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Introduction

The use of binary panel data models with fixed-effects has become relevant in
many empirical investigations of individual behaviour and, in general, in mi-
croeconometric analysis. Moreover, the interest in the fixed-effects approach
is due to its lack of parametric assumptions concerning unobserved hetero-
geneity. The key issue underlying the parameters estimation of these models
is the incidental parameters problem which makes the Maximum Likelihood
Estimator inconsistent. The literature has been growing rapidly in the re-
cent decades and many different techniques aimed at overcome such problem
have been developed. Conditional inference is a viable approach since it ex-
ploits sufficient statistics in order to get rid of nuisance parameters, providing
consistent estimators for the parameters of interest for the Logit model.

Even if attractive in theory, the application of the conditional inference
framework is hampered by the lack of some extensions to deal with real data.
In particular, the aim of the present work is trying to overcome two differ-
ent limitations of this approach: (i) the issue of endogenous data selection
mechanisms, and (ii) the computational burden of the conditional likelihood
functions of these models.

Endogenous data selection mechanisms consist in dealing with two dif-
ferent problems: an endogenous binary explanatory variable and the sample
selection issue. Both these aspects could lead to inconsistent estimators and
it is crucial to test whether the selection is endogenous. In this regard, I
propose a simple procedure that allows practitioners to test for these forms
of endogeneity in a pure fixed-effects approach. The impossibility of jointly
modeling the main outcome and the selection variable within the Logit model
framework is handled by an approximating model which is estimated by a
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12 INTRODUCTION

Pseudo Conditional Maximum Likelihood (PCML) estimator. The PCML
estimator is then exploited in order to perform the test. Furthermore, finite
sample performance of the test is evaluated by a Monte Carlo simulation
showing a good performance in terms of size and power. Finally, an empiri-
cal illustration to real data concerning the relationship between health status
and retirement, based on the the Survey of Health, Ageing and Retirement
in Europe, is provided.

The issue concerning the computational burden of the conditional like-
lihood functions considered in this work is closely related to the number of
time occasions in the panel dataset. As a matter of fact, the computation of
the likelihood function is not feasible for large time dimensions, limiting the
applicability of the conditional inference framework. Computational prob-
lems of the static conditional logit model are dealt with a recursive algorithm
while the extension of the recursive computation for dynamic models is an
unexplored field. Here, I propose a recursive algorithm for the computation
of the conditional likelihood function of a class of dynamic models, namely,
the Quadratic Exponential (QE) model and its extensions. The proposed al-
gorithm allows these models to be estimated also for large time dimensions,
where the alternative algebric computation would have been infeasible. As
an example, an application to real data concerning brand loyalty is proposed,
where the QE model parameters are estimated exploiting the proposed re-
cursion.

The work is organised as follows: Chapter 1 reviews the literature con-
cerning the estimation of binary panel data models and an extensive simula-
tion study that aims to valuate the performance of some recently proposed
estimators for the Dynamic Logit model parameters. Chapter 2 shows the
proposed methodology to handle the issue of testing for endogenous selection
mechanisms and, finally, Chapter 3 presents the proposed recursive algorithm
for the QE models.



Chapter 1

Estimation of nonlinear binary
panel data models

1.1 Introduction

Panel data analysis plays a major role in Econometrics. The related liter-
ature has been rapidly growing during the last decades and it is of main
interest for researchers and practitioners. A panel data set, differently from
cross-sectional or time series data, provides repeated observations over time
for every unit in the sample. This kind of data structure is more informa-
tive than cross-sectional data but, at the same time, technical issues arise.
One key point is the unobserved heterogeneity across units and over time.
The behaviour of an individual is influenced by characteristics that cannot
be directly observed and controlled for by the analyst, for example the risk
attitude for investments or the personal preferences about consumption and
saving. Therefore, accounting for these factors becomes crucial in the formu-
lation of econometric models and panel data allows the analysts to control
for some unobserved components.

Consider a sample of n individuals observed for T time periods, a contin-
uous dependent variable yit, where the subscript it denotes the observation
for the i-th individual at the t-th period, and a set of exogenous covariates
collected in a column vector of dimension k × 1, denoted by xit. A general
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14 CHAPTER 1. ESTIMATION AND INFERENCE: A REVIEW

specification is a linear model based on the assumption

yit = αi + x
′
itβ + εit,

where αi denotes the individual unobserved heterogeneity that is represented
by a unit-specific intercept. The role played by αi is to capture time-invariant
unobservable characteristics for the i-th individual in the sample that cannot
be described by the covariates. It is also possible to take into account het-
erogeneity over time including time dummies in xit. Moreover, β is a vector
of regression parameters and εit is the error component, which is assumed to
be a random variable with 0 mean and constant finite variance σ2

ε , represent-
ing idiosyncratic shocks. Hsiao (2014) provides a wide analysis concerning
estimation and inferential procedures for panel data models.

While linear models play an important role in econometric literature, they
show some drawbacks when the domain of the response variable is restricted
such as for binary and discrete outcomes. In these cases, the Generalized
Linear Model (GLM) formulation (McCullagh and Nelder, 1989) allows for
a higher degree of flexibility. GLMs are based on three components: (i) a
distribution belonging to the exponential family, such as Poisson, Binomial or
Gamma for the response variable yit; (ii) a systematic component which is the
linear predictor ηit = αi + x

′
itβ; (iii) the link function g(·) that specifies the

relationship between the expected value of the response variable, E(yit) = µit,
and the linear predictor ηit, such that ηit = g(µit). The linear model is a
peculiar case given by the identity link function where the expected value of
yit coincides with the linear predictor, that is, ηit = µit. Hence, the expected
value of yit may potentially assume any value in R. A prominent case is
that of the Bernoulli distribution, where µit is bounded, 0 < µit < 1, so
that the link function must map the space R to the interval (0, 1). The
literature provides a variety of link functions and the most relevant are the
logit, defined by ηit = log{µit/(1−µit)}, and the Probit which takes the form
ηit = Φ−1(µit), where Φ−1 denotes the inverse standard Gaussian cumulative
distribution function.

As mentioned above, it is crucial to specify unobserved heterogeneity
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in panel data models and it is also possible in the GLM framework. A
common way to represent models for binary dependent variables is the latent
variable formulation. The response variable yit is modeled to depend on a
latent continuous random variable y∗it, that can be interpreted as an index
of propensity for an event or an outcome to occur and consists in a linear
function of the covariates, unobserved heterogeneity across individuals, and
an idiosyncratic component:⎧⎨⎩y∗it = αi + x

′
itβ + εit

yit = 1{y∗it ≥ τ},

where 1{·} is the indicator function and the outcome yit assumes values in 1

or 0 according to the latent variable crosses the threshold τ , which is usually
fixed at 0.

Even though extremely general, models showed above follow a static spec-
ification that excludes the role played by past events. This means that the
probability of an event or a choice made by an agent is assumed to be inde-
pendent of the past experiences conditional on the covariates and unobserved
heterogeneity. Heckman (1981a) argued about the importance of isolating
the so called true state dependence, defined as the effect that experiencing a
particular event in the present has on the probability of the same event in
the future, from the spurious state dependence. The latter is given by the
fact that, because of time-invariant unobserved heterogeneity, past experi-
ences appear to be determinant for the probability of future events but they
actually are only a proxy of the unobservable factors.

Nonlinear panel data models for binary outcomes, in both static and dy-
namic specifications, are of major interest in the most recent econometric
literature (e.g., Hsiao, 2014; Dhaene and Jochmans, 2015; Bartolucci et al.,
2016), and it has been growing fast for the last two decades. Previous re-
views are provided by Arellano (2003) and Arellano and Hahn (2007). These
models are also exploited in a wide range of economic applications that aim
to study individual choices, such as labour market participation (Heckman
and Borjas, 1980; Hyslop, 1999), portfolio choices and financial conditions of
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households (Alessie et al., 2004; Giarda, 2013; Brown et al., 2014), behaviour
of immigrants’ remittances (Bettin and Lucchetti, 2016) and firms access to
credit (Pigini et al., 2016).

A wide part of literature is focusing on long panel data sets, where the
larger time dimension is exploited in order to mitigate the estimation issues
arising from the nonlinear formulation. In this regard, Fernández-Val and
Weidner (2018) reported an extensive review concerning the estimation of
the large-T panel data models. However, models for longitudinal, fixed-T ,
data sets are still interesting due to the large availability of panel data sets of
this type. For instance, the Bank of Italy Survey on Households Income and
Wealth (SHIW) is based on a rotating panel where subjects are observed
three different times, while the European Union Statistics on Income and
Living Conditions (EU-SILC) Database includes individuals for a period of
four-years.

The aim of the present dissertation is to provide an extensive review of
estimation techniques concerning nonlinear binary choice panel data models
for longitudinal data. The essay will cover main theoretical aspects of the
well-known random- and fixed-effects approaches. It is worth mentioning that
the literature concerning the fixed-effects approach has been facing a faster
growth compared with the random-effects approach. The main innovative
contribution of the present work is to include the newest contributions in the
literature and to compare finite sample properties of the different estimation
techniques through a simulation study.

The chapter is organised in different sections: Section 1.2 introduces bi-
nary choice models and the related estimation issues. Sections 1.2.1 and 1.2.2
illustrate the main contributions of the different methodologies well known in
literature of fixed- and random-effects approaches, respectively. Section 1.3
includes a simulation study comparing some estimators for the fixed-effects
Dynamic Logit model. Finally, Section 1.4 concludes.
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1.2 Binary choice panel data models

Binary choice panel data models deal with a response variable following a
Bernoulli distribution so that yit can take only two values, 1 if an event occurs
or 0 otherwise. As shown in Section 1.1, it is possible to rely on the latent
variable representation which can be easily adapted to binary outcomes. For
ease of exposition, what follows is based on the static formulation even though
most results are still valid for dynamic models. In the static case, for i =
1, ..., n and t = 1, ..., T , the behaviour of the observable dependent variable
can be described as:

yit = 1{αi + x′
itβ + εit > 0}, (1.1)

while, for the dynamic setup, the set of explanatory variables is augmented
by the lagged dependent variable and its related parameter for the state
dependence, γ:

yit = 1{αi + γyi,t−1 + x
′
itβ + εit > 0}, (1.2)

and where we also assume yi0 to be the known initial observation for the i-th
subject.

It is now straightforward to note that the expected value of yit, given αi

and xit, equals the probability that the event occurs:

p(yit = 1|αi,xit) = E(yit|αi,xit) = F (αi + x
′
itβ),

where F (·) denotes a general functional form for the inverse link function
depending on the distributional assumption made on the idiosyncratic com-
ponent in Equation (1.1). For instance, assuming a standard Gaussian distri-
bution for εit we have the Probit model given by E(yit|αi,xit) = Φ(αi+x

′
itβ)

where Φ(·) denotes the standard Gaussian distribution function (cdf), while
for a standard logistic cdf we get the Logit model where

E(yit|αi,xit) =
exp(αi + x

′
itβ)

1 + exp(αi + x′
itβ)

.
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Based on the above formulations, it is now possible to define the likeli-
hood function for the sample, L (·). Assuming a collection of independent
and identically distributed observations from a Bernoulli random variable we
define the probability function for an observation yit as

p(yit|αi,xit) = F (αi + x
′
itβ)

yit [1− F (αi + x
′
itβ)]

1−yit , (1.3)

and the likelihood function based on Equation (1.3) as:

L (β) =
n∏
i=1

T∏
t=1

p(yit|αi,xit). (1.4)

Additional assumptions on the individual effects are needed in order to ob-
tain consistent estimators for β since the likelihood function depends on the
unobserved heterogeneity, which is represented by αi and it is common to all
observations for the i-th individual that are no longer i.i.d. by construction.

The simplest approach is to assume absence of unobserved heterogeneity,
given by the condition αi = α for i = 1, ..., n, so that α enters the likelihood
function, L (α,β), as a parameter to be estimated along with β. Under this
setup a consistent estimator is obtained via the classical maximisation of the
log-likelihood function, ℓ(·) = logL (·), given by the first order conditions of
null score function denoted as

∂ℓ(α,β)

∂β
= sβ(β, α) = 0,

∂ℓ(α,β)

∂α
= sα(β, α) = 0.

The resulting estimators will be denoted as α̂ML and β̂ML. Although this
procedure is standard and simple to implement, it is based on the assumption
of no unobserved heterogeneity which is often unrealistic in empirical appli-
cations. Moreover, the estimator is not consistent for parameters β when the
homogeneity hypothesis is violated (Wooldridge, 2010).

Literature provides two main branches. Section 1.2.1 presents the vari-
ety of techniques concerning the fixed-effects approach, where unobserved
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heterogeneity is expressed by a set of unrelated fixed parameters across in-
dividuals. Then, the random-effects approach is illustrated in Section 1.2.2
and it consists in assuming the individual effects to follow a random variable.

1.2.1 Fixed-effects approach

This approach consists in assuming that the individual specific effects, αi, are
fixed parameters. The main advantage with respect to the random-effects ap-
proach is that there is no need for distributional assumptions and individual
effects can be freely correlated with the covariates. Under this setup, the αi-s
enter the likelihood function in Equation (1.4) as parameters to be estimated.
Due to this setup, we can only include time-varying explanatory variables in
order to achieve identification. Moreover, the standard maximum likelihood
estimation of the whole set of parameters leads to inconsistent estimators
because of incidental parameters problem (Neyman and Scott, 1948).

Two different literature branches have developed in order to overcome this
problem, target-adjusted estimators and conditional inference. The aim of
the first approach is to reduce the leading bias component of the maximum
likelihood estimator via different techniques. Prominent contributions are
provided by Hahn and Newey (2004), Carro (2007), Fernández-Val (2009),
Dhaene and Jochmans (2015) and Bartolucci et al. (2016). The second ap-
proach considers conditional probabilities exploiting sufficient statistics for
the incidental parameters. Main contributions in this field are by Chamber-
lain (1980) for the static version of the model and by Chamberlain (1993),
Honoré and Kyriazidou (2000) and Bartolucci and Nigro (2010, 2012) for the
dynamic setup.

The incidental parameters problem

As previously mentioned, in order to take unobserved heterogeneity into ac-
count, it could be reasonable to enlarge the set of parameters to be estimated
in (α1, ..., αn,β

′)′ including in the set of the regressors a dummy for each
subject in the sample. As a result, this situation leads to the well known
incidental parameters problem described by Neyman and Scott (1948). This
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problem can be seen as the asymmetry in information provided by data. As a
matter of fact, only additional observations over time for an individual i give
information on αi, while new individuals in the data set increase the number
of parameters to be estimated. Hence, the maximum likelihood estimator
for individual intercepts, α̂iML, requires T → ∞ in order to be consistent for
αi. Moreover, the inconsistent estimation of individual effects affects other
parameters estimates.

Lancaster (2000) provides an intuitive illustration. Consider a random
variable yit following a Gaussian distribution such that yit ∼ N(αi, σ

2
0). The

ML estimator for the mean parameters is given by α̂i =
1
T

∑
t yit, while for

the variance parameter by σ̂2 = 1
nT

∑
i

∑
t(yit − α̂i)

2 which is proven to be
inconsistent for n → ∞ and fixed T since it converges to T−1

T
σ2
0. Thus,

the MLE for the parameter σ2
0 is not consistent due to the limited set of

observation over T for each α̂i.

In order to understand the bias of the ML estimator due to the incidental
parameters problem for binary choice models, it is useful to recall the de-
scription provided in Arellano and Hahn (2007). The starting point is that,
when T is fixed, the ML estimator of common parameters, β̂, shows a bias
of order 1/T , denoted B/T for some B, so that

β̂ = β0 +
B

T
+O(1/T 2),

where β0 is the value of the estimator when T tends to infinity and O(1/T 2)

denotes higher-order bias components.

The bias component is also present in the asymptotic distribution of the
estimator. The estimator β̂ converges to his probability limit β∗, which is
different from the true value of parameters. It is also possible to notice the
asymptotic bias of β̂ considering the asymptotic distribution of

√
nT (β̂−β0),

which is not centered on 0. Given the condition of n and T growing at the
same rate ρ, n/T → ρ, we obtain

√
nT (β̂ − β0) =

√
nT (β̂ − β∗) +

√
nT
B

T
+O(

√
n/T 3)

d−→ N(B
√
ρ,Ω),
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where Ω denotes the variance-covariance matrix.

The bias also arises in the expected score function of the profile likelihood,
where the nuisance parameters, αi, are concentrated out. This effect can be
formalised considering the first order condition

1

nT

n∑
i=1

sβ,i(α̂i(β),β) = 0. (1.5)

The bias of the ML estimator arises because these conditions cannot be
satisfied. When evaluated at the true value of parameters β = β0, with N →
∞ and T fixed, the l.h.s. of Equation (1.5) does not converge in probability
to 0 because α̂i(β0) does not converge to its true value αi0. Therefore, we
define a bias component bi(β0) of order (1/T ) and a residual component with
order o(1/T ) in the expected score

E [sβ,i(β0, α̂i(β0))/T ] =
bi(β0)

T
+ o

(
1

T

)
.

Finally, it is possible to consider the bias of the profile likelihood. Again,
since the MLE for αi does not converge to its true value, maximising ℓi(β) =
ℓi(β, α̂i(β)) yields inconsistent estimates of parameters. Consider now the
infeasible profile likelihood function given by

ℓ̄i(β) = ℓi(β, ᾱi(β)), (1.6)

where ᾱi(β) is the ML for αi when T → ∞, such that ᾱi(β0) = αi0. The pro-
file likelihood in Equation (1.6) can be considered a target function since its
maximand results to be an unbiased estimator for the parameters of interest.
Hence, the bias of the profile likelihood, Bi(β), arises from the expectation
of the difference

E [ℓi(β, α̂i(β))/T − ℓi(β, ᾱi(β))/T ] =
Bi(β)

T
+ o

(
1

T

)
.
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Target-corrected estimators

This is a class of estimators that deals with the asymptotic bias of the ML
estimator. Arellano and Hahn (2007) classified these techniques in three main
categories: bias-corrected estimators, correction of the moment equation, and
corrected objective-function estimators. In general, the underlying idea of
this approach is to mitigate the bias of MLE, lowering its order from (1/T ) to
(1/T 2). The advantage of this approach is given by its applicability. Indeed,
the results are extremely general and are easily adaptable to binary choice
models, both static and dynamic and regardless the functional form assumed
for the error term. On the contrary, a possible drawback is given by the fact
that the ML estimator is used to compute the bias component and it may
influence the goodness of estimation when T is small.

Extensive reviews of these techniques are provided by Arellano (2003) and
Arellano and Hahn (2007). We now consider the more recent literature, where
several methods have been proposed to bypass the incidental parameters
problem. We can consider, following Arellano and Hahn (2007), three main
groups: the first type has to do directly with asymptotic bias of the estimator
and the main contributions are given by Hahn and Newey (2004), Fernández-
Val (2009), Hahn and Kuersteiner (2011), and Dhaene and Jochmans (2015).
A second approach is given by the correction of the first order conditions of a
modified likelihood function as proposed by Carro (2007). Finally, the third
group deals with target functions, generally modifications of the (profile)
likelihood function, as argued by Bester and Hansen (2009), Arellano and
Hahn (2016), and Bartolucci et al. (2016).

Since the following proposals exploit a wide range of techniques, we need a
small preamble in order to recall and clarify the notation. First of all, we de-
fine the parameters. As we will see, some estimators deals with static models,
some with dynamic, others with both. Therefore, following the notation in
Section 1.2, we define αi as the individual heterogeneity or nuisance param-
eters. Furthermore, β will be the set of parameters related to the regressors
in static models, γ the state dependence parameter in dynamic models. It is
useful to define θ′ = {β′, γ}, a vector collecting all the parameters of interest
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in the dynamic setup.

Secondly, we define the log-likelihood function as

ℓ(α1, ..., αn,θ) =
n∑
i=1

T∑
t=1

ℓit(αi,θ)

and the individual contributions as ℓi(αi,θ) =
∑T

t=1 ℓit(αi,θ). The profile
likelihood function is given by ℓ(θ) =

∑n
i=1 ℓi(α̂i(θ),θ) where nuisance pa-

rameters (α1, ..., αn) are concentrated out, or more precisely, evaluated at its
MLE for a given value of θ. In general, we denote the ML estimator of pa-
rameter vector θ as θ̂. Unless differently specified, we take into consideration
the maximisation of the profile likelihood to obtain θ̂. Finally, we try to keep
the notation homogeneous throughout the dissertation, but at the same time
as close as possible to the original one of the different contributions.

We first examine the bias-corrected estimators. A seminal paper in this
branch of literature is the one of Hahn and Newey (2004). The authors
propose two different ways to obtain a measure for the distortion of the
MLE for static nonlinear panel models: they derive an analytical expression
for the bias and a jackknife estimator. The former is computed via sample
counterparts of the moments employed in the bias formula,1 denoted by B̂.
The idea is to correct the asymptotic limit of the ML estimator subtracting
the estimated bias, so that

β̂1 = β̂ − B̂(β̂), (1.7)

where β̂1 is the adjusted estimator. However, since β̂ is used in order to
compute B̂, when T is small the bias of the MLE could severely spread to
the estimator B̂. In this situation authors proposed to iterate the estima-
tion procedure in Equation (1.7) updating the estimation of B such that
β̂k = β̂ − B̂(β̂k−1). Moreover, the resulting estimator β̂∞ exhibits higher
finite sample performances. Hahn and Kuersteiner (2011) extend the results
of Hahn and Newey (2004) to general dynamic nonlinear panel models deriv-

1See Hahn and Newey (2004) for further details.
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ing regularity conditions for the estimator. Due to the dynamic setup, the
covariates are assumed to be stationary and independent across the subjects
in the sample. Another contribution in this field is given by Fernández-Val
(2009), who derives the analytical bias formula for binary choice model, both
static and dynamic, with predetermined regressors and proposed an equiva-
lent estimator based on the adjustment of the score function.

Jackknife techniques also play an important role among the bias-corrected
estimators. The proposal of Hahn and Newey (2004) is extremely simple and
it is given by

β̃ = T β̂ − (T − 1)
T∑
t=1

β̂(t)/T,

where β̂(t) is the ML estimator computed subtracting the t-th observation
from the sample. The authors prove that the order of the bias of β̃ is lowered
to 1/T 2. Dhaene and Jochmans (2015) provide two different estimators based
on the split-panel jackknife for dynamic nonlinear models. A peculiarity of
this methodology is given by the fact that it allows for generated regres-
sors, which typically arise in case of endogeneity and sample selection. This
approach imposes some regularity conditions on the data, namely, station-
arity, a sufficient degree of mixing, and independence of observations across
subjects. The procedure is based on the idea of considering sub-panels, con-
sisting of a reduced number of consecutive observations over time for each
subject in order to preserve the dynamic structure of the data. This idea
can be formalised as follows. Consider a subset of consecutive observations
S ⊊ {1, ..., T} such that |S| ≤ Tmin, where |S| denotes the cardinality of
the subset S and Tmin is the least number of observations for which the
ML estimator exists. Define θ = (β, γ) as the vector of parameters to be
estimated maximizing the profile likelihood, ℓ(θ), where nuisance parame-
ters (α1, ..., αn) are concentrated out. Authors showed that it is possible to
consistently estimate the leading bias component of the MLE as following

|S|
T − |S|

(θ̂S − θ̂),
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where θ̂S is the ML estimator of θ based on the subset of observations con-
sidered in S and θ̂ is the ML estimator considered on the full data set. This
kind of estimator could suffer from the arbitrary choice of the sub-panel S.
Define an integer number g ≥ 2 such that T ≥ g · Tmin, where Tmin is the
minimum number of observations for which the ML estimator exists, and
suppose to split the panel into a collection of g non-overlapping sub-panels
S = {S1, ..., Sg}. A consistent estimator for the bias can be obtained by
averaging over the subsets S in S the estimator θ̂S so that

1

g − 1
(θ̄S − θ̂),

where
θ̄S =

∑
S∈S

|S|
T
θ̂S.

The bias-corrected estimator, θ̃, is derived subtracting from the MLE the
estimated bias, as follows

θ̃ =
g

g − 1
θ̂ − 1

g − 1
θ̄S (1.8)

As an example, consider the situation where g = 2, Tmin = 3 so that, in
order to satisfy the feasibility condition of T ≥ 6, set T = 10. This setup
consists in taking into account the two half-panels given by

S = {S1, S2} where S1 = {1, 2, 3, 4, 5}, S2 = {6, 7, 8, 9, 10}.

First of all, we have to compute θ̂S1 , θ̂S2 and θ̂, maximizing the profile log-
likelihood computed in the three different time spans. The next step consists
in computing the average over the element of S given by θ̄S = 1

2
(θ̂S1 + θ̂S2).

Finally, the bias-corrected estimator is computed as

θ̃ = 2θ̂ − θ̄S.

However, it could happen that splitting the panel in g sub-samples leads
to partitions of different cardinality. In order to avoid discretion in the al-
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location of the observations over the different sub-classes, define an equiva-
lence class {S1, ..., Sm} sharing the same set of cardinalities of elements in S.
Dhaene and Jochmans propose to average the estimator θ̄S over the equiva-
lence class of S,

θ̄ =
1

m

m∑
j=1

θ̄Sj ,

replacing θ̄S in Equation (1.8) with θ̄.

Consider now the previous example in the situation of g = 3. In this case
S = {S1, S2, S3} and its equivalence class is given by

S1 = {S11, S12, S13}, where S11 = {1, 2, 3, 4}, S12 = {5, 6, 7}, S13 = {8, 9, 10}

S2 = {S21, S22, S23}, where S11 = {1, 2, 3}, S12 = {4, 5, 6, 7}, S13 = {8, 9, 10}

S3 = {S31, S32, S33}, where S11 = {1, 2, 3}, S12 = {4, 5, 6}, S13 = {7, 8, 9, 10},

so that it is now required to compute three bias estimators, namely, θ̄S1 , θ̄S2
and θ̄S3 . We have now to plug the average given by θ̄ = 1

3
(θ̄S1 + θ̄S2 + θ̄S3)

in the estimator in Equation (1.8), getting

θ̃ =
3

2
θ̂ − 1

2
θ̄.

Dhaene and Jochmans (2015) also prove that the aforementioned split-panel
jackknife procedure can be exploited in order to correct the profile likelihood
function instead of the estimator. A consistent bias-adjusted estimator is
then obtained maximising the resulting modified function. Moreover, an in-
teresting extension of the analytical corrections and the split-panel jackknife
(Dhaene and Jochmans, 2015) for individual and time effects is provided by
Fernández-Val and Weidner (2016).

A second way in order to mitigate the bias of the MLE is to consider the
estimating equation as proposed by Carro (2007). The incidental parameters
problem affects the first order conditions of the concentrated log-likelihood,
which are not centered at zero. In order to recenter the score function Carro
considered a modified version of the likelihood function. Cox and Reid (1987)
propose a reparametrised version of the of the likelihood in order to obtain
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orthogonality between nuisance parameters and parameters of interest. Arel-
lano (2003) shows how to exploit the modified likelihood for static binary
choice models and that the modified profile likelihood can be rewritten in
terms of the original parameters. In this framework, Carro (2007) proposes
a modified estimating equation for dynamic models, given by

Msθ,i(θ) =sαi(θ, α̂i(θ))−
1

2

1

sααi(θ, α̂i(θ))

(
sθααi

(α̂i(θ)) + sαααi(α̂i(θ))
∂α̂i(θ)

∂θ

)
+

∂

∂αi

(
1

E(sααi(θ, αi))
E(sθαi

(θ, αi))

)⏐⏐⏐⏐
αi=α̂i(θ)

= 0, (1.9)

where the subscripts in the score function s(·) denotes the derivatives of the
profile likelihood w.r.t. a parameter, e.g., sααi

= ∂2ℓ(θ, αi(θ))/∂α
2
i . The

estimator θ̂MMLE that satisfies Equation (1.9) shares the same asymptotic
properties of the MLE except for the reduced order of the bias.

The third class of bias-corrected estimators deals with objective functions.
Bester and Hansen (2009) developed a penalty function for the unconstrained
likelihood function, differently from other approaches who exploits the profile
likelihood. Define now the penalised objective function by

Q(α1, ..., αn,θ) =
n∑
i=1

ℓi(αi,θ)− πi(αi,θ),

whose maximand results being the bias-adjusted estimator. A crucial role is
played by the penalty function πi(αi,θ), defined as

πi(αi,θ) =
1

2
trace(−Î−1

αi
V̂αi

)− k

2
,

where k = dim(αi) is a parameter,2 the elements Îαi
and V̂αi

are respec-
tively the information matrix for the parameter αi and a heteroskedasticity
and autocorrelation robust estimator for the variance of the expected score,

2This approach can be easily extended to multiple effects, so that k ≥ 1.
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formally we have

Îαi
= sααi

(αi,θ)/T,

V̂αi
=

m∑
t=−m

max(T,T+l)∑
t=max(1,t)

sαi,t(αi,θ)sαi,t−l(αi,θ)
′,

where m is a bandwidth parameter, and the additional subscript in the score
function indicates the i, t-th observation-specific contribution to the individ-
ual score. The main advantages of this approach are its wide applicability for
static and dynamic models and the computational easiness, since it requires
only the computation of the score function and the Hessian matrix. Authors
argue about the asymptotic equivalence of their approach with those pre-
viously discussed, highlighting the trade-off between the generality of their
proposal and the better finite sample properties of other model-specific es-
timators like Fernández-Val (2009) and Carro (2007). Similarly, Arellano
and Hahn (2016) propose two corrections for the profile likelihood. The so
called “trace-based” correction is not restricted to the likelihood setting and is
extremely close to the methodology proposed by Bester and Hansen (2009).
Their second proposal is the “determinant-based” correction that exploits the
log determinants of Îαi

and V̂αi
.

Furthermore, in this field, Bartolucci et al. (2016) propose a modified
profile likelihood as objective function. In general, the modified profile like-
lihood, ℓM,i(·), takes the form

ℓM,i(α̂i(θ),θ) = ℓi(α̂i(θ),θ) +Mi(α̂i(θ),θ)

where Mi(·) denotes the adjustment function. The authors exploit the mod-
ification proposed by Severini (1998) given by

Mi(θ) =
1

2
log | − sαiαi

(α̂i(θ),θ)| − log |Iαiαi
(α̂i, θ̂; α̂i(θ),θ|,

where sαiαi
denotes the second derivative of the concentrated log-likelihood
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w.r.t. the parameter αi and

Iαiαi
(α̂i, θ̂; α̂i(θ),θ) = E{α̂i,θ̂}[sαi

(α̂i, θ̂)sαi
(α̂i(θ),θ)]

is the expected value of the product of the score w.r.t. αi where the first
element is evaluated at the ML estimates.

The application to dynamic nonlinear panel binary choice model is of
main interest. Consider now the model in Equation (1.3) in its dynamic
setup. The first term of the adjustment can be derived analytically, such
that

−sαiαi
(θ, α̂i(θ)) =

∑
t

[
f(µ̃it)

2

F (µ̃it)[1− F (µ̃it)]
− C(µ̃it)

]
,

where

C(µ̃it) = (yit − F (µ̃it))

[
f(µ̃it)

F (µ̃it)[1− F (µ̃it)]
− f(µ̃it)

2(1− 2F (µ̃it))

F (µ̃it)2[1− F (µ̃it)]2

]
.

In this formulation, f(·) denotes the density derived from the distribution
function F (·) and µ̃it = α̂i(θ)+γyi,t−1+x

′
itβ is the linear predictor we obtain

considering αi = α̂i(θ).

Unfortunately, the term Iαiαi
(α̂i, θ̂; α̂i(θ),θ) does not admit a closed-

form expression. Authors proposed two different ways in order to obtain
this element. The first exploits all the possible configurations of the vector
(yi1, ..., yiT ), weighting the product of the scores over the probability assigned
to each vector configuration. However, this technique is convenient when the
time dimension of the data set is moderate. The second proposal consists in
using a Monte Carlo approximation that makes use of simulations from the
model and has a moderate computational cost.

Conditional inference

The conditional inference approach exploits the existence of sufficient statis-
tics for the incidental parameters. The key point of these techniques is the
possibility to make inference independently from the nuisance parameters.
However, as mentioned above, sufficient statistics are always not available
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and solutions are model specific. For binary choice models, consider the
joint probability for yi = (yi1, ..., yiT ), which is given by the product of the
probabilities of each observation over time of the same subject. The proba-
bility is denoted as p(yi|αi,Xi) where, again, Xi is the matrix collecting the
related set of covariates Xi = (xi1, ...,xiT ). Consider now a statistic hi with
probability distribution p(hi|αi,Xi). If conditioning the joint probability for
yi on hi leads to a distribution that is independent of αi, then hi is said to
be a sufficient statistic for the incidental parameters:

p(yi|Xi, hi) =
p(yi|αi,Xi)

p(hi|αi,Xi)
. (1.10)

Andersen (1970) shows that the maximand of the log-likelihood function
based on the conditional density in Equation (1.10) is a consistent estimator
for parameters of interest. Although this idea looks simple and intuitive, it
may happen that a sufficient statistic does not exist or it is not trivial to
identify for general binary choice models (Hsiao, 2014).

A specification admitting a sufficient statistic is the Logit model (Hsiao,
2014; Cameron and Trivedi, 2005). The probability function for the Logit
model can be written as

p(yit|αi,xit) =
exp[yit(αi + x

′
itβ)]

1 + exp(αi + x′
itβ)

,

and the joint probability for yi is

p(yi|αi,Xi) =
T∏
t=1

p(yit|αi,xit) =
exp[αiyi+ + (

∑T
t=1 yitxit)

′β]∏T
t=1[1 + exp(αi + x′

itβ)]
, (1.11)

where the total score yi+ =
∑T

t=1 yit is the sufficient statistic for the incidental
parameter αi (Andersen, 1970). This can be proven in a simple way, following
Cameron and Trivedi (2005). The probability in Equation (1.11) must be
conditioned on the sufficient statistic yi+. From Bayes’ rule, the conditional
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probability of the configuration yi given αi, Xi and yi+ can be expressed as

p(yi|αi,Xi, yi+) =
p(yi+|αi,Xi,yi)p(yi|αi,Xi)

p(yi+|αi,Xi)
.

Since the total score yi+ is the sum of the elements in yi, the probability
p(yi+|αi,Xi,yi) = 1 by definition. Therefore, it is possible to write

p(yi|αi,Xi, yi+) =
p(yi|αi,Xi)

p(yi+|αi,Xi)
. (1.12)

The numerator in Equation (1.12) is given by Equation (1.11), but we have
to define p(yi+|αi,Xi). This probability is given by the sum of the prob-
abilities of observing each possible vector configuration of binary responses
z = (z1, ..., zT ) such that z+ = yi+, where z+ =

∑T
t=1 zt, which is

p(yi+|αi,Xi) =

∑
z:z+=yi+

exp(αiz+) exp[(
T∑
t=1

ztxit)
′β]

∏T
t=1[1 + exp(αi + x′

itβ)]
.

Finally, it is possible to compute the conditional probability of p(yi|Xi, yi+),
independent of the parameter αi as follows

p(yi|αi,Xi, yi+)

=
exp(αiyi+) exp[(

∑T
t=1 yitxit)

′β]∏T
t=1[1 + exp(αi + x′

itβ)]

∏T
t=1[1 + exp(αi + x

′
itβ)]∑

z:z+=yi+
exp(αiz+) exp

[(∑T
t=1 ztxit

)′
β

] ,
=

exp[(
∑T

t=1 yitxit)
′β]∑

z:z+=yi+
exp

[(∑T
t=1 ztxit

)′
β

] = p(yi|Xi, yi+). (1.13)

Equation (1.13) defines the Conditional Logit model shown in McFadden
(1974) and Chamberlain (1980). Given this result, it is now possible to set
the conditional log-likelihood function, as the sum of the logarithm of the
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individual probabilities

ℓ(β) =
∑
i

1{0 < yi+ < T} log p(yi|Xi, yi+), (1.14)

excluding individuals characterized by a total score of 0 or T , because their
conditional log-probability is equal to 0 by construction. The function in
Equation (1.14) can be maximised with respect to β by the Newton-Raphson
algorithm, obtaining the Conditional Maximum Likelihood (CML) estimator
β̂CML.

Differently from the static case, conditional inference for dynamic models
is more difficult because a sufficient statistic is not always available. Different
approaches have been implemented in order to overcome this problem. Con-
sider the model given in Equation (1.2) where εit is logistically distributed,
defining the Dynamic Logit model (DL) (Hsiao, 2014), where the probability
for a response is

p(yit|αi,xit, yi0, ..., yi,t−1) =
exp[yit(γyi,t−1 + x

′
itβ + αi)]

1 + exp(γyi,t−1 + x′
itβ + αi)

, (1.15)

and yi0 is the initial observation assumed to be known. In this case, the
probability for the response configuration (yi1, ..., yiT ) is

p(yi|αi, yi0,Xi) =
exp[yi+αi +

(∑T
t=1 yitxit

)′
β + yi∗γ]∏T

t=1[1 + exp(αi + x′
itβ + γyi,t−1)]

, (1.16)

where yi∗ =
∑T

t=1 yi,t−1yi,t. It can be proven that the total score yi+ is
no longer a sufficient statistic for the incidental parameters as in the static
specification.

A first feasible solution for the DL model is given by Chamberlain (1993),
even though quite restrictive. Consider the DL given in Equation (1.15)
where the exogenous variables, xit, are excluded and T ≥ 3. It is possible to
make inference on the parameter γ independently of incidental parameters
via a conditional approach. Given these assumptions, as an example, when
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T = 3 it is possible to set the probabilities for a vector (yi0, ..., yi3) as follows:

p(yi0 = 1|αi) = P0(αi),

p(yit = 1|αi, yi0, ..., yi,t−1) =
exp(γyi,t−1 + αi)

1 + exp(γyi,t−1 + αi)
t = 1, ..., T.,

Under this setup, the probability for (yi0, ..., yi3) is independent of αi condi-
tional on yi1 + yi2 = 1. Maximising the resulting conditional log-likelihood
function

ℓ =
n∑
i=1

1(yi1 + yi2 = 1){yi1[γ(yi0 − yi3)]− log[1 + exp(yi0 − yi3)]}

yields a
√
n consistent estimator of γ.

The approach of Chamberlain (1993) has been extended by Honoré and
Kyriazidou (2000). The authors allow for a specification that includes a set
of strictly exogenous variables as regressors, in addition to the unobserved
heterogeneity and the lag of the dependent variable, following a DL model.
Moreover, they showed how to identify and estimate β and γ independently
of αi. Given T = 3, this can be done by maximizing a weighted conditional
log-likelihood function given by

n∑
i=1

1(yi1+ yi2 = 1)K

(
xi2 − xi3

σn

)
log p(yi|αi,Xi, yi0, yi1+ yi2 = 1, yi3,xi2 = xi3),

where K(·) is a kernel density function, carefully chosen, used in order to
weigh observations. In particular, weights are inversely proportional to the
magnitude of the difference (xi2−xi3), σn is a fixed bandwidth that depends
on n and

p(yi|αi,Xi, yi0, yi1 + yi2 = 1, yi3,xi2 = xi3)

=
exp{yi1[(xi1 − xi2)′β + γ(yi0 − yi3)]}
1 + exp[(xi1 − xi2)′β + γ(yi0 − yi3)]

,

where yi0 and yi3 can be either 0 or 1. Despite the proposed estimator is
proven to be consistent and asymptotically normal, it shows some drawbacks.
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The convergence rate, due to the presence of the kernel density function,
is slower than

√
n and the conditions exploited for identification, namely

that yi1 + yi2 = 1, and the weight given by the kernel, limit the number of
individuals that actually contribute to the likelihood, affecting the efficiency
of the estimator. Moreover, the condition imposed on the covariates rules out
the use of time dummies. The authors also provide identification for T ≥ 3

and more than one lag of the dependent variable.

As shown above, conditional inference in the DL model leads to restrictive
conditions on the covariates for the identification. In order to overcome this
shortcomings, Bartolucci and Nigro (2010) proposed an approximation based
on a model called Quadratic Exponential (QE) model, based on the multi-
variate binary data distribution showed by Cox (1972a). A similar approach
was proposed by Bartolucci and Pennoni (2007) for the two-parameter logis-
tic model. The QE model directly defines the conditional probability for yi
as

p(yi|δi,Xi, yi0) =
exp[yi+δi + (

∑T
t=1 yitxit)

′η1 + yiT (ϕ+ x′
iTη2) + yi∗ψ]∑

z exp[z+δi + (
∑T

t=1 ztxit)
′η1 + zT (ϕ+ x′

iTη2) + zi∗ψ]
,

(1.17)
where the notation for parameters is different in order to distinguish them
from the DL model, such that δi denotes the unobserved heterogeneity, η1 is
a vector of parameters related to the set of the strictly exogenous regressors,
ϕ and η2 are nuisance parameters,3 and ψ denotes the state dependence. The
denominator is given by the sum of all possible binary response vector z =

(z1, ..., zT ), where z+ =
∑T

t=1 zt and zi∗ = yi0z1 +
∑

t>1 zt−1zt. The QE and
the DL share many properties. First of all the static versions of the models
coincide, namely when γ = ψ = 0. Moreover, in both specifications the
state dependence parameters can be interpreted as the conditional log-odds
ratio for (yi,t−1, yt). Most importantly, the QE admits a sufficient statistic
for the incidental parameters, namely the total score yi+. Conditioning the

3See Bartolucci and Nigro (2010) for the discussion on parameter interpretation and
additional details.
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probability in Equation (1.17) on the total score leads to

p(yi|δi,Xi, yi0, yi+) =
exp[(

∑T
t=1 yitxit)

′η1 + yiT (ϕ+ x′
iTη2) + yi∗ψ]∑

z(yi+) exp[(
∑T

t=1 ztxit)
′η1 + zT (ϕ+ x′

iTη2) + zi∗ψ]
,

(1.18)
which does not depend on the incidental parameters δi, where

∑
z(yi+) de-

notes the sum over all the possible vector z of length T such that z+ = yi+.
Consistent estimators of parameters (η1,η2, ϕ, ψ) can be obtained via the
maximisation of a conditional likelihood function built summing the individ-
ual probabilities in Equation (1.18). Moreover, the estimator has a rate of
convergence of

√
n and is asymptotically normal. The model specification is

also more flexible than those provided by previous contributions, since it al-
lows for time dummies and it works for T ≥ 2 beyond the initial observation.

An interesting feature of the QE model is given by the fact that it can
be exploited as an approximation in order to estimate the parameter of a
DL model, as argued by Bartolucci and Nigro (2012), who derive a Pseudo
Conditional Maximum Likelihood estimator (PCML). The starting point is
the log-probability of the DL in Equation (1.16) given by

log p(yi|αi, yi0,Xi) =

yi+αi + (
T∑
t=1

yitxit)
′β + yi∗γ −

T∑
t=1

log[1 + exp(αi + x
′
itβ + γyi,t−1)]. (1.19)

The non-linear component in Equation (1.19) is approximated by a first-order
Taylor’s expansion around αi = ᾱi, β = β̄, γ = 0 as follows

T∑
t=1

log[1 + exp(αi + x
′
itβ + γyi,t−1)] ≈

T∑
t=1

{log[1 + exp(ᾱi + x
′
itβ̄)]+

+q̄i1[αi − ᾱi + x
′
it(β − β̄)]}+ q̄i1yi0γ +

∑
t>1

q̄ityi,t−1γ,

where ᾱi and β̄ are given values for αi and β and

q̄it = exp(ᾱi + x
′
itβ̄)/[1 + exp(ᾱi + x

′
itβ̄)],
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namely a static logit formulation for p(yit = 1|αi,xit) at the given value of the
parameters. Therefore, replacing the non-linear term with its expansion in
Equation (1.19) and restoring the exponential form leads to the approximated
probability given by

p∗(yi|αi,Xi, yi0) =
exp[yi+αi + (

∑T
t=1 yitxit)

′β + yi∗γ −
∑T

t=1 q̄ityi,t−1γ]∑
z exp[z+αi + (

∑T
t=1 ztxit)

′β + zi∗γ −
∑T

t=1 q̄itzi,t−1γ]
.

The last equation corresponds to a modified version of the QE model, which
can be exploited for the estimation of the parameters of the DL model. As
shown above, the QE model admits the total score as a sufficient statistic for
parameters αi (denoted δi in the QE parametrisation). Hence, by condition-
ing p∗(yi|αi,Xi, yi0) on the sufficient statistic yi+, we obtain

p∗(yi|Xi, yi0, yi+) =
exp[(

∑T
t=1 yitxit)

′β + yi∗γ −
∑T

t=1 q̄ityi,t−1γ]∑
z:z+=yi+

exp[(
∑T

t=1 ztxit)
′β + zi∗γ −

∑T
t=1 q̄itzi,t−1γ]

,

(1.20)
which is independent of αi. Finally, the probability in Equation (1.20) enters
the likelihood function and the estimation procedure involves two different
steps:

1. The values for β̃ = (ᾱi, β̄) are obtained via preliminary estimation of
the corresponding static conditional logit model (Chamberlain, 1980).
Since the estimation provides only the values of β̄, ᾱi are computed by
maximising the individual log-likelihoods of the static model, reported
in Equation (1.11), evaluated in β̄, ℓi(β̄), w.r.t. the parameter αi.

2. The conditional log-likelihood, given the preliminary estimates, is max-
imised w.r.t. the set of parameters θ and is

ℓ∗(θ|β̃) =
n∑
i=1

1(0 < yi+ < T ) log[p∗
θ|β̃(yi|Xi, yi0, yi+)],

where θ′ = (β′, γ) and the subscript θ|β̃ denotes the fact that we are
taking into account the preliminary estimates of ᾱi and β̄.
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Asymptotic properties of PCML estimator exhibits some peculiarities dis-
cussed in Bartolucci and Nigro (2012). The proposed estimator is proven to
be consistent for the parameters β when γ = 0. Moreover, the PCML esti-
mator results biased for the DL parameters and its bias is proportional to the
magnitude of the state dependence, γ. However, simulation results suggest
that PCML provides a good approximation of the DL parameters.

1.2.2 Random-effects approach

A second important methodology that allows the inclusion of heterogeneity
across individuals is the random-effects approach. Individual specific effects
αi are treated as random draws that enter Equation (1.1) under some suitable
distributional assumptions.

First, E(αi|xi1, ...,xiT ) = 0, so that the expected value equals 0 condi-
tional on the covariates. This is a crucial point since the strong hypothesis
of independence between αi and the covariates xit is imposed. It follows that
this assumption often results implausible in empirical applications.

Secondly, V(αi|xi1, ...,xiT ) = σ2
α, individual effects have finite and fixed

variance σ2
α conditional on xit. Finally, E(αiεit) = 0 for t = 1, ..., T , requiring

absence of correlation between error and the random effect.
Given the assumptions and a distribution G(·) for αi, generally assumed

to be a Gaussian distribution, αi ∼ N(0, σ2
α), the log-likelihood ℓi(·) for each

individual becomes:

ℓi(β, σ
2
α) = log

∫ +∞

−∞

T∏
t=1

p(yit|αi,xit)dG(αi). (1.21)

In this way, individual effects are integrated out and the probability function
is marginalised with respect to αi. Since the integral does not admit a closed
form solution, it is computed numerically by quadrature methods as proposed
by Butler and Moffitt (1982).

Maximising the log-likelihood, ℓ(β, σ2
α) =

∑n
i=1 ℓi(β, σ

2
α), gives a consis-

tent estimator of parameters β and σ2
α as n→ ∞,∀ T if the distribution G(·)

is correctly specified. In the case of misspecification of the distribution G(·),
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consistency also requires that T → ∞ (Arellano and Bonhomme, 2009).

In order to mitigate the assumption of independence between the unob-
served heterogeneity and the set of covariates, Correlated Random Effects
(CRE) result being a more flexible specification since they allow for correla-
tion between αi and the set of independent variables Xi = (xi1, ...,xiT ). The
structure of dependence between individual effects and covariates is modeled
with a fully parametric approach. It is required to set the conditional dis-
tribution of αi given Xi, G(αi|Xi). In this regard, two different approaches
have been proposed. Mundlak (1978) suggested a linear index based on the
sample average of the time-varying covariates for the i-th subject such that

αi = x̄
′
iλ+ ξi,

where x̄i = 1
T

∑T
t=1 xit is the mean over time of the covariates and λ is a

conformable vector of parameters to be estimated. In a similar way, Cham-
berlain (1980) proposed a linear regression function such that

αi =
T∑
t=1

x′
itψt + ξi,

where ψt is a vector of parameters and ξi is, in both specifications, the
residual. The idiosyncratic term ξi is assumed to be independent of Xi and
to follow a specific distribution, generally assumed ξi ∼ N(0, σ2

α), which will
be exploited to integrate out individual effects in the likelihood function in
Equation (1.21).

Further technical aspects involve dynamic models. The i-th contribution
to the likelihood function can be written as a sequential factorisation as:

ℓi(β, σ
2
α) =

∫ +∞

−∞

T∏
t=0

p(yit|yi,t−1,xit, αi)dG(αi). (1.22)

Due to the recursive representation, the conditional density for the first ob-
servation, yi0, is not observed. Moreover, yi0 cannot be treated as exogenous
since it depends on the parameter αi by construction, even though this source
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of endogeneity becomes negligible when T → ∞ (Hsiao, 2014). The under-
lying idea of the proposed solutions for the initial conditions is to include in
the Equation (1.22) the marginal or the conditional probability of yi0 so that
the process can be initialised.

Heckman (1981b) proposed to approximate the distribution of yi0|αi via
a reduced form model as

yi0 = 1{θαi + x′
i0π + εi0},

where θ and π are nuisance parameters to be estimated.

Another approach is given by Wooldridge (2005) who deals with the initial
condition problem in a different way. In this case the joint probability for
(yi1, ..., yiT ) is conditioned on the initial observation yi0. It can be done by
specifying a model for αi conditional on yi0 and a set of strictly exogenous
explanatory variables, zi, similar to the correlated random effects:

αi = z
′
iπ + yi0δ + ξi,

where π and δ are nuisance parameters and ξi is the idiosyncratic error
component.

Akay (2012) provides a simulation comparison between the two different
methods showing that the first has superior finite-sample performance when
the panel has moderate length (T ≤ 8), while both methods tend to perform
equally for longer time dimensions.

The random-effects approach represents a convenient way to overcome the
problem of inconsistency of the ML estimator due to the presence of unob-
served heterogeneity. However, this approach has some shortcomings as the
estimator requires proper distributional assumptions on the individual effects
and the independence between αi andXi. Though CRE partially relaxes the
independence assumption, any parametrisation must involve strictly exoge-
nous variables excluding feedback effects. Despite the general applicability,
these restrictive conditions have affected the development of the random-
effects approach in the most recent literature in favour of the fixed-effects
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approach.

1.3 Simulation study

This section proposes a Monte Carlo simulation concerning the estimation of
the parameters of a DL model with fixed effects. The aim of the study is to
test the finite sample performance of a set of estimators designed in order to
overcome the incidental parameters problem.

1.3.1 Simulation design

The simulation design aims to generate data from a DL model by

yi0 = 1{αi + βxi0 + εi0 > 0}, (1.23)

yit = 1{αi + βxit + γyi,t−1 + εit > 0}, (1.24)

for i = 1 . . . n and t = 1 . . . T beyond an initial observation, in t = 0. More-
over, yit is the binary outcome variable, 1{·} is the indicator function, xit
is an exogenous regressor generated from a Gaussian distribution with zero
mean and variance π2/3 and εit is a random variable following a logistic
distribution. The parameter β is set equal to 1 and the state dependence
parameter γ assumes values in {0.25, 0.5, 1, 2} in order to evaluate different
values of persistency. Individual intercepts αi are generated as in Honoré
and Kyriazidou (2000), so that αi = 1

4

∑3
t=0 xit. Finally, the sample sizes

considered are n = 250, 500, 1000 and T = 3, 4, 6, 8, 12. The Monte Carlo
replications are 1000.

In this regard, we consider estimators based on both the conditional
approach, Honoré and Kyriazidou (2000) (HK)4 and Bartolucci and Ni-
gro (2012) (PCML), and the target-corrections proposed by Carro (2007)
(MML), Dhaene and Jochmans (2015) (SPJ) and Bartolucci et al. (2016)
(MPL). Moreover, the five techniques mentioned above are compared to the

4The bandwidth parameter is set to σn = 8 · n−1/5 in order to compare our findings
with the large part of results in the original paper.
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Maximum Likelihood estimator (ML) and to the Infeasible Maximum Likeli-
hood estimator (INF), where the true values of the individual intercepts are
included in the model as an additional regressor and the set of parameters is
estimated by maximum likelihood. Dhaene and Jochmans (2015) proposed
a simulation study with the same design, where they compare a wide set
of target-corrected estimators. In this study, we focus on the most recent
methodological contributions in that field (i.e. MML,SPJ,MPL) and the the
two conditional estimators.

1.3.2 Simulation results

This section reports the main results of the simulation study. As in the
original contribution of Honoré and Kyriazidou (2000), the true value of
the state dependence parameter is set to γ = 0.5 for the benchmark design.5

Table 1.1 and Table 1.2 show the statistics of the seven considered estimators
for the parameters β and γ, respectively. For each sample size, the mean bias,
the median bias, the root mean square error and the median absolute error
are reported.

First of all, we can observe that the incidental parameters problem has
an high impact on the bias of the ML estimator. As expected, the bias is
considerable regardless the sample size and it slightly tends to decrease as
the time series length grows. Moreover, the bias appears to be larger for
the estimator of the state dependence parameter, γ̂. On the contrary, the
infeasible likelihood estimator, INF, performs well6 and its finite sample bias
is always negligible for the whole set of parameters.

The behaviour of the five estimators showed above is not homogeneous.
As theory would suggest, the target corrected estimators are sensitive to
the number of observations over time because the larger T , the lower the
magnitude of the bias. This can be easily verified in the tables. For a
given n, the bias of MML, MPL, and SPJ7 shrinks as the time series grows,

5The full set of simulation results are reported in Appendix A.
6By construction, the INF estimator is not affected by the incidental parameters prob-

lem.
7The SPJ estimator is computed for T ≥ 6.
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even though the split panel jackknife procedure requires T ≥ 8 to produce a
remarkable bias reduction. Among this class of estimators, the MPL performs
better in the two smallest configuration length considered.

On the other hand, we have the conditional approach. The bias of the HK
estimator is small for both parameters. The bias of β̂ tends to reduce as both
n and T increase, while the bias of γ̂ is stable for each configuration even
though larger sample sizes reduce the median absolute error. This fact is
due to the choice of the parameter of the kernel function. Finally, the PCML
estimator shows the best performance. The bias is the smallest in almost the
whole set of configurations. Clearly, given the identification strategy, larger
values of n and T lead the root mean square error and the median absolute
error to decrease. To sum up, for this design, the conditional approach
exhibits remarkable relative advantage in terms of bias with respect to the
the target-adjusted estimators when T ≤ 8.

As pointed out by Dhaene and Jochmans (2015), as the state dependence
parameter becomes larger, data are less informative for fixed effects models.
In this regard, Table 1.3 reports results about the bias of the five examined
estimators for different values of γ. In order to do so, we exploit the ∆ index
proposed in Bartolucci et al. (2016), given by

∆(∗) = |MB(ML)| − |MB(∗)|
|MB(ML)| − |MB(INF )|

,

where |MB()| is the absolute value of the median bias of the estimators. This
index can be seen as a relative perfomance of an estimator, (∗), with respect
to the INF, where the ML represents a benchmark.

First of all, we note that the effect of a variation in the true value of the
state dependence parameter is different for β̂ and γ̂. In fact, the ∆ index is
stable for all the five estimators of β as the true γ grows.

On the contrary, the behaviour of the estimator γ̂ tends to vary according
to the estimation technique. In fact, we have again to distinguish between
the two approaches. Target-adjusted estimators are more sensitive to the
state dependence with respect to the “conditional” estimators. Specifically,
the performance of MPL and MML worsens as γ increases, while SPJ tends
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Table 1.3: Simulation results under Benchmark design.
Relative Performance (∆), n = 500

β̂ γ̂

γ0 T HK PCML MPL MML SPJ HK PCML MPL MML SPJ

0 3 0.993 0.994 0.915 0.926 - 0.986 1.003 1.004 0.860 -
6 1.002 1.005 0.959 0.957 0.568 1.001 0.999 0.912 0.887 0.195
12 1.022 1.014 0.974 0.975 0.621 1.016 0.992 0.996 0.985 0.686

0.25 3 0.903 0.998 0.919 0.924 - 0.970 0.998 0.972 0.835 -
6 0.980 1.003 0.954 0.955 0.504 0.959 0.999 0.893 0.869 0.212
12 0.965 0.995 0.949 0.953 0.581 0.911 1.000 0.941 0.939 0.746

0.5 3 0.947 1.000 0.928 0.927 - 0.979 1.000 0.913 0.782 -
6 0.961 1.000 0.938 0.942 0.557 0.936 0.995 0.878 0.842 0.192
12 0.996 1.001 0.953 0.957 0.571 0.862 1.012 0.946 0.939 0.753

1 3 0.890 1.005 0.954 0.937 - 0.961 0.985 0.819 0.691 -
6 0.957 1.023 0.953 0.957 0.629 0.898 1.004 0.840 0.787 0.219
12 0.961 1.002 0.952 0.962 0.596 0.737 0.997 0.914 0.899 0.821

2 3 0.829 1.006 0.975 0.934 - 0.939 0.915 0.614 0.467 -
6 0.930 0.993 0.924 0.944 0.649 0.782 0.991 0.700 0.615 0.207
12 0.982 0.978 0.935 0.950 0.662 0.492 0.977 0.858 0.817 0.889

to be more robust even though it shows a bigger order of magnitude of the
bias.

Finally, a peculiar point concerns the PCML estimator. It is worth re-
calling that it is derived by an approximation, so we could expect that its
relative performance is decreasing in γ, since the PCML is proven to be con-
sistent only for γ = 0. The table shows that not only the ∆ index reported
in Table 1.3 is stable, but its is also the best estimator for large values of the
state dependence. This result is due to the small bias of the estimator and
is in line with the findings of Bartolucci and Nigro (2012) where the bias of
the PCML is reported for a set of simulations with different levels of state
dependence.
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1.4 Conclusions

This work reviews estimation of panel data binary choice models. The in-
clusion of individual unobservable characteristics and the role of dynamics
are crucial points for applied analyses. However, dealing with heterogeneity
leads to the failure of the standard maximum likelihood framework.

The random-effects approach is a simple and general solution based on
many distributional assumptions. The correlated random-effects approach
relaxes some of those assumptions making this methodology more appealing
for practitioners. The main advantage of this approach is that it is possible
to identify the effects of time-invariant explanatory variables.

On the other hand, the fixed-effects approach literature has been facing
a remarkable expansion. Two different methodologies try to overcome the
incidental parameters problem.

Target-corrected estimators are a wide class of techniques that produce
a reduced bias estimates. The main advantage is given the generality of
the approach. The conditional approach exploits parameters identification
strategies and sufficient statistics in order to obtain estimates independently
from the incidental parameters, even though it is model specific.

Finally, a simulation study investigates finite sample properties of dif-
ferent seven estimators for the parameters estimation of a DL model. The
experiment shows that the conditional estimators perform extremely bet-
ter than the bias-corrections when the panel length is small. However, as
the number of observations over time becomes larger, they tend to produce
equivalent results.



Chapter 2

A conditional approach for
testing endogenous sample and
self-selection in fixed-effects logit
panel data models

2.1 Introduction

The use of binary choice non-linear models is a standard practice in panel
data econometrics. However, practitioners have to face well known issues
in applied works: a potential endogenous binary explanatory variable, also
defined as self-selection, or the fact that some observations of a response
variable are not missing at random (Little and Rubin, 2019), that is sam-
ple selection, namely a potential mechanism that drives missingness. An
economist could be interested in testing the endogeneity of self- or sample
selection mechanisms, since both problems could lead to biased estimators.
Although these issues have been widely discussed for cross-sectional linear
models, the panel structure of the data and the non-linearity of the models
here considered have to be taken into account.

As concerns the second aforementioned problem, the linear probability
model could be an attractive tool. Even though it provides good approxima-

47
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tions of covariates’ marginal effects, predictions based on those estimates are
not reliable. Moreover, a simple two-stages procedure where the fitted values
of the endogenous explanatory variables from the first-stage are included in
the second-stage non-linear equation would lead to biased estimators and it is
know as the “forbidden regression” (Hausman, 1975). Furthermore, in panel
data analysis dealing with unobserved heterogeneity is a crucial point. One
way is to rely on parametric assumptions exploiting the well known random-
effects model. However, some of these hypotheses about the distribution of
unobserved heterogeneity could be unreliable in economic applications. A
feasible strategy to overcome this problem is the fixed-effects approach even
though standard maximum likelihood estimates are affected by the “inciden-
tal parameter problem” as argued by Neyman and Scott (1948). Moreover,
as pointed out by Lin and Wooldridge (2019), it is crucial to distinguish be-
tween different sources of potential endogeneity, the one due to time-invariant
unobserved components that simultaneously affect the outcome variable and
the selection mechanism (heterogeneity endogeneity) and the correlation of
idiosyncratic shocks, which is defined idiosyncratic endogeneity.1. In this re-
gard, Semykina and Wooldridge (2018) propose a strategy that allows the
estimation of a probit model with a selection equation under the assumption
of normally distributed errors and a simple test for the presence of endoge-
nous sample selection. The issue of heterogeneity endogeneity is dealt as-
suming the relation between unobservables and covariates by the Correlated
Random-Effects (CRE) approach (Mundlak, 1978).

The present work introduces a testing procedure for the endogeneity of
a self- or sample selection mechanism in binary choice panel data models
with fixed effects. This methodology relies on an approximation of a fixed-
effects logit model formulation that can be easily estimated by conditional
maximum likelihood in a two-step procedure and that admits a very simple
variable-addition test. Since this approach is of a fixed-effects nature, the in-
dividual unobserved heterogeneity is treated non-parametrically, as opposed
to the CRE approach, which requires assuming the functional form for the
correlation between the individual effects and the model covariates. More-

1Hereafter, we will refer to the latter as source of “endogeneity”
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over, a Pseudo Conditional Maximum Likelihood (PCML) estimator exploits
sufficient statistics for the individual effects, which are therefore allowed to
be arbitrarily correlated with the regressors and among each other. The
main advantage of the proposed test is that it is always able to identify
the idiosyncratic endogeneity since the choice of the “conditional inference”
approach allows to handle heterogeneity endogeneity independently and to
overcome the incidental parameters problem at the same time. An extensive
Monte Carlo study based on different designs is presented in order to show the
finite sample performance of the proposed testing procedure and to compare
it with the existing alternatives. This experiment shows that the proposed
methodology is more robust to different data generating processes because of
it does not require parametric assumptions about the unobserved heterogene-
ity. Finally, the work proposes an application to real data about the health
conditions of a set of individuals where we consider the retirement status
being a potential endogenous variable. Coherently with previous empirical
applications, the results suggest that the retirement status is endogenous and
it has a negative and significant impact of retirement on the probability of
being in bad health conditions.

The rest of the paper is organized as follows: a brief literature review is
reported in Section 2.2. Section 2.3 describes the proposed model formula-
tion. The pseudo conditional likelihood estimator is presented in Section 2.4.
The proposed test procedure and the existing alternatives provided by the
literature are described in Section 2.5. Section 2.6 shows how to extend the
previous results to dynamic models. In Section 2.7 we show the simulation
design and discuss the main simulation results concerning the test. Finally,
in Section 2.8 we find applications on real data and Section 2.9 concludes.

2.2 Literature Review

This section discusses the main contributions in the related literature. In
particular, Section 2.2.1 summarizes the main theoretical aspects concerning
the estimation of binary choice models with fixed-effects reported in Section
1.2.1, while Section 2.2.2 and Section 2.2.3 report contributions concerning
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endogenous binary explanatory variables and sample selection, respectively.

2.2.1 Estimation of fixed-effects binary choice panel data

models

This section recalls the main points of the contributions examined in Section
1.2.1. The literature concerning the fixed-effects approach to the estimation
of binary choice panel data models includes a wide variety of techniques.
Standard maximum likelihood estimator is proved to be biased because of
the incidental parameter problem, as argued by Neyman and Scott (1948)
and Lancaster (2000). Among the different proposals in order to overcome
this problem, it is possible to identify two main groups: conditional inference
and target-adjusted estimators.

The conditional inference approach exploits sufficient statistics for the
incidental parameters and derives conditional likelihood functions for the es-
timation of the structural parameters. Seminal contributions in this field
are from Andersen (1970), McFadden (1974), and Chamberlain (1980), who
derive the conditional static logit model and the conditional maximum likeli-
hood estimator that allows us to consistently estimate the parameters of the
model, regardless the nuisance parameters. The extension of the conditional
inference results to the dynamic logit (DL) model has not been straight-
forward. Chamberlain (1993) describes the conditions for a conditional ap-
proach estimation of the DL model without regressors, while the estimator
proposed by Honoré and Kyriazidou (2000) allows for exogenous regressors
exploiting a kernel density function. A more recent contribution is the one
of Bartolucci and Nigro (2010) who propose an approximation for the DL
model based on the Quadratic Exponential model (QE) originally described
by Cox (1972a) and a PCML estimator for the DL model parameters, based
on a modified version of the QE, reported in Bartolucci and Nigro (2012).

The target-adjusted approach is a more complex scenario. However, all
the estimators have the property to lower the bias of the maximum likeli-
hood estimator (MLE). As argued by Arellano and Hahn (2007), it is possible
to identify three main subgroups of techniques: (i) bias-corrected estimators,
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(ii) score-corrected estimators, (iii) and the objective-function approach. The
first group directly deals with the bias of the MLE. In particular, Hahn and
Newey (2004) propose an analytical formula for the bias in nonlinear static
panel data models. The extension to dynamic models has been proposed by
Hahn and Kuersteiner (2011), while Fernández-Val (2009) focuses on the spe-
cific analytical formula of the bias for binary choice models. Hahn and Newey
(2004) also introduce a jackknife for static models and Dhaene and Jochmans
(2015) deal with the dynamic version of the jackknife based on split-panel.
Moreover, an extension of the analytical corrections and the split-panel jack-
knife for individual and time effects is provided by Fernández-Val and Weid-
ner (2016). Concerning the score-corrected approach, Carro (2007) exploits
a modified estimating equation that leads to a modified maximum likelihood
estimator. Finally, the objective function approach is based on modifications
of the likelihood function. Bester and Hansen (2009) and Arellano and Hahn
(2016) define penalty functions and propose to maximize the penalized like-
lihood function. Similarly, Bartolucci et al. (2016) propose a modified profile
likelihood approach.

2.2.2 Endogenous explanatory variables

The issue of endogenous explanatory variables has been widely discussed for
linear models, where standard techniques have been developed such as the
two-step least squares Instrumental Variables (IV) or the Control Function
(CF) approaches (Greene, 2011). A generalization for non-linear models of
the IV and the CF techniques is provided in Terza et al. (2008), who propose
a simple two-step estimation procedure that mimics the CF approach, defined
as two-step residuals inclusion. Moreover, a variety of non-parametric and
semiparamteric estimators are reported in Blundell and Powell (2003).

The treatment of endogenous explanatory variables is different when we
are interested in the estimation of non-linear binary choice models. Dif-
ferent methods to deal with continuous endogenous explanatory variables
are explained in Rivers and Vuong (1988) and all rely on the joint distri-
butional assumption of the error terms. It is worth mentioning the limited
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information maximum likelihood based on the joint density of the two equa-
tions, the instrumental variable probit model (Lee, 1981), the generalized
two-stage simultaneous probit (Amemiya, 1978) and a minimum chi-squared
estimator (Newey, 1987) that exploits reduced form for the endogenous vari-
ables. Moreover, a relevant contribution is the two-stage conditional maxi-
mum likelihood (Rivers and Vuong, 1988) that defines the joint density by
a factorization of a marginal distribution for the endogenous variables and
a conditional one for the binary outcome. An additional peculiarity arises
given when the endogenous variable is discrete. The seminal work of Heck-
man (1978) proposes a general framework that allows for the presence of a
dichotomous endogenous variable. The model includes two binary outcomes
that are simultaneously determined where, again, the estimation is based on
the assumption of multivariate normally distributed errors.

As well as the estimation of the aforementioned models, studies are de-
voted to test for endogeneity. Monfardini and Radice (2008) describe the
variety of available tests in literature for the bivariate probit model. In-
side the joint estimation in the maximum likelihood framework we have the
classical Likelihood Ratio (LR) and Wald Tests. Alternatives are given by
the Lagrange Multipliers test and the conditional moments test based on
a univariate probit model. The LR exhibits the best performance. Despite
their simplicity, tests based on univariate models also perform well. Recently,
Wooldridge (2014) proposed a straightforward variable addition test for en-
dogeneity of a dichotomous regressor in binary choice models. It consists in
a two-steps CF approach in a quasi-limited information maximum likelihood
framework, where the residuals obtained from a first-step estimation are used
as a regressor in the second step. A wide review of the use of the control
function approach for linear and non-linear models is provided by Wooldridge
(2015).

Finally, Lin and Wooldridge (2017) proposed a methodology to estimate
a model for a binary outcome with many endogenous explanatory variables,
one of which is binary. This technique consists in estimate a bivariate probit
model where a CF approach is used to take into account the endogeneity of
the covariates. Also in this case authors proposed a straightforward test of
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exogeneity based on a two-step procedure.

The arguments above can be extended to panel data analysis. The key
point is taking into account the specification of the unobserved heterogeneity.
In this regard, Papke and Wooldridge (2008) propose a CRE approach, where
the potential correlation between time-invariant unobservables and covariates
is modeled by a linear specification as suggested by Mundlak (1978), for the
estimation of fractional response variables.

Further, Lin and Wooldridge (2019) show a way to handle the two differ-
ent sources of endogeneity in linear and non-linear models. The correlation
between covariates and a time-invariant unobserved component is treated
by the CRE, while the correlation of continuous variables and time-varying
errors exploits the CF approach, which allows us to test for idiosyncratic
endogeneity by a two-steps estimation procedure. However, the specification
of the time-constant unobservables relies on strong parametric assumptions
that could result quite restrictive in economic applications.

2.2.3 Sample Selection

Sample selection issues often occur in economic applications. The contribu-
tions of Heckman (1974, 1976, 1979) are fundamental in this field and define
the problem of a non-random selected sample as an “omitted variable prob-
lem”. The normality distributional assumption allows us to estimate linear
models in a maximum likelihood framework or a two-step procedure. A wide
set of econometric methods has been recently reviewed in Pigini (2015). Lit-
erature also provides different ways in order to test sample selection. Similar
to the endogenous dummy variable case, Vella (1992) presents a conditional
moment test and a t-test able to detect the presence of sample selection.

With reference to the issue of non-random selected sample in binary choice
models, it is worth recalling the contribution of Van de Ven and Van Praag
(1981). Authors analyzed the preference for health insurance with a de-
ductible in Netherlands and proposed a probit model with sample selection
estimated by a maximum likelihood approach. The errors of the selection
and the main equation are assumed to follow a bivariate normal distribution,
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following the methodology of Heckman (1979) for linear models.

The estimation of econometric models based on unbalanced panel data is
often threatened by sample selection issues, which may occur if the absent
information cannot be considered as missing at random.

Several approaches have been proposed to tackle sample selection issues in
linear panel data models with unobserved effects. A wide range of parametric
and non-parametric two-step estimators has been developed (Ahn and Pow-
ell, 1993; Wooldridge, 1995; Kyriazidou, 1997; Rochina-Barrachina, 1999).
Further techniques concerns dynamic models (Arellano et al., 1999; Kyriazi-
dou, 2001; Gayle and Viauroux, 2007; Semykina and Wooldridge, 2013) and
the inclusion of endogenous explanatory variables in the model specification
(Vella and Verbeek, 1999; Semykina and Wooldridge, 2010).

Despite the variety of approaches available for the linear model, the
methodological literature has devoted relatively little attention on how to
deal with sample selection in binary choice models for unbalanced panel data.
One exception is the contribution by Semykina and Wooldridge (2018), who
propose estimating a probit model with binary selection equation by Max-
imum Likelihood. The bivariate normality assumption allows them to rely
on a control function approach to account for the non-random missing in-
formation. In addition, the potential correlation between the unobserved
individual effects and the model covariates is dealt with by the CRE ap-
proach. Authors also proposed a variable addition test for sample selection
that relies on a two-steps estimate of the parameters.

2.3 Model formulation

The present section introduces the proposed models. Despite the statistical
models for the self and the sample selection are similar, they are presented
separately in order to highlight their peculiarities.
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2.3.1 Endogenous binary explanatory variable

For the response variables sit and yit, with i = 1, . . . , n and t = 1, . . . , T ,
consider the model based on assuming that

sit = 1(s∗it > 0), (2.1)

yit = 1(y∗it > 0), (2.2)

where Equations (2.1) and (2.2) are defined as selection and main equation,
respectively. Moreover, 1{·} is the indicator function, and s∗it and y∗it are
latent variables defined as

s∗it = ηi +w
′
itγ + uit, (2.3)

y∗it = αi + x
′
itβ + sitδ + εit. (2.4)

In the previous expressions, wit = (x′
it,mit)

′ and x′
it are time-varying strictly

exogenous individual covariates and we assume that wit includes at least a
strong and exogenous exclusion restriction, denoted mit. Moreover, γ, β and
δ represents the set of parameters, while αi and ηi denotes the sets of individ-
ual time-constant unobserved characteristics that are allowed to be correlated
with each other and with the model’s covariates. Inside the adopted fixed-
effects approach unobserved heterogeneity is modeled as individual specific
intercepts. Furthermore, in order to model the relationship between the error
terms in the two equations, we define

εit ≡ uitρ+ vit
√

1− ρ2, (2.5)

where uit and vit are independent error terms with standard logistic distri-
bution and ρ is the correlation coefficient between the error terms in the two
equations, respectively uit and εit.

In this scenario the dichotomous variable sit enters the latent variable
y∗it, for the outcome yit as in the main Equation (2.4) and the endogeneity is
defined according to the parameter ρ in Equation (2.5). Clearly, when ρ = 0

the correlation vanishes and we face two independent equations, implying
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the exogeneity of sit. On the contrary, the presence of the correlation affects
the conditional expected value of yit given xit and sit. Therefore, we need to
derive the distribution of yit conditional on sit.

In this regard, from the Bayes’ rule, we have that

p(yit|sit = 1, αi,xit) =
p(yit, sit = 1|αi, ηi,xit,wit)

p(sit = 1|ηi,wit)
,

p(yit|sit = 0, αi,xit) =
p(yit, sit = 0|αi, ηi,xit,wit)

p(sit = 0|ηi,wit)
,

and, since uit is assumed to follow a logistic distribution, then sit follows the
logit model

p(sit = 1|ηi,wit) = Ψ(ηi +w
′
itγ),

where Ψ(·) denotes the the standard logistic distribution function.

The main point is that, under the set of assumptions, we do not know
the joint probability of yit and sit and therefore the conditional distribution
of p(yit = 1|sit). However, an approximated version of p(yit = 1|sit) may
be based on a linear approximation of log p(yit = 1|sit) similar to the one
proposed by Nicoletti and Peracchi (2001). In this regard, we denote the
joint probability of yit and sit with pρ(yit, sit) to stress its dependence on the
correlation parameter ρ. The approximation is given by a first-order Taylor2

expansion around ρ = 0, such that

log pρ(yit, sit) ≈ log p0(yit, sit) +
∂ log p0(yit, sit)

∂ρ
ρ, (2.6)

with
∂ log p0(yit, sit)

∂ρ
=

1

p0(yit, sit)

∂p0(yit, sit)

∂ρ
.

Following the result3 in Equation (2.6), the approximated conditional dis-
tributions of yit given sit is defined as a logit model with the latent variable of
the main equation augmented by an additional regressor defined in Equation

2Similarly, also Bartolucci and Nigro (2012) derived an approximation for the DL model
based on a first order Taylor expansion of the Quadratic Exponential Model.

3The full derivation of the approximation is reported in Appendix B.



2.3. MODEL FORMULATION 57

(2.8). Therefore, we approximate this distribution as

p∗(yit = 1|sit) = Ψ(αi + x
′
itβ + sitδ + qitρ). (2.7)

The term qit in the last equation corresponds to the conditional expected
value of the error term of the selection rule in Equation (2.3). It is derived
by exploiting the assumption of uit logistically distributed, so that, following
Arabmazar and Schmidt (1982), we have4

qit =

⎧⎨⎩q1it if sit = 1,

q0it if sit = 0,
(2.8)

with

q1it = E(uit|uit > −ūit) = −(ηi +w
′
itγ)−

ln[1−Ψ(ηi +w
′
itγ)]

Ψ(ηi +w′
itγ)

(2.9)

and

q0it = E(uit|uit < −ūit) = −(ηi +w
′
itγ) +

ln[Ψ(ηi +w
′
itγ)]

[1−Ψ(ηi +w′
itγ)]

, (2.10)

where ūit denotes the linear index ūit = ηi + w′
itγ. The approximating

model in Equation (2.7) links the additional regressor qit to the correlation
coefficient ρ and it clearly coincides with the the main equation when ρ = 0,
which is a standard fixed effects logit model.

This result is very similar to the model proposed in Heckman (1979) in his
seminal paper. Although the Heckman’s proposal has been widely employed
by practitioners, it was criticized by Puhani (2000) and it is appropriate to
recall the main points of that critique: the parameters identification and the
distributional assumptions. The identification problem arises when there are
the same variables in xit and wit. In order to overcome this issue, we can ex-
ploit the non-linearity of the correction term in Equations (2.9) and (2.10) as
the only source of identification of the approximating model. Unfortunately,

4Arabmazar and Schmidt (1982) provide the result for E(uit|uit > −ūit). The formu-
lation for E(uit|uit < −ūit) is given in Appendix C.
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as well as the inverse Mill’s ratio, the correction term tends to be a linear
function in some points of its domain and this fact could lead to collinearity.
A suitable solution is to include a set of exclusion restrictions in wit. How-
ever, appropriate variables are often not available in empirical applications
and this aspect could lead to a weak identification problem. Secondly, the
model formulation includes the assumption of logistically distributed errors.
Puhani (2000) pointed out that estimated coefficients could be sensitive to
potential distributional misspecifications, in the selection and the main equa-
tion. Differently from the linear models, the distributional assumptions are
crucial since their misspecification could lead to an inconsistent estimator.

2.3.2 Sample selection

The framework presented in the previous section can be adapted to tackle
the issue of the sample selection. Define now a binary choice model for the
response yit, subject to a selection rule driven by a binary selection variable,
sit. For a sample of n units observed over T time occasions, the model with
sample selection is based on the following observational rule:

sit = 1(s∗it > 0), (2.11)

yit = 1(y∗it > 0) if sit = 1, not observed otherwise, (2.12)

where the latent variables s∗it and y∗it are now defined as

s∗it = ηi +w
′
itγ + uit, (2.13)

y∗it = αi + x
′
itβ + εit. (2.14)

As well as in the model for self-selection, we follow the same set of assump-
tions defined in the previous section for the Equations (2.3), (2.4), and (2.5),
with the only difference that in this case sit is no longer an explanatory
variable in the main equation but it is a sample-selection variable.

As in the previous case, this model admits correlation between the two
error terms. When ρ = 0 the two equations are independent, so we can
consider observations missing at random. However, when the correlation
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is non-zero, (ρ ̸= 0), the selection process affects the conditional expected
value of yit given xit and therefore we have to consider the distribution of yit
conditional on the fact of being observed (sit = 1). From the statistical point
of view, this situation partially coincides with the problem shown in Section
2.3.1. Again, from the Bayes’ rule, we have

p(yit|sit = 1, αi,xit) =
p(yit, sit = 1|αi, ηi,xit,wit)

p(sit = 1|ηi,wit)
.

Using the same approximation in Equation (2.6), we can model the condi-
tional probability for observed response variables yit as

p∗(yit = 1|sit = 1) = Ψ(αi + x
′
itβ + q1itρ), (2.15)

where

q1it = E(uit|uit > −ūit) = −(ηi +w
′
itγ)−

ln[1−Ψ(ηi +w
′
itγ)]

Ψ(ηi +w′
itγ)

, (2.16)

and again, Equation (2.15) describes a fixed-effects logit model with a cor-
rection term corresponding to the conditional expected value of the residuals
of the selection equation (2.11).

2.4 Pseudo conditional likelihood estimator

With fixed-T panel data, a fixed-effects approach to the estimation of the
parameters of the logit model is based on the maximization of the condi-
tional likelihood, (Chamberlain, 1980) given suitable sufficient statistics for
the individual intercepts, in order to avoid the incidental parameters problem
(Neyman and Scott, 1948). The conditional maximum likelihood estimator,
which is common practice for static binary panel data models, can be adapted
for the estimation of the model formulation proposed in Section 2.3.

Define now θ as the vector collecting the set of parameters in the approx-
imating models in Equations (2.7) and (2.15). Then, we have θ = (β′, δ, ρ)′

for the endogenous dummy model in Equation (2.7). Similarly, we define
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θ = (β′, ρ)′ for the approximation concerning the sample selection issue in
Equation (2.15). We consider the joint distribution of the response configu-
ration yi = (yi1, . . . , yiT )

′, conditional on the individual effect αi, the set of
model covariatesX i = (xi1, . . . ,xiT ), the correction term qi = (qi1, . . . , qiT )

′,
and the endogenous selection variable si = (si1, . . . , siT )

′. It’s probability can
be written as

p∗(yi|αi,X i, qi, si) =

exp

[
yi+αi +

T∑
t=1

yit (z
′
itθ)

]
T∏
t=1

[1 + exp (αi + z′itθ)]

,

where zit = (x′
it, sit, qit)

′ or zit = (x′
it, qit)

′ for the cases of self- and sample
selection, respectively, and collects the observation of the t-th time period of
the covariates. Moreover, yi+ =

∑T
t=1 yit is the total score, which is a sufficient

statistic for the incidental parameter αi. Therefore, the joint probability of
yi, conditional on X i, qi, si, and yi+, is

p∗ (yi|X i, qi, si, yi+) =

exp

[
T∑
t=1

yit (z
′
itθ)

]
∑

d:d+=yi+

exp

[
T∑
t=1

dt (z′itθ)

] , (2.17)

which no longer depends on αi and where the sum at the denominator is
extended to all the possible response configurations d such that d+ = yi+,

where d+ =
T∑
t=1

dt.

The formulation of the conditional log-likelihood corresponding to Equa-
tion (2.17) relies on the fixed quantities qit, that are based on a preliminary es-
timation of the parameters in the equation for the endogenous dummy/selection
variable sit. The estimation approach is therefore based on two-steps:

Step 1 Estimates of the regression parameters γ in the equation for the
selection variable are needed to compute the correction term qit in Equation
(2.7) or Equation (2.15).

As the error term uit follows a standard logistic distribution, the joint
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probability for the response configuration of the selection variable si, con-
ditional on the individual effect ηi and the covariates W i = (wi1, . . . ,wit),
is

p(si|ηi,W i) =

exp

[
si+ηi +

T∑
t=1

sit(w
′
itγ)

]
T∏
t=1

[1 + exp (ηi +w′
itγ)]

,

where si+ =
∑T

t=1 sit is again a total score and a sufficient statistic for the
incidental parameter ηi. The joint probability conditional on W i and si+ is
therefore

p (si|W i, si+) =

exp

[
T∑
t=1

(sitwit)
′γ

]
∑

b:b+=si+

exp

[
T∑
t=1

bt(w′
itγ)

] ,
which no longer depends on ηi and where the sum at the denominator is
extended to all the possible response configurations b such that b+ = si+,

where b+ =
T∑
t=1

bt. Estimation of γ is obtained by the following conditional

log-likelihood function

ℓ(γ) =
n∑
i=1

1{0 < si+ < T} log p (si|W i, si+) ,

which can be maximized by a Newton-Raphson algorithm. Given the esti-
mated regression parameters γ̂, the estimate of ηi is obtained by Maximum
Likelihood5 and the correction term ŵit can be derived by simply substituting
γ̂ and η̂i in Equations (2.9) and (2.10) or Equation (2.16).

Step 2 Let ψ̂ collect the estimators obtained in the first step, (γ̂ ′, η̂i)
′. The

set of parameters θ is estimated by maximizing the conditional log-likelihood
of (2.17), which can be written as

ℓ∗(θ|ψ̂) =
∑
i

1{0 < yi+ < T} log p∗
θ|ψ̂(yi|X i, ŵi, si, yi+).

5Given the value of γ̂, estimated intercepts are computed maximizing individual like-
lihood contributions, log p(si|ηi,W i) with respect to the parameter ηi.
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The function ℓ∗(θ|ψ̂) may be maximised by a Newton-Raphson algorithm
and the resulting θ̂ is the PCML estimator (pcml). This estimator is proved
to be consistent and asymptotically normal, as argued by Andersen (1970).

Moreover, this result is still valid in the two-step procedure. Following
Newey and McFadden (1994), the second step estimator is not affected by
the generated regressor qit. This happens because, under the set of assump-
tions, the probability limit of the estimator exploited in the first step is
non-stochastic and coincides with the true parameters in Equation (2.3) or
Equation (2.13), namely γ̂ p→ γ0.

However, the model is derived by an approximation of the joint proba-
bility of (sit, yit) around ρ = 0 and differs from the true one in presence of
correlation. Therefore, the pcml estimator is consistent for a set of pseudo-
true parameters θ∗, that equals the true parameters of the model in Equation
(2.4) or Equation (2.14), denoted by θ0, only when ρ = 0. We then observe
an asymptotic bias, (θ∗ − θ0), increasing in the true value of the correlation
coefficient ρ0.

2.5 Testing for endogenous self and sample se-

lection

As mentioned in Section 2.3.1 and Section 2.3.2, the correlation between
the error terms of the two equations in the model leads to the endogenous
selection mechanism. This section shows how to test for endogeneity in both
cases in a simple way. Given the estimates of the two approximating models,
we can test for the null hypothesis of exogeneity of the dummy/absence of
endogenous selection, H0 : ρ = 0, against the the bidirectional hypothesis,
H0 : ρ ̸= 0. It is worth recalling that the pcml estimator is consistent for
the true parameters of the model under the null hypothesis.

The simplest way to test the null hypothesis consists in computing the
usual t-test on the coefficient, given by

t =
ρ̂

s.e.ρ̂

a∼ tnT−k−1,



2.5. TESTING FOR ENDOGENOUS SELF AND SAMPLE SELECTION63

where s.e.ρ̂ denotes the standard error of the parameter, k is the dimension
of θ and the t-statistic is asymptotically distributed as a t-distribution with
nT −k−1 degrees of freedom. In this kind of two-step estimation procedure,
it is a common practice to correct standard errors, taking into account the
first-step estimates (Newey and McFadden, 1994). In this regard, we rely
on a Generalized Method of Moments (GMM) approach similar to the one
developed in Bartolucci and Nigro (2012). The estimating equations of the
first and the second steps are jointly considered as unique system of the type:

g(θ, ψ̂) =
∑
i

1{0 < si+ < T}1{0 < yi+ < Ti}

(
∇πℓi(ψ̂)

∇θℓ
∗
i (θ|ψ̂)

)
= 0,

where ∇∗ denotes the derivatives of the likelihood w.r.t. a set of parameters.
Starting from this system, a first-step robust estimator for the covariance
matrix is obtained by the following expression,

W (θ̂, ψ̂) = H(θ̂, ψ̂)−1
[
S(θ̂, ψ̂)

]
H(θ̂, ψ̂)−1,

where H(θ̂, ψ̂) is defined as

H(θ̂, ψ̂) =
∑
i

1{0 < si+ < T}1{0 < yi+ < Ti}

(
∇ππℓi(ψ̂) 0

∇θπℓ
∗
i (θ|ψ̂) ∇θθℓ

∗
i (θ|ψ̂)

)
,

where 0 is a null square matrix and

S(θ̂, ψ̂) =
∑
i

gi(θ̂, ψ̂)gi(θ̂, ψ̂)
′

is the outer product of the elements of the vector g(θ, ψ̂). Finally, the stan-
dard errors for θ̂ are the elements in the main diagonal of the suitable lower-
right sub-matrix of W (θ̂, ψ̂).

However, as suggested by Semykina and Wooldridge (2018), there is no
need to use first-step robust standard errors, since the the standard estimator
of the covariance matrix is consistent under the null hypothesis.

Further to the t-test, the LR test is an attractive alternative, as well as all
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the standard tests bases on the ML estimator, which are common practice in
cross-sectional studies. It is worth noting that in this case it is not possible to
compute the LR test by comparing the conditional log-likelihood function of
the approximating model and the one of the standard logit model that ignores
the selection mechanism. In fact, the subjects that actually contribute to the
two log-likelihood functions are different because of the two step estimation
strategy shown in Section 2.4. Namely, we exclude from the computation
of the likelihood functions all the subjects without variation in the outcome
variable, while the pcml also gets rid of individuals without variation in the
selection variable. In any case, the LR test can be based on the approximating
model and it is given by the difference of the log-likelihood functions of the
full model ℓ∗(θ̂|ψ̂), and the restricted one ℓ∗(θ̂|ψ̂, ρ = 0). The LR statistic
is defined as

LR = −2[ℓ∗(θ̂|ψ̂, ρ = 0)− ℓ∗(θ̂|ψ̂)] a∼ χ2
1, (2.18)

and it is asymptotically distributed as a chi-squared with one degree of free-
dom (Andersen, 1971).

In order to compare the proposed test with alternative provided by ex-
isting literature, we describe a simple alternative two-step testing procedure
that relies on the CRE approach. For the case of binary endogenous dummy,
the test is based on a two-step procedure described in Lin and Wooldridge
(2017) where the unobserved heterogeneity is dealt with the Mundlak’s device
(Lin and Wooldridge, 2019). The two steps are:

1. Estimate a pooled probit for sit, augmented with the individual time
averages of exogenous variables, x̄i, and a set of time dummies. Then,
compute the inverse Mill’s ratio.

2. Use a pooled probit for yit where the Mill’s ratio, related to parameter
ρ, and x̄i are additional regressors .

The null hypothesis H0 : ρ = 0 can be tested by a simple t-test on the
estimated coefficient. The test for the sample selection is very similar and
has been proposed by Semykina and Wooldridge (2018). The difference with
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the estimation shown above is that the second step estimation is restricted
to the observations for which sit = 1.

2.6 Dynamic Logit Model

The formulations in the previous sections concern static logit models. How-
ever, the extension of the results to dynamic models is straightforward. We
include the lagged dependent variable, yi,t−1, in the Equation (2.4) and we
get

y∗it = αi + x
′
itβ + sitδ + yi,t−1ϕ+ εit

where ϕ is the state dependence parameter.
Clearly, the identification imposes to lose the first observation of individ-

ual outcomes, denoted yi1, which enters the conditioning set and is treated as
given. Following the same approximation adopted for the static model will
lead us, for the case of endogenous explanatory variable, to an approximated
conditional probability given by

p∗(yit|sit = 1, αi,xit, yi,t−1, yi1) = Ψ(αi + x
′
itβ + sitδ + ϕyi,t−1 + qitρ),

that is a DL model, where all the other variables and parameters are defined
in Section 2.3.1.

This methodology is also applied to the case of sample selection, even
though we have to take into account a peculiarity. In fact, since the outcome
yit is observed only when sit = 1, it could happen that, even if yit is observed,
yi,t−1 is not available. Hence, the state dependence parameter is not properly
identified.

A feasible way to overcome this problem is to consider, for each i−th
subject in the sample, all the possible sequences of at least three consecutive
not-missing observations. This sequences will autonomously contribute to
the likelihood function, regardless the original subject they belong. The first
element of each group of consecutive observations will be treated as given,
and it will be the initial condition. The second point is about the individual
intercepts. When two subgroups come from the same subjects it is not clear
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how to manage the subgroups common parameter αi. However, there is no
need to formulate hypotheses about this aspect because of the conditional
estimation. Therefore, the identification strategy for the sample selection
model leads to

p∗(yit|sit = 1, αi,xit, yi,t−1, yi1) = Ψ(αi + x
′
itβ + ϕyi,t−1 + qitρ).

Finally, the estimation procedure relative to both self and sample se-
lection models is slightly different from the one presented in Section 2.4.
Differently from the static logit model, the DL does not admit a sufficient
statistic for the incidental parameters αi. Therefore, we adopt the estimator
proposed by Bartolucci and Nigro (2012) based on a QE model that acts as
an approximation and that admits the total score as a sufficient statistic for
the incidental parameters.

2.7 Simulation study

This section illustrates the design and discuss the main results of the simu-
lation study used to investigate the power properties of the tests described
in Section 2.5.

2.7.1 Endogenous Binary Explanatory Variable

The simulation study is based on samples subject to the observational rule
in Section 2.3.1. For the pairs of binary data (sit, yit), the model assumes
that

sit = 1{ηi + γ0 + xitγ1 +mitγ2 + uit > 0}, (2.19)

yit = 1{αi + xitβ + sitδ + εit > 0}. (2.20)

The covariates xit and mit are normally distributed with zero mean and vari-
ance equal to π2/3. The error terms εit, defined as in Equation (2.5), are
drawn from a Gaussian copula, where uit and vit follow a logistic distribution
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with zero mean and variance equal to π2/3. In order to evaluate the perfor-
mance of the test for dynamic models, we build the latter simply by adding
yi,t−1ϕ in the linear index in Equation (2.23), where yi,t−1 is the lagged value
of the response variable and ϕ is the state dependence parameter. More-
over, we define the initial observation as in Equation (2.22). Then, the data
generating process for the dynamic model is given by

sit = 1{ηi + xitγ1 +mitγ2 + uit > 0}, (2.21)

yi1 = 1{αi + xi1β + si1δ + εi1 > 0}, (2.22)

yit = 1{αi + xitβ + sitδ + yi,t−1ϕ+ εit > 0} for t ≥ 2. (2.23)

For the individual intercepts we define three different designs. All the
scenarios allow for correlation between αi, ηi, and the covariates xit. The
benchmark design fits the assumptions of Mundlak (1978), and both indi-
vidual effects are given by the sum of the time averages of xit and mit for
each subject, plus an additional idiosyncratic term, ξi, drawn form a gaussian
distribution, that is

αi =
1

T

T∑
t=1

xit +
1

T

T∑
t=1

mit + ξ1i, ηi =
1

T

T∑
t=1

xit +
1

T

T∑
t=1

mit + ξ2i.

In the second and the third cases, along the lines of Honoré and Kyriazidou
(2000), αi is given by the average of the first three observations xit for each
configuration and ηi is drawn from a Gaussian copula, so that the two designs
are

αi =
1

3

3∑
t=1

xit, ηi = 0.5αi +
√
0.75 ξi, (2.24)

and

αi =
1

3

3∑
t=1

xit, ηi = 0.8αi +
√
0.36 ξi, (2.25)

where, again, ξi ∼ N(0, 1). These two designs for unobservables in Equations
(2.24) and (2.25) will be referred as HK1 and HK2, respectively. The only dif-
ference between HK1 and HK2 is the correlation between the unobservables
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which indirectly defines the correlation between xit and ηi.
Throughout the simulation study, we set β = δ = 1 in Equations (2.20)

and (2.23), as well as γ1 and γ2 in Equation (2.19) and (2.21). The parameter
γ0 in Equation (2.19) allows us to control the proportion of observations of
the selection variable that are equal to 1. As a benchmark, we set γ0 = 0 so
that this proportion is close to the 50%. Alternatively, we consider the case
of γ0 = 5 that produces a 90% of sit = 1. The state dependence parameter ϕ,
assumes values in {0.5, 1}. Finally, we let ρ vary from −0.9 to 0.9, by steps
of 0.1. The sample sizes considered are n = 500, 1000 for T = 5, 10 and the
number of Monte Carlo replications is 1000.

Figure 2.1: Endogenous Dummy: t-test, (H1 : ρ ̸= 0), Benchmark Design
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We now consider the power properties of the tests described in Section
2.5, for the null hypothesis of non-endogeneity of sit, namely H0 : ρ = 0. The
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Figure 2.2: Endogenous Dummy: LR-test, (H1 : ρ ̸= 0), Benchmark Design
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nominal size of the test is of 0.05 and the curves are obtained by cubic spline
interpolation. The following figures report the results for the t-test denoted
FE, and for the LR test (LR) based on the approximating model proposed in
this work. Further, we report the results for t-test based on estimates that
exploit the CRE approach. It is worth recalling that the benchmark design
is built such that the Mundlak device works perfectly.

Figure 2.1 shows the rejection rate of the t-tests for the benchmark design.
Under this assumption, the two approaches should be equivalent. First of
all, the tests always attain the nominal size in all the sample configurations.
Moreover, the power curves for the two approaches are very close. Obviously,
the larger the sample in n or T , the higher the rejection rate of the tests when
the alternative hypothesis is true. Figure 2.2 compares the results of the FE
t-test and the LR test for n = 500. As we can see, the tests exhibit equivalent
results since the size and the average rejection rates are the same.

As mentioned in Section 2.3, one of the main advantages of the approach
presented in this work is the absence of assumptions about the structure of
the individual effects. In this regard, Figure 2.3 includes the power curves
of the tests when data are generated from the HK1 design. We observe
that the proposed methodology is robust to the different data generating
process. Again, it attains the size and the test gains power as the number
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Figure 2.3: Endogenous Dummy: t-test, (H1 : ρ ̸= 0), HK1 Design

0.05
0.1

0.2

0.3

0.4

0.6

0.8

1.0

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

P
o

w
e
r 

fo
r 

n
o
m

in
a
l 
s
iz

e
 =

 5
%

ρ

n = 500

FE ,T = 5
FE ,T = 10
CRE ,T = 5

CRE ,T = 10

0.05
0.1

0.2

0.3

0.4

0.6

0.8

1.0

-0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9

P
o

w
e
r 

fo
r 

n
o

m
in

a
l 
s
iz

e
 =

 5
%

ρ

n = 1000

FE ,T = 5
FE ,T = 10
CRE ,T = 5

CRE ,T = 10

of observations increases. On the contrary, the CRE approach fails to fully
model the correlation between the unobservables and the regressors because
the Mundlak’s device is misspecified by construction. This fact breaks down
the ability of the test to detect the correlation between εit and uit, so that
the resulting power curve is shifted due to the adopted design. In this regard,
Figure 2.4 reports the results for the HK2 design. In this case the shift of
the power curves for the CRE t-test is more severe because unobservables
are more correlated than in HK1 design.

A further aspect that is worth mentioning is the effect on the test of
large proportions of 1 or 0 in the selection variable. Figure 2.5 includes the
power curves of the FE t-test with a proportion of 1 in the selection variable
close to 90%. We observe that the test exhibits less power with respect to



2.7. SIMULATION STUDY 71

Figure 2.4: Endogenous Dummy: t-test, (H1 : ρ ̸= 0), HK2 Design
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Figure 2.5: Endogenous Dummy: t-test, (H1 : ρ ̸= 0), 90% of sit = 1
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Figure 2.6: Endogenous Dummy: t-test, (H1 : ρ ̸= 0), Dynamic Logit
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the benchmark design in Figure 2.1 because in this case the actual sample
size is smaller. This fact is due to the first step estimation. Considerable
imbalances in the proportion of 1 and 0 in sit imply low variability of the
selection variable. Consequently, the conditional estimation in the first step
require to exclude a large number of observation that are not informative.

Finally, Figure 2.6 reports the results about the t-test based on ρ̂ for the
DL model with the two different values for the state dependence parameter.
Even though parameters are estimated by an approximating model (Bar-
tolucci and Nigro, 2012) the testing procedure is still valid. Also in this case
the test attains the nominal size under the null hypothesis H0. However, we
can observe a loss of power in the case of T = 5 with respect to the static
model, while the tests produce similar results for T = 10. A peculiar aspect
is given comparing the curves for different levels of the state dependence pa-
rameter. Despite the estimator proposed in Bartolucci and Nigro (2012) is
proved to consistent only for the case ϕ = 0, the power curves are very close
for the two different level of state dependence.

2.7.2 Sample Selection

The simulation design adopted to study the problem of sample selection
is close to the one shown in the previous section. It is based on samples
subject to the observational rule in Equations (2.11) and (2.12). The outcome
variables, (sit, yit), are modeled by

sit = 1{ηi + γ0 + xitγ1 + zitγ2 + uit > 0}, (2.26)

yit = 1{αi + xitβ + εit > 0},

where yit is observed only if sit = 1. The covariates, the individual intercepts
and the parameters are the same shown in Section 2.7.1. Also in this case, dy-
namic models include the lagged response variable and the state dependence
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parameter and the initial condition,

sit = 1{ηi + γ0 + xitγ1 + zitγ2 + uit > 0}, (2.27)

yi1 = 1{αi + xi1β + εi1 > 0},

yit = 1{αi + xitβ + yi,t−1ϕ+ εit > 0} for t ≥ 2.

In this case, we have different values for the intercept γ0 in Equations (2.26)
and (2.27), it assumes values in {−1, 1, 3}, providing about 60%, 40%, and
20% censored observations in yit, respectively. The sample sizes considered
are n = 500, 1000 for T = 5, 10 for static models. Since the identification
strategy described in Section 2.6 requires, for a unit in the sample, at least
three consecutive observations and reduces the actual sample size considered,
we explore only samples with n = 500, 1000 and T = 10 for dynamic models.

Sample selection implies unbalanced panel datasets. Hereafter we will
consider the benchmark design for the unobservable components. A funda-
mental aspect we take into account is the number of missing observations.
At first, we consider a censoring level of 40%. Figure 2.7 shows the usual t-
tests, the one proposed in Section 2.5 (FE) and the Semykina and Wooldridge
(2018) proposal (CRE). Also for the sample selection case, the test behaves
as expected in terms of size and power. The main difference with respect
to case of the endogenous dummy is the actual sample size exploited in the
estimation procedure. In fact, the curves tend to be less steep due to the
smaller number of available observations.

Figure 2.8 reports the results for the FE test and the alternative LR test
with n = 500. As well as in the case of the endogenous dummy, the power
curves of the test almost perfectly overlap. Further, we observe that the
performance of the test is affected by the level of censoring and this effect is
clear in Figure 2.9, where we can find the rejection rate of the proposed FE
t-test for two different levels of missing observations: 20% and 60%, where
the test exhibits different power curves. As well as the case of endogenous
dummy described in Figure 2.5, the lower variability of the selection variable,
the smaller the number of available observations in the second step. Despite
the first case implies a larger number of available observations of yit with
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Figure 2.7: Sample Selection: t-test, (H1 : ρ ̸= 0), Benchmark Design
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Figure 2.8: Sample Selection: LR-test, (H1 : ρ ̸= 0), Benchmark Design
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Figure 2.9: Sample Selection: t-test, (H1 : ρ ̸= 0), Alternative censoring
levels
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respect to the second scenario, the actual sample size available for estimation
procedure is larger in the “60%−”scenario.

Finally, the results for the dynamic setup are satisfying in terms of size
and power. Figure 2.10 reports the curves for the t-test (FE), with a 40% of
missing observations. Clearly, the test has a smaller rejection rate compared
with the static model because of the identification strategy.

2.8 Application

This section illustrates an application of the proposed methodology to real
data and focuses on the analysis concerning the impact of retirement on
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Figure 2.10: Sample selection: t-test, (H1 : ρ ̸= 0), Dynamic Logit
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the health conditions. The empirical illustration exploits the Survey of
Health, Ageing and Retirement in Europe (SHARE). This dataset provides
individual-level information about health, socio-economic status and social
and family networks for a set of individuals in 27 European countries and
Israel. The actual sample here considered is referred to a balanced panel of
8,753 individuals with complete questionnaires observed in Waves 1,2,4 and
5 of the dataset, for a total of 35,012 observations.6

The SHARE dataset has become very popular in the recent literature
and it has been employed in different studies that empirically investigate the
relation between retirement and health. Among others, Coe and Zamarro
(2011) exploit different measures concerning individual health status and find
that “retirement has a health preserving effect on the overall general health”.
Conversely, Mazzonna and Peracchi (2012, 2017) show the negative impact
of retiring on health conditions and cognitive abilities together with a strong
heterogeneity of these effects “across occupational groups” and between the
short- and the long-run. Moreover, other studies investigated the impact of
retirement on financial hardship (Angelini et al., 2009), unhealthy behaviours

6The sample is restricted to individuals interviewed in Austria, Germany, Sweden,
Netherlands, Spain, Italy, France, Denmark, Switzerland and Belgium. Excluding Greece,
whose data are not available for the fourth and the fifth waves, these countries are the
same considered by Coe and Zamarro (2011).
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(Celidoni et al., 2017), and social relationships (Comi et al., 2019).

A common issue in these studies concerns the potential endogeneity of
the retirement status. Eibich (2015) argued about three different sources
of endogeneity. First of all there could be reverse causality. Since health
conditions affects the retirement decisions, one might expect that individuals
with bad health conditions have a higher probability to retire early. Secondly,
there could be a “justification bias” meaning that people who retired early
could underreport their health status in order to justify the fact they are no
longer in the labour force. In a study of the impact of the retirement on the
probability of being in bad health conditions, these phenomena could lead to
an upward-bias of the resulting coefficient. Third, an omitted variable bias
due to time-constant unobservables has to be taken into account.

In this application, the main outcome BHit is a binary variable that is
equal to one when an individual is in bad health conditions. This variable
is generated starting from a self-assessed health status in scale that ranges
in Excellent, Very Good, Good, Fair, and Poor.7 The dichotomization of the
self reported health conditions is popular in the literature and provides an
easy interpretation of the sign of the marginal effects (Eibich, 2015). We will
adopt two different definitions of bad health, the first variable BH1it equals
one when the reported health status is Fair or Poor and zero otherwise. This
definition of bad health status a standard practice in the literature (Coe and
Zamarro, 2011). In the second version, BH2it is one also when the self-
assessed condition is Good. In order to perform our analysis, we take into
account the following two-equation model

BHjit j = 1, 2 i = 1, ..., 8753 t = 1, ..., 4

BHjit = 1{αi + β1Retit + x
′
itβ + εit > 0},

Retit = 1{ηi + γ1EligEit + γ2EligNit + x
′
itγ + uit > 0}, (2.28)

where we assume that the binary explanatory variable Retit represents the
retirement status and it is treated as endogenous. This regressor is equal

7As pointed out by Coe and Zamarro (2011) this scale is comparable with the U.S.
Health and Retirement Study.
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to 1 when an individual is actually retired and zero otherwise.8 The vector
xit include a set of control variables: age, age squared, marital status, gen-
der, years of education, number of children, household income, and a set of
country-specific and time dummies. Clearly, all time-invariant covariates will
be removed from the specification with fixed-effects in order to achieve identi-
fication. Hence, the set of explanatory variables is given by age, age squared,
household income, and the time dummies for models with fixed-effects.9

For what concerns Equation (2.28), the one for the endogenous variable
Retit, we include two over-identifying restrictions, EligE and EligN which
are two dichotomous variables that equals one when an individual is eligible
for the early or the normal retirement, respectively. Eligibility rules vary
across countries and over time, they should have a large explanatory power
for the retirement status but at the same time it does not directly affect
the individual health status. Finally, we include the presence of unobserved
heterogeneity, αi and ηi which will be treated in different ways according the
proposed model specification.

Table 2.1 and Table 2.2 report estimated coefficients for three different
specifications of single equation model and their relative two-equation coun-
terpart where we take into account the endogeneity of the retirement, in
order to compare the proposed methodology with viable alternatives.

The first three columns report the estimates of a probit model with CRE,
a conditional logit model, and a linear probability model with fixed-effects.
The columns relative to the testing models include the testing procedures
described in Section 2.5 and a fixed-effects linear probability model where
the endogeneity of retirement is dealt with a control function approach.10

In Table 2.3 we can find the estimated coefficients of the identifying restric-
tions in the equation of retirement for the three different model specification
proposed.

8Alternative definitions of retirement consider the labour force participation.
9The marital status is actually time-varying. Anyway, in order to avoid weak identifi-

cation due to limited variability over time it is excluded from the FE models. Moreover,
the inclusion of this variable does not affect the results.

10The two-step least squares is reported here since it is a very popular technique in the
literature.
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Table 2.1: Estimates Results (BH1)

Single-Equation Models Testing Models

CRE-Probit FE-Logit FE-LPM CRE FE FE-LPM

Bad Health 1

Retired -0.062 ** -0.171 *** -0.022 *** -0.399 *** -0.482 ** -0.079 ***
[0.032] [0.065] [0.007] [0.069] [0.268] [0.021]

Age -0.160 *** -0.197 *** -0.035 *** -0.065 ** -0.122 -0.028 ***
[0.033] [0.056] [0.007] [0.028] [0.109] [0.007]

Age2 0.001 *** 0.002 *** 0.000 *** 0.000 *** 0.000 0.000 ***
[0.000] [0.000] [0.000] [0.000] [0.001] [0.000]

Income -0.000 -0.001 * -0.000 * -0.000 *** 0.000 -0.000 *
[0.000] [0.000] [-0.000] [0.000] [0.001] [0.000]

#Children 0.029 ** - - 0.012 ** - -
[0.012] - - [0.005] - -

Education -0.046 *** - - -0.042 *** - -
[0.004] - - [0.002] - -

Correction - - - 0.236 *** 0.131 0.065 ***
- - - [0.040] [0.094] [0.022]

t-test on ρ̂ - - - 5.815 1.223 2.940
(p-value) - - - (0.000) (0.164) (0.000)

1 CRE models include the full set of explanatory variables to control possible correlation between covariates and unobserv-
ables. 2 The FE models only include time-variyng regressors. 3 p-value: *** ≤ 0.01, ** ≤ 0.05, * ≤ 0.1

From Table 2.1, all models provide results in line11 with Coe and Zamarro
(2011), emphasizing the negative impact of the retirement on being in bad
health and, as expected, this impact is largely underestimated, in absolute
value, when we do not take into account endogeneity of the retirement.

Anyway, it is worth mentioning that the test on ρ̂ based on the proposed
methodology leads to a completely different conclusion with respect to the
alternatives, that is we fail to reject the null hypothesis of idiosyncratic en-
dogeneity. This can be due to the different specification of unobservables. It
is possible that the CRE and the FE-LPM testing models fail to correctly
separate the idiosyncratic and the heterogeneity endogeneity, wrongly detect-
ing as significant the estimated coefficient relative to the “residuals” of the
“first stage” regression. Another explanation can be due to the identification
strategy of the PCML here proposed. Namely, the actual individuals provid-
ing information are those who actually retire and at the same time “switch”

11Notice that it is not straightforward to compare these results with those of previous
studies since the combinations of these techniques and this sample has not been exploited
in the literature.



2.8. APPLICATION 81

Table 2.2: Estimates Results (BH2)

Single-Equation Models Testing Models

CRE-Probit FE-Logit FE-LPM CRE FE FE-LPM

Bad Health 2

Retired 0.019 -0.040 -0.004 -0.308 *** -0.696 *** -0.082 ***
[0.030] [0.063] [0.007] [0.067] [0.239] [0.022]

Age -0.098 *** -0.118 ** -0.003 -0.033 -0.075 0.007
[0.031] [0.055] [0.007] [0.026] [0.127] [0.007]

Age2 0.001 *** 0.001 *** 0.000 0.000 * 0.001 -0.000
[0.000] [0.065] [0.000] [0.000] [0.001] [0.000]

Income -0.000 -0.001 ** -0.000 * -0.000 -0.000 -0.000 *
[0.000] [0.065] [-0.000] [0.000] [0.001] [0.000]

#Children 0.003 - - -0.004 - -
[0.012] - - [0.006] - -

Education -0.044 *** - - -0.039 *** - -
[0.004] - - [0.002] - -

Correction - - - 0.221 *** 0.245 *** 0.088 ***
- - - [0.039] [0.087] [0.023]

t-test on ρ̂ - - - 5.639 2.837 3.790
(p-value) - - - (0.000) (0.005) (0.000)

1 CRE models include the full set of explanatory variables to control possible correlation between covariates and unobserv-
ables. 2 The FE models only include time-variyng regressors. 3 p-value: *** ≤ 0.01, ** ≤ 0.05, * ≤ 0.1

their health status at least once in the observed sample. It is possible that
the main outcome for the subject who retired in the observed period has
not sufficiently time variation and that would lead to a weak identification
problem.

In order to understand how the definition of the main outcome may affect
the estimation procedure, Table 2.2 reports the same set of estimates where
the main dependent variable is BH2it. Again, even though the interpreta-
tion of the parameters is slightly different because of the different definition
of the outcome, all results are coherent in underlining the negative impact of
retirement on being in bad health. Moreover, all the testing models provide
the same results. This seems coherent with the fact that a higher variability
of the outcome variable is required for a proper identification. Finally, it is
worth mentioning that the coefficients provided by the proposed methodol-
ogy are not full reliable but represent an approximation of the true set of
parameters since the correlation coefficient is different from zero.
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Table 2.3: Retired Equation - Excluded Instruments

CRE FE FE-LPM

EligE 0.516 *** 1.000 *** 0.226 ***
[0.039] [0.116] [0.009]

EligN 0.737 *** 1.740 *** 0.271 ***
[0.035] [0.114] [0.009]

2.9 Conclusions

This work introduces a novel method to test for endogeneity of a binary ex-
planatory variable or for endogenous sample selection in binary choice panel
data models. Existing methodologies rely on strong parametric assumptions
to deal with unobserved heterogeneity. On the contrary, the proposed testing
procedure is built in a pure fixed-effects approach, so that unobservables are
not assumed to follow a specific distribution.

Moreover, the testing procedure is very easy to implement. It is based on
an approximating model that follows a fixed-effects logit model formulation
that admits a sufficient statistic for nuisance parameters and allows us to
overcome the incidental parameters problem. It is sufficient to perform the
conditional maximum likelihood estimation, which is a standard practice in
this field, and run a simple variable addition test.

The Monte Carlo study shows that a simple t-test is able to detect endo-
geneity for both static and dynamic models. It always attains the size under
the null hypothesis. In terms of power, it behaves differently according to
to the issue we’re investigating even tough, in general, it gains power as the
endogenous selection becomes more relevant. Further, the test is robust to
different structures of individual heterogeneity. The absence of parametric
assumptions on unobservables let the test to work well regardless the simula-
tion design. Unfortunately, the alternative testing procedures based on corre-
lated random-effects fail to recognise endogenous selection when unobserved



2.9. CONCLUSIONS 83

effects are misspecified. Finally, we perform an application to real data. We
try to asses the impact of retirement on the health status. The whole set of
estimates indicates a negative effect of retirement on the probability of being
in bad health conditions even though this effect is underestimated when we
consider the retirement as exogenous. The endogeneity of retirement may be
due to both reverse causality and unobservables. The proposed methodology
allows to take into account both aspects.

Results highlight the advantages and the limits of this approach. The
absence of parametric assumptions lets the test to be fully reliable with re-
spect to the role of unobserved heterogeneity but at the same time the main
limit of the fixed-effects approach is that data must have enough time vari-
ability to achieve identification. Moreover, it is not possible to consistently
estimate marginal effects within the conditional inference framework and a
recent proposal that aims to fill this gap is the one of Bartolucci and Pig-
ini (2019). Finally, it is worth mentioning that the proposed model cannot
be exploited for parameters point estimates when the null hypothesis of the
test is rejected, since the PCML here proposed is a bias estimator. Further
research should focus on understanding the way approximation bias affects
the estimator and on deriving marginal effects for the proposed model.
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Chapter 3

Recursive computation of
Quadratic Exponential
conditional likelihood function

3.1 Introduction

Fixed-effects estimation of non-linear binary choice panel data models plays
an important role in the recent econometric literature. A wide set of tech-
niques concerning estimation of the aforementioned models are available.
The key idea is to overcome the well-known incidental parameters problem
(Neyman and Scott, 1948; Lancaster, 2000), discussed in Section 1.2.1, which
leads to a bias of the Maximum Likelihood estimator (ML). Consider a lon-
gitudinal panel dataset, where we have n individuals observed over a small
number T of time occasions. Intuitively, this bias of the ML estimator arises
in fixed-effects models because the estimation of the individual specific inter-
cepts is based on the few observations per subject, so that it is not possible to
consistently estimate each individual parameter. Moreover, the bias spreads
to the estimator of the regression parameters as well, since they are not
informationally orthogonal.

A we have seen in Chapter 1, a first approach focuses on the bias cor-
rection of the ML estimator (Hahn and Newey, 2004; Fernández-Val, 2009;
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Hahn and Kuersteiner, 2011; Dhaene and Jochmans, 2015), corrected like-
lihood functions (Bester and Hansen, 2009; Arellano and Hahn, 2016; Bar-
tolucci et al., 2016), or corrected score functions (Carro, 2007). The idea of
these approaches is to reduce the order of the bias of the ML estimator from
O(T−1) to O(T−2). This class of estimators can be adapted to both probit
and logit models in static and dynamic specifications so that these techniques
are potentially appealing for a wide set of economic applications. However,
bias-corrected estimators show poor finite-sample performance with panel
datasets characterised by a small number of time occasions because bias cor-
rections become more precise as T grows. As a rule of thumb, it is necessary
that the proportion between the number of subjects and the time occasions
they are observed is n1/3 < T . Moreover, bias corrections are hampered in
unbalanced panel datasets. In fact, the subjects with few observations over
time make the bias of the MLE and its corrections more severe.

Conditional inference1 represents an alternative approach. It is based on
the existence of sufficient statistics for the incidental parameters. As opposed
to the bias-corrected estimators, conditional estimators are model specific but
are proved to be fixed-T consistent since these models get rid of the nuisance
parameters conditioning the individual likelihood function to the sufficient
statistic. Relevant contributions in this field are the one of Chamberlain
(1980) for the static logit model. Further, Honoré and Kyriazidou (2000)
and Bartolucci and Nigro (2010, 2012) extend the conditional approach to
dynamic models such as the Dynamic Logit model (DL) and the Quadratic
Exponential (QE) model (Cox, 1972a; Bartolucci and Pennoni, 2007), re-
spectively. From a practitioner perspective, these estimators are appealing
for economic applications not only with small-T panel data but also when
we have unbalanced data sets. However, conditional estimators require the
maximisation of peculiar likelihood functions, whose computational burden
limits the applicability of these techniques when T becomes large, so that
the parameters estimation is no longer feasible when the likelihood func-
tion is computed by standard algebra operations. One way to overcome the
computational issues is to exploit recursive algorithms.

1Section 1.2.1 for a detailed description.
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Many previous works are related to the recursions for a variety of mod-
els in the conditional inference framework. A fundamental contribution is
by Howard (1972), who shows that the conditional likelihood function of the
model proposed in Cox (1972b) is a symmetric function and it can be written
recursively. A popular application of recursions is relative to the analysis of
epidemiological stratified case-control studies. Smith et al. (1981) propose an
algorithm for the ML estimates of the coefficients of a logistic regression and,
since this procedure becomes computationally challenging for large strata,
Krailo and Pike (1984) derive a recursive computation of the log-likelihood
function of the conditional logit model and its derivatives. Further, Levin
(1987) extend this result to multinomial outcomes. Other recursive solutions
come from Item Response Theory (Hambleton and Swaminathan, 1986; Bar-
tolucci et al., 2015), where Gustafsson (1980) shows a recursive structure for
the conditional estimating equations of the Rasch model (Rasch, 1960).

In this regard, this work proposes a novel way to recursively compute the
conditional likelihood function of the QE model. The main contribution is
to extend the result of Krailo and Pike (1984) to dynamic models such as
the QE model and its extensions recently proposed by Bartolucci and Ni-
gro (2010), Bartolucci and Nigro (2012), and Bartolucci et al. (2018), whose
computation would otherwise be not feasible with large time dimensions.
Furthermore, I implement the proposed recursive algorithm in the cquad

package2, which provides software routines for the estimation, based on con-
ditional maximum likelihood, of QE model and the related aforementioned
contributions(Bartolucci and Pigini, 2017).

A Monte Carlo simulation shows how the recursive algorithm removes
the computational burden of the QE model for large-T dataset. This fact
should broaden the applicability of conditional inference for dynamic models
in many economic applications. As an example, this work includes an em-
pirical analysis concerning brand loyalty, where a QE model parameters are
estimated exploiting the recursive algorithm.

The present work is organised as follows: Section 3.2 illustrates the main

2Available for the software R (https://cran.r-project.org/package=cquad) and
Stata (https://github.com/fravale/cquadr).

https://cran.r-project.org/package=cquad
https://github.com/fravale/cquadr
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theoretical aspects of the models and their conditional estimation, recalling
some details presented in Chapter 1. Section 3.3 shows the proposed recursion
for the QE model and its extensions. The performance of the algorithm in
terms of computational time is evaluated by the Monte Carlo simulation in
Section 3.4 and the analysis of brand loyalty to real data concerning yogurt
purchases is reported in Section 3.5. Finally, Section 3.6 concludes.

3.2 Preliminaries

This section introduces at first the main theoretical aspects of the fixed-effects
logit model and the QE model. Then, the Conditional Maximum Likelihood
(CML) estimation for both models is presented.

3.2.1 Model assumptions

A general way to describe binary panel data model is the latent variable
formulation, so that for an individual i, with i = 1, . . . , n, observed at the
t-th time occasion, with t = 1, . . . , T , we model the binary response variable
yit as follows,

yit = 1{y∗it > 0},

y∗it = αi + x
′
itβ + εit,

where 1{·} is the indicator function. Moreover, the latent variable y∗it is a
linear index that includes a representation of the time-invariant individual
unobserved heterogeneity αi, a set of strictly exogenous time-varying covari-
ates xit related to the parameters β, and an idiosyncratic error term εit that
is assumed to follow a logistic distribution. Hereafter we will assumed αi to
be an individual specific intercept. This set of of assumptions allows us to
derive the probability function for an observation, conditionally on the set of
covariates X i and on the individual effect, given by

p(yit|αi,Xit) =
exp[yit(αi + x

′
itβ)]

1 + exp(αi + x′
itβ)

.
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The DL model is a straightforward extension of the static logit model,
since it includes as a regressor the lagged dependent variable, yi,t−1 along
with exogenous covariates and the unobserved heterogeneity. Similar to the
static case, we define the probability for the DL model as

p(yit|αi,Xit, yi0, . . . , yi,t−1) =
exp[yit(αi + x

′
itβ + yi,t−1γ)]

1 + exp(αi + x′
itβ + yi,t−1γ)

,

where the parameter γ measures the true state dependence and the condi-
tioning set includes the individual outcome configuration, with the initial
observation yi0 assumed to be known.

The QE model is of great interest, even because it closely resembles the
DL model. In fact, the QE model allows us to include individual specific
effects, a set of explanatory variables, and to measure true state dependence.
The QE model directly formulates the probability for the individual outcome
vector configuration yi = (yi1, . . . , yiT )

′, so that

p(yi|δi,Xi, yi0) =
exp[yi+δi + (

∑T
t=1 yitxit)

′η1 + yiT (ϕ+ x′
iTη2) + yi∗ψ]∑

z exp[z+δi + (
∑T

t=1 ztxit)
′η1 + zT (ϕ+ x′

iTη2) + zi∗ψ]
,

where yi∗ =
∑T

t=1 yi,t−1yit and yi+ =
∑T

t=1 yit is defined as total score, δi
denotes the unobserved heterogeneity, and ψ denotes the state dependence
parameter. The vector η1 includes parameters of interest while ϕ and η2
are considered as nuisance parameters. The denominator is given by a sum
extended to all the possible binary response vectors z = (z1, ..., zT )

′, where
z+ =

∑T
t=1 zt and zi∗ = yi0z1 +

∑
t>1 zt−1zt.

3.2.2 Conditional Inference

A seminal contribution in the field of conditional inference is the one of
Chamberlain (1980), who derived a CML estimator for the parameters of
the static fixed-effects logit model along the following lines. Consider the
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probability for the individual configuration yi, which is defined as

p(yi|αi,xi) =
T∏
t=1

p(yit|αi,Xit) =
exp[αiyi+ + (

∑T
t=1 yitxit)

′β]∏T
t=1[1 + exp(αi + x′

itβ)]
, (3.1)

where the total score yi+ is proven to be a sufficient statistic for the nuisance
parameter αi. The point is to derive the probability of yi conditional on the
total score yi+. Define now the probability of observing a given total score
for the logit model, so that conditional on αi and X i, we have

p(yi+|αi,Xi) =

∑
z:z+=y+

exp(αiz+) exp[(
T∑
t=1

ztxit)
′β]

∏T
t=1[1 + exp(αi + x′

itβ)]
, (3.2)

where the numerator is given by the sum of all possible binary response
vector z = (z1, ..., zT )

′ such that z+ =
∑T

t=1 zt equals the total score, yi+.
The conditional probability of yi given the total score, is defined as the ratio
of the quantities defined in Equations (3.1) and (3.2), that is

p(yi|αi,Xi, yi+) =

=
exp(αiyi+) exp[(

∑T
t=1 yitxit)

′β]∏T
t=1[1 + exp(αi + x′

itβ)]

∏T
t=1[1 + exp(αi + x

′
itβ)]∑

z:z+=y+
exp(αiz+) exp

[(∑T
t=1 ztxit

)′
β

] =

=
exp[(

∑T
t=1 yitxit)

′β]∑
z:z+=y+

exp

[(∑T
t=1 ztxit

)′
β

] = p(yi|Xi, yi+), (3.3)

where we end up with a conditional probability p(yi|Xi, yi+) that no longer
depends on the nuisance parameter and will be the individual contribution
to the conditional log-likelihood function

ℓ(β) =
n∑
i=1

1{0 < yi+ < T} log p(yi|Xi, yi+), (3.4)

which can be maximised by a Newton-Raphson algorithm.
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Unfortunately, it is not possible to extend this simple result to the DL
model. Defining the probability of yi, we end up with

p(yi|αi, yi0,Xi) =
exp[yi+αi +

(∑T
t=1 yitxit

)′
β + yi∗γ]∏T

t=1[1 + exp(αi + x′
itβ + γyi,t−1)]

where the total score yi+ is not a sufficient statistic for αi.

CML estimation of the DL model without covariates and T = 3 has
been proposed by Chamberlain (1993). Later, Honoré and Kyriazidou (2000)
proposed conditional estimation of a DL with covariates even though the
identification is achieved relying on a kernel density function which rules out
the use of discrete explanatory variables and reduces the rate of convergence
of this estimator.

The QE model overcomes the drawbacks of the DL model. In particular,
it admits the total score as a sufficient statistic for the nuisance parameters so
that a conditional likelihood function can be built on the following probability

p(yi|Xi, yi0, yi+) =
exp[(

∑T
t=1 yitxit)

′η1 + yiT (ϕ+ x′
iTη2) + yi∗ψ]∑

z:z+=yi+
exp[(

∑T
t=1 ztxit)

′η1 + zT (ϕ+ x′
iTη2) + zi∗ψ]

.

Parameters estimates can be easily obtained by a Newton-Raphson algorithm
that maximises the likelihood function.

3.3 Proposed Methodology

A common shortcoming of the aforementioned models is the computational
burden of the conditional likelihood function for a large time dimension of the
panel dataset. This section introduces the result of Krailo and Pike (1984)
for the static logit model and then shows the proposed methodology for the
QE and its extensions.
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3.3.1 Static Model

Consider the individual conditional probability in Equation (3.3), the de-
nominator of that quantity is given by

∑
z:z+=y+

exp

[(
T∑
t=1

ztxit

)′

β

]
, (3.5)

where the sum is extended to all the possible vector configurations z such that
the sum of each vector, z+, equals the total score yi+. From the computational
point of view, the sum above represents a limit for the applicability of the
CML estimation. In fact, the number of such vectors z depends on the time
dimension and on the the total score, so that when T is large their number
dramatically increases. For example, for a response configuration yi with
T = 4 observations and total score yi+ = 2 we have k = 6 different vectors
z. We can collect them in a matrix Z, with T rows and k columns, so that

yi =

⎛⎜⎜⎜⎜⎝
1

0

0

1

⎞⎟⎟⎟⎟⎠ ; Z =

⎡⎢⎢⎢⎢⎣
0 0 0 1 1 1

0 1 1 0 0 1

1 0 1 0 1 0

1 1 0 1 0 0

⎤⎥⎥⎥⎥⎦ .

Table 3.1 shows the total number of column vectors in Z for a small grid
of values in T and yi+. When the number k of such vectors becomes too large,
the computation of the term in Equation (3.5) is no longer feasible. However,
as noted by Howard (1972), the computation of the sum in Equation (3.5)
can be performed recursively. Define now a function ft,s(·) indexed by the
time dimension t = 1, . . . , T and by the total score denoted s = 0, . . . , yi+.
This function is defined as

ft,s(ϕ) =
∑
z:z+=s

exp(
t∑

u=1

zuϕu),

where z = (z1, . . . , zt)
′ such that

∑t
u=1 zu = s and ϕu = x′

iuβ. Therefore,
for t = T and s = yi+ this function equals Equation (3.5). Exploiting the
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Table 3.1: Number of vectors in Z

T

12 18 25

yi+

6 924 18564 177100

9 220 48620 2042975

12 1 18564 5200300

symmetric function properties of f(ϕ), it can be recursively computed in this
way:

1. for t = 1, the process must be initialised; therefore, the function as-
sumes values f1,0(ϕ) = 1, f1,1(ϕ) = exp(ϕ1), and 0 otherwise;

2. for t = 2, . . . , T it is possible compute the the function recursively as

ft,s(ϕ) = ft−1,s(ϕ) + ft−1,s−1(ϕ) exp(ϕt), s = 0, . . . , t. (3.6)

The recursive structure can be exploited for the computation the first- and
the second-derivatives of this function. Those derivatives are part of the Score
and the Hessian functions, respectively, that are involved in the Newton-
Rhapson algorithm for the maximisation of the conditional log-likelihood
function in Equation (3.4). Derivatives of the recursive function are reported
in Appendix D.

3.3.2 Quadratic Exponential Model

As pointed out in the previous section, the aforementioned methodologies
are suitable for the static logit model and their extension to dynamic models
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is not straightforward. This section shows how the proposed methodology
works.

Consider the simplified version of the QE model described in Bartolucci
and Pigini (2017). The conditional probability of yi, given X i, the total
score yi+, and the initial observation yi0, is defined as

p(yi|X i, yi0, yi+) =
exp(

∑T
t=1 yitx

′
itβ +

∑T
t=1 yi,t−1yitψ)∑

z:z+=yi+
exp[

∑T
t=1 ztx

′
itβ + (yi0z1 +

∑T
t=2 zi,t−1zit)ψ]

.

(3.7)
In this case, given the time dimension, the total score, and the initial obser-
vation, the denominator in Equation (3.7) may be expressed as a function
g(·), given by

gT,yi0,yi+(ϕ, ψ) = gT,yi0,yi+,0(ϕ, ψ) + gT,yi0,yi+,1(ϕ, ψ). (3.8)

In general, we define a single element of the sum in lhs of Equation (3.8) as

gt,a,s,v(ϕ, ψ) =
∑

z:z+=s,zt=v

exp[
t∑

u=1

zuϕu + (az1 +
t∑

u=2

zu−1zu)ψ],

where the index v represent the t-th element of the vector z, the initial
observation is a = 0, 1, and following the notation above, s = 1, . . . , t and
t = 1, . . . , T are the total score and the length of the vector configuration
yi, respectively. The main difference with respect to the static case is that,
further to the total score and the time dimension, we take into account
not only the initial observation but also the last element v of the vector z.
Following the formulation above, this is how to compute gt,a,s,v(ϕ, ψ) by a
recursion:

1. for t = 1, the initialisation of the algorithm is done computing

g1,a,s,v(ϕ, ψ) =

⎧⎪⎨⎪⎩
1, s = v = 0,

exp(ϕ1 + aψ), s = v = 1,

0, otherwise,
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for a = 0, 1;

2. for t = 2, . . . , T , recursively compute the following quantities

gt,a,s,v(ϕ, ψ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, s = 0, v = 0,

gt−1,a,s,0(ϕ, ψ) + gt−1,a,s,1(ϕ, ψ), s = 1, . . . , t− 1, v = 0,

gt−1,a,s−1,0(ϕ, ψ) exp(ϕt) + gt−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ), s = 1, . . . , t, v = 1,

0, otherwise.
(3.9)

First- and second-order derivatives required to perform the Newton-Rhapson
algorithm are reported in Appendix D

3.3.3 Extensions

The proposed methodology can be easily built for the extensions of the QE
model. In particular, we focus on the Pseudo Conditional Maximum Likeli-
hood (PCML) estimator of the DL model proposed in Bartolucci and Nigro
(2012) and the Modified QE model (Bartolucci et al., 2018), suitable to per-
form a test for state dependence.

Pseudo Conditional Maximum Likelihood Estimator

The PCML estimator is derived by approximating the DL model by a QE
model. In this scenario, the conditional probability for yi is given by

p(yi|Xi, yi0, yi+) =
exp(

∑T
t=1 yitx

′
itβ −

∑T
t=1 q̄ityi,t−1γ +

∑T
t=1 yityi,t−1γ)∑

z:z+=yi+
exp[

∑T
t=1 ztx

′
itβ − (yi0q̄i1 +

∑T
t=2 q̄itzi,t−1)γ + (yi0z1 +

∑T
t=2 zitzi,t−1)γ]

.

This model is built as an approximation of the DL model around α = ᾱ,
β = β̄, and γ = 0 and the term q̄it represents the probability of yit = 1 for
a logit model with parameters fixed as above. This terms are generated by
an auxiliary regression and are related to the state dependence parameter.
Moreover, define the terms ϕt = x′

itβ and νt = −q̄itγ.
Exploiting the same structure of Equation (3.8), the recursive computa-

tion of gt,a,s,v(ϕ, γ) can be performed as follows:
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1. for t = 1 compute

g1,a,s,v(ϕ, γ) =

⎧⎪⎨⎪⎩
exp(ν1a), s = v = 0

exp(ϕ1 + a(ν1 + γ)), s = v = 1,

0, otherwise,

for a = 0, 1;

2. for t = 2, . . . , T , the recursion is

gt,a,s,v(ϕ, γ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, s = 0, v = 0,

gt−1,a,s,0(ϕ, γ) + gt−1,a,s,1(ϕ, γ) exp(νt), s = 1, . . . , t− 1, v = 0,

gt−1,a,s−1,0(ϕ, γ) exp(ϕt) + gt−1,a,s−1,1(ϕ, γ) exp(ϕt + γ + νt), s = 1, . . . , t, v = 1,

0, otherwise.
(3.10)

where, again, the first and second derivatives are reported in the Appendix
D.

Modified Quadratic Exponential Model

The modified QE model closely resembles the simplified version of the QE, the
main difference is that in this case the association rule between the outcome
variable and its lag takes into account the pairs of consecutive observations
that are equal, regardless if their value is 0 or 1.

Under the modified QE model, the conditional probability of yi given X i

and yi0 is defined as

p(yi|X i, yi0, yi+) =
exp(

∑T
t=1 yitx

′
itβ + ỹi∗γ)∑

z:z+=yi+
exp

(∑T
t=1 ztx

′
itβ + z̃i∗γ

) .
where ỹi∗ =

∑
t 1{yit = yi,t−1} and z̃i∗ = 1{yi0 = zi1}+

∑
t>1 1{zit = zi,t−1}.

For what concerns the computation of function gt,a,s,v(ϕ, ψ), the recursion
is given by the formulation below:
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1. for t = 1,

g1,a,s,v(ϕ, ψ) =

⎧⎪⎨⎪⎩
exp(ψ1{a = 0}), s = v = 0,

exp(ϕ1 + ψ1{yi0 = 1}), s = v = 1,

0, otherwise,

with a = 0, 1;

2. then, for t = 2, . . . , T ,

gt,a,s,v(ϕ, ψ) =

⎧⎪⎨⎪⎩
gt−1,a,s,0(ϕ, ψ) exp(ψ) + gt−1,a,s,1(ϕ, ψ), s = 0, . . . , t− 1, v = 0,

gt−1,a,s−1,0(ϕ, ψ) exp(ϕt) + gt−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ), s = 1, . . . , t, v = 1,

0, otherwise.
(3.11)

Also in this case, the derivatives are reported in Appendix D.

3.4 Computational Complexity

The relative advantage of the recursive algorithm in terms of computational
time is evaluated in this section by a simple Monte Carlo simulation3. The
simulation design is similar to the one of Honoré and Kyriazidou (2000). In
this regard, data are generated from a DL model based on assuming

yi0 = 1{αi + βxi0 + εi0 > 0},

yit = 1{αi + γyi,t−1 + βxit + εit > 0},

for i = 1 . . . n and t = 1 . . . T beyond an initial observation, in t = 0. Fur-
ther, xit is an exogenous regressor generated from a Gaussian distribution
with zero mean and variance π2/3 and εit is a random variable following a
standard logistic distribution. The parameter β is equal to 1 and the state
dependence parameter γ is equal to 0.5. Individual effects are generated as
αi =

1
4

∑3
t=0 xit. Finally, we consider n = 250 individuals observed at dif-

ferent T time occasions. In order simplify the interpretation of the results

3Experiments were run on a computer with n. 2 Intel Xeon CPU E5-2640 v4 2.40GHz,
250GB of RAM, running Debian GNU/Linux "bullseye"/sid as operating system.
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Figure 3.1: CPU time comparison of algebraic and recursive computation
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we are are going to consider a dataset given by 249 subjects observed T = 5

time occasions and the last one, the 250−th, observed Tmax time occasions.

The basic design illustrated above is adopted for two different experi-
ments. The first one aims to compare the time required for the computation
of the likelihood function with both the standard algebraic operation and us-
ing the recursive algorithm. In this case, Tmax ranges in {12, . . . , 20}. With
the second set of simulations we want to explore how the CPU time required
by the algorithm varies according to the time dimension of the panel. In this
case we evaluate Tmax in a grid between 10 and 100 with steps of 5. The
number of Monte Carlo replications is 50 for the first experiment and 25 for
the second.

Figure 3.1 represents the average computational time required for the
likelihood maximisation of the simplified QE model (3.1a) and the PCML es-
timator (3.1b). For the two models, each subfigure reports the time required
by the algebraic operations (“Standard”) and the recursion (“Recursive”), in
which we can see that the former exhibits an exponential pace as Tmax ap-
proaches 18 while the latter remains stable. The time taken by the algebraic
computation of the QE grows up to 100 second while the PCML routine
takes more than 13 minutes, on average, for T = 20. For what concerns the
algorithm, the computational time is always lower than one second for all
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Figure 3.2: CPU time of the recursion in large time dimensions

20 40 60 80 100

0
10

20
30

40

T_max

T
im

e 
(s

ec
)

(a) QE

20 40 60 80 100

0
5

10
15

20
25

30
35

T_max
T

im
e 

(s
ec

)

(b) PCML

the time dimensions considered.
The derivation of the computational complexity of the proposed algorithm

is straightforward. Consider the structure of the recursion in Equation (3.9),
basic operations such as sums and products are computed for each value of
the total score s in 1, . . . , t, and repeated for t varying in 1, . . . , T so that the
potential leading order of operations is O(T?) where, following the notation
of Knuth, T? denotes the termial function of T , namely the sum of all positive
integers less than or equal to T (Knuth, 1997).

The second set of simulations allows us to evaluate the CPU time required
by the recursion for larger time dimensions as reported in Figure 3.2. The
average CPU time taken by the maximisation, reported in lines, is obviously
increasing in Tmax and follows a path that is coherent with the complexity
derived above.

3.5 Application: Brand Loyalty

The proposed methodology is applied to real data concerning brand loyalty.
The analysis here performed aims to replicate of the one in Hsiao (2014), Sec-
tion 7.5.5.2, concerning consumers loyalty to two different dominant yogurt
brands. Differently from the original work, the present application is based



100CHAPTER 3. RECURSIVE COMPUTATION OF THE Q.E. MODEL

on a sample dataset provided by A.C. Nielsen4 that contains information
about yogurt purchases made by individuals observed for a period of about
two years. This dataset has already been used by Jain et al. (1994). Data
are about purchases of four brands: Yoplait, Dannon, Nordica and Weight.
As in Hsiao, we keep observations of purchases of the two brands with the
largest market share in the dataset, namely Dannon and Yoplait. The de-
pendent variable is set to 1 when a consumer choose the brand “Dannon”. We
also include two exogenous explanatory variables. The first one is the prices
log-difference (“Price”) for the two products. The second one is a categorical
variable (“Featured”) and is built as the difference of two dummy variables
relative to the brands, which record whether a brand is advertised in news-
papers. We expect that a small relative price and advertisement should have
a positive impact on the demand of the goods and then on the probability of
a purchase for a brand. The actual sample consists of an unbalanced panel of
100 consumers, for a total of 1,788 observations. Time occasions differ among
individuals and range between a minimum of Tmin = 1 and a maximum of
Tmax = 161.

The models here considered are extremely useful to represent consumers
behaviour and their loyalty to a brand (Chintagunta et al., 2001). First of
all, from a statistical perspective, it is straightforward to represent brand
choices as a binary variable being 1 or 0 according to whether a product
is chosen or not. Secondly, the panel structure of the data allows us to
take into account some individual time-constant unobserved characteristics.
Since consumers are observed for a relatively short span of time in which their
purchases are recorded, from a theoretical perspective it is reasonable to con-
sider some individual unobservables being time-invariant. Finally, consumer
habits stickiness require to be taken into account by a dynamic specification
of the model that should identify true state dependence. Hsiao shows differ-
ent model specifications but only the DL model properly includes individual
fixed-effects and accounts for state dependence. With respect to the original
work, where the DL is estimated following Honoré and Kyriazidou (2000),

4Data are publicly available in the R package Ecdat (https://cran.r-project.org/
web/packages/Ecdat/index.html)

https://cran.r-project.org/web/packages/Ecdat/index.html
https://cran.r-project.org/web/packages/Ecdat/index.html
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Table 3.2: Estimation results

Pooled CML HK QE PCML

ϕ 4.634 1.715 1.873 2.118 2.326
(0.183) (0.317) (0.193) (0.221) (0.389)

βp -3.373 -3.565 -2.902 -3.264 -3.390
(0.384) (0.771) (0.564) (0.514) (0.702)

βf 0.362 0.739 0.120 0.440 0.723
(0.275) (0.490) (0.341) (0.317) (0.438)

Time (sec.) < 1 1.304 2.236 28.264 27.576

1 Standard errors in parentheses

the proposed algorithm allows us to extend the analysis to a wider set of
estimators such as the CML estimator for the QE model and the PCML for
the DL model. We consider different estimation techniques of the DL model:

Dannonit = 1{αi + ϕDannoni,t−1 + βpPriceit + βfFeaturedit + εit > 0}

where ϕ is the state dependence parameter and where βp and βf are the
regression parameters. Table 3.2 reports the estimated coefficients for the
pooled model (Pooled) and the CML estimator of a static logit model with
fixed effects where the lag is treated as exogenous . Further we can find
the Honoré and Kyriazidou (2000) estimator (HK), the estimation of the
simplified QE model and the PCML estimator.

For what concerns the models in Table 3.2, estimated coefficients differ
across the proposed model specifications. In general, all the signs are coherent
with economic theory so that an increase of the relative price decreases the
probability of a purchase for the brand “Dannon”. The variable “Featured”
seems to be not statistically significant. Furthermore, it is interesting to see
how the estimated level of state dependence is sensitive to the specification
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of the unobservables. In the pooled model the state dependence estimated
parameter is the largest among all the considered specifications. Including
heterogeneity dramatically decreases the estimated coefficient, which slightly
differs between the HK and the PCML estimators due to the different esti-
mation strategies. Anyway, the Pooled and the CML models are likely to
provides bias estimates because the first ignores the potential heterogeneity
and in both models the dynamic specification is not accounted for. Finally, we
observe that the computational time of the QE and PCML models are about
twenty times larger with respect to the static CML because of the larger
complexity of the dynamic models considered with respect to the static one.

It is worth stressing that there is no way to compare the computational
time required by the algorithm for the QE and the PCML models and their
standard matrix computation since, in the latter case, the estimation in not
feasible due to the large numbers of time occasions.

3.6 Conclusions

This work provides a novel way to compute the conditional likelihood func-
tions of the QE model and its extensions. By means of a recursive algorithm,
standard computational burden of algebra calculations is overcome for appli-
cations that involve longitudinal panel dataset with large time dimensions.
This novelty should be relevant in presence of unbalanced panel dataset which
makes conditional inference more appealing since the ML estimator and its
corrections are hampered by this kind of dataset. A Monte Carlo experiment
shows how the proposed algorithm outperforms standard computation and it
should enlarge the applicability of the considered models. In this regard, an
application to real data concerning brand loyalty has been proposed with the
additional interest of showing a set of results that would have been otherwise
impossible, providing practitioners with a wider range of estimation tools for
empirical analysis.



Conclusion

This work discusses real data problems concerning the estimation of binary
panel data models with fixed-effects, focusing on the conditional inference
appraoch. I focus on two aspects that limit the applicability of these tech-
niques: endogenous selection mechanisms and the computational burden of
the conditional likelihood function of the QE models. This task is accom-
plished by three different studies summarized in three chapters.

A systematic literature review highlights the validity of the conditional
inference approach. By means of an extensive Monte Carlo study, I show
how these techniques outperform the alternative bias-corrected estimators
for panel datasets charachterised by a small number of time time occasions.

The computational issue is dealt with by exploiting recursive algorithms
that rule out the limits of the QE models for some economic applications. The
proposed algortithm allows practiotioners to exploit conditional inference
for problems that involve long panel dataset, widening the set of suitable
applications that would have been otherwise infeasible. This is confirmed by
both a Monte Carlo simulation and a real data application.

The results concerning the issue of endogenous selection mechanisms are
far from being exhaustive. I propose an approximanting model, estimated by
a PCML, that allows to detect wherther the selection is endogenous or not.
Despite the fact that the test always attains the nominal size and exhibits
good power properties, it is not clear how to deal with the endogeneity of
the selection mechanisms in estimation. The proposed model is not able
to provide a consistent estimator of the paramters and further research is
needed in order to characterise the approximation bias.

Finally, the conditional inference framework requires additional investiga-

103



104 CONCLUSION

tions. In fact, the estimation of marginal effects, which is crucial in empirical
analysis, is still an open issue. Although CML provides a consistent estima-
tor for regression parameters, it is crucial to understand the proper estimator
for individual intercepts which are required for the computation of marginal
effects. Moreover, sufficient statistics for the incidental parameters cannot
be derived for a large number of models, as well as for a generalisation to
multivariate models, which would be key to properly deal with phenomena
like selection mechanisms. An additional extension of the whole framework
could be a generalisation to models that account for time-varying unobserved
heterogeneity even if this field is still unexplored.
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Appendix A

Additional simulation results

This appendix includes the results of the full set of simulation designs adopted
in Section 1.3. Each table reports the mean bias, the median bias, the me-
dian absolute error, and the root mean square error for the the estimated
coefficients of β and γ. Table A.1 recalls the notation used in Section 1.3.
Tables are ordered such that the data generating process is given by a value
of γ increasing from 0 to 2.

Table A.1: Parameters and estimators

Parameters
β Regression parameter
γ State dependence parameter

Estimators Reference
INF Infeasible Likelihood
ML Maximum Likelihood
HK DL conditional estimator Honoré and Kyriazidou (2000)
PCML Pseudo Conditional ML Bartolucci and Nigro (2012)
MPL Modified Profile Likelihood Bartolucci et al. (2016)
MML Modifed ML Carro (2007)
SPJ Split-Panel Jackknife Dhaene and Jochmans (2015)
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Appendix B

Approximation of p(yit|sit)

This appendix includes the derivation of the result reported in Equations
(2.6) and (2.7). The joint probability for the outcome variables is given by

p(yit = 1, sit = 1|αi, ηi,xit,wit)) =∫
uit>−ūit

∫
εit>−ε̄it

f(εit|uit)f(uit)dεitduit =

∫
uit>−ūit

Ψ

(
αi + x

′
itβ + δ + uitρ√
1− ρ2

)
ψ(uit)duit,

where Ψ(·) denotes the the standard logistic distribution function, so that
Ψ(w) = exp(w)

1+exp(w)
, ψ(·) is the relative density function, that is ψ(w) = Ψ(w)[1−

Ψ(w)], and ε̄it and ūit are the linear indeces ε̄it = αi + x′
itβ + δsit and

ūit = ηi +w
′
itγ.

Similarly, we have

p(yit = 0, sit = 1|αi, ηi,xit,wit)) =∫
uit>−ūit

[
1−Ψ

(
αi + x

′
itβ + δ + uitρ√
1− ρ2

)]
ψ(uit)duit,
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p(yit = 1, sit = 0|αi, ηi,xit,wit)) =∫
uit<−ūit

[
Ψ

(
αi + x

′
itβ + uitρ√
1− ρ2

)]
ψ(uit)duit,

and

p(yit = 0, sit = 0|αi, ηi,xit,wit)) =∫
uit<−ūit

[
1−Ψ

(
αi + x

′
itβ + uitρ√
1− ρ2

)]
ψ(uit)duit.

The joint probability of (yit = 1, sit = 1) evaluated at ρ = 0 is

p0(yit = 1, sit = 1) = Ψ(αi + x
′
itβ + δ)Ψ(ηi +w

′
itγ),

and its derivative with respect to ρ is

∂p0(yit = 1, sit = 1)

∂ρ
=

Ψ(αi + x
′
itβ + δ)[1−Ψ(αi + x

′
itβ + δ)]

∫
uit>−ūit

uitψ(uit)duit.

Summing the previous elements, we derive an approximated joint log-probability
of Equation (2.6), so we have

log pρ(yit = 1, sit = 1) ≈ log Ψ(αi + x
′
itβ + δ)

+ logΨ(ηi +w
′
itγ) +

ρ[1−Ψ(αi + x
′
itβ + δ)]

Ψ(ηi +w′
itγ)

∫
uit>−ūit

uitψ(uit)duit.

Then, conditioning the latter on the probability of sit = 1, we end up with
the following conditional log-probability

log pρ(yit = 1|sit = 1) ≈ log Ψ(αi + x
′
itβ + δ) +

ρ[1−Ψ(αi + x
′
itβ + δ)]

Ψ(ηi +w′
itγ)

∫
uit>−ūit

uitψ(uit)duit.
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Using a similar argument, we have

p0(yit = 0, sit = 1) = [1−Ψ(αi + x
′
itβ + δ)]Ψ(ηi +w

′
itγ)

and

∂p0(yit = 0, sit = 1)

∂ρ
=

−Ψ(αi + x
′
itβ + δ)[1−Ψ(αi + x

′
itβ + δ)]

∫
uit>−ūit

uitψ(uit)duit.

Then, we have

log pρ(yit = 0, sit = 1) ≈ log[1−Ψ(αi + x
′
itβ + δ)] +

logΨ(ηi +w
′
itγ)−

ρΨ(αi + x
′
itβ + δ)

Ψ(ηi +w′
itγ)

∫
uit>−ūit

uitψ(uit)duit,

so that

log pρ(yit = 0|sit = 1) ≈ log[1−Ψ(αi + x
′
itβ + δ)]−

δΨ(αi + x
′
itβ + δ)

Ψ(ηi +w′
itγ)

∫
uit>−ūit

uitψ(uit)duit.

Finally, computing the log-odds ratio for the approximated conditional prob-
abilities, we have the linear index in Equation (B.1), that is

log
pρ(yit = 1|sit = 1)

pρ(yit = 0|sit = 1)
≈ αi + x

′
itβ +

ρ

Ψ(ηi +w′
itγ)

∫
uit>−ūit

uitψ(uit)duit =

αi + x
′
itβ + ρE(uit|uit > −ūit). (B.1)

This result allows us to recognise the approximation in Equation (2.7) as
a logit-type probability.

The same methodology can be applied for (yit = 1, sit = 0), so that the
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joint probability evaluated at ρ = 0 is

p0(yit = 1, sit = 0) = Ψ(αi + x
′
itβ)[1−Ψ(ηi +w

′
itγ)],

and

∂p0(yit = 1, sit = 0)

∂ρ
=

Ψ(αi + x
′
itβ)[1−Ψ(αi + x

′
itβ)]

∫
uit<−ūit

uitψ(uit)duit.

The joint probability becomes

log pρ(yit = 1, sit = 0) ≈ log Ψ(αi + x
′
itβ)

+ log[1−Ψ(ηi +w
′
itγ)] +

ρ[1−Ψ(αi + x
′
itβ)]

[1−Ψ(ηi +w′
itγ)]

∫
uit<−ūit

uitψ(uit)duit.

Again, conditioning on the probability of sit = 0, we end up with the following
conditional log-probability

log pρ(yit = 1|sit = 0) ≈ log Ψ(αi + x
′
itβ) +

ρ[1−Ψ(αi + x
′
itβ)]

[1−Ψ(ηi +w′
itγ)]

∫
uit<−ūit

uitψ(uit)duit.

Using a similar argument, we have

p0(yit = 0, sit = 0) = [1−Ψ(αi + x
′
itβ)][1−Ψ(ηi +w

′
itγ)]

and

∂p0(yit = 0, sit = 0)

∂ρ
=

−Ψ(αi + x
′
itβ)[1−Ψ(αi + x

′
itβ)]

∫
uit<−ūit

uitψ(uit)duit.
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Then, we get

log pρ(yit = 0, sit = 0) ≈ log[1−Ψ(αi + x
′
itβ)] +

log[1−Ψ(ηi +w
′
itγ)]−

ρΨ(αi + x
′
itβ)

[1−Ψ(ηi +w′
itγ)]

∫
uit<−ūit

uitψ(uit)duit,

so that

log pρ(yit = 0|sit = 1) ≈ log[1−Ψ(αi + x
′
itβ)]−

δΨ(αi + x
′
itβ)

[1−Ψ(ηi +w′
itγ)]

∫
uit<−ūit

uitψ(uit)duit.

Finally, the log-odds ratio equals again

log
pρ(yit = 1|sit = 0)

pρ(yit = 0|sit = 0)
≈ αi + x

′
itβ +

ρ

[1−Ψ(ηi +w′
itγ)]

∫
uit<−ūit

uitψ(uit)duit =

αi + x
′
itβ + ρE(uit|uit < −ūit). (B.2)

The proofs for the sample selection model and the dynamic models are
straightforward.
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Appendix C

Derivation of the E[x|x < a]

What follows is relative to the result reported in Equation (2.10). The con-
ditional expected value of a random variable x is defined as

E[x|x < a] =

∫ a

−∞
xf(x|x < a)dx

with
f(x|x < a) =

f(x)

[Prob(x < a)]
=

f(x)

[F (a)]

where f(x) and F (x) are the density function and the distribution function
of x, respectively.

From the logistic distribution we have

F (x) = Ψ(x) =
exp(x)

1 + exp(x)

and
f(x) = ψ(x) =

exp(x)

(1 + exp(x))2

We are interested in E[x|x < a], so we define

E[x|x < a] =
1

Ψ(a)

∫ a

−∞
x

exp(x)

(1 + exp(x))2
dx
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that can be computed by

1

Ψ(a)

[(
x exp(x)

1 + exp(x)
− log(1 + exp(x))

) ⏐⏐⏐⏐⏐
a

−∞

]
.

The solution of the definite integral is

1

Ψ(a)

(
a exp(a)

1 + exp(a)
− log(1 + exp(a))

)
.

Since Ψ(a) = exp(a)
1+exp(a)

we multiply the terms and we get

a exp(a)

1 + exp(a)
× 1 + exp(a)

exp(a)
− log(1 + exp(a))

Ψ(a)
.

The previous expression can be written by

E[x|x < a] = a+
log(1−Ψ(a))

Ψ(a)
.

In our case, a = −(ηi + w
′
itγ). We exploit the symmetry of the logistic

distribution function and we have

E(uit|uit < −ūit) = −(ηi +w
′
itγ) +

ln[Ψ(ηi +w
′
itγ)]

[1−Ψ(ηi +w′
itγ)]

.



Appendix D

Recursions for the Score and the
Hessian Matrix

Static logit model

Define now the the first and second derivatives with respect to the arguments
of the function, the vector ϕ. For h, j = 1, . . . , T , s = 0, . . . , t, and t =

1, . . . , T , we have

f
(h)
t,s (ϕ) =

∂ft,s(ϕ)

∂ϕh
,

f
(h,j)
t,s (ϕ) =

∂2ft,s(ϕ)

∂ϕh∂ϕj
.

For what concerns the computations of the derivatives we can exploit the
same recursive structure presented in the Equation (3.6), so that

1. for t = 1 the first derivatives are

f
(h)
1,0 (ϕ) = 0, h = 1, . . . , T,

f
(h)
1,1 (ϕ) =

{
exp(ϕ1), h = 1,

0, otherwise,
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and the second derivatives are

f
(h,j)
1,0 (ϕ) = 0, h, j = 1, . . . , T,

f
(j,j)
1,1 (ϕ) =

{
exp(ϕ1), h = j = 1,

0, otherwise;

2. for t = 2, . . . , T and s = 1, . . . , t, we compute the first derivatives as

f
(h)
t,0 (ϕ) = 0, h = 1, . . . , T,

f
(h)
t,s (ϕ) =

⎧⎪⎨⎪⎩
f
(h)
t−1,s(ϕ) + f

(h)
t−1,s−1(ϕ) exp(ϕt), h = 1, . . . , t− 1,

ft−1,s−1(ϕ) exp(ϕt), h = t,

0, otherwise,

and second derivatives as follwing

f
(h,j)
t,0 (ϕ) = 0, h, j = 1, . . . , T,

f
(h,j)
t,s (ϕ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f
(h,j)
t−1,s(ϕ) + f

(h,j)
t−1,s−1(ϕ) exp(ϕt), h, j = 1, . . . , t− 1,

f
(h)
t−1,s−1(ϕ) exp(ϕt), h = 1, . . . , t− 1, j = t

f
(j)
t−1,s−1(ϕ) exp(ϕt), h = t, j = 1, . . . , t− 1,

ft−1,s−1(ϕ) exp(ϕt), h = j = t,

0, otherwise.

Simplified QE

As for the static model, define now the first and the second derivatives

g
(h)
t,s (ϕ) =

∂ft,s(ϕ)

∂ϕh
,

g
(h,j)
t,s (ϕ) =

∂2ft,s(ϕ)

∂ϕh∂ϕj
,

respectively, where these quantities are computed for h, j = 1, . . . , T , s =

0, . . . , t, and t = 1, . . . , T and where we further define ϕT+1 ≡ ψ in order to
include the derivative with respect to the state dependence parameter which
is an additional argument of our function further to the T elements of ϕ.
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Regarding the first derivatives of the function in Equation (3.9), we ex-
ploit the same recursion:

1. for t = 1 compute

g
(h)
1,a,s,v(ϕ, ψ) =

{
exp(ϕ1 + aψ), h = 1,

a exp(ϕ1 + aψ), h = T + 1,

for a = 0, 1 and s = v = 1 and g(h)1,a,s,v = 0 in all other cases;

2. for t = 2, . . . , T consider the following cases:

• for s = 1, . . . , t− 1 and v = 0,

g
(h)
t,a,s,v(ϕ, ψ) = g

(h)
t−1,a,s,0(ϕ, ψ)+g

(h)
t−1,a,s,1(ϕ, ψ), h = 1, . . . , t−1, T+1;

• for s = 1, . . . , t, v = 1,

g
(h)
t,a,s,v(ϕ, ψ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g
(h)
t−1,a,s−1,0(ϕ, ψ) exp(ϕt) + g

(h)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ), h = 1, . . . , t− 1,

gt,a,s,v(ϕ, ψ), h = t,

g
(h)
t−1,a,s−1,0(ϕ, ψ) exp(ϕt) + g

(h)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ)

+gt−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ), h = T + 1;

• g
(h)
t,a,s,v(ϕ, ψ) = 0 in all other cases.

Regarding the second derivatives, we have:

1. for t = 1 compute

g
(h,j)
1,a,s,v(ϕ, ψ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp(ϕ1 + aψ), h = j = 1,

a exp(ϕ1 + aψ), h = 1, j = T + 1,

a exp(ϕ1 + aψ), h = T + 1, j = 1,

a exp(ϕ1 + aψ), h, j = T + 1,

for a = 0, 1 and s = v = 1 and g(h)1,a,s,v = 0 in all other cases.

2. for t = 2, . . . , T consider the following cases:
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• for s = 1, . . . , t− 1 and v = 0,

g
(h,j)
t,a,s,v(ϕ, ψ) = g

(h,j)
t−1,a,s,0(ϕ, ψ)+g

(h,j)
t−1,a,s,1(ϕ, ψ), h, j = 1, . . . , t−1, T+1;

• for s = 1, . . . , t, v = 1,

g
(h,j)
t,a,s,v(ϕ, ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
(h,j)
t−1,a,s−1,0(ϕ, ψ) exp(ϕt) + g

(h,j)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ), h, j = 1, . . . , t− 1,

g
(h)
t,a,s,v(ϕ, ψ), h = 1, . . . , t− 1, j = t,

g
(h,j)
t−1,a,s−1,0(ϕ, ψ) exp(ϕt) + g

(h,j)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ),

+g
(h)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ) h = 1, . . . , t− 1, j = T + 1,

g
(j)
t,a,s,v(ϕ, ψ), h = t, j = 1, . . . , t, T + 1,

g
(h,j)
t−1,a,s−1,0(ϕ, ψ) exp(ϕt) + g

(h,j)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ)

+g
(j)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ), h = T + 1, j = 1, . . . , t− 1

g
(h)
t,a,s,v(ϕ, ψ), h = T + 1, j = t,

g
(h,j)
t−1,a,s−1,0(ϕ, ψ) exp(ϕt) + g

(h,j)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ)

+g
(h)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ) + g

(j)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ)

+gt−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ), h = T + 1, j = T + 1;

• g
(h,j)
t,a,s,v(ϕ, ψ) = 0 in all other cases.

Pseudo Conditional Maximum Likelihood esti-

mator

For what concerns the first derivatives of the function in Equation (3.10),
compute:

1. for t = 1,

• for s = v = 0 and a = 0, 1,

g
(h)
1,a,s,v(ϕ, γ) =

{
a exp(aν1)(−qi1), h = T + 1,

0, otherwise;

• for for s = v = 1 and a = 0, 1,

g
(h)
1,a,s,v(ϕ, γ) =

{
exp(ϕ1 + a(ν1 + γ)), h = 1,

a exp(ϕ1 + a(ν1 + γ))(1− qi1), h = T + 1;
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• g
(h)
1,a,s,v = 0 in all other cases.

2. for t = 2, . . . , T consider the following cases:

• for s = 1, . . . , t− 1 and v = 0,

g
(h)
t,a,s,v(ϕ, γ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g
(h)
t−1,a,s,0(ϕ, γ) + g

(h)
t−1,a,s,1(ϕ, γ) exp(νt), h = 1, . . . , t,

g
(h)
t−1,a,s,0(ϕ, γ) + g

(h)
t−1,a,s,1(ϕ, γ) exp(νt)

+gt−1,a,s,1(ϕ, γ) exp(νt)(−qit), h = T + 1;

• for s = 1, . . . , t, v = 1,

g
(h)
t,a,s,v(ϕ, γ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

g
(h)
t−1,a,s−1,0(ϕ, γ) exp(ϕt) + g

(h)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)+

gt−1,a,s−1,0(ϕ, γ) exp(ϕt) + gt−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ) h = 1, . . . , t

g
(h)
t−1,a,s−1,0(ϕ, γ) exp(ϕt) + g

(h)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)

+gt−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)(1− qit), h = T + 1;

• g
(h)
t,a,s,v(ϕ, γ) = 0 in all other cases.

Following the same approach as above, the second derivatives are:

1. for t = 1,

• with v = 0 compute

g
(h,j)
1,a,s,0(ϕ, ψ) = a exp(aν1)(−qi1)2, h, j = T + 1;

• while for v = 1 we have

g
(h,j)
1,a,s,1(ϕ, ψ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp(ϕ1 + a(ν1 + γ)), h = j = 1,

a exp(ϕ1 + a(ν1 + γ))(1− qi1), h = 1, j = T + 1,

a exp(ϕ1 + a(ν1 + γ))(1− qi1), h = T + 1, j = 1,

a exp(ϕ1 + a(ν1 + γ))(1− qi1)
2, h, j = T + 1;

• g
(h,j)
1,a,s,v(ϕ, ψ) = 0 in other cases.



140APPENDIX D. RECURSIONS FOR THE SCORE AND THE HESSIAN MATRIX

2. for t = 2, . . . , T :

• for s = 1 . . . t− 1 and v = 0, we have:

g
(h,j)
t,a,s,v(ϕ, γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
(h,j)
t−1,a,s,0(ϕ, γ) + g

(h,j)
t−1,a,s,1(ϕ, γ) exp(νt), h, j = 1, . . . , t

g
(h,j)
t−1,a,s,0(ϕ, γ) + g

(h,j)
t−1,a,s,1(ϕ, γ) exp(νt),

+g
(j)
t−1,a,s,1(ϕ, γ) exp(νt)(−qit) h = T + 1, j = 1, . . . , t

g
(h,j)
t−1,a,s,0(ϕ, γ) + g

(h,j)
t−1,a,s,1(ϕ, γ) exp(νt),

+g
(h)
t−1,a,s,1(ϕ, γ) exp(νt)(−qit), h = 1, . . . , t, j = T + 1,

g
(h,j)
t−1,a,s,0(ϕ, γ) + g

(h,j)
t−1,a,s,1(ϕ, γ) exp(νt),

+g
(h)
t−1,a,s,1(ϕ, γ) exp(νt)(−qit) + g

(j)
t−1,a,s,1(ϕ, γ) exp(νt)(−qit)

+gt−1,a,s,1 exp(νt)(−qit)2 h = T + 1, j = T + 1;

• for s = 1 . . . t− 1 and v = 1, we have:

g
(h,j)
t,a,s,v(ϕ, γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
(h,j)
t−1,a,s−1,0(ϕ, γ) exp(ϕt) + g

(h,j)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)+

+g
(h)
t−1,a,s−1,0(ϕ, γ) exp(ϕt) + g

(h)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)+

+g
(j)
t−1,a,s−1,0(ϕ, γ) exp(ϕt) + g

(j)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)+

gt−1,a,s,0(ϕ, γ) exp(ϕt) + gt−1,a,s,1(ϕ, γ) exp(ϕt + νt + γ) h, j = 1, . . . , t,

g
(h,j)
t−1,a,s−1,0(ϕ, γ) exp(ϕt) + g

(h,j)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)+

g
(h)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)(1− qit)+

g
(j)
t−1,a,s−1,0(ϕ, γ) exp(ϕt) + g

(j)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)

+gt−1,a,s,1(ϕ, γ) exp(ϕt + νt + γ)(1− qit) h = 1, . . . , t, j = T + 1,

g
(h,j)
t−1,a,s−1,0(ϕ, γ) exp(ϕt) + g

(h,j)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)+

g
(j)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)(1− qit)+

g
(h)
t−1,a,s−1,0(ϕ, γ) exp(ϕt) + g

(j)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)

+gt−1,a,s,1(ϕ, γ) exp(ϕt + νt + γ)(1− qit) h = 1, . . . , t, j = T + 1,

g
(h,j)
t−1,a,s−1,0(ϕ, γ) exp(ϕt) + g

(h,j)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)+

g
(h)
t−1,a,s−1,0(ϕ, γ) exp(ϕt + νt + γ)(1− qit)+

g
(j)
t−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)(1− qit)+

gt−1,a,s−1,1(ϕ, γ) exp(ϕt + νt + γ)(1− qit)
2, h = T + 1, j = T + 1;

3. g(h,j)t,a,s,v(ϕ, γ) = 0 in all other cases.



141

Modified Q.E.

Regarding the first derivatives of the function reported in Equation (3.11),
we exploit the same recursion:

1. with t = 1

• for s = v = 0 compute

g
(h)
1,a,s,v(ϕ, ψ) =

{
0, h = 1,

1{a = 0} exp(ϕ1 + 1{a = 0}ψ), h = T + 1;

• for s = v = 1 compute

g
(h)
1,a,s,v(ϕ, ψ) =

{
exp(ϕ1 + 1{a = 1}ψ), h = 1,

1{a = 1} exp(ϕ1 + 1{a = 1}ψ), h = T + 1;

• g
(h)
1,a,s,v = 0 in all other cases.

2. with t = 2, . . . , T consider the following cases:

• for s = 0, . . . , t− 1 and v = 0,

g
(h)
t,a,s,v(ϕ, ψ) =

{
0, h = 1, . . . , t− 1

g
(h)
t−1,a,s,0(ϕ, ψ) exp(ψ) + gt−1,a,s,0 exp(ψ) + g

(h)
t−1,a,s,1(ϕ, ψ), h = T + 1;

• for s = 1, . . . , t, v = 1,

g
(h)
t,a,s,v(ϕ, ψ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
g
(h)
t−1,a,s−1,0(ϕ, ψ) exp(ϕt) + g

(h)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ)

+gt−1,a,s−1,0(ϕ, ψ) exp(ϕt) + +gt−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ), h = 1, . . . , t,

g
(h)
t−1,a,s−1,0(ϕ, ψ) exp(ϕt) + g

(h)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ)

+gt−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ), h = T + 1;

3. g(h)t,a,s,v(ϕ, ψ) = 0 in all other cases.

Regarding the second derivatives, we have:

1. for t = 1 and v = 0 compute

g
(h,j)
1,a,s,v(ϕ, ψ) = 1{a = 0} exp(1{a = 0}ψ), h, j = T + 1;
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2. for t = 1 and v = 1 compute

g
(h,j)
1,a,s,v(ϕ, ψ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp(ϕ1 + 1{a = 1}ψ), h = j = 1,

1{a = 1} exp(ϕ1 + 1{a = 1}ψ), h = 1, j = T + 1,

1{a = 1} exp(ϕ1 + 1{a = 1}ψ), h = T + 1, j = 1,

1{a = 1} exp(ϕ1 + 1{a = 1}ψ), h, j = T + 1;

for a = 0, 1 and s = v = 1 and g(h)1,a,s,v = 0 in all other cases.

3. for t = 2, . . . , T consider the following cases:

• for s = 1, . . . , t− 1 and v = 0,

g
(h,j)
t,a,s,v(ϕ, ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
(h,j)
t−1,a,s,0(ϕ, ψ) + exp(ψ) + g

(h,j)
t−1,a,s,1(ϕ, ψ) h = j = 1, . . . , t− 1;

g
(h,j)
t−1,a,s,0(ϕ, ψ) + exp(ψ) + g

(h,j)
t−1,a,s,1(ϕ, ψ)

+g
(h)
t−1,a,s,0(ϕ, ψ) exp(ψ), h = 1, . . . , t− 1, j = T + 1;

g
(h,j)
t−1,a,s,0(ϕ, ψ) + exp(ψ) + g

(h,j)
t−1,a,s,1(ϕ, ψ)

+g
(j)
t−1,a,s,0(ϕ, ψ) exp(ψ), j = 1, . . . , t− 1, h = T + 1;

g
(h,j)
t−1,a,s,0(ϕ, ψ) + exp(ψ) + g

(h,j)
t−1,a,s,1(ϕ, ψ)

+g
(h)
t−1,a,s,0(ϕ, ψ) exp(ψ) + g

(j)
t−1,a,s,0(ϕ, ψ) exp(ψ)

+gt−1,a,s,0(ϕ, ψ) exp(ψ), j = h = T + 1.

• for s = 1, . . . , t, v = 1,

g
(h,j)
t,a,s,v(ϕ, ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g
(h,j)
t−1,a,s−1,0(ϕ, ψ) exp(ϕt) + g

(h,j)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ), h, j = 1, . . . , t− 1,

g
(h)
t,a,s,v(ϕ, ψ), h = 1, . . . , t− 1, j = t,

g
(h,j)
t−1,a,s−1,0(ϕ, ψ) exp(ϕt) + g

(h,j)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ),

+g
(h)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ) h = 1, . . . , t− 1, j = T + 1,

g
(j)
t,a,s,v(ϕ, ψ), h = t, j = 1, . . . , t, T + 1,

g
(h,j)
t−1,a,s−1,0(ϕ, ψ) exp(ϕt) + g

(h,j)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ)

+g
(j)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ), h = T + 1, j = 1, . . . , t− 1

g
(h)
t,a,s,v(ϕ, ψ), h = T + 1, j = t,

g
(h,j)
t−1,a,s−1,0(ϕ, ψ) exp(ϕt) + g

(h,j)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ)

+g
(h)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ) + g

(j)
t−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ)

+gt−1,a,s−1,1(ϕ, ψ) exp(ϕt + ψ), h = T + 1, j = T + 1;

• g
(h,j)
t,a,s,v(ϕ, ψ) = 0 in all other cases.
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