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Abstract

In recent years the increasing availability of High Performance Computing (HPC)
resources strongly promoted the widespread of high fidelity simulations for industrial
research and design. One of the most promising approaches to those kind of simula-
tions is the discontinuous Galerkin (dG) discretization method. Those methods have
been applied in the context of Large Eddy Simulation (LES) turbulence modelling
approaches. Research on this topic is growing fast and several efforts focused on de-
vising efficient time integration strategies, as well as parallelization algorithms, suited
for massively parallel architectures.

The contribution of the thesis is three-fold. First, the work introduces an effi-
cient hybrid MPI/OpenMP parallelisation paradigm to fruitfully exploit large HPC
facilities. Second, it reports efficient, scalable and memory saving solution strategies
for stiff dG discretisations. Third, it compares those solution strategies, for the first
time using the same framework, to hybridizable discontinuous Galerkin (HDG) meth-
ods, including a novel implementation of a p-multigrid preconditioning approach, on
unsteady flow problems involving the solution of the Navier–Stokes equations.

The improvements in computational efficiency have been evaluated on these cases
of growing complexity involving large eddy simulations of turbulent flows. First, the
Rayleigh-Bénard convection problem and the turbulent channel flow at moderately
high Reynolds numbers is presented. Being the nature of those problems not particu-
larly stiff, the solution strategies proposed result up to five times faster than standard
matrix-based methods while allocating the 7% of the memory. A second family of test
cases involve the LES simulation of a rounded leading edge flat plate under different
levels of free-stream turbulence. Although the increased stiffness of the iteration ma-
trix due to the use of curved and stretched elements, the solver resulted more than
three times faster while allocating the 15% of the memory if compared to standard
methods. As a final validation of the methods proposed on an industry-relevant test
case, the large eddy simulation of the Boeing Rudimentary Landing Gear at Re = 106,
is reported. In all the cases, a remarkable agreement with experimental data as well
as previous numerical simulations is documented.

vii





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 The numerical framework 5
2.1 Governing PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The dG space discretization . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Explicit Runge–Kutta schemes . . . . . . . . . . . . . . . . . . 11
2.3.2 Implicit Runge–Kutta schemes . . . . . . . . . . . . . . . . . . 12

3 Hybrid MPI/OpenMP parallelization strategies 15
3.1 Parallel OpenMP Implementation . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Colouring algorithm . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Partition algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Faces-partition algorithm . . . . . . . . . . . . . . . . . . . . . 21
3.1.4 Comments on the algorithms . . . . . . . . . . . . . . . . . . . 22
3.1.5 Hybrid MPI/OpenMP parallel algorithm . . . . . . . . . . . . 23

3.2 Test cases description . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 2D inviscid flow problem . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 3D inviscid flow problems . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 3D viscous flow problem . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Parallel performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Performance of the OpenMP implementations . . . . . . . . . . 29
3.3.2 Performance comparison with the recent literature . . . . . . . 35
3.3.3 Performance of the Hybrid MPI/OpenMP . . . . . . . . . . . 36
3.3.4 OpenMP & accelerators . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Matrix-free implicit time integration 45
4.1 Matrix-free GMRES algorithm . . . . . . . . . . . . . . . . . . . . . . 46
4.2 GMRES single-grid preconditioning . . . . . . . . . . . . . . . . . . . . 49
4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 On the ROSI2PW performances . . . . . . . . . . . . . . . . . 51
4.3.2 On the GMRES solver tolerance effects . . . . . . . . . . . . . 51
4.3.3 Jacobian lagging . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.4 Effects of the space discretization . . . . . . . . . . . . . . . . . 58
4.3.5 Strong scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



Contents

5 Multigrid preconditioning for stiff discretizations 63
5.1 Multigrid preconditioners . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1.1 Restriction and prolongation operators . . . . . . . . . . . . . . 65
5.1.2 Fine and coarse grid Jacobian operators . . . . . . . . . . . . . 66
5.1.3 Scaling of the stabilization term . . . . . . . . . . . . . . . . . 67
5.1.4 The p-multigrid iteration . . . . . . . . . . . . . . . . . . . . . 69
5.1.5 Memory footprint considerations . . . . . . . . . . . . . . . . . 71

5.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1 Poisson Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Incompressible Navier–Stokes equations . . . . . . . . . . . . . 76

6 Preconditioning novel space discretizations 85
6.1 Hybridizable discontinuous Galerkin discretization . . . . . . . . . . . 86

6.1.1 Mixed form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.2 Primal form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Time integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.1 Preconditioning options and memory footprint . . . . . . . . . 97
6.4 Numerical results on a model test case . . . . . . . . . . . . . . . . . . 98

6.4.1 Test case description . . . . . . . . . . . . . . . . . . . . . . . . 98
6.4.2 Assessment of the solution accuracy . . . . . . . . . . . . . . . 99
6.4.3 Assessment of the approximate-inherited multigrid approach

for HDG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4.4 Evaluation of the solver efficiency . . . . . . . . . . . . . . . . . 103
6.4.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5 Results on complex test cases . . . . . . . . . . . . . . . . . . . . . . . 109
6.5.1 Circular cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5.2 Laminar flow around a heaving and pitching NACA 0012 airfoil 112

6.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Applications to incompressible turbulent flows 117
7.1 Rayleigh–Bénard natural convection . . . . . . . . . . . . . . . . . . . 117
7.2 Channel flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.3 ERCOFTAC T3L test case suite . . . . . . . . . . . . . . . . . . . . . 130
7.4 Boeing Rudimentary Landing Gear test case . . . . . . . . . . . . . . . 142

8 Conclusion and outlook 147
8.1 Main achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 Outlook and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 149

x



Chapter 1

Introduction

1.1 Motivation

In recent years the increasing availability of High Performance Computing (HPC)
resources strongly promoted the widespread of high fidelity simulations for industrial
research and design. One of the most promising approaches to those kind of simu-
lations is the discontinuous Galerkin (dG) discretization method. dG methods have
been successfully applied to the simulation of turbulent flows by solving the incom-
pressible [1, 2, 3] and compressible [4, 5] Reynolds Averaged Navier–Stokes (RANS)
equations. More recently, they have been also applied in the context of Large Eddy
Simulation (LES) turbulence modelling approaches. The high potential of dG approx-
imations for the under-resolved simulation of turbulent flows has been demonstrated
in the literature for those moderate Reynolds numbers conditions where Reynolds-
averaged Navier–Stokes (RANS) approaches are known to fall short, e.g., massively
separated flows [6, 7, 8, 9, 10, 11, 12].

The application of dG methods for DNS and LES is appealing for several reasons.
Those methods can easily achieve high-order accuracy with a great geometrical flex-
ibility and are perfectly suited to hp-adaptation techniques, as well as to parallel
computing, due to the compact stencil of the space discretization. Moreover, dG
methods show numerical properties suitable to the Implicit LES (ILES) of turbulent
flows [13]. In fact, the dissipation of the numerical scheme behaves like a spectral
cut-off filter, which mimics the role of subgrid-scale (SGS) models proper of classical
LES approaches. However, advantages in favor of this strategy over classical SGS
methods exist: having a spectral dissipation confined on the highest wavenumbers
at high orders of accuracy, ILES allows for an accurate simulation of laminar-to-
turbulent transitional flows where explicit SGS modeling using constant viscosity are
known to fail, and variable-viscosity SGS models are typically tuned using ad-hoc
prescriptions [14]. In addition, it has been also proved that using high order DG
discretizations it is possible to achieve the same spatial resolution with a reduced
number of degrees of freedom (DoF) than standard methods [7, 6].

Research on this topic is growing fast and several efforts focused on devising effi-
cient time integration strategies, as well as parallelization algorithms, suited for mas-
sively parallel architectures. Indeed, the inherently unsteady nature of LES/ILES
and the need to reduce time-to-results pose serious challenges to the achievement of
cost effective scale-resolving computations and the ability to fruitfully exploit large
computational facilities. In this context high-order implicit time integration schemes
are attractive to overcome the strict stability limits of explicit methods (which scale
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Chapter 1 Introduction

as ∆t ∼ h/k2, where h is the element size and k is the polynomial order [15]) when
dealing with high-degree polynomial approximations, see for example [1, 8, 16]. How-
ever, the development of an efficient solution and time integration strategy is still
subject of active research. In fact, implicit methods necessarily entail the solution of
large non-linear/linear systems of equations [17, 16, 18]. Such large systems are char-
acterised by a sparse iteration matrix that requires a large CPU time and memory to
be evaluated and stored, and need to be solved with an iterative solver. To overcome
this limitation, several previous studies proposed a matrix-free implementation of the
iterative solution strategy. This approach does not need to store the iteration matrix,
and its use appear to gain interests from the research community. However, even in
a matrix-free context, the preconditioner still needs the evaluation of the Jacobian
as well as its storage, and thus the memory footprint can be fairly high when using
standard methods such as the incomplete lower-upper factorization with zero filling,
ILU(0), of the iteration matrix. For this reason the development of an efficient as
well as memory saving preconditioner strategy is mandatory to reduce the overall
memory footprint of the application. With the idea of applying those algorithms on
large HPC facilities, the strategy has to be scalable, i.e. the number of iterations to
reach convergence does not change by parallelising the computation using message
passing interface (MPI) libraries. This is not the case of state-of-the-art precondi-
tioners, which degrade the performances when domain decomposition approaches are
employed.

Another interesting aspect is that current trends in HPC facilities promote the
use of alternative ways to MPI to fruitfully exploit new computational nodes. For
example, the development of many integrated cores (MIC) such as the Xeon Phi.
It is typically retained that open multi-processing paradigms (OpenMP) allows a
performance improvement on those platforms: in fact, the use of MPI within a node
can be not optimal since the shared memory can be exploited to reduce the overhead
cost of the communications. For this reason, a hybrid MPI/OpenMP implementation
is usually suggested as a viable way to improve the parallel efficiency of codes running
on clusters of multi-core nodes.

Bearing that in mind, the main objectives of the work are three-fold. First, he the-
sis addresses the parallelization of the explicit-in-time discontinuous Galerkin solver
on new HPC architectures by proposing a novel hybrid MPI/OpenMP paradigm.
Second, the thesis aims at the development of efficient, memory saving and scal-
able solvers for solving linear systems arising from implicit high-order discontinuous
Galerkin discretizations applied to scale-resolving simulations. Third, the thesis com-
pares the novel solution strategies in the context of novel space discretizations such
as the hybridizable discontinuous Galerkin method.

1.2 Thesis outline

The thesis is organized as follows. Chapter 2 reports the description of the governing
partial differential equations as well as the details of the space and time discretizations.

Chapter 3 reports on the hybrid MPI/OpenMP parallelization of the explicit ver-
sion of the discontinuous Galerkin solver for compressible flows. Target applications

2



1.2 Thesis outline

considered linear Euler as well as Euler equations, and the compressible Navier–Stokes
equations. The aim is to increase the scalability of the solver on large HPC facilities
reducing the amount of intra-node communications by exploiting the shared mem-
ory context. To this end, three pure OpenMP parallelization strategies are proposed
and compared on different machine architectures and using different compilers. To
avoid data races, the first strategy implements a colouring algorithm for the mesh
element faces; the second one mimics a pure MPI implementation, while the third
method is somehow half way between the previous two. While the parallel efficiency
is affected by machines and compilers employed, some general indications and trends
are provided. In particular, it is observed that thanks to the compactness of the dis-
cretization, all the three strategies perform quite satisfactory and show optimal par-
allel efficiencies on all the architectures. More importantly, the hybrid MPI/OpenMP
parallel performance of the method is also assessed on a turbulent flow computation
on three different HPC facilities using the simplest OpenMP strategy considered, i.e.
the colouring algorithm, which avoids two nested partitioning of the domain. It is
demonstrated that such implementation provides high parallel efficiencies on large
HPC facilities consisting of multi- and many-core nodes. This is particularly true
when the set of NS equations is considered. In fact, the discretization of the viscous
terms involve more floating point operations in the loop over faces than EE/LEE.
The hybrid approach also showed a clear gain in parallel performance over pure MPI
when the CPU is able to handle more than one hardware threads per core.

Chapter 4 introduces the implementation of a GMRES matrix-free framework and
provides insights on its computational efficiency. To this end, several solver settings
such as the time step size, the relative tolerance for the linear system solution, the
lagging of the Jacobian evaluation, the mesh density, the polynomial order and the
parallel efficiency are considered. The method is assessed through the solution of
a model test case for the incompressible Navier–Stokes equations, i.e. the laminar
travelling waves. The results prove that, on top of the memory saving, a matrix-free
iteration approach performs comparably to a matrix-based one in terms of number
of iterations, and shows a competitive CPU time when the computational complexity
increases, for example using high-order polynomials. In this chapter, since the space
discretization was not considerably stiff, standard preconditioning strategies such as
ILU(0) and element-wise block-Jacobi are employed for the iterative solver.

Chapter 5 extends the matrix-free framework to more powerful preconditioning
strategies able to deal with stiffer space discretizations. To this end, a multilevel pre-
conditioning strategy based on lower-order discretization of the problem is proposed.
The strategy combines a matrix-free implementation of the smoother and the use of
memory saving element-wise block-Jacobi preconditioners on the finest level to ob-
tain optimal algorithmic scalability, large speed-ups in CPU time and a considerable
reduction in the overall memory footprint of the application. An aspect of novelty
consists on the use of a rescaled-inherited approach, as opposed to the standard in-
heritance of the polynomial spaces to obtain the coarse order matrix operators. The
approach reduces the amount of penalization on the coarse levels of the discretization
according to the scaling of the stabilization term and improves the convergence rates
of the iterative solution strategy. The solution two stiff problems is presented. First,

3



Chapter 1 Introduction

the incompressible, two-dimensional flow around a circular cylinder; second, the in-
compressible, three-dimensional laminar flow around a sphere. Significant benefits of
the approach respect to standard methods in terms of number of iterations, execution
time of the application and memory footprint are documented.

Chapter 6 focuses on comparing the efficiency of the strategies proposed in Chap-
ter 5 to those obtained using novel space discretizations, i.e. the hybridizable dis-
continuous Galerkin (HDG) method in the context of compressible flow simulations.
The aim here is both to introduce efficient and scalable preconditioning strategies for
this class of discretization methods using multilevel strategies based on coarse-order
discretizations of the problem, as well as comparing within a single framework the
performance with DG. In HDG the globally coupled degrees of freedom are only those
involving faces, while the element-interior degrees of freedom are statically condensed
out of the system. For this reason, standard-inheritance would require a larger num-
ber of operations if compared to DG. With the idea of minimising the costs of the
projections, an approximate-inherited approach is introduced to increase the compu-
tational efficiency. It is worth mentioning that this kind of application have never
been reported in the literature, as p-multigrid is still an open problem for HDG. The
approach is validated in two-dimensional laminar compressible flows of growing com-
plexity. The results show that the strategy is able to reduce considerably the number
of iterations if compared to standard methods, but the costs of the static condensa-
tion and back-solve which can still be pretty large at high orders prevent this gain to
be reflected on the execution time of the application. Part of the scope of the chapter
is also to compare HDG with DG in terms of accuracy and efficiency. In particular,
the memory-saving strategy introduced in 5 is considered for the comparison. It is
observed that, while HDG works with significantly less degrees of freedom, the mem-
ory footprint of the solvers are comparable, but the executions time are still in favour
to the DG based matrix-free multigrid solver.

Chapter 7 presents applications of the solution strategies hereby developed on in-
compressible turbulent flows ranging from academic to industry-relevant test cases:
the turbulent channel flow up to Reτ = 950, the Rayleigh–Bénard natural convection
up to Ra = 108, the turbulent flow on a rounded-leading edge flat plate, namely the
T3L test case of the ERCOFTAC test case suite under different Reynolds numbers
and levels of free-stream turbulence. Finally, preliminary results of the under-resolved
DNS of the Boeing Rudimentaring Landing Gear test case at Re = 106 is presented.
A discussion on the physical accuracy of the results will precede insights on the com-
putational efficiency of the solvers, demonstrating reliability and the accuracy of the
proposed solution strategies as well as considerable speed-up values if compared to
state-of-the-art solution methods.

Conclusions and final remarks are given in Chapter 8.
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Chapter 2

The numerical framework

The thesis considers applications of different types involving different flow models and
complexity: the compressible Navier–Stokes equations (CNS), Euler equations (EE),
Linearized Euler equations (LEE), incompressible Navier–Stokes equations (INS),
and INS with Boussinesq approximation of buoyancy effects (BINS). Those set of
PDEs are discretized in space and time using the discontinuous Galerkin method
coupled with explicit and implicit high order Runge–Kutta schemes. The aim of the
chapter is to describe the numerical discretization features and to provide appropriate
background on the implementation details.

2.1 Governing PDEs

The general form of the partial differential equations (PDEs) considered in this work
can be written as

∂tw +∇ · (F c − F ν) + s = 0, (2.1)

where w ∈ Rm is the vector of working variables, with m equal to the number
of variables, F c,F ν ∈ Rd×Rm are the convective and diffusive flux functions, and
s ∈ Rm is the source term of the governing equations. Note that the fluxes F c,F ν

are function of the state vector w and gradient vector ∇w, while the source term
is case-specific. The definition of the working variables, fluxes and source terms is
provided in the remaining of the section. In what follows, the quantities are given
in non-dimensional form using reference values of length (Lr), velocity (Ur), pressure
(pr), density (ρr), temperature (θr), dynamic viscosity (µr), and thermal conductivity
(λr).

Compressible Navier–Stokes equations

The set of compressible Navier–Stokes (NS) equations are obtained as

w =

 ρ

ρu

ρe0

 , F c =

 ρu

ρu⊗ u+ (p/γM2)I
u(ρe0 + (γ − 1)p)

 ,

F ν =

 0
(1/Re)Π

(γ(γ − 1)M2/Re)Π · u− (γ/PrRe)q

 ,

(2.2)

with u ∈ Rd and d the number of space dimensions. The non-dimensional groups
M , Re and Pr are the Mach number, the Reynolds number and the Prandtl number

5



Chapter 2 The numerical framework

defined such that

M = Ur√
γθ

, Re = ρrUrLr
µr

, Pr = µrcp
λr

while e0, p ∈ R are the total energy and pressure, while Π ∈ Rd×d is the total stress
tensor and q ∈ Rd is the heat flux vector. Those quantities are given by

e0 = e+ (u · u)/2, e = cvθ, p = ρθ,

Π = 2µ
(
D − 1

3(∇ · u)I
)
, q = −λ∇θ, D = 1

2
(
∇u+ (∇u)T

)
.

Here e is the internal energy, θ is the temperature, γ = cp/cv is the ratio of gas specific
heats, µ is the non-dimensional viscosity, λ is the non-dimensional conductivity, and
D is the non-dimensional mean strain-rate tensor.

Euler equations

Euler equations set is easily obtained from (2.2) by zeroing out the diffusive terms.
Therefore,

w =

 ρ

ρu

ρe0

 , F c =

 ρu

ρu⊗ u+ (p/γM2)I
u(ρe0 + (γ − 1)p)

 . (2.3)

Linearized Euler equations

Linearized Euler equations consider small perturbations of the flow field with respect
to a non-uniform, average state and are typically employed for acoustic propagation
studies. The working variables are therefore perturbation quantities, while the fluxes
are obtained from (2.3) by linearising around a mean flow solution ρ,u, p. In the
framework employed, the pressure is used instead of the total energy. The set reads
as follows:

w =

 ρ

u

p

 , F c =

 uρ+ ρu

u⊗ u+ p/(ργM2)I
up+ γpu

 , (2.4)

The source term s, which represents the effects of the non-uniform mean flow on the
perturbation fields, is considered zero for uniform average flow fields.

Incompressible Navier–Stokes equations

The complete set of the Incompressible Navier–Stokes (INS) equations can be written
in the following non-dimensional form

w =
(

0
u

)
, F c =

(
u

u⊗ u+ pI

)
, F ν =

(
0

(1/Re)∇u

)
, (2.5)

Here, p = P/ρ is the pressure divided by the constant density and Re is the Reynolds
number defined as for Eq. (2.2). Note that in the incompressible case the primitive
variables (p,u)T are used to solve the equations. However, the state vector is a
modified vector since it shows zero instead of the pressure variable.
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2.2 The dG space discretization

Incompressible Navier–Stokes with Boussinesq approximation

If the natural convection effects have to be considered, for example in the Rayleigh–
Bérnard convection (RBC) problem, the INS equations are properly modified under
the Boussinesq approximation and written in non-dimensional form using the follow-
ing vectors

w =

 0
u

θ

 , F c =

 u

u⊗ u+ pI

uθ

 ,

F ν =

 0
(
√
Pr/Ra)∇u

(1/
√
RaPr)∇θ

 , s =

 0
θn

0

 ,

(2.6)

where θ is the temperature and n is the gravitational acceleration direction. Equa-
tions (2.6) are non-dimensionalized using a reference length Lr, a representative tem-
perature difference ∆Θ, a reference “free-fall” velocity UR =

√
gα∆ΘLr, where

g is the gravitational acceleration and β the thermal expansion coefficient. The
Rayleigh number is Ra = gβ∆ΘL3

r/να, where ν = µ/ρ is the kinematic viscosity
and α = λ/(ρcp) is the thermal diffusivity, while Pr is defined as for Eq. (2.2).

2.2 The dG space discretization

The discontinuous Galerkin (dG) method considers the weak formulation of Equa-
tion (2.1). Rewriting the system in integral form,∫

Ω
∂tw +

∫
Ω
∇ · (F c − F ν) +

∫
Ω
s = 0. (2.7)

the weak formulation of the equations can be obtained by multiplying Equation (2.7)
by an arbitrary test function z ∈ Rm and integrate over the domain Ω. Integrating
by parts the divergence terms, the weak form of equation (2.7) reads: find u ∈ Rm

such that ∫
Ω
∂tw · z −

∫
Ω

(F c − F ν) : ∇z

+
∫
∂Ω
n · (F c − F ν) · [[z]] +

∫
Ω
s · z = 0,

(2.8)

∀z ∈ Rm. In Eq. (2.8), ∂Ω is the domain boundary and n is the normal pointing
outside the domain.

In order to build a dG discretization of equation (2.8), an approximation Ωh of Ω,
that is the collection of disjoint mesh elements κ ∈ Th, such that

⋃
κ∈Th

κ = Ωh, is
considered. The number of non-overlapping elements is set as ne = card(Th). The
mesh skeleton Fh is the collection of mesh faces σ. Internal faces σ ∈ F i

h are defined
as the intersection of the boundary of two neighboring elements: σ = ∂κ

⋂
∂κ′ with

κ 6= κ′. Boundary faces σ ∈ Fb
h reads σ = ∂κ

⋂
∂Ωh. Clearly Fh = F i

h ∪ Fb
h .
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Chapter 2 The numerical framework

Moreover, it is set

Γih =
⋃
σ∈Fi

h

σ, Γbh =
⋃
σ∈Fb

h

σ, Γh = Γih ∪ Γbh. (2.9)

where σ denotes the generic mesh element face.
Each component of the state vector is sought, for a time interval t ∈ [0, tF ], in the

so called broken polynomial spaces defined over Th

Pkd(Th) =
{
vh ∈ L2(Ωh) | ∀κ ∈ Th, vh|κ ∈ Pkd(κ)

}
(2.10)

where Pkd(κ) is the space of polynomial functions in d variables and total degree
k defined over κ. To overcome the ill-conditioning of elemental mass matrices for
higher-order polynomials on high aspect ratio and curved elements, a hierarchical
and orthogonal set of shape functions defined in physical space is chosen. This set is
obtained by using a modified Gram-Schmidt procedure, considering as a starting point
a set of monomial functions of the same degree k. Since no continuity requirements
are enforced at inter-element boundaries, vh admits two-valued traces on the partition
of mesh skeleton F i

h. Accordingly, average and jump operators over internal faces are
introduced as

Average : {{vh}} = 1
2 (vh|κ + vh|κ′) , Jump : [[vh]] = (vh|κ − vh|κ′) . (2.11)

Those definition can be properly extended at the domain boundaries to account for
the weak imposition of boundary conditions of the problem.

Accounting for the considerations above, the discrete counterpart of Equation (2.8)
reads: find wh ∈ [Pkd(Th)]m such that, for all zh ∈ [Pkd(Th)]m,∑

κ∈Th

∫
κ

∂twh · zh −
∑
κ∈Th

∫
κ

(
F ch − F̃ νh

)
: ∇hzh

+
∑
σ∈Fh

∫
σ

nσ ·
(
F̂ ch − F̂ νh

)
· [[zh]] +

∑
κ∈Th

∫
κ

sh · zh = 0,
(2.12)

where [[zh]] = [[vh,i]] ei, with ei the unity vector on direction xi, and nσ is the normal
vector with respect to σ. While obtaining (2.12) from (2.1) follows a standard finite-
element practice, which involve the element-by-element integration by parts after
having multiplied by a suitable test function, the dG method hinges on the definition
of suitable numerical fluxes F̂ ch and F̃ νh , F̂ νh to ensure stability, consistency, local
conservation and inter-element coupling of the method.

Consistent and stable inviscid numerical fluxes F̂ ch can be obtained though the ap-
propriate solution of a Riemann problem. In this case, either the exact solver, the
Van Leer’s or the Roe’s approximate Riemann solvers are employed for the compress-
ible case [19, 20, 21]. The incompressible Navier–Stokes equations are handled in a
similar fashion through the exact solution of local Riemann problems based on an
artificial compressibility perturbation of the equations as proposed in [22, 1]. It is
worth pointing out that the artificial compressibility term involve the computation of
the flux function only, and the approach is fully consistent with the incompressible
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2.3 Time integration

Navier–Stokes equations when a time accurate computation is performed.
As regards the viscous numerical fluxes, a consistent gradient is introduced accord-

ing to the first form of the Bassi and Rebay scheme (BR1) proposed in [23]. For all
πh ∈ [Pkd(Th)]d×m, wh ∈ [Pkd(Th)]m, the consistent gradient τh(wh) is defined such
that ∫

Ω
(τh(wh)−∇wh) : πh=−

∑
σ∈Fh

∫
σ

[[wh]] · {{πh}} · nσ

:=
∑
σ∈Fh

∫
Ω
rσ([[wh]]) : πh=

∑
κ∈Th

∫
κ

Rκ(wh) : πh
(2.13)

where rσ([[wh]]) : [Pkd(σ)]m → [Pkd(Th)]d×m is the local lifting operator, and

Rκ(wh) :=
∑
σ∈F∂κ

rσ([[wh]]) (2.14)

is the elemental lifting operator, with F∂κ is the set of faces belonging to κ. In
this work the implementation of the viscous flux functions rely on the second form
of the Bassi and Rebay scheme (BR2), introduced to reduce the stencil of the BR1
discretization and analyzed in the context of the Poisson problem by [24] and [25].
The BR2 viscous fluxes are functions of elemental spatial derivatives corrected by
suitable lifting operator contributions

F̃ νh = F ν (wh,∇hwh −Rκ(wh)) ,

F̂ νh = {{F ν (wh,∇hwh − ησrσ([[wh]]))}} ,
(2.15)

F̂ ν ensures consistency and stability of the scheme and F̃ ν guarantees the symmetry of
the formulation. As proved by Brezzi et al. [24], coercivity for the BR2 discretization
of the Laplace equation holds provided that ησ is greater than the maximum number
of faces of the elements sharing σ.

As regards the boundary conditions of the problem on the boundary faces σ ∈ Fb
h ,

a ghost boundary state wb having support on the interface σ ∈ Fb
h of a ghost neigh-

boring elements κg is properly define. The ghost boundary imposes the conservation
of Riemann invariants based on the hyperbolic nature of the governing partial dif-
ferential equations. Note that in the incompressible case, the hyperbolic nature of
the system is recovered by the artificial compressibility flux approach. Accordingly,
both the internal state w and the boundary data are involved in the definition of
flux functions on the boundary faces of the computational domain. More detailed
information on boundary conditions are beyond the scope of this chapter and can be
found in Ref. [26, 4, 22] for the EE/LEE, CNS and INS cases.

2.3 Time integration

The accurate time integration of the spatially dG discretized PDEs can be presented
in compact form by recalling the state vector wh ∈ [Pkd(Th)]m and identifying the
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Chapter 2 The numerical framework

unknown vector at time tn with wnh . Moreover, the flux functions are introduced as

F̃h(wh) def=
(
F ch − F̃ νh

)
∈ Rd ⊗ Rm (2.16)

F̂h(wh) def=
(
F̂ ch − F̂ νh

)
∈ Rd ⊗ Rm, (2.17)

collecting the viscous and inviscid flux contributions. For all wh, zh ∈ [Pkd(Th)]m, the
residual of the dG spatial discretization in (2.12) is defined as follows

fh(wh, zh) =−
∑
κ∈Th

∫
κ

m∑
i=1

d∑
p=1

F̃p,i(wh) ∂zi
∂xp

+
∑
σ∈Fh

∫
σ

m∑
i=1

d∑
p=1

nσp F̂p,i(wh) [[zi]] ,

(2.18)

where the mesh step size subscript when working in index notation has been dropped.
For all wh, δwh, zh ∈ [Pkd(Th)]m, the Jacobian of the residual reads

jh(wh, δwh, zh) = ∂fh(wh, zh)
∂wh

δwh. (2.19)

In particular the gradient-free j!∇
h (wh, δwh, zh) part of the operator, as well as the

gradient j∇h (wh, δwh, zh) contribution, are splitted as

j!∇
h (wh, δwh, zh) =−

∑
κ∈Th

∫
κ

m∑
i,j=1

d∑
p=1

∂F̃p,i(wh)
∂wj

δwj
∂zi
∂xp

+
∑
σ∈Fh

∫
σ

m∑
i,j=1

d∑
p=1

nσp
∂F̂p,i(wh)

∂wj
δwj [[zi]] ,

(2.20)

j∇h (wh, δwh, zh) =

−
∑
κ∈Th

∫
κ

m∑
i,j=1

d∑
p,q=1

∂F̃p,i(wh)

∂
(
∂wj/∂xq −Rκq (wj)

) (∂(δwj)
∂xq

−Rκq (δwj)
)

∂zi
∂xp

+

+
∑
σ∈Fh

∫
σ

m∑
i,j=1

d∑
p,q=1

nσp
∂F̂p,i(wh)

∂
(
∂wj/∂xq − ησrσq (wj)

) {{∂(δwj)
∂xq

− ησ rσq ([[δwj ]])
}}

[[zi]] .

(2.21)

Prior to introducing the formulation for the temporal discretization the following
mass bilinear form is defined: for all wh, zh ∈ [Pkd(Th)]m

mh(wh, zh) =
∑
κ∈Th

∫
κ

d∑
i=1

wi zi. (2.22)

Consequently, the unsteady problem can be re-written as: find wh ∈ [Pkd(Th)]m such

10



2.3 Time integration

Algorithm 1 Explicit low-storage Runge-Kutta method

1: set nF = tF
δt

2: do n = 0, nF
3: set δw0

h = wnh , wn+1
h = wnh

4: do s = 1, ns
5: find δqh ∈ [Pkd(Th)]m such that, for all zh ∈ [Pkd(Th)]m

1
δt
mh(δqh, zh) = −fh(δws−1

h , zh) (2.24)

6: set δwsh = δw0
h + as δqh

7: do o = 1, s− 1
8: find δqh ∈ [Pkd(Th)]m such that, for all zh ∈ [Pkd(Th)]m

1
δt
mh(δqh, zh) = −fh(δwo−1

h , zh) (2.25)

9: update δwsh += bo δqh
10: enddo
11: enddo
12: do s = 1, ns
13: find δqh ∈ [Pkd(Th)]m such that, for all zh ∈ [Pkd(Th)]m

1
δt
mh(δqh, zh) = −fh(δwsh, zh) (2.26)

14: update wn+1
h += bsδqh

15: enddo
16: enddo

that
mh(∂twh, zh) + fh(wh, zh) = 0 (2.23)

for all zh ∈ [Pk(Th)]m. Appropriate time discretization schemes are applied to
Eq. (2.23). Numerical integration of Eq. (2.23) is performed by means of suitable
Gauss quadrature rules. Cheap non-product formulae taken from [27] are typically
preferred to tensor-product ones for computational efficiency. Numerical integration
calls for the evaluation of shape functions at quadrature points.

2.3.1 Explicit Runge–Kutta schemes

To integrate in time Eq. (2.23) given the initial condition w0
h = wh(t = 0) ∈

[Pk(Th)]m, the sequence wn+1
h is defined iteratively by means of the explicit multi-

stage Runge–Kutta scheme as described in Algorithm 1, where ai, bi are real, scheme-
specific coefficients, and δwsh, with s = {1, · · · , ns}, the solutions at each stage of the
scheme that are properly combined to compute the solution wn+1

h at the next time
level. In this work the time integration scheme employed is the five stage, order four,
Runge–Kutta scheme of [28]. This accurate, low-storage, scheme requires only two
levels of registers for the data storage, and it is thus very well suited for a memory-lean
implementation of a DG method. Defining the mass matrix operator as

(Mh δwh, zh)L2(Ω) = mh(δwh, zh) ∀ δwh, zh ∈ [Pkd(Th)]m, (2.27)

11



Chapter 2 The numerical framework

it is clear that Equations (2.24)-(2.26) calls for the solution of the following linear
system

Mh δwh = gh (2.28)

where δwh, gh ∈ [Pkd(Th)]m are the unknown polynomial function and the right-hand
side arising from the Runge-Kutta time discretization, respectively. Fortunately, the
solution of Eq. (2.28) does not require a global matrix allocation. In fact, the mass
matrix arising from the DG discretization of the governing equations is block diagonal
thanks to the use of generic hierarchical basis function, i.e. in the case of the EE
or LEE problems considered herein. This means that it can be locally inverted once
using a lower-upper (LU) factorization that can be stored and applied cheaply at every
stage of the Runge–Kutta scheme. Differently, for viscous test cases orthonormal basis
functions are employed, which make the mass matrix equal to the identity matrix. In
this case, the application of the M−1

h matrix is no longer required.

2.3.2 Implicit Runge–Kutta schemes

Despite being high order accurate and computationally cheap, explicit time integra-
tion methods show strict stability limits especially using high-order space discretiza-
tions. The reason to consider implicit schemes is twofold. First, implicit schemes
allow to overcome time step limitations. Several previous studies demonstrated how
high order implicit schemes, despite being more memory consuming, allow to increase
the computational efficiency of unsteady flow simulations for generally stiff problems
involving unstructured meshes. On the other hand, some equation sets such as INS
do not allow a straightforward implementation of explicit schemes, since the incom-
pressibility constrain has to be solved in a semi-explicit fashion using velocity correc-
tion schemes. Two families of implicit schemes will be hereby considered. The first
one involve the multi-stage linearly-implicit Rosenbrock-type Runge–Kutta methods,
which involve the solution of one linear system per each stage. A second family is
the multi-stage explicit first stage singly diagonally-implicit Runge–Kutta methods,
which require to solve a non-linear system per stage. Details of the schemes are given
in the remaining of the section.

Linearly-implicit Rosenbrock-type Runge–Kutta schemes

The multi-stage linearly implicit Rosenbrock-type Runge-Kutta method requires the
solution of a linear system at each stage s = {1, · · · , ns}. The most appealing feature
of the method is that the iteration matrix is the same per each stage, and therefore the
Jacobian needs to be assembled only once per time step. This attractive feature allows
a good compromise between solution accuracy at large time steps and computational
efficiency [1, 16]. Given the initial condition w0

h = wh(t = 0) ∈ [Pk(Th)]m, a sequence
wn+1
h is iteratively defined by means of the Rosenbrock scheme as described in Algo-

rithm 2, where γ, aij , cij and mi are real, scheme-specific coefficients and δwsh, with
s = {1, · · · , ns}, the solutions at each stage of the scheme that are properly combined
to compute the solution wn+1

h at the next time slab. The Rosenbrock time marching
strategy in Algorithm 2 advances the solution in time by repeatedly solving the lin-
earized system of equations(2.29), once for each stage of the Runge-Kutta method.
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2.3 Time integration

Algorithm 2 Multi-stage linearly implicit (Rosenbrock-type) Runge-Kutta method

1: set nF = tF
δt

2: do n = 0, nF
3: set wn+1

h = wnh
4: do s = 1, ns
5: set δph = 0 ∧ δqh = 0
6: do o = 1, s− 1
7: δph += as,o δwoh
8: δqh += cs,o δwoh
9: enddo

10: find δwsh ∈ [Pkd(Th)]m such that, for all zh ∈ [Pkd(Th)]m
1
γδt

mh(δwsh, zh) + jh(wnh , δwsh, zh) =

− fh(wnh+δph, zh)− 1
δt
mh(δqh, zh)

(2.29)

11: enddo
12: do s = 1, ns
13: update wn+1

h += msδw
s
h

14: enddo
15: enddo

Introducing the Jacobian and mass matrix operators

(Jh δwh, zh)L2(Ω) = jh(wh, δwh, zh) ∀wh, δwh, zh ∈ [Pk`d (Th)]m,
(Mh δwh, zh)L2(Ω) = mh(δwh, zh) ∀ δwh, zh ∈ [Pk`d (Th)]m,

(2.30)

the equation system (2.29) can be compactly rewritten as follows:

Gh δwh = gh (2.31)

where Gh = (1/γδt)Mh + Jh is the global matrix operator, and δwh, gh ∈ [Pkd(Th)]m

are the unknown polynomial function and the right-hand side arising from the linearly-
implicit Runge-Kutta time discretization, respectively. It is worth pointing out that,
considering the incompressible equation sets, the mass matrix Mh is a modified mass
matrix which zero entries corresponding to the pressure DoFs. The Jacobian ma-
trix Jh can be assembled as n2

e block sparse matrix, while the rank of each block is
mnv. Thanks to the compactness of the DG discretization, the degrees of freedom
of a generic element κ are only coupled with those of the neighbouring elements and
therefore the number of nonzero blocks for each (block) row κ of the Jacobian is equal
to the number of elements surrounding κ plus one. Thus, the memory footprint scales
as ne(nf + 1)(mnv)2, where nf is the number of faces of the mesh elements. Note
that, for a broken polynomial space, nv =

∏d

i=1 (k + i)/i, while for complete poly-
nomials nv =

∏d

i=1 (k + 1). In this document the Rosenbrock schemes are applied
mainly for incompressible flow computations. In particular, the four stages, order
three (ROSI2PW) scheme of Rang and Angermann [29] is employed. This scheme
preserves its formal accuracy when applied to the system of DAEs arising form the
spatial discretization of the INS equations.
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Algorithm 3 Explicit first-stage singly-diagonally implicit Runge-Kutta method

1: set nF = tF
δt

2: do n = 0, nF
3: set wn+1

h = wnh
4: do s = 1, ns
5: set gh to zero
6: do o = 1, s− 1
7: update gh(zh) += as,ofh(δwoh, zh)
8: enddo
9: find δwsh ∈ [Pkd(Th)]m such that, for all zh ∈ [Pkd(Th)]m

1
as,sδt

mh(δwsh, zh) = −fh(δwsh, zh)− 1
as,s

gh(zh) (2.32)

10: enddo
11: do s = 1, ns
12: update wn+1

h += bsδwsh
13: enddo
14: enddo

Explicit first stage singly-diagonally Runge–Kutta schemes

The multi-stage explicit first stage singly-diagonally implicit scheme (ESDIRK) re-
quires the solution of a nonlinear system at each stage s = {1, · · · , ns}. Given the
initial condition w0

h = wh(t = 0) ∈ [Pk(Th)]m, the sequence wnh , with n = {0, · · · , ns}
can be obtained as described in Algorithm 3, where aij , bi are real, scheme-specific
coefficients and δwsh, with s = {1, · · · , ns}, the solutions at each stage of the scheme,
that are properly combined to compute the solution at the next time slab. The al-
gorithm requires the solution of (2.32). To this end, defining the mass matrix and
Jacobian operators as in Eq. (2.30), the nonlinear system can be solved through
Newton’s method, which requires to solve a set of linear systems. A single Newton’s
update can be compactly written as

Gh δwh = gh (2.33)

where δwh, gh ∈ [Pkd(Th)]m are the unknown polynomial function and the right-hand
side arising from the Newton’s method, respectively, and Gh = (1/as,sδt)Mh + Jh

is the stage-specific global matrix operator. One of the advantages of the ESDIRK
schemes in comparison to other implicit strategies is that the first stage of the method
is explicit since a1,1 = 0. This increase the computational efficiency of the approach
in comparison to other time integration strategies. In this work the ESDIRK scheme
will be employed in the context of implicit, compressible Navier–Stokes simulations.
In particular, an order-three, four stage algorithm presented in [30] has been selected.
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Hybrid MPI/OpenMP parallelization strategies

Nowadays the need of parallel efficiency is no more an exclusive requirement for appli-
cations running on High Performance Computing (HPC) systems. In fact, all the up
to date computers use multi-core chips having a number of cores significantly large, es-
pecially for high-end multi-CPU systems such as workstations and servers. According
to this trend, the new HPC platforms are evolving towards configurations with more
and more computational cores for each node. Additional hardware resources, such
as many-core, the Intel Xeon Phi, or graphics processing unit (GPU) accelerators,
can be also connected to the computational platforms in order to improve further
their performance. An efficient use of these computational resources is of primary
importance for CFD/CAA, as well as for many other scientific applications. How-
ever, the design of an efficient parallel implementation suitable for different computer
architectures is not an easy task.

The parallelization of DG code can follow two common approaches. First, the
use of the Message Passing Interface (MPI) library, which is widely employed by the
CFD/CAA community and it can be used on both the distributed and shared mem-
ory platforms. Second, the use of the Open Multi-Processing (OpenMP) paradigm,
which is known to be a valuable alternative on shared memory systems. However,
few papers deal with an OpenMP implementation of a DG solver in the current liter-
ature. To the authors’ best knowledge only [31, 32, 33] deal, at least partially, with
hybrid MPI/OpenMP implementations of a fully unstructured DG solvers. Other
authors [34, 35, 36], for example, presented OpenMP parallelization strategies some-
how related to the geometric configurations considered and not easily generalizable
to general purpose CFD/CAA solvers based on unstructured grids.

Despite being OpenMP confined to shared memory systems, it shows consider-
able advantages over MPI. The most important one is the small programming effort
required for the parallelization of an application. In addition, OpenMP allows a the-
oretically higher performance improvement on multi- and many-core platforms: the
use of MPI within a node can be not optimal since the shared memory can be ex-
ploited to reduce the overhead cost of the communications. For this reason, a hybrid
MPI/OpenMP implementation is usually suggested to improve the parallel efficiency
of codes running on clusters of multi-core nodes. To this end, the use of an efficient
OpenMP parallelization is mandatory, and the design of such strategy is part of the
scope of the present work.

Nevertheless, several papers state that for a large amount of cores the achieve-
ment of high OpenMP parallel efficiencies is not trivial. Moreover, whether or not
all the applications and hardware platforms can effectively benefit from a hybrid
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MPI/OpenMP approach is not clear, e.g. [37, 38]. The reasons for these statements
are that i) the code should be fully parallelized even in the OpenMP context; ii) the
use of OpenMP implies overheads due to the initialization of parallel and/or work-
sharing regions; iii) the overheads due to the explicit and implicit synchronizations
of some of the work-sharing constructs; iv) the penalization due to false sharing of
cache lines between processors; v) the memory latency due to the cache coherent
Non Uniform Memory Access (ccNUMA) hardware design employed in many recent
multi-core architectures; vi) the compiler performance in handling the OpenMP di-
rectives. In addition, obtaining a reliable indication about the general effectiveness
of the implementation is not straightforward due to the large number of factors af-
fecting the OpenMP parallel performance. However, several scalability tests on both
multi-core and many-core platforms are reported to provide some general indications
and trends.

While MPI makes the use of domain decomposition algorithm almost mandatory,
shared memory parallel implementations can consider different alternatives. One of
the contributions of this work is to discuss on the parallel efficiency of three OpenMP-
based parallelization strategies. The first one relies on an original implementation of
a colouring algorithm, properly employed to deal with a DG solver, the second mim-
ics a pure MPI implementation in an OpenMP context, while a third one can be
considered as somehow “in the middle” between them. The results show that all the
considered implementations perform quite well. The domain decomposition algorithm
reaches the highest level of parallel efficiency at low computational loads. However,
this approach does not take advantage of some interesting features of OpenMP, such
as the advanced options for loops scheduling. In addition, this type of implementa-
tion is more complex since it requires a “two-level” partitioninig of the computational
domain. Although a bit less performing on small problems, the colouring approach
excels when dealing with larger grids and polynomial orders. Colouring can be also
considered as the most appealing choice for the implementation in an existing MPI-
based code. The same algorithm is particularly well suited to run on hardware ac-
celerators, an opportunity recently given by the OpenMP 4.0 standard. Additionally,
the performance gain observed for different clusters of multi-core nodes for a hybrid
MPI/OpenMP implementation based on a colouring algorithm is reported in the pa-
per. Preliminary results about the usage of Xeon Phi coprocessor as accelerator, also
known as offload mode, are also given. The availability of a portable high-level Appli-
cation Programming Interface (API) as OpenMP, able to deal with a wide range of
parallel architectures, clearly represents a great advantage for the HPC practitioners.

It is worth noticing that the applications reported in this chapter are all referred to
an explicit-in-time discontinuous Galerkin discretizations. The reason for this choice
is related to the fact that for LEE/EE, as well as the set of compressible Navier–Stokes
equations without turbulence modelling, an explicit solver can be competitive in terms
of memory requirements and efficiency. Moreover, it allows to benchmarck the code
focusing on the parallelization of the residual evaluation only, which simplifies the
analysis of the results as well as the implementation. See [39, 40, 41] for additional
details. Finally, it is worth mentioning that the extension of the approach to an
implicit-in-time discretization is subject of current research.
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3.1 Parallel OpenMP Implementation

Algorithm 4 Structure of the explicit DG solver
1: do n = 1,#time_steps . Time steps loop
2: !$OMP parallel . Open the Parallel section
3: Compute δt = min (δtK) based on the CFL condition
4: Q = Q0

5: do s = 1, ns . Loop for the Runge–Kutta steps
6: R = RFi

h
(Q)

7: R = R+RFb
h

(Q)
8: R = R+RFp

h
(Q) . Only for Partition & Face-Partition algorithms

9: R = R+RTh (Q)
10: R = δtM−1

h R
11: if (s 6= ns) then
12: Q = Q0 − asR
13: end if
14: Q0 = Q0 − bsR
15: enddo
16: Compute ||R||L2 and ||R||L∞
17: enddo

3.1 Parallel OpenMP Implementation

Although this section is mainly referred to LEE and EE, the algorithms and the
considerations reported below can be extended to the NS case. In Algorithm 4,
the tasks of the explicit-in-time scheme of the DG solver proposed in Algorithm 1
are reported. The implementation of an explicit DG solver calls for the use of two
main arrays hereby named solution W and residuals R. In a modal framework, it is
convenient to arrange those two arrays using two indices pointing to the equation i

and the polynomial degree j and an element-index p pointing to the generic element
κp ∈ Th, i.e. W (i, j, p) and R(i, j, p). According to the previous section and for
computational convenience, the evaluation of the residuals vector are split over two
main loops. The former, performed over the elements-index p (line 9), collects the
elemental contributions to RTh . The latter, performed over the faces-index q, with
σq ∈ Fh, collects the numerical fluxes contributions RFh . This loop can be further
split in two tasks: the first covers all the internal faces, Rσi with σ ∈ F ih (line 6); the
second considers all the boundaries faces, Rσb with σ ∈ Fbh (line 8).

The evaluation of the Rκ contribution to the residual vector can be safely and
easily parallelized using, for example, the Fortran !$OMP do work sharing directive
without any data-race condition problem, see Algorithm 5. Such a straightforward
parallelization is not possible for the loop over the faces. In fact, for each face σ
the residuals of both the κ− and κ+ elements are simultaneously updated and two
threads can overwrite the same memory address of the R vector.

In the following sub-sections three possible OpenMP parallelization algorithms for
the DG solver are described. To simplify the discussion, only to the residuals evalua-
tion is considered. In fact both the solution stage of Algorithm 4, line 10, which relies
on an element-wise linear system direct solver, and the Runge–Kutta update steps
of Algorithm 4, lines 12 and 14, are handled as Rκ. In fact, these operations do not
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Chapter 3 Hybrid MPI/OpenMP parallelization strategies

Algorithm 5 Evaluation of R = R+RTh (Q) by work sharing
1: !$OMP do
2: do p = 1, ne
3: do j = 1,m
4: do i = 1, nv

5: R(i, j, p) = R(i, j, p)−
∫
κp

d∑
n=1

F̃j,n (wh) ∂zi
∂xn

6: enddo
7: enddo
8: enddo

Table 3.1: Summary of the OpenMP algorithms characteristics
Parallel Task Colouring Partition Face partition

RTh work-sharing by partition work-sharing
RFi

h
work-sharing by partition by partition
with colouring

RFb
h

work-sharing by partition by partition
with colouring

RFp
h

– work-sharing work-sharing
with colouring with colouring

Runge–Kutta work-sharing by partition work-sharing
min (δtK) work-sharing work-sharing work-sharing

||R||L2 and ||R||L∞ work-sharing work-sharing work-sharing

imply any data-race issue and can be arranged in a parallel loop over the elements as
in Algorithm 5. It is worth noting that, in the EE/LEE case, the LU (lower-upper)
factorization of the block-diagonal mass matrix is computed and stored only once
during preprocessing, as it does not change during all the solver execution. Table 3.1
summarizes the employed parallelization strategies for each of the building blocks of
the solver.

3.1.1 Colouring algorithm

The colouring procedure, reported in Algorithm 6, is based on a naive algorithm
similar to that used by [42, 43]. The main difference here is that the colouring
procedure is applied to faces instead of mesh elements. The algorithm can be de-
scribed as follows. When a colour has to be attributed to a face σ, one must check
the colours already assigned to the faces belonging to the elements sharing σ. The
scope is to set a different colour to σ; if all the colours of the palette are in use a
new colour is added and given to σ. Any mesh element cannot have more than one
face per colour. Once that all the faces are coloured the contribution of numerical
fluxes to the residual vector can be safely assembled in parallel for all the faces of
the same colour (Algorithm 7). An example is reported in Figure 3.1(a), where the
RFi

h
contributions due to the four red internal faces can be summed concurrently

(operation represented by an arrow) to the R global vector. The same holds for the
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3.1 Parallel OpenMP Implementation

Algorithm 6 Colouring of the faces
1: nc = 0 . nc is the number of colors
2: ifc(1 : nfi) = 0 . ifc is the array of the colors of the faces
3: do if = 1, nfi . nfi is the number of internal faces, F ∈ F ih
4: do ic = 1, nc
5: flag = 0
6: do k = 1, 2
7: ie = ife(k, if) . ife(k, if) points the elements at both the sides of a

face if
8: do j = 1, nfe(ie) . nfe(ie) is the number of faces for each element ie
9: jf = ief(j, ie) . ief(j, ie) points to the nfe(ie) faces of the

element ie
10: if (ifc(jf) = ic+ 1) then
11: flag = 1
12: end if
13: enddo
14: enddo
15: if (flag = 0) then
16: go to 19
17: end if
18: enddo
19: nc = max(nc, ic+ 1)
20: ifc(if) = ic+ 1
21: enddo

Algorithm 7 Evaluation of R = RFi
h

(Q) by colouring

1: do ic = 1, nc
2: !$OMP do
3: do if = sfc(ic), efc(ic) . loop over the faces of the same color ic
4: q = icf(if) . icf(ic, if) points to all F ∈ F ih of the same color ic
5: p1 = ife(1, q)
6: p2 = ife(2, q)
7: do j = 1,m
8: do i = 1, NK

dof

9: R(i, j, p1) =
∫
σq

d∑
n=1

nσn F̂j,n(wh) [[zi]]

10: R(i, j, p2) =
∫
σq

d∑
n=1

nσn F̂j,n(wh) [[zi]]

11: enddo
12: enddo
13: enddo
14: enddo

two black and for the two blue faces.
Although this algorithm is clearly not optimized to obtain a group of colours char-

acterized by an equal number of faces, its naive application performs pretty well. This
is confirmed by the numerical experiments where for different meshes of triangular
elements, where often it has been obtained the minimum number of possible colours,
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Chapter 3 Hybrid MPI/OpenMP parallelization strategies

(a) colouring (b) partition

Figure 3.1: Schematic representation of the element faces treatment on the employed
algorithms.

i.e. three. Colours may change with the initial ordering of the faces, as well as with
grid reordering. However, numerical experiments revealed that the overall parallel
performance does not significantly change when the number of colours is not optimal.
Moreover, as pointed out by [43], it is possible to add an a posteriori phase to the
algorithm to balance the number of faces for each colour.

The same algorithm can be used without any modifications for the boundary faces
where boundary conditions are imposed. In practice almost all the boundary faces
have the same colour and only if one element owns more than one boundary face more
than one colour are needed. As for the internal faces the boundary RFb terms of the
same colour can be safely evaluated and assembled in parallel, see dash-dot lines of
Figure 3.1(a).

3.1.2 Partition algorithm

This algorithm mimics the classical MPI parellization paradigms based on domain de-
composition. The computational grids are partitioned, here by means of the Metis [44]
library, in a set of non-overlapping sub-domains, see Figure 3.1(b). Each OpenMP
thread only deals with its subset of elements and faces in a pure Single Program
Multiple Data (SPMD) programming fashion. This means that the main loops are
performed by specifying explicitly their bounds within the code, see Algorithms 8
and 9 dealing, respectively, with the loops over the volumes and the faces. In this
way the partition algorithm uses a coarse-grained parallelization strategy, which is a
less common choice than the fine-grained parallelization proper of the work-sharing
constructs in a pure OpenMP context. Only in the sub-domains interfaces, i.e. the
black faces in Figure 3.1(b), the solver takes advantage of the global view of the
application memory address space, avoiding an explicit use of buffers and messages.
The contributions to the residuals vector related to the numerical flux computation
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3.1 Parallel OpenMP Implementation

Algorithm 8 Evaluation of R = R+RTh (Q) by partitions
1: IO=OMP_GET_THREAD_NUM() +1
2: do p = spe(IO), epe(IO)
3: do j = 1,m
4: do i = 1, nv

5: R(i, j, p) = R(i, j, p)−
∫
κp

d∑
n=1

F̃j,n (wh) ∂zi
∂xn

6: enddo
7: enddo
8: enddo

Algorithm 9 Evaluation of R = RFi
h

(Q) by partitions

1: IO = OMP_GET_THREAD_NUM() + 1
2: do q = spf(IO), epf(IO) . F ∈ F ih of the partition IO
3: p1 = ife(1, q)
4: p2 = ife(2, q)
5: do j = 1,m
6: do i = 1, nv

7: R(i, j, p1) =
∫
σq

d∑
n=1

nσn F̂j,n(wh) [[zi]]

8: R(i, j, p2) =
∫
σq

d∑
n=1

nσn F̂j,n(wh) [[zi]]

9: enddo
10: enddo
11: enddo

over these faces, denoted as Rσp , are assembled in parallel according to the colouring
Algorithm 7 of the previous section.

This is one of the few parts of the code relying on work-sharing directives. Their
usage is motivated by the lack in the OpenMP standard of a reduction clause for the
!$OMP parallel regions. For example, at the beginning of each Runge–Kutta step
the solver computes the maximum δt satisfying the CFL stability condition for each
element κ ∈ Th, line 5, Algorithm 4, and the L2 and L∞ norms of the residuals vector,
at line 16. These tasks imply reduction operations over the domains and a loop over
the elements which is performed according to a !$OMP do. The optimized reduction
clause available for this OpenMP directive was preferred to a version that may scale
poorly, see [45].

3.1.3 Faces-partition algorithm

In the faces-partition algorithm the residual contributions related to faces are evalu-
ated as in the partition approach (Algorithm 9) while the volume residual is assembled
using the work-sharing directives (Algorithm 5). The idea is to use a partition of the
grid only to parallelize the loop over the faces. The volume terms are instead handled
in a parallel fashion following one of the !$OMP do scheduling policies. This means
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Chapter 3 Hybrid MPI/OpenMP parallelization strategies

that while one process always deals with the internal faces of the same partition,
there is not a link between the elements of a partition and the elements handled by
an OpenMP thread.

3.1.4 Comments on the algorithms

It is worth noting that all the OpenMP implementations proposed initialise the paral-
lel region by using the !$OMP parallel directive, see line 2 of Algorithm 4, even those
using work-sharing directives. This avoids the overhead associated to the creation of
a team of threads at each parallelized do loop. In other words, the use a combined
work-sharing directive such as the !$OMP parallel do is completely avoided. Thanks
to the compactness of the DG methods all the aforementioned implementations can
be considered as fully parallelized, i.e. no serial part of the code can compromise the
scalability. Moreover, the shared memory was fruitfully exploited to perform only
once the evaluation of the flux terms at the inter-partitions faces, avoiding any re-
dundant operations. Such level of parallelization is more difficult to be achieved with
a pure MPI solver. As reported in [46], an implementation of this type requires twice
the number of MPI communications if compared to a strategy in which a redundant
evaluation of these numerical flux terms is performed.

Due to a possible not optimal grid partitioning and to the evaluation of the RFb

terms at boundary, the workload among processes can be unbalanced for the partition-
based algorithm. In fact, this algorithm admits that a partition does not own any
boundary face, since it may be internal to the domain. From this point of view the
colouring is superior: the algorithm can be applied on both internal and boundary
faces in the same way and it can take advantage of the !$OMP do scheduling options.
On the other hand, the pure partition strategy allows to avoid several OpenMP syn-
chronizations. This is possible because every thread deals only with the same portion
of the shared memory arrays W and R. The only instance where synchronization is
mandatory is at the beginning and at the end of the parallel loop performed for the
evaluation of the Rσp contributions.

All the proposed implementations follow the so called first touch policy. This means
that at the execution beginning any thread initializes the part of the arrays it is going
to access. Most operating systems (OS) assign a memory address physically close,
within the same NUMA region, to the core that for first initialise the data. This
aspect is particularly relevant when using ccNUMA platforms. If initialization is
performed in a serial fashion all the memory data will be placed within only one
NUMA region, reducing the overall memory bandwidth to and from the CPUs cores.

Finally, from the point of view of the data locality, the partition algorithm seems
preferable. In fact, for σ ∈ F ih, theW degrees of freedom (DOFs) of both the κ− and
κ+ elements can be generally owned by a single NUMA region. The situation is quite
different when using the colouring algorithm, being the allocation of the W DOFs of
neighbouring elements in the same NUMA region not trivial. For the faces-partition
algorithm, it has been pointed out that a strict connection between the faces of a
partition and the mesh elements handled by an OpenMP thread does not exist, and
thus, even in this case, the data affinity can clearly be not optimal.
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3.2 Test cases description

3.1.5 Hybrid MPI/OpenMP parallel algorithm

In the hybrid MPI/OpenMP implementation, the OpenMP parallelization relies on
the colouring algorithm, which can be very easily integrated within a MPI solver.
This algorithm has been preferred since it avoids the difficulties related to the two
nested domain decompositions, one for the MPI implementation and the other used
at the OpenMP level. With the colouring approach, the communications can be
managed only by one OpenMP thread for each MPI process. Moreover, the colouring
algorithm is well suited to deal with accelerators, such as GPUs [43] or the Xeon Phi
coprocessors in offload mode, see Section 3.3.4.

The MPI implementation takes advantage of the non-blocking communications,
which are overlapped with computations as much as possible. In other words, the
Rσi evaluation and the exchange of messages, required to update DOFs of the ghost
elements, are performed simultaneously. Although for hyperbolic governing equations
it is possible to overlap the MPI communications with the computation of Rκ, this
optimization has been avoided in this work. Therefore, the same algorithm is used for
both the EE/LEE and the NS governing equations. It is worth noticing that, using
the BR2 scheme, the diffusive part of the volume integrals of Eq. (2.12) collects the
contributions related to the lift operator, Eq. (2.13), which involve the jumps of the
variables at the mesh interfaces, see Eq. (2.15). In this case the contribution of the
lifting operator can be efficiently evaluated while looping over the faces, assembling
only later the Rκ residuals components. This task cannot be overlapped with the
MPI communications.

Finally, to limit the MPI overheads, the distributed memory code uses ghost el-
ements. This means that the Rσp contributions to the residuals vector, R, are
concurrently computed by two processes. The efficiency of the MPI solver will be
demonstrated in the Section 3.3.3.

3.2 Test cases description

3.2.1 2D inviscid flow problem

This two-dimensional test case, Problem 1 of Category 3 of the first Workshop for
Computational Aeroacoustics [47], requires the solution of the propagation of both
an acoustic pulse and of an entropic vortex. The computational domain is a square,
−100 ≤ xi ≤ 100, the mean flow is uniform, the Mach number is M∞ = 0.5, and the
velocity vector is aligned to the x1 axis. The initial conditions are defined as follows

p = εe−α1r
2
1 , ρ = p+ 0.1εe−α2r

2
2 , (3.1)

u1 = 0.04εx2e
−α2r

2
2 , u2 = −0.04ε (x1 − 67) e−α2r

2
2 ,

being [ρ, p, ui]T the perturbation quantities and

α1 = ln (2)
9 , α2 = ln (2)

25 , r1 =
√
x2

1 + x2
2,

r2 =
√

(x1 − 67)2 + x2
2.
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(a) P4, ne = 20000 (b) convergence rate

Figure 3.2: Two-dimensional pulse propagation problem, ρ contour plot and conver-
gence rate at t = 30

In Eq. (3.1), a numerical perturbation ε, here set to 10−3, has been introduced to
multiply the original initial conditions. The intent was to limit, as much as possible,
the non-linear effects and use the analytical solution, which is written for the LEE
case, for the evaluation of the convergence rate in the EE case also. To this purpose,
three grids consisting of ne = 1250, 5000, 20000 triangular elements and polynomial
approximations up to P4 were considered. The EL2 error norms of Figure 3.2(b) are
evaluated at the time t = 30 when the acoustic and the entropic vortex have not
yet reached the outer boundaries, see Figure 3.2(a). This choice was made to avoid
all the uncertainties related to the boundaries conditions, which can compromise the
convergence rates. The theoretical convergence rates are obtained both for the LEE
and EE solutions. In fact, the errors norms are almost identical up to EL2 ≈ 10−10.
Below this value the difference between the linear and the non-linear solution is the
main source of error, and EL2 stalls to an almost fixed value. This consideration
explains the deviation for EE from the ideal convergence at low error levels. Finally,
note the clear advantage in using a high-order approximations for small EL2 values.

3.2.2 3D inviscid flow problems

The first three-dimensional test case concerns the scattering by a perfectly reflecting
spherical wall of the perturbations generated by an acoustic source in a null mean
velocity. This test case was proposed as Problem 4 of Category 1 in the Second
Computational Aeroacoustics (CAA) Workshop on Benchmark Problems [48]. The
acoustic source is distributed spatially by s = [0, s2, 0, 0, 0]T , where

s2 = −A e−B ln(2)[x2
1+x2

2+(x3−x3s)2] cos(ωt) , (3.2)
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which is added to the source term s of Eq. (2.1). The constants in Eq. (3.2) are
A = 0.01, B = 16, x3s = 2, ω = 2π. The problem is symmetric around the x3 axis
and this allows to reduce the computational domain to a quarter of the complete
spherical domain. Symmetry conditions have been imposed on the planes x1 = 0 and
x2 = 0. The computational domain has been discretized using a grid consisting of
89628 hexahedral elements. The spherical outer boundary of the domain, including
the radial thickness of a sponge layer, has a radius equal to 8.5R, where R is the
radius of the sphere. The sponge layer is a sacrificial region in which the out-coming
waves are exponentially damped to avoid spurious reflections at the true boundaries,
where characteristics-based boundary conditions are employed. The spherical inner
boundary of the sponge layer has a radius equal to 7.5R, i.e. the layer width corre-
sponds to one wavelength. In previous experiments, see [49, 50], and following the
indications provided in [51], the sponge layer strength was set to ηtarget = 20 dB with
a quadratic profile. The Figure 3.3(a) shows the root-mean-square of the pressure,
computed during one period of the source disturbance, along a circle with radius
5R. The fourth order accurate, P3, numerical solutions compare very well with both
the analytical ones derived by [52], and previous results obtained with a different
non-reflecting boundary treatment [26]. Finally, Figure 3.3(b) shows the p and u3

(a) prms (b) top p, bottom u3

Figure 3.3: Acoustic scattering from a sphere, P3 solution. Ref. solution from [26],
exact solution from [52]

contours for the P3 solution.
The second three-dimensional test case solves LEE to compute the directivity from

a loudspeaker. This problem, based on an industrial geometry, was first proposed
and solved by [53]. The description of this test case will be given using dimensional
quantities. The acoustic source is a sinusoidal normal velocity assigned to the surface
of the woofer, the low frequency driver, corresponding to 1kHz. The mean flow
velocity is null and the sound velocity was set to 343m/s. The computational domain
is a box centered in the loudspeaker of extension −1.5m ≤ xi ≤ 1.5m. Taking
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(a) computational mesh (b) detailed view

Figure 3.4: Instantaneous contour of acoustic pressure on the loudspeaker and on the
symmetry plane, P3 coarse grid solution

advantage of symmetry of the problem, the simulation was performed within the half
of the domain. To avoid possible spurious reflections due to the boundary conditions,
a sponge-layer with the same parameters of the previous test case has been employed.

For this flow problem two computational grids were considered. The fine mesh
consists of 576762 tetrahedral elements, while the coarse mesh consists of 109067
hybrid elements (432 pyramids, 9918 prisms, 21186 tetrahedrons, 77531 hexahedrons).
The hybrid unstructured coarse mesh was generated using tetrahedral elements near
the body and an isotropic distribution of hexahedral elements, with edge length equal
to a quarter of the wavelength, in the far-field. The mesh is designed to properly
propagate the acoustic signal to the far-field. Figure 3.4 shows an instantaneous
contour of pressure, as well as the grid distribution on the body and on the symmetry
plane. The accuracy of the results obtained on the coarse hybrid grid confirms the
greater suitability of DG methods for the simulation of acoustic propagation around
complex geometries if compared to other high-order methods, e.g. finite differences,
typically used in CAA.

Figure 3.5 displays the computed directivity patterns, evaluated on both the ver-
tical and horizontal planes, on a circumference with radius equal to 1 m and centred
in the top of the dust cup of the speaker on the symmetry plane. These results are
normalized and expressed in decibels. The fine and coarse grids results are indistin-
guishable and agree very well with the those reported by [53], where are validated
using experimental data. These results were obtained with a constant amplitude vi-
bration set in every point of the woofer and neglecting any geometrical deformation.
The reflex tubes and the cabinet volume were not modelled.
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(a) Horizontal plane (b) Vertical plane

Figure 3.5: Normalized directivity patterns of the loudspeaker at 1kHz, P3 solutions

3.2.3 3D viscous flow problem

The viscous test case here proposed is the WS1 of the 5th workshop on high order
methods [54], which involves the implicit large eddy simulation of the Taylor Green
Vortex problem at Reynolds number Re = ρ0V0L/µ = 1600 and Mach number M =
0.1. This test case, which shows large scale vortices interacting with each other
producing transition to turbulence and decay, it has been widely considered in the
literature as a benchmark for turbulent flow simulations. The geometry consist on
a tri-periodic cube with sides of length 2πL, and the flow is initialized using the
following primitive variable distribution

u1 = V0 sin
(
x

L

)
cos
(
y

L

)
cos
(
z

L

)
,

u2 = −V0 cos
(
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)
sin
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)
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(
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)
,
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)
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In this work the space dicretization relies on two different grids (163 and 323) and
several orders of polynomial approximation of the solution (P4, P5 and P6) to show a
spatial convergence of the problem, which involves the development of the turbulent
flow over time. Such transient is recorded by the use of two main quantities. The
first one is the time derivative of the kinetic energy, which is defined as

k
def= 1

16π3ρ0

∫
Ω
ρukuk dx,
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(a) 163 P6 (b) 323 P4 (c) 323 P6

Figure 3.6: Taylor–Green vortex at Re = 1600. λ2 = −1.5 iso–surface at t = 10.
Iso–surface coloured by velocity magnitude.

(a) Kinetic energy k time derivative (b) Theoretical dissipation rate, ε

Figure 3.7: Taylor Green vortex at Re = 1600. Results for different numerical reso-
lutions.

while the second one is the theoretical dissipation rate, evaluated as

ε
def= 2µ

8π3ρ0

∫
Ω

∂ui
∂xj

∂ui
∂xj

dx.

which are related with each other, in the incompressible limit, via the following rela-
tion

− dk
dt = ε.

It is worth noting that the difference between these two quantities is connected to
the numerical dissipation of the discretization. In fact, the implicit LES involves the
solution of the Navier–Stokes equations without the use of any explicit subgrid scale
model, but relying only on the diffusion of the numerical scheme. Several papers [9, 11]
demonstrated the suitability of discontinuous Galerkin space discretizations for this
kind of problems.
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Figure 3.6 shows the λ2 = −1.5 iso-surface at the final time t = 10 for three space
discretizations of increasing resolution. An increased smoothness of the solution can
be identified. As regards the solution quality, Figure 3.7 reports time derivative of the
kinetic energy and the theoretical dissipation rate ε, in comparison with the reference
DNS data of [55]. An overall agreement with the DNS can be noticed by increasing the
resolution of the space discretization. In particular, the time derivative of the kinetic
energy is globally well captured, while the pseudo-dissipation ε, which is reported in
Fig. 3.7(b), gets closer to the DNS data by increasing the resolution. The numerical
dissipation of the scheme bridges the imbalance of the kinetic energy derivative and
the pseudo-dissipation ε.

3.3 Parallel performance

To obtain reliable indications about the parallel performance of all the OpenMP im-
plementations proposed, a comparison on multi-core machines has been performed,
including clusters and many-core platforms. Both the hardware and software char-
acteristics of these architectures have a strong influence on the parallelism, and a
description of the architectures considered will precede every numerical experiment.
For the sake of clarity, Table 3.2 summarizes the main hardware features. With
the exception of the AMD cluster, all the systems were/are hosted by the Italian
supercomputing centre (CINECA).

To asses the performances of the different OpenMP algorithms the two-dimensional
test case was considered, see Section 3.2.1, while three-dimensional problems were
used for the hybrid MPI/OpenMP investigation, see Section 3.2.2. Numerical ex-
periments reported consist in measuring the CPU time needed to perform 20 and
10 Runge–Kutta time steps for the 2D and the 3D test cases, respectively. To get
indications about the solver usage when applied to real applications, the ancillary op-
erations needed for the user’s residuals monitor were also taken into account. These
operations involve the computation and the write to a file of the ||R||L2 and ||R||L∞
values at each time step. To optimize the use of the platform, the OpenMP capability
to bind threads to cores has been employed, while the threads affinity as been left to
the OS management. In fact, the way in which threads are assigned to the cores has
a small influence on the parallelism. As it can be seen in the next section, the only
exception is when a core pair of the AMD 6276 Opteron CPU is used.

3.3.1 Performance of the OpenMP implementations

Multi-Core platform

The first system consists of two 2.3GHz Opteron 6276 processors. This sixteen cores
CPU is a multi-chip module built by two eight-cores CPUs placed on a single die
package interconnected by a HyperTransport link. Each CPU in the package has its
own memory controller, which is shared by the 8 cores. This configuration leads to 4
NUMA regions, see [56]. A peculiarity of this hardware is that the cores are organized
in core pair, sharing some hardware components such as the floating point units and
the L2 cache. Due to this configuration the maximum overall performance of a socket
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3.3 Parallel performance

cannot be sixteen times the single core performance. Indeed, a significant performance
reduction is observed when running two identical instances of the serial DG solver
using both the cores of a pair. In this case the execution time is approximately 1.25
times the standard wall clock time. This performance reduction is not observed if
cores of different pairs are employed. As a direct consequence, the maximum speed-
up achievable using all the 32 cores is assumed to be limited to 25.6, corresponding
to an apparent parallel efficiency of about 80%.

Different compilers have also a sensible impact on the performance of the algo-
rithms. In the present investigation, two Fortran compilers have been considered:
the GNU gfortran-4.7.2 and the Open64 openf90-4.5.2.1. All the numerical ex-
periments were executed with the -O3 optimization level and the appropriate options
for the specific hardware architecture. The AMD suggestions [57] have been followed,
rather than performing an in depth optimization among all the options. Such compiler
usage can be considered representative of the typical use of a HPC practitioner.

It is worth noting that the Open64 compiler, highly optimized for AMD CPUs, gives
a serial performance gain of about 33% over gfortran, which is almost independent
by grid density and the degree of the polynomial approximation. However, the focus
of this paper is not on serial computations and these data are only reported to provide
a comprehensive understanding of the parallel performance shown in the remaining
of the paper.

Many-Core platforms

Two types of Many Integrated Core (MIC) platforms are considered in this work.
They are Intel Xeon Phi chips of two different generations, the older Intel Xeon Phi
7120P (known as Knights Corner, KNC) and the newer Intel Xeon Phi 7250 (formerly
Knights Landing, KNL). Both of them are able to handle four hardware threads for
each core, but while the first generation is a treated as coprocessor, the second is used
as a standalone CPU.

The KNC architecture owns 61, 1.238 GHz cores. As one core was reserved to
the OS, the numerical experiments were performed up to 240 threads. The total
memory of the system is 16 GB, subdivided in 16 channels supported by controllers.
The cores and the memory are placed on a high-speed interconnecting ring, and the
theoretical memory bandwidth is 352 GB/s, where cores operate in a symmetric way.
In other words the memory access is uniform, see [58]. Computational experiments
were performed in native mode. This means that the solver is executed on the Phi
coprocessor directly without involving the host CPU, here a Xeon Intel Haswell 2.40
GHz. In this case the Intel ifort-15.0.2 compiler was used, which supports both
the native and the offload modes of the Phi coprocessor.

As regards the KNL, it is made of 68 1.40 GHz cores. The platform is organized in
tiles made of two cores, sharing 1 MB of L2 cache and connected to each other by a
two-dimensional mesh. A characteristic of this hardware is that it owns two types of
memory. Eight high-bandwidth (≈ 450 GB/s) MCDRAM (Multi-Channel Dynamic
Random Access Memory) in chip devices, for a total of 16 GB, are coupled with
six-channels of standard DRAM for about 96 GB (≈ 90 GB/s). The two-dimensional
interconnecting mesh can be configured at boot time into different modes. Here the
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(a) P1 (b) P3 (c) P6

Figure 3.8: Two-dimensional OpenMP solver running on two AMD Opteron 6276
CPUs. ne = 1250. Influence of the algorithms and of the compilers
on the parallel performance.

mode called flat/snc2 (Sub-Numa Clustering 2) is employed. In this configuration the
memory is exposed as two non-uniform memory access domains to the OS. This is the
mode usually suggested for NUMA-aware applications, see [59]. Finally, it is worth
noting that, having the solver a limited memory footprint, all the allocations were the
MCDRAM only using numactl. Here the compiler is the newer Intel ifort-17.0.1.
For this version Intel reports an improvement of vectorization capabilities which is
here relevant since each core KNL exploits two 512 bit vector processing units.

Multi-Core scalability

Figure 3.8 shows that, up to 8 OpenMP threads and for moderate computational
loads, the parallel performance are quite high all the compilers and implementations.
As a matter of the fact, adopting the coarsest grid and a P6 approximation the parallel
efficiency is always above the 95%, see Figure 3.8(c). At P3 the efficiency is still
above the 85%, Figure 3.8(b), while at P1 it decreases significantly. In particular, this
behaviour holds for the Open64 compiler when coupled with the colouring algorithm,
Figure 3.8(a). With this small number of elements, the partition algorithm seems the
best choice while the colouring the worst one.

When the number of threads is further increased, 16 or 32 threads, the parallel effi-
ciency drops down. Nevertheless, with GNU and the P6 approximation the efficiency
is still above the 90% for all the algorithms. Note that for OMP_NUM_THREADS ≥ 16
the Open64 implementation of the OpenMP directives shows a clearer performance
degradation, compared to GNU, which is more evident decreasing the polynomial
approximation.

Using the finer grids, Figures 3.9 and 3.10, the parallel performance significantly
raises. Moreover, the colouring algorithm overtakes the other approaches in several
cases. In this context, only with Open64 and OMP_NUM_THREADS = 32 the partition
algorithm proves a clear efficiency advantage. In some way this approach is able to
exploit, even using the less-efficient OpenMP compiler, the peculiar hardware charac-
teristics related to the core pair organization of the AMD CPU. That this behaviour,
as well as the optimal performance at the lower computational loads, is ascribed to
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(a) P1 (b) P3 (c) P6

Figure 3.9: Two-dimensional OpenMP solver running on two AMD Opteron 6276
CPUs. ne = 5000. Influence of the algorithms and of the compilers
on the parallel performance.

the smaller number of implicit synchronisations of its parallel constructs and to its
better data locality. Differently, the good performances of the colouring approach
with ne ≥ 5000 put in evidence that this algorithm is able to better balance the
work loads among the cores. At ne = 20000 the algorithm can take advantage of the
guided or the auto scheduling policies for all the !$OMP do work-sharing loops, when
available1, see for example line 2 of Algorithm 7. On the other hand, most of the
times the static option gives better results when using ne = 1250, confirming that
with a small number of elements per core it is preferable to limit as much as possible
the overheads associated to the OpenMP instructions. As regards the face partition
algorithm, even if the overall scalabilty is quite sattisfactory, it shows a significant
advantage only adopting Open64 at the lower computational loads, see Figures 3.8(a)
and 3.8(b).

Finally, in all the figures showing the efficiency at 32 cores, the reduced performance
measured when using both the cores of a pair are taken into account. As reported in
the previous section, the ideal speedup using 32 cores is in fact assumed equal to 25.6.
In addition, the results on parallel performance reported in the following are obtained
with EE, but identical speedups can be obtained when using the LEE model.

Many-Core scalability

Figure 3.11 displays the parallel speedup measured using two generations of the In-
tel Xeon Phi many-core CPUs. The results confirm the general trends observed in
previous Section. The partition algorithm often performs as the best, in particular
for low orders computations, i.e. P1 and P3 with ne = 5000, while the colouring al-
gorithm suffers at the lowest computational loads, e.g. P1 with ne = 5000. However,
the colouring algorithm is able to deliver an excellent speed-up in large simulations,
e.g. P6 with ne = 20000 and 240 threads. As shown in Figure 3.11(a), the code
scalability up to 60 threads is almost linear and, as expected, leaves the ideal values
when more then one thread per core is used. However, differently from what usually

1The auto option was introduced in the OpenMP standard only with the release 3.0, it delegates
the scheduling decision to the compiler.
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(a) P1 (b) P3 (c) P6

Figure 3.10: Two-dimensional OpenMP solver running on two AMD Opteron 6276
CPUs. ne = 20000. Influence of the algorithms and of the compilers on
the parallel performance.

reported on Hyperthreading technology applied to the Intel CPUs, with Xeon Phi the
performance significantly improves when adopting 2 and 4 threads per core. In fact,
when using all the available hardware threads, the execution time is almost halved.
This results in a maximum speed-up of about 130.

(a) KNC (b) KNL

Figure 3.11: Two-dimensional OpenMP code running on a Xeon Phi CPUs. Influence
of different algorithms and computational loads on the parallel perfor-
mance.

Figure 3.11(b) displays the same numerical experiments on the newer and faster
Xeon Phi KNL. Despite being able to deal with a maximum of 272 threads, a de-
crease in computational performance using four threads per core has been observed,
and therefore the scalability was tested only up to 136 OpenMP threads. This be-
haviour is probably related to the improved vectorization capability of the newer
Intel compiler. The results are similar to those obtained with the KNC CPUs, but
the higher performance of this platform, which is formally three times faster in terms
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3.3 Parallel performance

of peak performances, makes more difficult to obtain optimal parallel efficiencies.
This consideration holds true in particular with the smallest grid size and polynomial
orders, i.e. the P6, ne = 1250 and P1, ne = 5000 simulations. In those cases, the
partition algorithm performs as the best. For high computational loads, i.e. the
P6, ne = 20000, small differences between the three algorithms are observed, despite
being the colouring algorithm slightly more efficient.

3.3.2 Performance comparison with the recent literature

Numerical experiments reveal an almost ideal parallel efficiency for a considerably
large number of threads in a pure OpenMP mode. The achievement of such result
does not seem to be trivial, in particular with unstructured CFD/CAA solvers.

Brus et al. [33] present a DG discretization is coupled with an explicit Runge-
Kutta time integrator to solve the two-dimensional shallow water equations. This set
of equations do not involve any diffusive term and it can be assumed similar to EE
and LEE. The solver employed by Brus et al. is parallelized using an algorithm simi-
lar to the face partition. Finally, their numerical experiments are performed on test
cases resulting in computational loads comparable to those reported in this paper.
Nevertheless, the OpenMP parallel efficiency reported by the authors is clearly below
the MPI scalability shown within the same work (Figures 16-18 in [33]). This happens
even with 16 cores only (two Intel Xeon E5, Sandy Bridge, 3.1 GHz CPUs). Differ-
ently from Brus et al., all the OpenMP implementations reach the linear behaviour,
meaning that they can be assumed comparable to an efficient MPI code.

Reuter et al. [35] show a P1 DG solution of the baroclinic shallow water equations.
Here the authors report a satisfactory parallel performance, i.e. a speedup of 50 with
60 threads, on Intel Xeon KNC CPU. Their OpenMP strategy solves the race condi-
tion at faces using temporary arrays. The results for the test case 1 (Table 3 in [35]),
obtained with an explicit Runge–Kutta scheme and neglecting the diffusion terms
of the model, are comparable in terms of parallel performance with what reported
here. Figure 3.11(a) of this paper shows that only the coarsest problem with the Face
Partition and the Colouring algorithms, i.e. P1 and ne = 5000, is not able to get the
same parallel efficiency. It is worth noting the considerable lower number of mesh
elements of the coarsest case hereby presented, i.e. ne = 5000, when compared with
the computations of Reuter et al., i.e. 98000. Using Hyperthreading technology, a
speedup about 130 against 68 has been observed, but a different level of vectorization
within the code probably affected this type of result.

Waltz et al. [60] present an edge-based finite element scheme for linear tetrahedral.
A multi-stage explicit time integrator is used to solve the EE. To avoid data race in
their OpenMP implementation, they use indirect store operations. Their scalability
on Intel Xeon Phi KNC CPU is not completely satisfactory when several cores are
used, being the efficiency above the 90% only up to 8 cores. This behaviour is also
observed when they consider a very large problem with 2.8 · 106 mesh points.

Sato et al. [42] employs a colouring algorithm to parallelize using OpenMP a Gauss-
Seidel based unstructured solver for steady laminar and Reynolds averaged Navier–
Stokes equations in the context of finite volumes. Using all the 16 cores of platform
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based on two octa-core Intel Xeon CPUs, they achieved an acceptable maximum
speedup of about 14, but only when dealing with very large problems, i.e. more than
107 cells.

3.3.3 Performance of the Hybrid MPI/OpenMP

This sub-section analyses the performance of the hybrid MPI/OpenMP parallel im-
plementation. It is worth pointing out that, when dealing with clusters of multi-core
nodes, the impact of the hardware configuration on performance is even larger, since
the inter-connecting network characteristics have to be taken into account. There are
also many other computational details that can influence the parallel efficiency, such
as the polynomial degree of the space discretization and the number and the types
of the mesh elements. A complete and definitive study on the hybrid MPI/OpenMP
parallelization is behind the scope of this paragraph. However, it is shown that, at
least for some cases, the approach guarantees a sensible improvement in the paral-
lel efficiency. Please note that, unless explicitly stated, the results reported in the
following refer to the acoustic scattering of a sphere test case.

Multi-Core Clusters

Four different computer platforms have been considered: i) a small system based
on two AMD Opteron 6276 machines, see Section 3.3.1, interconnected by a point
to point Infiniband network; ii) the IBM-BlueGene/Q system named FERMI; iii)
the LENOVO NeXtScale Cluster named MARCONI (both A1 and A2 partitions).
FERMI is a massively parallel architecture consisting of 10240 nodes equipped by a
IBM PowerPC A2 1.6 GHz chip with 16 cores per node; MARCONI-A1 connects 1512
compute nodes made by two 18-cores Intel Xeon E5-2697 v4 (Broadwell) 2.30 GHz;
MARCONI-A2 is made of 3600 Intel Xeon Phi 7250 CPUs (KNL) 1.40 GHz computing
nodes (described in Section 3.3.1). It is worth noting that both the PowerPC A2
and the KNL can execute concurrently up to four hardware threads, and the best
performance are expected when multiple threads per core are used. Differently from
Section 3.3.1, the mesh interconnecting cores and memory modules is the standard for
MARCONI A2, i.e. the cache mode in which the faster MCDRAM is used as cache.

For the sake of compactness the use of the following notation to describe the parallel
setting of a computation. An hybrid MPI/OpenMP computation is denoted by a
triple of positive integers (n,m, t), where n is the number of computing nodes, m
is the number of MPI processes running in each of node and t is the number of
OpenMP threads for each MPI process. The product of these values is equal to the
total number of threads used. For example, (8, 2, 16) means that 8 nodes with 2 MPI
processes for each node and 16 OpenMP threads for each MPI process are used for
a computation, i.e. a total of 256 threads are employed. For a pure MPI run, only
(n,m) is used, being t = 1.

Hybrid MPI/OpenMP scalability (Linearized Euler equations)

The system based on the AMD Opteron 6276 CPU has been used to assess the parallel
performance in cases with a significant load per core. The two compilers presented in
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(a) Efficiency, 1 node (b) Efficiency, 2 nodes (c) (2,m, 16/m) relative time

Figure 3.12: Acoustic scattering from a sphere. Opteron 6276 system

Section 3.3.1 have been employed. The first numerical experiments were performed
within a single node only. The aim was to compare with each other the performance
of the pure OpenMP and the pure MPI implementations. In fact, recent versions of
the MPI library such as MVAPICH-2.2.1 use shared memory channels for the inter-
node communications, and therefore the message passing between cores sharing the
memory is faster then message passing between nodes.

Figure 3.12(a) shows that the parallel efficiency of the hybrid implementation is
slightly higher if compared to the pure MPI one for all the compilers. Using both the
nodes as (2, 1, t) the single-node results are confirmed. Only when the computation
lays on all the available 64 cores, the pure MPI solver compiled with GNU is more
efficient than the hybrid one, see Figure 3.12(b). More generally, when both the cores
of a pair are used the MPI/OpenMP advantage over the pure MPI slightly decreases.
This behaviour deserves further investigations and it seems similar to that reported
for the colouring and the face partition strategies for OpenMP.

Figure 3.12(c) shows the effect of varying the number of OpenMP threads per MPI
process. The configurations considered are of the type (2,m, t) with (m · t) = 16. The
relative wall clock time with respect to the best hybrid case, obtained by varying the
combination between the MPI processes and the OpenMP threads, is also reported.
It is clear that the first-touch policy allows the usage of a small number of MPI
processes without any efficiency loss due to the 4 NUMA regions of the hardware.
This effect is particularly clear when using the Open64 compiler. In fact, in this case
the m = 1 choice revealed to be the best one. The pure MPI case (2, 16) is also
reported in the figure for comparison purposes. The difference between the pure MPI
and the hybrid (2, 16, 1) results represents the overhead cost of OpenMP and of the
colouring algorithm when using a thread only. This value can be almost neglected
for both the compilers.

Figure 3.13(a) displays the speedup obtained when running the same test case on
FERMI. Using a number of threads equal to the number of cores, i.e. 16, a good
parallel performance with both the pure MPI and the hybrid MPI/OpenMP imple-
mentations has been obtained. For example, the parallel efficiency at 4096 cores
(22 elements per core) is 83.5% and 77.2% for then MPI/OpenMP and pure MPI
implementations, respectively. When using 64 threads per node, corresponding to
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(a) Strong scalability (b) (n,m, 64/m) relative time

Figure 3.13: Acoustic scattering from a sphere. FERMI BlueGene/Q platform

4 hardware threads per core, the parallel performance of the hybrid solver largely
outperforms that of the pure MPI one. This gain increases, for a given grid density,
together with the number of computational nodes employed. Note that when using
16384 total threads each of them deals with only 5.5 grid elements on average.

Figure 3.13(b) shows the relative wall clock time when using all the 64 hardware
threads of a node and varying the combination between the MPI processes and the
OpenMP threads. Being this platform is of the UMA type, the best performances
have been obtained using a small number of MPI processes, as expected. In this case,
the values relative to the pure MPI implementation highlights that the overhead cost
of OpenMP and of the colouring algorithm is quite low for the IBM xl compiler
available on FERMI and it is around 5%. These results with 64 threads per node
were confirmed also by computing the second test case, i.e. the directivity from a
loudspeaker, on two grids consisting of ne = 109067 hybrid elements and 576762
tetrahedral elements respectively, see Figure 3.14.

The scalability of the solver is assessed by computing the directivity from a loud-
speaker using the finest grid on both MARCONI A1 and A2 systems, see Fig-
ure 3.15(a). As far as the single thread per core configuration is employed, the effi-
ciency of the pure MPI solver is comparable to that of the hybrid MPI/OpenMP (solid
and dashed lines). When enabling hyper-threading on the A2 system, an improve-
ment in parallel efficiency is observed for the hybrid implementation (red, dash-dotted
lines) compared to the pure MPI case (black, dash-dotted lines). As with FERMI,
the influence on performance of the number of MPI ranks m within a single node has
not been investigated. The influence of this parameter is shown Figure 3.15(b) by re-
porting the relative percentage gain/loss in terms of CPU time when varying m with
a fixed number of threads per node. The pure MPI results reported in Figure 3.15(b)
reveal that on A1 there is no OpenMP penalization due to the use of the different
organization of the loop over the face in the colouring algorithm. The loss of compu-
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(a) Speedup, 64 threads per node (b) (n,m, 64/m) relative time, coarse grid

Figure 3.14: Acoustic radiation of a speaker, coarse and fine grids. FERMI Blue-
Gene/Q platform. The speedup is evaluated according to the 64 nodes,
1024 cores, performance

(a) Code scalability (b) Choice of the number of MPI processes

Figure 3.15: Efficiency of the LEE solver on the MARCONI platforms, evaluated
according to the performance of one node (36 and 68 cores, respectively).
Acoustic radiation of a speaker test case.

tational efficiency observed on A2 is about the 5% both for the 68 and the 272 cases,
which results are similar to FERMI. When using A2 and 256 nodes (33 elements per
core) a strong scaling speedup for the hybrid MPI/OpenMP implementation has been
measured, roughly 1.2 · 104. This large value is particularly significant because it has
been obtained on a large problem that can still be addressed in a serial computation
on the same machine.
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Hybrid MPI/OpenMP scalability (Navier–Stokes equations)

The suitability of the hybrid implementation proposed here in the context of a Navier–
Stokes solver has been demonstrated by computing the parallel performance on both
the MARCONI systems. As a representative flow problem the Taylor–Green vortex
with a very high-order discretization, i.e. P6 and ne = 323, has been considered. In
addition, two types of partitioning strategies for the MPI solver are compared. The
former, denoted as global, minimizes the overall communications between mesh ele-
ment partitions. The latter, proposed in [61, 62], employs a “two-level” partitioning
of the domain. The first-level decomposition is performed according to the num-
ber of nodes, while the second-level decompose the node-local partition according to
the number of cores per node. In the following, the strategy will be called as local
partitioning. This approach naturally minimizes extra-node communications, and
guarantees that the same amount of MPI messages are exchanged in the pure MPI
and hybrid MPI/OpenMP runs.

Figure 3.16(a) reports the results obtained on MARCONI A1. In this case a single
thread per core configuration was used. The hybrid MPI/OpenMP solver, employed
with two MPI partitions per node, outperforms the pure MPI implementation. The
choice of the number of MPI partitions was consistent with the numerical experiments
reported in Fig. 3.15(b). It is worth noting that, in case of a pure MPI implementa-
tion, using the local partitioning strategy improves the parallel efficiency if compared
to the global one, especially when the largest number of nodes is used.

On the A2 platform, a different behaviour has been observed. The single thread
per core configurations (solid lines in Figure 3.16(b)) show very similar behaviour
when the MPI, both with the local and global partitioning approach, and the hybrid
MPI/OpenMP implementations are used. Differently, when using hyperthreading,

(a) A1 (b) A2

Figure 3.16: Efficiency of the Navier–Stokes solver on the MARCONI platforms, eval-
uated according to the performance of one node (36 and 68 cores, respec-
tively). Taylor–Green Vortex test case.
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larger differences on the results arise (dashed lines). In this case the efficiency of the
pure MPI solver drops down considerably, while the use of a hybrid MPI/OpenMP
implementation allows to maintain as high parallel efficiencies as for the single thread
configuration. This behaviour has been noticed both using a two-thread per core and a
four-thread per core configuration. It is worth noting that, when the hyper-threading
is employed, the performance of the code grows by a factor of 1.29 considering a single
node computation, which makes the higher parallel efficiency of the OpenMP solver
particularly attractive. Moreover, the results were found only weakly dependent to
the number of MPI ranks used within the node of such platform, see Figure 3.15(b).
This fact is due to the different architecture of the KNL node.

By comparing the the advantages of using a hybrid implementation in the NS or
LEE context, a significant advantage for the former case is observed. This gain is due
to the larger number of operations performed over each face for the viscous solver,
which influence the amount of workload on the duplicated faces on the partition
boundaries. Moreover, the measured scaling of the DG NS solver is comparable with
that of similar and at the state-of-art codes. For example, Munz et al.in [63] report
a strong scaling, performed on the CRAY-XE6 cluster, using form 11 to 64 AMD
Opteron 32-core nodes of 61%. Considering that the numerical experiment range
from 16 to 128 nodes on MARCONI A1, a strong scaling of 62% in pure MPI mode
and 67% in the hybrid mode has been measured. Note that number of DOFs per
core is 625 in the most parallelized case, which is a bit larger than that of the present
computations, i.e. 597.

Finally, it is worth pointing out that a certain dispersion on the measured CPU
times on the MARCONI A2 system was observed. Only the best-performing experi-
ments have been reported in the paper. This behaviour explains why the A2 curves
are generally less smooth, see for example Figure 3.16(b).

3.3.4 OpenMP & accelerators

Among the new opportunities offered by the new OpenMP 4.0 standard, hardware ac-
celerators such as GPU and the Xeon Phi coprocessor can be easily considered. Here,
the first naive attempt of using this opportunity is reported. For those experiments
has been performed on the nodes of the GALILEO cluster hosted by CINECA, which
owns two Xeon Phi KNC coprocessors per node. See Table 3.2 for the description of
the platform. On this machine the scalability of the proposed implementations, for
the sake of compactness not reported here, is very similar to that obtained on the
MARCONI A1 platform reported in Figure 3.15.

The Xeon Phi hardware is accessed in the so-called offload mode trough the !$OMP
target directives. The computation of the Rκ contribution to the residuals vector
was assigned to the 240 threads of the Xeon Phi accelerator, see Figure 3.17(a) for the
parallel performance of the solver on a single KNC. Using !$OMP task directives the
latter operation was overlapped to the evaluation of the Rσ contributions performed
in the host CPU. This parallel configuration has been denoted as (n,m, t, 240), where
240 indicates the Xeon Phi threads employed for each MPI process. Since each node
owns two coprocessors, m = 2 was used for these numerical experiments. In this
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(a) Xeon Phi (b) Xeon & Xeon Phi

Figure 3.17: Acoustic scattering from a sphere. GALILEO platform. In a) the Xeon
Phi CPU is used in native mode, in b) as coprocessor in the offload mode
(240 threads).

case the code uses the MPI library for the communications between nodes and the
OpenMP paradigm to assign parts of the execution to the CPU and coprocessor cores.
A clear performance gain can be obtained only when few cores of the host CPU are
employed. In fact the Xeon Phi CPU shows good parallel performances, see Figure
3.17(b), but a high serial wall clock time. In fact, using the proposed solver, a Phi
core is about 24 times slower than one Xeon CPU core, while the 240 Phi threads
are about 1.3 times slower than the 8 Xeon cores. Bearing that in mind, a 33% time
reduction in using the coprocessor together with a single CPU core has been observed.
The scaling follows the ideal law up to 8 host cores. However, using all the sixteen
CPUs of a node and the two coprocessors the advantage is limited to the 17% only.

Unfortunately it is not possible to extrapolate this result to multi-nodes config-
urations. Figure 3.17(b) shows the low parallel performance of the code, with the
speedup computed according to the measured serial execution time of the configura-
tion (1, 1, 1, 240). The main reason for this behaviour is the low speed of the data
transfer on the PCI express bus, the associated overhead becomes more relevant when
decreasing the parallel granularity. This type of data transfer is needed both to copy
the current W vector from the host CPU to the accelerator and to get the Rκ array
in the node main RAM. Further investigation on the efficient usage of accelerators
within the OpenMP paradigm is the subject of ongoing work.

3.4 Summary

In this chapter an investigation of OpenMP and hybrid MPI/OpenMP implemen-
tations of a high-order explicit-in-time DG solver for CFD and CAA applications is
presented. Despite OpenMP is considered to be the most straightforward way to
parallelize an application in the context of shared memory systems if compared to
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MPI, many issues have to be considered. In fact, the NUMA design of many recent
hardware platforms, as well as the effectiveness of the compiler when including the
OpenMP directives, can significantly reduce the computational efficiency. While the
former problem can be addressed using the first touch policy, which can partially mit-
igate some inefficiencies by making the code NUMA-aware, the latter can be faced
only dealing with OpenMP in an MPI-like manner, using a domain decomposition
algorithm. However, some powerful features of OpenMP are lost, together with the
simplicity of the parallelization based on work-sharing directives. Nevertheless, the
implementation of a simple colouring algorithm shows high parallel efficiencies. When
this approach is used within a MPI code, the resulting hybrid strategy improves the
scalability on large HPC facilities consisting of multi- and many-core nodes. This is
particularly true when the set of NS equations is considered. In fact, the discretiza-
tion of the viscous terms involve more floating point operations in the loop over faces
than EE/LEE. The hybrid approach also showed a clear gain in parallel performance
over pure MPI when the CPU is able to handle more than one hardware threads per
core.

Other reasons promoting the use of OpenMP exist. In fact, the recently released 4.0
standard can deal with hardware accelerators too. Although preliminary, encouraging
results have been obtained by exploiting these new OpenMP features. Moreover, the
possibility to improve further the performance of the solver using an asynchronous
parallel model can be investigated, for example using MPI’s one-sided communication
functionalities and OpenMP’s pragma directives for task-based parallelism. To this
end, the use of OmpSs [64], a variant of OpenMP focused on exploiting irregular and
asynchronous parallelism and also able to deal with distributed memory machines
and heterogeneous architectures, as well as other alternatives of this type such as
FREDDO [65], can be considered in the next future.

Finally, it is worth to remark that an extension of the approach proposed to implicit-
in-time discretizations would require the implementation of a hybrid MPI/OpenMP
parallelization of the residual’s Jacobian evaluation, the preconditioner assembly and
application, as well as the iterative solver. Such an implementation is beyond the
scope of the thesis, and it will be subject of forthcoming research.
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Chapter 4

Matrix-free implicit time integration

This chapter deals with computational efficiency of implicit-in-time DG discretiza-
tions. In fact, it can be recognized that the memory footprint of the residual’s
Jacobian scales at k2d, and it is clear that for high-order of polynomial approxima-
tions the high demand of memory and the large CPU times for the matrix assembly
limit the applicability of those schemes for industrially-relevant computations. How-
ever, the implementation of a matrix-free (MF) generalized minimal residual method
(GMRES) solver appears to be a viable way to overcome those limitations. Pre-
vious studies considered the possibility of using memory-saving implementations of
the iterative solver. For example, in [66], a matrix-free GMRES solver was used to
solve steady compressible flows. In [67] a matrix-free approach is employed in the
context of several time integration strategies with applications to unsteady, laminar
two-dimensional problems. In [68] the use of a matrix-free GMRES is proposed for
the solution of both the primal and adjoint problem with applications to compressible
Navier–Stokes equations. However, none of those work explicitly provide estimates
of the numerical efficiency of a matrix-free iterative solution strategy in comparison
to a matrix-based one. Interestingly, despite several authors [11, 8, 7, 69, 70, 71, 72]
make use of one those two approaches, it is not clear how the methods compare with
each other, particularly for large unsteady problems.

The aim of the chapter is therefore to compare the performance of a matrix-free
implementation of the iterative solver to a standard matrix-based one, where the
residual’s Jacobian is analytically computed and stored in memory. An important
part of the Chapter is the preconditioning strategy, which is mandatory to improve
the efficiency and reduce time-to-solution of the iterative strategy. In the MB case
the use of the iteration matrix itself to build such operator seems the most natural
choice, for example as an incomplete lower upper factorization (ILU) or a block
Jacobi (BJ), since the Jacobian matrix has to be evaluated explicitly and stored to
solve the system. On the other hand, the MF approach does not need the Jacobian
to advance the solution in time, and therefore the preconditioner can be computed
more cheaply using an approximation of the iteration matrix. For example, it is
possible to freeze the evaluation of the Jacobian blocks for some time steps, and/or
to use a computationally cheaper element-wise version of the block Jacobi (EWBJ),
which reduces also the memory footprint of the application. These properties become
particularly attractive in a matrix-free framework because the approximation of the
Jacobian is may be an unstable operation within matrix-based contexts, even using
Rosenbrock W-methods, which can produce a higher time integration error or loss of
the algorithm stability for large time step sizes.
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In order to compare MB and MF implementations, in this chapter incompressible
flows are considered. The reason for this choice is ascribed to what reported in [16].
In fact, it is demonstrated that in the incompressible case the Newton’s linearization
of a DG discretization results in a stiffer Jacobian matrix, thus the advantages related
to its approximation should be significantly larger in the case of DG discretization of
the compressible fluid-dynamics governing equations, widely adopted in literature. It
is here retained that the incompressible case is also particularly interesting since even
the explicit/semi-explicit methods requires a linear solver for the pressure DoF, see
for example [73, 74, 75]. Finally, the author remarks that the use of linearly implicit
Rosenbrock schemes calls for linear system solutions only, but this can be considered
as a building block for other implicit and high order time integration schemes also, see
for example Diagonally Implicit Runge–Kutta (DIRK) or those based on Backward
Differentiation Formulae (BDF). With such schemes, the advantages of using MF
solvers may be even larger since multiple Jacobian evaluation per time step are usually
required.

The test case considered is the two-dimensional incompressible laminar traveling
waves. The results in this Chapter, prove that, when adopting the same precondi-
tioner, there exists a wide range of time step sizes for which both the algorithms
behave identically. In fact, only when very small values of GMRES relative toler-
ance (tolr) are needed the MF approximation of the Jacobian appears resulting in a
greater difficulty to reach a target convergence of the linear system solution. Fortu-
nately, such small tolerances are recommended only for very small time step sizes in
order to preserve the theoretical accuracy order in time. Nevertheless, with implicit
time integration strategies the time step size should always be quite large, other-
wise explicit methods are probably more efficient. In these circumstances it is really
important to avoid over-solving the linear system from the computational point of
view. It is suggested that only with a reasonable tolr the comparison between the
algorithms is acceptable and that the above mentioned limit of the MF algorithm is
not a real issue. For this purpose, a criterion for a reliable selection of this parameter
is also introduced, which is based on the embedded Runge–Kutta scheme, and the
advantages of using such procedure are discussed. See [76, 77] for additional details.

4.1 Matrix-free GMRES algorithm

In this Chapter the restarted GMRES method with right preconditioning is employed
to solve the linear systems arising from the implicit time discretization of the equa-
tions. Algorithm 10 provides implementation details. Starting from an initial guess
δw0

h and given a fixed number of Krylov subspaces s, the method seeks the solution
by linearly combining the basis of the spaces through the solution of a minimization
problem. The Krylov subspaces are obtained through a standard Arnlodi process,
which simply constructs an orthogonal basis of the preconditioned Krylov subspace

Span(r0
h,GhP

−1
h r0

h, . . . , (GhP
−1
h )s−1r0

h) (4.1)

by a modified Gram-Schmidt process, in which the new vector to be orthogonalized
is obtained from the previous vector process. The last step of Algorithm 10 forms the
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4.1 Matrix-free GMRES algorithm

Algorithm 10 Restarted GMRES algorithm (right-preconditioned)
1: Choose δw0

h and define s the dimension for the Krylov-Subspaces. Define H̄m ∈
Rs+1 ⊗ Rs and initialise the components hi,j to zero;

2: Arnoldi Process:
3: Compute r0

h = gh −Ghδw
0
h, β = ‖r0

h‖2 and v1
h = r0

h/β.
4: do j = 1, s
5: Compute zjh = P−1

h vjh;
6: Compute wh = Ghz

j
h;

7: do i = 1, j
8: set hi,j = (wh, vjh)
9: set wh = wh − hi,jvjh

10: enddo
11: Compute h(j+1),j = ‖wh‖2 and vj+1

h = wh/h(j+1),j
12: enddo
13: Define Vs = [v1

h, v
2
h, . . . , v

s
h]T

14: Form the approximate solution:
15: Find ysh = min(βe1 − H̄syh), with e1 = [1, 0, . . . , 0]T
16: Compute δwsh = δw0

h + P−1
h Vsy

s
h

17: if ‖gh −Ghδw
s
h‖2 ≤ ε then

18: EXIT
19: else
20: set δw0

h = δwsh
21: go to 2
22: end if

solution as a linear combination of the preconditioned vectors

zih = P−1
h vih, i = 1, . . . , s. (4.2)

by applying the preconditioner operator P−1
h to the matrix Vs. The iterative strategy

is stopped if the final residual is smaller than ε = r0
htolr, with r0

h the residual of the
linear system at the beginning of the iterative process and tolr a user-defined residual
drop. It is worth noting that the right preconditioning approach is employed and
thus the definition of the residual is not affected by changing the preconditioning
definition.

Standard matrix-based (MB) approaches typically employed for steps 5 and 6 of
Algorithm 10 consist of calculating and storing both the Jacobian matrix and the
preconditioner. Since the Jacobian matrix size scales as n2

v, and thus as k2d, this
approach requires a high amount of RAM memory to be stored as well as a large
CPU time for its computation. In addition, lagging the evaluation of the Jacobian
evaluation over multiple time steps may be cumbersome, since it can reduce the
temporal accuracy and/or provide stability problems.

A matrix-free implementation of the GMRES solver can be obtained by noting
that it calls for matrix-vector products of the type Ghδwh. Recalling that Gh =
(1/αδt)Mh + Jh with α a scheme-specific coefficient, using Eq. (2.30) one can ap-
proximate the matrix-vector product (2.19) via a double bilinear form evaluation [78]
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such that

1
αδt

mh(δwh, zh) + jh(wnh , δwh, zh) = 1
∆ (gh(wnh+∆ δwh, zh)− gh(wnh , zh)) (4.3)

∀zh ∈ [Pk`d (Th)]d+1, where

gh(wh, zh) = 1
αδt

mh(wh, zh) + fh(wh, zh). (4.4)

Here the Jacobian matrix has been replaced by its first order finite difference approxi-
mation involving a numerical perturbation ∆ and a double evaluation of the residuals
bilinear form. The numerical perturbation appearing in Eq. (4.3) can be computed
according to [79],

∆ = ε

√
1 + ‖wh‖L2(Ω)

‖δwh‖L2(Ω)
, (4.5)

where the ε is an user defined input. It is known that the choice of this parameter
can be a trick between round-off and truncation errors, nevertheless the value of
10−9 is assumed for all the computations without any numerical issues. See [78, 80]
for complete review of the method and an in depth discussion of numerical and
implementation details.

Eq. (4.3) shows pros and cons over standard matrix-based time integration. First
of all, the matrix-vector product is avoided and, at least in theory, the Jacobian com-
putation can be neglected. For practical applications its evaluation is still required to
build the preconditioner operator which, in this case, can be obtained in-place, reduc-
ing the memory footprint of the code as only one matrix is allocated. Moreover, the
preconditioner can be reused for some consecutive iterations (skipping the Jacobian
evaluation) without loosing the formal accuracy of the time integration scheme. Such
property can be conveniently exploited to increase the computational efficiency of the
solution strategy in some circumstances, for example those concerning a high order
of polynomial approximation and small time steps, as it will be clear in the remain-
ing of the Chapter. It worth noticing that lagging the Jacobian evaluation becomes
more beneficial for the solver efficiency as the computational effort for a single eval-
uation grows. Being the computational cost of the Jacobian evaluation of the order
of O(m2k3d), lagging its evaluation is particularly attractive for a three-dimensional
problem, d = 3, and for a large polynomial order k.

On the other hand, the matrix-free solver requires a residual evaluation per GMRES
iteration. From the computational time point of view, the matrix-free iteration can
be more expensive than the matrix-based counterpart depending on how much the
residual evaluation costs if compared to the matrix-vector product. Recalling the
asymptotic scalings of the operation counts per element of each case [70], the matrix-
vector product scales as n2

v, while the residual evaluation as (ngenv), where nge is
the number of gauss integration points. Since nge ∼ kd, they scale equally with the
polynomial order and, as k increases, a similar behaviour for the two strategies is
expected. It is worth mentioning that curved mesh elements call for the use of high
order quadrature formulas, and thus a higher value of nge. This peculiarity will be
discussed in the following chapters.
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4.2 GMRES single-grid preconditioning

The numerical efficiency of implicit schemes is strongly affected by the preconditioner
operator. In fact, the more the preconditioner is close to the inverse of the iteration
matrix G−1

h , the lower the number of GMRES iterations required to reach the target
residual drop tolr. However, it is typically observed that very effective preconditioners
require large computing times both for their evaluation and their application, which
may increase the solution time. Finally, it is worth mentioning also the memory
footprint of the application. In fact, even using a matrix-free implementation of the
matrix-vector products, the preconditioner still needs to be stored and the overall
memory footprint may be still fairly large. The optimal strategy is necessarily a
tradeoff between those aspects. In this chapter common single-grid preconditioning
approaches are introduced to precondition the GMRES solver.

Incomplete lower upper factorization and block Jacobi

Three different approaches have been here implemented and compared. The first one
is the incomplete lower-upper factorization of the whole iteration matrix Gh, which
is evaluated analytically, with zero filling (ILU(0)). Thanks to the zero-filling, the
preconditioner assumes the same sparsity pattern of Gh, and therefore its memory
footprint scales as ne(nf + 1)(mnv)2. The use of this approach within a matrix-free
context reduces at least the 50% of memory allocated for the implicit time integration
of the equations, as the factorization can be performed in-place. It is worth niticing
that this preconditioner is obtained by definition in a serial computation. When ap-
plied in parallel, this strategy will be referred to as block Jacobi (BJ) when used in
parallel computations, as the ILU(0) is applied to the diagonal partition-wise block
of the Jacobian. Note that the parallel implementation of the ILU(0) algorithm re-
duces the preconditioner efficiency as the number of MPI ranks increase. The general
implementation of ILU allows to control the levels of fill by using the parameter j,
and it is generally denoted as ILU(j). This possibility will be explored in Chapter 5.

Additive Schwarz method

A variant which partially compensates this effect is the Additive Schwartz Method
(ASM), that extends each domain partition with a number of overlapping layers that
are used for the computation of the ILU(0). In this way the preconditioner efficiency
typically increases in parallel computations since the number of GMRES iterations are
lower than those of a BJ. However, the use of such preconditioner has to be avoided
in some cases, i.e. when using a small number of elements per partition, because the
higher amount of MPI communications as well as the larger memory footprint may
result in a less efficient procedure if compared to the BJ.

Element-wise block Jacobi

A third preconditioner that has been considered here is the so called element-wise
block-Jacobi (EWBJ). This preconditioner is assembled by performing the LU of the
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diagonal, element-wise blocks of the Jacobian neglecting all the off-diagonal contri-
butions. By definition, this operator has only one non-null entry in each block row
and thus requires a very low memory allocation if compared to the full matrix. This
approach becomes particularly attractive when coupled with the matrix-free GMRES
solver. In this case the calculation of the off-diagonal blocks of the Jacobian can
be completely avoided as they are not needed to advance the solution in time. It
has been verified that for a three-dimensional solution, employing a P6 discretiza-
tion and hexahedral mesh elements, the EWBJ preconditioner costs nearly two and
a half times less than the ILU(0)/BJ, while only the 7% of the memory footprint is
formally allocated to deal with the implicit time stepping. Another advantage of the
approach is that its parallelization is trivial, being the LU factorization performed in
a local-to-each element fashion. Numerical experiments show that, despite not par-
ticularly well performing on two-dimensional cases on small serial computations, this
strategy becomes very efficient for moderately stiff three dimensional problems, i.e.
when the grid is regular and shows moderately anisotropic and stretched elements at
the walls. It is important to point out that this simple preconditioner, which pro-
vides the minimum assembly times as well as the maximum memory saving within a
matrix-free framework, is effective for simple two-dimensional and three-dimensional
test cases only. For stiff space discretizations, the solution strategy does not work as
the number of iterations to complete the iterative process grow dramatically. This
limits the applicability of such memory-saving algorithm to general problems of arbi-
trary complexity. Finally, important to remark that the BJ algorithm, being applied
to the partition-wise block of the iteration matrix, tend to be equal to the EWBJ in
the limit of one mesh element per partition.

4.3 Numerical experiments

In this section incompressible problems are considered. To do so, the four-stage
L-stable ROSI2PW [81] scheme will be employed to assess the computational perfor-
mances of the proposed strategy. This scheme is formally designed for partial differen-
tial algebraic equations (PDAEs) of index 2 and shows several advantages over other
Rosenbrock schemes as the order-three, three-stage ROS3P [29], and the order-four,
six-stage RODASP [82] which are formally designed for PDAEs of index 1 (even if
they proved to retain the theoretical accuracy order solving NS equations [1, 82, 16]).
In fact, as reported in [81], the ROSI2PW is stiffly accurate and it shows improved
convergence when inexact Jacobians are employed (W-property). This fact becomes
attractive for matrix-based approaches because it allows to formally freeze the Ja-
cobian evaluation for some time steps while maintaining the theoretical convergence
order (see Section 4.3). It is important to stress the fact that the matrix-free imple-
mentation does not need the W-property, which is exploited in this paper only for
comparison purposes.

The numerical features of the proposed strategies have been evaluated by solv-
ing the laminar travelling waves (TW) test case. The problem is defined on a full-
periodic square domain sized [0.25, 1.25]×[0.5, 1.5], where an exact solution of the two-
dimensional incompressible Navier–Stokes equations can be found, in non-dimensional

50



4.3 Numerical experiments

form, as

u(x, y, t) = 1 + 2 cos(2π(x− t)) sin(2π(y − t))e−8π2t/Re

v(x, y, t) = 1− 2 sin(2π(x− t)) cos(2π(y − t))e−8π2t/Re

p(x, y, t) = −(cos(4π(x− t)) + sin(4π(y − t)))e−16π2t/Re

(4.6)

A smooth initial condition for the numerical solver can be conveniently set using
t = 0 on the system (4.6) and projecting the analytical solution into the modal
basis of the DG space. This investigation aims at assessing the performance of the
algorithms exploring several solver settings. In particular, the effects of the time step
size, the linear system relative tolerance tolr, the Jacobian lagging, the polynomial
order and grid size, and the scalability will be addressed. The numerical experiments
were conducted simulating a single convective period, i.e. a physical time of T = 1.
Unless differently specified, all the solutions have been obtained in serial using the
ROSI2PW.

4.3.1 On the ROSI2PW performances

The ROSI2PW scheme is here compared to the ROS3P (three-stage, order three)
and RODASP (six-stage, order four) schemes. Fig. 4.1(a) shows the L2-norm of the
error on the pressure at the time t = T , namely ‖errp‖L2 , computed on a 16×16
square grid at Re = 100, using a P6 discretization and different time step sizes
(T/10, T/20, T/50, T/100, T/200). Such discretization ensures that the spatial
error is always some orders of magnitude lower than the time discretization error.
It is shown that the implementation of all the three schemes converge with their
theoretical order, i.e. three for the ROS3P and ROSI2PW and four for the RODASP
as the δt decreases. In particular, the ROSI2PW scheme operates at a lower ‖errp‖L2

than the ROS3P, despite showing the same convergence order, due to the higher
number of stages employed. Fig. 4.1(b) reports the error versus the CPU time for
the same settings. For a given error level, the higher the order of the scheme or
the number of stages, the lower the CPU time required to integrate the equations.
Those considerations, independent of the scheme used neither of the preconditioner
employed, have been obtained using an ILU(0)-MB strategy with a tolerance on the
linear system of tolr = 10−8.

4.3.2 On the GMRES solver tolerance effects

The effects of the relative tolerance used to estimate the convergence level of the GM-
RES linear system within each stage of the Runge–Kutta scheme on the global solver
efficiency, when using matrix-based and matrix-free strategies, are here investigated.
For this purpose, a comparison of the performance obtained by using three different
tolerance levels, tolr = 10−3, 10−5 and 10−8 is reported. Fig. 4.2(a) shows that, for
all the tolerances employed, the error on the pressure ‖errp‖L2 is consistent between
the strategies when using the same tolr. Fig. 4.2(b) reports the average number of
iterations per stage. While for relatively large tolerances (tolr = 10−3, 10−5) the
average number of GMRES iterations per stage does not change between the MB
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Figure 4.1: TW problem on a 16×16 square grid at Re = 100, P6 discretization,
ILU(0)-MB solver, fixed system tolerance tolr = 10−8.
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Figure 4.2: TW problem on a 16×16 square grid at Re = 100, P6 discretization,
ILU(0)-MB vs. ILU(0)-MF solvers for various fixed system tolerance tolr.

and MF solvers, for the lowest value (tolr = 10−8) the situation is quite different. In
fact, the MF solver requires in this case a considerably higher number of GMRES
iterations to converge, which is clearly detrimental for the computational efficiency.
This fact may be ascribed to the finite difference approximation of the matrix-vector
product. When tolr is comparable with the ε of Eq. (4.5), the GMRES convergence
rate reduces and therefore the number of iterations required to reach convergence
increase. For higher values of tolr, such error is negligible and the solvers behave the
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Figure 4.3: TW problem on a 16×16 square grid at Re = 100, P6 discretization,
ILU(0)-MB solver, for fixed system tolerances (tolr = 10−3, 10−5, 10−8)
and adaptive tolerance (tolr = ad.) given by Eq. (4.7).

same also from the GMRES iterations viewpoint.
Fortunately, not always such small values of tolr are required to obtain a good

solution. Fig. 4.3(a) shows for the ILU(0)-MB setting only, and for a wider range of
time step sizes (up to δt = T/5000), the effects of the linear system tolerance on the
output error ‖errp‖L2 . If a large tolerance is employed when using a small time step,
the system is under-solved and therefore the global error is dominated by the GMRES
solution error. In this case the time integration error does not follow anymore the
theoretical convergence rate of the scheme. Conversely, comparing Fig. 4.3(a) with
Fig. 4.3(b), where the average number of iterations per stage is reported, it can be
observed that if a large time step size and a small value of tolr is used, the GMRES
linear system is over-solved and unnecessary iterations are performed. Further details
on the relationship between time step size, relative tolerance and solution quality can
be found in [83].

In order to avoid both those effects, an adaptive strategy for the evaluation of the
largest relative tolerance to solve adequately the GMRES system may be used. If wnh
is the solution vector at the time step n, and the w̃n is the output of the embedded
Runge–Kutta scheme, one can use the formula

toln+1
r = min(αn/3, 10−3) (4.7)

with αn = ‖wn − w̃n‖L2 , to ensure that the GMRES solution error is always below
the time discretization error. The proposed strategy employs a 1/3 safety factor
on the estimated time discretization error, which has been calibrated on this two-
dimensional study, and requires to solve the linear system with a minimum of three
orders of magnitude. Such strategy is inspired to what is typically done with adaptive
time stepping strategies, see for example [84], while the use of the error estimate at
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the time step n to solve the GMRES system at the step n + 1 is retained to be
acceptable for the applications here considered, where the physical time scales are
somehow constant over the time steps. Note that the same safety factor has been
also employed for three-dimensional turbulent test cases without any numerical issue.
Note also that thanks to the properties of the ROSI2PW scheme and its embedded,
the error estimation is reliable also when INS equations are considered. In fact, as
happens in the context of adaptive time stepping strategies, the error estimate is
referred to the local error (evaluated on a single step) of the embedded scheme which
is of the same order of accuracy of the full-order Runge–Kutta scheme. In this case,
the scheme designed for PDAEs of index 2 (i.e. the INS equations) and therefore it
can be verified that αn ∼ O(δt3). Other embedded Rosenbrock schemes, for example
that of the ROS3P, does not show such property and therefore the adaptive strategy
for tolr cannot be formally employed in the context of incompressible flows.

Fig. 4.3 shows the effects of the adaptive tolerance on the solver performance (see
black crosses). The use of this strategy produces an ‖errp‖L2 dominated only by the
time discretization error, requiring the minimum number of iterations per stage. Note
that both having very small and very large time step sizes produce high condition
numbers of the iteration matrix, and therefore the linear system requires a higher
number of GMRES iterations to reach the target accuracy. This fact may be explained
recalling the definition of Gh = (1/αδt)Mh+Jh: in the former case the dominance of
the diagonal part of the iteration matrix is reduced by large δt, while in the latter this
behaviour is related to the absence in Mh of the diagonal entries corresponding to
the pressure DoF proper of the incompressible discretization. It is worth mentioning
that for the last two time steps of Fig. 4.3, T/2000 and T/5000, the error ‖errp‖L2 is
dominated by the space discretization (reducing tolr does not allow to maintain the
asymptotic convergence order).

Considering an interval of time steps where the temporal integration error decreases
asymptotically with all the tolerances employed, i.e. for T/10, T/20, T/50, T/100 and
T/200, the computational performance of three solver settings (ILU(0)-MB, ILU(0)-
MF, EWBJ-MF) are compared on a 16×16, P6 space discretization for two values
of tolr. Fig. 4.4(a) shows the pressure error ‖errp‖L2 versus the CPU time, while
Fig. 4.4(b) reports the average number of iterations per stage for the different time
step sizes considered. As already shown previously, the matrix-free approach per-
forms very poorly when solving the GMRES system with very small values of relative
tolerance (tolr = 10−8), see solid lines of Fig. 4.4(a). This consideration holds true for
both the preconditioners employed, i.e. the ILU(0) and the EWBJ, if compared to
the MB case. While the reduction of the time step size seems to mitigate those detri-
mental effects, the ILU(0)-MF results at least 2 times slower than the ILU(0)-MB,
while the EWBJ-MF increases the CPU time at least by a factor of six. Therefore,
it is not recommended to use the matrix-free approach, in any form, within such
operating conditions.

The situation is quite different when a sufficiently large tolerance (tolr = 10−5) is
employed to solve the GMRES systems (dashed lines, triangular symbols on Fig. 4.4).
As expected, when the same ILU(0) preconditioner is employed, the matrix-free and
the matrix-based approaches behave similarly and are able to solve the GMRES
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Figure 4.4: TW problem on a 16×16 square grid at Re = 100, P6 discretization,
ILU(0)-MB, ILU(0)-MF and EWBJ-MF solvers, for various fixed system
tolerance tolr.

system with an identical number of GMRES iterations per stage. It is interesting
to notice that for this space discretization (two-dimensional P6 setting) the costs of
a residual evaluation are comparable but slightly higher than the costs of a matrix-
vector product, and similarly the CPU times measured between the ILU(0)-MB and
ILU(0)-MF solvers. Since the memory saving related to the implicit solution strategy
reaches the 50% due to the in-place factorization of the preconditioner, one may
consider using this scheme for computational efficiency. The EWBJ-MF (blue curve
Fig. 4.4), although reducing the memory requirements by the 90%, is highly penalized
by the time spent on the GMRES loop due to the use of a cheaper and less efficient
preconditioner, and the penalty factor reaches 2.5 within the smallest time step.

4.3.3 Jacobian lagging

The effects of lagging the Jacobian evaluation for n time steps, on the same TW
numerical setup for the three aforementioned solution strategies, using tolr = 10−5,
and the ROSI2PW scheme are here investigated. The lagging parameter was set
as n = 10, which revealed to maximise the performances at the smallest time step
sizes. Note that an adaptive strategy to estimate n can be also performed, see for
example [85]. In this section two aspects are considered. The first one involves
the convergence order of the output error ‖errp‖L2 . The second one deals with the
computational efficiency.

Fig. 4.5 shows that the lagging does not affect ‖errp‖L2 for all the matrix-free tests
(the red and blue dash-dot lines are covered by the solid ones). This is consistent
with the fact that, in matrix-free contexts, the lagging operation only affects the
computation of the preconditioner and not the iteration matrix. As regards the MB
setting, even though a lagging parameter of n = 10 was employed, the theoretical
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convergence order is maintained thanks to the W-property of the Rosenbrock scheme
here used. However, the solution shows a slightly higher ‖errp‖L2 (see black dash-dot
line of Fig. 4.5).

Fig. 4.6(a) reports the ‖errp‖L2 versus the CPU time. Using n = 10, the ILU(0)-
MF solver outperforms the standard ILU(0)-MB, n = 1 approach particularly using
small time steps, where a speed-up factor of 1.38 has been estimated. The lagging has
only a marginal effects on the EWBJ-MF performances, which are still poor in terms
of computational time. The reason is here ascribed to the computational cost of the
Jacobian. This fact can be quantified with the parameter r = Tjh/Tfh , namely the
ratio between the CPU time required to evaluate the Jacobian trilinear form jh and
the CPU time required to evaluate the residual bilinear form fh. For the ILU(0) case
a value of r ≈ 67 has been estimated, while for the EWBJ preconditioner r ≈ 29, see
Tab. 4.1. Such low value of r is consistent with the fact that the EWBJ is cheaper to
be computed, and therefore it explains the low amount of CPU time saved. Fig. 4.6(b)
reports the average number of iterations per stage. As expected, the preconditioner
lagging reduces slightly the efficiency of the GMRES algorithm. However, especially
for the highest values of r, the additional iterations are compensated from the CPU
time point of view, by the time saved by skipping the preconditioner evaluation.
Moreover, the additional GMRES iterations decrease as the time step size decreases
since, with the smallest δt, the Jacobian is weakly varying between one time step and
another.

Fig. 4.7 reports the computational efficency of the solvers when the adaptive tol-
erance of Eq. (4.7) and the Jacobian lagging are used together. Clearly the ILU(0)-
MF results in the best performing scheme on a wide interval of time step sizes, see
Fig. 4.7(a), providing in average a speed-up of 1.3 (in terms of CPU time) if com-
pared to the adaptive ILU(0)-MB, n = 1. On the other hand, the performance of the
ILU(0)-MB with n = 10 are similar to those of the MF, despite showing the slightly
higher error. The dashed line, reported as reference, shows the ILU(0)-MB, n = 1,

1/∆t

||
e

rr
p
||

L
2

10
1

10
210

­5

10
­4

10
­3

10
­2

10
­1

10
0

ILU(0)­MB, n=1

ILU(0)­MB, n=10

ILU(0)­MF, n=1

ILU(0)­MF, n=10

EWBJ­MF, n=1

EWBJ­MF, n=10

Figure 4.5: Effects of the Jacobian lagging on the TW problem at Re = 100 for the
three considere strategies.
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Figure 4.6: Effects of the Jacobian lagging (n = 10) on the TW problem at Re = 100
using tolr = 10−5.

tolr = 10−8 case, which requires higher CPU time to solve the problem. Despite
still poorly performing, the EWBJ-MF penalty is greatly reduced when using those
expedients.

It is worth pointing out that while the ILU(0)-MB setting allows to maintain the
theoretical convergence rate for the TW problem at Re = 100, which is somehow
remarkable for such configuration, the authors experienced a significant decrease of
stability, with respect the n = 1 case, just by increasing by one order of magnitude
the Reynolds number and using moderately high time step sizes. For this purpose
Fig. 4.8 has been reported, where only the converged solutions are plotted (black dash-
dotted line). Conversely, the matrix-free solver accuracy was unaffected by the lagging
operation, which can be employed with confidence even with the largest time step
sizes (T/10, T/20 and T/50), where the preconditioner becomes rapidly inefficient and
a huge increase in the average iterations per stage is observed. Despite that using
n 6= 1 is not useful to increase the computational efficiency for such configurations, it
confirms further the reliability of the approach.

This strong influence of the Reynolds number on the lagging effectiveness can be
understood by noting that, with the incompressible NS, the diffusive terms are linear
and therefore their contribution to Jh is exact even when the evaluation of this matrix
is frozen. In other words, with the lagging procedure only the convective part of the
Jacobian is approximated entailing that the approach is more suited for diffusive
dominated regimes. Nevertheless, in the following it is proved that the approach
can strongly enhance the computational efficiency of the solver in turbulent three-
dimensional problems also. It is finally worth noting that, while the matrix-based
approaches formally support the Jacobian lagging only for certain schemes, like the
ROSI2PW employed herein, the matrix-free strategy allows to exploit this operation
with every scheme.
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Figure 4.7: Effects of the Jacobian lagging (n = 10) together with the adaptive toler-
ance of Eq. (4.7) on the TW problem at Re = 100.
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Figure 4.8: Effects of the Jacobian lagging (n = 10) with fixed tolerance tolr = 10−5

on the TW problem at Re = 1000.

4.3.4 Effects of the space discretization

The effects of space discretization are here reported for the three solution strategies
considered. Firstly, the effects of rising the order of polynomial approximation from
P1 to P6 on the 16×16 grid are reported. Secondly, the results on two grid refinements
(32×32 and 64×64), using P6 polynomials, are compared. The numerical experiments
were performed using a time step size of δt = T/100 and a fixed value of linear system
tolerance tolr = 10−5.
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P 1 2 3 4 5 6

r (ILU(0)) 7 14 23 32 48 67
r (EWBJ) 4 7 11 14 23 29

Table 4.1: Computed r = TJ/TR for different values of polynomial order on the 2D
TW problem.
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Figure 4.9: Effect of the polynomial order on TW at Re = 100, ROSI2PW scheme.
ILU(0)-MB, ILU(0)-MF and EWBJ-MF are reported with n = 1, 5 and
10. The GMRES system tolerance was set as tolr = 10−5.

Fig. 4.9(a) shows the CPU time of the matrix-free solution strategies non-dimensionalized
using the ILU(0)-MB, n = 1 case by varying the order of polynomial approximation
k. A clear improvement of the matrix-free performance can be noticed as k increases.
In particular, the ILU(0)-MF with Jacobian lagging of n = 5, 10 outperforms the
corresponding MB case for k ≥ 5. This trend is consistent with the higher CPU time
required to evaluate the Jacobian as the polynomial order increases, see Tab. 4.1,
which reports the computed r parameter described in Section 4.3.3. The EWBJ-
MF, despite poorly performing in all the cases (the number of GMRES iterations per
stage increase with k, see blue lines of Fig. 4.9(b)), it reduces its penalty factor from
3.8 at k = 1 to 2.5 at k = 6.

Fig. 4.10 reports data obtained by increasing the mesh size. While the average
number of iterations per stage increase almost linearly with the number of mesh ele-
ments, the relative time t/tref is only weakly varying with ne, showing that the space
discretization affects the results on this two-dimensional case through the polynomial
order only.
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Figure 4.10: Effect of the grid size on TW at Re = 100, ROSI2PW scheme. ILU(0)-
MB, ILU(0)-MF and EWBJ-MF are reported with n = 1, 5 and 10. The
GMRES system tolerance was set as tolr = 10−5.

4.3.5 Strong scalability

Numerical experiments performed to evaluate the parallel performance of the algo-
rithm are here reported. The 64×64, P6 space discretization was employed for this
purpose, using a time step size of δt = T/20. The tests were performed by comparing
the CPU time needed by the solver to perform 10 time steps on a computational node
based on two sixteen core AMD Opteron 6276 CPUs. The GMRES tolerance tolr
was fixed at 10−5.

Fig. 4.11 shows the Speed-up and the CPU time measured for the BJ-MB, BJ-
MF and the EWBJ-MF. The results using the Additive Schwartz Method with 1
(ASM(1)) and 2 (ASM(2)) overlapping layers are also reported for comparison pur-
poses in combination with both the MB and the MF solvers. As regards the Speed-up,
is its shown in Fig. 4.11(a) that the BJ scales very poorly. The reason for this can be
observed in Fig. 4.12, where the average number of iterations per stage of the GMRES
is reported as a function of the number of cores employed. In fact, as the number of
MPI ranks increases, the BJ preconditioner decreases its effectiveness and a higher
number of iterations are required to reach the target relative tolerance if compared
to those required by serial computations. This outlook is only partially mitigated by
the AS methods, which in this case increase the computational efficiency. In fact, the
number of GMRES iterations grows slightly, i.e. the preconditioner effectiveness does
not change with the number of domain partitions. However, the parallel efficiency is
still far from the ideal scaling due the overhead of MPI communications related to the
overlapping blocks. When such strategies are employed within the matrix-free con-
text, the situation is only partially different. In fact, an increase in parallel efficiency
(see Fig. 4.11(a)) of the matrix-free strategies is observed, which is only apparent
since it is ascribed to a slight different behaviour of the serial computation (see, for
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Figure 4.11: Strong scalability analysis of the MB and MF strategies using different
preconditioners. TW problem at Re = 100, 64×64, P6 space discretiza-
tion.

example, the CPU time in Fig 4.11(b)). This fact may be due to cash and memory
usage efficiencies varying the size of the local portion of the residuals vector. This
behaviour can be also observed for the EWBJ-MF case, which shows large superlinear
speed-up values, see blue lines of Fig. 4.11. Note that with this preconditioner the
average number of iterations per stage remain constant irrespectively to the number
of MPI ranks employed. This happens because the EWBJ is defined locally within
each element and therefore it does not change with the number of domain partitions.
Interestingly, when using 32 cores it provides a CPU time comparable with the BJ
cases. This fact has a huge impact if such preconditioner is employed on highly
parallel runs on large HPC systems.

4.4 Remarks

Summarising the two-dimensional numerical experiments performed in this chapter
some remarks can be made. In general, it has been shown that the matrix-free solvers
are able to provide the same output error levels than standard matrix-based solvers
for a very wide ranges of tolerances and time steps. However, only inside an operative
range the matrix-free GMRES solver converge with the same number of iterations.
This case is typically verified for sufficiently large GMRES tolerances, where the
finite difference approximation error does not affect the linear system convergence.
For those reasons, an adaptive tolerance strategy that allows to solve the linear system
with the minimum number of iterations, without detrimental effect on the accuracy
of the solution, is crucial to increase the efficiency of the method. The matrix-free
performances may be further improved by lagging the Jacobian evaluation, which
does not affect the solution accuracy but increases the computational efficiency when
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Figure 4.12: Number of iterations per stage as function of the number of domain par-
titions for different preconditioners. TW problem at Re = 100, 64×64,
P6 space discretization.

the costs of the matrix evaluation are high. An estimate of those costs can be obtained
via the parameter r, which increases as the order of polynomial approximation rises.
Moreover, while MB methods behave better than MF for low values of polynomial
orders, using high values of k they behave similarly in terms of CPU time. Finally,
when the EWBJ is employed, the MF scales almost optimally and it is able to provide
a comparable CPU time than the other strategies on highly parallel runs, despite being
highly penalized in serial computations. Such considerations are independent of the
mesh size.
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Chapter 5

Multigrid preconditioning for stiff discretizations

The chapter is devoted at extending the limitations of what has been reported in
Chapter 4 to arbitrary complex problems by proposing an efficient and optimally
scalable preconditioning strategy that allows to exploit the memory footprint reduc-
tion allowed from a matrix-free strategy.

The key idea here is to exploit multilevel methods. Those methods have been
considered in the past as an efficient way to solve both linear and non-linear prob-
lems arising from high-order discontinuous Galerkin discretizations, and have been
first proposed by Helenbrook et al. [86], Bassi and Rebay [87], Fidkowski et al. [88].
Those authors focused on the analysis of a p-multigrid (p-MG) non-linear solver,
proving convergence properties and performance in the context of compressible flows
using element- or line-Jacobi smoothing. Several authors also considered multigrid
operators built on agglomerated coarse grids, such as h-multigrid, see for exam-
ple [89, 90, 91]. The possibility of using multigrid operators as a preconditioner was
also explored in the context of steady compressible flows, see for example [92, 93]. In
these works, the algorithm is reported as the most efficient and scalable if compared
to single-grid preconditioners, and a large reduction in the number of iteration to
reach convergence was achieved. More recently, an h-multigrid preconditioner was
proposed in [94] in the context of steady and unsteady incompressible flows. In this
latter work a specific treatment for inherited DG discrezations of viscous terms on
coarse levels was introduced, significantly improving the performance of the multigrid
iteration.

The aim here is to combine such powerful preconditioning strategies with a matrix-
free implementation of the smoothers to reduce as much as possible the memory foot-
print and increase the computational efficiency on problems of arbitrary complexity.
Target applications here require to solve for incompressible flows with linearly im-
plicit Runge–Kutta schemes of the Rosenbrock type. The linear systems solution is
based on a matrix-free implementation of the Flexible GMRES (FGMRES) method
with p-multigrid preconditioning. In particular, the p-multigrid iteration is built us-
ing a matrix-free GMRES smoother on the finest level, and standard matrix-based
GMRES smothers on coarser levels. In addition to that, one of the contribution of
the chapter is to extend the h- rescaled-inherited approach proposed in [94] to the p
version of the multigrid preconditioner. The approach allows to overcome the excess
of numerical stabillization obtained on the coarser-level operators through standard
subspace-inheritance, reducing the stiffness of the coarser-level problems. The impact
of this algorithm on the convergence of the iterative method investigated.

The chapter assesses the behaviour of the rescaled-inherited approach on the solu-
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tion of the two-dimensional Poisson problem. Afterwards, two incompressible Navier–
Stokes solutions are examinated. The first one deals with the solution of the two-
dimensional laminar flow around a circular cylinder, while the second one involve the
three-dimensional laminar flow around a sphere. Those two test cases are discretized
with curved mesh elements and a large computational domain, which increase the
stiffness of the linear systems arising from the time discretization. Large benefits
both in terms of the iterative solver convergence rate and of the CPU time while
maintaining a favourable memory footprint are documented. See [95] for further
details.

5.1 Multigrid preconditioners

This Section considers the possibility to solve the global equation system (2.31)
by means of a flexible GMRES (FGMRES) iterative solver preconditioned with p-
multigrid. Algorithm 11 reports the FGMRES implementation. As opposed to Algo-
rithm 10, it requires to save the action of the preconditioner in each iteration on the
preconditioned vector zjh, which serves as the basis of the Krylov subspace to find
δwsh. This characteristic is required when the action of the preconditioner is not de-
fined as an appropriate constant matrix operator P−1

h , but it is a (possibly variable)
algorithmic procedure, which requires the approximation of the problem Gh z

j
h = vjh

at step 5 of Algorithm 11. While any iterative solver can be employed to provide the
preconditioned vector zjh, in this chapter it is obtained through a single p-multigrid
iteration. It is worth to remark that, considering the definition of vjh, only an ap-
proximation of the solution of the problem Gh z

j
h = vjh is required to precondition

the system, since a numerically exact zjh for j = 1 would require to solve directly the
original problem Gh δwh = gh without preconditioning.

In this Chapter, the preconditioned vector is obtained through a multigrid linear
solver. The basic multigrid idea is to exploit iterative solvers to smooth-out the high-
frequency component of the error with respect to the unknown exact solution. Indeed,
being iterative solvers not effective at damping low-frequency error components, the
iterative solution of coarser problems is exploited to circumvent this issue, thus shift-
ing the low-frequency modes towards the upper side of the spectrum. This simple
and effective strategy allows to obtain satisfactory rates of convergence all along the
iterative process. In p-multigrid the coarse problems are built based on lower-order
DG discretizations with respect to the original problem of degree k. L coarse levels
are considered, spanned by the index ` = 1, ..., L, which indicate the fine and coarse
levels with ` = 0 and ` = L, respectively. The polynomial degree of level ` is k` and
the polynomial degrees of the coarse levels are chosen such that k` < k`−1, l = 1, ..., L,
with k0 = k. Accordingly the polynomial spaces associated to the coarse levels read
Pk`d (Th). The coarse problems corresponding to (2.31) and 2.33 are in the form

G` δw` = g` (5.1)

where G` is the global matrix operator on level l and δw`, g` ∈ [Pk`d (Th)]m are the
unknown function and the known right-hand side, respectively.

A crucial aspect for the efficiency of the p-multigrid iteration is related to the
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Algorithm 11 Restarted FGMRES algorithm (right-preconditioned)
1: Choose δw0

h and define s the dimension for the Krylov-Subspaces. Define H̄m ∈
Rs+1 ⊗ Rs and initialise the components hi,j to zero;

2: Arnoldi Process:
3: Compute r0

h = gh −Gh δw
0
h, β = ‖r0

h‖2 and v1
h = r0

h/β.
4: do j = 1, s
5: Approximate Gh z

j
h = vjh;

6: Compute wh = Gh z
j
h;

7: do i = 1, j
8: set hi,j = (wh, vjh)
9: set wh = wh − hi,jvjh

10: enddo
11: Compute h(j+1),j = ‖wh‖2 and vj+1

h = wh/h(j+1),j
12: enddo
13: Define Zs = [z1

h, z
2
h, . . . , z

s
h]T

14: Form the approximate solution:
15: Find ysh = min(βe1 − H̄s yh), with e1 = [1, 0, . . . , 0]T
16: Compute δwsh = δw0

h +Zs y
s
h

17: if ‖gh −Gh δw
s
h‖2 ≤ ε then

18: EXIT
19: else
20: set δw0

h = δwsh
21: go to 2
22: end if

computational cost of building coarse grid operators G`. While it is possible to
assemble the bilinear and trilinear forms jh, fh and mh of Section 2.3 on each level
` with the corresponding polynomial functions wh, δwh, zh ∈ Pk`d (Th), significantly
better performances are achievable by restricting the fine grid operator by means of
so called Galerkin projections. The former and the latter strategies are named non-
inherited and inherited p-multigrid, respectively. As will be clear in what follows the
construction of coarse operators is trivial when polynomial expansions are based on
hierarchical orthonormal modal basis functions.

5.1.1 Restriction and prolongation operators

In this section the prolongation and restriction operators required to map polynomial
functions on finer and coarser levels, respectively, are described.

Since Pk`d (Th) ⊃ Pk`+1
d (Th), the prolongation operator I``+1 : Pk`+1

d (Th)→ Pk`d (Th),
is the injection operator such that∑

κ∈Th

∫
κ

(I``+1wh − wh) = 0, ∀wh ∈ Pk`+1
d (Th),

The prolongation operator from level ` to level 0 can be recursively defined by the
composition of inter-grid prolongation operators: I0

` = I0
1 I1

2 ... I`−1
` .
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The (L2 projection) restriction operator I`+1
` : Pk`d (Th)→Pkd(Th), is such that∑

κ∈Th

∫
κ

(I`+1
` wh − wh) zh = 0, ∀wh ∈ Pk`d (Th), ∀zh ∈ Pk`+1

d (Th), (5.2)

and the restriction operator from level 0 to level ` reads I`0 = I``−1 ... I2
1 I1

0 .
When applied to vector functions wh ∈ [Pk`+1

d (Th)]m the interpolation operators
act componentwise, e.g., I``+1wh =

∑m

i=1 I
`
`+1wi. It is interesting to remark that

using hierarchical orthonormal modal basis functions restriction and prolongation
operators are trivial, in particular restriction from Pk`d (Th) into Pk`+1

d (Th) is as simple
as keeping the degrees of freedom of the modes of order k ≤ k`+1 and discarding the
remaining high-frequency modes.

5.1.2 Fine and coarse grid Jacobian operators

The non-inherited and the inherited version (denoted with superscript I) of the gra-
dient and gradient-free Jacobian operators introduced in (2.20)-(2.21), can be defined
as follows for ` = 1, ..., L,

(J !∇
` δwh, zh)L2(Ω) = j!∇

h (wh, δwh, zh)

(J∇` δwh, zh)L2(Ω) = j∇h (wh, δwh, zh)

(J !∇,I
` δwh, zh)L2(Ω) = j!∇

h (I0
`wh,I0

` δwh,I0
`zh)

(J∇,I` δwh, zh)L2(Ω) = j∇h (I0
`wh,I0

` δwh,I0
`zh)

(5.3)

∀wh, δwh, zh ∈ [Pk`d (Th)]m. The main benefit of inherited algorithms is the possibility
to efficiently compute coarse grid operators by means of the so called Galerkin pro-
jection, avoiding the cost of assembling bilinear and trilinear forms. The procedure is
described in what follows, focusing on the benefits of using hierarchical orthonormal
basis functions.

The matrix counterpart JI` of the operator JI` = J∇,I` + J !∇,I
` is a sparse block

matrix with block dimension n`v = dim(Pk`d (κ)) and total dimension mnen
`
v. The

matrix is composed of diagonal blocks J`,Iκ,κ and off-diagonal blocks J`,I
κ,κ
′ , the latter

taking care of the coupling between neighboring elements κ, κ′ sharing a face σ. Once
the fine system matrix J0 is assembled, the diagonal and off-diagonal blocks of the
Jacobian matrix of coarse levels can be inherited recursively and matrix-free as follows

J`+1,I
κ,κ = Mκ

`+1,`
(
J`,Iκ,κ

) (
Mκ

`+1,`
)t
,

J`+1,I
κ,κ
′ = Mκ

`+1,`
(
J`,Iκ,κ′

) (
Mκ′

`+1,`

)t
.

(5.4)

The projection matrices read

Mκ
`+1,` = (Mκ

`+1)−1
∫
κ

ϕ`+1⊗ ϕ`, where Mκ
`+1 =

∫
κ

ϕ`+1⊗ ϕ`+1, (5.5)

and ϕ` represents the set of basis functions spanning the space Pk`d (κ). When using
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hierarchical orthonormal basis functions, Mκ
`+1 is the unit diagonal elemental mass

matrix and Mκ
`+1,` ∈ Rn

`
v×n

`+1
v is a unit diagonal rectangular matrix. Accordingly

the Galerkin projection in (5.4) falls back to a trivial and inexpensive sub-block
extraction.

Being Pk0
d (Th) ⊃ Pk`d (Th), it can be demonstrated that inherited and non-inherited

p-multigrid algorithms lead to the same inviscid Jacobian operators, that is J !∇,I
` =

J !∇
` . As opposite inherited and non-inherited viscous Jacobian differ because of the

terms involving lifting operators. Note that inherited lifting operators act on traces
of polynomial functions mapped into Pk0

d (Th). In other words one can define

inherited lifting operators, rσ([[zh]]) : Pk0
d (σ)→ [Pk0

d (Th)]d, (5.6)

non-inherited lifting operators, rσ([[zh]]) : Pk`d (σ)→ [Pk`d (Th)]d. (5.7)

Interestingly, using the definitions of the global and local lifting operators, the
bilinear form can be rewritten as follows

j∇h (wh, δwh, zh) = +

−
∑
κ∈Th

∫
κ

m∑
i,j=1

d∑
p,q=1

∂F̃p,i(wh)

∂
(
∂wj/∂xq −Rκq (wj)

) ∂(δwj)
∂xq

∂zi
∂xp

+

+
∑
σ∈Fh

∫
σ

m∑
i,j=1

d∑
p,q=1

nσq
∂F̃p,i(wh)

∂
(
∂wj/∂xq −Rκq (wj)

) [[δwj ]]
{{

∂zi
∂xp

}}
+

+
∑
σ∈Fh

∫
σ

m∑
i,j=1

d∑
p,q=1

nσp
∂F̂p,i(wh)

∂
(
∂wj/∂xq − ησrσq (wj)

) {{∂(δwj)
∂xq

}}
[[zi]] +

−
∑
σ∈Fh

∫
σ

m∑
i,j=1

d∑
p,q=1

ησ
∂F̂p,i(wh)

∂
(
∂wj/∂xq − ησrσq (wj)

)rσq ([[δwj ]]) rσp ([[zi]])

(5.8)

showing that only the last term, i.e., the stabilization term, cannot be reformulated
lifting-free. In particular, as will be demonstrated in the following section, the inher-
ited stabilization term introduces an excessive amount of stabilization with respect
to its non-inherited counterpart, which is detrimental for multigrid algorithm perfor-
mance. The same behaviour was previously documented in the context of h-multigrid
solution strategies, see [94] where the authors consider DG discretizations of the INS
equations and [96], where preconditioners for weakly over-penalized symmetric inte-
rior penalty DG discretization of elliptic problems are devised.

5.1.3 Scaling of the stabilization term

Following the idea proposed by [94], here a rescaled Galerkin projection of the sta-
bilization term is introduced in order to recover the optimal performances of non-
inherited p-multigrid algorithm.

As a first point the following bound on the local lifting operator: let φ ∈ L2(σ), for
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all σ ∈ Fh
‖rσ(φ)‖[L2(Ω)]d ≤ Ctrh

−1/2
κ,κ′ ‖φ‖L2(σ), (5.9)

where hκ,κ′ = min (hκ, hκ′), see e.g.[97, Lemma 2], [98, Lemma 7.2] or [99, Lemma
4.33 and Lemma 5.18] for a proof. The constant Ctr depends on d, k and the shape
regularity of the elements sharing σ and is inherited from the discrete trace inequality:
for all κ ∈ Th, σ ∈ Fh

‖zh‖L2(σ) ≤ Ctrh
−1/2
κ,κ′ ‖zh‖L2(κ) (5.10)

As remarked by Di Pietro and Ern [99, Lemma 1.46] the dependence of Ctr on k is a
delicate issue that has a precise answer only in specific cases. Here the estimates given
by Hesthaven and Warburton [100] are followed, showing that for simplicial meshes
Ctr scales as

√
k(k + d) when using complete polynomials of maximum degree k.

This choice turns out to be conservative regarding the dependence on k with respect
to estimates derived by Schwab [101] based on tensor product polynomials on mesh
elements being affine images of the unit hypercube in Rd, which suggest a

√
k(k + 1)

scaling.

Using the Cauchy-Schwarz inequality, for all wh, δwh, zh ∈ [Pk`d (Th)]m one can get

j∇−STB
h (wh, δwh, zh)|σ∈Fh =

= ησ

∫
Ω

m∑
i,j=1

d∑
p,q=1

∂F̂p,i(wh)

∂
(
∂wj/∂xq − ησrσq (wj)

) rσq ([[δwj ]])rσp ([[vi]])

≤ ησ C k`(k` + d)h−1
κ,κ
′ ‖ [[δwh]] ‖L2(σ) ‖ [[vh]] ‖L2(σ)

(5.11)

j∇−STB
h (I0

`wh,I0
`δwh,I0

`zh)|σ∈Fh =

= ησ

∫
Ω

m∑
i,j=1

d∑
p,q=1

∂F̂p,i(wh)

∂
(
∂wj/∂xq − ησrσq (wj)

) rσq ([[δwj ]]) · rσp ([[vi]])

≤ ησ C k0(k0 + d)h−1
κ,κ
′ ‖ [[δwh]] ‖L2(σ) ‖ [[vh]] ‖L2(σ)

(5.12)

where C is independent from h and k. As a result it is possible to introduce the
scaling factor S`0 = (k`)(k`+d)

(k0)(k0+d) such that, for all wh, δwh, zh ∈ [Pk`d (Th)]m, it holds

j∇−STB
h (wh, δwh, zh) ' S`0 j∇−STB

h (I0
`wh,I0

`δwh,I0
`zh). (5.13)

The viscous Jacobian stabilization operator reads

(J∇−STB
` (δwh), zh)L2(Ω) = S`0 j∇−STB

h (I0
`wh,I0

`δwh,I0
`zh) (5.14)

∀ δwh, zh ∈ [Pk`d (Th)]m and, accordingly, the Jacobian stabilization diagonal and off-
diagonal block contributions J`,∇−STB,I

κ,κ and J`,∇−STB,I
κ,κ
′ can be computed recursively

and matrix free by means of a rescaled Galerkin projection. The rescaled-inherited
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blocks of the Jacobian matrix are computed as follows

J`+1,I
κ,κ = Mκ

`+1,`
(
J`,!∇,∇\STB,I
κ,κ

) (
Mκ′

`+1,`

)t
+

+ S`+1
` Mκ

`+1,`
(
J`,∇−STB,I
κ,κ

) (
Mκ′

`+1,`

)t
,

(5.15)

J`+1,I
κ,κ
′ = Mκ

`+1,`

(
J
`,!∇,∇\STB,I
κ,κ
′

) (
Mκ′

`+1,`

)t
+ S`+1

` Mκ
`+1,`

(
J`,∇−STB,I
κ,κ
′

) (
Mκ′

`+1,`

)t
,

(5.16)

where S`+1
` = (k`+1)(k`+1+d)

(k`)(k`+d)
. Note that J`,!∇,∇\STB

κ,κ and J`,!∇,∇\STB
κ,κ
′ are the Jacobian

blocks corresponding to gradient-free contributions plus the gradient contributions
without the stabilization terms.

5.1.4 The p-multigrid iteration

In this section an overlook of the sequence of operations involved in p-multigrid iter-
ations is provided. The recursive p-multigrid V-cycle and full p-multigrid V-cycle for
the problem G` δw` = g` on level ` reads are reported in Algorithms 12 and 13.

To obtain an application of the p-multigrid preconditioner the multilevel iteration
is invoked on the problem Gh δwh = gh. While one MGV iteration requires two
applications of the smoother on the finest level (one pre- and one post-smoothing)
and one application of the coarse level smoother independently from the number of
levels, one MGfull iteration requires one application of the finest level smoother and
L applications of the coarse level smoother.

Here the p-multigrid V cycle iteration will be applied for the numerical solution
of Poisson problems while the full p-multigrid iteration will be applied for the solu-
tion of linearized equations systems arising in Rosenbrock time marching strategies

Algorithm 12 w` = MGV(l, g`,w`)
1: if (` = L) then
2: w` = SOLVE(G`, g`, 0)
3: end if
4: if (` < L) then
5: Pre-smoothing:
6: w` = SMOOTH(G`, g`,w`)

7: Coarse grid correction:
8: d` = g` −G`w`
9: d`+1 = I`+1

` d`
10: e`+1 = MGV(`+ 1,d`+1, 0)
11: ŵ` = w` + I``+1e`+1

12: Post-smoothing:
13: w` = SMOOTH(G`, g`, ŵ`)
14: end if
15: return w`
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for DG discretizations of incompressible flow problems. In the context of Poisson
problems, the most simple multigrid solution strategy with a single smoothing it-
eration is applied on all levels except the coarsest for validation purposes. In the
context of incompressible flow problem we seek for the best performance employing
full p-multigrid and tuning preconditioners and smoothing options.

Matrix-free and matrix-based preconditioned iterative solution strategies

In this chapter several multigrid and single-grid preconditioner strategies for Krylov
iterative solvers are considered for the sake of comparison with application to the
solution of linear system arising in Rosenbrock-type schemes, see Eq. (2.29). To
maintain a compact nomenclature, the solver-preconditioner couple is identify by the
following convention:

SOLVER(MatVecProdOpt)[PREC(PrecOpt)].

The MatVecProdOpt describes how matrix-vector products need by Krylov itera-
tive solvers are performed, i.e.in a matrix-based or matrix-free fashion, while PrecOpt
specifies the type of the preconditioning employed. GMRES and FGMRES solvers
are employed in combination with single-grid and p-multigrid preconditioners, respec-
tively. Note that also p-multigrid iterations rely on GMRES preconditioned iterative
solver for smoothing purposes. As preconditioners for GMRES iterations, the follow-
ing options are considered:

1. ASM(i,ILU(j)) - Additive Schwarz domain decomposition Method (ASM) pre-
conditioners with i levels of overlap between sub-domains and a block ILU
decomposition for each sub-domain matrix with j levels of fill;

2. BJ or ASM(0,ILU(0)) - ASM preconditioner with no overlap between sub-
domains and a block ILU decomposition for each sub-domain matrix with same
level of fill of the original matrix;

Algorithm 13 w` = MGfull(l, g`,w`)
1: if (` = L) then
2: w` = SOLVE(G`, g`, 0)
3: end if
4: if (` < L) then
5: g`+1 = I`+1

` g`
6: ŵ`+1 = MGfull(`+ 1, g`+1, 0)
7: V-cycle correction:
8: ŵ` = I``+1ŵ`+1
9: d` = g` −G`ŵ`

10: e` = MGV(`,d`, 0)
11: w` = ŵ` + e`
12: end if
13: return w`
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3. EWBJ - Element Wise Block Jacobi, a BJ preconditioner neglecting off-diagonal
blocks, that is an LU factorization of the diagonal blocks.

Note that in serial computations ASM(i,ILU(j)) and BJ fall back to ILU(j) and
ILU(0), respectively. ASM and BJ performance differ when the computation is per-
formed in parallel, depending on the number of sub-domains. While efficiency of BJ
decreases while increasing the number of sub-domains, ASM seeks to heal the con-
vergence degradation at the expense of an increased memory footprint of the solver
as the number of partitions rise (indeed part of the global matrix non-zeros entries
are replicated in neighbouring sub-domains). As opposite EWBJ has optimal scal-
ability properties and is particularly well suited for a matrix-free implementation of
the iterative solver. Indeed, in this context, it allows to skip the computation of the
off-diagonal contributions, thereby reducing the matrix-assembly computation time.

As smoother’s preconditioners EWBJ is particularly well suited on the finest level,
for the sake of reducing the memory footprint, while ASM makes sense on the coarsest
level, to improve the convergence rate of the coarse solver. In this configuration,
the off-diagonal blocks needed by the coarsest level operator can be computed at
the coarsest polynomial degree for the sake of efficiency. In the rest of the paper
several combinations of preconditioners are investigated with particular attention to
the quantification of the parallel performance and of the memory savings.

5.1.5 Memory footprint considerations

In this section an estimate of the memory footprint of all the strategies employed
in this paper is devised to fully appreciate the memory savings achievable trough a
matrix-free solver preconditioned with p-multigrid. One can observe that the memory
footprint of the global block matrix scales as ne (nf+1) (mnv)2 where nf = card(F∂κ)
is the average number of element’s faces, m is the number of variables in d space
dimensions and (mnv)2 with nv = dim(Pkd) is the number of non-zeros in each matrix
block. While for a matrix-based implementation both the global system matrix and
the preconditioner are assumed to be stored in memory, for a matrix-free approach
only the preconditioner is stored. The preconditioner’s memory footprint is carefully
estimated assuming, respectively, that

1. for EWBJ, only the non-zero entries of a block-diagonal matrix are stored;

2. for BJ, the storage of ILU(0) factorization applied to the domain-wise portion
of the iteration matrix, which neglects the off diagonal blocks related to faces
residing on a partition boundary.

3. For ASM(q,ILU(0)), that the preconditioner applies the ILU(0) decomposition
to a larger matrix, bigger than the sub-domain matrix of the BJ precondtioner.
The exact number of additional non-zero blocks is difficult to estimate for gen-
eral unstructured grids since it depends on mesh topology, element types (in case
of hybrid grids) and the partitioning strategy. Nevertheless, an estimation can
be done based on the following simplifications, i.e. assuming a square and cu-
bical domain discretized by uniformly distributed quadrilateral and hexahedral
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elements in 2d and 3d, respectively, and considering periodic boundary condi-
tions on the domain boundaries. Accordingly the number of non-zero blocks in
each sub-domain matrix can be estimated as follows

(2d+1)

(
Ne
p

+2dq
(
Ne
p

) d−1
d

+ 2d−1d

q∑
i=1

(i−1)

)

− 2d

((Ne
p

) 1
d

+2q

)d−1

−2d−1 (d−2)
q∑
i=0

(q−i)

 (5.17)

where q is the number (or depth) of overlapping layers and p is the number of
processes. In Eq. (5.17), the first term takes into account that each element
of a partition, which is widened with the overlapping elements, contributes to
the Jacobian matrix with (1 + 2d) blocks, being 2d the number of faces of
an element, while the second term subtracts the blocks not considered by the
preconditioner, being they due to connection between elements at the boundary
faces of the augmented partition. For q = {0, 1, 2} an estimation of the number
of non-zero blocks corresponding to BJ, ASM(1,ILU(0)) and ASM(2,ILU(0))
preconditioners, respectively, can be obtained.

Figures 5.1(a) and 5.1(b) report the ratio between the estimated number of non-zeros
of the preconditioner and the system matrix with respect to the number of sub-
domains. For (Ne/p) = 1, corresponding to one element per partition, BJ reduces
to EWBJ, which provides a 1/(2d+ 1) decrease of the number of non-zeros. On the
other hand, for both ASM(1,ILU(0)) and ASM(2,ILU(0)) the number of non-zero
entries grows as (Ne/p) approaches one. In the same manner the memory foot-
print of p-multigrid preconditioners can be estimated.As reference, the three-level
p-multigrid strategy is reported and the specs, also reported on top of Table 5.8,
reads: k = 6, FGMRES(MF) outer solver, GMRES(MB)[ASM(1,ILU(0)] smoothing
on the coarsest level (k = 1), GMRES(MF)[EWBJ] on the finest level (k = 6) and
GMRES(MB)[EWBJ] on the intermedite level (k = 2). It is worth noticing that the
memory allocation of coarse levels preconditioners has as a small impact on the total
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Figure 5.1: Estimated relative number of non-zeros (NNZ) of the preconditioner with
respect to the non-zeros of the Jacobian as a function of the number of el-
ements per partition for a two dimensional (d = 2) and three-dimensional
case (d = 3). See text for details.
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number of non-zeros, due the reduction of block size. For instance, in three space
dimensions, G2 and G1 have 440 and 70 time less non-zeros that the G0 matrix,
respectively.

5.2 Numerical results

5.2.1 Poisson Problem

Since the stabilization scaling influences only the elliptic part of coarse grid oper-
ators, it makes sense to assess its effectiveness tackling the numerical solution of a
Poisson problem. In particular the performance of a p-multigrid preconditioned FM-
GRES solver is considered, applied to a high-order k = 6 BR2 DG discretization
over three h-refined mesh sequences of the bi-unit square Ω = [−1, 1]2: i) a regular
Delaunay triangular mesh sequence (reg-tri), ii) a distorted quadrilateral mesh se-
quence (dist-quad) obtained by randomly perturbing the nodes of a Cartesian grid,
iii) a distorted and graded triangular mesh sequence (grad-tri) where the elements
shrink close to the domain boundaries mimicking the end-points clustering of one-
dimensional Gaussian quadrature rules in each Cartesian direction. Dirichlet bound-
ary conditions and the forcing term are imposed according to the smooth exact so-
lution u = e−2.5((x−1)2+(y−1)2). The potential field rapidly varies in the proximity of
the upper-right corner of the square in order to replicate the presence of a boundary
layer.

The p-multigrid preconditioner options are as follows: three-levels (L = 2) and a
six-levels (L = 5) V-cycle iteration, respectively, with ILU(0) right-preconditioned
GMRES smoothers on each level. On all levels but the coarsest (that is for ` < L)
a single smoothing iteration is performed. On the coarse level, the relative residual
tolerance is set to 10−3 and a maximum number of iterations of 40 or 400 is imposed.
Polynomial degree coarsening on six-levels is achieved by recursively reducing the
polynomial degree by one, that is k`=6−`. On three the coarsening strategy is more
aggressive: k=3 is used on the first level while a second-order k=1 DG discretization
is employed on the coarsest level. Interestingly, this latter setup seeks to replicate the
four-fold degrees of freedom decrease of h-multigrid strategies in two space dimensions.

Table 5.1 and Table 5.2 consider the three- and the six-levels V-cycle iterations,
respectively, and assess the benefits of stabilization scaling (scaling on) with respect
to standard inherited-p-multigrid coarse grid operators (scaling off). Execution time
gains are remarkable on regular triangular and distorted quadrilateral mesh sequences
(solution time speedup of 2.4 and 2.2 on average, respectively) but still present on
the graded triangular mesh sequence (50% faster solution process on average).

Performance of iterative solver can be evaluated in terms of convergence factor,
that is the average residual decrease per iteration, which can be computed as follows

ρ = exp
(

1
Nit

ln ‖dNit‖
‖d0‖

)
,

where Nit is the number of iterations required to reach the prescribed residual drop,
and di is the defect (or residual) of the linear system solution at the i-th iteration.
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Solver ` k` tolr ITs Smoother

FGMRES[MGV ], L = 2
0 6 − 1

GMRES[ILU(0)]1 3 − 1
2 1 10−3 400

grid scaling off scaling on speedup
reg-tri ρ ρc ITs ITsc ρ ρc ITs ITsc Tot Sol
392·2 0.0822 0.957 10 157 0.112 0.833 11 38 1.3 1.7
792·2 0.0711 0.969 9 223 0.108 0.929 11 95 1.7 2.3
1582·2 0.0847 0.99 10 399 0.117 0.946 11 125 2 2.5
3112·2 0.133 0.997 12 399 0.107 0.982 11 385 1.2 1.2
dist-quad ρ ρc ITs ITsc ρ ρc ITs ITsc Tot Sol
322 0.0718 0.913 9 76 0.0409 0.764 8 26 1.2 1.5
642 0.0694 0.956 9 155 0.0405 0.865 8 48 1.4 2
1282 0.0641 0.966 9 200 0.0369 0.881 7 55 1.9 3.3
2562 0.0606 0.989 9 399 0.0279 0.957 7 159 2.1 3
grad-tri ρ ρc ITs ITsc ρ ρc ITs ITsc Tot Sol
322·2 0.141 0.909 12 73 0.165 0.747 13 24 1.1 1.1
642·2 0.204 0.929 15 94 0.214 0.774 15 27 1.2 1.4
1282·2 0.285 0.96 19 170 0.315 0.925 20 89 1.5 1.8
2562·2 0.359 0.965 23 194 0.436 0.944 28 120 1.3 1.4

Solver ` k` tolr ITs Smoother

FGMRES[MGV ], L = 2
0 6 − 1

GMRES[ILU(0)]1 3 − 1
2 1 10−3 40

grid scaling off scaling on speedup
reg-tri ρ ρc ITs ITsc ρ ρc ITs ITsc Tot Sol
392·2 0.194 0.962 15 39 0.112 0.909 11 39 1.1 1.3
792·2 0.356 0.983 23 39 0.142 0.954 12 39 1.4 1.8
1582·2 0.665 0.993 56 39 0.226 0.985 16 39 2.2 3.2
3112·2 0.819 0.994 113 39 0.408 0.986 26 39 3.1 4.1
dist-quad ρ ρc ITs ITsc ρ ρc ITs ITsc Tot Sol
322 0.0939 0.962 10 39 0.0409 0.72 8 21 1.1 1.3
642 0.162 0.982 13 39 0.0406 0.877 8 39 1.2 1.5
1282 0.351 0.976 23 39 0.0669 0.958 9 39 1.5 2.3
2562 0.621 0.993 48 39 0.148 0.958 13 39 2.2 3.3
grad-tri ρ ρc ITs ITsc ρ ρc ITs ITsc Tot Sol
322·2 0.146 0.898 12 39 0.164 0.765 13 26 0.99 0.99
642·2 0.215 0.971 15 39 0.214 0.867 15 39 1 1
1282·2 0.381 0.988 24 39 0.315 0.911 20 39 1.1 1.2
2562·2 0.579 0.989 42 39 0.437 0.933 28 39 1.3 1.5

Table 5.1: k = 6 BR2 discretization of the Laplace equation, three-levels p-multigrid
preconditioner performance on three h-refined mesh sequences, with and
without stabilization scaling. Comparison of convergence rates of the outer
solver and the coarse smoother (ρ and ρc, respectively), comparison of the
number of iterations of the outer solver and the coarse smoother (ITs and
ITsc, respectively), and evaluation of the speedup

(wall clock time scaling off
wall clock time scaling on

)
considering solution CPU time and solution plus assembly CPU time (Sol
and Tot, respectively).

It is interesting to remark that stabilization scaling always improves the convergence
factor of the coarse grid solver having a positive impact on the performance of the
algorithm, in particular one of two following situations might occur.

1. The prescribed residual drop of 10−3 is attained in a smaller number of coarse
solver iterations. This is typically observed when the maximum number of
iterations is set to 400.

2. The prescribed maximum number of iteration of the coarse solver is attained
leading to a tinier defect for the rescaled stabilization algorithm. Accordingly,
convergence of the outer solver is improved and a smaller number of FGMRES
iterations is required to solve the linear system. This is typically observed when
the maximum number of iterations of the coarse solver is set to 40.
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Solver ` k` tolr ITs Smoother

FGMRES[MGV ], L = 5 0,...,4 6− ` − 1 GMRES[ILU(0)]
5 1 10−3 400

grid scaling off scaling on speedup
reg-tri ρ ρc ITs ITsc ρ ρc ITs ITsc Tot Sol
392·2 0.0288 0.965 7 196 0.0176 0.885 6 57 1.5 2
792·2 0.0281 0.982 7 389 0.0163 0.913 6 76 1.8 2.5
1582·2 0.0502 0.996 8 399 0.0186 0.962 6 177 1.8 2.2
3112·2 0.102 0.997 11 399 0.0161 0.99 6 399 1.7 1.9
dist-quad ρ ρc ITs ITsc ρ ρc ITs ITsc Tot Sol
322 0.0274 0.908 7 72 0.00659 0.786 5 29 1.2 1.6
642 0.0267 0.963 7 186 0.0063 0.876 5 53 1.4 2
1282 0.0215 0.98 6 350 0.00623 0.927 5 92 1.7 2.4
2562 0.0325 0.995 7 399 0.00403 0.967 5 206 1.8 2.4
grad-tri ρ ρc ITs ITsc ρ ρc ITs ITsc Tot Sol
322·2 0.0684 0.887 9 58 0.0443 0.79 8 30 1.1 1.3
642·2 0.0907 0.957 10 157 0.0728 0.84 9 40 1.4 1.8
1282·2 0.146 0.958 12 163 0.117 0.93 11 96 1.4 1.6
2562·2 0.208 0.982 15 371 0.168 0.955 13 150 1.8 2.1

Solver ` k` tolr ITs Smoother

FGMRES[MGV ], L = 5 0,...,4 6− ` − 1 GMRES[ILU(0)]
5 1 10−3 40

grid scaling off scaling on speedup
reg-tri ρ ρc ITs ITsc ρ ρc ITs ITsc Tot Sol
392·2 0.166 0.972 14 39 0.0279 0.916 7 39 1.4 1.8
792·2 0.339 0.985 22 39 0.0664 0.94 9 39 1.6 2.2
1582·2 0.661 0.991 55 39 0.206 0.983 15 39 2.5 3.3
3112·2 0.829 0.988 122 39 0.391 0.979 25 39 3.7 4.6
dist-quad ρ ρc ITs ITsc ρ ρc ITs ITsc Tot Sol
322 0.0581 0.956 9 39 0.00658 0.794 5 31 1.2 1.6
642 0.139 0.979 12 39 0.00959 0.928 5 39 1.4 2
1282 0.337 0.982 22 39 0.0442 0.964 8 39 1.7 2.4
2562 0.613 0.985 47 39 0.137 0.959 12 39 2.5 3.5
grad-tri ρ ρc ITs ITsc ρ ρc ITs ITsc Tot Sol
322·2 0.0743 0.924 9 39 0.0443 0.82 8 35 1.1 1.1
642·2 0.143 0.975 12 39 0.0726 0.89 9 39 1.1 1.3
1282·2 0.343 0.989 22 39 0.118 0.973 11 39 1.5 1.8
2562·2 0.564 0.991 40 39 0.215 0.99 15 39 2 2.5

Table 5.2: k = 6 BR2 discretization of the Laplace equation, six-levels p-multigrid
preconditioner performance on three h-refined mesh sequences, with and
without stabilization scaling. Comparison of convergence rates of the outer
solver and the coarse smoother (ρ and ρc, respectively), comparison of the
number of iterations of the outer solver and the coarse smoother (ITs and
ITsc, respectively), and evaluation of the speedup

(wall clock time scaling off
wall clock time scaling on

)
considering solution CPU time and solution plus assembly CPU time (Sol
and Tot, respectively).

Note that uniform convergence with respect to the mesh density is obtained on regular
triangular and distorted quadrilateral mesh sequences when employing a sufficiently
high number of GMRES iterations on the coarse level. On the distorted and graded
triangular mesh sequence the number of FGMRES iterations increases with the mesh
density due to the presence of increasingly stretched elements close to the domain
boundaries. Note that the number of iteration increase is less pronounced when
employing six-levels instead of three-levels for the V-cycle iteration.

To conclude, it is worth pointing out that the number of iterations of rescaled-
inherited and non-inherited multigrid has been checked to be equal on all but the
finest grids of the distorted and graded triangular mesh sequence, where the former
is slightly sub-optimal as compared to the latter (by at most 20%). This confirms
that stabilization terms scaling is almost able to recover the convergence rates of
non-inherited multigrid while also cutting down assembly costs.
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5.2.2 Incompressible Navier–Stokes equations

In this section the performance of the p-multigrid preconditioner, possibly coupled
with the matrix-free solver, is compared to state-of-the-art single-grid strategies in the
context of unsteady flow simulations. Two incompressible unsteady flow problems of
increasing complexity are here considered: i) the two-dimensional laminar flow around
a circular cylinder at Re = 200; and ii) the three-dimensional laminar flow around a
sphere at Re = 300.

Laminar flow past a two-dimensional circular cylinder

The laminar flow around a circular cylinder at Re = 200 is solved with k = 6 on a
computational grid made of 4710 elements with curved edges represented by cubic
Lagrange polynomials. The domain extension is [−50, 100]×[−50, 50] in terms of non-
dimensional units. Note that the grid was deliberately generated with a severe grid
refinement in the wake region, as well as large elements at the far-field, in order to chal-
lenge the solution strategy. Dirichlet and Neumann boundary conditions are imposed
at the inflow and outflow boundaries, respectively, while symmetry flow conditions
are employed at the top and bottom boundaries. The no-slip Dirichlet boundary
condition is imposed on the cylinder wall. A snapshot of the mesh and the velocity
magnitude contours is shown in Fig. 5.2(a). Time marching is performed by means
of the linearly-implicit four-stage, order three ROSI2PW Runge-Kutta method [29].
The scheme is specifically designed to accurately deal with PDAEs of index 2, like the
INS equations. A non-dimensional fixed time step δt = 0.25, corresponding to 1/20
of the shedding period, is found to be adequate to describe the flow physics and large
enough tostress the solution strategy. Fig. 5.2(b) reports lift and drag coefficients
history. The drag coefficient Cd = 1.335 and the Strouhal number St = 0.1959 are in
good agreement with [102] and references therein. Even if, for the sake of efficiency,
it is possible to adaptively estimate the relative defect drop tolr that the linear solver
should attain [77], a fix value tolr = 10−5 is set to compare different preconditioners
with the same forcing term. The resulting time discretization error, estimated using
the embedded Runge–Kutta scheme, is small enough not to affect the overall solution
accuracy. Moreover, the defect tolerance is large enough to ensure that the matrix-
free approximation error does not affect GMRES convergence, see [77], in consistency
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Figure 5.2: Laminar flow around a circular cylinder at Re = 200. Velocity magnitude
iso-contour.
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5.2 Numerical results

with what reported in Chapter 4. The right preconditioning approach is employed
throughout all the numerical experiments of this paper to reach convergence levels
independent of the preconditioner.

Performance assessment The p-multigrid preconditioner approach seeks to mini-
mize the number of GMRES iterations on the fine grid by means of a full p-multigrid
solution strategy. A full V-cycle p-multigrid iteration (see Algorithm 13) has many
parameters to tune in order to get the best performance: among the others, the most
important appear to be i) the choice of the smoother and its preconditioner on each
level, ii) the number of smoothing iteration on each level, iii) the forcing term (con-
trolling the exit condition based on the relative defect drop) of the coarse solver and
its maximum number of iterations. Accordingly the combination of these parameters
lead to a multitude of different configurations that is hard to explore comprehensively.
Nevertheless, this Section provides some useful indications that can be directly ap-
plied to the simulation of realistic flow problems. In general, with respect to the test
cases proposed in Section 5.2.1, the use of a full p-multigrid strategy together with an
increased number of smoothing iterations proved to deal more efficiently with the non-
linearity of the governing equations. The experiments are devoted to show the benefits
of i) using a rescaled-inherited approach for the coarse space operators to improve the
convergence rates of the iterative solver; ii) apply a matrix-free approximation to the
fine space to reduce the memory footprint and increase the computational efficiency.
Code profiling is applied for 10 time steps starting from a fully developed flow solu-
tion obtained with the same polynomial degree, same time step size and solving linear
system up to the same tolerance. In practice, the performance of the preconditioners
is evaluated on the solution of 40 linear systems. The efficiency of each setting is
monitored in parallel, to assess the behavior of different preconditioners in a realistic
setup for this kind of computations. The runs are performed on a computational
node made by two sixteen-core AMD Opteron CPUs. First, Table 5.3 reports the
results obtained using single-grid preconditioners. As expected, the numerical ex-
periments show a sub-optimal parallel efficiency for the BJ preconditioner, indeed
the average number of linear iterations increases while increasing the number of sub-
domains. The iterations number increase tops at 62% when comparing the simulation
on 16 cores against the serial one. The ASM(1,ILU(0)) preconditioner partially heals
the performance degradation providing a 10% increase of the iterations number at
the expenses of a higher memory requirement, as explained in Section 5.1.5. The

Solver GMRES(MB) GMRES(MB) GMRES(MF) GMRES(MF)
Prec BJ ASM(1,ILU(0)) EWBJ BJ

nProcs ITs TotTime ITs TotTime ITs TotTime ITs TotTime
1 123.5 3805 123.5 3805 542.8 36700 112.2 9860
2 108.0 1756 121.3 1917 538.7 17980 102.4 4547
4 105.3 859 123.9 982 543.9 9281 103.5 2325
8 138.0 543 120.4 515 542.2 4615 121.4 1333
16 199.7 497 134.7 378 554.4 2934 171.3 995

Table 5.3: Two-dimensional cylinder test case. Single-grid parallel performances,
matrix-based and matrix-free implementations. Comparison of the av-
erage number of GMRES iterations (ITs) and the whole elapsed CPU time
(solution plus assembly) TotTime.
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matrix-based and the matrix-free versions of GMRES provide a similar number of
iterations with a CPU time that is in favour of the former. This can be explained
by the high quadrature cost associated to non-affine mesh elements, see e.g.[103]. In
fact, while in the previous Chapter it has been demonstrated that the residual com-
putation and a matrix-vector product has similar costs when dealing with high-order
discretizations on affine elements, see also [77], in this case the numerical quadrature
expense has a higher relative cost on residual evaluation. It is worth pointing out
that no attempt was made to optimize numerical quadrature, in particular elements
located far from curved boundaries are still treated as high-order non-affine elements
for the sake of simplicity. Even if matrix-free iterations can be further improved in
term of efficiency in realistic applications, this is beyond the scope of the present
work. Table 5.4 allows to evaluate the impact of the fine smoother preconditioner on
the computational efficiency. Two parameters of interest are reported, the average
number of FGMRES iterations (ITs) and the speed-up with respect to the best per-
forming single-grid preconditioner, SUMB = TotTime/TotTimeref, where TotTimeref
is the total CPU time of the GMRES(MB)[ASM(1,ILU(0))] approach. The specs of
the p-multigrid iteration setup are reported in the top of the table. The Table also
compares the standard-inherited approach (scaling off ) with the rescaled-inherited
one (scaling on).

FGMRES[MGfull] with 3 GMRES(MB)[BJ] smoothing iterations provides a speed-
up of about 2 in serial computations with respect to the reference strategy. Although
the solver is still faster than the reference one, the parallel performance is not satisfac-
tory being an increase in the number of iterations observed. As expected a better scal-
ability can be obtained with 3 GMRES(MB)[ASM(1,ILU(0))] smoothing iterations.
The numerical experiment revealed that to increase the number of iterations from
3 to 8 is mandatory to maintain the smoothing efficiency of GMRES(MB)[EWBJ],

Solver ` k` tolr ITs Smoother Prec

FGMRES[MGfull]
0,1 6, 2 – ∗ GMRES(MB) ‡
2 1 – 40 GMRES(MB) ASM(1,ILU(0))

scaling off
∗3 ∗3 ∗8 ∗8
‡BJ ‡ASM(1,ILU(0)) ‡BJ ‡EWBJ

nProcs ITs SUMB ITs SUMB ITs SUMB ITs SUMB
1 4.10 2.02 4.10 1.98 2.98 1.76 5.48 1.56
2 4.63 1.82 4.05 1.90 3.10 1.65 5.48 1.49
4 5.73 1.65 4.05 1.90 3.63 1.53 5.63 1.48
8 7.20 1.39 4.35 1.74 3.85 1.40 5.63 1.40
16 8.63 1.37 5.38 1.71 5.05 1.28 5.70 1.53

scaling on
∗3 ∗3 ∗8 ∗8
‡BJ ‡ASM(1,ILU(0)) ‡BJ ‡EWBJ

nProcs ITs SUMB ITs SUMB ITs SUMB ITs SUMB
1 3.43 2.11 3.43 2.11 2.48 1.88 3.50 1.92
2 3.68 1.99 3.55 1.97 2.80 1.72 3.53 1.84
4 4.78 1.79 3.60 1.95 2.55 1.80 3.83 1.79
8 5.13 1.51 3.60 1.74 2.58 1.57 3.68 1.60
16 7.65 1.20 4.10 1.67 2.85 1.49 3.50 1.68

Table 5.4: Two-dimensional cylinder test case. Effects of the smoother type and
the rescaled-inherited coarse spaces on parallel performance. Compari-
son of the average number of FGMRES iterations (ITs) and the speed-up
(SUMB) of the p-multigrid preconditioner with respect to the best perform-
ing single-grid preconditioner. The asterisk and the double dagger symbols
in the solver specs row are placeholders for the number of iterations (ITs)
and coarse solver type of each column, respectively.
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and to achieve a satisfactory performance in parallel. Indeed, despite being less
performing in serial runs, the number of iterations is almost independent from the
number of processes. It is worth noting that increasing the number of iterations of
GMRES(MB)[BJ] does not pay off in terms of speedup. The number of FGMRES
iterations is significantly reduced in all the cases when considering rescaled-inherited
coarse grid operators. Although the strategy does not always pay off in terms of
speedup because of the increased expense of building coarse grid operators, the GM-
RES(MB)[EWBJ] smoother applied to rescaled-inherited coarse operator is competi-
tive with more expensive preconditioners in parallel computations. Interestingly, the
EWBJ preconditioner is the cheapest from the memory footprint viewpoint.

Table 5.5 compares the computational efficiency when varying the preconditioner
on the coarsest level. The cheapest and efficient GMRES(MB)[EWBJ] smoother is
employed on all levels but the coarsest. The top and bottom of the table include
results for a matrix-based and a matrix-free approach, respectively. Note that only
on the finest level matrix-vector products are performed matrix free, both within the
outer FGMRES iteration and the fine GMRES smoother. Indeed, since the coarse

Solver ` k` tolr ITs Smoother Prec

FGMRES[MGfull]
0 6 – 8 ∗ EWBJ
1 2 – 8 GMRES(MB) EWBJ
2 1 – 40 GMRES(MB) ‡

scaling off
∗GMRES(MB) ∗GMRES(MB) ∗GMRES(MB)

‡BJ ‡ASM(1,ILU(0)) ‡ASM(1,ILU(1))
nProcs ITs SUMB ITs SUMB ITs SUMB

1 5.48 1.56 5.48 1.56 4.73 1.64
2 5.63 1.47 5.48 1.49 4.73 1.56
4 5.43 1.52 5.63 1.48 4.73 1.57
8 5.90 1.38 5.63 1.40 4.75 1.47
16 6.85 1.37 5.70 1.53 4.95 1.62

scaling on
∗GMRES(MB) ∗GMRES(MB) ∗GMRES(MB)

‡BJ ‡ASM(1,ILU(0)) ‡ASM(1,ILU(1))
nProcs ITs SUMB ITs SUMB ITs SUMB

1 3.50 1.92 3.50 1.92 3.15 1.96
2 3.55 1.85 3.53 1.84 3.15 1.88
4 3.35 1.91 3.83 1.79 3.15 1.89
8 3.33 1.70 3.68 1.60 3.15 1.67
16 3.48 1.70 3.50 1.68 3.18 1.73

scaling off
∗GMRES(MF) ∗GMRES(MF) ∗GMRES(MF)

‡BJ ‡ASM(1,ILU(0)) ‡ASM(1,ILU(1))
nProcs SUMB SUMF SUMB SUMF SUMB SUMF

1 0.61 1.59 0.61 1.59 0.69 1.80
2 0.60 1.41 0.61 1.45 0.69 1.63
4 0.60 1.42 0.59 1.41 0.69 1.63
8 0.55 1.43 0.57 1.48 0.66 1.70
16 0.61 1.61 0.73 1.92 0.77 2.03

scaling on
∗GMRES(MF) ∗GMRES(MF) ∗GMRES(MF)

‡ BJ ‡ASM(1,ILU(0)) ‡ASM(1,ILU(1))
nProcs SUMB SUMF SUMB SUMF SUMB SUMF

1 0.89 2.31 0.89 2.30 0.98 2.54
2 0.92 2.18 0.89 2.11 0.98 2.32
4 0.93 2.21 0.87 2.06 0.97 2.30
8 0.86 2.23 0.85 2.20 0.92 2.39
16 1.06 2.80 1.07 2.81 1.16 3.05

Table 5.5: Two-dimensional cylinder test case. Effects of the coarse level solver on par-
allel performance. Comparison of the average number of FGMRES itera-
tions (ITs) and the speed-up of the p-multigrid preconditioner with respect
to the best performing single-grid preconditioner in its matrix-based and
matrix-free implementation (SUMB and SUMF, respectively). The asterisk
and the double dagger symbols in the solver specs row are placeholders for
the smoother and coarse solver types of each column, respectively.

79



Chapter 5 Multigrid preconditioning for stiff discretizations

levels operators are fairly inexpensive to store in memory, the moderate memory sav-
ings of a matrix-free implementation would not justify the increased computational
costs. The results highlight that a further improvement in computational efficiency
is achieved by means of a [ASM(1,ILU(1))] preconditioner for the coarsest smoother:
the number of FGMRES iterations decreases while maintain optimal scalability and
the speedup values for the matrix-free approach increase when considering more sub-
domains. Due to low polynomial degree of the coarsest level, the additional level of
fill of the ILU factorization is not significant from the memory footprint viewpoint.
Interestingly, the increased robustness of the rescaled-inherited p-multigrid approach
results in similar speedups for all the coarse level solver options. For the matrix-free
implementation two different speedup values are reported: i) SUMB considers as a ref-
erence the GMRES(MB)[ASM(1,ILU(0))] solver, that is the best performing matrix-
based single-grid strategy, ii) SUMF considers as a reference the GMRES(MF)[BJ]
solver, that is the best performing matrix free single-grid strategy. Note that the
inefficient GMRES(MF)[EWBJ] configuration is discarded despite being the less de-
manding solver from the memory viewpoint. Since the relative cost of the solution
with respect to matrix assembly is higher in a matrix-free implementation, reduc-
ing the number of FGMRES iterations does pay off. Accordingly the benefits of
rescaled-inherited coarse grid operator are more evident: the total execution time is
comparable with GMRES(MB)[ASM(1,(ILU(0))] and almost three times faster than
GMRES(MF)[BJ].

To conclude Table 5.6 compares three- and four-levels p-multigrid preconditioners.
The additional level significantly reduces the number of FMGRES iterations at the
expense of storing a fourth degree coarse grid operator. Once again the benefits in
terms of speedup are most significant in the matrix-free framework, where solution
times dominates assembly times. Matrix-free rescaled-inherited p-multigrid is 30%
faster then the best performing matrix-based single-grid solver and 3.5 times faster
than the best performing matrix-free single-grid solver.

Solver ` k` tolr ITs Smoother Prec

FGMRES[MGfull]
0 6 - 8 ∗ EWBJ

1,...,L-1 ‡ - 8 GMRES(MB) EWBJ
L 1 - 40 GMRES(MB) ASM(1,ILU(1))

scaling off
GMRES(MB)∗ GMRES(MB)∗ GMRES(MF)∗ GMRES(MF)∗

2‡ (L=2) 4,2‡ (L=3) 2‡ (L=2) 4,2‡ (L=3)
nProcs ITs SUMB ITs SUMB SUMB SUMF SUMB SUMF

1 4.73 1.64 3.00 1.62 0.69 1.80 0.88 2.29
2 4.73 1.56 3.00 1.53 0.69 1.63 0.87 2.06
4 4.73 1.57 3.00 1.54 0.69 1.63 0.87 2.05
8 4.75 1.47 3.10 1.43 0.66 1.70 0.78 2.02
16 4.95 1.62 3.33 1.55 0.77 2.03 0.97 2.54

scaling on
GMRES(MB)∗ GMRES(MB)∗ GMRES(MF)∗ GMRES(MF)∗

2‡ (L=2) 4,2‡ (L=3) 2‡ (L=2) 4,2‡ (L=3)
nProcs ITs SUMB ITs SUMB SUMB SUMF SUMB SUMF

1 3.15 1.96 2.00 1.91 0.98 2.54 1.19 3.09
2 3.15 1.88 2.00 1.82 0.98 2.32 1.18 2.80
4 3.15 1.89 2.00 1.83 0.97 2.30 1.19 2.82
8 3.15 1.67 2.00 1.63 0.92 2.39 1.11 2.87
16 3.18 1.73 2.00 1.72 1.16 3.05 1.33 3.50

Table 5.6: Two-dimensional cylinder test case. Comparison of a three-level and four-
level p-multigrid strategy in optimal settings for matrix-based and matrix-
free fine level options.
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Three-dimensional laminar flow past a sphere

As a three-dimensional validation test case, the unsteady laminar flow past a sphere
at Re = 300 [104, 105, 106, 83] is reported. The solution is characterised by a per-
fectly periodic behaviour, with the flow maintaining a plane of symmetry. In the
present computations, the symmetry plane was enforced by defining a proper bound-
ary condition. The mesh is made of 3560 elements with a bi-quadratic geometrical
representation of the wall boundary, see Fig. 5.3(a). The computational domain is
obtained via extrusion of the wall surface discretization. While the no-slip condition
is set at the wall, velocity inflow and pressure outflow boundary conditions are im-
posed on the spherical farfield located at 50 diameters. A k = 6 representation of the
solution was employed for all computations presented hereafter. Note that the small
number of mesh elements together with the lack of a refined region in the wake of
the sphere reduce the stiffness of the problem. The parallel performance is evaluated
running on the Marconi-A1 HPC platform hosted by CINECA, the italian supercom-
puting center. Scalability is assessed on a single-node base, as the CPU time of the
serial computation exceeded the maximum wall-clock time allowed by CINECA. The
number of mesh elements is optimised to ensure that all the solution strategies fit
the memory of a single node (118 GB). Despite the small size of the problem the
following numerical experiments aim at providing reliable indications on the parallel
performance that can be extended to real-size production runs.

The solution is accurately integrated in time with a fixed non-dimensional time
step δt = 0.5 and a relative tolerance on the linear system defect drop of tolr = 10−5.
The drag coefficient time history is shown in Fig. 5.3(b), its mean value reads 0.659,
and the Strouhal number is St = 0.133, in agreement with the published literature,
see [83]. Despite the geometry being represented with second degree polynomial
spaces, the degree of exactness of quadrature rules does not consider the degree of
mappings from reference to physical mesh elements. Accordingly bilinear forms are
exactly integrated only over affine mesh elements, located far away from the sphere
boundaries. It has been verified that, for this test case, this practice does not com-
promise accuracy while significantly improving the matrix-free computational time,
see [77]. For the sake of efficiency of parallel runs, the mesh has been partitioned
using the local two-level partitioning strategy described in [107]. The first-level de-
composition is performed according to the number of nodes, thus, the second-level

(a) Cp iso-contours
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Figure 5.3: Laminar flow around a Sphere at Re = 300. Pressure coefficient iso-
contours (top) and drag coefficient history (bottom).
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Chapter 5 Multigrid preconditioning for stiff discretizations

decomposition further decompose each node-local partition according to the number
of cores per node, such that the extra-node MPI communications are minimized.

Performance assessment Table 5.7 reports the parallel performance of the single-
grid matrix-based and matrix-free solvers running in parallel up to 576 cores (6 ele-
ments per partition on average). Increasing the number of sub-domains from 36 to
576 leads to an increased number of GMRES iterations: 42% and 20% up when em-
ploying a BJ and an ASM(1,ILU(0)) preconditioner, respectively. Thanks to the use
of quadrature rules suited for affine meshes, the CPU time of the matrix-free solver
is similar to the matrix-based one.

Results reported in Table 5.8 for a three- and four-levels p-multigrid strategy and
the exact same setup of two-dimensional computations confirm the efficacy of the
multigrid preconditioner: the number of iterations stays the same up to 576 cores and

Solver GMRES(MB) GMRES(MB) GMRES(MF) GMRES(MF)
Prec BJ ASM(1,ILU(0)) BJ ASM(1,ILU(0))

nProcs ITs TotTime ITs TotTime ITs TotTime ITs TotTime
36 78.5 1448.1 34.5 1245.9 77.1 1365.9 34.7 1220.7
72 86.7 774.0 35.0 675.2 87.0 743.9 35.0 671.9
144 84.9 380.1 38.2 386.7 85.2 370.3 38.2 381.9
288 102.7 226.7 40.2 233.1 102.4 221.3 40.3 228.5
576 111.8 126.0 41.3 150.6 113.6 129.2 41.3 133.8

Table 5.7: Three dimensional incompressible flow around a sphere. Single-grid par-
allel performances, matrix-based and matrix-free implementations. Com-
parison of the average number of GMRES iterations (ITs) and the whole
elapsed CPU time (solution plus assembly) TotTime. Computations per-
formed on Marconi-A1@CINECA.

Solver ` k` tolr ITs Smoother Prec

FGMRES[MGfull]
0 6 - 8 ∗ EWBJ

1,...,L-1 ‡ - 8 GMRES(MB) EWBJ
L 1 - 40 GMRES(MB) ASM(1,ILU(0))

scaling off
∗GMRES(MB) ∗GMRES(MB) ∗GMRES(MF) ∗GMRES(MF)
‡2 (L=2) ‡4,2 (L=3) ‡2 (L=2) ‡4,2 (L=3)

nProcs ITs SUMB ITs SUMB SUMB SUMF SUMB SUMF
36 4.00 1.29 2.00 1.61 1.37 1.29 2.28 2.15
72 4.00 1.37 2.00 1.68 1.52 1.46 2.38 2.29
144 4.00 1.29 2.00 1.43 1.45 1.41 2.07 2.02
288 4.00 1.37 2.00 1.67 1.56 1.52 2.14 2.09
576 4.00 1.28 2.00 1.55 1.46 1.50 1.55 1.59

scaling on
GMRES(MB)∗ ∗GMRES(MB) ∗GMRES(MF) ∗GMRES(MF)
‡2 (L=2) ‡4,2 (L=3) ‡2 (L=2) ‡4,2 (L=3)

nProcs ITs SUMB ITs SUMB SUMB SUMF SUMB SUMF
36 3.0 1.43 2.00 1.51 1.53 1.44 2.09 1.97
72 3.0 1.52 2.00 1.61 1.62 1.56 2.18 2.09
144 3.0 1.36 2.00 1.50 1.55 1.51 1.93 1.88
288 3.0 1.56 2.00 1.60 1.71 1.67 2.02 1.97
576 3.0 1.45 2.00 1.43 1.63 1.67 1.73 1.78

Table 5.8: Three dimensional incompressible flow around a sphere. Efficiency of a
three and four level p-multigrid strategy varying the fine level smoother.
Comparison of the average number of FGMRES iterations (ITs) and the
speed-up of the p-multigrid preconditioner with respect to the best per-
forming single-grid preconditioner in its matrix-based and matrix-free im-
plementation (SUMBand SUMF,respectively). The asterisk and the double
dagger symbols in the solver specs row are placeholders for the smoother
and coarse solver types of each column, respectively. Computations per-
formed on Marconi-A1@CINECA.
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5.2 Numerical results

the speedup are maintained in this largely-parallelized scenario. Stabilization scaling
provides slight improvements in terms of FGMRES iterations and computation time,
despite the small number of mesh elements. The four-level p-multigrid preconditioner
is almost two times faster than the best single-grid setup.
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Chapter 6

Preconditioning novel space discretizations

In Chapter 4 and 5 it has been shown that the application of implicit time integra-
tion strategies to DG discretizations is hindered by computational time and memory
expenses associated with the assembly and storage of the residual Jacobian matrix.
Although the Jacobian is sparse, the number of non-zero entries scales as k2d, where
k is the approximation order and d is the spatial dimension. Thus, the costs grow
rapidly with approximation order, particularly in three-dimensional problems. Mo-
tivated by this scaling, the chapters consider the opportunity of a reduced matrix
storage implementation of the iterative solver, labelled as matrix-free. This imple-
mentation avoids the allocation of the Jacobian matrix but still requires the allocation
of a preconditioner operator which in some cases may still be quite large. In this con-
text, the use of multilevel matrix-free strategies with cheap element-wise block-Jacobi
preconditioners on the finest level appears to balance computational efficiency and
memory considerations with iterative performance for stiff systems. The latter is rel-
evant to solvers applied to DG discretizations, for which the condition number scales
as O(h−2), where h is the mesh dimension [108].

The size of the DG system can be further reduced through hybridizable discontinu-
ous Galerkin (HDG) methods, which have been recently considered as an alternative
to the standard discontinous Galerkin discretization [109, 110]. HDG methods intro-
duce an additional trace variable on the mesh faces but can reduce the number of
globally-coupled degrees of freedom relative to DG, when a high order of polynomial
approximation is employed. The reduction occurs through a static condensation of
the element-interior degrees of freedom, exploiting the block structure of the HDG Ja-
cobian matrix. Thanks to this operation, the memory footprint of the solver scales as
k2(d−1). Additionally, HDG methods exhibit superconvergence properties of the gra-
dient variable in diffusion-dominated regimes. On the other hand, they increase the
number of operations local to each element, both before and after the linear system
solution. While several works have compared the accuracy and cost of HDG versus
continuous [111, 112] and discontinuous [113, 110] Galerkin methods, a comparison
of iterative solvers is missing in this context.

Whereas HDG reduces the number of globally-coupled degrees of freedom relative
to DG, at high approximation orders, its element-local operation count is non-trivial.
This is particularly the case for viscous problems, in which the state gradient is
approximated as a separate variable. An alternative approach is to only approximate
the state, and to obtain the gradient when needed by differentiating the state. This
leads to the primal HDG formulation, which is also considered here. The advantage of
primal HDG relative to HDG lies mainly in the reduction of element-local operations,
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which translates into improved computational performance, at the expenses of the loss
of gradient variable superconvergence.

While for DG the use of multilevel strategies to deal with ill-conditioned systems
has been previously studied, there use in HDG contexts appears not to have yet been
explored, especially for unsteady flow problems. A multilevel technique has been
introduced in the context of an h-multigrid strategy built using the trace variable
projection on a continuous finite element space [108]. Similarly, [114] propose the use
of an algebraic multigrid method applied to a linear finite element space obtained
by the projection of the trace variable. In [115] a similar idea is also considered to
speed-up the iterative solution process in HDG.

The present chapter focuses on the comparison of different preconditioning strate-
gies to deal with the solution of stiff linear systems arising from a high-order time
discretization in the context of DG and HDG spatial discretizations. The scalability
of the linear solution process is also considered and compared to standard single-grid
preconditioners like ILU(0). The efficiency of the different solution strategies is as-
sessed on two-dimensional laminar compressible flow problems. The results of such
cases suggest that (i) similar error levels can be obtained by the two solvers, (ii) the
use of a multilevel strategy reduces considerably the number of linear iterations, and
(iii) only for the DG discretizations this advantage is reflected in the CPU time.

It is important to remark that this chapter mainly focuses on compressible, low-
mach number flows, and the computations were performed using a different solver
than that employed in the previous chapters. In fact, both DG and HDG are handled
within the same framework called XFlow, developed by Fidkowski and co-workers,
see [110] for further details.

6.1 Hybridizable discontinuous Galerkin discretization

The hybridizable discontinuous Galerkin (HDG) method introduces an additional set
of variables defined on the mesh element interfaces to reduce the globally coupled
degrees of freedom compared to DG, see Fig. 6.1. The main difference between the
two discretizations is that, while for DG the numerical flux at the mesh element

(a) DG (b) HDG

Figure 6.1: Comparison of the DG vs HDG discretization
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6.1 Hybridizable discontinuous Galerkin discretization

interfaces is unique and it is computed using the left and right states, in HDG the
flux is local to each element, since it depends on the internal state as well as the trace
variable, and it is required to be continuous by using an additional set of equations.
In this chapter two different implementations of the hybridizable DG method are
considered and compared to the standard DG methods. The first approach make
use of a mixed form for the gradient states (also known as dual variable), i.e. the
gradients are used as an additional element-wise variable, and increases the accuracy
of the gradient evaluation. An alternative approach, hereby regarded as primal HDG,
or pHDG [116], reduces the computational costs of the solver by removing the dual
variable from the equations and adding a dual-consistency term on the residuals. This
approach is observed favourable when an increased accuracy of the gradient variable is
not strictly necessary or achievable for the problem. In all cases, the discretization is
based on an approximation Ωh of the domain Ω and a triangulation Th = {K} of Ωh.
The same nomenclature reported in 2 is here employed. However, the use of tensor-
product basis functions will be also explored and compared to those of maximum
degree k, exploited in the remaining of the paper. For brevity, the former will be
labelled as QuadLagrange, while the latter as TriLagrange basis functions.

6.1.1 Mixed form

The mHDG discretization consider a system of first-order partial differential equa-
tions, that can be obtained from (2.7) by introducing τh ∈ Rm×d such that∫

Ω
τh −

∫
Ω
∇wh = 0,∫

Ω
∂tw +

∫
Ω
∇ · (F c − F ν) +

∫
Ω
s = 0.

(6.1)

The HDG discretization approximates the variableswh ∈ [Pkd(Th)]m, τh ∈ [Pkd(Th)]m×d,
with Pkd(Th) defined in Chapter 2. An additional trace variable λh ∈ [Pkd(Fh)]m is
defined in the space

Pkd(Fh) =
{
µh ∈ L2(Γh) | ∀σ ∈ Fh, µh|κ ∈ Pkd(σ)

}
(6.2)

where Pkd(σ) is the space of polynomials of order k on face σ. Note that the trace
variable is defined in the internal faces only, while a properly defined boundary value
is used for the flux computation on Fbh.

The weak form is obtained in this case by weighting the equations in (6.1) with
appropriate test functions, integrating by parts, and using the interface variable λh
for the face state. Consistent and stable numerical fluxes are required at the mesh
element interfaces. The variational formulation reads: find τh ∈ [Pkd(Th)]m×d, wh ∈
[Pkd(Th)]m, λh ∈ [Pkd(Fh)]m such that∑

κ∈Th

∫
κ

τh : πh +
∑
κ∈Th

∫
κ

(∇ · πh) ·wh −
∑
κ∈Th

∑
σ∈F∂κ

∫
σ

λh · (πh · nσ) = 0, (6.3)
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∑
κ∈Th

∫
κ

∂twh · zh −
∑
κ∈Th

∫
κ

(F ch − F νh ) : ∇hzh+

+
∑
κ∈Th

∑
σ∈F∂κ

∫
σ

nσ ·
(
F̂ ch − F̂ νh

)
· [[zh]] = 0,

(6.4)

∑
σ∈Fi

h

∫
σ

{{
nσ ·

(
F̂ ch − F̂ νh

)}}
· µh = 0, (6.5)

for all πh ∈ [Pkd(Th)]m×d, wh ∈ [Pkd(Th)]m, µh ∈ [Pkd(Fh)]m, where F∂κ is the set of
faces ∂κ of the element κ. Note that, instead of using the modified flux function F̃h,
here the viscous fluxes F νh are evaluated in the element terms using the gradient τh.
The third equation, which weakly imposes the continuity across interfaces, is required
to close the system. Note that the use of the mixed form allows the same theoretical
convergence rates between the state variable wh and the gradient variable τh, which
in diffusion-dominated regimes allows for a local post-processing of the state to a
higher order.

In HDG, the numerical flux functions F ch and F νh are defined defined as

nσ · F̂ ch = nσ · F ch +
∣∣nσ · F ′c(λh)

∣∣ (wh − λh),

nσ · F̂ νh = nσ · F νh + ησn
σ · rσ(wh − λh),

(6.6)

where the first one is the sum of the convective flux and a Roe-like stabilization
term, while the second mimics the BR2 implementation being rσ the lifting operator
applied to the jump (wh − λh), and ησ the stabilization factor.

Similarly to what is done for DG, at the boundary of the domain, the numerical
flux function is made consistent with the boundary conditions of the problem through
the definition of a boundary state which accounts for the boundary data and, together
with the internal state, allows for the computation of numerical fluxes and the lifting
operator on the portion Γbh of the boundary Γh.

To obtain a compact form for the time integration of the equations, it is convenient
to define the flux functions

Fh(τh,wh) def= (F ch − F νh ) ∈ Rm×d (6.7)

F̂h(τh,wh,λh) def=
(
F̂ ch − F̂ νh

)
∈ Rm×d, (6.8)

as well as the residuals forms q, f and l from Equations (6.3)-(6.5). For all τh,πh ∈
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6.1 Hybridizable discontinuous Galerkin discretization

[Pkd(Th)]m×d, wh, zh ∈ [Pkd(Th)]m, λh,µh ∈ [Pkd(Fh)]m, the forms read

qh(τh,wh,λh,πh) =
∑
κ∈Th

∫
κ

m∑
i=1

d∑
p=1

τp,iπp,i+

+
∑
κ∈Th

∫
κ

m∑
i=1

d∑
p=1

wi
∂πp,i
∂xp

+

−
∑
κ∈Th

∑
σ∈F∂κ

∫
σ

m∑
i=1

d∑
p=1

λin
σ
p [[πp,i]]

(6.9)

fh(τh,wh,λh, zh) = −
∑
κ∈Th

∫
κ

m∑
i=1

d∑
p=1

Fp,i(τh,wh) ∂zi
∂xp

+

+
∑
κ∈Th

∑
σ∈F∂κ

∫
σ

m∑
i=1

d∑
p=1

nσp F̂p,i(τh,wh,λh) [[zi]],

(6.10)

lh(τh,wh,λh,µh) =
∑
σ∈Fi

h

∫
σ

m∑
i=1

d∑
p=1

nσp

{{
F̂p,i(τh,wh,λh)

}}
µi. (6.11)

Recalling the mass matrix bilinear form (2.22), the unsteady HDG problem can be
rewritten as follows: find τh ∈ [Pkd(Th)]m×d, wh ∈ [Pkd(Th)]m, λh ∈ [Pkd(Fh)]m such
that

qh(τh,wh,λh,πh) = 0

mh(wh, zh) + fh(τh,wh,λh, zh) = 0

lh(τh,wh,λh,µh) = 0

(6.12)

for all πh ∈ [Pkd(Th)]m×d, zh ∈ [Pkd(Th)]m, µh ∈ [Pkd(Fh)]m.

6.1.2 Primal form

A variant of the mixed hybridizable discontinuous Galerkin presented in Section 6.1.1
is here denoted as the primal HDG method (pHDG) and follows the work proposed
in [116]. Here the dual variable is eliminated by introducing the definition of the
gradient in Eq. (6.4). The pHDG approximates the variable wh ∈ [Pkd(Th)]m. The
trace variable λh ∈ [Pkd(Fh)]m is still employed for hybridization, and the variational
formulation reads: find τh ∈ [Pkd(Th)]m×d, wh ∈ [Pkd(Th)]m, λh ∈ [Pkd(Fh)]m such that

∑
κ∈Th

∫
κ

∂twh · zh −
∑
κ∈Th

∫
κ

(
F ch − F̃ νh

)
: ∇hzh+

+
∑
κ∈Th

∑
σ∈F∂κ

∫
σ

nσ ·
(
F̂ ch − F̂ νh

)
· [[zh]] = 0,

(6.13)
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∑
σ∈Fi

h

∫
σ

{{
nσ ·

(
F̂ ch − F̂ νh

)}}
· µh = 0, (6.14)

for all πh ∈ [Pkd(Th)]m×d, wh ∈ [Pkd(Th)]m, µh ∈ [Pkd(Fh)]m, where F∂κ is the set of
faces ∂κ of the element κ. It is worth pointing out that Equations (6.13)–(6.14) are
not obtained by just substituting τh = ∇hwh from Equations (6.3)–(6.5). In fact,
the flux function F̃ νh defined in Eq. (2.15) is employed to ensure symmetry of the
discretization. On the other hand, the same flux functions F̂ ch and F̂ νh reported in
Eq. (6.6) are employed. It is important to remark that, involving a lower number
of element-wise degrees of freedom than mHDG, this space discretization does not
suffer significantly from overhead costs of dealing with the gradients: eliminating the
dual variable and adding the adjoint-consistency term F̃ νh typically results in a faster
solver. Note that in this case the gradients are one order less accurate than the state
variable wh. Numerical flux functions, stabilizing terms, and boundary condition
enforcement are defined similarly to mHDG.

Defining the flux functions as in Eq. (6.6), and

F̃h(wh) def=
(
F ch − F̃ νh

)
∈ Rm×d (6.15)

F̂h(wh,λh) def=
(
F̂ ch − F̂ νh

)
∈ Rm×d, (6.16)

the following bilinear forms arise from pHDG discretization. For allwh, zh ∈ [Pkd(Th)]m,
λh,µh ∈ [Pkd(Fh)]m, the forms read

fh(wh,λh, zh) = −
∑
κ∈Th

∫
κ

m∑
i=1

d∑
p=1

F̃p,i(wh) ∂zi
∂xp

+

+
∑
κ∈Th

∑
σ∈F∂κ

∫
σ

m∑
i=1

d∑
p=1

nσp F̂p,i(wh,λh) [[zi]],

(6.17)

lh(wh,λh,µh) =
∑
σ∈Fi

h

∫
σ

m∑
i=1

d∑
p=1

nσp

{{
F̂p,i(wh,λh)

}}
µi. (6.18)

Recalling the mass matrix bilinear form (2.22), the unsteady pHDG problem can be
rewritten as follows: find τh ∈ [Pkd(Th)]m×d, wh ∈ [Pkd(Th)]m, λh ∈ [Pkd(Fh)]m such
that

mh(wh, zh) + fh(wh,λh, zh) = 0

lh(wh,λh,µh) = 0
(6.19)

for all πh ∈ [Pkd(Th)]m×d, zh ∈ [Pkd(Th)]m, µh ∈ [Pkd(Fh)]m.
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6.2 Time integration

6.2 Time integration

The ESDIRK3 scheme is here employed for the time discretization. As reported in
Chapter 2, Algorithm 3, the scheme is third-order accurate and involves four Runge–
Kutta stages. Being the first one explicit, it thus calls for the solution of three
nonlinear systems. The nonlinear stage is solved using the Newton’s method, which
is an iterative method that calls for the solution of multiple linear systems. Since one
of the objective of HDG is to reduce the globally coupled degrees of freedom arising
from the implicit time discretizations, the block-structure of the iteration matrix can
be conveniently exploited to obtain a smaller system of ODE. Details of this procedure
are given in the following.

Residual’s Jacobian – mixed form

The discretization produce the following residual’s Jacobian forms:

aqτh (τh,wh,λh, δτh,πh) = ∂qh(τh,wh,λh,πh)
∂τh

δτh, (6.20)

aqwh (τh,wh,λh, δwh,πh) = ∂qh(τh,wh,λh,πh)
∂wh

δwh, (6.21)

bqλh (τh,wh,λh, δλh,πh) = ∂qh(τh,wh,λh,πh)
∂λh

δλh, (6.22)

afτh (τh,wh,λh, δτh, zh) = ∂fh(τh,wh,λh, zh)
∂τh

δτh, (6.23)

afwh (τh,wh,λh, δwh, zh) = ∂fh(τh,wh,λh, zh)
∂wh

δwh, (6.24)

bfλh (τh,wh,λh, δλh, zh) = ∂fh(τh,wh,λh, zh)
∂λh

δλh, (6.25)

clτh (τh,wh,λh, δτh,µh) = ∂lh(τh,wh,λh,µh)
∂τh

δτh, (6.26)

clwh (τh,wh,λh, δwh,µh) = ∂lh(τh,wh,λh,µh)
∂wh

δwh, (6.27)

dlλh (τh,wh,λh, δλh,µh) = ∂lh(τh,wh,λh,µh)
∂λh

δλh. (6.28)

The derivatives appearing in Equations (6.31)-(6.34) can be computed in analogy to
what has been done for the DG discretization, see Equations (2.20) and (2.21). The
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block-matrix operators of the discretization are obtained as follows

(Aqτh δτh,πh)L2(Ω) = aqτh (τh,wh,λh, δτh,πh),

(Aqwh δwh,πh)L2(Ω) = aqwh (τh,wh,λh, δwh,πh),

(Bqλ
h δλh,πh)L2(Ω) = bqλh (τh,wh,λh, δλh,πh),

(Afτh δτh, zh)L2(Ω) = afτh (τh,wh,λh, δτh, zh),

(Afλh δwh, zh)L2(Ω) = afλh (τh,wh,λh, δwh, zh),

(Bfw
h δλh, zh)L2(Ω) = bfwh (τh,wh,λh, δλh, zh),

(Clτ
h δτh,µh)L2(Ω) = clτh (τh,wh,λh, δτh,µh),

(Clw
h δwh,µh)L2(Ω) = clwh (τh,wh,λh, δwh,µh),

(Dlλ
h δλh,µh)L2(Ω) = dlλh (τh,wh,λh, δλh,µh),

(6.29)

for all τh, δτh,πh ∈ [Pkd(Th)]m×d; wh, δwh, zh ∈ [Pkd(Th)]m; λh, δλh,µh ∈ [Pkd(Fh)]m.
Note that the operators Aijh involve contributions due to element-interior DoFs, Bij

h ,
Cij
h involve mixed element-interior and face contributions, while Dlλ

h is obtained
through face DoFs only. The Newton’s method requires to solve multiple linear sys-
tems that can be complactly written as Aqτh Aqwh Bqλ

h

Afτh
1
αδt

Mh +Afwh Bfw
h

Clτ
h Clw

h Dlλ
h


 δτh

δwh

δλh

 =

 fqh
ffh
blh

 , (6.30)

where the vector (fqh , f
f
h , b

l
h)T is obtained using the residuals forms in consistency

with the time discretization.

Residual’s Jacobian – primal form

In the primal formulation the contributions of the gradient variable disappear, and
thus the only element-interior variable wh is considered. The residual’s Jacobian form
become

afwh (wh,λh, δw, zh) = ∂fh(wh,λh, zh)
∂wh

δwh, (6.31)

bfλh (wh,λh, δλh, zh) = ∂fh(wh,λh, zh)
∂λh

δλh, (6.32)

clwh (wh,λh, δw,µh) = ∂lh(wh,λh,µh)
∂wh

δwh, (6.33)

dlλh (wh,λh, δλh,µh) = ∂lh(wh,λh,µh)
∂λh

δλh. (6.34)
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6.2 Time integration

and, in consistency with those equations, the block-matrix operators of the discretiza-
tion are obtained as follows

(Afwh δwh, zh)L2(Ω) = afwh (wh,λh, δwh, zh),

(Bfλ
h δλh, zh)L2(Ω) = bfλh (wh,λh, δλh, zh),

(Clw
h δwh,µh)L2(Ω) = clwh (wh,λh, δwh,µh),

(Dlλ
h δλh,µh)L2(Ω) = dlλh (wh,λh, δλh,µh),

(6.35)

for all wh, δwh, zh ∈ [Pkd(Th)]m; λh, δλh,µh ∈ [Pkd(Fh)]m. In analogy with Eq. (6.30),
one can write the pHDG linear system as[ 1

αδt
Mh +Afwh Bfλ

h

Clw
h Dlλ

h

](
δwh

δλh

)
=
(
ffh
blh

)
, (6.36)

where (ffh , b
l
h)T is again obtained using the residuals forms in consistency with the

time discretization.

Static condensation and back-solve

Considering the block structure of the matrices appearing in (6.30) and (6.36), the
solution of the system can be obtained for a smaller number of DoFs by statically
condensing out the element-interior variables. Partitioning the matrix into element-
interior and face components, [Ah, Bh; Ch, Dh], and similarly for the right-hand side
vector, [fh; bh], the Schur-complement linear system reads

(Dh −ChA−1
h Bh)︸ ︷︷ ︸

Gh

δλh = (bh −ChA−1
h [fh])︸ ︷︷ ︸

gh

, (6.37)

which assumes the form Gh δλh = gh, that can be solved using a GMRES algorithm.
The definition of each block can be found by comparison with Equations (6.30) and
(6.36). The static condensation is an operation that involves matrix-matrix products
for the iteration matrix, as well as matrix-vector products for the right-hand side.
Fortunately, the compact structure of the residual Jacobian prevents us from having
to allocate global matrices for the computation of the condensed matrix, i.e. the
operations described in Eq. (6.37) are local to each element. In addition, the compu-
tation of A−1

h can be performed in place. By doing so, the memory footprint of the
HDG implementation is not increased during the solve.

After the solution of (6.37), the interior states have to be recovered for the residual
evaluation in the next time step. This operation is commonly referred to as the back
solve and assumes the following form

δwh = −A−1
h (fh +Bhδλh) . (6.38)

The implementation choice of assembling the condensed matrix on-the-fly requires
re-evaluation of the inverse of the matrix Ah in an element-wise fashion during the
back-solve.

As a final remark for the two solvers, it is worth to point out that for both the
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mixed and primal form of HDG, memory allocation and time spent on the global
solve are lower than that of a DG solver due to the smaller number of globally-
coupled degrees of freedom at high orders. On the other hand, the inversion of the
Ah block-structured matrix of equation (6.37), although being local to each element,
increases the amount of element-wise operations.

6.3 Preconditioning

To compare the performance of HDG discretizations, the use of single-grid as well as
multigrid preconditioning approaches are here employed. As regards single-grid pre-
conditioners, the EWBJ and EWBJ approaches are used, see Chapter 4, Section 4.2.
For multigrid, the general framework is that of a p-multigrid of Chapter 5, Section 5.1.

In this chapter the additional integration of the residuals and Jacobians on the
coarse level is avoided using subspace inheritance of the matrix operators assembled
on the finest space. This choice involves projections of the matrix operators and right
hand sides, which are computed only once on the finest level. Despite standard inher-
itance has been demonstrated to be less efficient than a rescaled-inherited approach
in incompressible flow problems, only the implementation of the first method is em-
ployed hereby for DG, as these operators seems to be sufficiently efficient for target
problems involving the compressible NS equations. In fact, the compressible nature
of the equations produce a better conditioned system as demonstrated in [16].

In the context of standard discontinuous Galerkin discretizations, see for exam-
ple [88, 93, 92, 94], the multigrid idea has been thoroughly investigated and exploited
in several ways, e.g. h-, p-, and hp-strategies. On the other hand, the use of p-
multigrid for HDG has not been as widely studied. In this case, the definition of the
restriction and prolongation operators, as well as the coarse grid operators and right
hand sides, is not straightforward when considering the statically condensed system.
Having introduced the concept of subspace inheritance for a standard DG solver in
Chapter 4, it is here extended to HDG. Also in this case the full multigrid (FMG)
V-cycle solver, outlined in Chapter 5, Section 5.1.4, Algorithm 13, is still employed.
The smoothers employed here consist of preconditioned GMRES solvers. Regarding
the choice of the multigrid levels and preconditioners, the results reported for the
incompressible Navier–Stokes equations have proved to be still valid: an optimal and
scalable solver can be obtained using an aggressive preconditioner on the coarsest
space discretization, where the factorization of the matrix can be performed at a low
computational cost, and the system has to be solved with a higher accuracy. On the
other hand, cheaper operators can be used on the finest levels of the discretization,
where the systems need not be solved to a high degree of accuracy. Therefore, similar
settings to those of Chapter 5 are employed. The following subsections provide the
details on the smoothers, as well as how the matrices and vectors are restricted and
prolongated between levels.

Single-grid preconditioners

This chapter exploits single-grid preconditioners for the purpose of benchmarking,
as well as to precondition the smoothers of the multigrid solver. To simplify the
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analysis, only two operators are considered. The first one is the element-wise block-
Jacobi (EWBJ). Both in DG and HDG, this approach works with the block-diagonal
portion of the iteration matrix and factorize it, in a local-to-each element fashion,
using the PLU factorization, and it is applied in the same way for serial and parallel
computations.

The second preconditioner is the incomplete lower-upper factorization with zero-
fill, ILU(0), labelled as block-Jacobi (BJ) when applied in parallel computations. As
observed in Chapter 4, the factorization works with the partition-wise block of the it-
eration matrix and thus looses its effectiveness in parallel runs. The Additive Schwarz
method, which compensates the performance degradation, is not considered in this
chapter dealing with compressible flow problems. In fact, as reported in [16], such
problems are less stiff than those arising from the discretization of the incompressible
Navier–Stokes equations.

It is worth pointing out that, when employed in a matrix-free context, the use of
EWBJ allows to reduce the matrix-assembly costs, as only the on-diagonal blocks of
the iteration matrix have to be computed and stored.

A multigrid approach for HDG

In HDG, the globally-coupled unknowns are those related to the face DoFs, and the
iteration matrix is obtained through static condensation, see Equation (6.37), which
allows us to solve the system for the face unknowns only. Theoretically speaking, for
element-interior degrees of freedom, the same operators of Section 5.1.1, Chapter 5
can be employed. On the other hand, the operation for faces degrees of freedom can be
obtained through similar considerations. In this case, the sequence of approximation
spaces on the interior mesh element interfaces, built using lower-order polynomials
k`, with ` = 1, ....L and k0 = k, are named Pk`d (F ih). The prolongation operator is
now defined as J ``+1 : Pk`+1

d (F ih)→ Pk`d (F ih) such that∑
σ∈Fi

h

∫
σ

(
J ``+1λ`+1 − λ`+1

)
= 0, ∀λ`+1 ∈ Pk`+1

d (F ih). (6.39)

On the other hand, the restriction is defined as J `+1
` : Pk`d (F ih) → Pk`+1

d (F ih) such
that∑

σ∈Fi
h

∫
σ

(
J `+1
` λ` − λ`

)
µ`+1 = 0, ∀(λ`, µ`+1) ∈ Pk`d (F ih)× Pk`+1

d (F ih). (6.40)

These definitions can also be extended to operate on vector functions λh ∈ [Pk`d (F ih)]m

and are assumed to act component-wise, i.e. J `+1
` λh =

∑m

i
J `+1
` λi.

Applying same subspace-inheritance idea reported for DG, one can obtain the
coarse space condensed HDG matrix and right hand side through the application
of element-interior and face DoFs projections. This involve the definition of matrix
operators obtained through the integration on a coarser order space of the forms (6.29)
and (6.35) computed using prolongated quantities, in analogy to Eq. (5.3). In this
way, a standard-inherited coarse space would require to statically condense out the
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system and to obtain the matrix as

G` = D` −C`A−1
` B` (6.41)

with A`, B`, C` and D` obtained using block-by-block projection of Ah, Bh, Ch
and Dh, respectively. This operation would involve the application of mixed element-
interior and face degrees of freedom Galerkin projections prior the static condensation
of the system. Thus, it comes with an increased operation count compared to DG
subspace inheritance.

With the idea of minimizing the number of operations required to assemble the
coarse spaces, a further approximation is here proposed. In fact, it is observed that a
coarse space matrix can be obtained by applying the block-by-block projection to the
statically condensed matrix Gh directly, where the size of each block is (mn`v)2, with
n`v = dim(Pk`d (σ)). Therefore, each block of the recursively projected matrix assumes
the form

G`+1,A
σ,σ = Nσ

`+1,`G
`,A
σ,σ

(
Nσ
`+1,`

)T
, (6.42)

where (
Nσ
`+1,`

)
= (Nσ

`+1)−1
∫
σ

µ`+1 ⊗ µ`, Nσ
`+1 =

∫
σ

µ`+1 ⊗ µ`+1, (6.43)

and µ` ∈ Pk`d (σ). This approach will be referred to as the approximate-inherited
method.

Similar considerations are valid for the right hand side, which have to be obtained
from the residuals of the equations in each level of the discretization. A formally
exact definition of the residual would require to

1. project in every level of the multigrid cycle the element-interior and face com-
ponents of the residuals fh, bh;

2. back-solve for interior degrees of freedom in each level;

3. compute the residuals of the equations using the matrix operators A`, B`, C`
and D`;

4. statically condense out the element-interior DoFs to obtain the residuals of the
equations.

This operation, which is formally equivalent to what proposed in a DG context,
involves a larger amount of operations that would make the multigrid cycle incon-
venient in terms of performance. Within the approximate-inherited idea, the right
hand sides can be conveniently obtained recursively by face-projection after static
condensation of the right hand side on the fine space, see Eq. (6.37), and thus
g`+1 = J `+1

` g`. The residual vector for the face degrees of freedom is then simply
obtained as d` = g` −G` δλ`, with δλ` the solution vector at level `. Despite these
additional approximations compared to DG subspace inheritance, such a strategy
exhibits very good performance in HDG solutions of the compressible Navier–Stokes
equations, as will be demonstrated in the results section.
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6.3 Preconditioning

6.3.1 Preconditioning options and memory footprint

The same single-grid preconditioners of Chapter 5 are here employed both for bench-
marking as well as to precondition the smoothers of the multigrid strategy. In partic-
ular, BJ and EWBJ are considered, while the use of the Additive Schwarz method is
neglected being the study related to the compressible case, which generally provides
better conditioned problems. Bearing that in mind, it is useful to provide estimates
of the memory footprint of the solver as well as the computational time spent on
evaluating the matrix operators. It is trivial to observe that the matrix assembly
time, as well as its operation count, is a function of the number of non-zeros of the
matrix itself. This number depends on the iteration matrix and preconditioner, and
it is function of the type of discretization (DG or HDG) as well as the type of the
solver (MF or MB) in the DG case. Considering a squared, two-dimensional and
bi-periodic domain made by quadrangular elements, it is possible to compute the
curves in Figure 6.2, where the number of non-zeros (NNZ), non-dimensionalised by
the NNZ of the Jacobian arising from the DG discretization, is reported as a function
of the number of elements per partition, ne/p. It can be observed that

1. the memory footprint of DG, matrix-based as well as HDG solvers is always
equal to that of a Jacobian matrix, and this value is function of the polynomial
order for HDG. This is motivated by the fact that the preconditioner is always
and evaluated using the same memory of the Jacobian matrix;

2. for a matrix-free, DG discretization, the allocation involves only the precon-
ditioner operator. When EWBJ is considered, NNZ reduces by the 80% with
respect to the allocation of a full DG Jacobian. As ne/p → 1, the NNZ of BJ
solver approaches that of the element-wise block Jacobi, while for ne/p >> 1 it
tends to be that of a Jacobian matrix. This is due to the fact that as the domain
is partitioned, the ILU(0) factorization is performed in the squared, partition-
wise block of the iteration matrix and therefore, in a matrix-free fashion, the
off-partition blocks can be neglected during the assembly phase;

3. the p-multigrid (pMG) matrix-free preconditioning approach applied to a DG

(a) TriLagrange basis functions (b) QuadLagrange basis functions

Figure 6.2: Allocated number of non-zeros (NNZ) non-dimensionalised by the memory
allocation of the DG Jacobian matrix. DG matrix-free solvers compared
to HDG for different values of polynomial orders and preconditioning type.
p-multigrid preconditioning (pMG) assumed to be that of Table 6.4.
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discretization, here assumed to be that of Table 6.4, requires a memory footprint
in line with that of an element-wise block Jacobi method, as already observed
in [95]. In fact, when using lower-order polynomial spaces with k` << k, the
size of those matrices is considerably smaller than that of the finest space since
they scale with k6;

4. for HDG, only for high order polynomials NNZ is reduced with respect to the
iteration matrix of a DG method. For k = 6, a memory footprint in line with
that of a EWBJ, matrix-free approach is observed, while for k = 1, 3 the memory
is considerably larger. It is worth pointing out that the use of TriLagrange basis
functions (Figure 6.2(a)) and QuadLagrange basis functions (Figure 6.2(b))
only affects NNZ ratio in the HDG case: in particular, the memory footprint
reduction when using QuadLagrange basis is larger due to the higher amount
of element-wise unknowns if compared to that of the internal faces;

5. interestingly, the NNZ ratio for HDG when ne/p → 1. The reason for this is
that the face-to-elements ratio within the computational mesh of the domain
partition changes.

Finally, it is important to remark that for a matrix-free iterative solver employed in
DG contexts, it is possible to optimize the matrix assembly evaluation to compute only
the blocks required by the preconditioner. For example, for EWBJ, the evaluation
of the off-diagonal blocks of the Jacobian can be neglected, while for pMG matrix-
free with EWBJ on the finest space, the off-diagonal blocks could be computed at a
reduced polynomial order consistent with that of the coarser spaces.

6.4 Numerical results on a model test case

Numerical experiments to assess the performance of the HDG discretizations in com-
parison to DG are here presented. First, NS solutions of a vortex transported by
uniform flow at M = 0.05 and Re = 100 are reported. The objective is to i) to
show the convergence rates of the solver both in space and time; ii) to investigate
the effects of grid refinement for the approximate-inherited approach proposed for
HDG, providing mesh-independent convergence rates; and iii) compare the effects of
polynomial order, time step size and space discretization on the parallel performance
of the solution strategy.

6.4.1 Test case description

The test case is a modified version of the VI1 case studied in the 5th International
Workshop on High Order CFD Methods [54], and consists of a two-dimensional mesh
on the domain (x, y) ∈ [0, 0.1]×[0, 0.1] with periodic boundary conditions on each
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6.4 Numerical results on a model test case

Figure 6.3: Convected vortex at Re = 100, M = 0.05. Mach number contours. Solu-
tion at t = 0 (left) and t = T (right).

side. The flow initialisation involves the definition of the following state

u = U∞

(
1− β

(
y − Yc
R

)
e−r

2/2
)

v = U∞β
(
x−Xc
R

)
e−r

2/2

T = T∞ −
(
U2
∞β

2

2Cp

)
e−r

2

(6.44)

with the heat capacity at constant pressure being Cp = Rgasγ/(γ − 1), the non di-
mensional distance to the initial vortex core position r =

√
(x−Xc)2 + (y − Yc)2/R,

and the free stream velocity being U∞ = M∞
√
γRgasT∞. The fluid pressure p, the

temperature T and density ρ are prescribed to ensure a steady solution of the the prob-
lem without uniform flow transport, i.e.ρ∞ = p∞/RgasT∞, ρ = ρ∞(T/T∞)1/(γ−1),
p = ρRgasT . The parameters where chosen such that M∞ = 0.05, β = 1/50 and
R = 0.005. Differently from VI1, here the set of NS equations are solved instead of
the Euler equations, and the Reynolds number, based on the domain extension, was
Re = 100.

6.4.2 Assessment of the solution accuracy

Numerical experiments have been performed to assess the output error, both in space
and time. The meshes here employed were obtained using regular quadrilaterals.
The mesh density ranges from 2×2 to 64×64, while the polynomial order range
k ∈ {1, 2, 3, 4, 5, 6}. The L2 state error was computed relative to the solution on
a 128×128, P6 space discretization, after one convective period T . The contour plot
of the solutions at the initial and final states are shown in Figure 6.3. Table 6.1
reports space discretization errors. The tests were performed using a very small time
step size, T/∆t = 4000, and the ESDIRK3 scheme to ensure a negligible time dis-
cretization error, with an absolute tolerance on the non-linear system of 10−10, and a
relative tolerance of 10−5 on the GMRES. Even though DG suffers less than HDG of
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DG mHDG pHDG
order grid ‖err‖L2 k ‖err‖L2 k ‖err‖L2 k

P1

8 4.0938E-07 4.20E-07 4.1798E-07
16 1.4796E-07 1.468 1.4514E-07 1.533 1.4406E-07 1.537
32 3.0795E-08 2.264 2.8355E-08 2.356 2.8020E-08 2.362
64 5.5247E-09 2.479 4.7822E-09 2.568 4.6898E-09 2.579

P2

2 5.9266E-07 6.22E-07 6.2124E-07
4 2.7443E-07 1.111 2.7344E-07 1.186 2.7306E-07 1.186
8 3.2505E-08 3.078 3.2777E-08 3.060 3.2344E-08 3.078
16 2.2983E-09 3.822 2.7457E-09 3.577 2.6311E-09 3.620
32 2.3510E-10 3.289 3.4213E-10 3.005 3.1517E-10 3.061
64 3.4853E-11 2.754 6.3410E-11 2.432 5.5951E-11 2.494

P3

2 3.3987E-07 3.31E-07 3.3149E-07
4 3.2850E-08 3.371 3.4696E-08 3.255 3.4275E-08 3.274
8 1.5714E-09 4.386 1.7405E-09 4.317 1.7008E-09 4.333
16 8.1804E-11 4.264 7.9918E-11 4.445 7.8935E-11 4.429
32 7.2397E-12 3.498 7.2689E-12 3.459 7.2173E-12 3.451

P4

2 1.1210E-07 1.18E-07 1.1741E-07
4 5.2542E-09 4.415 5.4176E-09 4.446 5.3668E-09 4.451
8 1.1772E-10 5.480 1.9915E-10 4.766 1.9838E-10 4.758
16 6.5563E-12 4.166 7.3117E-12 4.768 7.1101E-12 4.802

P5

2 4.2677E-08 4.50E-08 4.4730E-08
4 6.6523E-10 6.003 7.8204E-10 5.848 7.7398E-10 5.853
8 1.1519E-11 5.852 9.6028E-11 3.026 9.6035E-11 3.011
16 5.0750E-12 1.183 4.8543E-12 4.306 4.8326E-12 4.313

P6

2 1.4170E-08 1.35E-08 1.3510E-08
4 9.7090E-11 7.189 3.4373E-10 5.298 3.4301E-10 5.300
8 5.1249E-12 4.244 2.4622E-11 3.803 2.4821E-11 3.789
16 5.0800E-12 0.013 5.1008E-12 2.271 5.0943E-12 2.285

Table 6.1: L2 solution error. Laminar vortex test case at Re = 100, M = 0.05.
Convergence rates for the DG and HDG discretizations.
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pre-asympthotic behaviour on such a smooth solution, all the three implementations
show comparable error levels and converge with the theoretical convergence rates for
every polynomial approximation shown. As a consequence of such analysis, and con-
sidering that both the DG and HDG implementations share the same code base, only
the CPU time will be considered as a measure of the time-to-solution efficiency.

As regards the time integration scheme, the convergence rates of the ESDIRK3
time integration scheme are also reported in Table 6.2, and have been obtained using
the 16×16 grid, P6 polynomials for the three space discretization strategies. The

DG mHDG pHDG
T/∆t ‖err‖L2 k ‖err‖L2 k ‖err‖L2 k

4 5.3895E-07 5.3898E-07 5.3898E-07
10 1.3656E-07 1.498 1.3657E-07 1.498 1.3657E-07 1.498
20 2.5830E-08 2.402 2.5788E-08 2.405 2.5788E-08 2.405
40 3.7729E-09 2.775 3.7684E-09 2.775 3.7684E-09 2.775
100 2.6181E-10 2.912 2.6049E-10 2.916 2.6050E-10 2.916

Table 6.2: Laminar vortex test case at Re = 100, M = 0.05. Time convergence
rates for the DG, mHDG and pHDG discretizations, using the ESDIRK3
scheme.

theoretical third order convergence rate of the ESDIRK3 time integration scheme can
be observed for all the three space discretizations with comparable error levels.

6.4.3 Assessment of the approximate-inherited multigrid approach for
HDG

To prove the efficicacy of the multigrid approach proposed herein for HDG, numer-
ical experiments obtained by reducing the mesh element size for different element
types are here reported. A total of four mesh sequences are considered in the study
obtained as i) regular elements; ii) randomly distorted elements; iii) regular and clus-
tered elements; and iv) clustered-distorted elements. The study was performed on
both triangular and quadrangular elements, see Figure 6.4. Note that the random
pertubation was limited to the 10% of the minimum dimension of the element, and
that the clustering has been obtained by placing the mesh element nodes using gauss-
lobatto rules. A full multigrid strategy has been employed for the study. The strategy
combines three multigrid levels, and for each of them a BJ-preconditioned GMRES
smoother was considered. To avoid the strategy being influenced by the domain de-
composition, all the computations are here performed in serial. Three smoothing
iterations have been performed in each levels, while 400 iterations were employed on
the coarsest level to ensure the results not being polluted by a lack of coarse level
resolution. This configuration was found to optimize the solver to deal with serial
computations and it is coherent to what has been previously reported in the literature,
see [95].

Table 6.3 report the results on triangular and quadrangular mesh elements. The
numerical experiment consisted on one time step such that T/∆t = 10 using the
ESDIRK3 scheme, being T the convective period of the problem. The average number
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.4: Convected vortex at Re = 100, M = 0.05. Example of computatinal
meshes involving, for the tri- and quad-, i) regular elements; ii) randomly
distorted elements; iii) regular and clustered elements; and iv) clustered-
distorted elements.

Reg Tri Dis Tri Reg Grad Tri Dis Grad Tri
ne ITa ρa ITa ρa ITa ρa ITa ρa

162 · 2 3.000 0.0060 2.833 0.0056 3.000 0.0120 3.000 0.0131
322 · 2 3.000 0.0123 3.000 0.0119 3.500 0.0245 3.333 0.0195
642 · 2 2.500 0.0058 3.000 0.0132 3.667 0.0315 4.000 0.0422
1282 · 2 2.333 0.0047 2.667 0.0086 3.500 0.0290 4.167 0.0560

Reg Quad Dis Quad Reg Grad Quad Dis Grad Quad
ne ITa ρa ITa ρa ITa ρa ITa ρa
162 2.833 0.0053 2.333 0.0033 3.000 0.0069 3.000 0.0057
322 2.833 0.0101 2.833 0.0081 3.000 0.0087 3.000 0.0096
642 3.167 0.0183 3.000 0.0153 3.833 0.0386 3.667 0.0336
1282 3.333 0.0246 3.500 0.0273 4.333 0.0637 4.500 0.0659

Table 6.3: Laminar vortex test case at Re = 100, M = 0.05. h-independence
test on tri-element (top) and quad-element (bottom) meshes. of a
FGMRES(MGfull) solver built on three levels. GMRES(BJ) smoothers
with 400 iterations on the coarsest level ` = 2. 3 smoothing iterations were
employed for ` = {0, 1}.

of iterations as well as the average convergence rate (CR) ρ are reported. The CR
is defined as ρ = (rIT /r0)1/IT with IT the number of iteratons, r0 and rIT the
residuals at the first and IT th iteration respectively. In all the numerical experiments
the p-multigrid strategy shows to work optimally as the number of iterations slightly
grow by increasing the number of mesh elements, even for distorted and graded mesh
sequences.
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Level Order Solver Preconditioner Iterations
1 6 GMRES EWBJ 10
2 2 GMRES EWBJ 10
3 1 GMRES BJ 30

Table 6.4: Computational settings for the p-multigrid preconditioning strategy em-
ployed within the paper.

6.4.4 Evaluation of the solver efficiency

Numerical experiments in this Section are devoted to assess the performance of p-
multigrid preconditioning strategy for HDG in comparison to other operators, as
well as with state-of-the-art preconditioned DG discretizations. In particular, the
reference here is the matrix-based, BJ preconditioned DG discretization, while the
aim is to report insights on the computational time of the solution also, in order
to provide an overall idea of the computational efficiency of the solver. The space
discretization relies on the 16×16 mesh made by regular quads and two polynomial
orders, i.e. k = {3; 6}. As for the time discretization, a non dimensional time step size
of ∆t = {1; 0.1} is employed. In both the cases, a single time step is computed, which
corresponds to three non-linear problems. It has been observed that the Newton
solver converges in two iterations, which means that the CPU time and the average
number of iterations is evaluated considering a total of six linear system solutions.

Special attention is hereby given to the parallel efficiency of the computations,
both in terms of CPU time and average number of GMRES iterations. To this ex-
tent, the ideas reported in Chapter 5 regarding the choice of the number of levels
and the smoothing type have been proposed. In fact, despite being that work fo-
cused on incompressible flow problems, a very similar behaviour of the solver has
been hereby observed: a scalable multigrid strategy to precondition systems aris-
ing from the Navier–Stokes equations can be obtained by the use of simple EWBJ-
preconditioned GMRES smoothers for all the levels except the coarse one, where more
powerful preconditioners can be cheaply introduced on the smoothers due to the low
computational cost of the coarse matrix factorization. If compared to Chapter 5, the
use of Additive Schwarz preconditioning on the coarsest level is avoided since the
compressible NS equations generally provide better conditioned problems. In some
cases, where the stiffness is increased by the use of very large time step sizes, an
optimal efficiency is achieved just by a slight increase in the number of smoothing
iterations even for large parallel runs. Despite this choice proved to be less efficient for
incompressible Navier–Stokes equations, its performance were found to be acceptable
in the current study.

In the numerical experiments a three-level multigrid strategy is reported. In both
the cases, k1,2 = {2, 1} have been used on the coarser spaces smoothed with EWBJ-
and BJ-preconditioned GMRES solvers, respectively. {10, 30} smoothing iterations
have been employed, which were found to be sufficient to provide optimal results both
in serial and in parallel computations for HDG and DG as well. On the finest space,
10 smoothing iterations of GMRES(EWBJ) were used. The computational settings
are summarized in Table 6.4. Note that those settings have been found to be enough
computationally efficient for all the numerical experiments reported throughout the
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paper.
Table 6.5 compares the performance of the multigrid preconditioner to those of BJ

for k = 3 using ∆t = 1 (left) and ∆t = 0.1 (right), for three space discretizations,
i.e. DG, mHDG and pHDG. For all the three space discretization, the performance
degradation of the BJ preconditioner shows up clearly in view of the considerable
increase in number of GMRES iterations moving from serial to parallel runs. On the
other hand, the multigrid preconditioning strategy shows to provide higher parallel
efficiencies in all the cases, being the increase in number of iterations eiter very low
(for the largest time step) or null (for the smallest time step). This fact is ascribed
to both the use of local-to-each element smoothers and projections.

As regards the CPU time, the speed-up values non-dimensionalized by the CPU
time of the DG, matrix-based and BJ-preconditioned computation is reported. For the
largest time step size, switching from single-grid BJ to multigrid provides consistent
benefits on all the three space discretizations, being the speed-up values above one.
In particular, due to the higher parallel efficiency of the approach, SUMB reaches its
peak for 32 cores. The strategy provides a speedup of 2.09 for DG, 2.21 and 3.05 for
mHDG and pHDG, respectively.

For the smaller time step the situation is slightly different. In fact, having those
kind of problems a lower conditioning of the iteration matrix, the speed-up value
obtained from the use of multigrid preconditioning is reduced and approaches 1.
As regards HDG, the reduced conditioning of the matrix makes the solution time
higher than the reference for the mixed formulation, being the speed-up value below
one. Conversely, the primal formulation still outperforms the reference providing a
speed-up factor in the range [1.29, 1.75] due to the smaller amount of operations and
Jacobian evaluations with respect to the mixed form. However, as opposed to what
happens for DG, where an improvement in computational efficiency is still observed,
the use of a p-multigrid does not benefit the efficiency of the solver.

Table 6.6 shows the same results for a k = 6 space discretization. Similar consider-
ations to those reported for Table 6.5 can be done on the overall parallel behaviour of
the preconditioning strategies here considered, i.e. the increase in the number of itera-
tion of the preconditioner reflect the performance degradation of the solution strategy
when applied in parallel. However, in this case, the advantages arising from the use
of a multigrid preconditioning strategy appear more evident. In fact, for the largest
time step size the speed-up values are higher than those reported in Table 6.5 involv-
ing 3rd order polynomials. In particular, when using 32 cores, it reaches 2.65, 1.87
and 3.84 for DG, mHDG and pHDG respectively. Differently to what observed previ-
ously, when reducing the time step size, the advantages of using a multigrid strategy
still appear evident for DG, which provide speed-ups in the range [1.86, 2.29]. While
for higher order polynomials and smaller time steps a mixed HDG implementation
provides performance in line to that of a matrix-based, BJ-DG solver, the primal
implementation shows to be better performing overall, even if shows an overall lower
parallel efficiency. In particular, BJ-pHDG is the best performing solution strategy
providing speed-up values in the range [1.73, 2.36]. In this case, p-multigrid performs
similarly to BJ.

Table 6.7 reports for comparison the speed-up values obtained using a matrix-free
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Discr. k = 3, ∆t = 1
Solver BJ-DG MGfull-DG

np Time E ITa SUMB E ITa
1 38.52 81.00 1.03 3.50
2 27.53 0.70 137.33 1.43 0.97 3.50
4 15.10 0.64 154.83 1.51 0.94 3.50
8 8.72 0.55 181.17 1.58 0.85 3.67
16 6.03 0.40 229.50 1.78 0.69 4.00
32 5.82 0.21 284.50 2.09 0.42 4.67

Solver BJ-mHDG MGfull-mHDG
np SUMB E ITa SUMB E ITa
1 1.49 45.17 1.23 2.50
2 1.75 0.82 77.17 1.54 0.88 2.50
4 1.63 0.70 95.50 1.50 0.78 2.50
8 1.67 0.62 113.17 1.56 0.70 2.50
16 1.76 0.47 138.67 1.75 0.57 2.83
32 1.93 0.27 183.50 2.21 0.37 3.50

Solver BJ-pHDG MGfull-pHDG
np SUMB E ITa SUMB E ITa
1 2.45 44.33 1.95 2.00
2 2.83 0.81 75.17 2.48 0.89 2.00
4 2.60 0.68 94.17 2.26 0.74 2.50
8 2.57 0.58 112.33 2.34 0.67 2.50
16 2.67 0.44 136.83 2.60 0.53 2.67
32 2.59 0.22 182.83 3.05 0.32 3.50

Discr. k = 3, ∆t = 0.1
Solver BJ-DG MGfull-DG

np Time E ITa SUMB E ITa
1 23.51 27.83 0.88 2.17
2 15.12 0.78 53.17 1.08 0.96 2.17
4 7.68 0.77 55.33 1.06 0.92 2.17
8 4.15 0.71 65.50 1.04 0.84 2.17
16 2.23 0.66 72.33 0.99 0.74 2.17
32 1.57 0.47 81.83 0.96 0.51 2.17

Solver BJ-mHDG MGfull-mHDG
np SUMB E ITa SUMB E ITa
1 0.96 20.33 0.79 2.00
2 1.03 0.83 36.00 0.88 0.87 2.00
4 0.91 0.72 41.00 0.80 0.78 2.00
8 0.90 0.66 46.83 0.78 0.70 2.00
16 0.79 0.54 52.67 0.68 0.56 2.00
32 0.81 0.39 64.50 0.70 0.42 2.00

Solver BJ-pHDG MGfull-pHDG
np SUMB E ITa SUMB E ITa
1 1.62 44.33 1.19 2.00
2 1.75 0.84 75.17 1.36 0.89 2.00
4 1.55 0.73 94.17 1.22 0.79 2.00
8 1.51 0.66 112.33 1.19 0.71 2.00
16 1.29 0.52 136.83 1.05 0.58 2.00
32 1.38 0.40 182.83 1.05 0.41 2.00

Table 6.5: Computational efficiency comparison using DG and HDG discretizations.
Laminar vortex test case at Re = 100, M = 0.05, discretized using 16×16
mesh with P3 polynomials. Two time steps, ∆t = {1; 0.1} using ESDIRK3
scheme are reported. SUMB stands for the speed-up factor referred to
the DG, matrix-based, BJ-preconditioned computation, E is the parallel
efficiency and ITa the average number of GMRES iterations.
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Discr. k = 6, ∆t = 1
Solver BJ-DG MGfull-DG

np Time E ITa SUMB E ITa
1 533.69 87.33 1.73 5.67
2 381.18 0.70 190.83 2.37 0.96 5.83
4 198.53 0.67 213.50 2.42 0.94 5.83
8 109.00 0.61 257.50 2.69 0.95 5.33
16 63.14 0.53 313.17 2.55 0.78 6.33
32 47.91 0.35 392.33 2.65 0.53 7.17

Solver BJ-mHDG MGfull-mHDG
np SUMB E ITa SUMB E ITa
1 1.46 46.50 1.45 2.67
2 1.75 0.84 112.50 1.76 0.85 2.67
4 1.58 0.73 139.50 1.61 0.75 2.67
8 1.58 0.66 155.83 1.61 0.68 2.83
16 1.52 0.55 203.83 1.59 0.58 3.67
32 1.74 0.42 268.50 1.87 0.45 5.17

Solver BJ-pHDG MGfull-pHDG
np SUMB E ITa SUMB E ITa
1 3.15 45.83 3.11 2.50
2 3.71 0.83 106.50 3.81 0.86 2.50
4 3.35 0.71 133.00 3.46 0.75 2.67
8 3.35 0.65 149.33 3.46 0.68 2.67
16 3.19 0.54 193.33 3.39 0.58 3.50
32 3.38 0.37 257.00 3.84 0.43 5.17

Discr. k = 6, ∆t = 0.1
Solver BJ-DG MGfull-DG

np Time E ITa SUMB E ITa
1 390.37 32.00 1.90 3.00
2 247.56 0.79 80.83 2.29 0.95 3.00
4 123.33 0.79 85.33 2.25 0.94 3.00
8 62.84 0.78 99.17 2.24 0.92 3.00
16 32.33 0.75 105.83 2.04 0.81 3.00
32 19.61 0.62 110.67 1.86 0.61 3.00

Solver BJ-mHDG MGfull-mHDG
np SUMB E ITa SUMB E ITa
1 1.08 23.17 1.07 2.17
2 1.16 0.85 50.67 1.16 0.85 2.17
4 1.01 0.74 54.50 1.01 0.74 2.17
8 0.94 0.68 62.17 0.93 0.68 2.17
16 0.83 0.58 71.83 0.83 0.58 2.17
32 0.80 0.46 82.50 0.80 0.46 2.17

Solver BJ-pHDG MGfull-pHDG
np SUMB E ITa SUMB E ITa
1 2.36 22.17 2.30 2.00
2 2.52 0.84 48.50 2.50 0.86 2.00
4 2.20 0.74 52.50 2.18 0.75 2.00
8 2.04 0.67 59.50 2.03 0.69 2.00
16 1.80 0.58 69.17 1.78 0.58 2.00
32 1.73 0.46 79.67 1.71 0.46 2.00

Table 6.6: Computational efficiency comparison using DG and HDG discretizations.
Laminar vortex test case at Re = 100, M = 0.05, discretized using 16×16
mesh with P6 polynomials. Two time steps, ∆t = {1; 0.1} using ESDIRK3
scheme are reported. SUMB stands for the speed-up factor referred to
the DG, matrix-based, BJ-preconditioned computation, E is the parallel
efficiency and ITa the average number of GMRES iterations.
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∆t = 1 ∆t = 1/10
BJ-DG MGfull-DG BJ-DG MGfull-DG

Case np MF MFL MF MFL MF MFL MF MFL

k = 3

1 0.73 0.97 0.76 0.89 0.84 1.53 0.67 0.85
2 0.68 0.80 1.02 1.21 0.74 1.09 0.81 1.04
4 0.65 0.72 1.07 1.28 0.72 1.03 0.78 1.02
8 0.61 0.73 1.13 1.32 0.68 0.91 0.80 1.03
16 0.56 0.63 1.20 1.36 0.61 0.79 0.72 0.90
32 0.59 0.62 1.41 1.59 0.58 0.71 0.69 0.86

k = 6

1 1.03 2.10 1.84 2.56 1.00 3.10 1.97 3.36
2 0.99 1.47 2.42 3.18 0.99 2.03 2.33 3.98
4 0.96 1.37 2.41 3.32 0.98 1.92 2.23 3.78
8 0.93 1.25 2.69 3.78 0.95 1.75 2.18 3.65
16 0.85 1.06 2.35 3.11 0.90 1.56 1.90 3.15
32 0.78 0.98 2.37 3.03 0.86 1.41 1.70 2.77

Table 6.7: Computational efficiency of a matrix-free DG strategy. Laminar vortex
test case at Re = 100, M = 0.05, discretized using 16×16 mesh with P3
and P6 polynomials. Two time steps, ∆t = {1; 0.1} using ESDIRK3 scheme
are reported. SUMB stands for the speed-up factor referred to the matrix-
based, BJ-DG computation reported in Tables 6.5 and 6.6, SUMF is the
speedup computed considering the matrix-free BJ-DG settings. Results
obtained by lagging the preconditioner evaluation (MFL) for the entire
solution process, i.e. six linear systems, are also reported.

implementation of the iterative solver for the DG space discretization. In particu-
lar, the matrix-based speedup SUMB using as a reference the matrix-based, BJ-DG
solver. CPU time to show the performance compared to the reference algorithm.
The performance are evaluated using the same preconditioners reported in Tables 6.5
and 6.6. Considering the single-grid matrix-free, BJ-DG numerical experiments, one
can summarize that

1. for k = 3, switching MB to MF penalizes the CPU time. The reason for this is
two-fold: first, the serial computation is 35% slower than the MB one. Second,
when the solver is applied in parallel, the matrix-free implementation seems to
be less parallel efficient, since the speed-up factor decreases by increasing the
number of processors;

2. for k = 6, the penalization reduces. In fact, in serial computation the same
computational time has been recorded, meaning that a matrix-free iteration
performs similarly to a matrix-vector product. However, a lower parallel effi-
ciency is still observed;

3. when a small time step is employed, higher speed-up values are achieved if
compared to MB. In other words, the lower the number of GMRES iterations,
the higher the performance. A slightly higher parallel efficiency is also observed.

Those observation are in line with what reported in the context of incompressible
flow problems, see [77].

The possibility of lagging the preconditioner evaluation is also explored and the
results reported in Table 6.7 (MFL). In particular, the recomputation of the pre-
conditioner for six consecutive iterations is skipped, which means that the Jacobian
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matrix is evaluated only for the first non-linear iteration of the first stage of the ES-
DIRK3 scheme. By doing so, it is observed that the linear system converges with the
same number of iterations which are not reported for brevity. This shows, at least for
this kind of problem, that the preconditioner does not loose its efficiency throughout
the stages of the same time step. Moreover, it confirms the powerful properties of the
matrix-free iterative strategy, which allow to skip the Jacobian evaluation without
degrading the convergence of the Newton’s method.

From the CPU time point of view, lagging the preconditioner improves the com-
putational efficiency, since the matrix is evaluated only once. This is reflected by the
speed-up values, see the MFL result columns. Note that that the maximum speed-up
values are obtained for high orders, when the impact of the Jacobian assembly is large
on the overall cpu time, and for small time step sizes: in this case the conditioning of
the matrix and the CPU time spent on the iterative solution process reduce, and so
the computational time saved by skipping the Jacobian assembly reflect on the overall
efficiency of the method. It is worth pointing out that by doing so the matrix-free
penalization at low orders is reduced, while speed-up values in the range [1.41, 3.10]
are achieved for the k = 6, ∆t = 0.1 case.

Similar considerations hold true when the matrix-free approximation is employed
within a multigrid strategy. Also in this case the problem has been solved using
the same number of GMRES iterations with respect to the non-lagging computation.
However, from the CPU time of view, a higher speed-up value is achieved both in serial
and in parallel runs thanks to the optimal multigrid scalability with respect to single-
grid BJ preconditioning. The speed-up factor for the largest polynomial order is now
in the range [2.56, 3.78] and [2.77, 3.98] for the large and small time step, respectively.
Those speed-up values are larger than the one obtained for a fully matrix-based
implementation of the DG discretization, see Table 6.6. In comparison to HDG, it
can be seen that by using the Jacobian lagging option larger speed-up values are
generally achieved for small time step sizes at high order. However, using MGfull-
pHDG outperforms MGfull-DG even using matrix-free and preconditioner lagging for
the largest time step employed, showing a better suitability to deal with very stiff
and high order discretizations.

It is worth noting that, for computational efficiency, the matrix-free implemen-
tation of the iterative solver is employed only on the finest space of the multilevel
iterative solution, similarly to what has been done in [95]. This choice is coherent
with the results obtained for the single-grid preconditioner in Table 6.7. In fact, the
matrix-free iteration costs similarly to a matrix-based one only for high orders, while
it has an increased cost for lower order polynomials, it seems appropriate to employ
matrix-based smoothers on the coarse levels of the strategy. When discretizing the
equations using coarse meshes at relatively high orders, this idea seems to work op-
timally. Note also that the overall memory footprint of the application is dominated
by the allocation of the block-Jacobi preconditioner for the finest space smoother, see
Figure 6.2.
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6.4.5 Remarks

The main points of the previous section are here summarized. First, it is proved
that having large time step sizes maximise the advantages of coupling HDG and p-
multigrid strategy, since the expenses of using static condensation together with a
more powerful and expensive preconditioning strategy produce a faster solver only
for high conditioning of the system, while the higher scalability of the multigrid
algorithm as opposed to single-grid reflect on the overall scalability of the solver. On
the other hand, for small time step sizes, the computational time is dominated by
the Jacobian assembly and condensation for HDG, thus the CPU time as well as the
parallel efficiency is dominated by the matrix assembly.

For HDG, it is shown that the mixed and primal formulations provide comparable
results in terms of error levels both by refining in space and time, despite the primal
form provides one-order lower convergence rate for the gradient variable. From the
algorithmic point of view, the statically condensed system is typically solved using
roughly the same number of iterations. However, the computational time is consider-
ably lower for the pHDG formulation, since it does not deal with the Jacobian entries
related to the state gradient. For those reason, in the remaining of the work only the
primal formulation will be employed for benchmarking. Note that even for small time
step size single-grid preconditioned pHDG solver performs fairly well in comparison
to the other solution strategies, showing the benefits of the approach for unsteady
flow computations.

In addition, the current implementation of the parallelization strategy makes HDG
to be less parallel efficient than DG. This fact is ascribed to the higher amount of
duplicate operations due to the integration over halo mesh elements and faces created
by the domain decomposition required for the static condensation of the interior
degrees of freedom of the Jacobian matrix. On the other hand, in DG the duplicate
the work involve only partition faces. Other implementation choices, such as those
devoting to the minimisation of the duplicate work on the partition boundaries, may
be considered in future works.

Finally, it is worth pointing out that, despite being appealing, a matrix-free imple-
mentation of the hybridizable discontinuous Galerkin method is not at all straightfor-
ward to obtain satisfactory performance in CPU time [114], and thus its development
is beyond the scope of the present work.

6.5 Results on complex test cases

The second family of numerical experiments deal with the solution of two test cases,
dealing with i) the laminar flow over a two-dimensional circular cylinder at Re = 100
and M = 0.2 [102]; ii) the solution of the plunging motion of a NACA 0012 airfoil at
Re = 1000 and Mach number M = 0.2. The latter case is solved by using the ALE
mesh motion formulation introduced in [110]. Those results are devoted to extend
the comparison to more complex unsteady flow problems. In all the cases reported
herein, the right-preconditioning approach is still employed such that the convergence
test of the linear solver is not affected by changing the preconditioning operator, and
therefore all the numerical experiments are performed using a similar accuracy.
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Figure 6.5: Laminar flow around a circular cylinder at Re = 100, M = 0.2. Mach
number contours.

(U/L)∆t Cd Cl St

0.5 1.3468 3.383e-03 0.16327
0.25 1.3519 -1.441e-03 0.16410
0.125 1.3527 -1.400e-04 0.16410
0.05 1.3528 -1.718e-04 0.16410
0.025 1.3528 -6.353e-06 0.16410

Table 6.8: Laminar vortex test case at Re = 100, M = 0.05. Time convergence rates
for the DG and HDG discretizations and ESDIRK3 scheme.

6.5.1 Circular cylinder

The laminar flow around a circular cylinder at Mach number M = 0.2 and Reynolds
number Re = 100 has been solved on a grid made by ne = 960 mesh elements using
a P6 space discretization. Figure 6.5 shows a snapshot of the computed Mach num-
ber contours. To integrate the governing PDEs in time, the four-stage, order-three
Explicit-first-stage diagonally-implicit Runge–Kutta method (ESDIRK3) was em-
ployed. The solution accuracy was assessed in comparison with literature data [102].
To this end, Table 6.8 shows the averaged drag and lift coefficients, as well as the
Strouhal number of the body forces (Cd, Cl, St) for several temporal refinements on
the same grid. The coefficients were obtained by averaging a fully developed solution
over ten shedding periods. An overall good agreement has been found, while a tempo-
ral convergence can be observed by using a non-dimensional time step of ∆t ≤ 0.25.
It is well known [77] that the time step size deeply affects the iterative solution pro-
cess, and therefore it has to be taken into account to evaluate the performance. Note
that the largest time step size that allows to have converged body forces and Strouhal
numbers and to maximise the efficiency of the solution strategy has been employed.
Considering the results in Table 6.8, we choose ∆t = 0.25. The parallel performance
of the solution strategies introduced in the previous sections are here also assessed by
considering the effects of domain decomposition. To do so, a fully-developed flow field
is integrated in time for 10 time steps to compute the average number of GMRES
iterations and the convergence rates during the non-linear solution. The computa-
tions are performed from 1 to 64 cores (np) on a platform based on two 16-core AMD
Opteron processors arranged in a two-processor per-node fashion, for a total of 32
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Prec. BJ
Case DG-MB DG-MF DG-MFL pHDG
np Time E ITa SUMB SUMB SUMB E ITa
1 17425.77 19.43 1.00 3.90 2.18 17.40
2 11321.70 0.77 60.65 1.00 1.99 2.68 0.94 29.14
4 5907.54 0.74 70.39 0.99 1.67 2.65 0.89 34.16
8 2948.54 0.74 70.15 0.98 1.65 2.50 0.84 35.30
16 1551.90 0.70 85.41 0.94 1.49 2.40 0.77 39.15
32 815.46 0.67 98.24 0.90 1.35 2.19 0.67 45.11
64 692.93 0.39 117.33 0.86 1.19 2.09 0.38 50.53

Prec. MGfull
Case DG-MB DG-MF DG-MFL pHDG
np SUMB E ITa SUMB SUMB SUMB E ITa
1 1.70 4.00 1.75 2.24 2.13 3.03
2 2.12 0.96 4.00 2.17 2.77 2.62 0.95 3.03
4 2.20 0.95 4.00 2.20 3.15 2.58 0.89 3.03
8 2.14 0.93 4.00 2.10 2.96 2.45 0.85 3.03
16 2.15 0.89 4.00 2.04 2.92 2.35 0.77 3.03
32 2.12 0.83 4.00 1.91 2.69 2.14 0.67 3.03
64 2.07 0.48 4.00 1.76 2.43 2.00 0.37 3.03

Table 6.9: Circular cylinder test case at Re = 100, M = 0.2, discretized using 960
mesh elements with P6 polynomials. Computational efficiency comparison
of DG and pHDG solvers using BJ and p-multigrid, respectively. SUMB

stands for the speed-up factor referred to the DG[GMRES(BJ);MB] com-
putation, E is the parallel efficiency and ITa the average number of GM-
RES iterations.

cores per node. A fixed relative tolerance of 10−6 to stop the GMRES solver is used,
as well as an absolute tolerance of 10−5 for the Newton-Raphson method.

Table 6.9 report the results of the computations. As observed for the convected
vortex test case, the BJ preconditioner shows an increase in the number of GMRES
iterations by increasing the number of processes in both the DG and pHDG space
discretizations. This behavior is attributed to the way the incomplete lower-upper
factorization is performed, as it deals with the squared, partition-wise block of the
iteration matrix. Therefore, the preconditioner effectiveness naturally decreases as
np grows, since the amount of off-diagonal blocks neglected by the ILU increases with
np. By switching from MB to MF, the number of iterations remains the same and
it is not reported for brevity. On serial computations, the CPU time remains in the
same line since a speed-up value (SUMB) of about one is obtained. When the solver
is appied in parallel, a slightly lower parallel efficiency is observed, as the speed-up
value decreases by increasing np. The possibility of lagging the Jacobian evaluation
during the nonlinear solution process, as well as within a single time step through
multiple stages of the scheme, is also explored and the results reported in the column
labelled as MFL. In this case a large speed-up value is achieved especially for serial
computations, where the ILU(0) works remarkably well. On the other hand, when
this solution strategy is applied in parallel, a loss in parallel efficiency is observed and
the solver performs in line with the reference, matrix-based method.

Considering pHDG with BJ preconditioning, the iterative solution process still
suffers of algorithmic degradation by parallelizing the computation, despite being the
increase in the number of iterations smaller than that observed for DG. Nevertheless,
the solver appears to be faster being the speed-up value in the range [2.09, 2.68].
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The parallel efficiency is also higher than that of the referece DG method: pHDG
involves expensive local-to-each element operations that affect the computational time
of the solver, but they scale ideally on multicore systems. In addition, a lower ITa is
generally observed when employing this space discretization.

On the lower part of the table numerical experiments performed using multigrid
preconditioning are reported. Considering the matrix-based DG solver, it is possible
to achieve an ideal parallel efficiency of the solver in terms of number of iterations
by using multigrid, since they remain constant to 4.00 in each case. The speed-up in
this case is in the range [1.7, 2.2], which is consistent with what has been reported
previously. By using a matrix-free implementation of the finest level smoother and
linear solver, similar performance for the non-lagged preconditioner are observed. As
opposed to this, lagging the multigrid linear solver operator produce a speed-up value
in the range [2.24, 3.15], which suggests this strategy to be the best performing of all
the numerical experiments. In fact, the use of multigrid preconditioning in pHDG does
not improve the computational efficiency of the solver despite reducing considerably
the number of iterations and providing optimal algorithmic scalability. Observing
the pHDG results, one can understand that with such time step size the costs of
statically condense out the interior DoFs, as well as the back-solve to recover them
from the trace DoFs, dominate the percentage of the overall computational time. It is
worth mentioning that in such a practical application the p-multigrid preconditioning
approach for HDG shows to work very well from the number of iterations point
of view, and that the same numerical set-up than that of a DG solver reported in
Table 6.4 has been employed to precondition the system.

As a final comparison, Table 6.10 reports the same test case solved using a grid
obtained by splitting the quad elements into triangles. TriLagrange basis functions
were employed. Only the computation with np = 64 is reported. It is worth pointing
out that this space discretization reduces the total number of DoFs by the 23.8%
with respect to the previous one. By comparing the computational time and average
number of GMRES iterations, similar speed-up values are obtained using the DG-MB
solver as well as pHDG. On the other hand, the DG-MF solver seems to be slightly
penalised with respect to the MB one, as the speed-up values of the computations
drop by a factor between 7 to 15 percent. It is worth pointing out that the matrix-free
penalization that arise in this case is in line to what reported in previous studies [77,
95] using broken polynomial spaces, which reduce by increasing the number of DoFs
per element, for example in three-dimensional computations. On the other hand, a
slightly larger speedup for pHDG computations have been observed, which make this
solution strategy to be the most convenient from the CPU time point of view.

6.5.2 Laminar flow around a heaving and pitching NACA 0012 airfoil

The test case is the CL1 (heaving and pitching airfoil) proposed on the 5th interna-
tional workshop on high-order CFD methods (HiOCFD5), see [54]. The simulation
involve the set of compressible Navier–Stokes equations, with γ = 1.4, Pr = 0.72 and
constant viscosity, to simulate flow over a moving NACA 0012 airfoil. The airfoil was
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6.5 Results on complex test cases

Preconditioner BJ
Case DG-MB DG-MF DG-MFL pHDG
np Time ITa SUMB SUMB SUMB ITa
64 322.26 129.050 0.80 1.00 2.40 49.750

Preconditioner MGfull
Case DG-MB DG-MF DG-MFL pHDG
np SUMB ITa SUMB SUMB SUMB ITa
64 1.66 4.525 1.43 1.77 2.05 3.388

Table 6.10: Circular cylinder test case at Re = 100, M = 0.2, discretized using 1920
mesh elements with P6 TriLagrange basis functions. Computational ef-
ficiency comparison of DG and pHDG solvers using BJ and p-multigrid,
respectively. SUMB stands for the speed-up factor referred to the matrix-
based, BJ-DG computation and ITa for the average number of GMRES
iterations.

Figure 6.6: Laminar flow around a heaving NACA 0012 airfoil. Re = 1000, M = 0.2.
Mach number contours at the final time T = 2.

modified to obtain a closed trailing edge via the equation

y(x) = ±0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4) , (6.45)

with x ∈ [0, 1]. The initial condition was a steady state solution at a free-stream
Mach number of M = 0.2 and a Reynolds number Re = 1000. The motion is a pure
plunging motion governed by the following function

h(t) = t2(3− t)/4, (6.46)

and the output of interest is the total energy and vertical impulse exchanged between
the airfoil and the fluid, that can be computed as

W =
∫
T

Fy(t)ḣ(t)dt I =
∫
T

Fy(t)dt (6.47)

being Fy(t) the vertical force computed on the airfoil surface, and ḣ(t) the time
derivative of Eq. (6.46). In particular, the output is evaluated at a non-dimensional
time T = 2. The mesh involves a triangulation of the domain made by ne = 2137
elements, reported in Figure 6.6, and P6 polynomials.

The time step size of the simulation have been evaluated through a time-convergence
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Chapter 6 Preconditioning novel space discretizations

T/∆t W I

20 -1.3860 -2.3667
40 -1.3839 -2.3444
80 -1.3837 -2.3391
160 -1.3837 -2.3378

Table 6.11: Time convergence analysis of the laminar flow around a plunging NACA
0012 airfoil. A satisfactory accuracy is observed for T/∆t = 2, where
T = 2 is the length of the simulation and ∆t is the time step size.

Preconditioner BJ
Case DG-MB DG-MF DG-MFL pHDG
np Time ITa SUMB SUMB SUMB ITa
64 900.19 136.119 0.69 0.81 2.35 49.750

Preconditioner MGfull
Case DG-MB DG-MF DG-MFL pHDG
np SUMB ITa SUMB SUMB SUMB ITa
64 1.49 4.477 1.06 1.13 2.13 2.754

Table 6.12: Circular cylinder test case at Re = 100, M = 0.2, discretized using 2137
mesh elements with P6 TriLagrange basis functions. Computational ef-
ficiency comparison of DG and pHDG solvers using BJ and p-multigrid,
respectively. SUMB stands for the speed-up factor referred to the matrix-
based, BJ-DG computation and ITa for the average number of GMRES
iterations.

analysis on the output quantities, reported in Table 6.11. Table 6.12 compares the
computational efficiency of the solution strategies in terms of speed-up factor (SUMB)
and number of iterations ITa. Only the computation with the larger number of cores
is reported to show the efficiency on large and practical computations. The refer-
ence to compute the speed-up is the computational time of the matrix-based, BJ-DG
solver. By switching from a matrix-based to a matrix-free implementation, the com-
putational strategy is penalised by higher computational cost of a single iterations,
see the MF column. By employing the Jacobian lagging (MFL), this penalization
is reduced only slightly. On the other hand, the pHDG implementation provides a
solver which is more than twice as much as fast, while the system require a consid-
erably lower number of GMRES iterations with respect to the reference. The use of
p-multigrid preconditinoing in a DG context provides a speed-up factor of about 1.49
for a fully matrix-based implementation, and the number of iterations drops from
136 to around 4.4 in average. The use of matrix-free in this case still penalizes the
solver, which result in about 12% faster for the MFL case. Multigrid preconditioning
shows to be robust enough to precondition the linear system arising from the pHDG
discretization, since it converges using an average of 2.754 iterations. However, this
gain is not reflected on the CPU time, which is slightly higher.

6.6 Final remarks

The Chapter compares, within the same framework, the computational efficiency of
different high order discontinuous Galerkin implementations. The first involves a
modal discontinuous Galekin method coupled with matrix based and matrix-free it-
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6.6 Final remarks

erative solvers, while the second one considers a hybridizable discontinuous Galerkin
implementation both in the mixed form, which allocates the components of the Ja-
cobians related to the gradient variable, and in the primal form, which simmetrizes
the discretization by adding an additional adjoint-consistency term. The efficiency of
the solution strategies is assessed by comparing different single-level preconditioners
as well as multilevel ones such as p-multigrid, on a variety of two-dimensional test
cases involving laminar viscous flows, including mesh motions, on meshes made by
triangular and quadrangular elements. The effects of parallel efficiency and the use of
different basis functions have also been considered. The results show that the use of a
matrix-free implementation of the iterative solver in the context of implicit discontin-
uous Galerkin discretizations provides a memory footprint which is in line to that of
an HDG method if a block-diagonal preconditioner is employed within the smoother
of the finest space. The primal HDG method reveals to be more efficient than the
mixed one, having a lower number of Jacobian entries to be condensed out of the sys-
tem, and it provides comparable error levels. If compared to pHDG, the p-multigrid
matrix-free solver is competitive in terms of CPU time when the problems involve time
marching with small time steps, since the preconditioner evaluation can be lagged.
On the other hand, HDG methods require expensive element-wise operations that
reveal to be a bottleneck in those conditions. Finally, a novel approximate-inherited
p-multigrid strategy has been also introduced for HDG. Such strategy showed to be
robust and efficient for different test cases and mesh types, being able to reduce
considerably the number of iterations of the solution process. However, this gain in
number of iterations is not reflected on the CPU time of the solver. Future works
will be devoted to the validation of those strategies on stiff three-dimensional cases
involving laminar and turbulent flows, and possibly hybrid RANS-LES models.
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Chapter 7

Applications to incompressible turbulent flows

The aim of this chapter is two-fold. The first objective is to apply and validate
the implicit matrix-free numerical framework on stiff three-dimensional test cases to
show reliability and accuracy of the method. Second, the aim is to compare the
numerical framework with state-of-the-art methods involving matrix based iterative
solvers to summarize the improvements in computational efficiency. The test cases,
hereby presented with a growing complexity, involve implicit Large Eddy Simulations
(ILES), i.e. where the dissipation of the numerical scheme act as a proper subgrid-
scale model (SGS). First, the Rayleigh–Bénard natural convection problem at Prandtl
number equal to 0.7 for Rayleigh numbers (Ra) up to 108 is presented. Second, the
incompressible turbulent channel flow up to Reτ = 950 will be considered. Third,
the complete ERCOFTAC T3L test case suite, involving incompressible transitional
turbulent flow around a rounded leading edge flat plate for different Rayleigh numbers
and free stream turbulence intensities, is presented. Finally, preliminary results of
the ILES of the Boeing Rudimentary Landing Gear at Re = 106 are reported. In all
the applications, a discussion on the solution quality will precede the analysis of the
computational efficiency of the strategies. The results corroborate that, when coupled
with appropriate memory-saving and scalable preconditioners, the use of matrix-free
solvers allows a clear improvement in computational efficiency in large HPC facilities.

7.1 Rayleigh–Bénard natural convection

The Rayleigh–Bérnard Convection (RBC) has ben solved using a Prandtl number
equal to 0.7 and four different Rayleigh numbers, 105, 106, 107 and 108. The compu-
tational domain employed is a box characterised by an aspect ratio L/H = 8, where
L is the wall length scale and H is the distance between the two walls. The variables
x = x1 and y = x2 are employed for the wall-parallel directions, while z = x3 for
the wall-normal direction. The same has been done for the velocity field components
u = u1, v = u2 and w = u3. The RBC equations are here non-dimensionalized
using the distance between the walls H, the temperature difference of the two walls
δΘ = Th − Tc and the free-fall velocity uR =

√
gαδΘH.

Physical discussion

Table 7.1 shows the computational details of various solutions obtained using different
space discretizations and time step sizes. The number of DoF employed is at least one
order of magnitude lower than that employed within the reference DNS data [117],
therefore the computations should be considered as ILES, apart from Case 1 and
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7.1 Rayleigh–Bénard natural convection

12, which have a resolution comparable to that of a DNS. Consistency relations,
widely reported in literature [117, 119], have been calculated on the entire domain
and are summarized in the table. Those relations are based on the definition of the
pseudo-dissipation of kinetic energy, defined as

ε =
√
Pr

Ra

(
∂ui
∂xj

∂ui
∂xj

)
(7.1)

and the dissipation of the temperature squared, defined as

χ = 1√
RaPr

(
∂θ

∂xi

∂θ

∂xi

)
. (7.2)

Introducing the volumetric average operator 〈·〉V , which refers to the time-average
over the whole fluid domain, and the wall average operator 〈·〉w which denotes the
time-average over the wall surfaces, the following identity must be satisfied

〈Nu〉V = 1 +
√
RaPr〈ε〉V︸ ︷︷ ︸
Nu1

=
√
RaPr〈χ〉V︸ ︷︷ ︸

Nu2

= 1 +
√
RaPr〈wθ〉V︸ ︷︷ ︸
Nu3

= 〈∂θ
∂z
〉w︸ ︷︷ ︸

Nu4

(7.3)

It can be seen that as the resolution increases, enhancing the order of polynomial
expansion or the grid size, the values become consistent with the numerical DNS
reference NuR from [117]. An experimental correlation, Nuexp = 0.125Ra0.303Pr0.25

from [118], has been also evaluated to confirm further the quality of the Implicit LES
solution where the DNS data were not available. However, it is more convenient, for
what regards the number of DoF, to raise the polynomial order instead of the grid
size (see, for instance, Cases 7 and 11 of Tab. 7.1). Note that for a well resolved
simulation all the different definitions of the Nusselt number should be equivalent,
but Nu1, Nu2 and Nu4 involve the components of the gradients, which are one order
less accurate, and therefore they are slower than Nu3 to reach convergence.

Fig. 7.1 shows the computed iso-surface of temperature θ = 0.15 for different
Rayleigh numbers at a representative time far enough from the initial transient phase.
The space distribution of the thermal plumes, the coherent structures of the RBC con-
vection, and their reduction in size can be observed as the Rayleigh number increases.
Fig. 7.2 shows the computed turbulent statistics using the time-space average opera-
tor 〈·〉π, which deals with ensemble averages of z-averaged quantities. The DG-ILES
solution fits well the DNS data despite having a number of DoF orders of magni-
tude lower than the reference, DoFR. In particular, as the order k of the polynomial
approximation Pk increases, the amount of numerical dissipation decreases, and the
peaks of fluctuation are described with a higher accuracy thanks also to the growth
of the cut-off frequency of the scheme. This behaviour can be observed in Fig. 7.3,
which shows the power spectral density of the kinetic energy and temperature for
the cases at Ra = 106. The spectra have been obtained using the time series of the
variables in a probe point at z = H/2, inside the bulk region. The resolved maximum
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(a) Ra = 105 (b) Ra = 106

(c) Ra = 107 (d) Ra = 108

Figure 7.1: Ra effect on the Rayleigh–Bérnard convection. Iso-surfaces of temper-
ature θ = 0.15 coloured by the vertical velocity magnitude. The lateral
boundaries report temperature contours.

frequency becomes broader by increasing the order of polynomial approximation (see,
for instance, the blue and black solid lines of Fig. 7.3). However, due to the favourable
spectral properties of the scheme, the resolved part of the inertial range remains more
or less unaffected by the numerical resolution and fits very well the −5/3 (Kolmogorov
scaling) and the −7/5 (Bolgiano scaling) laws for the kinetic energy and the temper-
ature, respectively, as reported in [119]. Moreover, those spectra are in very good
agreement with those obtained on a fine grid, reported in green (Case 12 of Tab. 7.1).

A comparison between the solutions obtained using different time step sizes was
performed raising eight times the δt value (red and black lines of Fig. 7.3). The result-
ing spectra are nearly superimposed both in the inertial range and in the dissipative
range, where an additional numerical dissipation, although being very small, can be
noticed. This result proves the computational benefits of using a high-order implicit
time integration strategy (see, in addition, the computed Nusselt number of Cases 7,
8, 9 and 10 of Tab. 7.1). The δt = 0.4 value is, in fact, almost 35 times larger than
that used to compute the reference DNS data.

Assessment of the computational efficiency

As regards the computational efficiency, the comparison between matrix-based and
matrix-free solvers is here discussed. A representative setting of the typical use of
the solver for turbulent flows is exploited for the RBC problem using up to 6th order
polynomials. The grid size selected in this case was made of 20×20×10 mesh ele-
ments, and the calculation was run on a four AMD Opteron 6276 CPUs consisting
of 64 cores. The numerical experiments were performed by measuring the CPU time
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Figure 7.2: Turbulent statistics of the Rayleigh–Bénard convection: Ra = 105

(24×24×8 mesh elements), Ra = 106 (16×16×8 mesh elements), Ra =
107 (32×32×16 mesh elements) and Ra = 108 (72×72×36 mesh elements).
Reference DNS data symbols: kinetic energy fluctuations 〈k′〉π (squares),
vertical velocity fluctuations 〈w′2〉π (circles) and temperature fluctuations
〈θ′2〉π (gradients), from [117]. DG-ILES solutions at P3 (dashed lines), P4
(dash dotted lines), P5 (long dashed lines) and P6 (solid lines).
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Figure 7.3: Power Spectral Density of the Rayleigh–Bénard convection: Ra = 106,
kinetic energy E (left) and temperature θ (right).

required to advance the solution in time for 10 time steps. As observed for two-
dimensional cases, an appropriate solution tolerance of the linear system resulting
from the implicit in time DG discretization have to be considered to evaluate the
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Figure 7.4: Effect of polynomial approximation on computational performances. RBC
problem at Ra = 106, 20×20×10, P6 space discretization and δt = 0.05.

computational efficiency. For production runs, the implicit scheme allows the use of
large δt, which typically produce time discretization errors far from the machine pre-
cision, even using very high order accurate time integration schemes. In consistency
to what has been pointed out in Chapter 4 for the two-dimensional case, in such
conditions the use of a very small system tolerance does not increase the solution
quality, but degrades the computational efficiency. This is particularly true in the
context of an implicit LES solution, where the space discretization errors due to the
under-resolved flow field dominate the global output error.

Fig. 7.4 shows the CPU time, non dimensionalized using the BJ-MB case, for the
numerical experiments performed using δt = 0.05. In this situation a small time step
and a large tolerance on the linear system is employed, which condition is the most
favourable to highlight the benefits of a matrix-free approach over the matrix-based.
Three lagging combinations n = 1, 5, 10 are reported. As already noticed for the

two-dimensional case, all the matrix-free strategies behave increasingly better as the
order of polynomial approximation k increases. Considering the comparison BJ-MB
and BJ-MF with n = 1, one may notice that the matrix-free has a Speed-up value
asymptotically constant for high order polynomials, which confirms the theoretical
estimates of the operation counts per elements regarding matrix-vector products and
residual evaluations reported in Chapter 4. If the Jacobian lagging is employed,
the CPU time is reduced considerably, especially for the highest order considered
(k = 6). The effect is similar to that of Section 4.3.4, but the gain is greater due to
the higher values of the r parameter, which is reported in Tab. 7.2. In particular,
the BJ-MF with n = 10 provides a CPU time saving of about 75% for a P6 space
discretization (red, dashed lines), while the EWBJ-MF (blue, dashed line) setting
outperforms all the the others reaching a saving of 80%. The convenience of using
the EWBJ preconditioner is due to the fact that the large computational costs of the
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Figure 7.5: Effect of polynomial approximation on computational performances. RBC
problem at Ra = 106, 20×20×10, P6 space discretization and δt = 0.4.
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Figure 7.6: Percentage of memory footprint reduction obtained by using the MF ap-
proach on the Rayleigh–Benard convection problem for different values of
polynomial order.

full Jacobian evaluation and its factorization, which grow considerably with the order
of polynomial approximation, are avoided. The efficiency of the BJ preconditioner is
in this case not large enough, if compared to the cheap EWBJ, to make this procedure
convenient from the CPU time point of view. Finally, while the EWBJ scales almost
linearly over a wide range of MPI ranks, the BJ preconditioner scales poorly, as it
has been seen in the two-dimensional case.

Fig. 7.5 shows the same numerical experiments, for different order polynomials,
using a numerical setup more consistent with a typical use of present DG solver, i.e.
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P 1 2 3 4 5 6

r (BJ) 12 33 70 120 235 560
r (EWBJ) 7 13 25 40 90 225

Table 7.2: Computed r = TJ/TR for different values of polynomial order on the 3D
RBC problem.

large time step size (δt = 0.4) and the adaptive GMRES tolerance of Eq. (4.7) (Case
10 of Table 7.1). In this case, the lagged matrix-free solvers decrease the CPU time,
with respect to the MB case, only for k > 4. In particular, the setting EWBJ-MF
with n = 5 shows the highest efficiency with a speed-up factor of about 1.8 when using
P6 space discretizations. In this case the large time step size increases the stiffness of
the iteration matrix, which therefore calls for a higher number of GMRES iterations
to reach the target tolr. Despite this situation is the worst, as it has been seen on the
two-dimensional numerical experiments, the EWBJ preconditioner coupled with the
matrix-free still outperforms the other approaches. It is worth noting that the test
done using n = 10 showed higher CPU times than n = 1, because the preconditioner
must be updated more frequently during the time integration to maintain its efficiency.
As a matter of facts, the Jacobian lagging for the BJ-MB, although reducing the CPU
time, revealed to be stable only using low polynomial orders. Only the results for
which the calculation was stable have been reported, see black circular symbols on
Fig. 7.5. The lagged matrix-based solver has been here used only to evaluate the CPU
time and the solution accuracy, which may be less accurate, will not be discussed.
Note that for δt > 0.4 a significant reduction of the stability of both the MB and MF
schemes has been observed.

Fig. 7.6 shows the memory saving percentage, independent of the time step size,
for the three schemes considered as a function of k. As expected, all the matrix-
free versions save a significant amount of memory. This saving is referred to the total
memory footprint of the solver, estimated through the PETSc library, which considers
also the storage of the shape functions and their derivatives at the gauss integration
points, and the memory dynamically allocated for the Krylov subspaces during the
GMRES system solution. Within the solution process, the highest percentage of saved
memory reaches the 30% (see the black square symbols) for the BJ-MF setting. If
the EWBJ-MF preconditioner is used, the memory saving reaches the 66% at P6.

In conclusion, the EWBJ-MF setting revealed to be the best choice to deal with
the solution of such incompressible turbulent flow, proving to be efficient and to scale
optimally even on highly parallel systems. For example, it is worth to report that
the full (starting from a trivial initial condition and up to the non dimensional time
t = 200) Ra = 108 computation, involving more than 5.2 · 107 DoF, is accomplished
in less than one day using 68 Intel Xeon processors (1224 cores).
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7.2 Channel flow

7.2 Channel flow

The turbulent channel flow has been computed using four different reynolds numbers,
Reτ = 180, 395, 590 and 950, see Fig. 7.7. The computational details of those
calculations are reported in Tab. 7.3. Those Reτ were chosen in consistency with the
reference DNS data in [120, 121]. While for the first three cases the same domain sizes
of the DNS data were used, a smaller domain has been employed for the latter case.
The computational domains were built using at least a number of DoF one order of
magnitude lower than the reference DNS data evaluated using the same domain size.
In order to allow an adequate resolution of the viscous sublayer, the mesh elements
were stretched at the walls using the following mapping [122]:

z = (2a+ b)[(b+ 1)/(b− 1)](h−a)/(1−a) + (2a− b)
(2a+ 1){1 + [(b+ 1)/(b− 1)](h−a)/(1−a)}

(7.4)

where h is a linear mapping between the two walls and a, b are coefficients that can be
tuned to obtain a suitable wall normal resolution. The fully developed flow field was
finally generated using a fixed pressure gradient by adding a constant source term on
the momentum equation along the x axis.

Physical discussion

Figures 7.8, 7.9 and 7.10 show the results of the implicit Large Eddy simulation
here performed. Due to the x, y homogeneity of the flow, the average velocities
and the fluctuations have been obtained using similar procedures of those used for

(a) Reτ = 180 (b) Reτ = 395

(c) Reτ = 590 (d) Reτ = 950

Figure 7.7: Turbulent channel flow at different Reτ . λ2 iso-surfaces coloured by the
streamwise velocity magnitude. The lateral boundaries report streamwise
velocity contours.
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Figure 7.8: 〈u+(z+)〉mean profiles for the turbulent channel flow at different Reynolds
numbers in comparison with reference DNS data from [120] and [121].

the Rayleigh–Bénard convection, i.e. using the same 〈·〉π operator. A very good
agreement with the reference DNS data [120, 121] can be obtained independently
of the Reynolds number using a considerable lower number of DoF. In the author’s
experience, to achieve this solution quality, the grid spacing at the wall should entail
a first cell resolution lower than 3 wall units. Such number can be estimated, in a
DG context, by dividing the minimum first cell height δz+, reported in Table 7.3,
by the directional number of DoF per equation per element n1/3

v . As regards the
time step size, that thanks to the implicit scheme here used, it can be increased with
confidence without spoiling the accuracy of the statistics, and it can be taken as the
largest allowed, for stability reasons, by the numerical scheme. It is worth noticing
that time step sizes reported in Tab. 7.3 are up to 45 times larger than those used
in [75], in the context of a DG discretization and a semi-explicit time integration
scheme.

Performance assessment

The influence of using the MB or MF approaches on the computational efficiency has
been tested for the Reτ = 180 case using a 16×16×8, P6 space configuration, varying
the time step size, on the four AMD Opteron CPUs. The effects of the adaptive
GMRES tolerance have been included in the comparison, i.e. as the time step size
decreases, the GMRES system is solved with a higher resolution within each stage
to maintain the system solution error below the time integration error. Fig. 7.11(a)
shows the relative CPU time computed in analogy with those of the RBC problem.
The EWBJ-MF reaches the highest efficiencies (a CPU time reduction up to 70%) for
all the time steps employed despite the slightly higher number of GMRES iterations
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Figure 7.9:
√
〈u′+2〉,

√
〈v′+2〉 and

√
〈w′+2〉 profiles for the turbulent channel flow

at different Reynolds numbers in comparison with reference DNS data
from [120] and [121]. δ is the semi-channel height.
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Figure 7.10: 〈u′+w′+〉 profiles for the turbulent channel flow at different Reynolds
numbers in comparison with reference DNS data from [120] and [121]. δ
is the semi-channel height.

performed within each stage, see Fig. 7.11(b). As expected, the use of the Jacobian
lagging on the BJ-MB setting resulted in an unstable time integration strategy despite
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Figure 7.11: Effect of the time step size (δt+ = u2
τδt/ν is the non-dimensional time

step size) on computational performances using the adaptive GMRES
tolerance of Eq. (4.7). Turbulent channel flow problem at Reτ = 180,
16×16×8, P6 space discretization and different solution strategies.

the W-property of the Runge–Kutta scheme employed, and therefore nothing can be
reported for comparison. Lagging the preconditioner, in this case, increases only
slightly the average number of GMRES iterations per stage.

As regards the memory saving the BJ-MF method reduces by the 25% the total
memory footprint of the application, while the saving of the EWBJ-MF method
reaches the 48%. The difference with the Rayleigh–Bénard test case can be ascribed
to the number of equations employed to model the physics, i.e. m = 5 for the
Rayleigh–Bénard and m = 4 for the channel flow, while the storage of the shape
functions does not change with the number of equations m.
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7.3 ERCOFTAC T3L test case suite

The section reports the implicit LES of the ERCOFTACT T3L test case suite. The
problem considers the transitional flow on a flat plate with a semi-circular leading
edge of diameter D. The problem is reported to be very sensitive to the free-stream
turbulence intensity and Reynolds number of the computation. The experimental
measurements considered six combinations of Reynolds numbers and free stream tur-
bulence intensities, namely the T3L1 to T3L6 test cases. In this chapter report
the numerical solution of each case, and considers in addition the zero-free stream
case (T3L0), impossible to evaluate experimentally, as well as that obtained on the
upper-half of the domain, using a symmetry boundary condition (T3L0S). Finally,
the T3L5R and T3L6R cases are computed by suppressing the synthetic turbulent
generator and verify the the behaviour of the solution. Therefore, a set of 10 differ-
ent working conditions are reported. Table 7.4 reports details of the computational
settings of the numerical simulations, and reports the bubble length computed by
averaging the solution over time, which shows to be very sensitive to the Re, Tu
and even the boundary conditions. In all the cases, the solution exhibits a leading
edge laminar separation bubble and, downstream the transition, an attached turbu-
lent boundary layer. Those complex flow features are perfectly suited to evaluate
the efficiency of the solver and highlight the advantages of using a DG-based ILES
approach. ILES naturally resolves all the flow scales (in a DNS-fashion) if the nu-
merical resolution is enough to do so, while the numerical dissipation plays the role
of a sub-grid scale model for the spatially under-resolved regions of the domain. In
this test case, the laminar region is fully resolved, while in the turbulent region the
dissipation of the numerical scheme dumps the under-resolved scales.

The simulations were performed on a hybrid mesh of 38320 elements with curved
edges. The unstructured grid is strongly coarsened moving away from the plate, while
a structured-like boundary layer is used at the wall. The first cell height is 10−2D

and the mesh is refined near the reattachment region, where the minimum dimension
along x axis is 2 · 10−2D, see Fig. 7.12. Using post-processed skin friction data, the
value corresponds to a first cell height of δy+ = 11 for the highest Reynolds number

Case Tu Re l/D

T3L0 0.00% 3450 3.90
T3L0S 0.00% 3450 4.42
T3L1 0.20% 3450 2.69
T3L2 0.65% 3450 2.00
T3L3 2.30% 3450 1.49
T3L4 5.60% 3450 1.08
T3L5 2.30% 1725 2.74
T3L5R 0.00% 1725 6.57
T3L6 2.30% 6900 1.00
T3L6R 0.00% 6900 2.39

Table 7.4: Numerical setup of the T3L test case suite and the computed bubble length
representative of the solution.

130



7.3 ERCOFTAC T3L test case suite

case, allowing for a spectral resolution of about y+ ≤ 2.5 for all the computations,
which can be estimated by dividing the first cell height by n1/3

v . The domain extension
on the x− y plane is taken from [124], i.e., 28D × 17D, and it is extruded using 10
elements along the span-wise direction z for a length of 2D, as in [125]. To the author’s
best knowledge, only those two works report a LES simulation of this ERCOFTAC
test case. In both the cases, the numerical method was based on a standard second-
order scheme and a dynamic subgrid scale model. A direct comparison of the present
computations with previously published works in terms of DoFs is not trivial due to
the differences of the computational domains. In [125] the DoFs count per variable
is on the order of 1.88 · 106 and the domain extension in the x − y plane is 1.9
times smaller. In [124] the Dofs count is on the order of 4.39 · 106 and the domain
is 4 times larger in the span-wise direction. Note that the results with the lowest
resolution presented in this work, which has about 1.39 · 106 DOFs, seems to be in a
better agreement for x/d ' 4.5 if compared to other literature data.

Physical discussion

This type of flow problem is reported to be very sensitive to the free-stream turbulence
at the inlet (Tu). The free-stream flow was numerically manipulated to reproduce
the free-stream intensities employed by ERCOFTAC for the experiments, as well as
previous numerical computations [125, 124], where a white-noise random perturba-
tion was added at the inflow velocity to mimic the low experimental turbulence level,
i.e., Tu < 0.2%. In the present work, due to a severe mesh coarsening in the far-field
regions, the generation of a free-stream turbulence at inlet is unfeasible. In fact, the
coarse spatial discretization at far-field would rapidly damp any random perturba-
tion introduced upstream. Accordingly, the turbulent fluctuations were synthetically
injected, via a spatially-supported random forcing term, in those regions of the do-
main where the mesh density is enough not to dissipate small scales. The random
forcing analytic expression assumes a Gaussian distribution in the x direction and is

Figure 7.12: T3L1 test case. Near-wall detail of the computational grid.
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homogeneous in y−z, such that

si = A exp
(
−x− x2µ

)
ri (7.5)

with i = 1, ..., d, where A, x, µ and ri are, respectively, the amplitude coefficient, the
location of the forcing plane, the amplitude of the Gaussian support and a normalised
random vector component such that √riri = 1. The Gaussian function was centered
in x/D = −3, and the constants A, µ were adjusted, via trial and error approach, to
meet the experimental Tu levels. A fine control algorithm of the turbulent length-
scale is here avoided, since the reattachment length is pretty insensitive to this value,
see [126, 127, 128]. In the present configuration the expected turbulence intensity
is met setting µ = 0.01, while A was adjusted by test and trials to meet the free-
stream turbulence intensity requirement near the leading edge. Note that perturbing
the velocity field through a forcing term in the momentum equations guarantees a
divergence-free perturbation which is consistent with the incompressible nature of the
governing equations.

As reported in previous studies, the bubble length is found to be very sensitive to
the inlet turbulence intensity, see for example [129]. In particular, when increasing the
Tu the bubble length reduces. To this end, the pressure and skin friction coefficients
are reported in Figure 7.13. The effect, which is consistent to what has been published
previously, is very well captured by the numerical results reported. On the other hand,
an increase in Reynolds number also promotes a reduction in the bubble length. It
is worth pointing out that the T3L0S case, which one may consider equivalent to the
T3L0, shows a larger recirculating region and a pretty different pressure and skin
friction coefficient behaviour. Moreover, as opposed to the behaviour documented
in [125], no hysteresis effects are observed in the present solutions. Accordingly, if the
random source term generating small turbulent perturbations is suddenly suppressed
in a fully developed flow field of one of the T3L1-6 cases, the solution of a zero free-
stream turbulence case (T3L0) is quickly recovered. Similar observations can be done
for the T3L5 and T3L6 cases. By setting the synthetic turbulence generation to zero,
the transition mechanism changes and the reattachment length grows, see T3L5R and
T3L6R cases. This observation, which happens for all the three Reynolds numbers
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Figure 7.13: T3L1 test case. Effect of the Tu level on the pressure coefficient cp and
the skin friction coefficient cf .
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considered in the study, is in contrast to what observed by [129], where the bubble
length at the largest Reynolds number is reported to be self-sustained when removing
the free stream turbulence.

To corroborate the quality of the simulations, the predicted bubble length for
the T3L1 case is reported to be in a better agreement with the experimental data
(l/D = 2.75) than other numerical computations [125, 124] (2.59 and 3.00, respec-
tively). Moreover, it has been verified by lowering the polynomial degree of the dG
discretization that the statistical average l/D is almost converged with respect to the
spatial resolution: for k = 5 and k = 4, the values of 2.70 and 2.73 are obtained,
respectively. Convergence of the statistics is also confirmed by polynomial degree
independence observed for the skin friction coefficients.

The sensitivity of the laminar separation bubble with respect to Tu and Re can
also be observed in Figure 7.14, which shows the λ2 = −1 iso-contours of the instan-
taneous flow field for each of the cases. The quasi two-dimensional Kelvin-Helmholtz
instabilities in the shear-layer region above the separation bubble and their convec-
tion downstream are observed. As expected, low free-stream turbulence intensities
promote the instability of the quasi two-dimensional structures arising from the up-
stream flow separation. Hairpin vortices developing after flow reattachment and the
breakdown to turbulence are similar in all the cases as well. Distortion along the
spanwise direction is anticipated upstream in the Tu = 0.2% case. Increasing Tu,
streaky like structures stream-wise oriented are visible close to the leading edge, while
for Tu = 5.6%, the Kelvin-Helmholtz instability stage is bypassed anticipating the
reattachment and the formation of the hairpin vortices. The development of a turbu-
lent boundary layer is observed downstream the reattachment point. It is interesting
to notice the effects of the Re. In fact, it is directly connected to the size of the
smallest scales as well as the bubble length, which is affected similarly to Tu.

Figure 7.15 shows the time and span-wise averaged stream-wise velocity field. Fig-
ure 7.16 report also the kinetic energy contours for all the cases. It is worth to point
out that the kinetic energy, whose maximum is located downstream the separation
bubble, also varies with the Re and Tu. The presence of a free stream turbulence
intensity is reflected on the contours of the kinetic energy especially for the highest
values of Tu. This happens because of the generation of synthetic turbulence on an
unstructured mesh, not rigorously uniform in the y direction, which produce a weak
dependence of the kinetic energy with y.

Figures 7.17 and 7.18 compare velocity profiles with the experimental ones, when
available. The mean stream-wise velocity <u>, and the velocity fluctuation (or ve-
locity RMS), <u′u′> are reported as a function of the normal direction for different
stations. Velocity is normalized by the local maximum velocity umax, computed in-
dependently for each of the stations. The random forcing efficacy is demonstrated by
the very good agreement with experimental data close to the plate stagnation point.
The T3L0 and T3L0S cases, which have been obtained using a zero-free stream turbu-
lence intensity, are still compared with the experimental data of the T3L1 case. With
Tu = 0%, the size of the separated region is larger than that observed experimentally.
Just by using a very low free stream, the transition to turbulence and reattachment
of the flow is anticipated and the velocity profiles tend towards the experimental one.
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(a) T3L0 (b) T3L0S

(c) T3L1 (d) T3L2

(e) T3L3 (f) T3L4

(g) T3L5 (h) T3L5R

(i) T3L6 (j) T3L6R

Figure 7.14: T3L test case, k = 6 solutions for different Tu levels. λ2 = −1 iso-contour
and periodic plane coloured by the streamwise velocity.
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(a) T3L0 (b) T3L0S

(c) T3L1 (d) T3L2

(e) T3L3 (f) T3L4

(g) T3L5 (h) T3L5R

(i) T3L6 (j) T3L6R

Figure 7.15: T3L test case. Effect of the Tu level. Average velocity magnitude iso-
contours, k = 6 solutions.
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(a) T3L0 (b) T3L0S

(c) T3L1 (d) T3L2

(e) T3L3 (f) T3L4

(g) T3L5 (h) T3L5R

(i) T3L6 (j) T3L6R

Figure 7.16: T3L test case. Effect of the Tu level. Average velocity magnitude iso-
contours, k = 6 solutions. Top: Tu = 0.0%; Bottom: Tu = 0.2%.
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Figure 7.17: T3L test case suite, k = 6 solution. Time- and spanwise-averaged
stream-wise velocity profiles (black lines) in comparison with experimen-
tal data [130] (red dots).
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Figure 7.18: T3L test case suite, k = 6 solution. Time- and spanwise-averaged
stream-wise velocity fluctuation profiles (black lines) in comparison with
experimental data [130] (red dots).
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Figure 7.19: T3L1 test case, k = 6 solution for Tu = 0.2%. Time- and spanwise-
averaged velocity profiles in comparison with experimental data [130] at
x/D = 3.45. Mean (left) and RMS (right) velocity.

The agreement with experiments on the T3L1-6 cases follows even downstream. The
T3L5R and T3L6R cases, compared respectively with the T3L5 and T3L6 experi-
mental data, corroborate the difference on the transition mechanism which is clearly
not self-sustained when removing the free stream disturbances.

A comparison with other numerical computations published in the literature is very
difficult. In fact, only numerical results of the T3L1 and T3L4 cases are reported in the
literature with a different numerical framework and turbulence modelling strategy. As
for the T3L1 case [124], it is difficult to observe improvements with respect to previous
computational investigations for x/D < 4.5. On the other hand, for x/D > 4.5 the
results obtained here still compare favourably with the experimental data, while the
matching is less evident in [124]. The author stresses that the velocity fluctuations
compare favourably with the experiments up to 10D, and the comparison with this
section was omitted in previous works. To this end, Figure 7.19 report the solution
of the T3L1 test case for x/D = 3.45 computed with various polynomial orders,
k = 4, 5, 6. Both the average velocity profile and RMS compare very well with
experiments, which supports the claim that present computations provide a larger
fully resolved region. Note that some jumps at inter-element boundaries are still
noticeable, especially for k = 4. Fig. 7.20 reports the computed averaged velocity
profiles in wall units, for different stations located downstream to the reattachment
region, of the T3L1 test case. For x/D ≥ 9.5 the profile approaches the turbulent
law of the wall, showing some discrepancies with respect to the equilibrium boundary
layer in the outer layer. For the sake of comparison, the zero pressure gradient flat
plate DNS result at Reθ = 300 of Spalart [131] is reported together with the numerical
solution at x/D = 12.5, which shows almost the same Reθ. Note that the station at
x/D = 9.5, which results in Reθ ≈ 270, compares favourably with the experimental
data.

It is worth noticing that, for the other cases, a reference value in terms of bubble
length is not provided in the experimental database. However, the agreement of the
velocity profile observed in Figures 7.17 and 7.18 suggest a favourable comparison. In
particular, the reattachment length of the T3L4 case at Tu = 5.6% agrees well with
that measured in [132] for the same geometry and a slightly different flow configura-
tion, i.e. Tu = 7% and Re = 3300. Note that that the numerical value l/D = 1.8
evaluated in [124] appears to be significantly larger.
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Figure 7.20: T3L1 test case, k = 6 solution for Tu = 0.2%. Non dimensional stream-
wise velocity profile for different values of x/D after reattachment in
comparison to the theoretical law of the wall and DNS data [131].

Performance assessment

Table 7.5 reports the computational performances of the different solution strategies
obtained for a dG approximation with k = 6, the same polynomial degree of reference
employed in previous sections. The time step size of the third-order accurate linearly-
implicit Rosenbrock-type time integration scheme was 16 and 8 times larger than those
used in [124] and [125], respectively. The relative defect tolerance for the linear solver
reads rTol = 10−5.

The GMRES(MB)[BJ] is considered as the reference solution strategy. Being the
number of curved elements small when compared to the number of affine elements,
the degrees of exactness of quadrature rules disregards the second degree geometrical
representation of cells close to leading edge. Since the boundary layer is still laminar
at the leading edge, this under-integration does not affect stability of the scheme.

Switching from the matrix-based (GMRES(MB)[BJ]) to the matrix-free solver
(GMRES(MF)[BJ]), one can observe the same computational efficiency but 40% less
memory usage. Note that the use of Additive Schwarz preconditioned GMRES (GM-
RES[ASM(1,ILU(0))]) decreases the overall parallel efficiency of the method. In fact,
the CPU time increases by the 11% and the memory requirements raises by 60%.

Solver GMRES(MB) GMRES(MB) GMRES(MF)
Prec BJ ASM(1,ILU(0)) BJ

CPU Ratio 1 1.11 0.95
Memory Ratio 1 1.6 0.6
ITs 115 72 115

Solver FGMRES(MB) FGMRES(MF) FGMRES(MF)
Prec MGfull MGfull MGfull (LAG=3)

CPU Ratio 0.50 0.47 0.31
Memory Ratio 0.65 0.15 0.15
ITs 3.0 3.0 3.31

Table 7.5: Performance comparison of the solver on the T3L1 test case. Compu-
tational time, total memory footprint non-dimensionalized with the GM-
RES(MB)[BJ] solver, and average number of GMRES iterations per time
step, for the BJ, ASM(1,ILU(0)) and MGfull preconditioners (see text for
settings details). Results obtained on 540 Intel Xeon CPUs of Marconi-
A1@CINECA.
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The p-multigrid precondioned solver specs are as follows: FGMRES(MB or MF)
as outer solver, a full p-multigrid interation with L = 3, k` = 6, 2, 1, GMRES(MB
or MF)[EWBJ] smoother for ` = 0 (8 iterations), GMRES(MB)[EWBJ] smoother
for ` = 1 (8 iterations) and GMRES(MB)[ASM(1,ILU(0))] smoother on the coarsest
level (` = 2, 40 iterations). Note that for the finest level outer solver and smoother
both matrix-based and matrix-free implementations are considered for the sake of
comparison. The computational efficiency of the method improves considerably with
respect to the reference (first column of Tab. 7.5): i) in a matrix-based framework
a 50% decrease of the CPU time is observed and the memory requirements reduce
by 35%, ii) in a matrix-free framework the CPU times gains are unaltered and the
memory savings reach 85%. Such significant memory footprint reductions are mainly
due the finest level strategy: only a block diagonal matrix is allocated and a small
number of Krylov subspaces is employed for the GMRES algorithm. In this case the
actual memory footprint has been computed through the PETSc library, and it is in
line with the values that can be estimated a-priori using the model of Section 5.1.5.

As a further optimization of the matrix-free approach the possibility to lag the com-
putation of the system matrix employed for preconditioning purposes is considered,
this means that the preconditioner is “freezed” for several time steps. Clearly this
strategy reduces assembly times but degrades convergence rates if the discrepancy
between the matrix and the preconditioner gets too severe. In the present compu-
tation optimal performance are achieved by lagging the operators evaluation for 3
time steps. By doing so, the CPU time is further reduced to the 0.31 of the baseline,
see Tab. 7.5, which corresponds to a speed-up of 3.22. As a side effect, the average
number of GMRES iterations slightly increases from 3.0 to 3.31.
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7.4 Boeing Rudimentary Landing Gear test case

The final validation case reported in this work deals with the preliminary result of
the implicit LES of the incompressible flow around the Boeing Rudimentary Landing
Gear (RLG). The purpose of the test is to demonstrate the applicability of the solution
strategies proposed in this work within an industrially relevant test case.

The RLG was designed by Spalart et al. [133], and experimentally studied in [134],
to become a benchmark for testing turbulence modelling approaches. The test case
was also included within the test case suite of the ATAAC EU-funded project [135].
The flow conditions involve a Reynolds number of 106, based on the freestream ve-
locity V∞ = 40 m/s and on the wheel diameter D = 0.406 m. The Mach number of
the experiments was M = 0.12, which resemble an incompressible flow problem. It
is worth mentioning the test case was aimed to assess hybrid RANS/LES approaches
on complex flow configurations. For this reason, in previous computations special
care is spent to control the turbulent transition location allowing a better agreement
with experimental data. While the structural elements are made rectangular, and
thus fixing the separation location on the edge, the boundary layers on the wheels
are tripped, see [133]. The structure of the unsteady flow around the landing gear is
mainly characterized by large separated and recirculating regions on the wheels and
axles, as well as by the front-rear wheel interaction, which make the use of unsteady
scale-resolving simulation mandatory.

The mesh for the computation has been provided by the German Aerospace Center
(DLR) within the EU-funded project “Towards Industrial LES/DNS in Aeronautics
– Paving the Way for Future Accurate CFD” (TILDA). The grid is delimited by
four symmetry planes, one inflow, one outflow, and the landing gear wall surface. A
snapshot of the grid showing the wall surface (red), the symmetry plane discretization
(black) and an internal slice (blue) is reported in Figure 7.21. The mesh employed

Figure 7.21: Boeing Rudimentary Landing Gear test case. Details of the multiblock
structured grid provided by DLR under the ATAAC and TILDA Euro-
pean projects.
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Figure 7.22: RLG test case at Re = 106. Incompressible flow solution using k = 4
polynomials. λ2 iso-contour coloured by stream-wise velocity magnitude.
Front view (left) and rear view (right).

takes advantage of the symmetry of the problem and it discretises only the half of the
domain. The grid was made by 115 ·103 hexa elements with second-order geometrical
representation obtained through agglomeration of a finer discretization, and it shows
a severe wall refinement to accommodate a suitable wall resolution given the high
Reynolds number of the case. The first cell height is δy = 6.054 · 10−5D, which
provides an equivalent wall normal resolution of 1.851 ·10−5, obtained by dividing for
(nv)1/3. Exploiting the maximum value of the skin friction coefficient over the entire
wall boundary obtained during the post-processing phase, the grid allows a maximum
wall normal resolution of y+ = 2.8.

The solution has been obtained by using P4 polynomials, providing a total of
4.025·106 degrees of freedom, while the four-stage, order-three ROSI2PW scheme was
employed for time integration. Using as reference quantities the free stream velocity
and the wheel diameter, the non-dimensional time step size was ∆t = 0.001. To com-
pute the average fields, the solution was advanced in time for roughly 50 convective
times, some of them performed using a lower-order space discretization. The average
lasted roughly T = 23 convective times, which may be not enough to have converged
first-order statistics. However, it has been verified that the average quantities did
not change sensibly from T > 17.5. Linear systems arising from the time integration
were solved using FGMRES preconditioned with a p-multigrid strategy with similar
settings to that of Table 5.8, employing an additive Schwarz preconditioned on the
coarsest level of the multigrid iteration, and an element-wise block Jacobi method on
the other levels to maximise the scalability of the algorithm. Despite working with an
average of 19 elements per partition in such a complex test case, the iterative solver
converged using an average of 3.5 iterations per stage, confirming the efficacy of this
preconditioning approach.

Figure 7.22 shows the features of the flow field through the istantaneous λ2 iso-
contour plot coloured by the stream-wise velocity magnitude. The interaction between
the separated flow downstream the front wheel and rear wheel is clearly visible, while
the details of the harpin vortices generated on the side of the front wheels are also
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Figure 7.23: RLG test case at Re = 106. Incompressible flow solution using k = 4
polynomials. Mean pressure coefficient Cp contours on the wall surface.
Front view (left) and rear view (right).

Figure 7.24: RLG test case at Re = 106. Incompressible flow solution using k =
4 polynomials. Pressure coefficient RMS, CRMS

p contours on the wall
surface. Front view (left) and rear view (right).

clearly resolved. It is worth noticing that the shape of the iso-contour suggest that
the flow is mainly attached to the wheels, although a very small laminar separation
similar to that of the T3L test case can be observed on the fore side of the wheel.

The averaged fields in terms of pressure coefficient Cp, the root mean square value
of the pressure coefficient CRMS

p on the landing gear have are reported in Figure 7.23,
7.24 and 7.25. A qualitative agreement with the surface plots reported in [133, 136],
obtained through a hybrid RANS/LES approach, can be observed especially as re-
gards the front views. On the other hand, the rear view highlight the presence of
oscillations that might be symptom of an averaging period not long enough, as well
as a too coarse space resolution. Those oscillations are even more evident if first order
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Figure 7.25: RLG test case at Re = 106. Incompressible flow solution using k =
4 polynomials. Mean skin friction coefficient Cf contours on the wall
surface. Front view (left) and rear view (right).

Figure 7.26: RLG test case at Re = 106. Incompressible flow solution using k = 4
polynomials. Average wall streamline path. Front view (left) and rear
view (right).

statistics (e.g. CRMS
p ) or the skin friction coefficient (which involve state derivatives)

are considered. Figure 7.25 reports the surface plot of the skin friction coeffi-
cient Cf = 2τw/ρV 2

∞. As reported for the pressure coefficient fluctuation, the plot
shows oscillations particularly at the inter-element connection, which is pretty typical
for under-resolved simulations using discontinuous Galerkin finite element methods.
However, the plots look qualitatively similar to those reported in previous numerical
simulations [133, 136].

Figure 7.26 show the streamline patterns on the wheels. As described in [136], the
patterns show the bifurcation line of separation and reattachment on the front and
rear wheels. However, the simulation shows on both sides of the wheels a region with
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Figure 7.27: RLG test case at Re = 106. Incompressible flow solution using k = 4
polynomials. Average pressure coefficient Cp and RMS CRMS

p distribu-
tion on the mid-line of the fore and back wheels versus the azimuthal
angle θ.

separated flow and reversed streamline patterns. Such a region seems to be different to
that reported by the experiments [134] as well as previous numerical simulations. It is
worth to point out that no transition tripping was employed in the current simulation,
differently to what has been done with experiments and numerical simulations based
on RANS modelling.

Figure 7.27 reports the average pressure coefficient Cp and its root mean square
value CRMS

p on the mid-line of the wheels, versus the azimuthal angle θ, in compari-
son with experimental data from NAL [134]. While the pressure coefficient compare
favourably with experimental data, its root mean square value shows a more oscil-
latory behaviour, originating from low spatial resolution and possibly a too short
averaging time. However, the locations of the peaks of fluctuation as well as its value
is pretty well captured.

While more refined solutions of this test case are currently under investigation by
increasing the order of polynomial approximation to k = 6 and reducing the time step
size to show time convergence of the results, it is worth to remark that the present
computation has been performed on roughly 6 · 103 cores of the Marconi A1 cluster
hosted by CINECA, using a total wall clock time of 94 hours. The average wall time
per convective time unit was roughly 4 hours.
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Chapter 8

Conclusion and outlook

8.1 Main achievements

The work presents advances in computational efficiency of high order discontinuous
Galerkin methods applied to unsteady flow simulations targeting large, three dimen-
sional computations performed in HPC facilities. It specifically addresses two main
topics: the first one deals with parallelization strategies in the context of explicit time
integration, while the second one considers scalable algorithms to solve linear systems
arising from the implicit time discretization of the equations.

To improve the parallel efficiency, Chapter 3 considers novel OpenMP paralleliza-
tion strategies have been presented. Three different algorithms, required to avoid
data race conditions of OpenMP, have been proposed and compared with each other.
The numerical experiments reveal that a colouring algorithm excels for large com-
putations, while a partition algorithm outperforms the others at low computational
loads. To avoid dealing with two nested domain decompositions, the colouring al-
gorithm proved also to be a simple yet effective choice to improve the efficiency of
existing MPI solvers within a hybrid MPI/OpenMP parallelization framework. The
performance of the hybrid implementation has been tested on both EE/LEE and com-
pressible Navier–Stokes problems, on different HPC facilities, demonstrating better
efficiencies than the pure MPI solver.

In the context of implicit time integration, the work mainly focuses on the intro-
duction of scalable memory saving strategies to solve linear systems. This problem is
tackled through the use of a matrix-free implementation of the GMRES linear solver,
which is described in Chapter 4. Matrix-free methods replace the matrix-vector prod-
uct via its first order finite difference approximation, which allows to use the Jacobian
matrix only for the purpose of evaluating the preconditioner. This fact increases flexi-
bility of the solver, since the preconditioner can be obtained cheaply by approximating
the iteration matrix. The numerical experiments, performed both on a model two-
dimensional case and on three-dimensional turbulent test cases, reveal a clear trend.
In fact, when the numerical complexity is low, i.e. the problem is two-dimensional
and it is discretized using a low polynomial order, the computational efficiency is
in favour of the MB method which is more efficient. On the other hand, when the
complexity grows, the flexibility of the MF solver can be conveniently exploited to
increase the computational efficiency with respect to the MB case. This situation is
particularly evident in three-dimensional cases where the lagged EWBJ-MF setting
allows to reduce the CPU time up to the 80% in realistic configurations, allocating
only the 7% of the memory for the time integration. See, to this end, experiments in
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Chapter 7, Section 7.1 and 7.2.
For stiffer space discretizations, it has been demonstrated that the EWBJ precon-

ditioner is not enough computationally efficient, see Chapter 5. A extension of the
memory saving approach has been presented, and it is based on a p-multigrid pre-
conditioner strategy. The algorithm relies on a matrix-free implementation of both
the outer FGMRES solver as well as the finest level smoother, while matrix-based
GMRES smoothers are employed on coarse levels. Coarse operators of lower poly-
nomial degree are built using a rescaled-inherited approach which provides optimal
scaling of the stabilization terms and improves p-multigrid preconditioner’s efficiency
and robustness. The performance of the algorithm has been evaluated on test cases
of growing complexity. The work demonstrates that the p-multigrid preconditioned
solver outperforms standard single-grid preconditioned iterative solvers from a CPU
time viewpoint. As proof of consept, the strategy is applied to the ILES of the incom-
pressible turbulent flow over a rounded-leading edge plate with different free-stream
turbulent intensities, i.e. the ERCOFTAC T3L test case suite. The solver strategy
is profiled and compared with state-of-the-art single-grid solvers running on large
HPC facilities. If a block-diagonal preconditioner is employed on the finest level, the
algorithm reduces the memory footprint of the solver of about 92% of the standard
matrix-based implementation. On top the memory savings, the p-multigrid precondi-
tioned FGMRES solver is also three times faster than the best performing single-grid
solver.

Chapter 6 reports on the comparison between the implicit matrix-free strategies
proposed for DG versus more recent high-order solution techniques for implicit prob-
lems such HDG. In particular, HDG is presented in both the mixed and primal form.
While the former discretization is commonly adopted in the literature, the compari-
son with the latter consists of an element of novelty in itself. The comparison employs
the same preconditioning techniques and, to this end, a numerical framework to use a
p-multigrid preconditioner in the context of HDG has been proposed for the first time.
The approach is based on approximate-inherited projection of the statically condensed
matrix on the finest space. The results on two-dimensional test cases involving the
solution of compressible Navier–Stokes equations reveal that, for considerably stiff
problems involving a large number of GMRES iterations, the use of HDG allows
to reduce the computational time of the simulations. However, if smaller time step
sizes are employed, the costs of the static condensation and back-solve are too large to
make the method convenient from the computational time point of view with respect,
for example, to the best performing matrix-free p-multigrid approach with Jacobian
lagging. More specifically, within HDG, the use of the proposed p-multigrid method
to precondition the iterative solver is effective in reducing the number of iterations,
but the costs of the static condensation and back-solve, still present, do not allow to
observe benefits in CPU time.

As proof of concept, high order accurate implicit LES of four incompressible turbu-
lent flow problems are reported, i.e. the Rayleigh-Benard natural convection problem
up to Ra = 108, the turbulent channel flow up to Reτ = 590, the complete ERCOF-
TAC T3L test case suite for different levels of free stream turbulence and Reynolds,
as well as the Boeing rudimentary landing gear test case of ATAAC and TILDA
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EU-projects at Re = 106. Results in good agreement with experiments and previous
numerical simulations show the relevance of the numerical techniques proposed to
deal with test cases of industrial complexity.

8.2 Outlook and future work

Despite the improvements in computational efficiency demonstrated in this thesis,
several critical points still remain to be solved. In fact, a drawback that has been
highlighted within the text is the performance degradation of the matrix-free GM-
RES solver by increasing the geometrical order of representation of the solution, since
the increased cost of the residual evaluation make it more expensive than performing
a matrix-vector product. To further improve this point, the implementation of an
adaptive strategy for the choice of the quadrature degree of exactness, which can be
adapted in view of the actual amount of curvature of mesh faces and elements, can
target the optimization of the residual evaluation and thus the overall performance
of the matrix-free algorithm. In addition, the implementation of vectorization capa-
bilities to optimize further the residuals computation on modern HPC architectures
can provide large gains on modern computer architectures. The use of OpenMP to
exploit hyperthreading for the residual evaluation in a matrix-free context can also
be considered to improve the computational efficiency.

It is worth pointing out that two main research areas have to be considered for
further improvements in computational efficiency of the proposed solver. First, the
development of cheap and accurate sensors to drive run-time p-adaptation strategies,
i.e. the variation of the polynomial degree of the solution between the elements,
which allows to obtain a reduction of the simulation CPU time and memory while
not spoiling the accuracy required by this class of simulations. See, for example,
preliminary studies on adaptive methodologies reported in [137, 138, 139]. Second,
the development numerical methods to reduce the overall the computational costs via,
for example, wall-modelled LES for simulations performed at the highest Reynolds
numbers.
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