuming the items ordered by EDD, let Ni

LB be any
valid lower bound on the number of bins required for the first i items in I.
Then, a valid lower bound for Lmax is given by:

Ln
LB = max

1≤i≤n
{0, szLB

i + it− di}.

The result can be further improved by adapting the framework discussed in
§4.5.
We address the constraints resulting by exploiting Ln

LB as (1̃8) and assume in
the following that (5.18) is replaced by (1̃8) in RVPT.

Due to the exponential number of variables x
p
j , a column generation (CG)

procedure is required to solve RVPT [83].

Let us call Rres
VPT the continuous relaxation of RVPT restricted to patterns p ∈

Pres ⊆ P, namely restricted master problem. Let moreover (µ̄, δ̄, π̄, γ̄) be an
optimal solution to the restricted dual problem, where µ ∈ R

−
n , δ ∈ R

−
m ,π ∈

Rm and γ ∈ R
−
n×m are the dual variables corresponding to the constraints

(5.15)–(5.18) of Rres
VPT.

The restricted dual problem results as follows:

max ∑
i∈I

µi + ∑
j∈J

δj + ∑
j∈J

∑
i∈I

(Ln
LB + njt + di)γ

j
i

s.t. πj+1 − πj + ∑
i∈I

γ
j+1
i = 0 ∀j ∈ J

−∑
j∈J

∑
i∈I

γ
j
i ≤ α2

∑
i∈p

µi + δj + ∑
i∈p

(sj + τ
p
i + njt)γ

j
i + τpπt ≤ α1 ∀p ∈ Pres, ∀j ∈ J

µi ≥ 0 ∀i ∈ I

δj ≤ 0 ∀j ∈ J

γ
j
i ≤ 0 ∀i ∈ I, ∀j ∈ J.

Let (µ̄, δ̄, π̄, γ̄) be an optimal solution of the restricted dual problem. The
pricing problem relative to the profitable new pattern for the j-th bin looks for:
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min

{

α1 −
[

∑
i∈p

µ̄i + δ̄j + ∑
i∈p

(sj + τ
p
i + njt)γ̄

j
i + τpπ̄j

]}

=

α1 − δ̄j −max

{

∑
i∈p

µ̄j + ∑
i∈p

(sj + τ
p
i + njt)γ̄

j
i + τpπ̄j

}

=

α1 − δ̄j − Pj(µ̄, π̄, γ̄)

holds. Thus, let (p1, . . . , pn) be the 0-1 variable vector relative to the pattern
for the current j-th pricing. The pricing objective function Pj(µ̄, π̄, γ̄) can then
be rewritten as:

max ∑
i∈p

µ̄i + ∑
i∈p

(sj + τ
p
i + njt)γ̄

j
i + τpπ̄j

= ∑
i∈I

µ̄i pi + ∑
i∈p

(sj + t ∑
h≤i

ph + njt)γ̄
j
i + tπ̄j ∑

i∈I

pi

= ∑
i∈I

[

µ̄i + (sj + njt)γ̄
j
i + tπ̄j

]

pi + t ∑
i∈I

∑
h≤i

γ̄
j
i ph pi.

For convenience we define:

θij = µ̄i + (sj + njt)γ̄
j
i + tπ̄j, (5.21)

and the j-th pricing problem Pr(j) can be formalized as the following 0-1
quadratic knapsack (QKP) [108]:

[Pr(j)] : max ∑
i∈I

θij pi + t ∑
i∈I

∑
h≤i

γ̄
j
i ph pi

s.t. ∑
i∈I

li pi ≤ l

pi ∈ {0, 1} ∀i ∈ I.

5.3 Dynamic Programming for Pr(j)

It is known that QKP is NP-hard in the strong sense and it is unlikely that
it can be solved in pseudo-polynomial time [57]. However, a dynamic pro-
gramming (DP) approach with such running time can be devised for Pr(j)

due to the special structure of the matrix Qj of the quadratic terms. Indeed,
for the classical QKP extending DP algorithm designed for 0-1 knapsack prob-
lem does not preserve the Bellman principle of optimality [57]; in Pr(j) instead
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each Qj is a lower triangular matrix and each state of the recursion can be fully
described by the previous one within a forward approach.

In this section we describe a dynamic programming algorithmADP to solve
Pr(j). We formalize it for the more general case in which the scheduling term
in the objective function is not limited to be Lmax, and its correctness holds as
far as the structure of Pr(j) remains unchanged, e.g. when the total sum of
tardiness or the total number of tardy jobs are considered.

Let (1, . . . , n) be sorted in non-decreasing order by γ̄
j
i , and f j(h, i, k) be the

optimal value of the j-th pricing under condition that:

1. the number of selected items is h;

2. the item candidates are {1, . . . , i};

3. available integer knapsack capacity is k ≤ l.

Then, the recurrence formula reads as:

f j(h, i, k) = max{ f j(h, i− 1, k),

f j(h− 1, i− 1, k− li) + θ
j
i + t · hγ̄

j
i} (5.22)

where the boundary conditions are set as:

f j(h, 0, k) =

{

0 h = 0

−∞ otherwise.
(5.23)

The optimal value of Pr(j) is then given by:

Pj(µ̄, π̄, γ̄) = max
h∈I

f j(h, n, W). (5.24)

The time complexity of ADP is O(n2W). However, in practice the running
time can be widely reduced by limiting the recursion to h ≤ n1, where n1

represents any valid upper bound on the number of items that fits within a
single bin.

Before proving the correctness of ADP , we introduce the following lemma:

Lemma 5.3.1. There exists an optimal solution to Pr(j) in non-decreasing order of

γ̄
j
i .

Proof. Let p∗ be an arbitrary optimal solution for Pr(j). If there exists a pair
(h, i) of indices in p∗ such that h < i and γ̄

j
h > γ̄

j
i , a solution with no-worse ob-

jective function value can obtained by swapping the index of h and i. Clearly,
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the swapping operation does not affect the feasibility of Pr(j). We can it-
erate the swapping procedure until we obtain an optimal solution in non-
decreasing order of γ̄

j
i .

Now we proof the correctness of the proposed ADP .

Theorem 5.3.1. ADP is correct.

Proof. Firstly, we observe that Lemma 5.3.1 holds true for all the subproblems
corresponding to f j.

The correctness of boundary condition is trivial. Let us assume all the
f j(h, i, k) optimal for the corresponding subproblems ∀h ≤ h′, ∀i < i′ and
∀k ≤ k′. For f j(h

′, i′, k′), if item i′ is not chosen, then the optimal value is

f j(h
′, i′− 1, k′); if i′ is instead selected, it generates a profit equal to θ

j
i′ + t · h′γ̄j

i′

under an arrangement of indices compliant with Lemma 5.3.1. The opti-
mal value when item i′ is selected is then f j(h

′ − 1, i′ − 1, k′ − li′) + θi′ j + t ·
h′γ̄j

i′ . Therefore, (5.24) provides an optimal solution for the pricing problem
Pr(j).

For all the cases in which the optimal schedule of items in each pattern is
given by EDD, any pattern p with a different arrangement results in a sub-
optimal column. Indeed, any solution of RVPT in which such patterns are
selected cannot have a strictly better optimal value, as the different arrange-
ment can at most degrade the value of Lmax. We can then fix to EDD the order
of (1, . . . , n) and solve Pr(j) by means of ADP , while shrinking the space of
research of potential patterns. This hopefully helps the convergence of the
CG procedure, while controlling the size of Rres

VPT by limiting the number of
redundant columns.

5.4 Computational results

Computational experiments were performed on a Intelr Core(TM) i7-5500U
2.40 GHz with 8Gb RAM. The CG procedure was coded in C++ and the for-
mulations were solved by IBMr CPLEXr 12.5.0.0.

We compared the quality of the continuous relaxations of RVPT and MVPT

on three group of instances (A,B,C), each one generated from fifty-three non-
IRUP bin packing benchmark instances [43] with n ∈ [20, 200] and W = 1000.
Integer due dates were randomly picked within [s+ t, ⌈β(sNLBc + tn)⌉], where
NLBc is the continuous lower bound for the 1BP [91] and β ∈ {0.6, 0.8, 1} is
used to typify A, B and C. We set s = 1 and t = 0.2, and consider two differ-
ent scenarios with α1 = 0.5 and α1 = 0.2 respectively. For the 1BP-VPT, |J|
cannot be limited to the value of N of an arbitrary heuristic solution, as the
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minimization of Ω could require additional bins to reduce Lmax; hence, in all
the experiments we trivially assumed |J| = n. The CG was initialized with
solutions obtained by a First Fit heuristic for 1BP under EDD indexing and
an SVC heuristic similar to the one exploited in [12]. The value of Ln

LB was
computed accordingly to §5.2 and fairly embedded in both formulations.

We noted in preliminary experiments that often the dual vector γ̄ results
null and the actual number of quadratic knapsacks solved is extremely lim-
ited, i.e. between 2.1% for group A to 9.7% for group C. Thus, we improved
the efficiency of the CG by relying on ADP only when γ̄ is relevant, while
using techniques for the classical 0-1 knapsack problem otherwise [80].

Table 5.1: Mean values of Ω% and ∆time grouped by instance size n for α1 = 0.5.

A B C
n # inst. Ω% ∆t Ω% ∆t Ω% ∆t

20 1 42.3 0.1 43.1 0.1 53.6 0.1
40 3 42.4 0.2 54.4 0.2 67.2 0.1
60 9 42.6 0.4 55.2 0.2 61.9 0.3
80 3 41.8 3.8 53.2 10.3 55.1 2.5
100 4 43.5 0.7 55.3 -0.1 64.1 0.4
120 10 45.2 -1.7 57.5 -3.3 64.4 -4.2
140 3 46.8 -14.0 59.8 -30.3 58.0 -18.3
160 7 47.1 -30.2 59.1 -55.1 59.0 -36.4
180 5 46.8 -54.7 57.2 -89.6 58.8 -48.5
200 8 46.1 -52.6 58.4 -63.4 61.0 -49.7

Table 5.1 shows the results for α1 = 0.5. The first two columns report the
size n of the instances and the number of instances with the same n value,
respectively. Then, for each of the instance group, the mean percentage gap of
the bound Ω% and the mean absolute CPU time difference ∆t are reported. For
all the instances, RVPT outperforms MVPT for the quality of the dual bound, as
indicated by the positive values of Ω%. The gap is exclusively related to the
improvement of N in the objective function, as the value of Ln

LB is always tight
for both formulations. Hence, Ω% increases from group A to group C as the
due dates get loose (since Ln

LB becomes smaller), and also because N grows
in absolute value. Regarding the CPU time, the CG runs in comparable time
for up to 120 items, whereas it becomes widely faster for larger n as indicated
by the values of ∆t; the total time required to solve the continuous relaxation
of RVPT on all the groups of instances is 1853.7 seconds, while MVPT needed
5211.8 seconds. The total number of pricing subproblems solved ranges be-
tween 33823 for group A to 38165 for group C. An improvement can clearly
be reached by setting appropriate bounds on |J| to contain both the size of
Rres

VPT and the number of pricing subproblems. Moreover, we remark that the
current CG implementation lacks of early termination and stabilization tech-
niques that can meaningfully enhance the convergence.
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We do not explicitly report the results for α1 = 0.2 as the values of L̃max and
N remain the same. It follows that the values of Ω% are reduced by the loss of
weight of the packing component. In terms of efficiency, only a non-relevant
increase of effort occurs to solve the instances as the CPU time rises up by
2.8% and the number of pricing solved is 2.6% larger.

We analyzed the integrality gap reached by using the bound value Ω pro-
vided by the CG and the best primal solution computed by the First Fit heuris-
tic and the SVC algorithm. Table 5.2 reports the average gaps for both α1 = 0.5
and α1 = 0.2.

Table 5.2: Integrality gaps with respect to the best primal solution.

α1 = 0.5 α1 = 0.2
n # inst. A B C A B C
20 1 14.3 21.7 14.3 17.2 27.0 21.3
40 3 11.0 19.7 14.3 15.0 30.6 27.1
60 9 11.7 16.6 19.2 14.8 26.1 40.5
80 3 10.6 10.5 19.4 12.2 15.8 41.9

100 4 10.2 15.5 16.5 12.2 25.7 39.0
120 10 11.8 13.4 16.5 14.3 20.6 38.7
140 3 10.7 12.8 17.3 13.2 19.8 37.3
160 7 9.5 13.6 16.1 12.0 21.9 35.4
180 5 9.7 12.6 17.5 12.2 19.6 43.8
200 8 9.4 11.1 15.0 11.8 17.6 33.0

Generally speaking, the integrality gap is non-negligible in all instances, re-
sulting on the mean from 10.9% for group A, 14.8% for group B and 16.6% for
group C with α1 = 0.5. When α1 = 0.2 is addressed, the gaps further increase
to 13.5% for group A, 22.5% for group B and 35.8% for group C. Such incre-
ment however can be ascribed to the growth of the weight of the scheduling
term in the convex combination.

Finally, we studied the quality of the incumbent solution provided by Rres
VPT

after the CG termination, with integrality constraints restored and all the
columns generated by the CG procedure. For any group of instance and tested
value of α1, no meaningful improvement was achieved in terms of primal
bound value. Solving the MILP exactly required 4.4 second on the mean for
α1 = 0.5 and 3.0 seconds on the mean for α1 = 0.2.

5.5 Conclusion and future development

In this chapter a new pattern-based extended reformulation RVPT has been
presented to solve the 1BP-VPT problem. Moreover, a dynamic programming
algorithm ADP has been described to solve the quadratic knapsack problem,
that arises not only when Lmax is chosen as scheduling term. The computa-
tional experiments show that the dual bound provided by RVPT outperforms
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the one obtained by MVPT, and the gain in terms of CPU time becomes widely
positive for large size of the instances.

Looking at the solution of the integer 1BP-VPT, the integrality gap is signif-
icant in all the cases and a potential full branch-and-price scheme should em-
bed smart strategies and useful upper bounds on |J| to reach optimal integer
solutions in an efficient way. Also, we are interested in extending the problem
to multiple-dimension CSP, since the structure of patterns is more complex
and the issue of variable processing time become even more relevant.
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Chapter 6

LP-based dual bounds for the

maximum quasi-clique problem

Finding cohesive structures is a matter of interest in a wide span of fields,
such as biology, genetics, telecommunication and so forth. The mathematical
object that models perfectly aggregated substructures on graphs is the clique,
in which each node is pairwise adjacent to each other. Allowing a restrained
grade of imperfection, i.e. renouncing to some edges that connect nodes in the
clique, brings to the class of clique relaxations that provide in many cases even
better representations of cohesive structures w.r.t. cliques.

In this chapter, we focus on a density-based relaxation of the clique, namely
the γ-quasi-clique. Finding the γ-quasi-clique of maximum order basically con-
sists in a structure packing problem, since each clique on a graph has a one-to-
one correspondence to an independent set on the complementary graph, see
§1. We face this problem by computing fast dual bounds by means of CG pro-
cedure based on an integer Dantzig-Wolfe reformulation. Then, we discuss
the issue of solution connectivity and propose a sufficient condition to test the
connectivity of γ-quasi-clique.

6.1 Introduction

A clique is a complete graph, i.e., a graph with an edge for any pair of vertices,
and it is one of the basic combinatorial structures in graph theory. The MAX-
IMUM CLIQUE PROBLEM (MCP) consists of finding an induced clique of max-
imum order in a simple and undirected graph G [104]. Solutions of the MCP
are meaningful, at least in principle, for a wide range of applications, e.g., so-
cial network analysis, coding theory, telecommunication and genetics. In fact,
cliques express an ideal aggregation measure and are representative when it
is interesting to evaluate the degree of interaction between entities. However,
the search for a complete structure like a clique often prevents the discov-
ery of similarly interesting dense subgraphs. Furthermore, graphs derived
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from real-world applications are generated from incomplete data and are of-
ten acquired through error-prone processes. For these reasons, several clique
relaxations have been defined and the corresponding MAXIMUM RELAXED-
CLIQUE PROBLEMS (MRCP-s) have been investigated [106]. Clique relaxations
can be classified according to the number of relaxed properties: first-order re-
laxations are defined by slackening a single clique-typifying property related,
for instance, to the degree (k-core, k-plex), the distance (k-clique, k-club), the
density (γ-quasi-clique, k-defective clique) and the connectivity (k-block, k-bundle)
[64]. Higher-order relaxations can also be considered by relaxing more than
one properties at the same time, see [106].

Among discrete optimization problems deriving from clique relaxations,
there is a pair of NP-hard reciprocal problems: the MAXIMUM QUASI-
CLIQUE PROBLEM (γ-QCP) [107] and the K-DENSEST SUBGRAPH PROBLEM

(KDSP). The former asks for the maximum-order induced subgraph with edge
density of at least γ of a simple undirected graph G, whereas the latter calls for
the densest subgraph of G of order k. Another problem closely related to the
γ-QCP is the MAXIMUM DEGREE-BASED γ-QCP [105]. A degree-based γ-quasi-

clique is a subgraph H = (Q, EQ) of a graph G induced by the set of vertices Q

such that the degree of any vertex of H is at least γ(|Q| − 1). It is easy to see
that any degree-based γ-quasi-clique is a γ-quasi-clique but not vice-versa.

The γ-QCP is both theoretically and computationally difficult. Critical as-
pects (among others) lie in the lack of the hereditary property and in the ex-
istence of disconnected optimal quasi-cliques. Recall that a property P of
graphs is an infinite class of graphs which is closed under isomorphism and it
is hereditary if every induced subgraph of every member of P is also in P [26].
This implies that the inclusionwise maximality of the vertex-set of a graph sat-
isfying a hereditary property can be tested in polynomial time. However, it is
well known that γ-quasi-cliques are only quasi-hereditary. In fact, to obtain an
induced γ-quasi-clique K from a γ-quasi-clique H = (Q, E) it is sufficient to
remove a vertex v from H with deg(v) < 2·|E|

|Q| but this makes not straightfor-
ward the maximality check of non-trivial γ-quasi-cliques.

The connectivity role in γ-QCP is also not completely settled. Allowing dis-
connected γ-quasi-cliques clearly extends the solution space but the compu-
tational consequences have not been investigated. Note that, differently from
other clique relaxations (k-plex, k-defective clique, and k-bundle) for which
disconnected subgraphs can be optimal solutions only if sufficiently small, the
size of a disconnected γ-QCP optimal solution is generally not limited from
above [64]. However, many real applications implicitly ask to find dense con-
nected subgraphs in order to properly capture the relations between elements
of clusters, and a solution comprised of more than one connected component
misses this aspect and may become less meaningful for the application (the
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presence of disconnected optimal solutions could be even more frequent in
both the vertex-weighted and edge-weighted version of γ-QCP). Therefore,
the quasi-clique definition (and similar) should include the connectivity prop-
erty to some extent. Section §6.4 is devoted to discuss such issues.

Several heuristic approaches were proposed to solve the γ-QCP, or prob-
lems with a slightly different definition of γ-quasi-clique [24, 30, 79]. In [1] the
authors describe a greedy randomized adaptive search procedure (GRASP)
to detect maximal quasi-cliques in massive sparse graphs, where the local
search phase exploits the concept of vertex potential to move up to local op-
tima; Tsourakakis et al. [123] present two heuristics, one based on iterated
elimination of the vertex with the smallest degree, and the other performing a
local search looking for a sequence of induced subgraphs with non-decreasing
value of density.

To the best of our knowledge, the reference exact methods for γ-QCP are
the MIP-based approach presented in [130] and the combinatorial branch-
and bound algorithm described in [102]; for KDSP instead, the state-of-the-
art exact method is the enumeration scheme with dual bounds computed via
semidefinite programming proposed in [76].

In this chapter we develop earlier ideas originally formulated in [89]. We
firstly review the main combinatorial and LP-based dual bounds for γ-QCP
available in the literature. Then, we propose an integer reformulation [Dγ] of
γ-QCP and a surrogate relaxation [DS

γ] of [Dγ] that provides dual bounds as
good as those computed by the linear relaxation of [Dγ].

The surrogate relaxation uses a number of constraints linear in the number
of vertices of the graph and therefore it can be exploited for computing dual
bounds on large and dense graphs. Then, we present a new sufficient con-
dition for obtaining connected γ-quasi-cliques that dominates the previous
result reported in the literature.

The outline of the chapter is as follows: in §6.2 the γ-QCP is formalized,
then mixed integer linear programming formulations (MILPs) and combina-
torial dual bounds from the literature are reviewed; a Dantzig-Wolfe [45] refor-
mulation is presented in §6.3; in §6.4 a new sufficient condition for solutions
connectivity is given; finally, computational results are reported in §6.5 while
conclusions are captured in §6.6.

6.2 Problem definition, MILP formulations and

bounds

The γ-QCP can be formalized as follow. Let H = (Q, EQ) = G[Q] be the
subgraph of G = (V, E) induced by the set of vertices Q ⊆ V. Given γ ∈ (0, 1],
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an optimal solution of γ-QCP is an induced subgraph H of maximum order
|Q∗| and with a number of edges |EQ∗ | ≥ γ · |Q∗ |(|Q∗ |−1)

2 .

6.2.1 MILP formulations

Veremyev et al. [130] propose four MILP formulations for γ-QCP, the tightest
of which, reported in the following, consists of O(|V| + |E|) variables and
O(|E|) constraints. Let xi, i ∈ V, and ze, e ∈ E, be binary variables with xi = 1
iff i ∈ Q, and ze = 1 iff e ∈ EQ. Moreover, let yk, k ∈ K = {kL, . . . , kU}, be the
binary variable with yk = 1 if H is of order k. The formulation reads as:

[Cγ] : |Q∗| = max ∑
i∈V

xi (6.1)

ze ≤ xi , ze ≤ xj ∀e = {i, j} ∈ E (6.2)

∑
i∈V

xi ≤ ∑
k∈K

kyk (6.3)

∑
k∈K

yk = 1 (6.4)

γ ∑
k∈K

k(k− 1)
2

yk ≤ ∑
e∈E

ze (6.5)

xi , ze, yk ∈ {0, 1} ∀i ∈ V, ∀e ∈ E, ∀k ∈ K. (6.6)

Edge e = {i, j} belongs to the γ-quasi-clique H if (and only if) vertex i and j

are both in Q, see constraints (6.2). The order k of H is defined by constraints
(6.3) and (6.4), and constraint (6.5) bounds from below the density of H by γ.

[Cγ] can be easily modified to model other density-based clique relaxations:
a formulation for the maximum s-defective clique problem can be obtained by
replacing constraint (6.5) with

∑
k∈K

k(k− 1)
2

yk ≤ ∑
e∈E

ze + s

whereas a formulation for the maximum degree-based γ-QCP results by re-
placing (6.5) with the set of constraints

γ(∑
k∈K

kyk − 1) ≤ ∑
e={i,j}∈E

ze + γ(kU − 1)(1− xi) ∀i ∈ V.

The size of [Cγ] grows with the density of G whereas an alternative MILP,
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originally presented in [107], does not. Such a formulation is obtained by lin-
earizing the quadratic constraint that models the density threshold condition
|EQ∗ | ≥ γ · |Q∗ |(|Q∗ |−1)

2 . Namely, by introducing an additional variable wi, for
each i ∈ V, such that:

wi = γxixi + ∑
j∈V

(aij − γ)xixj

where aij is equal to one if {i, j} ∈ E and zero otherwise, the γ-QCP can be
formulated as follows:

[Pγ] : |Q∗| = max ∑
i∈V

xi (6.7)

∑
i∈V

wi ≥ 0 (6.8)

wi ≤ uixi , wi ≥ lixi ∀i ∈ V (6.9)

wi ≤ γxi + ∑
j∈V

(aij − γ)xj − li(1− xi) ∀i ∈ V (6.10)

wi ≥ γxi + ∑
j∈V

(aij − γ)xj − ui(1− xi) ∀i ∈ V (6.11)

xi ∈ {0, 1}, wi ∈ R ∀i ∈ V (6.12)

where ui and li respectively are upper and lower bounds on the value of wi

obtained by setting:

ui = (1− γ) ∑
j∈V

aij, li = −(n− 1− ∑
j∈V

aij)γ ∀i ∈ V.

Formulation [Cγ] rapidly grows due to its O(|E|) constraints and therefore it
is suitable for computing dual bounds only on graphs sparse enough. On the
contrary, the number of variables and constraints of [Pγ] grow linearly with
|V| and does not depend on graph density, but the bound provided by the
linear relaxation of [Pγ] is weaker than the one obtained by [Cγ] (see Section
6.5).

A smaller formulation on dense graphs can be derived by looking at com-

plementary γ-quasi-cliques, i.e., induced subgraphs G[Q] with a density that
does not exceed γ ∈ [0, 1) [27]. Any γ-quasi-clique on G then corresponds to
a complementary (1− γ)-quasi-clique on the complement graph Ḡ = (V, Ē),
both induced by the subset of vertices Q. Hence, an optimal solution of γ-
QCP can be achieved by solving to optimality the maximum complementary
(1− γ)-quasi-clique problem by means of the integer program [C̄γ] consisting
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of (5.1), (5.4), (6.4), (5.6) plus the following constraints:

xi + xj − 1 ≤ ze ∀e = {i, j} /∈ E (6.13)

∑
e/∈E

ze ≤ (1− γ) ∑
k∈K

k(k− 1)
2

yk. (6.14)

The formulation is a straightforward adaptation of [Cγ]; constraints (6.13) is
expressed for each edge in Ē and ensures the presence of an edge e = {i, j}
within the complementary (1− γ)-quasi-clique if (and only if) both endpoints
i and j are selected. Finally, inequality (6.14) models the density restriction
of a complementary (1− γ)-quasi-clique. Formulation [C̄γ] uses O(|V|+ |Ē|)
variables and O(|Ē|) constraints.

6.2.2 Primal and dual bounds

A lower bound kL to |Q∗| is given by the order of any clique of G. On the other
hand, a basic upper bound to |Q∗| is in [107]:

kU =

⌊

1
2
+

1
2

√

1 +
8|E|

γ

⌋

.

A better upper bound k̄U can be obtained in O(|V| log |V|) as follows, see also
[102]. Any γ-quasi-clique H = (Q, EQ) fulfils by definition |Q|(|Q| − 1) ≤
2 |EQ |

γ . Moreover, |EQ| = ∑i∈Q
dH

i
2 ≤ ∑i∈Q

min{|Q|−1,di}
2 , where di is the degree

of i in G and dH
i is the degree of i in H. Therefore:

|Q|(|Q| − 1) ≤ 1
γ ∑

i∈Q

min{|Q| − 1, di} ≤
1
γ

|Q|
∑
i=1

min{|Q| − 1, di}

where the last inequality holds if vertices of G are sorted by non-increasing
degrees, i.e., di ≥ dj for i < j. It easy to see that the largest integer Q that
satisfies the above inequality is a valid upper bound k̄U for |Q∗|, and that
k̄U < kU for the |Q∗| < |V|.

Let ω(G) be the clique number of graph G, i.e. the order of the maximum
clique of G. If 1− 1

ω(G)
< γ, an alternative upper bound kω

U on |Q∗| has been
defined in [107] as:

kω
U =

⌊

ω(G)γ

1−ω(G) + ω(G)γ

⌋

≥ |Q∗|. (6.15)
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Namely, the set of integer points that non-trivially satisfy (6.16) corresponds
to the collection Si = {Si1, Si2, . . .} of all the non-empty partial stars of i con-
taining less than kU edges. Let S j

i ⊂ Si be the collection of the partial stars
including the edge {i, j} ∈ E. Then for any e = {i, j} ∈ E, the variables xi and
ze of [Cγ] can be rewritten as

xi =
|Si |
∑
h=1

λih ze =
|S j

i |
∑
h=1

λih

|Si |
∑
h=1

λih ≤ 1 λih ∈ {0, 1},

where variable λih is equal to 1 if the partial star Sih is selected, and 0 other-
wise.

The resulting MIP formulation reads as follows:

[Dγ] : |Q∗| = max ∑
i∈V

|S i |
∑
h=1

λih (6.17)

|Si |
∑
h=1

λih ≤ 1 ∀i ∈ V (6.18)

|S j
i |

∑
h=1

λih −
|S i

j |

∑
h=1

λjh = 0 ∀e = {i, j} ∈ E (6.19)

∑
i∈V

|Si |
∑
h=1

λih ≤ ∑
k∈K

kyk (6.20)

∑
k∈K

yk = 1 (6.21)

∑
k∈K

⌈

γk(k− 1)
2

⌉

yk −
1
2 ∑

i∈V

|Si |
∑
h=1
|Sih|λih ≤ 0 (6.22)

λih ∈ {0, 1} ∀i ∈ V, h ∈ {1, . . . , |Si|}(6.23)

yk ∈ {0, 1} ∀k ∈ K. (6.24)

Constraint (6.18) requires that at most one partial star can be selected for each
vertex. Constraints (6.19) impose a consistent selection of partial stars, that is,
if a partial star Sih is chosen and Sih contains the edge {i, j} , then a partial
star Sjp including the edge {j, i} must be selected too. To this purpose, the
coefficient of the variable λih is +1 for edges {i, j} ∈ Sih with i < j and −1
otherwise. Constraints (6.20), (6.21) and (6.22) directly derive from [Cγ]

Figure 6.2 shows the coefficients matrix of constraints (6.18) and (6.19) for
the kite graph (the kite has |V| = 5 and |E| = 6, see [29]). Gray columns
describe the optimal solution for γ = 0.8, corresponding to the clique induced
by vertices {1, 2, 3}. The clique is composed by overlapping partial stars S11,
S21 and S31, where edges are weighted 1

2 in density constraint (6.22).
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with Γ(e = {i, j}) = −1 if i < j and Γ(e) = 1 otherwise. The pricing problem
search for the set of at most (kU − 1) edges that maximize c̄(i) (6.25). Such
a set can be obtained simply by ranking the edges of S(i) by non decreasing
values of ( 1

2 ψ + Γ(e)πe).
Formulations [Cγ] and [Dγ] are not suitable for solving the γ-QCP on dense
graphs due their O(|E|) constraints, and even the continuous relaxation can
be difficult to solve for moderate size instances. However, at the cost of a
small loss in the dual bounds quality, a surrogate relaxation [DS

γ] of [Dγ] can
be considered by replacing constraints (5.11) with the following ones:

|Si |
∑
h=1
|Sih|λih − ∑

j∈N(i)

|S i
j |

∑
h=1

λjh = 0 ∀i ∈ V. (6.26)

Constraint (6.26) are obtained, for each vertex i, by summing up all constraints
in (5.11) for e = {i, N(i)}. Hence, [DS

γ] has O(|V|) constraints. Now, let θi ∈
R be the values of the dual variable related to (6.26). The pricing problem
for [DS

γ] associated to vertex i can be easily derived from (6.25) by properly
adapting it into

c̄(i) = 1− σi − δ + max ∑
e∈S(i)

(
1
2

ψ− θi + θj)we. (6.27)

6.4 Quasi-clique connectivity

In several real-world applications, finding cohesive clusters is naturally re-
ferred to the identification of single connected components on graphs [64]. In
[59] a thorough discussion of approaches for the community detection prob-
lem is presented and the connectivity is assumed as a required property.

Such assumption is often reasonable as disjointed clusters actually represent
clusters whose mutual interaction can be assumed irrelevant with respect to
the aggregation properties of interest. By contrast, solutions composed of mul-
tiple connected components are suitable or even characterizing for alternative
problems, such as clique relaxation packing problems or maximal clique relaxation

enumeration problems, which arise by generalizing the corresponding optimiza-
tion problems originally defined on cliques [32, 2].
Optimal k-core, k-defective and γ-quasi cliques can be disconnected and there-
fore the corresponding MRCPs should explicitly require the connectivity con-
dition. One can argue that connectivity can be ensured by considering alter-
native clique relaxations, such as k-club (an induced subgraph of diameter at
most k, see [3, 95]) or k-block (an induced subgraph whose minimum vertex

cut is at least k, see [38, 64]), for which optimal solutions are always connected.
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Generally speaking however, the purpose of k-clubs and k-blocks is to guaran-
tee respectively a given degree of reachability and robustness, whereas den-
sity based relaxations, such as k-defective and γ-quasi-cliques, are useful to
deal with noisy and missing data. Moreover, although a γ-quasi-clique can be
composed by several very dense disconnected subgraphs, typically the signifi-
cant γ threshold (γ > 0.5) results in solutions made of a single large connected
component along with other small ones. On the other hand, it is easy to see
that a γ-quasi-clique can be composed by k connected components of the same
order only if γ < 1/k. This also implies that cut-edges of a connected solution
generally link a large component to small ones.

We suppose that the lack of an explicit request of connectivity within formu-
lations of MRCP can be attributed to the easiness of modeling it in mathemati-
cal programming terms. Indeed, several solution approaches can be conceived
that take advantage of connectivity. For instance, in a branch-and-bound the
selection of the branching variable can be done assuming the connectivity of
the chased solution.

Ensuring the connectivity within MILP formulations can be done in several
ways, typically by recalling variables and constraints used to model connec-
tivity in Hamiltonian or shortest path problems [121]. Indeed, a large body of
research exists on this topic, see for example [31] and the references therein, as
well as the recent polyhedral study of the connected subgraph polytope [132].

As example, connectivity can be guaranteed for γ-QCP (and similarly for
other MRCPs) by introducing variables ci ∈ {0, 1} for each vertex i ∈ V,
where ci is set to 1 iff vertex i is selected as source, and flow variables fij ∈ R

for each edge {i, j} ∈ E. Optimal connected γ-quasi-cliques can be found by
solving a MILP formulation that adds to the formulation [Cγ] in Section 6.2
the following constraints:

∑
i∈V

ci = 1 (6.28)

ci ≤ xi ∀i ∈ V (6.29)

∑
h∈V

xh − 1− ku(1− ci) ≤ ∑
j∈N(i):i<j

fij − ∑
j∈N(i):j<i

f ji ∀i ∈ V (6.30)

∑
h∈V

xh − 1 + ku(1− ci) ≥ ∑
j∈N(i):i<j

fij − ∑
j∈N(i):j<i

f ji ∀i ∈ V (6.31)

−ku(1 + ci − xi)− 1 ≤ ∑
j∈N(i):i<j

fij − ∑
j∈N(i):j<i

f ji ∀i ∈ V (6.32)

ku(1 + ci − xi)− 1 ≥ ∑
j∈N(i):i<j

fij − ∑
j∈N(i):j<i

f ji ∀i ∈ V (6.33)
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−(ku − 1)ze ≤ fij ≤ (ku − 1)ze ∀e = {i, j} ∈ E (6.34)

ci ∈ {0, 1} ∀i ∈ V. (6.35)

By means of (6.28) and (6.29), one vertex is selected as source node among
the ones belonging to the γ-quasi-clique. Constraints (6.30)-(6.33) resemble
single-flow constraints for TSP adapted on undirected graphs: (6.30) and
(6.31) enforces that exactly |Q∗| − 1 units of flow leave the source, whereas
(6.32) and (6.33) ensures that a single unit of flow is absorbed by any other
vertices of the γ-quasi-clique. Finally, (6.34) and (6.35) set the bounds for fij

variables and ci respectively, where fij results zero if e = {i, j} /∈ EQ. On the
whole, this method requires the addition of O(|V| + |E|) variables and con-
straints to [Cγ].

In [106] the sufficient conditions that ensures the connectivity of optimal
solutions are depicted for the main first-order clique relaxations. In particular,
a solution of the γ-QCP with |Q| vertices is connected if

⌈

γ

(|Q|
2

)

−
(|Q| − 1

2

)⌉

≥ 1 (6.36)

holds. Figure (6.3) reports the upper bound on |Q| set by inequality (6.36) with
respect to γ.

𝛾

|𝑄|

Figure 6.3: Upper bound on |Q| values set by (6.36)

Firstly, condition is ineffective for γ < 0.64. Then, the values of |Q| required
are small even for reasonable values of γ. For instance, if γ = 0.9, the max-
imum γ-quasi clique must contain at most 19 vertices to verify the condition
and this value is not meaningful for graphs of practical interest.
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In the following we present results related to the structure of γ-quasi-cliques
based on the existence of small connected components. Recall that G[Q] refers
to the subgraph (Q, EQ) of G induced by the subset of vertices Q ⊆ V.

Lemma 6.4.1. Let G be connected and G[Q] be a γ-quasi-clique formed by µ con-

nected components with at least one component having at most three vertices. Then,

there exists a γ-quasi-clique of the same order and no smaller size with at most µ− 1
connected components.

Proof. Let X be a connected component of G[Q] with at most 3 vertices, and
P = p1 − . . . − pq be the longest simple path connecting X to some other
connected component of G[Q], say Y, with p1 vertex of X and pq vertex of Y

(P always exists since G is connected). If q ≤ 4, (part of) X can be replaced
by (part of) P thus reducing the number of connected components of G[Q] by
one, while the number of edges (vertices) of G[Q] does not decrease (increase).
If q > 4, there are at least 3 vertices {u, v, w} in G\G[Q] that can be connected
to some other connected component of G[Q] (since G is connected). Hence
the vertices of X can be replaced by u, v, w without losing any edge and thus
obtaining a γ-quasi-clique with at most µ− 1 connected components.

The above lemma can be used to get the following result related to the max-
imum number of connected components of a γ-quasi-clique:

Lemma 6.4.2. Let G[Q] be a γ-quasi-clique with µ connected components and such

that

|EQ| >
(|Q| − 4(µ− 1)

2

)

+ 6(µ− 1) (6.37)

holds. If G is connected, then a γ-quasi-clique with |Q| vertices and at most µ− 1
connected components can be easily obtained by G[Q].

Proof. Inequality (6.37) forces G[Q] to have a number of edges that strictly ex-
ceeds the total number of edges incident on |Q| vertices disjointed into a clique
Y of order |Q| − 4(µ− 1) and µ− 1 cliques of 4 vertices each one (connected
components with less than 4 vertices can be excluded by Lemma 6.4.1). For
the properties of the binomial coefficient, removing vertices of Y (up to a min-
imum order of 4) to enlarge the other µ − 1 cliques cannot increase the total
number of edges of the µ cliques. Hence, the right-hand side of (6.37) defines
an upper bound on the number of edges for any induced subgraph of G with
|Q| vertices divided into µ (or more) connected components. Therefore, if |EQ|
is greater than such bound there exists at least a connected component in G[Q]

with at most three vertices. The thesis follows by Lemma 6.4.1.
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A sufficient condition for the connectivity of γ-QCP solutions can be obtained
by setting µ = 2 in Lemma 6.4.2.

Proposition 9. If G is connected and |EQ| ≥ 17 + |Q|
2 (|Q| − 9) then either G[Q]

is a connected γ-quasi-clique, or a connected γ-quasi-clique with |Q| vertices can be

easily obtained from G[Q].

Furthermore, the following dominance result holds:

Proposition 10. The sufficient condition reported in Proposition 9 dominates condi-

tion (6.36) for any |Q| ≥ 5.

Proof. Let G[Q] be a γ-quasi-clique such that (6.36) is valid. By definition
|EQ| ≥ γ(|Q|2 ) holds. Then, by inequality (6.36) it follows

⌈

|EQ| −
(|Q| − 1

2

)⌉

= |EQ| −
(|Q| − 1

2

)

≥ 1

where the second member is given by the difference of two integer terms. The
statement then derives by algebraic manipulations.

To show that the two conditions are not equivalent, we provide a simple ex-
ample. Let |Q| = 10, |EQ| = 36 and γ = 0.8. Clearly, G[Q] is a γ-quasi-clique.
It is easy to see that condition (6.36) is not satisfied, whereas Proposition 9
proves that G[Q] is connected.

Note that Proposition 9 cannot explicitly detect the connectivity of γ-QCP
solutions made of at most 4 vertices. Nevertheless, Proposition 6.4.1 implic-
itly ensures the connectivity of all γ-quasi-cliques with at most 7 vertices on
connected graphs. Indeed, any partition of these vertices into two (or more)
disjointed subsets would have (at least) a connected component made by at
most 3 vertices. Hence, Proposition 9 integrated with Lemma 6.4.1 dominates
(6.36) for any value of |Q|.

Finally, even if we contextualized the discussion to the γ-QCP, any result in-
dependent by γ can be straightforwardly inherited for analyzing the connec-
tivity of solutions related to other optimization problems defined on graph,
such as problems within the family of MRCP for which solutions can be dis-
connected (e.g., k-core, k-bundle).

6.5 Computational results

We carried out an extensive experimental campaign that mainly aim to study
the quality of combinatorial and LP based dual bounds as well as the effec-
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tiveness of the sufficient conditions to recognize connected γ-quasi-cliques.
The column generation has been coded in C++ and all the linear programs

solved by IBMr CPLEXr 12.5.0.0 on a Intelr Core i7-7500U 2.70 GHz ma-
chine with 16Gb RAM. A CPU time limit of 7200 seconds has been used
for all the experiments, and all the integer programs have been set with
K = {kL = 2, . . . , k̄U} (see (5.18)). Solutions obtained by the greedy vertex
elimination procedure of [123] have been used to measure the optimality gap
(when optimal solutions were not available), and to evaluate the effectiveness
of connectivity conditions.

Experiments have multiple purposes: in §6.5.1 the quality of the formula-
tions [Cγ], [C̄γ], [DS

γ] and [Pγ] has been evaluated with respect to the graph
density d and parameter γ. In §6.5.2 the combinatorial dual bounds kU and
k̄U have been compared to each other, whereas CPU times and tightness of
the dual bounds provided by [DS

γ] have been reported in §6.5.3. Finally, the
effectiveness of the sufficient connectivity conditions is discussed in §6.5.4.

Detailed numerical results are listed in the Appendix. In the following we
illustrate the experiments by means of performance profiles [53]: given a per-
formance indicator β of two algorithms and/or programs a and b, e.g. the
optimality gap or the CPU running time, the performance profile of a plots
the fraction of the number of instances (the ordinate) for which the ratio
βa/ min{βa, βb} is less than or equal to a given threshold (the abscissa). For
the sake of readability, the abscissa axis is in logarhitmic scale in all the fol-
lowing charts.

6.5.1 LP-based dual bounds: sensitivity analysis

We perform a sensitivity analysis of models in sections 6.2 and 6.3 by us-
ing six values of γ = {0.5, 0.6, 0.7, 0.8, 0.9, 0.95} and 80 Erdös-Rényi uniform
random graphs [56] with |V| = 50. The graphs are grouped into 4 classes
Rp of 20 instances each, where p ∈ {0.2, 0.4, 0.6, 0.8} indicates the mean
density d, e.g., R0.2 is the set of 20 random graphs whose mean density is
d = 0.2. Let |Q∗| be the optimal (or the best) integer solution provided by
CPLEX and QU

β the dual bound computed by means of the formulation β,

with β ∈ {[Cγ], [DS
γ], [C̄γ], [Pγ]}. The performance is evaluated in terms of the

percentage optimality gap

OGβ = 100 ·
QU

β − |Q∗|
QU

β

. (6.38)

Generally speaking, the optimality gaps often reach high values and the
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dual bounds are quite weak (see Table 6.1 in the Appendix for details). How-
ever, the best one always dominates k̄U . The gaps decrease as the density of
the graphs gets larger or the γ diminishes. In any case, the bound provided
by [Pγ] is always dominated by either QU

[Cγ ]
or QU

[C̄γ ]
.

For each class of graphs and value of γ, Figure 6.4 shows the best percentage
gap between OG[Cγ ] and OG[C̄γ ]

: white bars indicate that OG[Cγ ] is better than
OG[C̄γ ]

, black bars otherwise.
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Figure 6.4: min{OG[Cγ ], OG[C̄γ ]
} for different γ and graph densities

[Cγ] achieves the best results for d ≤ 0.4 but one case (γ = 0.5 on class
R0.4). For larger densities, [C̄γ] performs better in all the non-trivial cases,
i.e., when the optimal solution corresponds to the trivial upper bound |V|.
Formulations [Cγ] and [C̄γ] therefore looks to be complementary with respect
to the graph density: [Cγ] is suitable for computing dual bounds on sparse
graphs, whereas [C̄γ] is convenient on dense graphs. As a consequence of this
combined behaviour random graphs with d ≤ 0.5 appear the hardest to solve.

Looking at the formulation [DS
γ], the dual bound QU

[DS
γ ]

still continues to be

slightly tighter than QU
[Cγ ]

(see Table 6.1) though [DS
γ] is a surrogate relaxation

of [Dγ]. On the other hand, the computational burden to solve the linear re-
laxation of [Dγ] becomes much higher as the graph density increases, making
[Dγ] poorly competitive. As a final remark, the computation of all the dual
bounds always required a negligible CPU time, given the small order of the
considered random graphs.
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6.5.2 Combinatorial dual bound comparison

The dual bounds kU and k̄U has been compared to each other on two groups
of instances: the 16 benchmark sparse graphs used in [130], and the 64 bench-
mark DIMACS instances [114] for γ = {0.5, 0.7, 0.8, 0.9} (see Table 6.2 and
Table 6.3 in the Appendix). The graphs in the former set are very sparse (aver-
age density d = 0.008) and represent real-world networks in the fields of social
networks, biology, telecommunications and transportation. Those in the latter
set are denser graphs (average density d = 0.621) often used as benchmarks
for clique problems.

The percentage optimality gap (6.38) has been computed by means of the
best known lower bound |Ql |, i.e., the maximum between an optimal solution
value (if available) and the heuristic solution value.

Numerical results are reported in the Appendix, Tables 6.4 and 6.5. The
performance profile on the quality of the two bounds is depicted in Figure
6.5. The cumulative distributions show that (i) k̄U always dominates kU (as
expected), (ii) the weakness of kU is more pronounced on sparse graphs for
which the ratio OGkU

/OGk̄U
is always ≥ 2 and reaches peaks of 25.9, and (iii)

OGk̄U
improves OGkU

of at least 50% in roughly the 80% of DIMACS graphs.
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Figure 6.5: Performance profile of gaps OGkU

and OGk̄U

Besides trivial-instances and three additional cases with γ = 0.5, in which
both OGkU

and OGk̄U
are ≤ 1.02%, the average optimality gaps always result

considerably large, in particular for sparse graphs, and grow for increasing
values of γ. The mean ratio OGkU

/OGk̄U
decreases as γ increases on DIMACS

instances (from 3.97 for γ = 0.5 to 1.83 for γ = 0.9) and exhibits an opposite
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behaviour on sparse graphs (from 4.43 for γ = 0.5 to 8.96 for γ = 0.9).
As remarked in §6.2.2, the clique-based bound kω

U defined by (6.15) rapidly
becomes weak on dense graphs. Indeed, it can be exploited only in two DI-
MACS instances, namely D35 and D38 with γ = 0.9, provided that we assume
the best known lower bound ωL(G) on the clique number ω(G) as the optimal
clique number [114]. Under this hypothesis, the quality of kω

U appears largely
better than k̄U , with an absolute reduction of 72 vertices in D35 and 104 ver-
tices in D38, respectively. Nevertheless, the optimality gap still remains large,
i.e. 350% for the former instance and 710% for the latter. We point out that the
bound kω

U is defined up to ω(G) = 9 for γ = 0.9, and we used ωL(G) = 8 for
D35 and ωL(G) = 9 for D35 that are very close to the upper limit. In all other
DIMACS instances, the value of ωL(G) is already sufficiently large to make
kω

U unusable.

6.5.3 LP-based dual bound comparison

On the same set of instances (Table 6.2 and Table 6.3) we compared the linear
relaxation of integer programs [DS

γ], [Cγ] and [C̄γ] for γ = {0.5, 0.7, 0.8, 0.9}.
Numerical results on gaps and CPU times are reported in Tables 6.6 and 6.7
(sparse graphs) and Tables 6.8 and 6.11 (DIMACS graphs).

Sparse graphs Figures 6.6 and 6.7 depict the performance profiles of per-
centage optimality gaps and running times, respectively. The dual bound
provided by [Cγ] is not strictly dominated for all the values of γ. However,
the quality of [DS

γ] is comparable to that of [Cγ] since the mean ratio between
gaps is 1.08, and in the 73.44% of the cases the bounds coincide. Moreover,
QU

[DS
γ ]

improves on average the combinatorial bound k̄U by 134.15% (γ = 0.5),

140.34% (γ = 0.7), 139.43% (γ = 0.8) and 138.63% (γ = 0.9).
We do not report the performance of [Pγ] and [C̄γ] because the former pro-

vides a dual bound always dominated by the other formulations, whereas the
latter is either not able to provide a bound within the time limit (given its
O(|Ē|) constraints) or QU

[C̄γ ]
is dominated by both QU

[Cγ ]
and QU

[DS
γ ]

.

The computation of QU
[DS

γ ]
is faster than that of QU

[Cγ ]
(up to 20%) in about

the 60% of the 64 cases, whereas QU
[Cγ ]

is obtained roughly 3.5 time faster in
about the 6% of the cases: the whole CPU times to get the bounds for all
the 64 cases are 1919.27 seconds for the former and 2062.90 seconds for the
latter, with an overall gap of 7.48%. Varying the value of γ seems to not affect
the computational time significantly and there is no evidence of correlation
between the two measures.
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Figure 6.8: Performance profile of gaps OG[DS
γ ]

and OG[C̄γ ]
on DIMACS

graphs.

Dense graphs Figures 6.8 and 6.9 show the performance profiles (percentage
optimality gaps and running times, respectively) of the formulations [DS

γ] and
[C̄γ]. QU

[C̄γ ]
is better than QU

[DS
γ ]

in 90.25% of the cases providing a smaller gap

up to 86%. However, [C̄γ] is not able to produce a valid bound within the
time limit in 9.10% of the cases. In particular, on D1-D12 instances QU

[C̄γ ]
is,

on average, 61.76% tighter than QU
[DS

γ ]
for γ = 0.8 and 79.79% for γ = 0.9,

whereas it is 48.86% tighter for γ = 0.9 on the nontrivial instances of the
subclass D51-D60. Instead, QU

[DS
γ ]

is generally better in groups D13-D19 and

D35-D49: in the former, [DS
γ] dominates [C̄γ] for larger values of γ, whereas

in the latter [DS
γ] is worse only for instances with high density value (d above

0.74) where however [C̄γ] is not able to give a valid bound in 12 cases.
We do not report the performance profile of formulation [Cγ] because when

the solution of the continuous relaxation of [Cγ] does not reach the time limit,
the dual bounds QU

[Cγ ]
and QU

[DS
γ ]

are always very close to each other. Indeed,

[Cγ] is not able to provide a valid bound in 31 of the 256 cases and, for the
remaining instances, [DS

γ] is only slightly better with a 0.12% of mean gap. As
a final remark on the quality of bounds, QU

[DS
γ ]

improves k̄U by 7.85%, 7.74%,

5.79% and 6.37% for γ = 0.5, 0.7, 0.8 and 0.9, respectively.

The CPU time required for computing QU
[DS

γ ]
is always much smaller than

that needed for obtaining QU
[C̄γ ]

: in 50% of the cases up to 16 times, in 8% of

the cases up to 3 orders of magnitude. In particular, the column generation
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the solutions in 184 of 480 cases. Proposition 9 verifies additional 107 solu-
tions, for a total of 291 positive occurrences. The numerical results show that
both the sufficient conditions are weaker for small values of γ and large den-
sity of graphs. This seems reasonable because the order |Q| of γ-quasi-cliques
usually get larger on instances with such features, thus making sufficient con-
ditions poorly effective. Indeed, Proposition 9 recognizes that the computed
solution is connected only on the 28.13% of DIMACS instances, though the
solutions obtained for this set of graphs are all connected for any value of γ.
In particular, inequality (6.36) is fulfilled by 17 solutions, whereas Proposition
9 is verified in other 55 additional cases. On the other hand, 15 of the 64 so-
lutions computed for the sparse graph instances are disconnected (actually,
four of them can easily be made connected since they are composed by only
two connected components, one of which consisting of at most 3 vertices) and
Proposition 9 is able to recognize the 67.92% of the 53 connected (or easily
connectable) γ-quasi-cliques found. In particular, 15 connected solutions ful-
fill the sufficient condition (6.36) and other 21 additional cases are certified by
Proposition 9, generally for higher values of γ; e.g., all primal solutions are
proved connected for γ = 0.9.

6.6 Conclusions and perspectives

In this chapter a new MIP reformulation [Dγ] for the γ-QCP, obtained by
decomposing star inequalities, has been presented. The bound provided by
[Dγ] is as good as that computed by the tightest formulation [Cγ] reported
in the literature and experiments show that also the surrogate relaxation [DS

γ]

roughly provide the same bounds. However, [DS
γ] seems to be more scalable

since the column generation procedure becomes much faster as the density of
graphs increases. On dense graphs the best dual bound is provided by formu-
lation [C̄γ], that models the γ-QCP by recalling the concept of complementary
(1 − γ)-quasi-clique. Nevertheless, [C̄γ] is computationally demanding for
sufficiently large graphs and solving [DS

γ] by column generation remains a
valid alternative, considering that the required CPU time is extremely limited.

Furthermore, the importance of taking into account the connectivity of
MCRP solutions has been discussed. We presented a new sufficient condition
to verify the connectivity of γ-quasi-cliques and, more in general, of solutions
of graph optimization problems that lack of an explicit constraint of connec-
tivity. For the γ-QCP, our result dominates the previous one reported in the
literature and tests showed that it is also quite effective in practice. Indeed,
it was able to prove the connectivity of primal solutions in the 49.87% of the
total cases, whereas the benchmark condition was limited to the 27.00% of the
instances.
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Computational experiments highlighted that the γ-QCP is a challenging
problem in practice and for several instances the integrality gap is very wide.
As future work, firstly we aim to enhance time performance of [Dγ] by ex-
ploring a dynamic strategy based on lazy constraints to lighten formulation,
where edge-flow constraints (5.11) are checked on the fly to ensure feasibility.
Then, we are interested at the implementation of polyhedral cuts (e.g., gener-
alized neighborhood, matching, forest) to tighten formulations [Dγ] and [DS

γ],
embedding such inequalities within a dynamic framework. On this ground,
we look at the design and implementation of a full branch-and-cut-and-price

procedure able to solve challenging instances of γ-QCP to optimality.
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6.7 Appendix

In this section we report the detailed numerical results discussed in Section
6.5. Table 6.1 lists the percentage optimality gaps obtained with the linear
relaxations of the integer programs. Each entry is the average computed on
the elements of one of the four considered classes of random graphs. Bold
numbers indicate whenever a formulation strictly dominates all the others.
Attributes of sparse and dense graphs (order, size and density) are indicated
in Tables 6.2 and 6.3, respectively.

Tables 6.4 and 6.5 show the percentage optimality gaps OGkU
and OGk̄U

between the value |Ql | provided by the greedy vertex elimination heuristic
and the dual bounds kU and k̄U respectively. A “-" mark indicates an instance
for which the dual bounds are trivially equal to |V| and the primal solution is
optimal.

Percentage optimality gaps and CPU running times for solving the continu-
ous relaxations of integer programs [DS

γ], [Cγ] and [C̄γ] are reported in Tables
6.6 and 6.7 (sparse graphs), and Tables 6.8-6.11 (DIMACS dense graphs); bold
values refer to strictly better gaps or CPU times.

Table 6.1: percentage optimality gaps on random graphs

R0.2 R0.4
γ OG[Cγ ] OG[DS

γ ]
OG[C̄γ ] OG[Pγ ] OG[Cγ ] OG[DS

γ ]
OG[C̄γ ] OG[Pγ ]

(%) (%) (%) (%) (%) (%) (%) (%)
0.5 66.91 66.05 97.50 141.38 26.63 26.60 22.01 26.90
0.6 86.92 86.22 123.92 203.69 62.82 62.79 63.60 66.61
0.7 110.36 109.35 157.11 279.57 99.66 99.62 110.46 112.51
0.8 119.65 118.93 169.10 335.80 134.41 134.17 154.58 160.82
0.9 137.61 135.98 193.50 415.98 196.31 194.72 222.65 245.88
0.95 174.43 171.86 232.25 518.15 204.80 201.08 230.78 264.36

R0.6 R0.8
0.5 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.00
0.6 1.75 1.75 0.65 1.82 0.00 0.00 0.0 0.00
0.7 38.73 38.73 20.79 29.61 0.00 0.00 0.0 0.00
0.8 97.55 97.53 67.13 75.14 1.28 1.28 0.45 1.40
0.9 183.67 182.66 137.23 143.51 61.76 61.70 21.35 33.71
0.95 238.74 234.95 181.89 186.83 124.47 123.26 54.56 65.72
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Table 6.2: Attributes of sparse graphs

ID Name |V| |E| d
I1 USAir97 332 2126 0.0387
I2 Harvard500 500 2043 0.0164
I3 Email 1133 5451 0.0085
I4 Homer 561 1628 0.0104
I5 SmallW 396 994 0.0127
I6 Erdos971 472 1314 0.0118
I7 Netscience 1589 2742 0.0022
I8 C.Elegans 453 2025 0.0198
I9 Erdos02 6927 8472 0.0004
I10 Geom 7343 11898 0.0004
I11 ca-HepTh 9877 25973 0.0005
I12 ca-GrQc 5242 14484 0.0011
I13 AS-735 7716 12572 0.0004
I14 PGPgiantcompo 10680 24316 0.0004
I15 EVA 8497 6711 0.0002
I16 California 9664 15969 0.0003

Table 6.3: Attributes of DIMACS graphs

ID Name |V| |E| d ID Name |V| |E| d
D1 brock200-1 200 14834 0.75 D33 MANN-a45 1035 533115 1.00
D2 brock200-2 200 9876 0.50 D34 MANN-a9 45 918 0.93
D3 brock200-3 200 12048 0.61 D35 p-hat300-1 300 10933 0.24
D4 brock200-4 200 13089 0.66 D36 p-hat300-2 300 21928 0.49
D5 brock400-1 400 59723 0.75 D37 p-hat300-3 300 33390 0.74
D6 brock400-2 400 59786 0.75 D38 p-hat500-1 500 31569 0.25
D7 brock400-3 400 59681 0.75 D39 p-hat500-2 500 62946 0.50
D8 brock400-4 400 59765 0.75 D40 p-hat500-3 500 93800 0.75
D9 brock800-1 800 207505 0.65 D41 p-hat700-1 700 60999 0.25
D10 brock800-2 800 208166 0.65 D42 p-hat700-2 700 121728 0.50
D11 brock800-3 800 207333 0.65 D43 p-hat700-3 700 183010 0.75
D12 brock800-4 800 207643 0.65 D44 p-hat1000-1 1000 122253 0.24
D13 c-fat200-1 200 1534 0.08 D45 p-hat1000-2 1000 244799 0.49
D14 c-fat200-2 200 3235 0.16 D46 p-hat1000-3 1000 371746 0.74
D15 c-fat200-5 200 8473 0.43 D47 p-hat1500-1 1500 284923 0.25
D16 c-fat500-1 500 4459 0.04 D48 p-hat1500-2 1500 568960 0.51
D17 c-fat500-10 500 46627 0.37 D49 p-hat1500-3 1500 847244 0.75
D18 c-fat500-2 500 9139 0.07 D50 san1000 1000 250500 0.50
D19 c-fat500-5 500 23191 0.19 D51 san200-0.7-1 200 13930 0.70
D20 hamming10-2 1024 518656 0.99 D52 san200-0.7-2 200 13930 0.70
D21 hamming10-4 1024 434176 0.83 D53 san200-0.9-1 200 17910 0.90
D22 hamming6-2 64 1824 0.90 D54 san200-0.9-2 200 17910 0.90
D23 hamming6-4 64 704 0.35 D55 san200-0.9-3 200 17910 0.90
D24 hamming8-2 256 31616 0.97 D56 san400-0.5-1 400 39900 0.50
D25 hamming8-4 256 20864 0.64 D57 san400-0.7-1 400 55860 0.70
D26 johnson16-2-4 120 5460 0.76 D58 san400-0.7-2 400 55860 0.70
D27 johnson32-2-4 496 107880 0.88 D59 san400-0.7-3 400 55860 0.70
D28 johnson8-2-4 28 210 0.56 D60 san400-0.9-1 400 71820 0.90
D29 johnson8-4-4 70 1855 0.77 D61 sanr200-0.7 200 13868 0.70
D30 keller4 171 9435 0.65 D62 sanr200-0.9 200 17863 0.90
D31 keller5 776 225990 0.75 D63 sanr400-0.5 400 39984 0.50
D32 MANN-a27 378 70551 0.99 D64 sanr400-0.7 400 55869 0.70
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Table 6.4: percentage optimality gaps obtained with the dual bounds kU and
k̄U

γ = 0.5 γ = 0.7 γ = 0.8 γ = 0.9
ID OGkU

OGk̄U
OGkU

OGk̄U
OGkU

OGk̄U
OGkU

OGk̄U

(%) (%) (%) (%) (%) (%) (%) (%)
D1 - - - - 73.87 68.47 333.33 297.62
D2 1.53 1.02 354.05 294.59 582.61 460.87 1133.33 858.33
D3 - - 129.63 116.05 370.27 316.22 680.95 557.14
D4 - - 47.33 44.27 262.00 232.00 677.27 577.27
D5 - - - - 109.78 103.80 613.73 556.86
D6 - - - - 116.20 109.50 574.07 520.37
D7 - - - - 112.09 106.04 586.79 532.08
D8 - - - - 109.19 102.70 574.07 520.37
D9 - - 150.81 142.35 800.00 717.50 2090.32 1780.65
D10 - - 139.44 131.99 768.67 691.57 2093.55 1790.32
D11 - - 154.97 146.36 767.47 687.95 2090.32 1780.65
D12 - - 154.13 145.87 847.37 761.84 2241.38 1913.79
D13 160.00 16.67 247.37 31.58 287.50 37.50 346.15 46.15
D14 96.55 15.52 152.63 26.32 181.25 31.25 226.92 46.15
D15 24.32 15.54 62.50 28.13 84.81 35.44 110.77 47.69
D16 282.86 17.14 413.64 31.82 488.89 44.44 566.67 53.33
D17 33.33 15.74 74.64 28.23 97.11 35.84 128.37 48.23
D18 189.39 16.67 285.71 30.95 331.43 37.14 393.10 48.28
D19 85.98 15.24 142.45 27.36 177.01 36.78 219.72 49.30
D20 - - - - - - - -
D21 - - - - - - 84.59 77.26
D22 - - - - - - - -
D23 65.63 40.63 462.50 300.00 740.00 460.00 900.00 525.00
D24 - - - - - - - -
D25 - - 57.42 50.32 221.13 187.32 923.81 766.67
D26 - - - - 244.12 235.29 1000.00 920.00
D27 - - - - - - 590.14 581.69
D28 - - 212.50 175.00 360.00 280.00 450.00 325.00
D29 - - - - 100.00 97.06 540.00 490.00
D30 - - 41.38 37.07 227.66 200.00 752.94 641.18
D31 - - - - 59.32 54.66 516.52 466.96
D32 - - - - - - - -
D33 - - - - - - - -
D34 - - - - - - - -
D35 231.75 182.54 785.00 580.00 1169.23 830.77 1850.00 1250.00
D36 1.02 0.68 42.86 33.14 105.26 84.21 268.33 211.67
D37 - - - - 21.94 18.99 122.95 108.20
D38 277.66 223.40 1150.00 862.50 1552.94 1111.76 2550.00 1750.00
D39 - - 37.22 28.48 88.15 70.14 240.00 190.91
D40 - - - - 17.76 15.33 107.73 94.09
D41 329.57 266.96 1337.93 1003.45 2343.75 1681.25 3988.89 2744.44
D42 0.29 0.14 37.21 28.37 91.67 73.26 220.99 173.46
D43 - - - - 20.07 17.41 115.54 101.01
D44 402.88 326.62 1746.88 1306.25 2810.53 2010.53 4636.36 3172.73
D45 1.02 0.61 42.91 33.16 103.12 82.60 284.38 226.04
D46 - - - - 23.12 20.05 131.30 115.52
D47 396.74 324.19 2212.82 1674.36 3736.36 2704.55 5585.71 3864.29
D48 - - 36.22 27.67 85.83 68.22 231.56 183.48
D49 - - - - 18.29 15.85 111.08 97.54
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Table 6.5: percentage optimality gaps obtained with the dual bounds kU and
k̄U

γ = 0.5 γ = 0.7 γ = 0.8 γ = 0.9
ID OGkU

OGk̄U
OGkU

OGk̄U
OGkU

OGk̄U
OGkU

OGk̄U

(%) (%) (%) (%) (%) (%) (%) (%)
D50 - - 36.89 18.77 40.75 15.48 2094.12 1611.76
D51 - - - - 41.67 33.33 58.56 41.44
D52 - - - - 16.88 11.88 27.54 18.12
D53 - - - - - - - -
D54 - - - - - - - -
D55 - - - - - - - -
D56 - - 36.29 18.55 41.07 16.07 1319.05 1009.52
D57 - - - - 49.60 40.80 66.82 48.82
D58 - - - - 46.67 38.04 63.72 46.05
D59 - - - - 41.13 33.21 58.56 41.89
D60 - - - - - - - -
D61 - - 1.53 1.53 165.71 151.43 433.33 375.76
D62 - - - - - - 1.53 1.53
D63 - - 576.00 486.00 1164.00 932.00 2192.31 1669.23
D64 - - - - 252.83 232.08 802.56 707.69

I1 37.31 14.93 59.18 22.45 69.77 23.26 97.14 31.43
I2 143.24 40.54 192.31 42.31 195.83 33.33 191.30 21.74
I3 492.00 184.00 792.86 278.57 800.00 261.54 746.15 223.08
I4 145.45 69.70 277.78 138.89 326.67 153.33 328.57 128.57
I5 125.00 57.14 211.76 94.12 257.14 107.14 327.27 127.27
I6 217.39 95.65 369.23 169.23 470.00 210.00 575.00 250.00
I7 238.71 22.58 270.83 20.83 277.27 13.64 271.43 4.76
I8 200.00 83.33 322.22 127.78 373.33 140.00 458.33 158.33
I9 922.22 361.11 1318.18 472.73 1522.22 522.22 1612.50 525.00
I10 395.45 109.09 607.69 169.23 616.67 158.33 608.70 130.43
I11 475.00 44.64 615.79 60.53 628.57 54.29 627.27 45.45
I12 197.53 16.05 269.09 29.09 272.55 23.53 265.31 12.24
I13 522.22 202.78 691.67 241.67 831.58 273.68 1013.33 313.33
I14 327.40 53.42 438.78 71.43 448.89 64.44 452.38 54.76
I15 1722.22 766.67 2660.00 1080.00 3150.00 1200.00 2950.00 1025.00
I16 873.08 342.31 1683.33 616.67 1566.67 533.33 1466.67 450.00
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Table 6.6: percentage optimality gaps on sparse graphs

γ = 0.5 γ = 0.7 γ = 0.8 γ = 0.9
ID |Ql | OG[Cγ ] OG[DS

γ ]
|Ql | OG[Cγ ] OG[DS

γ ]
|Ql | OG[Cγ ] OG[DS

γ ]
|Ql | OG[Cγ ] OG[DS

γ ]

(%) (%) (%) (%) (%) (%) (%) (%)
I1 67 0.00 0.00 49 0.00 0.00 43 0.00 0.00 35 8.57 11.43
I2 37 10.81 10.81 26 15.38 15.38 24 8.33 8.33 23 4.35 4.35
I3 25 28 28 14 64.29 64.29 13 53.85 53.85 13 38.46 38.46
I4 33 3.03 6.06 18 33.33 38.89 15 40.00 46.67 14 35.71 35.71
I5 28 3.57 7.14 17 23.53 23.53 14 28.57 35.71 11 45.45 54.55
I6 23 13.04 13.04 13 46.15 46.15 10 60.00 70.00 8 87.5 87.5
I7 31 0.00 0.00 24 4.17 4.17 22 4.55 4.55 21 0.00 0.00
I8 30 3.33 3.33 18 22.22 22.22 15 26.67 33.33 12 41.67 50.00
I9 18 11.11 16.67 11 36.36 36.36 9 44.44 55.56 8 37.50 50.00
I10 44 0.00 2.27 26 23.08 23.08 24 16.67 16.67 23 8.7 8.7
I11 56 0.00 0.00 38 10.53 10.53 35 8.57 8.57 33 3.03 3.03
I12 81 2.47 2.47 55 12.73 12.73 51 7.84 7.84 49 2.04 2.04
I13 36 0.00 0.00 24 8.33 8.33 19 21.05 21.05 15 33.33 33.33
I14 73 2.74 4.11 49 12.24 12.24 45 6.67 6.67 42 2.38 2.38
I15 9 0.00 0.00 5 40.00 40.00 4 50.00 50.00 4 25.00 25.00
I16 26 34.62 34.62 12 108.33 108.33 12 83.33 83.33 12 58.33 66.67

Table 6.7: CPU times on sparse graphs (in sec.)

γ = 0.5 γ = 0.7 γ = 0.8 γ = 0.9
ID T[Cγ ] T[DS

γ ]
T[Cγ ] T[DS

γ ]
T[Cγ ] T[DS

γ ]
T[Cγ ] T[DS

γ ]

I1 0.45 0.39 0.72 0.36 0.83 1.2 0.88 0.27
I2 1.06 0.31 0.98 0.64 1.53 0.52 1.11 0.33
I3 11.48 8.41 12.13 6.55 11.33 8.28 12.02 6.22
I4 0.66 0.64 0.59 0.89 0.70 0.61 0.83 0.55
I5 0.09 0.23 0.23 0.22 0.31 0.14 0.25 0.09
I6 0.17 1.61 0.30 1.11 0.22 0.92 0.17 0.59
I7 0.97 1.11 0.95 1.02 1.30 0.77 1.00 1.19
I8 0.95 0.59 1.05 0.56 0.80 0.56 0.94 0.36
I9 5.98 2.28 6.38 17.11 6.94 15.86 6.59 16.27
I10 11.17 30.69 10.11 36.36 9.69 31.7 9.55 31.36
I11 225.55 210.61 291.54 180.00 278.91 253.8 348.85 263.52
I12 27.28 22.39 21.67 20.84 18.88 19.59 21.95 22.70
I13 8.55 12.55 7.49 11.95 7.47 10.20 7.72 13.09
I14 62.99 123.19 56.25 117.36 65.65 110.98 60.97 115.92
I15 1.75 3.22 1.17 3.39 1.19 3.08 1.11 3.36
I16 100.61 43.09 112.52 42.09 79.42 40.89 120.03 42.58
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Table 6.8: percentage optimality gaps on DIMACS graphs

γ = 0.5 γ = 0.7 γ = 0.8 γ = 0.9
ID |Ql | OG[Cγ ] OG[DS

γ ]
OG[C̄γ ] |Ql | OG[Cγ ] OG[DS

γ ]
OG[C̄γ ] |Ql | OG[Cγ ] OG[DS

γ ]
OG[C̄γ ] |Ql | OG[Cγ ] OG[DS

γ ]
OG[C̄γ ]

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
D1 200 0.00 0.00 0.00 200 0.00 0.00 0.00 111 67.95 67.95 48.25 42 294.81 294.80 194.65
D2 196 1.29 1.02 0.76 37 283.99 284.00 252.74 23 441.07 441.07 405.87 12 822.77 822.68 790.74
D3 200 0.00 0.00 0.00 81 113.71 113.71 90.83 37 309.72 309.72 244.22 21 542.22 542.18 428.70
D4 200 0.00 0.00 0.00 131 43.50 43.50 33.97 50 229.22 229.22 173.28 22 565.60 565.58 421.42
D5 400 0.00 0.00 0.00 400 0.00 0.00 0.00 184 103.41 103.41 78.68 51 552.54 552.53 381.89
D6 400 0.00 0.00 0.00 400 0.00 0.00 0.00 179 109.31 109.31 83.64 54 516.93 516.92 355.36
D7 400 0.00 0.00 0.00 400 0.00 0.00 0.00 182 105.50 105.50 80.34 53 527.47 527.46 363.22
D8 400 0.00 0.00 0.00 400 0.00 0.00 0.00 185 102.45 102.45 77.76 54 516.72 516.71 355.48
D9 800 0.00 0.00 0.00 307 141.72 141.72 119.83 80 - 711.82 562.65 31 - 1762.58 1353.49
D10 800 0.00 0.00 0.00 322 131.20 131.20 111.16 83 - 684.96 541.40 31 - 1768.51 1356.53
D11 800 0.00 0.00 0.00 302 145.52 145.52 123.39 83 - 681.82 538.86 31 - 1761.04 1354.19
D12 800 0.00 0.00 0.00 303 145.08 145.08 123.29 76 - 755.11 598.65 29 - 1892.36 1454.60

D13 30 11.31 11.24 16.67 19 26.58 26.58 31.58 16 32.73 32.72 37.5 13 46.15 46.06 46.15
D14 58 13.27 13.23 15.52 38 24.19 24.19 26.32 32 29.46 29.46 31.25 26 42.09 41.96 46.15
D15 148 15.18 15.17 8.09 96 27.12 27.12 24.34 79 35.33 35.33 35.44 65 46.37 46.36 47.69
D16 35 13.13 13.06 17.14 22 29.56 29.56 31.82 18 39.56 39.56 44.44 15 49.56 49.44 53.33
D17 324 15.44 15.44 10.32 209 27.96 27.96 28.23 173 35.34 35.34 35.84 141 47.68 47.68 48.23
D18 66 12.80 12.76 16.67 42 27.24 27.24 30.95 35 33.99 33.99 37.14 29 44.15 44.13 48.28
D19 164 13.74 13.73 15.24 106 25.95 25.95 27.36 87 34.43 34.43 36.78 71 46.58 46.56 49.30
D20 1024 0.00 0.00 0.00 1024 0.00 0.00 0.00 1024 0.00 0.00 0.00 1024 0.00 0.00 0.00
D21 1024 0.00 0.00 0.00 1024 0.00 0.00 0.00 1024 0.00 0.00 0.00 532 - 77.26 31.66
D22 64 0.00 0.00 0.00 64 0.00 0.00 0.00 64 0.00 0.00 0.00 64 0.00 0.00 0.00
D23 32 40.63 40.63 36.63 8 300.00 300.00 300.00 5 460.00 460.00 460.00 4 535.87 525.00 525.00
D24 256 0.00 0.00 0.00 256 0.00 0.00 0.00 256 0.00 0.00 0.00 256 0.00 0.00 0.00
D25 256 0.00 0.00 0.00 155 50.32 50.32 32.77 71 187.32 187.32 131.24 21 767.20 766.67 575.90

D26 120 0.00 0.00 0.00 120 0.00 0.00 0.00 34 235.29 235.29 195.61 10 921.10 920.00 631.37
D27 496 0.00 0.00 0.00 496 0.00 0.00 0.00 496 0.00 0.00 0.00 71 - 581.69 484.44
D28 28 0.00 0.00 0.00 8 175.00 175.00 136.27 5 280.00 280.00 228.57 4 341.35 325.00 273.60
D29 70 0.00 0.00 0.00 70 0.00 0.00 0.00 34 97.06 97.06 74.93 10 498.87 490.00 326.80
D30 171 0.00 0.00 0.00 116 36.75 36.75 26.70 47 195.60 195.60 148.38 17 627.12 627.07 481.76
D31 776 0.00 0.00 0.00 776 0.00 0.00 0.00 472 - 54.46 36.62 115 - 463.62 320.96

D32 378 0.00 0.00 0.00 378 0.00 0.00 0.00 378 0.00 0.00 0.00 378 0.00 0.00 0.00
D33 1035 0.00 0.00 0.00 1035 0.00 0.00 0.00 1035 0.00 0.00 0.00 1035 0.00 0.00 0.00
D34 45 0.00 0.00 0.00 45 0.00 0.00 0.00 45 0.00 0.00 0.00 45 0.00 0.00 0.00
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Table 6.9: percentage optimality gaps on DIMACS graphs

γ = 0.5 γ = 0.7 γ = 0.8 γ = 0.9
ID |Ql | OG[Cγ ] OG[DS

γ ]
OG[C̄γ ] |Ql | OG[Cγ ] OG[DS

γ ]
OG[C̄γ ] |Ql | OG[Cγ ] OG[DS

γ ]
OG[C̄γ ] |Ql | OG[Cγ ] OG[DS

γ ]
OG[C̄γ ]

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
D35 63 134.29 134.62 182.54 20 428.52 429.25 580.00 13 612.39 612.23 830.77 8 930.53 928.99 1250.00
D36 293 0.27 0.30 0.48 175 20.08 20.18 24.44 114 61.40 61.53 67.02 60 172.78 172.24 179.95
D37 300 0.00 0.00 0.00 300 0.00 0.00 0.00 237 17.83 17.83 10.09 122 103.55 103.31 63.42
D38 94 170.06 170.27 223.40 24 656.70 657.55 862.50 17 835.49 835.71 1111.76 10 1314.75 1315.29 1750.00
D39 500 0.00 0.00 0.00 309 16.82 16.92 20.19 211 49.75 49.87 53.04 110 155.43 154.76 156.72
D40 500 0.00 0.00 0.00 500 0.00 0.00 0.00 411 14.36 14.36 7.74 220 89.95 89.63 53.59
D41 115 204.43 204.66 266.96 29 763.27 763.94 1003.45 16 1269.89 1269.82 1681.25 9 2066.02 2066.68 2744.44
D42 696 0.12 0.11 0.13 430 15.84 15.99 19.98 288 60.28 51.58 56.43 162 139.28 138.95 143.94
D43 700 0.00 0.00 0.00 700 0.00 0.00 0.00 563 16.27 16.27 9.11 296 - 96.32 58.76
D44 139 252.98 253.25 - 32 996.08 996.89 - 19 1515.94 1516.25 2010.53 11 2382.06 2382.23 3172.73
D45 980 - 0.11 0.34 585 - 19.91 24.55 385 - 59.44 - 192 - 183.47 -
D46 1000 0.00 0.00 0.00 1000 0.00 0.00 0.00 783 - 18.82 10.79 393 - 110.22 69.30
D47 215 - 254.42 - 39 - 1296.10 - 22 - 2064.86 2704.55 14 - 2924.86 3864.29
D48 1500 0.00 0.00 - 936 - 16.03 - 642 - 48.03 - 339 - 148.42 -
D49 1500 0.00 0.00 0.00 1500 0.00 0.00 0.00 1230 - 14.88 - 650 - 92.97 -
D50 1000 0.00 0.00 0.00 618 - 15.97 - 562 - 11.61 - 34 - 1540.19 -
D51 200 0.00 0.00 0.00 200 0.00 0.00 0.00 132 32.67 32.67 11.09 111 40.34 40.34 5.85
D52 200 0.00 0.00 0.00 200 0.00 0.00 0.00 160 9.45 9.45 3.27 138 12.88 12.87 2.26
D53 200 0.00 0.00 0.00 200 0.00 0.00 0.00 200 0.00 0.00 0.00 200 0.00 0.00 0.00
D54 200 0.00 0.00 0.00 200 0.00 0.00 0.00 200 0.00 0.00 0.00 200 0.00 0.00 0.00
D55 200 0.00 0.00 0.00 200 0.00 0.00 0.00 200 0.00 0.00 0.00 200 0.00 0.00 0.00
D56 400 0.00 0.00 0.00 248 15.32 15.32 5.71 224 11.77 11.77 3.99 21 960.31 960.30 917.76
D57 400 0.00 0.00 0.00 400 0.00 0.00 0.00 250 40.05 40.05 15.92 211 47.55 47.55 10.79
D58 400 0.00 0.00 0.00 400 0.00 0.00 0.00 255 37.30 37.30 13.65 215 44.81 44.80 8.64
D59 400 0.00 0.00 0.00 400 0.00 0.00 0.00 265 32.12 32.12 11.18 222 40.24 40.24 6.01
D60 400 0.00 0.00 0.00 400 0.00 0.00 0.00 400 0.00 0.00 0.00 400 0.00 0.00 0.00
D61 200 0.00 0.00 0.00 196 1.53 1.53 1.07 70 149.07 149.07 109.07 33 369.96 369.88 256.77
D62 200 0.00 0.00 0.00 200 0.00 0.00 0.00 200 0.00 0.00 0.00 196 1.53 1.53 0.78
D63 400 0.00 0.00 0.00 50 473.19 473.19 422.24 25 903.60 903.60 830.65 13 1616.41 1616.24 1544.51
D64 400 0.00 0.00 0.00 400 0.00 0.00 0.00 106 230.36 230.36 175.33 39 698.42 698.41 501.94 11
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Table 6.10: CPU times on DIMACS graphs (in sec.)

γ = 0.5 γ = 0.7 γ = 0.8 γ = 0.9
ID T[Cγ ] T[DS

γ ]
T[C̄γ ] T[Cγ ] T[DS

γ ]
T[C̄γ ] T[Cγ ] T[DS

γ ]
T[C̄γ ] T[Cγ ] T[DS

γ ]
T[C̄γ ]

D1 3.35 < 0.005 0.03 0.39 < 0.005 0.03 14.71 0.06 0.09 28.92 0.05 0.48
D2 21.51 0.08 0.11 3.26 0.05 9.78 6.86 0.05 10.11 11.22 0.05 11.03
D3 2.57 0.02 0.08 4.54 0.03 0.61 14.24 0.03 0.56 19.06 0.03 1.03
D4 3.31 0.02 0.06 4.01 0.06 0.11 13.63 0.05 0.37 20.98 0.03 0.42
D5 21.33 0.02 0.28 3.53 0.03 0.33 398.93 0.13 24.80 655.91 0.19 58.59
D6 34.20 0.02 0.31 3.53 0.03 0.30 366.06 0.13 24.21 264.52 0.19 67.08
D7 32.31 0.03 0.30 3.53 0.03 0.31 369.46 0.14 22.68 1029.45 0.20 46.15
D8 32.78 0.03 0.31 3.67 0.02 0.31 324.50 0.13 36.60 385.29 0.20 66.5
D9 464.48 0.09 5.69 5172.18 0.81 2782.22 − 0.89 4565.12 − 0.84 3222.22
D10 428.80 0.08 5.62 4560.08 0.80 2328.41 − 0.86 2987.82 − 0.91 4226.71
D11 419.67 0.08 5.77 5342.64 0.75 2465.00 − 1.03 3075.39 − 0.94 2893.40
D12 483.92 0.08 5.83 5085.10 0.77 967.21 − 1.00 3012.10 − 1.02 2930.90
D13 1.44 0.03 0.05 0.22 0.03 0.09 0.64 0.02 0.08 1.76 0.02 0.09
D14 6.24 0.02 0.09 0.84 0.02 0.09 7.52 0.02 0.05 6.02 0.02 0.08
D15 37.10 0.05 5.97 5.41 0.05 11.39 22.18 0.05 3.37 37.47 0.03 0.14
D16 10.59 0.11 0.51 1.44 0.11 0.58 1.86 0.11 1.01 6.15 0.09 0.66
D17 684.63 0.23 706.45 128.34 0.19 179.45 748.23 0.17 1.50 530.97 0.22 1.22
D18 39.30 0.08 0.73 7.04 0.08 0.56 28.67 0.08 0.56 30.89 0.06 0.50
D19 103.20 0.17 1.29 14.68 0.14 0.94 344.14 0.13 0.84 121.57 0.14 0.58
D20 907.80 0.17 0.05 144.86 0.16 0.05 432.11 0.16 0.05 1568.37 0.16 0.05
D21 697.12 0.13 4.06 121.14 0.13 3.98 352.89 0.13 3.88 − 2.03 2400.82
D22 0.55 0.02 < 0.005 0.11 < 0.005 < 0.005 0.84 0.02 0.02 1.15 0.02 0.02
D23 0.09 0.02 0.02 0.03 < 0.005 0.09 0.03 0.02 0.16 0.09 < 0.005 0.16
D24 6.79 0.02 0.00 1.03 0.02 0.02 5.01 0.02 0.02 12.23 0.02 < 0.005
D25 6.10 0.02 0.14 10.08 0.09 6.19 5.80 0.05 16.65 45.52 0.05 20.76
D26 8.72 0.02 0.02 1.44 < 0.005 0.02 18.83 0.02 0.02 23.48 0.02 0.02
D27 35.24 0.03 0.17 8.53 0.05 0.19 32.81 0.05 0.16 − 0.25 0.45
D28 0.02 0.02 < 0.005 < 0.005 < 0.005 0.02 0.02 < 0.005 < 0.005 0.03 < 0.005 < 0.005
D29 0.67 0.02 < 0.005 0.14 < 0.005 0.02 1.28 0.02 < 0.005 2.03 < 0.005 < 0.005
D30 4.51 0.02 0.03 7.29 0.05 0.05 14.74 0.03 0.17 36.07 0.02 0.28
D31 576.38 0.08 2.76 38.19 0.08 2.79 − 0.81 710.62 − 0.91 1025.27
D32 17.50 0.03 < 0.005 3.73 0.03 < 0.005 13.15 0.05 0.02 34.21 0.03 0.02
D33 1091.77 0.16 0.03 162.02 0.16 0.03 655.49 0.16 < 0.005 1785.99 0.16 0.02
D34 0.03 0.02 < 0.005 0.03 < 0.005 < 0.005 0.05 < 0.005 < 0.005 0.11 < 0.005 < 0.005
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Table 6.11: CPU times on DIMACS graphs (in sec.)

γ = 0.5 γ = 0.7 γ = 0.8 γ = 0.9
ID T[Cγ ] T[DS

γ ]
T[C̄γ ] T[Cγ ] T[DS

γ ]
T[C̄γ ] T[Cγ ] T[DS

γ ]
T[C̄γ ] T[Cγ ] T[DS

γ ]
T[C̄γ ]

D35 14.23 0.19 56.92 7.75 0.17 1.67 9.80 0.11 1.23 18.08 0.11 0.83
D36 127.59 0.42 25.83 69.89 0.16 79.52 44.03 0.14 93.56 62.76 0.13 81.73
D37 8.92 0.02 0.38 12.55 0.02 0.80 157.88 0.09 25.09 205.91 0.13 43.80
D38 144.52 0.59 802.59 87.38 0.69 6.98 101.23 0.41 5.44 147.20 0.41 5.06
D39 49.06 0.03 9.86 655.58 0.53 285.92 685.61 0.59 589.22 626.69 0.55 428.13
D40 70.56 0.05 2.28 30.25 0.03 2.53 1891.25 0.31 27.94 2032.66 0.24 132.73
D41 559.87 1.72 3522.42 160.02 1.56 21.70 143.17 1.19 18.89 527.61 1.81 15.17
D42 879.42 3.19 808.44 2564.84 1.39 3341.45 5765.97 1.50 5142.14 3406.08 1.86 2095.45
D43 218.23 0.06 7.03 75.52 0.06 7.48 6168.50 0.80 316.52 − 0.83 552.95
D44 4819.48 3.97 − 930.89 3.61 − 3174.97 2.70 97.44 3121.17 2.64 81.22
D45 − 8.10 80.14 − 4.13 3268.00 − 3.67 − − 4.06 −
D46 2071.77 0.12 18.44 156.02 0.13 18.53 − 2.03 908.89 − 2.25 2858.16
D47 − 21.86 − − 19.49 − − 11.80 514.92 − 10.64 360.02
D48 1927.84 0.19 − − 14.13 − − 13.88 − − 12.50 −
D49 332.20 0.25 88.16 430.66 0.27 85.75 − 7.03 − − 5.89 −
D50 501.26 0.11 24.51 − 1.80 − − 2.05 − − 1.81 −
D51 3.18 0.02 0.05 3.01 < 0.005 0.05 19.75 0.05 0.14 32.28 0.05 0.27
D52 2.45 0.02 0.06 3.20 0.02 0.05 14.46 0.06 0.08 21.08 0.06 0.08
D53 3.45 < 0.005 < 0.005 3.17 0.02 0.02 3.79 0.02 < 0.005 8.25 < 0.005 0.02
D54 3.60 0.02 0.02 3.68 0.02 0.03 5.09 0.02 0.02 8.28 0.02 0.02
D55 3.88 < 0.005 0.02 3.87 0.02 0.02 5.23 < 0.005 0.02 7.41 0.02 < 0.005
D56 25.44 0.02 0.97 205.10 0.14 230.12 267.29 0.19 315.14 225.80 0.16 282.57
D57 25.55 0.03 0.41 40.48 0.03 0.34 665.64 0.17 63.74 2105.47 0.16 102.88
D58 30.30 0.03 0.41 27.86 0.02 0.41 609.03 0.14 72.77 2513.60 0.14 100.31
D59 26.27 0.03 0.44 31.56 0.03 0.39 714.61 0.14 69.36 2467.72 0.14 80.61
D60 31.68 0.03 0.08 25.77 0.02 0.08 32.73 0.02 0.08 59.50 0.03 0.05
D61 3.32 < 0.005 0.05 5.79 0.05 0.06 20.90 0.05 0.25 18.77 0.03 0.28
D62 3.39 0.02 0.03 4.77 0.02 < 0.005 5.16 0.02 0.02 14.20 0.05 < 0.005
D63 24.43 0.02 0.97 204.69 0.16 232.10 251.02 0.14 209.34 202.55 0.16 201.34
D64 29.30 0.03 0.44 38.61 0.02 0.42 823.79 0.22 71.26 535.68 0.14 64.24
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Chapter 7

Conclusion

In this thesis we discussed the application of column generation procedures
and sequential value correction heuristics to geometric and structure packing
problems. On the side geometric packing, we dealt with extensions of BPP
and CSP in cases with additional features and criteria that relevantly affect the
optimization of real manufacturing process. For the one-dimensional BPP, we
present a novel Dantzig-Wolfe reformulation for minimizing a convex com-
bination of number of employed bins and maximum lateness in presence of
variable packing time. In the two-dimensional context, where MIP formula-
tions are generally not suitable to solve large size instances, we applied SVC
algorithms for a real multi-stock size CSP and a bi-objective BPP with delay
minimization. Concerning the packing of graph substructures, we dealt with
the γ-QCP problem by introducing a new integer reformulation based on star
constraints. For all the topics, computational results were presented to ana-
lyze the performances of the proposed algorithms.

Pricing-based techniques appear as useful tool to provide primal and dual
bounds for challenging problems. Achieving good bounds in limited time
is an important requirement if one aim to solve the original integer problem
taken into account. When the CG procedure performs effectively, a branch-
and-price approach can be seen as a valuable option to compute optimal inte-
ger solutions and fast primal heuristics (e.g. SVC) appear useful (i) to warm
and speed-up the CG with good columns, (ii) to enhance the exploration of
the underlying branch-and-bound tree. The implementation of branch-and-
price algorithms for problems considered in chapters 5 and 6 can be a natural
development of the work done so far.

CG and SVC share a common ground by relying on shadow prices and
pseudo-prices within their frameworks, which guide the solution of optimiza-
tion subproblems. For C&P problems, exchanging the information carried by
prices between the two algorithms (in particular from CG to SVC) can be an in-
teresting point of investigation. In [18] the authors provide the starting value
of the pseudo-prices by inheriting the values of dual variables of the optimal
LP relaxation solution. This idea can be exploited also, as instance, when the
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Chapter 7 Conclusion

pricing subproblems called by the CG are challenging and using the SVC can
be a valuable way to generate columns and feed the restricted master problem,
which at each solution will provide a new optimal dual vector to initialize the
subsequent call of SVC. Linking CG and SVC implementations into alternative
and original ways could be of interest.

More in general, the study of the evolution of price values in both methods
can be a topic of investigation. The whole dynamic of dual variables exploited
in the CG procedure depends on a number of factors that makes it hardly pre-
dictable and results in a behaviour that could be comparable to a chaotic one.
In the SVC heuristic instead, the pseudo-prices dynamic is defined by the up-
dating formulae, whose effects are generally related to the sequence of solu-
tions built. The focus could be on the seek of a pattern (if exists) that describes
the evolution of prices able to converge close to optimal solutions for the re-
laxed master problem in CG, and to optimal primal solutions in SVC. For this
purpose, thinking about the use of machine learning approaches (e.g., neu-
ral networks) appears intriguing. Furthermore, integration between machine
learning and SVC can be appealing for setting the parameters (or entire com-
ponents) of pseudo-prices formulae by learning from the features of instances.
In this way the performance of the heuristic can be improved by specifying the
updating phase according to the characteristics of the instance to solve.

120



Bibliography

[1] J. Abello, M. Resende, and S. Sudarsky. “Massive Quasi-Clique Detec-
tion”. In: LATIN 2002: Theoretical Informatics. Ed. by Sergio Rajsbaum.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 598–612.

[2] E.A. Akkoyunlu. “The Enumeration of Maximal Cliques for Large
Graphs”. In: SIAM Journal of Computing 2.1 (1973), pp. 1 –6.

[3] M.T. Almeida and F.D. Carvalho. “Integer models and upper bounds
for the 3-club problem”. In: SIAM Journal of Computing 60.3 (2012),
pp. 155–166.

[4] A. Aloisio, C. Arbib, and F. Marinelli. “Cutting Stock with no Three
Parts per Pattern: Worki-in-Process and Pattern Minimization”. In: Dis-

crete Optimization 8 (2010), pp. 315–3323.

[5] A. Aloisio, C. Arbib, and F. Marinelli. “On LP relaxations for the pat-
tern minimization problem”. In: Networks 57.3 (2011), pp. 247–253.

[6] C. Alves and J.M. Valério de Carvalho. “A branch-and-price-and-cut
algorithm for the pattern minimization problem”. In: RAIRO - Opera-

tions Research 42 (4) (2008), pp. 435–453.

[7] C. Alves, F. Clautiaux, J. de Carvalho, and J. Rietz. Dual-Feasible Func-

tions for Integer Programming and Combinatorial Optimization: Basics, Ex-

tensions and Applications. Springer International Publishing, 2016. ISBN:
978-3-319-27602-1.

[8] C. Arbib and F. Marinelli. “On cutting stock with due dates”. In: Omega

46 (2014), pp. 11 –20.

[9] C. Arbib, F. Marinelli, and P. Ventura. “One-dimensional cutting stock
with a limited number of open stacks: Bounds and solutions from a
new integer linear programming model”. In: Omega 46 (2014), pp. 11
–20.

[10] C. Arbib, F. Marinelli, and P. Ventura. “One-dimensional cutting stock
with a limited number of open stacks: bounds and solutions from
a new integer linear programming model”. In: International Transac-

tions in Operational Research 23.1-2 (2016), pp. 47–63. URL: http : / /

onlinelibrary.wiley.com/doi/10.1111/itor.12134/full.

121



Bibliography

[11] C. Arbib and M. Marinelli. “Integrating process optimization and in-
ventory planning in cutting-stock with skiving option: an optimization
model and its application”. In: European Journal of Operational Research

163 (2005), pp. 617–630. URL: https://doi.org/10.1016/j.ejor.

2003.12.021.

[12] C. Arbib and M. Marinelli. “Maximum lateness minimization in one-
dimensional bin packing”. In: Omega 68 (2017), pp. 76–84. URL: https:

//doi.org/10.1016/j.omega.2016.06.003.

[13] N. Bansal, A. Caprara, and M. Sviridenko. “Improved approximation
algorithms for multidimensional bin packing problems”. In: FOCS:

Proc. 47nd IEEE Symposium on Foundations of Computer Science. 2006,
pp. 697–708.

[14] N. Bansal, A. Caprara, k. Jansen, L. Prädel, and M. Sviridenko. “A
structural lemma in 2-dimensional packing, and its implications on ap-
proximability”. In: Proceedings of the 20th International Symposium on Al-

gorithms and Computation (ISAAC 2009). 2009, pp. 77–86.

[15] C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and
P.H. Vance. “Column Generation for Solving Huge Integer Programs”.
In: Operations Research 46 (1998), pp. 316–329.

[16] S. Baum and L.E. Jr Trotter. “Integer Rounding for Polymatroid and
Branching Optimization Problems”. In: SIAM Journal on Algebraic Dis-

crete Methods 2.4 (1981), pp. 416–425.

[17] G. Belov and G. Scheithauer. “A branch-and-cut-and-price algorithm
for one-dimensional stock cutting and two-dimensional two-stage cut-
ting”. In: European Journal of Operational Research 171.1 (2006), pp. 85–
106. URL: https://doi.org/10.1016/j.ejor.2004.08.036.

[18] G. Belov and G. Scheithauer. “A cutting plane algorithm for the one-
dimensional cutting stock problem with multiple stock lengths”. In:
European Journal of Operational Research 141.2 (2002), pp. 274–294. URL:
https://doi.org/10.1016/S0377-2217(02)00125-X.

[19] G. Belov and G. Scheithauer. “Setup and open-stacks minimization in
one-dimensional stock cutting”. In: INFORMS Journal on Computing

19.1 (2007), pp. 27–35. DOI: 10.1287/ijoc.1050.0132.

[20] G. Belov, G. Scheithauer, and E.A. Mukhacheva. “One-dimensional
heuristics adapted for two-dimensional rectangular strip packing”. In:
Journal of Operational Research Society 59.6 (2008), pp. 823–832. DOI: 10.

1057/palgrave.jors.2602393.

[21] H. Ben Amor, J. Desrosiers, and A. Frangioni. Stabilization in column

generation. Tech. rep. G-2004-62. 2004.

122



[22] J.A. Bennel, L.S. Lee, and C.N. Potts. “A genetic algorithm for two-
dimensional bin packing with due dates”. In: Int. J. of Production Eco-

nomics 145.2 (2013), pp. 547–560. URL: http://dx.doi.org/10.1016/

j.ijpe.2013.04.040.

[23] J.O. Berkey and P.Y. Wang. “Two-dimensional finite bin-packing algo-
rithms”. In: Journal of the Operational Research Society 38 (1987), pp. 423–
429.

[24] M. Bhattacharyya and S. Bandyopadhyay. “Mining the Largest Quasi-
clique in Human Protein Interactome”. In: 2009 International Conference

on Adaptive and Intelligent Systems. 2009, pp. 194–199.

[25] J. Blazewic, K.E. Ecker, E. Pesch, G. Schmidt, and J. Weglar. Handbook

on Scheduling: From Theory to Application. Springer-Verlag Berlin Hei-
delberg, 2007. DOI: 10.1007/978-3-540-32220-7.

[26] B. Bollobás and A.G. Thomason. “Hereditary and monotone properties
of graphs”. In: The mathematics of Paul Erdös, II, Algorithms and Combi-

natorics 14. Ed. by R.L. Graham and J. Něsetřil. Springer-Verlag, 1997,
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[32] F. Chataigner, G. Manić, Y. Wakabayashi, and R. Yuster. “Approxima-
tion algorithms and hardness results for the clique packing problem”.
In: Discrete Applied Mathematics 157 (7 2009), pp. 1396–1406.

[33] Q. Chen, Y. Cui, and Y. Chen. “Sequential value correction heuristic
for the two-dimensional cutting stock problem with three-staged ho-
mogenous patterns”. In: Optimization Methods and Software 31.1 (2016),
pp. 68–87. DOI: 10.1080/10556788.2015.1048860.

123



Bibliography

[34] Y. Chen, X. Song, D. Ouelhadj, and Y. Cui. “A heuristic for the skiving
and cutting stock problem in paper and plastic film industries”. In:
International Transaction in Operational Research 26 (2019), pp. 157–179.
DOI: DOI:10.1111/itor.12390.

[35] C. Chu and J. Antonio. “Approximation Algorithms to Solve Real-
Life Multicriteria Cutting Stock Problems”. In: Operations Research 47.4
(1999), pp. 495–508. URL: http://www.jstor.org/stable/223155.

[36] F. Clautiaux, A. Jouglet, and J. El Hayek. “A new lower bound for
the non-oriented two-dimensional bin-packing problem”. In: Opera-

tions Research Letters 35.4 (2007), pp. 365–373.

[37] E.G.Jr. Coffman, M.R. Garey, D.S. Johnson, and R.E. Tarjan. “Per-
formance bounds for level-oriented two-dimensional packing algo-
rithms”. In: SIAM Journal on Computing 9.4 (1980), pp. 808–826.

[38] D. Cornaz, F. Furini, M. Lacroix, E. Malaguti, A.R. Mahjoub, and Mar-
tin S. “The vertex k-cut problem”. In: Discrete Optimization 31 (2019),
pp. 8–28.

[39] Y. Cui and B. Huang. “Reducing the number of cuts in generating
three-staged cutting patterns”. In: European J. of Operational Research

218.2 (2012), pp. 358–365. URL: http://dx.doi.org/10.1016/j.

ejor.2011.10.047.

[40] Y. Cui, L. Yang, and Q. Chen. “Heuristic for the rectangular strip pack-
ing problem with rotation of items”. In: Computers and Operations Re-

search 40.4 (2008), pp. 1094–1099. URL: https://doi.org/10.1016/

0377-2217(91)90222-H.

[41] Y. Cui, C. Zhong, and Y. Yao. “Pattern-set generation algorithm for the
one-dimensional cutting stock problem with setup cost”. In: European

Journal of Operational Research 59.6 (2015), pp. 540–546. URL: https://

doi.org/10.1016/j.ejor.2014.12.015.

[42] Y.P. Cui, Y. Cui, and T. Tang. “Sequential heuristic for the two-
dimensional bin-packing problem”. In: European Journal of Operational

Research 240.1 (2015), pp. 43–53.

[43] Dresden Cutting and Packing Group (CaPaD). http://www.math.tu-
dresden.de/ capad/.

[44] Wuttke D.A. and H.S. Heese. “Two-dimensional cutting stock problem
with sequence dependent setup times”. In: European Journal of Opera-

tional Research 265.1 (2018), pp. 303–315. URL: https://doi.org/10.

1016/j.ejor.2017.07.036.

124



[45] G.B. Dantzig and p. Wolfe. “Decomposition principle for linear pro-
grams”. In: Operations Research 8.1 (1960), pp. 101–111. URL: https :

//www.jstor.org/stable/167547.

[46] S. Das and D. Ghosh. “Binary knapsack problems with random bud-
gets”. In: Journal of the Operational Research Society 54.9 (2003), pp. 970–
983. URL: https://doi.org/10.1057/palgrave.jors.2601596.

[47] M. Dell’Amico, S. Martello, and D. Vigo. “A lower bound for the non-
oriented two-dimensional bin packing problem”. In: Discrete Applied

Mathematics 118 (2002), pp. 13–24.

[48] G. Desaulniers, J. Desrosiers, and M.M. Solomon. “Accelerating strate-
gies in column generation methods for vehicle routing and crew
scheduling problems”. In: Essays and Surveys in Metaheuristics. Ed. by
C.C. Ribeiro and P. Hansen. Boston, MA, 2001, pp. 390–324.

[49] G. Desaulniers, J. Desrosiers, I. loachim, M.M. Solomon, F. Soumis,
and D. Villeneuve. “A Unified Framework for Deterministic Time
Constrained Vehicle Routing and Crew Scheduling Problems”. In:
Fleet Management and Logistics. Centre for Research on Transportation.
Boston, MA: Springer, 1998. Chap. 3, pp. 57–93.

[50] M.J. Desrochers and F. Soumis. “A column generation approach to ur-
ban transit crew scheduling”. In: Transportation Science 23 (1998), pp. 1–
13.

[51] J Desrosiers and M.E. Lübbecke. “A Primer in Column Generation”.
In: Column Generation. Ed. by G. Desaulniers, J. Desrosiers, and M.M.
Solomon. Boston, MA: Springer US, 2005, pp. 1–32. DOI: 10.1007/0-

387-25486-2_1.

[52] P. Detti, A. Agnetis, and G. Ciaschetti. “Polynomial algorithms for a
two-class multiprocessor scheduling problem in mobile telecommuni-
cations systems”. In: Journal of Scheduling 8.3 (2005), pp. 255 –273.

[53] E. D. Dolan and J.J. Moré. “Benchmarking optimization software
with performance profiles”. In: Mathematical programming 91(2) (2002),
pp. 201–213.

[54] M. Ehrgott. “Approximation algorithms for combinatorial multicrite-
ria optimization problems”. In: International Transactions in Operational

Research 7 (2000), pp. 5–31.

[55] M. Ehrgott and M.M. Wiecek. Multiobjective Programming. Springer,
New York, 2005, pp. 667–708.

[56] P. Erdös and A. Rényi. “On Random Graphs. I”. In: Publicationes Math-

ematicae 6 (1959), pp. 290–297.

125



Bibliography

[57] F.D. Fomeni and A.N. Letchford. “A Dynamic Programming Heuristic
for the Quadratic Knapsack Problem”. In: INFORMS Journal on Com-

puting 26.1 (2014), pp. 173–182. URL: https://doi.org/10.1287/

ijoc.2013.0555.

[58] L.R. Ford and D.R. Fulkerson. “A suggested computation for maxi-
mal multicommodity network flows”. In: Management Science 5 (1958),
pp. 97–101.

[59] S. Fortunato. “Community detection in graphs”. In: Physics Report

486(3–5) (2010), pp. 75–174.

[60] M.R. Garey, R.L. Graham, and D.S. Johnson. “Resource Constrained
Scheduling as Generalized Bin Packing”. In: Journal of Combinatorial

Theory (A) 21.3 (1976), pp. 257–298. URL: https://doi.org/10.1016/

0097-3165(76)90001-7.

[61] M.R. Garey and D.S. Johnson. ““ Strong ” NP-Completeness Results:
Motivation, Examples, and Implications”. In: Journal of the ACM 25.3
(1978), pp. 499–508. URL: http://doi.acm.org/10.1145/322077.

322090.

[62] P.C. Gilmore and R.E. Gomory. “A Linear Programming Approach to
the Cutting-Stock Problem”. In: Operations Research 9.6 (1961), pp. 849–
859. URL: https://doi.org/10.1287/opre.9.6.849.

[63] P.C. Gilmore and R.E. Gomory. “A Linear Programming Approach to
the Cutting-Stock Problem – Part II”. In: Operations Research 11 (1963),
pp. 863–888. URL: https://doi.org/10.1287/opre.9.6.849.

[64] T. Gschwind, S. Irnich, F. Furini, and R. Wolfler Calvo. Social net-

work analysis and community detection by decomposing a graph into relaxed

cliques. Tech. rep. Johannes Gutenberg University Mainz, Mainz, Ger-
many.

[65] R.W. Haessler. “Controlling cutting pattern changes in one-
dimensional trim problems”. In: Operations Research 23 (1975),
pp. 483–493. URL: https://doi.org/10.1287/opre.23.3.483.

[66] R. Harren and R. Van Stee. “Packing Rectangles into 2OPT Bins Using
Rotations”. In: Algorithm Theory – SWAT 2008. Lecture Notes in Computer

Science. Ed. by Gudmundsson J. 5124. Springer, 2008.

[67] J. Hemminki, T. Leipälä, and O. Nevalainen. “On-line packing with
boxes of different sizes”. In: International Journal of Production Research

36.8 (1998), pp. 2225–22245. URL: https : / / doi . org / 10 . 1080 /

002075498192869.

126



[68] L.C. Hendry, K.K. Fok, and K.W. Shek. “A cutting stock and scheduling
problem in the copper industry”. In: Journal of the Operational Research

Society 47.1 (1996), pp. 38–47. DOI: 10.1057/jors.1996.4.

[69] J.B. Hiriart-Urruty and C. Lemarechal. Convex Analysis and Mini-

mization Algorithms II: Advanced Theory and Bundle Methods. Vol. 306.
Springer-Verlag Berlin Heidelberg, 1993. DOI: 10.1007/978-3-662-

06409-2.

[70] K. Jansen and L. Prädel. “New approximability results for two-
dimensional bin packing”. In: Proceedings of the 24th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA 2013). 153 (1). Springer,
2004, pp. 919–936.

[71] K. Jansen, L. Prädel, and U.M. Schwarz. “Two for One: Tight Approx-
imation of 2D Bin Packing”. In: Algorithms and Data Structures. WADS

2009. Lecture Notes in Computer Science. Ed. by F. Dehne, M. Gavrilova,
JR. Sack, and C.D. Tóth. 5664. Springer, 2009.

[72] K. Jansen and R. Solis-Oba. “Rectangle packing with one-dimensional
resource augmentation”. In: Discrete Optimization 6 (2009), pp. 310–323.

[73] R.E. Johnson and E. Sadinlija. “A new model for complete solutions to
one-dimensional cutting stock problems”. In: European Journal of Oper-

ational Research 153 (1) (2004), pp. 176–183.

[74] L. Kantorovich. “Mathematical Methods of Organizing and Planning
Production”. In: Management Science 6.4 (1960), pp. 366–422.

[75] Richard M. Karp. “Reducibility among Combinatorial Problems”. In:
Complexity of Computer Computations. Ed. by Raymond E. Miller, James
W. Thatcher, and Jean D. Bohlinger. Boston, MA: Springer US, 1972,
pp. 85–103. ISBN: 978-1-4684-2001-2. DOI: 10.1007/978-1-4684-2001-

2_9.

[76] N. Krislock, J. Malick, and F. Roupin. “Computational results of a
semidefinite branch-and-bound algorithm for k-cluster”. In: Computers

and Operations Research 66 (2016), pp. 153–159.

[77] J. Kupke. “Lösung von ganzzahligen Verschnittproblemen mit Branch-
and-Price”. Köln, Germany: Institut für Informatik, Universität zu
Köln, 1998.

[78] C.Y. Lee, R. Uzsoy, and L.A. Martin-Vega. “Efficient Algorithms for
Scheduling Semiconductor Burn-In Operations”. In: Operations Re-

search 40.4 (1992), pp. 764–775.

127



Bibliography

[79] G. Liu and L. Wong. “Effective Pruning Techniques for Mining Quasi-
Clique”. In: ECML PKDD ’08 Proceedings of the European conference on

Machine Learning and Knowledge Discovery in Databases - Part II. 2008,
pp. 33–49.

[80] A. Lodi, S. Martello, and D. Vigo. “Heuristic and metaheuristic ap-
proaches for a class of two-dimensional bin packing problems”. In: IN-

FORMS Journal on Computing 11.4 (1999b), pp. 345–357.

[81] A. Lodi, S. Martello, and D. Vigo. “Recent advances on two-
dimensional bin packing problems”. In: Discrete Applied Mathematics

123 (2002), pp. 379–396.

[82] A. Lodi, S. Martello, M. Monaci, C. Cicconetti, L. Lenzini, E. Mingozzi,
C. Elkund, and G. Moilanen. “Efficient two-dimensional packing algo-
rithms for mobile WiMAX”. In: Management Science 57 (2011), pp. 2130–
2144.

[83] M. E. Lübbecke and J. Desrosiers. “Selected Topics in Column Genera-
tion”. In: Operations Research 53 (2005), pp. 1007–1023.

[84] E. Malaguti, R.M. Durán, and P. Toth. “Approaches to real world two-
dimensional cutting problems”. In: Omega 47 (2014), pp. 99–115.

[85] O. Marcotte. “An instance of the cutting stock problem for which the
rounding property does not hold”. In: Operations Research Letters 4.5
(1986), pp. 239–243.

[86] O. Marcotte. “The cutting stock problem and integer rounding”. In:
Mathematical Programming 3.1 (1985), pp. 82–92.

[87] F. Marinelli and A. Pizzuti. “A Sequential Value Correction heuristic
for a bi-objective two-dimensional bin-packing”. In: Electronic Notes in

Discrete Mathematics 64 (2018), pp. 25–34.

[88] F. Marinelli and A. Pizzuti. “Bin Packing Problems with Variable Pat-
tern Processing Times: A Proof-of-concept”. In: Springer Proceedings in

Mathematics & Statistics 217 (2017), pp. 453–460. URL: https://doi.

org/10.1007/978-3-319-67308-0_46.

[89] F. Marinelli, A. Pizzuti, and F. Rossi. “A star-based reformulation for
the maximum quasi-clique problem”. In: Proceedings of the 16th CTW on

Graphs and Combinatorial Optimization. 2018, pp. 118–121.

[90] R.E. Marsten. “The use of the boxstep method in discrete optimiza-
tion”. In: Nondifferentiable Optimization. Ed. by M.L. Balinski and P.
Wolfe. Berlin, Heidelberg: Springer Berlin Heidelberg, 1975, pp. 127–
144. URL: https://doi.org/10.1007/BFb0120702.

128



[91] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Im-

plementations. New York, NY, USA: John Wiley & Sons, Inc., 1990. ISBN:
0-471-92420-2.

[92] K. Matsumoto, S. Umetani, and H. Nagamochi. “On the one-
dimensional stock cutting problem in the paper tube industry”. In:
Journal of Scheduling 14 (2011), pp. 281–290. DOI: 10 . 1007 / s10951 -

010-0164-2.

[93] C. McDiarmid. “Pattern Minimisation in Cutting Stock Problems”. In:
Discrete Applied Mathematics 98 (1999), pp. 121–131.

[94] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. “Stabilized
column generation”. In: Discrete Mathematics 194.1 (1999), pp. 229 –237.
URL: https://doi.org/10.1016/S0012-365X(98)00213-1.

[95] E. Moradi and B. Balasundaram. “Finding a maximum k-club using the
k-clique formulation and canonical hypercube cuts”. In: Optimization

Letters 12(8) (2018), pp. 1947–1957.

[96] E.A. Mukhacheva and V.A. Zalgaller. “Linear programming cutting
problems”. In: International Journal of Software Engineering and Knowl-

edge Engineering 3.4 (1993), pp. 463–476. URL: https : / / www .

worldscientific.com/doi/abs/10.1142/S0218194093000240.

[97] E.A. Mukhacheva, G.N. Belov, V.M. Kartack, and A.S. Mukhacheva.
“Linear one-dimensional cutting-packing problems: numerical experi-
ments with the sequential value correction method (SVC) and a mod-
ified branch-and-bound (MBB)”. In: Pesquisa Operacional 20.2 (2000),
pp. 153–168. URL: http : / / dx . doi . org / 10 . 1590 / S0101 -

74382000000200002.

[98] A.T. Murray and R.L. Church. “Facets for node packing”. In: European

Journal of Operational Research 101.3 (1997), pp. 598–608. URL: https:

//doi.org/10.1016/S0377-2217(96)00175-0.

[99] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimiza-

tion. New York, NY, USA: John Wiley & Sons, Inc., 1988.

[100] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimiza-

tion. John Wiley & Sons, Inc., 1988. ISBN: 9780471828198. DOI: 10.1002/

9781118627372.

[101] S.L. Nonås and A. Thorstenson. “A combined cutting-stock and lot-
sizing problem”. In: European Journal of Operations Research 120.2 (2000),
pp. 327–342. URL: https : / / doi . org / 10 . 1016 / S0377 - 2217(99 )

00160-5.

129



Bibliography

[102] F.M. Pajouh, Z. Miao, and B. Balasundaram. “A branch-and-bound ap-
proach for maximum quasi-cliques”. In: Annals of Operations Research

216 (2014), pp. 145–161.

[103] C.H. Papadimitriou and M. Yannakakis. “On the approximability of
trade-offs and optimal access of web sources”. In: Proceedings 41st An-

nual Symposium on Foundations of Computer Science (2000), pp. 86–92.

[104] P.M. Pardalos and J. Xue. “The maximum clique problem”. In: Journal

of Global Optimization. Optim. 4.3 (1994), pp. 301–328.

[105] G. Pastukhov, A. Veremyev, V. Boginski, and Oleg A. Prokopyev. “On
maximum degree-based γ-quasi-clique problem: Complexity and ex-
act approaches”. In: Networks 71.2 (2018), pp. 136–152.

[106] J. Pattilo, N. Youssef, and S. Butenko. “On clique relaxation models
in network analysis”. In: European Journal of Operational Research 226.1
(2013), pp. 9–18.

[107] J. Pattilo, A. Veremyev, S. Butenko, and V. Boginski. “On the maximum
quasi-clique problem”. In: Discrete Applied Mathematics 161 (2013),
pp. 224–257.

[108] D. Pisinger. “The quadratic knapsack problem – a survey”. In: Dis-

crete Applied Mathematics 155.5 (2007), pp. 623–648. URL: https://www.

sciencedirect.com/science/article/pii/S0166218X06003878.

[109] K.C. Poldi and M.N. Arenales. “Heuristics for the one-dimensional cut-
ting stock problem with limited multiple stock lengths”. In: Computers

and Operations Research 36.6 (2009), pp. 2074–2081. DOI: 10.1016/j.

cor.2008.07.001.

[110] S. Polyakovskiy and R M’Hallah. “A hybrid feasibility constraints-
guided search to the two-dimensional bin packing problem with due
dates”. In: European Journal of Operational Research 266 (2018), pp. 819–
839.

[111] J. Puchinger, G. Raidl, and K. Gabriele. “Solving a Real-World Glass
Cutting Problem”. In: Evolutionary Computation in Combinatorial Opti-

mization, 4th European Conference, EvoCOP 2004. 2004. DOI: 10.1007/

978-3-540-24652-7_17.

[112] X. Qi. “A note on worst-case performance of heuristics for main-
tenance scheduling problems”. In: Discrete Applied Mathematics 155
(2007), pp. 416–422.

[113] H. Reinertsen and T.W.M. Vossen. “The one-dimensional cutting stock
problem with due-dates”. In: European Journal of Operational Research

201 (2010), pp. 701–711.

130



[114] R.A. Rossi and N.K. Ahmed. In: The network Data Repository with

Interactive Graph Analytics and Visualization. 2015. URL: http : / /

networkrepository.com.

[115] P. San Segundo, Coniglio S., F. Furini, and I. Ljubić. “A new branch-
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