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Abstract 

Aims of bioengineering is to investigate phenomena of life sciences and to formalize their 

physiological mechanisms. Considering that statistic is an excellent tool for modeling, 

analyzing, characterizing and interpreting phenomena, aim of this doctoral thesis is to 

merge the major biostatistical techniques and the bioengineering processing of cardiac 

signals.  

The major cardiac signals are the electrocardiogram, the vectorcardiogram, the 

phonocardiogram and the tachogram. These signals are directly generated by heart and they 

can be directly acquired placing electrodes on the body surface. The statistical 

characterization of these signals passes by through some steps, that are statistical signal 

modelling, signal preprocessing, feature extraction and classification analysis. Biomedical 

signal modeling is the statistical theme that aims to propose mathematical models to 

represent biomedical signals and their characteristics. For examples, electrocardiogram can 

be modeled as a deterministic waveform, while the tachogram can be modeled as a point 

process. The signal preprocessing is a step of signals processing that aims to remove noises 

from signals, enhancing them. Some statistical methods can be used as cardiac preprocessing 

techniques, and they are the averaging and the principal component analysis. Feature 

extraction is a phase in which the selection and extraction of features are applied. A variable 

is defined as feature if it is of interest. The selection, the extraction and the evaluation of 

cardiac features is one of the essential phases in cardiologic diagnosis process. Classification 

analysis is a procedure in which features of signals are divided in different categories, 

according with their differences. Classification is the basis of clinical interpretation and 

clinical decision. 

The real importance of statistics in cardiac bioengineering can be deeply understand only 

through its application; thus, four real applications were presented. The first application is 

the Adaptive Thresholding Identification Algorithm (AThrIA), born to identify and to 

segment electrocardiographic P waves. AThrIA is the perfect example of how much 

preprocessing is important in cardiac clinical practice. Being standard preprocessing 

insufficient, a specific statistical preprocessing based on the combination of standard 

preprocessing and principal component analysis was design to remove noise and enhance 

this low-amplitude wave. Specifically, it is the combination of standard preprocessing and 

principal components analysis. The second application is CTG Analyzer, a graphical user 



interface, born developed to support clinicians during the critical phases of delivery and 

labor. After a specific evaluation of cardiotocographic signals, CTG Analyzer extracts all CTG 

clinical features according with international guidelines. About CTG Analyzer feature 

extraction, biostatistics is a fundamental instrument to evaluate the correctness of the 

features and to compare the automated extracted features with the standard ones provided 

by a clinician. The third application is eCTG, born to solve a practical clinical issue: the 

digitalization of cardiotocographic signals. The basis of eCTG signal extraction is the Otsu’s 

methods, a pixel clustering procedure that is the basis of the extraction procedure. 

Combining the analysis of distributions and classification, eCTG is an important example of 

statistics in image and signal processing. Finally, the fourth application is the creation of 

deep-learning serial ECG classifiers, specific multilayer perceptron to detect cardiac 

emerging pathology. Based on serial electrocardiography, these new and innovative 

classifiers represent samples of the real importance of classification in cardiac clinical 

practice.  

In conclusion, this doctoral thesis underlines the importance of statistic in bioengineering, 

specifically in cardiac signals processing. Considering the results of the presented 

applications and their clinical meaning, the combination of cardiac bioengineering and 

statistics is a valid point of view to support the scientific research. Linked by the same aim, 

they are able to quantitative/qualitative characterize the phenomena of life sciences, 

becoming a single science, biostatistics. 
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Introduction 

Bioengineering is a discipline that applies engineering methods and technologies to 

investigate issues related to life sciences. Aim of bioengineering is the study of the processes 

that underline physiological systems. Compared to standard biological and medical sciences, 

the main difference refers to tools and instruments that bioengineering uses. Indeed, its 

application is linked to engineering techniques, such as mathematics, physics, mechanics, 

fluid dynamics, computer science and, last but not least, statistics. 

Mathematically, statistics has the purpose to quantitative and qualitative study a 

particular phenomenon under conditions of uncertainty or non-determinism. It is an 

instrument of the scientific method: it uses mathematics and experimental methodology to 

study how a collective phenomenon can be synthesized and understood. Statistical 

investigation starts from data collection, that will be statistically processed. Features will be 

extracted and classified in order to investigate the proprieties of the considered dataset. All 

this process is finalized to characterize unknown phenomena.  

Considering the aims of bioengineering (to characterize the phenomena of life sciences) 

and of statistics (to find a quantitative/qualitative method to characterize a phenomenon), 

these two sciences are strongly linked. In fact, statistics is an excellent tool for modeling, 

analyzing, characterizing and interpreting biological phenomena. Converted in a new term, 

biostatistics, this science aims to quantitative and qualitative study of biological and medical 

phenomena under conditions of uncertainty or non-determinism. 

In this general consideration, biostatistics techniques can be used in every field of 

medicine and biology. In particular, it is protagonist in medical and biological scientific 

research, supporting epidemiological studies with its methods. In fact, its methods and 

techniques are widely used to formalize a process (signal modeling), to test indices or 

procedures (comparison) or to classify and/or discriminate individuals or observations 

(classification). 

One of the main filed in which bioengineering and biostatistics can be applied is the 

cardiac signal investigation. This application studies all the signals generated by the heart, 

specifically the electrocardiogram, the vectorcardiogram, the phonocardiogram and the 

heart-rate series. These signals can be analyzed in order to investigate the major 

cardiological disease: electrocardiogram/vectorcardiogram provides information about 
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cardiac electrical diseases (e.g. arrhythmias ), phonocardiogram provides information about 

mechanical heart diseases (e.g. atrial valve stenosis) and the heart-rate series provides 

information about the control of the autonomous nervous system on the heart.  

Despite being one of the oldest themes of bioengineering, the study of cardiac signals is 

still promising. Indeed, cardiological challenges are still unsolved. Examples of cardiac 

signals research are the analysis of the cardiac electrical atrial activity, the analysis of the 

fetal heart rate signal and the use of the serial electrocardiography for the diagnosis of 

emerging pathologies. Application of biostatistical techniques could be a good solution to 

investigate these unsolved issues. 

Aim of this doctoral thesis is to merge the major biostatistical techniques and the analysis 

of cardiac signals. Specifically, it is divided into two major part. The first is the theory 

dissertation about the origins of cardiac signals and about the main biostatistical techniques 

that can be applied in the study of cardiac signals. With a specific attention to the signals 

processing steps, the theory part is divided into modelling, preprocessing, feature extraction 

and classification. The second part presents four practical application of biostatistical 

techniques in the cardiac signals research field, which are: the adaptive threshold 

identification algorithm (AThrIA), CTG Analyzer graphical user interface, eCTG software, 

and the innovative construction of deep-learning serial electrocardiography classifiers.  
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PART I  

BIOSTATISTICS OF 

CARDIAC SIGNALS: 

THEORY 

In order to understand the combination of biostatistics and cardiac signal processing, an 

overview of all cardiac signals and statistical techniques is essential. 

In the first part of this doctoral thesis, the basis of cardiac signals and statistical techniques 

are introduced. Specifically, the cardiac signals considered here are electrocardiogram, 

vectorcardiogram, phonocardiogram and tachogram. The real comprehension of these 

signals can be understood only through the study of their genesis, acquisition and 

interference. Moreover, the flow of the cardiac signal processing is presented.  

After contextualizing the field of applications, an overview of all statistical techniques for 

cardiac signal analysis is proposed. The main techniques are grouped in four main themes, 

that are statistical signal modelling, signal preprocessing, feature extraction and 

classification analysis. For clarity and to show the utility of biostatistics, sample applications 

in cardiac bioengineering are presented for each of these themes. 
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Chapter 1  

Origin and Processing of Cardiac Signals 

1.1 Heart Anatomy and Physiology 

1.1.1 Anatomy 

The heart is the main organ of the circulatory system. It is located in the middle of the 

thorax, specifically in the anterior mediastinum between the two lungs, behind the sternum 

and the ribs, in front of the vertebral column, and over the diaphragm. It has a conical shape: 

its elongated base is turned back and to the right, while its apex is facing forward and to the 

left. In adults, it weighs about 250-300 g; it has a length of 13-15 cm, a width of 9-10 cm and 

a thickness of 6 cm. Its weight and dimension can vary with age, sex and physical 

constitution. 

The organ (Fig.1.1) is divided into two sections, the right heart (Fig. 1.1-blue section) and 

the left heart (Fig.1.1-red section). Each of these sections is composed of a superior cavity, 

 

Figure 1.1. Anatomy of the heart. The blue section represents the right heart, while the red 

section represents the left heart. The arrows show the flux direction inside the four chambers, 

crossing the four valves (1. Tricuspid valve, 2. Pulmonary valve, 3. Mitral valve and 4. Aortic 

valve). 
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the atrium, and an inferior cavity, the ventricle. The right heart is perfectly separated from 

the left heart: an interatrial septum separates the atria, while an interventricular septum 

separates the ventricles. Each atrium is connected to its ventricle through an atrioventricular 

orifice, protected by a valve. Specifically, the tricuspid valve (Fig.1.1 (1)) and the mitral valve 

(Fig.1.1 (3)) are located in the right and left atrioventricular orifices, respectively. Both 

ventricles present semilunar valves that connected ventricles with arteries. In particular, the 

pulmonary valve (Fig.1.1 (2)) connects the right ventricle with the pulmonary arteries, while 

the aortic valve (Fig.1.1 (4)) connects the left ventricle with the aorta. The blood flow proceed 

in a specific direction in both right and left hearts (Fig.1.1): atria receives blood from veins 

(the venae cavae for the right atrium and the pulmonary veins for the left atrium); blood 

passes atrioventricular valves (the tricuspid valve for the right heart and the mitral valve for 

the left heart); and ventricles pump blood in arteries (pulmonary arteries for the right 

ventricle and aorta for the left heart) , through semilunar valves (pulmonary valve for the 

right heart and aortic valve for the left heart)1.  

The right atrium is located in an anterior, inferior and right position relative to the left 

atrium, and in the upper part of the right heart. It collects blood from the venae cavae. The 

superior vena cava opens in the posterior/superior wall of the atrium without valve, while 

the inferior vena cava opens in the posterior/inferior wall of the atrium through the 

Eustachian valve. Additionally, the right atrium collects blood from the coronary sinus. The 

right atrium hosts the sinus atrial node (SA node), the cardiac pacemaker, that 

spontaneously activates cardiac depolarization. The left atrium, thinner than the right 

atrium, is located in the upper part of the left heart. It collects blood from the four pulmonary 

veins, in the posterior wall of the atrium.  

The right ventricle, thinner than the left ventricle, is located in the lower part of the right 

heart. It receives blood from the right atrium through the tricuspid valve and pumps it in 

the pulmonary arteries through the pulmonary valve. The right ventricle is the center of the 

pulmonary circuit, the small circulation that guides blood in the lungs. Due to the small 

entity of this circuit, pressure in the right ventricle is smaller than pressure in the left one 

(mean pressure of 2 mmHg and a maximal pressure of 25 mmHg). The left ventricle is 

located in the lower part of the left heart. It receives blood from the left atrium through the 

mitral valve and pumps it in the aorta through the pulmonary valve. It is longer and more 

conical than the right ventricle and, in cross section, its concavity has an oval or almost 

circular shape. Its walls are much thicker than right one (three to six times more), this 
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happens because it expresses a force five times higher, receiving blood at low pressure from 

the atrium, about 5 mmHg, and moving it in the aorta at a pressure about 120 mmHg at each 

heartbeat. 

The blood flux in the heart is regulated by the action of the cardiac valves. The right 

atrioventricular valve, the tricuspid valve, consists of three cusps, while the left valve, the 

mitral valve, is composed of two cusps. Valves morphology avoids blood reflux from 

ventricles to atria. Then, the heart contraction forces blood against the edges of the 

atrioventricular valves, causing their closure and blood flux into arteries. Semilunar valves 

consist of three cusps that protrude from the ventricle to the inner wall of the arteries. When 

these valves are closed, blood fills the spaces between valve leaflets and the vessel wall. On 

the contrary, when ventricles contract, the flow of blood proceeds into the arteries, releasing 

blood in the cusps and causing the opening of the valves. 

Heart valves are supported by the cardiac skeleton, consisting of strong connective 

formations formed by collagen fibers. It is composed of four fibrous rings, which enclose the 

four heart orifices. These rings are partly in contact and connected by two trigons of fibrous 

connective tissue. In particular, the right fibrous trigone is a strong formation placed 

between the aortic orifice and the two atrioventricular orifices, while the left fibrous trigone, 

smaller than the right one, is located between the left atrioventricular orifice and the aortic 

orifice. The cardiac skeleton aims to merge the muscular bundles of the atria and ventricles, 

to provide a support for heart valves, and to electrically isolate atria from ventricles. It also 

participates in the formation of the interatrial septum and of the interventricular septum. 

The heart is enclosed by a double-wall sac (Fig.1.2), the pericardium, consists of two 

distinct layers, the 

fibrous pericardium 

and the serious 

pericardium. The 

fibrous pericardium is 

the external layer and it 

is a resistant sac that 

non-elastically covers 

the heart. Its two main 

functions are the heart 

defense and the heart 

 

Figure 1.2. Cardiac Muscle Structure. The muscular structure of 

the heart is composed of three layers, endocardium, myocardium 

and endocardium. It is enclosed in a sac, the pericardium. 
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maintenance in situ. The serous pericardium is the internal layer and it perfectly adheres to 

the cardiac muscle. It consists of two layers of mesothelium, the visceral pericardium and a 

parietal pericardium which together delimit the pericardial cavity. The visceral layer of 

serous pericardium (or epicardium) adheres to the heart, while the parietal layer of serous 

pericardium is the external one. Between the two layers of the serous pericardium, of the 

pericardial liquid, or liquor (20 ml and 50 ml), allows the heart movements, reducing its 

frictional forces2. The cardiac muscular structure is composed of three layers, the 

epicardium, the myocardium and the endocardium (Fig.1.2). The epicardium, formed as 

described by the visceral layer of the serous pericardium, is a membrane that externally 

covers the heart. The epicardium consists of a single layer of mesothelial cells and has a 

lamina propria composed of elastic fibers. Myocardium, or cardiac muscle composed of 

myocytes, is the muscular tissue of the heart. It is composed of 70% muscle fibers, while the 

remaining 30% consists mainly of connective tissue and vessels. The myocardium is a hybrid 

of skeletal muscle tissue, and partly of smooth muscle tissue. Finally, the endocardium is a 

thin translucent membrane that internally covers all the cardiac cavities, adapting to all their 

irregularities and covering also the valve leaflets.  

Heart contraction is regulated by an electrical impulse, opportunely generated by a 

specific group of cardiac cells, the cardiac conduction system. Cardiac conduction system 

(Fig.1.3) is the intrinsic system that regulates the cardiac depolarization. The depolarization 

is automatically generated by periodic electrical impulses that are born in the nodal cells. 

These impulses rapidly propagate to adjacent contractile cells through the presence of 

communicating junctions. The main four formations that composes the cardiac conduction 

system are the SA node, the atrioventricular node (AV node), the His bundle and the Purkinje 

fibers.  

The SA node (Fig.1.3) is the part that autonomically regulates the occurrence of the 

heartbeat, being the cardiac physiological pacemaker. It is located in the right atrium in the 

junction between the cavity and the superior vena cava. It presents a crescent-shape, 15 mm 

long and 5 mm large. It is composed of connective tissue that surrounds myocardial cells 

with poor myofibrils. Its role is to generate the electrical stimulus that has to be transmitted 

to atrial muscular tissue, provoking the atrial contraction. The SA node is innervated by 

many fibers of the autonomic nervous system (ANS-both by the sympathetic nervous system 

and the parasympathetic nervous system), in order to regulate the heart rhythm and the 

atrial contraction force. The mean heart rate (HR) generated by the SA node is about 1 Hz 
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(60 bpm) in adult, but the nervous system can modulate it. Specifically, sympathetic activity 

can increase the frequency (tachycardia), modulating the electrical discharge of the 

sinoatrial nerve cells; on the contrary parasympathetic activity can reduce it (bradycardia). 

Moreover, if the heart is isolated from the nerves, it is in turn equipped with its own 

contractile activity.  

The AV node (Fig.1.3) is the relay of cardiac conduction system. It is placed between the 

opening of the anterior coronary sinus and the insertion of the tricuspid valve, and presents 

an oval shape, 6 mm long and 2 mm large. The relay function of the AV node is to slow down 

the frequency of the SA node, in order to delay the ventricles contraction in relation to the 

atrial one. At the level of the AV node the sympathetic system increases the transmission 

speed of the impulse, while the parasympathetic slows it down. In case of SA-node inactivity, 

AV node does not have the ability to substitute it. The His bundle (Fig.1.3) conducts cardiac 

electrical impulses from AV node to ventricles. It is about 10 mm long, crosses the cardiac 

skeleton and continues in the thickness of the interventricular septum, where it divides into 

a right branch and a left branch. It connects to Purkinje fibers, which penetrate the 

ventricular myocardium through papillary muscles and ventricular lateral wall. Purkinje 

fibers are cardiac cells with higher conductivity than common myocytes. They are the largest 

 

Figure 1.3. Cardiac conduction system. The cardiac impulse is born in the sinus atrial node 

(SA node), propagates in atria and arrives in the atrioventricular node (AV node). From there, 

it propagates in ventricles through His bundle, its branches and Purkinje fibers. 
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cells found in the heart: they have a diameter of 70-80μm compared to 10-15μm of 

myocardial cells. The large diameter is associated with a high conduction rate of about 1-4 

V/s compared to 0.4-1 V/s of the other cells of the cardiac conduction system1.  

The role to supply blood to the heart is guaranteed by coronary arteries. The right 

coronary artery and the left coronary artery supply blood to the right heart and the left heart, 

respectively, and are born in the initial part of the aorta. The course on the right coronary 

artery follows the edge between the right atrium and the right ventricle. This artery sends 

two branches down, the right marginal branch (or right marginal), and the posterior 

descending artery (or posterior interventricular). The left coronary artery divides into a 

circumflex artery, which gives rise to several branches for the obtuse margin, and anterior 

descending artery, which marks the border between left ventricle and right ventricle. The 

anterior descendant also originates other small arterial branches that go directly to irrigate 

the interventricular septum, known as sepal branches. 

1.1.2 Electrical Physiology 

Cardiac Action Potential 

Cardiac cells are able to be electrically activated, generating an action potential. The 

cardiac action potential is a rapid voltage change between the walls of the cardiac cell 

membrane, caused by crossing of ions. The main ions involved are sodium (Na+), chloride 

(Cl−), calcium (Ca2+) and potassium (K+). At resting, Na+, Cl− and Ca2+ are highly present in 

the outside the cell, while K+ is mainly present inside the cell. The balance between 

concentrations of these ions makes negative the voltage of the cell membrane, that is around 

-90 mV (resting membrane potential). When the action potential occurs, the membrane 

became rapidly positive (depolarization) and, then, it slowly returns in its initial negative 

condition (repolarization)3. The cardiac action potential duration ranges from 0.20 s to 0.40 

s. Specifically, in the heart there are two types of cardiac action potentials: the non-

pacemaker action potential, addressed to the common cardiac cells, and pacemaker action 

potential, addressed to the cells of the cardiac conduction system. 

Non-pacemaker action potential is typically addressed to cardiac cells (atrial and 

ventricular) and to Purkinje fibers. This action potential is defined as “non-pacemaker” 

because its generation depends from the triggering of the adjacent cell depolarization. This 

type of action potential is called “fast response” due to its reactivity to be released. Non-

pacemaker action potential is composed of 5 phases (Fig.1.4A)4: 
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0. The phase 0 or Rapid Depolarization occurs when the action potential of an adjacent 

cell is conducted till the cell. Th cardiac membrane voltage passes from the resting 

potential (-90 mV) to a threshold value (around -70 mV). This provokes an 

increasing of Na+ conductance, and then Na+ influx in the cell. At the end of this 

phase, the cardiac membrane potential reaches +15 mV. 

1. The phase 1 or Early Repolarization occurs when K+ channels open, generating an 

efflux of K+ ions crossing the membrane.  

 

Figure 1.4. Action potential of cardiac cells. Non-pacemaker action potential (A) is typical 

of common cardiac cells and Punkinje fibers. It is characterized by 5 phases (from 0 to 1), 

depicted in different colors. Pacemaker action potential (B) is typical of conduction system 

cells. It is characterized by 3 phases (0-3-4). 
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2. The phase 2 or Plateau occurs when Ca2+ channels open, generating an influx of Ca2+ 

ions. This process delays the repolarization phase and the cardiac membrane voltage 

arrives till a value of +20 mV. Channels of Ca2+ are called “long-lasting” because 

they slowly inactivate. 

3. The phase 3 or Rapid Repolarization occurs when the efflux of K+ exceeds influx of 

Ca2+. The cardiac membrane voltage decreases till the resting value and K+ channels 

close. 

4. The phase 4 or Resting occurs when the cardiac membrane voltage remains at the 

equilibrium.  

The phases from 0 to the first part of phase 3 constitute the Effective Refractory period 

(ERP) (Fig.1.4A), that is the period in which the cell is effectively refractory to the starting of 

new action potentials. The phases from the second part of phase 3 and the first part of phase 

4 constitute the Relative Refractory Period (RRP), that is the period in which the cell can 

generate an action potential, only if the activation threshold reaches high values. 

Pacemaker action potential is typically addressed to the cells of the SA node and of the AV 

node. This action potential is defined as “pacemaker” because it could be generated directly 

by the cell, that has the spontaneous ability to generate it with a specific frequency. It is 

called “slow response” action potential due to a slow rate of depolarization. Pacemaker action 

potential consists of 3 phases (Fig.1.4B)4: 

0. The phase 0 or Upstroke occurs when Ca2+ conductance increases. It causes a slow 

depolarization of cardiac membrane, due to the influx of Ca2+ in the cell. With the 

increases of Ca2+, K+ conductance decreases, contributing in depolarization.  

3. The phase 3 or Repolarization occurs depolarization causes the opening of K+ 

channels, thus the efflux of K+ starts to exit the cell. Simultaneously, Ca2+ channels 

close and the cardiac membrane potential reaches -65 mV  

4. The phase 4 or Spontaneous Depolarization occurs when K+ conductance decreases, 

provoking a slow influx of Na+ ions in the cell. At the end of it, Ca2+ conductance 

increases, allowing Ca2+ to move inside the cell. 

As in non-pacemaker cells, the phases from 0 to the first part of phase 3 constitute the 

ERP, while the phases from the second part of phase 3 and the first part of phase 4 constitute 

the RRP.  
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Cardiac Conduction Cycle 

Cardiac electrical impulse is born in the pacemaker cells of SA node. These cells 

autonomically depolarizes, generating an impulse that arrive to all atrial cells. Moreover, 

through internodal fibers, impulse arrives till AV node, after a delay of 0.03 s from its 

generation (Fig.1.5). This essential delay guarantees that the electrical impulse slowly 

propagates from atria to ventricles. If the propagation would be rapid, atrial blood has no 

enough time to complete fill ventricles, compromising the pumping function of the heart. 

The AV node delays the impulse of 0.09 s (Fig.1.5), that propagates in the His bundle and 

arrives till the apex of the heart. Due to the atrioventricular septum, the impulse is delayed 

of other 0.04 s. Thus, the time between the generation of the impulse and its propagation 

till the ventricles is 0.16 s(Fig.1.5). 

The depolarization is transmitted from the AV node to ventricles by Purkinje fibers, that 

rapidly conduct the impulse in ventricles in order to guarantee the simultaneous 

depolarization of ventricles (0.03 s). At the end of the Purkinje fibers, the speed decreases, 

causing an additional delay in the depolarization of the ventricles of 0.03 s. Thus, the 

effective time between the AV node depolarization and ventricles depolarization in 0.06 s. 

 

Figure 1.5. Cardiac impulse transmission. The cardiac impulse is born in the SA node and 

propagated in atria and ventricles. It arrives in each part of the heart with a specific delay (s), 

depicted in yellow 
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1.1.3 Mechanical Physiology 

Myocyte and the excitation-contraction coupling 

The core of cardiac contraction is the myocyte, the cardiac cell. Chains of myocytes 

composes the myofibril, a long filament that composes myofilaments. Groups of myofibrils 

compose the sarcomere. The sarcomere, the basic contractile unit of the myocyte, is 

delimited by two bands called Z-lines and is physiologically 2 μm long. The sarcomere 

contains two type of filaments, the thick filaments and the thin filaments. The thick filaments 

are called myosin, while the thin filaments are called actin. The structure of the filaments is 

rigid, specifically each myosin is surrounded by six actins. Actin is a globular protein 

arranged as a chain of repeating globular units, forming two helical strands3. Between the 

actins, several proteins are linked, called tropomyosin. Each of tropomyosin molecule is 

composed of three subunits, called troponin-T, troponin-C and troponin-I . The troponin-T 

attaches to the tropomyosin, the troponin-C is the connection between the molecule and Ca2+ 

and, finally, the troponin-I inhibits myosin binding to actin. 

The cardiac cell contraction is regulated by the action potential. The coupling between the 

cardiac action potentials and contraction is called excitation–contraction coupling. This 

coupling occurs thanks to the transverse tubules, that are specific invaginations in the 

myocyte membrane, particularly in the ventricular cells. Thus, the transverse tubules 

connect the external environment of the cell, with its internal environment, permitting the 

flux of the ions during electrical depolarization and repolarization of the myocyte. In the 

 

Figure 1.6. Excitation-contraction coupling. Cardiac impulse arrives (red) and causes a flux 

of Ca2+ inside the cell. Due to the “trigger-Ca2+”, actin and myosin slide past, causing the 

contraction. 
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internal environment of the cell, the transverse tubules  are strictly connected with a tubular 

network called the sarcoplasmic reticulum, that surrounds the myofilaments (Fig.1.6). The 

main role of the sarcoplasmic reticulum is to regulate intracellular Ca2+ concentrations, 

which is involved with contraction and relaxation. At the terminal part of the reticulum, 

there are several cisternae, near to the transverse tubules . This part of the cell is dense of 

electron and are believed to sense Ca2+ between the Transverse tubules  and the terminal 

cisternae. Moreover, a large number of mitochondria are associated to the reticulum in order 

to provide the energy necessary for the contraction. When the action potential arrives to the 

myocyte, the excitation–contraction coupling process starts. the depolarization of the cell 

causes the entering of Ca2+ ions in the cells, through Ca2+channels located on the external 

membrane and Transverse tubules . This Ca2+ influx, relatively low in concentration, does 

not increase the intracellular Ca2+ concentrations significantly, except in the regions inside 

the sarcolemma. The Ca2+-release channels are sensitive to this low concentration; thus, this 

quantity became a trigger for the subsequent release of large quantities of Ca2+ stored in the 

terminal cisternae, provoking the increase of the Ca2+ quantity from 10−7 to 10−5 M. 

Therefore, the Ca2+ that enters the cell during depolarization is sometimes referred to as 

“trigger Ca2+”3. The Ca2+ ions bind to troponin-C and induce a conformational change in the 

regulatory complex. Specifically, the tropomyosin complex moves and exposes a myosin-

binding site on the actin. The actin and myosin filaments slide past each other, thereby 

shortening the sarcomere length. As intracellular Ca2+ concentration declines, Ca2+ 

dissociates from troponin-C, which causes the reverse conformational change in the 

troponin–tropomyosin complex; this again leads to troponin–tropomyosin inhibition of the 

actin-binding site. 

 

Cardiac Cycle 

The period between a heart contraction and the next contraction is the cardiac cycle 

(Fig.1.7). The heart periodically pumps blood towards the vessels, causing a rhythmic 

contraction and relaxation of the four cardiac chambers. The cardiac cycle is divided in two 

main phases: the systole and the diastole. The systole is the contraction period in which a 

chamber pushes blood into the adjacent chamber or into an artery. The diastole is the 

relaxation period in which a chamber fills with blood. Specifically, the phases of the cardiac 

cycle are4: 
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•  Atrial systole: the atrioventricular valves (tricuspid and mitral valves) are open 

while the semilunar valves (aortic and pulmonary) are closed. Guided by the SA 

node, atria contract and push blood in the ventricles. 

•  Ending of atrial systole: atrioventricular valves close to prevent blood reflux and 

then the atria relax. The electrical impulse is delayed by AV node.  

•  First phase of ventricular systole: the ventricular pressure increases, due to the 

entering of blood. The ventricular pressure increases, but it is not sufficient to open 

semilunar valves. This phase is also called “isovolumetric contraction” because the 

ventricular volume remains constant since all the valves are closed. 

•  Second phase of ventricular systole: the ventricular contraction increases the 

ventricular pressure, guided by the AV node and the His bundle. Ventricular 

 

Figure 1.7. Mechanical cardiac cycle. The two macro phases of the contraction are the systole 

(red-chambers contraction) and the diastole (blue-chambers relaxation). Each of these phases 

can occur in the atria (atrial systole and atrial diastole) or in the ventricles (ventricular systole 

and ventricular diastole) 
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pressure exceeds the pressure in arteries and opens semilunar valves. Thus, blood 

fluxes into artery is rapid in the first the ejection, while it became slower when the 

pressure in the arteries decreases, due to the blood flux. Meanwhile, atrial pressure 

starts to increase, due to blood that returns from veins. 

•  Early phase of ventricular diastole: ventricles relax and the ventricular pressure 

decreases, causing the closure of the semilunar valves. When valves close, 

ventricular volume remains constant. This is also called “isometric relaxation”.  

•  Late phase of ventricular diastole: blood enters in atria, causing an increase of the 

atrial pressure, while ventricular pressure reaches its minimum value. Thus, 

atrioventricular valves open and ventricles passive fills. At this point the heart is 

ready to start the cycle again. 

In normal condition, each ventricle expels from 70 ml to 90 ml during a single systole, 

and about 5 l of blood per minute.  

 

1.2 Major Cardiac Signals 

1.2.1 Electrocardiogram 

The electrocardiogram, abbreviated as ECG, is the representation of the cardiac electrical 

activity. The electrical impulse travels from atria to ventricles, depolarizing and repolarizing 

all cardiac cells. Action potentials generated by all cardiac cells can be recorded: their 

summation generates a pseudo-periodical pattern, the ECG. The electrical (Fig.1.8) impulse 

is born in the SA node, and propagates in the atria, causing atria depolarization and their 

consequently repolarization. These phenomena are reflected in P wave and in TA wave, 

respectively. Then, the impulse, after a small delay, passes from the AV node to ventricles, 

causing their depolarization and repolarization. The electrocardiographic representation of 

ventricular depolarization is the QRS complex, while the representation of the ventricular 

repolarization is the waveform composed by the T wave and the U wave. In detail, ECG 

waves are  (Fig.1.9): 

•  P wave: it represents the atrial depolarization and it is an indirect measure of atrial 

activity. In normal condition, its duration ranges from 0.08 s to 0.10 s, and its 

amplitude ranges from 0.1 mV to 0.4 mV3. The P wave is a smooth wave, but, 
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occasionally, can present a small notch5. When a heart is affected by atrial diseases, 

the P wave is altered. Specifically, abnormality in atrial structure can be 

diagnosticate from the increasing of the P-wave area6 (increasing of its amplitude 

or duration). For example, the atrial hypertrophy can be observed in P-wave 

prolongation7. Moreover, P-wave absence is a fundamental diagnostic criterion, 

associated to premature ventricular contraction (PVC), idioventricular rhythm, 

junctional rhythm, but principally to atrial fibrillation (AF)8. 

•  TA wave: it represents the atrial repolarization. It is a shallow wave, that rarely can 

be seen due to the overlapping with the ventricular depolarization wave. 

Occasionally, it could be seen in patients with heart block, and it is opposite from 

the P wave5. 

•  QRS complex: it represents the ventricular depolarization and it is the highest wave 

of the ECG pattern. The main features of QRS complex are its morphology, its 

amplitude and its duration. The morphology and the amplitude (usually ranged 

from 1 mV to 4 mV) are lead-dependent, while the duration of the complex ranged 

from 0.06 s to 0.10 s3. Usually, the normal pattern is composed by a small Q wave, 

a large R wave and a small S wave in left-sided leads5. Enlargement of the QRS 

complex can be symptom of ventricular hypertrophy9 and prolongation of this wave 

can reflect heart failure10. 

•  T wave: it represents the phase 3 of repolarization of ventricular myocytes5 and its 

duration ranges from 0.10 s to 0.25 s. Moreover, the T-wave duration is modulated 

 

Figure 1.8. Genesis of electrocardiogram. The cardiac impulse generated the depolarization 

of all cardiac cells, from SA node to ventricular muscle. The combination of the action 

potentials of all the cells can be recorded, and it is called electrocardiogram (ECG). 
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by the duration of the entire cardiac cycle. The T-wave amplitude is not usually 

quantified, but the polarity of this wave reflects important information related to 

the clinical status of the patient. Examples are the myocardial ischemia and the 

infarction11. 

•  U wave: it represents the late repolarization process of His-Purkinje cells and certain 

left ventricular myocytes5. It is not always visible, but when present the normal U 

wave has a low amplitude and the same polarity of the T wave. 

The ECG waves are important in the monitoring of the cardiac electrical activity, but also 

the interval between their occurrence can reflect important information. The main ECG 

intervals in the clinical practice are: 

•  RR interval: it is defined as the interval between two consecutive cardiac cycles. It 

could be expressed as a time interval (ms). From the RR intervals, the HR series can 

be computed as their inverse. The HR is defined as the number of heartbeat present 

in a minute and its unit is the heartbeat per minute (bpm). In normal condition the 

RR interval ranges from 0.60 s to 1.00 s, corresponding to a HR between 60 bpm 

and 100 bpm. The RR interval is essential for the diagnosis of arrhythmias, as  

tachycardia or bradycardia. Tachycardia means a RR interval shorter than 0.60 s 

(HR higher than 100 bpm), while bradycardia means a RR interval longer than 1.00 

s (HR shorter than 60 bpm). Tachycardia and bradycardia can be physiological 

events: for examples, the exercise induces tachycardia because the body needs more 

 

Figure 1.9. Electrocardiographic waves. ECG is composed of several waves: P wave, QRS 

complex, T wave and, if present, U wave. Such important intervals (PR interval, ST interval, 

RR interval and QT interval) and segments (PR segment, QRS duration and ST segment) can 

be measures. 
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nutrients, while the sleep induces bradycardia. Anyway, such pathologies have 

arrhythmic events as diagnostic clinical evidences12.  

•  PR interval: it is defined as the interval between the P-wave onset to the initial 

deflection of ventricular activation. This interval includes several electrical events 

because it represents the time that the cardiac electrical impulse employs to reach 

the AV node. The normal PR interval is less than 0.16 s in young children or 0.18 s 

in adults. A short PR interval (under 0.08 s) can reflects Wolff-Parkinson-White 

syndrome5, while its prolongation reflects conduction system blocks3. 

•  ST segment: it is defined as the interval between the QRS-complex offset and the T-

wave offset. The QRS-complex offset is usually called J point, and it should not 

deviate more than about 1 mm from baseline. Deviations in ST level may be caused 

by ischemia, inflammation, severe hypertrophy, and some medications13. 

•  QT interval: it is defined as the interval between the QRS-complex onset and the T-

wave offset. This interval reflects the total action potential duration for ventricular 

myocytes, comprising their depolarization and repolarization. As the T-wave 

duration, the QT interval varies with the duration of the cardiac cycles, thus it is 

usually adjusted in relation to the cardiac cycle, computing the corrected interval 

(QTc) as: 

 ��� =  ��√�� (1.1) 

In normal condition, the QTc is lower than 0.43 s in adults. Abnormality in QTc duration 

means severe pathologies: the QTc prolongation reflects the long QT syndrome, while its 

reduction reflects the short QT syndrome14. 

 

The Standard 12 Leads 

The ECG can be recorded with two different techniques, the surface ECG and the invasive 

ECG. The surface ECG, usually called only ECG, records electrical fields generated by the 

cardiac cycle. The signal is recorded by electrodes placed on the body surface. This technique 

is low-cost, noninvasive and painless for patients. These features made ECG recording the 

gold standard technique for the cardiological monitoring. On the other hand, the invasive 

ECG, or endocardiogram, is recorded directly inside the heart chambers.  

The basis of the ECG recording is to use at least two electrodes to record the cardiac 

electrical activity. The placement of the ECG electrode was defined in the past, generating 
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different leads standardization. The mainly used in the clinical practice is the 12-lead 

configuration. The 12-leads configuration is defined to have a complete visualization of 

electrical heart activity from 12 different points of view. This configuration includes the 

bipolar Einthoven leads, the augmented Goldberger leads and the unipolar precordial leads. 

The three Einthoven leads (Fig.1.10 (A)) are defined as bipolar because each of it needs 

two electrodes to be recorded, one positive and one negative15. Fig.1.10 (A) shows the 

electrode placements and, according with it, the three leads are defined as: 

•  Lead I: it represents the voltage between left arm (positive) and right arm 

(negative); 

•  Lead II: it represents the voltage between left leg (positive) and right arm (negative); 

•  Lead III: it represents the voltage between left leg (positive) and left arm (negative). 

The three augmented Goldberg leads (Fig.1.10 (B)) are unipolar leads. They measured the 

voltage between an exploring electrode and a reference one. Specifically, the reference 

electrode is constitute by the linear combination of two electrodes at limbs, while the 

exploring one is the third one15. According with Goldberg definition, the augmented leads 

are: 

•  aVR: it considers as reference the combination of the electrode on left arm and 

the electrode on left leg, while the exploring electrode is that placed on right 

arm. Thus, the lead is defined as: 

 

Figure 1.10. ECG lead measured at limbs. The Einthoven leads (A) and Goldberg leads (B) 

are six of the standard 12 leads and they are measured placing four electrodes at limbs. 
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 �	� = 
 12 � � ��� (1.2) 

•  aVL: it considers as reference the combination of the electrode on right arm 

and the electrode on left leg, while the exploring electrode is that placed on left 

arm. Thus, the lead is defined as:  

 �	� = 12 � 
 ���� (1.3) 

•  aVF: it considers as reference the combination of the electrode on left arm and 

the electrode on left one, while the exploring electrode is that placed on left leg. 

Thus, the lead is defined as:  

 �	� = 12 �� � ���� (1.4) 

The six unipolar precordial leads are used to record the heart activity near heart location. 

Specifically, six electrodes are placed directly on the thorax in order to record cardiac activity 

in the transversal plane. As for Goldberger leads, the six precordial leads are computed as 

the voltage between a reference electrode and six exploring electrodes. As reference, the 

Wilson electrode is used: it is the combination of the three Einthoven electrodes15. The six 

exploring electrodes (Fig.1.11) are identified with consecutive numbers (from V1 to V6) and 

are located on: 

•  V1: fourth intercostal space to the right of sternal margin; 

•  V2: fourth intercostal space to the left of sternal margin; 

•  V3: halfway between V2 and V4; 

•  V4: fifth intercostal space on the left hemiclaveral line, corresponding to cardiac 

apex; 

 

Figure 1.11. Precordial leads. The six precordial leads are six of the standard 12 leads. The 

electrodes are placed on the chest (A) and they provides a representation of repolarization in 

the transverse plane (B). 
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•  V5: fifth intercostal space on the left anterior axillary line, aligned with V4; 

•  V6: externally aligned with V4 and V5. 

The 12-lead recording can be direct measured or indirect measured. The direct measure 

provides a more realistic signals because electrodes are directly placed on anatomical sites. 

Specifically, ten electrodes are placed on the body, and in particular six electrodes are placed 

on the thorax (1. fourth intercostal space to the right of the sternal margin; 2. fourth 

intercostal space to the left of the sternal margin; 3. halfway between V2 and V4; 4. fifth 

intercostal space on the left hemiclaveral line, corresponding to the cardiac apex; 5. fifth 

intercostal space on the left anterior axillary line, aligned with V4; 6. externally aligned with 

V4 and V5), while other four are placed on the limbs (7. Left arm; 8. Left leg; 9. Right arm; 

10. Right leg).  

This is the standard electrodes placement, but the electrodes on limbs are uncomfortably 

for portable devices, like long time monitoring (ECG Holter) or during the exercise. Thus, in 

1966, Mason and Likar formulated an alternative location for electrodes on the limbs. 

Specifically, they suggested to move arm electrodes on clavicles and legs electrodes on iliac 

fossae16. 

The indirect measure of the 12 leads is based on the recordings of the Frank leads. The 

Frank leads are a set of three bipolar leads, orthogonal each other and orthogonal to the 

reference system of human body. Specifically, the axis (X,Y,Z) are defined as the transversal 

axis (left-right), the axis sagittal (or dorsoventral) and the longitudinal axis (or 

craniocaudal). According with these axes, the Frank leads are recorded with seven 

electrodes, five on the thorax, one on the left leg and one as reference. Through such 

transformation matrices, three orthogonal leads can be mathematically transformed in the 

12 standard leads. In particular, the most famous matrix for the 12 leads computation are 

the Dower matrix17,18 and the Kors matrix19,20.  

 

1.2.2 Vectorcardiogram 

Heart Vector 

An alternative line of the electrocardiography is the concept of the heart as a cardiac 

dipole. Indeed, the heart generated an electrical field, that can be observed through its body 

surface isopotential map. The cardiac electrical activity could be accurately described as an 

equivalent dipole. The dipole is a system composed of two equal and opposite electric 
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charges, separated by a constant distance over time; it is usually represented in vector form 

in which the vector amplitude indicates the electrical intensity while the arrow indicates its 

orientation.  

During cardiac depolarization, the extracellular fluid surrounding the heart and the 

myocardium became two equal and opposite electric charges. Specifically, the extracellular 

fluid becomes more negative, while the myocardium becomes more positive. This is caused 

by the positive ions flux inside the cellular membrane. This phenomenon generates a dipole 

between two charges, that changes its direction accordingly with the 

depolarization/repolarization wave. This wave is not instantaneous; thus, the dipole changes 

its direction in the space. Moreover, the heart tissue in not homogenous, thus the dipole 

intensity (vector length) is not constant. According with these features, the cardiac dipole is 

equivalent to a rotating vector with a positive and negative terminal spinning in three 

dimensions, according with the depolarization/repolarization wave that spreads through 

cardiac chambers. Moreover, the cardiac dipole spins around the heart, generating a current 

that moves towards or away from skin electrodes. The upward or downward deflection of 

cardiac vector depends on its direction, and in particular if it points the electrode or not. 

Standard 12-lead ECG shows the dipole movement from different points of view, in order to 

have a global overview of cardiac electrical activity. When the heart is completely depolarized 

or repolarized, there is no dipole and ECG is flat (isoelectric). 

 

Figure 1.12. Cardiac vector. The depolarization wave follows a specific path that can be 

modeled as a vector, which can be projected on the standard 12 leads.  
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A dipole is a vector (Fig.1.12); thus, it has a direction and a magnitude: specifically, it could 

be represented as an arrow pointing from the most depolarized region of the heart to the 

most polarized region. Where each end of the arrow is located depends on how the wave of 

depolarization spreads through the heart, and how much mass of myocardium is 

depolarized/repolarized. The dipole points from the biggest mass of depolarized 

myocardium to the biggest mass of repolarized myocardium at any particular instant.  

 

Vectorcardiogram 

One of the electrocardiographic techniques to evaluate cardiac electrical activity is the 

dynamic measurement of heart vector, the vectorcardiogram (VCG). The VCG is composed 

by the three orthonormal leads X, Y and Z (Frank leads), with lead vectors in directions of 

the main axes of the body. Usually, they are normalized lead strengths, thus measuring the 

dynamic x, y and z components of the heart vector20. These three leads can be combined, 

observing the heart vector movement in the three principal planes (longitudinal, sagittal or 

transversal) of in the space. Additionally, the vector magnitude (VM) is also computed as: 

 	� = ��� � �� � ��. (1.5) 

The recordings of three orthogonal leads can be direct (using the Frank configuration) or 

indirectly computed. In fact, as the three orthogonal leads can be computed from the 

standard 12-lead, the inverse process is also possible. Specifically, it was demonstrated that 

the Kors matrix20 allows to reliably approximate Frank leads from the eight independent 

lead of the standard 12-lead configuration. 

The main pattern that can be observed in VCG is composed of three wave loops, the P-

wave loop, the QRS-complex loop and the T-wave loop (Fig.1.13). Each of these loops 

represents the movement of heart vector during a specific phase of the 

depolarization/repolarization wave. Specifically, this pattern is repeated for each ECG 

heartbeat, and the projection of each loop in one of the three principal planes can underline 

proprieties of the cardiac electrical activity.  

VCG contains less information than the ECG, but its nature to observe the heart vector in 

space has additional value and gives access to information that remains unexplored in the 

standard 12-lead ECG20. Examples of VCG features that could be useful in clinical practice 

are: 
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•  QRS-T spatial angle, defined as the angle between QRS-complex and T-wave axes, 

is a measure of concordance/discordance between ventricular depolarization and 

repolarization21; 

•  ventricular gradient, defined aa the QRS-T area in the three orthogonal leads, is a 

measure of the cardiac action potential morphology distribution20; 

•  ST vector, defined as J-point amplitudes (usually also J point+0.04 s, +0.06 s, or 

+0.08 s are used) in the three orthogonal leads, is a valid feature to detect 

ischemia20; 

•  QRS- and T-loop complexity, defined from the single value decomposition of the 

loop, is a measure of the irregularity of loops, characteristic of several pathology20. 

 

 

 

 

 

 

 

 

Figure 1.13. Cardiac waves loops. The heart vector, during the cardiac cycle, composed three 

loops in the space: the P-wave loop (blue) represents atrial depolarization, the QRS-complex 

loop (green) represents ventricular depolarization and the T-wave loop (red) represent 

ventricular repolarization. 
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1.2.3 Phonocardiogram 

The phonocardiogram, or PCG, is the recording of the cardiac heart sounds. The 

contraction and the relaxation of the four heart chambers periodically repeats in time: 

ventricular contraction pushes blood in arteries and provokes closures of atrioventricular 

valves; then, during the ventricular relaxation, atrioventricular valves open and semilunar 

valves close in order to allow the blood to fill atria. The valve closures generate sounds, that 

could be recorded. Cardiac heart sounds define the time of systole and diastole. Moreover, 

abnormality in the heart sounds reflects valves dysfunction.  

As the ECG presents a periodical patter, also the PCG presents a heart sounds pattern 

(Fig.1.14). The first heart sound (S1) represents the closure of the atrioventricular valves and 

indicates the beginning of systole and the end of diastole. Its duration is about 0.15 s and its 

frequency components range from 25 Hz to 45 Hz. S1 is generated by four different 

vibrations. The first is the atrial component, that provides some low-frequency not-audible 

vibrations provoked by the ending of atrial contraction. The second component, the principal 

one, is the sounds of the closure of atrioventricular valves, mitral and tricuspid valves. The 

third component depends on the opening of semilunar valves that produces vibrations and 

the acceleration of the blood that it flows into arteries. The last component is normally not-

audible and depends on the position of the valve at the time of diastole. In fact, if the valve 

is completely open, S1 is more intensive, while if the valve is still closed, S1 is weaker. The 

not-audible components became audible in pathological conditions. S1 intensity also depends 

 

Figure 1.14. Heart sounds. The major heart sounds are S1, S2, S3 and S4. The interval 

between S2 and S1 reflects ventricular systole (red), while the interval between S1 and S2 

reflects ventricular diastole (blue). 
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on the rapidity of ventricular contraction and on the anatomical shape of valves. The 

auscultation is better appreciated at the apex or in the left ventricular area. 

The second heart sound (S2) represents the closure of semilunar valves and indicates the 

beginning of diastole and the end of systole. Its duration is about 0.12 s and its frequency 

components are around 50 Hz. S2 is more direct and acute than the first and is accompanied 

by vibrations that are normally not audible. These vibrations are due to the reaction of the 

ventricular wall at the beginning of diastole (not audible normally) to the closure of 

semilunar valves, aortic and pulmonary valves, which represent the audible and 

predominant part of S2. The vibrations of the vascular walls and the vibrations produced by 

the opening of atrioventricular valves are added. Not-audible components become audible 

in pathological conditions. Auscultation is better appreciated in aortic or pulmonary 

auscultation sites. 

The third heart sound (S3) is a dull, weak and serious sounds, perceivable after a physical 

effort. Since S3 follows S2, it can be considered as a diastolic sound, or rather pre-diastolic. 

S3 is present in a third of children/young people and corresponds to the rapid ventricular 

filling. It is produced by the vibration of the mitral valve when blood rapidly passes in 

ventricles. It must be monitored since S3 (physiological) is very similar to the pre-diastolic 

gallop (pathological). The differences regard their population, in fact S3 is characteristic of 

very young/young individuals, while the pre-diastolic gallop in adults with left ventricle 

failure. In relation to the other sounds, S3 occurs after 0.10 s after S2. Auscultation is better 

appreciated in the apical area with the subject prone on its left side. 

The fourth heart sound (S4) precedes about 0.10 s S1 and is generated by atrial systole 

(pre-systole), generally considered as an extra-localized sound near ventricles with a 

frequency of 20-30 Hz. Although not confirmed, the literature believes that S4 is generated 

due to the stiffening of ventricular walls, that causes a turbulent flow of blood as atria 

contract to force blood into ventricles. If S4 becomes strong, it is a pathological state signal, 

usually a collapse of the left ventricle. It is often referred to as atrial gallop. 

With the four main cardiac sounds, additional tones and heart murmurs are added. The 

cardiac tones are the "pericardial knock", which occurs in proto-diastole in case of 

constrictive pericarditis; the ejection tones, which are intense and short, high-pitched 

sounds that can be perceived in early diastole caused by opening pops of aortic (or 

pulmonary) semilunar valves or sounds due to the distension of a dilated aorta; and finally 

the "non-ejection systolic clicks", deriving from the tensioning of mitral cord tendons with 
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a length functionally not equal to that of the others. Heart murmurs are noises caused by a 

rapid turbulent flow of blood, in case of low viscosity. The breaths are characterized by a 

source point, duration and intensity defined in degrees (grade 1: very weak, almost not 

perceptible, up to grade 6: very strong, perceptible even without a stethoscope). Another 

kind of breath is the systolic and diastolic murmurs. The first start with the first tone and 

last up to the second, the others start immediately after the beginning of the second tone. 

These breaths are associated with pathological conditions or insufficiencies due to cardiac 

stress. 

 

PCG Auscultation 

The auscultation of the cardiac tones through a stethoscope is performed by placing the 

instrument on the subject's thorax by following precise points called "auscultation areas" 

(Fig.1.15). They are the aortic area, the pulmonary area, the tricuspid area and the mitral 

area. The aortic area is on the second right intercostal space on the edge of breastbone; the 

pulmonary area is located between the second and third left intercostal space on the edge of 

breastbone; the tricuspid area is on the fourth left intercostal space at the edge of breastbone; 

and the mitral area is located at the apex of the heart. The sampling frequency for the PCG 

 

Figure 1.15. Auscultation areas. PCG can be recorded in four major areas, in relation to the 

valve that has to be monitored. Aortic area (blue) allows to monitor the aortic valve functions; 

pulmonary area (yellow) allows to monitor the pulmonary valve functions; tricuspid area 

(green) allows to monitor the tricuspid valve function, and the mitral area (red) allow to 

monitor the mitral valve functions. 
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signal is usually very high, ranged 

from 4000 Hz to 16000 Hz. This 

choice is related to the high frequency 

components of heart sounds22. 

 

ECG vs. PCG 

The electrical activity generates the 

contraction that guides the heart 

valves closure, thus there is a specific 

correlation between the ECG-waves 

occurrence and the PCG-sounds 

occurrence. The correlation between 

the ECG pattern and PCG pattern are 

depicted in Fig. 1.16. The first sound is 

detected on average 0.05 s after the 

QRS-complex onset and lasts on 

average 0.14 s. The second tone starts at the T-wave offset and has an average duration of 

0.11 s. The third tone may appear from 0.05 s to 0.10 s after the second tone. The fourth tone 

can be detected, if present, 0.05 s after P-wave onset. With regard to the gallop rhythms, the 

presystolic gallop is at least 0.10 s before the first tone; the pre-diastolic gallop appears 0.15-

0.20 s after the second tone. 

1.2.4 Tachogram 

Nervous Control on Heart Activity 

The ANS (autonomic nervous system), also called visceral or vegetative, is part of the 

nervous system and is subdivided into a sympathetic and parasympathetic system. These 

systems work in synergy, e.g. they work both to achieve the homeostatic condition that 

guarantees the stability of the inner balance in spite of the external or internal adverse events 

that try to alter it. 

The sympathetic system (Fig.1.17) has a stimulating, exciting and contracting function, 

thus preparing the body to face dangerous situations. In a short time, it increases the 

strength of cardiac contraction, HR and glicemia, causing the dilation of pupils and blood 

vessels, while it slows down the digestive processes. This system is characterized by the start 

 

Figure 1.16. ECG vs. PCG. Simultaneous 

representations of ECG and PCG allows to 

understand the coupling between the electrical 

activity of the heart and its mechanical activity. 



Chapter 1. Origin and Processing of Cardiac Signals 

28 

of the stimulus from a pregangling neuron, located at the level of the dorsal and lumbar 

spine of the spinal cord, which then reaches a postganglia neuron, placed on the sides of the 

medulla or frontally to the column. 

The parasympathetic system (Fig.1.17) stimulates quietness, relaxation, rest, digestion 

and energy storage. It decreases the strength of cardiac contraction, HR, glicemia, the 

bronchi constriction and pupils restriction. In contrast to the previous system, the nerve 

fibers originate at the sacral level of the spinal cord and reach ganglia near the organ to 

innervate. The prevalent activity of one or the other system explains accelerations 

(tachycardias) of the heart rhythm or its slowing down (bradycardia). 

 

Tachogram and Heart Rate signal 

The NN-interval series is widely used in clinical practice, because it is an indirect measure 

of the nervous system control on the heart. The NN interval, commonly called RR interval, 

is the time interval between two consecutive heartbeats. It could be also computed as HR 

Figure 1.17. ANS control. Parasympathetic system (green) and sympathetic system (red) 

work in synergy to adapt the body to external stimuli. They directly modulate the heart 

rhythm. 
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signal, that is the inverse of NN intervals. This signal is called tachogram (Fig.1.18 (A)) if it 

represents the NN-interval series or HR signal if it represents the HR (Fig.1.18 (B)). 

In men the mean NN interval is 0.85 s (HR equal to 70 bpm), in women it is 0.80 s (HR 

equal to 75 bpm), in newborns is 0.38 s (HR equal to 160 bpm) and in fetuses is 0.50 s (HR 

equal to 120 bpm). Usually, the NN interval varies in time according with the ANS action: 

the action of the sympathetic system decreases NN interval, increasing HR; while the 

parasympathetic system increases NN interval, decreasing HR. The synergic action of these 

two systems is physiological: these combined actions guarantee the adaptation of adverse 

events and the adaptability of different conditions, that is the basis of human life. For 

example, the exercise increases the HR of an individual because the body needs more oxygen 

and nutrients; on the contrary the sleep decreases the HR to preserve the energies and rest 

the body. 

The action of the ANS can be studied through the HR variability (HRV), that is the 

variability of heart rhythm in time. This feature of HR, and consequently of NN-interval 

 

Figure 1.18. Tachogram representations. The NN intervals or tachogram (A) can be also 

represented as HR series (B). The frequency analysis of this signals (C) provides information 

about the ANS control to heart rhythm. 
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series, is fundamental to investigate the ANS control in heart in several physiological 

conditions, like exercise and sleep, or in critical condition, like the labor and the delivery. 

The tachogram is a signal that could be extracted for a cardiac pseudo-periodical signal, 

as the ECG and the PCG. Usually, the tachogram of an adult is computed from the R peak of 

ECG, while the tachogram of a fetus, that is the gold standard of the fetal monitoring 

(cardiotocography), is usually computed from fetal PCG.  

From the signal processing point of view, the tachogram (Fig.1.18) is computed from the 

difference between a normal heartbeat occurrence (R peak or S1) and the previous one, 

according with the formula: 

 ��� = �� 
 ���� (1.5) 

The series can be represented according to the number of heartbeats or in time. It is 

represented in time, its time resolution, for definition of variability, have to be constant: 

thus, the approximation is to consider the time resolution equal to the mean NN interval of 

all the signal.  

The tachogram is usually represented also in frequency domain. Assuming the mean NN 

interval as the time resolution (constant) and the stationarity of the signal in few minutes 

(usually 5 minutes), the spectrum can be computed. 

The study of the HRV can be performed in two different manners, the time domain 

analysis or the frequency domain analysis. The time domain analysis includes all the features 

that could be computed from the tachogram considering its representation in time. 

Specifically, the major features are: 

•  NNmax that is the maximum value of the NN series; 

•  NNmean that is the mean value of the NN series; 

•  NNmin that is the minimum value of the NN series; 

•  SDNN that is the standard deviation of the considered NN interval; 

•  NN triangular index that is the total number of NN intervals divided by the height 

of the histogram of all NN intervals; 

•  RMSSD that is square root of the mean of the squares of the differences between 

NN intervals. 

On the other hand, the frequency domain analysis includes all the features that could be 

computed from the tachogram spectrum (Fig.1.18 (C)). Specifically, the major features are: 
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•  VLF, very low frequency components that represent spectral components that are 

under the 0.04 Hz. This feature addresses to non-linear phenomena; 

•  LF, low frequency components that represent spectral components that range from 

0.04 Hz to 0.15 Hz. This feature addresses to sympathetic system activity; 

•  HF, high frequency components that represent spectral components that range from 

0.15 Hz to 0.40 Hz. This feature addresses to parasympathetic system activity; 

•  LF/HF ratio represents a measure of the synergic action of the two ANS system. 

The threshold for the frequency band computations changes according to the problem 

that has to be studied, specifically these are the thresholds defined for the study of adults 

HRV.  

1.3 Interference Affecting Cardiac Signals 

The cardiac signals are biological signals; thus, they can be corrupted by additional 

signals, usually defined as noises. The noise is an additional signal that corrupt the signal of 

interest and that can interfere with its correct interpretation. 

The noises that can interfere with the cardiac signals are classified in two classes, the 

biosignals interferences and the instrumentation interferences. The biosignals interferences 

are all the biosignals that are recorded with the same probes of cardiac signals, but that are 

not of interest. These noises are also classified in high frequency noises and low frequency 

noises. On the other hand, the instrumentation interferences are all the noises generated 

from the instrumentation used to record cardiac signals. 

1.3.1 Electrocardiogram and Vectorcardiogram Interference 

ECG and VCG could be disturbed by the same type of interference, due to the same 

acquisition method and the same nature of the signal. The main interferences are the 

biological interferences and the instrumentation noises.  

The biological interferences can be classified in low-frequency noises and high-frequency 

noises. 

Low-frequency noises are all the biological interferences that present a frequency band 

lower than the ECG/VCG frequency band. The most common low-frequency band is the 

baseline wander (Fig.1.19 (A)), an interference composed by different components, which 

the major one is the breathing23,24. The respiration, or breathing, is the activity of the lungs: 
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they periodically  are filled of 

air in order to guarantee 

blood oxygenation. This 

activity changes thorax 

proprieties. Firstly, the air 

inside the thorax changes 

tissues propriety (decreasing 

the resistance), then the 

thorax cage movement 

changes the electrodes-heart 

distances. This interference 

completely alters ECG/VCG 

that appear modulated in 

amplitude and with an 

oscillating isoelectric. The 

major causes of baseline 

wander are changes in 

electrode-to-skin polarization 

voltages by electrode 

movement, or by respiration 

movement, or by body 

movement.  

High-frequency noises are all the biological interferences that present a frequency band 

higher than the ECG/VCG frequency band. The most common high-frequency noise is the 

muscular activity. As the heart, muscles also are characterized by an electrical activity. In 

particular, an electrical impulse arrives till the motor units of the muscles that depolarize, 

generating the muscular contraction. This electrical signal is the electromyogram (Fig.1.19 

(B)), that has the propriety to belong to a specific range of frequency that ranges from 10-

20 Hz to 450 Hz25. When ECG electrode is placed near a muscle and this muscle activates, 

the electromyogram of the muscle is also recorded with the ECG, generating an 

electromyographic interference23. The intensity of the noise depends to the muscular 

contraction intensity, linked with subject movement. 

 

 

Figure 1.19. ECG/VCG interferences. The main interferences 

are the baseline wander (A-low frequency biological 

interference), the electromyographic interference (B-high 

frequency biological interference) and the power line noise 

(C- high frequency instrumentation noise). 
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Electromyographic interference is usually an interference for the recording of the ECG, 

and indirectly for VCG and tachogram. The ECG has a frequency band lower than 100 Hz, 

that means that the electromyographic signal can be considered as a high frequency 

interference. Electromyogram is typically modeled by a Gaussian distribution function, with 

a zero mean and a variance that depends on the environmental variables23,26. 

Electromyogram is common in subjects with uncontrollable tremor, in disabled persons, in 

kids and in that procedures that required the ECG recording during exercise.  

The common instrumentation noises are the power line noise and the electrode noise. 

Power line noise(Fig.1.19 (C)) is a signal that is generated by electrical equipment, 

carrying the electromagnetic interference of frequency (50 Hz or 60 Hz). It is a dominant 

source of noise during biosignals measurements: electromagnetic interference disturbs the 

signal amplitude and coves the small features that could be essential for patients monitoring 

and diagnosis. The power line interference is due to differences in the electrode impedance 

and stray currents through the patient. Specifically, the current flowing through the cables 

produces a magnetic flux that induces a current in adjacent circuits. The structure of 

conductors and the separation between them decide the value of the mutual inductance, and 

thus the degree of the inductive coupling. Typically, high frequency noise is contributed by 

capacitive coupling and inductive coupling23. In order to reduce the power line interference, 

the electrodes have to be properly applied and all components have adequate shielding. The 

simplest model of the power line noise considers it as a finite bandwidth noise around its 

nominal central frequency (50 Hz or 60 Hz), suggesting that the total noise is composed of 

many sinusoids of similar frequency. 

The electrode noise is the interference due to the movement of the electrode in relation to 

the heart position. This noise provokes changes in the ECG amplitude, but also in baseline 

(as in the respiration interference). It is caused by poor conductivity between electrodes and 

skin that reduces the contact and can provokes electrode displacements. Larger ECG 

electrode-skin impedances generated small relative impedance changes, which is required 

to cause a major shift in ECG baseline23. Sudden changes in the skin-electrode impedance 

induce sharp baseline transients which decay exponentially to the baseline value23, thus 

easily recognizable. 
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1.3.2 Phonocardiogram Interference 

PCG signal could be disturbed by many factors, called murmurs. The murmurs are each 

time of sound that are recorded by the stethoscope, but that is not of interest. Generally, PCG 

murmurs are divided in two groups: external noises and internal noises.  

The external disturbances are all the murmurs that are generated by external sources. 

Generally, they are divided in biological murmurs or environmental murmurs. Biological 

murmurs are the noise generated by the body. Examples are  such as speech, muscle 

movement or swallowing. Environmental murmurs are generated by environmental noises, 

such as sensors or ambient. Examples can be knocking at the door, ambient music, phone 

ringing, footsteps. 

The internal disturbances are all murmurs that are generated by internal sources. The 

mainly noises are caused by digestive and respiratory processes27. 

PCG murmurs have the same nature of the PCG; that are acoustic. Due to this propriety, 

the frequency band of the murmurs is the same of the PCG; thus, the PCG and its noises are 

overlapped (Fig.1.20). 

 

Figure 1.20. PCG corrupted by interference. PCG (black) and its noise are overlapped in 

frequency, thus, if present, the noise covers all the PCG morphology (grey). 



Chapter 1. Origin and Processing of Cardiac Signals 

35 

1.3.3 Tachogram Interference 

Tachogram can presents abnormal heartbeats. The abnormal heartbeat is an occasional 

NN interval that has a different value respect to the entire tachogram. The abnormal 

heartbeats can be produced by arrythmias or instrumental interferences. 

Arrythmias are pathological cardiac events that provokes a rapid reduction of the NN 

interval, usually followed by one or multiple long NN intervals. The most common 

arrythmias are the premature ventricular contraction (PVC) and the supraventricular 

contraction (SVC). When these pathologies occur, the tachogram present a very short NN 

heartbeat followed by long NN intervals, usually called ectopic heartbeats. These occasional 

heartbeats interfere with the tachogram processing, and in particular with the spectral 

analysis of the HRV.  

The instrumental interference corrupts the recording of the tachogram. If the tachogram 

is indirect measured (e.g. from ECG or PCG), the instrumental interference is represented 

by an incorrect R peak/S1 detection. Moreover, some devices directly convert R-peak 

sequences or S1 sequences in a tachogram and, then, resampled it with a specific sampling 

frequency. In this automatic process, the sequences can be lost by the device, that replaced 

the missing signal with a zero-line. These artifacts are called data-loss and are typical of the 

fetal tachogram. 

1.4 Processing of Cardiac Signals 

Cardiac signals, as all other biosignals, are essential for the diagnosis, for patient 

monitoring and biomedical research. In order to extract the information of interest, the 

cardiac signal has to be processed: the cardiac signal represent data that have to be processed 

in order to extract useful information. 

The course to transform the cardiac signals in information is constituted of four steps28 

(Fig.1.21): 

1. Cardiac signal acquisition: this first step allows to measure and record the data of 

interest. In relation to the cardiac signals, it could be performed according with the 

standard procedure of each signal previously defined. In this stage, transducers 

(electrical or mechanical) are used to convert the signal that are picked up by 

electrode into electrical form that could be displayed or collected. Moreover, in this 

stage there are the essential parts of sampling and quantization, that allow to obtain 
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a digitalized signal. Examples are ECG, VCG and PCG recording: ECG acquisition 

can be performed by standard 12-lead protocol, VCG can be recorded by the Frank-

lead protocol and PCG can be recorded according to the placement of the stethoscope 

in the PCG areas. 

2. Cardiac signal preprocessing: the second step allows to transform data in order to 

enhance them. The preprocessing includes all procedures to remove cardiac signal 

noises, typically called filtering. Examples of filtering are the electromyographic 

interference removal or the elimination of power line noise. Moreover, also all 

enhancement techniques that aim to reduce the redundant information in the signal 

are comprised in the preprocessing. 

3. Cardiac feature extraction: the third step allows to compute signal parameters, 

usually called features, that are of interest. The feature extraction comprised all 

algorithms, techniques and procedures that could be applied to compute or collect 

features from a cardiac signal. Examples are the QT interval computation from the 

ECG (e.g. by Laguna algorithm29) or the computation LF/HF ratio from the 

tachogram. 

4. Cardiac signal classification: the forth step allows to classify and interpret the 

cardiac signals in order to investigate their physiological/pathological nature. The 

classification comprised all techniques that can be used to interpret or discriminate 

signals. Examples are the linear discriminant analysis or, the simplest, the 

thresholding.  

Figure 1.21. Block diagram of cardiac signals processing.  
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Chapter 2  

Statistical Signal Modelling and Sample 

Cardiac Applications 

Biomedical signal modeling aims to propose mathematical models to represent 

biomedical signals and their characteristics. Mathematical modeling of biosignals allows to 

explore the potential use of the model parameters in signal analysis and/or diagnostic 

decision making30. With these aims, to find the correct instruments that allow to formalize 

and to organize data is essential. The correct instrument is Biostatistics. This science applies 

statistical techniques to biomedical data analysis, in order to correctly investigate their 

properties. Specifically, biostatistical cardiac signal modeling aims to formalize models about 

cardiac signals. Due to the different physiological aspects that generate these cardiac signals, 

a very specific biostatistical model for each cardiac signal has to be found30. 

 

2.1 Statistical Modelling of Biological Signals 

Biosignals are signals derived from biological processes. Usually, they are highly complex 

and dynamic. Usually (but not always), biosignals are in function of time: they represent a 

variable that changes in time. Biosignals can be deterministic or stochastic (Fig.2.1). They 

are deterministic waveforms if their pattern is fully determined by their parameters. 

Sometimes, noise corrupts the deterministic waveform, or the nature of the signal is not 

deterministic. These biosignals cannot be accurately predicted, thus they are called stochastic 

biosignals28. 

2.1.1 Deterministic Biological Signals 

The deterministic waveforms are the signals that present a repetitive pattern. 

Deterministic waveforms can be periodic, pseudo periodic, aperiodic or simply transient 

(Fig.2.1). In biomedical fields, perfect periodical pattern is not visible, due to interference or 

physiological variability. The terms pseudo periodic or periodic is more used28. 
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The point process is a group of deterministic signals composed of a time-series of binary. 

A point process can take on only one of two possible values, indicating whether or not an 

event occurs at that time. Mathematically, the point process is definable as a Dirac function 

in the specific instant of time in which the event occurs. The point process is binary, thus, 

conventional signal-processing techniques are not applicable, because designed for 

continuous processes. Moreover, point process is very useful to model such essential 

physiological signal, such as the periodical ones. 

2.1.2 Stochastic Biological Signals 

A stochastic process ��� is defined as a family of random variables, describing an 

empirical process governed by probabilistic laws31. Given an experiment and the space of 

events S; if each event is associated with a real function ���, this function is called sample 

realization or function. The set of functions ��,  ��  to be associated with each event  !   
takes the name of the stochastic process. Realizations that constitute a stochastic process are 

deterministic functions; randomness is inherent in the function to be associated with each 

event, i.e. for each  ! there is a different function of the variable t. Considering a specific 

instant t = t0 (Fig.2.2), the function "�#� is a real number. By repeating the same procedure 

for all the realizations of the process,  the real number of each instant can be considered a 

random variable. Therefore, the process can be analyzed as a random variable, setting an 

instant of time. Thus, the complete knowledge of a stochastic process implies the knowledge 

 

Figure 2.1. Signals classification. Signals can be classified in deterministic or stochastic. 

Deterministic signals can be periodic, quasi-periodic or transient. Stochastic signals can be 

stationary or nonstationary. 
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of the distribution laws of all the random variables that can be extracted from the process. 

Therefore, the process can consist of32: 

- a set of sample functions of the variable t (for each  � and for each �); 

- a single sample function (for   fixed and � variable); 

- a random variable (for variable    and fixed �); 

- a number (for   and � both fixed). 

A stochastic process can be classified in term of occurrence in time. Specifically, a 

stochastic process is considered time-discrete if its values present a finite occurrence in time; 

otherwise a stochastic process is considered time-continuous if its values present an infinite 

occurrence. Moreover, a stochastic process can be classified also in terms of probability 

values. Specifically, a stochastic process is considered discrete-value if its probability can 

present only finite values; otherwise a stochastic process is considered continuous-value if 

its probability can present infinite values. 

 

Figure 2.2. Stochastic Process. Give a space of events, if each event can be described as a 

function, all the functions compose a stochastic process. Fixing an instant t0, all the values of 

the functions can be modeled a random variable. 
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Considering the definition of stochastic process, all families of signals that represent the 

same phenomenon can be modeled as a stochastic signal. An example can be the standard 

12-lead ECG (Fig.2.3). 

A stochastic process can be characterized by probability features. Specifically, the features 

are the expected value, the conditional expected value, the variance, the covariance, and  the 

correlation coefficient. 

The mathematical expectation, or expected value, is defined as 

 

 $�� =
%&'
&( ) *�+�

,
�-�  ." �/  +01� 22 .2 �.3 
 4.2�0 � 

5 *"*�4*67
�7  ." �/  +01� 22 .2 �.3 
 �18�.8192 (2.1) 

Thus, the expected value, or first order moment, is the weighted mean of the values that 

the random variable assumes weighted by the corresponding probabilities31. In time-

continuous process, the expected value exists only if the integral converges. Usually, the 

expected value is called also mean value. 

 

Figure 2.3. Example of ECG as stochastic process. The standard 12-lead ECG represents 12 

observations of the same phenomenon; thus they can be considered as a stochastic process. 
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The conditional expected value of Y given x is the expectation of Y with respect to the 

conditional distribution of Y given x. Mathematically, it is defined as: 
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(2.2) 

Conditional expected values of functions of different processes is defined considering the 

properties of the single processes that compose the function. In particular, several 

probability rules can be applied, that are: 

 $�|*� = @ $[$�|��] = $��$��� = $[�$�|��]$�� … �� = $��$�� … $�� ." �/ = �0  .84.+ 84 8� (2.3) 

The variance, or second moment, is the measure of the spread of the distribution. 

Mathematically, it is defined as: 

 DE� = $[� 
 $[�]]� (2.4) 

Usually, its root square value is used, that is the standard deviation. High value of variance 

means that values of the process are very widespread around the expected value; low value 

of variance, on the contrary, means that the values of the process are close to the expected 

value.  

The covariance represents a measure of how two stochastic processes vary together. From 

a mathematical point of view, it is defined as: 

  DE,F� = ${$[� 
 $��]$[� 
 $��]} (2.5) 

Notice that the covariance of a process with itself is the variance. Moreover, if the two 

processes are independent, the covariance is null. High value of covariance means that the 

two processes vary together (i.e. when one process increases, also the other process 

increases); on the contrary, low value of covariance means that the process varies 

independently (i.e. when one process increases, the other process not). 
The correlation coefficient is the measure of the relationship between processes. In 

particular, it gives information about their linear relation. Mathematically, it is defined as  

 IE,F = DE,FDEDF (2.6) 



Chapter 2. Statistical Signal Modelling and Sample Cardiac Applications 

42 

The values of the correlation coefficient can vary from -1 to �1. When it is �1, the processes 

are perfectly correlated; when it is 0, the processes are uncorrelated; when it is -1, the 

processes are inversely correlated. 

The stochastic Gaussian process is a process composed of random variables distributed in 

a Gaussian random vector. Assuming a defined expected value, the entire Gaussian process 

is defined specified by the second moment, the variance. As linear transformations of 

Gaussian random processes yield another Gaussian process, linear operations such as 

differentiation, integration, linear filtering, sampling, and summation with other Gaussian 

processes result in a Gaussian process33. 

2.1.3 Stationarity and Ergodicity of Biological Signals 

Stationarity and ergodicity are two fundamental assumptions of stochastic processes and 

they are desirable in order to apply the conventional signal processing techniques. 

A stochastic process is strictly stationary if its distribution is time-invariant, that is: 

 �� � L� = �L� (2.7) 

when a process is strictly stationary, its probability does not vary over time. 

Unfortunately, strict stationarity is often hard to verify and requires all moments to be 

constant over time. To overcome this limitation, a process could be wide sense stationarity. 

Under this condition, only the first two moments of the process have to be constant, the 

expected value and the variance. 

Thus, if all the moments of a process does not vary over time, the process is defined as strictly 

stationary; if only the first two moments of a process do not vary over time, the process is 

wide sense stationary. 

If a stochastic process is wide sense stationary, the process is also wide sense ergodic if its 

expected value and variance converge to their statistical quantities. It means that the process 

can be studied with statistical techniques, having a single and sufficiently long sample path. 

The ergodicity is essential in the estimation of the statistical quantities, where it ensures that 

time series estimates serve as unbiased estimators of the considered statistical parameters31. 

Stationary and ergodicity are essential, but not applicable in cardiac signal processing. In 

fact, the nature of the cardiac signals is not stationary: the ANS applies continually its control 

on the heart and, consequently, these signals are not constant in time. Moreover, intrinsic 

variability and interferences can influence the cardiac signal, varying all their moments.  
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2.2 Statistical Modelling of Cardiac Signals 

2.2.1 Tachogram Model 

Cardiac signals are pseudo-periodic processes, and cyclo-stationary in the normal case. 

Each cardiac heartbeat is guided by the electrical impulse of the SA node. Periodicity analysis 

of the cardiac impulse, rhythm analysis, studies the timing between heartbeats. This analysis 

can be performed studying the tachogram, and it can investigate diseases that can affect the 

SA node and lead to abnormal variability in the NN intervals.  

The cardiac rhythm, i.e. tachogram, may be modeled as a point process representing the 

firing pattern of the SA node30. Tachogram distribution can reveal arrhythmias and HRV 

features, because it can be also expressed in terms of instantaneous HR values (inverse of 

the NN interval of each heartbeat).The series of NN intervals (or HR values) can be 

represented as a train of delta functions at the SA node firing instants30. Thus, tachogram is 

a discrete signal, that has binary values: it is equal to 1 in the instant of heartbeat occurrence 

and 0 otherwise. Due to variability, tachogram is not sampled at equidistant time instants. 

Thus, it could be defined as a train of Dirac delta functions(Fig.2.4): 

 ���1M0�3 =  ) N� 
 ���,
�-�  (2.8) 

where � is the number of heartbeats and �� is the time instant in which each heartbeat 

occurs. The series of impulses represents a point process, easily interpretable. 

The main issue of the tachogram is the sampling. Each sample has a specific occurrence 

in time, that is the time instants at which the cardiac heartbeat occurs. Due to HRV, the time 

 

Figure 2.4. Tachogram model. Tachogram can be modeled as a train of Dirac delta functions. 

In this example, the tachogram is derived from the ECG, but it can be derived from other pseudo 

periodic signals in the same manner. 
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interval between two consecutive samples is not constant; it means that the tachogram 

presented a not-constant sampling in time. This issue represents a limitation in time domain 

analysis, but it is a big issue in the frequency analysis. In order to solve it, generally a 

correction is applied. 

2.2.2 Electrocardiogram Model 

ECG signal is the electrical activity of the heart. ECG waveform is quite constant for each 

heartbeat of each leads and depends to the characteristics of the heart. ECG can be modeled 

as the convolution of a point process (model of the heartbeat occurrence) with a 

deterministic waveform, ECG standard pattern. The time interval between two consecutive 

heartbeats is not constant and varies according with the ANS control. Thus, ECG is not 

strictly stationary. In order to study it with the traditional techniques of signal processing, it 

can be approximate as quasi-stationary process, limiting the observation in a small-time 

window in which the same phenomenon is being produced. From a mathematical point of 

view, ECG is modeled using a convolutional relationship: 

 $OP =  5 N� 
 L� ∗  L� 4L (2.9) 

where N is the point process representing the occurrence of the heartbeats (tachogram) and   is the deterministic waveform of the ECG pattern. This is a simple model of the ECG: a 

complex model should consider different patterns for each lead, for different age, for 

different pathology, etc. 

Being a deterministic signal, ECG is fully defined by its parameters. For example, ECG 

amplitude can be defined as the maximum (usually R peak) minus the minimum of its 

pattern. On the contrary, ECG interference can be model as stochastic process, specifically 

gaussian. Thus, the amplitude of the interference is usually defined as four times standard 

deviation of the noise34–38. these definitions are essential for soma biosignals application, 

such as the signal-to-noise ratio (SNR) computation. 

2.2.3 Phonocardiogram Model 

PCG signal is an acoustic signal. The shape of the sound is varied according to the 

phoneme to be produced; the system is therefore a time-variant system. PCG can be modeled 

as the convolution of a point process (model of the heartbeat occurrence) with the random 
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process that models heart sounds waveform. Clearly, as for the ECG signal, PCG cannot be 

considered a stationary process, but it can be approximate as quasi-stationary if it is 

observed in a short interval of time during which the same phoneme is being produced. 

From a mathematical point of view, PCG is modeled using a convolutional relationship: 

 ROP =  5 N� 
 L� ∗ 2��4L (2.10) 

where N is the point process represented the occurrence of the heartbeats (tachogram) and 2 is the waveform of the heart sound. This is a simple model of the PCG, that presents 

different waveforms (one for each heart sound). 

As for the ECG, also PCG is a deterministic signal. Thus, its amplitude can be computed as 

the maximum minus the minimum of the PCG pattern. Moreover, the PCG interference can 

be modeled as a Gaussian distribution39,40. 
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Chapter 3 

 Signal Preprocessing and Sample Cardiac 

Applications 

The second phase of biosignals processing is the preprocessing. Biomedical signals appear 

usually covered by many other signals that are not of interest. Any signal that is different 

from which of interest is considered as interference, artifact, or simply noise. The sources of 

noise could be physiological, derived from instrumentation used, or the environment of the 

experiment30. 

Cardiac signals, such as other biomedical signals, are corrupted by noises. Considering 

the physiology of these signals and the methods to record them, literature developed many 

methods to filter them or to enhance their properties. Such of these techniques are signal 

processing techniques (as digital filters), but other are statistical methods. 

 

3.1 Standard Preprocessing of Signals  

3.1.1 Linear Filtering 

The most common filtering is the linear filtering. This preprocessing is usually 

recommended when the frequency bands of the signal of interest and interference are 

separated. The linear filters are defined in term of order and cutoff frequencies. The order 

of a filter is the number of samples of delay that needs to obtain the output, while cutoff 

frequencies are the frequency in which there an attenuation of -3dB. Standard linear filters 

are the low-pass filter (to remove noise higher then cutoff frequency), high-pass filter (to 

remove noise lower than cutoff frequency), band-pass filter (to remove noise out of a specific 

frequency band) and stop-band filter (to remove noise in a specific band). 

The perfect example of linear filtering is their application in ECG and VCG preprocessing. 

ECG and VCG are usually corrupted by low-frequency noises (baseline wander), high-

frequency noises (electromyographic interference) and instrumentation noises (power-line). 
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In order to remove the low-frequency noises, linear high-pass filters are usually used. The 

American Heart Association defined two important recommendations in order to define the 

optimal cut-off frequency of these filters. The first is the recommendations written in 1975: 

AHA recommended a low cutoff frequency (3-dB down) of 0.05 Hz41. The definition of this 

cut-off frequency was born from the consideration that this single-pole filter introduces no 

distortion of ST segment and QT interval. The second is the recommendation written in 

1990: American Heart Association recommended a lower-frequency cutoff (3-dB down) at 

0.67 Hz that corresponds to a HR of 40 bpm, a 1 mV·s testing impulse for displacement and 

slope evaluation and required less than 0.5 dB ripple over the range of 1 to 30 Hz. This 

recommendation was born on the consideration that the longest RR interval corresponds to 

the ECG lowest frequency components. Concerning the filters type, an analog high-pass filter 

can introduce distortions of the ST segment if the cutoff frequency increases above 0.05 Hz. 

This issue depends on the nonlinear phase41 of digital filters, such as Butterworth, that is an 

infinite impulse response digital filter. On the other hand, a finite impulse response digital 

filter (designed with a linear phase) introduces no ST-segment distortion, but it has longer 

delay and needs special design considerations.  

The high-frequency interference can be avoided applying linear low-pass filters. 

Regarding the high cut-off frequency, the American Heart Association/American College of 

Cardiology guidelines42 request a cut-off frequency of 150 Hz for adult and pediatric ECGs. 

Moreover, literature suggested that the cutoff should be raised to 250 Hz or children41. 

Finally, the power line noise can be removed during acquisition. Data acquisition analog 

hardware at a very early stage is developed to reduce the line-frequency interference by 

using common mode rejection circuitry design41. Some power line interference remains in 

real ECG; thus, a line-frequency filter is applied constantly during ECG acquisitions. The 

line-frequency filter is a band-rejection filter, which passes most frequencies unaltered, but 

stops the specified band of frequencies from the −3 dB cutoffs fc1 to fc2. The stop bandwidth 

(fc2-fc1) is typically narrow, as it is also called a notch filter41. 

In ECG preprocessing, the standard preprocessing is performed applying a bidirectional 

3rd-order Butterworth filter with cutoff frequencies of 0.5 Hz and 45 Hz. Sometimes, the 

baseline removal is also applied. Baseline is usually computed as a cubic spline interpolation 

of fiducial points, placed 0.08 s before R peaks. In paediatric/fetal application, the fiducial 

points are placed 0.05 s before R peaks 35,36,43–48. 



Chapter 3. Signal Preprocessing and Sample Cardiac Applications 

48 

3.1.2 Adaptive Filtering 

When the signal of interest and the interference are not separated, but belong to same 

frequency band, advanced methods have to be applied. One of it is the adaptive filtering, and 

the perfect example of its application is the PCG preprocessing. 

The PCG adaptive denoising usually are applied to remove external noise murmurs. The 

main technique PCG is the adaptive noise canceller methods. These techniques need two 

different acquisitions: the first record, called primary input, is the noisy PCG; while the 

second record, the reference input, is the environmental noise correlated in some unknown 

way with the primary noise. The reference input is filtered and subtracted from the primary 

input to obtain the signal estimation49. Since both PCG and environmental noise vary in time, 

the filter coefficients were adaptively adjusted in order to have a better approximation of the 

PCG. The most used algorithms for these adjustments are least the mean square algorithm, 

the normalized least mean square algorithm, the sub-band least mean square algorithm, the 

sub-band normalized least mean square algorithm and the recursive least square 

algorithm50.  

3.1.3 Transformation Filtering 

When adaptive filtering is not applicable (e.g. if there is no possibility to add a lead 

recording for noise), signal transformation methods can be applied. The perfect example is 

fetal PCG preprocessing: the signal of interest is the fetal PCG and it is surrounded by 

internal mother murmurs. Thus, it is impossible to record only mother murmurs, without 

fetal PCG.  

Signal transform is the transformation of the signal from time domain to another, in order 

to extract the information not observable in the original domain. The most popular 

transformation technique is the Fourier transform, that transforms the time-domain signal 

in the frequency-domain. The limit of Fourier transform applicability is the non-stationary 

of the PCG: this transformation does not consider the variation in time. In order to overcome 

this limitation, the short-time Fourier transform can be used51. The short-time Fourier 

transform analyzes a small section of the signal at a time, which is known as windowing49. 

The signal is decomposed in a time-frequency domain and the variations of the frequency 

content of that signal within the time window function are revealed. The limitation of short-

time Fourier transform is the low resolution: a wide time window reflects a big resolution 
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in time and a small resolution in frequency, while a narrow time window reflects a small 

resolution in time and a big resolution in frequency. In order to enhance this technique, the 

wavelet transform is used52. A wavelet transform is a convolution between a small wave, the 

wavelet, with PCG in order to enhance its property. The procedure to apply the wavelet 

transform is to decompose the PCG in multi-level wavelet coefficients, to apply a threshold 

in order to remove the coefficients associated with noise and to reconstruct the PCG applying 

the inverse wavelet transform49. An example of wavelet transform filtering is the extraction 

of fetal heart sounds during pregnancy39,40. 

3.1.4 Deletion and Interpolation Methods 

Considering data loss noise, it could be removed/corrected only with deletion and 

interpolation methods. The most used are the deletion procedure and the interpolation 

methods (interpolation of degree zero, the linear interpolation, and cubic spline 

interpolation)53. The perfect example for this technique is the correction of the tachogram, 

that presents abnormal heartbeats that have to be corrected, especially to apply HRV 

analysis. In literature, there are several algorithms for correcting the NN intervals.  

Deletion procedure removes all the abnormal NN interval, connected the preceding NN 

interval with the next one. This technique decreases the tachogram length, and 

consequently, it decreases its spectral resolution in the frequency domain. However, if the 

percentage of deleted heartbeats is extremely high, it can produce a unacceptable and 

systematic loss of information54.  

Interpolation methods replace abnormal NN intervals with new NN intervals, opportunely 

interpolated. Differently from the deletion procedure, the interpolation methods preserve 

the signal length, because they replaced abnormal NN intervals. Literature presents different 

interpolation algorithms, that differ for the interpolation methods. The main used are 

interpolation of degree zero, the linear interpolation, the spline interpolation, and non-linear 

predictive interpolation. The interpolation methods can be considered as low-pass filters 

that have different filtering capacities. 

The interpolation of degree zero substitutes the abnormal NN intervals with the NN 

intervals mean value that surrounds abnormal NN intervals. The linear interpolation 

replaces the abnormal NN intervals with a straight line that fit a NN interval with the 

previous one. The spline interpolation is similar to the linear interpolation, but the curve is 
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a third-degree polynomial, instead of a line. This technique is widely recommended when 

NN interval contains ectopic heartbeats and artifacts53. 

Finally, the non-linear predictive interpolation for NN interval artifact correction is based 

on the fact that heartbeat-to-beat variations appear in a deterministic way. These advanced 

methods use the chaos theory for locating ectopy-free portions of tachogram and 

approximated a trajectory that most accurately can replace the tachogram segment referred 

to the ectopic heartbeats55. 

 

3.2 Statistical Preprocessing of Signals 

Statistical methods for preprocessing fit well cardiac signals. In fact, the heart periodically 

pumps blood into arteries provoking a pseudo periodic depolarization and repolarization 

(ECG) and a pseudo periodic contraction and relaxation (PCG). These signals can be 

decomposed in their heartbeats. Knowing landmarks (R peaks or S1), the heartbeats can be 

separated and considered as single signals represented the same phenomenon. It means that 

the statistical techniques can be used to extract the fundamental pattern, the clean heartbeat. 

 

3.2.1 Averaging Methods 

The averaging techniques are statistical methods that aims to extract the average patters 

of a group of signals. Suppose to study a process composed by N signals. Each of this signal 

is composed by P stochastic variables, and can be placed in a matrix X: 

 � = S*�,� ⋯ *�,U⋮ ⋱ ⋮*,,� ⋯ *,,UX (3.1) 

If the N signals represents the same phenomenon, they are correlated and there is a 

fundamental pattern common for all signals. It means that each column of the matrix X 

represents the same variables: thus, each column of matrix can be considered as a random 

distribution. This consideration allows to consider each variable as a distribution and, 

consequently, allows to extract the expected value and the variance of each columns. The 

expected values, or simply the averages, of all the variable distributions can be considered 

as the average pattern of the process. The main content of the signal is the average pattern, 
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while noises is outside the expected value. Thus, the averaging techniques allow to filter the 

signals of interest, removing all the interference components.  

Pseudo periodic signals represent the perfect example for averaging filtering. Suppose to 

segment the PCG signal in N heartbeat: all heartbeats compose a PCG process. PCG 

heartbeats are defined as PCG segments between two S1. The N PCG heartbeats represent 

the same phenomenon; thus, there is a common pattern. The expected values, or simply the 

averages, of all heartbeats can be considered as the average pattern of the process. Through 

this procedure, interference is removed. An example is represented in Fig.3.1. 

Averaged PCG pattern can be used as a clean PCG heartbeat. Thus, it can substitute noisy 

heartbeats to obtain a clean PCG tracing. Moreover, it can be also processed alone. For 

example, a PCG feature can be computed on the average PCG, in spite of all PCG heartbeats. 

This processing technique allows to have a mean measure of all the tracing. An example is 

the S2 onset computation, that is a measure of the T-wave offset56. The average S2 onset 

computation is more reliable than directly measured, because the direct measure can be 

distorted by noise. 

 

Figure 3.1. Averaging filtering on PCG. All the PCG beats are superimposed (grey), and the 

averaged beat are computed (black). Due to averaging, the average beat has no noise. 
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3.2.2 Principal Components Analysis 

The principal components analysis (PCA) is a way to identify patterns in different signals 

and to express it in order to emphasize their similarities and differences. Usually, the dataset 

is composed of many signals with different features: the PCA is able to reconstruct the 

property of the signal without losing information. PCA is based on the idea to reduce the 

dimensionality of a data set consisting of a large number of interrelated variables, while 

retaining as much as possible of the variation present in the data set57. PCA transforms the 

set of signals composed by correlated variables to a new set of variables, the principal 

components (PCs), that are uncorrelated. Moreover, PCs are ordered according with their 

intrinsic variation. 

Suppose to have a process composed by N signals. Each of these signals is composed by P 

stochastic variables. If these signals are the representation of the same phenomenon, they 

are correlated. It means that there is a common pattern in all the signals, and that the 

differences between them is due to interference. All these signals can be placed in a matrix: 

 � = S*�,� ⋯ *�,U⋮ ⋱ ⋮*,,� ⋯ *,,UX (3.2) 

where the number of rows N represents the number of signals, while the number of columns 

P represents the number of variables.  

In order to study variances between signals and their common pattern, the covariance 

matrix can be computed. Specifically, the covariance matrix between the rows emphasizes 

the inter-signal pattern, while the covariance matrix between the columns emphasizes the 

intervariable pattern. In this context, only the dissertation about the covariance matrix 

between rows is presented, since the dissertation about the covariance matrix between 

columns is perfectly specular. 

The covariance matrix between the rows is: 

 OY	�,� = Z DE[� ⋯ DE\E[ �⋮ ⋱ ⋮DE[E\ � ⋯ DE\� ] (3.3) 

The covariance matrix could be decomposed in N principal components, PCs. Considering 

the Rouché-Capelli theorem, this matrix is a homogeneous linear system that admits 

solutions if: 

 4 �[OY	�,� 
 ^�] = 0. (3.4) 
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The solutions are the eigenvalues (^_) and the eigenvectors (Lab ) of the covariance matrix.  

The eigenvectors represent a basis: it is possible to obtain the original set of signals 

projecting the data respect to all eigenvectors. Moreover, eigenvalues provide the order of 

eigenvectors: the first eigenvector is associated with the highest eigenvalue and it is the 

representation of the dataset considering the maxima percentage of variance. According 

with that, the projection of the dataset considering only the first eigenvector provides the 

first pattern that is in common among all signals. This first pattern is called first PC. 

According to this, all components of signals can be computed using all eigenvectors.  

The dimensionality reduction can be performed reducing the number of eigenvectors used 

for the reconstruction of the dataset. Moreover, the dimensionality reduction is a good 

method to remove the components of the signals that are not primary, that is the 

interference or the noises. Considering that, the PCA is a good method for signal denoising. 

PCA can be used as a denoising method for ECG signal. The starting point for the ECG 

denoising by PCA is the segmentation of a noisy ECG in its heartbeats. Knowing the R peaks 

position, a noisy heartbeat can be computed considering an ECG window around the R peak. 

Accurate time alignment of the different noisy heartbeats is a key point in PCA, and special 

care must be taken when performing this step58. 

All the noisy heartbeat can be considered as observation and their samples as the measure 

in time of the phenomenon. Thus, they can compose a matrix O, having N observations 

(number of noisy heartbeats) and P variables (samples of noisy heartbeats): 

 Y = S$OP�. . .$OP,X. (3.5) 

The noisy heartbeats can be considered as N observations of a random process; thus, they 

can be analyzed with statistical techniques.  

Considering that all the heartbeats of the same patient have similar morphology, their 

common pattern can be considered as a clean heartbeat. The covariance matrix of the matrix 

O can be computed are: 

 

OY	�,�
= Z Dcde[ � ⋯ Dcde\cde[ �⋮ ⋱ ⋮Dcde[cde\ � ⋯ Dcde\ � ]. (3.6) 

In order to extract the N principal components, the application of the Rouchè-Capelli 

theorem allows to extract the eigenvalues (^_) and the eigenvectors (Lab ) of the covariance 

matrix. The eigenvectors compose a transformation matrix, able to transform the N noisy 
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heartbeats in N uncorrelated PCs (Fig.3.2). The use of only the first PCs allow to extract a 

clean heartbeat.  

In literature, the choice of the number of PCs for the representation of the clean heartbeats 

is discussed. Moreover, the most recommended option suggests using PCs that are associated 

to 99% of the total variance. Usually, the 99% of variance belongs to the first five PCs. 

Another issue about PCA is the choice of the number of heartbeats. In fact, a big number 

allows to obtain a perfectly clean heartbeat, but it necessitates a high amount of data. On the 

other hand, a small number necessitates small amount of data, losing a high quality of the 

denoising. It is recommended to find a tradeoff between the availability of data and the 

quality of the signal. 

In Fig.3.3, an example of different PCA filtering methods are shown, varying the number 

of considered heartbeats. High number of heartbeats (Fig.3.3 (C)) allows to have a high level 

of definition of the PC, while a low number of heartbeats (Fig.3.3 (A)) allows a quasi-real 

application (low heartbeats of delay). Another limitation of PCA is the PC computation in 

Figure 3.2. ECG denoising using PCA. The noisy ECG (A) was separated in its heartbeats that 

compose the observations matrix (B). Through the PCA, the PCs can be extracted (C). 
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presence of ectopic heartbeats. In these cases, PCs are distorted, thus an ectopic beat removal 

algorithm is suggested. 

The final step of the PCA could be the reconstruction of the original signal. In fact, the 

clean heartbeat can be used as a template: the substitution of the original noisy heartbeats 

with the template allows to obtain a clean ECG. Although the standard procedures required 

to have a complete clean ECG tracing, such application of feature extraction require only a 

clean heartbeat. In this application, the clean heartbeat can be used directly. 

 

 

 

Figure 3.3. ECG denoising using PCA using different number of heartbeats. 



Chapter 4. Feature Extraction and Sample Cardiac Applications 

56 

Chapter 4 

 Feature Extraction and Sample Cardiac 

Applications 

The third phase of signal processing is the feature extraction. Physiological and 

pathological events are reflected in biosignals. Usually the evaluation about a single event is 

reflected in the change of a characteristic of the signal, a variable. The variables that are of 

interest for the specific problem are called features. Analysis of biosignals for monitoring or 

diagnosis requires the features identification. Once an event has been identified, the 

corresponding waveform may be segmented and analyzed in terms of its amplitude, 

waveshape (morphology), time duration, intervals between events, energy distribution, 

frequency content, and so on. Event detection is thus an important step in biomedical signal 

analysis30. 

As biomedical signals, the cardiac signals are intrinsic of features. The selection, the 

extraction and the evaluation of cardiac features is one of the essential phases in cardiologic 

diagnosis process. Specifically, the feature selection is the identification of the features that 

are essential for the problem that has to be analyzed. Feature extraction is the practical 

computation of them. Finally, the interpretation is based on the comparison of the value with 

literature or on a statistical analysis.  

This essential phase of the cardiac signal processing is full of biostatistics. The distribution 

analysis, the relationships analysis and the statistical tests are maybe the most common 

biostatistics techniques, and they represent the key for the evaluation of cardiac signals 

features evaluation. 

 

4.1 Feature Extraction 

4.1.1 From Data to Distributions 

In a clinical study, the population is the group of all data that represent the phenomenon 

that has to be investigated. Generally, the collection of data of a population is difficult; thus, 
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a smaller group of data belonging to the 

population is considered for the study, called 

sample group (Fig.4.1). The most critical 

aspect of a population study is the samples 

group definition. In fact, the samples 

selection can influence the result, and 

consequently, the interpretation of it. This 

phenomenon, called sampling variation59, is 

the core of statistics, especially of 

biostatistics.  

Anyway, the term population that was 

born as referred to all data that represent a 

phenomenon. Due to the impossibility to collect the entire set of data, in the common use, 

the term population refers also to a big number of samples, that can be representative of the 

phenomenon. This approximation cannot be always applied: sometimes it is possible to list 

all the sample of the population and the sample selected directly from it; but in other 

situations, the population is not precisely definite, and the sample truly representing the 

population is hardly identifiable. This population is sometimes referred to as the target 

population.  

The sample group is composed of samples, usually called individuals or observations. The 

individual is the single sample in the sample group, and it is a person, an animal or an object. 

When the sample group is composed of event or situation, the single sample is generally 

called observation. 

Each individual/observation is characterized by different variables. The variables are all 

the property of the individual that can be extracted or measured. Each individual is 

represented by many variables, but not all of them are characteristic of the problem that 

have to be investigated in the study. Thus, the variables that are representative of the 

problem are called features. 

Generally, the principal classification of variables is in relation of their types59, that are: 

•  Numerical: a variable is numerical when its value represents a real quantity 

(quantitative type), represented by a number and its unit. A numerical variable can 

be continuous or discrete. A variable is continuous when its value changes with time; 

 

Figure 4.1. Papulation, sample group and 

sample. 
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in contrast, a variable is discrete when it can be represented with only limited 

numbers. 

•  Categorical: a variable is categorical when represents a nonquantifiable propriety 

(qualitative type), represented by a label. Particular type of categorical variables is 

the binary or dichotomic one, composed by the variables that have only two possible 

values. Sometimes, the different categories of categorial variables have different 

importance for the problem that have to be investigate, but they cannot be 

represented as numbers. Thus, these variables are defined as ordered categorical 

variables, whose categories can be considered to have a natural ordering. 

A second variable classification refers to the collection of the variables. They could be 

measured or derived. A variable is measured if it is directly recorded with an instrument or 

with an observation. On the contrary, a variable is derived if it is computed as a combination 

or categorization of measured variables. A variable can be derived in different ways. The 

first is to calculate or to categorize a variable from recorded variables. In this case the new 

variable can be a numerical value computed as the composition of other numerical variables; 

or a categorical variable defined from a thresholding of numerical variable; or a categorical 

variable defined from the combination of criteria on one or several categorical variables. 

Another way is to define a categorical value in relation to a reference curve, based on 

standard population values. Finally, it is possible to define a variable transforming it in order 

to allow the application of relevant statistical methods. This process is applied when the 

numerical values in the sample group cannot be modeled with the classical statistical 

methods; thus, some transformation procedures allow to transform it in a standard way. 

All variables computed for the sample group could be formally grouped using 

distributions. The distribution is the formal representation of a variable that belongs to 

sample group. The computation of the distributions depends of the type of the variable but 

is based on the concept of frequency. In fact, the distribution is the representation of how 

many times a variable of the sample group has a specific numerical value or belong to a 

specific category. Distributions are more useful if the sample group size is large, because 

these representations allow to underline the sample group properties, and indirectly 

population properties. Thus, the first step in biostatistical modeling is to form a variable 

distribution. 

If the variables are categorical, the distribution is computed counting the number of 

individuals that have the variable in each category; the number of individuals in a category 
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is the frequency, sometimes represented as proportions or percentages of the total number 

of individuals. If the variable is numerical and discrete, the frequencies may be computed 

either for each value of the variable or for groups of values (bins), while if the variable is 

numerical and continuous, groups have to be formed.  

In distribution computation, the first step is to count the number of observations and to 

identify the lowest and highest values. Then decide whether the data should be grouped and, 

if so, what grouping interval should be used. Usually, a number of 5-20 groups should be 

used, depending on the sample size. If the interval chosen for grouping the data is too wide, 

too much detail will be lost; while, if it is too narrow the distribution will be unwieldy. The 

starting points of the groups should be round numbers and, whenever possible, all the 

intervals should be of the same width. There should be no gaps between groups. 

Distributions should be labelled, in order to be clear, especially in the boundaries. Once the 

format of distribution  is decided, the number of observations in each group are counted and 

the graphical representation chosen. Example of biostatistical diagrams to describe 

distributions are histograms, bar plots or pie charts. 

Generally, the most common shapes of distributions are three (Fig.4.2). All these shapes 

have high frequencies in the center of the distribution and low frequencies at the two 

extremes, which are called the upper and lower tails of the distribution. The central 

distribution is also symmetrical about the center and 

usually called "bell-shaped". The other two 

distributions are asymmetrical or skewed. If the upper 

tail of the distribution is longer than the lower tail, the 

distribution is called positively skewed or skewed to the 

right. If the lower tail of the distribution is longer than 

the upper tail, the distribution is called negatively 

skewed or skewed to the left.  

The distributions are unimodal if they present only 

one peak; while they are bimodal or multimodal if they 

present two or many peaks, respectively. This is 

occasionally seen and usually indicates that the data are 

a mixture of two separate distributions59. 

Characteristics are the uniform distribution and the 

binomial distributions. 

 

Figure 4.2. Shapes of 

distributions. Distributions can 

be lower tail (A), symmetrical (B) 

or upper tail. 
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4.1.2 Characteristics of a Distribution 

There are some characteristic values that can be extracted from a distribution and can be 

used to describe a phenomenon or to compare two distributions. There are two important 

type of characteristics: the first type globally represents the distribution and the second type 

describes the variation of the distribution. These two types of characteristics are usually 

called first moment and second moment, respectively. 

The main characteristics that globally represent the distributions are the mean, the 

median (MdN) and the mode59 (Fig.4.3). Considering a distribution of a variable of a sample 

group, the mean value *̅ is defined as: 

 *̅ = ∑ *�,�-��  (4.1) 

where � is the number of observations in the sample group and *� are the values of the 

variable for each observation. Thus, the mean value is the sum of all the values of the variable 

distribution, normalized by the number of values. The MdN value is defined as: 

 �48 = h� � 12 i �/ j�k9  1" 104 0 4 (4.2) 

and it is the value that divides the 

distribution in two equal parts. If the 

observations are arranged in increasing 

order, the MdN is the middle value59. The last 

is the mode, that is the value which occurs 

most often in the sample group. 

The characteristics that describe the 

variation of the distribution are the ranges, 

the variance, the standard deviation, the 

degree of freedom and the coefficient of 

variation. The range is defined as the 

difference between the maximum value and 

the minimum value of the distribution. This 

characteristic is not often used because its 

definition is based on only two value of the 

distributions. Moreover, it is strongly linked 

to sample size. Thus, in practical application, 

 

Figure 4.3. Mode, Mean and Median.  
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the interquartile range (IQR) is more used. IQR is defined as the difference between the 75th 

percentiles (upper quartile) minus the 25th percentile (lower quartile) of the distribution. It 

is also called midspread, middle 50%, or H-spread. This range is less dependent to the 

sample group size and it is more stable than the range. The variance is defined in terms of 

the deviations of the observations from the mean59. If the variance is small, the values of the 

distribution are very close to the mean value; otherwise, if the variance is high, the values 

are diffused around the mean value. Mathematically the variance is defined as: 

 D� = ∑ * 
 *̅��,�-�� 
 1�  (4.3) 

the simple mean value of the deviations is not recommendable: the positive deviations 

(above the mean value) balance the negative deviations (below the mean value), providing 

a variance equal to zero. Thus, usually, the signed is ignored and the variance is computed 

as the average of the squares of the deviations. Note that the denominator is � 
 1, that 

corresponds to degrees of freedom of the variance59. It reflects the number of deviations that 

are independent each other: the last one can be calculated indirectly from the others. The 

limit of the variance is its unit: in fact, the unit of the variance is the square of the unit of the 

distribution values. In order to avoid this formal limitation, it is more convenient to express 

the variation in the original units by taking the square root of the variance, that is standard 

deviation (D). Note that the standard deviation is essential also to interpret the distribution 

value. In fact, mathematically, the 70% of the distribution value fall in one standard 

deviation range; while the 90% fall in two standard deviation range59. Thus, the standard 

deviation could be a useful measure of the distribution range. 

From the standard deviation, the coefficient of variation could be computed as: 

 �j =  D*̅ × 100% (4.4) 

This coefficient represents the standard deviation as the percentage of the mean value. It 

could be used when the interest is the size of the variation, independently of sample size59. 

4.1.3 The Normal Distribution 

Distributions can be appeared in different forms, but the most used is the Gaussian 

distribution or Normal distribution.  

The normal frequency distribution (Fig.4.4) is a bell-shaped distribution, symmetrical 

about the mean. It is univocally defined by two characteristics, its mean and its standard 
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deviation. if its standard deviation is small, the bell is narrow; while if the standard deviation 

is high, the bell is large. 

This distribution is essential in biostatistics: it goodly models many variables distribution 

and it has a central role in statistical analysis. In fact, if the sample size is not too small the 

sampling distribution of a mean is normal, even when the individual observations are not 

normally distributed59. This is one of the cornerstones of statistics, the central limit theorem. 

This assumption is crucial: the computations on a single sample group are representative of 

the entire population. It means that the mean of the sample group (*̅) is the population mean 

(n), and its standard deviation is equal to the population standard deviation. This standard 

deviation can be defined as standard error of the sample mean, measures how precisely the 

population mean is estimated by the sample mean59.  

Mathematically, the normal curve is defined as: 

 = =  1√2oD�  �p�q�r�sr  (4.5) 

where n is the mean value and D is the standard deviation. The normal curve is usually 

expressed in terms of proportion and its area under the curve is 1, corresponding to the 

entire population.  

If a variable is normally distributed, then a change of units does not affect this59. Thus, it 

is possible to change the mean simply moving the curve along the horizontal axis. Moreover, 

the amplitude adjustment could be performed in order to compensate the height and the 

 

Figure 4.4. Normal distribution. This specific distribution is characterized by a mean value 

(µ) and a standard deviation (σ). 
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width of the curve. Practically, the normal curve is usually change in order to have a zero 

mean and a standard deviation equal to 1. Thus, characteristic distribution is the standard 

normal distribution. Mathematically, it is: 

 = =  1√2o  �pr�  (4.6) 

In order to compute the standard normal distribution for a normal distribution, the original 

values * have to be subtracted by their mean value n and divided by their standard deviation D. The relation is: 

 t =  * 
 nD  (4.7) 

The value t is called standard normal deviate, or z-score.  

Two important features of the normal distribution are the area under the curve and the 

percentage points.  

The area under the curve can be used to determine the proportion of the population that has 

values in some specified range. Moreover, it could represent  the probability that an 

individual observation from the distribution will lie in the specified range. Being the total 

area under the curve equal to 1, the  probability that an observation lies somewhere could 

be express in term of percentage.  

The percentage points are specific points in the normal distribution that are 

representative of distribution. Specifically, they can be defined from the z-score. As 

explained, the z-score expresses the value of a variable in terms of the number of standard 

deviations it is away from the mean59. Thus, it possible to compute the percentage of data 

within a specific range considering the mean and the standard deviation of the distribution. 

Specifically, these percentage points can be used to compute the confidence intervals, that 

are the intervals in which the 95% of the values fall. Exactly 95% of the distribution lies 

between -1.96 and 1.96 in a standard normal distribution. Moreover, the percentage points 

are used in order to computer the P-values and compare different distributions (described 

below) by the hypothesis tests. The values of the percentage points are usually reported in 

tables and normalize for the standard normal distribution. Due to the symmetric nature of 

the normal distribution, the values are usually provided for only one side59. 
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4.1.4 The confidence intervals  

The confidence intervals are defined as the intervals in which there is the 95% probability 

that the population mean lies within. If the sample size is large enough, the distribution can 

be modelled as normal (central limit theorem). Thus, considering the percentage points, 

95% of samples means would lie within 1.96 standard errors above or below the population 

mean, since 1.96 is the two-sided 5% point of the standard normal distribution.  

If the sample size is small, the central limit theorem is not applicable, and two aspects 

may alter. Firstly, the sample standard deviation is itself subject to sampling variation, thus 

it cannot approximate the standard deviation; than the distribution in the population is not 

normal and the distribution of the sample mean may also be non-normal. Thus, is not 

possible to use the normal distribution in order to compute the confidence intervals. Instead, 

a distribution called the T distribution is used. 

Finally, in case of strong non-normality, it is recommendable to transform the distribution 

in a T distribution or in a normal distribution. If it is not possible, an alternative is to calculate 

a non-parametric confidence interval or to use bootstrap methods59. 

 

4.2 Statistical Feature Comparison 

The concept of statistical distribution is essential for comparison analysis. If there are two 

group of features that have to be evaluated, statistical comparison can be useful to 

understand if they represent the same measure or if they are completely different.  

Suppose to have two sample groups, labelled A and B. Features of each group can be 

represented as distributions and the  two mean values are *̅u and *̅v. These two groups 

could represent a lot of situations, in which could be of interest to discover if they represent 

the same phenomenon or two different phenomena. Thus, specifically, a method to compare 

distributions is needed an it has to answer to two important questions, that are59: 

1. What does the difference between the two group means in our sample (*̅u and *̅v) 

tell us about the difference between the two group means in the population? 

2. Do the data provide evidence that the exposure actually affects the outcome, or  

might the observed difference between the sample means have arisen by chance?  

In order to answer to these questions, the statistical methods to compare the two groups 

and to quantify their difference have to be explained. These methods are the hypothesis tests, 
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or better, the statistical tests. Several tests are defined in literature in order to solve different 

types of clinical situations. The criteria for statistical comparison could be different, 

depending to the statistical test that is used, but the results can be interpreted in the same 

manner.  

Each statistical test computes an index, that is a measure of the similarity between the 

groups and gives the name to the respective test. This index has to be compared with values 

reported in literature (usually in forms of tables) in order to evaluate its statistical 

significance. Thus, the results of a statistical test are the significance, associated with a 

numerical value, the P-value. The significance indicates if the two distributions can be 

considered similar or not (0 or 1 if the null hypothesis is accepted or not, respectively). 

Specifically, if the hypothesis is null (0 or null hypothesis accepted), the groups can be 

considered similar; if the hypothesis is not null (1 or null hypothesis rejected), the two groups 

are considered different. Associated with this dichotomic value, the test provides the P value. 

This numerical value, ranged from 0 to 1, reflects the probability to get difference between 

the two groups. If the probability is high (high P value close to 1), the null hypothesis is 

accepted, and the groups can be considered similar; while, if the probability is low (low P 

value close to 0), the null hypothesis is rejected, and the two groups are considered different. 

The statistical significance level (w) is defined as the threshold to decide if a P value is high 

or low. Usually, in clinical setting, the statistical significance level is set to 0.05%.  

Data can be continuous, discrete, binary, or categorical and distributed according to 

different distribution shapes. Moreover, different kinds of problems can be investigated. 

Each statistical investigation has to be approached using its point of view and the choice of 

the specific test is essential. The choice of the correct statistical test is completely linked to 

the nature of data and to the nature of the problem. In order to perform the correct statistical 

test, it is important to consider the nature of the distribution (normal or not-normal), the 

nature of data (categorical, numerical, etc.), the nature of the comparison (paired or 

unpaired features; comparison considering one or two tails) and others. For these 

evaluations, the choice of the correct statistical test is not easy. 

The standard classification of the statistical test follows the nature of the distribution: a 

statistical test is defined as parametric if the distributions that have to be compared are 

normal; a statistical test is defined as nonparametric if both or one of the distributions are 

not-normal. Several statistical tests, such as the Lilliefors test, can be used to evaluate the 

normality of a distribution. 



Chapter 4. Feature Extraction and Sample Cardiac Applications 

66 

4.2.1 Parametric Tests 

Parametric tests are the statistical tests based on the assumptions that the distributions 

of the groups are normal. These statistical tests are more robust and require less data than 

nonparametric tests60.  

To apply a parametric test, three parameters of the data distribution have to be assumed. 

The first is that the data distributions in the two groups has to be normal. Secondly, the 

groups variances and the standard deviations have to be the same. Finally, data distributions 

have to be continuous. The most common parametric statistical tests are the student T-test 

and the ANOVA test.  

The most used parametric test is the student T-test. This common test is usually used to 

determine if the mean value of a sample group (A) is different or not from a known mean 

value (single sample T-test). Moreover, it is also used to establish if two groups (A and B) 

have the same mean values (two sample T-test). The student T-test uses the mean values, 

the standard deviation, the sample size of the considered groups and the statistical 

significance level. The null hypothesis is accepted if the mean value of the distribution is 

similar to the known mean value (single sample T-test) or if the two groups present similar 

mean values (two sample T-test). On the contrary, the null hypothesis is rejected if the mean 

value of the distribution is different from the known mean value (single sample T-test) or if 

the two groups present different mean values (two sample T-test). The index to define the 

significance and the P-value in the student T-test is the index t, computed as: 

 � =  
%&'
&( *uxxx 
 *̅2  .8 2.8Mk  2�3+k  � 
 � 2�

*uxxx 
 *vxxx2 y �u�v�u � �v  .8 �z1 2�3+k  � 
 � 2� (4.8) 

where *uxxx and *vxxx are the mean values of the sample groups, �u and �v are the sample size 

of groups and 2 is the mean standard deviation of the standard deviation (only the standard 

deviation of the group A in the single sample T-test). If the t index is close to zero, the mean 

values are the same and the distributions are similar (null hypothesis accepted); while if the 

t index is high, the mean values, and consequently the distributions, are different (null 

hypothesis rejected). 

The ANOVA test is the acronym of analysis of variance60. This parametric test is widely 

used to evaluate if two or more groups (��, … , �,) can be considered as similar or different. 

It considers both means and variances to define the statistical significance. The null 
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hypothesis is accepted if variances of groups can be considered similar; while the null 

hypothesis rejected if the variances of groups are different. The index to define the 

significance and the P-value in ANOVA is the index F, computed as: 

 � =  �DEx�DE�xxx  (4.9) 

where � is the sample size in each group, DEx� is the variance of the mean values of the sample 

groups and DE�xxxx is the mean value of variances of the sample groups. If the F index is close to 

1, the variance of the mean values and the mean values of variances are similar, that means 

that the variances in groups are similar (null hypothesis accepted); while if the F index is 

high, the variances, and consequently the distributions, are different (null hypothesis 

rejected). The ANOVA concept was enlarged also for the comparison between more features 

between two groups (MANOVA-Multivariate analysis of variance) or to investigate also the 

covariates between the groups (ANCOVA-Analysis of covariance), increasing the 

mathematical complexity, although the concepts remain the same60. 

4.2.2 Non-Parametric Tests 

The nonparametric tests are applied if one of the parametric criteria are not 

applicable47,56,61,62. Nonparametric tests are always the last choice in statistics, because their 

robustness is not strong as parametric one and requires more data. Thus, is always 

preferable trying to transform the nonparametric distribution in parametric distribution. 

But if this transformation is not applicable, last choice is the nonparametric tests60. The most 

common nonparametric statistical tests are the chi-squared test, the Mann-Whitney U test 

and the Kruskal-Wallis test.  

The chi-squared test is a nonparametric test for categorical data, specifically binary data. 

It compares the percentages of data in each category. The null hypothesis is accepted if the 

percentage of data in each category can be considered similar to the others; while the null 

hypothesis rejected if the percentage of data in each category are different. The index to 

define the significance and the P-value in the chi-squared test is the chi-squared, computed 

as: 

 {� =  Y 
 $��$  (4.10) 

where Y is the observed percentage, while $ is the expected percentage. Considering the 

sample size in the category and their obtained percentages, the expected percentage is 
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computed. If the {� index is close to zero, the obtained percentage is similar to the expected 

percentage, and the two categories are similar (null hypothesis accepted); while if the {� 

index is high, the percentages of the categories are different (null hypothesis rejected)60. 

The Mann-Whitney U-test, sometimes called Wilcoxon ranksum test, is very similar to the 

Student T-test. Due to the not-normal distributions of data, the U-test cannot consider the 

mean value and the standard deviation. Thus, it is a rank-based method and considered the 

MdN value. Equivalently to T-test, U-test could be used to investigate if the MdN value of a 

sample group (A) is different or not from the MdN value of a second sample group (B). For 

the applicability of this test, the ranks of the samples of groups and their sample sizes are 

essential. The null hypothesis is accepted if the two groups present similar MdN values; 

while the null hypothesis is rejected if MdN values of distributions are different. The index 

to define the significance and the P-value in the U-test is the index U, computed for both 

samples group as: 

 

|u = ) ��u
,}
�-� 
 �u�u � 1�2

|v = ) �~v
,�
~-� 
 �v�v � 1�2

 (4.11) 

where  �u and �v are the groups sample size, and �u and �v are the ranks of the samples 

in the groups A and B, respectively. The considered ranks are computed considering all 

samples as a unique distribution. If |u is close to |v, the MdN value of the group A is similar 

to the MdN value of group B and the distributions are similar (null hypothesis accepted); 

while if the intervals between |u and |v is large, the MdN values are different as the 

distributions (null hypothesis rejected). 

Finally, the Kruskal-Wallis test is the corresponding nonparametric test to ANOVA test60. 

As for the U-test, the Kruskal-Wallis test computes the sum of the ranks of the samples for 

each sample group and then compares the indices. As for the ANOVA, also the Kruskal-Wallis 

test could be used to evaluate multivariate problems and covariate proprieties. 

 

4.3 Statistical Feature Association 

Sometimes, the simple consideration about the similarity/difference between two 

distributions is not sufficient. Some studies necessities to evaluate the linkage between two 
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variables. In this cases, new instruments have to be used that consider the relationship 

between two features. 

The most common techniques are the correlation analysis and the linear regression.  

4.3.1 Correlation Analysis 

The correlation analysis is a statistical analysis that allows to evaluate the association 

degree between two features. The correlation gives information about the existence or not 

of a relationship between features, but this technique cannot assume a cause-effect law. 

This technique uses the concept of covariance, that is the property of two features to vary 

together. Specifically, if the covariance of two features (X, Y) is high, when X increases also 

Y increases and vice versa; while, if the covariance of X and Y is low, when X increases, Y 

does not, and vice versa. 

The correlation analysis is based on the correlation coefficient I computation, that is: 

 
I = ∑ �� 
 �x�,�-� �� 
 �x�

�∑ �� 
 �x��,�-� �∑ �� 
 �x��,�-�
=  DE,FDEDF 

(4.12) 

where DE,F is the covariance of X and Y, while DE and DF are the standard deviations of X 

and Y, respectively. The value of I can vary from 
1 to 1, from a perfect inverse correlation 

to a perfect correlation. Fig.4.5 shows examples of distributions (in forms of scatter plots) 

with the corresponding correlation coefficient. 

As explained the correlation coefficient cannot inform about the relationship between 

features, but it simply informs if a sort of relationship is present or not. In fact, the 

correlation coefficient can provide high values of correlation also if there are external factors 

that are responsible to both features variations63. 

 

Figure 4.5. Example of correlation coefficients with the respective feature distribution.  
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Sometimes, the correlation coefficient can be used to evaluate if two variables represents 

the same property. An example is the indirect measure of QT interval using the PCG S1S2 

interval. In normal condition, the ratio between QT and  S1S2 is equal to 1. It means that 

their distributions in the same sample group correlate (ρ=0.60)56. 

4.3.2 Linear Regression Analysis 

Differently for the correlation analysis, the linear regression analysis can inform about 

the cause-effect law between two features. The regression analysis is a statistical technique 

that links two features using a specific curve; if the curve is a line, the regression analysis is 

linear. In literature several type of regression analyses (in Chapter 5 logistic regression will 

be presented) exist, varying the curve used to fit data. The procedure is the same for all the 

methods: the curve that has to fit data is chosen; the two features become the input of the 

model and its parameters that define the curve are estimated, minimizing the distances 

between the features and the curve.  

Suppose to investigate about the relationship of two features, � and �, and, specifically, 

to define if a variation of the feature X linearly provokes a variation in the feature �. The 

linear regression analysis tries to find the linear relationship between these two features. 

Specifically, if this relation exists, there is an optimal line that describes the linkage between � and �. This optimal line will be: 

 �� = � � �� (4.13) 

Once the relationship is set, the problem of the analysis is to estimate the parameters of the 

curve, the values of � and �. Considering the definition of variance: it is the sum of the 

differences between the feature values in the sample group and the mean value. Thus, 

variances can be also considered as a measure of error. In fact, an error is the difference 

between an obtained value (feature values in the sample group) and the expected value 

(value of the curve). Thus, the variances (�) of the feature of samples group are the errors 

between each feature value and the optimal line, as: 

 � =  )��� 
 �����,
�-� = )[�� 
 � � ����]�,

�-�  (4.14) 

Considering that, the line that better fit the data is the line that minimizes the error �. This 

is a differential equation system describer by the formulas: 
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 ����� = 0���� = 0 (4.15) 

This easy method is the least-squares method, and it is widely use in order to find the values 

of � and �. Considering the mathematical process, the solutions are: 

 @ � = �x 
 ��x� = ∑ ���� 
 ���x�,�-�∑ ��� 
 ���x�,�-� = DE,FDE�
 (4.16) 

Thus, the curve that best fit the data is: 

 �� = �x 
 ��x� � DE,FDE� � (4.17) 

Important for the final considerations are the residual, that is the difference between the 

feature values and the regression line. These values are essential because they are a measure 

of the dispersion of the measures around the regression line: the standard deviation of 

residuals is a measure of the standard error of the regression. Moreover, the standard 

deviation of the residuals can be used to define the 95% confidence intervals of the 

regression line: these intervals define the regions in which there is a probability of 95% to 

find the measure. 

Finally, it is possible to demonstrate that there is a link between the correlation coefficient 

and the slope of the regression line. In fact: 

 � I = DEFDE�� =  DEFDEDF
⇒ I = � DEDF (4.18) 

This relation means that the 

statistical significance of the 

correlation coefficient is equivalent 

to the statistical significance of the 

linear regression slope. 

An example could be the linkage 

between QT intervals and S1S2 

intervals56. Therefore, they are 

correlated, they can be linked also 

with linear regression. Specifically, 

their regression line is depicted in 

Fig.4.6. 

 

Figure 4.6. Regression line between QT intervals 

and S1S2 intervals.  
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Chapter 5 

 Classification Analysis and Sample Cardiac 

Applications 

Once features extraction is complete, the last phase of the signal processing is the 

classification. The objectives of classification are: to investigate different methods to classify 

a signal/feature into a specific class; to explore the importance of a signal/feature and of the 

classification method in arriving at a good diagnostic decision about the patient; to discover 

the differences between the signals/features belonging to different classes in order to 

discover new diagnostic criteria or validate the old ones. Thus, a classification method may 

facilitate the labeling of a given signal/feature as being a member of a particular class. This 

can help to arrive at a diagnosis, without consider other further clinical investigations to 

obtain information. Although it is common to work with a pre-specified number of pattern 

classes (classification problems), many problems do exist where the number of classes is not 

a priori known (clustering problems). Statistical methods or algorithm that classify data are 

called classifier. 

 

5.1 Statistics for Classification 

In order to evaluate if a method classifies data correctly or not, some statistical instrument 

can measure its performances.  

Formally, a classifier assigns class labels to each element (signal or feature) that it has to 

classify. The performance of the classifier is evaluated for each class. It means that all 

elements of the population can be labelled as belonged to the specific class (positive) or not 

belonged to a specific class (negative). These labels are call predicted classes and they 

represent the classification provided by the classifier. Usually, the correct classification is 

known, and its labels are called targets. The targets are essential: in fact, the performances 

of the classifier can be computed only if the correct classification is a priori known. In case 

of no availability of targets, the standard methods of classification cannot be applied, and 

clustering methods are used.  
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The standard methods for evaluating a classifier performance are the confusion matrix 

and the receiver operating curve (ROC) analysis. 

5.1.1 Confusion Matrix 

The confusion matrix is a method to evaluate the performances of the classifier. Each 

element of a class presents two labels: the predicted label assigned by the classifier and a 

target label.  

These elements could be further classified according with the similarities between 

predicted labels and targets. Specifically, an element is classified as true positive (TP) if the 

predicted label and the target are both positive; an element is classified as true negative (TN) 

if the predicted label and the target are both negative; an element is classified as false positive 

(FP) if the predicted label is positive and the target is negative; and an element is classified 

as false negative (FN) if the predicted label is negative and the target is positive. Moreover, 

all elements that have positive target label are called effective positives (EP); all the elements 

that have negative target label are called effective negatives (EN); all the elements that have 

positive predicted label are called predicted positives (PP); and all the elements that have 

negative predicted label are called predicted negatives (PN). The number of elements 

belonged to each class can be place in a square matrix, the confusion matrix, as in Table 5.1. 

TABLE 5.1: CONFUSION MATRIX 
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The confusion matrix is based on six strength considerations:  

(1) the number of true positive plus the number of false positives is the number of 

predicted positives: 

 �R � �R =  RR; (5.1) 

(2) the number of the false negatives plus the number of true negatives is the number of 

predicted negatives: 

 �� � �� =  R�; (5.2) 

(3) the number of true positives plus the number of false negatives is the number of 

positives: 

 �R � �� =  $R; (5.3) 

(4) the number of false positives plus the number of true negatives is the number of 

negatives:  

 �R � �� =  $�; (5.4) 

(5-6) the number of predicted positives plus the number of predicted negatives is equal 

to the number of positives plus the number of negatives, that is the sample size: 

 
RR � R� =  $R �  $�=  �. (5.5) 

From the confusion matrix, several indices can be computed. They are: 

•  Prevalence (Pr). The ratio between effective positives and sample size is the 

percentage of the population that has a positive class: 

 R0 =  $R� ; (5.6) 

•  Accuracy (ACC). The sum of true positives and true negatives over sample size is a 

measure of how the classifier correctly identifies or excludes a condition: 

 �OO =  �R �  ��� ; (5.7) 

•  Positive Predictive Value (PPV) or Precision. The ratio between true positives and 

predictive positives is the probability that a predictive positive is correctly positive: 

 RR	 =  �RRR ; (5.8) 
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•  Negative Predicted Value (NPV). The ratio between true negatives and predictive 

negatives is the probability that a predictive negative is correctly negative: 

 �R	 =  ��R� ; (5.9) 

•  False Discovery Rate (FDR). The ratio between false positives and predictive 

positives is the probability that a predictive positive is wrongly positive: 

 ��� =  �RRR ; (5.10) 

•  False Omission Rate (FOR). The ratio between false negatives and predicted 

negatives is the probability that a predictive negative is wrongly negative: 

 �Y� =  ��R� ; (5.11) 

•  True Positive Rate or Sensitivity (SE). The ratio between true positives and effective 

positives is the ability of classifier to correctly recognize a positive: 

 �$ =  �R$R ; (5.12) 

•  True Negative Rate or Specificity (SP). The ratio between true negatives and 

effective negatives is the ability of classifier to correctly recognize a negative: 

 �R =  ��$� ; (5.13) 

•  False Negative Rate(FNR) or Miss rate. The ratio between false negatives and 

effective positives is the limit of classifier to correctly recognize a positive: 

 ��� =  ��$R ; (5.14) 

•  False Positive Rate (FPR) or Fall-out. The ratio between false positives and effective 

negatives is the limit of classifier to correctly recognize a negative: 

 �R� =  �R$� ; (5.15) 

•  Positive Likelihood Ratio (LR+). The ratio between the sensitivity and the false 

positive rate is the probability that a positive result is not negative: 

 ��� =  �$�R� = �R ∙  $��R ∙  $R ; (5.16) 

•  Negative Likelihood Ratio (LR-). The ratio between the false negative ratio and the 

specificity is the probability that a negative result is not positive: 
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 ��
 =  ����R = �� ∙  $��� ∙  $R ; (5.17) 

•  Diagnostic odds ratio (ODR). The ratio between the positive likelihood ratio and the 

negative likelihood ratio is the probability that a correct classification is not wrong: 

 Y�� =  �� ��� 
 = �R ∙  ���R ∙  �� ; (5.18) 

•  F1 Score (F1). The ratio between two times true positives over the sum of effective 

positives and predicted positives is a measure of ACC: 

 

�1 =  21�$ � 1RR	
= 2 ∙ �R$R �  RR. (5.19) 

5.1.2 Receiver Operating Characteristics Analysis 

The Receiver Operating Characteristics (ROC) analysis is used as statistical method to 

evaluate the performance of a classifier in the separation of two classes. The perfect 

separation of the two distributions of classes implies a perfect discriminating test. 

Unfortunately, the perfect separation between distributions is rare. Thus, the ROC curve 

provides a method to evaluate the tradeoff in data classification. Specifically, it defines a 

balance between the SE (ability to recognize positives) and the SP (ability to recognize 

negatives) of the classifier. Fig.5.1 (A) shows two overlapping distributions. In order to 

Figure 5.1. ROC construction. Features of two overlapping distributions (A) can be separated 

by a threshold (star). The variation of the threshold generates different values of SE and SP, 

that can be depicted as points of a curve, the ROC (B). 
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classify these distributions, several decision thresholds can be defined. For each decision 

threshold, the distribution can be separated and , accordingly, the values of SE and SP can 

be computed. The values of SE can be represented in relation to the respective SP, and 

moreover, their trend can be monitored varying the decision threshold. The obtained curve 

is the ROC curve (Fig.5.1 (B)). ROC curve defines a space: points located in the lower left-

hand corner has high values of SP and low values of SE; points located in the upper right-

hand corner has high value of SE and low values of SP. Moving from the lower left-hand 

corner to the upper left-hand corner the SE increases and the SP decreases. Thus, ROC curve 

is a monotonically increasing curve. The point in which they are equal is the ACC point. If 

the ACC point is located in the upper left hand, the classify produced the perfect 

classification. If ROC curve lies on the diagonal line, the performance of a diagnostic test is 

equal to chance level, that is a test which yields the positive or negative results unrelated to 

the studied problem. The main parameter to describe a ROC curve is the area under the 

curve (AUC). The AUC summarizes the entire location of the ROC curve rather than 

depending on a specific operating point. The AUC is an effective and combined measure of 

SE and SP that describes the inherent validity of diagnostic tests64. The AUC is a mono-

dimensional index and it can be interpreted as the probability that a randomly observation 

belongs to a class or to another. The maximum AUC value is 1, that means the diagnostic 

test is perfect in the differentiation between classes. Typically, this perfect classification 

depends on the non-superimposition of distributions. An AUC value equal to 0.5 means the 

chance discrimination and that the curve located on diagonal line in ROC space. It is 

considered the minimum AUC values. In fact, an AUC value equal to 0 means test incorrectly 

classify all positive subjects considered as negatives and all negative subjects considered as 

positives64.  

An example of ROC analysis is the discrimination between healthy subjects and AF 

patients47. Suppose to extract the F-wave frequency ratio (FWFR-a measure of fibrillatory 

waves) for samples of both groups. The two distributions (Fig.5.2 (A)) are not perfectly 

separated, thus a threshold between the distributions have to be defined. In order to find it, 

ROC analysis can be performed (Fig.5.2 (B)). FWFR power in discriminating AFPs from HSs 

was high (AUC=86%). Optimal threshold was selected by minimizing an error function 

consisting in a weighted summation of FN and FP. Specifically, FP weight was set at half of 

FN one, since in clinical practice is costlier (in term of clinical outcome) to detect an AF 
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patients as healthy subject than vice versa. Accordingly, SE was always higher than SP. This 

example allows to understand how versatile the ROC analysis is. 

 

5.2 Classifier Construction 

The classifier is a tool able to separate a dataset into different classes. The steps of the 

classifier construction are four (Fig.5.3): the features selection, the choice of classifier, the 

training phase and the testing phase. The feature selection is the extraction of the 

characteristic features for the problem solution. Sometimes, the feature selection is 

performed by experts or evidences in literature. When literature does not provide helpful 

information, such automatic algorithms can be used. Standard feature selection algorithms 

use statistical techniques; while advanced methods apply embedded algorithms in the 

classification procedure (like genetic algorithms).  

The choice of the classifier is a delicate phase. It is based on the problem analysis and on 

availability of data.  

The training is the phase in which the classifier learns the procedure to recognize samples 

that belong to a specific class. Usually, the training is performed with a specific dataset called 

training dataset. The second phase is the testing set, and it is the phase in which the abilities 

of the classifier are tested on new data. These new data compose the training dataset. 

Usually, there is only a dataset, the sample group, that have to be used to construct the 

classifier. It is usually divided into training dataset and testing dataset in order to train and 

 

Figure 5.2. Example of ROC analysis. FWFRs of AF patients (AFPs) are statistically different 

from FWFRs of healthy subjects (HSs), thus the two distribution are overlapped (A). ROC 

analysis can provide information about the best criterion to separate these two distributions 

(B). 
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test the classifier. The common practice is to use the 70% of the sample group for the 

training and the 30% for the testing. But, in cases of small amount of data, the entire sample 

group is divided equally. Moreover, it is recommended to maintain the prevalence of classes 

in the training and testing datasets, in order to have a balanced classification65. 

Sometimes, such training procedure requires an iterative process. In these cases, it is 

possible to lose the generalization propriety of the classifier. The generalization is the 

propriety of the classifier to recognize new data. Thus, a new dataset is used, the validation 

dataset. This dataset is used to test the performance of the classifier after each iteration in 

order to evaluate its generalization. Usually, the validation dataset is extracted from the 

training dataset. The thumb rule is applied: the validation dataset is the one fifth of the 

training dataset66. In case of very small dataset, cross validation methods can be used66,67. 

 

5.3 Examples of Classifiers 

In statistics, there are different types of classifiers. The first division is between 

continuous classifiers and discrete classifiers. The continuous classifiers are algorithms or 

model whose output is continuous; while the discrete classifiers provide directly a categorical 

output. Classifiers can also be divided in relation to their training. If the training is based on 

the adjustment between the expected classification and the output, the classifier is 

supervised. While, if the training is based on the similarity between data, without knowing 

the expected classification, the classifier is unsupervised. The last classification is based on 

the decision curve morphology. If the decision curve to discriminate classes is a line, the 

classifier is linear. If the decision curve to discriminate classes is a generic curve, the 

classifier is not linear. Non-linear classifiers are also called structural classifiers, because 

they are usually composed by the combination of several linear classifiers. 

 

 

Figure 5.3. Classifier construction step.  



Chapter 5. Classification Analysis and Sample Cardiac Applications 

80 

5.3.1 Linear Classifier: Logistic Regression 

Logistic regression (LR) is a statistical technique used to evaluate the association between 

categorical dependent variables and sets of independent variables. Specifically, the 

dependent variable (dichotomic or binary) has only two values, such as 0 and 1. LR is a 

versatile technique and it can suite very well such modelling situations. This is because LR 

is independent from the normal distributions of independent variables.  

 

Logistic Function 

Standard regression tries to predict the expected value of a dependent variable using the 

mathematical model of a set of independent variables. On the contrary, LR tries to predict a 

logit transformation of the dependent variables. Suppose that the dependent variable is 

represented by two numerical values, 0 and 1, and that represent binary outputs 

(positive/negative; male/female; healthy/diseased). P could be defined as the probability to 

have an output equal to 1; while (1-P) is the probability to have an output equal to not 1, 0. 

The ratio between these two probabilities is the odds and its logarithmic is the logit. 

Mathematically, it is: 

 � = k1M.�R� = k8 h R1 
 Ri (5.20) 

The logistic transformation, or logistic function, is the inverse of the logit, that is: 

 R = k1M.2.���� =  �1 �  � (5.21) 

 

Logistic Model 

In LR, a categorical dependent variable Y having N unique values is regressed on a set of 

P independent variables *�, *�, . . . , *U. Since these classes are arbitrary, they are usually 

labeled as consecutive numbers: Y can take on the values 1,2, . . . , �.  

Suppose to have N inputs: 

 � = [*� *� . . .  *,] (5.22) 

And N parameters: 

 �� = S���. . .��UX (5.23) 

the LR model is given by N equations  
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 ln h+�+�i = ln hR�R�i � ���*� � ���*��. . . ��U*U (5.24) 

Here, +� is the probability that an individual with values *�, *�, . . . , *U is in outcome n. That 

is 

 +� = R0� = 8|�� (5.25) 

The quantities R�, R�, . . . , RU.  represent the prior probabilities of each output. If these 

prior probabilities are assumed equal, then the term k8 �R� R�� � becomes zero. If the priors 

are not assumed equal, they change the values of the intercepts in the LR equation. Output 

1 is called the reference value. The regression coefficients � = [���, ���, . . . , ��U]  for the 

reference value are set to zero. The choice of the reference value is arbitrary. Usually, it is 

the most frequent value or a control output to which the other outputs are to be compared. 

Thus, LR equations in the logistic model are N-1. B are LR coefficients that are to be estimated 

from the data. Their estimates are represented by �. The � represents unknown parameters 

to be estimated, while the B are their estimates. These equations are linear in the logits of p. 

However, in terms of the probabilities, they are nonlinear. The corresponding nonlinear 

equations are  

 +� = R01�� = 8|�� =  Ev�1 �  Evr�. . . � Ev\ (5.26) 

A note on the names of the models. Often, all of these models are referred to as LR models. 

A note about the interpretation of  �� may be useful. The estimation of model parameters 

is usually performed by maximum likelihood estimation68,69. 

5.3.2 Structural Classifier: Neural Networks 

Neural network (NN) a mathematical-statistical method that tries to simulate the 

functions of neuro-biological complexes. NNs are a large class of mathematical models, born 

to identify a possible link between data. Therefore, a NN aims to find a link between a given 

input and an output, without defining the specific mathematical link. This approach is a 

“black box approach”, precisely because internal components of the system and the logical 

answer to how the network has reached a certain result are not explained.  

Like the human mind, NN can process a large amount of information, which does not 

have a clear link between them. Differently from human brain, NN learns following 
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mathematical-statistical laws by considering experimental data in order to determine, the 

relationship that provides the solutions of a problem.  

The pathway that the information follows defines the kind of the NN. The categories are: 

•  feedforward networks, in which the information travels in one direction, generally 

from left to right; 

•  feedback networks, in which the information does not have a single direction in 

which it can travel. 

Another classification considers the connections between neurons. In this case, the 

categories are: 

•  totally connected NN if all the neurons of a layer are connected to each neuron of 

another layer; 

•  partially connected NN if the connection of each neuron of a layer is limited to a 

particular subset of another layer. 

The fundamental characteristic of NNs is their ability to be able to work in a high complex 

environment. Nevertheless, every NN is able to face the same work in a totally different way 

and in effectiveness. Depending on the task to be carried out, there will be a better 

performing NN than others. 

The NNs are composed of processing units called artificial neurons, which can be grouped 

into several layers. The communication between one neuron and another occurs through 

weighted connections (or weights) that recall the synapses concept. The artificial 

neuron(Fig.5.4) is the unit of information processing that makes up the NN, developed by 

McCullough and Pitts. 

Considering the vector of inputs � = [*�, *�, . . . , *,], each element is associated with a 

synapse, corresponding to a given synaptic weight z�,~ (indicating the weight between the 

neuron ith and the neuron jth). Weights can take positive or negative values, reflecting the 

synapse excitation and inhibition behavior. All this is described in the artificial model 

through two blocks70: 

•  Summation (body of the neuron): represents the linear combination (as a sum 

operator) between the associated synaptic inputs and weights:  

 j� = )z�,~ ∙ *~� � ��
,

~-#  (5.27) 
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The bias �� has the function of increasing or decreasing the input to the activation 

function, so that it re-enters the interval [0,1] or [-1,1]. It is considered as an external 

input of the fixed and positive value equal to 1. In addition, a synaptic weight is 

associated with it. 

•  Activation function: limits the amplitude of the neuron output. The range of 

normalized values is within the closed range [0,1] or in [-1,1]. Combinations f input, 

weights and bias are the input of activation function: 

 =� = � �)z�,~ ∙ *~� � ��
,

~-# � = �j�� (5.28) 

The activation function depends on classification problem and the type of 

architecture. The most common are the Heavside function, the linear saturation 

function, the sigmoid or logistic function, and the normalized exponential function. 

From the model of an artificial neuron, the first form of NN known is the perceptron 

(Fig.5.5), developed by the mathematician and psychologist Frank Rosenblatt. Composed of 

a row of neurons, it was born as a feedforward network for the recognition and classification 

of patterns. In perceptron, all neurons have a step activation function (Heavside function) 

with binary values output (0 or 1). Through a learning phase, weights associated with the 

inputs are changed. Consequently, a movement of the hyperplane separating the entry space 

is generated up to identify two very specific classes: the class 1 of the outputs high (1) and 

class 0, for low outputs (0). In particular, the modification of the weights associated with 

inputs generates a rotation of the hyperplane, while the presence of the bias serves to 

 

Figure 5.4.The artificial neuron. 
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guarantee a possible translation. From 

a geometrical point of view, the 

perceptron then goes to make a linear 

separation of points in space, dividing 

the entire space into two half-spaces. 

A relevant property of NNs is their 

ability to learn from the external 

environment through learning. 

Learning ability is to optimize its 

performance, based on techniques that 

regulate synaptic weights and bias 

level. The more iterations of the 

learning process take place, the greater will be the NN awareness of the external 

environment. There are several learning algorithms, each of which has its own strengths. 

Substantially, the differences show how the synaptic weights regulation procedure is set. 

The training of the NN can be: 

•  Supervised learning: A set of data (input and output wanted) is provided to the 

network, prepared by an external supervisor, called the training set; 

•  Unsupervised learning: It is based on providing a series of inputs that will be 

organized and reclassified, considering the common characteristics and therefore be 

able to generate deductions and forecasts on the following inputs. 

Consider the neuron i as reference, having an input vector �. The term 8 indicates the 

number of discrete moments of time. =� 8� is the neuron output. Clearly, the output value 

can have a variable error variable  �8�, which can be calculated on the basis of the 

comparison between the actual output =� 8� and the desired one 4�8�: 

  �8� = 4�8� 
 =� 8� (5.29) 

It is necessary to reduce error in order to have the neuron output as close as possible to the 

desired one. In order to do this, the cost function or performance index is minimized, �8�, 

defined as:  

 �8� = 12  ��8� = 12 [4�8� 
 =� 8�]� (5.30) 

 

Figure 5.5.The perceptron. 
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The purpose is to change the value of synaptic weights, for each instant n, going to modify 

the output of the neuron and then making a reduction in the index �8�. The delta rule states 

that the variation of a generic weight w _, , associated with the jth entry *~8� is: 
 ¡ z�~ =   ¢ �8�* ~8� (5.31) 

The term η is called the learning rate, evaluating the speed of learning of the neuron. It 

always has positive values between 0 and 1. The delta rule is based on the fact that the error 

is directly measurable. Evaluated ¡ w_  we can go to define the new value of synaptic weight: 

 z�~ 8 � 1� =   z�~8� �¡ z�~8� (5.32) 

In order to compute it, the desired response has to be generated from an external source 

directly accessible to the neuron ¤. Therefore, a supervised learning requires that both the *8�and desired output values 4�8� are a priori known. 

To minimize the performance index (by varying the synaptic weights), the descent of the 

gradient of the function can be applied. The gradient is described by a vector whose 

components coincide with the partial derivatives of the performance index in relation to the 

synaptic weights of the network: 

 ¥$z� = [ �$
�z0 , … , �$

�z8  ] (5.33) 

Applying the decreasing gradient, new weights are: 

 Δz~� = 
¢ �$�z~�  (5.34) 

The perceptron, taken as a single unit, is able to solve problems of linear separation. 

However, it presents problems when the problem to be treated is not linear. A first approach 

may consist in using a different activation function (e.g. sigmoid), but this would make the 

perceptron much more complex. On the other hand, multiple units interconnected can be 

used: this leads to an increase in 

the number of separation lines 

that operate in the entry space. 

The problem of non-linear 

separation is split into several 

sub-problems of linear nature 

that can be solved with the 
Figure 5.6.The multilayer perceptron. 
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perceptron, without corrupting its properties. Thus, a new model of NN is defined which 

presents a stratification of the units, whose name is precisely a multilayer perceptron (MLP). 

MLP is composed of 3 main layers (Fig.5.6): a first of input, one or more intermediate called 

hidden layer and a last one of output. 

The MLP has a feedforward structure, meaning that the units communicate in one 

direction. In fact, except for the output one, the outputs of a layer are the input quantities of 

the next. The bias is considered in each node, having a fixed value of -1. Precisely, MLP is 

able to get where the perceptron is not able. Thanks to the hidden layers of the network, it 

is possible to obtain an internal representation of the most articulated input, by identifying 

arbitrary regions obtained by intersecting hyperplanes in the hyperspace of the input values. 

The possibility, therefore, of breaking down the problem into simpler sub-problems allows 

NN to be able to work even in larger cases.  

The number of hidden layers can vary, depending on the complexity of the work to be 

addressed, as well as the number of units per layer. This serves to increase the computing 

power of NN, even if efficiency and  processing time are quite lost. Above this it should be 

noted that for the Kolmogorov theorem it is sufficient to have only one Hidden layer, to be 

able to carry out any work, it is sufficient to increase the number of neurons of it (even if it 

is still under debate).  

The MLP networks are one of the types that is widely used, for the resolution of different 

problems in various areas, through a supervised training called error back propagation 

algorithm. The term indicates that the error evaluated on each layer, starting from the last, 

is transmitted to the previous layer and so on. It is used in particular to calculate the error 

of a unit of the Hidden layer, retro-propagating the error from the output layer, so that the 

synaptic weights can be corrected. Consider an MLP network described by 3 layers: an input 

layer �� (with i = 1,2, ..., N unit), a hidden �§ (with k = 1,2, ..., m unit) and one of output �~ 

(with j = 1, 2, ..., p unit). From the network performance index, applying the gradient rule 

we obtain: 

 Δz~§ = 
¢ �$�z~§ = 
¢ �$�=~
�=~�R~

�R~�z~§ =  
¢�4~ 
 =~�"¨R~��§ (5.35) 

The term =~, indicates the jth output of the network while R~ represents the activation 

potential of the respective node. Thus:  

 ©z~§ = 
¢N~�§ (5.36) 
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where  

 N~ = �4~ 
 =~�"¨R~� (5.37) 

and the MLP weights of the output and hidden layers can be upgraded. Instead for the 

connections between input and hidden layer: 

 

Δz§� = 
¢ �$�z§� = 
¢ �$��§
��§�R§

�R§�z§�
=  
¢ "′R§�) N~z~§�*�

«6�
~-�  

(5.38) 

Consequently: 

 Δz§� =  
¢N§*� (5.39) 

with 

 N§ = "′R§�) N~z~§� «6�
~-�  (5.40) 

Generalizing the mathematical formulation, it is: 

 Δz§� =  
¢N§t�  (5.41) 

                             z§� 8 � 1� =   z§�8� �¡ z§�  (5.42) 

 N§ = %'
( 
4§ 
 =§�"¨¤�  "10 19�+9� k�= 0 98.�

)�N~z~§�"R§�«6�
~    "10 ¬.44 8 k�= 0 98.� (5.43) 

Considering this process, the backpropagation algorithm follows a specific workflow. First 

of all, a learning epoch is made, then to the input and output pairs of the training set, the 

following steps are performed: 

•  Take a pair and calculate the network response for that input; the calculation 

proceeds from the input level to the output level, with consequent forward 

propagation of the error; 

•  The error E is calculated between the output of the network and the output of the 

pair and determine the N§ of the output units; 

•  the error is propagated backwards towards the input level, and N§  are evaluated for 

each Hidden unit; 

•  The synaptic weights are modified; 

•  The steps are repeated, starting from the first one until the couples are finished. 
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Once all the steps have been completed for all the training set pairs, the global error is 

calculated. If it turns out to be a still high value, a further learning period is repeated. 

The back-propagation rule presents some relevant problems. As a very complex process 

it requires great calculation skills. The presence of non-linear operations means that the 

learning function can take a complex course. Another important problem is represented by 

local minima, as it would cause a blockage of the algorithm. There are some improvements 

applied to the back propagation, one of these is the coefficient (takes values between 0 and 

1) α called momentum. In this case the learning formula becomes: 

 Δz~�8 � 1� = 
¢N~* � � w∆z~�8� (5.44) 

It is noted that this new formulation depends on the correction that was made in the 

previous epoch. It is used to increase the learning speed when the corrections of two 

consecutive epochs show unanimous signs. Likewise, the speed may decrease if the signs are 

discordant, typically when the change in the index slope occurs that a local minimum has 

been exceeded70.
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PART II  

BIOSTATISTICS OF 

CARDIAC SIGNALS: 

APPLICATIONS 

The real importance of statistics in cardiac bioengineering can be deeply understood only 

through its application. Statistical theory can appear general and difficult to understand in 

practice. Instead, in reality, statistics is widely applicable and applied, but often hidden by 

the scientific aspects of a research project. Moreover, it is widely known as the method for 

supporting the epidemiological studies, without considering that it can be use also in other 

aspects, such as signal processing. 

In order to contextualize and to evaluate the real applicability of biostatistics in real 

cardiac signal processing, the second part of this doctoral thesis is focused on the 

presentation of four real applications. During the design and implementation of these 

algorithms for cardiac signals analysis, biostatistics was essential. Indeed, biostatistics is 

used in each of them to characterize a specific phase of statistical signal processing. Except 

for cardiac signal acquisition, the considered phases were preprocessing, feature extraction, 

comparison and association, and classification.  

The first presented application is the adaptive thresholding identification algorithm 

(AThrIA). It is an application specifically designed to identify and to segment the 

electrocardiographic P wave, the occurrence of which is the major criterion for atrial diseases 

diagnosis. AThrIA is presented at first because its preprocessing is a specifically-designed 
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combination of standard and statistical preprocessing. In particular, the standard ECG 

denoising is combined with PCA . 

The second presented application is CTG Analyzer, that is a graphical user interface for 

the computation of the cardiotocographic features. These features are usually visually 

evaluated, in spite of the clinical necessity to be objective. About CTG Analyzer feature 

extraction, biostatistics is a fundamental instrument to evaluate the correctness of the 

features. Moreover, it is essential to compare the automated extracted features with the 

standard ones provided by a clinician. 

The third presented application is eCTG, a software for the digitalization of 

cardiotocographic signals from scanned images. Core of eCTG is the Otsu’s methods, a pixel 

clustering procedure that is able to separate pixels in black and white. This statistical 

technique is halfway between feature extraction methods and classification ones. 

The fourth and last presented application implements the construction of deep-learning 

serial ECG classifiers (DLSEC). Through a new constructive method, specific MLPs were 

created in order to solve classification problems. The field of this new research is the serial 

electrocardiography for the detection of new emerging pathology. In particular, this 

application was tested in heart failure and ischemia detection. These DLSECs are the perfect 

example of how statistics is essential in each problem of classification. 
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Chapter 6 

AThrIA: Adaptive Thresholding Identification 

Algorithm 

AThrIA was born to identify and to segment electrocardiographic P waves. The P wave is 

the lowest wave of the ECG pattern and it is difficult to identify. Its low amplitude can be 

covered by interference. Moreover, its features are essential to investigate and to diagnose 

atrial diseases. Differently from other algorithms71–79 that search P waves only in specific 

windows before R peaks (normal P waves), AThrIA searches P waves in all RR interval 

duration. This design choice was born from the necessity to identify not only physiological 

P wave, but also pathological P waves.  

AThrIA is the perfect example of how preprocessing is important in cardiac clinical 

practice. Indeed, the P-wave amplitude is low and easily covered by interference. Standard 

preprocessing is not enough; thus, a specific preprocessing has to be chosen, in order to 

remove noises and to enhance this low-amplitude wave.  

With this important purpose, AThrIA was designed with a specific preprocessing, 

combining standard prefiltering and PCA. Specifically, a statistical preprocessing method can 

substantially improve the performances of the algorithm, due to its property of extract 

common statistical pattern. 

6.1 Background 

6.1.1 Clinical Background 

Atrial activity is the representation of the depolarization and repolarization of atria. Atrial 

activity can be monitored by P-wave observation. P wave reflects atrial depolarization. P-

wave abnormalities can reflect atrial arrythmias or atrioventricular blocks (AVB).  

Atrial Arrythmias  

Supraventricular tachycardias (SVT) are the main common atrial arrythmias. SVT is 

generically a high-frequency heart rhythm due to improper electrical activity of the atria. 
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Episodes have a duration ranging from few minutes up to 1-2 days and sometimes persist 

until the treatment. A very high HR (150-270 bpm) during the episode can reduce the heart 

pump effectiveness, decreasing cardiac output and blood pressure. SVTs can be classified 

into atrial tachycardias (AT) and junctional tachycardias (JT). 

AT is a heart rhythm disorder caused by the generation of cardiac impulse from an ectopic 

pacemaker in the upper chambers of the heart, rather than SA node. P-wave morphology 

can indicate the ectopic myocardium site and the AT mechanism. The trigger mechanism 

can be the rapid discharge from an abnormal focus, the presence of cardiac tissue ring that 

causes a reentry mechanism, or an increase in rhythm due to other pathological conditions. 

Characteristics of AT are sinus tachycardia (ST), AF (atrial fibrillation), atrial flutter and 

focal AT. 

ST is an arrhythmia characterized by an increase in frequency (HR> 100 bpm) and a rate 

of sinus rhythm. Similar arrhythmic manifestations may be the normal consequence of 

physiological events, followed by a heart rhythm that returns to normal condition. 

Therefore, specific treatments are not necessary. As in a normal sinus rhythm, the P-wave 

axis in frontal plane lies between 0° and + 90°. 

The AF is a supraventricular arrhythmia characterized by atrial inability to depolarize 

simultaneously: there is a chaotic and irregular activity that determines inability to guide 

the atrial contraction. The AF can be presented in several cardiac and non-cardiac 

pathological conditions, and also in apparently healthy subject. It is asymptomatic in over a 

third of the population or it can occur with vague non-specific symptoms. It is often 

diagnosed only when the patient has significant symptoms and signs of serious 

complications. The initial clinical diagnosis of AF depends on the associated symptoms: 

dyspnea, palpitations, vertigo / syncope or anginal chest pain80. A regular pulse detected in 

symptom courses (breathlessness, dizziness, chest pain) is able to exclude an AF with high 

ACC. Exceptions are the atrioventricular dissociation and the ventricles heartbeat regularly 

stimulated by a pacemaker. The three diagnostic elements at the ECG are: 

•  The disappearance of P waves. 

•  The appearance of rapid oscillations of the isoelectric line, called fibrillation waves 

(F waves). F waves are completely irregular, with continuous variations in shape, 

voltage and F-F intervals; they have a very high frequency (400-600 bpm) and last 

throughout the cardiac cycle. 



Chapter 6. AThrIA: Adaptive Thresholding Identification Algorithm 

93 

•  The irregularity of the R-R intervals. During AF, a large number of atrial-origin 

pulses reach the AV junction, but only a part of them are actually transmitted to the 

ventricles. Consequently, the duration of the R-R intervals constantly varies. 

AF is the most frequent arrhythmia in clinical practice, with a prevalence in the general 

population of 0.5-1.0%. Although it is relatively low among young people, it increases with 

age: 4.8% between 70 and 79 years, 8.8% between 80 and 89 years. The AF is classified 

according to its appearance and duration. Classes are the paroxysmal AF (AF that resolved 

spontaneously within 7 days); the persistent AF (AF that lasts longer than 7 days or requires 

pharmacological or electrical cardioversion to return to sinus rhythm); permanent or 

chronic AF (AF in which no cardioversion attempts are made or, if performed, have been 

unsuccessful); the new onset AF (diagnostic AF for the first time, regardless of the duration 

of the arrhythmia or the presence or absence of symptoms related to it); and, finally, the 

recurring AF (includes any form of recurrence of the AF). 

Atrial flutter is an SVT with very rapid and well-organized atrium contraction, where the 

atrial rate can reach 250/350 bpm. Conduction of atrial impulses to ventricles is slowed 

down to blockage at the AV node whereby the ventricular activation rate is lower than the 

atrial one (usually 120-130 bpm). The electrophysiological mechanism is a re-entry of the 

electrical stimulus into atria (intra-atrial re-entry). Paroxysmal atrial flutter may develop 

into a healthy heart or into hearts with abnormalities (atrial or changes in the conduction 

system). Generally, atrial flutter patients experience irregularities in the rhythm or 

accelerated frequency. 

Focal AT is a form of arrhythmia characterized by an increase in heart rhythm due to the 

presence of ectopic origin of the cardiac electrical impulse. It is defined by an HR of less than 

200 bpm and an isoelectric interval between multiple P waves. It differs from chaotic AT in 

which the source signal has variable localization. Focal AT can be classified into two groups, 

unifocal AT (one ectopic site) and multifocal AT (multiple ectopic sites). 

JT is a common type of SVT, characterized by the AV-node participation. It may be due to 

increased automatism or triggered activity of AV node itself or His bundle. From the ECG 

point of view, this arrhythmia shows negative P waves in II, III and aVF leads and positive 

in V1 lead because atria are activated in a caudocranial direction. The retrograde P wave is 

usually placed immediately after the QRS complex, sometimes it is covered by it and is rarely 

located before the QRS complex. 
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Atrioventricular Blocks 

The AVB (atrioventricular block) is an arrhythmia caused by the interruption of the 

conduction between atria and ventricles. Specifically, the conduction can be blocked in the 

AV node, in the His bundle or in its two branches. Depending on the degree of severity of 

this conduction disorder, three types of AVB are distinguished that is the first degree AVB 

conduction; the second degree AVB conduction and the third degree AVB conduction. 

The first degree AVB consists in the slowing down of AV-node conduction. It is identified 

by a prolongation of the PR interval over 0.20 s in adults (over 0.18 s in the child), remaining 

however normally less than 0.4 s; a number of P waves equal to the number of QRS 

complexes; and QRS complexes most often narrow. 

The second degree AVB is characterized by the intermittent interruption of AV-node 

conduction. It manifests itself with the intermittent appearance of P waves not followed by 

a QRS complex. In this case depolarization wave is blocked and the number of P waves is 

thus higher than the number of QRS complexes. 

The third degree AVB is a disturbance of the cardiac impulse transmission. 

Communication between the NAV and His bundle is regularly stopped; thus, the impulse is 

completely blocked, and ventricles no longer contract. All the parts of the conduction system 

have a specific automatism; thus, if there is a maintained period of latency, a zone of the 

conduction system starts generating pulses acting as pacemakers. This process guarantees 

ventricular contraction. In case of nodal blockage, there is a junctional escapement rhythm 

with narrow QRS complexes (<0.12 s) and frequency between 40 and 50 bpm. The 

pacemaker implantation is indicated for this type of block. 

6.1.2 Algorithms for P-wave characterization 

In literature, different algorithms were presented as methods for ECG waves 

characterization. Specifically, they are not related only on P-wave identification and 

segmentation, but on all the ECG waves. Bereza et al.81 compared the most important 

methods that aim to characterizes ECG waves, in order to evaluate their performance. In 

order to compare AThrIA performance with literature, the same algorithms were 

considered.  

Typically, ECG waves segmentation algorithms are composed by two steps: the first one 

preprocessed the input signals in order to enhance it, while the second step identifies the 

ECG waves landmarks with an adaptive threshold.  
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The most common algorithms are: 

•  Laguna71: The first step considered the use of a low-pass differentiation, giving a 

filtered signal with information about the change in slope. The second step for 

the identification of landmarks used an adaptive threshold. Wave limits (onset 

and offset) of the original signal are found by searching the waves in windows 

around the R peaks positions. 

•  Martinez72: The first step used the discrete wavelet transform are a preprocessing 

technique, while an adaptive threshold is used for the second step. 

•  Singh74: The first step is the combination of a recursive low-pass filter and its first 

derivative. The second step used auxiliary lines to identify the landmarks of the 

waves. 

•  Di Marco76: This algorithm is an online algorithm that used the discrete wavelet 

transform and an adaptive threshold to identify the ECG wave landmarks. 

•  Sun75: A multi-scale morphological derivative is used to identify the local maxima, 

the local minima and the landmarks of the waves 

•  Martinez73: The algorithm transformed each instantaneous sample of ECG into a 

simple phasor. The phase derivative is applied to find the limits of ECG waves.  

•  Vazquez78: The first step is composed by a combination of a band-pass 

Butterworth filter and the first derivative. The second step is composed by a 

geometric method in which a rectangular trapezium is continuously calculated 

once the wave peak is detected, using three fixed vertices and one mobile or 

variable vertex.  

•  Vítek79: The first step used the continuous wavelet transform, while the second 

step considered ab adaptive threshold. 

•  Hughes77: The algorithm considered the discrete wavelet transform for the 

preprocessing and a supervised algorithm for the identification of fiducial points. 

6.2 Methods 

AThrIA is an innovative algorithm specifically designed for P-waves identification and 

characterization (Fig.6.1). Initially, input ECG is preprocessed to remove interference by 

standard filtering application. Specifically, a band-pass bidirectional 6th-order Butterworth 

filter (cut-off frequencies at 1Hz and 40Hz) and baseline subtraction are applied. The 
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standard preprocessed ECG (SPP_ECG) is recursively scanned to search for P waves in every 

inter-RR heartbeat (IRRH). The IRRH is defined as the SPP_ECG segment between two 

consecutive R peaks. If SPP_ECG contains N R peaks, number of IRRH is N-1. 

Consider IRRHi the ith IRRH of SPP-ECG, its length in samples will be IRRHLi. In order to 

search for P waves in IRRHi, the input of AThrIA will be a SPP-ECG window (SPP-ECGW). 

SPP_ECGW is composed of NHB number of heartbeats (usually 857), in which IRRHi is the 

last one. Thus, SPP_ECGW will be a segment of SPP-ECG comprised from the (i-NHB+1)th R 

peak to the ith R peak. SPP-ECGW and its R peaks are the inputs of AThrIA 

The three steps of AThrIA are the preprocessing, the P-wave identification and 

segmentation and post-processing (Fig.6.1). 

6.2.1 Preprocessing 

The preprocessing step aims to enhance IRRHi, reducing its level of noise by PCA. SPP-

ECGW is segmented in its NHB, in which the last one is that of interest. Due to HRV, the 

IRRHL of each heartbeat is different from the IRRHLi. Each IRRH is composed of six waves, 

the first R peak, S wave, T wave, P wave, Q wave and the second R peak. Each IRRH can be 

segmented in three segments (Fig.6.2), that are RS-complex segment, T-wave segment and 

PQR-complex segment. RS-complex segment is defined as the segment of IRRH from the 

 

Figure 6.1.Three steps of AThrIA. The three steps are the preprocessing (red), the P-wave 

identification and segmentation (green) and the postprocessing (blue). 
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first R peak to 0.04 s after the first R peak. T-wave segment is defined as the segment of 

IRRH from 0.04 s after the first R peak to the approximated QTc of IRRHi. PQR-complex 

segment is defined as the segment of IRRH from the second R peak minus approximated 

QTc of IRRHi to the second R peak. 

All RS-complex segments have the same length; thus, they can be placed in a matrix called ��_���. All T-wave segments have different length; thus, they are modulated to match the 

T-wave segment of IRRHi. After this modulation, all T-wave segments can be placed in a 

matrix called �_���. Finally, all PQR-complex segments have the same length; thus, they 

can be placed in a matrix called R��_���. ��_���, �_��� and R��_��� undergo 

independently to PCA and their first PC are extracted. The concatenation of these three PCs 

composes the clean IRRHi.  

HRV (standard deviation of RR intervals) of SPP-ECGW is computed. If the HRV of SPP-

ECGW is higher than 0.20 s, the P-wave absence is directly confirmed. On the contrary, clean 

IRRHi is the input of the P-wave identification and segmentation. 

6.2.1 P-wave Identification and Segmentation 

The P-wave identification and segmentation step is designed to identify and segment each 

P wave possibly present in IRRHi. To do this, IRRHi is considered as function of time. In order 

to detect P waves with both positive and negative polarities, IRRHi absolute value is 

considered (|IRRHi|). As 

depicted in figure (Fig.6.3), 

|IRRHi| contains a down-

going R front, a S wave, a T 

wave, possibly a U wave, 

possibly one or more P 

waves, a Q wave, and an 

up-going R front.  

P-wave detection occurs 

by means of two adaptive 

thresholds, namely ATL and 

ATH. If P wave (or P waves) 

of IRRHi-1 were no detected, 

ATL and ATH are initialized 

Figure 6.2.Segmentation of IRRH. PCA provides the first 

component of RS (blue), of T (red) and of PQRS (black). The 

concatenation of these three segments is the clean IRRH. 
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by considering that, on average, P-wave amplitude is 10% QRS amplitude (AMPQRS)3, with 

AMPQRS estimated around the second R peak. Thus, 

 ��� = 0.1 ∙ ��R̄ °± 
 0.50 ∙ �0.1 ∙ ��R̄ °±�, (6.1) 

 ��³ = 0.1 ∙ ��R̄ °± � 0.50 ∙ �0.1 ∙ ��R̄ °±� (6.2) 

Differently, if one or more P waves have been detected in IRRHi-1, ATL and ATH are 

initialized with their values in IRRHi-1. ATL and ATH are set to respectively represent the 

lower and the upper limits of an amplitude range used for the identification step: a down-

going R front; an up-going T front followed by a down-going T front; possibly one or more 

horizontal P fronts; and an up-going R front (Fig.6.3 (A-B)). Thus, only horizontal fronts 

detect potential P waves, that successively need to be confirmed to avoid false-positive 

detections. When ATL and ATH are correctly set, S, U and Q fronts are not detected because 

under ATL. In case of no horizontal fronts (i.e. no potential P waves) or no confirmed P waves, 

the procedure is repeated after ATL and ATH adjustment as follows: 

 ��� = ��� 
 0.25 ∙ ��� , (6.3) 

 ��³ = ��³ � 0.25 ∙ ��³ . (6.4) 

At most 10 threshold adjustments are performed before reporting P-wave absence in IRRHi. 

Differently, each potential P wave detected by a horizontal front undergoes segmentation 

(Fig.6.3 (C)). Segmentation of a potential P wave consists in the identification of three 

fiducial points, which are P peak (PP), P onset (PON) and P offset (POFF), occurring at �U´, �Uµ\and �Uµ¶¶, respectively. PP is identified as the maximum of the waveform subtended by 

 

Figure 6.3.P-wave identification and segmentation. Defined the thresholds (A), AThrIA 

identifies the segments that present a null slope (B). These segments undergo to segmentation 

(C). 
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the horizontal font. Once PP (and thus �U´) has been identified, PON and POFF are identified. 

To detect PON let’s consider the segment SGMON between the points ·���¬���U´ 
 13032�· 
and ·���¬���U´ 
 3032�·; then, PON is detected as the point that maximizes the distance 

between |���¬���| and SGMON, for � ∈ º�U´ 
 13032, �U´ 
 3032». Analogously, to 

detect POFF let’s consider the segment SGMOFF between the points ·���¬���U´ � 3032�· and ·���¬���U´ � 13032�·; then, POFF is detected as the point that maximizes the distance 

between |���¬���| and SGMOFF, for � ∈ º�U´ � 3032, �U´ � 13032». After segmentation, 

a potential P wave has to be confirmed in order to avoid a false P-wave detection possibly 

due a T-wave detection or a U-wave detection. Confirmation criteria include satisfaction of 

physiology-based conditions on P wave amplitude, duration and position3. P-wave amplitude 

(AMPP) and duration (DURP) are defined as:  

 ¼��RU = ·���¬���U´�· 
 3.8�·���¬���Uµ\�·, ·���¬���Uµ¶¶�·��|�U = �Uµ¶¶ 
 �Uµ\  (6.5) 

Then, the potential P-wave is confirmed if all the following conditions hold: 

 %'
(0.023	 ≤ ��RU ≤ 13	2032 ≤ �|�U ≤ 20032 �°¾ 
 �Uµ¶¶ > 3032�Uµ\ 
 �°¾À[ > 36032 . (6.6) 

Not confirmed P waves are discarded; instead, confirmed P waves undergo post-

processing.  

 

6.2.3 Postprocessing 

The post-processing step is designed to definitely identify confirmed P waves as true P 

waves. The hypothesis underlying this step is that ���¬� close in time likely have similar P 

waves. Thus, all confirmed P waves in all ���¬~, with j=i-NB+1, i-NB+2…i, are aligned 

according to their PP and cross correlated after zero-padding adjustment of their length in 

order to match the length of the longest confirmed P wave. The confirmed P wave that shows 

a ρ highest than 0.9 with the highest number of confirmed P waves is taken as P-wave 

template. Then, each confirmed P wave belonging to ���¬� is correlated against the P-wave 

template; if ρ>0.5 or ρ<-0.8 the confirmed P wave is definitely identified as a P wave, 

otherwise it is discarded.  
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6.3 Materials 

AThrIA was validated in both simulated and real conditions, in order to evaluate its 

performance in both controlled and clinical situations.  

Using Matlab ECG simulator82, six 0.80 s ECG patterns were simulated (sampling 

frequency: 250Hz): the first ECG pattern reproduced the normal wave sequence (PQRST); 

the second one also included the U wave (PQRSTU); the third one included double P waves 

(PPQRST); the fourth one had no P wave (QRST); the fifth one had a negative P wave (-

PQRST) and the sixth one had a biphasic P wave (±PQRST). When present, simulated ECG 

waveforms were characterized by the following amplitudes and durations: 0.16 mV and 0.09 

s, respectively, for the P wave; -0.03 mV and 0.07 s, respectively, for the Q wave; 1.60 mV 

and 0.08 s, respectively, for the R wave; -0.15mV and 0.07 s, respectively, for the S wave; 

0.45 mV and 0.14 s, respectively, for the T-wave, and 0.04mV and 0.05 s, respectively, for 

the U wave. Each pattern was repeated 30 times to obtain a simulated ECG. PQRST was 

characterized by a mean HR of 75 bpm and HRV of 0.06 s; PQRSTU was characterized by a 

mean HR of 75 bpm and HRV of 0.06 s; PPQRST was characterized by a mean HR of 50 bpm 

and HRV of 0.05 s; QRST was characterized by a mean HR of 75 bpm and HRV of 0.20 s; -

PQRST was characterized by a mean HR of 75 bpm and HRV of 0.05 s; ±PQRST was 

characterized by a mean HR of 75 bpm and HRV of 0.05 s. Specifically, PPQRST was 

characterized by two P waves, with a PP distance of 0.08 s; -PQRST was characterized by a 

P wave of -0.16 mV; and ±PQRST was characterized by a P wave of 0.16 mV with a positive 

part 0f 0.12 mV and a negative part of -0.04 mV. 

Simulated ECG were corrupted by adding tracings relative to four types of noise: power 

line noise, baseline wander, motion artifact and electrode motion artifact. Power line noise 

was simulated as a 50Hz sinusoidal signal; the other three noise tracings were real and taken 

from the Physionet “MIT-BIH Noise Stress Test Database”83,84. The amplitude of the four 

noise tracings was varied by amplification with four gain factors in order to have controlled 

SNR values.  

Overall, the simulated dataset was composed of 102 ECG tracings: 6 (one for each ECG 

pattern) not affected by noise SNR=∞), and 72 obtained by combining six ECG pattern, four 

noise type and three finite SNR .  

Clinical data consisted of around 30-beat ECG segments of recordings belonging to the 

“QT Database”71, the “AF Termination Challenge Database”85 and to the “MIT-BIH 
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Arrhythmia Database P-Wave Annotations”86 by Physionet 83. All data belonging to Physionet 

have been fully anonymized and may be used without further approval of the institutional 

review board. 

The “QT Database”71 contains 105 fifteen-minute two-channel ECG recordings (sampling 

frequency: 250 Hz) of all patterns but no PPQRST. Thirty heartbeats of all ECG recordings 

but two (sel232 and sel36, respectively71) were previously chosen as representative and 

manually annotated by cardiologists, who identified the beginning, peak and end of all ECG 

waves, thus including PP, PON and POFF. Only annotated 30-beat ECG segments were used in 

our study.  

The “AF Termination Challenge Database”85 includes 80 recordings of AF events. Each 

record is a one-minute segment of AF, containing two ECG signals (sampling frequency of 

128 Hz) extracted from long-term (20-24 hour) ECG recordings. Each record includes a set 

of QRS annotations produced by an automated detector. These signals are annotated as no 

P-wave. 

The “MIT-BIH Arrhythmia Database P-Wave Annotations”86 contains 12 signals with the 

correspondence P-wave peak annotations. This database was included because it contains a 

case of second order AVB. Four signals of this database were removed, because just present 

in “QT Database”. An expert cardiologist was asked to identify and annotate the QRS and P 

waves of 30-beat of these recordings, which was originally 30 minutes long (sampling 

frequency: 250 Hz).  

Overall, the clinical dataset was composed of 294 ECG tracings, 101 with the PQRST 

pattern, 92 with the PQRSTU pattern, 1 with the PPQRST pattern, 92 with the QRST pattern, 

7 with the -PQRST pattern and 1 with the ±PQRST pattern.  

6.4 Statistics 

All simulated and real ECG tracings were characterized in terms of HR, HRV and SNR. 

Specifically, SNR was computed as: 

 ��� = 20 ∙ log�# ��Rcde��R,Ä�ÅÆ (6.7) 

where AMPECG was computed as the  mean value of AMPQRS over all IRRHi for i=1,2, …N-

1,  while AMPNoise was computed as four times standard deviation of all heartbeats (noisy 

heartbeats) minus the related clean IRRHi. Additionally, ECG tracings were classified 

according to their ECG pattern and SNR. Classification according to ECG pattern included 
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six classes: PQRST, PQRSTU, PPQRST, QRST, -PQRST and ±PQRST. Instead, classification 

according to SNR included four classes: no noise (NNoise), for SNR=∞ (possible only in 

simulated conditions); low noise (LNoise), for SNR>10dB; medium noise (MNoise),  for 

7.5dB≤SNR≤10dB; and high noise (HNoise), for SNR<7.5dB.   

With the purpose to evaluate AThrIA performance in segmenting the P wave, the errors 

(εX, with X=P, ON and OFF) between PP, PON and POFF identifications by AThrIA (REuÇÈÉÊu, 

with X=P, ON and OFF) and by manual annotations (REËÌ�ÍÌÎ, with X=P, ON and OFF) were 

computed; tolerance level was set at 5ms. Thus, ε was defined follows: 

 ¼." ÏE = ·REuÇÈÉÊu 
 REËÌ�ÍÌÎ· > 532, �/ 8 ÏE = ·REuÇÈÉÊu 
 REËÌ�ÍÌÎ· 
 532; ." ÏE = ·REuÇÈÉÊu 
 REËÌ�ÍÌÎ· ≤ 532, �/ 8 ÏE = 0.  (6.8) 

An εP>120ms indicated a false (REuÇÈÉÊu < REËÌ�ÍÌÎ) or a missed (REuÇÈÉÊu > REËÌ�ÍÌÎ) P 

wave detection by AThrIA 81. AThrIA performance were evaluated in terms of SE or SP. 

Normality of SNR, HR, HRV and εX distributions were evaluated using the Lilliefors’ test. 

Not normal distributions were described in terms of MdN and IQR 

Finally, AThrIA performance was compared with the performance of the other algorithms 

previously reported by Bereza81. Such comparison involved only the results related to the 

“QT Database” in terms of εX (mean and standard deviation in ms), SE and the percentage 

of P waves belonging in the acceptability group (G1)87, since all other statistics were not 

available in Bereza et. Al.81. P-wave onsets, , P-wave peaks and P-wave offsets belong to G1 

if their εON, εP, and εOFF are lower than 0.01 s, respectively. 

6.5 Results 

Results relative to the simulation study are reported in Table 6.1. Overall, 78 signals (2340 

heartbeats) were analyzed; SNR was 10±9 dB, HR was 75±1 bpm, and HRV was 0.06±0.01 

s. The SE and SP values were 87%, and 100%, respectively. The values of ε were null for all 

the features.  

Regarding the ECG pattern stratification, 13 signals (390 heartbeats) were classified in 

each pattern. The lower value of SE is related to the identification of the PPQRST pattern 

(71%), while the higher value of SE is related to the identification of biphasic P-wave patterns 

(99%). All the ECG pattern present distributions of ε very close to zero. 
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Regarding the noise stratification, 6 signals (180 heartbeats) were classified in NO class, 

while the remaining were equally classified in the other classes (24 signals -720 heartbeats- 

for each class). The SE decreases with the decreasing of the SNR, reached the lowest values 

in the H class (81%). The SP reaches in all cases 100%. All the ε have a distribution close to 

zero. 

Results about the clinical study are reported in Table 6.2. Overall, 294 signals (13661 

heartbeats) were analyzed, characterized by SNR of 8±2 dB, HR of 72±30 bpm and HRV of 

0.05±0.12 s. The SE and SP values were 74% and 74%, respectively. The values of εON, εP 

and εOFF were 0.00±0.01 s, 0.00±0.01 s and 0.00±0.02 s, respectively. 

Regarding the ECG pattern stratification, 101 signals (3374 heartbeats) were classified in 

PQRST pattern; 92 signals (2738 heartbeats) were classified in PQRSTU pattern; 1 signal (28 

heartbeats) was classified in PPQRST pattern; 92 signals (7233 heartbeats) were classified 

in QRST pattern; 7 signals (257 heartbeats) were classified in -PQRST pattern and 1 signal 

(31 heartbeats) was classified in ±PQRST pattern. The lower values of SE are related to the 

TABLE 6.1: RESULTS ABOUT THE SIMULATION STUDY. 

 #beats 
HR 

(bpm) 
HRV 

(s) 
SNR 
(dB) 

SE 
(%) 

SP 

(%) 
εON 

(s) 
εP 

(s) 
εOFF 

(s) 

P
A

T
T

E
R

N
 

C
L

A
S

S
IF

IC
A

T
IO

N
 

PQRST 390 75 0.06 9±10 92 - 
0.00 

±0.00 

0.00 

±0.00 

0.00 

±0.00 

PQRSTU 390 75 0.06 10±9 90 - 
0.00 

±0.00 

0.00 

±0.00 

0.00 

±0.00 

PPQRST 390 50 0.05 10±9 71 - 
0.00 

±0.00 

0.00 

±0.00 

0.00 

±0.01 

QRST 390 75 0.025 10±9 - 100 
0.00 

±0.00 

0.00 

±0.00 

0.00 

±0.00 

-PQRST 390 75 0.06 10±9 98 - 
-0.01 

±0.00 

0.00 

±0.00 

0.00 

±0.00 

±PQRST 390 75 0.06 10±9 99 - 
0.06 

±0.07 

0.01 

±0.00 

0.00 

±0.01 

N
O

IS
E

 
C

L
A

S
S

IF
IC

A
T

IO
N

 

NNoise 180 75±0 0.06±0.00 +∞ 97 - 
0.00 

±0.00 

0.00 

±0.00 

0.00 

±0.00 

LNoise 720 75±0 0.06±0.00 16±8 91 100 
0.00 

±0.00 

0.00 

±0.00 

0.00 

±0.00 

MNoise 720 75±0 0.06±0.00 9±8 86 100 
0.00 

±0.00 

0.00 

±0.00 

0.00 

±0.00 

HNoise 720 75±0 0.06±0.00 6±7 81 100 
0.00 

±0.00 

0.00 

±0.00 

0.00 

±0.00 

ALL 2340 75±1 0.06±0.01 10±9 87 100 
0.00 

±0.00 

0.00 

±0.00 

0.00 

±0.00 
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identification of the -PQRST (73%), while the higher values of SE are related to the 

identification of PPQRST (96%). Overall, ε has a null MdN value.  

Regarding the noise stratification, 36 signals (1326 heartbeats) were classified in LNoise 

class; 148 signals (6056 heartbeats) were classified in MNoise class; 20 signals (6279 

heartbeats) were classified in HNoise class. As the simulation study, the SE decreases with 

the decreasing of the SNR, reached the lowest values in the H class (61%). The SP has not 

the same trend but reaches its lower value in MNoise class (69%). All the ε have a null MdN 

value, but the width of the IQR increases with the SNR. 

Considering only the results computed for the “QT Database”71 (Table 6.3), the SE is 

73.7% and the SP is 68.0%. The ε are -3.7±28.2 ms for the PON, -4.9±24.0 ms for the PP and 

-9.7±28.5 ms for the POFF. Regarding G1, the values are 48.5%, 67.6% and 68.0% for PON, 

PP and POFF, respectively. 

 

 

TABLE 6.2: RESULTS ABOUT THE CLINICAL STUDY. 

 #beats 
HR 

(bpm) 
HRV 

(s) 
SNR 
(dB) 

SE 
(%) 

SP 

(%) 
εON 

(s) 
εP 

(s) 
εOFF 

(s) 
P

A
T

T
E

R
N

 
C

L
A

S
S

IF
IC

A
T

IO
N

 
PQRST 3374 

68± 

22 

0.03± 

0.06 

8± 

2 
70 - 

0.00± 

0.01 

0.00± 

0.01 

0.00± 

0.03 

PQRSTU 2738 
66± 

20 

0.02± 

0.02 

9± 

2 
78 - 

0.00± 

0.02 

0.00± 

0.00 

0.00± 

0.01 

PPQRST 28 42 0.02 13 96 - 
0.00± 

0.02 

0.00± 

0.00 

0.00± 

0.01 

QRST 7233 
84± 

40 

0.14± 

0.07 

8± 

2 
- 74 - - - 

-PQRST 257 
46± 

28 

0.09± 

0.08 

8± 

2 
73 - 

0.00± 

0.02 

0.00± 

0.02 

0.00± 

0.02 

±PQRST 31 51 0.04 9 90 - 

-

0.03± 

0.01 

-

0.03± 

0.01 

-0.01± 

0.01 

N
O

IS
E

 
C

L
A

S
S

IF
IC

A
T

IO
N

 

LNoise 1326 
57± 

16 

0.05± 

0.15 

11± 

1 
82 73 

0.00± 

0.00 

0.00± 

0.00 

0.00± 

0.01 

MNoise 6056 
68± 

20 

0.04± 

0.10 

9± 

1 
78 69 

0.00± 

0.01 

0.00± 

0.01 

0.00± 

0.02 

HNoise 6279 
90± 

36 

0.07± 

0.13 

7± 

1 
61 77 

0.00± 

0.02 

0.00± 

0.01 

0.00± 

0.03 

ALL 13661 
72± 

30 

0.05± 

0.12 

8± 

2 
74 74 

0.00± 

0.01 

0.00± 

0.01 

0.00± 

0.02 
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6.6 Discussion & Conclusion 

AThrIA is an algorithm designed to characterize each type of cardiac activity, both healthy 

(positive, negative or biphasic P waves) and pathological (multiple or null P waves). 

Differently from other algorithms in literature72–79,81,88, AThrIA is composed by three major 

steps: preprocessing, P-wave identification and segmentation, and post-processing.  

Preprocessing aim is to extract a denoised ECG heartbeat. The main issues about 

preprocessing are referred to linear filtering, to choice of the number of heartbeats to be 

addressed to PCA and to choice of the number of PCs to represent IRRHs. We decided to use 

a 12th-order Butterworth filter with a high cutoff frequency for low-frequency noise (1 Hz). 

One of the main statements in the ECG filtering is to preserve the first component of the 

spectrum, HR component (around 1 Hz, as suggested by American Heart Association). In 

AThrIA, the main component is no essential, because the algorithm divide ECG in its 

heartbeats, losing the signal periodicity. Considering that, we decided to heavily remove ECG 

TABLE 6.3: COMPARISON OF ATHRIA PERFORMANCE WITH OTHER METHODS FOUND IN 

LITERATURE. 

 
SE 

(%) 
SP 

(%) 

PON PP POFF 

εON 
(ms) 

G1 
(%) 

εP 
(ms) 

G1 
(%) 

εOFF 
(ms) 

G1 
(%) 

AThrIA 73.7 68.0 -3.7±28.2 45.5 -4.9±24.0 67.6 -9.7±28.5 68.0 

Laguna 97.3 - 11.3±14.6 45.8 11.1±12.6 54.2 5.4±13.7 61.5 

Martinez 99.5 - -12.4±14.4 29.5 -3.7±11.5 60.4 -8.4±13.3 47.9 

Singh 96.0 - 9.1±25.3 5.21 13.1±14.9 40.6 -7.4±17.2 39.6 

Di Marco 98.0 - 1.2±15.9 56.3 7.1±12.9 55.2 2.9±15.3 61.5 

Sun 99.8 - 9.4±18.4 32.3 - 65.6 3.7±13.2 29.2 

Martinez 97.8 - 9.4±19.5 31.3 4.5±10.9 50.0 -3.9±15.1 55.2 

Vazquez 99.8 - 5.6±17.7 35.4 3.2±15.2 30.2 -6.7±15.2 50.0 

Vitek 99.3 - 7.5±14.7 42.7 5.0±12.3 51.0 13.1±14.7 24.0 

Hughes - - -1.4±14.2 57.9 - - 1.1±11.6 72.9 
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low-frequency components (baseline), that could be misinterpreted as P wave. Regarding 

the number of heartbeats to be addressed to PCA, we decided to fix it to 8 (23) heartbeats. It 

is an arbitrary choice in order to have a quite high number of heartbeats to erase noise, but 

also a low number of heartbeats to be able to follow ECG modifications in time. Finally, the 

number of PCs still remains an issue to be investigate. Literature58,89 proposed some criteria 

to select the number of PCs, but they allow the possibility to maintain a small amount of 

noise. In AThrIA, the preprocessing was designed to remove as much noise as possible, so 

only the first PC is used to represent IRRHi.  

Literature proposed studies about the comparison between PCA and others univariate 

approach to filter the ECG signals. Examples are the empirical mode decomposition or the 

single channel independent component analysis89. Considering the comparison between 

these different statistical methods for filtering, future studies will evaluate if another 

statistical method can be a better preprocessing method to enhance P waves.  

The P-wave identification and segmentation is the core of AThrIA. Its major innovations 

are the search of P waves in all along the IRRHi, allowing the multiple P-waves identifications 

and the possibility to confirm a null P-wave. Thanks to two adaptive thresholds, AThrIA is 

able to identify P waves, to segment them and to confirm their correctness through three 

electrophysiological criteria, by construction defined very large in order to guarantee a high 

SE, allowing the recognition of different P-wave morphologies.  

The final step is the post-processing, a step added to be sure about the P-wave absence 

identification. Several dangerous atrial diseases (e.g. AF) are linked to P-wave absence, thus 

a good method to characterize the atrial activity must be able to identify it.  

To evaluate AThrIA performance, two studies are applied: a simulation study in order to 

test AThrIA under controlled conditions, and a clinical study in order to test AThrIA under 

real conditions. For both studies, signals were classified with two different classifications. 

First, data were classified according to their ECG pattern, considering six different waveform 

configurations. The choice of these patterns is to evaluate the possibility to evaluate the 

AThrIA performance in different leads (ECG pattern can contain the U waves or not, and the 

P waves can be positive, negative or biphasic), or in pathological conditions (multiple P 

waves or null P waves). Both simulation and clinical studies confirm the fact that AThrIA 

correctly extracts P waves in all the morphologies and correctly confirms P-wave absence, 

providing good values of SE (around 87% and 74% for simulation study and clinical study, 

respectively) and SP (around 100% and 74% for simulation study and clinical study, 



Chapter 6. AThrIA: Adaptive Thresholding Identification Algorithm 

107 

respectively). Regarding errors, the MdN values are zero, suggesting that, when AThrIA 

identified a P wave, it is correctly segmented. Anyway, the major errors are related to the (-

P)QRST and (±P)QRST patterns, highlighting that AThrIA provides better performances 

when it analyzes positive P waves. This issue can be addressed to the imperfect baseline 

subtraction: when a small amount of baseline remains, the absolute value operation can 

distort the heartbeat, causing difficulties in segmenting negative and biphasic P waves. 

Future studies will investigate about adjustment of AThrIA in the identification and 

segmentation of biphasic and negative P waves, specifically adding a more efficient baseline 

removal. 

Secondly, data were classified considering their SNR. SE tends to decrease with the SNR, 

but its lowest value reached for the H class (SNR < 7.5 dB) is 61% that is still an acceptable 

value. SP has not the same trend, due to the different number of signals in each class. 

Anyway, its values are acceptable in each class. Thus, AThrIA is an algorithm robust to noise, 

but it provides better results with good quality signals. 

Finally, we compared AThrIA performances with the algorithms still present in 

literature81. All these algorithms present values of SE very close to 100%, with no values of 

SP. Despite the distributions of ε have non-normal distributions, the mean values and the 

standard deviation of the ε are computed in order to compare algorithms performances. 

Moreover, the G1 index is also computed. Considering AThrIA performances, our algorithm 

provides the lowest SE (still acceptable) with good and acceptable values of SP. Nevertheless, 

the G1 value are among the highest: it confirms again the fact that, when AThrIA identified 

a P wave, it is correctly segmented (low ε).  

These results are encouraging: the acceptable values of SE are compensated to 

comparable and acceptable values of SP, and the percentage of acceptability are the highest 

respect to all the other algorithms present in literature. It confirms that AThrIA correctly 

characterizes atrial activity, both when it is normal and when it is pathological.  
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Chapter 7 

CTG Analyzer Graphical User Interface 

Cardiotocography (CTG) is the gold standard clinical practice for fetal monitoring. This 

important test allows to monitor the fetal heart rhythm in relation to maternal uterine 

contractions occurrences. The evaluation of the fetal tachogram in relation to maternal 

uterine contractions allows to investigate about the fetal ANS control on heart rhythm. This 

is essential in order to evaluate the fetal development and its general well-being. Due to these 

important features, CTG remains the most important test to be performed at the end of the 

pregnancy and during the labor/delivery. 

In spite of its widely utility, CTG is still visually evaluated by clinicians. This practice is 

common because the situation in which CTG is recorded (labor/delivery) is quite 

“emergency”. Anyway, the features that clinicians visually extract are a lot. The high number 

of features that have to be assessed and the emergency clinical decisions that have to be 

quickly taken indicate that an automatic and objective tool could be essential. 

Thus, CTG Analyzer90 is a graphical user interface, born to support clinicians during the 

critical phases of delivery and labor. It evaluates the analyzability of CTG tracings and, if 

possible, it extracts all the CTG features according with international guidelines. 

Due to its characteristics, CTG Analyzer is the perfect example of automatic feature 

extraction algorithm. Moreover, the reliability of this new automatic algorithm must be 

always tested in clinical practice. The test could be done only by comparing CTG Analyzer 

performance with the clinicians’ visual inspection. Moreover, some settings parameters (e.g. 

sampling frequency) can be adjusted in order to improve the graphical user interface 

performances. Thus, in order to investigate this important issue, biostatistics techniques are 

essential. 

7.1 Clinical Background 

7.1.1 Pregnancy and Delivery 

Pregnancy, or gestation, is a physiological state during which one or more fetuses develop 

inside the woman. The pregnancy starts with the fertilization of the egg by the sperm and 



Chapter 7. CTG Analyzer Graphical User Interface 

109 

concludes with the delivery. The gestational age is typically 40 weeks long (usually 9 

months)(Fig.7.1), and it can be divided in three trimesters. Each trimester is characterized 

by a particular aspect of the fetus growth and development. The first trimester starts at the 

first week and persists for 12 weeks. During this period, the fertilized cell replicates by 

mitosis and become an embryo. At the end of the trimester the fetus is 10 cm long and 

weights at about 100 g91. The second trimester starts at the 13th weeks and persists for 15 

weeks. During this period, the embryo is called fetus because of its “human” appearance. 

The heart activity can be recorded, he/she develops the ability of hearing and also the gender 

can be recognized. Moreover, movements can be felt by the mother-to be. At the end of the 

second trimester, the fetus is 33 cm long and he/she reaches a weight of 1 kg91. The third 

trimester starts at the 29th weeks and persists for 11 weeks, till the delivery. From the 24th 

weeks, all the apparatuses are completely developed (except for the nervous and the 

respiratory ones), thus, in case of emergency, the fetus has the 90% of possibilities to survive 

outside the mother’s abdomen. At the end of the third trimester, the fetus is at about 39 cm 

long and he/she weighs 1,7 kg91. 

When the fetus is completely developed, the delivery occurs: it is defined as the process 

through which the fetus passes from the uterus to the outside, becoming a baby. The uterus 

starts to prepare to delivery, increasing its contractility91. Delivery is facilitated also by an 

enlargement of the cervix canal and by the position change of the fetus. He/she moves to the 

lowest part of the uterus (due also the weigh) and turns in a “headfirst” position. Delivery 

starts with the rupture of the amniotic sac that surrounds the baby, causing the outflow of 

the amniotic fluid. Thus, uterine contractions become stronger and closer in time, signing 

the entrance of the mother-to-be in the labor phase. During the labor, the normal uterine 

contractions can be assisted by mother’s voluntary contractions. These high forces, 

Figure 7.1.Pregnancy and Gestational Age.  
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combined with a dilatation of the uterus cervix (10 cm), allow to expel the baby from the 

mother’s abdomen91. 

7.1.2 Maternal and fetal monitoring 

All the treatments and examinations performed during the pregnancy are addressed to 

monitor the maternal and fetal well-being. All these antenatal cares have to prevent 

complications for both the mother and the baby, thus they are scheduled during all the 

pregnancy. With the CTG (described below), the most frequent antenatal examinations are: 

•  Maternal anamnesis and parents’ medical history mother is essential to evaluate the 

physical status of the mother (that have to sustain the effort of the labor) and the 

fetal risks (like genetic pathologies); 

•  Blood pressure monitoring is essential to avoid risk for hypertension, risky for the 

proceeding of the pregnancy; 

•  Glycemic curve measurements is performed in order to exclude the gestational 

diabetes; 

•  Measures of the maternal and fetal heights and weights to supervise the changes of 

the bodies; 

•  Pelvic examination and blood/urine tests; 

•  Periodic ultrasound checkups in order to evaluate the correct development of the 

pregnancy (7th week), to investigate about the Down Syndrome (13th-14th weeks) and 

to monitor fetal malformation, risks for the mother, the amniotic fluid and umbilical 

cord (18th-20th weeks). 

These examinations are regulated by different guidelines, with the aim to provide general 

rules to ensure a normal and secure pregnancy. The National Institute for Health and Care 

Excellence (NICE) published one of the most important guidelines in March 2008 and 

updated in January 2017. The aim of this guideline is to offer the best advices to have a good 

clinical check-up for all pregnancies and a full set of information to conduct the right 

prenatal care for a “healthy woman with an uncomplicated singleton pregnancy”92.  

7.1.2 Cardiotocography 

Cardiotocography (CTG) is the most commonly used test performed by doctors during 

pregnancy and labor in order to establish good health of the fetus93. This examination is 
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performed during the end of the third trimester, and, specifically, during the labor and the 

delivery. CTG is considered a nonstress test, although the condition of the mother and fetus 

during the delivery period is stressful. CTG examination was introduced in the clinical 

practice in the late 1960s and is still nowadays the most used method to monitor the 

maternal and fetal conditions. In fact, CTG consists in the simultaneous recording of the fetal 

heart rate (FHR) series and of the uterine contractions signal (UC) tracing. The essential 

aspect of this exam is the idea to correlate the heart activity of the fetus with the maternal 

contractions. This is fundamental to avoid a fetal hypoxia state, because in this case, although 

the baby has a proper defence system to cope with the lack of oxygen during delivery, only 

well-timed interventions can save the fetus health in dangerous scenarios94. 

The CTG monitoring is repeated during the third semester, but it strongly depends on the 

pregnant woman conditions and on the possible clinical risks which she could be subjected 

to. It can go from a single reading to some readings per day, until continuous monitoring is 

needed. During labour it is important to repeat the CTG exam every 30 minutes, because in 

this phase signals are subjected to rapid changes95. CTG acquisition has to be performed on 

a woman that is in a lateral supine, upright or half-sitting position, to avoid that an 

 

Figure 7.2. CTG Test. Two probes are placed on the mother’s abdomen: the FHR recorder 

detects the FHR series, while UC record detects the UC signal. These two signals usually have 

the same sampling frequency and the signals were simultaneously recorded. 
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aortocaval compression syndrome caused by a supine recumbent position can affect her96. 

The duration of the exam goes typically from 20 to 30 minutes, due to the variations in the 

uterine activity. If the FHR pattern seems to be suspect, the examination time needs to be 

prolonged. However, the duration limits are included within 60 minutes. 

CTG employs two transducers, one above the fetal heart and the other in the fundus of 

the uterus to detect contractions. FHR measurement here is based on ultrasounds, that after 

the emission by a transducer travel through soft tissues and give rise to echoes when they 

interact with interfaces between tissues, causing reflection or refraction phenomena. The 

tissues characteristics influence the intensity of the echoes bounced back to the transducer, 

making it possible to distinguish the diverse tissue types from the difference in the intensity 

of rebounded echoes. CTG exploits the Doppler effect, that gives the chance of evaluating 

both the FHR and the velocity and direction of the blood flow in the fetal circulatory system 

by measuring the so-called Doppler shift. Instead, the UC frequency, UC onset and UC offset 

are measured through external tocometry, that detects the “tension” on the women’s 

abdomen. However, is not able to give absolute pressure values that here depend on the 

position96. (Fig.7.2) 

CTG interpretation is based on the observation of several features96:  

•  Baseline (BL) (Fig.7.3) is defined as the “mean level of the most horizontal and less 

oscillatory FHR segments”96. It is the main CTG feature because it is the basis for 

the computation of the other features. Measured in heartbeats per minute (bpm), it 

is evaluated in time intervals of 10 minutes and its variation can be evaluated in 

successive CTG portions. The normal range of BL is included between 110 and 160 

bpm.  

 

Figure 7.3. Example of BL and BLV definition. 



Chapter 7. CTG Analyzer Graphical User Interface 

113 

•  Baseline Variability (BV) (Fig.7.3) concerns fluctuations in the FHR series, assessed 

as the mean bandwidth amplitude in a portion of 1 minute of the signal. A normal 

condition of the fetal heart is present when variability is comprised between 5 and 

25 bpm. When BV value overcomes 25 bpm for more than 30 minutes, a state of 

increased variability is observed. The reasons causing this pattern are not clear, but 

they can be found in rapid evolutions of hypoxia or acidosis, originated by autonomic 

instability of the baby organism, reflecting also on frequent DC on the FHR series. 

Instead, when BV goes below 5 bpm for more than 50 minutes in BL segments or 

for more than 3 minutes during DC, a condition of reduced variability characterizes 

the fetus. The main factors that seem to lead to such situation are hypoxia or acidosis 

of the ANS with a decrease in the sympathetic and parasympathetic activity, due to 

administration of CNS depressants or parasympathetic blockers and antecedent 

cerebral injuries or infections. Since reduced BV is difficult to estimate in an 

objective way, repeated analysis of the pattern is requested in doubtful contexts96.  

•  Episodes of Tachycardia (TC) (Fig.7.4) are defined as FHR portions which have a 

value of the BL that goes above 160 bpm for more than 10 minutes. Fetal TC can be 

provoked by several factors, such as maternal pyrexia, that is a fever over 38° C 

reflecting an extrauterine or intrauterine infection. An increase in the women 

temperature could also be caused by epidural anaesthesia or by the administration 

of some drugs, such as beta-agonists or parasympathetic blockers96.  

•  Episodes of Bradycardia (BC) (Fig.7.4) are defined ad FHR portions which have a 

value of the BL that goes below 110 bpm for more than 10 minutes. It is observed in 

cases as post-date births, fetal arrhythmias, maternal hypothermia and assumption 

of beta-blockers96. In addition, BC can be observed also during labour, when beyond 

natural contractions, voluntary ones can be noticed: in this case the baby could be 

subjected to head compressions during his descending into the pelvis.  Usually, this 

process is physiologic, so fetus with good oxygenation levels can effortlessly 

compensate the transient oxygen reduction without damages. But, if contractions 

are prolonged, the baby can finish all the oxygen reserves, going toward a cerebral 
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perfusion decrease. This condition can lead to a serious fetal hypoxia, that in turn 

triggers baroreceptors response inducing BC97. 

•  Accelerations (AC) (Fig.7.5) are found when immediate rises in the FHR series above 

the BL of more than 15 bpm for a duration between 15 seconds and 10 minutes are 

detected. They reflect the movements of the baby, that are considered as an 

indication of neurological fetus responsiveness and of hypoxia/acidosis absence. 

Before 32 weeks of gestation AC could be characterized by lower values and could 

verify less frequently, while they could appear during deep sleep times between the 

32nd and 34th week of the gestational period. Finally, if AC are seen during a labour-

second-stage CTG, it is a sign that some errors occurred during the acquisition96.  

•  Decelerations (DC) (Fig.7.5) appear when FHR series goes below the BL of more 

than 15 bpm during more than 15 s. Depending on their characteristics DC can be 

distinguished in different types96. Early DC are slight, with normal variability and 

short duration. They are associated to contractions and seems to be a sign of 

compression of the baby’s head. Variable DC can be recognized by a rapid fall in the 

amplitude, associated to a fine variability, rapid return to the BL values and 

variations in the shape or size when related to uterine contractions (UCT). This kind 

of deceleration is the most spotted during delivery and is related to the baroreceptor 

 

Figure 7.4. Example of TC and BC.  
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mediated response that control blood pressure. They represent rarely fetal acidosis 

or hypoxia, except for some critical situations where deceleration assumes a U 

shape, together with a reduced BV during the deceleration and a duration greater 

than 3 minutes. Late DC are characterized by a reduced BV and step-by-step 

onset/offset. The increase and decrease in this kind of deceleration take place when 

a period of 30 s passes from the start or end of the deceleration and its nadir. For 

what concerns the relationship with UCT, late DC begin more than 20 s later than 

the contraction’s start, reach the lowest value after the maximum peak and come 

back to the BL when contraction ends. Such DC can appear in relationship with a 

response to fetal hypoxemia mediated by chemoreceptors. Prolonged DC are defined 

as DC going on for more than 3 minutes. As late DC, prolonged ones represent a 

sign of fetal hypoxemia, while they are a sign of sever hypoxia or acidosis if they last 

for more than 5 minutes, FHR is lower than 80 bpm and BV is reduced. This scenario 

represents a real hazard and needs a sudden action by doctors.  

•  Uterine Contractions (UCT) (Fig.7.5) are the sign of a growing uterine activity, 

immediately followed by rapid and symmetric falls, giving rise to bell-shaped curves. 

They are basically contractions of the smooth muscle constituting the uterus and are 

fundamental during labour and delivery, but since they compress vessels in the 

myometrium layer, placental perfusion could decrease, or umbilical cord could be 

compressed. Intervals (resting periods between contractions) should ensure 

recovery and the correct placental perfusion.  

Figure 7.5. Example of AC, DC and UCT. 



Chapter 7. CTG Analyzer Graphical User Interface 

116 

In CTG procedure only the frequency of contractions can be estimated, but changes in 

FHR are observed also in relationship with intensity and duration of contractions. Intensity 

is the amplitude of contractions, measured in mmHg; duration is the time between the 

beginning of one contraction and its end. 

7.2 CTG Analyzer Graphical User Interface 

CTG Analyzer is the first version of this algorithm, and it is a user-friendly tool to support 

clinical decisions during pregnancy, labor and delivery.  

CTG Analyzer is composed of two panels (Fig.7.6). In the upper panel, there are several 

interaction buttons: “Load” button is designed to load data; “Settings” button is designed to 

change the processing parameters; “Analyze” button is designed to start the CTG analysis. 

Moreover, upper panel presents also some data entry boxes. In these, clinicians can insert 

clinical data of mother and fetus. Due to the presence of buttons, the upper panel is the 

interactive ones. The lower panel shows CTG signals (FHR series  and UC signal). Finally, a 

“Report” button allows to generate quantitative results of CTG analysis.  

7.2.1 Data Loading 

Once CTG Analyzer is started, clinician can insert the clinical data of mother and fetus. 

Specifically, mother’s clinical data are ID and gestational age (weeks), while fetus’s clinical 

 

Figure 7.6. CTG Analyzer loading and settings.  
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data are the estimated weight (g), the estimated height (cm) and the gender (1 for male and 

0 for female). Then, “Load” (Fig.7.6-red) button allows to lead CTG signals, choosing the 

CTG files that clinician wants to analyze. Once selected, CTG signals were represented as 

raw data in their entire length. Specifically, the standard CTG representation is maintained 

(FHR series above UC signal) and CTG Analyzer provides the total length of CTG signals and 

the number of windows in which they can be divided according to default setting. Moreover, 

an analyzability criterion is provided. In fact, CTG Analyzer computed the number of 

artifacts (data loss) that affect the FHR series. Data loss is defined as the percent of FHR 

series that is null. A light indicates if the signals can be analyzed or not. Specifically, a green 

light indicates that data loss is lower than 10% (analyzable), while a red light indicates that 

data loss is higher than 10% (not analyzable).  

7.2.2 Parameter settings 

“Settings” button (Fig.7.6-blue) is optional: it could be used to fix CTG signals sampling 

frequency and windows length. As default, a sampling frequency of 4 Hz98 and a window 

length of 10 minnute96 are set. If FHR and UC sampling frequency or windows length are 

changed from their default values, representation and characterization of raw data are 

immediately updated accordingly. 

7.2.3 Data Analysis 

CTG Analyzer starts the signal processing when clinician select the "Analyze" button 

(Fig.7.7-green). In order to remove artifacts (data loss), FHR series is pre-processed. 

Specifically, data loss are replaced with linear interpolation99,100 between the FHR segments 

that includes each artefact. Moreover, FHR series and UC signal are segmented in windows 

that are which are then independently analyzed. According with FIGO guidelines96, windows 

length of 10 minutes are recommended in order to reliably compute the BL. The last window 

is not processed if it does not include the signal end. After the preprocessing, CTG Analyzer 

compute the standard CTG features recommended by FIGO guidelines96. All features are 

extracted from each CTG window and averaged over windows as a relative measure for a 

measure relative to the entire CTG.  

CTG features extracted by CTG Analyzer are: 
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•  BL: computed as mean value of the signal constituted by the portion of FHR included 

between mean FHR±10 bpm101. 

•  BV: which refers to oscillations in FHR series, evaluated as the average bandwidth 

amplitude of the signal in 1-minute segments96.  

•  TC: which refers to FHR segments with BL above 160 bpm for more than 10 

minutes96. 

•  BC: which refers to FHR segments with BL under 110 bpm for more than 10 

minutes96.  

•  AC: identified by FHR segments above BL of more than 15 bpm for longer than 15 

s96. 

•  DC: identified by FHR segments below BL of more than 15 bpm for longer than 15 

s96.  

•  UCT: which refers to segments of the UC signal above 30 mmHg.  

•  UCP: which refers to the time period between two consecutive contractions. 

According with FIGO guidelines96, DC are classified as: EDC if its onset is synchronized 

with a UCT onset; VDC if it is uncorrelated to any UCT; LDC if its onset occurs during the 

second half of a UCT; or PDC, if it lasts for more than 3 minutes96. 

Analyzed CTG signals are depicted as in Fig. 7.7. Left panels provide a parallel visualization 

of the entire processed FHR series and UC signal, underlining the windows division. Instead, 

 

Figure 7.7. CTG Analyzer analysis. 
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right panels show only a selected window of CTG signals. All CTG features characterizing 

the window are also quantitatively reported and displayed with different colors.  

7.2.4 Analysis report 

Finally, “Report” button (left bottom) allows to export a quantitative report of the analysis 

in .txt format. The report includes features values relative to the entire recording and to each 

single analyzed window.  

7.3 CTG Analyzer 2.0 Graphical User Interface 

CTG Analyzer 2.0 in un upgrade of CTG Analyzer. The previous version of this interface 

presented two big issues: windowing avoids identifying BC and TC longer than 10 minutes 

and does not provide a classification based on BV. In order to overcome these limitations, 

CTG Analyzer 2.0 was designed. 

CTG Analyzer 2.0 displays several panels (Fig. 7.8). At the left, an interactive panel 

includes data entry boxes to manually insert clinical data relative to pregnant women and 

fetus, the “Load”, “Settings”, “Analyze”, “Report” and “FIGO Guidelines” buttons. The right 

panels include the CTG signals visualization. CTG signals analysis and visualization on the 

right panels are driven by the physician’s interactions with the left panel (input functions), 

according to a procedure which includes four main steps: data loading, parameter settings, 

data analysis and visualization. 

 

Figure 7.8. CTG Analyzer 2.0. 
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7.3.1 Data Loading  

Through the button “Load”, CTG Analyzer 2.0 loads CTG data (all file extension supported 

by MATLAB® may be used). In CTG Analyzer, the clinician can optionally insert mother (ID 

and gestational age) and fetus (estimated weight and height, and gender) clinical data. After 

file selection, CTG Analyzer 2.0 evaluates the analyzability of the selected CTG signal. Indeed, 

a green or red message appears if the acceptability criteria are respected or not, respectively. 

Differently from CTG Analyzer90, two acceptability criteria are applied: the first criterion 

establishes that the FHR data loss artefact has to be at most 10%90, while the second criterion 

establishes that UC period has to be at least 0.003 Hz. CTG Analyzer 2.0 also provides the 

CTG signal total length and the visualization of the entire raw traces on the right top panel. 

Only acceptable CTG signals can be analyzed.  

7.3.2 Parameter settings  

Use of the “Settings” button is optional: it allows to change the CTG signals sampling 

frequency (default: 4 Hz) and length of the window for the visualization of the signal 

(default: 10 min).  

7.3.3 Data Analysis  

The button “Analyze” starts the CTG features extraction procedure. Firstly, CTG signals 

are pre-processed: FHR is corrected to remove artefacts90 and the UC is filtered (low-pass 

bidirectional 3rd-order Butterworth filter; cut-off frequency: 0.025 Hz). Then, CTG features 

are extracted according to FIGO guidelines96: the BL is computed as mean value of FHR 10-

minutes portion included between mean FHR±10 bpm; the BV is computed as the average 

bandwidth amplitude (implemented as standard deviation) of FHR in 1-minute segments; 

TC and BC are computed as the FHR segments with BL above/under 160/110 bpm for more 

than 10 minute, respectively; acceleration and deceleration are computed as the FHR 

segments above/under BL±15 bpm for longer than 15 s, respectively; UCT are computed as 

the UC segments above 30 mmHg; and the UCP is computed as the time between two 

consecutive contractions. According with the uterine-contraction occurrence, DC are further 

classified as: EDC, VDC, LDC, or PDC. Differently from CTG Analyzer90, CTG Analyzer 2.0 is 

complete independent from a windowing process: features are computed using a mobile 
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window around each specific sample of the signal. The length of the window is dependent 

on the computed feature; in particular, a window of 10 minute is used for the BL computation 

(and for BL-dependent features) and a window of 1 minute is used for the BV computation. 

Moreover, CTG Analyzer 2.0 provides a classification of the BV. According with FIGO 

guidelines, the BV can be classified in reduced BV (below 5 bpm for more than 50 min) or 

increased BV (above 25 bpm for more than 30 min). 

7.3.4 Visualization  

A completely new visualization of analyzed CTG signals (Fig. 7.8) is displayed on the right 

panel. Right top panel provides a parallel visualization of entire processed FHR and UC 

signals; additionally, all features are reported with different colors. In the right bottom panel, 

user can choose what to plot among the seven CTG features, each identified by a specific 

color for immediate recognition. All plots display CTG signals on the standard CTG green 

grid, according with the FIGO Guidelines96. In particular, “Visualization” (light yellow) 

shows a specific window of the signals (chosen by the user in the settings) that appears 

yellow-shaded on the top panel; and “Variability” (Purple), “Tachycardia” (Orange), 

“Bradycardia” (Red), “Acceleration” (Green), “Deceleration” (Blue) and “Contractions” 

(Magenta) show and quantify (in terms of duration and amplitude) the episodes of 

corresponding feature. As accessory functions, CTG Analyzer 2.0 can save the performed 

analysis (“Report” button) and can open the PDF file relative to the used guidelines (“FIGO 

Guidelines” button)96. 

7.4 Features Dependency from Sampling Frequency 

CTG Analyzer and CTG Analyzer 2.0 opens a big issue in CTG features computing, the 

sampling frequency (Sf) choice. Indeed, all CTG features are susceptible to Sf: optimal Sf 

should be a tradeoff between a sufficiently high to allow correct identification of CTG 

features and a sufficiently low computational time to permit real-time CTG processing. In 

absence formal recommendation in literature, the range of Sf values found in literature for 

FHR series and UC signal is from 4 Hz to 0.2 Hz102–104.  

In order to investigate which is the optimal Sf for CTG Analysis, CTG Analyzer was applied 

to 552 CTG signals, sampled with different Sfs. Automatic CTG features were compared with 

visual inspection features. 
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Clinical data consisted of 552 CTG recordings included in the “CTU-CHB intra-partum 

CTG database” from Physionet83,94. CTG recordings were acquired during labor at the Czech 

Technical University in Prague and at the University Hospital in Brno (UHB) using STAN 

S21 and S31 (Neoventa Medical, Mölndal, Sweden) and Avalon FM40 and FM50 (Philips 

Healthcare, Andover, MA) fetal monitors. CTG signals were from 30 minutes to 90 minutes 

long, originally sampled at 4 Hz. All CTG signals were visually annotated by an expert 

gynecologist: he annotated episodes of TC, BC, AC, DC and UCTs. According with the 

analyzability criteria of CTG Analyzer 2.0, only analyzable CTG recording were included in 

the evaluation. In order to increase the number of CTG signal segments to analyze, not-

analyzable CTG signals were segmented in order to remove data loss segments. After this 

correction, 1656 CTG segments were considered analyzable.  

Each CTG segment included in this study and originally sampled at 4 Hz was down 

sampled at 2 Hz, 1 Hz, 0.4 Hz and 0.20 Hz by sample deletion. Then, each signals was 

analyzed by CTG Analyzer90, providing values of BL, BV, number of TC, number of BC, 

number of AC, number of DC, number of UCTs and UCP. 

Comparison between the CTG features automatically-identified with Sf<4 Hz were 

performed against corresponding ones obtained with Sf=4 Hz (the most used). Specifically, 

normality of distributions of BL, BLV, and UCP was evaluated using the Lilliefors’ test. Non-

normal distributions were described in terms of MdN values and IQR compared using the 

Wilcoxon signed rank test for equal MdNs (statistical significance as 0.05). Moreover, NTC, 

NBC, NAC, NDC and NUC was computed for each SF. Episodes automatically computed with 

CTG Analyzer were compared with visual inspection. From the comparison with visual 

inspection, TP, TN, FP; and FN were computed; and accordingly, PPV, SE, FPR and FNR were 

computed. Considering these fours statistical indices, a global statistical index (GI) was 

computed as: 

 P� = RR	 � �$ 
 �R� 
 ���2  (7.1) 

The more CSI gets close to 100.00%, the better the performance of CTG Analyzer 

compared to visual inspection. Thus, optimal Sf for each specific CTG feature was defined as 

the one that maximizes GI. Finally, running time to analyze all CTG signals at different Sf 

was measured.  

CTG recording included were 1676 and the running time to analyze them ranged from 

110.8 minutes to 4.2 minutes (Table 1). Results for the CTG features assessment is reported 
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in Table 7.1. MdN values of BL and UCP did not change statistically varying Sf, as well as 

numbers of TC and BC. Instead, MdN values of BLV significantly decreased with the decrease 

of Sf; numbers of AC and DC significantly increased; while, number of UC significantly 

decreased. 

Statistical results of the CTG Analyzer features compared with visual inspection are 

reported in Table 7.2. CTG Analyzer BC and TC identification was perfect (GI=100.0% for 

0.4 Hz<Sf<4 Hz), while it decreases for Sf=0.2 Hz (GI=99.0% for BC and GI=97.6% for 

TC). Regarding AC identification, optimal Sf is 2 Hz in correspondence of which GI=87.2%; 

while optimal Sf for DC identification was 4 Hz in correspondence of which GI=85.5%. 

Finally, optimal Sf for UCTs identification was 0.2 Hz, in correspondence of which 

GI=75.21%. 

 

 

 

TABLE 7.1. CTG FEATURES ASSESSMENT AT DIFFERENT SF, REPORTED AS MDN±IQR. 

*P<0.05; **P<0.01 WHEN COMPARING MDN OF EACH FEATURE DISTRIBUTION OBTAINED 

FOR SF<4 HZ AGAINST MDN OBTAINED FOR SF=4 HZ. 

 
SF (HZ) 

4 2 1 0.4 0.2 

FROM FHR 

SERIES 

BL (BPM) 137±17 137±17 137±17 137±17 137±17 

BLV(BPM) 30±15 30±15 29±15 27**±14 24**±12 

#TC 103 103 103 103 104 

#BC 82 82 82 82 84 

#AC 1107 1127 1172 1294 1481 

#DC 1738 1750 1800 1955 2226 

FROM UC 

SIGNAL 

#UC 5969 5966 5924 5797 5608 

UCP 

(MINUTES) 
0.3±0.1 0.3±0.1 0.3±0.1 0.3±0.1 0.3±0.1 

RUNNING TIME (MINUTES) 110.8 24.9 8.6 4.7 4.2 
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7.5 Discussion & Conclusion 

Among the various techniques for non-invasive fetal monitoring38–40,48, CTG remains the 

gold standard technique.  

As reported, fetal monitoring through CTG consists in several CTG features extraction, 

typically evaluated by visual inspection96. CTG visual inspection has a well-demonstrated 

poor reproducibility99, due to the complexity of physiological phenomena affecting FHR and 

being related to clinician’s experience. Complexity of parameters definition and the great 

intra- and inter-observer variability negatively affects SE and SP105. Computerized tools can 

support the clinician’s decisions and can became a possible solution for improving 

correctness in CTG interpretation, making it more organized, objective and independent 

TABLE 7.2. STATISTICAL INDEXES FOR ASSESSMENT OF CTG ANALYZER PERFORMANCE IN 

COMPARISON TO VISUAL INSPECTION ANNOTATIONS (N INDICATES NUMBER OF VISUAL 

IDENTIFICATIONS).   

 
SF (HZ) 

4 2 1 0.4 0.2 

#TC 
(N=103)  

PPV (%) 100.0 100.0 100.0 100.0 99.0 

SE (%) 100.0 100.0 100.0 100.0 100.0 

FPR (%) 0.0 0.0 0.0 0.0 1.0 

FNR (%) 0.0 0.0 0.0 0.0 0.0 

GI (%) 100.0 100.0 100.0 100.0 99.0 

#BC 
(N=82)  

PPV (%) 100.0 100.0 100.0 100.0 97. 6 

SE (%) 100.0 100.0 100.0 100.0 100.0 

FPR (%) 0.0 0.0 0.0 0.0 2.4 

FNR (%) 0.0 0.0 0.0 0.0 0.0 

GI (%) 100.0 100.0 100.0 100.0 97.6 

#AC 
(N=1112)  

PPV (%) 93.2 93.0 90.9 83.0 72.7 

SE (%) 92.8 94.2 95.8 96.6 96.9 

FPR (%) 6.8 7.0 9.1 17.0 27.3 

FNR (%) 7.2 5.8 4.2 3.4 3.2 

GI (%) 86.0 87.2 86.6 79.6 69.6 

#DC 
(N=1758)  

PPV (%) 93.3 92.9 91.4 85.3 75.0 

SE (%) 92.2 92.5 93.6 94.8 95.0 

FPR (%) 6.7 7.1 8.6 14.7 25.0 

FNR (%) 7.8 7.5 6.4 5.2 5.0 

GI (%) 85.5 85.4 85.0 80.1 70.0 

#UC 
(N=5274) 

PPV (%) 82.0 82.0 82.3 83.04% 84.9 

SE (%) 92.9 92.8 92.4 91.3 90.3 

FPR (%) 18.0 17.9 17.7 17.0 15.1 

FNR (%) 7.2 7.2 7.6 8.7 9.7 

GI (%) 74.9 74.8 74.7 74.3 75.2 
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from clinician’s experience. Moreover, an objective tool like CTG Analyzer can provide 

objective considerations90 also in case of legal actions. 

With this purpose, we designed and implemented CTG Analyzer and, its upgrade, CTG 

Analyzer 2.0. Following FIGO guidelines96, this tool is not designed for a completely 

independent CTG interpretation; rather it aims to provide an interactive instrument to 

support clinical diagnosis.  

CTG Analyzer is the perfect example of how feature extraction and selection step is 

important in cardiac biosignals assessment. All CTG features are essential for a correct fetal 

monitoring, and automatic tools that extract these features are recommended. Moreover, 

CTG Analyzer analyzes the FHR series, that is the inverse of fetal tachogram. The correction 

criterion of the FHR series is one of the essential analyzability criteria of CTG Analyzer, 

proving that preprocessing of the tachogram is an essential step. 

Finally, CTG Analyzer becomes an optimal method to investigate the optimal Sf in CTG 

environment. 

Despite their different nature, most CTG instruments record both FHR series and UC 

signals with the same Sf. We evaluated 5 different Sfs, ranged from 4 Hz to 0.2 Hz and 

considered all CTG features to evaluate which Sf provides CTG features close to clinician’s 

visual inspection. Sf decreasing caused significant reduction of BV and significant increasing 

in number of identified AC and DC. This is a very important finding since BV and DC are 

typically used to identify altered fetal statuses 101,105,106. Thus, use of a too low Sf for FHR trace 

may cause detection of false-positive critical fetuses.  

Results relative to automatic CTG analysis at various Sf indicate that CTG features 

obtained with SF≥1 Hz are different from those obtained with Sf≤0.4 Hz, especially (but not 

exclusively) those related to FHR trace. Results indicate that Sf=2 Hz should be considered 

as the optimal Sf for FHR trace, while Sf equal to 0.2 Hz is the optimal Sf for UC signals. 

Regarding FHR series, these results are in agreement with what found in previous studies 

on fetal heart-rate BV107–109, according to which frequency content of FHR trace may reach 1 

Hz at most. Thus, 2 Hz represents the Nyquist frequency, which is the minimum Sf value 

that satisfies the Shannon’s theorem. Regarding UC signals, use of any other higher Sf 

implies a worsening of CTG analysis which however associates to a significant increase of 

computational effort. Considering these results, CTG Analyzer 3.0 will be designed in order 

to down sample the CTG tracing with their optimal Sf, in order to provide an automatic, 

objective and reliable tool. 
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Chapter 8 

eCTG Software 

As still discussed in the previous chapter, fetal monitoring by CTG is a consolidated 

practice. One of the main issues of CTG clinical practice (with the visual inspection limitation 

discussed in chapter 8) is that most CTG recorders still provide paper reports and no digital 

outputs. This practice causes several difficulties, such as the difficulty in storing and 

managing large volumes of CTG sheets that tend to get damaged over time; difficulty in 

sharing CTG reports among clinicians for additional opinions; and, most importantly, 

subjectivity in the clinical interpretation99,106 (printed CTG signals cannot be automatically 

analyzed). Moreover, there are no possibility to have digital CTG databases. Law amount of 

CTG databases influences the importance of retrospective studies finalized to set up 

automatic procedures for CTG analysis90,99–101,105,106,110 and to investigate new criteria that can 

be included in the clinical practice. However, CTG clinical practice is based on the use of CTG 

paper report to evaluate the fetal well-being. Thus, new methods convert scanned images of 

CTG paper report can be useful to obtain digital CTG signals. These obtained CTG signals, 

opportunely collected in databases, can be the bases of new research on CTG monitoring. 

Thus, this is the aim with which we designed and implemented eCTG, a new method for the 

digitalization of CTG paper reports. 

From a biostatistics point of view, the basis of eCTG signal extraction is the Otsu’s 

methods and a specific correction algorithm based on statistical distributions. 

8.1 Technical Background 

Recorded CTG signals are typically included in a unique paper produced by the 

cardiotocograph, the CTG paper report. This report usually presents the FHR series in the 

upper part of the sheet and the simultaneous UC signal in the bottom part of the sheet. Upper 

part is 2 times the bottom part, in order to facilitate the FHR series assessment. 

Typically green96, CTG paper report presents a specific the paper scale. It is characterized 

horizontally by the “paper speed”, for which usually chosen values are 1 cm/min. This time 

axis is common for both FHR series and UC signal, and the minutes are separated by a 

vertical line. An additional thinner vertical line is present with intervals of 30 s. FHR grid 



Chapter 8. eCTG Software 

127 

ranges from FHR-minimum (minFHR, typically 50 bpm) to FHR-maximum (maxFHR, 

typically 210÷250 bpm; horizontal-line distance=5 bpm); UC grid ranges from 0 mmHg to 

UC maximum (maxUC, typically 100 mmHg; horizontal-line distance=10 mmHg). 

8.2 Methods 

eCTG procedure consists of four phases (Fig. 8.1): preprocessing, global thresholding, signal 

extraction and signal calibration.  

8.2.1 Preprocessing 

Initially, a grayscale conversion of the scanned CTG paper is performed (28 gray levels) 

maintaining the same resolution. Due to the same resolution, this grayscale image can be 

represented with the same dimensions of the original scanned CTG paper, that is R×C 

(R=number of rows; C=number of columns). Then, this grayscale image is resized into a 

R×C’ matrix. C’ is defined according to desired sampling frequency (dSf), scanned CTG paper 

and CTG-grid proprierties111: 

 O′ = O0.39 ⋅ 0 21k9�.18 ⋅ 60 ⋅ 4�". (8.1) 

Finally, this resized grayscale image is divided into two parts: grayscale FHR image is a 

2·R/3×C’ matrix, while grayscale UC image is a R/3×C’matrix. 

8.2.2 Global thresholding 

Global thresholding111 is a statistical techniques in image processing, used to transform a 

grayscale image into a binary mask of the same size. The basis of the global thresholding is 

the definition of an optimal threshold for classify pixels in black (background pixels, denoted 

with the number 0) and white pixels (signal of interest, denoted with the number 1). The 

method to select optimal threshold is the Otsu’s method112. It approximates the  histogram 

of a grayscale image to be bimodal and composed by summation of two Gaussian 

distributions, one for each class of pixels (0 and 1). Optimal threshold minimizes the intra-

class variance. Otsu’s global thresholding was applied twice: firstly to discriminate pixels in 

the grayscale FHR image and secondly to discriminate pixels in the grayscale UC image112. 
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8.2.3 Signal-extraction procedure 

Signal-extraction procedure extracts FHR and UC signals from the mask, which is 

processed column by column (Fig. 8.2 (a)).  

Ideally, white pixels in a column that represent the trace map in one signal sample. When 

representing only the trace, white pixels are uniformly distributed over a range of mask rows 

(Fig. 8.2 (b)). When the trace is corrupted by artifacts, some pixels cannot be recognized as 

belonging to the trace (wrongly black; Fig. 8.2 (c)) or are wrongly detected as belonging to 

the trace (wrongly white, Fig. 8.2 (d)). Consider rfirst(c) and rlast(c) as the first and the last 

row in which white pixels are present along column c; N(c)=rlast(c)-rfirst(c)+1 is the number 

of pixels between rfirst(c) and rlast(c), and d(r, c) is the pixel value at row r and column c 

(either 0 or 1). K(c) will be: 

 Ó�� = ) 4r,c� Ö = ���  for  uniform  distributions      < ���  for  not uniform  distributions
Élastà�

É-Éfirstà�  (8.2) 

If K(c)=N(c) all white pixels in the mask represent the trace (Fig. 8.2(b)). In this case, their 

mean value represents the preliminary amplitude of the digital signal s in the sample n 

corresponding to the analyzed column c: 

 28� = 0last�� � 0first��2         with n = � = 1, 2...C' (8.3) 

While, if K(c)<N(c) correction is needed, due to artifacts presence. A single black pixel (Fig. 

8.2 (c)) between two uniformly distributed white-pixels sequences is considered falsely 

 

Figure 8.1. eCTG block diagram. 



Chapter 8. eCTG Software 

129 

classified and forced to white (Fig. 8.2 (f)). If two sequences of uniformly distributed white 

pixels (Fig. 8.2 (d)) are separated by two or more black pixels, the shortest sequence is 

considered as an artifact and erased (Fig. 8.2 (g)). This correction process is recursively 

applied to the pixels of column c until updated K(c) and N(c) become equal and Eq. (3) can 

be applied. By construction, s(n) has a number of sample equal to C’. 

The signal-extraction procedure is applied twice: firstly, to obtain uncalibrated FHR series 

(UncalibratedFHR(n)) from the FHR mask, and secondly to obtain uncalibrated UC signal 

(UncalibratedUC(n)) from the UC mask. 

 

8.2.4 Signal calibration 

Signal calibration aims to rescale and amplify the signals in order to maintain the standard 

dimensions. Considering the grid properties, output CTG signals of eCTG are:  

 %'
(FHR8� = maxFHR 
 UncalibratedFHR8� ⋅ maxFHR 
 minFHR�2 ⋅ R/3UC8� = maxUC 
 UncalibratedUC8� ⋅ maxUCR/3 . (8.4) 

 

 

Figure 8.2. Graphical representation of the signal extraction procedure.The mask (a) is 

processed column by column, but in each column different rows are present (b), where pixels 

are distributed in homogenous way. When this doesn’t happen and noise affects the image 

(c, d), a correction process has to be applied. While ideal distributions are not corrected (e), 

black (f) and white (g) pixels wrongly identified are rectified. The amplitude of the 

uncalibrated signal is then determined by the mean values of pixels column ranges (h). 
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8.3 Materials 

eCTG was validated using the “CTU-UHB Intrapartum Cardiotocography Database”94 by 

Physionet83. Using Matlab, CTG signals were plotted with 0.5 mm line width on proper grids 

(RGB=[0.6,1,0.6]), inspired by the standard CTG paper report.  

In order to study eCTG robustness to noise, eCTG performance was evaluates varying a 

set of parameters characterizing scanned CTG paper: image format type, image resolution 

and image orientation. In particular, three different formats types (.tiff, .png and .jpeg) and 

three different resolution (96 dpi, 300 dpi and 600 dpi) were used. Then, format types and 

resolution values were combined in order to obtain 9 different combinations. Finally, image 

rotation was reproduced to simulate errors in the placement of the paper on the scanner 

during the CTG paper report scanning. Images in .tiff format with a resolution of 300 dpi 

 

Figure 8.3. Examples of CTG paper report simulation affected by rotation interference. 

From the top images to the bottom, the rotation interference increases from 0.1° to 0.5°. 
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were rotated of 0.1°, 0.2°, 0.3°, 0.4° and 0.5°, as depicted in Fig.8.3. All these images were 

saved and then processed by eCTG. Digital CTG signals extracted by eCTG (eCTG signals) 

were eventually compared to corresponding signals directly available in the database 

(reference signals). 

8.4 Statistics 

eCTG signals were compared with reference signals by computation of statistical features 

and clinical features. Statistical features included correlation coefficient (ρ) and mean signal 

error (MSE; mean error of the signal obtained by subtracting eCTG and reference signals). 

Clinical features, automatically computed from both eCTG and reference signals using CTG 

Analyzer90, included BL; BV; number, amplitude and duration of fetal TC; number, 

amplitude and duration of fetal BC; number, amplitude and duration of fetal AC; number, 

amplitude and duration of DC; number of EDC, VDC, LDC and PDC; and number, amplitude, 

duration and period of UCT.  

Normality of feature distributions was evaluated using the Lilliefors test. Not-normal 

distributions were described as MdN±IQR and compared using the Wilcoxon rank sum test 

for equal MdNs. Statistical significance was set at 0.05.  

8.5 Results 

Statistical features for both FHR and UC signals are shown in Table 8.1. FHR 

correlation ranges from 0.8 to 0.9 for .tiff images, for .png and for .jpeg. UC traces 

reveal higher correlation values with respect to FHR ones, since ρ varies from 0.9 to 

1.0 for all the formats and all resolutions. Regarding the rotation, ρ values are close 

to 0.8 for all FHR signals, while increases to 0.9 for all UC signals. Regarding MSE, 

comparable FHR and UC values can be observed among the different formats. MSE 

of rotated FHR images ranges from -1.7 bpm (0.1°) to -2.1 bpm (0.5°). Considering 

UC traces, MSE is 3.7 mmHg for 0.1° and 1.87 for 0.5°. eCTG clinical features are 

reported in Tables 8.2-8.3. Similarity between reference signals features and 

extracted signals can be noticed. Statistically significant values are found only in 

correspondence of 96 DPI resolution for all the chosen format types, although in this 
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case . Considering the rotation, extracted signals clinical features are not statistically 

different from the reference features. 

8.6 Discussion & Conclusion 

eCTG is a tool to extract digital CTG signals from a scanned CTG paper report. Such 

synthetic images are corrupted by the typical CTG noise (such as data loss), by images 

formats and resolution and by user-related noise (rotation). All the results, both statistical 

and clinical, reveal the eCTG robustness. Anyway, some differences can be seen in clinical 

features extraction. Specifically, BLVC is different from reference values if computed on 

signals extracted from 96 dpi images, despite the format. Moreover, the combination of 96 

dpi and .jpeg format provides the worth results. Indeed, BLV, numbers of AC, number and 

duration of DC are statistically different. Moreover, EDC and VDC identification are 

statistically different. EDC are the “physiological” DC, while VDC are one of pathological 

kinds. In these signals (extracted from 96 dpi and .jpeg images), number of EDC increases 

and number of VDCs decreases. It means that critical cases (reflected by the presence of 

VDC) can be interpret as healthy, reducing the SE of the clinical diagnosis. Thus, high 

TABLE 8.1. STATISTICAL FEATURES FOR FHR AND UC TRACES (MDN±IQR) FOR ALL 

FORMAT TYPES, RESOLUTION VALUES AND DEGREES OF ROTATION. 

 
FHR UC 

ρ MSE (BPM) ρ MSE (MMHG) 
F

O
R

M
A

T
 

.TIFF 

96 DPI 0.8±0.2 -3.7±6.1 0.9±0.1 0.4±0.5 

300 DPI 0.8±0.2 -2.7±3.8 1.0±0.1 -0.2±0.3 

600 DPI 0.9±0.1 -2.4±3.2 1.0±0.0 -0.1±0.2 

.PNG 

96 DPI 0.8±0.2 -3.7±6.1 0.9±0.1 0.5±0.5 

300 DPI 0.8±0.2 -2.7±3.8 1.0±0.1 -0.2±0.3 

600 DPI 0.9±0.1 -2.4±3.2 1.0±0.0 -0.1±0.2 

.JPEG 

96 DPI 0.8±0.2 -3.8±6.1 0.9±0.1 0.5±0.6 

300 DPI 0.9±0.2 -4.9±1.6 1.0±0.1 -0.2±0.3 

600 DPI 0.9±0.1 -2.5±3.2 1.0±0.0 -0.1±0.2 

R
O

T
A

T
IO

N
S
 

0.1 DEG 0.8±0.2 -1.7±2.3 1.0±0.0 3.7±3.0 

0.2 DEG 0.8±0.2 -1.8±2.2 1.0±0.0 3.2±3.1 

0.3 DEG 0.9±0.2 -1.9±1.1 1.0±0.0 2.7±3.2 

0.4 DEG 0.8±0.2 -2.1±2.1 1.0±0.0 2.2±3.3 

0.5 DEG 0.8±0.2 -2.1±2.1 0.9±0.1 1.9±3.5 
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resolutions and formats different from .jpeg are suggested. All these considerations could be 

performed only observing P-values obtained by Wilcoxon ranksum test between CTG 

extracted features. This example perfectly reflects how feature comparison is essential in the 

interpretation of usability of data/algorithm in clinical practice. 

TABLE 8.2. CLINICAL FEATURES SHOWN AS MDN±IQR OF EXTRACTED SIGNALS WITH 

DIFFERENT FORMATS AND RESOLUTIONS, WITH STATISTICALLY SIGNIFICANT VALUES (*P < 

0.05) FROM THE COMPARISON WITH REFERENCE. 

 Ref. 
.tiff .png .jpeg 

96 
dpi 

300 
dpi 

600 
dpi 

96 
dpi 

300 
dpi 

600 
dpi 

96 
dpi 

300 
dpi 

600 
dpi 

BL (bpm) 
132±

18 

135 

±15 

135 

±15 

135 

±16 

135 

±15 

135 

±15 

135 

±16 

134 

±16 

135 

±16 

135 

±15 

BLV (bpm) 
16± 

8 

14*±

7 

15± 

8 

15± 

7 

14*±

7 

15± 

8 

15± 

8 

14*±

8 

15± 

8 

15± 

8 

TC 

# 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 

Amp 
(bpm) 

0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 

Dur 
(min) 

0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 

BC 

# 0±1 0±0 0±1 0±1 0±1 0±1 0±1 0±1 0±1 0±1 

Amp 
(bpm) 

0±77 0±77 0±68 0±57 0±77 0±68 0±57 0±91 0±83 
0±8

3 

Dur 
(min) 

0±10 0±10 0±10 0±10 0±10 0±10 0±10 0±10 0±10 0±10 

AC 

# 5±6 6±6 6±6 6±6 6±6 6±6 6±6 6±6 6±6 5±6 

Amp 
(bpm) 

149 

±17 

150 

±18 

151 

±18 

152 

±17 

150 

±18 

151 

±17 

152 

±17 

149 

±18 

151 

±17 

151 

±17 

Dur 
(min) 

1±1 1±1 1±1 1±1 1±1 1±1 1±1 1±1 1±1 1±1 

DC 

# 6±7 5±6 6±7 6±7 5±6 6±7 6±7 5*±6 6±7 6±7 

Amp 
(bpm) 

100 

±17 

106±

18 

106 

±17 

106 

±16 

106 

±18 

106 

±17 

106 

±16 

105 

±16 

106 

±17 

106 

±16 

Dur 
(min) 

1±0 1±0 1±0 1± 1±0 1±0 1±0 1±0 1±0 1±0 

#EDC 1±2 1±2 1±2 1±2 1±2 1±2 1±2 1*±2 1±2 1±2 

#VDC 5±6 4±5 5±5 5±6 4±5 5±5 5±6 4*±3 5±5 5±5 

#LDC 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 

#PDC 0±0 0±1 0±0 0±0 0±1 0±0 0±0 0±0 0±0 0±0 

UCT 

# 
18±1

1 

18±1

0 

18±1

0 

18±1

0 

18±1

1 

18±1

1 

18±1

0 

18±1

0 

18±1

0 

18±1

0 

Amp 
(mmHg) 

35 

±17 

34±1

5 

35±1

7 

35±1

6 
35±5 35±5 35±6 4±1 4±1 4±1 

Dur 
(min) 

1±1 1±1 1±1 1±1 1±1 1±1 1±1 1±1 1±1 1±1 

UCP 
(min) 

4±1 4±1 4±1 4±1 4±1 4±1 4±1 4±1 4±1 4±1 
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eCTG algorithm is based on the Otsu’s thresholding algorithm. It is the perfect example 

of how biostatistics can be able to solve practical problems also in image processing. Otsu’s 

method is based on the idea that the pixels of a grey scale image can be modelled as a bimodal 

distribution, i.e. the combination of two normal distributions. If this hypothesis is true (as 

confirmed by our results in signals extraction), it is possible to define a threshold between 

distributions in order to classify grey pixels in black pixels and white pixels. Specifically, 

Otsu’s method tries to separate these pixels maximizing their intravariance. Thus, Otsu’s 

method is the perfect example of how distributions analysis and classification can be 

TABLE 8.3. CLINICAL FEATURES SHOWN AS MDN±IQR OF EXTRACTED SIGNALS WITH 

DIFFERENT ROTATIONS, WITH STATISTICALLY SIGNIFICANT VALUES (*P < 0.05) FROM THE 

COMPARISON WITH REFERENCE. 
 Ref. 0.1° 0.2° 0.3° 0.4° 0.5° 

BL (bpm) 132±18 132*±18 132*±18 132*±18 132*±17 133*±17 

BLV (bpm) 16±8 15±8 15±8 15±8 15±7 15±7 

TC 

# 0±0 0±0 0±0 0±0 0±0 0±0 

Amp 
(bpm) 

0±0 0±0 0±0 0±0 0±0 0±0 

Dur 
(min) 

0±0 0±0 0±0 0±0 0±0 0±0 

BC 

# 0±1 0±1 0±1 0±1 0±1 0±1 

Amp 
(bpm) 

0±66 0±53 0±51 0±48 0±46 0±68 

Dur 
(min) 

0*±10 0*±10 0*±10 0*±10 0*±10 0±10 

AC 

# 5±6 5±6 5±6 5±6 5*±3; 8 6±6 

Amp 
(bpm) 

148*±16 149±17 149±17 149±17 150±17 151 

±17 

Dur 
(min) 

1±1 1±1 1±1 1±1 1±1 1±1 

DC 

# 6±6 6±6 6±6 6*±6 6*±6 6±7 

Amp 
(bpm) 

102*±18 102*±18 103*±17 104±18 105±17 106 

±17 

Dur 
(min) 

1±0 1±0 1±0 1±0 1±0 1±0 

#EDC 1±2 1±2 1±2 1±2 1±2 1±2 

#VDC 4±2; 7 4±2; 7 4±2; 7 4*±2; 7 4*±2; 7 5±5 

#LDC 0±0 0±0 0±0 0±0 0±0 0±0 

#PDC 0±0 0±0 0±0 0±0 0±0 0±0 

UCT 

# 15*±12 15*±12 15*±12 15*±12 16*±11 18±11 

Amp 
(mmHg) 

30*±13 30*±12 30*±12 30*±13 31*±12 35±5 

Dur 
(min) 

1±1 1±1 1±1 1±1 1±1 1±1 

UCP 
(min) 

4±1 4±1 4±1 4±1 4±1 4±1 
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versatile and applicable in both signal and image processing. Thus, eCTG procedure is a 

promising useful tool to accurately extract digital FHR and UC signals from digital CTG 

images.  
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Chapter 9 

DLSEC: Deep-Learning Serial ECG Classifiers 

Deep-Learning Serial ECG Classifiers (DLSECs) are opportunely constructed MLPs, 

finalized to detect emerging pathology using the theory of serial electrocardiography. Core 

of these classifier design is the new Repeated Structuring & Learning Procedure (RS&LP). 

This new method combines the NN structuring and leaning phases. It is a constructive 

method and its main advantage is to be able to define a perfect NN structure that fit the 

considered classification problem. Considering the multi-layer structure of these NN, these 

DLSECs can be considered an example of deep learning. Its first use is the definition of 

DLSECs to detect patients that developed heart failure after an experience of myocardial 

infarction or to detect ischemia. Due to their classification abilities, DLSECs are the perfect 

examples of classification. 

9.1 Clinical Background 

9.1.1 Serial Electrocardiography 

Serial analysis of ECGs relies on the comparison of two or more successive recordings 

from the same patient. Also defined as serial electrocardiography, the comparison of two 

serial ECGs (SECG) in different moments in the same subject aims to contribute to the 

diagnosis of newly emerging or aggravating pathology. Time period between the ECGs 

depends on serial electrocardiography use. Some applications, such as clinical research or 

experimentations, have a specific time period defined in a protocol. While, in clinical 

practice, time period depends to data availability. This analysis allows cardiologist to obtain 

a more reliable ECG interpretation. The interpreter takes advantage of the fact that even 

small differences can be of pathological origin. Variation in ECG morphology from one 

situation to another is usually much smaller than the variation in morphology between 

different patients. Therefore, pathological changes in the ECG related to can be found more 

easily by means of serial comparison113. 

Anyway, this practice presents some confounders such as the intrasubject physiological 

variability and the instrumentation interference. Indeed, the ECG of a person changes with 
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its body status, for example it changes in relation to blood pression, mental stress, body 

position, respiration rate, age and weight. Moreover, it is impossible to perfectly reproduce 

the electrode positioning, specifically of the six precordial electrodes114. Thus, the major 

difficulty of serial electrocardiography is to discriminate between these confounders and real 

changes in the patient status.  

Some currently-available commercial programs for automated computerized ECG 

analysis support serial electrocardiography interpretation (Glasgow program115). Actually, 

automated SECGs analysis has not reached the level of sophistication and validated 

performance that the algorithms for automated analysis of single ECG have achieved. 

Additionally, current algorithms for SECGs analysis are rule-based and rigid.  

9.1.2 Heart Failure 

Heart failure is an abnormality of the cardiac structure or function. It leads to the inability 

of the heart to supply enough oxygen to compensate for metabolic needs, despite the normal 

vascular filling pressures. This disease is widespread, so that in the United States affects 

about 5 million people a year (2% of the population), causing the death of about 300,000 

people116.  

Its etiopathogenesis is composed of both anatomopathological problems and functional 

alterations (such as reduced contractility). During each ventricular systole, heart has to 

pump no less than 60% of ventricular blood in arteries. In fact, if there is an increase in 

preload (as happens in diseases such as mitral or aortic insufficiency and interatrial or 

ventricular defects), the systolic range remains almost unchanged without increasing blood 

pressure. However, if the increase in preload lasts over time, the prolonged stretching of 

heart muscle fibers leads to eccentric ventricular hypertrophy. This abnormal distribution 

of fibers leads to an inability to contract optimally and to an increase in the intracavitary 

diameter (systolic decompensation). If instead the increase is afterload (as in the case of 

aortic stenosis or arterial hypertension), in the long term the heart undergoes a structural 

change called concentric hypertrophy, which results in a thickening of the parietal tissue and 

a consequent decrease in the intracavitary diameter, causing difficulties in filling (diastolic 

decompensation). 

In heart failure, another major etiopathogenetic mechanism is represented by conduction 

anomalies. These can be caused by the progression an existing pathology and for its onset: 

relationships between heart failure and arrhythmic behaviors are very complicated. In fact, 
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heart failure involves modifications such as dilatation and hypertrophy, causing tissue 

extension and ionic imbalances caused by neurohumoral compensatory mechanisms. 

Moreover, bradycardia or tachycardia arrhythmias are characteristic of many cardiac 

pathologies even in the absence of decompensation but may contribute to the inability to 

maintain a hemodynamic equilibrium thus resulting in a situation of true heart failure. 

Heart failure symptoms can be variable: they depend on the patient's age, etiology, 

compensation mechanisms involved, and anamnesis. A correct diagnosis is based on specific 

symptoms (major criteria) concurrent with other symptoms with less SP (minor criteria). 

Among the major criteria we find: orthopnea (intense dyspnea that prevents the patient 

from lying down, forcing him to stand upright), paroxysmal nocturnal dyspnea (difficulty 

breathing or asthma that occurs during the nocturnal sleep phase, sometimes so intense as 

to wake up the patient), turgor of the jugular veins, rales, cardiomegaly (a disproportionate 

increase in the heart muscle), acute pulmonary edema (accumulation of blood fluids in the 

lungs, due to the reduced pumping capacity of the heart), increase of central venous 

pressure, slowing of the speed of circle, appearance of the third tone in a PCG (due to the 

sudden release of the ventricle in the hypertrophic heart), hepatic reflux, a positive response 

to drug therapy for decompensation. The minor criteria include nocturnal cough, 

hepatomegaly (liver enlargement), tachycardia, pleural effusion, declining edema 

(peripheral fluid accumulation). These minor criteria are common to other diseases, but if 

present in combination with each other or with a symptom present among the major criteria 

allow to perform the diagnosis (or a first attempt) with high clinical probability. 

Clinical examinations for heart-failure diagnosis are ECG and echocardiogram. ECG 

allows to have information about the correct carrying out of the electrical activity of the 

heart, on the presence of any anomalies of conduction and arrhythmias. The echocardiogram 

gives an anatomical and mechanical cardiac overview, allowing the detection of systolic or 

diastolic dysfunctions. In addition to these tests, laboratory tests are suggested in order to 

evaluate the compensatory functions of the body. 

9.1.3 Myocardial Ischemia 

Myocardial ischemia occurs when blood flow to heart is reduced, as the result of a partial 

or complete blockage of cardiac arteries (coronary arteries). The factors involved in the 

genesis of myocardial ischemia are the reduction of coronary flow and the increase in 

myocardial oxygen consumption. An atherosclerotic lesion of an epicardial branch 
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determines downstream of the stenosis a pressure drop proportional to the reduction of the 

vessel caliber. In order to maintain a flow congruent to the basal conditions, the pressure 

gradient stimulates the expansion of the resistance vessels. However, when the diameter of 

the epicardial branch is reduced by more than 80%, the flow is reduced even in basal 

conditions. This causes the consumption of quantities of "reserve" by the coronary tree, in 

order to maintain the necessary metabolic contribution. When the coronary blood flow 

becomes inadequate, cells demands causing a myocardial suffering condition. It causes 

biochemical, functional and electrocardiographic alterations as it derives from a deficit 

related to the coronary flow117. 

Acute myocardial ischemia is characterized by an ECG with ST-segment changes. The 

depolarization phase is altered, with a reduction in the amplitude of the action potential and 

a slowing of the ascent rate (phase 0). It causes a slowing of the depolarization of the 

ischemic region. Simultaneously, there is a reduction in action-potential duration, translated 

into the ECG with a shortening of phases 2 and 3. It generates, therefore, a current flow 

determined by the potential difference between healthy and ischemic tissues. Repolarization 

of ischemic myocardial cells may be incomplete, resulting in a resting membrane potential 

of -70 mV instead of normal -90 mV. During diastole, then, a potential difference is 

generated between healthy and ischemic tissue and a relative flow of current towards. An 

altered ST segment is observed, which depends on ischemia location. From a VCG point of 

view, the current flow from healthy tissue to pathological tissue modifies the VCG loops 

pattern. Thus, the corresponding derivations will register a sub-segment of the ST segment 

because the vector tends to move away118,119. 

A further ECG abnormality in myocardial ischemic episode is the T-wave alteration. It 

represents ventricular repolarization phase and constitutes a parameter that changes only 

occasionally in cases of acute myocardial ischemia. In medical literature, T wave is often 

associated with ischemic episodes, but its relevant alterations belong to ST. However, a 

negative T wave remains an important parameter in the definition of episodes of previous 

myocardial necrosis. These alterations are related to a prolongation of phase 3 of the action 

potential in ischemic areas. In other cases, patients with acute ischemia appear in the ECG a 

high, narrow and pointed T wave. It is present mainly in the early stages of an acute 

myocardial infarction also called hyperacute ischemia. An ischemia that causes a delay in the 

repolarization of the subendocardial region alone causes a flow of current that moves away 
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from it and goes towards the epicardium. It results in a raised and pointed T wave. However, 

these alterations remain rare to monitor and record as they are often overhung by ST118,119. 

Finally, the infarction causes the death of electrically active cells. This region therefore 

becomes not electrically conductive, as in the ECG it determines the presence of a 

pathological Q wave in the derivatives oriented towards the necrosis. Normally ventricular 

walls depolarization proceeds in each myocardial region from the endocardium to the 

epicardium. The depolarization vectors of the anterior wall are directed towards the front, 

those of the lower wall towards the bottom and those of the rear wall towards the front. The 

necrotic region causes the disappearance of vectors directed to that area, while the vectors 

directed in the opposite direction will persist. Thus, if there is an exploratory electrode of a 

lead above the necrosis, there is a negative wave in the initial part of QRS complex. This 

wave Q is often present also in healthy patients and therefore turns out to be physiological. 

In order to determine the presence of a myocardial pathology it must have a duration ≥ 0.04 

s. Furthermore, the overall width must be ≥25% of the R wave and the presence of hooks. 

The pathological Q wave is also a sign of generalized myocardial necrosis at the whole 

thickness of the ventricular wall. In patients with myocardial infarction affecting only the 

sub-endocardial layers, vice versa, there are usually exclusively more or less marked diffuse 

changes of the ST and / or T-wave. If a sub-endocardial infarction affects more than half the 

thickness of the myocardial wall, however, the electrocardiographic appearance is often 

similar to that of a transmural infarction118,119. 

9.2 Methods 

9.2.1 Feature Selection  

Input of the DLSEC is the serial database, contained couples of digital standard 10-second 

12-lead ECGs from the same patient, recorded at different time instants, and called the 

baseline ECG (BL-ECG) and the follow-up ECG (FU-ECG). In controls, the clinical status at 

the time at which BL-ECG and FU-ECG were made remained unchanged. In cases, the 

clinical status had changed in an unfavorable direction at the time at which the FU-ECG was 

made; hence, their FU-ECG has to be associated with newly arisen pathology 

All ECGs were analyzed by the Leiden ECG Analysis and Decomposition Software 

(LEADS)120. This program converts the 12-lead ECG in a 3-lead VCG in which all heart beats 

are detected, coherently averaged, after which onset QRS, J point and the end of the T wave 
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are determined. A multitude of variables is computed from the averaged heartbeat. For the 

purpose of our study, we selected 13 major features to describe the average beat120–122: QRS 

duration, QT interval, maximal QRS vector, maximal T vector, QRS integral vector, T integral 

vector, QRS complexity, T-wave complexity, ventricular gradient (VG), QRS-T spatial angle 

(SA), HR, J point amplitude vector and T-wave symmetry. Together, these 13 features 

represent major physiological correlates of the electrical properties of the heart muscle. 

To characterize the ECG changes within patients, the 13 BL-ECG features were subtracted 

from the 13 FU-ECG features, thus obtaining 13 ECG difference descriptors; hence, a positive 

value of a difference descriptor indicates an increase of the corresponding feature in time, 

while a negative value indicates a decrease. The 13 difference descriptors are 

defined/computed as follows: 

1. ΔQRS: difference in QRS duration (ms); 

2. ΔQT: difference in QT interval (ms); 

3. ΔMQRS: difference in magnitude of the maximal QRS vectors (µV); 

4. ΔMT: difference in magnitude of the maximal T vectors (µV); 

5. ΔQRSIV: difference in magnitude of the QRS integral vectors (mV·ms); 

6. ΔQTIV: difference in magnitude of the T integral vectors (mV·ms); 

7. ΔCQRS: difference in QRS complexity (QRS complexity is derived from the singular 

value decomposition – SVD – of the ECG during the QRS complex, considering only 

the 8 independent leads I/II/V1/V2/V3/V4/V5/V6, by computing the ratio of the 

sum of the 3rd-8th singular values to the sum of all 8 singular values); 

8. ΔCT: difference in T-wave complexity (T-wave complexity is computed similarly as 

QRS complexity, over the interval between the J point and the end of the T wave); 

9. ΔVG: magnitude of the VG difference vector (mV·ms); 

10. ΔSA: difference in SA (°; absolute value of the SA difference21); 

11. ΔHR: difference in HR (bpm); 

12. ΔJV: magnitude of the J-point difference vector (µV); 

13. ΔTSYM: difference in T-wave symmetry (T-wave symmetry is computed as the ratio 

of the integral of the VM signal between the T-wave apex and the end of the T wave 

to the integral of the VM signal between the J point and the end of the T wave). 

The 13 difference descriptors served as the input features for the classification procedure. 

The original values of the BL- and FU-ECGs were not further used. The selection of difference 

descriptors as features underscores the principle adopted in our approach that the patient 
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has to be taken as his/her own standard of reference. Irrespective the baseline ECG of a 

patient (normal, or possibly even highly abnormal), if the ECG remains unchanged during 

follow-up, the patient is to be classified as stable (not having developed new pathology). 

9.2.2 Repeated Structuring & Learning Procedure 

Our DLSEC consists of a MLP66 with 13 inputs for the 13 ECG difference descriptor values 

and 1 output for the classification. The output values are >= 0 and <=1. The output value of 

0 represents a certain classification as a control patient, and the output value of 1 represents 

a certain classification as a case patient. Output values between 0 and 1 are associated with 

a classification that is not completely certain and represent a classification as control or case 

when they are smaller or larger than a threshold value, respectively. Our construction 

decisions of MLP neurons are weight and bias values between ˗1 and +1 and sigmoid 

activation functions. Moreover, learning dataset was divided in a training dataset (80% of 

the data) and a validation dataset (20% of the data), maintaining the prevalence of cases 

and controls in each dataset. During learning with a given neural-network architecture, the 

weights and the biases of the neurons were adjusted according to the scaled-conjugate-

gradients algorithm123. This algorithm optimizes the classification for the training set by 

minimizing a training error function computed as the normalized sum of the squared 

differences between the estimated output values and the true classification values.  

The architecture of MLP was built during the RS&LP124, thus alternating phases of learning 

and of NN structuring. Each new structure contained the previous architecture plus one new 

neuron.  

In the first cycle, there is only the starting architecture to be initialized and learnt: it 

consists of one hidden layer with one neuron (the minimal number of neurons per layer). 

The maximal number of hidden layers is 3, there is no maximal number of neurons per layer. 

In each structuring cycle, possible new alternative architectures are strategically built, 

adding one neuron to the existing NN as follows: 

•  when the existing NN has one hidden layer, two new architectures are possible, 

either by adding one extra neuron to the existing hidden layer or by adding a new 

second hidden layer with one neuron; 

•  when the existing NN has two hidden layers, three new architectures are possible: 

1) by adding one extra neuron to the first hidden layer, 2) by adding one extra 
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neuron to the second hidden layer, or 3) by adding a new third hidden layer with 

one neuron; 

•  when the existing NN has three hidden layers, three new architectures are 

possible, by adding one extra neuron to either the first, the second or the third 

hidden layer;  

•  in case of multiple layers, the number of neurons in the second or third layer 

cannot be larger than the number of neurons in the first or second layer, 

respectively. 

As an example, Fig. 9.1 illustrates the possibilities of adding neurons to the existing 

architecture [4 4 2] (denoting three hidden layers consisting of 4, 4 and 2 neurons, 

respectively).  

All possible new architectures keep the weights and biases of the neurons in the existing 

NN; only the new neuron is initialized with random weights and biases. A new possible 

architecture is acceptable for further learning only if the new neuron helps the existing NN 

to decrease in training error after one single initial learning iteration. Whether the validation 

error decreases or increases with this single learning step is irrelevant for the acceptance of 

the new architecture. If, after this single initial learning iteration, the training error is larger 

than the training error of the existing NN, the initialization is unacceptable, and a next single 

initial learning iteration with a different initialization is attempted. This process is repeated 

till an initialization is found that renders the architecture acceptable, or till 500 attempts 

have been done without success; in that case the possible new architecture is rejected. Might 

all possible new architectures be rejected, the existing NN is kept as the final one and the 

RS&LP is stopped (first stopping criterion). Possible new architectures that pass the 

initialization step become new possible NNs and enter the learning procedure. 

The possible new NNs enter the learning procedure. At the end of the learning process, 

the validation error of each possible new NN is either larger than the validation error of the 

existing NN (failure) or smaller/equal (success). In case of failure, the possible new NN is 

rejected, and a next attempt is done by re-learning the same possible new architecture after 

re-initialization according to the procedure described above. This is repeated until success 

or till maximally 10 failures. When 10 failures occurred, the architecture is given up as a 

possible new NN. When all possible new NNs fail in this way, the existing NN is kept as the 

final one and the RS&LP is stopped (second stopping criterion). 
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In case of success, the possible new NN is now upgraded and becomes the new existing 

NN. In case of two or three successful possible new NNs, the NN with the lowest validation 

error is chosen to be upgraded. After a new existing NN has been established, the RS&LP 

starts anew until the first or the second stopping criterion is met (failing initialization of any 

possible new architecture, or failing learning of any possible new NN, respectively). 

Moreover, the RS&LP is also stopped when there are no misclassifications in either the 

training or the validation dataset (third stopping criterion). This stopping criterion is applied 

because continued structuring and learning would further increase the number of neurons 

in the MLP and further decrease the learning and validation error until a perfect recognition 

of each sample is reached, thus increasing the risk of losing generalization and of overfitting. 

Like in any optimization problem, there is never a guarantee that the optimal performance 

is reached. If the RS&LP is re-run on the same learning dataset, the resulting NN will be 

different due to the random initialization of each of the neurons in the network. Actually, 

the procedure very likely reaches a local minimum of the error rather than the global 

minimum. Hence, it is useful to construct several alternative NNs, each of them with 

different initial conditions, and select the best one to be finally evaluated with the testing 

 

Figure 9.1. Examples of NN structuring. Example of determination of all possible new 

architectures (panels B-C) that can grow from an existing [4 4 2] architecture (panel A). Adding a 

new neuron to the first hidden layer (panel B) is permitted. Adding a new neuron to the second 

hidden layer (panel B) is not permitted because a hidden layer cannot be larger than the preceding 

one.  



Chapter 9. DLSEC: Deep-Learning Serial ECG Classifiers 

145 

part of the dataset. To this purpose, our algorithm constructs 100 alternative NNs with the 

RS&LP . For each realization, ROC is constructed by varying the case/control decision 

threshold between 0 and 1. Subsequently, AUC is computed. The final DLSEC is selected as 

the MLP with largest learning AUC.  

9.3 Materials  

We tested our RS&LP by constructing NNs for two different serial databases, a heart-

failure database (HFDB) and an ischemia database (IDB). 

The data for this study are comprised two clinical ECG databases that have been used in 

previously published studies. Both databases consist of controls (patients without the clinical 

condition to be detected) and cases (patients with the clinical condition to be detected). Of 

each patient, there were two digital standard 12-lead ECGs, recorded at different times. In 

the control patients, both ECGs were associated with a similar clinical status: the patients 

were stable and the differences between the two ECGs have to be grossly attributed to 

spontaneous variability (caused by physiological, but also by technical and human factors, 

like imperfections in electrode positioning). In the case patients, the second ECG was 

associated with newly arisen pathology and, hence, the differences between the two ECGs 

may additionally reflect this newly arisen pathology. In the following, the ECG pairs are 

denoted as BL-ECG and FU-ECG, respectively. 

The first database used in our current study, is composed of ECGs of patients who were 

at baseline at least 6 months clinically stable after having experienced an acute myocardial 

infarction. The FU-ECG of the control patients was made about 1 year after the BL-ECG, with 

the patients still in the same clinical condition. In contrast, the case patients developed 

chronic heart failure; the FU-ECG of these patients was made when they presented 

themselves at the hospital for the first time with this newly arisen pathology. This first 

database consists of the ECG pairs of 47 case patients and of 81 control patients125,126. All 

ECGs in this database were retrospectively selected from the digital ECG database of the 

Leiden University Medical Center, commenced in 1986 and currently containing close to 

1,100,000 ECGs. 

The second database used in our current study is composed of ECGs retrospectively 

selected from the digital ECG database of the Leiden University Medical Center (control 

patients) and from the STAFF III ECG database 127(case patients). Control patients were 
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outpatients of the cardiology department, selected on the availability of two digital ECG 

recordings made about one year apart, while during this year the clinical condition of the 

patients remained unchanged. As no other clinical criteria were applied to select these 

patients, this patient group represents a general cardiology outpatient case mix. The STAFF 

III ECG database, from which the case patients for our current study were taken, consists of 

patients with exercise-inducible chest pain caused by a coronary artery stenosis. These 

patients came to the hospital to undergo coronary angioplasty by positioning a catheter with 

a deflated balloon at the tip at the site of the stenosis, after which the balloon was inflated to 

widen the lumen of the artery. During balloon inflation, the coronary artery was completely 

occluded, thus causing acute ischemia in the part of the heart muscle perfused by that artery. 

The protocol of the study during which the STAFF III ECG database was collected was 

designed to investigate the therapeutic benefits of prolonged balloon inflation times. 

Throughout the procedure a 12-lead ECG was recorded. The BL-ECG of the case patients was 

taken from the period immediately preceding the balloon inflation and the FU-ECG of the 

case patients was taken after 3 minutes of balloon occlusion. In summary, the second 

database used for our current study consists of the ECG pairs of 84 case patients and of 398 

control patients125,127–129.  

9.4 Statistics 

The ECG and ROC feature distributions were described in terms of MdN±IQR and 

compared using the Wilcoxon Ranksum and DeLong’s tests130. NN and LR performances 

were quantified from the ROC curves of the testing databases in terms of AUC, 95% CI and 

the diagnostic ACC. Statistical significance was set at 0.05.  

In the absence of data from literature, in order to confirm superiority of flexible over rigid 

algorithms with learning ability in SECGs analysis, performance of DLSECs were compared 

with standard LR65,66,131–133.  

9.5 Results 

Distributions of 13 difference descriptors of both HFDB and IDB are reported in Table 9.1. 

The number of difference features that were statistically different between cases and 

controls was 9 in the HFDB (ΔQRS, ∆T, ∆QRSIV, ΔCQRS, ΔCT, ∆VG, ΔSA, ΔHR and ∆J), and 

8 in the IDB (ΔQRS, ∆QRSM,  
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TABLE 9.1. FEATURES DISTRIBUTIONS OF THE 13 DIFFERENCE DESCRIPTORS. FEATURES 

DISTRIBUTIONS IN THE HFDB AND THE IDB. VALUES ARE REPORTED AS MDN±IQR. 
 HFDB IDB 

 
Total 

(N=129) 
Controls 
(N=81) 

Cases 
(N=48) 

Total 
(N=482) 

Controls 
(N=398) 

Cases 
(N=84) 

ΔQRS 
(ms) 

0.0 

±12.0 

0.0 

±0.5 

4.0* 

±13.0 

0.0 

±8.0 

0.0 

±8.0 

8.0*** 

±17.0 

ΔQT 
(ms) 

1.0 

±33.6 

-1.0 

±-0.8 

7.5 

±49.5 

2.0 

±30.0 

2.5± 

29.0 

0.0 

±36.0 

ΔQRSM 
(µV) 

-26.0 

±235.6 

-34.2 

±202.2 

-11.9 

±372.1 

-21.1 

±111.1 

-12.1 

±224.0] 

-38.9* 

±160.0 

ΔTM 
(µV) 

-15.5 

±105.4 

-4.6 

±82.0 

-48.2* 

±167.1 

-9.5 

±121.6 

-11.4 

±113.4 

3.0 

±158.2 

ΔQRSIV 
(mV·ms) 

0.4 

±8.2 

-0.76 

±6.9 

3.5* 

±13.5 

-0.0 

±6.3 

-0.3 

±6.1 

1.7*** 

±10.6 

ΔTIV 
(mV·ms) 

-2.7 

±20.4 

0.0 

±17.7 

-7.4 

±27.3 

-0.6 

±19.5] 

-0.9 

±18.2 

6.6** 

±40.5 

ΔCQRS 
0.3 

±2.8 

-0.0 

±2.2 

1.3** 

±4.1 

0.1 

±1.9 

0.0 

±1.9 

0.6*** 

±3.1 

ΔCT 
0.4 

±2.5 

0.0 

±2.2 

1.6*** 

±3.9 

0.1 

±2.6 

0.0 

±2.2 

0.4 

±8.0 

ΔVG 
(mV·ms) 

27.5 

±25.7 

25.0 

±21.6 

32.7* 

±31.9 

50.0 

±27.7 

49.6 

±101.0 

56.0 

±53.2 

ΔSA 
(°) 

13.3 

±21.7 

9.1 

±18.4 

31.7*** 

±41.1 

9.3 

±13.2 

8.3 

±18.8 

15.1*** 

±52.6] 

ΔHR 
(bpm) 

0.4 

±11.3 

-0.7 

±9.9 

2.9* 

±12.2 

1.4 

±10.8 

0.5 

±10.7 

4.88*** 

±10.3 

ΔJ 
(µV) 

24.6 

±25.4 

21.5 

±22.2 

32.7** 

±28.6 

25.7 

±26.4 

22.8 

±50.3 

68.6*** 

±164.2 

ΔTSYM 
(%) 

-0.1 

±5.6 

-0.2 

±4.3 

0.0 

±9.2 

0.2 

±5.3 

0.2 

±4.5 

0.8 

±9.7 

 
 

TABLE 9.2. FEATURES DISTRIBUTIONS OF THE 13 DIFFERENCE DESCRIPTORS. FEATURES 

DISTRIBUTIONS IN THE HFDB AND THE IDB. VALUES ARE REPORTED AS MDN±IQR 

 
 HFDB IDB 

Architecture [16 13 12] [11 9 1] 

DLSEC 

Learning AUC(%) 99 98 

Testing 
 
 

AUC(%) 84 83 

CI(%) [73-95] [75-91] 

ACC(%) 75 76 

LR 

Learning AUC(%) 89 88 

Testing 
 
 

AUC(%) 61 77 

CI(%) [46-75] [68-86] 

ACC(%) 54 71 
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∆QRSIV, ∆TIV, ΔCQRS, ΔSA, ΔHR and ∆J). As an example, Fig. 9.2 shows the dynamic 

construction of one alternative NN (not the final one) for the IDB by the RS&LP, from the 

initial architecture ([1]) to the final one ([19 9 9]). 

The DLSECs statistics for the two databases are reported in Table 9.2 and the ROC curves 

are depicted in Fig. 9.3. Both DLSECs efficiently discriminated patients with altered clinical 

status (AUC≥83%; ACC≥75%). The number of layers in the DLSECs was 3; the total number 

of neurons for the HFDB was 41, larger than the total number of neurons for the IDB, which 

was 21. Additionally, regarding the HFDB and the IDB the AUCs (AUC: 84% and 83%, 

respectively) and the ACCs (75% and 76%, respectively) were comparable. Considering the 

comparison with LR, our DLSEC provides higher values of AUC and ACC. 

 

 

 

Figure 9.2. Examples of RS&LP learning phase. Dynamic NN construction by RS&LP for the IDB. 

A total of 147 learning iterations, during which 34 new structures are created training error 

decreases monotonously (left panel). With the introduction of a new architecture, the validation 

error (right panel) may increases in the first iteration but decreases monotonously in following 

iterations. RS&LP stopped when the validation classification reached 100% correctness. 
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9.6 Discussion & Conclusion 

For the purposes of the ECG diagnosis of acute ischemia and the ECG diagnosis of 

emerging heart failure, we developed DLSECs. These classifiers compared a current ECG in 

which this pathology might be present with a previous ECG of the same patient, in which 

this pathology was not present yet. The algorithm was tested in two serial databases: HFDB 

contains myocardial infarction patients who had developed heart failure at follow-up (cases) 

or who had stayed clinically stable at follow-up (controls), IDB contains patients with stable 

angina, before and during elective coronary angioplasty (cases), and with a representative 

mix of cardiology outpatients who remained clinically stable and had ECGs made at two 

different visits to the outpatient clinic (controls). We validated DLSECs on the basis of the 

AUCs obtained from the test datasets. Their performances ere compared with the AUCs 

obtained from the same datasets by LR. DLSECs performance was always superior to LR 

one.  

Both serial databases had smaller amounts of cases than controls. In general, it is 

recommendable to have about equal numbers of case and control patients. In order to keep 

all subjects in the serial databases, the construction procedure pf DLSECs and LR adjusts for 

the unbalanced case and control prevalence by a weighting. This weighting does not help in 

decreasing the confidence intervals of the AUCs. As a result of the limited sizes of the serial 

databases, these confidence intervals remained relatively wide; as a consequence no 

 

Figure 9.3. Comparison of DLSEC and LR performances. Panels A and panel B represent 

the ROCs of DLSEC (green) and LR(orange) computed with the testing dataset for the HFDB 

and IDB, respectively. 
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statistically significant difference between the performances of the DLSECs and the LR 

models could be demonstrated. However, the consistent result in all modalities of our study 

makes it likely that statistically significant differences can be obtained by larger serial 

databases.  

The investigation is based on intra-individual ECG changes only. This decision was taken 

because absence of any ECG change would mean clinical stability which renders the patient 

a control subject. Thus the problem of detecting ECG changes caused by emerging pathology, 

which is the aim of our serial ECG analysis research, is the discrimination of pathology-

driven ECG changes from technical and biological ECG change114. Each ECG was 

characterized by a set of variables which defines much of the ECG wave shape and that has 

distinct physiological correlates. Specifically, QRS duration is linked to intraventricular 

conduction; QT interval is linked to intraventricular conduction and action potential 

duration; the maximal QRS vector is linked to ventricular mass; the maximal T vector is 

increasing with ischemia; the QRS integral vector is a measure of dispersion of the 

depolarization; the T integral vector is a measure of dispersion of the repolarization; the QRS 

complexity and T-wave complexity are known to increase with pathology; the ventricular 

gradient is a measure of the heterogeneity of action potential morphology distribution; the 

QRS-T spatial angle in a measure of the concordance of the ECG; the HR partly expresses 

ANS activity, and the J point amplitude vector and the T-wave symmetry change, amongst 

others, with ischemia. Hence, it is unlikely that new pathology develops without affecting 

one or more of these variables, thus causing one or more non-zero values in 13 difference 

descriptors. 

Our RS&LP, a form of incremental NN construction134, yielded efficiently a limited-size 

DLSEC architecture with the high learning performance, while still having the necessary 

generalization characteristics that are needed for high testing performance. Fig.9.2 shows 

how fast the algorithm finds the final structure while efficiently decreasing the validation 

error. Table 9.2 shows high learning performances of NNs, while the drop-in performances 

for the testing datasets remains limited. Future studies will investigate the possibility to 

optimize the DLSECs performance applying statistical methods of feature selection (e.g. 

relief algorithm or PCA) before the DLSEC construction by RS&LP. 

In order to evaluate the goodness of our DLSECs, their performance have to be compared 

with other methods (LR) and with results obtained in earlier studies125,126. Fig.9.3 shows 

consistently larger AUCs for the DLSECs. This consistency strongly suggests that NNs are 
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superior to the LR models, even if DLSEC-LR AUC differences do not reach statistical 

significance. Larger databases, and especially larger proportions of cases would be needed 

to reach statistical significance. 

In an earlier study about heart failure database, De Jongh et al.126 compared two ROCs 

constructed by applying a variable threshold to signed ΔSA and to |ΔSA|, respectively. This 

was a crude analysis of the complete database; AUCs were 72% and 78%, respectively. In 

another earlier study, in the ischemia database, Treskes et al.125, made a comparable analysis, 

now of |ΔVG| and of |ΔST|, with AUCs of 88% and 91%, respectively. Both studies were 

transversal analyses, without splitting the data into a learning and test set. Hence, no 

predictions can be made on the basis of these data, and AUCs of these studies have to be 

compared to the learning AUCs in our current study, rather than testing AUCs that represent 

predictions by the trained DLSEC. Table 9.2 shows that the learning AUCs of the trained 

DLSECs were all close to 1. Similarly, Table 9.2 shows that the testing AUCs in the ischemia 

database for signed ΔSA and for |ΔSA| were 80% and 86%, of which the latter is very close 

to the transversal results obtained by Treskes et al.125. 

Our deep learning method has yielded high-performing DLSECs that can readily be 

applied to serial ECGs to recognize emerging heart failure in post-infarction patients and to 

recognize acute ischemia in patients with a sudden short-lasting complete coronary 

occlusion. Before actual clinical application of these methods can be considered, additional 

research is needed to answer some basic questions. A major question in ECG detection of 

emerging heart failure is if ECG changes are already present in subclinical stage of heart 

failure. If this was true, serial ECG analysis could be used as a screening method in post-

infarction patients. The major question to be answered in relation to the detection of 

ischemia by serial ECG analysis would concern the representativeness for the real-world 

situation: the method should be tested on ambulance ECGs of patients who are transported 

because of chest pain possibly related to acute coronary ischemia. The ambulance patients 

in this group mostly suffer from acute coronary syndrome, and this takes various forms. 

This induces different ECG changes that will have an influence on the outcome. On the other 

hand, the control patients in the ambulance may have other acute pathology that may also 

affect the ECG. Another issue is that the BL-ECGs in the STAFF III study are made directly 

preceding the FU-ECGs, while the BL-ECGs of the ambulance patients have to be found in 

ECG databases in hospitals, these ECGs may be several years old. Overviewing this, it seems 
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recommendable to generate a new DLSEC with ECG data that are more representative for 

the situation of spontaneous acute ischemia.  

Finally, our RS&LP has been developed with the idea of serial ECG comparison in mind, 

but it could well work in other classification problems. Many of such type of problems exist 

in medicine, but also in other fields. Thus our method is generally applicable, not necessarily 

restricted to serial ECG analysis.  



 

III 

Discussion & Conclusions 

The purpose of this doctoral thesis was to investigate how the major biostatistical 

techniques can be applied on cardiac signals analysis.  

The cardiac signals considered here were standard clinical cardiac signals, namely 

electrocardiogram, vectorcardiogram, phonocardiogram and tachogram. Other signals can 

be used to investigate the status of the heart, such as echocardiography, magnetic resonance 

imaging of the heart or computed tomography. All these signals (images) can be important 

in the diagnosis of heart disease, but they are not real signals provided by heart. They are 

acquired by general techniques, applicable also to study other organs of the body and not 

closely link to cardiac physiology. Thus, this thesis was focused only on the pure cardiac 

signals, in order to further investigate the link between the signal manifestation and the 

electrophysiological meaning of what is observed. 

The process of cardiac signal analysis starts with the acquisition phase, which is widely 

standard. In fact, each cardiac signal presents its acquisition protocol that can be difficultly 

changed. There are anyway some exceptions: for example some applications on wearable 

sensors43,135,136 present their acquisition protocol. To be used in clinics, these sensors and 

protocols have to be tested in order to be used in clinical settings.  

The second step is the preprocessing, that depends on signals noises. Each cardiac signal 

presents its interferences, that has to be specifically treated. This is the first step of cardiac 

signals processing in which biostatistics can be fundamental: statistical preprocessing 

techniques (as averaging or PCA) can be easily adapted to several situations. Specifically, 

these techniques are applicable in cardiac signals, because pseudo periodic. Due to their 

intrinsic periodicity, these signals can be decomposed in segments, heartbeats, knowing 

their periods. Thus, each cardiac signal can be considered as a stochastic process and 

analyzed with the versatile and advanced statistical techniques. Sample of the strength of 

these preprocessing procedures is AThrIA. Its combination of standard and statistical 

preprocessing is essential to have a clean and reliable heartbeat, allowing the identification 

and segmentation of low amplitude waves, such as the electrocardiographic P wave. 

The third steps is the feature extraction. This step is one of the most discussed because 

the selection and the extraction of features is widely problem dependent. Sometimes feature 

selection is essential for the investigation of a specific problem, but absolutely negligible for 

another one. Thus, this is the step in which the attention of the researcher has to be high 



 

IV 

and in which the experience could be essential. Subjectivity is always not recommendable in 

sciences; thus, objective techniques are needed. Due to this necessity, biostatistics is decisive 

in this phase. It is a method to organize and to interpret features, consequently a 

mathematical and objective instrument to formalize feature extraction. Features distribution 

analysis, with comparison tests and association methods, can be the basis of feature selection 

and can validate researchers' decisions. Moreover, statistical techniques for feature 

extraction and selection are essential to evaluate and to define algorithm settings or results, 

as widely demonstrated in CTG Analyzer and eCTG applications.  

The final step of cardiac signals processing is classification. This step is likely the most 

classical step of biostatistics. The discrimination between diseased and healthy subjects is a 

standard sample of statistical analysis. Anyway, this step is not so easily applicable and 

requires to be deeply designed. A little change in classification procedure can completely 

change the clinical interpretations. Moreover, the advanced classification methods bring the 

research in a new concept of classification, in which the thresholding method is overcome. 

The idea to create a “black block” classifier able to learn how to detect a diseased patient can 

be compelling or alarming. To achieve this issue, the best tradeoff is the consideration of 

these new classifiers as a supporting method for the clinical investigations, created not to 

substitute the clinician, but to support him/her. With this idea, the deep-learning serial ECG 

classifiers aims to be introduced in clinical practice. 

In conclusion, this doctoral thesis underlines the importance of statistic in bioengineering, 

specifically in cardiac signals processing. Considering the results of the presented 

applications and their clinical meaning, the combination of cardiac bioengineering and 

statistics is a valid point of view to support the scientific research. Linked by a same aim, 

they are able to quantitative/qualitative characterize the phenomena of life sciences, 

becoming a single science, biostatistics. 

 



 

141 

References 

1. Barrett, K. E. & Raybould, H. E. Berne & Levy Physiology. Berne & Levy Physiology 

(2010). doi:10.1016/B978-0-323-07362-2.50044-9 

2. Moore, K. L., Dalley, A. F. & Agur, A. M. R. Introduction to Clinically Oriented 

Anatomy. Clin. Oriented Anat. (2010). 

3. Klabunde, R. E. Cardiovascular Physiology Concepts. Lippincott Williams & Wilkins 

256 (2004). doi:citeulike-article-id:2086320 

4. Conti, F. Fisiologia medica. Edi Ermes (2010). 

5. Walsh, E. P., Alexander, M. E. & Cecchin, F. Electrocardiography and Introduction to 

Electrophysiologic Techniques. Nadas’ Pediatr. Cardiol. (2006). doi:10.1016/B978-1-

4160-2390-6.50017-9 

6. German, D. M., Kabir, M. M., Dewland, T. A., Henrikson, C. A. & Tereshchenko, L. G. 

Atrial Fibrillation Predictors: Importance of the Electrocardiogram. Annals of 

Noninvasive Electrocardiology 21, 20–29 (2016). 

7. Francia, P. et al. P-wave Duration in Lead aVR and the Risk of Atrial Fibrillation in 

Hypertension. Ann Noninvasive Electrocardiol 20, 167–174 (2015). 

8. Kirchhof, P. et al. 2016 ESC Guidelines for the Management of Atrial Fibrillation 

Developed in Collaboration with EACTS. Eur. J. Cardio-Thoracic Surg. 50, e1–e88 

(2016). 

9. Malmivuo, J. Bioelectromagnetism. Disputatio (2014). 

doi:10.1109/IEMBS.2004.1404457 

10. Kashani, A. & Barold, S. S. Significance of QRS Complex Duration in Patients with 

Heart Failure. J. Am. Coll. Cardiol. (2005). doi:10.1016/j.jacc.2005.01.071 

11. Lobdell, K. W., Haden, D. W. & Mistry, K. P. Cardiothoracic Critical Care. Surg. Clin. 

North Am. (2017). doi:10.1016/j.suc.2017.03.001 

12. Savalia, S., Acosta, E. & Emamian, V. Classification of Cardiovascular Disease Using 

Feature Extraction and Artificial Neural Networks. J. Biosci. Med. 05, 64–79 (2017). 

13. Kaplan, J. Essentials of Cardiac Anesthesia. Essentials of Cardiac Anesthesia (2008). 

doi:10.1016/B978-1-4160-3786-6.X0035-6 

14. Couderc, J. P. & Lopes, C. M. Short and Long QT Syndromes: Does QT Length Really 

Matter. J. Electrocardiol. (2010). doi:10.1007/s10681-015-1562-5 

15. Branca, F. Fondamenti di ingegneria clinica. (2000). 



 

142 

16. Mason, R. E. & Likar, I. A New System of Multiple-Lead Exercise Electrocardiography. 

Am. Heart J. 71, 196–205 (1966). 

17. Dower, G. E., Machado, H. B. & Osborne, J. A. On Deriving the Electrocardiogram 

from Vectorcardiographic Leads. Clin. Cardiol. 3, 87–95 (1980). 

18. Dower, G. E., Yakush, A., Nazzal, S. B., Jutzy, R. V. & Ruiz, C. E. Deriving the 12-lead 

Electrocardiogram from Four (EASI) Electrodes. J. Electrocardiol. 21, (1988). 

19. Burattini, L., Zareba, W. & Burattini, R. Is T-wave Alternans T-wave Amplitude 

Dependent? Biomed. Signal Process. Control 7, 358–364 (2012). 

20. Man, S., Maan, A. C., Schalij, M. J. & Swenne, C. A. Vectorcardiographic diagnostic & 

prognostic information derived from the 12-lead electrocardiogram: Historical 

review and clinical perspective. J. Electrocardiol. 48, 463–475 (2015). 

21. Sbrollini, A. et al. Serial ECG Analysis : Absolute Rather than Signed Changes in the 

Spatial QRS-T Angle Should Be Used to Detect Emerging Cardiac Pathology Deep-

Learning Serial ECG Classifier. in Computing in Cardiology 1–4 (2018). 

22. Liu, C. et al. An open access database for the evaluation of heart sound algorithms. 

Physiol. Meas. (2016). doi:10.1088/0967-3334/37/12/2181 

23. Mr. Hrishikesh Limaye, M. V. V. D. ECG Noise Sources and Various Noise Removal 

Techniques: A Survey. Int. J. Appl. or Innov. Eng. Manag. (2016). 

24. Pambianco, B. et al. Electrocardiogram Derived Respiratory Signal through the 

Segmented-Beat Modulation Method. in 2018 40th Annual International Conference 

of the IEEE Engineering in Medicine and Biology Society (EMBC) 5681–5684 (IEEE, 

2018). doi:10.1109/EMBC.2018.8513493 

25. Winter, D., Rau, G., Kadefors, R., Broman, H. & De Luca, C. J. Summary for 

Policymakers. in Climate Change 2013 - The Physical Science Basis (ed. 

Intergovernmental Panel on Climate Change) 1–30 (Cambridge University Press, 

1980). doi:10.1017/CBO9781107415324.004 

26. Burattini, L. et al. Cleaning the electrocardiographic signal from muscular noise. in 

12th International Workshop on Intelligent Solutions in Embedded Systems (WISES) 

57–61 (2015). 

27. Kumar, D., Carvalho, P., Antunes, M., Paiva, R. P. & Henriques, J. Noise detection 

during heart sound recording using periodicity signatures. Physiol. Meas. (2011). 

doi:10.1088/0967-3334/32/5/008 

28. Bemmel, J. & van Musen, M. Handbook of Medical Informatics. Statistics in Medicine 



 

143 

(1997). doi:10.1002/(SICI)1097-0258(19980630)17:12<1416::AID-

SIM883>3.0.CO;2-M 

29. Laguna, P. et al. New algorithm for QT interval analysis in 24-hour Holter ECG: 

performance and applications. Med. Biol. Eng. Comput. (1990). 

doi:10.1007/BF02441680 

30. Rangayyan, R. M. Biomedical Signal Analysis - A Case-Study Approach. Signals 

(2002). doi:10.1002/9780470544204 

31. Ching Long, C. Introduction to Stochastic Processes in Biostatistics. Wiley (1968). 

doi:10.1080/00401706.1969.10490745 

32. Landini, L. Fondamenti di analisi di segnali biomedici. (2005). 

33. Johonson, D. H. Statistical signal processing. (2013). 

34. Sbrollini, A. et al. Surface electromyography low-frequency content: Assessment in 

isometric conditions after electrocardiogram cancellation by the Segmented-Beat 

Modulation Method. Informatics Med. Unlocked 13, 71–80 (2018). 

35. Sbrollini, A. et al. Separation of Superimposed Electrocardiographic and 

Electromyographic Signals. in IFMBE Proceedings 65, 518–521 (2018). 

36. Sbrollini, A. et al. Evaluation of the Low-Frequency Components in Surface 

Electromyography. in 2016 38th Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society (EMBC) 3622–3625 (IEEE, 2016). 

doi:10.1109/EMBC.2016.7591512 

37. Nasim, A. et al. GPU-Based Segmented-Beat Modulation Method for Denoising 

Athlete Electrocardiograms During Training. in Computing in Cardiology 2–5 (2018). 

doi:10.22489/CinC.2018.038 

38. Agostinelli, A. et al. Noninvasive Fetal Electrocardiography Part II: Segmented-Beat 

Modulation Method for Signal Denoising. Open Biomed. Eng. J. 11, 25–35 (2017). 

39. Strazza, A. et al. PCG-Delineator: an Efficient Algorithm for Automatic Heart Sounds 

Detection in Fetal Phonocardiography. in Computing in Cardiology 1–4 (2018). 

doi:10.22489/CinC.2018.045 

40. Sbrollini, A. et al. Fetal Phonocardiogram Denoising by Wavelet Transformation: 

Robustness to Noise. in Computing in Cardiology 1–4 (2017). 

doi:10.22489/CinC.2017.331-075 

41. Luo, S. & Johnston, P. A review of electrocardiogram filtering. in Journal of 

Electrocardiology (2010). doi:10.1016/j.jelectrocard.2010.07.007 



 

144 

42. C.E. Kossman, D.A. Brody, G.E. Burch, H.H. Hecht, F.D. Johnston, C. Kay, E. 

Lepeschkin, H.V. Pipberger, G. Baule, A.S. Berson, S.A. Briller, D.B. Geselowitz, L.G. 

Horan, O.H. Schmitt. Recommendations for Standardization of Leads and of 

Specifications for Instruments in Electrocardiography and Vectorcardiography. 

Circulation 35, 583–602 (1967). 

43. Agostinelli, A. et al. CaRiSMA 1.0: Cardiac Risk Self-Monitoring Assessment. Open 

Sports Sci. J. 10, 179–190 (2017). 

44. Agostinelli, A. et al. Segmented Beat Modulation Method for Electrocardiogram 

Estimation from Noisy Recordings. Med. Eng. Phys. 38, 560–568 (2016). 

45. Marcantoni, I. et al. T-Wave Alternans in Partial Epileptic Patients. in Computing in 

Cardiology 1–4 (2018). doi:10.22489/CinC.2018.043 

46. Sbrollini, A. et al. AThrIA: a New Adaptive Threshold Identification Algorithm for 

Electrocardiographic P Waves. in Computing in Cardiology 1–4 (2017). 

doi:10.22489/CinC.2017.237-179 

47. Sbrollini, A. et al. Automatic Identification of Atrial Fibrillation by Spectral Analysis 

of Fibrillatory Waves. in Computing in Cardiology 1–4 (2018). 

doi:10.22489/CinC.2018.066 

48. Agostinelli, A. et al. Noninvasive Fetal Electrocardiography Part I: Pan-Tompkins’ 

Algorithm Adaptation to Fetal R-peak Identification. Open Biomed. Eng. J. 11, 17–24 

(2017). 

49. Leng, S. et al. The electronic stethoscope. BioMedical Engineering Online (2015). 

doi:10.1186/s12938-015-0056-y 

50. Jatupaiboon, N., Pan-Ngum, S. & Israsena, P. Electronic stethoscope prototype with 

adaptive noise cancellation. in Proceedings - 2010 8th International Conference on 

ICT and Knowledge Engineering, ICT and KE 2010 (2010). 

doi:10.1109/ICTKE.2010.5692909 

51. Gabor, D. Theory of communication. J. Inst. Electr. Eng. - Part I Gen. (1947). 

doi:10.1049/ji-1.1947.0015 

52. Graps, A. An Introduction to Wavelets. IEEE Comput. Sci. Eng. (1995). 

doi:10.1109/99.388960 

53. Peltola, M. A. Role of editing of R-R intervals in the analysis of heart rate variability. 

Frontiers in Physiology (2012). doi:10.3389/fphys.2012.00148 

54. Salo, M. A., Huikuri, H. V. & Seppanen, T. Ectopic beats in heart rate variability 



 

145 

analysis: Effects of editing on time and frequency domain measures. Ann. 

Noninvasive Electrocardiol. (2001). doi:10.1111/j.1542-474X.2001.tb00080.x 

55. Lippman, N., Stein, K. M. & Lerman, B. B. Comparison of methods for removal of 

ectopy in measurement of heart rate variability. Am. J. Physiol. Circ. Physiol. (1994). 

doi:10.1152/ajpheart.1994.267.1.H411 

56. Sbrollini, A. et al. Second Heart Sound Onset to Identify T-Wave Offset. in Computing 

in Cardiology (2017). doi:10.22489/CinC.2017.085-076 

57. Jolliffe, I. T. Principal Component Analysis(BookFi.org).pdf. (2002). 

doi:10.2307/1270093 

58. Castells, F., Laguna, P., S??rnmo, L., Bollmann, A. & Roig, J. M. Principal component 

analysis in ECG signal processing. EURASIP J. Adv. Signal Process. (2007). 

doi:10.1155/2007/74580 

59. Kirkwood, B. R. & Sterne, J. A. C. Essential Medical Statistics. Medical statistics 

(2003). doi:10.1017/CBO9781107415324.004 

60. Neideen, T. & Brasel, K. Understanding Statistical Tests. J. Surg. Educ. (2007). 

doi:10.1016/j.jsurg.2007.02.001 

61. Marcantoni, I. et al. T-Wave Alternans Identification in Direct Fetal 

Electrocardiography. in Computing in Cardiology 1–4 (2017). 

doi:10.22489/CinC.2017.219-085 

62. Marcantoni, I. et al. Automatic T-Wave Alternans Identification in Indirect and Direct 

Fetal Electrocardiography. in 2018 40th Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society (EMBC) 4852–4855 (IEEE, 2018). 

doi:10.1109/EMBC.2018.8513109 

63. Asuero, A. G., Sayago, A. & González, A. G. The correlation coefficient: An overview. 

Critical Reviews in Analytical Chemistry (2006). doi:10.1080/10408340500526766 

64. Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical 

Diagnostic Test Evaluation. Casp. J Intern Med (2013). 

doi:10.1017/CBO9781107415324.004 

65. King, G. & Zeng, L. Logistic Regression in Rare Events Data. Polit. Anal. 9, 137–163 

(2001). 

66. Goodfellow, Ian, Bengio, Yoshua, Courville, A. Deep learning. MIT Press (2016). 

67. Morettini, M. et al. Assessment of glucose effectiveness from short IVGTT in 

individuals with different degrees of glucose tolerance. Acta Diabetol. (2018). 



 

146 

doi:10.1007/s00592-018-1182-3 

68. Czepiel, S. A. Maximum Likelihood Estimation of Logistic Regression Models: Theory 

and Implementation. Cl. Notes (2002). doi:10.1016/j.molbrainres.2004.09.017 

69. Pace, R. K. Maximum likelihood estimation. in Handbook of Regional Science (2014). 

doi:10.1007/978-3-642-23430-9_88 

70. Haykin, S. Neural networks - a comprehensive foundation. The Knowledge 

Engineering Review (1999). doi:10.1017/S0269888998214044 

71. Laguna, P., Mark, R. G., Goldberg, A. & Moody, G. B. A Database for Evaluation of 

Algorithms for Measurement of QT and Other Waveform Intervals in the ECG. in 

Computers in Cardiology 673–676 (IEEE, 1997). doi:10.1109/CIC.1997.648140 

72. Martínez, J. P., Almeida, R., Olmos, S., Rocha, A. P. & Laguna, P. A Wavelet-Based 

ECG Delineator Evaluation on Standard Databases. IEEE Trans. Biomed. Eng. 51, 

570–581 (2004). 
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