
✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page i Ů #1
✐

✐

✐

✐

✐

✐

i



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page ii Ů #2
✐

✐

✐

✐

✐

✐



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page iii Ů #3
✐

✐

✐

✐

✐

✐

Università Politecnica delle Marche

Scuola di Dottorato di Ricerca in Scienze dell’Ingegneria

Curriculum in Ingegneria Elettronica, Elettrotecnica e delle

Telecomunicazioni

Deep Learning for Sound Event

Detection and Classification

Ph.D. Dissertation of:

Fabio Vesperini

Advisor:

Prof. Stefano Squartini

Curriculum Supervisor:

Prof. Francesco Piazza

XVII edition - new series



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page iv Ů #4
✐

✐

✐

✐

✐

✐



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page v Ů #5
✐

✐

✐

✐

✐

✐

Università Politecnica delle Marche

Scuola di Dottorato di Ricerca in Scienze dell’Ingegneria

Curriculum in Ingegneria Elettronica, Elettrotecnica e delle

Telecomunicazioni

Deep Learning for Sound Event

Detection and Classification

Ph.D. Dissertation of:

Fabio Vesperini

Advisor:

Prof. Stefano Squartini

Curriculum Supervisor:

Prof. Francesco Piazza

XVII edition - new series



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page vi Ů #6
✐

✐

✐

✐

✐

✐

Università Politecnica delle Marche

Scuola di Dottorato di Ricerca in Scienze dell’Ingegneria

Facoltà di Ingegneria

Via Brecce Bianche – 60131 Ancona (AN), Italy



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page vii Ů #7
✐

✐

✐

✐

✐

✐

alla mia famiglia



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page viii Ů #8
✐

✐

✐

✐

✐

✐



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page ix Ů #9
✐

✐

✐

✐

✐

✐

Acknowledgments

Foremost, I would like to express my sincere gratitude to my supervisor since

the time of the Bachelor thesis, Prof. Stefano Squartini, for his support of

my studies and research, for his patience, motivation, and immense knowledge.

His guidance has helped me in a personal growth process and I will always be

grateful to him for everything.

Together with my advisor, I would like to thank the rest of my colleagues of

the A3Lab: Emanuele, for his unfailing experience, Marco, who has been like an

older brother, Roberto and Leonardo, for the sharing of ideas and opinions on

all kinds of topics, Paul, for his mood without compromises and also Stefania,

Daniele, Livio, Stefano, Marco G., Christian, Michele and Alessandro. I will

have deĄnitely a lovely memory of these years, and the merit is yours too.

A special thanks also goes to Diego, a friend, a roommate and a colleague

of stimulating discussions, sleepless nights and of old and new adventures. To

him and Chiarella I wish all the best.

I also want to thank the people that were close to me, beside my work, but

that were just as indispensable. In particular my childhood friend and acquired

brother Michele (Gino), my bandmates from the ŞPlebosŤ, the ŞVHSŤ and the

ŞBlueNightŤ, and my music masters since all times. You really rock, guys!

And Ąnally, last but by no means least, a really big thank to my whole family,

my parents Filippo and Anna and my super brothers Marco and Christian.

You are and will be my source of encouragement and my spiritual support

throughout my life.

Ancona, Ottobre 2018

Fabio Vesperini

ix



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page x Ů #10
✐

✐

✐

✐

✐

✐



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page xi Ů #11
✐

✐

✐

✐

✐

✐

Abstract

The recent progress on acoustic signal processing and machine learning tech-

niques have enabled the development of innovative technologies for automatic

analysis of sound events. In particular, nowadays one of the hottest approach to

this problem lays on the exploitation of Deep Learning techniques. As further

proof, in several occasion neural architectures originally designed for other mul-

timedia domains have been successfully proposed to process the audio signal.

Indeed, although these technologies have been faced for a long time by statis-

tical modelling algorithms such as Gaussian Mixture Models, Hidden Markov

Models or Support Vector Machines, the new breakthrough of machine learning

for audio processing has lead to encouraging results into the addressed tasks.

Hence, this thesis reports an up-to-date state of the art and proposes several re-

liable DNN-based methods for Sound Event Detection (SED) and Sound Event

ClassiĄcation (SEC), with an overview of the Deep Neural Network (DNN) ar-

chitectures used on purpose and of the evaluation procedures and metrics used

in this research Ąeld.

According to the recent trend, which shows an extensive employment of

Convolutional Neural Networks (CNNs) for both SED and SEC tasks, this work

reports also rather new approaches based on the Siamese DNN architecture or

the novel Capsule computational units. Most of the reported systems have been

designed in the occasion of international challenges. This allowed the access

to public datasets, and to compare systems proposed by the most competitive

research teams on a common basis.

The case studies reported in this dissertation refer to applications in a variety

of scenarios, ranging from unobtrusive health monitoring, audio-based surveil-

lance, bio-acoustic monitoring and classiĄcation of the road surface conditions.

These tasks face numerous challenges, particularly related to their application

in real-life environments. Among these issues there are unbalancing of datasets,

different acquisition setups, acoustic disturbance (i.e., background noise, rever-

beration and cross-talk) and polyphony. In particular, since multiple events

are very likely to overlap in real life audio, two algorithms for polyphonic SED

are reported in this thesis. A polyphonic SED algorithm can be considered as

system which is able to perform contemporary detection - determining onset

and offset time of the sound events - and classiĄcation - assigning a label to

each of the events occurring in the audio stream.
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Chapter 1

Introduction

Human cognition relies on the ability to sense, process, and understand the

surrounding environment and its sounds. Although the skill of listening and

understanding their origin is so natural for living beings, it still results in a

very challenging task for computers. In recent years several novel methods

have been proposed to analyze this information automatically, and several new

applications have emerged [1]. However, the creation of Şmachine listeningŤ

algorithms that can mimic this cognitive feature by means of artiĄcial systems

remains a very challenging task.

Systems for automatic acoustic event recognition have the aim to mimic

this cognitive feature. Basically, these algorithms are designed to analyze a

continuous audio signal in order to extract a description of the sound events

occurring in the stream. This description is commonly expressed as a label

that marks the start, the ending, and the nature of the occurred sound (e.g.,

children crying, cutlery, glass jingling).

Thanks to works like BregmanŠs ŞAuditory Scene Analysis: The Perceptual

Organization of SoundŤ [2], we can trace back the birth of this research topic

to 1994, when the Ąeld of computational auditory scene analysis (CASA) was

introduced in order to model humansŠ sound perception. Following this work,

many other contributions were written aiming to describe how artiĄcial systems

can be designed in order to perceive sounds similarly to as humans do; most of

these works will be later collected in DivenyiŠs book [3] in 2004.

Sound events often occur in unstructured environments in real-life. Factors

such as background noise and overlapping sources are commonly present in the

environments. Moreover, there can be multiple sound sources that produce

sound events belonging to the same class, e.g., a dog bark sound event can

be produced from several breeds of dogs with different acoustic characteristics.

These represent some of the main challenges which the systems described in

this thesis have to face in order to prove their effectiveness in real-life situations.
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1.1 Sound Analysis Tasks

1.1.1 Applications

Acoustic surveillance can be considered one of the most interesting subjects in

technological research. Surveillance can be seen as control of public safety or

as the supervision of private environments where people may live alone. The

increasing level of public security over the past decades has motivated the in-

stallation of sensors such as cameras or microphones in public places (stores,

subway, airports, etc.), while is possible to effectively consider personal mul-

timedia devices (smartphones, tablets, etc.) as virtual assistant which is able

to monitor the user and eventually intervene in case of necessity without hav-

ing the need for a physical interface (i.e., keyboard) anymore. Thus, the need

of unsupervised situation assessment stimulated the signal processing commu-

nity towards experimenting with several automated frameworks, due to their

potential in several engineering applications.

In these contexts, sound or sound sensing can be advantageous with respect

to other modalities of multimedia processing, due to the short duration of

certain events (i.e., a human fall, a gunshot or a glass breaking) or the personal

privacy motivate the exploitation of the audio information rather than, e.g.,

the image processing. Reports suggests that 90% of physical aggression is

preceded by verbal aggression [13]. In public spaces, or in speciĄc environments

like prisons and detention facilities, a tool able to recognize vocal hostility and

enable security guards to intervene can prevent further escalation and save lives

and public goods.

Hence, being the research on automatic-assisted home environments an active

area for study in the recent years, a particular attention has been paid to the

processing of audio signals [14, 15, 16]. Typically, to increase the quality of

the audio signal and improve the performance of the successive audio analysis

stages in complex systems, pre-processing algorithms are employed [17, 18, 19].

To conĄrm this, several works appeared recently in the literature that address

speech interaction in multi-room scenarios. For example, in [20] the authors

developed a multi-room spoken command recognizer, while in [21, 22, 23] voice

activity detectors able to concurrently identify the location in time and the

room of origin of speech segments have been proposed.

In addition, audio processing is often less computationally demanding com-

pared to other multimedia domains, thus embedded devices can be easily

equipped with microphones and sufficient computational capacity to locally

process the signal captured. These could be smart home devices for home au-

tomation purposes or sensors for wildlife and biodiversity monitoring (i.e., bird

calls detection [24]).

Some of these applications have already become commercial products that

are able recognize certain speciĄc sound categories in realistic environments

and improve home security [25] or companies with as much impactful missions,

3
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1.3 State of the Art

the obtained acoustic features are used together with reference annotations of

the audio training examples, to learn models for the sound classes of interest.

Annotations contain information about the presence of target sound classes in

the training data, and are used as a reference information to automatically

learn a mapping between acoustic features and class labels. The mapping is

represented by acoustic models. The learning process consists in updating the

parameters or weights of the neural network, searching for the optimal model

that minimize a certain cost-function. At the usage stage, the learned acoustic

models are used to do recognition (detection or classiĄcation), which predicts

labels for the input audio. The recognition stage may also involve temporal

models and post-processing of labels.

After a prediction is obtained through the trained acoustic model, the Post

Processing stage translates this signal into the effective activity information for

each class. Very often this relies on a simple thresholding operation or on the

selection of the most probable class.

1.3 State of the Art

As aforementioned, research on automatic a classiĄcation of real-world sounds

grew in the middle 1990s. One of the earliest systems [27] provided similarity-

based access to databases of isolated sound effects by representing each clip

by a Ąxed-size feature vector comprising perceptual features such as loudness,

pitch, and brightness. Similarly, techniques used to recognize the human voice

exploited algorithms based on the thresholding of typical characteristics of the

acoustic wave, such energy, pitch and zero-crossing rate [28].

Later, more complex computational acoustic event analysis has been ap-

proached with statistical modelling methods, including Hidden Markov Models

(HMM) [29], Gaussian Mixture Models (GMM) [5] or techniques Non-negative

Matrix Factorization (NMF) [30] and support vector machines (SVM) [31].

In the recent era of the ŞDeep LearningŤ, different neural network architec-

tures have been successfully used for sound event detection and classiĄcation

tasks, including feed-forward neural networks (FNN) [32], deep belief networks

[33], convolutional neural networks (CNNs) [34] and Recurrent Neural Net-

works (RNNs) [35]. In addition, these architectures laid the foundation for

end-to-end systems [36, 37], in which the feature representation of the audio

input is automatically learnt from the raw audio signal waveforms. An interest-

ing comparison between computational costs of different systems is carried out

in [38] highlighting that deep neural networks (DNNs) are able to achieve top

performance at the cost of being the most computationally expensive approach.

A brilliant example of such performance is given in [39], where different DNNs

are trained on a big video dataset and then used for different scopes, among

5
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Chapter 1 Introduction

which also SED. For a wider overview of the most recent and powerful SED

techniques the reader can refer to the comprehensive analysis carried out by

Sharan et al. in [40]. In [41] an LSTM based Voice Activity Detector (VAD) us-

ing RASTA-PLP features outperforms three different VAD algorithms applied

to speech recognition of Hollywood-movies audio. Another well-Ątting exam-

ple is given in [42], where auto-encoders based on architectures comprehending

MLP, RNN and bidirectional-RNN are trained on three datasets recorded in

real life environments in order to detect abnormal events or hazardous situa-

tions exploiting only the information carried by the acoustic signal. SpeciĄcally,

an autoencoder is a neural network trained to set the target values equal to its

input. The experimental results show that autoencoders based on deep RNNs

outperform the probabilistic approaches over the three databases.

The use of deep learning models has been motivated by the increased avail-

ability of datasets and computational resources and resulted in signiĄcant per-

formance improvements, outperforming in most of the cases the human accu-

racy [43]. The methods based on CNNs and RNNs have established the new

state-of-the-art performance on the SED, thanks to the capabilities to learn

the non-linear relationship between time-frequency features of the audio signal

and a target vector representing sound events. In [44], the authors show how

ŞlocalŤ patterns can be learned by a CNN and can be exploited to improve the

performance of detection and classiĄcation of non-speech acoustic events oc-

curring in conversation scenes, in particular compared to a FNN-based system

which processes multiple resolution spectrograms in parallel.

This success is a result of close academic-industrial collaboration, which

started from the speech or speaker recognition task and extended to the analy-

sis of non-speech, music and sound scenes and events. The combination of the

CNN structure with recurrent units has increased the detection performance

by taking advantage of the characteristics of each architecture. This is the

case of convolutional recurrent neural networks (CRNNs) [45], which provided

state-of-the-art performance especially in the case of polyphonic SED. CRNNs

consolidate the CNN property of local shift invariance with the capability to

model short and long term temporal dependencies provided by the RNN layers.

This architecture has been also employed in almost all of the most perform-

ing algorithms proposed in the last editions of research challenges such as the

IEEE Audio and Acoustic Signal Processing (AASP) Challenge on Detection

and ClassiĄcation of Acoustic Scenes and Events (DCASE) [46]. In detail,

both the Ąrst two classiĄed algorithms for the SED task at the DCASE-2017

make use of mel spectrogram coefficients as spectral representation of the au-

dio signal which is processed by a CNN with 1D Ąlters in the case of the Ąrst

ranked [47] or by a 2D CNN with frequency pooling in the case of the second

classiĄed [48]. The architectures are, then, combined with recurrent layers to
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1.4 Main Issues

process the features obtained by the convolutional blocks. In [49] the authors

propose a hierarchical structure based on CNNs and DNNs trained with multi-

task loss functions. SpeciĄcally, in the Ąrst stage the networks are trained for

background noise rejection, using a weighted loss function to penalize the false

positive errors. In the second stage the multi-task loss enables the networks

to simultaneously perform the event classiĄcation task and the onset time es-

timation. This approach obtained the third place in the Ąnal ranking. All of

the aforementioned systems largely outperform the baseline system based on a

Multi Layer Perceptron architecture (MLP) and Logmel energies as features.

On the other hand, if the datasets are not sufficiently large, problems such as

overĄtting can be encountered with these models, which typically are composed

of a considerable number of free-parameters (i.e., more than 1M).

Encouraging polyphonic SED performance have been obtained using Cap-

sNets in preliminary experiments conducted on the Bird Audio Detection task

in occasion of the DCASE 2018 challenge [50], conĄrmed by the results reported

in [51]. The CapsNet [52] is a recently proposed architecture for image classiĄ-

cation and it is based on the grouping of activation units into novel structures

introduced in [53], named capsules, along with a procedure called dynamic

routing. The capsule has been designed to represent a set of properties for an

entity of interest, while dynamic routing is included to allow the network to im-

plicitly learn global coherence and to identify part-whole relationships between

capsules.

1.4 Main Issues

In controlled laboratory conditions where the data used to develop computa-

tional sound scene and event analysis methods matches well with the test data,

it is possible to achieve relatively high accuracies in the detection and classi-

Ącation of sounds. However, there are several complexities in computational

sound analysis and current technologies face many challenges, mainly related

to the acoustics of sound scenes and events, when they are employed in realistic

environments. Among these challenges we can include:

• the effect of the environment acoustics: reverberation, background noises

and the channel coupling (impulse response) between the source and the

recording equipment;

• the intra-class variability, i.e., high difference of the acoustic characteris-

tics of even a single class of sounds and on the other hand the similarity

of many different types of sounds to the target events [54];

• the polyphony, i.e. the occurrence of multiple simultaneous events. In

7
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Chapter 1 Introduction

realistic environments there are almost always multiple sources producing

sound at the same time.

In addition to these complications related to the acoustics of sound scenes

and events, there are also several fundamental limitations related to the compu-

tational methods. In particular, to develop effective models based on the deep

learning paradigm, a very large set of examples of the target (and non-target)

sounds is required. In contrast to the situation in image classiĄcation, currently

available datasets that can be used to train such systems are more limited in

size, diversity, and number of event instances, even though recent contribu-

tions such as AudioSet [55] or the DCASE challenges and related workshops

[56, 46, 57] have provided public available datasets to reduce this gap.

1.5 Case studies

In this thesis, different application of deep learning for computational audio

models in real environments are analyzed. They are evaluated and compared

with state-of-the-art methods on different databases, some of these resulting

novel approaches. The broad and extensive experimental evaluations highlight

the advantages provided by the acoustic models based on deep learning.

The addressed tasks are the following:

• Sound event Classification:

– Snore sounds excitation localization;

– Acoustic road surface roughness classiĄcation;

– Bird audio detection;

• Sound event Detection:

– Overnight snore sound detection;

– Rare sound event detection;

– Voice activity detection in multiroom environments;

• Polyphonic Sound event Detection:

– A neural network approach for sound event detection in real life

audio;

– Polyphonic sound event detection by using CapsNets

8
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Chapter 2

Background

The Computers are able to perform complex calculus operations in a short

amount of time. However computers cannot compete with humans in dealing

with: common sense, ability to recognize people, objects, sounds, comprehen-

sion of natural language, ability to learn, categorize, generalize.

Therefore, why does the human brain show to be superior w.r.t common

computers for these kind of problems? Is there any chance to mimic the mech-

anisms characterizing the way of working of our brain in order to produce more

efficient machines?

In the Ąeld of signal analysis, the aim is the characterization of such real-

world signals in terms of signal models, which can provide the basis for a theo-

retical description of a signal processing system. They are potentially capable

of letting us learn a great deal about the signal source, without having to have

the source available.

The ŞDeep LearningŤ is a new area of machine learning research, which has

been introduced with the objective of moving Machine Learning closer to one

of its original goals: ArtiĄcial Intelligence. Deep Learning is about learning

multiple levels representation and abstraction that help to make sense of data

such as images, sound, and text.

Therefore, in this chapter a theoretical description of the principal Deep

Neural Network (DNN) architectures is given. In addition, the algorithms

used for their parameter estimation are described, with a focus on the most

widely model structure used in the Ąeld of the computational acoustic event

analysis, with a particular focus on the supervised machine learning approach,

which is the mainstream and typically the most efficient and generic approach

in developing such systems.

2.1 The Artificial Neural Networks

The human brain is composed of a big set of specialized cells (neurons) con-

nected among them, which memorize and process information, thus controlling

the body activities they belong to as depicted in Figure 2.1. The human brain

9
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Chapter 2 Background

Figure 2.1: The human brain.

is probably the most remarkable result of evolution for its ability to elaborate

information. The ArtiĄcial Neural Networks are mathematical models that rep-

resent the interconnection between elements deĄned "ArtiĄcial Neurons", math-

ematical constructs that somehow imitate the properties of biological neurons,

going to reproduce the functioning of the human nervous system.

2.1.1 The Human Nervous System

The biological neuron is composed of three main parts: the cell body is named

Soma, which is the calculation unit, the Axon, that acts as a transmission line

output and the Dendrites, that are receptive areas and that receive input signals

from other axons via the synapses. The Synapses are the functional units of the

elementary structure, that manages the iterations between neurons. The cell

body performs a weighted sum (integration) of the input signals. If the result

exceeds a certain threshold value then the neuron is active and is produced

the action potential which is transported to the axon, instead if the result does

not exceed the threshold value of the neuron remains in a state of rest. The

Biological neurons (Figure 2.2) are electro-chemical devices, operating at low

rates (approximately in the order of milliseconds), while digital circuits operate

at very high rates (nanoseconds).

10
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2.1 The Artificial Neural Networks

Figure 2.2: The neuron model.

The neuron properties can be described in:

• local simplicity: the neuron receives stimuli (excitation or inhibition) from

dendrites and produces an impulse to the axon which is proportional to

the weighted sum of the inputs;

• global complexity: the human brain possess O(1010) neurons, with more

than 10k connections each;

• learning: even though the network topology is relatively Ąxed, the strength

of connections (synaptic weights) can change when the network is exposed

to external stimuli;

• distributed control: no centralized control, each neuron reacts only to its

own stimuli;

• tolerance to failures: performance slowly decrease with the increase of

failures.

The biological Neural Networks are able to solve very complex tasks in few

time instants (like memorization, recognition, association, and so on.)

11
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Chapter 2 Background

2.2 Historical Background

In 1943, McCulloch and Pitts created a computational model for neural net-

works based on mathematics and algorithms. They called this model threshold

logic. The model paved the way for neural network research to split into two

distinct approaches. One approach focused on biological processes in the brain

and the other focused on the application of neural networks to artiĄcial intel-

ligence. In the late 1940s, the psychologist Donald Hebb created a hypothesis

of learning based on the mechanism of neural plasticity that is now known as

Hebbian learning. Hebbian learning is considered to be a ŠtypicalŠ unsupervised

learning rule and its later variants were early models for long term potentia-

tion. These ideas started being applied to computational models in 1948 with

TuringŠs B-type machines. In 1954, Farley and Clark Ąrst used computational

machines, then called calculators, to simulate a Hebbian network at MIT. Other

neural network computational machines were created by Rochester, Holland,

Habit, and Duda (1956).

In 1958, Rosenblatt created the perceptron, an algorithm for pattern recog-

nition based on a two-layer learning computer network using simple addition

and subtraction. With mathematical notation, Rosenblatt also described cir-

cuitry not in the basic perceptron, such as the exclusive-or circuit, a circuit

whose mathematical computation could not be processed until after the back-

propagation algorithm was created by Werbos (1975). Neural network research

stagnated after the publication of machine learning research by Minsky and Pa-

pert in 1969. They discovered two key issues with the computational machines

that processed neural networks. The Ąrst issue was that single-layer neural

networks were incapable of processing the exclusive-or circuit. The second sig-

niĄcant issue was that computers were not sophisticated enough to effectively

handle the long run time required by large neural networks. Neural network

research slowed until computers achieved greater processing power. Also key

in later advances was the backpropagation algorithm presented by Werbos in

1975, which effectively solved the exclusive-or problem.

The parallel distributed processing of the mid-1980s became popular under

the name connectionism. The paper presented by Rumelhart and McClelland

[58] provided a full exposition on the use of connectionism in computers to

simulate neural processes. In 1994, Y. Bengio presented another architecture

inspired by the animal visive cortex named Convolutional Neural Networks

[59], which will have a huge success in the Ąeld of image processing.

Anyway, after the initial enthusiasm, the artiĄcial neural networks lost in-

terest, especially due the limited resources available with that timeŠs CPUs. In

the mid-2000, the computing power increased through the use of GPUs and

distributed computing and neural networks were deployed on a large scale,
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2.2 Historical Background

particularly in image and visual recognition problems. Since then, it became

known as "deep learning".

2.2.1 Fundamentals of the Artificial Neural Networks

An artiĄcial neural network (ANN), is a mathematical/informatical model cal-

culation based on biological neural networks. This model is constituted by

a group of interconnections of information consisting of artiĄcial neurons and

processes using a connectionist approach to computation. In most cases, an ar-

tiĄcial neural network is an adaptive system that changes its structure, which

is based on external or internal information that Ćows through the network

during the learning phase. In practical terms neural networks are non-linear

structures of statistical data organized as modelling tools. They can be used to

simulate the complex relationships between inputs and outputs that other an-

alytic functions fail to represent. An artiĄcial neural network receives external

signals on a layer of nodes (processing unit) input, each of which is connected

with a number of internal nodes, organized in several levels. Each node pro-

cesses the received signals performing a very simple task and transmits the

result to subsequent nodes.

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 2.3: The artiĄcial neuron model.

The artiĄcial neuron is an information-processing unit that is fundamental

to the operation of a neural network. The model of a neuron is composed of

three basic elements, as shown in (Figure 2.3)

• a set of synapses, or connecting links, each of which is characterized by

a weight or strength of its own, wkm; The neural model also includes an

externally applied bias, denoted by bk.
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• an adder for summing the input signals, weighted by the respective synap-

tic strengths of the neuron; the operations described here constitute a

linear combiner;

• an activation function for limiting the amplitude of the output of a neu-

ron. Typically, the normalized amplitude range of the output of a neuron

is written as the closed unit interval [0,1], or, alternatively, [-1,1].

The most typical non-linear function φ(x) employed as activation functions are:

• the sigmoid function: it is deĄned as a strictly increasing function that

exhibits a graceful balance between linear and nonlinear behavior; an

example of the sigmoid function is the logistic function deĄned by:

φ (v) =
1

1 + exp (−av)
(2.1)

• the hyperbolic tangent (tanh): it is simply a scaled and shifted version

of the sigmoid function, deĄned as:

φ(x) =
1− e−2x

1 + e−2x
(2.2)

y = tanh x

−2 −1 1 2

−1

1

x

y

Figure 2.4: The tanh non-linear function.

• the Rectifier Linear Unit (ReLU):

φ(x) = max(0, x) (2.3)

• the softmax: it is used on the last layer of a classiĄer setup: the outputs

of the softmax layer represent the probabilities that a sample belongs to

the different classes. Indeed, the sum of all the output is equal to 1.

φ(xk) =
exk

√︂N
j=1 e

xj

for k = 1, . . . ,K (2.4)
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y = x
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Figure 2.5: The ReLU non-linear function.

The link input-output, which is the transfer function of the network, is not

programmed but is simply obtained by a learning process based on empirical

data. At the beginning of the training procedure, the weights wkm are ran-

domly initialized, and they are adjusted as learning proceeds. There are three

major learning paradigms, each corresponding to a particular abstract learning

task. They are supervised learning, unsupervised learning, and reinforcement

learning. Usually a type of network architecture may be used in each of these

tasks:

• the Supervised Learning: is used if is available a set of data for the train-

ing comprising typical examples of the inputs and their corresponding

outputs: in this way the network can learn to infer the relation that

binds them. Subsequently, the network is trained by means of an ap-

propriate algorithm (typically, the backpropagation which is precisely a

supervised learning algorithm), which uses such data for the purpose of

modifying the weights and other parameters of the network to minimize

the estimation error for the whole training. If the training is successful,

the network learns to recognize the unknown relationship that binds the

input variables to the output, and is therefore able to make predictions

even where the output is not known a priori; in other words, the Ąnal

objective supervised learning is the prediction of the output value for

each valid value input, relying only on a limited number of examples of

correspondence. To do this, the network must be Ąnally provided with

an adequate generalization ability, with reference to cases unknown to it.

This will solve the problems of regression or classiĄcation;

• The Reinforcement Learning: The algorithms for reinforcement learning

ultimately trying to determine a policy to maximize the incentives re-

ceived by the agent accumulated in the course of its exploration of the

problem. The reinforcement learning differs from the supervised because

it has never seen pairs of input-output examples known, nor shall correct
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explicit suboptimal actions. In addition, the algorithm is focused on the

online use, which implies a balance between exploitation and exploration

of unknown situations of current knowledge;

• The non-Supervised Learning: is based on training algorithms that mod-

ify the network weights only by reference to a set of data that includes

just the input variables. These algorithms attempt to group the input

data and therefore to identify the appropriate cluster representative of

the data, typically by making use of topological methods or probabilistic.

The unsupervised learning is also used to develop techniques for data

compression.

2.3 Deep Neural Network Architectures for

Analysis of Sound Events

The manner in which the neurons of a neural network are structured is inti-

mately linked with the task they are designed for. Hereafter, a brief description

of the neural network architectures employed in this thesis for the analysis of

sound events is provided.

2.3.1 Multi Layer Perceptron (MLP)

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 2.6: The MLP Neural Network.

The Multi Layer Perceptron (MLP) or Multilayer Feedforward Network is

characterized by the presence of one or more hidden layers, whose computation

nodes are correspondingly called hidden neurons. The MLP is one of the Ąrst

16
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ŞdeepŤ architectures being introduced in 1986 [58]. ArtiĄcial Neural Networks

are often referred as deep when they have more than 1 or 2 hidden layers.

Indeed, it is well known that an MLP with one or more hidden layers and a

sufficient number of non-linear units (neurons) can approximate any continu-

ous function on a compact input domain with arbitrary precision. Each node

applies an activation function over the weighted sum of its inputs. The units

are arranged in layers, with feed forward connections from one layer to the

next. The behaviour of this architecture is parametrized by the connection

weights, which are adapted during the supervised network training. In the for-

ward pass, input examples are fed to the input layer, and the resulting output

is propagated via the hidden layers towards the output layer. At the backward

pass, the error signal originating at the output neurons is sent back through

the layers and the network parameters (i.e., weights and biases) are tuned.

A single neuron can be formally described as:

g(u[n]) = φ

∏︁

∐︂

D
∑︂

j=1

wjuj [n] + b

∫︁

ˆ︁ , (2.5)

where u[n] ∈ R
D×1, the bias b is an externally applied term and φ(·) is the

non-linear activation function. Thus, the mathematical description of a one-

hidden-layer MLP is a function f : R
D → R

D′

, where D′ is the size of the

output vector, so:

f(u[n]) = φ (b2 + W2 (φ (b1 + W2 · u[n]))) , (2.6)

where Wi and bi are the respective synaptic weights matrix and the bias vector

of the i-th layer.

Regarding the computational complexity, considering additions and multi-

plications as separate operations, the total number of operations for each layer

is given by

CostMLP =

P
∑︂

i=1

2Qi−1Qi +

P
∑︂

i=1

Qi, (2.7)

where P is the number of layers, and Qi denotes the number of units of layer i.

The Ąrst term, considers the number of operations for a linear unit, while the

second term considers the operations required by the ReLU activation function

(i.e., the maximum operation).

2.3.2 Convolutional Neural Networks (CNN)

The birth of this kind of feed-forward neural network is related to image pro-

cessing [60]. Indeed, neural networks as MLPs take vectors as input, while this

17
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from MLP, being composed by a set of activation and being fully connected

with the previous layer.

Denoting with Wm ∈ R
K1m×K2m them-th kernel and with bm ∈ R

D1×D2 the

bias vector of a generic convolutional layer, the m-th feature map hm ∈ R
D1×D2

is given by:

hm = φ

(︄

D3
∑︂

d=1

Wm ∗ ud + bm

⎜

, (2.8)

where ∗ represent the convolution operation, and ud ∈ R
D1×D2 is a matrix

of the three-dimensional input tensor u ∈ R
D1×D2×D3 . The dimension of the

m-th feature map hm depends on the zero padding of the input tensor: here,

padding is performed in order to preserve the dimension of the input, i.e.,

hm ∈ R
D1×D2 .

The computational complexity of the CNN is given by the sum of the compu-

tational complexity of the convolutional layers and of the fully connected layers.

The complexity of convolutional layers can be obtained from (2.8) and from

the number of operations of the max-pooling operator. Regarding the former,

supposing square kernels, i.e., K1m = K1m = Km, the number of operations

required for calculating the feature map hm is

CostPer-Feature-Map = 2K2
mD1D2D3 +D1D2(D3 − 1), (2.9)

where the Ąrst term of the sum considers the number of operations required

for the convolution and the sum with the bias term, and the second term

the operations for the ReLU activation function. As aforementioned, the max-

pooling operator calculates the maximum over a P1×P2 matrix. Supposing that

the maximum operation is calculated pair by pair, the max-pooling operator

requires the following number of operations

CostMax-Pooling = (P1P2 − 1)(D1 − P1 + 1)(D1 − P2 + 1). (2.10)

The total number of operations per layer can be calculated by multiplying

the expressions in (2.9) and (2.10) by the number of kernels and summing

the contributions. Finally, the total number of operations of the CNN can be

obtained by summing the individual contributions of the convolutional layers

and of the fully connected layers.

2.3.3 Siamese Neural Networks

The Siamese Neural Network is an architecture able to learn a latent represen-

tation of a given input. In particular, a SNN is composed of two twin networks

with binded weights. A pair of inputs is provided to the system, one to each
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so that the Ąnal decision will rely on the correlation between different adjacent

frames. Indeed, these characteristics place the RNNs in close connection with

the audio processing, due to the sequential nature of the signal, which depends

of its temporal evolution. In practice, two are the typologies which have been

highly employed in addition to the ŞstandardŤ RNNs: the network based on

the Long Short Term Memory (LSTM) units and on the Gated Recurrent Unit

(GRU). Both of these architectures rely on computational units which act as

memory blocks, thus they are able to encapsulate mid-long term characteris-

tics of the audio signal. In addition to the memory blocks, the bidirectional

RNNs [65] are also common architectures. A bidirectional RNN can access

context from both temporal directions, which makes it suitable i.e. for speech

recognition, where whole utterances are decoded. This is achieved by process-

ing the input data in both directions with two separate hidden layers. Both

hidden layers are then fed to the output layer.

Long Short Term Memory (LSTM)

Compared to a conventional RNN, in the LSTM RNN [66] the hidden units are

replaced by so-called memory blocks. These memory blocks can store informa-

tion in the Ścell variableŠ ct. In this way, the network can exploit long-range

temporal context. Each memory block consists of a memory cell and three

gates: the input gate, output gate, and forget gate, as depicted in Figure 2.11.
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Figure 2.11: Long Short-Term Memory block, containing a memory cell and
the input, output, and forget gates

These gates control the behaviour of the memory block. The activation

vector of each gate is computed as, for example for the input gate,

it = tanh(W xixt + W hiht−1 + W cict−1 + bi). (2.13)

The forget gate can reset the cell variable which leads to ŚforgettingŠ the stored
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input ct, while the input and output gates are responsible for reading input

from xt and writing output to ht, respectively:

ct = f t ⊗ ct−1 + it ⊗ tanh(W xcxt + W hcht−1 + bc) (2.14)

ht = ot ⊗ tanh(ct) (2.15)

where ⊗ denotes element-wise multiplication and the activation function (here

the tanh) is also applied in an element-wise fashion. The variables it, ot, and f t

are the output of the input gates, output gates and forget gates, respectively, bc

is a bias term, and W is a weight matrix. Each memory block can be regarded

as a separate, independent unit. Therefore, the activation vectors it, ot, f t,

and ct are all of the same size as ht, i. e., the number of memory blocks in the

hidden layer. Furthermore, the weight matrices from the cells to the gates are

diagonal, which means that each gate depends only on the cell within the same

memory block.

Gated recurrent units (GRU)

Gated recurrent units (GRUs) are a gating mechanism in recurrent neural net-

works, introduced in 2014 [67]. Their performance on polyphonic music mod-

eling and speech signal modeling was found to be similar to that of LSTMs.

However, GRUs have been shown to exhibit better performance on smaller

datasets. GRU layers control the information Ćow through a gated unit struc-

ture, which depends on the layer input, on the activation at the previous frame

and on the reset gate. For frame t, the total activation of GRU layer is a linear

interpolation of previous activation ht−1 and the candidate activation ht as:

ht = ut · ht−1 + (1− ut) · ht, (2.16)

where ut denotes the update gate. Candidate activation ht is a function of

ht−1, the GRU layerŠs input xt and the reset gate rt. tanh and hardsigmoid

activation functions are used for update and reset gates, respectively. GRUŠs

activation is mainly controlled by reset gate when the GRU layerŠs input xt is

signiĄcantly different than in previous frames. When reset gate is closed rt = 0,

the candidate activation does not include any contribution from ht−1. Fast

response to the changes in the input and the previous activation information is

fundamental for high performance in the proposed algorithm, where the task

is to detect a small chunk of consecutive time frames where the target event is

present.
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prehend capsules in the layer below in terms of the entity they identify, while

dynamic routing iteratively attempts to Ąnd these associations and supports

capsules to learn features that ensure these connections.

Dynamic Routing

After giving a qualitative description of routing, we describe the method used

in [52] to compute the coupling coefficients. The activation of a capsule unit is a

vector which holds the properties of the entity it represents in its direction. The

vectorŠs magnitude indicates instead the probability that the entity represented

by the capsule is present in the current input. To interpret the magnitude as

a probability, a squashing non-linear function is used, which is given by:

vj =
∥sj∥

2

1 + ∥sj∥2

sj

∥sj∥
, (2.18)

where vj is the vector output of capsule j and sj is its total input. sj is a

weighted sum over all the outputs ui of a capsule in the Primary Capsule layer

multiplied by the coupling matrix Wij :

sj =
∑︂

i

αijûj♣i, ûj♣i = Wijui. (2.19)

The routing procedure works as follows. The coefficient βij measures the cou-

pling between the i-th capsule from the Primary Capsule layer and the j-th

capsule of the Detection Capsule layer. The βij are initialized to zero, then

they are iteratively updated by measuring the agreement between the current

output vj of each capsule in the layer j and the prediction ûj♣i produced by the

capsule i in the layer below. The agreement is computed as the scalar product

cij = vj · ûj♣i, (2.20)

between the aforementioned capsule outputs. It is a measure of how similar

the directions (i.e., the proprieties of the entity they represent) of capsules i

and j are. The βij coefficients are treated as if they were log likelihoods, thus

the agreement value is added to the value owned at previous routing step r:

βij(r + 1) = βij(r) + cij(r) = βij(r) + vj · ûj♣i(r), (2.21)

where r represents the routing iteration. In this way the new values for all the

coupling coefficients linking capsule i to higher level capsules are computed. To

ensure that the coupling coefficients αij represent log prior probabilities, the

softmax function to βij is computed at the start of each new routing iteration.
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Formally:

αij =
exp(βij)

√︂

k exp(βik)
, (2.22)

so
√︂

j αij = 1. Thus, αij can be seen as the probability that the entity repre-

sented by capsule Primary Capsule i is a part of the entity represented by the

Detection Capsule j as opposed to any other capsule in the layer above.

Margin loss function

The length of the vector vj is used to represent the probability that the entity

represented by the capsule j exists. The CapsNet have to be trained to produce

long instantiation vector at the corresponding kth capsule if the event that it

represents is present in the input audio sequence. A separate margin loss is

deĄned for each target class k as:

Lk = Tk max(0,m+−∥vj∥)
2+

λ(1− Tk) max(0, ∥vj∥ −m
−)2

(2.23)

where Tk = 1 if an event of class k is present, while λ is a down-weighting

factor of the loss for absent sound event classes classes. m+, m− and λ are

respectively set equal to 0.9, 0.1 and 0.5 as suggested in [52]. The total loss is

simply the sum of the losses of all the Detection Capsules.

2.4 Optimization Algorithms

Most deep learning training algorithms involve optimization of some sort. The

most widely used is the gradient based optimization, which belongs to the Ąrst

order type. Optimization is the task of either minimizing some function f(x)

by altering x: f(x) is called objective function, but in the case when it has to

be minimized, it is also call the cost function, loss function, or error function.

The aim of the optimization is reached doing small change ϵ in the input x, to

obtain the corresponding change in the output f(x):

f(x+ ϵ) ≈ f(x) + ϵ f ′(x). (2.24)

This formulation is based on the calculation of the derivative f ′(x). The gra-

dient descent is the technique based on the reduction of f(x) by moving x in

small steps with the opposite sign of the derivative. The aim is to Ąnd the

minimum of the cost function: when f ′(x) = 0, the derivative provides no

information about which direction to move, therefore this point is deĄned as

stationary points. A local minimum is a point where f(x) is lower than at all

neighbouring and it is no longer possible to decrease f(x) by making inĄnites-
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f [0]

f [1]

f [2]

f [3]

f [4]

Figure 2.13: An example of the application of gradient descent to search for
minimum of a function in a Ągurative 2-D plane. The process is
iterated four times, while the small central ellipse corresponds to
the minimum of the function.

imal steps. The absolute lowest value of f(x) is a global minimum. For the

concept of minimization to make sense, there must still be only one (scalar)

output. For functions that have multiple inputs f : Rn → R, the concept of

partial derivatives is introduced. The gradient ∇xf(x) is the vector containing

all the partial derivatives.

The method of steepest descent or gradient descent states that decrease f by

moving in the direction of the negative gradient.

x’ = x− ϵ∇xf(x), (2.25)

where ϵ is the learning rate, a positive scalar determining the size of the step.

Large training sets are necessary for good generalization, but large training

sets are also more computationally expensive. The cost function decomposes

as a sum over training example of per-example loss function: i.e., the negative

conditional log-likelihood of the training data is deĄned as:

J(θ) = E(L(x, y, θ)) =
1

m

m
∑︂

i=1

L(x(i), y(i), θ), (2.26)

where L is the per-example loss L(x, y, θ) = − log p(y♣x; θ). The gradient de-
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scent requires computing:

∇θJ(θ) =
1

m

m
∑︂

i=1

∇θL(x(i), y(i), θ). (2.27)

The computational cost of this operation is proportional to the number of

examples m, therefore as the training set size grows the time to take a single

gradient step becomes prohibitively long.

2.4.1 Stochastic Gradient Descent (SGD)

Stochastic gradient descent (SGD) is an extension of the gradient descent al-

gorithm: the insight is that the gradient is an expectation estimated using

a small set of samples. On each step of the algorithm, a sample of example

B = ¶x(1), . . . ,x(m′)♢, called minibatch, is drawn uniformly from the training

set. The minibatch size m′ is typically chosen to be a relatively small num-

ber of examples. The estimate of the gradient is: g = 1
m′
∇θ

m′

√︂

i=1

L(x(i), y(i), θ)

using examples from the minibatch B. The SGD algorithm then follows the

estimated gradient downhill:

θ ← θ − ϵg (2.28)

where ϵ is the learning rate.

2.5 Generalization Techniques

In order to obtain more robust models, different techniques have been proposed

to regularize the weight update during the neural networks training. They have

the aim to improve the generalization proprieties of the model, i.e., the ability

to perform on newly unseen data as well as (in a reasonable manner) on the

training set. A brief description of the most common techniques is given in the

following paragraphs.

2.5.1 Dropout

Dropout [68] is a regularization technique for reducing overĄtting in neural

networks by preventing complex co-adaptations on training data. It is a very

efficient way of performing model averaging with neural networks. The term

ŞdropoutŤ refers to the operation of randomly exclude units during the training

of a neural network.

Practically, during a training iteration, a percentage (drop-rate) of units for

each layer where the the dropout is employed are not updated. They are se-
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lected randomly at each new step, therefore it is like we were training a network

with a different layout. This allows to prevent overĄtting on the training data,

making the single units more robust to the conditions changing.

2.5.2 Batch Normalization

Batch Normalization [69] is a technique which consists to add a normalization

ŞlayerŤ between each layers, in order to reduce the problem of internal covariate

shift. In the case that the input distribution of a learning system, such as a

neural network, changes, one speaks of a so-called covariate shift. If this change

happens on the input of internal nodes of (deep) neural networks, it is called

an internal covariate shift

An important thing to note is that normalization has to be done separately

for each dimension (input neuron), over the Śmini-batchesŠ, and not altogether

with all dimensions. Hence the name ŚbatchŠ normalization. Due to this nor-

malization ŞlayersŤ between each fully connected layers, the range of input

distribution of each layer stays the same, no matter the changes in the previ-

ous layer.

Formally, given x inputs from the kth neuron, the Batch Normalization is

computed as follows:

x̂ =
xk − E(xk)
√︁

Var[xk]
(2.29)

Normalization brings all the inputs centered around 0. This way, there is

not much change in each layer input. So, layers in the network can learn from

the back-propagation simultaneously, without waiting for the previous layer to

learn. This speeds up the training of networks, leading to the possible usage of

higher learning rates.
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Datasets and Evaluation

Every problem to be solved with machine learning and in particular with deep

learning techniques requires the availability of a sufficient amount data for al-

gorithm parametrization: the ability to access public dataset, representative of

a real scenario, allows to test the approaches, in order to evaluate the effective

beneĄt in real applications, and to compare the performance of existing algo-

rithms on a common comparison basis. A reliable evaluation procedure for a

classiĄcation or recognition system will involve a standard dataset of example

input data along with the intended target output, and well-deĄned metrics to

compare the systemsŠ outputs with this ground truth.

3.1 Datasets

Labelled data has a crucial inĆuence on algorithm development and evaluation

in research Ąelds dealing with classiĄcation and detection. Any machine learn-

ing algorithm is only as good as the data behind it in terms of modeling and

generalization properties.

Well-established and easily accessible benchmark databases attract the in-

terest of the research community as readily available support for research, thus

accelerating the pace of development for related Ąelds. There are many well-

known databases in related research areas, such as TIMIT [70] for speech recog-

nition or the Million Song Dataset [71] for various tasks in music information

retrieval. In view of this critical inĆuence, the process of creating a dataset for

system developing is, naturally, very delicate. The content must be carefully

selected to provide sufficient coverage of the aspects of interest, sufficient vari-

ability in characterizing these aspects, and a sufficient quantity of examples for

robust modeling. Unfortunately, there is no rule on what ŞsufficientŤ means,

as it usually depends on the projected use of the data.

Compared to speech, the categories and sequences of sound events are not

so straightforward to deĄne, as any object or being may produce a sound.

Environmental sounds are often produced in a context of interaction combined

with movement when manipulating an object. The sounds can be organized
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into categories based on different properties, such as the sound source (e.g.,

cup), its production mechanism (e.g., hit), or even the source properties (e.g.,

metal), and the same sound can belong to many different categories, depending

on the chosen property (sound when hitting a metallic cup). In addition, there

are no speciĄc rules on how environmental sounds co-occur. Environmental

sounds belong to different levels of cognitive representation, in connection with

the surface characteristics of sounds and the sources that produce them. Studies

like [72, 73] concern the perceptive characterization of these sounds and of

the cognitive mechanisms used to identify them. The process that combines

perception and action of environmental sound is one of the major research

themes. This is a vital and unique gateway for research in auditory cognition

and for interactive sound design applications.

For this reason, building a database for environmental sounds is a compli-

cated task, with the choice of classes usually dictated by the targeted research,

and the size limited by practical aspects of data collection especially compared

to well-known datasets available for image processing (i.e., Imagenet[74]). Any-

way, very recently a project promoted by Google has been presented [55], with

the aim to collect a large human annotated dataset and a relative ontology

obtained from YouTube videos.

3.1.1 Dataset Acquisition

Recording real-world audio is the obvious data collection method for obtaining

realistic data. Creating a new dataset by recording new data has the advantage

of producing a collection with controlled audio quality and content.

Typically, the recording settings such as microphone type, number of chan-

nels, sample rate, bit depth are deĄned in the planning phase of the project, and

often they also depend on the Ąnal objectives of the project (i.e., a mobile ap-

plication vs. a research corpus). Anyway, the most common sampling settings

are 44.1 kHz, 16 bit respectively for sampling-rate and bit depth. Numerous

computational auditory scene analysis research projects make use of binaural

heads setups (Figure 3.1), with the aim to replicate the frequency-dependent

distortions of phase and amplitude on sounds produced by the human auditory

system.

Although the use of the same settings and device(s) throughout the data will

result in a better quality set, some recent algorithms are designed to counteract

these diversities, leading to the possibility to gather material from different

recording campaigns. In fact, one disadvantage of recording new data is that in

order to cover as much acoustic variability and diversity as possible, recordings

must be done in many different conditions. For location-speciĄc modeling,

this may mean different weather or human activity conditions, while for more
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Figure 3.1: Dummy head for binaural recording.

general modeling, it would also require traveling to other locations, adding

signiĄcant time and effort to the data collection procedure.

3.1.2 Dataset Labelling

Labeled data has a crucial inĆuence on algorithm development and evaluation

in research Ąelds dealing with classiĄcation and detection. The textual labels

used in annotation must provide a good description of the associated category

and not allow misinterpretation. To allow supervised learning and evaluation,

the audio must have corresponding reference annotations. These annotations

can be produced manually or in various semi-automatic ways, with the quality

and level of detail available in the obtained annotation often depending on the

procedure used. Manual annotation involves human annotators that will pro-

duce a mapping of the audio content into textual labels. Manually annotating

sound scene audio material is relatively fast, while for sound events the pro-

cess is much slower, with annotation using weak labels being much faster than

with strong labels. Manual annotation is prone to subjectivity arising from the

selection of words for labels and placing of temporal boundaries.

3.1.3 Acoustic Features

The time domain representation of a sound signal, or waveform, is not easy

to interpret directly. Therefore, frequency-domain representations and time-

frequency domain

representations (including multiscale representations) have been used for

years providing features of the sound signals that are more in line with the
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human perception. In this section we report a brief description of the most

commons.

Mel Frequency Cepstral Coefficients

MFCCs is a well-known set of features widely employed in audio applications,

especially for the purpose of representing speech data. Indeed, the weighting

operation performed by the Mel bands emulates the frequency response of the

human hearing organ, which is sensible at its most to speech frequencies. The

extraction procedure requires few stages. An excerpt of the signal is trans-

formed in the frequency domain by means of STFT. The obtained spectrum

is hence mapped to the mel scale by using triangular overlapping windows.

For each mel frequency the logs of the powers are considered, to whom the

Discrete Cosine Transform (DCT) is applied. The resulting spectrum are the

MFCCs. Furthermore, a common procedure consists in concatenating MFCCs

with their Ąrst and second derivatives, in order to provide a temporal evolution

of the signal.

LogMel

LogMel features have been recently applied in the Ąeld of acoustic modelling

and music structure analysis [57, 58], leading to encouraging results. The

procedure for LogMel extraction shares several aspects with the one described

for MFCCs features. In details, a set of mel-band Ąlters is applied to the

spectrogram of the signal, from which the logarithm of the power spectrum for

each band is considered. The logarithmic transformation is applied to each sub-

band energy in order to match the human perception of loudness. However,

due to the absence of the DCT, no spatial compression is performed to the

features, which remain correlated in the frequency domain. In this thesis,

the employment of LogMel matches the choice of using some of the systems

proposed in the next chapters (e.g., CNNs), where the objective is to exploit

the intrinsic correlation of input features in

order to highlight repetitive patterns present in the features.

Pitch

The tone of human voice is highly characteristic, for that reason is used i.e.

in VAD systems. The Sub-Harmonic-Summation (SHS) method described in

[75] is one of the most common algorithms. In particular, the spectrum is

shifted along the log-frequency axis, for each shift the spectrum is scaled and

then summed. This procedure creates the sub-harmonic summation spectrum,

where peak picking is applied to determine pitch. The used frame size is equal

to 50 ms.
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WC-LPE Feature

The Wavelet Coefficient (WC) and Linear Prediction Error (LPE) feature set

has been recently developed and exploited for audio onset detection purpose

[76]. WC-LPE carries information on non-stationary parts of the signal, thus,

it can facilitate the speech boundaries identiĄcation. Firstly, the signal under-

goes the Discrete Wavelet Transformation (DWT). Then, each sub-band of the

wavelet-domain is Ąltered by a set of Linear Prediction Error Filter (LPEFs)

and Forward Prediction Errors (FPE) are extracted. Finally, the Ąrst deriva-

tives are obtained from wavelet coefficients and added to them in order to form

the feature set.

RASTA-PLP

With RASTA-PLP we refer to RelAtive SpecTrAl transform - Perceptual Lin-

ear Prediction, a feature set often exploited to represent speech [77]. Short-term

noise variations are smoothed and the constant offset is removed by RASTA

Ąltering procedure, while the task of PLP is to simulate several well-known

properties of the hearing system.

Scattering Transform

The scattering transform [78] is the operation on which the Deep Scattering

Spectrum (SCAT) is based. SCAT is a multi-resolution representation of a

signal based on a tree of complex wavelet Ąlters followed by a non-linearity.

SCAT proves successful in gathering information at multiple resolutions on

non-stationary signals thanks to its good properties, such as translation in-

variance, stability to small diffeomorphisms and uniqueness, e.g., time-warping

deformations.

3.1.4 Data Augmentation

Data augmentation refers to methods for increasing the amount of development

data available without additional recordings. With only a small amount of

data, systems often end up overĄtting the training data and performing poorly

on unseen data. Thus, it is desirable to artiĄcially increase the amount and

diversity of data used in training.

Many techniques have been proposed for data augmentation in domains dif-

ferent from audio. In the case of image processing, affine transformations such

as rotation, shear, scaling or zooming are very common perturbations to apply

directly on the raw data (i.e., the images composing the dataset) in order to

augment the training sets of the systems. Some approaches extend the aug-

mentation in the feature space [79]. Dataset augmentation could be used to
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reduce overĄtting while training supervised learning models or to counteract

the dataset imbalance i.e., if the classes are not approximately equally repre-

sented as in the case of SMOTE [80, 81].

In the audio Ąeld, data augmentation exploits techniques such as pitch shift-

ing, time stretching or the generation of multi-microphone data by means of

simulated impulse response of the acoustic space or performing the transfor-

mation not in input space, but in the feature space. Adding random gaussian

noise to the input data (raw waveform or acoustic features) can also be seen as

a data augmentation technique for the audio domain.

With the development of the artiĄcial neural networks (ANN), some works

act this augmentation by means of auto-encoder model also using Generative

ANN. The above mentioned approaches have a large impact in the develop-

ment of data driven approaches to activity recognition, with applications in

the Active and Assisted Living (AAL) domain that has a lack of large scale,

high quality, and annotated datasets even if open datasets are growing. In

particular, these models are trained to reproduce the signal they have been

trained with, and if their latent space is properly perturbed, they are able to

generate new data, useful to extend the training sets of detection/classiĄcation

systems. In this context we can also mention the Generative Adversarial Net-

works (GAN) (cf. Section 2.3.4).

A limited number of repositories have supported the notion of shared datasets,

including a small number of activity recognition related resources. To ad-

dress this lack it is possible to simulate smart environments equipped with

heterogeneous sensors and combine the signals from different domains with

novel data augmentation techniques exploiting the aforementioned deep learn-

ing techniques.
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3.3 Evaluation Metrics

Evaluation is usually referred as estimating the performance of a system under

test when confronted with new data. For an objective evaluation, the system is

fed previously unseen data for which reference annotations are available. The

system output is then compared to the reference to calculate measures of its

performance.

What performance means and how it should be measured may vary depend-

ing on the speciĄcations and requirements of the developed system: We can

measure accuracy to reĆect how often the system correctly classiĄes or detects a

sound, or we can measure error rates to reĆect how often the system makes mis-

takes. By using the same data and the same methodology to evaluate different

systems, a fair and direct comparison can be made of systemsŠ capabilities.

The metrics used in detection and classiĄcation of sound events include accu-

racy, precision, recall, F-score, area under the curve (AUC) or error rate (ER).

There is no metric universally good for every kind of algorithm, as they each

reĆect different perspectives on the ability of the system.

3.3.1 Metrics Computation

Basically, the evaluation metrics are computed by comparing the prediction

of the system under analysis with the respective annotations or ground truth.

Thus, the metrics are calculated based on counts of the correct predictions and

different types of errors made by the system. These counts are referred to as

intermediate statistics and are deĄned depending on the evaluation procedure.

These intermediate statistics are deĄned as follows for a target sound event:

• True positive: A correct prediction, meaning that the system output and

the reference both indicate the event present.

• True negative: The system output and the reference both indicate event

not present.

• False positive: The system output indicates event present or active, while

the reference indicates event not present.

• False negative: The system output indicates event not present or inactive,

while the reference indicatesit as present.

Sound event classiĄcation is usually a single-label multiclass problem, and

the resulting intermediate metrics reĆect whether the single true class is cor-

rectly recognized for each example. In this task there is no distinction between

false positives and false negatives. In sound event detection, the choice of mea-

surement determines the interpretation of the result: With a segment-based
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metric, the performance shows how well the system correctly detects the tem-

poral regions where a sound event is active; with an event-based metric, the

performance shows how well the system is able to detect event instances with

correct onset and offset. Thus, in the segment-based metric the ground truth

and system output are compared in a Ąxed time grid, and sound events are

marked as active or inactive in each segment. For the event-based metric the

ground truth and system output are compared at event instance level. SpeciĄ-

cally, the intermediate statistics for sound event detection are deĄned as follows:

• Substitutions S: are the number of ground truth events for which we

have a false positive and one false negative in the same segment;

• Insertions I: are events in system output that are not present in the

ground truth, thus the false positives which cannot be counted as substi-

tutions;

• Deletions D: are events in ground truth that are not correctly detected

by the system, thus the false negatives which cannot be counted as sub-

stitutions;

If we consider the scenario of polyphonic sound event detection, the segment-

based metric essentially splits the duration of the test audio into Ąxed length

segments that have multiple associated labels, reĆecting the sound events active

anywhere in the given segment. In this respect, evaluation veriĄes if the system

output and reference coincide in the assigned labels, and the length of the

segment determines the temporal resolution of the evaluation. Event-based

metrics compare event instances one to one. Since the time extents of the

events detected by the system may not exactly match the ground truth, a

common approach is to allow a time misalignment threshold or time-collar.

Performance Metrics

Measures of performance are calculated based on accumulated values of the

intermediate statistics. We denote by TP , TN , FP , and FN the sums of the

true positives, true negatives, false positives, and false negatives accumulated

throughout the test data. In the case of multiclass problem, the accumulation

of intermediate statistics can be performed either globally or separately for

each class, depending on the nature of the problem (i.e., instance-based or

class-based) or datasets characteristics (i.e., highly unbalanced classes). Based

on the total counts of the intermediate statistics, many different measures can

be derived. We can deĄne:
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Accuracy = T P +T N
T P +T N+F P +F N (3.1)

Precision = T P
T P +F P (3.2)

Recall = T P
T P +F N (3.3)

F-score = 2T P
2T P +F N+F P (3.4)

Accuracy measures how often the classiĄer makes the correct decision, as the

ratio of correct system outputs to total number of outputs. Precision, recall,

and F-score were introduced in the context of information retrieval. F-score

can be also calculated as the harmonic mean of Precision and Recall scores:

F-score = 2 ·
Precision · Recall

Precision + Recall
(3.5)

F-score has the advantage of being a familiar and well understood metric.

Its main drawback is that its value is strongly inĆuenced by the choice of

averaging and the data balance between classes: in instance-based averaging

the performance on common classes dominates, while in class-based averaging

(balanced metrics) it is necessary to at least ensure presence of all classes in all

folds in the test data, to avoid cases when recall is undeĄned. In particular, in

this work we consider also the use of the Unweighted Average Recall (UAR),

which is more appropriate in the case of classiĄcation of samples belonging to

an highly unbalanced dataset. UAR is deĄned as:

UAR =
1

NClass
·

NClass
∑︂

c=1

TPc

TPc + FNc
(3.6)

In the case of sound event detection systems, Error Rate score is the most

common evaluation metric. Considering a single time frame t1, the ER is com-

puted from its intermediate statistics, i.e., the number of substitutions (S(t1)),

insertions (I(t1)), deletions (D(t1)) and active sound events from annotations

(N(t1)). Formally, for the entire evaluation set:

ER =

√︂T
t1=1 S(t1) +

√︂T
t1=1 I(t1) +

√︂T
t1=1 D(t1)

√︂T
t1=1 N(t1)

, (3.7)

where T is the total number of segments t1.

3.3.2 Detection Metrics

Precision and recall rely on hard decisions made for each trial, they typically

depend on a threshold applied to some underlying decision variable, i.e., the
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metric in mind. In a cross-validation approach, a more stable result is given by

treating the cross-validation folds as single experiment, meaning that metrics

are calculated only after training and testing all folds, not as average of the

individual folds nor as average of individual class performance. In addition,

reporting the variance among the individual foldsŠ contributions to the average

can serve as a useful conĄdence interval. Anyway, if there are multiple scenes in

the dataset, typically evaluation metrics are calculated for each scene separately

and then the results are presented as the average across the scenes.

Attention should be also paid to statistical signiĄcance of the results and

it should be used to calculate the theoretical limits of discriminability of the

evaluation, especially when two methods/approaches/techniques are compared.

A detailed and visualized explanation of evaluation score in multi label set-

ting for sound event analysis can be found in [82].
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endoscopy (DISE) is a standard examination technique used to identify the lo-

cation and form of vibrations and obstructions [90]. During a DISE procedure,

a Ćexible nasopharyngoscope is introduced into the upper airways while the

patient is in a state of artiĄcial sleep. Vibration mechanisms and locations can

be observed while video and audio signals are recorded. This procedure has

several disadvantages: it is time consuming, the patient is put under strain, and

it has to be performed during drug-induced sleep. Recent studies have found

that acoustic signal carries important information about the snore source and

obstruction site in the upper airway of OSA patients [91], thus acoustic analy-

sis of snoring sound could be an alternate, less-invasive method to identify the

kind of snoring pathology [92]. This signiĄcant discovery has motivated several

researchers to develop acoustic-based approaches that could provide inexpen-

sive, convenient and non-invasive monitoring and screening apparatuses to be

combined with traditional diagnostic tools. In addition, it can be performed

during natural sleep, avoiding the possibility to induce different muscle relax-

ation patterns which is a cause for possible diagnosis errors in drug-induced

sleep.

Related Works

Several works have been presented in the recent years on multi-feature acous-

tic analysis methods with the aim to classify and segment snore/non-snore

sleep sounds. In [93] consists of the identiĄcation and segmentation process

by using energy and Zero Crossing Rate (ZCR), which were used to determine

the boundaries of sound segments. Episodes have been efficiently represented

into two-dimensional spectral features by using principal component analysis,

and classiĄed as snores or non-snores with Robust Linear Regression (RLR).

The system was tested by using the manual annotations of an Ear-Nose-Troth

(ENT) specialist as a reference. The accuracy for simple snorers was found

to be 97.3% when the system was trained using only simple snorersŠ data. It

drops to 90.2% when the training data contain both simple snorersŠ and OSA

patientsŠ data. In the case of snore episode detection with OSA patients, the

accuracy is 86.8%. In [94] tracheal respiratory signals are recorded and snore

segments are detected by extracting 10 temporal and spectral features and an

ArtiĄcial Neural Network (ANN). In [95] the automatic sound segmentation

into snoring/breathing/noise episodes is performed using an adaptive effective-

value threshold method for noise reduction, feature extraction of both linear

and nonlinear descriptors and a Support Vector Machine (SVM) classiĄer.

SpeciĄcally regarding the determination of the vibration or occlusion mech-

anisms, the use of different acoustic feature sets has been proposed in [83],

while in [96] a k-nearest neighbor (k-NN) classiĄer is fed with different acoustic

features. A performance comparison of different feature sets in combination
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with frequently-used classiĄer model is shown in [97]. Recently some works

have been presented in occasion of the Snoring task of the Interspeech 2017

Computational Paralinguistics Challenge (ComParE) [98]. The task consisted

in identiĄcation of the snore type among four classes based on the widely used

Velum-Oropharyngeal-Tongue-Epiglottis (VOTE) scheme, distinguishing four

structures that can be involved in upper airway narrowing and obstruction. In

[99, 100] the authors exploit deep convolutional neural networks pre-trained

on image datasets for feature extraction from Short Time Fourier Transform

(STFT) representation of the snore sounds. Then, the outputs of the bottom

layers are used to feed a SVM model which provides the snore sound classiĄ-

cation. An alternative approach used weighted kernel classiĄers [101] in order

to counteract the natural snore dataset imbalance, such as Extreme Learning

Machine and Kernel Partial Least Squares learners. Acoustic low level descrip-

tors encoded over utterances are used as input features vector of the models.

The latter algorithm is reported as the winner in the Ąnal challenge ratings1.

4.1.1 Proposed Approach

In this section we propose a snore classiĄcation algorithm based on Deep Scat-

tering Spectrum (SCAT) [102] and Multi-layer Perceptron (MLP) neural net-

works. The speciĄc characteristic of the snore sounds and the references re-

ported above demonstrate that typical techniques for speech analysis are re-

quired for an accurate classiĄcation, in particular feature vectors with high

dimensionality. In fact, the snore sound carries salient informations at differ-

ent time scales, thus in this case it is necessary to capture patterns up to 500 ms.

The SCAT provides an efficient representation of an audio signal based on the

scattering transform. In particular, it extends the traditional Mel-Frequency

Cepstral Coefficients (MFCCs) representation [103] with second-order scatter-

ing coefficients which characterize transient phenomena such as attacks and

amplitude modulation. The algorithms has been evaluated on the Munich-

Passau Snore Sound Corpus (MPSSC) [98] and the results are expressed in

terms of Unweighted Average Recall (UAR) in order to compare our approach

with the results of the INTERSPEECH 2017 ComParE.

The block diagram of the proposed method is shown in Figure 4.3. The

algorithm operates by computing the deep scattering spectrum of the audio

signal and then by mapping it into a Gaussian Mean Supervectors (GMS)

[104] for classiĄcation. In particular, referring to Figure 4.3a, the set of snoring

sounds T = ¶(x1, C1), (x2, C2), . . . , (xK , CK)♢ represents the training set of

the algorithm, where xk = [xk(1), xk(2), . . . , xk(Tk)] is a snoring sound signal

of length Tk and Ck ∈ ¶V,O, T,E♢ is the corresponding snoring label. The

1http://emotion-research.net/sigs/speech-sig/is17-compare
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Deep Scattering Spectrum

The scattering transform [78] is the operation on which the Deep Scattering

Spectrum (SCAT) is based. SCAT is a multi-resolution representation of a

signal based on a tree of complex wavelet Ąlters followed by a non-linearity.

The SCAT up to order M of a signal xk,l is, thus,

S(xk,l,M) =¶xk,l ∗ ϕM ,

♣xk,l ∗ ψm1
♣ ∗ ϕM ,

♣♣xk,l ∗ ψm1
♣ ∗ ψm2

♣ ∗ ϕM♢,

(4.1)

where ϕM is a low-pass Ąlter and ψmi
is a wavelet Ąlter with i < M . Time in-

dices are omitted for brevity. SCAT proves successful in gathering information

at multiple resolutions on non-stationary signals thanks to its good properties,

such as translation invariance up to level M , stability to small diffeomorphisms

and uniqueness, e.g., time-warping deformations. It has been applied with suc-

cess in image [105] and audio signal classiĄcation tasks [106], where it is shown

that SCAT provides optimal results when M = 2 though there is no upper limit

on the order of the SCAT. It is showed that a two orders cascade of wavelet

Ąlter banks and rectiĄers improve results obtained by MFCC and Delta-MFCC

descriptors in musical genre classiĄcation task, thus the energy remaining on

higher order branching is as low as background noise and provides no addi-

tional information. The SCAT outputs time-averaged coefficients, providing

informative signal invariants over potentially large time scales. To compute

the SCAT we used the ScatNet open source Matlab library [107]. The choice

of the wavelet Ąlters is not trivial. In audio processing a typical procedure is

to deĄne constant-Q Ąlter banks as linear operators that make up the layers of

the scattering networks. The quality factors of the Ąlter used in this section are

Q1 = 8 and Q2 = 1. We assume 0.5 s as minimum length of snore utterance,

thus the Ąlter length N is set equal to 8000 samples.

The wavelet functions are built by dilating a mother wavelet ψ by a factor

21/Q, for the quality factors Q, so as to obtain the Ąlter bank:

ψmi
(t) = 2−m/Qψ(2−m/Qt), (4.2)

with t representing the time index.

The mother wavelet ψ may only be dilated up to the maximum scale M − 1,

resulting in 2 wavelets ψm0
, ψm1

. The parameter M determines the maxi-

mum wavelet time support aM = T , thus the low-pass Ąlter ϕM covers the

interval [−πa−M , πa−M ] and represents the length of averaging window over

a neighborhood of t. In this section, we use T = N/8 = 1000 samples, which

corresponds to around 60 ms of audio.
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where λ = ¶wj ,µj ,Σj ♣j = 1, 2, . . . , J♢, wj are the mixture weights, and

p(·♣µj ,Σj) is a multivariate Gaussian distribution with mean vector µj of size

D × 1 and diagonal covariance matrix Σj of size D ×D.

The mean values of the UBM model are, then, adapted with the MAP algo-

rithm and concatenated in order to obtain the GMS:

Γ = [µT
1 ,µ

T
2 , · · · ,µ

T
J ]T , (4.4)

where T denotes the transpose operator. Regardless of the length of the input

snore sound, Γ is a vector of DJ × 1 length. The threshold values of EM and

MAP algorithms during the adaptive phase have been set both equal to 0.001,

but with different number of iterations, respectively equal 1000 and 5 for EM

and MAP.

Multi Layer Perceptron

In this section we exploited the Multi Layer Perceptron (MLP) architecture as

DNN ClassiĄer [58]. The MLP is composed of an input layer with number of

units equal to the dimension of the input supervector Γ, followed by a stack

of fully connected layers of units, namely the hidden layers. Number of hidden

layers and their dimensions have been investigated during the experimental

analysis. As non-linear activation function in the hidden layers of the MLP

we employed both the hyperbolic tangent (tanh) and the rectiĄed linear unit

(ReLU ) [108]. The output layer of the MLP is formed by four units with the

softmax non-linear function. The outputs of the softmax layer represent the

probabilities that a sample belongs to the different classes.

The behavior of this architecture is parametrized by the connection weights,

which are adapted during the supervised network training, accomplished by

using the Adam algorithm [109] for the stochastic gradient-based optimization

of the crossentropy loss function. The optimizer parameters were set as follows:

learning rate lr = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8. The maximum

number of training epochs was set equal to 200 with an early stopping strategy

in order to reduce the computational burden. Nevertheless, overĄtting is well-

know a problem affecting DNNs in particular when the number of training

samples is limited. In order to prevent overĄtting we investigated the use of

dropout [68].

The model has been implemented in the Python language using Keras2 as

deep learning library with Theano[110] as back-end.

2https://keras.io/
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4.1.2 Comparative Approaches

Below is given a brief description of state-of-the-art approaches such as SVM

classiĄers and algorithms which showed the best performance at the Inter-

speech 2017 ComParE. They were evaluated on the blind test set, thus they

are reported for comparative aims.

Support Vector Machines

Without modifying the general structure of the algorithm for supervectors Γ

computation, we compared the performance of the MLP based model with the

SVMs [111].

SVMs are binary classiĄers that map an input example onto a high-dimensional

feature space and iteratively searches for the hyperplane that maximises the

distance between the training examples from the origin. Given the training

data ¶Γ1, . . . ,Γk♢, where k is the number of observations, the class separation

is performed by solving the following equation:

min
w,ξ,ρ

1

2
wT w +

1

νk

∑︂

i

ξi − ρ (4.5)

subject to: (wT · Φ(Γi)) ≥ ρ− ξi, ξi ≥ 0, (4.6)

where w is the support vector, ξi are slack variables, ρ is the offset, and Φ maps

Γi into a dot product space F such that the dot product in the image of Φ

can be computed by evaluating a certain kernel function. The kernel function

K(·, ·) can assume different forms [112]. In this section two kernel functions

have been considered, the Radial Basis Function (RBF), deĄned as:

K(Γ,Γi) = exp(−γ∥Γ− Γi∥
2) (4.7)

and the linear kernel, deĄned as:

K(Γ,Γi) = ΓT Γi. (4.8)

The decision values are obtained with the following function:

f(Γ) = wT · Φ(Γ)− ρ. (4.9)

The input vector Γ is classiĄed as +1 if f(Γ) ≥ 0 and −1 if f(Γ) < 0. In this

section, the multiclass problem has been addressed using the Şone versus allŤ

strategy. Implementation of LIBSVM [113] from Python library scikit-learn

has been employed both in the training and testing phases of the SVM.
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Chapter 4 Sound Event Classification

Weighted Kernel Classifiers

The approach proposed by Kaya and Karpov [101] exploits a decision fusion

between different kernel based classiĄers such as regular and weighted Kernel

Extreme Learning Machine (KELM) and Kernel Partial Least Squares (KPLS)

learners. As acoustic feature representation they used Fisher Vectors (FV),

which provides an encoding of local descriptors (e.g., MFCC, RASTA-PLP and

their derivatives), quantifying the gradient of the parameters of the background

model with respect to the data. In addition, in the Ąnal submission system they

used both (FV) and the ComParE baseline feature set, which contains 6373

static features resulting from the computation of various functionals over low-

level descriptor (LLD) contours.

Image-based Deep Spectrum Features

A different approach is presented in [99], based on image classiĄcation convo-

lutional neural network (CNN) descriptors extracted from snore spectrograms.

They evaluated different well known DNN architectures typically used for im-

age classiĄcation, such as AlexNet and VGG neural network. Both deep CNNs

were previously trained on approximately 1.2 million images from the ImageNet

corpus, then they compute the power spectral density on the dB power scale

of the audio excerpt using Hanning windows of 16 ms width, and 8 ms overlap

and they plotted the result in three different colour maps: gray, jet and viridis.

The deep CNNs are fed with the spectrograms, then the neurons on the Ąrst

and second fully connected layers (fc6 and fc7) are extracted as feature vectors.

These feature vectors are then classiĄed by means of an SVM model.

4.1.3 Experiments

The MPSSC dataset

The MPSSC dataset is composed of more than 30 hours of audio recordings

captured during DISE examinations of 224 subjects from three medical cen-

ters recorded between 2006 and 2015. Recording equipment, microphone type,

and location differ among the medical centers, so do the background noise

characteristics. From the original signals (raw PCM, sample rate 16 000 Hz,

quantization 16 bit) 843 early identiĄable, single site of vibration snore events

have been extracted and manually screened from medical experts. Following

the 4-class VOTE scheme, each sound Ąle in the dataset is labelled as V, O,

T, E, depending on the tissue from which snore sound originates, as shown in

Figure 4.2. They are respectively:

• (V) - Velum (palate), including soft palate, uvula, lateral velopharyngeal

walls;
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• (O) - Oropharyngeal lateral walls, including palatine tonsils;

• (T) - Tongue, including tongue base and airway posterior to the tongue

base;

• (E) - Epiglottis.

The dataset is divided into three subsets: train, devel and test. The num-

ber of events per class in the database is strongly unbalanced with a high

preeminence of the ŞVelumŤ (V)-class and ŞOropharyngealŤ (O)-class (85% of

samples) but in line with the likelihood of occurrence during normal sleep,

while 10% and 5% of samples respectively belongs to E-events and T-snores.

Details of class occurrences are shown in Table 4.1.

The Munich-Passau Snore Sound Corpus

# train devel test

V 168 161 155
O 76 75 65
T 8 15 16
E 30 32 27

Σ 282 283 263

Table 4.1: The Munich-Passau Snore Sound Corpus - The table shows the num-
ber of events per class in train, devel and test.

As shown in the waveforms and the related spectrograms in Figure 4.6, the

main energy components in three of the classes are concentrated in the fre-

quency area below around 2000 Hz. Energy and spectral distribution charac-

teristics are similar, except for the Type T, which shows higher energy content

above 2500 Hz compared to the other three.

Experimental Setup

According to the ComParE 2017 guidelines [98], the performance metric for

this task is the Unweighted Average Recall (UAR) (cf. Section 3.3.1).

The MLP hyperparameters optimization was obtained by means of a random

search strategy [114]. The number of layers, the number of units per layers, the

non-linear activation function and the dropout rate have been varied for a total

of 400 conĄgurations. Details of searched hyperparameters and their ranges are

reported in Table 4.2. For all of the conĄgurations, the performance of the MLP

classiĄer has been evaluated by varying the input supervector dimension, which

depends on the number of Gaussian components used to represent the UBM

J = 1, 2, 4, 8. The supervector given as input to the MLP is standardized by
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unbalancing. The weight for each class was computed on training set with the

following equation:

Wc =
NT OT

Nc
, (4.10)

where NT OT is the total number of samples in the training set and Nc the

number of samples of the respective class. In this way the classes having a

lower number of samples in the training set have a larger effect in the loss

computing [115].

4.1.4 Results

The performance of the proposed algorithm has been assessed Ąrstly by using

the train subset as training corpus and the devel subset for evaluation. Then,

the same model was trained with both train and devel subsets and it was evalu-

ated on the test subset. The results of the experiments are shown in Table 4.3.

For the sake of conciseness only the best performances of the proposed approach

are reported, comparing the results achieved with SVM and MLP classiĄers on

the two folds. For both devel and test subsets the best results are obtained

with DNN based classiĄer.

Input Classifier UAR devel (%) UAR test (%)
SCAT MLP [204,112,99]

53.16 72.63
+ 1 Gaussian UBM with tanh and dropout

SCAT MLP [249,40,21,21]
58.20 74.19

+ 2 Gaussians UBM with tanh and dropout
SCAT MLP [235,227]

67.14 67.71
+ 2 Gaussians UBM with tanh and dropout

SCAT MLP [156,34,21]
50.30 71.32

+ 4 Gaussians UBM with relu and dropout
SCAT MLP [66,28]

55.89 70.18
+ 8 Gaussians UBM with tanh and dropout

SCAT
SVM, C = 2−8 46.73 65.45

+ 1 Gaussian UBM
SCAT

SVM, C = 2−10 46.54 65.50
+ 2 Gaussian UBM

SCAT
SVM, C = 2−9 44.67 67.22

+ 4 Gaussian UBM
SCAT

SVM, C = 2−10 43.20 65.48
+ 8 Gaussian UBM

Table 4.3: Comparative results in terms of UAR (%) score of proposed method
for MLP and SVM based classiĄers for both devel and test subsets.
Best results on each subset are shown in bold.
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Input Classifier
UAR (%)

devel test

SCAT MLP 67.14 67.71
SCAT MLP 58.28 74.19

Spectrograms +
SVM 44.80 67.00

AlexNet fc7
FV + (W)KPLS +

50.12 64.23
ComParE functionals (W)KELM

Table 4.4: Comparative results in terms of UAR (%) score of proposed algo-
rithm with state-of-the-art methods for both devel and test subsets.
Best results on each subset are shown in bold.

4.1.5 Conclusion and Outlook

In this section, an approach for snore sound classiĄcation based on Deep Scat-

tering Spectrum, Gaussian Mean Supervectors and MLP classiĄer has been

presented. We extracted the SCAT from the audio signals and GMM-based

background model was trained to map the sequence of scattering coefficients in

a supervector. ClassiĄcation of input snore sounds has been performed using

a MLP neural network and a support vector machine with comparative aims.

To assess the performance of the algorithm we conducted experiments on both

the devel and the test subsets of MPSSC dataset. Following the 4-class VOTE

scheme, we obtained a UAR of 67.14% on the devel set and a respective UAR

equal to 67.71% on the test set independently of the subject characteristics.

The performance upper limit obtained optimizing the models on the test set is

an UAR up to 74.19%. The obtained results showed that the employment of the

DNN based classiĄer in combination with SCAT is effective and a signiĄcant

performance improvement with respect to other state-of-the-art approaches

was registered. Future work will evaluate strategies of data augmentation to

counteract the unbalance of the dataset. In addition, the SCAT representation

of the audio signals prompts the exploitation of the 2-D Convolutional neural

network (CNN) to obtain a further latent representation by means of the pro-

cessing taking place in its deep architecture. A deeper focus could be given

also to the temporal evolution of the signal by means of recurrent structure,

such as Long Short Term Memory (LSTM) Neural Networks [116].
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average is computed between the n obtained distances. The same is done with

the chunk X[n+ 2] and the previous n, and so on until the end of test set. In

this way every chunk from the nth to the last will be associated to a distance.

Analyzing the signal obtained from this procedure we are able to distinguish

between smooth and rough condition. SpeciĄcally, the signal obtained from the

distances averaging is Ąrstly processed by means of a low-pass Ąlter, then is

compared to an adaptive threshold.

Auditory Spectral Features

Auditory Spectral Features (ASF) are acoustic features extracted from audio

samples that have been introduced in [126] and are used also in [123]. ASF

are computed by applying the Short Time Fourier Transform (STFT) using a

frame size of 30 ms and a frame step of 10 ms. Each STFT provides the power

spectrogram which is converted to the mel frequency scale using a Ąlter-bank

with 26 triangular Ąlters obtaining the mel spectrograms M30(n,m), where n

is the frame index, and m is the frequency bin index.

To match the human perception of loudness mel spectrograms are trans-

formed to a logarithmic scale, according to:

M30
log(n,m) = log(M30(n,m) + 1.0). (4.11)

This process yields 26 coefficients, while other 26 are obtained by calculating

the positive Ąrst order differences D30(n,m) from each logmel spectrogram, as

follows:

D30(n,m) = M30
log(n,m)−M30

log(n− 1,m), (4.12)

for a total of 52 coefficients for frame. The Ąnal feature vector is expanded by

including the frame energy and its derivative ending up in a total number of

54 coefficients. The features are extracted with an open-source audio analysis

toolkit openSMILE v2.3.0 [127] ensuring reproducibility.

In order to feed the CNN, audio chunks of 1 s are obtained from 98 feature

vectors, resulting in 2D arrays of 54-by-98 values.

4.2.2 Dataset

The dataset built for this work is done with a multi-channel microphone ar-

rangement, with the prospect of conducting different assessments at once or

to exploit microphone diversity to improve the classiĄcation. More speciĄcally,

two microphones have been placed close to the rear wheels, one in front of the

front left wheel, one inside the engine compartment and two inside the cock-

pit, close to the driver head and close to the right passenger head. The rear

wheel microphones have been placed off-axis, in order to avoid dirt from the
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4.2 Road Surface Roughness Classification

(a) Rear right tyre microphone. (b) Front left tyre microphone.

Figure 4.14: Pictures of the PCB Piezotronics model 130A24 microphones po-
sitioned near the rear right and front left tyres, according to "RR"
and "FL" red circles in Figure 4.13. The microphones are enclosed
by a melamine resin foam with open cell network structure to re-
duce the wind noise.

audio signals are sampled at 44100 Hz, 24-bits. The external microphones used

-26 dBV as input range while the interior microphones had -16 dBV as input

range. To facilitate the labelling operations, a camcorder BC MasterDC10 3

was installed on the dashboard of the car. In addition to the video, it provides

the speed information obtained through its own GPS antenna and it records the

cockpit audio, useful for taking vocal notes while driving. The data recorded

with the HEAD Acoustics SQuadriga II have been exported by means of the

software HEAD Acoustics ArtemiS SUITE in the uncompressed WAV audio

format with a 32-bit Ćoat representation.The result of the recording sessions

is approximately 100-minutes-long multichannel recordings (6 audio channels

and a speed channel) for both the tyre sets. Labels for the roads roughness

have been annotated manually.

Figure 4.15: Picture of the HEAD Acoustics SQuadriga II connected to the
GPS-antenna interface.

All recordings were taken in dry conditions in the urban and suburban areas

of Ancona (Italy) with variable speed, traffic conditions and pavement rough-

3http://www.bc-master.com/product/car-dash-camera-dc10

65





✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page 67 Ů #87
✐

✐

✐

✐

✐

✐

4.2 Road Surface Roughness Classification

right microphone has been selected being the one with the lowest engine noise

content. The CNN has been trained using the Adadelta optimization algorithm

and binary cross-entropy as a cost function for 1000 epochs, with an early-

stopping strategy on the validation set score. The network layouts were the

same both for the ŞtraditionalŤ CNN, both for the ŞbasicŤ network composing

the twin architecture in the Siamese approach. In the latter case, the training

loss function is the contrastive loss, while 1780 and 1916 chunk pairs composed

the training sets respectively of the ŞWinterŤ and the ŞSummerŤ scenarios.

Parameter Range Distribution

CNN layers Nr. [1 - 4] uniform
CNN kernels Nr. [4 - 64] log-uniform

CNN kernels dim. [3×3 - 6×6] uniform
Pooling dim. [1×1 - 2×5] uniform

CNN activation [tanh - relu] random choice
CNN dropout [0 - 0.5] uniform

MLP layers Nr. [1 - 3] uniform
MLP layers dim. [20 - 256] log-unifom

Activation [tanh - ReLU] uniform

Table 4.5: Ranges of CNN layout parameters tested in the random-search
phase. The kernel size and the stride are expressed as [time ×
features].

Table 4.6 shows that the Siamese architecture outperforms in all the condi-

tions the traditional CNN approach. In particular, although there is a relative

worsening of the Siamese approach when we apply the transfer learning in the

ŞWinterŤ scenario, the absolute performance is signiĄcantly better compared to

the basic CNN. As shown in Figure 4.18, the combination of Siamese networks

and its dedicated post-processing procedure yield very reliable predictions on

the experimental dataset. In addition, we note that the models trained with

the ŞSummerŤ dataset exhibit a poor performance compared to the ŞWinterŤ

dataset. This is difficult to interpret, but we suppose that be attributed to the

tread design of the ŞWinterŤ tyres, which enhances the produced noise and the

characteristic frequency spectrum of the two road conditions.

TRAINING TESTING CNN Siamese

Winter 09-05-2018 Winter 09-05-2018 85.65 98.14
Winter 09-05-2018 Summer 11-05-2018 83.93 95.08

Summer 11-05-2018 Summer 11-05-2018 80.65 93.88
Summer 11-05-2018 Winter 09-05-2018 76.17 93.37

Table 4.6: Results in terms of F-measure (%) for the considered architectures.
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many vehicles for echo cancellation and noise suppression and are not subject to

issues such as dirt, wet, cold, etc. The main issues with this approach, however,

are the cockpit isolation from the outside and the interference of speech and

music with the road surface noise. Voice activity detection (VAD) [128, 129]

algorithms should be employed and extended to detect the presence of music

provided by the car infotainment system. Existing works based on CNN archi-

tectures [130, 131] could be a starting point as they could be integrated easily

with the current framework and extended.

We would like to thank ASK industries S.P.A. for Ąnancial support and

technical assistance.
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4.3 Bird Audio Detection

Automatic wildlife monitoring is a key concern nowadays. Climatic changes,

the effects of pollution and alteration of the ecosystems have to be closely con-

trolled in order to be the litmus test for the future sustainable technological and

political guidelines. In this context, bird audio analysis is an important task

of the bioacoustics for wildlife and biodiversity monitoring, which can easily

embrace the deep learning concept. This is conĄrmed also from the interest re-

ceived by projects such as ŞBird Sounds visualizationŤ supported by the Google

Creative Lab [132]. In particular, detecting the presence of bird calls in audio

recordings is a very common required Ąrst step for a framework that can per-

form different kind of analysis (e.g. species classiĄcation, counting), and makes

it possible to conduct work with large datasets (e.g. continuous 24h monitor-

ing) by segmenting the data stream into regions of interests. To encourage

the research in automating this task, in 2016 Stowell et al. [133] organized a

Ąrst edition Bird Audio Detection (BAD) challenge. It has been appreciated

to such an extent that a new round has been included in one of the tasks of the

2018 IEEE AASP Challenge on Detection and ClassiĄcation of Acoustic Scenes

and Events (DCASE). In fact, Task 3 consists in determining a binary decision

for the presence/absence of bird sounds on audio Ąles recorded in very dif-

ferent conditions, comprehending dataset balancing, birds species, background

sounds and recordings equipment. SpeciĄcally, participants are asked to build

algorithms that predict whether a given 10-second recording contains any type

of bird vocalization, regardless of the species. Thus, differently from the official

name of the task, we can consider it as a classification problem. The organizers

invite to explore approaches that can either inherently generalize across differ-

ent conditions (including conditions not seen in the training data), or which

can self-adapt to new datasets. The deep neural network based approach we

propose has the aim to counteract the generalization problem by means of

an innovative learning procedure named Şcapsule routingŤ which has shown

promising performances since it has been presented [52] and also in pioneering

employments in audio tasks [51].

4.3.1 Related Works

In very recent years, a strong growth of deep learning algorithms devoted

to the acoustic monitoring has been observed. In particular, works such as

[134, 34, 135] represent milestones, involving Convolutional Neural Networks

(CNN) for audio signals detection and classiĄcation. These deep neural ar-

chitectures, combined with the increased availability of datasets and compu-

tational resources, have allowed large performance improvements, outperform-

ing in most of the cases the human accuracy [43]. This has also motivated
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researchers to employ such architecture, eventually combined with recurrent

units [45], in almost all of the tasks proposed in the recent editions of research

challenges such as the DCASE [136]. These algorithms often result among the

strongest-performing systems [47, 137]. Similar results came from the Ąrst edi-

tion Bird Audio Detection (BAD2017) challenge, which was held in 2016-2017.

In this case different novel algorithms have been proposed to create robust and

scalable systems able to automate the annotation process of audio sequences

containing free-Ąeld recordings. The work of Grill and Schlüter [24] should

be also mentioned, which obtained the highest score and which is based on

CNNs trained on Mel-scaled log-magnitude spectrograms. The outcomes of

the BAD2017 are reported in [57].

A team at Google Brain recently has presented a new computational unit

[52] called ŞCapsNetŤ with the intent to overcome two known limitations of the

CNNs: the excessive information loss caused by the pooling and other down-

scaling operations and the inability to infer part-whole relationships between

the elements which the deep neural network (DNN) has to detect. In fact, the

layers of a standard CNN are good at detecting space-invariant features which

characterize an image (or a spectrogram in the case of audio spectrograms), but

are less effective at exploring the spatial relationships among features (perspec-

tive, size, orientation). Capsule routing has the aim to learn global coherence

implicitly, thereby improving generalization performance. In the BAD applica-

tion, it means that the DNN is driven to learn a general concept of the entities

of Şbird songŤ and Şbackground soundsŤ without requiring extensive data aug-

mentation or dedicated domain adaptation procedures, thus motivating the use

of Capsules for this task.

4.3.2 Proposed Method

The proposed system is a fully data-driven approach based on the CapsNet

deep neural architecture presented by Sabour et al. [52]. The novel compu-

tational structure of the Capsules, combined to the routing mechanism allows

to be invariant to intra-class affine transformations and to identify part-whole

relationships between data features. The whole system is composed of a feature

extraction stage and a detection stage. The feature extraction stage transforms

time-varying audio signal into acoustic spectral features, then the second stage

takes the feature vector as input and maps them to a binary estimate of bird

song presence. This latter stage is where we introduce the Capsule neural net-

work architecture. The network parameters are obtained by supervised learning

using annotations of bird song activity as one hot target vector.
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Feature Extraction

The feature extraction stage operates on mono audio signals sampled at 44.1

kHz. For our purpose, we exploit LogMels as acoustic spectral representation,

following results obtained in various audio tagging and sound event detection

tasks. Firstly, the audio signals are down-sampled to 16 kHz, because the most

relevant frequency bands related to bird songs are in the range from 2 kHz to

8 kHz [138]. Then, LogMel coefficients are obtained by Ąltering the magnitude

spectrum of the STFT with a Ąlter-bank composed of 40 Ąlters evenly spaced in

the mel frequency scale. The logarithm of the energy of each band is computed

to match the human perception of loudness. In the STFT computation, the

used frame size is equal to 40 ms and the frame step is equal to 20 ms. All

of the datasets contain 10-second-long WAV Ąles, thus the resulting feature

matrix x ∈ R
D1×D2 has a shape 501× 40. The range of feature values is then

normalized according to the mean and the standard deviation computed on the

training sets of the neural networks.

CapsNet for Bird Audio Detection

The architecture of the neural network is shown in Fig. 4.19. The Ąrst stages

of the model are traditional CNN blocks which act as feature extractors on the

input LogMel coefficients. After each block, max-pooling is used to halve the

dimensions. The feature maps obtained by the CNN layers are then fed to the

Primary Capsule Layer that represents the lowest level of multi-dimensional

entities. Basically it is a convolutional layer whose output is reshaped and

squashed using (2.18). The Ąnal layer, is a capsule layer and it is composed of

two densely connected capsule units. Since the previous layer is also a capsule

layer, the dynamic routing algorithm is used to compute the output. The

model predictions are obtained computing the the Euclidean length of each

output capsule, which represent the probabilities that an input feature vector

x belongs to the background or the bird audio class, thus we consider only the

latter as system output prediction.

4.3.3 Experimental Setup

The network hyperparameters optimization was obtained by means of a ran-

dom search strategy [139]. The number and the shape of convolutional layers,

the non-linear activation function, the regularizers in addition to the capsules

dimensions and the maximum number of routing iterations have been varied

for a total of 100 conĄgurations. Details of searched hyperparameters and

their ranges are reported in Table 6.6. The neural networks training was ac-

complished by the AdaDelta stochastic gradient-based optimisation algorithm

[140] for a maximum of 100 epochs and batch size equal to 20 on the margin
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Collection N. of samples Balance

Development Dataset
Şwarblrb10kŤ 8000 0.75

ŞBirdVox-DCASE-20kŤ 20000 0.5
ŞfreeĄeld1010Ť 7690 0.25

Total 35690 0.5

Evaluation Dataset
Şwarblrb10k_testŤ 2000 -

ŞChernobylŤ 6620 -
ŞPolandNFCŤ 4000 -

Total 12620 -

Table 4.7: Details of the dataset we used for the algorithm development. The
table shows the number of audio Ąles and the ratio between posi-
tive/negative samples (if available) of each used data collection.

• Şwarblrb10kŤ: a crowsourced dataset recorded with the Warblr4 smart-

phone app. It covers a wide distribution of UK locations and environ-

ments and includes weather noise, traffic noise, human speech and even

human bird imitations; 8000 samples are used in the development dataset

while a held-out set of 2,000 recordings from the same conditions is in-

cluded in the evaluation split;

• ŞBirdVox-DCASE-20kŤ: 20000 Ąles containing remote monitoring Ćight

calls collected from recordings units placed near Ithaca, NY, USA during

the autumn of 2015;

• ŞChernobylŤ: dataset collected from unattended remote monitoring equip-

ment in the Chernobyl Exclusion Zone (CEZ). A totoal of 6620 audio Ąles

cover a range of birds and includes weather, large mammal and insect

noise sampled across various CEZ environments, including abandoned

village, grassland and forest areas;

• ŞPolandNFCŤ: 4000 recordings obtained from a project of monitoring of

autumn nocturnal bird migration. They were collected every night, from

September to November 2016 on the Baltic Sea coast, Poland, using Song

Meter SM2 units with microphones mounted on 3Ű5 m poles.

Further details are reported in Table 4.7. The organizers recommended a 3-

way cross-validation (CV) for the algorithms development, thus in each fold we

used two sets for training and the other one as validation set in order to have

scores comparable with the others challenge participant.

4https://www.warblr.co.uk/
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Parameter Range Distribution CapsNet1 CapsNet 2 CapsNet3

CNN layers Nr. [1 - 4] uniform 3 4 4

CNN kernels Nr. [4 - 64] log-uniform [64,16,8] [32,16,16,32] [32,64,4,64]

CNN kernels dim. [3×3 - 8×8] uniform 3×3 5×5 6×6

Pooling dim. [1×1 - 2×5] uniform
[1×5],[1×4], [1×5],[1×4], [1×4],[1×2],

[1×4] [1×2],[1×2] [1×2],[1×2]

CNN activation [tanh - relu] random choice tanh relu relu

CNN dropout [0 - 0.5] uniform 0 0 0

CNN L2 [yes - no] random choice no yes yes

Primary Capsules channels Nr. [2 - 8] uniform 6 2 8

Primary Capsules kernels dim. [3×3 - 5×5] uniform 4×4 4×4 3×3

Primary Capsules dimension [2 - 16] uniform 8 8 2

Capsules dimension [2 - 16] uniform 2 15 10

Capsules dropout [0 - 0.5] uniform 0 0.1 0.3

Max routing iterations [1 - 5] uniform 2 3 2

Batch Normalization [yes - no] random choice yes yes yes

Trainable Params - - 113k 282k 424k

Table 4.8: Hyper-parameters optimized in the random-search phase and the
resulting best performing models.

Baseline

The baseline system is an adapted version of the method winner of the BAD2017

[24]. The peculiarity of this algorithm is its double training procedure. In a Ąrst

run, the network is trained on the whole training data. Binary predictions are

obtained for the testing data. The more conĄdent predictions (the ones closer

to 0 or 1) are then added to the training data as so-called Şpseudo-labeledŤ

samples. Thus, a second training run is performed on this extended training

set and the Ąnal predictions are yielded.

Metric

The performance metric of the DCASE 2018 on this task is the ŞArea Under

the ROC CurveŤ (AUC). More precisely, it is a stratiĄed AUC: the score is

computed separately for each fold of the evaluation set, then the partial scores

are averaged. This procedure allows to adapt the Şdetection thresholdŤ to each

dataset conditions, then the performance across datasets are combined in an

explicit weighted fashion, thus the Ąnal score is not merely inĆuenced by the

number of Ąles in each subset.

4.3.4 Results

Results reported in Table 4.9 show both the best performance we obtained on

the single CV fold, and the best averaged AUC. We obtain a harmonic mean for

AUC equal to 83.72 for a single conĄguration, whilst if we consider the mean

of the best performing models on the single folds we achieve an AUC equal to

85.08.
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Conf ID Fold 1 Fold 2 Fold 3 Avg Evaluation
Baseline 79.90 88.20 88.20 85.40 88.50
CapNet1 88.22 72.78 74.16 78.39 -
CapNet2 81.77 80.90 85.52 82.73 -
CapNet3 86.59 78.46 86.11 83.72 75.40
Ensemble - - - 85.08 78.80

Table 4.9: Results on Development dataset in terms of AUC (%).

We considered as candidates for the test on the evaluation procedure [57]

both the best performing setups on the single CV folds, and the setups with

the best averaged AUC. For the latter, we trained a new model with the same

hyperparameters on the whole development dataset before performing the pre-

dictions on the evaluation dataset. With an ensemble of the single fold best

models trained during the CV procedure we obtain an AUC score equal to

78.80, while for the model with the best averaged AUC we obtain an AUC

score equal to 75.40.

Although the system obtained only the 12th place in the Ąnal ranking, the

performance on challenge data were respectable considering the novelty of the

approach. This allowed us to earn the judges award for the most innovative

method at the DCASE 2018 Workshop.

4.3.5 Conclusion and Outlook

In this section, we have presented an algorithm for bird audio detection based

on the CapsNet architecture. We feed a deep neural network which uses the dy-

namic routing procedure during the training with the LogMel extracted from

the audio signals in order to obtain predictions on unseen data recorded in

various conditions possibly also very different from the training set. For fu-

ture work, variants [143] or strategy to customize the dynamic routing can be

considered.
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Features Extraction

The feature extraction stage operates on stereo audio signals sampled at 44.1

kHz. Following the results obtained in recent works related to sound event

detection [46], we use the log Mel energy coefficients (Logmel) as an efficient

representation of the audio signal. The stereo signal is Ąrstly down-mixed to

mono by averaging the two channels. The resulting audio signal is split into

30 ms frames and a frame step of 10 ms to compute the STFT spectrogram. We

used a Ąlter bank with 40 mel scaled channels, obtaining 40 coefficients/frame.

Convolutional Recurrent Neural Networks

CRNNs used in this section are composed of four types of layers: convolutional

layers, pooling layers, recurrent layers and detection layer. Each convolutional

layer is followed by batch normalization per feature map [69], a leaky recti-

Ąed linear unit activation function (LeakyReLU) and a dropout layer [68] with

rate equal to 0.3. A frequency domain max-pooling layer is then applied to

the resulting feature-map, in order to enhance the relevant information from

frequency bands without losing the temporal resolution of the Logmels, as pro-

posed in [48]. The extracted features over the CNN feature maps are stacked

along the frequency axis. Max-Pooling operation combined with shared weight

in convolutional layers provide robustness to frequency shifts in the input fea-

tures and this is crucial to overcome the problem of intra-class acoustic variabil-

ity for snore events. In the recurrent block, the stacked features resulting from

the last pooling layer are fed to layers composed of GRUs (cf. Section 2.3.5),

where tanh and hard sigmoid activation functions are used for update and reset

gates, respectively. Fast response to the changes in the input and the previous

activation information is fundamental for high performance in the proposed

algorithm, where the task is to detect a small chunk of consecutive time frames

where the target event is present. In addition, a previous work [145] demon-

strates improvements provided by recurrent architectures in the sound event

detection in real-life audio. The detection layer is a feed-forward layer of com-

posed of a single neuron with sigmoid activation function, corresponding to

the probability the event onset. The layer is time distributed, this means that

while computing the output of the classiĄcation layer, the same weight and

bias values are used over the recurrent layer outputs for each frame.

In a comparative aim, we implemented also a CNN architecture very similar

to the CRNN, the only difference being that the recurrent layers of the CRNN

are replaced with time distributed feed-forward layers with ReLU activations.

In following section, we will refer it as CNN.

The neural networks training was accomplished by the AdaDelta stochastic

gradient based optimisation algorithm [140] for a maximum of 500 epochs on
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the binary cross entropy loss function. The optimizer hyperparameters were

set according to [140] (i.e., initial learning rate lr = 1.0, ρ = 0.95, ϵ = 10−6).

An early stopping strategy, monitoring the validation AP score, was employed

in order to reduce the computational burden and avoid overĄtting.

5.1.2 A3 Snore Dataset

The snore detection algorithm has been evaluated on the A3-Snore dataset. A

brief description of the acquisition setup and dataset splitting is provided in

the following.

Acquisition setup:

In order to capture the overnight audio recordings a ZOOM-H1 Handy Recorder

has been used. It is equipped with two unidirectional microphones set at a 90

degree angle relative to one another. The signals are stored in WAV Ąles with

a sampling rate of 44.1 kHz and bit depth equal to 16. The input gain is

automatically set by the recorder to prevent overload and distortion, while the

high-pass Ąlter was enabled in order to eliminate pops, wind noise, blowing,

and other kinds of low frequency rumble.

Acquisition environment:

The acquisition environment consists of a simple bedroom, with two access

points (door and window). The recorder is placed near the patient, at same

height of the bed and in line with the subjectŠs mouth. During the recordings,

the patient is the only one that can occupy the bedroom, in order to avoid

contaminations on recorded audio signals. The room dimensions are reported

in Figure 5.3. Background sounds include traffic noise, breathing and speech

signals, house and animal noises. We acquired some samples measurements of

the event-to-background (EBR) ratios considering background noise, snoring

events and noise events such as Şcar passing byŤ or Şdog barkingŤ. The EBR

resulted equal to 6.5 dB and 1.1 dB respectively for noise to background EBR

and snore to background EBR.

Dataset splitting:

The original recordings have been manually labelled, annotating the snore

events onset and offset with a resolution of 1 second. The audio sequences

have been divided into chunks of 10 minutes, and only those with the highest

number of snore events have been used in the experiments. The dataset is or-

ganized into subjects, which can be respectively used as training or validation
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Majority Class under sampling:

it is not a properly data augmentation technique but it is a fast and easy way

to balance the data. It consists in randomly selecting a subset of data from

the training sets in order to modify the ratio of the sample occurrences in two

classes.

SMOTE:

It is an over-sampling approach in which the minority class is over-sampled

by creating new synthetic examples. The minority class is over-sampled by

taking each minority class sample and introducing synthetic examples along

the line segments joining any/all of the k minority class nearest neighbors (k-

NN). Depending upon the amount of required over-sampling, neighbors from

the k-NNs are randomly chosen. In particular, synthetic samples are generated

in the following way: the difference between the feature vector (sample) under

consideration and its nearest neighbor is multiplied by a random number be-

tween 0 and 1, and this is added to the feature vector under consideration. In

details, for a sample xi:

xSMOTE
j = xi + (x̃i,k − xi) · r(j) (5.1)

where r(j) ∈ [0, 1]. This causes the selection of a random point along the line

segment between two speciĄc features. This approach effectively forces the

decision region of the minority class to become more general.

Proposed approach - Generating simulated data:

The simulated training sets have been created starting from the folds described

in Section 4.3.3. The impulse responses between the snore source and the mi-

crophones have been recreated by using the library Pyroomacoustics [146].

Isolated snore sounds have been taken from the Munich-Passau Snore Sound

Corpus (MPSSC) dataset [98]. It is composed of 843 snore events which have

been extracted and manually screened by medical experts from Drug-Induced

Sleep Endoscopy (DISE) examinations of 224 subjects. The augmented train-

ing set has been created by convolving the isolated snore sound events of the

MPSSC corpus with the synthetic impulse responses. Than, the obtained sig-

nals have been mixed with the original recordings without overlap with the

already present events. The artiĄcial added event dynamic was normalized to

the maximum value observed in the original signals. The resulting total time

of snore signals is 55 minutes for Snorer 1, and 56 minutes and 5 seconds for

Snorer 2.
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5.1.4 Experimental Setup

The performance of the algorithms has been evaluated in term of AP score, a

metric that summarizes the Precision and Recall curve (cf. Section 3.3). To as-

sess the performance of the models, we explored different hyper-parameter con-

Ągurations and, for each of these, we repeated the whole experiments training

the models both with the original data and with data processed with techniques

described in Section 5.1.3. Table 5.2 shows the hyper-parameter conĄgurations

analyzed in our experiments. They regard kernels size, kernel number and

GRUs for a total of 120 experiments. In the case of CNN the number of units

and layer refers to a Multi Layer Perceptron (MLP) architecture. The exper-

iments were conducted in a 2-fold cross-validation strategy corresponding on

a leave one subject out procedure, thus in fold 1 we used Snorer 1 as training

set and Snorer 2 as validation set and in fold 2 vice-versa. The models were

selected on the performance based on the AP score averaged on the two folds.

The algorithm has been implemented in the Python language using Keras [141]

as deep learning library. All the experiments were performed on a computer

equipped with a 6-core Intel i7, 32 GB of RAM and two Nvidia Titan X graphic

cards.

Convolutional Layers Number 3
Kernel Number 4, 8, 16, 32, 64
Kernel Size 5× 5, 3× 3, 2× 2
Pooling Size 5× 1, 4× 1, 2× 1

Recurrent Layers Number 2, 3
Dense Layers Number 2, 3
Number Of Units 4, 8, 16, 32, 64

Table 5.2: Explored network layout parameters.

5.1.5 Results

The performance of the CRNN and CNN architectures using different data

augmentation techniques are reported in Figure 5.4. In blue are depicted re-

sults with CRNN, in green the results of the CNNs. The CRNNs show to

be effective for snore event detection yet with the original data, although the

dataset imbalance. The best performing model is composed of 3 CNN layers

with respectively [64,64,64] Ąlters of size 3× 3 and two GRU layers of 64 units.

This conĄguration obtains an AP up to 82.05%, with a difference of +7.79%

with respect to the CNN.

The majority class under-sampling and the SMOTE techniques obtain worst

performance with respect to original recordings. For majority class under sam-
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74.09%
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94.92%

81.97%

72.42%

82.05%

Average Precision (AP)

CRNN CNN

Figure 5.4: Results with different data augmentation techniques for the best
models of the evaluated architectures.

pling this can be motivated by the necessity of DNN models of a large amount

of data to be trained properly, thus a reduction of data samples cannot beneĄts

to their detection ability. Regarding the SMOTE, the performance reduction

is less dramatic (-0.16% and -0.08%, respectively, for CNNs and CRNNs) but

its employment remains vain. In this case, the motivation can be found in the

complexity to generate new samples of audio signals in the feature space which

can really improve a DNN perfomance.

The addition of isolated snore samples convolved with the simulated room

impulse response has a tangible beneĄcial effect on the examined models. In

fact, with this technique we obtain an AP improvement equal to 11.18% and

12.87%, respectively, for the CNN and the CRNN. The latter obtains an AP

equal to 94.92% with an architecture composed of 3 CNN layers with respec-

tively [64,32,32] Ąlters of size 5×5 and two GRU layers of 32 units. This model

is composed of 91,553 free-parameters and occupies approximately 1.2 MB,

providing to the algorithm a feasible complexity in an application scenario.

5.1.6 Conclusion

In this section, a deep learning algorithm based on a CRNN architecture

fed with Logmel spectral features extracted from the audio signal has been

proposed for snore detection. The A3-Snore dataset has been acquired in

real-world conditions, containing overnight recordings of two male subjects
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and it has been used to assess the performance of the models. The origi-

nal snore/background ratio has been increased by adding isolated snore events

from the Munich-Passau Snore Sound Corpus dataset [98]. The reliability of the

proposed approach has been investigated with respect to baseline CNN and dif-

ferent data augmentation techniques such as oversampling (i.e., SMOTE) and

downsampling. Results show that the presented snore detection methodology

is able to better generalize across different users. In particular, the CRNN

is able to extract salient information from the spectral features in order to

discriminate snore events, while the implemented data augmentation provides

additional samples of the minority class (i.e., snore events). These samples

contain supplementary information that can be exploited by the CRNN for

learning and discriminate snore events. Future works will be addressed to

employ this methodology in a weakly supervised setting. SpeciĄcally, in the

real-life applications, the precise annotation of existing events from overnight

recordings can be onerous and can be result in sparse labeling. Machine learn-

ing models trained in a weakly supervised fashion can help to counteract this

problem without losing the state of the art performance.

85



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page 86 Ů #106
✐

✐

✐

✐

✐

✐

Chapter 5 Sound Event Detection

5.2 Rare Sound Event Detection

The ŞDetection of rare sound eventsŤ task of the 2017 Detection and Classi-

Ącation of Acoustic Scenes and Events (DCASE) challenge [46] consisted in

determining the presence and the precise onset time of three types of sounds,

Şbaby cryŤ, Şglass breakŤ and Şgun shotŤ in artiĄcially generated audio se-

quences. In detail, the adjective ŞrareŤ refers to the dataset unbalance, thus

the disproportion between the total duration of the target sounds and the total

amount of the recorded data. The task takes into account real-world issues that

introduce additional complexity to the problem, such as the acoustic variability

of the sounds belonging to each event class, the presence of environmental noise

and its variability, etc. The rules of the challenge allow to know a priori the

event typology possibly present in the audio sequence under examination, thus

it is possible to have a separate binary classiĄer for each class.

5.2.1 Related Works

In the recent era of the ŞDeep LearningŤ different approaches to SED have been

proposed marking use of the capabilities of deep neural networks (DNNs) to

learn the relation between time-frequency features of the raw audio signal and

a target vector representing sound events. Although the DNNs based systems

are more computationally intensive with respect to widely used statistical mod-

elling methods such as hidden Markov models (HMMs) or Gaussian mixture

models (GMMs) [5, 9], a comparative study [38] has highlighted that they are

able to achieve top performance in the sound recognition problem.

A well-Ątting example of such performance is given in [42], where different

DNNs are trained on three datasets recorded in real life environments in order

to detect abnormal events or hazardous situations exploiting only the informa-

tion carried by the acoustic signal. The experimental results show that Deep

Recurrent Neural Networks (DRNNs) outperform the probabilistic approaches

over the three databases. Another example focuses on employing Convolutional

Neural Networks (CNN) for Voice Activity Detection in multi-room domestic

scenarios (mVAD) [130]. The CNN-mVAD results to be effective and outper-

forms the other method with a signiĄcant solidity in terms of performance

statistics.

In occasion of the DCASE 2017 challenge, many novel systems featuring

deep neural networks have been proposed, in particular involving hybrid ar-

chitectures making use of Convolutional Neural Networks (CNN) and DRNNs.

In detail, both the Ąrst two classiĄed algorithms make use of mel spectrogram

coefficients as spectral representation of the audio signal which is processed by

a CNN with 1D Ąlters in the case of the Ąrst ranked [47] or by a 2D CNN with

frequency pooling in the case of the second classiĄed [48]. The architectures
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are, then, combined with recurrent layers to process the features obtained by

the convolutional blocks. In [49] the authors propose a hierarchical structure

based on CNNs and DNNs trained with multi-task loss functions. SpeciĄcally,

in the Ąrst stage the networks are trained for background noise rejection, using

a weighted loss function to penalize the false positive errors. In the second

stage the multi-task loss enables the networks to simultaneously perform the

event classiĄcation task and the onset time estimation. This approach obtained

the third place in the Ąnal ranking. All of the aforementioned systems largely

outperform the baseline system based on a Multi Layer Perceptron architecture

(MLP) and Logmel energies as features. The baseline system [136] is based on

a Multi Layer Perceptron architecture (MLP) and log mel energies as features.

For each audio frame, the input vector is constructed concatenating 5 adjacent

log mel vectors for a total of 200 elements. The ANN architecture consists of

two dense layers of 50 hidden units each and one output neuron with sigmoid

activation, which indicates the activity of the target class.

5.2.2 Proposed Method

The proposed system is a hierarchical algorithm composed of Ąve stages: the

acoustic features extraction, the event detection stage 1, which produces an

output at frame-rate and a dedicated smoothing procedure of this signal. Then,

a reĄnement of the previous decision stage is performed by a 2D CNN which

discards possible false positives detected by the stage 1. The Ąnal decision

procedure annotates the effective onset time of the active event. In Figure 5.5

the phases of the algorithm are depicted. This is an extended and improved

method with respect to our contribution to the DCASE 2017 [147].

Features Extraction

The feature extraction stage operates on mono audio signals sampled at 44.1

kHz. Following the results obtained at the DCASE2017 challenge by [48], we

use the log mel energy coefficients (Logmel) as an efficient representation of

the audio signal. In addition, we explored the combination of the Logmel with

features based on wavelet coefficients and forward prediction errors (WC-LPE)

[76]. A brief description of the features extraction procedures is given below.

Logmel coefficients The audio signal is split into frames of 40 ms and a frame

step of 20 ms, then the Logmel coefficients are obtained by Ąltering the power

spectrogram of the frame as described in Section 3.1.3. In this section, we used

a Ąlter bank with 40 mel scaled channels, obtaining 40 coefficients/frame.
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outputs represent the probabilities that an input feature vector x[t] at the

frame index t belongs to the background or the event class. In our analysis, we

evaluated as network input the Logmel coefficients and the combination of the

latter with the WC-LPE features.

Deep Neural Network Architectures

For the ED stage 1 we compared the performance of two deep neural networks

architectures, respectively the Multi Layer Perceptron (MLP) and the Convo-

lutional Neural Networks (CNN). In both cases, the neural networks training

was accomplished by the AdaDelta stochastic gradient-based optimisation al-

gorithm [140] for a maximum of 500 epochs on the binary cross entropy loss

function. The optimizer hyperparameters were set according to [140] (i.e., ini-

tial learning rate lr = 1.0, ρ = 0.95, ϵ = 10−6). An early stopping strategy

monitoring the validation loss was employed in order to reduce the computa-

tional burden. Thus if the validation loss does not decrease for 20 consecutive

epochs, the training is stopped and the last saved model is selected as the Ąnal

model. In addition, dropout is used as regularization technique [68] with rate

0.5.

Multi Layer Perceptron Neural Network The network is designed to consider

a temporal context C, thus the network input feature vector x̂[t] is obtained

concatenating x[t] with the previous x[t− c], with c = 1, . . . , C.

During the training procedure, additive zero-centered Gaussian noise with

σ = 0.1 was applied to x̂[t] as a form of data augmentation, improving the

generalization capabilities of the DNN and avoiding overĄtting [42].

Convolutional Neural Network In our case the convolutional layer input is

a matrix X ∈ R
F ×T , where F and T represent respectively and the number

of Logmel channels and the number of frames of the acoustic signal. When

we combine the two aforementioned feature sets, we process them with two

separate sets of convolutional layers, gathering two feature maps that are con-

catenated along the feature axis. Before concatenation, batch normalization

[69] is applied to each feature map and a leaky rectiĄed linear unit activation

function (LeakyReLU) with α = 0.3, followed by a feature domain max-pooling

layer. Finally, fully connected layers are stacked, applying the same weights

and biases to each frame element. The output layer for each of the binary

classiĄer neural networks has two neurons corresponding to the probability of

the background or the event onset. We can discard, thus, one of the two neu-

rons without loss of information, and we will consider the output of the neuron

corresponding to the event activation u[t] = yt,2, as the output of the network

at frame t.
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Post Processing

In the post processing stage, each network output is convolved with an expo-

nential decay window of length M deĄned as:

w[t] = e− t
τ with τ =

−(M − 1)

loge(0.01)
(5.2)

The result is processed with a sliding median Ąlter with local window-size k.

Finally, a decision threshold θ is applied.

Event Detection Stage 2

The aim of the event detection stage 2 is to eliminate false positives, by re-

moving the events wrongly detected at the previous stage. This is done by

feeding a binary-classiĄer CNN with chunks of features in correspondence to

the detected events (colored region in the bottom right spectrogram of Fig-

ure 5.5). At this stage only Logmel coefficients are used as input features, in

order to reduce the computational burden of the model. Non-overlapping fea-

ture matrices X of size F ×20 are used during training, while 95%-overlapping

feature matrices are employed during testing (1-frame shift). A chunk size of

20 corresponds to 0.4 seconds of audio, i.e. half the minimum possible length

of the occurring events, leading to an analysis of the audio event at different

time and frequency resolutions with respect to previous stages. The ED Stage

2 NN is trained for 100 epochs on the binary cross entropy loss function with

the AdaDelta gradient descent algorithm.

Final Decision

For each audio sequence, we perform a classiĄcation on contiguous blocks of

frames detected as event by the ED stage 1. Among contiguous frame chunks

classiĄed as ŞeventŤ by the CNN, the Ąrst frame with highest network output

is indicated as event onset.

5.2.3 Experimental Setup

According to the DCASE 2017 guidelines, the performance of the proposed

algorithm has been assessed by using the development dataset for training and

validation of the system. Furthermore, a blind test on the provided evaluation

dataset has been performed. The performance metric of the DCASE 2017 chal-

lenge is the event-based error rate (ER) calculated using onset-only condition

with a collar of 500 ms. The algorithm has been implemented in the Python

language using Keras [141] as deep learning library. All the experiments were
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5.2 Rare Sound Event Detection

performed on a computer equipped with a 6-core Intel i7, 32 GB of RAM and

two Nvidia Titan X graphic cards.

Dataset

The DCASE2017 challenge dataset [136] has been used to develop and evalu-

ate the algorithm. The dataset consists of 30-second long sequences of back-

ground acoustic scenes recorded in different public or domestic spaces (park,

home, street, cafe, train etc.)[56], some of which have been added with isolated

recordings from at most one of the three different target sound event classes:

baby crying, glass breaking and gun shot. The presence probability of a sound

event in each mixed sequence of the original Development set was 0.5, thus we

kept only sequences containing a sound event of the original training set and we

generated additional mixtures assigned to the training and the validation sets.

For the development set a total number of sequences respectively equal to 2750

for training, 300 for validation and 1496 for test have been employed. This

change increases the percentage of the frames including a target event in the

training data, which helps to ease the problem of data imbalance. In addition,

due to the fast decay of the Şgun shotŤ sound, we generated more sequences

containing this event class compared to the others, in order to maintain ap-

proximately the same percentage between frames containing event samples and

backgrounds.

In the evaluation set, the training and test sequences of the development set

are combined into a single training set, while the validation set is the same

used in the Development dataset. The system is evaluated against an ŞunseenŤ

set of 1500 samples (500 for each target class) with a sound event presence

probability for each class equal to 0.5.

First Event Detection Stage

To assess the performance of the MLP employed in the event detection stage 1

we resorted to a random search strategy [139]. Table 5.3 shows the parameters

explored in the random search, as well as the prior distribution and ranges. We

evaluated 300 sets of layout parameters (100 for each event class) repeated for

Parameter Range Distribution

MLP layers Nr. [2 - 7] uniform
MLP layers dim. [20 - 4048] log-unifom

MLP Context [1 - 7] uniform
Activation [tanh - relu] uniform

Table 5.3: Hyper-parameters optimized in the random-search phase for the
MLP ED stage 1, and their range.
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Development Dataset Evaluation Dataset

Features Babycry Glassbreak Gunshot Average Babycry Glassbreak Gunshot Average

MLP ED Stage 1

Logmel 0.19 0.12 0.16 0.16 0.64 0.54 0.58 0.59
Logmel + WC-LPE 0.23 0.10 0.19 0.17 0.76 0.55 0.55 0.62

CNN ED Stage 1

Logmel 0.23 0.13 0.18 0.18 0.48 0.23 0.44 0.38
Logmel + WC-LPE 0.25 0.09 0.16 0.17 0.46 0.10 0.36 0.31

MLP ED Stage 1 + CNN ED Stage 2

Logmel 0.14 0.08 0.16 0.13 0.31 0.25 0.44 0.33
Logmel + WC-LPE 0.20 0.09 0.19 0.16 0.37 0.27 0.40 0.35

CNN ED Stage 1 + CNN ED Stage 2

Logmel 0.19 0.10 0.16 0.15 0.31 0.17 0.39 0.29
Logmel + WC-LPE 0.18 0.08 0.17 0.14 0.25 0.10 0.31 0.22

Table 5.4: Results in terms of ER score for all the evaluated combination of
proposed ANNs and features used in Event Detection Stage 1.

the two input features combination.

Regarding the CNNs, we explored the hyper-parameters space by means of

a grid search for a total of 75 experiments (25 for each event class) covering

the number of convolutional Ąlters per layer ¶16, 32, 64♢, the kernels shape

¶3× 3, 5× 5♢, the number of MLP layers ¶1, 2, 3♢ and their respective number

of units ¶16, 32, 64, 128♢. The feature max-pool sizes after each convolutional

layer were ¶5, 4, 2♢ for all the explored layouts. Also in this case the experiments

were repeated for both the input features combination.

A successive grid search was performed for each network conĄguration evalu-

ated, in order to Ąnd the post-processing parameters that yielded the minimum

error rate. Investigated parameters in the grid search were: exponential win-

dow length w in the range ¶10, 20, . . . , 90♢, median Ąlter kernel k in the range

¶9, 11, . . . , 31♢ and threshold θ in the range ¶0, 0.05, . . . , 0.5♢.

Once the best models on the Development dataset were found, a Ąne tuning

of the post processing parameters was done during the validation stage, in

order to assess the performance of the whole system. In fact, the hierarchical

architecture of the algorithm allows to set a lower threshold in the Ąrst decision

stage in order to reduce the deletions at the expenses of some insertions. These

will be removed by the ED stage 2.

Training set for CNN based ED Stage 2 To compose the dataset for training

and evaluation of the CNNs dedicated to each target audio event we proceeded

as follows: the samples of each event class were selected between the audio

sections respectively labelled as Şbaby cryŤ, Şglass breakŤ and Şgun shotŤ from

the mixtures of the DCASE 2017 development dataset, in addition with the

isolated events source signals. To obtain the background samples, we processed

with the Ąrst stage of our algorithm sequences from the same dataset which do

not contain events. Thus, the frames detected as event in this case represent

the Şfalse positiveŤ or ŞinsertionsŤ of the stage 1. We used those frames as back-

ground samples in the CNN training phase to improve its event classiĄcation
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5.2 Rare Sound Event Detection

abilities and balancing the dataset.

Refinement Stage

To design the best reĄnement CNN model for our purposes, we generated

a shuffle stratiĄed validation split from the dataset composed as described

above. We left out the 30% of the samples as validation set for the CNN model

and we selected the layout parameters of the neural network based on the F-

measure score obtained on this data sub-set. The best performing model was

the same for all the target audio events and was composed as follows: three

convolutional layers with ¶32, 32, 32♢ Ąlters, respectively, of size 5 × 5. The

convolutional layers were followed by a feature max pooling layer with kernels

of size ¶5, 4, 2♢, respectively. Three dense layers composed of 32 neurons with

tanh activation functions were applied before the network output layer, for a

total number of network parameters equal to 35K.

5.2.4 Results

Results reported in Table 5.4 are obtained as follows: we selected the models

with lowest ER for each combination of DNN architecture and input features

operating in the ED stage 1 and we evaluated the systems separately for each

target class before the ED stage 2 on the Evaluation set, keeping ED stage 1

post processing parameters Ąxed. Then, with the same settings we obtained

the performance of the whole system both on Development and Evaluation

datasets. The architecture composed of a Ąrst stage with 2D CNN fed by

Logmel and WC-LPE features resulted the best performing on the Evaluation

dataset, obtaining an average ER equal to 0.17. Details of these architectures

are reported in Table 5.5.

The experimental results show how this combination improves generalization

properties of the algorithm. In fact, the MLP based stage 1 with only Logmel

features obtains the best overall ER equal to 0.13 on the Development dataset,

but the performance decreases signiĄcantly on the Evaluation set. In addition,

the number of free parameters of the best performing MLP models was always

Hyper-parameters Babycry Glassbreak Gunshot
Conv. Kernels 5×5, 3×3, 3×3 3×3, 3×3, 3×3 3×3, 3×3, 3×3
Kernel shape 32, 16, 16 64, 64, 64 32, 16, 16
MLP Layers size 32, 32 128, 128 32, 32
# Parameters 18k 185k 17k

Table 5.5: Details of models for CNN based ED stage 1 with the lowest ER on
Development set. All of them use a combination of log mel energies
and WC-LPE as input features.
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Approach Evaluation ER # Parameters
Lim et al. [47] 0.13 6200K
Cakir et al. [48] 0.17 756K
Proposed system 0.22 108K
Phan et al. [49] 0.27 2100K

Table 5.6: Comparison between the obtained ER scores and the number of pa-
rameters with the Ąrst three ranked approaches at the DCASE2017
Challenge.

an order of magnitude greater w.r.t. the CNN models. Regarding the stage

2, its beneĄcial effect is supported especially with the Evaluation dataset: in

this case, the improvement in terms of ER given by the joint detection pro-

cedure is evident and it gives additional robustness to the system in terms of

generalization.

In Table 5.6 the overall results between best ranked systems of the DCASE

2017 Challenge are compared. It can be observed that the best two scores have

been obtained with ensemble methods, involving the additional computational

cost of running several architectures in parallel, while the table reports the

number of parameters per architecture. Although the proposed system does not

outperform the Ąrst two methods, the average number of network parameters is

signiĄcantly lower. This provides greater scalability in real-world applications.

5.2.5 Conclusion

In this section, a framework that makes use of hierarchical CNN classiĄers

fed with Logmel and WC-LPE features has been proposed for rare SED, pro-

viding signiĄcantly improved performance over the baseline system for every

target sound event class in DCASE 2017 challenge dataset. The system also

provides a signiĄcant reduction of the network parameters w.r.t. other com-

petitive algorithms. The multi-scaled approach inherent to the two different

CNN architectures results to be effective.

For future work, strategies to customize the loss function embedding the

evaluation metric into the training procedure can be considered. SpeciĄcally,

this task is particularly affected by the dataset unbalancing: to counteract

this problem an alternative to the data augmentation is to design tailored loss

functions which enhance the detection of the rare events.
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5.3 Convolutional Neural Networks with 3-D

Kernels for Voice Activity Detection in a

Multiroom Environment

The Voice Activity Detection (VAD) element is considered fundamental in sys-

tems for automatic-assisted home environments, since the speech signal exhaus-

tively characterizes the human activity. In a multi-room domestic environment,

Automatic Speech Recognition (ASR) engines can use the information of both

the speech segments time boundaries and the room in which the speaker is

located in order to improve the word recognition performance. In this context,

the recent success encountered by deep learning motivated the investigation of

completely data-driven approaches [21, 131], specially when is useful to exploit

the information contained in multiple audio signals. In this section, we fo-

cus on the use of three-dimensional kernels for Convolutional Neural Networks

(CNN), taking advantage of an arrangement of the input data to the network

rarely used in the audio Ąeld. Thus, due to speech signal degradation caused by

background noise and reverberation, a multiple sensor (i.e., microphone arrays)

deployment is necessary, leading to a rapid increase of data to process.

A multi-room domestic scenario requires the room localization and the time

detection of speech events. For this purpose we propose the investigation of a

3-D Convolutional neural network (CNN-mVAD) for multichannel audio pro-

cessing. A similar architecture employed in image classiĄcation was presented

in [148] with remarkable performance. Our interest goes to the exploitation of

the peculiarities of this technology compared to a typical neural network archi-

tecture, the Multi Layer Perceptron (MLP-mVAD). This paper contribution is

on the choice of a CNN with 3-D kernels. They lead to the possibility of jointly

processing simultaneous information from different audio channels, similarly to

what occurs in image processing with RGB channels. In addition, CNNs are

able to exploit the temporal evolution of the audio signal, and this is an useful

feature for the VAD purpose [149].

The state-of-the-art VADs require many processing-stages to obtain the Ą-

nal decision, including the computation of typical characteristics of the acoustic

wave or signal statistical descriptors [150]. In recent times, promising VAD ap-

proaches take advantage of deep neural networks. A speech/non-speech model

based on a Multi-Layer Perceptron (MLP) neural network is proposed in [151],

while in [152] multiple features are feed to a Deep Belief Neural Network (DBN)

to segment the signal in multichannel utterances. CNNs have been recently em-

ployed in VAD tasks [134, 153] with encouraging results. In [154], the authors

use a CNN to relabel training examples for a feedforward neural network, ob-

taining relative reductions in equal error rate of up to 11.5%.
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Chapter 5 Sound Event Detection

Decision and Hangover

We exploit a hangover technique, which relies on a counter. In particular, for

two consecutive speech frames the counter is set to a predeĄned value. On

the contrary, for each non-speech frame, the counter decreases by 1. If the

counter is negative, the actual frame is classiĄed as non-speech. The value of

the counter is set to η = 8.

5.3.2 DIRHA Dataset

Figure 5.8: Layout of the apartment used as experimental set-up.

The dataset we used for our experiments was provided by the DIRHA project

[155], it contains signals recorded in an apartment equipped with 40 micro-

phones installed on the walls and the ceiling of each room1. The whole dataset

is composed of two subsets called Real and Simulated, but we used only the

latter since it contains more data, it is characterised by higher noise source

rate and a wide variety of background noises. The Simulated dataset counts

80 scenes 60 seconds long consisting in localized acoustic and speech events in

Italian language (23.6% of the total time), on which different real background

noise with random dynamics are superimposed. It is artiĄcially built: the

signals are convolved with some available measured room impulse responses,

simulating the acoustic wave propagation from the sound source to each single

microphone.

5.3.3 Experiments

The analysis of proposed mVADs relies on a two-stage strategy: a network

size selection and a microphone combination selection. The experiments are

conducted by means of the k-fold cross-validation technique to reduce the per-

formance variance. In this case we choose k = 10, a validation set is also

employed during the training, thus, 64-8-8 scenes respectively compose the

training, validation and test sets. The performance has been evaluated using

1http://dirha.fbk.eu/simcorpora
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5.3 CNN with 3-D Kernels for VAD in a Multiroom Environment

the false alarm rate (FA), the deletion rate (Del) and the overall speech activity

detection (SAD) deĄned as follows:

Del =
Ndel

Nsp
, FA =

Nfa

Nnsp
, SAD =

Nfa + βNdel

Nnsp + βNsp
, (5.5)

where Ndel, Nfa, Nsp and Nnsp are the total number of deletions, false alarms,

speech and non-speech frames, respectively. The term β = Nnsp/Nsp acts as

regulator term for the class unbalancing. Two different GPU-based toolkits

have been employed for the experiments: a custom version of GPUMLib [156]

for MLP-mVAD and Keras (Theano-based)2 for CNN-mVAD. The MLP net-

works were trained with a Ąxed momentum of 0.9, learning rate equal to 0.01

and a Gaussian distribution with zero mean and standard deviation of 0.1 for

weight initialization. For the CNN networks we used a Ąxed learning rate of

2.5 · 10−3 and a random weight initialization.

CNN

1R 1MxR
2R 1MxR 2R 2MxR 2R 3MxR

Kitchen Living Room
Input Strides 8 10 8 8 8

Params Context 17 23 25 23 23
First N Kern 16 16 32 128 256

Convolutional Size 6× 6 6× 6 4× 4 4× 4 4× 4
Layer Pooling 2× 2 2× 2 2× 2 - -

Second N Kern 24 16 64 64 32
Convolutional Size 4× 4 4× 4 3× 3 3× 3 3× 3

Layer Pooling - - - - -
Third N Kern 24 16 128 32 32

Convolutional Size 3× 3 3× 3 3× 3 3× 3 3× 3
Layer Pooling - - - - -

Fully Connected Num. of 100 100 500 250 500
Layers Units 20 20 100 100 100

SAD Min (%) 9.0 10.7 9.3 8.1 7.0

MLP

Fully Connected Num. of 10 15 10 8 8
Layers Units - - - - -

SAD Min (%) 11.8 13.3 11.7 8.8 7.4

Table 5.7: Network topology parameter for CNN- and MLP-mVAD.

5.3.4 Results

In this section, the obtained results in terms of SAD are discussed and com-

pared for the two different architectures of neural network. The analysis of

proposed mVADs relies on a multi-stage strategy, where the best network size

and microphone channel combination are searched. The steps are the following:

2http://keras.io/

99



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page 100 Ů #120
✐

✐

✐

✐

✐

✐

Chapter 5 Sound Event Detection

1. one network per room, one microphone per room;

2. one network per two room: one, two and three microphone per room.

Regarding network size selection, MLP-mVAD network topologies are ex-

plored by means of 1 or 2 hidden layers with respectively 4, 8, 10, 15, 20, 25, 40

units per layer and all their combinations. For CNN-mVAD, due to their greater

number of hyperparameters and increased training time, a comprehensive grid

search was not reasonable, thus we adopted a progressive strategy, based on

intermediate results.

Concerning audio channels selection, we initially selected a subset of 9 mi-

crophones: 4 in the kitchen (i.e., K2L, K1R, K3C, KA5) and 5 in the living

room (i.e., L1C, L2R, L3L, L4R, LA4). In the experiments with one micro-

phone per room, we evaluated the performance for all of them, successively,

in the following stages we analyse only combinations obtained with the best

performing ones.

One network per room, one microphone per room (1R 1MxR).

In this step we evaluated the performance considering two different VADs, one

for the kitchen and one for the living room. In the network size selection, the

best MLP-VAD resulted to have one layer with 10 units and 8 units respectively

for the kitchen and the living room. In the second stage, the best performing

microphone for the kitchen was the KA5, while for the living room the LA4:

both of them are placed at the center of the room ceiling and the averaged

SAD was equal to 12.5%. The two networks exploited for the CNN-VAD are

reported in Table 5.7. As for MLP-VAD, best microphones are KA5 and LA4,

with an average 9.9% SAD.

One network per two rooms, one microphone per room (2R 1MxR).

From this step we started to evaluate the performance of properly mVAD, using

both in training and in test audio channels coming from the two rooms. First of

all we used only one channel per room: the best MLP-mVAD has one layer with

15 units and the audio captured by the pair KA5, LA4 (conĄrming the result

of the previous step), leading to a SAD equal to 11.7%. For the CNN-mVAD,

SAD equal to 9.3% is again obtained with the pair of microphones KA5 and

LA4. CNN topology is reported in Table 5.7.

One network per two rooms, two microphones per room (2R 2MxR).

We progressively introduced one more audio channel per room, primarily by

repeating the network topology selection. Compared to the previous step, the

best conĄguration for MLP-mVAD has only one hidden layer with 8 neurons.
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exploited for audio task, with remarkable results. Moreover, due to the suit-

able CNN structure for multi-channel investigation, we make use of 3-D con-

volutional kernel, whose dimensions correspond to frequency, time and used

microphones. In detail, LogMel features are chosen to represent the frequency

domain, in order to convolve the CNN kernel with correlated inputs. Time

is explored by means of a temporal context plus strides, allowing the CNN to

process an excerpt of the signal with duration about 2 s. Multi-channel features

are stacked together, leading to a 3-D input matrix.

The optimization strategy consists in two steps, a network size selection and

a microphone selection. Four different studies are conducted, which are a two

network approach for single room VAD with only one microphone, and a unique

network for the two rooms VAD, featuring one, two and three microphones.

The latter achieves the best performance in terms of SAD, leading to 7.4%

for MLP and 7.0% for CNN. A remarkable aspect of the CNN mVAD is the

robustness to the microphone choice, with lower mean and standard deviation.

The independence from the audio source positioning is an interesting applica-

tive result. On the contrary, due to the dimension of the CNN, simulation time

is considerably longer compared to MLP.

Future works will be oriented to the employment of raw audio data as input

for the CNN, in order to exploit the network feature extraction capability.
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Polyphonic Sound Event Detection

Sound event detection (SED) algorithms in a real-life scenario face many chal-

lenges. These include environmental noise, events of the same class produced

by different sources (i.e., intra-class variability) and simultaneous events. In

particular, since multiple events are very likely to overlap, a polyphonic SED

algorithm, i.e., an algorithm able to detect multiple simultaneous events, needs

to be designed. A polyphonic SED algorithm can be considered as system

which is able to perform contemporary detection - determining the starting

and ending point of multiple events - and classiĄcation - assigning a label to

each of the sound events occurring in the audio stream. In this chapter we

show two algorithms for polyphonic SED in real life audio. The solutions typi-

cally adopted in the literature for this applications require a two-stage system,

i.e., one algorithm for detection and one for classiĄcation. According to this,

the Ąrst we present is based on a two-step algorithm: the detection task is

performed by an adaptive energy Voice Activity Detector (VAD) system, while

the active-event classiĄcation is acted by a deep neural network. The second

system is a fully data-driven approach which is totally based on the CapsNet

deep neural architecture presented by Sabour et al. [52].

6.0.1 State-of-the-art Overview

In occasion of the DCASE 2016, many novel systems featuring recurrent neu-

ral networks (RNNs) and multilayer perceptrons (MLPs) have been proposed,

even though only one of them [157] managed to outperform the baseline system

(based on a GMM) thus reaching the Ąrst rank in the third task of the chal-

lenge. In our opinion, this proves that there is still a lot of space for research

in approaching SED with ANNs. During our experiments we compare differ-

ent well-established audio representations, i.e., STFT Spectrograms, log-mel

energies and mel-frequency cepstral coefficients (MFCCs), extracted in both

monaural and binaural conĄguration.

We here propose two algorithms, one which relies on a voice activity de-

tection (VAD) algorithm for the detection of acoustic events which are then
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The second monaural set is composed of another set of widely used features,

that is mel-frequency cepstral coefficients (MFCCs). Starting from the same

STFT coefficients previously obtained, we now compute the log-mel spectro-

gram with a 40-bands mel-scale Ąlter bank. Then, we apply a 20-points discrete

cosine transform (DCT) to each energy vector and, after excluding the 0th or-

der coefficient, we obtain a feature vector of 20 MFCCs. In order to complete

the set, we also calculate the Ąrst and second order delta coefficients, therefore

obtaining a 60-coefficients feature vector.

For the two binaural sets we decided to extract the log-mel (or the MFCC)

features not only from the average of the two channels, but also from their

difference and the two separate channels; this gives us a total of four channels.

We decided to do so because, for example, if an important event is predominant

in only one of the two channels, averaging them could lower the signal-to-noise

ratio, thus increasing the system failure probability. For the Ąrst binaural set

we extract the log-mel coefficients as for the Ąrst monaural set, but, given the

presence of four channels, we now have a total of 108 coefficients for each frame.

In order to avoid an excessive feature vector dimension, in this set we decide to

avoid using the Ąrst and second order delta coefficients. Similarly, the second

binaural set is obtained by extracting 20 MFCCs for each channel; since again

we avoid using the delta coefficients, this leads us to a total of 80 coefficients

for each frame.

Neural networks

In this section, two different ANNs architectures are tested for the SED prob-

lem, i.e., MLPs and RNNs. The Ąrst layer of all proposed ANNs consists of

a set of nodes to which the audio representation (taken on a frame scale) is

applied, with the number of nodes varying from 52 to 108, depending on the

chosen feature representation. The input is then propagated to the following

three hidden layers, composed of 512 tanh neurons each for MLPs and 54 rec-

tiĄer neurons for RNNs. Finally, the last layer of our networks is designed to

output the class associated by the network with the given input. To do so,

this layer is composed of a number of softmax neurons equal to the number of

possible classes, i.e., 11 if we are dealing with a ŞhomeŤ scenario, and 7 in case

of a Şresidential areaŤ (see Table 6.1). We highlight that, in case of MLPs,

we obtain one label for each frame, whereas RNNs are able to output one label

also for a batch of sequent frames.

The standard algorithm used for training the proposed MLPs is the back-

propagation (BP) algorithm, whereas for RNNs the ŞBP through timeŤ is used.

After a Ąrst feed-forward phase, in which a batch of input is propagated through

the networks, these algorithms exploit the derivative Şchain ruleŤ to back-

propagate the error computed at the output layer and sequentially update all
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neuron weights [158].

Sound event detection and classification

At test time we want the system to detect and correctly classify as many

acoustic events as possible occurring in raw audio Ąles of 30 seconds. Since no

onset nor offset instants are given, we decide to use VAD algorithms in order

to detect these instants. With this intent, two different VAD algorithms have

been tested, i.e., AE, and SohnŠs VAD.

The AE approach makes use of two energy thresholds in order to deter-

mine the starting and ending point of an event-active audio sequence, i.e., the

Şmean plus varianceŤ (MPV) and the Şmean minus varianceŤ (MMV) thresh-

olds. These thresholds are Ąrstly calculated over all the training dataset and

then used to extract information about events activity: whenever a frameŠs en-

ergy exceeds the MPV threshold an onset event is triggered, then the event

detection remains positive until the energy content drops below the MMV

threshold.

SohnŠs VAD [159], on the other hand, is a method based on a statistical

modelling of the audio in the time-frequency domain, with the model param-

eters being estimated with a maximum likelihood (ML) method. With this

technique, the decision regarding the eventŠs activity is devolved to a com-

parison between the averaged log-likelihood ratio (containing the a-priori and

a-posteriori signal-to-noise ratios) and a Ąxed threshold η ∈ (0, 1).

Whenever an audio Ąle is processed by one of the two VAD algorithms we

are able to extract the starting and ending instants between which an audio

event has (supposedly) occurred. Hence, we can feed the network with the

feature representation of the corresponding frames and Ąnally obtain the event

classiĄcation. We remind that, in case of MLPs, we obtain one label for each

frame, whereas RNNs are able to output only one label for the whole frame

batch. Due to this, we need to average all MLP outputs so to obtain the eventŠs

acoustic label, while RNNŠs outputs will need no further processing.

6.1.2 Experiments

Datasets and metrics

The data we use during our experiments consist of two datasets provided for

the third task (SED in real life audio) of the DCASE 2016 challenge [56]. The

former dataset, called development dataset, was at Ąrst provided in order to

make all challengers able to compare their development results, while the lat-

ter, the evaluation dataset, was used for the Ąnal evaluation of the submitted

systems, so its ground truth was made public only a few weeks after the end of

107



✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page 108 Ů #128
✐

✐

✐

✐

✐

✐

Chapter 6 Polyphonic Sound Event Detection

the challenge. These acoustic scenes were selected from the challenge organiz-

ers to represent common environments of interest in applications for safety and

surveillance (outside home) and human activity monitoring or home surveil-

lance [56].

Both datasets contains recordings of 3-5 minutes divided into two different

acoustic scenarios: ŞhomeŤ and Şresidential areaŤ. SpeciĄc classes for each

scenario are reported in Table 6.1.

Home Occurrences Residential area Occurrences

rustling 60 banging 23
snapping 57 bird singing 271
cupboard 40 car passing by 108
cutlery 76 children shouting 31
dishes 151 people walking 52
drawer 51 people speaking 44
glass jingling 36 wind blowing 30
object impact 250
people walking 54
washing dishes 84
water tap running 47

Table 6.1: Classes and their occurrences for the ŞhomeŤ and Şresidential areaŤ
scenarios for the SED in real life audio task of the DCASE 2016
challenge.

The development dataset consists of 10 recordings for the ŞhomeŤ scenario,

and 12 for the Şresidential areaŤ, and for both a four-folds cross-validation

data splitting is provided by the organizers of the challenge. While creating

the cross-validation folds, the challenge organizers imposed the only condition

that the test subset does not contain classes unavailable in training subset,

therefore the class distribution between the test subsets is not assumed to be

uniform. The evaluation dataset contains 5 recordings for both the ŞhomeŤ

and the Şresidential areaŤ scenarios each. For this dataset no cross-validation

is performed, so it is possible to train only one system with all the development

dataset (including Ąles previously meant for testing purpose) and then test it

with the evaluation Ąles.

Scores used to evaluate all systems are the well known F1 and error rate (ER)

scores, which are used to evaluate the system over segments of one second. In

obtaining the Ąnal score for the development dataset, we average the four per-

fold scores as described in [56].
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6.1.3 Results

Experimental setup

Concerning the network training, we initialize all weights according to a normal

distribution with zero mean and 0.1 variance. We then train the networks

following the adam [109] method for stochastic optimization, for which we keep

the default hyper-parameter conĄguration. In order to prevent overĄtting, for

each fold we check the network performance on the respective foldŠs test set

after each training epoch. If no improvement on this set is encountered for 60

consecutive epochs, the training is forced to an early stop. After this phase

we perform experiments on the evaluation data, for which we use the whole

development training and test sets as training and validation data respectively.

Then, at test time, we evaluate the system on the secret challenge data.

Development results

During our experiments we tested and compared different neural architectures,

VAD algorithms, and feature representations. In Table 6.2 we report the re-

sults obtained with SohnŠs VAD for 16 different system conĄgurations, whereas

in Table 6.3 the same classiĄer and feature conĄgurations are analysed in con-

junction with AE VAD.

Table 6.2 highlights that the use of binaural audio features always enhances

the systemŠs performance in terms of both F1 and ER scores. Moreover, we

can also notice that MLPs generally perform better than RNNs, in particular

according to F1 scores, where no RNN manages to achieve more than 34.4% F1

score. Finally, we report that the best systemŠs conĄguration featuring SohnŠs

VAD is a MLP trained with binaural MFCC features, with a VAD threshold

equal to 0.70. This system manages to reach 0.88 ER and 39.8% F1 score, both

averaged on the four folds.

Table 6.3 mostly conĄrms what emerged from the analysis of the previous

table. Also with adaptive evergy VAD, the use of binaural features always im-

proves the classiĄcation accuracy, even if differences are now less marked, with

the highest improvement in F1 scores being +2%. Moreover, it is interesting to

notice that the difference between MLPs and RNNs accuracies is now reduced,

maybe highlighting that the difference between their classiĄcation power thins

if a better VAD algorithm leads to a better event detection. The best perform-

ing system featuring AE VAD is again a MLP which, with binaural log-mel

features, manages to reach 0.78 ER and 43.1% F1 scores, averaged on the four

folds as for the previous results.
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Features η Classifier ER F1 (%)

Monaural log-mel 0.98 MLP 0.93 34.6
Binaural log-mel 0.98 MLP 0.89 38.6

Monaural log-mel 0.70 MLP 0.90 35.4
Binaural log-mel 0.70 MLP 0.89 39.4

Monaural MFCC 0.98 MLP 0.92 35.7
Binaural MFCC 0.98 MLP 0.88 39.6

Monaural MFCC 0.70 MLP 0.91 36.2
Binaural MFCC 0.70 MLP 0.88 39.8

Monaural log-mel 0.98 RNN 0.91 29.6
Binaural log-mel 0.98 RNN 0.88 35.6

Monaural log-mel 0.70 RNN 0.95 28.2
Binaural log-mel 0.70 RNN 0.88 34.4

Monaural MFCC 0.98 RNN 0.98 30.5
Binaural MFCC 0.98 RNN 0.88 34.1

Monaural MFCC 0.70 RNN 0.91 31.2
Binaural MFCC 0.70 RNN 0.88 31.0

Table 6.2: Comparison of Scores obtained on the development dataset using dif-
ferent Features, ClassiĄers and SohnŠs VAD Thresholds (η). Scores
are Averaged among the four Cross-Validation Folds.

Evaluation results

In Table 6.4 we report the main results for the most promising system con-

Ągurations tested on the evaluation dataset. As we can see, scores tend to

be higher than the ones obtained on the development dataset, especially for

MLPs, highlighting the beneĄt introduced by the addition in the training set

of those Ąles previously used for testing. The expansion of the training set can

be viewed as the expansion of the ŞknowledgeŤ from which the network can

learn at training time, therefore, when this happens, it is expectable to reach a

better generalization performance. This behaviour is conĄrmed, the best per-

forming conĄguration manages to achieve a 0.79 ER and 48.1% F1 scores, and

it consists of a MLP classiĄer trained on binaural MFCC features.

Table 6.5 compares our best system to the three best performing ones pro-

posed for the third task of the DCASE 2016 challenge. The Ąrst and the third

ranks were achieved by Adavanne et al., which made use of RNN-LSTM ar-

chitectures trained on spatial and harmonic features [157] extracted from the

two binaural channels. On the other hand, the second best system is the base-

line proposed in [56], based on a GMM modelling of each acoustic event, plus

one for the absence of sound events, which was trained with the non-labelled
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Features Classifier ER F1 (%)

Monaural log-mel MLP 0.78 41.2
Binaural log-mel MLP 0.78 43.1

Monaural MFCC MLP 0.81 40.1
Binaural MFCC MLP 0.82 42.1

Monaural log-mel RNN 0.85 41.2
Binaural log-mel RNN 0.82 43.1

Monaural MFCC RNN 0.92 40.7
Binaural MFCC RNN 0.89 41.0

Table 6.3: Comparison of Scores obtained on the development dataset using dif-
ferent Features, ClassiĄers and AE VAD. Scores are Averaged among
the four Cross-Validation Folds.

Features VAD Classifier ER F1 (%)

Monaural log-mel Sohn (η = 0.70) MLP 0.80 40.2
Binaural log-mel Sohn (η = 0.70) MLP 0.78 46.5

Monaural MFCC AE MLP 0.79 45.1
Binaural MFCC AE MLP 0.78 48.1

Monaural MFCC AE RNN 0.82 41.0

Table 6.4: Comparison of Scores obtained on the Evaluation Dataset using dif-
ferent Features, ClassiĄers and VAD Algorithms.

frameŠs features (MFCCs and their delta/delta-deltas were used). As we can

see from the table, the proposed system manages to improve the F1 score by

0.3% while reducing the error rate by 0.02.

6.1.4 Conclusion

In this section we have proposed and evaluated a system for SED in real life

audio. We compared different audio features, extracted in both monaural and

binaural conĄgurations, with which we trained different neural network classi-

Ąers. Moreover, we tested two different VAD algorithms for detecting sound

activities to be classiĄed by the proposed networks at test time. The proposed

best performing system achieves an improvement on the winner of the third

task in the DCASE 2016 challenge, thus highlighting the competitiveness of

the proposed approach. In addition, the results show that in our experiments

the MLPs generally perform better than RNNs, in particular according to F1

scores. In this case, it can be motivated by the limited size of the available

data, which could be not sufficient to train appropriately a deep RNN.
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Features VAD Classifier ER F1 (%)

Binaural log-mel AE MLP 0.79 48.1

Binaural mel energy - RNN [157] 0.81 47.8
Binaural mel energy - GMM [56] 0.88 23.7
Binaural mel energy + TDOA - RNN [157] 0.89 34.3

Table 6.5: Comparison Between the proposed System and the three (out of 17)
best performing DCASE 2016 Systems proposed for SED in real life
audio.
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6.2 Polyphonic Sound Event Detection by using

Capsule Neural Networks

In this section, we present an extensive analysis of SED conducted on real-life

audio datasets and compare the results with state-of-the-art methods. In addi-

tion, we propose a variant of the dynamic routing procedure which takes into

account the temporal dependence of adjacent frames. The proposed method

outperforms previous SED approaches in terms of detection error rate in the

case of polyphonic SED, while it has comparable performance with respect to

CNNs in the case of monophonic SED.

The proposed system is a fully data-driven approach based on the CapsNet

deep neural architecture presented by Sabour et al. [52]. This architecture has

shown promising results on highly overlapped digital numbers classiĄcation. In

the audio Ąeld, a similar condition can be found in the detection of multiple

concomitant sound events from acoustic spectral representations, thereby we

propose to employ the CapsNet for the polyphonic-SED in real-life recordings.

The novel computational structure based on capsules, combined to the routing

mechanism allows to be invariant to intra-class affine transformations and to

identify part-whole relationships between data features. In the SED case study,

it is hypothesized that this characteristic confers to CapsNet the ability to

effectively select most representative spectral features of each individual sound

event and separate them from overlapped descriptions of the other sounds in

the mixture.

6.2.1 Related Works

Encouraging polyphonic SED performance have been obtained using CapsNets

in preliminary experiments conducted on the Bird Audio Detection task in oc-

casion of the DCASE 2018 challenge [50], conĄrmed by the results reported in

[51]. The CapsNet [52] is a recently proposed architecture for image classiĄ-

cation and it is based on the grouping of activation units into novel structures

introduced in [53], named capsules, along with a procedure called dynamic

routing. The capsule has been designed to represent a set of properties for an

entity of interest, while dynamic routing is included to allow the network to im-

plicitly learn global coherence and to identify part-whole relationships between

capsules.

The authors of [52] show that CapsNets outperform state-of-the-art ap-

proaches based on CNNs for digit recognition in the MNIST dataset case study.

They designed the CapsNet to learn how to assign the suited partial information

to the entities that the neural network has to predict in the Ąnal classiĄcation.

This property should overcome the limitations of solutions such as max-pooling,
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currently employed in CNNs to provide local translation invariance, but often

reported to cause an excessive information loss. Theoretically, the introduction

of the dynamic routing can supply invariances for any property captured by

a capsule, allowing also to adequately train the model without requiring ex-

tensive data augmentation or dedicated domain adaptation procedures. This

hypothesis is supported by previously mentioned related works. SpeciĄcally,

in [50], the CapsNet is exploited in order to obtain the prediction of the pres-

ence of heterogeneous polyphonic sounds (i.e., bird calls) on unseen audio Ąles

recorded in various conditions. In [51] the dynamic routing yields promising

results for SED with a weakly labeled training dataset, thus with unavailable

ground truths for the onset and offset times of the sound events. The algorithm

has to detect sound events without supervision and in this context the routing

can be considered as an attention mechanism.

6.2.2 Proposed Method

The aim of polyphonic SED is to Ąnd and classify any sound event present in an

audio signal. The algorithm we propose is composed of two main stages: sound

representation and polyphonic detection. In the sound representation stage, the

audio signal is transformed in a two-dimensional time-frequency representation

to obtain, for each frame t of the audio signal, a feature vector xt ∈ R
F , where

F represents the number of frequency bands.

Sound events possess temporal characteristics that can be exploited for SED,

thus certain events can be efficiently distinguished by their time evolution. Im-

pulsive sounds are extremely compact in time (e.g., gunshot, object impact),

while other sound events have indeĄnite length (i.e., wind blowing, people walk-

ing). Other events can be distinguished from their spectral evolution (e.g., bird

singing, car passing by). Long-term time domain information is very beneĄcial

for SED and motivates for the use of a temporal context allowing the algorithm

to extract information from a chronological sequence of input features. Conse-

quently, these are presented as a context window matrix Xt:t+T −1 ∈ R
T ×F ×C ,

where T ∈ N is the number of frames that deĄnes the sequence length of

the temporal context, F ∈ N is the number of frequency bands and C is the

number of audio channels. Differently, the target output matrix is deĄned as

Yt:t+T −1 ∈ N
T ×K , where K is the number of sound event classes.

In the SED stage, the task is to estimate the probabilities p(Yt:t+T −1♣Xt:t+T −1,θ)

∈ R
T ×K , where θ denotes the parameters of the neural network. The network

outputs, i.e., the event activity probabilities, are then compared with a thresh-

old in order to obtain event activity predictions Ŷt:t+T −1 ∈ N
T ×K . The param-

eters θ are trained by supervised learning, using the frame-based annotation

of the sound event class as target output, thus, if class k is active during frame
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t, Y (t, k) is equal to 1, and is set to 0 otherwise. The case of polyphonic SED

implies that this target output matrix can have multiple non-zero elements K

in the same frame t, since several classes can be simultaneously present.

Indeed, polyphonic SED can be formulated as a multi-label classiĄcation

problem in which the sound event classes are detected by multi-label annota-

tions over consecutive time frames. The onset and offset time for each sound

event are obtained by combining the classiĄcation results over consequent time

frames. The trained model will then be used to predict the activity of the

sound event classes in an audio stream without any further post-processing

operations and prior knowledge on the events locations.

Feature Extraction

For our purpose, we exploit two acoustic spectral representations, the magni-

tude of the Short Time Fourier Transform (STFT) and the LogMel coefficients,

obtained from all the audio channels and extensively used for other SED algo-

rithms. Except where differently stated, we study the performance of binaural

audio features and compare it with those extracted from a single channel audio

signal. In all cases, we operate with audio signals sampled at 16 kHz and we

calculate the STFT with a frame size equal to 40 ms and a frame step equal

to 20 ms. Furthermore, the audio signals are normalized to the range [−1, 1]

in order to have the same dynamic range for all the recordings.

The STFT is computed on 1024 points for each frame, while LogMel coef-

Ącients are obtained by Ąltering the STFT magnitude spectrum with a Ąlter-

bank composed of 40 Ąlters evenly spaced in the mel frequency scale. In

both cases, the logarithm of the energy of each frequency band is computed.

The input matrix Xt:t+T −1 concatenates T = 256 consequent STFT or Log-

Mel vectors for each channel C = ¶1, 2♢, thus the resulting feature tensor is

Xt:t+T −1 ∈ R
256×F ×C , where F is equal to 513 for the STFT and equal to

40 for the LogMels. The range of feature values is then normalized according

to the mean and the standard deviation computed on the training sets of the

neural networks.

CapsNet for Polyphonic Sound Event Detection

The architecture of the neural network is shown in Figure 6.3. The Ąrst stages

of the model are traditional CNN blocks which act as feature extractors on

the input X. After each block, max-pooling is used to halve the dimensions

only on the frequency axis. The feature maps obtained by the CNN layers are

then fed to the Primary Capsule Layer that represents the lowest level of multi-

dimensional entities. Basically, it is a convolutional layer with J ·M Ąlters, i.e.,

it contains M convolutional capsules with J kernels each. Its output is then
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reshaped and squashed using (2.18). The Ąnal layer, or Detection Capsule layer,

is a time-distributed capsule layer (i.e., it applies the same weights and biases

to each frame element) and it is composed of K densely connected capsule units

of dimension G. Since the previous layer is also a capsule layer, the dynamic

routing algorithm is used to compute the output. The background class was

included in the set of K target events, in order to represent its instance with a

dedicated capsule unit and train the system to recognize the absence of events.

In the evaluation, however, we consider only the outputs relative to the target

sound events. The model predictions are obtained by computing the Euclidean

norm of the output of each Detection Capsule. These values represent the

probabilities that one of the target events is active in a frame t of the input

feature matrix X, thus we consider them as the network output predictions.

In [52], the authors propose a series of densely connected neuron layers

stacked at the bottom of the CapsNet, with the aim to regularize the weights

training by reconstructing the input image X ∈ N
28×28. Here, this technique

entails an excessive complexity of the model to train, due to the higher number

of units needed to reconstruct X ∈ R
T ×F ×C , yielding poor performance in our

preliminary experiments. We decided, thus, to use dropout [68] and L2 weight

normalization [160] as regularization techniques, as done in [51].

6.2.3 Experimental Setup

In order to test the proposed method, we performed a series of experiments on

three datasets provided to the participants of different editions of the DCASE

challenge [136, 56]. We evaluated the results by comparing the system based

on the Capsule architecture with the traditional CNN. The hyperparameters of

each network have been optimized with a random search strategy [139]. Fur-

thermore, we reported the baselines and the best state-of-the-art performance

provided by the challenge organizers.

Dataset

We assessed the proposed method on three datasets, two containing stereo

recordings from real-life environments and one artiĄcially generated mono-

phonic mixtures of isolated sound events and real background audio.

In order to evaluate the proposed method in polyphonic real-life conditions,

we used the TUT Sound Events 2016 & 2017 datasets, which were included

in the corresponding editions of the DCASE Challenge. For the monophonic-

SED case study, we used the TUT Rare Sound Events 2017 which represents

the task 2 of the DCASE 2017 Challenge.
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TUT Sound Events 2016

The TUT Sound events 2016 (TUT-SED 2016)1 dataset consists of recordings

from two acoustic scenes, respectively ŞHomeŤ (indoor) and ŞResidential areaŤ

(outdoor) which we considered as two separate subsets. A total amount of

around 54 and 59 minutes of audio are provided respectively for ŞHomeŤ and

ŞResidential areaŤ scenarios. Sound events present in each recording were man-

ually annotated without any further cross-veriĄcation, due to the high level of

subjectivity inherent to the problem. For further details, please refer to Sec-

tion 6.1.2.

TUT Sound Events 2017

The TUT Sound Events 2017 (TUT-SED 2017)2 dataset consists of recordings

of street acoustic scenes with various levels of traffic and other activities, for

a total of 121 minutes of audio. The scene was selected as representing an

environment of interest for detection of sound events related to human activities

and hazard situations. It is a subset of the TUT Acoustic scenes 2016 dataset

[56], from which also TUT-SED 2016 dataset was taken. Thus, the recording

setup, the annotation procedure, the dataset splitting, and the cross-validation

setup is the same described above. The 6 target sound event classes were

selected to represent common sounds related to human presence and traffic,

and they include brakes squeaking, car, children, large vehicle, people speaking,

people walking. The evaluation set of the TUT-SED 2017 consists of 29 minutes

of audio, whereas the development set is composed of 92 minutes of audio which

are employed in the cross-validation procedure.

TUT Rare Sound Events 2017

The TUT Rare Sound Events 2017 (TUT-Rare 2017)2 [136] consists of iso-

lated sounds of three different target event classes (respectively, baby crying,

glass breaking and gunshot) and 30-second long recordings of everyday acous-

tic scenes to serve as background, such as park, home, street, cafe, train, etc.

[56]. In this case we consider a monophonic-SED, since the sound events are

artiĄcially mixed with the background sequences without overlap. For further

details, please refer to Section 5.2.3.

6.2.4 Comparative Algorithms

Since the datasets we used were employed to develop and evaluate the algo-

rithms proposed from the participants of the DCASE challenges, we can com-

1http://www.cs.tut.fi/sgn/arg/dcase2016/
2http://www.cs.tut.fi/sgn/arg/dcase2017/
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pare our results with the most recent approaches in the state-of-the-art. In

addition, each challenge task came along with a baseline method that consists

in a basic approach for the SED. It represents a reference for the participants

of the challenges while they were developing their systems.

TUT-SED 2016

The baseline system is based on mel frequency cepstral coefficients (MFCC)

acoustic features and multiple GMM-based classiĄers. In detail, for each event

class, a binary classiĄer is trained using the audio segments annotated as be-

longing to the model representing the event class, and the rest of the audio to

the model which represents the negative class. The decision is based on likeli-

hood ratio between the positive and negative models for each individual class,

with a sliding window of one second. To the best of our knowledge, the most

performing method for this dataset is the algorithm we showed in Section 6.1.

TUT-SED 2017

In this case the baseline method relies on an MLP architecture using 40 Log-

Mels as audio representation [136]. The network is fed with a feature vector

comprehending 5-frame as temporal context. The neural network is composed

of two dense layers of 50 hidden units per layer with the 20% of dropout, while

the network output layer contains K sigmoid units (where K is the number of

classes) that can be active at the same time and represent the network predic-

tion of event activity for each context window. The state of the art algorithm

is based on the CRNN architecture [161]. The authors compared both monau-

ral and binaural acoustic features, observing that binaural features in general

have similar performance as single channel features on the development dataset

although the best result on the evaluation dataset is obtained using monaural

LogMels as network inputs. According to the authors, this can suggest that the

dataset was possibly not large enough to train the CRNN fed with this kind of

features.

TUT-Rare 2017

The baseline [56] and the state-of-the-art methods of the DCASE 2017 challenge

(Rare-SED) were based on a very similar architectures to that employed for

the TUT-SED 2016 and described above. For the baseline method, the only

difference relies in the output layer, which in this case is composed of a single

sigmoid unit. The Ąrst classiĄed algorithm [47] takes 128 LogMels as input

and process them frame-wise by means of a CRNN with 1D Ąlters on the Ąrst

stage.
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6.2.5 Neural Network configuration

We performed a hyperparameter search by running a series of experiments

over predetermined ranges. We selected the conĄguration that leads, for each

network architecture, to the best results from the cross-validation procedure on

the development dataset of each task, and used this architecture to compute

the results on the corresponding evaluation dataset.

The number and shape of convolutional layers, the non-linear activation func-

tion, the regularizers in addition to the capsules dimensions and the maximum

number of routing iterations have been varied for a total of 100 conĄgura-

tions. Details of searched hyperparameters and their ranges are reported in

Table 6.6. The neural networks training was accomplished by the AdaDelta

stochastic gradient-based optimization algorithm [140] for a maximum of 100

epochs and batch size equal to 20 on the margin loss function. The optimizer

hyperparameters were set according to [140] (i.e., initial learning rate lr = 1.0,

ρ = 0.95, ϵ = 10−6). The trainable weights were initialized according to the

glorot-uniform scheme [162] and an early stopping strategy was employed dur-

ing the training in order to avoid overĄtting. If the validation ER did not

decrease for 20 consecutive epochs, the training was stopped and the last saved

model was selected as the Ąnal model. In addition, dropout and L2 weight nor-

malization (with λ = 0.01) have been used as weights regularization techniques

[68]. The algorithm has been implemented in the Python language using Keras

[141] and TensorĆow [142] as deep learning libraries, while Librosa [163] has

been used for feature extraction.

For the CNN models, we performed a similar random hyperparameters search

procedure for each dataset, considering only the Ąrst two blocks of the Table 6.6

and by replacing the capsule layers with feedforward layers with sigmoid acti-

vation function.

On TUT-SED 2016 and 2017 datasets, the event activity probabilities are

simply thresholded at a Ąxed value equal to 0.5, in order to obtain the binary

activity matrix used to compute the reference metric. On the TUT-Rare 2017

the network output signal is processed as proposed in [164], thus it is convolved

with an exponential decay window then it is processed with a sliding median

Ąlter with a local window-size and Ąnally a threshold is applied.

6.2.6 Results

In this section, we present the results for all the datasets and experiments

described in Section 4.3.3. The evaluation of Capsule and CNNs based methods

have been conducted on the development sets of each examined dataset using

random combinations of hyperparameters given in Table 6.6.
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Parameter Range Distribution

Batch Normalization [yes - no] random choice

CNN layers Nr. [1 - 4] uniform
CNN kernels Nr. [4 - 64] log-uniform
CNN kernels dim. [3×3 - 8×8] uniform
Pooling dim. [1×1 - 2×5] uniform
CNN activation [tanh - relu] random choice
CNN dropout [0 - 0.5] uniform
CNN L2 [yes - no] random choice

Primary Capsules Nr. M [2 - 8] uniform
Primary Capsules kernels dim. [3×3 - 5×5] uniform
Primary Capsules dimension J [2 - 16] uniform
Detection Capsules dimension G [2 - 16] uniform
Capsules dropout [0 - 0.5] uniform
Routing iterations [1 - 5] uniform

Table 6.6: Hyperparameters optimized in the random-search phase and the re-
sulting best performing models.

6.2.7 TUT-SED 2016

Results on TUT-SED 2016 dataset are shown in Table 6.8, while Table 6.7 re-

ports the conĄgurations which yielded the best performance on the evaluation

dataset. All the found models have ReLU as non-linear activation function and

use dropout technique as weight regularization, while the batch-normalization

applied after each convolutional layer seems to be effective only for the CapsNet.

In Table 6.8 results are reported considering each combination of architecture

and features we evaluated. The best performing setups are highlighted with

bold face. The use of STFT as acoustic representation results to be beneĄ-

cial for both the architectures with respect to the LogMels. In particular, the

CapsNet obtains the lowest ER on the cross-validation performed on Develop-

ment dataset when is fed by the binaural version of such features. On the two

scenarios of the evaluation dataset, a model based on CapsNet and binaural

STFT obtains an averaged ER equal to 0.69, which is largely below both the

challenge baseline [56] (-0.19) and the best score reported in literature [145]

(-0.10). The comparative method based on CNNs seems not to Ąt at all when

LogMels are used as input, while the performance is aligned with the chal-

lenge baseline based on GMM classiĄers when the models are fed by monaural

STFT. This discrepancy can be motivated by the enhanced ability of CapsNet

to exploit small training datasets, in particular due to the effect of the routing

mechanism on the weight training. In fact, the TUT-SED 2016 is composed

of a small amount of audio and the sounds events occur sparsely (i.e., only 49
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minutes of the total audio contain at least one event active), thus, the overall

results of the comparative methods (CNNs, Baseline and SoA) on this dataset

are quite low compared to the other datasets.

Another CapsNet property that is worth to highlight is the lower number

of free parameters that compose the models compared to evaluated CNNs. As

shown in Table 6.7, the considered architectures have 267K and 252K free pa-

rameters respectively for the ŞHomeŤ and the ŞResidential areaŤ scenario. It is

a relatively low number of parameters to be trained (e.g., a popular deep archi-

tecture for image classiĄcation such as AlexNet [148] is composed of 60M pa-

rameters), and the best performing CapsNets of each considered scenario have

even less parameters with respect to the CNNs (-22% and -64% respectively for

the ŞHomeŤ and the ŞResidential areaŤ scenario). Thus, the high performance

of CapsNet can be explained with the architectural advantage rather than the

model complexity. In addition, there can be a signiĄcant performance shift for

the same type of networks with the same number of parameters, which means

that a suitable hyperparameters search action (e.g., number of Ąlters on the

convolutional layers, dimension of the capsule units) is crucial in Ąnding the

best performing network structure.

TUT-SED 2016 TUT-SED 2017

Home Residential Street

CapsNet CNN CapsNet CNN CapsNet CNN

CNN kernels Nr. [32, 32, 8] [64, 64, 16, 64] [4, 16, 32, 4] [64] [4, 16, 32, 4] [64, 64, 16, 64]
CNN kernels dim. 6× 6 5× 5 4× 4 5× 5 4× 4 5× 5
Pooling dim. (F axis) [4, 3, 2] [2, 2, 2, 2] [2, 2, 2, 2] [2] [2, 2, 2, 2] [2, 2, 2, 2]
MLP layers dim. - [85, 65] - [42, 54, 66, 139] - [85, 65]

Primary Capsules Nr. M 8 - 7 - 7 -
Primary Capsules kernels dim. 4× 4 - 3× 3 - 3× 3 -
Primary Capsules dimension J 9 - 16 - 16 -
Detection Capsules dimension G 11 - 8 - 8 -
Routing iterations 3 - 4 - 4 -

# Params 267K 343K 252K 709K 223K 342K

Table 6.7: Hyperparameters of the best performing models on the TUT-
Polyphonic SED 2016 & 2017 Evaluation datasets.

Closer Look at Network Outputs

A comparative study on the neural network outputs, which are regarded as

event activity probabilities is presented in Figure 6.4. The monaural STFT

from a 40 seconds sequence of the ŞResidential areaŤ dataset is shown along

with event annotations and the network outputs of the CapsNet and the CNN

best performing models. For this example, we chose the monaural STFT as

input feature because generally it yields the best results over all the considered

datasets. Figure 6.4 shows bird singing lasting for the whole sequence and

correctly detected by both the architectures. When the car passing by event
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TUT-SED 2016 - Home

Development Evaluation

Features LogMels Binaural LogMels STFT Binaural STFT LogMels Binaural LogMels STFT Binaural STFT

CNN 11.15 11.58 1.06 1.07 6.80 8.43 0.95 0.92
CapsNet 0.58 0.59 0.44 0.39 0.74 0.75 0.61 0.69

TUT-SED 2016 - Residential Area

Features LogMels Binaural LogMels STFT Binaural STFT LogMels Binaural LogMels STFT Binaural STFT

CNN 3.24 3.11 0.64 1.10 2.36 2.76 1.00 1.35
CapsNet 0.36 0.34 0.32 0.32 0.72 0.75 0.78 0.68

TUT-SED 2016 - Averaged

CNN 7.20 7.35 0.85 1.09 4.58 5.60 0.98 1.14
CapsNet 0.47 0.47 0.38 0.36 0.73 0.75 0.70 0.69

Baseline [56] 0.91 0.88
SoA [145] 0.78 0.79

TUT-SED 2017

Development Evaluation

Features LogMels Binaural LogMels STFT Binaural STFT LogMels Binaural LogMels STFT Binaural STFT

CNN 1.56 2.12 0.57 0.60 1.38 1.79 0.67 0.65
CapsNet 0.45 0.42 0.36 0.36 0.58 0.64 0.61 0.64

Baseline [136] 0.69 0.93
SoA [161] 0.52 0.79

Table 6.8: Results of best performing models in terms of ER on the TUT-SED
2016 & 2017 dataset.

overlaps the bird singing, the CapsNet detects more clearly its presence. The

people speaking event is slightly detected by both the models, while the object

banging activates the relative Capsule exactly only in correspondence of the

event annotation. It must be noted that the dataset is composed of unveriĄed

manually labelled real-life recordings, that may present a degree of subjectivity,

thus, affecting the training. Nevertheless, the CapsNet exhibits remarkable

detection capability especially in the condition of overlapping events, while the

CNN outputs are deĄnitely more ŞblurredŤ and the event people walking is

wrongly detected in this sequence.

6.2.8 TUT-SED 2017

The bottom of Table 6.8 reports the results obtained with the TUT-SED 2017.

As in the TUT-SED 2016, the best performing models on the Development

dataset are those fed by the Binaural STFT of the input signal. In this case we

can also observe interesting performance obtained by the CNNs, which on the

Evaluation dataset obtain a lower ER (i.e., equal to 0.65) with respect to the

state-of-the-art algorithm [161], based on CRNNs. CapsNet conĄrms its effec-

tiveness and it obtains lowest ER equal to 0.58 with LogMel features, although

with a slight margin with respect to the other inputs (i.e., -0.03 compared to

the STFT features, -0.06 compared to both the binaural version of LogMels

and STFT spectrograms).

It is interesting to notice that in the development cross-validation, the Cap-
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best performance on the Evaluation dataset are shown in Table 6.9. This is

the largest dataset we evaluated and its characteristic is the high unbalance

between the amount of background sounds versus the target sound events.

From the analysis of partial results on the Evaluation set (unfortunately not

included for the sake of conciseness) we notice that both architectures achieve

the best performance on glass break sound (0.25 and 0.24 respectively for CNNs

and CapsNet with LogMels features), due to its clear spectral Ąngerprint com-

pared to the background sound. The worst performing class is the gunshot (ER

equal to 0.58 for the CapsNet), although the noise produced by different in-

stances of this class involves similar spectral components. The low performance

is probably motivated due to the fast decay of this sound, which means that in

this case the routing procedure is not sufficient to avoid confusing the gunshot

with other background noises, especially in the case of dataset unbalancing

and low event-to-background ratio. A solution to this issue can be found in

the combination of CapsNet with RNN units, as proposed in [45] for the CNNs

which yields an efficient modelling of the gunshot by CRNN and improves the

detection abilities even in polyphonic conditions. The babycry consists of short,

harmonic sounds is detected almost equally from the two architectures due to

the property of frequency shift invariance given by the convolutional kernel

processing.

Finally, the CNN shows better generalization performance to the CapsNet,

although the ER score is far from state-of-the-art which involves the use of

the aforementioned CRNNs [47] or a hierarchical framework [164]. In addition,

in this case are the CNN models to have a reduced number of weights to

train (36%) with respect the CapsNets, except for the ŞgunshotŤ case but, as

mentioned, it is also the conĄguration that gets the worst results.

TUT-Rare SED 2017 Monophonic SED

Babycry Glassbreak Gunshot

CapsNet CNN CapsNet CNN CapsNet CNN

CNN kernels Nr. [16, 64, 32] [16, 32, 8, 16] [16, 64, 32] [16, 32, 8, 16] [16, 16] [16, 64, 32, 32]
CNN kernels dim. 6× 6 8× 8 6× 6 8× 8 8× 8 7× 7
Pooling dim. (F axis) [4, 3, 2] [3, 3, 2, 2] [4, 3, 2] [3, 3, 2, 2] [5, 2] [5, 4, 2, 1]
MLP layers dim. - [212, 67] - [212, 67] - 112, 51

Primary Capsules Nr. M 7 - 7 - 8 -
Primary Capsules kernels dim. 3× 3 - 3× 3 - 3× 3 -
Primary Capsules dimension J 8 - 8 - 8 -
Detection Capsules dimension G 14 - 14 - 6 -
Routing iterations 5 - 5 - 1 -

# Params 131K 84K 131K 84K 30K 211K

Table 6.9: Hyperparameters of the best performing models on the TUT-Rare
2017 Monophonic SED Evaluation datasets.
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TUT-RareSED 2017 - Monophonic SED

Development Evaluation

Features LogMels STFT LogMels STFT
CNN 0.29 0.21 0.41 0.46
CapsNet 0.17 0.20 0.45 0.54
Baseline [56] 0.53 0.64
Hierarchic CNNs [164] 0.13 0.22
SoA [47] 0.07 0.13

Table 6.10: Results of best performing models in terms of ER on the TUT-
RareSED 2017 dataset.

6.2.10 Alternative Dynamic Routing for SED

We observed that the original routing procedure implies the initialization of the

coefficients βij to zero each time the procedure is restarted, i.e, after each input

sample has been processed. This is reasonable in the case of image classiĄcation,

for which the CapsNet has been originally proposed. In the case of audio task,

we clearly expect a higher correlation between samples belonging to adjacent

temporal frames X. We thus investigated the chance to initialize the coefficients

βij to zero only at the very Ąrst iteration, while for subsequent X to assign

them the last values they had at the end of the previous iterative procedure.

We experimented this variant considering the best performing models of the

analyzed scenarios for polyphonic SED, taking into account only the systems

fed with the monaural STFT. As shown in Table 6.11, the modiĄcation we

propose in the routing procedure is effective in particular on the evaluation

datasets, conferring improved generalization properties to the models we tested

even without accomplishing a speciĄc hyperparameters optimization.

6.2.11 Conclusion

In this section, we proposed to apply the CapsNet architecture to the poly-

phonic SED task.

Part of the novelty of this work resides in the adaptation of the CapsNet

architecture for the audio event detection task, with a special care on the input

data, the layers interconnection and the regularization techniques. The routing

procedure is also modiĄed to confer a more appropriate acoustic rationale, with

a further average performance improvement of 6% among the polyphonic-SED

tasks.

An extensive evaluation of the algorithm is proposed with comparison to

recent state-of-the-art methods on three different datasets. The experimen-

tal results demonstrate that the use of dynamic routing procedure during the

training is effective and provides signiĄcant performance improvement in the
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TUT-SED 2016 - Home

Development Evaluation

CapsNet 0.44 0.61
CapsNet - NR 0.41 -6.8% 0.58 -4.9 %

TUT-SED 2016 - Residential

CapsNet 0.32 0.78
CapsNet - NR 0.31 -3.1% 0.72 -7.7 %

TUT-SED 2016 - Average

CapsNet 0.38 0.70
CapsNet - NR 0.36 -5.3% 0.65 -7.1 %

TUT-SED 2017 - Street

CapsNet 0.36 0.61
CapsNet - NR 0.36 -0.0% 0.58 -4.9 %

Table 6.11: Results of test performed with our proposed variant of routing pro-
cedure.

case of overlapping sound events compared to traditional CNNs, and other es-

tablished methods in polyphonic SED. Interestingly, the CNN-based method

obtained the best performance in the monophonic SED case study, thus empha-

sizing the suitability of the CapsNet architecture in dealing with overlapping

sounds. We showed that this model is particularly effective with small sized

datasets, such as TUT-SED 2016 which contains a total 78 minutes of audio

for the development of the models of which one third is background noise. Fur-

thermore, the network trainable parameters are reduced with respect to other

deep learning architectures, conĄrming the architectural advantage given by

the introduced features also in the task of polyphonic SED. Despite the im-

provement in performance, we identiĄed a limitation of the proposed method.

As presented in Section 6.2.6, the performance of the CapsNet is more sensible

to the number of training iterations. This affects the generalization capabilities

of the algorithm, yielding a greater relative deterioration of the performance

on evaluation datasets with respect to the comparative methods.

The results we observed in this work are consistent with many other classi-

Ącation tasks in various domains [165, 166, 167], and prove that the CapsNet

is an effective approach which enhances the well-established representation ca-

pabilities of the CNNs also in the audio Ąeld. As a future work, regularization

methods can be investigated to overcome the lack of generalization which seems

to affect the CapsNets. Furthermore, regarding the SED task the addition of

recurrent units may be explored to enhance the detection of particular (i.e.,
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inpulsive) sound events in real-life audio and the recently-proposed variant of

routing, based on the Expectation Maximization algorithm (EM) [143], can be

investigated in this context.
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from the training corpus. The autoencoder, then, is trained also by using the

binary cross-entropy loss calculated at the output of the discriminator network.

The performance of the algorithm has been assessed on a corpus derived from

the PASCAL CHiME dataset. The results showed that the proposed approach

provides an F1-score equal to 93.28%, with a relative performance improvement

equal to 0.26% compared to the standard autoencoder. The signiĄcance of the

improvement has been evaluated with a one-tailed z-test and resulted signiĄcant

with p < 0.001. The presented approach thus showed promising results on this

task and it could be extended as a general training strategy for autoencoders

if conĄrmed by additional experiments.

7.1.1 Details

In this section, we are not interested in the generative capabilities of the net-

work, since in the novelty detection task the objective is to minimise the error

made by the autoencoder in reconstructing normal data. Thus, the architecture

and the training strategy are different from [64]: the discriminator network is

trained to discriminate between data from a training set and data reconstructed

by the autoencoder (Figure 7.2a). The Ąnal layer of the discriminator is a single

neuron with sigmoid activation function and its output represents the proba-

bility of the data of being sampled from the training set. At the end of the

training phase, the discriminator network should not be able to distinguish

training set data and reconstructed data, i.e., its output should be constantly

equal to 0.5.

Similarly to [63], the training process can be viewed as a min-max game

between the autoencoder and the discriminator network. Let x be an input

feature vector, x̃ = A(x) the output of the autoencoder, and D(x) the output

of the discriminator network, i.e., the probability of x of being sampled from

the training data. The training procedure is composed of three main phases:

the Ąrst phase and the third phase consist in updating the autoencoder and

the discriminator respectively by minimising the reconstruction error and the

classiĄcation error (binary cross-entropy). The middle phase incorporates the

interaction between the two networks: the autoencoder weights are updated

based on the output the discriminator network.

Whether a feature vector is a novel sound or a normal background sound is

determined by calculating the reconstruction error, i.e., the Euclidean distance

between the output produced by the autoencoder and the input data itself.

If the distance exceeds a predeĄned threshold, the input data is classiĄed as

novelty, otherwise as normal. The threshold is calculated as follows: for each

input sequence the threshold θ is calculated with the following expression:

θ = β ·median¶e(1), . . . , e(N)♢, (7.1)
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7.2 Few-shot Siamese Neural Networks employing

Audio features for Human-Fall Detection

Nowadays, the detection of human fall is a problem recognized by the entire

scientiĄc community. Methods that have good performance use human falls

samples in the train set, while methods that do not use it, can only work well

under certain conditions. Since examples of human falls are very difficult to

retrieve, there is a strong need to develop systems that can work well event with

few or no data to be used for their training phase. In this section, we show

a Ąrst study on few-shot learning Siamese Neural Network applied to human

falls detection by using audio signals. This method has been compared with

algorithms based on SVM and OCSVM, all evaluated starting from the same

conditions. The proposed approach is able to learn the differences between

signals belonging to different classes of events. In classiĄcation phase, using

only one human fall signal as a template, it achieves about 80% of F1−Measure

related to the human fall class, while the SVM based method gets around 69%,

when it is trained in the same data knowledge conditions.

7.2.1 Proposed Approach

In this section we propose a Siamese Neural Network able to learn a latent

representation of an audio event. In particular, a SNN is composed of two twin

networks with binded weights. A pair of inputs is provided to the system, one

to each twin network. Downstream, the network maps these inputs into two

different representation vectors. Then, a certain type of distance between those

two representations is computed. In this section, euclidean distance was used.

In Figure 7.3, are reported two examples of mel-spectrograms: the spectrum

that is given as input to the function Ąrst network represents a chair that

is overturned. The other inputs instead represent a human fall. As can be

seen, the signals are not distinguishable at a glance, thus we think that the

differential approach of the SNN, described below, seems to be appropriate.

Our Siamese network has been trained on a corpus of labelled object fall

events and not including any human fall. Pairs of events belonging to the same

class correspond to the positive examples while pairs of events belonging to

the different class a negative one. In particular, the term few-shot comes from

the fact that although, in this case study, human falls have not been used for

training, some of them are used in the optimization phase, before the Ąnal test.

134





✐

✐

ŞPhDthesis_VESŤ Ů 2019/2/12 Ů 19:36 Ů page 136 Ů #156
✐

✐

✐

✐

✐

✐

Chapter 7 Other contributions

7.3 Generative Raw Audio Synthesis

Biologically-inspired algorithms such as artiĄcial neural networks have been

used extensively by computer music researchers, for generative music and algo-

rithmic composition. The recent introduction of raw audio Machine Learning

(ML) techniques, however, represents a signiĄcant leap because they seem to

be able to learn both high-level (event) and low-level (timbre) information at

once. Employing such techniques for creative purposes is very challenging at

this early stage since there is lack of method, experience, and their computa-

tional cost is very high.

To the best of our knowledge, three main architectures have been proposed

to learn and reproduce features from raw audio signals, namely WaveNet [168],

sampleRNN [169], and WaveGan [170]. Recently, another architecture, named

FFTnet, has been proposed [171] that draws some concepts from WaveNet but

shows a lower computational cost.

These architectures show the ability of learning features from raw audio data

and generate similar signals drawing from a latent representation of these data

directly in the time domain. This seems to be possible thanks to a hierarchical

representation of the signal. In other words, architectures such as sampleRNN

and WaveNet process the signal at multiple levels, enabling the network to store

signiĄcant features from the micro-scale (sample level) up to the macro-scale (1

second and more). Experiments with these two architectures show that after

training the network with a few hours of piano music, the networks are able to

reproduce piano tones in a somewhat organized way. They are, thus, able to

learn the timbre of the piano, the piano tone envelope (attack and decay), and

Ąnally, they learn that piano notes have rhythmical patterns, can be played in

clusters, chords and sequences.

Stemming from these results, the authors decided to explore the possibility

of running these algorithms for tone generation. At the time of writing, these

algorithms are not suitable for synthesis from a score. However, they have the

autonomous ability of generating a sequence of sounds, similarly to generative

algorithms, but working at several time scales.

7.3.1 Algorithm Selection

A careful evaluation of currently available machine learning algorithms for raw-

audio generation has been carried on. The evaluated algorithms were:

• WaveNet [168],

• sampleRNN [169],

• WaveGAN [170].
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7.3 Generative Raw Audio Synthesis

At the time of setting up the experiments the FFTNet algorithm [171] was

not yet published.

The WaveNet architecture allows for modeling complex data such as music

and speech. It is based on a stack of causal dilated convolutional layers for

feature extraction. The dilated convolutions are key to extract features at dif-

ferent levels (closely resemblant to a dyadic wavelet Ąlter bank [171]), however,

the experiments in [172] show that the use of dilated convolutions alone do not

allow modelling complex raw audio sequences, thus, residual blocks and the

use of skip connections after the convolutional layers are necessary to speed

up convergence and allow the training of a deep model. The ability of the

network to model meaningful sequences of samples relies on causal probability

conditioning, i.e. the last output sample is conditioned by the probability of all

previous output samples. Additionally, it has been shown with speech synthe-

sis that the output sample probability can be conditioned with, e.g. speaker

timbre and phonemes. In our case, however, we are not interested in leveraging

this feature, leaving the network to generate freely.

The main issue preventing adoption of WaveNet is its high computational

cost and informal reports of their performance seems to conĄrm this. To test the

feasibility of the approach and verify these claims we adapted one of the several

open-source implementations of WaveNet currently available. We conducted

preliminary experiments on a Titan X GPU employing Theano as backend.

After 72 hours of training using the same piano dataset suggested by [168]

the network was still unable to provide results vaguely similar to the ones

shown by the authors of [168]. Furthermore, some of the hyperparameters

were extrapolated from the paper, but most of them are not available, so a

hyperparameters search would be required, increasing the training times far

over our available resources.

A very different approach is followed by the authors of sampleRNN [169].

This architecture is based on the same principle of causal probability condi-

tioning, however, in this case the network consists of several tiers of recurrent

neural networks (RNN) working at different temporal resolutions. Each RNN

conditions the RNN at the lower tier. SampleRNN has been tested with both

speech and music database. Both databases are a few hours long.

We also performed preliminary experiments employing the open-source im-

plementation provided by the authors of [169] on the same hardware reported

above. This implementation is based on Theano and Lasagne. Results are on

par with those provided by the authors and training times can have length

of 1-4 days depending on the input material and the degree of Ątness that is

required.

Finally, we considered WaveGAN for sound generation. This architecture is

based on the generative adversarial networks (GAN) paradigm. The authors
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Chapter 7 Other contributions

of [170] devised two models, WaveGAN, working on the raw audio with 1D

convolutions and SpecGAN, working with 2D spectrograms. The outcomes of

their work are very promising, since these two architecture are able to learn

from a much shorter database than WaveNet and sampleRNN. However, they

are inherently designed to synthesized audio of a speciĄc length (16384 samples

for WaveGAN or a 128x128 spectrogram for SpecGAN). For this reason they

are not well suited for generative audio. Running a WaveGAN several times

would introduce issues in concatenating each output.

At the end of this evaluation stage, we decided to use sampleRNN.

7.3.2 Input Material and Dataset Creation

The input material for this work has been provided by artist Økapi in form

of stems of his musical project Rima Glottidis. The main goal of the work

was to generate vocal textures from his material to be arranged in form of a

site-speciĄc sound installation. The stems came from cut recordings of male

and female speech of several speakers showing proper Italian pronunciation vs.

unclear spelling and regional accent.

Additionally they presented bell tones, singing choirs, sung phonemes, and

silence, revealing part of the musical structure of the original project. The

whole material length was 14 minutes. A subset of this material, totalling 7

minutes, was obtained by leaving only the speaking voices and cutting all other

musical material.

From previous experience with sampleRNN the input material was judged to

be too short. Informal experiments on voice synthesis were conducted in 2016

by the Ąrst author showing that sampleRNN can faithfully learn the vocal

timbre of a speaker only from a sufficiently large and homogeneous dataset of

speech. SpeciĄcally, a 3 hours dataset gathered from publicly available speeches

of a well known Italian comedian and politician was used to train a three-tier

sampleRNN model. At the end of the training, a convincing babbling was

obtained with random phonemes. Most subjects presented with the synthesized

speech could recognize the identity of the public Ągure. Reducing the dimension

of the dataset to 1 hour or less degraded the performance of the network making

the utterances noise-like.

To increase the chances to obtain interesting audio material from sampleRNN,

other audio material has been selected. Data augmentation has been tested to

enlarge the training corpus without adding spurious material that would reduce

the portion of material from Økapi. Data augmentation has been done by pitch

shifting audio data by -3 and +3 semitones.

Additionally, 22 minutes of choral works from Arvo Pärt were added. A

subset of this dataset has been randomly selected, totalling 2 minutes. These
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7.3 Generative Raw Audio Synthesis

datasets have been used for training 2 different sampleRNN models with hy-

perparameters suggested by the authors of [169]. Training of these models was

conducted with a Titan X GPU and left running for 2 days for each one, ap-

proximately lasting for 220 epochs (approx 3 · 106 iterations). For each epoch,

several 10s-long pieces of randomly generated material were extracted for later

use.

7.3.3 Results

Discussion about the network outcomes will be qualitative, as there is no ob-

jective means to assess the quality of the material. The loss employed by

sampleRNN, the categorical crossentropy, does not clearly state the quality

of the sound material. The largest excursion of the loss seen during training

ranged from 5 to 3 for the training set and from 4.5 to 3.9 for the validation

set. Notwithstanding this, the Ąrst tones generated were pure noise, while the

last ones had some of the character of the original dataset. The training loss

did not necessarily decrease with time and samples with interesting features

emerged at different epochs. Most notably, samples generated at a given epoch

or at consecutive epochs, have all very similar features that later disappear

with the training.

The outcomes from these trainings can be divided in several classes: speech-

like babbling (a), whistling (b), rumbles and impulses (c) or mixtures of the

above. Figure 7.5 shows spectrograms of each class. Please note that the

whistling tones do not appear in the output generated from the Rima Glottidis

speech-only subset. It was noted, indeed, that these have the same frequency

of bell tones found in the complete Rima Glottidis dataset. Bell tones appear

on the 5% of the Rima Glottidis dataset. This means that very simple and

repetitive material can be easily reproduced by sampleRNN even though it

does appear on a small portion of the dataset.
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Chapter 8

Conclusions

In this dissertation, Deep Learning approaches for Sound Event Detection and

ClassiĄcation have been studied.

Deep Neural Networks (DNNs) have been largely investigated and exploited

in this thesis, driven by the promising results achieved from these architec-

ture for the computational analysis of sound scenes and events in the recent

years. This task is characterized by many issues, especially when the systems

are developed for real-life environments (i.e., when some assumptions made for

controlled laboratory conditions are not valid anymore). Among these issues

there are: unbalanced datasets available to train models; different acquisition

setups (microphones, environment, ...); acoustic disturbance, such as back-

ground noise, reverberation and cross-talk; polyphony, i.e., the simultaneous

occurrence of target sound events. Indeed, the choice of DNNs models for this

aim is motivated by their proved generalization capability, which is commonly

weak in classical classiĄcation algorithms based on support vector machines or

statistical modelling.

The Ąrst three chapters of this thesis aim to give an overview of the main

motivations behind this thesis, and to describe in general the elements which

compose the design process of a system. Indeed, Section 1 gives an introduc-

tion of the computational methods for the analysis of sound events applications

and recent results in DNN-based approaches are vastly discussed. After that,

in Section 2 a theoretical description of the principal DNN architectures is

given. In Section 3 a brief description of typical dataset characteristics (acqui-

sition, labelling and augmentation) is provided, in combination with standard

procedures to evaluate the systems outputs.

Within all the tasks explored by the scientiĄc community, this thesis has

been focused on a subset of problems. They can be grouped into three main

categories: the sound event detection (cf. Section 5), the sound event classiĄca-

tion (cf. Section 4) and the polyphonic sound event detection (cf. Section 6),

which can be seen as a combination of the previous ones. They have been

faced by means of Deep Learning approaches and in all cases the proposed al-

gorithms have been compared to the most recent state of the art benchmarks.
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Chapter 8 Conclusions

In particular, most of the time systems have been designed in the occasion

of international challenges [56, 136, 98, 57]. This allowed access to datasets

without the need to invest huge resources for their collection, and to be able

to compare systems proposed by the most competitive research teams on a

common basis. When this was not possible, we proceeded to collect the data

ourselves, following the best-practices described in Section 3.

The results of these studies conĄrm the effectiveness of the DNNs, in par-

ticular comparing the performance of novel architectures such as CapsNets in

the case study of polyphonic sound event detection (cf. Section 6.2), or in the

rather new Ąeld of road surface roughness classiĄcation (cf. Section 4.2), where

the acoustic differences between samples belonging to the two target class are

minimal.

8.1 Future Perspective

Future works will concern the testing of the proposed algorithms against new

environments, along with ad hoc solutions for data augmentation, transfer

learning or domain adaptation.

Furthermore, it could be interesting to combine some of the proposed algo-

rithms, in order to obtain joint models gradually more similar the concept of

ŞArtiĄcial IntelligenceŤ. For example, this can be applied to the analysis of

snore signals: the detection (cf. Section 5.1) and the classiĄcation (cf. Sec-

tion 4.1) system described in this dissertation can be combined into a unique

model used in an unobtrusive diagnosis procedure.

On the other hand, end-to-end approaches can be evaluated for particular

context where traditional sound representations (such as mel-scaled spectro-

grams) may not be the best choices, and it could be more convenient to design

a DNN networks able to automatically learn the best representation of the di-

rectly from the raw signal. Detection of speciĄc sound events (cf Section 5.2), or

bioacoustic monitoring (cf. Section 4.3) could be addressed with this technique.

In addition, in this case the same feature extraction procedure performed by

the network could be suitable for other audio-related case studies.

Last but not least, the next step for sound event analysis systems is to even

out the performance gap between the fully supervised and the training weakly

labelled data, i.e, labels that merely indicate whether a particular sound event

is present within a recording, without specifying additional details, such as the

precise location of the event or even the number of times it occurs.
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8.2 A Zoom Out

8.2 A Zoom Out

The studies which have been conducted on the presented applications of the

deep neural networks conĄrm their potential in many different contexts. This

is particularly valuable when the DNNs are employed to extract a high-level

information dependent from characteristics difficult to deĄne a-priori, such as

in the case of physiological sounds (e.g, Snoring, etc.,), the studies on the

Affective Computing or cases which would require in-depth acoustic studies

(i.e., the Road Surface Roughness classiĄcation).

The main limit to the diffusion of these technologies mainly concerns the

availability and quality of datasets. If in the near future efforts will be made

to collect and label data possibly also with semi-supervised techniques, it will

be possible to use these databases to pre-train DNNs speciĄcally on audio

signals and subsequently to specialize them for speciĄc contexts, as is currently

happening in the image processing.
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