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Abstract

The recent progress on acoustic signal processing and machine learning tech-
niques have enabled the development of innovative technologies for automatic
analysis of sound events. In particular, nowadays one of the hottest approach to
this problem lays on the exploitation of Deep Learning techniques. As further
proof, in several occasion neural architectures originally designed for other mul-
timedia domains have been successfully proposed to process the audio signal.
Indeed, although these technologies have been faced for a long time by statis-
tical modelling algorithms such as Gaussian Mixture Models, Hidden Markov
Models or Support Vector Machines, the new breakthrough of machine learning
for audio processing has lead to encouraging results into the addressed tasks.
Hence, this thesis reports an up-to-date state of the art and proposes several re-
liable DNN-based methods for Sound Event Detection (SED) and Sound Event
Classification (SEC), with an overview of the Deep Neural Network (DNN) ar-
chitectures used on purpose and of the evaluation procedures and metrics used
in this research field.

According to the recent trend, which shows an extensive employment of
Convolutional Neural Networks (CNNs) for both SED and SEC tasks, this work
reports also rather new approaches based on the Siamese DNN architecture or
the novel Capsule computational units. Most of the reported systems have been
designed in the occasion of international challenges. This allowed the access
to public datasets, and to compare systems proposed by the most competitive
research teams on a common basis.

The case studies reported in this dissertation refer to applications in a variety
of scenarios, ranging from unobtrusive health monitoring, audio-based surveil-
lance, bio-acoustic monitoring and classification of the road surface conditions.
These tasks face numerous challenges, particularly related to their application
in real-life environments. Among these issues there are unbalancing of datasets,
different acquisition setups, acoustic disturbance (i.e., background noise, rever-
beration and cross-talk) and polyphony. In particular, since multiple events
are very likely to overlap in real life audio, two algorithms for polyphonic SED
are reported in this thesis. A polyphonic SED algorithm can be considered as
system which is able to perform contemporary detection - determining onset
and offset time of the sound events - and classification - assigning a label to
each of the events occurring in the audio stream.

Xi
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Chapter 1

Introduction

Human cognition relies on the ability to sense, process, and understand the
surrounding environment and its sounds. Although the skill of listening and
understanding their origin is so natural for living beings, it still results in a
very challenging task for computers. In recent years several novel methods
have been proposed to analyze this information automatically, and several new
applications have emerged [1]. However, the creation of “machine listening”
algorithms that can mimic this cognitive feature by means of artificial systems
remains a very challenging task.

Systems for automatic acoustic event recognition have the aim to mimic
this cognitive feature. Basically, these algorithms are designed to analyze a
continuous audio signal in order to extract a description of the sound events
occurring in the stream. This description is commonly expressed as a label
that marks the start, the ending, and the nature of the occurred sound (e.g.,
children crying, cutlery, glass jingling).

Thanks to works like Bregman’s “Auditory Scene Analysis: The Perceptual
Organization of Sound” [2], we can trace back the birth of this research topic
to 1994, when the field of computational auditory scene analysis (CASA) was
introduced in order to model humans’ sound perception. Following this work,
many other contributions were written aiming to describe how artificial systems
can be designed in order to perceive sounds similarly to as humans do; most of
these works will be later collected in Divenyi’s book [3] in 2004.

Sound events often occur in unstructured environments in real-life. Factors
such as background noise and overlapping sources are commonly present in the
environments. Moreover, there can be multiple sound sources that produce
sound events belonging to the same class, e.g., a dog bark sound event can
be produced from several breeds of dogs with different acoustic characteristics.
These represent some of the main challenges which the systems described in
this thesis have to face in order to prove their effectiveness in real-life situations.
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1.1 Sound Analysis Tasks

The type of information to be extracted with acoustic event analysis algorithms
depends on the application. In particular, we can classify the tasks explored
in this dissertation into two high-level categories: sound event detection and
sound event classification. In Sound Event Detection (SED), or acoustic event
detection, the goal is to detect the onset and offset times for a variety of sound
events captured in an audio recording. In Sound Event Classification (SEC),
the goal is to categorize an audio recording into one of a set of predefined
categories by associating a textual descriptor. The different input and output
respectively for classification and detection systems are illustrated in Figure 1.1.

Hh-l*h-] |-0IT~—] [»»l» Ml W

[ Sound Scene Classification J [ Sound Event Detection

| ! | !

Input

b,

2B | ) | ) -

3 | J | | | J (_ Speech | ]

E | ) [Coffice ] | ) 0 O
2 | ] | ] [ Home | Car

@ | ) | ) )

Figure 1.1: System input and output for the two main analysis systems: sound
scene classification and sound event detection. Pic. courtesy of [1].

Labels extracted with a sound recognition system allow to achieve a better
insight of the considered acoustic scenario. Usually, they are used as mid-level
representation useful for other CASA research areas. In [4, 5], for example,
authors make use of SED for designing audio context recognition systems, while
in [6] and [7] SED is exploited for automatic tagging and audio segmentation
respectively. Moreover, both SED and SEC found many direct applications in a
variety of scenarios, some examples being context-based indexing and retrieval
in multimedia databases [8], unobtrusive health monitoring [9], and audio-based
surveillance [10, 11, 12]. When more than one event can be active (and should
be detected) at a time, therefore foreseeing the overlapping of two or more of
these labels, we can refer to it as polyphonic-SED. This problem is addressable
as a “mixture problem” and it is usually not trivial to solve mainly due to the
superimposition of different event energies in the audio spectra.
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1.1 Sound Analysis Tasks

1.1.1 Applications

Acoustic surveillance can be considered one of the most interesting subjects in
technological research. Surveillance can be seen as control of public safety or
as the supervision of private environments where people may live alone. The
increasing level of public security over the past decades has motivated the in-
stallation of sensors such as cameras or microphones in public places (stores,
subway, airports, etc.), while is possible to effectively consider personal mul-
timedia devices (smartphones, tablets, etc.) as virtual assistant which is able
to monitor the user and eventually intervene in case of necessity without hav-
ing the need for a physical interface (i.e., keyboard) anymore. Thus, the need
of unsupervised situation assessment stimulated the signal processing commu-
nity towards experimenting with several automated frameworks, due to their
potential in several engineering applications.

In these contexts, sound or sound sensing can be advantageous with respect
to other modalities of multimedia processing, due to the short duration of
certain events (i.e., a human fall, a gunshot or a glass breaking) or the personal
privacy motivate the exploitation of the audio information rather than, e.g.,
the image processing. Reports suggests that 90% of physical aggression is
preceded by verbal aggression [13]. In public spaces, or in specific environments
like prisons and detention facilities, a tool able to recognize vocal hostility and
enable security guards to intervene can prevent further escalation and save lives
and public goods.

Hence, being the research on automatic-assisted home environments an active
area for study in the recent years, a particular attention has been paid to the
processing of audio signals [14, 15, 16]. Typically, to increase the quality of
the audio signal and improve the performance of the successive audio analysis
stages in complex systems, pre-processing algorithms are employed [17, 18, 19].
To confirm this, several works appeared recently in the literature that address
speech interaction in multi-room scenarios. For example, in [20] the authors
developed a multi-room spoken command recognizer, while in [21, 22, 23] voice
activity detectors able to concurrently identify the location in time and the
room of origin of speech segments have been proposed.

In addition, audio processing is often less computationally demanding com-
pared to other multimedia domains, thus embedded devices can be easily
equipped with microphones and sufficient computational capacity to locally
process the signal captured. These could be smart home devices for home au-
tomation purposes or sensors for wildlife and biodiversity monitoring (i.e., bird
calls detection [24]).

Some of these applications have already become commercial products that
are able recognize certain specific sound categories in realistic environments
and improve home security [25] or companies with as much impactful missions,
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such as preserve the Rainforest from illegal deforestation [26].

1.2 The Deep Learning Approach for Sound Event
Detection and Classification

Input 1

Input; 2 Features

Extraction

Post

i |— > Output
Processing

W Ao
AR ’,”',0,‘\
S

5ot

Input N A.

Figure 1.2: Basic structure of an audio analysis system.

The typical computational sound scene or event analysis system based on
machine learning is depicted in Figure 1.2.

As the first stage, all the systems take as input one or more audio signals,
either in real-time, captured by a microphone, or offline, from an audio record-
ing. In this dissertation, we always assume discrete-time signals, obtained by
using analog-to-digital converters.

The Feature Extraction block consists of different processing stages and out-
puts acoustic features, as the actual analysis of audio is rarely based on the
raw audio signal, but rather on the compact signal representation with fea-
tures. The purpose of the feature extraction is to obtain information sufficient
for detecting or classifying the target sounds, making the subsequent modeling
stage computationally cheaper and also easier to achieve with limited amount
of development material. Very often the feature extraction procedure is also
preceded by the down-mixing the audio signal into a single (mono) channel and
re-sampling it into fixed sampling frequency. Although every application could
require a specific set of features able to highlight the discriminating particu-
larities of each data sample, the most common representations used for audio
signals are non-linear representation for magnitudes (power spectra and log-
arithm) and nonlinear frequency scaling (requency warping according to the
mel scale). More details of the acoustic features extraction process for each
examined case-study will be provided in further chapters.

The Deep Learning-based model takes the acoustic features as input and it
is trained to produce an output which will assign a class label depending on the
application. Almost all the system presented in this thesis are based on the su-
pervised machine learning approach, where the system is trained using labeled
examples of sounds from each of target sound type. At the development stage,
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the obtained acoustic features are used together with reference annotations of
the audio training examples, to learn models for the sound classes of interest.
Annotations contain information about the presence of target sound classes in
the training data, and are used as a reference information to automatically
learn a mapping between acoustic features and class labels. The mapping is
represented by acoustic models. The learning process consists in updating the
parameters or weights of the neural network, searching for the optimal model
that minimize a certain cost-function. At the usage stage, the learned acoustic
models are used to do recognition (detection or classification), which predicts
labels for the input audio. The recognition stage may also involve temporal
models and post-processing of labels.

After a prediction is obtained through the trained acoustic model, the Post
Processing stage translates this signal into the effective activity information for
each class. Very often this relies on a simple thresholding operation or on the
selection of the most probable class.

1.3 State of the Art

As aforementioned, research on automatic a classification of real-world sounds
grew in the middle 1990s. One of the earliest systems [27] provided similarity-
based access to databases of isolated sound effects by representing each clip
by a fixed-size feature vector comprising perceptual features such as loudness,
pitch, and brightness. Similarly, techniques used to recognize the human voice
exploited algorithms based on the thresholding of typical characteristics of the
acoustic wave, such energy, pitch and zero-crossing rate [28].

Later, more complex computational acoustic event analysis has been ap-
proached with statistical modelling methods, including Hidden Markov Models
(HMM) [29], Gaussian Mixture Models (GMM) [5] or techniques Non-negative
Matrix Factorization (NMF) [30] and support vector machines (SVM) [31].

In the recent era of the “Deep Learning”, different neural network architec-
tures have been successfully used for sound event detection and classification
tasks, including feed-forward neural networks (FNN) [32], deep belief networks
[33], convolutional neural networks (CNNs) [34] and Recurrent Neural Net-
works (RNNs) [35]. In addition, these architectures laid the foundation for
end-to-end systems [36, 37], in which the feature representation of the audio
input is automatically learnt from the raw audio signal waveforms. An interest-
ing comparison between computational costs of different systems is carried out
in [38] highlighting that deep neural networks (DNNs) are able to achieve top
performance at the cost of being the most computationally expensive approach.
A Dbrilliant example of such performance is given in [39], where different DNNs
are trained on a big video dataset and then used for different scopes, among
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which also SED. For a wider overview of the most recent and powerful SED
techniques the reader can refer to the comprehensive analysis carried out by
Sharan et al. in [40]. In [41] an LSTM based Voice Activity Detector (VAD) us-
ing RASTA-PLP features outperforms three different VAD algorithms applied
to speech recognition of Hollywood-movies audio. Another well-fitting exam-
ple is given in [42], where auto-encoders based on architectures comprehending
MLP, RNN and bidirectional-RNN are trained on three datasets recorded in
real life environments in order to detect abnormal events or hazardous situa-
tions exploiting only the information carried by the acoustic signal. Specifically,
an autoencoder is a neural network trained to set the target values equal to its
input. The experimental results show that autoencoders based on deep RNNs
outperform the probabilistic approaches over the three databases.

The use of deep learning models has been motivated by the increased avail-
ability of datasets and computational resources and resulted in significant per-
formance improvements, outperforming in most of the cases the human accu-
racy [43]. The methods based on CNNs and RNNs have established the new
state-of-the-art performance on the SED, thanks to the capabilities to learn
the non-linear relationship between time-frequency features of the audio signal
and a target vector representing sound events. In [44], the authors show how
“local” patterns can be learned by a CNN and can be exploited to improve the
performance of detection and classification of non-speech acoustic events oc-
curring in conversation scenes, in particular compared to a FNN-based system
which processes multiple resolution spectrograms in parallel.

This success is a result of close academic-industrial collaboration, which
started from the speech or speaker recognition task and extended to the analy-
sis of non-speech, music and sound scenes and events. The combination of the
CNN structure with recurrent units has increased the detection performance
by taking advantage of the characteristics of each architecture. This is the
case of convolutional recurrent neural networks (CRNNSs) [45], which provided
state-of-the-art performance especially in the case of polyphonic SED. CRNNs
consolidate the CNN property of local shift invariance with the capability to
model short and long term temporal dependencies provided by the RNN layers.
This architecture has been also employed in almost all of the most perform-
ing algorithms proposed in the last editions of research challenges such as the
IEEE Audio and Acoustic Signal Processing (AASP) Challenge on Detection
and Classification of Acoustic Scenes and Events (DCASE) [46]. In detail,
both the first two classified algorithms for the SED task at the DCASE-2017
make use of mel spectrogram coefficients as spectral representation of the au-
dio signal which is processed by a CNN with 1D filters in the case of the first
ranked [47] or by a 2D CNN with frequency pooling in the case of the second
classified [48]. The architectures are, then, combined with recurrent layers to
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process the features obtained by the convolutional blocks. In [49] the authors
propose a hierarchical structure based on CNNs and DNNs trained with multi-
task loss functions. Specifically, in the first stage the networks are trained for
background noise rejection, using a weighted loss function to penalize the false
positive errors. In the second stage the multi-task loss enables the networks
to simultaneously perform the event classification task and the onset time es-
timation. This approach obtained the third place in the final ranking. All of
the aforementioned systems largely outperform the baseline system based on a
Multi Layer Perceptron architecture (MLP) and Logmel energies as features.

On the other hand, if the datasets are not sufficiently large, problems such as
overfitting can be encountered with these models, which typically are composed
of a considerable number of free-parameters (i.e., more than 1M).

Encouraging polyphonic SED performance have been obtained using Cap-
sNets in preliminary experiments conducted on the Bird Audio Detection task
in occasion of the DCASE 2018 challenge [50], confirmed by the results reported
in [51]. The CapsNet [52] is a recently proposed architecture for image classifi-
cation and it is based on the grouping of activation units into novel structures
introduced in [53], named capsules, along with a procedure called dynamic
routing. The capsule has been designed to represent a set of properties for an
entity of interest, while dynamic routing is included to allow the network to im-
plicitly learn global coherence and to identify part-whole relationships between
capsules.

1.4 Main lIssues

In controlled laboratory conditions where the data used to develop computa-
tional sound scene and event analysis methods matches well with the test data,
it is possible to achieve relatively high accuracies in the detection and classi-
fication of sounds. However, there are several complexities in computational
sound analysis and current technologies face many challenges, mainly related
to the acoustics of sound scenes and events, when they are employed in realistic

environments. Among these challenges we can include:

e the effect of the environment acoustics: reverberation, background noises
and the channel coupling (impulse response) between the source and the

recording equipment;

e the intra-class variability, i.e., high difference of the acoustic characteris-
tics of even a single class of sounds and on the other hand the similarity
of many different types of sounds to the target events [54];

e the polyphony, i.e. the occurrence of multiple simultaneous events. In
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realistic environments there are almost always multiple sources producing
sound at the same time.

In addition to these complications related to the acoustics of sound scenes
and events, there are also several fundamental limitations related to the compu-
tational methods. In particular, to develop effective models based on the deep
learning paradigm, a very large set of examples of the target (and non-target)
sounds is required. In contrast to the situation in image classification, currently
available datasets that can be used to train such systems are more limited in
size, diversity, and number of event instances, even though recent contribu-
tions such as AudioSet [55] or the DCASE challenges and related workshops
[56, 46, 57] have provided public available datasets to reduce this gap.

1.5 Case studies

In this thesis, different application of deep learning for computational audio
models in real environments are analyzed. They are evaluated and compared
with state-of-the-art methods on different databases, some of these resulting
novel approaches. The broad and extensive experimental evaluations highlight
the advantages provided by the acoustic models based on deep learning.
The addressed tasks are the following;:
e Sound event Classification:
— Snore sounds excitation localization;

— Acoustic road surface roughness classification;

— Bird audio detection;

e Sound event Detection:
— Overnight snore sound detection;
— Rare sound event detection;

— Voice activity detection in multiroom environments;

e Polyphonic Sound event Detection:

— A neural network approach for sound event detection in real life
audio;

— Polyphonic sound event detection by using CapsNets
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Background

The Computers are able to perform complex calculus operations in a short
amount of time. However computers cannot compete with humans in dealing
with: common sense, ability to recognize people, objects, sounds, comprehen-
sion of natural language, ability to learn, categorize, generalize.

Therefore, why does the human brain show to be superior w.r.t common
computers for these kind of problems? Is there any chance to mimic the mech-
anisms characterizing the way of working of our brain in order to produce more
efficient machines?

In the field of signal analysis, the aim is the characterization of such real-
world signals in terms of signal models, which can provide the basis for a theo-
retical description of a signal processing system. They are potentially capable
of letting us learn a great deal about the signal source, without having to have
the source available.

The “Deep Learning” is a new area of machine learning research, which has
been introduced with the objective of moving Machine Learning closer to one
of its original goals: Artificial Intelligence. Deep Learning is about learning
multiple levels representation and abstraction that help to make sense of data
such as images, sound, and text.

Therefore, in this chapter a theoretical description of the principal Deep
Neural Network (DNN) architectures is given. In addition, the algorithms
used for their parameter estimation are described, with a focus on the most
widely model structure used in the field of the computational acoustic event
analysis, with a particular focus on the supervised machine learning approach,
which is the mainstream and typically the most efficient and generic approach
in developing such systems.

2.1 The Artificial Neural Networks

The human brain is composed of a big set of specialized cells (neurons) con-
nected among them, which memorize and process information, thus controlling
the body activities they belong to as depicted in Figure 2.1. The human brain
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Figure 2.1: The human brain.

is probably the most remarkable result of evolution for its ability to elaborate
information. The Artificial Neural Networks are mathematical models that rep-
resent the interconnection between elements defined "Artificial Neurons', math-
ematical constructs that somehow imitate the properties of biological neurons,
going to reproduce the functioning of the human nervous system.

2.1.1 The Human Nervous System

The biological neuron is composed of three main parts: the cell body is named
Soma, which is the calculation unit, the Azon, that acts as a transmission line
output and the Dendrites, that are receptive areas and that receive input signals
from other axons via the synapses. The Synapses are the functional units of the
elementary structure, that manages the iterations between neurons. The cell
body performs a weighted sum (integration) of the input signals. If the result
exceeds a certain threshold value then the neuron is active and is produced
the action potential which is transported to the axon, instead if the result does
not exceed the threshold value of the neuron remains in a state of rest. The
Biological neurons (Figure 2.2) are electro-chemical devices, operating at low
rates (approximately in the order of milliseconds), while digital circuits operate
at very high rates (nanoseconds).

10
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Figure 2.2: The neuron model.

The neuron properties can be described in:

e local simplicity: the neuron receives stimuli (excitation or inhibition) from
dendrites and produces an impulse to the axon which is proportional to
the weighted sum of the inputs;

e global complezity: the human brain possess O(10'°) neurons, with more
than 10k connections each;

e learning: even though the network topology is relatively fixed, the strength
of connections (synaptic weights) can change when the network is exposed
to external stimuli;

e distributed control: no centralized control, each neuron reacts only to its

own stimuli;

e tolerance to failures: performance slowly decrease with the increase of

failures.

The biological Neural Networks are able to solve very complex tasks in few
time instants (like memorization, recognition, association, and so on.)

11
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2.2 Historical Background

In 1943, McCulloch and Pitts created a computational model for neural net-
works based on mathematics and algorithms. They called this model threshold
logic. The model paved the way for neural network research to split into two
distinct approaches. One approach focused on biological processes in the brain
and the other focused on the application of neural networks to artificial intel-
ligence. In the late 1940s, the psychologist Donald Hebb created a hypothesis
of learning based on the mechanism of neural plasticity that is now known as
Hebbian learning. Hebbian learning is considered to be a ’typical’ unsupervised
learning rule and its later variants were early models for long term potentia-
tion. These ideas started being applied to computational models in 1948 with
Turing’s B-type machines. In 1954, Farley and Clark first used computational
machines, then called calculators, to simulate a Hebbian network at MIT. Other
neural network computational machines were created by Rochester, Holland,
Habit, and Duda (1956).

In 1958, Rosenblatt created the perceptron, an algorithm for pattern recog-
nition based on a two-layer learning computer network using simple addition
and subtraction. With mathematical notation, Rosenblatt also described cir-
cuitry not in the basic perceptron, such as the exclusive-or circuit, a circuit
whose mathematical computation could not be processed until after the back-
propagation algorithm was created by Werbos (1975). Neural network research
stagnated after the publication of machine learning research by Minsky and Pa-
pert in 1969. They discovered two key issues with the computational machines
that processed neural networks. The first issue was that single-layer neural
networks were incapable of processing the exclusive-or circuit. The second sig-
nificant issue was that computers were not sophisticated enough to effectively
handle the long run time required by large neural networks. Neural network
research slowed until computers achieved greater processing power. Also key
in later advances was the backpropagation algorithm presented by Werbos in
1975, which effectively solved the exclusive-or problem.

The parallel distributed processing of the mid-1980s became popular under
the name connectionism. The paper presented by Rumelhart and McClelland
[58] provided a full exposition on the use of connectionism in computers to
simulate neural processes. In 1994, Y. Bengio presented another architecture
inspired by the animal visive cortex named Convolutional Neural Networks
[59], which will have a huge success in the field of image processing.

Anyway, after the initial enthusiasm, the artificial neural networks lost in-
terest, especially due the limited resources available with that time’s CPUs. In
the mid-2000, the computing power increased through the use of GPUs and
distributed computing and neural networks were deployed on a large scale,

12
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particularly in image and visual recognition problems. Since then, it became
known as "deep learning".

2.2.1 Fundamentals of the Artificial Neural Networks

An artificial neural network (ANN), is a mathematical/informatical model cal-
culation based on biological neural networks. This model is constituted by
a group of interconnections of information consisting of artificial neurons and
processes using a connectionist approach to computation. In most cases, an ar-
tificial neural network is an adaptive system that changes its structure, which
is based on external or internal information that flows through the network
during the learning phase. In practical terms neural networks are non-linear
structures of statistical data organized as modelling tools. They can be used to
simulate the complex relationships between inputs and outputs that other an-
alytic functions fail to represent. An artificial neural network receives external
signals on a layer of nodes (processing unit) input, each of which is connected
with a number of internal nodes, organized in several levels. Each node pro-
cesses the received signals performing a very simple task and transmits the
result to subsequent nodes.

Bias

b

T Activate
m function  Output

Inputs T2 O > W2 ,@ —@ -y

1T O— W1

rs O——— Ws
Weights

Figure 2.3: The artificial neuron model.

The artificial neuron is an information-processing unit that is fundamental
to the operation of a neural network. The model of a neuron is composed of
three basic elements, as shown in (Figure 2.3)

e a set of synapses, or connecting links, each of which is characterized by
a weight or strength of its own, wg,,; The neural model also includes an
externally applied bias, denoted by bg.

13
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e an adder for summing the input signals, weighted by the respective synap-
tic strengths of the neuron; the operations described here constitute a
linear combiner;

e an activation function for limiting the amplitude of the output of a neu-
ron. Typically, the normalized amplitude range of the output of a neuron
is written as the closed unit interval [0,1], or, alternatively, [-1,1].

The most typical non-linear function ¢(z) employed as activation functions are:

e the sigmoid function: it is defined as a strictly increasing function that
exhibits a graceful balance between linear and nonlinear behavior; an

example of the sigmoid function is the logistic function defined by:

1

o (v) = 1+ exp (—av)

(2.1)

e the hyperbolic tangent (tanh): it is simply a scaled and shifted version
of the sigmoid function, defined as:

1—e 22
= 2.2
@) = 1o (22)
y
T v
y = tanhx
-2 -1 1 2
S LIITITTT TP 1
Figure 2.4: The tanh non-linear function.
e the Rectifier Linear Unit (ReLU):
o(x) = max(0, z) (2.3)

e the softmax: it is used on the last layer of a classifier setup: the outputs
of the softmax layer represent the probabilities that a sample belongs to
the different classes. Indeed, the sum of all the output is equal to 1.

olrg) = ——— fork=1,... | K (2.4)

14



“PhDthesis. VES” — 2019/2/12 — 19:36 — page 15 — #35

2.2 Historical Background

Figure 2.5: The ReLU non-linear function.

The link input-output, which is the transfer function of the network, is not
programmed but is simply obtained by a learning process based on empirical
data. At the beginning of the training procedure, the weights wy,, are ran-
domly initialized, and they are adjusted as learning proceeds. There are three
major learning paradigms, each corresponding to a particular abstract learning
task. They are supervised learning, unsupervised learning, and reinforcement
learning. Usually a type of network architecture may be used in each of these
tasks:

o the Supervised Learning: is used if is available a set of data for the train-
ing comprising typical examples of the inputs and their corresponding
outputs: in this way the network can learn to infer the relation that
binds them. Subsequently, the network is trained by means of an ap-
propriate algorithm (typically, the backpropagation which is precisely a
supervised learning algorithm), which uses such data for the purpose of
modifying the weights and other parameters of the network to minimize
the estimation error for the whole training. If the training is successful,
the network learns to recognize the unknown relationship that binds the
input variables to the output, and is therefore able to make predictions
even where the output is not known a priori; in other words, the final
objective supervised learning is the prediction of the output value for
each valid value input, relying only on a limited number of examples of
correspondence. To do this, the network must be finally provided with
an adequate generalization ability, with reference to cases unknown to it.
This will solve the problems of regression or classification;

e The Reinforcement Learning: The algorithms for reinforcement learning
ultimately trying to determine a policy to maximize the incentives re-
ceived by the agent accumulated in the course of its exploration of the
problem. The reinforcement learning differs from the supervised because
it has never seen pairs of input-output examples known, nor shall correct

15
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explicit suboptimal actions. In addition, the algorithm is focused on the
online use, which implies a balance between exploitation and exploration

of unknown situations of current knowledge;

o The non-Supervised Learning: is based on training algorithms that mod-
ify the network weights only by reference to a set of data that includes
just the input variables. These algorithms attempt to group the input
data and therefore to identify the appropriate cluster representative of
the data, typically by making use of topological methods or probabilistic.
The unsupervised learning is also used to develop techniques for data
compression.

2.3 Deep Neural Network Architectures for
Analysis of Sound Events

The manner in which the neurons of a neural network are structured is inti-
mately linked with the task they are designed for. Hereafter, a brief description
of the neural network architectures employed in this thesis for the analysis of
sound events is provided.

2.3.1 Muilti Layer Perceptron (MLP)

Input Hidden Output
layer layer layer
Input 1

Input 2

Input 3

m m Ouput
_/ _/

Input 4

Input 5

Figure 2.6: The MLP Neural Network.
The Multi Layer Perceptron (MLP) or Multilayer Feedforward Network is
characterized by the presence of one or more hidden layers, whose computation

nodes are correspondingly called hidden neurons. The MLP is one of the first

16
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“deep” architectures being introduced in 1986 [58]. Artificial Neural Networks
are often referred as deep when they have more than 1 or 2 hidden layers.
Indeed, it is well known that an MLP with one or more hidden layers and a
sufficient number of non-linear units (neurons) can approximate any continu-
ous function on a compact input domain with arbitrary precision. Each node
applies an activation function over the weighted sum of its inputs. The units
are arranged in layers, with feed forward connections from one layer to the
next. The behaviour of this architecture is parametrized by the connection
weights, which are adapted during the supervised network training. In the for-
ward pass, input examples are fed to the input layer, and the resulting output
is propagated via the hidden layers towards the output layer. At the backward
pass, the error signal originating at the output neurons is sent back through
the layers and the network parameters (i.e., weights and biases) are tuned.

A single neuron can be formally described as:
D
glun]) = ¢ | D wjuiln] +b |, (2.5)
j=1

where u[n] € RPX1 the bias b is an externally applied term and ¢(-) is the
non-linear activation function. Thus, the mathematical description of a one-
hidden-layer MLP is a function f : RP? — RD', where D’ is the size of the
output vector, so:

f(u[n]) = ¢ (b2 + Wa (¢ (b1 + Wa - ujn)))), (2.6)

where W, and b; are the respective synaptic weights matrix and the bias vector
of the i-th layer.

Regarding the computational complexity, considering additions and multi-
plications as separate operations, the total number of operations for each layer
is given by

P P
Costare = Y 2Qi 1Qi + »_ Qi (2.7)
i=1 i=1
where P is the number of layers, and ); denotes the number of units of layer i.
The first term, considers the number of operations for a linear unit, while the
second term considers the operations required by the ReLLU activation function
(i-e., the maximum operation).

2.3.2 Convolutional Neural Networks (CNN)

The birth of this kind of feed-forward neural network is related to image pro-
cessing [60]. Indeed, neural networks as MLPs take vectors as input, while this

17
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Figure 2.7: The Convolutional Neural Network.

condition is not satisfied in the image case. The problem is tackled by means of
convolutional layers, whose aim is to process restricted a area of a 2-D input,
similarly to what happens in the animal visual cortex. Convolution kernels
process the input data matrix by dividing it in local receptive fields, a region of
the same size of the kernel, and sliding the local receptive field across the entire
input. Thus, the whole input matrix is processed by repeated application of
a function across its sub-regions, obtaining so-called feature maps. Practically,
this is implemented by a convolution of the input data with a linear filter,
adding a bias term and then applying a non-linear function. The weights in
each feature map are shared: all hidden neurons are aimed to detect exactly
the same pattern just at different locations in the input image. The kernels are
generally small compared to the input, allowing CNNs to process large inputs
with few trainable parameters.

Single depth slice

111,24
354041 |as |50 [ ] * max pool with 2x2 filters
40 |40 |42 |46 |52 of1fo0 — 56|78 and stride 2 6|8
4246|5055 |55 >< ofofo a2 32010 3|4
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y
(a)
(b)

Figure 2.8: Details of convolution (a) and maz-pooling (b) operations.

CNN is a feed-forward neural network [61] usually composed of three types
of layers: convolutional layers, pooling layers and layers of neurons, as shown
in Figure 2.7. Pooling layer just reduces the dimension of the matrix by a rule:
a submatrix of the input is selected, and the output is the maximum value of
this submatrix. The pooling process introduces tolerance against shifts of the
input patterns. Together with convolution layer it allows the CNN to detect if
a particular event occurs, regardless its deformation or its position. Finally, at
the top of the network, a layer of neurons is applied. This layer does not differ
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from MLP, being composed by a set of activation and being fully connected
with the previous layer.

Denoting with W,,, € RE1m*Ezm the m-th kernel and with b,,, € RP1*P2 the
bias vector of a generic convolutional layer, the m-th feature map h,,, € RP1*P2
is given by:

D3
b, = (Z W, g + bm) , (23)

d=1

where * represent the convolution operation, and ug € RP1*P2 is a matrix
of the three-dimensional input tensor u € RP1*P2xDPs  The dimension of the
m-th feature map h,, depends on the zero padding of the input tensor: here,
padding is performed in order to preserve the dimension of the input, i.e.,
h,, € RP1xDz,

The computational complexity of the CNN is given by the sum of the compu-
tational complexity of the convolutional layers and of the fully connected layers.
The complexity of convolutional layers can be obtained from (2.8) and from
the number of operations of the max-pooling operator. Regarding the former,
supposing square kernels, i.e., K1, = K1,, = K;,, the number of operations
required for calculating the feature map h,, is

COStPer—Feature—Map = 2K7277,D1D2D3 + D1D2(D3 - 1), (29)

where the first term of the sum considers the number of operations required
for the convolution and the sum with the bias term, and the second term
the operations for the ReLLU activation function. As aforementioned, the max-
pooling operator calculates the maximum over a P; X P, matrix. Supposing that
the maximum operation is calculated pair by pair, the max-pooling operator
requires the following number of operations

COStMax—Pooling = (P1P2 — 1)(D1 — P1 + 1)(D1 — PQ + 1) (210)

The total number of operations per layer can be calculated by multiplying
the expressions in (2.9) and (2.10) by the number of kernels and summing
the contributions. Finally, the total number of operations of the CNN can be
obtained by summing the individual contributions of the convolutional layers
and of the fully connected layers.

2.3.3 Siamese Neural Networks

The Siamese Neural Network is an architecture able to learn a latent represen-
tation of a given input. In particular, a SNN is composed of two twin networks
with binded weights. A pair of inputs is provided to the system, one to each
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twin network. Downstream, the network maps these inputs into two different
representation vectors. Then, a certain type of distance between those two
representations is computed. The euclidean distance is typically used.

Consider X7, X5 as a pair of two input samples and Y (X7, X2) as the label
assigned to this pair, we assign Y = 0 (positive example) if the inputs X; and
Xo are from the same distribution, Y = 1 (negative example) otherwise. The
euclidean distance between the mapping S.(X;) and S.(X3) performed by the
network is defined as:

Ey = [S.(X1) — 8.(X2). (2.11)

The training procedure consists in minimize the differences of X7, X5 for inputs
belonging to the same class (Y = 0) while maximize the differences for inputs
of different classes (Y = 1). The loss function used to achieve this minimization
is the contrastive loss, described by LeCun et al. in [62]:

Loss = (1 — Y)%(Ew)2 + (Y)%{(maz(O, m— By} (2.12)

Here the parameter m > 0 is the margin that allows only negative examples
whose distance is less than the radius defined by m itself, to contribute to the
loss function.

S«

¢ %@
o' T \
@ e

Figure 2.9: Siamese Neural Networks.

2.3.4 Generative Adversarial Networks (GAN)

The Generative Adversarial Networks (GAN) were introduced by Ian Good-
fellow et al. in 2014 [63] with the aim to artificially generate photographs
with many realistic characteristics, looking authentic to human observers. The
architecture is composed of two networks: one generates candidates (genera-
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tive), while the other network evaluates them (discriminative). Typically, the
generative network learns to map from a latent space to a particular data distri-
bution of interest, while the discriminative network classify the data produced
by the generator between instances from the true data distribution and syn-
thetic data. The generative network’s training objective is to increase the error
rate of the discriminative network (i.e., "fool" the discriminator network by
producing novel synthesized instances that appear to have come from the true
data distribution). The objective function of the discriminative is instead a
more traditional binary classification cost function (i.e., binary cross-entropy).

In [64], adversarial autoencoders have been introduced with the objective of
turning an autoencoder into a generative model (Figure 2.10). In particular,
the encoder portion of the network learns to convert a data distribution into
a prior distribution. On the other side, the decoder learns to map a prior
distribution into the data distribution, indeed becoming a generative network.
The discriminator network operates between the encoder and the decoder: it
takes as input data generated by the encoder or data sampled from the prior
distribution and it gives as output the probability of the data of being generated
by the encoder.

Generator

Training
Corpus

Sample from
prior distribution

Discriminator

Figure 2.10: The adversarial autoencoder approach proposed in [64]. g is the
output of the encoder, and y represents data sampled from a prior
distribution.

2.3.5 Recurrent Neural Networks (RNN)

The Recurrent Neural Networks (RNN)s are a particular neural architecture
designed to make use of the information obtained from prior network states,
therefore giving the network the capability to “remember” past context infor-
mation. This feature is obtained by adding a set of recursive connections going
from and to each hidden neuron. Due this characteristic, the output is now
computed only after a batch of input frames are forwarded into the network
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so that the final decision will rely on the correlation between different adjacent
frames. Indeed, these characteristics place the RNNs in close connection with
the audio processing, due to the sequential nature of the signal, which depends
of its temporal evolution. In practice, two are the typologies which have been
highly employed in addition to the “standard” RNNs: the network based on
the Long Short Term Memory (LSTM) units and on the Gated Recurrent Unit
(GRU). Both of these architectures rely on computational units which act as
memory blocks, thus they are able to encapsulate mid-long term characteris-
tics of the audio signal. In addition to the memory blocks, the bidirectional
RNNs [65] are also common architectures. A bidirectional RNN can access
context from both temporal directions, which makes it suitable i.e. for speech
recognition, where whole utterances are decoded. This is achieved by process-
ing the input data in both directions with two separate hidden layers. Both
hidden layers are then fed to the output layer.

Long Short Term Memory (LSTM)

Compared to a conventional RNN, in the LSTM RNN [66] the hidden units are
replaced by so-called memory blocks. These memory blocks can store informa-
tion in the ‘cell variable’ ¢;. In this way, the network can exploit long-range
temporal context. Each memory block consists of a memory cell and three
gates: the input gate, output gate, and forget gate, as depicted in Figure 2.11.

bf\
xt—u
ht-l/ forget
gate Qi() ( .
—
input v\h
\ Vg gy 1
A NS
VAR AN
hey % b,

Figure 2.11: Long Short-Term Memory block, containing a memory cell and
the input, output, and forget gates

These gates control the behaviour of the memory block. The activation
vector of each gate is computed as, for example for the input gate,

'I:t = tanh(Wmmt + Whiht—l + Wcict—l + bz) (213)
The forget gate can reset the cell variable which leads to ‘forgetting’ the stored

22



“PhDthesis VES” — 2019/2/12 — 19:36 — page 23 — #43

2.3 Deep Neural Network Architectures for Analysis of Sound Events

input c¢;, while the input and output gates are responsible for reading input
from x; and writing output to h¢, respectively:

Cy = -ft Xei_1 + ’it ® tanh(chwt + thhtfl + bc) (214)

ht =0;: ® tanh(ct) (215)

where ® denotes element-wise multiplication and the activation function (here
the tanh) is also applied in an element-wise fashion. The variables i, 0, and f,
are the output of the input gates, output gates and forget gates, respectively, b,
is a bias term, and W is a weight matrix. Each memory block can be regarded
as a separate, independent unit. Therefore, the activation vectors , o, f,,
and c¢; are all of the same size as hy, i.e., the number of memory blocks in the
hidden layer. Furthermore, the weight matrices from the cells to the gates are
diagonal, which means that each gate depends only on the cell within the same
memory block.

Gated recurrent units (GRU)

Gated recurrent units (GRUs) are a gating mechanism in recurrent neural net-
works, introduced in 2014 [67]. Their performance on polyphonic music mod-
eling and speech signal modeling was found to be similar to that of LSTMs.
However, GRUs have been shown to exhibit better performance on smaller
datasets. GRU layers control the information flow through a gated unit struc-
ture, which depends on the layer input, on the activation at the previous frame
and on the reset gate. For frame ¢, the total activation of GRU layer is a linear
interpolation of previous activation h;_; and the candidate activation h; as:

ht = U 'htfl —l—(l—ut) 'h/t, (216)

where u; denotes the update gate. Candidate activation h; is a function of
h;_1, the GRU layer’s input ; and the reset gate r;. tanh and hardsigmoid
activation functions are used for update and reset gates, respectively. GRU’s
activation is mainly controlled by reset gate when the GRU layer’s input x; is
significantly different than in previous frames. When reset gate is closed r; = 0,
the candidate activation does not include any contribution from h;_;. Fast
response to the changes in the input and the previous activation information is
fundamental for high performance in the proposed algorithm, where the task
is to detect a small chunk of consecutive time frames where the target event is
present.
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Figure 2.12: The Gated Recurrent Unit, containing the input, output, and for-
get gates

2.3.6 Capsule Neural Networks (CapsNet)

The CapsNet architecture relies on the CNN architecture and includes its com-
putational units in the first layers of the network as invariant features extractor
from the input hereafter referred as X. Following Hinton’s preliminary works
[53], in the CapsNet presented in [52] two layers are divided into many small
groups of neurons called capsules. In those layers, the scalar-output feature
detectors of CNNs are replaced with vector-output capsules and the dynamic
routing, or routing-by-agreement algorithm is used in place of max-pooling, in
order to replicate learned knowledge across space.

Formally, we can rewrite (2.8) as

a Wi X+ ...+ ayi Wiy Xy
H,, = : . (2.17)
kWi Xy + ...+ agWruXy

In (2.17), (W % X) has been partitioned into K groups, or capsules, so that
each row in the column vector corresponds to an output capsule (the bias term
b has been omitted for simplicity). Similarly, X has been partitioned into M
capsules, where X; denotes an input capsule 7, and W has been partitioned
into submatrices W;; called transformation matrices. Conceptually, a capsule
incorporates a set of properties of a particular entity that is present in the
input data. With this purpose, coefficients ;; have been introduced. They are
called coupling coefficients and if we set all the a;; = 1, (2.8) is obtained again.

The coefficients «;; affect the learning dynamics with the aim to represent
the amount of agreement between an input capsule and an output capsule.
In particular, they measure how likely capsule ¢ may activate capsule j, so
the value of a;; should be relatively accentuated if the properties of capsule
i coincide with the properties of capsule j in the layer above. The coupling
coefficients are calculated by the iterative process of dynamic routing to fulfill
the idea of assigning parts to wholes. Capsules in the higher layers should com-
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prehend capsules in the layer below in terms of the entity they identify, while
dynamic routing iteratively attempts to find these associations and supports
capsules to learn features that ensure these connections.

Dynamic Routing

After giving a qualitative description of routing, we describe the method used
in [52] to compute the coupling coefficients. The activation of a capsule unit is a
vector which holds the properties of the entity it represents in its direction. The
vector’s magnitude indicates instead the probability that the entity represented
by the capsule is present in the current input. To interpret the magnitude as
a probability, a squashing non-linear function is used, which is given by:

Ll s
- K
N P

(2.18)

where v; is the vector output of capsule j and s; is its total input. s; is a
weighted sum over all the outputs u; of a capsule in the Primary Capsule layer
multiplied by the coupling matrix W;:

S; = Zaijﬁj“, ﬁ]“ = Wijuz-. (219)

The routing procedure works as follows. The coefficient 3;; measures the cou-
pling between the i-th capsule from the Primary Capsule layer and the j-th
capsule of the Detection Capsule layer. The §;; are initialized to zero, then
they are iteratively updated by measuring the agreement between the current
output v; of each capsule in the layer j and the prediction G;; produced by the
capsule ¢ in the layer below. The agreement is computed as the scalar product

Cij = Vj . ﬁj\iv (2.20)

between the aforementioned capsule outputs. It is a measure of how similar
the directions (i.e., the proprieties of the entity they represent) of capsules 4
and j are. The 3;; coefficients are treated as if they were log likelihoods, thus
the agreement value is added to the value owned at previous routing step r:

Bij(r+1) = Bij(r) + cij(r) = Bij(r) + vj - @ 4(r), (2.21)

where 7 represents the routing iteration. In this way the new values for all the
coupling coefficients linking capsule i to higher level capsules are computed. To
ensure that the coupling coefficients c;; represent log prior probabilities, the
softmax function to 3;; is computed at the start of each new routing iteration.
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Formally: )
exp ij
Zk exp(Bir) 7

so Y. j o =1. Thus, «a;; can be seen as the probability that the entity repre-

(2.22)

aij =

sented by capsule Primary Capsule ¢ is a part of the entity represented by the
Detection Capsule j as opposed to any other capsule in the layer above.

Margin loss function

The length of the vector v; is used to represent the probability that the entity
represented by the capsule j exists. The CapsNet have to be trained to produce
long instantiation vector at the corresponding ki, capsule if the event that it
represents is present in the input audio sequence. A separate margin loss is
defined for each target class k as:

Ly, = Ty max(0,m ™" — [|v;||)>+

, (2.23)
A(1 — T) max(0, [|v;]| —m™)

where T}, = 1 if an event of class k is present, while A is a down-weighting
factor of the loss for absent sound event classes classes. m*, m~™ and \ are
respectively set equal to 0.9, 0.1 and 0.5 as suggested in [52]. The total loss is
simply the sum of the losses of all the Detection Capsules.

2.4 Optimization Algorithms

Most deep learning training algorithms involve optimization of some sort. The
most widely used is the gradient based optimization, which belongs to the first
order type. Optimization is the task of either minimizing some function f(z)
by altering x: f(x) is called objective function, but in the case when it has to
be minimized, it is also call the cost function, loss function, or error function.
The aim of the optimization is reached doing small change € in the input z, to
obtain the corresponding change in the output f(z):

flate)~ fz)+ef(a). (2.24)

This formulation is based on the calculation of the derivative f’(x). The gra-
dient descent is the technique based on the reduction of f(z) by moving z in
small steps with the opposite sign of the derivative. The aim is to find the
minimum of the cost function: when f’(x) = 0, the derivative provides no
information about which direction to move, therefore this point is defined as
stationary points. A local minimum is a point where f(z) is lower than at all
neighbouring and it is no longer possible to decrease f(x) by making infinites-
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Figure 2.13: An example of the application of gradient descent to search for
minimum of a function in a figurative 2-D plane. The process is
iterated four times, while the small central ellipse corresponds to
the minimum of the function.

imal steps. The absolute lowest value of f(x) is a global minimum. For the
concept of minimization to make sense, there must still be only one (scalar)
output. For functions that have multiple inputs f : R® — R, the concept of
partial derivatives is introduced. The gradient V f(x) is the vector containing
all the partial derivatives.

The method of steepest descent or gradient descent states that decrease f by
moving in the direction of the negative gradient.

x’ =x — e Vxf(x), (2.25)

where € is the learning rate, a positive scalar determining the size of the step.
Large training sets are necessary for good generalization, but large training
sets are also more computationally expensive. The cost function decomposes
as a sum over training example of per-example loss function: i.e., the negative
conditional log-likelihood of the training data is defined as:

=1

where L is the per-example loss L(x,y,60) = —logp(y|x;0). The gradient de-
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scent requires computing:

1 & ) )
Vo (0) = — > VoL(xD, 4D, 0). (2.27)

i=1

The computational cost of this operation is proportional to the number of
examples m, therefore as the training set size grows the time to take a single
gradient step becomes prohibitively long.

2.4.1 Stochastic Gradient Descent (SGD)

Stochastic gradient descent (SGD) is an extension of the gradient descent al-
gorithm: the insight is that the gradient is an expectation estimated using
a small set of samples. On each step of the algorithm, a sample of example
B = {x(l), . ,X(m/)}, called minibatch, is drawn uniformly from the training
set. The minibatch size m’ is typically chosen to be a relatively small num-

ber of examples. The estimate of the gradient is: g = %V(; S L(x@,y® )

=1
using examples from the minibatch B. The SGD algorithm then follows the
estimated gradient downhill:

0+ 0—cg (2.28)

where € is the learning rate.

2.5 Generalization Techniques

In order to obtain more robust models, different techniques have been proposed
to regqularize the weight update during the neural networks training. They have
the aim to improve the generalization proprieties of the model, i.e., the ability
to perform on newly unseen data as well as (in a reasonable manner) on the
training set. A brief description of the most common techniques is given in the
following paragraphs.

2.5.1 Dropout

Dropout [68] is a regularization technique for reducing overfitting in neural
networks by preventing complex co-adaptations on training data. It is a very
efficient way of performing model averaging with neural networks. The term
“dropout” refers to the operation of randomly exclude units during the training
of a neural network.

Practically, during a training iteration, a percentage (drop-rate) of units for
each layer where the the dropout is employed are not updated. They are se-
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lected randomly at each new step, therefore it is like we were training a network
with a different layout. This allows to prevent overfitting on the training data,
making the single units more robust to the conditions changing.

2.5.2 Batch Normalization

Batch Normalization [69] is a technique which consists to add a normalization
“layer” between each layers, in order to reduce the problem of internal covariate
shift. In the case that the input distribution of a learning system, such as a
neural network, changes, one speaks of a so-called covariate shift. If this change
happens on the input of internal nodes of (deep) neural networks, it is called
an internal covariate shift

An important thing to note is that normalization has to be done separately
for each dimension (input neuron), over the ‘mini-batches’, and not altogether
with all dimensions. Hence the name ‘batch’ normalization. Due to this nor-
malization “layers” between each fully connected layers, the range of input
distribution of each layer stays the same, no matter the changes in the previ-
ous layer.

Formally, given x inputs from the k' neuron, the Batch Normalization is
computed as follows:

xF — E(x¥)

Var|[x¥]

%= (2.29)

Normalization brings all the inputs centered around 0. This way, there is
not much change in each layer input. So, layers in the network can learn from
the back-propagation simultaneously, without waiting for the previous layer to
learn. This speeds up the training of networks, leading to the possible usage of
higher learning rates.
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Every problem to be solved with machine learning and in particular with deep
learning techniques requires the availability of a sufficient amount data for al-
gorithm parametrization: the ability to access public dataset, representative of
a real scenario, allows to test the approaches, in order to evaluate the effective
benefit in real applications, and to compare the performance of existing algo-
rithms on a common comparison basis. A reliable evaluation procedure for a
classification or recognition system will involve a standard dataset of example
input data along with the intended target output, and well-defined metrics to
compare the systems’ outputs with this ground truth.

3.1 Datasets

Labelled data has a crucial influence on algorithm development and evaluation
in research fields dealing with classification and detection. Any machine learn-
ing algorithm is only as good as the data behind it in terms of modeling and
generalization properties.

Well-established and easily accessible benchmark databases attract the in-
terest of the research community as readily available support for research, thus
accelerating the pace of development for related fields. There are many well-
known databases in related research areas, such as TIMIT [70] for speech recog-
nition or the Million Song Dataset [71] for various tasks in music information
retrieval. In view of this critical influence, the process of creating a dataset for
system developing is, naturally, very delicate. The content must be carefully
selected to provide sufficient coverage of the aspects of interest, sufficient vari-
ability in characterizing these aspects, and a sufficient quantity of examples for
robust modeling. Unfortunately, there is no rule on what “sufficient” means,
as it usually depends on the projected use of the data.

Compared to speech, the categories and sequences of sound events are not
so straightforward to define, as any object or being may produce a sound.
Environmental sounds are often produced in a context of interaction combined
with movement when manipulating an object. The sounds can be organized
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into categories based on different properties, such as the sound source (e.g.,
cup), its production mechanism (e.g., hit), or even the source properties (e.g.,
metal), and the same sound can belong to many different categories, depending
on the chosen property (sound when hitting a metallic cup). In addition, there
are no specific rules on how environmental sounds co-occur. Environmental
sounds belong to different levels of cognitive representation, in connection with
the surface characteristics of sounds and the sources that produce them. Studies
like [72, 73] concern the perceptive characterization of these sounds and of
the cognitive mechanisms used to identify them. The process that combines
perception and action of environmental sound is one of the major research
themes. This is a vital and unique gateway for research in auditory cognition
and for interactive sound design applications.

For this reason, building a database for environmental sounds is a compli-
cated task, with the choice of classes usually dictated by the targeted research,
and the size limited by practical aspects of data collection especially compared
to well-known datasets available for image processing (i.e., Imagenet[74]). Any-
way, very recently a project promoted by Google has been presented [55], with
the aim to collect a large human annotated dataset and a relative ontology
obtained from YouTube videos.

3.1.1 Dataset Acquisition

Recording real-world audio is the obvious data collection method for obtaining
realistic data. Creating a new dataset by recording new data has the advantage
of producing a collection with controlled audio quality and content.

Typically, the recording settings such as microphone type, number of chan-
nels, sample rate, bit depth are defined in the planning phase of the project, and
often they also depend on the final objectives of the project (i.e., a mobile ap-
plication vs. a research corpus). Anyway, the most common sampling settings
are 44.1 kHz, 16 bit respectively for sampling-rate and bit depth. Numerous
computational auditory scene analysis research projects make use of binaural
heads setups (Figure 3.1), with the aim to replicate the frequency-dependent
distortions of phase and amplitude on sounds produced by the human auditory
system.

Although the use of the same settings and device(s) throughout the data will
result in a better quality set, some recent algorithms are designed to counteract
these diversities, leading to the possibility to gather material from different
recording campaigns. In fact, one disadvantage of recording new data is that in
order to cover as much acoustic variability and diversity as possible, recordings
must be done in many different conditions. For location-specific modeling,
this may mean different weather or human activity conditions, while for more
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Figure 3.1: Dummy head for binaural recording.

general modeling, it would also require traveling to other locations, adding
significant time and effort to the data collection procedure.

3.1.2 Dataset Labelling

Labeled data has a crucial influence on algorithm development and evaluation
in research fields dealing with classification and detection. The textual labels
used in annotation must provide a good description of the associated category
and not allow misinterpretation. To allow supervised learning and evaluation,
the audio must have corresponding reference annotations. These annotations
can be produced manually or in various semi-automatic ways, with the quality
and level of detail available in the obtained annotation often depending on the
procedure used. Manual annotation involves human annotators that will pro-
duce a mapping of the audio content into textual labels. Manually annotating
sound scene audio material is relatively fast, while for sound events the pro-
cess is much slower, with annotation using weak labels being much faster than
with strong labels. Manual annotation is prone to subjectivity arising from the
selection of words for labels and placing of temporal boundaries.

3.1.3 Acoustic Features

The time domain representation of a sound signal, or waveform, is not easy
to interpret directly. Therefore, frequency-domain representations and time-
frequency domain

representations (including multiscale representations) have been used for
years providing features of the sound signals that are more in line with the

33



“PhDthesis VES” — 2019/2/12 — 19:36 — page 34 — #54

Chapter 3 Datasets and Evaluation

human perception. In this section we report a brief description of the most

comimnons.

Mel Frequency Cepstral Coefficients

MFCCs is a well-known set of features widely employed in audio applications,
especially for the purpose of representing speech data. Indeed, the weighting
operation performed by the Mel bands emulates the frequency response of the
human hearing organ, which is sensible at its most to speech frequencies. The
extraction procedure requires few stages. An excerpt of the signal is trans-
formed in the frequency domain by means of STFT. The obtained spectrum
is hence mapped to the mel scale by using triangular overlapping windows.
For each mel frequency the logs of the powers are considered, to whom the
Discrete Cosine Transform (DCT) is applied. The resulting spectrum are the
MFCCs. Furthermore, a common procedure consists in concatenating MFCCs
with their first and second derivatives, in order to provide a temporal evolution
of the signal.

LogMel

LogMel features have been recently applied in the field of acoustic modelling
and music structure analysis [57, 58], leading to encouraging results. The
procedure for LogMel extraction shares several aspects with the one described
for MFCCs features. In details, a set of mel-band filters is applied to the
spectrogram of the signal, from which the logarithm of the power spectrum for
each band is considered. The logarithmic transformation is applied to each sub-
band energy in order to match the human perception of loudness. However,
due to the absence of the DCT, no spatial compression is performed to the
features, which remain correlated in the frequency domain. In this thesis,
the employment of LogMel matches the choice of using some of the systems
proposed in the next chapters (e.g., CNNs), where the objective is to exploit
the intrinsic correlation of input features in

order to highlight repetitive patterns present in the features.

Pitch

The tone of human voice is highly characteristic, for that reason is used i.e.
in VAD systems. The Sub-Harmonic-Summation (SHS) method described in
[75] is one of the most common algorithms. In particular, the spectrum is
shifted along the log-frequency axis, for each shift the spectrum is scaled and
then summed. This procedure creates the sub-harmonic summation spectrum,
where peak picking is applied to determine pitch. The used frame size is equal
to 50 ms.
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WC-LPE Feature

The Wavelet Coefficient (WC) and Linear Prediction Error (LPE) feature set
has been recently developed and exploited for audio onset detection purpose
[76]. WC-LPE carries information on non-stationary parts of the signal, thus,
it can facilitate the speech boundaries identification. Firstly, the signal under-
goes the Discrete Wavelet Transformation (DWT). Then, each sub-band of the
wavelet-domain is filtered by a set of Linear Prediction Error Filter (LPEFs)
and Forward Prediction Errors (FPE) are extracted. Finally, the first deriva-
tives are obtained from wavelet coefficients and added to them in order to form
the feature set.

RASTA-PLP

With RASTA-PLP we refer to RelAtive SpecTrAl transform - Perceptual Lin-
ear Prediction, a feature set often exploited to represent speech [77]. Short-term
noise variations are smoothed and the constant offset is removed by RASTA
filtering procedure, while the task of PLP is to simulate several well-known
properties of the hearing system.

Scattering Transform

The scattering transform [78] is the operation on which the Deep Scattering
Spectrum (SCAT) is based. SCAT is a multi-resolution representation of a
signal based on a tree of complex wavelet filters followed by a non-linearity.
SCAT proves successful in gathering information at multiple resolutions on
non-stationary signals thanks to its good properties, such as translation in-
variance, stability to small diffeomorphisms and uniqueness, e.g., time-warping

deformations.

3.1.4 Data Augmentation

Data augmentation refers to methods for increasing the amount of development
data available without additional recordings. With only a small amount of
data, systems often end up overfitting the training data and performing poorly
on unseen data. Thus, it is desirable to artificially increase the amount and
diversity of data used in training.

Many techniques have been proposed for data augmentation in domains dif-
ferent from audio. In the case of image processing, affine transformations such
as rotation, shear, scaling or zooming are very common perturbations to apply
directly on the raw data (i.e., the images composing the dataset) in order to
augment the training sets of the systems. Some approaches extend the aug-
mentation in the feature space [79]. Dataset augmentation could be used to
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reduce overfitting while training supervised learning models or to counteract
the dataset imbalance i.e., if the classes are not approximately equally repre-
sented as in the case of SMOTE [80, 81].

In the audio field, data augmentation exploits techniques such as pitch shift-
ing, time stretching or the generation of multi-microphone data by means of
simulated impulse response of the acoustic space or performing the transfor-
mation not in input space, but in the feature space. Adding random gaussian
noise to the input data (raw waveform or acoustic features) can also be seen as
a data augmentation technique for the audio domain.

With the development of the artificial neural networks (ANN), some works
act this augmentation by means of auto-encoder model also using Generative
ANN. The above mentioned approaches have a large impact in the develop-
ment of data driven approaches to activity recognition, with applications in
the Active and Assisted Living (AAL) domain that has a lack of large scale,
high quality, and annotated datasets even if open datasets are growing. In
particular, these models are trained to reproduce the signal they have been
trained with, and if their latent space is properly perturbed, they are able to
generate new data, useful to extend the training sets of detection/classification
systems. In this context we can also mention the Generative Adversarial Net-
works (GAN) (cf. Section 2.3.4).

A limited number of repositories have supported the notion of shared datasets,
including a small number of activity recognition related resources. To ad-
dress this lack it is possible to simulate smart environments equipped with
heterogeneous sensors and combine the signals from different domains with
novel data augmentation techniques exploiting the aforementioned deep learn-
ing techniques.

36



“PhDthesis_ VES” — 2019/2/12 — 19:36 — page 37 — #57

3.2 Evaluation Setup

3.2 Evaluation Setup

During system development, iterative training and testing of the system is
necessary for tuning its parameters. For this purpose, the labeled data available
for development is split into disjoint training and testing sets. However, labeled
data is often in short supply, and it is difficult to choose between using more
data for training (leading to better-performing systems) or for testing (giving
more precise and reliable estimates of system performance). For an efficient use
of all the available data, system development can use cross-validation folds to
artificially create multiple training/testing splits using the same data; overall
performance is then the average of performance on each split. Cross-validation
folds also help avoid overfitting and supports generalization properties of the
system, so that when the system is used on new data it is expected to have
similar performance as seen with the data used for development.

As shown in Figure 3.2, one round of cross-validation involves partitioning
a sample of data into complementary subsets, performing the analysis on one
subset (called the training set), and validating the analysis on the other subset
(called the validation set or testing set). To reduce variability, multiple rounds
of cross-validation are performed using different partitions, and the validation
results are then combined over the rounds to give an estimate of the model’s
predictive performance.

Cross-validation folds also help avoid overfitting and supports generalization
properties of the system, so that when the system is used on new data it is
expected to have similar performance as seen with the data used for develop-
ment.

If available, a separate set of examples with reference annotation can be used
to evaluate the generalization properties of the fully tuned system. We refer to
this set as evaluation set, and use it to evaluate how the system would perform
on new data.

I Development ] I Evaluation
'
| Train | Test |
l l Test I ‘
Cross
[ [ Test | | } validation
5 folds
[ l
I |

Figure 3.2: Splitting a dataset into development and evaluation data, with five
folds for crossvalidation during system development. Picture cour-
tesy of [1].
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3.3 Evaluation Metrics

Evaluation is usually referred as estimating the performance of a system under
test when confronted with new data. For an objective evaluation, the system is
fed previously unseen data for which reference annotations are available. The
system output is then compared to the reference to calculate measures of its
performance.

What performance means and how it should be measured may vary depend-
ing on the specifications and requirements of the developed system: We can
measure accuracy to reflect how often the system correctly classifies or detects a
sound, or we can measure error rates to reflect how often the system makes mis-
takes. By using the same data and the same methodology to evaluate different
systems, a fair and direct comparison can be made of systems’ capabilities.

The metrics used in detection and classification of sound events include accu-
racy, precision, recall, F-score, area under the curve (AUC) or error rate (ER).
There is no metric universally good for every kind of algorithm, as they each
reflect different perspectives on the ability of the system.

3.3.1 Metrics Computation

Basically, the evaluation metrics are computed by comparing the prediction
of the system under analysis with the respective annotations or ground truth.
Thus, the metrics are calculated based on counts of the correct predictions and
different types of errors made by the system. These counts are referred to as
intermediate statistics and are defined depending on the evaluation procedure.
These intermediate statistics are defined as follows for a target sound event:

e True positive: A correct prediction, meaning that the system output and
the reference both indicate the event present.

e True negative: The system output and the reference both indicate event
not present.

e False positive: The system output indicates event present or active, while
the reference indicates event not present.

e False negative: The system output indicates event not present or inactive,
while the reference indicatesit as present.

Sound event classification is usually a single-label multiclass problem, and
the resulting intermediate metrics reflect whether the single true class is cor-
rectly recognized for each example. In this task there is no distinction between
false positives and false negatives. In sound event detection, the choice of mea-
surement determines the interpretation of the result: With a segment-based
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metric, the performance shows how well the system correctly detects the tem-
poral regions where a sound event is active; with an event-based metric, the
performance shows how well the system is able to detect event instances with
correct onset and offset. Thus, in the segment-based metric the ground truth
and system output are compared in a fixed time grid, and sound events are
marked as active or inactive in each segment. For the event-based metric the
ground truth and system output are compared at event instance level. Specifi-
cally, the intermediate statistics for sound event detection are defined as follows:

e Substitutions S: are the number of ground truth events for which we
have a false positive and one false negative in the same segment;

e Insertions I: are events in system output that are not present in the
ground truth, thus the false positives which cannot be counted as substi-
tutions;

e Deletions D: are events in ground truth that are not correctly detected
by the system, thus the false negatives which cannot be counted as sub-
stitutions;

If we consider the scenario of polyphonic sound event detection, the segment-
based metric essentially splits the duration of the test audio into fixed length
segments that have multiple associated labels, reflecting the sound events active
anywhere in the given segment. In this respect, evaluation verifies if the system
output and reference coincide in the assigned labels, and the length of the
segment determines the temporal resolution of the evaluation. Event-based
metrics compare event instances one to one. Since the time extents of the
events detected by the system may not exactly match the ground truth, a
common approach is to allow a time misalignment threshold or time-collar.

Performance Metrics

Measures of performance are calculated based on accumulated values of the
intermediate statistics. We denote by TP, TN, FP, and FN the sums of the
true positives, true negatives, false positives, and false negatives accumulated
throughout the test data. In the case of multiclass problem, the accumulation
of intermediate statistics can be performed either globally or separately for
each class, depending on the nature of the problem (i.e., instance-based or
class-based) or datasets characteristics (i.e., highly unbalanced classes). Based
on the total counts of the intermediate statistics, many different measures can
be derived. We can define:
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. TP+TN
Accuracy = TPYTN+FPTEN (3.1)
Precision = % (32)
Recall = % (3.3)
. 2T P
F-score = STPIENTEP (3.4)

Accuracy measures how often the classifier makes the correct decision, as the
ratio of correct system outputs to total number of outputs. Precision, recall,
and F-score were introduced in the context of information retrieval. F-score
can be also calculated as the harmonic mean of Precision and Recall scores:

Precision - Recall

F-s =2 .
Seore Precision + Recall (3.5)

F-score has the advantage of being a familiar and well understood metric.
Its main drawback is that its value is strongly influenced by the choice of
averaging and the data balance between classes: in instance-based averaging
the performance on common classes dominates, while in class-based averaging
(balanced metrics) it is necessary to at least ensure presence of all classes in all
folds in the test data, to avoid cases when recall is undefined. In particular, in
this work we consider also the use of the Unweighted Average Recall (UAR),
which is more appropriate in the case of classification of samples belonging to
an highly unbalanced dataset. UAR is defined as:

NClass
1

TP,
AR=— — . __tte
vAR NClass ; TP,+ FN,

(3.6)

In the case of sound event detection systems, Error Rate score is the most
common evaluation metric. Considering a single time frame ¢, the ER is com-
puted from its intermediate statistics, i.e., the number of substitutions (S(¢1)),
insertions (I(t1)), deletions (D(t1)) and active sound events from annotations
(N(t1)). Formally, for the entire evaluation set:

Yo St) + X () + Xy D(t)
- i1 N(t)

where T is the total number of segments ;.

ER , (3.7)

3.3.2 Detection Metrics

Precision and recall rely on hard decisions made for each trial, they typically
depend on a threshold applied to some underlying decision variable, i.e., the
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output of the neural network. Lowering the threshold will increase likelihood of
accepting both positive and negative examples, improving recall but in many
cases hurting precision. Although F-score combines these values at a single
threshold in an attempt to balance this tradeoff, a more complete analysis can
be provided by plotting a function proportional to the metric over the full
range of possible thresholds. Some examples are, the precision-recall (P-R)
curve (showed in Figure 3.3) and the receiver operating characteristic (ROC)
curve. The latter plots true positive rate (TPR = TP/T P+ FN) as a function
of the false positive rate (FPR = 1 - Recall) as the decision threshold is varied.

These curves carry rich information, they can be difficult to compare, so
a single figure of merit summarizing the tradeoff is desirable. The relative
“compressed” scores for P-R and ROC curve are respectively Average Precision
(AP) score or Area under curve (AUC), defined as:

AP = (Ry — Ry_1)Py, (3.8)

where R,, and P, are the Recall and Precision for threshold n respectively and

AUC = / T TPR(T)FPR/(T) dT (3.9)

o0
Both AUC and AP vary between 0 and 1, with an uninformative classifier
yielding 0.5, while the ideal system yelds 1.

2-class Precision-Recall curve

Precision
o
o

°
=

o
~

0.0
0.0 0.2 0.4 0.6 08 1.0
Recall

Figure 3.3: Example of 2-class Precision-Recall curve. Relative AP is equal to
0.9341.

3.3.3 Final Remarks

Estimates of metrics on classes with very few examples are also intrinsically
noisy. Any dataset of real-world recordings will most likely have unbalanced
event classes; therefore, the experiment setup must be built with the choice of
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metric in mind. In a cross-validation approach, a more stable result is given by
treating the cross-validation folds as single experiment, meaning that metrics
are calculated only after training and testing all folds, not as average of the
individual folds nor as average of individual class performance. In addition,
reporting the variance among the individual folds’ contributions to the average
can serve as a useful confidence interval. Anyway, if there are multiple scenes in
the dataset, typically evaluation metrics are calculated for each scene separately
and then the results are presented as the average across the scenes.

Attention should be also paid to statistical significance of the results and
it should be used to calculate the theoretical limits of discriminability of the
evaluation, especially when two methods/approaches/techniques are compared.

A detailed and visualized explanation of evaluation score in multi label set-
ting for sound event analysis can be found in [82].
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Sound Event Classification

The task of sound event classification consists of categorize an audio recording
into one of a set of predefined categories, by associating a textual descriptor.

2 ] | e
| ' !

Sound Scene Classification ]

| ! !

Bus

=\

System output

Figure 4.1: System input and output for the sound event classification. Pic.
courtesy of [1].

In this chapter three works belonging to this “sub-category” are shown. They
are respectively: Snore Sounds Excitation Localization, which has been per-
formed by using Scattering Transform and Deep Neural Networks; Road Sur-
face Roughness Classification from Acoustic Signals, which has been performed
by means of Convolutional Neural Networks; Bird Audio Detection, which -
despite of its name - consists in determining a binary decision for the pres-
ence/absence of bird sounds on audio files recorded in very different conditions
and it has been performed by using CapsNets.
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4.1 Snore Sounds Excitation Localization

Figure 4.2: Corresponding positions of the VOTE classification in the upper
airway. Picture courtesy of [83].

People spend almost a third of their life sleeping, thus the sleep quality is
very important to people’s health. Most of us have experienced trouble sleeping
just sometimes, while for some people sleep problems occur regularly; in former
cases a sleep disorder is diagnosed. Among these, one of the most common sleep
disorder [84] is the chronic snoring.

Snoring is defined as the emission, during the sleep, of a sound more or
less annoying associated to the respiratory activity. This sound is caused by
the vibration of soft tissue in the upper airways. It is confirmed that almost
a half of the adult population snores occasionally, while approximately 30%
of the overall population suffers from chronic snoring almost every night [85].
Sound snoring can have a negative impact on normal physical, mental, social
and emotional functioning of the person suffering from it and their bed partner
[86]. In addition, it can be associated with Obstructive Sleep Apnea (OSA),
a chronic disease that can severely affect health [87]. OSA is characterised by
posterior pharyngeal occlusion for at least ten seconds with apnea/hypopnea
and attendant arterial oxyhemoglobin desaturation. If left untreated, this life-
threatening sleep disorder may induce high blood pressure, coronary heart dis-
ease, pulmonary heart failure and even nocturnal death [88]. In addition, OSA
is indicated between the main causes of significant morbidity among children
[89]. Numerous surgical methods have been proposed to cure snoring, but many
of them do not solve completely the issue if the origin of the vibration is not
precisely located. Although the exact mechanism of snoring sound generation
is highly influenced by the individual anatomy, the typical areas from which
the snore noise is produced have been located in the soft palate, the uvula, the
palatine tonsils, the base of the tongue, and the epiglottis. Drug induced sleep
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endoscopy (DISE) is a standard examination technique used to identify the lo-
cation and form of vibrations and obstructions [90]. During a DISE procedure,
a flexible nasopharyngoscope is introduced into the upper airways while the
patient is in a state of artificial sleep. Vibration mechanisms and locations can
be observed while video and audio signals are recorded. This procedure has
several disadvantages: it is time consuming, the patient is put under strain, and
it has to be performed during drug-induced sleep. Recent studies have found
that acoustic signal carries important information about the snore source and
obstruction site in the upper airway of OSA patients [91], thus acoustic analy-
sis of snoring sound could be an alternate, less-invasive method to identify the
kind of snoring pathology [92]. This significant discovery has motivated several
researchers to develop acoustic-based approaches that could provide inexpen-
sive, convenient and non-invasive monitoring and screening apparatuses to be
combined with traditional diagnostic tools. In addition, it can be performed
during natural sleep, avoiding the possibility to induce different muscle relax-
ation patterns which is a cause for possible diagnosis errors in drug-induced
sleep.

Related Works

Several works have been presented in the recent years on multi-feature acous-
tic analysis methods with the aim to classify and segment snore/non-snore
sleep sounds. In [93] consists of the identification and segmentation process
by using energy and Zero Crossing Rate (ZCR), which were used to determine
the boundaries of sound segments. Episodes have been efficiently represented
into two-dimensional spectral features by using principal component analysis,
and classified as snores or non-snores with Robust Linear Regression (RLR).
The system was tested by using the manual annotations of an Ear-Nose-Troth
(ENT) specialist as a reference. The accuracy for simple snorers was found
to be 97.3% when the system was trained using only simple snorers’ data. It
drops to 90.2% when the training data contain both simple snorers’ and OSA
patients’ data. In the case of snore episode detection with OSA patients, the
accuracy is 86.8%. In [94] tracheal respiratory signals are recorded and snore
segments are detected by extracting 10 temporal and spectral features and an
Artificial Neural Network (ANN). In [95] the automatic sound segmentation
into snoring/breathing/noise episodes is performed using an adaptive effective-
value threshold method for noise reduction, feature extraction of both linear
and nonlinear descriptors and a Support Vector Machine (SVM) classifier.
Specifically regarding the determination of the vibration or occlusion mech-
anisms, the use of different acoustic feature sets has been proposed in [83],
while in [96] a k-nearest neighbor (k-NN) classifier is fed with different acoustic
features. A performance comparison of different feature sets in combination
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with frequently-used classifier model is shown in [97]. Recently some works
have been presented in occasion of the Snoring task of the Interspeech 2017
Computational Paralinguistics Challenge (ComParE) [98]. The task consisted
in identification of the snore type among four classes based on the widely used
Velum-Oropharyngeal-Tongue-Epiglottis (VOTE) scheme, distinguishing four
structures that can be involved in upper airway narrowing and obstruction. In
[99, 100] the authors exploit deep convolutional neural networks pre-trained
on image datasets for feature extraction from Short Time Fourier Transform
(STFT) representation of the snore sounds. Then, the outputs of the bottom
layers are used to feed a SVM model which provides the snore sound classifi-
cation. An alternative approach used weighted kernel classifiers [101] in order
to counteract the natural snore dataset imbalance, such as Extreme Learning
Machine and Kernel Partial Least Squares learners. Acoustic low level descrip-
tors encoded over utterances are used as input features vector of the models.
The latter algorithm is reported as the winner in the final challenge ratings!.

4.1.1 Proposed Approach

In this section we propose a snore classification algorithm based on Deep Scat-
tering Spectrum (SCAT) [102] and Multi-layer Perceptron (MLP) neural net-
works. The specific characteristic of the snore sounds and the references re-
ported above demonstrate that typical techniques for speech analysis are re-
quired for an accurate classification, in particular feature vectors with high
dimensionality. In fact, the snore sound carries salient informations at differ-
ent time scales, thus in this case it is necessary to capture patterns up to 500 ms.
The SCAT provides an efficient representation of an audio signal based on the
scattering transform. In particular, it extends the traditional Mel-Frequency
Cepstral Coefficients (MFCCs) representation [103] with second-order scatter-
ing coefficients which characterize transient phenomena such as attacks and
amplitude modulation. The algorithms has been evaluated on the Munich-
Passau Snore Sound Corpus (MPSSC) [98] and the results are expressed in
terms of Unweighted Average Recall (UAR) in order to compare our approach
with the results of the INTERSPEECH 2017 ComParE.

The block diagram of the proposed method is shown in Figure 4.3. The
algorithm operates by computing the deep scattering spectrum of the audio
signal and then by mapping it into a Gaussian Mean Supervectors (GMS)
[104] for classification. In particular, referring to Figure 4.3a, the set of snoring
sounds 7 = {(x1,C1), (x2,C2),..., (xk,Ck)} represents the training set of
the algorithm, where xj, = [z£(1), 2%(2), ..., 2k (Tk)] is a snoring sound signal
of length T}, and Cy € {V,0,T, E} is the corresponding snoring label. The

Thttp://emotion-research.net/sigs/speech-sig/is17-compare
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snore audio samples of the MPSSC corpus are of various duration ranging from
0.5 to 3 seconds, thus before computing the SCAT, audio signals shorter than
3s are padded to the same length equal to 3 seconds. Padding is performed
by repeating a signal or part of it until the total amount of audio samples is
equal to 48000. Then, by means of the Hamming window, the audio signals
are divided into half overlapped frames zj ;[n] = xx[n+I(N — P+1)— P +1],
where [ is the frame index, N = 8000 and P = 4000.

In the “SCAT” stage every input audio signal x, is converted into informative
values that describe the main characteristics of the audio signal concatenating
the scattering transform coefficients of each audio frame SCAT(zy,), with
[ =1,...,11. In the training phase, a Universal Background Model (UBM)
represented by a Gaussian Mixture Model (GMM) is trained on the SCAT vec-
tors computed on the set 7 by using the Expectation Maximisation algorithm.
Then, the “GMS Extraction” block consists in adapting the UBM with the
Maximum a Posteriori (MAP) algorithm by using the SCAT of each snoring
sound in 7 as input. The resulting mean values of each Gaussian of the GMM
are concatenated into a GMS, thus mapping the SCAT coefficients time series
into vectors of fixed lengths. The final step of the training phase consists in
training the Deep Neural Network (DNN) classifier. In this section we use a
Multi-layer Perceptron neural network and we compare the performance with
a state-of-the art approach such as Support Vector Machine (SVM). In the
classification phase (Figure 4.3b), given a snore sound x,, the relative GMS
is obtained from the UBM as in the training phase, and then it is fed to the
classifier in order to find the corresponding label Cy, € {V,0,T, E}.

Training
Corpus (T)
Snore Sound S,
SCAT
Extraction
v SCAT
UBM Extraction
Training ¢
GMS
Y UBM Mapping|
> GMS
Mapping DNN
¢ Classificatjon
DNN l
Traini
raining Cy
(a) Training. (b) Classification.

Figure 4.3: Scheme of the proposed approach.
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Deep Scattering Spectrum

The scattering transform [78] is the operation on which the Deep Scattering
Spectrum (SCAT) is based. SCAT is a multi-resolution representation of a
signal based on a tree of complex wavelet filters followed by a non-linearity.
The SCAT up to order M of a signal xy is, thus,

S(wg1, M) ={x1* dun,
|Tk,1 % Vi, | % P, (4.1)
||xk,l * ¢m1| * wm2| * ¢]VI}>

where ¢ is a low-pass filter and ,,, is a wavelet filter with ¢ < M. Time in-
dices are omitted for brevity. SCAT proves successful in gathering information
at multiple resolutions on non-stationary signals thanks to its good properties,
such as translation invariance up to level M, stability to small diffeomorphisms
and uniqueness, e.g., time-warping deformations. It has been applied with suc-
cess in image [105] and audio signal classification tasks [106], where it is shown
that SCAT provides optimal results when M = 2 though there is no upper limit
on the order of the SCAT. It is showed that a two orders cascade of wavelet
filter banks and rectifiers improve results obtained by MFCC and Delta-MFCC
descriptors in musical genre classification task, thus the energy remaining on
higher order branching is as low as background noise and provides no addi-
tional information. The SCAT outputs time-averaged coefficients, providing
informative signal invariants over potentially large time scales. To compute
the SCAT we used the ScatNet open source MATLAB library [107]. The choice
of the wavelet filters is not trivial. In audio processing a typical procedure is
to define constant-Q filter banks as linear operators that make up the layers of
the scattering networks. The quality factors of the filter used in this section are
@1 =8 and 2 = 1. We assume 0.5s as minimum length of snore utterance,
thus the filter length N is set equal to 8000 samples.

The wavelet functions are built by dilating a mother wavelet 1 by a factor
21/Q  for the quality factors @, so as to obtain the filter bank:

Y, (1) = 27/ Qqp(27™/ Q) (4.2)

with ¢ representing the time index.

The mother wavelet ¢ may only be dilated up to the maximum scale M — 1,
resulting in 2 wavelets ¥, ¥m,. The parameter M determines the maxi-
mum wavelet time support ™ = T, thus the low-pass filter ¢5; covers the
interval [~7ra~M ma=™] and represents the length of averaging window over
a neighborhood of ¢. In this section, we use 7' = N/8 = 1000 samples, which

corresponds to around 60 ms of audio.
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(a) First stage. (b) Second stage.

Figure 4.4: The Morlet Wavelet Filterbanks

To improve the classification performance, scattering representation has been
processed with the functions of renormalization and logarithmic transformation
provided by ScatNet. The renormalization consists in dividing second-order
scattering coefficients S(x,, m2) by the first order coefficients S(zx,, m1), in
order to decorrelate the amplitudes at the second layer from the first layer. Log-
power representation of the frequency distribution is a typical choice in many
acoustical classification tasks, thus after the renormalization the logarithm of
scattering coefficients is computed.

For each audio frame, we obtain the SCAT representation S(zj;, M) €
RPXE where D = 1+ 52 + 167 = 220 is the total number of scattering co-
efficients (all orders combined) and R is the number of time points, which is
equal to 16. Finally, joining the S(zy;, M) for l =1,...,11 we obtain the deep

scattering spectrum of the snore signal S(xz, M) € RP>*11-E,

St = [T % Uy | % dr

[S2 = [l * Vm, | * Vmy| % ]

Figure 4.5: The SCAT extraction tree. Picture courtesy of Andén et. al.

Gaussian Mean Supervectors

A GMS is extracted according to the following procedure. Let s, = [S(xg)]xr
the vector of the scattering coefficients of size D x 1 where r is the time point
index, the GMM representing an UBM from the training corpus 7 is given by:

J
p(seN) =Y wip(s,|uy, 2), (4.3)
j=1
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where A = {wj,p;,E;j = 1,2,...,J}, w; are the mixture weights, and
p(-|p;, X;) is a multivariate Gaussian distribution with mean vector p; of size
D x 1 and diagonal covariance matrix 3; of size D x D.

The mean values of the UBM model are, then, adapted with the MAP algo-
rithm and concatenated in order to obtain the GMS:

F = [l'l’,{7p’g7 s a“;]T? (44)

where T' denotes the transpose operator. Regardless of the length of the input
snore sound, I' is a vector of DJ x 1 length. The threshold values of EM and
MAP algorithms during the adaptive phase have been set both equal to 0.001,
but with different number of iterations, respectively equal 1000 and 5 for EM
and MAP.

Multi Layer Perceptron

In this section we exploited the Multi Layer Perceptron (MLP) architecture as
DNN Classifier [58]. The MLP is composed of an input layer with number of
units equal to the dimension of the input supervector I', followed by a stack
of fully connected layers of units, namely the hidden layers. Number of hidden
layers and their dimensions have been investigated during the experimental
analysis. As non-linear activation function in the hidden layers of the MLP
we employed both the hyperbolic tangent (tanh) and the rectified linear unit
(ReLU) [108]. The output layer of the MLP is formed by four units with the
softmaz non-linear function. The outputs of the softmax layer represent the
probabilities that a sample belongs to the different classes.

The behavior of this architecture is parametrized by the connection weights,
which are adapted during the supervised network training, accomplished by
using the Adam algorithm [109] for the stochastic gradient-based optimization
of the crossentropy loss function. The optimizer parameters were set as follows:
learning rate Ir = 0.001, 5, = 0.9, B> = 0.999 and € = 1078, The maximum
number of training epochs was set equal to 200 with an early stopping strategy
in order to reduce the computational burden. Nevertheless, overfitting is well-
know a problem affecting DNNs in particular when the number of training
samples is limited. In order to prevent overfitting we investigated the use of
dropout [68].

The model has been implemented in the Python language using Keras® as
deep learning library with Theano[110] as back-end.

2https://keras.io/
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4.1.2 Comparative Approaches

Below is given a brief description of state-of-the-art approaches such as SVM
classifiers and algorithms which showed the best performance at the Inter-
speech 2017 ComParE. They were evaluated on the blind test set, thus they
are reported for comparative aims.

Support Vector Machines

Without modifying the general structure of the algorithm for supervectors I'
computation, we compared the performance of the MLP based model with the
SVMs [111].

SVMs are binary classifiers that map an input example onto a high-dimensional
feature space and iteratively searches for the hyperplane that maximises the
distance between the training examples from the origin. Given the training
data {T'1,...,T't}, where k is the number of observations, the class separation
is performed by solving the following equation:

1 1
g}glpinW + A ZZ:& —p (4.5)
subject to: (w' - ®(T;)) > p—&;, & >0, (4.6)

where w is the support vector, §; are slack variables, p is the offset, and ® maps
T; into a dot product space F' such that the dot product in the image of ®
can be computed by evaluating a certain kernel function. The kernel function
K(-,-) can assume different forms [112]. In this section two kernel functions
have been considered, the Radial Basis Function (RBF), defined as:

K(D,T;) = exp(—7|T - Ti[?) (4.7)
and the linear kernel, defined as:
K({,T;) =TT, (4.8)
The decision values are obtained with the following function:
J(T) = w" - &(T) ~ p. (4.9)

The input vector T' is classified as +1 if f(I') > 0 and —1 if f(T') < 0. In this
section, the multiclass problem has been addressed using the “one versus all”
strategy. Implementation of LIBSVM [113] from Python library scikit-learn
has been employed both in the training and testing phases of the SVM.
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Weighted Kernel Classifiers

The approach proposed by Kaya and Karpov [101] exploits a decision fusion
between different kernel based classifiers such as regular and weighted Kernel
Extreme Learning Machine (KELM) and Kernel Partial Least Squares (KPLS)
learners. As acoustic feature representation they used Fisher Vectors (FV),
which provides an encoding of local descriptors (e.g., MFCC, RASTA-PLP and
their derivatives), quantifying the gradient of the parameters of the background
model with respect to the data. In addition, in the final submission system they
used both (FV) and the ComParE baseline feature set, which contains 6373
static features resulting from the computation of various functionals over low-
level descriptor (LLD) contours.

Image-based Deep Spectrum Features

A different approach is presented in [99], based on image classification convo-
lutional neural network (CNN) descriptors extracted from snore spectrograms.
They evaluated different well known DNN architectures typically used for im-
age classification, such as AlexNet and VGG neural network. Both deep CNNs
were previously trained on approximately 1.2 million images from the ImageNet
corpus, then they compute the power spectral density on the dB power scale
of the audio excerpt using Hanning windows of 16 ms width, and 8 ms overlap
and they plotted the result in three different colour maps: gray, jet and viridis.
The deep CNNs are fed with the spectrograms, then the neurons on the first
and second fully connected layers (fc6 and fc7) are extracted as feature vectors.
These feature vectors are then classified by means of an SVM model.

4.1.3 Experiments
The MPSSC dataset

The MPSSC dataset is composed of more than 30 hours of audio recordings
captured during DISE examinations of 224 subjects from three medical cen-
ters recorded between 2006 and 2015. Recording equipment, microphone type,
and location differ among the medical centers, so do the background noise
characteristics. From the original signals (raw PCM, sample rate 16 000 Hz,
quantization 16 bit) 843 early identifiable, single site of vibration snore events
have been extracted and manually screened from medical experts. Following
the 4-class VOTE scheme, each sound file in the dataset is labelled as V, O,
T, E, depending on the tissue from which snore sound originates, as shown in
Figure 4.2. They are respectively:

e (V) - Velum (palate), including soft palate, uvula, lateral velopharyngeal
walls;
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e (O) - Oropharyngeal lateral walls, including palatine tonsils;

e (T) - Tongue, including tongue base and airway posterior to the tongue
base;

e (E) - Epiglottis.

The dataset is divided into three subsets: train, devel and test. The num-
ber of events per class in the database is strongly unbalanced with a high
preeminence of the “Velum” (V)-class and “Oropharyngeal” (O)-class (85% of
samples) but in line with the likelihood of occurrence during normal sleep,
while 10% and 5% of samples respectively belongs to E-events and T-snores.
Details of class occurrences are shown in Table 4.1.

The Munich-Passau Snore Sound Corpus

# train devel test
\Y% 168 161 155
O 76 75 65
T 8 15 16
E 30 32 27
b)) 282 283 263

Table 4.1: The Munich-Passau Snore Sound Corpus - The table shows the num-
ber of events per class in train, devel and test.

As shown in the waveforms and the related spectrograms in Figure 4.6, the
main energy components in three of the classes are concentrated in the fre-
quency area below around 2000 Hz. Energy and spectral distribution charac-
teristics are similar, except for the Type T, which shows higher energy content
above 2500 Hz compared to the other three.

Experimental Setup

According to the ComParE 2017 guidelines [98], the performance metric for
this task is the Unweighted Average Recall (UAR) (cf. Section 3.3.1).

The MLP hyperparameters optimization was obtained by means of a random
search strategy [114]. The number of layers, the number of units per layers, the
non-linear activation function and the dropout rate have been varied for a total
of 400 configurations. Details of searched hyperparameters and their ranges are
reported in Table 4.2. For all of the configurations, the performance of the MLLP
classifier has been evaluated by varying the input supervector dimension, which
depends on the number of Gaussian components used to represent the UBM
J = 1,2,4,8. The supervector given as input to the MLP is standardized by
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Figure 4.6: Waveforms and spectrograms of VOTE events
(a) V (velum); (b) O (oropharyngeal); (c) T (tongue base); (d) E (epiglottis).

removing the mean value of each p; component and scaled by dividing for their
standard deviation.

|  Parameter | Range | Distribution |
MLP layers Nr. (2 - 5] uniform
MLP layers dim. [20 - 256] log-unifom
Activation [tanh - ReLU] uniform
Dropout Rate [0.5 - 0] uniform

Table 4.2: Hyper-parameters optimized in the random-search phase for the
MLP classifier, and their range.

Regarding the SVM classifier optimization, we conducted a preliminary anal-
ysis which showed that in this task the linear kernel function provides better
performance with respect to the RBF kernel. Then, with a grid search strategy
we explored the SVM penalty parameter C' which yielded the best results. In
particular, C' assumed the values 271°, 2714 .. 215 for a total of 30 different
values. The supervectors at the input of the SVM were scaled to the range
[-1,1].

During the training procedure of both classifiers, different weights were given
to samples belonging to different classes in order to counteract the dataset
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unbalancing. The weight for each class was computed on training set with the

following equation:
Nror
W, = , 410
N, (4.10)

where Npor is the total number of samples in the training set and N, the

number of samples of the respective class. In this way the classes having a
lower number of samples in the training set have a larger effect in the loss
computing [115].

4.1.4 Results

The performance of the proposed algorithm has been assessed firstly by using
the train subset as training corpus and the devel subset for evaluation. Then,
the same model was trained with both ¢rain and devel subsets and it was evalu-
ated on the test subset. The results of the experiments are shown in Table 4.3.
For the sake of conciseness only the best performances of the proposed approach
are reported, comparing the results achieved with SVM and MLP classifiers on
the two folds. For both devel and test subsets the best results are obtained
with DNN based classifier.

Input Classifier UAR devel (%) | UAR test (%)
1 oo UBM | ith tanh and doopont | 510 .63
+2 Gdsugi;l;ls UBM wflﬁffiff jic’)igut 58.20 74.19
+2 GaSuS;?aTns UBM withl\g;:h Eii’?ﬂpm 67.14 67.71
+ 4 Gansians UBM | sith el o oot | 500 7132
+ 38 Gasugi;lils UBM | with gz%lf: a[ﬁ?l%igr]opout 55.89 70.18
+1 GSIleg:n UBM SVM, €' =27° 46.73 65.45
42 Gz?ucsgzn UBM SVM, €' =271 46.54 65.50
+4 Gi?s?izn UBM SVM, €' =277 44.67 67.22
+8 GaSI?S?i:n UBM SVM, €' =271 43.20 65.48

Table 4.3: Comparative results in terms of UAR (%) score of proposed method
for MLP and SVM based classifiers for both devel and test subsets.
Best results on each subset are shown in bold.
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Results on devel subset

On this subset the best MLP topology resulting from the random search is
composed of 2 hidden layers with respectively 235,227 units, tanh as non lin-
ear activation function and a dropout rate equal to 0.5. The network input
consists of supervectors originated from UBM with 2 gaussian components,
thus the input size is equal to 440 x 1. This architecture provides an UAR
up to 67.14%. Regarding the SVM based classifier, the best performing model
on devel subset is fed with a supervector mapped on a UBM of 1 gaussian
component and with the parameter C' = 278 obtain an UAR equal to 46.73%.
The corresponding confusion matrices are illustrated in Figure 4.7, which ex-
hibits for the MLP (Figure 4.7b) the higher recall (80.00%) for the minority
class (T), but a moderate recall (53.12%) for the second smallest class (E).
The SVM based classifier obtains the highest recall on the (E) class, while the
other classes obtain worse performance. The superiority of the DNN based
classifier is motivated by its well known ability to encode in the inner structure
the features of the different snore sounds highlighted by the SCAT and better
distinguish the samples, notwithstanding the large unbalancing of the dataset.

v EELREN 31.61 5.16 7.10 W 71.43 5.59 6.21

50 10.77 15.38 %0 10.67 5888
Q Qo
o ©
) v
> S
2 1 000 1875 21 0.00

E 0.00 3.70 E 21.88 21.88 3.12

) (e} N [¢) N <
Predicted label Predicted label
(a) (b)

Figure 4.7: Normalized confusion matrix of best performing models on devel
subset. (a) SVM Classifier, (b) MLP Classifier.

Results on test subset

The network topology achieving the absolute best results optimized on test
subset is composed of 4 hidden layers with respectively 249, 40,21, 21 units,
tanh as non linear activation function and a dropout rate equal to 0.5. Asin the
case of devel subset the input size is equal to 440 x 1, consisting of supervectors
originated from UBM with 2 gaussian components. This architecture shows an
UAR up to 74.19%. The SVM model which obtains the best performance is

56



“PhDthesis_ VES” — 2019/2/12 — 19:36 — page 57 — #77

4.1 Snore Sounds Excitation Localization

fed with supervectors mapped on 4 gaussians UBM and a parameter C = 2710,
The respective UAR is equal to 67.22%. The obtained confusion matrices
are illustrated in Figure 4.8. In this case the augmented number of samples
has a beneficial effect on the recall score of almost all the four classes for the
MLP classifier, while the performance of SVM classifier are similar to the devel

subset.
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Figure 4.8: Normalized confusion matrix of the best performing models on test
subset. (a) SVM Classifier, (b) MLP Classifier.

Comparative Results

In Table 4.4 the best performance obtained with methods presented in [101],
which resulted the winner of the ComParE challenge, and in [99] are reported.
The best UAR score on both the subsets is provided by our proposed algorithm
relying on DNN classifiers. The absolute improvement on the state-of-the-art
methods on the devel subset is remarkable, in fact we obtain in terms of UAR
+17.02%. For a fair comparison on the test partition we have to consider the
score obtained with the best model on the devel set. In this case our proposed
algorithm overcome the UAR scores of +3.48% and +0.71% with respect to
[101] and [99]. These results highlight that the best performance obtained on
devel set do not provide at the same time the best performance on the test set,
as it also emerged from the challenge results of reported methods. The motiva-
tion of these low generalization proprieties probably relies on the dataset splits
composition and their class unbalancing. Anyway, the obtained performances
encourage the use of SCAT as snore sound features which results to be effective.
In addition, the combination of SCAT and GMS allows reduce dimension of
the input vector of the classifier and to obtain an higher classification accuracy
with respect to state-of-the-art methods.
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. UAR (%)
Input Classifier devel | test
SCAT MLP 67.14 | 67.71
SCAT MLP 58.28 | 74.19
Spectrograms +
AlexNet fe7 SVM 44.80 | 67.00
FV + (W)KPLS +
ComParE functionals | (W)KELM 50.12 1 64.23

Table 4.4: Comparative results in terms of UAR (%) score of proposed algo-
rithm with state-of-the-art methods for both devel and test subsets.
Best results on each subset are shown in bold.

4.1.5 Conclusion and Outlook

In this section, an approach for snore sound classification based on Deep Scat-
tering Spectrum, Gaussian Mean Supervectors and MLP classifier has been
presented. We extracted the SCAT from the audio signals and GMM-based
background model was trained to map the sequence of scattering coefficients in
a supervector. Classification of input snore sounds has been performed using
a MLP neural network and a support vector machine with comparative aims.
To assess the performance of the algorithm we conducted experiments on both
the devel and the test subsets of MPSSC dataset. Following the 4-class VOTE
scheme, we obtained a UAR of 67.14% on the devel set and a respective UAR
equal to 67.71% on the test set independently of the subject characteristics.
The performance upper limit obtained optimizing the models on the test set is
an UAR up to 74.19%. The obtained results showed that the employment of the
DNN based classifier in combination with SCAT is effective and a significant
performance improvement with respect to other state-of-the-art approaches
was registered. Future work will evaluate strategies of data augmentation to
counteract the unbalance of the dataset. In addition, the SCAT representation
of the audio signals prompts the exploitation of the 2-D Convolutional neural
network (CNN) to obtain a further latent representation by means of the pro-
cessing taking place in its deep architecture. A deeper focus could be given
also to the temporal evolution of the signal by means of recurrent structure,
such as Long Short Term Memory (LSTM) Neural Networks [116].
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4.2 Road Surface Roughness Classification

Radial vibrations

Air "pumped out" Amplification effect by the horn

Figure 4.9: The tyre-road noise generation. Left: Air pumping at the entrance
of the contact patch; Center: Vibration caused by tread/block pave-
ment impact; Right: The horn effect created by the tyre and road.

This work has been realized in collaboration with the company ASK in-
dustries S.P.A., and its aim is to develop an automatic system for the road
roughness classification. As first step was conducted an accurate state of the
art analysis. Vehicle noise emissions depend on multiple factors, including
the power unit noise, aerodynamic noise and tyre-road noise [117]. They are
all dependent on speed but have different behaviors. The power unit noise,
for instance, depends on the gear engaged and the number of revolutions per
minute whereas the tyre-road noise is proportional to the logarithm of the ve-
hicle speed. The balance between these two noise contributions depends, thus,
on speed. At low speeds the power unit noise dominates the roadside noise
levels, while at high speeds the tyre/road is the predominant source of noise.
In [118] it is shown that the tyre-road noise component becomes predominant
with modern cars even at speeds above 30 km/h, regardless of the engaged
gear.

The tyre-road noise, results from the sum of several acoustic phenomena that
concur to the noise emission. The source generation mechanism includes the

following elements:

e Tread Impact: at the entrance of the interface between tyre and pavement
(referred to as contact patch) an impact occurs as the tread hits the
pavement. This impact causes vibration of the tyre carcass.

e Air Pumping: within the contact patch, the passages and grooves in the
tyre are compressed and distorted. The air entrained in this passages will
be compressed and pumped in and out of the passages. This rapid exit
of air can lead to sound generation.

e Horn Effect: sound emitted from the tyre/road contact is reflected multi-
ple times between the road surface and the tyre tread before it propagates
further to the receiver. The tyre/road geometry has the shape of a horn.
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This horn shape causes a much larger radiation efficiency of the emitted
tyre/road noise than in free field. This increased radiation efficiency is
referred to as the horn effect.

85 T
80
g 75
T 70
w
°
e 65
53
2 60 3
g —e—Dense asphalt, heawy trucks 2 N
< 55 / —o— Porous asphall, heaw trucks ~%q ‘
* —a— Dense asphalt, cars ‘a N
50 ‘E - -0 - Porous asphall, cars T
45 4 =ttt
125 250 500 1000 2000 4000 8000
Frequency [Hz]

Figure 4.10: Third-octave band spectra of noise measured on a dense asphalt
concrete surface and on a porous asphalt concrete surface. Speeds:
80-120 km/h for > 100 cars, 70-90 km/h for > 50 trucks.

Noise spectra have been measured on a large number of tyres (about 50) [119]
in a cooperation project between the Technical University of Gdansk (TUG)
in Poland and the Swedish National Road and Transport Research Institute
(VTI). Despite a wide range of tyre types, the spectral shapes are very similar
and the sound concentrates around a peak at 800-1000 Hz. Several studies
[120] carried out in roads with different types of surface and age have usually
shown that dense asphalt concrete and stone mastic asphalt are the ones that
generate more noise contrasting with double and single porous asphalt. Porous
pavements are constructed by reducing the amount of small aggregate used
in the pavement such that the pavement cannot be tightly compacted. In
general, porous pavement reduces tyre/pavement interaction noise above 1000
Hz. Porosity reduces the strength of the air pumping source mechanism by
preventing air compression and reduces the enhancement potential of the horn
effect as shown in Figure 4.10. Some tests [117] done in Colorado provide a
preliminary understanding of the effect of pavement age on noise level. The
results shows that, as expected, the older the pavement, the higher the noise
level.

In this section, we are interested in inferring the surface roughness by ana-
lyzing the near-field acoustic emissions of the vehicle. The surface roughness is
characterized by the average size of the gravel base and the presence of filling
(asphalt concrete or concrete). These elements have a large impact on the noise

emission level and character.
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Related Works

A recent paper [121], reports on the use of Support Vector Machines for the
goal of classifying several types of road (asphalt, gravel, snow, stony road) using
acoustic features. The work employs an electric car for minimal impact of the
engine noise on the recording and collects 30 audio fragments from different
roads at a fixed speed of 20km /h. The work employs MFCC as they were shown
to maximize the Kullback-Leibler distance between all the audio fragments.
Classification with the MFCC and an SVM are rather high (between 92.5% and
97.5%), however they decrease to 67%-89% when noise is artificially added to
the recordings (such as rain noise or the noise of another car passing by). SVM
are employed also in [122], where the main goal, however, is the classification
of the road surface wetness and the feature extraction is done with selected
1/3 octave band filters. In that work the recordings are taken in a closed
circuit with an internal combustion engine vehicle. A different approach for
road dry/wet classification is undertaken in [123] where a dataset is built from
recordings of road trips in the US lasting tens of minutes on different types of
asphalt in both dry and wet conditions. The work performs classification using
a Bi-Directional Long-Short Term Memory (BLSTM) neural network [124] and
Auditory Spectral Features (ASF). The paper reports a unweighted average
recall of 93.2% as best result, with a large improvement over [122].

These works motivate us to investigate deep learning approaches for the road
surface detection problem. In-car equalization profiles may be determined on
the basis of the estimated surface roughness in order to improve the listening
quality in the cockpit or to obtain suggestions on the driving experience. We
propose to extract audio features for the classification of road roughness in two
classes corresponding to two extremes. Owing from previous works we build
a corpus of data to train an efficient neural network architecture such as a
Convolutional Neural Network. The dataset deals with all the issues of a real-
world scenario such as the presence of cars passing by, of a combustion engine
and the varying speed.

4.2.1 Proposed Method

Input 1 O—>

Input 2 Ir_

e = "_'E\\\
T————— [[] —

Input N O—>

Figure 4.11: Road Surface Roughness Classification - Algorithm Block Diagram
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For the road surface classification task we propose an approach based on
convolutional neural networks (CNN) [125]. The proposed algorithm is depicted
in Figure 4.11. The preprocessing stage works with short audio chunks to
detect abrupt changes in the road surface conditions. We use Auditory Spectral
Features, that are calculated in the first stage and then arranged in subsequent
and non-overlapping chunks of temporal extension equal to one second in the
feature extraction stage.

We compared two variants of the algorithm: in the first one, after a super-
vised training the CNN stage deals with the classification and processes one
block at a time; in the second one, we used a Siamese architecture which was
trained to produce a measure of “distance” between smooth and rough samples.
In the evaluation phase, we can exploit the pair of inputs to be supplied to the
Siamese in order to consider the temporal correlation between adjacent chunks.

We performed experiments also to explore the possibility to realize a transfer
learning with respect to the tyre types. In detail, we collected the dataset
travelling the same road with two sets of tyres, namely Winter and Summer
tyres. Then, we evaluated the performance of the proposed algorithm both
using the same tyre set, both training with a set and testing on the other.

Siamese Neural Networks
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Figure 4.12: Siamese architecture (left) and its prediction procedure (right).

This architecture is designed to accept a pair of audio chunks as inputs which
are processed by two CNNs with binded weights. In training phase, the whole
network learns to maps these inputs into two different representation vectors,
then as output returns the Euclidean distance between them. For further details
please refer to (cf. Section 2.3.3).

In this section, we introduce a custom prediction procedure for the Siamese
architecture. The idea is shown Figure 4.12: a window composed of n chunks
is fixed; in the first case the chunk X|[n + 1] is passed iteratively as input to
the network together with each of the previous chunks X[0,...,n]. A distance
will be associated to each pair, which is the output of the network; then an
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average is computed between the n obtained distances. The same is done with
the chunk X[n + 2] and the previous n, and so on until the end of test set. In
this way every chunk from the n'” to the last will be associated to a distance.
Analyzing the signal obtained from this procedure we are able to distinguish
between smooth and rough condition. Specifically, the signal obtained from the
distances averaging is firstly processed by means of a low-pass filter, then is
compared to an adaptive threshold.

Auditory Spectral Features

Auditory Spectral Features (ASF) are acoustic features extracted from audio
samples that have been introduced in [126] and are used also in [123]. ASF
are computed by applying the Short Time Fourier Transform (STFT) using a
frame size of 30 ms and a frame step of 10 ms. Each STFT provides the power
spectrogram which is converted to the mel frequency scale using a filter-bank
with 26 triangular filters obtaining the mel spectrograms Mszg(n, m), where n
is the frame index, and m is the frequency bin index.

To match the human perception of loudness mel spectrograms are trans-
formed to a logarithmic scale, according to:

M (n,m) = log(Mso(n, m) + 1.0). (4.11)

This process yields 26 coeflicients, while other 26 are obtained by calculating
the positive first order differences Dsq(n, m) from each logmel spectrogram, as
follows:

Dso(n,m) = M39 (n,m) — M}

log log

(n—1,m), (4.12)

for a total of 52 coefficients for frame. The final feature vector is expanded by
including the frame energy and its derivative ending up in a total number of
54 coefficients. The features are extracted with an open-source audio analysis
toolkit openSMILE v2.3.0 [127] ensuring reproducibility.

In order to feed the CNN, audio chunks of 1s are obtained from 98 feature
vectors, resulting in 2D arrays of 54-by-98 values.

4.2.2 Dataset

The dataset built for this work is done with a multi-channel microphone ar-
rangement, with the prospect of conducting different assessments at once or
to exploit microphone diversity to improve the classification. More specifically,
two microphones have been placed close to the rear wheels, one in front of the
front left wheel, one inside the engine compartment and two inside the cock-
pit, close to the driver head and close to the right passenger head. The rear
wheel microphones have been placed off-axis, in order to avoid dirt from the
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wheel and protected by the wheelhouse to reduce the effect of wind. Figure
4.13 shows the positioning of all microphones. External microphones are PCB
Piezotronics model 130A24. These are IP55 microphones and they have been
protected with a melamine resin foam for sound absorption to reduce the effect
of wind. The internal microphones are PCB Piezotronics model 378C20. The
front-right wheel has been excluded from recordings after first informal eval-
uations because it picked a large amount of engine noise with respect to the
other microphones. The rear-right microphone, vice versa, was found to be the
best choice because the noise from the engine was the lowest and it has been
used for this first evaluation. The engine compartment microphone has been
used to record the engine conditions for future use. In Figure 4.14 are shown
the images of the microphones installation.

(b)

Figure 4.13: Positioning of the microphones in the car used to record the
dataset, top view (a) and bottom view (b). The microphones are
placed in the engine compartment (E), close to the front-left, rear-
left and rear-right tyres (FL, RL, RR), and inside the car close to
the driver or in the back seat (ID, IB). The last two microphones
are PCB Piezotronics model 378C20 type microphones, while all
the others are IP55 PCB Piezotronics model 130A24 microphones.
The microphones are omnidirectional, however the arrows in (b)
show how the capsule was positioned to minimize wind effect. The
rear microphones are protected in the wheelhouse.

The car employed to build the dataset is Mercedes A Class from 2014. In
addition to the audio signals, the GPS signal has been recorded to track down
the car speed and position at any given time. A mobile multi-channel front end,
HEAD Acoustics SQuadriga II, has been employed as acquisition device, being
able to monitor and record 8 contemporary channels at different sample rates,
and to store GPS antenna and CAN bus signals as depicted in Figure 4.15. All

64



“PhDthesis VES” — 2019/2/12 — 19:36 — page 65 — #85

4.2 Road Surface Roughness Classification

(a) Rear right tyre microphone. (b) Front left tyre microphone.

Figure 4.14: Pictures of the PCB Piezotronics model 130A24 microphones po-
sitioned near the rear right and front left tyres, according to "RR"
and "FL" red circles in Figure 4.13. The microphones are enclosed
by a melamine resin foam with open cell network structure to re-
duce the wind noise.

audio signals are sampled at 44100 Hz, 24-bits. The external microphones used
-26 dBV as input range while the interior microphones had -16 dBV as input
range. To facilitate the labelling operations, a camcorder BC' MasterDC103
was installed on the dashboard of the car. In addition to the video, it provides
the speed information obtained through its own GPS antenna and it records the
cockpit audio, useful for taking vocal notes while driving. The data recorded
with the HEAD Acoustics SQuadriga II have been exported by means of the
software HEAD Acoustics ArtemiS SUITE in the uncompressed WAV audio
format with a 32-bit float representation.The result of the recording sessions
is approximately 100-minutes-long multichannel recordings (6 audio channels
and a speed channel) for both the tyre sets. Labels for the roads roughness
have been annotated manually.

Figure 4.15: Picture of the HEAD Acoustics SQuadriga II connected to the
GPS-antenna interface.

All recordings were taken in dry conditions in the urban and suburban areas
of Ancona (Italy) with variable speed, traffic conditions and pavement rough-

Shttp://www.bc-master.com/product/car-dash-camera-dc10
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ness. Only roads that had been recently asphalted were considered and multiple
takes at different speed for each road have been performed. As aforementioned,
the same roads have been travelled in close days with two sets of tyres.

In this section, we considered a subset of the entire dataset, the set “Win-
ter 09-05-2018” and the set “Summer 11-05-2018”, respectively composed of
approximately 45 minutes of recordings. The two set are not perfectly equal
and balanced, although the differences are minimal. The “Winter 09-05-2018”
characterized by 51% of rough and 49% of smooth road samples, while the
“Summer 11-05-2018” has respectively 56% rough and 44% smooth road sam-
ples. The spectrograms from two audio samples belonging to the smooth and
rough classes are shown in Figure 4.16, respective asphalt photographs are
shown in Figure 4.17.

Time [s] Time [s]

(a) Smooth road. (b) Rough road.

Figure 4.16: Spectrograms from 10 second samples of (a) smooth urban road,
(b) rough highway asphalt.

e

(a) Smooth road. (b) Rough road.

Figure 4.17: Samples of (a) smooth urban road, (b) rough highway asphalt.

4.2.3 Experiments

Evaluations are reported after a random search of the CNN hyperparameters
with different inputs and with both the tyre sets. In Table 4.5 are reported the
ranges of the explored hyper-parameters. A 5-fold cross-validation procedure
has been performed. The Fl-score has been calculated for each combination
of training/testing set and then averaged to obtain the unweighted average
metrics. The cross-validation has been performed disposing 64% of the dataset
to training, 16% to validation and 20% to test. After initial tests, the rear-
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right microphone has been selected being the one with the lowest engine noise
content. The CNN has been trained using the Adadelta optimization algorithm
and binary cross-entropy as a cost function for 1000 epochs, with an early-
stopping strategy on the validation set score. The network layouts were the
same both for the “traditional” CNN, both for the “basic” network composing
the twin architecture in the Siamese approach. In the latter case, the training
loss function is the contrastive loss, while 1780 and 1916 chunk pairs composed
the training sets respectively of the “Winter” and the “Summer” scenarios.

[ Parameter [ Range [ Distribution ]
CNN layers Nr. [1-4] uniform
CNN kernels Nr. [4 - 64] log-uniform

CNN kernels dim. 3X3 - 6X6 uniform
Pooling dim. 1x1-2x5 uniform
CNN activation tanh - relu random choice
CNN dropout [0-0.5] uniform
MLP layers Nr. [1-3] uniform
MLP layers dim. [20 - 256] log-unifom
Activation [tanh - ReLU] uniform

Table 4.5: Ranges of CNN layout parameters tested in the random-search
phase. The kernel size and the stride are expressed as [time X
features].

Table 4.6 shows that the Siamese architecture outperforms in all the condi-
tions the traditional CNN approach. In particular, although there is a relative
worsening of the Siamese approach when we apply the transfer learning in the
“Winter” scenario, the absolute performance is significantly better compared to
the basic CNN. As shown in Figure 4.18, the combination of Siamese networks
and its dedicated post-processing procedure yield very reliable predictions on
the experimental dataset. In addition, we note that the models trained with
the “Summer” dataset exhibit a poor performance compared to the “Winter”
dataset. This is difficult to interpret, but we suppose that be attributed to the
tread design of the “Winter” tyres, which enhances the produced noise and the
characteristic frequency spectrum of the two road conditions.

TRAINING TESTING ‘ CNN  Siamese

Winter 09-05-2018  Winter 09-05-2018 85.65 98.14
Winter 09-05-2018 Summer 11-05-2018 | 83.93 95.08

Summer 11-05-2018 Summer 11-05-2018 | 80.65 93.88
Summer 11-05-2018 Winter 09-05-2018 76.17 93.37

Table 4.6: Results in terms of F-measure (%) for the considered architectures.
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Figure 4.18: Siamese networks output. On top figure, we show the rough signal
(blue), the filtered signal (green), and the threshold for each frame
(black). On bottom figure, the binarized predictions are compared
to the ground truth.

4.2.4 Conclusions

In the present work a data-driven approach for road surface roughness classi-
fication is discussed, following seminal works proposed in the last years. The
approach is based on a machine listening approach, where the tyre-road noise
is analyzed and classified by means of deep neural networks. With respect
to previous works a less computational-intensive neural network architecture
has been chosen which also allows for on-line processing. A dataset has been
created from a real-world scenario by fitting a car microphones and a GPS
receiver and driving the car on different roads with varying speed, gathering a
multi-channel dataset.

Experimental results are motivating, thus the model based on the Siamese ar-
chitecture yields an F-measure largely above 90% after a 5-fold cross-validation.
In particular, the results of such approach outperform the traditional CNN also
when the models are tested on data collected with a different tyre set. This con-
firms the generalization properties of the method, which allows it to distinguish
the acoustical characteristics belonging to the target classes independently from
the training set.

Future works may extend the proposed algorithm to process multiple micro-
phone signals, exploiting diversity, thus reducing the number of errors due to
cars passing by and other unrelated sound sources. Driving speed, extracted
from a GPS receiver or from the CAN bus, may help improve the classification
performance. The most challenging objective, however, would be to infer the
road roughness from internal microphones, as these are nowadays available in
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many vehicles for echo cancellation and noise suppression and are not subject to
issues such as dirt, wet, cold, etc. The main issues with this approach, however,
are the cockpit isolation from the outside and the interference of speech and
music with the road surface noise. Voice activity detection (VAD) [128, 129]
algorithms should be employed and extended to detect the presence of music
provided by the car infotainment system. Existing works based on CNN archi-
tectures [130, 131] could be a starting point as they could be integrated easily
with the current framework and extended.

We would like to thank ASK industries S.P.A. for financial support and
technical assistance.
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4.3 Bird Audio Detection

Automatic wildlife monitoring is a key concern nowadays. Climatic changes,
the effects of pollution and alteration of the ecosystems have to be closely con-
trolled in order to be the litmus test for the future sustainable technological and
political guidelines. In this context, bird audio analysis is an important task
of the bioacoustics for wildlife and biodiversity monitoring, which can easily
embrace the deep learning concept. This is confirmed also from the interest re-
ceived by projects such as “Bird Sounds visualization” supported by the Google
Creative Lab [132]. In particular, detecting the presence of bird calls in audio
recordings is a very common required first step for a framework that can per-
form different kind of analysis (e.g. species classification, counting), and makes
it possible to conduct work with large datasets (e.g. continuous 24h monitor-
ing) by segmenting the data stream into regions of interests. To encourage
the research in automating this task, in 2016 Stowell et al. [133] organized a
first edition Bird Audio Detection (BAD) challenge. It has been appreciated
to such an extent that a new round has been included in one of the tasks of the
2018 IEEE AASP Challenge on Detection and Classification of Acoustic Scenes
and Events (DCASE). In fact, Task 3 consists in determining a binary decision
for the presence/absence of bird sounds on audio files recorded in very dif-
ferent conditions, comprehending dataset balancing, birds species, background
sounds and recordings equipment. Specifically, participants are asked to build
algorithms that predict whether a given 10-second recording contains any type
of bird vocalization, regardless of the species. Thus, differently from the official
name of the task, we can consider it as a classification problem. The organizers
invite to explore approaches that can either inherently generalize across differ-
ent conditions (including conditions not seen in the training data), or which
can self-adapt to new datasets. The deep neural network based approach we
propose has the aim to counteract the generalization problem by means of
an innovative learning procedure named “capsule routing” which has shown
promising performances since it has been presented [52] and also in pioneering
employments in audio tasks [51].

4.3.1 Related Works

In very recent years, a strong growth of deep learning algorithms devoted
to the acoustic monitoring has been observed. In particular, works such as
[134, 34, 135] represent milestones, involving Convolutional Neural Networks
(CNN) for audio signals detection and classification. These deep neural ar-
chitectures, combined with the increased availability of datasets and compu-
tational resources, have allowed large performance improvements, outperform-
ing in most of the cases the human accuracy [43]. This has also motivated
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researchers to employ such architecture, eventually combined with recurrent
units [45], in almost all of the tasks proposed in the recent editions of research
challenges such as the DCASE [136]. These algorithms often result among the
strongest-performing systems [47, 137]. Similar results came from the first edi-
tion Bird Audio Detection (BAD2017) challenge, which was held in 2016-2017.
In this case different novel algorithms have been proposed to create robust and
scalable systems able to automate the annotation process of audio sequences
containing free-field recordings. The work of Grill and Schliiter [24] should
be also mentioned, which obtained the highest score and which is based on
CNNs trained on Mel-scaled log-magnitude spectrograms. The outcomes of
the BAD2017 are reported in [57].

A team at Google Brain recently has presented a new computational unit
[52] called “CapsNet” with the intent to overcome two known limitations of the
CNNs: the excessive information loss caused by the pooling and other down-
scaling operations and the inability to infer part-whole relationships between
the elements which the deep neural network (DNN) has to detect. In fact, the
layers of a standard CNN are good at detecting space-invariant features which
characterize an image (or a spectrogram in the case of audio spectrograms), but
are less effective at exploring the spatial relationships among features (perspec-
tive, size, orientation). Capsule routing has the aim to learn global coherence
implicitly, thereby improving generalization performance. In the BAD applica-
tion, it means that the DNN is driven to learn a general concept of the entities
of “bird song” and “background sounds” without requiring extensive data aug-
mentation or dedicated domain adaptation procedures, thus motivating the use
of Capsules for this task.

4.3.2 Proposed Method

The proposed system is a fully data-driven approach based on the CapsNet
deep neural architecture presented by Sabour et al. [52]. The novel compu-
tational structure of the Capsules, combined to the routing mechanism allows
to be invariant to intra-class affine transformations and to identify part-whole
relationships between data features. The whole system is composed of a feature
extraction stage and a detection stage. The feature extraction stage transforms
time-varying audio signal into acoustic spectral features, then the second stage
takes the feature vector as input and maps them to a binary estimate of bird
song presence. This latter stage is where we introduce the Capsule neural net-
work architecture. The network parameters are obtained by supervised learning
using annotations of bird song activity as one hot target vector.
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Feature Extraction

The feature extraction stage operates on mono audio signals sampled at 44.1
kHz. For our purpose, we exploit LogMels as acoustic spectral representation,
following results obtained in various audio tagging and sound event detection
tasks. Firstly, the audio signals are down-sampled to 16 kHz, because the most
relevant frequency bands related to bird songs are in the range from 2 kHz to
8 kHz [138]. Then, LogMel coefficients are obtained by filtering the magnitude
spectrum of the STFT with a filter-bank composed of 40 filters evenly spaced in
the mel frequency scale. The logarithm of the energy of each band is computed
to match the human perception of loudness. In the STFT computation, the
used frame size is equal to 40 ms and the frame step is equal to 20 ms. All
of the datasets contain 10-second-long WAV files, thus the resulting feature
matrix x € RP1XP2 has a shape 501 x 40. The range of feature values is then
normalized according to the mean and the standard deviation computed on the
training sets of the neural networks.

CapsNet for Bird Audio Detection

The architecture of the neural network is shown in Fig. 4.19. The first stages
of the model are traditional CNN blocks which act as feature extractors on the
input LogMel coefficients. After each block, max-pooling is used to halve the
dimensions. The feature maps obtained by the CNN layers are then fed to the
Primary Capsule Layer that represents the lowest level of multi-dimensional
entities. Basically it is a convolutional layer whose output is reshaped and
squashed using (2.18). The final layer, is a capsule layer and it is composed of
two densely connected capsule units. Since the previous layer is also a capsule
layer, the dynamic routing algorithm is used to compute the output. The
model predictions are obtained computing the the Euclidean length of each
output capsule, which represent the probabilities that an input feature vector
x belongs to the background or the bird audio class, thus we consider only the
latter as system output prediction.

4.3.3 Experimental Setup

The network hyperparameters optimization was obtained by means of a ran-
dom search strategy [139]. The number and the shape of convolutional layers,
the non-linear activation function, the regularizers in addition to the capsules
dimensions and the maximum number of routing iterations have been varied
for a total of 100 configurations. Details of searched hyperparameters and
their ranges are reported in Table 6.6. The neural networks training was ac-
complished by the AdaDelta stochastic gradient-based optimisation algorithm
[140] for a maximum of 100 epochs and batch size equal to 20 on the margin
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Figure 4.19: Flow chart of the proposed algorithm employing CapsNets for Bird
Audio Detection.

loss function. The optimizer hyperparameters were set according to [140] (i.e.,
initial learning rate Ir = 1.0, p = 0.95, ¢ = 107%). It was chosen because it is
well-suited for dealing with sparse data and its robustness to different choices
of model hyperparameters. Furthermore no manual tuning of learning rate is
required.

An early stopping strategy was employed in order to avoid overfitting. Thus
if the validation score does not increase for 20 consecutive epochs, the training
is stopped and the last saved model is selected as the final model. In addition,
dropout and L2 (with A = 0.01) have been used as weights regularization
techniques [68]. The algorithm has been implemented in the Python language
using Keras [141] and Tensorflow [142] as deep learning libraries.

Dataset

According to the DCASE 2018 guidelines, the performance of the proposed al-
gorithm has been assessed firstly by using the development dataset for training
and validation of the system. Then, a blind test on the provided evaluation
dataset was performed with the models which achieved the highest perfor-
mance and submitted to the organizers of the challenge. The complete dataset
is composed of recordings belonging to five different collections.

e “freefield1010”: a collection of 7690 excerpts from field recordings around
the world;
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Collection N. of samples | Balance
Development Dataset

“warblrb10k” 8000 0.75
“BirdVox-DCASE-20k” 20000 0.5

“freefield1010” 7690 0.25
Total 35690 0.5

Evaluation Dataset

“warblrb10k_ test” 2000 -
“Chernobyl” 6620 -
“PolandNFC” 4000 -
Total 12620 -

Table 4.7: Details of the dataset we used for the algorithm development. The
table shows the number of audio files and the ratio between posi-
tive/negative samples (if available) of each used data collection.

e “warblrbl0k”: a crowsourced dataset recorded with the Warbir* smart-
phone app. It covers a wide distribution of UK locations and environ-
ments and includes weather noise, traffic noise, human speech and even
human bird imitations; 8000 samples are used in the development dataset
while a held-out set of 2,000 recordings from the same conditions is in-
cluded in the evaluation split;

e “BirdVox-DCASE-20k”: 20000 files containing remote monitoring flight
calls collected from recordings units placed near Ithaca, NY, USA during
the autumn of 2015;

e “Chernobyl”: dataset collected from unattended remote monitoring equip-
ment in the Chernobyl Exclusion Zone (CEZ). A totoal of 6620 audio files
cover a range of birds and includes weather, large mammal and insect
noise sampled across various CEZ environments, including abandoned
village, grassland and forest areas;

e “PolandNFC”: 4000 recordings obtained from a project of monitoring of
autumn nocturnal bird migration. They were collected every night, from
September to November 2016 on the Baltic Sea coast, Poland, using Song
Meter SM2 units with microphones mounted on 3-5 m poles.

Further details are reported in Table 4.7. The organizers recommended a 3-
way cross-validation (CV) for the algorithms development, thus in each fold we
used two sets for training and the other one as validation set in order to have
scores comparable with the others challenge participant.

4https://www.warblr.co.uk/
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‘ Parameter ‘ Range ‘ Distribution ‘ CapsNet1 ‘ CapsNet 2 ‘ CapsNet3 ‘
CNN layers Nr. [1-4] uniform 3 4 4
CNN kernels Nr. [4-64] log-uniform [64,16,8] [32,16,16,32] | [32,64,4,64]
CNN kernels dim. [3x3 - 8x8| uniform 3x3 5x5 6x6
. . . [1x5],[1x4], | [1x5],[1x4], | [1x4],[1x2],
Pooling dim. [1x1 - 2x5] uniform [1x4] [x2h1x2] | [x2)[1x2]
CNN activation [tanh - relu] | random choice tanh relu relu
CNN dropout [0-0.5] uniform 0 0 0
CNN L2 [yes - no] random choice no yes yes
Primary Capsules channels Nr. [2- 8] uniform 6 2 8
Primary Capsules kernels dim. | [3x3 - 5x5] uniform 4x4 4x4 3x3
Primary Capsules dimension [2 - 16] uniform 8 8 2
Capsules dimension [2 - 16] uniform 2 15 10
Capsules dropout [0-0.5] uniform 0 0.1 0.3
Max routing iterations [1-5] uniform 2 3 2
Batch Normalization [yes - no] random choice yes yes yes
‘ Trainable Params ‘ - ‘ - ‘ 113k ‘ 282k ‘ 424k ‘

Table 4.8: Hyper-parameters optimized in the random-search phase and the
resulting best performing models.

Baseline

The baseline system is an adapted version of the method winner of the BAD2017
[24]. The peculiarity of this algorithm is its double training procedure. In a first
run, the network is trained on the whole training data. Binary predictions are
obtained for the testing data. The more confident predictions (the ones closer
to 0 or 1) are then added to the training data as so-called “pseudo-labeled”
samples. Thus, a second training run is performed on this extended training
set and the final predictions are yielded.

Metric

The performance metric of the DCASE 2018 on this task is the “Area Under
the ROC Curve” (AUC). More precisely, it is a stratified AUC: the score is
computed separately for each fold of the evaluation set, then the partial scores
are averaged. This procedure allows to adapt the “detection threshold” to each
dataset conditions, then the performance across datasets are combined in an
explicit weighted fashion, thus the final score is not merely influenced by the
number of files in each subset.

4.3.4 Results

Results reported in Table 4.9 show both the best performance we obtained on
the single CV fold, and the best averaged AUC. We obtain a harmonic mean for
AUC equal to 83.72 for a single configuration, whilst if we consider the mean
of the best performing models on the single folds we achieve an AUC equal to
85.08.
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Conf ID Fold 1 | Fold 2 | Fold 3 | Avg | Evaluation
Baseline 79.90 | 88.20 | 88.20 | 85.40 88.50
CapNetl | 88.22 | 72.78 | 74.16 | 78.39 -
CapNet2 | 81.77 | 80.90 | 85.52 | 82.73 -
CapNet3 | 86.59 | 78.46 | 86.11 | 83.72 75.40
Ensemble - - - 85.08 78.80

Table 4.9: Results on Development dataset in terms of AUC (%).

We considered as candidates for the test on the evaluation procedure [57]
both the best performing setups on the single CV folds, and the setups with
the best averaged AUC. For the latter, we trained a new model with the same
hyperparameters on the whole development dataset before performing the pre-
dictions on the evaluation dataset. With an ensemble of the single fold best
models trained during the CV procedure we obtain an AUC score equal to
78.80, while for the model with the best averaged AUC we obtain an AUC
score equal to 75.40.

Although the system obtained only the 12th place in the final ranking, the
performance on challenge data were respectable considering the novelty of the
approach. This allowed us to earn the judges award for the most innovative
method at the DCASE 2018 Workshop.

4.3.5 Conclusion and Outlook

In this section, we have presented an algorithm for bird audio detection based
on the CapsNet architecture. We feed a deep neural network which uses the dy-
namic routing procedure during the training with the LogMel extracted from
the audio signals in order to obtain predictions on unseen data recorded in
various conditions possibly also very different from the training set. For fu-
ture work, variants [143] or strategy to customize the dynamic routing can be
considered.
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Sound Event Detection

The task of sound event detection (SED) is defined as the task of analysing a
continuous audio stream in order to extract a description of the sound events
occurring in it. This description is commonly expressed as a label that marks
the start, the ending, and the nature of the occurred sound (e.g., children
crying, cutlery, glass jingling). Thus, in this case we don’t produce a “global”
prediction of a short excerpt of audio, but differently from the SEC, the systems
yield an activation representative of the targe sound event presence each time
frame (i.e., at the maximum time resolution required by the application).

Input

[ Sound Event Detection System ]

!

glass breaking

each event with sound class label + onset and offset timestamps

Output

>
time ™

Figure 5.1: System input and output for the sound event detection.

In this chapter three related works are shown, which are respectively: Overnight
Snore Sounds Detection by means of Convolutional Recurrent Neural Networks
(CRNN) and acoustic data augmentation; Convolutional Neural Networks with
3-D Kernels for Voice Activity Detection in a Multiroom Environment; and
Rare Sound Detection, consisting in detection of three sound categories (i.e.,
gunshot, babycry and glassbreak) from a highly imbalanced dataset. The latter
has been performed by means of a hierarchical framework of ConvNets.
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5.1 Overnight Snore Sounds Detection

As described in Section 4.1, one of the most common sleep disorder is the
chronic snoring. In the occasion of the Interspeech 2017 ComParE challenge
[98] and subsequent investigations, different approaches based on Deep Neural
Networks (DNNs) have been presented [99], [100], [144] with the aim to classify
isolated snore sound events among the four classes based of the VOTE scheme.

In this section, we propose the application of Convolutional Recurrent Neu-
ral Networks (CRNNs) to detect snoring episodes from overnight recordings
acquired in real life conditions. The method is a two step process: the acoustic
spectral features extraction and the CRNN combined with Gated Recurrent
Units (GRU) processing. The algorithm is evaluated by using the Average
Precision (AP) score. Differently from other deep learning approaches [99],
[100], [144], this choice offers a viable and natural solution for jointly learn-
ing the spatio-temporal dependencies of audio sequence for discovering snoring
event. Additionally, we deal with the high unbalanced setting which exists
in the task of snore detection. Thus, one of the main goals of this section is
also to evaluate the performance of the overnight snore sound detection for dif-
ferent data augmentation techniques. The original snore/background ratio in
the aforementioned signals has been increased by adding isolated snore events
from the Munich-Passau Snore Sound Corpus dataset [98] (cf. Section 4.1.3).
The reliability of the proposed approach is investigated using the A3-snore
dataset, leading to significant improvement in term of Average Precision (AP)
with respect to Convolutional Neural Network (up to 9.48%) and other data
augmentation techniques.

5.1.1 Proposed Approach

The two-step of the proposed approach are detailed in this section, starting from
the spectral features extraction and ending with the Convolutional Recurrent
Neural Network. Figure 5.2 shows the overall architecture.

Gated
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Figure 5.2: The proposed approach scheme for Snoring Detection.
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Features Extraction

The feature extraction stage operates on stereo audio signals sampled at 44.1
kHz. Following the results obtained in recent works related to sound event
detection [46], we use the log Mel energy coefficients (Logmel) as an efficient
representation of the audio signal. The stereo signal is firstly down-mixed to
mono by averaging the two channels. The resulting audio signal is split into
30 ms frames and a frame step of 10 ms to compute the STFT spectrogram. We
used a filter bank with 40 mel scaled channels, obtaining 40 coefficients/frame.

Convolutional Recurrent Neural Networks

CRNNSs used in this section are composed of four types of layers: convolutional
layers, pooling layers, recurrent layers and detection layer. Each convolutional
layer is followed by batch normalization per feature map [69], a leaky recti-
fied linear unit activation function (LeakyReLU) and a dropout layer [68] with
rate equal to 0.3. A frequency domain max-pooling layer is then applied to
the resulting feature-map, in order to enhance the relevant information from
frequency bands without losing the temporal resolution of the Logmels, as pro-
posed in [48]. The extracted features over the CNN feature maps are stacked
along the frequency axis. Max-Pooling operation combined with shared weight
in convolutional layers provide robustness to frequency shifts in the input fea-
tures and this is crucial to overcome the problem of intra-class acoustic variabil-
ity for snore events. In the recurrent block, the stacked features resulting from
the last pooling layer are fed to layers composed of GRUs (cf. Section 2.3.5),
where tanh and hard sigmoid activation functions are used for update and reset
gates, respectively. Fast response to the changes in the input and the previous
activation information is fundamental for high performance in the proposed
algorithm, where the task is to detect a small chunk of consecutive time frames
where the target event is present. In addition, a previous work [145] demon-
strates improvements provided by recurrent architectures in the sound event
detection in real-life audio. The detection layer is a feed-forward layer of com-
posed of a single neuron with sigmoid activation function, corresponding to
the probability the event onset. The layer is time distributed, this means that
while computing the output of the classification layer, the same weight and
bias values are used over the recurrent layer outputs for each frame.

In a comparative aim, we implemented also a CNN architecture very similar
to the CRNN, the only difference being that the recurrent layers of the CRNN
are replaced with time distributed feed-forward layers with ReLU activations.
In following section, we will refer it as CNN.

The neural networks training was accomplished by the AdaDelta stochastic
gradient based optimisation algorithm [140] for a maximum of 500 epochs on
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the binary cross entropy loss function. The optimizer hyperparameters were
set according to [140] (i.e., initial learning rate Ir = 1.0, p = 0.95, ¢ = 107°).
An early stopping strategy, monitoring the validation AP score, was employed
in order to reduce the computational burden and avoid overfitting.

5.1.2 A3 Snore Dataset

The snore detection algorithm has been evaluated on the A3-Snore dataset. A
brief description of the acquisition setup and dataset splitting is provided in
the following.

Acquisition setup:

In order to capture the overnight audio recordings a ZOOM-H1 Handy Recorder
has been used. It is equipped with two unidirectional microphones set at a 90
degree angle relative to one another. The signals are stored in WAV files with
a sampling rate of 44.1 kHz and bit depth equal to 16. The input gain is
automatically set by the recorder to prevent overload and distortion, while the
high-pass filter was enabled in order to eliminate pops, wind noise, blowing,
and other kinds of low frequency rumble.

Acquisition environment:

The acquisition environment consists of a simple bedroom, with two access
points (door and window). The recorder is placed near the patient, at same
height of the bed and in line with the subject’s mouth. During the recordings,
the patient is the only one that can occupy the bedroom, in order to avoid
contaminations on recorded audio signals. The room dimensions are reported
in Figure 5.3. Background sounds include traffic noise, breathing and speech
signals, house and animal noises. We acquired some samples measurements of
the event-to-background (EBR) ratios considering background noise, snoring
events and noise events such as “car passing by” or “dog barking”. The EBR
resulted equal to 6.5 dB and 1.1 dB respectively for noise to background EBR
and snore to background EBR.

Dataset splitting:

The original recordings have been manually labelled, annotating the snore
events onset and offset with a resolution of 1 second. The audio sequences
have been divided into chunks of 10 minutes, and only those with the highest
number of snore events have been used in the experiments. The dataset is or-
ganized into subjects, which can be respectively used as training or validation

80



“PhDthesis_ VES” — 2019/2/12 — 19:36 — page 81 — #101 GF

5.1 Overnight Snore Sounds Detection

2.0 m

2.5|m

£0 m

Figure 5.3: Plant of the recording room.

sets in a two fold cross validation strategy (i.e., Leave One Subject Out proce-
dure). The number of events per class in the database is strongly unbalanced
as reported in Table 5.1. Thus, the snore detection task is challenging, due to
the high number of noises on the A3-SNORE dataset.

A3-SNORE dataset
# Gender Age Snoring (SN) Total Duration (Tot) Ratio (SN/Tot)

Snorer 1 M 48 33m-27s 3h-12m-0s 14.5%
Snorer 2 M 55 21m-21s 3h-50m-0s 11.1%
Total 54m-48s 7h-02m-0s 12.8%

Table 5.1: Difference of recording times for each class, divided by snorers.

5.1.3 Data Augmentation Techniques

In this application, what we are really interested is to detect the minority
class (e.g. snoring events) rather than the majority class (e.g. background).
Thus, we need to adequately train the models in order to obtain a fairly high
prediction for the minority class. In order to counteract the dataset unbal-
ancing existing in the task of snoring detection different techniques of data
augmentation have been evaluated. The literature suggests that it is possible
to augment training data in data-space or in feature-space. In this section,
both data augmentation approach have been evaluated, by using the Synthetic
Minority Over-sampling Techniqgue (SMOTE) [80] in the feature space, and
by generating simulated data with an increased number of snore events. The
original snore/background ratio in the acquired signals has been increased with
these transformations to approximately 30% [85], maintaining anyway a nat-
ural unbalance which is properly of this task. In the following sub-sections, a
brief description of each method is provided.
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Majority Class under sampling:

it is not a properly data augmentation technique but it is a fast and easy way
to balance the data. It consists in randomly selecting a subset of data from
the training sets in order to modify the ratio of the sample occurrences in two
classes.

SMOTE:

It is an over-sampling approach in which the minority class is over-sampled
by creating new synthetic examples. The minority class is over-sampled by
taking each minority class sample and introducing synthetic examples along
the line segments joining any/all of the & minority class nearest neighbors (k-
NN). Depending upon the amount of required over-sampling, neighbors from
the k-NNs are randomly chosen. In particular, synthetic samples are generated
in the following way: the difference between the feature vector (sample) under
consideration and its nearest neighbor is multiplied by a random number be-
tween 0 and 1, and this is added to the feature vector under consideration. In
details, for a sample z;:

AMOTE = &y 4 (Fap — i) - 1(j) (5.1)
where r(j) € [0,1]. This causes the selection of a random point along the line
segment between two specific features. This approach effectively forces the
decision region of the minority class to become more general.

Proposed approach - Generating simulated data:

The simulated training sets have been created starting from the folds described
in Section 4.3.3. The impulse responses between the snore source and the mi-
crophones have been recreated by using the library Pyroomacoustics [146].
Isolated snore sounds have been taken from the Munich-Passau Snore Sound
Corpus (MPSSC) dataset [98]. It is composed of 843 snore events which have
been extracted and manually screened by medical experts from Drug-Induced
Sleep Endoscopy (DISE) examinations of 224 subjects. The augmented train-
ing set has been created by convolving the isolated snore sound events of the
MPSSC corpus with the synthetic impulse responses. Than, the obtained sig-
nals have been mixed with the original recordings without overlap with the
already present events. The artificial added event dynamic was normalized to
the maximum value observed in the original signals. The resulting total time
of snore signals is 55 minutes for Snorer 1, and 56 minutes and 5 seconds for
Snorer 2.
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5.1.4 Experimental Setup

The performance of the algorithms has been evaluated in term of AP score, a
metric that summarizes the Precision and Recall curve (cf. Section 3.3). To as-
sess the performance of the models, we explored different hyper-parameter con-
figurations and, for each of these, we repeated the whole experiments training
the models both with the original data and with data processed with techniques
described in Section 5.1.3. Table 5.2 shows the hyper-parameter configurations
analyzed in our experiments. They regard kernels size, kernel number and
GRUs for a total of 120 experiments. In the case of CNN the number of units
and layer refers to a Multi Layer Perceptron (MLP) architecture. The exper-
iments were conducted in a 2-fold cross-validation strategy corresponding on
a leave one subject out procedure, thus in fold 1 we used Snorer 1 as training
set and Snorer 2 as validation set and in fold 2 vice-versa. The models were
selected on the performance based on the AP score averaged on the two folds.
The algorithm has been implemented in the Python language using Keras [141]
as deep learning library. All the experiments were performed on a computer
equipped with a 6-core Intel i7, 32 GB of RAM and two Nvidia Titan X graphic
cards.

Convolutional Layers Number 3
Kernel Number 4, 8, 16, 32, 64
Kernel Size 5x5,3x3,2x2
Pooling Size 5x1,4x1,2x1
Recurrent Layers Number 2,3
Dense Layers Number 2,3
Number Of Units 4, 8,16, 32, 64

Table 5.2: Explored network layout parameters.

5.1.5 Results

The performance of the CRNN and CNN architectures using different data
augmentation techniques are reported in Figure 5.4. In blue are depicted re-
sults with CRNN, in green the results of the CNNs. The CRNNs show to
be effective for snore event detection yet with the original data, although the
dataset imbalance. The best performing model is composed of 3 CNN layers
with respectively [64,64,64] filters of size 3 x 3 and two GRU layers of 64 units.
This configuration obtains an AP up to 82.05%, with a difference of +7.79%
with respect to the CNN.

The majority class under-sampling and the SMOTE techniques obtain worst
performance with respect to original recordings. For majority class under sam-
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Figure 5.4: Results with different data augmentation techniques for the best
models of the evaluated architectures.

pling this can be motivated by the necessity of DNN models of a large amount
of data to be trained properly, thus a reduction of data samples cannot benefits
to their detection ability. Regarding the SMOTE, the performance reduction
is less dramatic (-0.16% and -0.08%, respectively, for CNNs and CRNNs) but
its employment remains vain. In this case, the motivation can be found in the
complexity to generate new samples of audio signals in the feature space which
can really improve a DNN perfomance.

The addition of isolated snore samples convolved with the simulated room
impulse response has a tangible beneficial effect on the examined models. In
fact, with this technique we obtain an AP improvement equal to 11.18% and
12.87%, respectively, for the CNN and the CRNN. The latter obtains an AP
equal to 94.92% with an architecture composed of 3 CNN layers with respec-
tively [64,32,32] filters of size 5 x 5 and two GRU layers of 32 units. This model
is composed of 91,553 free-parameters and occupies approximately 1.2 MB,
providing to the algorithm a feasible complexity in an application scenario.

5.1.6 Conclusion

In this section, a deep learning algorithm based on a CRNN architecture
fed with Logmel spectral features extracted from the audio signal has been
proposed for snore detection. The A3-Snore dataset has been acquired in
real-world conditions, containing overnight recordings of two male subjects
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and it has been used to assess the performance of the models. The origi-
nal snore/background ratio has been increased by adding isolated snore events
from the Munich-Passau Snore Sound Corpus dataset [98]. The reliability of the
proposed approach has been investigated with respect to baseline CNN and dif-
ferent data augmentation techniques such as oversampling (i.e., SMOTE) and
downsampling. Results show that the presented snore detection methodology
is able to better generalize across different users. In particular, the CRNN
is able to extract salient information from the spectral features in order to
discriminate snore events, while the implemented data augmentation provides
additional samples of the minority class (i.e., snore events). These samples
contain supplementary information that can be exploited by the CRNN for
learning and discriminate snore events. Future works will be addressed to
employ this methodology in a weakly supervised setting. Specifically, in the
real-life applications, the precise annotation of existing events from overnight
recordings can be onerous and can be result in sparse labeling. Machine learn-
ing models trained in a weakly supervised fashion can help to counteract this
problem without losing the state of the art performance.
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5.2 Rare Sound Event Detection

The “Detection of rare sound events” task of the 2017 Detection and Classi-
fication of Acoustic Scenes and Events (DCASE) challenge [46] consisted in
determining the presence and the precise onset time of three types of sounds,
“baby cry”, “glass break” and “gun shot” in artificially generated audio se-
quences. In detail, the adjective “rare” refers to the dataset unbalance, thus
the disproportion between the total duration of the target sounds and the total
amount of the recorded data. The task takes into account real-world issues that
introduce additional complexity to the problem, such as the acoustic variability
of the sounds belonging to each event class, the presence of environmental noise
and its variability, etc. The rules of the challenge allow to know a priori the
event typology possibly present in the audio sequence under examination, thus
it is possible to have a separate binary classifier for each class.

5.2.1 Related Works

In the recent era of the “Deep Learning” different approaches to SED have been
proposed marking use of the capabilities of deep neural networks (DNNs) to
learn the relation between time-frequency features of the raw audio signal and
a target vector representing sound events. Although the DNNs based systems
are more computationally intensive with respect to widely used statistical mod-
elling methods such as hidden Markov models (HMMs) or Gaussian mixture
models (GMMs) [5, 9], a comparative study [38] has highlighted that they are
able to achieve top performance in the sound recognition problem.

A well-fitting example of such performance is given in [42], where different
DNNs are trained on three datasets recorded in real life environments in order
to detect abnormal events or hazardous situations exploiting only the informa-
tion carried by the acoustic signal. The experimental results show that Deep
Recurrent Neural Networks (DRNNSs) outperform the probabilistic approaches
over the three databases. Another example focuses on employing Convolutional
Neural Networks (CNN) for Voice Activity Detection in multi-room domestic
scenarios (mVAD) [130]. The CNN-mVAD results to be effective and outper-
forms the other method with a significant solidity in terms of performance
statistics.

In occasion of the DCASE 2017 challenge, many novel systems featuring
deep neural networks have been proposed, in particular involving hybrid ar-
chitectures making use of Convolutional Neural Networks (CNN) and DRNNs.
In detail, both the first two classified algorithms make use of mel spectrogram
coeflicients as spectral representation of the audio signal which is processed by
a CNN with 1D filters in the case of the first ranked [47] or by a 2D CNN with
frequency pooling in the case of the second classified [48]. The architectures
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are, then, combined with recurrent layers to process the features obtained by
the convolutional blocks. In [49] the authors propose a hierarchical structure
based on CNNs and DNNs trained with multi-task loss functions. Specifically,
in the first stage the networks are trained for background noise rejection, using
a weighted loss function to penalize the false positive errors. In the second
stage the multi-task loss enables the networks to simultaneously perform the
event classification task and the onset time estimation. This approach obtained
the third place in the final ranking. All of the aforementioned systems largely
outperform the baseline system based on a Multi Layer Perceptron architecture
(MLP) and Logmel energies as features. The baseline system [136] is based on
a Multi Layer Perceptron architecture (MLP) and log mel energies as features.
For each audio frame, the input vector is constructed concatenating 5 adjacent
log mel vectors for a total of 200 elements. The ANN architecture consists of
two dense layers of 50 hidden units each and one output neuron with sigmoid
activation, which indicates the activity of the target class.

5.2.2 Proposed Method

The proposed system is a hierarchical algorithm composed of five stages: the
acoustic features extraction, the event detection stage 1, which produces an
output at frame-rate and a dedicated smoothing procedure of this signal. Then,
a refinement of the previous decision stage is performed by a 2D CNN which
discards possible false positives detected by the stage 1. The final decision
procedure annotates the effective onset time of the active event. In Figure 5.5
the phases of the algorithm are depicted. This is an extended and improved
method with respect to our contribution to the DCASE 2017 [147].

Features Extraction

The feature extraction stage operates on mono audio signals sampled at 44.1
kHz. Following the results obtained at the DCASE2017 challenge by [48], we
use the log mel energy coefficients (Logmel) as an efficient representation of
the audio signal. In addition, we explored the combination of the Logmel with
features based on wavelet coefficients and forward prediction errors (WC-LPE)
[76]. A brief description of the features extraction procedures is given below.

Logmel coefficients The audio signal is split into frames of 40 ms and a frame
step of 20 ms, then the Logmel coefficients are obtained by filtering the power
spectrogram of the frame as described in Section 3.1.3. In this section, we used
a filter bank with 40 mel scaled channels, obtaining 40 coefficients/frame.
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Figure 5.5: Flow chart of the proposed method for rare sound event detection.
Each event class implements such a scheme. In the first column
are shown the spectrograms of the input signal and of the detected
events. In the second column the network outputs at each stage of
the algorithm.

WC-LPE Feature The Wavelet Coefficient (WC) and Linear Prediction Error
(LPE) feature set relies on non-stationary signal components and it has been
successfully exploited for musical note onset detection [76]. WC-LPE extrac-
tion is obtained by first processing the input signal with a Discrete Wavelet
Transform (DWT) dyadic tree. Then, each DWT sub-band is filtered by a lin-
ear prediction error filter (LPEF), obtaining Forward Prediction Errors (FPE).
All LPEF outputs and DWT sub-bands are resampled to an intermediate sam-
pling rate and rectified. The feature set is, finally, created from the DWT
sub-bands, their first order time derivatives, the FPE and their first order time
derivatives.

For both feature sets the range values of each coefficient is normalized inde-
pendently according to the mean and the standard deviation computed on the
training sets of the neural networks.

Event Detection Stage 1

The Event detection (ED) stage 1 has the goal to discard frames containing only
background sounds, reducing as much as possible the false negative decisions.
We evaluated two DNN architectures as binary classifiers: the MLP and the
CNN with 2D kernels and frequency pooling. In both cases, the output layer is
formed by two units with the softmax non-linear function. Thus, the networks
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outputs represent the probabilities that an input feature vector x[t] at the
frame index ¢ belongs to the background or the event class. In our analysis, we
evaluated as network input the Logmel coefficients and the combination of the
latter with the WC-LPE features.

Deep Neural Network Architectures

For the ED stage 1 we compared the performance of two deep neural networks
architectures, respectively the Multi Layer Perceptron (MLP) and the Convo-
lutional Neural Networks (CNN). In both cases, the neural networks training
was accomplished by the AdaDelta stochastic gradient-based optimisation al-
gorithm [140] for a maximum of 500 epochs on the binary cross entropy loss
function. The optimizer hyperparameters were set according to [140] (i.e., ini-
tial learning rate Ir = 1.0, p = 0.95, ¢ = 107%). An early stopping strategy
monitoring the validation loss was employed in order to reduce the computa-
tional burden. Thus if the validation loss does not decrease for 20 consecutive
epochs, the training is stopped and the last saved model is selected as the final
model. In addition, dropout is used as regularization technique [68] with rate
0.5.

Multi Layer Perceptron Neural Network The network is designed to consider
a temporal context C, thus the network input feature vector X[t] is obtained
concatenating x[t] with the previous x[t — ¢], with ¢ =1,...,C.

During the training procedure, additive zero-centered Gaussian noise with
o = 0.1 was applied to X[t] as a form of data augmentation, improving the
generalization capabilities of the DNN and avoiding overfitting [42].

Convolutional Neural Network In our case the convolutional layer input is

REXT where F and T represent respectively and the number

a matrix X €
of Logmel channels and the number of frames of the acoustic signal. When
we combine the two aforementioned feature sets, we process them with two
separate sets of convolutional layers, gathering two feature maps that are con-
catenated along the feature axis. Before concatenation, batch normalization
[69] is applied to each feature map and a leaky rectified linear unit activation
function (LeakyReLU) with a = 0.3, followed by a feature domain max-pooling
layer. Finally, fully connected layers are stacked, applying the same weights
and biases to each frame element. The output layer for each of the binary
classifier neural networks has two neurons corresponding to the probability of
the background or the event onset. We can discard, thus, one of the two neu-
rons without loss of information, and we will consider the output of the neuron
corresponding to the event activation u[t] = y; 2, as the output of the network
at frame ¢.
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Post Processing

In the post processing stage, each network output is convolved with an expo-
nential decay window of length M defined as:

~(M - 1)

l0og.(0.01) (5:2)

wlt] = e with7 =
The result is processed with a sliding median filter with local window-size k.
Finally, a decision threshold 6 is applied.

Event Detection Stage 2

The aim of the event detection stage 2 is to eliminate false positives, by re-
moving the events wrongly detected at the previous stage. This is done by
feeding a binary-classifier CNN with chunks of features in correspondence to
the detected events (colored region in the bottom right spectrogram of Fig-
ure 5.5). At this stage only Logmel coefficients are used as input features, in
order to reduce the computational burden of the model. Non-overlapping fea-
ture matrices X of size F' x 20 are used during training, while 95%-overlapping
feature matrices are employed during testing (1-frame shift). A chunk size of
20 corresponds to 0.4 seconds of audio, i.e. half the minimum possible length
of the occurring events, leading to an analysis of the audio event at different
time and frequency resolutions with respect to previous stages. The ED Stage
2 NN is trained for 100 epochs on the binary cross entropy loss function with
the AdaDelta gradient descent algorithm.

Final Decision

For each audio sequence, we perform a classification on contiguous blocks of
frames detected as event by the ED stage 1. Among contiguous frame chunks
classified as “event” by the CNN, the first frame with highest network output
is indicated as event onset.

5.2.3 Experimental Setup

According to the DCASE 2017 guidelines, the performance of the proposed
algorithm has been assessed by using the development dataset for training and
validation of the system. Furthermore, a blind test on the provided evaluation
dataset has been performed. The performance metric of the DCASE 2017 chal-
lenge is the event-based error rate (ER) calculated using onset-only condition
with a collar of 500 ms. The algorithm has been implemented in the Python
language using Keras [141] as deep learning library. All the experiments were
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performed on a computer equipped with a 6-core Intel i7, 32 GB of RAM and
two Nvidia Titan X graphic cards.

Dataset

The DCASE2017 challenge dataset [136] has been used to develop and evalu-
ate the algorithm. The dataset consists of 30-second long sequences of back-
ground acoustic scenes recorded in different public or domestic spaces (park,
home, street, cafe, train etc.)[56], some of which have been added with isolated
recordings from at most one of the three different target sound event classes:
baby crying, glass breaking and gun shot. The presence probability of a sound
event in each mixed sequence of the original Development set was 0.5, thus we
kept only sequences containing a sound event of the original training set and we
generated additional mixtures assigned to the training and the validation sets.
For the development set a total number of sequences respectively equal to 2750
for training, 300 for validation and 1496 for test have been employed. This
change increases the percentage of the frames including a target event in the
training data, which helps to ease the problem of data imbalance. In addition,
due to the fast decay of the “gun shot” sound, we generated more sequences
containing this event class compared to the others, in order to maintain ap-
proximately the same percentage between frames containing event samples and
backgrounds.

In the evaluation set, the training and test sequences of the development set
are combined into a single training set, while the validation set is the same
used in the Development dataset. The system is evaluated against an “unseen”
set of 1500 samples (500 for each target class) with a sound event presence
probability for each class equal to 0.5.

First Event Detection Stage

To assess the performance of the MLP employed in the event detection stage 1
we resorted to a random search strategy [139]. Table 5.3 shows the parameters
explored in the random search, as well as the prior distribution and ranges. We
evaluated 300 sets of layout parameters (100 for each event class) repeated for

[ Parameter [ Range [ Distribution ]
MLP layers Nr. 2-7] uniform
MLP layers dim. [20 - 4048] log-unifom

MLP Context [1-7] uniform
Activation [tanh - relu] uniform

Table 5.3: Hyper-parameters optimized in the random-search phase for the
MLP ED stage 1, and their range.
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[ Development Dataset | Evaluation Dataset
Features ‘ Babycry ‘ Glassbreak ‘ Gunshot ‘ Average ‘ Babycry ‘ Glassbreak ‘ Gunshot ‘ Average
MLP ED Stage 1
Logmel [ 019 [ 012 [ 016 | 016 [ 064 [ 054 [ 058 [ 059
Togmel + WC-LPE___| 023 | 040 | 019 | 017 | 076 | 055 | 055 | 062
CNN ED Stage 1
Togmel [ 023 [ 013 | 018 | 048 [ 048 | 023 | 044 | 038
Logmel + WC-LPE | 025 | 009 | 016 | 017 | 046 | 010 | 036 | 0.31
MLP ED Stage 1 + CNN ED Stage 2
Logmel [ 014 ] 008 | 016 | 013 [ 031 [ 025 | 044 | 033
Logmel t WO-LPE__ | 020 | 009 | 019 | 016 | 037 | 027 | 040 | 0.35
CNN ED Stage 1 + CNN ED Stage 2
Togmel [ 019 [ o010 | o0d6 | 045 [ 031 [ 047 | 039 | 029
Logmel + WC-LPE | 018 | 008 | 017 | 014 | 025 | 010 | 03L | o0.22

Table 5.4: Results in terms of ER score for all the evaluated combination of
proposed ANNs and features used in Event Detection Stage 1.

the two input features combination.

Regarding the CNNs, we explored the hyper-parameters space by means of
a grid search for a total of 75 experiments (25 for each event class) covering
the number of convolutional filters per layer {16,32,64}, the kernels shape
{3 x 3,5 x 5}, the number of MLP layers {1, 2,3} and their respective number
of units {16, 32,64,128}. The feature max-pool sizes after each convolutional
layer were {5, 4,2} for all the explored layouts. Also in this case the experiments
were repeated for both the input features combination.

A successive grid search was performed for each network configuration evalu-
ated, in order to find the post-processing parameters that yielded the minimum
error rate. Investigated parameters in the grid search were: exponential win-
dow length w in the range {10,20,...,90}, median filter kernel & in the range
{9,11,...,31} and threshold 6 in the range {0,0.05,...,0.5}.

Once the best models on the Development dataset were found, a fine tuning
of the post processing parameters was done during the validation stage, in
order to assess the performance of the whole system. In fact, the hierarchical
architecture of the algorithm allows to set a lower threshold in the first decision
stage in order to reduce the deletions at the expenses of some insertions. These
will be removed by the ED stage 2.

Training set for CNN based ED Stage 2 To compose the dataset for training
and evaluation of the CNNs dedicated to each target audio event we proceeded
as follows: the samples of each event class were selected between the audio
sections respectively labelled as “baby cry”, “glass break” and “gun shot” from
the mixtures of the DCASE 2017 development dataset, in addition with the
isolated events source signals. To obtain the background samples, we processed
with the first stage of our algorithm sequences from the same dataset which do
not contain events. Thus, the frames detected as event in this case represent
the “false positive” or “insertions” of the stage 1. We used those frames as back-

ground samples in the CNN training phase to improve its event classification
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abilities and balancing the dataset.

Refinement Stage

To design the best refinement CNN model for our purposes, we generated
a shuffle stratified validation split from the dataset composed as described
above. We left out the 30% of the samples as validation set for the CNN model
and we selected the layout parameters of the neural network based on the F-
measure score obtained on this data sub-set. The best performing model was
the same for all the target audio events and was composed as follows: three
convolutional layers with {32,32,32} filters, respectively, of size 5 x 5. The
convolutional layers were followed by a feature max pooling layer with kernels
of size {5,4,2}, respectively. Three dense layers composed of 32 neurons with
tanh activation functions were applied before the network output layer, for a
total number of network parameters equal to 35K.

5.2.4 Results

Results reported in Table 5.4 are obtained as follows: we selected the models
with lowest ER for each combination of DNN architecture and input features
operating in the ED stage 1 and we evaluated the systems separately for each
target class before the ED stage 2 on the Evaluation set, keeping ED stage 1
post processing parameters fixed. Then, with the same settings we obtained
the performance of the whole system both on Development and Evaluation
datasets. The architecture composed of a first stage with 2D CNN fed by
Logmel and WC-LPE features resulted the best performing on the Evaluation
dataset, obtaining an average ER equal to 0.17. Details of these architectures
are reported in Table 5.5.

The experimental results show how this combination improves generalization
properties of the algorithm. In fact, the MLP based stage 1 with only Logmel
features obtains the best overall ER equal to 0.13 on the Development dataset,
but the performance decreases significantly on the Evaluation set. In addition,
the number of free parameters of the best performing MLP models was always

Hyper-parameters Babycry Glassbreak Gunshot
Conv. Kernels 5xb, 3x3, 3x3 | 3x3, 3x3, 3x3 | 3x3, 3x3, 3x3
Kernel shape 32, 16, 16 64, 64, 64 32, 16, 16
MLP Layers size 32, 32 128, 128 32, 32

# Parameters 18k 185k 17k

Table 5.5: Details of models for CNN based ED stage 1 with the lowest ER on
Development set. All of them use a combination of log mel energies
and WC-LPE as input features.
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Approach Evaluation ER | # Parameters
Lim et al. [47] 0.13 6200K
Cakir et al. [48] 0.17 756K
Proposed system 0.22 108K
Phan et al. [49] 0.27 2100K

Table 5.6: Comparison between the obtained ER scores and the number of pa-
rameters with the first three ranked approaches at the DCASE2017
Challenge.

an order of magnitude greater w.r.t. the CNN models. Regarding the stage
2, its beneficial effect is supported especially with the Evaluation dataset: in
this case, the improvement in terms of ER given by the joint detection pro-
cedure is evident and it gives additional robustness to the system in terms of
generalization.

In Table 5.6 the overall results between best ranked systems of the DCASE
2017 Challenge are compared. It can be observed that the best two scores have
been obtained with ensemble methods, involving the additional computational
cost of running several architectures in parallel, while the table reports the
number of parameters per architecture. Although the proposed system does not
outperform the first two methods, the average number of network parameters is
significantly lower. This provides greater scalability in real-world applications.

5.2.5 Conclusion

In this section, a framework that makes use of hierarchical CNN classifiers
fed with Logmel and WC-LPE features has been proposed for rare SED, pro-
viding significantly improved performance over the baseline system for every
target sound event class in DCASE 2017 challenge dataset. The system also
provides a significant reduction of the network parameters w.r.t. other com-
petitive algorithms. The multi-scaled approach inherent to the two different
CNN architectures results to be effective.

For future work, strategies to customize the loss function embedding the
evaluation metric into the training procedure can be considered. Specifically,
this task is particularly affected by the dataset unbalancing: to counteract
this problem an alternative to the data augmentation is to design tailored loss
functions which enhance the detection of the rare events.
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5.3 Convolutional Neural Networks with 3-D
Kernels for Voice Activity Detection in a
Multiroom Environment

The Voice Activity Detection (VAD) element is considered fundamental in sys-
tems for automatic-assisted home environments, since the speech signal exhaus-
tively characterizes the human activity. In a multi-room domestic environment,
Automatic Speech Recognition (ASR) engines can use the information of both
the speech segments time boundaries and the room in which the speaker is
located in order to improve the word recognition performance. In this context,
the recent success encountered by deep learning motivated the investigation of
completely data-driven approaches [21, 131], specially when is useful to exploit
the information contained in multiple audio signals. In this section, we fo-
cus on the use of three-dimensional kernels for Convolutional Neural Networks
(CNN), taking advantage of an arrangement of the input data to the network
rarely used in the audio field. Thus, due to speech signal degradation caused by
background noise and reverberation, a multiple sensor (i.e., microphone arrays)
deployment is necessary, leading to a rapid i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>