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Abstract

This thesis addresses the tasks of Voice Activity Detection (VAD) and Speaker
LOCalization (SLOC) in reverberant environments. A data-driven approach
characterizes this work, where Deep Neural Networks (DNN) are largely em-
ployed and investigated. Indeed, although VAD and SLOC have been assessed
by classical algorithms for a long time, the new breakthrough of machine learn-
ing for audio processing has lead to encouraging results into the addressed tasks.
Hence, this thesis proposes several reliable DNN-based strategies for VAD and
SLOC, which act more robustly when tested against classical algorithms. Fur-
thermore, DNNs are a powerful tool to develop human-inspired systems and
joint VAD and SLOC frameworks, reason why they are the interest of this
work.

Initially, VAD and SLOC are analysed separately, in order to properly focus
on novel approaches for audio processing by means of DNNs. In particular,
this work is driven by an extensive employment of Convolutional Neural Net-
works (CNNs). Indeed, a virtuous exploitation of data captured by multiple
microphones and a temporal evolution of the signal is possible by means of
CNNs convolutional kernels. A multi-room environment is chosen to assess the
performance of the proposed algorithms, since it shows a high degree of simi-
larity with a real world scenario. There issues such as reverberation, cross-talk
through multiple rooms and a wide range of background noise must be dealt
with. Along with this, studies focus on binaural sound localization, which is
addressed by means of models inspired by the human hearing systems. In par-
ticular, the tasks of determining the azimuth and the elevation of a speaker are
separately addressed. The first case study is solved by means of an end-to-end
approach, which learns to localize sounds similarly to human beings. After
that, elevation is estimated from the frequency domain amplitude and phase
of the signals, outperforming the state-of-the-art models present in literature.

Finally, VAD and SLOC are jointly performed by means of a unique frame-
work, whose purpose is to increase the overall performance over the two tasks.
Indeed, a CNN-based model capable of virtuously exploiting localization and
detection related features, achieves remarkable results in terms of VAD. In ad-
dition, a novel data augmentation technique is proposed in this study, where
the acoustic scenes of two different rooms are simulated.
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Sommario

In questa tesi vengono affrontate le tematiche del Voice Activity Detection
(VAD) e dello Speaker LOCalization (SLOC) in ambiente riverberante. Un ap-
proccio data-driven caratterizza questo lavoro, e per questo motivo reti neurali
deep vengono ampliamente sfruttate e analizzate. Sebbene diversi algoritmi
classici siano stati utilizzati per VAD e SLOC per lungo tempo, le recenti scop-
erte nel campo del machine learning applicato all’audio hanno portato a risul-
tati incoraggianti per quanto concerne VAD e SLOC. Di conseguenza, questa
tesi propone numerose strategie vincenti per VAD e SLOC basate su reti neu-
rali, che si dimostrano piti performanti e piti robuste quando paragonate ad
algoritmi classici. In aggiunta, le reti neurali risultano un ottimo strumento
per sviluppare modelli matematici ispirati dal sistema uditivo umano, o per
studiare approcci capaci di fare rilevamento e localizzazione di un parlatore in
modo simultaneo; per questo motivo vengono quindi sfruttate in questo lavoro.

Inizialmente le tematiche di VAD e SLOC vengono affrontate separatamente,
in modo da potersi focalizzare accuratamente su nuovi approcci basati su reti
neurali. In particolare, questa tesi fa affidamento su un impiego estensivo di reti
neurali convoluzionali (CNN). Infatti, questa architettura neurale permette uno
sfruttamento intensivo di segnali audio catturati da diversi microfoni, insieme
alla possibilitd di impiegare un’evoluzione temporale del segnale. Per testare gli
algoritmi proposti si sceglie un ambiente caratterizzato da pid stanze, in quanto
mostra un alto grado di somiglianza con uno scenario reale. In particolare
questo ambiente é soggetto a problematiche come riverbero, individui parlanti
contemporaneamente e una grossa varietd di rumore di sottofondo. Insieme
a questo viene affrontata la tematica della localizzazione del suono da udito
binaurale, tramite modelli neurali ispirati dall’apparato uditivo umano. Nel
dettaglio, ci si pone 'obiettivo di stimare separatamente I'azimuth e 'altezza
di un parlatore. Nel primo caso, viene proposto un approccio end-to-end per
la stima dell’azimuth, il quale si dimostra capace di imparare a localizzare il
suono in maniera simile all’essere umano. Dopo di cid, 'altezza del parlatore
dal suolo viene stimata per mezzo di un sistema che sfrutta 'ampiezza e la fase
del segnale nel dominio della frequenza, il quale ottiene prestazioni migliori dei
sistemi presenti in letteratura.

Infine viene proposto un sistema capace di eseguire VAD e SLOC allo stesso
tempo, il cui obiettivo é di migliorare 'accuratezza del sistema stesso. Per
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questo motivo si sviluppa un modello basato su CNN capace di sfruttare in
maniera virtuosa due diverse features audio mirate al rilevamento e alla local-
izzazione del parlatore, rispettivamente. Insieme a questo, viene proposta una
nuova tecnica di data augmentation, che permette di simulare le scene acustiche
di due diverse stanze.
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Chapter 1

Introduction

Pronounced speech plays an extremely relevant role in communication between
human beings, and it has always been a subject of study and interest. For this
reason, much effort has been recently spent for machine systems capable of au-
tomatically understanding and reproducing speech, being referred to as the field
of speech processing. Although these tasks are straightforwardly accomplished
by humans, they result largely complex to be reliably transferred to machines.
Nevertheless, the recent development of mathematical models inspired by the
animal brain and being capable of learning, combined with the last advance-
ments in hardware present in modern computers, consists in a powerful tool
for the processing of speech data.

Within this research field, the elaboration of human speech is generally dealt
with as a set of distinct sub-problems. For example, a system performing
Automatic Speech Recognition (ASR) is commonly composed at least by four
different algorithms, which are an initial acoustic preprocessing of the audio
signal, followed by a decoder relying on an acoustic model, a pronunciation
model and a language model. While dividing a complex problem into smaller
ones allows to easily tackle each one of them, it requires the strong assumption
of their mutual independence, which is not always correct. Indeed, this aspect
will be deeply discussed in one chapter of this thesis, where it will be shown
that combining multiple tasks instead of addressing them separately allows to
achieve more accurate performance.

In the research community, the detection and the localization of a speaker are
two relevant fields of interest, which find applications in audio surveillance, hu-
man hearing modelling, speech enhancement, human and robot interaction and
so forth [1, 2, 3, 4]. These tasks, referred to as Voice Activity Detection (VAD)
and Speaker LOCalization (SLOC), are the focus of this thesis work, and their
deployment will target a domestic environment scenario. While the investiga-
tion of VAD and SLOC has been tackled for several years by means of classical
algorithms, the recent breakthrough of machine learning has heavily influenced
this research field. For this reason, Deep Neural Networks (DNNs) are largely
investigated in this work. Indeed, they do not require a dedicated fine tun-
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ing typically necessary for state-of-the-art classical algorithms, furthermore it
has been observed across different applicative fields that robust performance
can be achieved due to their better capability of generalizing even in unknown

environments.

In addition, DNNs are extremely powerful tools to simulate and explore the
hearing process of the human being, being the interest of this thesis as well.
Last but not least, in this work the development of a joint DNN-based system
simultaneously acting as VAD and SLOC is addressed, while such a task results
extremely complex to pursue by means of classical algorithms.

1.1 Goals and Methodology

Goals

This thesis work proposes novel DNN-based models for VAD and SLOC. In
the recent years, data-driven approaches have achieved encouraging results in
the addressed tasks, nevertheless much effort still requires to be spent in order
to enhance the systems proposed in literature. The believe behind this thesis
is that classical algorithms for VAD and SLOC will be substituted by more
reliable machine learning approaches in the next years.

One of the main contribution of this work concerns the employment of Con-
volutional Neural Networks (CNNs) for audio processing. In particular, few
works have been proposed for performing VAD and SLOC by means of CNNs.
However, this type of DNN allows to accurately exploit the correlation present
in audio signals in terms of time domain, frequency domain and signals cap-
tured by multiple microphones. For this reason this thesis work heavily relies
on CNNs, where remarkable results are achieved by systems capable of properly
using this correlation.

Furthermore, the research presented here also aims to simulate the human
hearing system in order to understand certain mechanisms ruling this com-
plex system. As a consequence of that, human binaural sound localization in
reverberant environments is addressed with human-inspired DNN models. In
conclusion, the proposed systems behave extremely similar to how the human
hearing system localizes sound in presence of strong reverberation.

Finally, this work focuses on the comprehension of the proposed approaches,
conducting extended studies with regards to particular methodology and neural
models discussed here. Indeed, the objective is to highlight advantages and
disadvantages of each addressed framework, and to give the tools to easily
understand the behaviour of certain important mechanisms.



1.2 Thesis Outline and Main Contribution

Methodology

In order to pursue these goals, in this thesis, a methodology relying on a data-
driven approach is adopted. The main reason driving this strategy is motivated
by the encouraging results achieved by DNN-based models for audio-related
tasks.

Basically, a data-driven approach allows to predict an output from unknown
input data, by training the neural model with known data. Although this black
box description of a data-driven methodology seems to trivialise the method-
ology itself, this process deserves particular attention in several key points.
For example, input data are generally represented by means of hand-crafted
features, in order to reduce their complexity and to highlight specific charac-
teristics of the signals themselves. However, the choice of the most adequate
features set for the addressed task is not trivial, and may heavily influence the
performance of the model itself. Indeed, this issue will be often raised within
this thesis, by comparing multiple features or investigating brand new features
extracted directly from the neural model.

Furthermore, even the choice of the correct DNN architecture may result
extremely complex. In details, some architectures show the capability of better
exploiting a temporal evolution of the signal, while other ones may be able to
focus most on the cross correlation between signals recorded by multiple audio
channels. For this reason different neural architectures are explored and tested
in this work.

Last but not least, the procedure of correctly designing a DNN is an art too,
since well known problems such as overfitting and missing convergence of a
model are extremely easy to come across to. Even this aspect is in the interest
of this work.

1.2 Thesis Outline and Main Contribution

This section provides a chapter by chapter overview, summarizing the main
contributions of this work. References to the publications that have been pro-
duced in the course of the work are provided at the end of the thesis.

In Chapter 2 a review of classical models and DNN-based approaches present
in literature for VAD and SLOC is discussed. This review introduces the com-
mon strategies adopted for these tasks, and motivates the main choices pursued
in this work in terms of employed DNNs, features and neural architectures.

After that, Chapter 3 describes the common tool employed in the various
studies conducted in this thesis. In particular, details of DNNs such as ar-
chitectures, non-linear activations and the model training are discussed. In
the following Chapter 4, audio signals and features employed for their repre-
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sentation are described. In addition, audio corpora addressed this work are
reported.

The first study targeting VAD is then presented in Chapter 5. A prelimi-
nary research targeting a multi-room environment is initially addressed, where
several DNNs architectures are compared and multiple features are employed.
After that, the most reliable model goes through further investigation, with
the purpose of jointly exploiting audio captured by multiple microphones.

Later, neural approaches for SLOC are proposed in Chapter 6. A preliminary
study is firstly presented, where a simple DNN localizes the speaker in terms
of coordinates in a multi-room environment. This research is then extended by
considering a more complex neural architecture, and exploring the importance
of a temporal context, whose purpose is to increase the amount of input audio
processed by the DNN. After that, apart from the research conducted for SLOC
in a multi-room environment, two works address binaural sound localization
by means of CNNs. The focus now goes on the mechanisms ruling the human
hearing system. In particular, the azimuth and the elevation of the speaker are
separately estimated by two different models exploiting directly the raw audio
or its Short-time Discrete Fourier Transform (STFT), respectively.

The development of a joint system capable of simultaneously detecting and
localizing a speaker in multi-room environment is presented in Chapter 7. A
first study discusses a brand new DNN model, and performs a comparison to
the most performing VAD and SLOC models proposed in the previous chapters
of this thesis. After that, an extensive comparison with the only framework
present in literature for detecting and localizing a speaker in a multi-room
environment is discussed. Novel data augmentation techniques are proposed
along with this research.

Chapter 8 discusses another contribution always relying on artificial intel-
ligence, but not concerning the tasks of VAD and SLOC. Indeed, a novel al-
gorithm for designing Infinite Impulse Response (IIR) filters characterized by
quasi-linear phase is presented, where the work targets the development of an
audio crossover.

Finally, Chapter 9 concludes the thesis and provides further directions for
extending this work.



Chapter 2
Literature Review

2.1 Overview

This thesis chapter goes through some of the models, the methods and the
approaches proposed in the last decades for detecting and localizing a sound
source. In the early years, these tasks have been assessed by means of so called
classical algorithms, which typically rely on specific signal characteristics. In-
deed, these approaches aim to replicate or exploit well-know mathematical laws
ruling sound propagation. However, a dedicated fine tuning of these algorithms
is generally required, furthermore, their inability of generalizing leads to poor
performance of these models when tested against novel and unknown environ-
ments.

On the other hand, the recent investigation of new DNN-based methods, in
addition to the development of new hardware and software suitable for train-
ing complex DNN models, has shown promising results in the field of audio
processing.

Following that, the review discussed here, divided into the three main fields of
interest of this work, firstly addresses classical algorithms proposed in literature
for VAD and SLOC, and then focuses on the new DNN-based methods.

2.2 Related Works

2.2.1 Voice Activity Detection

One of the first classical VAD algorithm was standardized in 1997 in [5]. It
evaluates four parameters, which are the differential power in the 0-1 kHz band,
differential power over the whole band, differential zero crossing rate and spec-
tral distortion. After that a multi-boundary decision procedure is applied in the
region defined by these four parameters. The work in [6] proposes a different
approach called Spectral Autocorrelation Peak Valley Ratio (SAPVR). This
method performs the autocorrelation on the magnitude spectrum and then de-
termine the ratio of the sum of the peaks in the spectral autocorrelation domain
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over the value of the first valley.

Differently, the models described in [7, 8], assign a statistical model to the
noise and speech data, and then determine the presence of speech by applying
a threshold to the likelihood of the actual frame to these statistical models.

VAD is performed by more complex systems relying on Gaussian Mixture
Model (GMM) in [9] and Support Vector Machine (SVM) in [10].

DNN-Based VAD

Two different neural architectures have been successfully proposed for VAD in
reverberant environment in [11], being a Deep Belief Network (DBN) exploiting
multiple domain feature fusion, and a Bidirectional Long Short Time Memory
(BLSTM). Advancements are then discussed in [12]. In [13], a comparison
between two VADs based on DNN and GMM demonstrates that the neural
approach is able to outperform the GMM-based VAD. Similarly, a Recurrent
Neural Network (RNN) achieves better detection performance in [1] when it
is again compared to a GMM system. Numerous DNN-based VADs for a
multi-room domestic scenario are discussed in [14], where a DBN achieves the
highest accuracy compared to a Multi-Layer Perceptron (MLP) and a BLSTM.
A later work [15] addresses the same acoustic scenario, where a VAD system
relying on MLP is discussed. It consists in a multi-channel speech segmentation
performed for each room, a time-alignment of the detected speech segments
and a room assignment method applied to each speech event. Also CNNs have
been exsploited for speaker detection in [16]. This kind of neural network is
also employed in [2], where is used to directly process the audio spectrogram,
outperforming the state-of-the-art VADs.

As result, several DNN architectures have been employed in literature for
VAD. Hence, in this thesis an initial comparison of some of them is performed,
in order to assess the most performing and reliable approach. Along with this,
the novelty of extensively exploiting the temporal evolution of the signal will
be addressed.

2.2.2 Speaker Localization

A review of classical localization algorithms is presented in [17]. In general, the
main categories in which the algorithms can be grouped are: Time Difference
Of Arrival (TDOA)-based locators, steered beamformer based locators and
spectral estimation-based methods such as the multiple signal classification
algorithm (MUSIC) [18].

The first technique consists in the estimation of the TDOA from the Gen-
eralized Cross Correlation (GCC) of the signals; after that, from TDOAs, the
hyperbolic curves representing the signal direction of arrival Difference Of Ar-
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rival (DOA) are determined. However, this method is subject to a severe
performance degradation in noisy and reverberant conditions [19]. In [20], the
authors present a method exploiting the crosspower spectrum phase and relying
on the GCC computation, for sound localization in indoor environment. In this
case, advancements are obtained with the help of additional de-reverberation
techniques.

A more robust algorithm for low Signal-to-Noise ratio (SNR) scenarios is
based on the Global Coherence Field (GCF), also known as Steered Response
Power (SRP) [21]. It is a one-stage method where the cost function repre-
sents the probability of a given point of the considered space to be the signal
source point [22]. This algorithm is not suitable to a real time application due
to its severe computational burden related to the high number of local max-
ima in the SRP space [23]. For this reason, many strategies to optimize the
global-maximum research have been proposed. An example is given in [24],
where the authors use the Stochastic Region Contraction (SRC) to decrease
the computational cost. A framework suitable for acoustic event localization
with a microphone array in far-field context is proposed in [25], where a com-
bination of GCC-PHAse Transform (GCC-PHAT) and SRP-PHAse Transform
(SRP-PHAT) methods is employed. The resulting spatial likelihood function
is spatially filtered and smoothed, significantly outperforming the reference
algorithm, by means of an onset event detection technique.

DNN-Based SLOC

It has been observed that localization accuracy achieved by classical algorithms
degrades severely in presence of strong reverberation. For this reason, new
SLOC data-driven models are discussed in this thesis. In recent literature,
the development of DNN-based models for sound localization has mainly ad-
dressed two different case studies. The first one concerns machine-oriented
systems, where algorithms are fed with audio data recorded by microphone ar-
rays. These studies aim mostly to industrial and domestic applications, where
the installation of microphone arrays is generally the most suitable solution.
Alternatively, the second case study focuses on human-oriented system, where
sound localization is performed from binaural data. Here the research is more
oriented to the simulation and understanding of the human hearing system.
The first work targeting sound localization for industrial applications was
initially discussed in 1991 [26], but the obtained results were not suitable for
real world application due to the computational limitations of that time. The
approach employed two feedforward Artificial Neural Networks (ANNs) com-
posed of one hidden layer to determine the position (width and depth) of an
acoustic source in a waveguide. A later work [27] performs SLOC from data
recorded by microphone arrays. There a pruning algorithm for the neural ar-
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chitecture based on compressive sampling theory is discussed, aiming to speed
up the convergence of a DNN with a sparse structure. CNNs have been used
for localizing a speaker in terms of azimuth in [28], where the authors presents
a special technique exploiting the phase of audio signals recorded by a linear
array. Similarly, CNNs have been employed in [29] for the more general task
of sound source localization.

On the other hand, binaural sound localization was firstly addressed in [30],
where a three-layer MLP is trained according to the multiple extended Kalman
algorithm, with the purpose of estimating the DOA of a sound source captured
by two directional and spatially separated receivers. Lately, in [31] and simi-
larly in [32], a MLP model following a spectral analysis step (i.e., based on GCC
spectrum or pinna related transfer function) is used for a talker-following robot,
which requires the estimation of the elevation and the DOA of the speaker.
The search for a balance between computational complexity and the neural
network design has been always an issue to be addressed in these tasks, in
particular in the past years when the computing power was limited. Exten-
sive studies targeting human inspired machine systems have been discussed in
[33, 34], where a MLP predicts the speaker azimuth with the help of a sim-
ulated head movement of the listener. A different type of DNN is employed
in [35], where multiple speakers localization is performed by a robot, which
predicts the speaker azimuth in a indoor environment by using a CNN fed with
Mel-dependent GCC-PHAT features. Although several studies have been pro-
posed for estimating the azimuth of a sound source from binaural data, spare
works target the estimation of the elevation of the sound source [36, 37]. In
addition, elevation is rarely estimated by means of DNNs [31, 32]. A MLP
capable of elevation estimation using the Cross-Correlation Function (CCF) is
presented in [38]. In this studies the employment of spectral features along
with CCF-based features allow to reduce the elevation estimation errors in re-
verberant environments. Further improvements with respect to [38] have been
observed in [39], where Mel-Frequency Cepstral Coefficients (MFCCs) features
are integrated to CCF and spectral features.

Nonetheless these extensive studies, no works target the development of a
SLOC systems for multi-room environment by means of DNNs fed with data
recorded by multiple microphone arrays. For these reason, models based on
MLPs and CNNs are taken into account in this thesis. Furthermore, only one
work [35] in literature performs binaural sound localization by means of CNNs.
However this task can be accurately accomplished, both in terms of azimuth
and elevation, as addressed later in this work.
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2.2.3 Systems for Joint VAD and SLOC

Although promising results have been achieved with the new DNN based VAD
and SLOC algorithms, few works target the development of a reliable frame-
work performing speaker detection and localization at the same time. To solve
this task, two main strategies can be followed. The first one relies on cooper-
ative but distinct VAD and SLOC algorithms, while the second one counts on
only one unique model acting simultaneously as detector and localizer. Last
but not least, the latest proposed frameworks simultaneously accomplishing
VAD and SLOC, rarely make use of new DNN approaches.

In terms of frameworks counting on distinct VAD and SLOC algorithms, a
binaural model for speaker detection, localization and recognition is presented
in [40]. This work localizes the speaker by means of a GMM classifier elaborat-
ing binaural features extracted through gammatone filters. After that a speech
detection module applies a binary mask to GMM azimuth predictions. Simi-
larly, in [41] a microphone array beamforming technique divides the room under
study into a fixed number of cells, from which features are extracted and clas-
sification takes place by means of a GMM. For the audio surveillance purpose,
in [42] a first detection stage is employed, where two separated GMMs clas-
sify scream and gunshot signals, respectively. Then localization is performed
by means of cross-correlation based TDOA estimation. An ensemble of SLOC
and VAD algorithms is studied in [3], where the focus goes on the interaction
between the employed classical algorithms. Furthermore, an integration archi-
tecture based on DNN or GMM is there proposed, leading to a higher overall
accuracy.

With regards to unique VAD and SLOC models, a modified version of the
SRP-PHAT is proposed in [4], where the SRP-PHAT algorithm processes both
speech and noise data, and a rest position is predicted when the latter oc-
curs. An unique DNN-based capable of detecting and localizing multiple sound
source simultaneously is presented in [43]. In this work, a recurrent CNN is
fed with both the phase both the magnitude of the spectrogram of the audio
signals captured by microphone arrays. After that, the network detects and lo-
calizes each audio event by means of two sets of outputs, where the first detects
a specific event and the second estimates the related DOAs.

Hence, the deployment a unique framework capable of joint VAD and SLOC
for a multi-room environment is targeted in this thesis since it has never been
addressed in literature. For this purpose a particular DNN architecture will be
proposed.






Chapter 3

Deep Neural Networks

3.1 Fundamentals of Neural Networks

The birth of ANNs was inspired by the biological neural networks composing
the animal brain. The key element of the biological neural network is the
neurone, which, as depicted in figure Fig. 3.1, is mainly composed by three
parts: soma, dendrites and azon. In details, the soma is able to process inputs
coming from each dendrite, and to send a electrical message along the axon.
Hence, the axon will be the connected through dendrites to other neurons,
and so on. Similarly, the artificial neuron is expressed by a variable function
producing an output value depending on a set of inputs.

Dendrites
T Terminal
Bulbs

g

Cell |
Body Axon

Figure 3.1: The biological neurone

An artificial neuron is defined by a pair of mathematical expressions, where
all the inputs are initially summed together, and then a non-linear activation
function is then applied. In details the summation is performed by:

ug = Zwijj (3.1)
j=1
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while the non-linearity comes as:

Yk = f(uk + bk) (3.2)

Where x1, xo,. .., T, are the input signals, wg1, wge, . .., Wk, are the respective
synaptic weights of the neuron k, ug is the linear combiner output due to the
input signals, by is the bias, f is the non-linear activation function and yy, is the
output signal of the neuron. A graphical representation is depicted in Fig. 3.2.

Figure 3.2: The artificial neuron

The will of replicating the learning capability of the animal brain is driving
the research community to the study of ANNs. In details, the science dedi-
cated to the development of computing system capable to learn is generally
referred to machine learning. Specifically, the animal brain is an extremely
complex organ. Indeed, it counts a huge number of deeply connected biological
neurons, plus it is continuously trained during the animal life. Moreover, most
of the mechanisms behind the animal brain are partially unknown. On these
premises, machine learning sounds unattainable. In the research field, however,
it was possible to tackle complexity of the animal brain by proposing simplified
mathematical models emulating the brain itself. Hence, in the last decades
ANNSs have achieved encouraging results in numerous application fields [44].

In details, ANNs have been gathered in two main groups depending on the
typology of connections present in the neural network itself. The two categories
are feedforward neural network and recurrent neural network, which differs in
the absence or presence of recursive loops connecting the units, respectively.
In this thesis work feedforward neural networks are generally considered, with
an exception for a specific case study. In the following paragraphs a detailed
discussion of the employed ANNSs is provided.

12
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1%t hidden layer L™ hidden layer

PN output layer

input layer

Figure 3.3: Network graph of a (L +1)-layer perceptron with D input units and
C output units. The [*" hidden layer contains m® hidden units.

3.2 Neural Network Architectures

Multilayer Perceptron

The MLP is a class of ANNs introduced in 1986 [44]. It is characterized by
groups of neurons having a non-linear activation, which are arranged in sep-
arated layers. Each unit of the actual layer is connected to each unit of the
following and the previous layer, but no connections are possible between units
belonging to the same layer. The information is allowed to travel in only one
direction, from input to output. These statements respect the condition of the
feedforward neural network. Due to the non-linear activation function present
in the units, this topology of neural network is able to distinguish data which is
not linearly separable. Three or more layers characterizes the MLP, which are
the input layer, the output layer and at least one hidden layers. The activation
function is applied to each one of these layers, except for the input one. A
general (L + 1) — layer MLP is depicted in Fig. 3.3.

Deep Belief Networks

A DBN [45] is a probabilistic generative model obtained by stacking several
simpler learning modules: Restricted Boltzmann Machines (RBM). The net-
work topology characterizing RBM (and consequently DBN) follows the rules
described in the previous paragraph for MLP, hence no connections take place
between units of the same layer. The absence of inter-units connection distin-
guishes RBM from general Boltzmann Machines. However, even if DBN and
MLP share the same architecture, they differs for the pre-training phase that
characterizes DBN. In this phase, a greedy layer-by-layer unsupervised train-
ing algorithm called Contrastive Divergence (CD-k) is exploited, which is the
peculiarity of RBM. In details, CD has pointed out to be a fast method to

13



Chapter 3 Deep Neural Networks

approximate the gradient of the log likelihood log p(v; @), with respect to the
model parameters 6. Afterwards, a supervised learning procedure fine-tunes
the whole network. Compared to MLP network, DBNs can prevent overfitting
and significantly speed-up the discriminative supervised learning convergence.

Restricted Boltzmann Machine

Hidden Units
Visible Units

Figure 3.4: Network graph for the generic RBM.

The standard RBM is characterized by m hidden units h; and n visible units
v;, as depicted in Fig. 3.4. The relationship between the hidden and visible
units is given by the weights matrix W = (w;;) of size m x n, as well the bias
weights for hidden and visible units, respectively a; and b;. Hence, the energy
of the configuration (v, h) is given as:

E(U, h) — Zaﬂ/i — Z bjhj — szi’wi’jhj (33)
i J J

i

Then, the energy function is employed for describing the probability distribu-
tions over hidden and/or visible vectors:

1
P(v,h) = e B (3.4)

Z
Where Z is a normalizing constant given as the sum of e~ £(*"%) over all possible
configuration, so that the probability distribution sums to 1. Similarly, the

marginal probability of a visible input vector is given by the sum of all the
possible hidden layer configuration:

Plv) = % 3B (3.5)
h

14
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The training of RBM has the purpose of maximizing the product of probabilities
assigned to some training set V:

argmax | | P(v) (3.6)
el

or equivalently, to maximize the expected log probability of a training sample
v selected randomly from V:

argmax [ [log P(v)] (3.7
w

Bidirectional Long Short Time Memory

Outputs s Y Yt Ye+1 - - -
Backward Layer Q e @
Forward Layer 6’0’0
Inputs ERRI | Ty Tyg

Figure 3.5: Network graph for the generic layer of a BLSTM.

The BLSTM [46] is a recurrent neural network in which the hidden units are
replaced by the long short-term memory blocks. Each memory block consists
of a memory cell and three gates: input gate, output gate and forget gate.
The memory cell can store informations for a long time while its content is
controlled by the three gates which act as the memory write, read and reset
operations. In this way, the network exploits long-range temporal context.
A bidirectional recurrent neural network is able to access context from both
temporal directions, so here the input data are processed in both directions
with two separate hidden layers.

A BLSTM layer is depicted in Fig. 3.5. It is composed by the forward and
the backward layer. At the time instant ¢ the input x; is processed by the
neurons belonging to the forward and backward layer, being indicated as h
and h, respectively. The output y; is the given as the combination of these
two neurons. In addition, the forward layer sends information to the next time

15
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_>
ilgtant (hiy1), while the backward accesses data from the previous instant
(hi1).

Convolutional Neural Networks

Feature Feature Feature
Feature Maps

Maps

Maps Maps

Input

Convolution [ 1 ’
Max Pooling

Fully Connected

Convolutional Layers
Layers

Figure 3.6: Network graph for the generic CNN. A first set of convolutional
layers act as feature extractor, while fully connected layers map the
extracted features to the classes to predict.

The birth of CNNs [47] finds inspiration from the ruling mechanisms behind
the animal virtual cortex. As a natural consequence, the first applicative field
where CNNs have been employed is image processing. After that, this kind of
feed-forward neural network have found extensive applications in other fields,
such as audio processing [16, 48].

In details, individual cortical neurons are sensible to stimuli only in a re-
stricted region of the visual field known as the receptive field. The receptive
fields of different neurons partially overlap such that they cover the entire visual
field. A similar process is pursued by the convolutional kernels of the CNN,
which process a 2-D input matrix by repetitively applying a special convolution
operation across its sub-regions. Practically, this convolution performs a dot
product between the kernel and a portion of the input data, then sums the
each dot products and applies a non-linear activation function, leading to an
output defined as feature map.

In details, denoting the m-th feature map at a given i-layer as h,, i, the m-th
kernel is composed by the weights Wi, ;, u;[n] the input data, hence:

hangi = f(Win,i * uj[n]) (3.8)
where * represent the 2-D convolution operation, which relies on a dot product.
These kernels are arranged in order to compose a convolutional layer, and
multiple convolutional layers may be present in a CNN. The different feature
maps obtained from each kernel of a convolutional layer are generally summed
(other strategies have been proposed in literature) to compose the input data

16
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for the following layer.

Commonly, a kernel layer is coupled with a pooling layer in order to introduce
robustness against patterns shifts in the processed data. The CNN structure
is completed by neuronal dense layers which map the output class or predict a
set of continuous values.

An example of a CNN is reported in Fig. 3.6. In details, two convolutional
layers perform feature extraction from the input matrix, where each layer is
followed by max pooling. After that, fully connected layers map the extracted
features to the classes to predict. The dark squares denoted with convolution
represent the convolutional kernels moving along the input data or the feature
maps; for each position a dot product between the kernel and a sub-region of
the processed data is performed, leading to the next feature maps. The dark
squares denoted as max pooling reduce the dimension of the processed feature
maps by taking the maximum value over a sub-region of that input feature
map. After that, the final feature maps are flattened and given as input to

neuronal dense layers.

Although the pure convolution operation deals with a 2-D kernel and a 2-
D input matrix, special solutions have been proposed for tensors of bigger
dimensions. The first one is the 3-D convolution, where the kernel moves
even on the third dimension, and the output for each point of the feature
maps is given as the sum of all the dot products along the three dimensions.
Nonetheless, this process is complex and requires specific software, furthermore
it aims mostly to the task of video processing.

Another solution is generally preferred and is normally implemented in avail-
able tools [49]. A 3-D matrix is processed by a 3-D kernel, where the size of
the third dimension is the size for the two tensors. Hence, a 2-D convolution is
performed for the j-th 2-D matrix of the 3-D input and 3-D kernels, where j
moves along the third dimension. After that, all the 2-D feature maps obtained
are summed over the third dimension, leading to a final 2-D feature maps. The
latter procedure will be deeply explored in this thesis work.

3.3 Activation Function

An activation function is generally applied at each node of a neural network.
Its purpose is to process the sum of the weighted input values in a non-linear
manner, so that a non-linear representation of the output is achieved. Several
activation functions have been proposed in literature, however in this section
only the employed ones are described.

17
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Sigmoid

The Sigmoid function, depicted in Fig. 3.7, is defined by:

1

T 1+ exp(—x) (39)

f(=)

This function is especially used for models which have to predict the proba-
bility as an output. Since probability of anything exists only between the range
of 0 and 1, sigmoid is the right choice. The function is differentiable.

j
T

-8 -6 -4 -2 2 4 6 8

-0.5

Figure 3.7: The Sigmoid activation function.

Tanh

Tanh is generally considered an evolution of the sigmoid activation function
[50], which ranges in [0, 1], and is given by:

_ 1
C1l4e®

f(@) (3.10)
Employing the sigmoid function raises training issues, since the neural network
may get stuck in a condition where the neurons have a zero output, or, in other
words, they do no activate. Conversely, tanh, depicted in Fig. 3.8, extends the
sigmoid working range and deals with training problems. It is described by:

f(z) = tanh(z) = % (3.11)
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Figure 3.8: The Tanh activation function.

Hard Tanh

This activation function is similar to tanh, but it is linear in the range [—1,1].
Hence, a more efficient computation than tanh is achieved. A graphical rapre-
sentation is given in Fig. 3.9, while its mathematical behaviour is presented by

the following formula:

1, r>1
fla)y=qz, -l<az<l1 (3.12)
-1, —-1>=x
Yy
1 .............
-2 -1 1 2 ’

Figure 3.9: The Hard Tanh activation function.

RelLU

The Rectifier Linear Unit function was introduced in 2000 [51]. Its mathemat-

ical formula is given by:
f(z) = max(0, z) (3.13)

The ReLU activation, compared to activation such as Tanh, shows several ad-
vantages. In details, since the biological neuron is not capable of emitting a
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negative value, the ReLU behaviour strictly respects the biological world. Fur-
thermore, the training of the neural network does not come across to issues
such as the vanishing or exploding gradient, plus the ReLU linear behaviour
in the positive region guarantees the neural network independence from any
adopted scaling of the input values. Finally, since no addition or multiplica-
tion are required, its computation is efficient. The generic ReLU is plotted in
Fig. 3.10.

Y

0.5

—0.5

Figure 3.10: The ReLU activation function.

Softmax

Given a set of target classes, softmax calculates the probability of each target
class over all possible classes [52]. Hence, it is required that each target class
ranges in [0, 1], plus the sum of all the probabilities of the target classes must
be equal to 1. Straightforwardly, this activation function is generally used for
the classification task. In details, given a K-dimensional vector z, it is mapped
to a K-dimensional vector o(z) ranging in [0, 1] by means of:

e

o(2);

3.4 Training Algorithm

DNNs map an input to an output. This procedure is performed by the arti-
ficial neurons composing the DNN, which represent a complex mathematical
function. In details, each neuron is characterized by a set of parameters, and
the total of the parameters of a DNN is generally referred to as weights. Hence,
the proper value of these parameter must be set in order to accurately repre-
sent the correct mathematical function. The network training consists in the
process of tuning the DNN weights. For this purpose, the analytical method
of steepest descent is employed, being also referred to as gradient descent.
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Gradient Descent

This method is a first-order iterative optimization algorithm that allows to find
the minimum of a function, by calculating the gradient of the function at the
current point and then updating the function parameters by a step proportional
to the negative of the gradient. Gradient descent is expressed by:

W1 = Wy — us7 F(Wy) (3.15)

where W,, is the set of the function F() parameters at current point n, pu is
the learning rate, and 7 F(W,,) is the gradient of the function. Reiterating
this equation for each current point leads to minimum of the function F().
In details, when training a neural network, the function to minimize is the
mismatch between the output predicted by the DNN and the ground truth,
also known as the error produced by the network. This error, referred to as
loss, may be evaluated in different manners, such as the mean squared error,
the mean absolute error or the categorical crossentropy, dependently on the
case under study.

Figure 3.11: An example of the application of gradient descent to search for
minimum of a function in a figurative 2-D plane. The process is
iterated four times, while the small central ellipse corresponds to
the minimum of the function.

Following the definition given in Equation 3.15, the gradient must be evalu-
ated for each current point, or, in other words, for each input data feeding the
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network. Nonetheless, since DNNs have a huge number of parameter, the oper-
ation of evaluating the gradient results in a heavy computational cost, leading
to an extremely slow training of the network. This issue is tackled by the
stochastic mini-batch gradient descent, which does not evaluate the gradient
for each single input data, but for a batch of them. The batch is randomly
selected, reason why the process is defined as stochastic. Furthermore, diverse
strategies have been proposed and adopted for the weights update, by consid-
ering for example a momentum. Some of the most famous are Adagrad [53],
Adadelta [54] and Adam [55].

Evaluating the Gradient

The key point for training an ANN is the calculation of the gradient. In par-
ticular, a simple case study of a MLP is addressed in this paragraph, which
allows to easily explain the procedure necessary for evaluating ;.

5,0+ gD - SN1+1(1+1)

"""""""""" 1+1

layer
k-th Neuron
of the

lI-th layer !

1 layer
w0

-1 —
xHD

Figure 3.12: Details of the k-th Neuron of the [-th layer of a generic MLP.

Considering a network of M layers, where a neuron of a layer is connected
with all the neurons of the previous layer, as shown in the Fig. 3.12, the fol-

lowing values are defined: M is the number of layers, indicated then with the
[ index, N; is the number of neurons at the [-th layer, sg) is the number of
connections of the k-th neuron at the [-th layer, a:g) is the output of the k-th

neuron at the I-th layer, wg]) is the weight of the k-th neuron at the [-th layer

related to the j-th input, w,(clg is the bias weight.
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Hence, given the inputs zp with & = (1,...,Np), the outputs y; with k =

(1,...,Ny) are obtained as follows:
1 pis (-
1
NORID SO (3.16)
j=0
2! = f(s) (3.17)

where the inputs are initially summed together, and then the non-linear
function f(-) is applied. :v(()l) is the bias, and other indices range into [ =

0,.... M—1;k=1,...,N;;l=1,...,M. That leads to the total of outputs:
= M, k=(1,....Nu) (3.18)

At this point, an error £ must be evaluated to adapt the weights, as stated
in the previous paragraph. Hence, the network has to approximate the desired
outputs, defined as dg[n] with k = 1,...,Nyy and n = 1,...,Q — 1, where Q
denotes the number of output patterns, or, in other words the samples con-
sidered in the batch. After that, choosing Mean Square Error (MSE) as cost
function, the error is given as:

€= ZQZ::; n] — yx[n])® (3.19)

Since € depends on all the outputs of the [+ 1 layer, the gradient is evaluated
as:

0z _Nf oc  0osY x5l

3w,(€lj) ; o dsity 81:,(;) 85,8) 3w,(€lj) a
. (3.20)
—~ 0k (1+1) Wy (-1
=2 PGEY R OO
n=1 n
In addition:
9 = e (14+1) )
+ ’
Z= Y s wl ) (3.21)
0sD ~ 2 eI

Therefore, starting from the | = (M — 1) layer, since % are known values,
STI,
it is possible to calculate the derivatives recursively:
Oe
Owy,;

For this reason, the procedure is called back propagation.
In details, for the MLP case, defining eg) = 885) and 5(l)

) »
Os,,
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is given by:
0 (dkfyk), fOI‘l:M;k:l,...,Nl
ep = N (141) ¢(1+1)
Y w,, On forl=(M-1),(M-2)...,1; k=1,...,N;
n=1
(3.23)
where:
1 l 1
o = el f(s) (3.24)

Hence, the weight update is given by:

w') = wl) + psl 2 fork=1,...,N;;j=0,....,Ni_1  (3.25)
where w’g]) is the updated weight, w,(clj) is the old weight, and p is the learning

rate.

Gradient Main Issues

In order to evaluate the gradient, each function present in the network must be
derivative. Nonetheless, this behaviour is not always guaranteed. For example,
the well-known activation function ReLU, defined in Equation 3.13, has its
derivative non-defined in x = 0. However, to solve this issue, it is assumed that
its derivative in & = 0 is given by:

f(@)=0 (3.26)

so that ReLU can be normally used in ANNs.

Another well-known problem of ANNs is the vanishing gradient. The issue is
that in some cases (e.g., extremely deep networks, sigmoid employed as activa-
tion function), the gradient will be vanishingly small, effectively preventing the
weight from changing its value. In the worst case, this may completely stop the
neural network from further training. The main cause of this behaviour relies
in the choice of the activation function, indeed some functions tends to squash
their input into a very small output range due to their strong non-linearity.
As a result, there are large regions of the input space which are mapped to an
extremely small range. In these regions of the input space, even a large change
in the input will produce a small change in the output, hence the gradient is
small. This phenomena heavily increases when multiple layers characterized by
these activation function are stacked together, since each layer tends to squash
its input to a small range output. A common solution is the employment of
ReLU activation function, where for inputs x > 0, the output is not squashed
but maintains its linearity.
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Chapter 4
Speech Features and Datasets

4.1 Signals and Representations

In the audio processing field, data-driven models are not directly fed with cap-
tured signals, but with features extracted from captured data, whose purpose
is to represent the signals themselves. Indeed, although the audio signal is
extremely rich in terms of carried information, its direct employment implies a
severe computational cost. This issue is dealt with by extracting features from
the signal. In addition, features aim to enhance particular characteristics and
behaviours of the signals, which are related to the task under study, while tend
to hide unessential information.

In this section a brief introduction of audio signals is initially presented, after
that, employed features are described.

4.1.1 Signals

Sound is generally defined as a vibration that typically propagates as an audible
wave of pressure, through a transmission medium such as a gas, liquid or solid.
The branch of physics dealing with the study of mechanical waves is defined as
Acoustics.

Acoustics covers an extremely wide set of different field of studies, such
as aeroacoustics, acoustic signal processing, architectural acoustics, bioacous-
tics, electroacoustics, environmental noise and soundscapes, speech, underwater
acoustics, vibration and dynamics and so forth. However, the objective of this
section is not to cover all these aspects, but to give a brief overview of some
crucial details of Acoustics which are concerned in this thesis.

Speech

Speech is human vocal communication using language. Each language uses
phonetic combinations of a limited set of perfectly articulated and individual-
ized vowel and consonant sounds that form the sound of its words, and using
those words in their semantic character as words in the lexicon of a language
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according to the syntactic constraints that govern lexical words’ function in a
sentence. In speaking, speakers perform many different intentional speech acts,
e.g., informing, declaring, asking, persuading, directing, and can use enunci-
ation, intonation, degrees of loudness, tempo, and other non-representational
or paralinguistic aspects of vocalization to convey meaning. In their speech
speakers also unintentionally communicate many aspects of their social posi-
tion such as sex, age, place of origin, physical states, emotions, education or
experience, and the like.

Due to the undeniable importance of speech communication, machine sys-
tems capable of automatically capture speech have been heavily studied by
scientists in the last decades.

Psychoacoustics

Psychoacoustics is the scientific study of sound perception, or, in other words,
how humans perceive various sounds. More specifically, it is the branch of
science studying the psychological and physiological responses associated with
sound. It is an interdisciplinary field of many areas, including psychology,
acoustics, electronic engineering, physics, biology, physiology, and computer
science. For this reason it is in the interest of this thesis.

Hearing is a sensory and perceptual event. Indeed, when a person hears
something, that something arrives at the ear as a mechanical sound wave trav-
elling through the air, but within the ear it is transformed into neural action
potentials. In particular, the human hearing system is composed by several
different stages, which influence the perception of sounds. In details, sound is
initially captured by the outer ear, which has a directivity pattern and is more
sensible to certain frequencies. After that, another filtering behaviour char-
acterizes the external auditory channel and the subsequent eardrum. Finally,
the inner ear, converts sound waveforms into neural stimuli by means of hair
cells located in the cochlea, which respond differently for signal frequency and
phase.

The human ear can nominally hear sounds in the range 20 Hz to 20000 Hz.
The upper limit tends to decrease with age; most adults are unable to hear
above 16 kHz. Frequency resolution of the ear is 3.6 Hz within the octave of
1000 — 2000 Hz. In addition, even smaller pitch differences can be perceived
through other means, for example, the interference of two pitches can often be
heard as a repetitive variation in volume of the tone. The semitone scale used
in Western musical notation is not a linear frequency scale but logarithmic.
Other scales have been derived directly from experiments on human hearing
perception, such as the Mel scale and Bark scale, which are approximately
logarithmic in frequency at the high-frequency end, but nearly linear at the
low-frequency end. The intensity range of audible sounds is enormous. Human
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ear drums are sensitive to variations in the sound pressure, and can detect
pressure changes from as small as a few micropascals to greater than 100 kPa.

Reverberation

Reverberation, in psychoacoustics and acoustics, is a persistence of sound after
the sound is produced. Reverberation is created when a sound or signal is
reflected causing a large number of reflections to build up and then decay as
the sound is absorbed by the surfaces of objects in the space, such as furniture,
people and air. This is most noticeable when the sound source stops but the
reflections continue, decreasing in amplitude, until they reach zero amplitude.
Reverberation is frequency dependent, being influenced by the room shape and
its size, plus the materials present in its surfaces. The length of the decay,
or reverberation time, receives special consideration in the architectural design
of spaces which need to have specific reverberation times to achieve optimum
performance for their intended activity. In comparison to a distinct echo, that
is detectable at a minimum of 50 to 100 ms after the previous sound, rever-
beration is the occurrence of reflections that arrive in a sequence of less than
approximately 50 ms. As time passes, the amplitude of the reflections grad-
ually reduces to non-noticeable levels. Moreover, reverberation is not limited
to indoor spaces as it exists in forests and other outdoor environments where
reflection exists.

4.1.2 Features
Mel Frequency Cepstral Coefficients

MFCCs is a well-known set of features widely employed in audio applications
[56], especially for the purpose of representing speech data. Indeed, the weight-
ing operation performed by the Mel bands emulates the frequency response of
the human hearing organ, which is sensible at its most to speech frequencies.

The extraction procedure requires few stages. An excerpt of the signal is
transformed in the frequency domain by means of STFT. The obtained spec-
trum is hence mapped to the mel scale by using triangular overlapping windows.
For each mel frequency the logs of the powers are considered, to whom the Dis-
crete Cosine Transform (DCT) is applied. The resulting spectrum are the
MFCCs. Furthermore, a common procedure consists in concatenating MFCCs
with their first and second derivatives, in order to provide a temporal evolution
of the signal. The two derivatives are referred to as A and AA, respectively.
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LogMel

LogMel features have been recently applied in the field of acoustic modelling
and music structure analysis [57, 58], leading to encouraging results. The
procedure for LogMel extraction shares several aspects with the one described
for MFCCs features. In details, a set of mel-band filters is applied to the
spectrogram of the signal, from which the logarithm of the power spectrum
for each band is considered. However, due to the absence of the DCT, no
spatial compression is performed to the features, which remain correlated in
the frequency domain. In this work, the employment of LogMel matches the
choice of using some of the systems proposed in the next chapters (e.g., CNNs),
where the objective is to exploit the intrinsic correlation of input features in
order to highlight repetitive patterns present in the features.

Envelope-Variance Measure

In a closed environment, the evolution of the dynamic range of an audio signal
is deeply affected by reverberation. The Envelope-Variance Measure (EVM)
estimates the fading behaviour of the intensity envelope. The feature extraction
firstly requires the application of a set of Mel sub-bands which filter the audio
signal. For each of them the energy is computed in the log domain, considering
a sliding window in the time domain. Finally, the EVM is evaluated as the
variance of these sub-band Mel energies.

Pitch

As the name states, the pitch feature describes the main tone present in an
audio excerpt, which is highly characteristic in the case of human speech. The
extraction procedure relies on the Sub-Harmonic-Summation (SHS) method
described [59]. In details, the audio signal is framed, and for each frame the fre-
quency transformation in log-domain is applied. Hence, along the log-frequency
axis the amplitude spectrum is shifted, where a shift correspond to a compres-
sion on a linear scale. For each shift the spectrum is scaled and then summed.
This procedure creates the sub-harmonic summation spectrum, where peak
picking is applied to determine pitch.

Wavelet Coefficient and Linear Prediction Error

The Wavelet Coefficient (WC) and Linear Prediction Error (LPE) feature set
relies on the non-stationary components of the audio signals; it has been re-
cently employed for the boundary detection in [60]. Initially, the framed audio
signal undergoes the Discrete Wavelet Transformation (DWT), from which 6
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sub-bands are obtained. Subsequently, each wavelet-domain sub-band is fil-
tered by a set of Linear Prediction Error Filters (LPEFs) in order to extract
Forward Prediction Errors (FPE). In addition, the first derivatives may be
obtained from wavelet coefficients and then added to the features.

Relative Spectral transform - Perceptual Linear Prediction

The feature set relying on the RelAtive SpecTrAl (RASTA) transform and the
Perceptual Linear Prediction (PLP) is generally referred to as RASTA-PLP
[61]. In the research field, it has been assessed the suitability of this feature in
order to represent the speech signal. The feature extraction procedure initially
computes the amplitude spectrum of the audio signal in the log frequency
domain. Subsequently, the obtained spectral components are separately filtered
in the time domain by considering the previous frames. The spectrum is then
transformed from the log frequency domain to the linear one. The PLP curve
is finally multiplied in order to simulate the corresponding curve of the human
hearing.

Amplitude Modulation Spectrum

The Amplitude Modulation Spectrograms (AMS) is a spectro-temporal feature
set introduced in [62], with the purpose of dealing with extremely noisy and
reverberant environments. The extraction procedure firstly requires the audio
signal to be processed by means of STFT. From the resulting spectrogram the
envelope is evaluated by squaring the complex values magnitude. Furthermore,
the Bark scale decomposition is applied, which relies on a set of 9 filters target-
ing critical bands. Thus, for each sub-band the long-term spectral envelope is
computed by a second STFT. As result, the complex AMS coefficients are ob-
tained, in which features regarding time, acoustic and modulation frequencies
are carried.

Generalized Cross Correlation with Phase Transform

This feature set is strictly related to the localization task. In details, due to
sound wave propagation, a time delay occurs between a sound source and and
a listening microphones. Furthermore, when a microphone pair is considered,
a time delay A7 generally occurs between the two relative recorded signals.
Once the time delay A7 is known, it is possible to calculate the DOA by the
following equation:

0 = arctan <C dAT> (4.1)
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where 6 is the DOA, ¢ the speed of sound and d the distance between the
two microphones. In real world application noise and reverberation yield to
a difficult evaluation of the precise time delay A7, hence several algorithms
have been proposed for this purpose. One of them relies on the GCC function,
plus the weighting procedure Phase Transform (PHAT). As result, the features
named GCC-PHAT is obtained [63].

In particular, considering two different microphones 4, j, the extraction pro-
cess relies on the Crosspower Spectrum Phase Coherence Measure (CSPCM):

eI df (4.2)

eyt = [ S
—oo 1Xi(f,0)]1X;(F,1)]
where X;(f,t) is the Short-Time Fourier Transform of the signal z;(¢) coming
from the i-th microphone. In details, the numerator consists in the cross-
correlation of the two signals, while the denominator act as a weighting factor.
In many applications, such as [64], it is sufficient to consider the maximum of
Equation 4.2 for estimating the time delay:

ArT;; = argmax Cy;(T, t). (4.3)

however, in the case of reverberant and noisy environment this value is not
reliable.

Hence, in this thesis work the GCC-PHAT Patterns, which consists in Equa-
tion 4.2, is employed as features, following the approach described in [65]. Re-
garding to the proposed approach, preliminary experiments demonstrated that
TDOA estimation is not sufficiently reliable as input feature, thus GCC-PHAT
Patterns are selected, which have been previously exploited in [65].
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4.2 Datasets

In this thesis the proposed VAD and SLOC algorithms addresses indoor re-
verberant environments. These scenarios deserve much interest since they are
part of our day life, and they are subjected to numerous issues which may de-
grade the performance of the proposed frameworks. In details, discussed mod-
els must deal with reverberation, which is strictly dependent to the observed
room, cross-talk from the room under study and adjacent areas if present, and
noise generated from different sources. To better simulate this context, two
main scenarios are here considered. A multi-room scenario is discussed in Sec-
tion 4.2.1, which is characterized by several rooms and results extremely com-
plex. It is suitable for developing strategies relying on the parallel exploitation
of signals recorded from different microphones installation, in order to enhance
the accuracy and generalization capability of the model. On the other hand,
single-room recordings are also discussed in Section 4.2.2, which combined with
speech data described in Section 4.2.3 are suitable to simulate a simpler case
study compared to the multi-room one. This strategy aims to give the tools
for better understanding such mechanisms ruling binaural sound localization.
Indeed, this task will be addressed with novel neural models, whose purpose is
to replicate the human auditory system.

4.2.1 Multi-room Environment

Most of the research conducted in this thesis targets a multi-room scenario.
Indeed, considering a multi-room and a single-room scenario, they undoubt-
edly share some common aspects, however the first can be considered closer
to a real-world application. In particular, both scenarios are subjected to
cross-talk between multiple speakers, however in the multi-room environment
this event even occurs between speakers located in different rooms. Hence, a
model for speaker detection and localization must be robust against utterances
pronounced in rooms different from the one under observation. A similar is-
sue raises for background noise. Indeed, even noise coming from other rooms
must be dealt with by VAD and SLOC algorithms. Last but not least, room-
dependent reverberations affect signals in different manners. In conclusion,
considering a real world application where noise and speech signals are present
inside and outside the room under study, a multi-room scenario succeeds in
replicating this working condition.

DIRHA

The DIRHA dataset [66] is the multi-room environment considered in this thesis
work. It is characterized by diverse scenes, rooms, microphones and noise
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conditions!

. In details, the apartment where the dataset has been recorded
consists in five rooms, each equipped with several microphones, for a total
amount of 40. The microphones deployment changes from room to room, as
depicted in Fig. 4.1: both linear and circular arrays are present, with the linear
ones placed on the walls of all rooms, while the circular ones are placed on the

ceiling of the living room and of the kitchen only.
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(a) Floorplan (b) Kitchen

Figure 4.1: The map of the apartment used for the DIRHA project (a). Figures
(b) and (c) show the rooms taken into account in this thesis work,
with the disposition of their relative microphones.

The dataset is composed of two subsets, named Simulated and the Real. For
each of them several scenes have been recorded, composed of typical situations
observable in a domestic context. As reported in Table 4.1, the two subsets
differ in terms of scenes and total length: in the Simulated set the scenes
length is fixed to 60 seconds, while it varies in the Real set. In addition,
the latter has been recorded with persons moving in the rooms and speaking
towards different directions throughout the scenes, whilst the Simulated has
been obtained by convolving a fixed set of measured Room Impulse Responses
(RIRs) with recorded signals. Furthermore, the Simulated dataset lasts almost
four times the Real one. The Simulated subset is also characterized by a lower
SNR compared to the Real one, plus overlapping speech does not occur in the
latter.

Two rooms of the dataset are addressed in this thesis work, i.e. the Kitchen
and the Living Room, due to three main aspects. First of all, these rooms
consist in the area of a home-environment where most of the events take place.
In addition, being the widest rooms of the apartment, the localization task is
more challenging. Finally, the available microphones are higher in number, with
both wall and ceiling installations, making possible advanced multi-channel
systems.

Two different versions of the Simulated DIRHA dataset are available and

lhttp://dirha.fbk.eu/simcorpora
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Real Simulated
Nr. of Scenes 22 80
Total Duration 21.5 min. 80 min.
12.9% 23.6%
Speech Percentage 2.8 min. 18.9 min.
Source human (moving) | loudspeaker (static)
Background quiet various
Noise Source Rate low high
Overlapping Events no yes

Table 4.1: Main differences between the DIRHA Real and Simulated subsets.

are then taken into account in this work. The EVALITA contains scenes of
Italian spoken utterances. Diversely, the HSCMA dataset counts folders equally

divided in Italian, Greek, German and Portuguese languages.

4.2.2 Single-room Environment

The multi-room environment described in Section 4.2.1 deserves numerous
studies, which target the employment of multi-channel or multi-room data.
However, due to its complexity, a high number of variables influences the per-
formance of the proposed models. Hence, when novel studies such as end-to-
end sound localization are addressed, it is reasonable to focus on a simpler case
study, in order to reduce that number of variables. Along with this, the inter-
est of this thesis goes to binaural sound localization, where the objective is to
simulate and understand certain aspects of the human hearing system. Never-
theless, binaural sound localization is not possible within the DIRHA corpus,
and makes necessary to address another acoustic scenario. Thus, the single
room environment will be taken into account, where Binaural Room Impulse
Responses (BRIRs) are employed to build the training and testing datasets. In
particular, the localization task concerns the azimuth (DOA) of the speaker,
or its elevation, while the distance from the speaker and the listener is fixed.

Surrey database

The Surrey database [67] contains BRIRs captured from real rooms. These
responses have been recorded at the University of Surrey from four rooms
of different sizes that exhibit a range of acoustical characteristics. A Cortex
(MK.2) Head And Torso Simulator (HATS) and Genelec 8020A loudspeaker
have been used to capture the responses. Sine sweeps signals have been played
by the loudspeaker, being then deconvolved to produce the impulse responses.
For the anechoic condition, a similar procedure have been used and impulse re-
sponses were obtained using a pseudo-anechoic approach whereby the responses
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were captured in a large room and truncated before the first reflection. BRIRs
available within these recordings do not concern the elevation of the speaker,
which is assumed to be at the same height from the ground of the listener.

SADIE database

Since no recordings are available in the Surrey database concerning different
speakers elevation, an alternative set of recording is considered. The SADIE
database [68] contains a set of Head Related Impulse Responses (HRIRs) mea-
sured on a Knowles Electronic Manikin for Acoustic Research (KEMAR) 45BC
binaural mannequin. The database contains measurements spanning across
many different azimuth and elevation locations, distributed in steps of 5° in
the azimuth plane and 10° in the elevation plane. All the measurements are
taken with an Equator D5 loudspeaker positioned 1.5 m from the centre of the

KEMAR head. Measurements take place in anechoic environment.

OpenAir

OpenAIR library [69] is an online resource which allows users to share im-
pulse responses and related acoustical information. An open-source software
plus tools and guidelines are provided within this project, with the purpose
of rendering the captured RIRs and to spread common practice for recording.
The database accommodates impulse response datasets captured according to
different measurement techniques and relies on robust spatial audio coding
formats for better distributing this information.

RIRs provided within this library will be combined with SADIE HRIRs in
order to simulate a reverberant environment.

4.2.3 Speech Corpora

Here a brief description of the pure speech datasets employed in this thesis is
given. Indeed, some case studies addressed in this work, such as binaural sound
localization or data augmentation technique, require the development of brand
new datasets. This operation is generally pursued by convolving measured or
generated RIRs with speech data present in publicly available corpora.

TIMIT

The TIMIT corpus [70] has been largely used by the speech processing com-
munity [28, 33, 34, 39, 48]. It was released in 1993 and it consists in read
speech designed to provide speech data for acoustic-phonetic studies and for
the development and evaluation of automatic speech recognition systems. 630
speakers of eight major dialects of American English have been employed for
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the dataset development, and each speaker reads ten phonetically rich sen-
tences. The TIMIT corpus includes time-aligned orthographic, phonetic and
word transcriptions as well as a 16-bit, 16 kHz speech waveform file for each
utterance. Corpus design was a joint effort among the Massachusetts Insti-
tute of Technology (MIT), SRI International (SRI) and Texas Instruments,
Inc. (TI). The speech was recorded at TI, transcribed at MIT and verified and
prepared for CD-ROM production by the National Institute of Standards and
Technology (NIST).

LibriSpeech

The Librispeech corpus [71] was released in 2015. It is a publicly available
corpus suitable for training and evaluating speech recognition systems. The
LibriSpeech corpus is derived from audiobooks that are part of the LibriVox?
project, and contains 1000 hours of speech sampled at 16 kHz. In [71] a Kaldi
[72] based speech recognition system trained on the LibriSpeech corpus out-
performs the same system trained on the Wall Street Journal (WSJ) test sets.

This corpus is mainly created for the speech recognition task, and relies on
two alignment stages with the purpose of accurately align speech with text, a
data segmentation stage dealing with long silences, and a final selection and
partition stage dividing the corpus into different subsets.

2https://librivox.org
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Chapter 5

Voice Activity Detection

This chapter proposes several DNN-based models for VAD. Two main studies
are conducted. The first one, discussed in Section 5.1, compares several neural
architectures plus diverse audio features in order to highlight pros and cons of
each one of them. After that, in Section 5.2, the most reliable model previously
observed is taken into account for further advancements. This chapter gives
the theoretical background and assesses the winning strategy necessary to the

research then conducted in Chapter 7.

5.1 Comparison of several neural architectures

5.1.1 Preliminaries and Problem Statement

In recent times, promising VAD approaches take advantage of deep neural
networks. In [11] two different architectures have been successfully used for
this task, in particular a DBN exploiting multiple domain feature fusion, and
a BLSTM recurrent neural network. Advancements are then discussed in [12].
Furthermore, in [73] an Long Short Time Memory (LSTM)-VAD using RASTA-
PLP features outperforms three different VAD algorithms applied to speech
recognition of Hollywood-movies audio. Last but not least, CNNs have been
recently compared to other DNNs for VAD task [16].

These works drive the research of this section. Indeed, the intent here is
to analyse the application of several DNNs for VAD to show advantages and
disadvantages of each DNN. For this purpose, two different datasets are taken
into account, in order validate the achieved results.

5.1.2 Proposed Method

The block diagram of the proposed DNN-mVAD is shown in Fig. 5.1. The
first stage of the algorithm consists in the features extraction from the input
audio signals. These features then feed the classifier, which is based on a
DNN. The investigated networks have an input layer with the same dimension
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Figure 5.1: Block diagram of the proposed Deep Neural Network Multi-Room
VAD in a 2 rooms application.

of the feature-set, followed by one or more hidden layers. In the case of n
rooms, the output layer is a top discriminative layer with K = 2" units and
softmax activation function, in order to perform a multi-class classification
task. Hence, the networks have 2™ output classes, one for each condition of
speech /non-speech in every considered rooms. In particular, the outputs of the
softmax layer represent the joint probability of the presence or the not-presence
of speech in a frame of all the selected rooms. For example, considering two
rooms (n = 2) and denoting with S; = 1 the presence of speech in the room i

and with S; = 0 its absence, the outputs of the four softmax neurons are:

Cy = P(S1=0,5 =0), (5.1)
Cy=P(S;=0,5 =1), (5.2)
Cs3=P(S;=1,5 =0), (5.3)
Ci=P(S; =1,5 = 1). (5.4)

For simplicity of notation, the frame index has been omitted.

The joint probabilities are then marginalized in order to obtain the separate
speech probabilities of each room. As last stage, a thresholding block plus an
hangover scheme is applied in order to handle isolated speech detections and
to reduce the early non-speech classification.

Feature Extraction

The feature extraction stage operates on signals sampled at 16 kHz and frame
rate equal to 100 Hz (10 ms). Six features are employed in this research, being
previously described in Section 4.1.2. In particular, the feature sets are EVM,
Pitch, WC-LPE, MFCCs, RASTA-PLP, AMS. MFCCs are extracted along
with their first derivative. Further details are reported in Table 5.1. Finally,
features are concatenated as a unique vector.
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Index Name Feature size Acronym Frame Size (ms)
1 EVM 1 Ev2 25
2 Pitch * 1 Pi 50
3 WC-LPE 24 We 25
4 MFCC * 26 Mf2 25
5 RASTA-PLP * 54 Ra2 25
6 AMS 135 Am 25

Table 5.1: Indexed list of features, their dimensionality and the acronym used
during the experiments. The * indicates that the features are ex-
tracted using the openSMILE toolkit [74].

Neural Networks

A total of 4 different neural networks is investigated in this research. They are a
DBN, a MLP, a BLSTM and a CNN, which have been previously introduced in
Section 3.2. In particular, for the DBN, the MLP and the BLSTM, the following
network topologies have been explored, being composed by 1 or 2 hidden layers
with respectively 4,8, 10,15, 20, 25,40 units per layer. With regards to CNN,
a temporal context is employed for better representing the input signal. This
procedure is implemented in order to fairly compare with the BLSTM-based
model, which also makes use of the temporal evolution of the signal. In this
case study, the time context is created by concatenating the feature vectors of
a certain amount of consecutive frames. This yields a 2-D matrix of feature
values related to a single room. Then, the final input matrix is obtained by
stacking the single room matrices. Furthermore, several CNN parameters have
been investigated. In details, convolutional kernel size using of shape 3x3, 4x5,
4x9, 6x6. and pooling equal to 1x1, 2x2, 3x3 have been analysed. After that,
number of kernels is varied in the range 8, 16, 24, 32, 40, 64. Architectures
with 1 or 2 layers are explored. The latter is investigated by making use of
combinations of the number of kernels in the range listed above. Finally, the
neuronal dense layer is tested with 50, 100, 200, 500 or 1000 neurons. Deep
architectures exploiting two or three neuron layers were explored too, but no

improvements were observed.

Marginalization

In the third stage of the algorithm the joint probabilities given by the network
are marginalized. In the case of two rooms:
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The output class with all non-speech probabilities P(S; = 0),V.S; is discarded,
while all the other conditional probabilities are summed in order to obtain the
probability of speech condition for a specified room P(S;).

Decision and Hangover

P(S; = 1) and P(S2 = 1) are compared to a threshold in order to obtain a
binary signal. In order to reduce false or failed speech recognitions, a simple
smoothing algorithm has been employed in this work. It is called hangover,
and it relies on a counter. In particular, if two speech frames are consecutive,
the counter is set to a predefined value. On the contrary, for each non-speech
frame, the counter is decreased by 1. The actual frame is classified as speech
only if the counter is positive. The value of the counter is set equal to 8.

5.1.3 Experimental Setup

Experiments are conducted by means of the k-fold cross-validation technique,
thus for each fold three subsets are obtained, being the training, the validation
and the test set. The first two are employed for the network training, while
the last one for its testing. In details, k is set to 10 for the Simulated subset,
leading to a 64-8-8 scenes split, while k& = 7 come for the Real subset, with
a 16-3-3 split. A common optimization strategy is employed for the 4 DNNs,
which relies on a first features selection, a network size selection, a second
features selection, a microphone selection and a final features selection. The
performance has been evaluated using the False Alarm rate (FA), the Deletion
rate (Del) and the overall Speech Activity Detection (SAD) defined as follows:

Del = Nt g = Mo gap - Net O

Nsp anp anp+6Nsp’

where Ngei, Nq, Nsp and Ny, are the total number of deletions, false alarms,

(5.7)

speech and non-speech frames, respectively. The term S = N,,/Ngp, acts as
regulator term for the class unbalancing. In Table 5.2 training parameters
for the four networks are reported. Different GPU-based toolkits have been
employed for the experiments: CURRENNT [75] for BLSTM-mVAD, a custom
version of GPUMLIb [76] for DBN-m/MLP-mVAD and Keras ( Theano-based)
for CNN-mVAD [49].

DIRHA Dataset

The multi-room environment [66] previously described in Section 4.2.1 has
taken into account for testing the proposed method. Experiments takes place
in the kitchen and in the living room of the DIRHA dataset. In this case study,
both Simulated both Real subset are considered.
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CNN BP Random ES Ir=25-10"°

Table 5.2: Comparison of training algorithm parameters. BP stands for “back-
propagation”, BPTT indicates “backpropagation through time” and
ES “early stopping”.

5.1.4 Main Results
Simulated Subset

In this section, the results obtained for the Simulated dataset are discussed.
The first features selection makes use of K2L and L1C microphones, for kitchen
and living room, respectively. The neural network layout is fixed, in particular
two hidden layers of 10 units each are used for DBN/MLP/BLSTM-mVAD. In
this stage, the temporal context exploited by CNN is investigated for the values
9,13, 15, 17, 21 frames, being finally set to 13 frames. The CNN here employed
counts 16 convolutional kernel and 100 hidden nodes. The first part of Table 5.3
shows the best performing feature set in term of SAD for the different mVADs.
After that, the neural network architectures have been investigated, where
more than 50 layouts have been tested for each neural classifier. In the case of
CNN, the best network counts two convolutional layers, the first having 4x5
convolutional kernels with 3x 3 pooling, and the second with 3x3 convolutional
kernels and no pooling. The most performing networks are reported in the
second part of Table 5.3.

After that, employed features goes again under study, resulting in new con-
figuration compared to what observed in the first stage. Hence, the new neural
architectures are capable of better exploiting a larger amount of features. Mi-
crophones are then varied, ending in different microphone pairs employed by
each network. Indeed, in Fig. 5.2, the box-plot with mean, standard deviation,
maximum and minimum values of SAD is reported for all the microphones
pairs. Please note that the DBN-mVAD is highly sensible to microphone posi-
tioning, although reaching the absolute lowest SAD. On the contrary, the best
result in terms of mean and standard deviation is observed for the CNN-mVAD.
Furthermore, the convergence of the DBN-mVAD is not always guaranteed, be-
ing the lowest value of achievable SAD equal to 50%. Finally, the last feature
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selection stage mostly confirms the features sets previously achieved. As result,

DBN shows to be the most performing network, with a final score of 5.8% SAD.

1% Feat. Sel. Feature-set Del (%) Fa (%) SAD (%)
DBN Mf2Ra2WcEv2 5.8% 9.1 7.4
BLSTM Mf2WcAm 9.1 19.4 14.3
MLP Mf2Ra2AmEv2 6.5 6.6 6.5
CNN PiMf2Ev2 10.7 12.8 11.8
Net. Size Sel. Layout Del (%) Fa (%) SAD (%)
DBN 20,20 7.1 6.5 6.8
BLSTM 40,40 5.8 19.5 12.6
MLP 25,4 5.9 6.2 6.0
CNN 16,24 + HN 100 7.3 11.1 9.2
274 Feat. Sel. Feature set Del (%) Fa (%) SAD (%)
DBN PiM{2WcAmEv2 5.1 6.5 5.8
BLSTM Mf2WcAmEv2 8.0 8.0 8.8
MLP Mf2Ra2AmEv2 5.9 6.2 6.0
CNN PiMf2Ra2WcAmEv 7.2 9.1 8.2
Mic. Sel. Microphones Del (%) Fa (%) SAD (%)
DBN K2L, L1C 5.6 6.5 5.8
BLSTM KA5, LA4 6.4 7.7 7.0
MLP K2L, L1C 5.9 6.2 6.0
CNN K2L, LA4 5.9 7.2 6.5
3™ Feat. Sel. Feature set Del (%) Fa (%) SAD (%)
DBN PiM{2WcAmEv2 5.1 6.5 5.8
BLSTM PiMf2WcAm 5.3 8.3 6.8
MLP Mf2Ra2AmEv2 5.9 6.2 6.0
CNN PiMf2Ra2WcAmEv2 5.9 7.2 6.5

Table 5.3:

Comparison between different DNN-mVAD percentage of deletion
rate (Del), false alarm rate (FA) and overall speech activity detection
(SAD) for Simulated dataset. Marked in bold is the lowest SAD for
each optimization step.
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Figure 5.2: Box-plot of the resulting SADs for the microphone selection exper-
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Real Subset

Here the results for the Real dataset are reported. The initial feature selection
takes place following the same neural network configurations considered for
the Simulated subset. Selected microphones are K2L and L1C. Results are
reported in Table 5.4. Please note that BLSTM and especially MLP reach
poor performance within this stage, meaning that the two networks do not
properly converge. The temporal context employed by the CNN is investigated
in this stage consistently with the values used for the Simulated subset. As
result, this value is set to 15 frames. The network size selection stage does not
improve significantly the mVAD. Although several network architectures have
been tested, the layout chosen for the first feature selection is still the best
performing among the ones tested. Regarding the CNN, the best performing
network has only one layer with 4x5 convolutional kernels plus 2x2 pooling.
The second feature selection has been performed only on the MLP-mVAD, since
no improvements are observed with the other models. A proper convergence of
the network is here achieved.

15% Feat. Sel. Feature-set Del (%) Fa (%) SAD (%)
DBN PiMf2Ra2WcAmEv2 2.8 2.9 2.8
BLSTM Ra2Am 6.7 32.3 19.5
MLP Mf2Ra2 38.8 48.3 43.6
CNN AmEv2 2.9 6.7 4.8
Net. Size Sel. Layout Del (%) Fa (%) SAD (%)
DBN 10,10 2.8 2.9 2.8
BLSTM 10,10 6.7 32.3 19.5
MLP 4 33.1 53.3 43.2
CNN 16 + 100 HN 2.9 6.7 4.8
27 Feat. Sel. Feature set Del (%) Fa (%) SAD (%)
DBN PiMf2Ra2WcAmEv2 2.8 2.9 2.8
BLSTM Ra2Am 6.7 32.3 19.5
MLP PiM{2WcAmEv2 3.3 3.6 3.5
CNN AmEv2 2.9 6.7 4.8
Mic. Sel. Microphones Del (%) Fa (%) SAD (%)
DBN K2L, L3L 2.9 2.3 2.6
BLSTM KA5, LA4 8.2 25.8 17.0
MLP K2L, L1C 3.3 3.6 3.5
CNN KI1R, LA4 2.9 5.0 4.0
3™ Feat. Sel. Feature set Del (%) Fa (%) SAD (%)
DBN PiMf2Ra2WcAmEv2 2.9 2.3 2.6
BLSTM Ra2Am 8.2 25.8 17.0
MLP PiMf2WcAmEv2 3.3 3.6 3.5
CNN AmEv2 2.9 5.0 4.0

Table 5.4: Comparison between different DNN-mVAD percentage of deletion
rate (Del), false alarm rate (FA) and overall speech activity detection
(SAD) for Real dataset. Marked in bold is the lowest SAD for each
optimization step.

After that, the microphone selection stage takes place, where the best overall
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performance for the Real dataset is reached. Here it is possible to observe
the robustness of the CNN against the position of the microphones, shown in
Fig. 5.3. Indeed, although DBN and MLP reach a lower SAD, their behaviour
is not reliable in terms of mean and standard deviation. The last features
selection stage confirms the results previously achieved.

50
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Figure 5.3: Box-plot of the resulting SADs for the microphone selection exper-
iment in the case of the Real dataset.

Conclusions

In general, the superiority of the DBN-mVAD is due to the ability of the pre-
training phase to speed up the convergence during the training of the network.
The performance of the MLP-mVAD is always below the DBN-mVAD, as proof
of the benefits of non-random initialization of the weights of these network ar-
chitectures. Interesting results are observed in the microphone selection stage.
The CNN and BLSTM architectures do not reach results comparable to the
DBN and MLP, but they have a more reliable response to the sensor place-
ment. The independence from a particular microphone position is a remarkable
aspect in real application scenarios. In particular, the CNN-mVAD guarantees
the lowest mean and standard deviation for both the datasets. In addition,
there is evidence that the knowledge of the temporal context, as in the case of
memory-enhanced units of the BLSTM or the CNN, means robustness for the
system, especially with respect to the spatial origin of the input signals and to
the used features.

As result, CNNs are selected for further investigation in terms of speaker
detection. Indeed, although this neural architecture does not achieve the best
result in absolute sense, several advancements are still possible, targeting em-
ployed features, features organization, training data and training procedure.

44



5.2 Further Advancements in CNN-based VAD

5.2 Further Advancements in CNN-based VAD

In this section further advancements of the models discussed in Section 5.1
are proposed. The focus now goes on the employment of data captured from
multiple microphones. Extracted features are then arranged in a 3-D tensor,
so that their cross-correlation can be properly processed by CNNs.

5.2.1 Preliminaries and Problem Statement

From the research conducted in Section 5.1, remarkable results have been ob-
served when the mVAD model relies on CNNs. Indeed, although this model
does not reach the lowest SAD, its stability in terms of microphone placement
drives this new research, which targets the simultaneous employment of data
recorded by multiple microphones. In details, the objective of this work is the
employment of 3-D kernels of CNNs. This procedure is the same one adopted
for image processing with CNN, where the three separated image channels (e.g.,
RGB) are commonly processed by the network. It is accurately discussed in
Section 3.2. This strategy matches the multi-room environment, where due
to speech signal degradation caused by background noise and reverberation,
a multiple sensor (i.e., microphone arrays) deployment is generally necessary.
Hence, CNNs make possible the virtuous employment of data coming from
different microphone installation through its 3-D kernels.

Along with this, only one features set feeds the DNN models. Indeed, the
previous study makes use of a unique matrix obtained by stacking different fea-
tures. Nevertheless, this procedure leads to a hybrid matrix of input features,
which cannot be properly exploited by a CNN, since convolutional kernels are
forced to process adjacent features where related patterns may be extremely
variable. Furthermore, the employment of multiple features requires several
time-consuming feature selection stages. For this reason, a new a single fea-
ture set is here employed. A comparative model based on MLP is considered
for evaluating the model performance. In this case study, only the Simulated
dataset is taken into account for testing the models. Indeed, consistent results
have been observed in the previous research between the Simulated and Real
subset, however the latter is characterized by a smaller amount of data, which
can be insufficient for a proper training of the CNN-based model, which has a
considerable number of weights to train, compared to the MLP-based one.

5.2.2 Proposed Method

In order to be consistent with the previous research, a model similar to the
one described in Section 5.1.2 is here taken into account. It consists in an
initial features extraction stage, a DNN classifier, a marginalization procedure
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dealing with the multi-class problem, and a final post processing stage. This
model is referred to as one network per two rooms, N microphones per room
(2R NMxR). Several differences are introduced here compared to the previous
work. In details, only two DNNs are here taken into account, being the MLP
and the CNN. In addition, LogMel features feed the network, instead of a set
of 6 different features. They have been previously discussed in Section 4.1.
Their extraction relies on a total of 40 mel-band, while frame size is equal
to 25ms and the frame step is equal to 10ms, on a 16 KHz sampled audio.
These features have been selected with the purpose of exploiting the convolution
process performed by convolutional kernels. Furthermore, it is desirable to be
independent from an extensive features selection stage.

The organization of the input features has two main novelties. The first one
is the use of strides combined with frame context. In particular, this parameter
pilots the frame selection for building the input matrix. When strides is equal
to one, adjacent frames are considered, while a jump in the selection process
is introduced for strides bigger than one. Hence, a 2-D matrix is obtained for
each microphone, by combining context and features, after that, microphone-
dependent matrices are stacked in a parallel manner, leading to a 3-D matrix.

In addition, a VAD model for single room is considered in this research. In
details, this model is referred to as one network per room, one microphone per
room (1R 1MxR). It relies on features extracted by only microphone present in
the room under study, plus it acts as a VAD only for the considered room. As
result, two outputs are present in the model, being the speech and non-speech
probability; no marginalization is present here. The purpose of this model is to
directly test the reliability and effectiveness of the employment of data recorded
in different environments. Finally, marginalization is applied coherently to the
previous model, plus smoothing of the network predictions is performed with
hangover technique, being described in Section 5.1.2, and of which counter is
set to 8.

5.2.3 Experimental Setup

The analysis of the proposed method relies on a two-stage strategy: a net-
work size selection and a microphone combination selection. Each one of the
proposed models goes through these two optimizations. Metrics and cross-
validation are consistent with the one employed in the previous section and
described in Section 5.1.3. MLP networks are trained with a fixed momentum
of 0.9, learning rate equal to 0.01 and a Gaussian distribution with zero mean
and standard deviation of 0.1 for weight initialization. For the CNN networks
a fixed learning rate of 2.5 - 1072 and a random weight initialization is used.
Simulations take place against the Simulated subset of the DIRHA dataset,
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previously addressed in Section 4.2.1.

5.2.4 Main Results

Initially the network size selection is performed. MLP-mVAD network topolo-
gies are explored by means of 1 or 2 hidden layers with respectively 4, 8, 10,
15, 20, 25, 40 units per layer and all their combinations. For CNN-mVAD, due
their greater number of hyperparameters and increased training time, a com-
prehensive grid search is not reasonable, hence a progressive strategy based on
intermediate results is adopted. After that, audio channels are selected. An
initial subset of 9 microphones: 4 in the kitchen (i.e., K2L, K1R, K3C, KA5)
and 5 in the living room (i.e., L1C, L2R, L3L, L4R, LA4) is considered. For
the 2R NMxR model, when multiple microphones are employed, only combi-
nations obtained with the best performing ones are analysed. A maximum of
N = 3 is selected for the 2R NMxR model.

| CNN
1R 1MxR
Kitchen  Living Room 2R 1MxR | 2R 2MxR | 2R 3MxR
Input Strides 8 10 8 8 8
Params Context 17 23 25 23 23
First N Kern 16 16 32 128 256
Convolutional Size 6 x 6 6 X 6 4 x4 4 x4 4x4
Layer Pooling 2X2 2 X2 2 X2 - -
Second N Kern 24 16 64 64 32
Convolutional Size 4x4 4x4 3x3 3x3 3x3
Layer Pooling - - - - -
Third N Kern 24 16 128 32 32
Convolutional Size 3x3 3x3 3x3 3x3 3x3
Layer Pooling - - - - -
Fully Connected | Num. of 100 100 500 250 500
Layers Units 20 20 100 100 100
SAD Min (%) 9.0 10.7 9.3 8.1 7.0
MLP
Fully Connected Num. of 10 15 10 8 8
Layers Units - - - - -
SAD Min (%) 11.8 13.3 11.7 8.8 7.4

Table 5.5: Network topology parameter for CNN- and MLP-mVAD.

One network per room, one microphone per room (1R 1MxzR). In the network
size selection, the best MLP-VAD resulted to have one layer with 10 units and
8 units respectively for the kitchen and the living room. In the second stage,
the best performing microphone for the kitchen was the KA5, while for the
living room the LA4: both of them are placed at the center of the room ceiling
and the averaged SAD was equal to 12.5%. The two networks exploited for the
CNN-VAD are reported in Table 5.5. As for MLP-VAD, best microphones are
KA5 and LA4, with an average 9.9% SAD.
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One network per two rooms, one microphone per room (2R 1MzR). First of
all one channel per room is considered: the best MLP-mVAD has one layer with
15 units and the audio captured by the pair KA5, LA4 (confirming the result
of the previous step), leading to a SAD equal to 11.7%. For the CNN-mVAD,
SAD equal to 9.3% is again obtained with the pair of microphones KA5 and
LA4. CNN topology is reported in Table 5.5.

One network per two rooms, two microphones per room (2R 2MzR). Com-
pared to the previous step, the best configuration for MLP-mVAD has only
one hidden layer with 8 neurons. In the microphone selection, on the basis of
the above analysis, the 12 combinations of double pairs of channels is explored,
achieving with the couple KA4, K1R (from the kitchen) and LA4, L2R (from
the living room) an absolute improvement of —2.9% of SAD in respect to the
case with one microphone per room. Settings of the CNN-mVAD are shown
in Table 5.5. Again, best microphones are the same of the MLP-VAD: KA4,
KI1R, LA4, L2R. The resulting SAD is 8.1%.
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Figure 5.4: Box-plot of the resulting SADs for the microphone selection exper-
iments in the different steps, where blue is the MLP-mVAD and
red the CNN-mVAD. Evident is the improvement given by increas-
ing the microphone number, and, for the CNN-mVAD, the related
statistical robustness.

One network per two rooms, three microphones per room (2R 3MzR). For
the MLP-mVAD the network topology remains the same as in the case with
two microphones per room and the best result (SAD = 7.4%) is obtained with
the combination K1R, K2L, KA5, L1C, L2R, LA4. The CNN-mVAD achieves
7.0% SAD with topology shown in Table 5.5, selected microphones are: K1R,
K3C, KA5, L2R, L4R, LA4.

Finally, the mean and standard deviation of the models tested during the
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microphone selection is reported in Fig. 5.4. CNN-based models show a high
robustness compared to MLP in terms of microphone placement, consistently
with the previous research.

Conclusions

The employment of input features extended with a temporal context and multi-
ple microphones, along with CNNs ad hoc neural architectures, allows to reach
better performance compared to the baseline MLP. Furthermore, a remark-
able aspect of the CNN mVAD is the robustness to the microphone choice,
with lower mean and standard deviation. The independence from the audio
source positioning is an interesting applicative result, being consistent to what
observed in the previous research. In addition, the models exploiting data
recorded in different rooms perform generally better compared to the ones re-
lying on single-room data. As result, the study will move upon the development
of CNNs relying on multiple microphones.
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Chapter 6

Speaker Localization

This chapter discusses several DNN-based approaches for SLOC in reverberant
environments. Two main case studies in terms of sound localization are ad-
dressed. The first targets a multi-room environment, where machine systems
exploiting signals captured from multiple microphone arrays are developed. In
particular, a preliminary model is discussed in Section 6.1, while its advance-
ments are investigated in Section 6.2. After that, the second study focuses on
binaural sound localization, performed in terms of azimuth in Section 6.3 and
in terms of elevation in Section 6.4. These last two researches proposes hu-
man inspired localization frameworks, whose purpose is to simulate the human
hearing system.

6.1 Multi-room Environment - Preliminary Study

The research discussed in this section addresses the task of localizing a speaker
in a multi-room reverberant environment by means of DNNs. Due to the
novelty of the study, targeting localization in terms of coordinates in an indoor
environment, the proposed method is directly compared with on of the state-
of-the-art classical algorithm recently employed in the same environment under
study.

6.1.1 Preliminaries and Problem Statement

Several speaker localization techniques have been proposed in literature, of
which a main review is given in [77]. One of this methods [20], based on TDOA
estimation, has been tested against the DIRHA dataset, which is largely em-
ployed in this thesis. That work relies on the calculation of the time delay
present between signals captured by multiple microphones, from which hyper-
bolic curves are determined in a 2-D or 3-D space. In particular, it is based
on Cross Spectrum Phase (CSP) computation, to which advancements are ob-
tained with the help of additional filtering techniques.
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On the other hand, few works address SLOC by means of DNNs. One model
is discussed in [31], where a robot for a talker-following task is developed.
In particular, that algorithm relies on a VAD stage, a signal pre-processing, a
feature extraction step and finally the MLP model, achieving good performance
in noisy condition. Another similar work is proposed in [65], where DOA
estimation is performed by means of MLP fed with features based on the GCC-
PHAT.

Although few DNN based systems for SLOC have been recently proposed,
none of them aims to localize the speaker in terms of coordinates, reason why it
is proposed in this research. In details, here a regressive model based on MLP
and relying on features derived by GCC-PHAT is proposed, which directly
predicts the speaker coordinates in the 2-D plane of the room under study.
The model is tested again against a multi-room environment, where background
noise and reverberation are expected to heavily affect the localization accuracy.
The state-of-the-art method addressed in [20] is developed to compare the
proposed method.

6.1.2 Proposed Method

In this section the description of the proposed model is provided. It consists in
an initial feature extraction stage, which extracts localization based features.
After that, an MLP processes these features and predicts the speaker position
in the 2-D plane of the room. The model, depicted in Fig. 6.1, will be referred
to as MLP-SLOC.

GCC-PHAT Patterns are employed as input features, of which purpose is
to estimate the TDOA between microphone pair recordings in presence of a
sound event. Their detailed description is given in Section 4.1.2. To calcu-
late GCC-PHAT Patterns an assumption is made, based on the microphones
displacement. In particular, only microphone pairs taken from the same array
are considered. Supposing that the maximum distance between two sensors is
50 cm and the sample rate f, is equal to 16 kHz, the maximum time delay (in
samples) between 2 microphone is:

dm(l
ATz = Tzfs ~ 24

where d,,q; = 50cm is maximum the distance between the microphones and
¢ the sound speed (assumed to be 340ms). Hence, the GCC-PHAT Patterns
are extracted as follows: for each considered microphone pair the GCC-PHAT
is computed with a frame size and an hop size respectively equal to 480 ms
and 160 ms, having previously circularly shifted one of the two signals by 24
samples. Then, the first 50 values of the GCC-PHAT are selected. Finally, the
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Figure 6.1: Block diagram of the proposed MLP-based system for speaker lo-
calization.

GCC-PHAT Patterns of the different M microphone pairs are concatenated for
each frame, leading to a feature vector of size 50 - M.

Localization is then performed by an MLP (Section 3.2) employed as a re-
gressive model. The network architecture is composed of an input layer of
fixed dimensions equal to the feature vector size, one or more hidden layers
with fully feed forward connections from one layer to the next and an output
layer of two units. The activation function at the output of each layer is ReLU,
discussed in Section 3.3. The network predicts the  and y coordinates of the
speaker inside the room, scaled in the [0, 1] range. The supervised network
learning is accomplished by using the Adam algorithm [55] for the stochastic
gradient-based optimization and a feature wise batch normalization [78].

6.1.3 Experimental Setup

The dataset provided by the DIRHA project [66] is used to test the proposed
algorithm. DIRHA project was previously described in Section 4.2.1. The
simulated subset is chosen for this purpose, since it contains more data and
the background noise is higher and more various. Two rooms are selected for
evaluating the proposed algorithm, being the Kitchen and the Living Room,
for several reasons. Firstly, main events are expected to occur in those areas
of an home-environment. Moreover, they are the wider rooms, leading to a
more challenging source localization task. Finally, the number of available
microphones is greater, since they contain a circular microphone array on the
ceiling.

Training of the MLP is performed by means of an Oracle VAD, while its
testing takes place on speech detected by the same Oracle VAD or by the multi-
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room VAD addressed in Section 5.1. The experiments are conducted by means
of the k-fold cross-validation technique in order to reduce the performance
variance. A validation set in the training procedure is employed in order to
perform an early-stopping strategy on the training epochs. In this work k is
equal to 10, thus 64-8-8 scenes respectively compose the training, validation
and test sets. The localization accuracy is evaluated in terms of Root Mean
Square Error (RMSE). In addition, the performance has been evaluated in
terms of P,,, = NeINg , where Nprn g is the number of frames with RMSE less

Nror
than 500 mm and Npor is the total number of frames. These two metrics are

averaged over all the predicted outputs. After a series of preliminary tests, the
learning rate, 81, f2 and e parameters of the Adam optimizer have been set
respectively to 0.001, 0.9, 0.999 and 10~8. The network weights are initialized
with a normal Gaussian distribution, while the batch normalization has been
employed [78] with € and momentum respectively to 1076 and 0.9. In addition,
the MLP-SLOC have been tested on signals pre-processed by cepstral pre-
filtering, as described in the following section. However, no improvements were
observed, hence this filtering technique was not considered.

Comparative Model

The proposed method is tested against a DOA estimation approach, being the
CSP speaker localization algorithm [20]. It will be referred to as CSP-SLOC.
It relies on the TDOA evaluated as in Equation 4.3, from which is it possible
to evaluate the DOA by means of:

dcosf
c

=Arj=0=cos " (%) , (6.1)
where 6 denotes the DOA angle, A7;; is the TDOA between the i-th and j-th
microphones, d is the distance between the microphone pair and ¢ the sound
speed.

In details, in a 2-D plane (Fig. 6.2), the DOA is the line connecting the
estimated sound source and the middle of the segment between the microphone
pair. After that, a generic point a is considered, whose distance from the k-th
DOA is denoted as Dg(a). Thus, the error to minimize with a least mean
square strategy is defined as:

M
E(a) =Y Di*(a), (6.2)
k=1

where M is the total number of DOA. This procedure is applied per one room
at time. The TDOA estimation highly depends on the reverberation time,
the noise level and the orientation of the speaker. In order to reduce the
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Figure 6.2: An example of the CSP Speaker Localization Algorithm (CSP-
SLOC). The black points are the microphones installed in the room
walls. The docked lines are the estimated DOA, the diamond is the
point whose coordinates are given by the algorithm.

reverberation effect, in [20] the cepstral filtering technique described in [79]
is employed for pre-processing the microphone signals. The same strategy is
here adopted. The algorithm is highly dependent on the fine tuning of its
parameters. After several listening tests, frame size was set to 2048 samples
with no overlap, the exponential window scaling factor a was set to 0.9985 and
the averaging weighting coefficient p to 1074,

6.1.4 Main Results

A three-stage optimization strategy leads the tuning of the proposed system.
The first stage consists in a variation of the network layout while keeping fixed
the input feature set. The second one is a microphone pairs selection stage
which aims to find the more reliable GCC-PHAT Patterns. Here combinations
of signals coming from the available arrays have been gradually tested. As last
step, a second network size selection is explored in order to assess or consolidate
the resulting setup. An initial test is performed by comparing the proposed
method at the first optimization stage against the CSP-SLOC. Considering
the latter, it relies only on signals coming from the wall arrays. Hence, for a
fair comparison, the first network selection is performed by means of the same
audio data (i.e., 4 microphone pairs for the k itchen and 5 microphone pairs
for the living room). Around 30 different network topologies combinations
composed of 1, 2 or 3 hidden layers with 4, 8, 16, 32, 256, 512, 1024 units
are explored. These preliminary results of the MLP-SLOC outperforms the
comparative algorithm (Table 6.1), leading to an RMSE equal to 710 mm.
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Room Algorithm | RMSE (mm) | Pcor (%)
Kitchen CSP-SLOC 1280 8.2
MLP-SLOC 680 44.6
Living Room CSP-SLOC 1650 7.8
MLP-SLOC 750 55.4

Table 6.1: Comparison of the localization accuracy between the MLP-SLOC
and the CSP-SLOC algorithm after the first optimization stage.

The second optimization stage targets the GCC-PHAT Patterns feeding the
model. With respect to the ceiling array, 10 possible microphone pairs are
available since the central microphone is excluded. In addition, the ceiling array
is considered as a unique set, and it will be the starting set employed for this
optimization stage. Following that, combinations of signal pairs coming from
the wall arrays are added to the ceiling set. It is interesting to note that the best
performance is obtained with the same number of GCC-PHAT Patterns in both
rooms: 10 combinations from the ceiling array and 4 from the wall arrays, for a
total feature size equal to 700. With this set up, accuracy is improved, reaching
an RMSE equal to 529 mm. Furthermore, as shown in Fig. 6.3, the proposed
algorithm has a significant solidity in terms of microphone positioning. In
particular a standard deviation equal to 14 mm and 26 mm for the Kitchen and
the Living Room is respectively obtained.

700
650 1
600 +
550

500

450

RMSE (mm)

Kitchen Living Room

Figure 6.3: Box-plot of RMSE results for both rooms in the microphone pair
selection stage.

As a further refinement, the last network size selection is performed, by using
as input the set of GCC-PHAT Patterns that provided the best performance
in the previous stage. For both rooms, the best localization accuracy is given
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by a network with a single hidden layer with 512 units. The resulting averaged
RMSE is equal to 525 mm. Details of the two best performing configurations
are provided in Table 6.2.

Network Microphone | RMSE | P,
Layout Pairs (mm) | (%)
Ceiling Array
(K3L, K3C)
Kitchen 700-512-2 | (K3C, K3R) 475 60.3
(K2L, K2R)
(KIR, K1L)
Ceiling Array
(LAL, L4R)
(L3L, L3R)
(L2L, L2R)
(L1R, L1C)

Room

Living room | 700-512-2 575 64.0

Table 6.2: Best performing setups of MLP-SLOC with the Oracle-mVAD for
the two rooms after the third optimization stage.

Results with Neural-mVAD

Finally, the most performing MLP-SLOCs is tested over the predictions pro-
vided by the neural network multi-room VAD (Neural-mVAD) addressed in
Section 5.1. The Neural-mVAD is based on a DBN of 2 hidden layers of 20
units each, and it achieves a SAD of 5.8% in the Simulated dataset. In this
case, the MLP-SLOC performance depends on the Neural-mVAD errors, thus
a strategy to evaluate false negatives and false positives must be provided. In
both cases, the central point of each room is considered as a reference for the
RMSE evaluation. In details, for the false negative decision of the Neural-
mVAD, it is supposed that the MLP-SLOC outputs the reference position. In
case of false positive decisions, it is supposed that the ground truth position
corresponds to the reference one. Concluding, the integrated system Neural-
mVAD+MLP-SLOC leads to a RMSE equal to 730 mm and a P,.,, equal to
42.4% for the Kitchen and a RMSE equal to 810 mm and a P,,, equal to 42.7%
for the Living Room.

Conclusions

A neural network approach for speaker localization in a domestic environment
is discussed in this research, relying on MLP and GCC-PHAT Patterns as in-
put features (MLP-SLOC). The approach is fully data-driven, therefore the
speaker position is directly estimated without additional processing. Results
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are compared with a state-of-the-art algorithm (TDOA-based), which has been
recently proposed for the same multi-room scenario. As conclusion, the novel
approach significantly outperforms the CSP-SLOC algorithm, achieving an av-
eraged RMSE equal to 525 mm when preceded by an Oracle-VAD. In addition,
the MLP-SLOC is integrated with a VAD algorithm previously discussed in this
thesis. In this experiment, the Neural-mVAD prediction errors are dealt by the
MLP-SLOC, nevertheless the localization accuracy still outperforms the CSP-
SLOC, leading to an averaged RMSE equal to 770 mm. However, this strategy
penalizes the accuracy of SLOC algorithm, reason why further investigation
must be conducted in this sense.

In conclusion, the following research (Section 6.2) of this thesis will be ori-
ented on the exploitation of a more complex DNN, with a major focus on ex-
tending the input data along with its temporal evolution, in order to increase
the robustness of the algorithm. Furthermore, even the option of exploiting
audio data recorded in different rooms will be addressed with special solutions.
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6.2 Multi-room environment - Further
Advancements

The promising results achieved in Section 6.1 drive the research conducted in
this section, where numerous advancements with respect to the previous con-
tribution are proposed. In particular, this section focuses on the employment
of CNNs in addition to MLPs, and on the joint exploitation of data recorded
from multiple microphones. Furthermore, simulations now consider even an-
other case study in terms of multi-room environment. Last but not least, a
deep investigation concerns the temporal excerpt feeding the neural models.

6.2.1 Preliminaries and Problem Statement

This work addresses the development of a completely data-driven approach for
SLOC in a multi-room environment. The purpose of the data-driven strategy
is to avoid a dedicated fine-tuning of parameters, which is typical and highly
specific for the state-of-the-art algorithms, as discussed in Section 2.2.1. In
details, the proposed algorithm is composed of a feature extraction stage and an
artificial neural network, which together lead to the DNN-SLOC. A preliminary
version of this model achieves remarkable results in Section 6.1, where a MLP
fed by GCC-PHAT based feature is introduced. Several advancements are
proposed here with respect to the model discussed in the previous section. In
particular, CNNs are investigated in addition to MLPs, plus the concurrent
processing of audio data coming from single or multiple rooms is addressed. In
addition, specific studies target the dependence on the microphone position and
the importance of a temporal context. Last but not least, while in Section 6.1
a single comparative method being the CSP speaker localization algorithm [20]
is considered, in this study the proposed models are compared with a further
state-of-the-art approach [24], based on SRP. Finally, experiment takes place
even in the Real subset of the DIRHA corpus [66].

6.2.2 Proposed Method

The proposed multi-room speaker localization algorithm is composed of a fea-
tures extraction stage and an artificial neural network. The first stage extracts
GCC-PHAT Patterns features from each input frame by using pairs of micro-
phone signals. After that, the feature matrices of previous and future frames
are joined in a chunk with the purpose of exploiting the temporal evolution of
the data. Hence, the ANN is trained on labelled data to estimate the coordi-
nates (x, ), i.e., the position of the speaker inside the target room. A block
diagram of the algorithm based on a CNN is shown in Fig. 6.4.
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Features Convolutional
Chunk Neural Network
GCC-PHAT
* (X ) "'b)
Patterns
Extraction
| E—

Figure 6.4: Block diagram of the proposed DNN algorithm for Speaker Local-
ization. In this figure, the full CNN architecture is depicted.

In the multi-room scenario, speakers positions are estimated by means of a
feature extraction stage and a neural network per room. Two different archi-
tectures have been investigated in this contribution: in the first, each neural
network is dedicated to processing the audio signals coming from a room and it
estimates the position of the speaker in that room. This architecture will be de-
noted as 1RxIN-SLOC in the following. In the second architecture, the neural
network jointly processes audio coming from different rooms, while estimating
the speaker position only in one room. This architecture will be denoted as
KRx1IN-SLOC in the following, where K denotes the number of rooms. Fig. 6.5
shows the differences between the two architectures in the two rooms case study
(K =2).

Ty
N ¢
DNN ) N
> SLOC " -
o
Room 1 L
- -
N
EEE
Room 2

Figure 6.5: Block diagram of the proposed 2Nx1R approach. Both the DNN-
SLOC algorithms localize the speaker in a single room by jointly
exploiting the audio coming from both rooms.

60



6.2 Multi-room environment - Further Advancements

Features based on GCC-PHAT Patterns

This set of features, accurately described in Section 4.1.2 and previously em-
ployed in Section 6.1, aims to estimate the time delay present between the audio
signals captured by a microphone pair. Features are computed with a frame
size and a hop size respectively equal to 480 ms and 160 ms. The first 50 values
of the GCC-PHAT are selected, as in Section 6.1.2. Furthermore, features ex-
tracted from the different microphone pairs are standardized to have zero mean
and unitary standard deviation. After that, all possible combinations for each
microphone array are considered. In particular, the feature matrix related to

the array ¢ composed of N microphones assumes the following form:

X0 [n] = X33 n] . (6.3)

(i '
_X(]\)f(i>_1)N(i) [”}_

where iyk) [n] is GCC-PHAT Pattern evaluated from the signal captured by
the j-th and the k-th microphones of the i-th array at the n-th frame. Finally,
from all the M considered arrays, the input matrix X[n] is given by

XD n]

X @ [n]
X[n] = : , (6.4)

X ]

In Fig. 6.6 an example of the X[n] matrix is depicted. Colors represent
the amplitude of GCC-PHAT Patterns, where orange tones denote the lowest
values and blue tones the highest values in the considered range. In the exposed
case, the X|[n| is composed of 10 GCC-PHAT Patterns, belonging to a subset of
the possible pairs originated from a circular ceiling array. It is possible to note
that the maximum arrival time difference is equal to 9 samples (corresponding
of around 0.2 seconds), observed in the GCC-PHAT Pattern of the fourth
microphone pair.
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Microphone Pair

0 5 10 15 20 25 30 35 40 45 50
GCC-PHAT index

Figure 6.6: An example of GCC-PHAT Pattern matrix X[n] obtained from a
combination of microphones belonging to a ceiling array. Blue tones
represent maximum amplitude values of Cyp(n,7) in the range of
considered .

In addition, the extracted features are extended by means of a temporal con-
text, composed by the frames of the signal adjacent to the one being processed.
In order to exploit this information, the input of the neural network is aug-
mented with the (C' — 1)/2 GCC-PHAT Patterns preceding and following the
current GCC-PHAT Pattern matrix X([n]. The network, thus, estimates the
speaker position by employing a chunk of feature matrices defined as:

_X[n—%-s] ]

_ X[n'— s]
X|[n] = X|[n] , (6.5)
X[n+ s]

_X[n~l—%-s] |

where C' is the total length of the chunk, and s denotes the stride, which defines
the temporal extension of the chunk. Fig. 6.7 shows an example with s = 2.

In cases where the selected frames do not contain speech, the GCC-PHAT
Patterns matrices related to the first or the last frame of the segment are
replicated accordingly.
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n—(C-1)/2-s p_1.g Mn n+1-s n+(C—-1)/2-s

Figure 6.7: A scheme showing the GCC-PHAT Patterns matrices composing
the temporal context. The GCC-PHAT Patterns matrix of current
frame X[n] is shown in red, while the matrices included in the final
chunk are shown in blue. The value of the stride s is 2.

DNN-based SLOC

The DNN composing the two proposed models are here discussed. The first
one consists in a MLP, being similar to the model discussed in Section 6.1.2,
trained as a regressive model and making use of ReLLU activations. The feature
extraction stage arranges GCC-PHAT Patterns as 3-D tensor, however MLP
takes as input a mono-dimensional vector. Hence, matrices are flattened to one
dimension and the network input layer consists of a number of units equal to
C-M.

The second model relies on a CNN, always treated as a regressive model.
Similarly to Section 5.2, its first convolutional layer deals with a 3-D input,
being then followed by others convolutional layers and then fully connected
layers. ReLU is chosen as activation function. In particular, the 3-D matrix is
obtained by stacking the 2-D matrices described in Equation 6.3 by means of
the temporal context. Indeed, as shown in Fig. 6.6, it is reasonable to expect
that this procedure leads to specific patterns related to localization, reason why
CNNs have been employed.

6.2.3 Comparative Methods

The neural network localization algorithm has been compared with two state-
of-the art methods, described as follows.

Crosspower Spectrum Phase Speaker Localization

The first algorithm taken as reference is the CSP speaker localization algo-
rithm (CSP-SLOC) [20], previously employed and described in Section 6.1.3.
It is composed of two consecutive steps and due its structure, the algorithm
is evaluated per one room at time. It relies on the estimation of the TDOAs
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present from several pairs, from which an hyperbolic curve in a 2-D plane is
constructed. Several physical aspects affect the accuracy of the CSP-SLOC,
such as the orientation of the speaker, the noise level and reverberation. A
pre-processing cepstral filtering technique provided in [79] is employed, being
the cepstral dereverberation algorithm, which relies on no-overlapping frames
of 2048 samples, to which is applied an exponential window with scaling factor
a = 0.9985 and averaging weighting coefficient ¢ = 10~%. With regards to the
CSP-SLOC, in order to be consistent with the proposed method, the TDOAs
are computed with a rate of 100 frames/second and a frame overlap equal to
66%.

Steered Response Power Using the Phase Transform

Another state-of-the-art algorithm has been considered for comparison pur-
pose. It has been already discussed in Section 2.2.2. It consists in a modifi-
cation of the SRP method, based on the SRC approach, as described in [24].
SRC avoids the complete fine grid-search, by applying an iterative process that
progressively contracts the search volume for local maxima, thus reducing the
overall computational cost.

As first step, a delay-and-sum beamformer is steered in the considered volume
for each n-th frame of length 7', leading to the SRP function for the spatial
vector s:

2

(n+1)T | M
P,(s) = /T Zwasa(t —7(s,a))| dt, (6.6)
n a=1

where s,(t) is the signal from a generic microphone a, w, its weight, 7(s, a) the
distance in the time domain between s and that microphone. Practically, Equa-
tion 6.6 is evaluated in the frequency domain, scaled by the PHAT weighting
factor. The SRC is iteratively applied: Jy = 5000 points are randomly eval-
uated, Ny = 20 points maximizing Equation 6.6 are selected and the search
volume is restricted to a smaller region that contains the Ny points. In the
following, this algorithm will be referred to as SRP-SLOC.

6.2.4 Experimental Setup

The performance of the two proposed methods, which are the 1RxIN-SLOC
and the 2Rx1N-SLOC, described in Section 6.2.2, are investigated in the two
DIRHA subsets, the Real and the Simulated, being described in Section 4.2.1.
Both approaches exploit MLP and CNN as neural networks. The evaluated
SLOC algorithms work with the assumption of the presence of an Oracle VAD,
which selects only the speech portions of audio signals, consistently with the
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research conducted in Section 6.1. Nevertheless, a Neural VAD, differently from
the previous chapter, is not taken into account here. In details, the objective is
to investigate the most reliable and performing SLOC algorithm in an absolute
sense, independently from the errors produced by a real VAD.

Experiments are conducted by means of a k-fold cross-validation technique
in order to reduce the performance variance, and an early-stopping training
strategy has been employed to prevent overfitting. In the Simulated dataset k
is equal to 10, thus 64-8-8 scenes respectively compose the training, validation
and test sets. In the Real dataset, due to the absence of speech in certain
scenes, only 11 of them were suitable for each room. Thus, a leave-2-out cross
validation has been adopted, where, for each fold, 7 scenes compose the train-
ing set, 2 the validation set and 2 the test set. This configuration has been
previously employed in Section 5.1.3.

The selection of the most performing DNN-SLOC architecture has been car-
ried out by means of a four-stage optimization strategy, described as follow:

e I - Network Size Selection. It consists in varying the network layout
while keeping fixed the input signals (i.e., 4 microphone pairs for the
Kitchen and 5 microphone pairs for the Living Room). Concerning the
MLP architecture, 30 different network topologies have been investigated,
composed of 1, 2 or 3 hidden layers with 4, 8, ..., 1024 units. On the
contrary, in the case of CNN architecture a higher number of parameters
must be considered, which have been reported in Table 6.3 for the sake
of conciseness. No temporal context is employed for the CNN.

e IT - GCC-PHAT Patterns Selection. This stage aims to find the
most performing GCC-PHAT Patterns matrix X[n] between a subset
of the available X [n] microphone combinations belonging to different
arrays. The starting point was the circular array placed on the room
ceilings, which is composed of N = 6 microphones. Excluding the central
one, it leads to 10 possible pairs. Then, combinations of signal pairs
i((llb) [n] coming from the wall arrays have been gradually added to the
ceiling array signals with a sequential forward selection strategy, in order
to arrange the evaluated X[n].

e III - Network Size Selection. Another network size selection is then
performed, having as input features the set of GCC-PHAT Patterns pro-
viding the best results in the previous step.

e IV - Temporal Context Selection. Here the objective is evaluating
the effects of the temporal context, by varying the strides values, i.e. s =
{1,3,4,5}, and the context dimensions, i.e. C ={3,7,11,13,15,17,19,21}.
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CNN
First Second
Convolutional Convolutional Neurons
Layer Layer
Nr. of Nr. of I 11
"o Size |Pooling PO Sige Pooling
Kernels Kernels Layer|Layer
64
16 16 128
3x32x2 128
24 5 x5 24 |2x2 - 956 256
4 i 4 12
8 8 512 >
MLP
Fully Nr. 4, 8, 16, Nr.
Connected| of 32, 256, of 1,2,3
Layers | Units 512, 1024 Layers

Table 6.3:

Network topology parameter explored during the optimization
stages.

In addition, the parameters of the training optimizer (i.e., Adam, batch

normalization [55, 78]) are set as shown in Table 6.4. The performance of the
models are evaluated in RMSE and P,,,, defined in Section 6.1.3.

‘Weight Optimizer
e eeTe s Epochs
initialization parameters
Gaussian distr. 500 learn. rate = 0.001,

MLP nw=0 50 E.S. patience (1 = 0.9, 82 = 0.999,
c=0.1 e=10"8
Gaussian distr. 200 learn. rate = 0.025,
CNN w=20 50 E.S. patience (1 = 0.9, 83 = 0.999,
c=0.1 e=10"8
Batch Normalization: e = 1075, 4, = 0.9
Table 6.4: Parameters of the Adam optimizer selected for the neural network

training. “E.S. denotes early stopping strategy, evaluated on the
validation loss.

6.2.5 Main Results

Results on Simulated Dataset

The best results obtained by the different addressed algorithms in the Simulated
case study are reported in Table 6.5. As regards the DNN-SLOC, both the
values are reported at the end of the third stage of optimization (i.e., without

temporal context), and at the end of the fourth stage, in which performance
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have been studied varying the parameters of C' and s. For instance, the first two
rows report the results related to the MLP-SLOC algorithm, of type 1Rx1N,
without and with the temporal context, respectively.

In this dataset both the CSP-SLOC and the SRP-SLOC yield a low local-
ization performance, with an RMSE averaged equal to 1464 mm and 981 mm,
in the kitchen and living room respectively. This performance is remarkably
worse in comparison to what obtained with the DNN architectures.

SIMULATED

ROOM Kitchen Living Room Average

Context RMSE P.,. | Context RMSE P.,.. | RMSE P.,.
MLP 1RxIN / 475 60 / 575 64 525 62
MLP 1RxIN 19-4 370 69 17-4 442 72 406 71
MLP 2Rx1N / 453 59 / 571 62 512 61
MLP 2RxIN 17-3 375 67 19-3 455 70 415 68
CNN 1RxIN / 529 57 / 625 63 577 60
CNN 1RxIN 21-4 309 75 21-3 358 78 333 77
CNN 2RxIN / 522 57 / 635 61 579 59
CNN 2RxIN | 21-4 331 73 17-5 374 75 353 74
CSP-SLOC / 1281 8 / 1648 8 1464 8
SRP-SLOC / 1005 22 / 958 37 981 30

Table 6.5: Comparison of best results of SLOC algorithms in terms of RMSE
(mm) and P, (%) in the Simulated case study.

The focus now goes on the results attained at the end of the third stage.
The best DNN configuration is the 2Rx1N MLP-SLOC. In particular, with
both 1Rx1IN and the 2Rx1N configurations, the MLP performs slightly better
than the CNN. Furthermore, even if only a slight improvement is observable
in terms of RMSE for the 2Rx1N case, the advantage of this setting lies in the
statistical behavior, as reported in Fig. 6.8. The boxplots show in terms of mean
and standard deviation a narrow dispersion of results. Indeed, the exploitation
of audio from both rooms reduces the dependence on the microphones location
inside the room. In details, the best MLP layouts for the Kitchen and Living
room are two single layer networks of 256 and 1024 units, respectively. With
regards to the CNN-SLOC, the two best layouts are the following: for the
Kitchen, a single convolutional layer of 48 kernels of size 5x5 with no pooling,
followed by two feed-forward layers with 512, 512 units, while for Living room,
a single convolutional layer of 24 kernels of size 5x5 with no pooling, followed
by two feed-forward layers with 256, 512 units.
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Simulated Dataset - GCC SELECTION
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Figure 6.8: Boxplot for the Simulated dataset, for MLP and CNN neural net-
work, comparing 1RxIN and 2Rx1N setups. This evaluation is
performed at the end of the II stage of optimization, considering all
the tested GCC Patterns configurations. The results are averaged
over the two target rooms.

The effect of temporal context is considered with the final optimization stage,
in which the network size determined after the third stage is kept fixed.

The best localization performance has been obtained by using the CNN-
SLOC having as input the microphone signals coming only from the target
room. The resulting averaged RMSE is equal to 333 mm and the highest P,
is 77%. Details of the configuration parameters for the best performing setups
on Simulations subset are shown in Table 6.6. The performance improvement at
this stage is evident, whereas the employment of multiple room audio features
does not seem to have a beneficial effect for CNN-based algorithms.

The results obtained at the very end of the optimization procedure show the
ability of the CNN architecture to efficiently exploit the contextual information
of adjacent frames, with a reduction of 42.2% of the localization error with
respect to the configuration with (C,s) = (1,1), as shown in Fig. 6.9. The best
resulting values of context and strides are (C,s) = (21,4) and (C,s) = (17,5)
for Kitchen and Living Room, respectively, which means processing a segment
of duration approximatively equal to 8.5s.

The introduction of the temporal context has beneficial effects also with the
MLP, but with a lower error reduction (equal to 21.5%). The results obtained
in the investigation of the audio excerpt are reported in Fig. 6.10, where the
different strides s are plotted while varying the temporal context C.

It can be noticed that a similar trend of performance with respect to temporal
resolution values is registered.
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Livi
Room Kitchen Vg
Room
Features Configuration 1INx1R INx1R
Settings Context 21-4 21-3
. Circular Circular
. Ceiling
Microphones Array Array
L4L,L4R
K3L,K ’
Wall KgL’Kzg L3L L3R
KlRyKlL L2L,L2R
’ LIR,L1C
Convolutional Number 48 24
Kernels Size 5x%x5 5x5
Feed First 512 256
Layer
Forward g d
Layers econ 512 512
Layer
RMSE (mm) 309 358
It
Results P 5 78

Table 6.6: Results for Convolutional Neural Networks with the best performing

configurations in the Simulated case study.

Simulated Dataset - CNN-SLOC
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Figure 6.9: Improvements on Simulated dataset for CNN-SLOC when temporal

context is considered.
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Figure 6.10: Performance trend in the Simulated dataset for different strides
at growing contexrt. The considered room is Kitchen with 1Rx1N
configuration, the two DNN are plotted.

Results on Real Dataset

The main difference between the Real and the Simulated dataset lies in the
speaker position, which is not fixed during the scene. Thus, the speaker moves
within the room while pronouncing the sentence. Furthermore, in this dataset
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overlapping events are not present.

Table 6.7 reports a comparison among the evaluated algorithms with the
best results obtained for each configuration. As for the results obtained for
the Simulated dataset, the proposed models are reported with and without the
temporal context.

The localization performance obtained by the CSP-SLOC is quite similar to
the one in the Simulated case study, with an average RMSE equal to 1280 mm.
The SRP-PHAT algorithm attains an averaged RMSE equal to 792 mm. Such
a performance achieved by the comparative methods are significantly superior
than the one obtained in the Simulated case study. The motivation likely relies
on the higher SNR level characterizing the audio files in the Real dataset.

REAL

ROOM Kitchen Living Room Average

Context RMSE P, | Context RMSE P, | RMSE P,
MLP 1RxIN / 789 39 / 688 43 644 42
MLP 1Rx1N 19 -3 498 60 21-4 446 63 472 61
MLP 2RxIN / 710 38 / 619 45 664 41
MLP 2RxIN | 21-4 494 59 17-4 445 63 470 61
CNN 1Rx1IN / 706 37 / 583 47 686 42
CNN 1RxIN | 21-3 460 64 15-5 349 78 405 71
CNN 2Rx1N / 687 40 / 552 54 470 61
CNN 2Rx1N 19-4 425 72 17-3 350 75 387 74
CSP-SLOC / 1394 9 / 1166 11 1280 10
SRP-SLOC / 895 30 / 690 53 793 42

Table 6.7: Comparison of best results of SLOC algorithms in terms of RMSE
(mm) and Peor (%) in the Real case study.

As shown in Fig. 6.11, in this case the 2Rx1N architecture produces a more
significant improvement of performance both for the MLP-SLOC and the CNN-
SLOC, and consistently with what observed for the Simulated dataset, the
variance with the microphone position decreases. This behaviour may be mo-
tivated by the fact that the Simulated dataset is noisier compared to the Real
one, hence feeding the DNN model with data coming from multiple rooms may
lead to a too noisy input tensor, which could become deceiving for the DNN.
On the other hand, stacking multiple room data does not create a so noisy
input in the Real dataset.

As result of the third optimization stage, the best performing MLP layout in
the 2Rx1N case is composed of a single layer of 16 units both for the Kitchen
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and the Living Room. Regarding the CNN-SLOC, the most performing con-
figuration is composed by a convolutional layer with 24 5 x 5 kernels without
pooling, followed by a two layers MLP with respectively 256, 256 units and
256, 512 units for Kitchen and Living Room.

Real Dataset - GCC SELECTION

B 2Rx 1N

— 750
=
7
= 700
"

600 +

CNN MLP

Figure 6.11: Boxplot for the Real dataset, for MLP and CNN neural network,
comparing 1RxIN and 2Rx1IN setups, after the II optimization
stage. Averaged results are shown.

As performed with the Simulated dataset, the effects of the temporal context
have been studied after the third optimization stage. Results at the end of the
fourth optimization stage are reported in Table 6.8. The introduction of the
temporal context leads to an average localization accuracy of 387mm with
the CNN-SLOC for the 2Rx1N configuration. As highlighted in Fig. 6.12,
the RMSE reduces by 37.2% for the 1RxIN configuration and by 37.5% for
the 2Rx1N configuration. In concordance with the results obtained with the
Simulated dataset, the MLP architecture benefits by the introduction of the
temporal context, with a resulting error reduction of 36% for the 1RxIN and
of 29% for the 2Rx1N configuration.

For the CNN-SLOC applied in the Real dataset, the best resulting values
of context and strides are (C,s) = (19,4) and (C,s) = (17, 3) respectively for
Kitchen and Living Room, corresponding to a segment of length about 7.6s
and 5.1s.

Fig. 6.13 report the RMSE for different context sizes C' and strides s in the
case of 1Rx1N applied to the Kitchen room. Similarly to the Simulated dataset,
the variation of the temporal resolution produces a similar performance trend
for the two neural architectures. Details of the best performing configurations
for the CNNs are provided in Table 6.8.
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Livi
Room Kitchen 1Viie
Room
Features Configuration 2Nx1R 2Nx1R
Settings Context 19-4 17-3
. Circular Circular
. Ceiling
Microphones Array (K) | Array (L)
KI1R,K1L
K3L,K3C | K2L,K2R
K3L,K3C | K3C,K3R
Wall
L1C,L1L | L2L,L2R
L2L,IL2R | L1R,L1C
L3L,L3R
Convolutional Number 24 24
Kernels Size 5X5 5% 5
Feed First 256 256
Layer
Forward g d
Layers ecott 256 512
Layer
RMSE (mm) 425 350
It
Results Peor 72 75

Table 6.8: Results for Convolutional Neural Networks with the best performing
configurations in the Real case study.

Real Dataset - CNN-SLOC | ™88 INx1R
mm 2Nx1R
600
42% 39%
T 450
£
2300
=
o=t
150
0
Without With Without With

Context Context

Context Context

Figure 6.12: Improvements on Real dataset for CNN-SLOC when temporal con-
text is considered.
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Figure 6.13: Performance trend in the Real dataset for different strides at grow-
ing context. The considered room is Kitchen with 1Rx1N configu-
ration, the two DNN are plotted.

Conclusion and Outlook

This research proposes numerous advancements to the DNN-based system for
SLOC discussed in Section 6.1. The data-driven SLOC approach is tested
against a multi-room environment. Two architectures are investigated, based
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on MLP and CNN, respectively, and being fed with GCC-PHAT Patterns.
The coordinates of a speaker inside the target room are directly estimated. A
particular effort has been directed to the evaluation of a spatial and temporal
context, revealing the latter to be extremely decisive. In details, audio coming
from one or two rooms has been jointly exploited (1Rx1N, 2Rx1N), while the
temporal evolution has been tested by means of close in time frames. The
algorithm implicitly requires an Oracle VAD in order to process only human
speech. Results are evaluated on the DIRHA Dataset in comparison with two
state-of-the-art algorithm, based respectively on CSP estimation and on SRP.
As result, the proposed system based on CNNs improves the performance by
66% and 51% respectively for the Simulated and the Real dataset with respect
to the SRP-PHAT approach, which proofs to be the most effective classical
algorithm. Furthermore, the CNN with 3-D kernels, previously addressed in
Section 5.2 for VAD, is able to exploit the temporal context information more
efficiently respect to the MLP network both in terms of RMSE and P.,..
Future works will target the development of a unique system capable of
simultaneously detect and localize a speaker. Indeed, promising results have
been achieved for VAD by using multiple channels and an extended temporal
context, as in Section 5.2, plus similar results have been obtained here for
SLOC. Hence, a combination of VAD and SLOC systems relying on multiple
microphones and time-extended data may lead to promising results.
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6.3 End-to-end Azimuth Localization

The focus of this research is to develop a machine learning framework inspired
by the human hearing system for localizing a speaker in reverberant environ-
ment. Although this study shares many aspects to the previous work of this
chapter, several differences are introduced with respect to Section 6.1 and Sec-
tion 6.2. In details, since the focus now goes to localization performed by the
human being, a different case study is taken into account. Indeed, here a to-
tally novel end-to-end approach concerning binaural localization is considered,
being largely different from Section 6.2, where microphone arrays are employed.
This strategy is adopted since binaural sound localization allows to address the
azimuth localization task independently from other phenomena which strongly
affect a multi-room environment. Furthermore, within this study the employ-
ment of a human like mannequin allows to better simulate the human hearing
system, while this is not possible when linear or circular arrays are exploited.

6.3.1 Preliminaries and Problem Statement

In the last years, localization systems based on DNNs have shown promising
performance. In [80], probabilistic neural networks are used to estimate the
DOA in an indoor environment using GCC-based features. Binaural cues are
employed in [81], where the CCF is used as features in a DNN to estimate the
azimuth of a sound source with simulated head movement. CNN architectures
are used in [28, 43] using frequency-domain features such as the phase or the
magnitude of the signal. A similar scenario has also been previously studied in
this thesis in Section 6.1 and Section 6.2, where a CNN predicts the speaker
coordinates.

All of the approaches so far are based on hand-crafted features explicitly
extracted from the waveform. Such a feature extraction process may lead to a
loss of information which can affect the performance of the SLOC algorithm.
Human listeners, on the other hand, are able to use waveforms from just two
ears to reliably determine the location of a sound source [82]. It is well known
that this ability is largely based on both binaural cues, such as the Interaural
Time Difference (ITD) and the Interaural Level Difference (ILD), and monaural
spectral cues created by direction-dependent filtering of the outer ears. How-
ever, it is less clear how these cues are seamlessly combined and processed by
the auditory cortex for sound localization [83].

Furthermore, much effort has been recently spent in the development of
end-to-end systems for many audio applications. For example, a model for
end-to-end ASR is proposed in [84], which combines localization, beamforming,
acoustic modelling and speech enhancement in a unified DNN. In audio genera-
tion, several end-to-end methods were proposed to directly generate waveforms
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from text [85, 86].

Contribution

Within this research, a novel end-to-end approach for sound localization, re-
ferred to as WawveLoc, is proposed. One of the main objective is to avoid an
explicit feature extraction stage, which may introduce an information loss in
the input signals. Hence, the proposed approach uses a CNN with a cascade of
convolutional layers to implicitly extract features directly from the raw wave-
form for sound localization. One of the key stages in the network is the initial
frequency analysis, being investigated by means of two different approaches.
Indeed, the first one is auditory-inspired and uses a convolutional layer based
on the gammatone filterbank [87]. The gammatone filter is a widely-used model
of auditory frequency analysis, with bandwidths set to reproduce human crit-
ical bandwidths [88]. The second model relies on a standard convolutional
layer which is intended to learn how to perform frequency analysis along with
the training process of the entire network. By analysing these two opposite
strategies important observations can be made with respect to frequencies and
binaural cues useful for sound localization. After frequency analysis, further
convolutional layers with 2-D kernels operates directly on the signals from both
ears to extract features that are similar to the binaural cues used by the audi-
tory system. The extracted features are finally concatenated and used as input
to a DNN with fully connected layers, in order to map them to the correspond-
ing source azimuth.

The following simulations show that the proposed WaveLoc systems are able
to accurately estimate the azimuth of a sound source in the anechoic condition.
However, the performance of the data-driven WaveLoc approach is poor in
reverberant conditions when trained only on anechoic signals. This leads to
a detailed investigation of the benefits of Multi-Conditional Training (MCT),
following which robust performance of both the wave-based approaches are
achieved across a range of challenging reverberant conditions.

6.3.2 Proposed Method
Overview

The proposed end-to-end sound localization approach is illustrated in Fig. 6.14.
The CNN can be broadly divided into three stages: (i) a frequency analysis
stage that takes the framed binaural ear signals as input, (ii) a feature extrac-
tion stage with a cascade of convolutional layers to extract suitable features for
sound localization, and (iii) a sound localization stage based on several dense
layers to perform sound localization as a classification task.
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Figure 6.14: The proposed end-to-end WaveLoc-GTF system using convolu-
tional neural networks for binaural sound localization.

The raw waveforms of the left and right ear signals, as indicated by ‘I and
‘R’ in Fig. 6.14, are directly used as inputs to the proposed CNNs. The ear
signals are sampled at 16 kHz and framed with 20 ms window size with 10 ms
overlap. In each frame the left and right channels are stacked together to form
an input matrix of size 2 x 320.

It is well established that the auditory system performs a frequency analysis
that divides the ear signal into frequency bands, and then does analysis on
the fine time signal in each band [89, 90]. Such processing has been shown to
improve the robustness when exploited in a binaural sound localization system,
particularly in reverberant environments [34]. To simulate this operation, the
first stage of the CNN performs a frequency analysis which filters the ear signals
in the time domain with convolutional kernels.

Two frequency analysis strategies are investigated in this study. In the first
system, named WaveLoc-GTF, the frequency analysis is performed by a convo-
lution layer which is broadly based on a gammatone filterbank [87]. As shown
in Fig. 6.14, the frequency analysis layer consists of a number of frequency chan-
nels. The following convolutional layers in each frequency channel elaborate
upon the frequency analysis output, in order to extract frequency-dependent
features. The second system, named WaveLoc-CONYV imposes no constraint
on frequency analysis. Instead, a convolutional layer with 1-D convolutional
kernels is exploited to analyse frequency, with parameters learned from the
data as part of the network training process.

In both systems, the frequency analysis is followed by a layer of 2-D convolu-
tional kernels to extract features based on correlations of the left and the right
channels. In WaveLoc-GTF these kernels are applied separately for each out-
put of the gammatone filters, hence each frequency band is elaborated within
an independent channel, while in WaveLoc-CONYV they are applied to the sin-
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gle frequency analysis layer. The correlation-based features are closely related
to ITD and ILD cues, which are further processed by another convolutional
layer with 1-D kernels in order to search for specific patterns that are related
to the localization task. Finally, the features produced by the convolutional
layers are flattened and concatenated, before being passed to two dense layers.
A softmax activation function is used in the output layer in order to perform
sound localization as a classification task.

WaveLoc-GTF

Fig. 6.14 illustrates the first proposed CNN: WaveLoc-GTF. As discussed, the
frequency analysis is performed by a gammatone filter bank, which consists of
32 filters spanning between 70 and 7000 Hz with peak gain set to 0 dB. These
filters are directly coded into non-trainable CNN kernels of size 1 x 320, with
a linear activation function. The gammatone impulse response is given by:

wlt] = at" ! cos(2m ft + p)e” 2T (6.7)

where t is time, a is the amplitude, f is the centre frequency, ¢ is the phase of
the carrier, n is the filter’s order, and b is the filter’s bandwidth. The necessity
of flipping the 1-D kernel raises. Indeed, A 1-D convolutional kernel performs
the convolution operation following:

M

ylt)= > amlwlt+m] (6.8)

m=—M

where z is the input signal, w the weights of the filter, ¢ is the index of the
actual value and M is the filter length. However, the time domain convolution

is ruled by:
M

)= > almult—m) (69)
m=—M
In other words, the 1-D kernel performs a time domain cross-correlation be-
tween the filter and the input signal. Nevertheless, here the objective is to
perform a time domain convolution, hence, the design procedure of the filter
must lead to w[t — m], reason why the filter is designed in the opposite time
direction of the binaural features.

In each frequency band, the resulting feature maps share the same dimensions
(2% 320) of the input matrix. A normalisation layer is then applied which looks
for the maximum absolute value across all the gammatone channels before
dividing them by this value. Hence, the output feature values range between
[-1,1], which are further processed with 1 x 2 max pooling.

A separate stack of two further convolutional layers processes each normalised
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channel, searching for specific patterns related to localization. The first con-
volutional layer has 2-D kernels of size 2 x 18 and the second layer has a set
of 1-D kernels of size 1 x 6. Both convolutional layers are followed by 1 x 4
max pooling and employ ReLU activation. Finally, the processed channels are
concatenated and fed into two fully connected dense layers. Each dense layer
consists of 1024 hidden units with ReL U activation and a dropout rate of 0.5.

The output layer consists of 37 nodes corresponding to the 37 azimuth classes,
with softmaz activation.

WaveLoc-CONV

The neural architecture of the second system, WaveLoc-CONV, employs a sin-
gle convolutional layer dedicated to frequency analysis. Its key difference from
WaveLoc-GTF is that the frequency analysis of this model is learnt during the
training process together with other parameters of the network. A convolu-
tional layer with 64 1-D kernels of shape 1 x 256 is employed as time domain
filters for frequency analysis. It is reasonable to expect that the shape of a
convolutional kernel directly trained on a raw waveform will be similar to all
the sinusoidal components that form the waveform itself. In other words, the
convolutional kernels are characterised by a set of sinusoidal functions, which
lead to a particular frequency response of the kernel itself. This result has been
previously observed in [84].

The convolutional layer is followed by 1 x 2 max pooling with a linear activa-
tion function applied. As in WaveLoc-GTF, two more convolutional layers are
employed to search for features suitable for localization. However, instead of
acting separately for each channel as in WaveLoc-GTF, they now jointly pro-
cess all the output of the frequency analysis stage. The first of the two layers
uses 64 2-D kernels of size 2 x 18 to look for correlations between the left and
right channels. The second uses 64 1-D kernels of size 1 x 6. Both layers use
the ReLu activation function and are followed by 1 x 4 max pooling. Finally,
the outputs are flattened and fed into a two fully-connected hidden layers with
1024 units each. The output layer uses softmax activation with 37 neurons.

All the hyperparams or both end-to-end architectures are chosen based on
an optimisation process using a development dataset.

6.3.3 Experimental Setup
Binaural simulation

Binaural signals are simulated by convolving speech recordings with the Surrey
BRIR database [67], previously addressed in Section 4.2.2. The Surrey BRIRs
were captured using a Cortex HATS in both anechoic and reverberant rooms. A
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total of 37 azimuth angles are used, ranging from [-90°, 90°] in steps of 5°, where
0° is located exactly in front of the head. Four reverberant rooms are employed,
denoted A-D. The reverberation time (Tgp) and Direct-to-Reverberant Ratio
(DRR) of each room is shown in Table 6.9.

Room A Room B Room C Room D
Teo (s) 0.32 0.47 0.68 0.89
DRR (dB) 6.09 5.31 8.82 6.12

Table 6.9: Room characteristics of the Surrey BRIR database [67].

Speech signals belonging to the DARPA TIMIT database [70], described in
Section 4.2.3, are convolved with each BRIRs. The initial and final frames of
each speech utterance are truncated if silence is present. The training dataset
is obtained by randomly selecting 24 sentences per azimuth from the TIMIT
training subset, while another 6 sentences composes the validation dataset. 15
more sentences per azimuth are selected from the TIMIT test subset to create
the test dataset.

Experimental setup

For training the Adam optimizer with a learning rate of le—3 and a batch
size of 128 samples is employed. The training process lasts for 50 epochs, but
early stopping is applied if no improvement is observed on the validation set
for more than 5 epochs. A decreasing learning rate is employed to improve
training, being multiplied by 0.2 if no lower error is achieved after 2 epochs.

The networks are trained in two acoustic room conditions: (i) using anechoic
signals only for training; (ii) multiconditional training, in which the networks
are trained using data from all the reverberant rooms apart from the one used
for test.

The evaluation results are reported based on chunks. Each chunk is 250 ms
long (25 frames). The prediction made for each frame in a chunk is averaged
to report a single azimuth location for the chunk. Chunk-based evaluation is
adopted in order to avoid the issue that a speech signal typically includes short
pauses where there is no directional sound source. The accuracy of the models
is finally measured in terms of RMSE given in degrees.

Baseline system

The baseline system is a state-of-the-art DNN-based localization system using
GCC-PHAT features as inputs [65], as also tested in Section 6.1 and in Sec-
tion 6.2. GCC-PHAT features are computed as the inverse transform of the
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frequency domain cross-correlation of two audio signals captured by a micro-
phone pair. The binaural signals sampled at 16 kHz are framed at 20 ms, with
10 ms overlap. Since a distance of 18 cm occurs between the two microphones,
the first 37 values are selected from the inverse transform. Unit variance and
zero mean normalization is then applied. The baseline network consists of an
input layer, two hidden layers of 1024 units each and an output layer of 37
classes. Dropout equal to 0.5 is applied after the two hidden layers. Softmax
is selected as the activation function for the output layer, while a sigmoid ac-
tivation function is used for the hidden units. All the hyperparameters are
optimised using the development dataset.

6.3.4 Main Results
Anechoic training

Table 6.10 shows results using systems trained in the anechoic condition. The
best overall performance is achieved by the baseline GCC system. The pro-
posed WaveLoc-GTF performs slightly worse compared to the baseline, while
the localization errors for WaveLoc-CONYV are considerably larger across all
reverberant conditions.

Room Anechoic A B C D
Baseline 0.1° 2.6° 9.3° 2.6° 10.1°
WaveLoc-GTF 0° 9.1° 10.7° 1.6° 10.5°

WaveLoc-CONV 0° 37.7° 41.8° 37.3° 44.4°

Table 6.10: localization RMSE results in degrees for the models trained in ane-
choic environment.

It appears that the WaveLoc-CONV system has a tendency for overfitting
compared to the other two systems. Fig. 6.15 shows the log-power spectra of all
the 64 kernels in the first convolutional layer in WaveLoc-CONV. It is clear that
the kernels, when trained in the anechoic condition, act largely as a set of band
pass filters, mostly enhancing the frequency bands between 300-600 Hz and
between 2300-2800 Hz. It is widely known that binaural features such as ITDs
are more reliable in the low frequency region below 1600 Hz while others such
as ILDs become more robust in the high frequency region above 1600 Hz [82].
It is possible that the network extracts related binaural features which are most
effective in these two bands for sound localization in the anechoic condition.
Such behaviour, however, fails to generalise to unseen reverberant conditions
as these frequency bands could become unreliable due to reverberation. The
WaveLoc-GTF model, on the other hand, performs frequency analysis with the
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gammatone filterbank layer which forces the system to exploit all frequency
bands and thus extract the most effective localization features in each band.

60

Kernels

3 4 5
Frequency (kHz)

Figure 6.15: Log-power spectra of the kernels in the first convolutional layer of
WaveLoc-CONV when trained in the anechoic environment.

Multiconditional training

It has been shown in the past that MCT can mitigate overfitting and increase
the robustness of sound localization in reverberant conditions [81, 91]. This can
be done by adding either diffuse noise or reverberation to the training signals.
In this study, a reverberant training approach has been adopted as preliminary
experiments showed it to be more effective. Specifically, the anechoic train-
ing dataset was supplemented with reverberant versions by convolving it with
various BRIRs. The evaluation room is excluded for building the new train-
ing datasets, but for each room all the remaining three rooms are included for
MCT.

Room A B C D

Baseline 2.7° 3.3° 3.1° 5.2°
WaveLoc-GTF 1.5° 3.0° 1.7° 3.5°
WaveLoc-CONV  1.7° 2.3° 1.4° 2.4°

Table 6.11: localization RMSE results in degrees using MCT.

Table 6.11 lists the results of all the models. The anechoic condition was
excluded in this study, as all the models performs well even without MCT. All
the models benefit from MCT, especially the proposed WaveLoc models. The
best overall performance in reverberant conditions is achieved by the WaveLoc-
CONYV model, which has an average localization RMSE less than 3° compared
to over 30° without MCT.
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Frequency (kHz)

Figure 6.16: Log-power spectra of the kernels in the first convolutional layer of
WaveLoc-CONV when trained using MCT for the model tested in
room B.

Frequency (kHz)

Figure 6.17: Log-power spectra of the kernels in the first convolutional layer of
WaveLoc-CONV when trained using MCT for the model tested in
room D.

Again, to investigate the effect of MCT on the convolutional kernels, the
log-power spectra of all the 64 kernels in the first convolutional layers of the
WaveLoc-CONV model are plotted. Plots for rooms B and D are shown in
Fig. 6.16 and in Fig. 6.17, respectively; plots for the remaining two rooms
are similar. It can be seen that the first convolutional layer is now composed
of a set of distributed bandpass filters emphasising mainly the 1500-4000 Hz
range, with some kernels stretching up to 6-7kHz. The low frequencies below
1500 Hz are less exploited by the WaveLoc-CONV model. It is interesting
to notice that the data-driven model learns to use more high frequency cues
in a reverberant environment, which suggests ILD become more useful than
ITD. It is reasonable to expect that the ITD is more affected by reverberation,
while the ILD, created by the head shadowing effect mainly for frequencies
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higher than 1600 Hz, is more robust to reverberation. Indeed, psychophysical
cue-trading studies find that human listeners give ILD more weight than ITD
when localising sounds in reverberant conditions [92].

Conclusions

This research describes a new approach for localising a sound source directly
from the waveform, by proposing two novel end-to-end CNN systems. Machine
localization systems typically employ hand-crafted features, such as the ITD
and ILD, or GCC based features, as discussed in Section 6.1 and Section 6.2.
Such explicit feature extraction may limit the model performance since it im-
plies a lossy transformation of the input signals. Instead, the proposed end-
to-end approach employs a cascade of convolutional layers to extract features
directly from the waveform, that are suitable for localization in reverberant
environments. When MCT is used across reverberant conditions, both end-
to-end systems outperform a state-of-the-art DNN system using conventional
features.

Two CNN-based systems are introduced. The first system, WaveLoc-GTF,
is inspired by the auditory system and employs a convolutional layer that is
largely based on a gammatone filterbank. The second system, WaveLoc-CONV,
employs a data-driven approach, where a convolutional layer with trainable 1-D
kernels is dedicated for frequency analysis. Although the gammatone filterbank
is in some sense more ‘principled’, since it approximates the filtering character-
istics of the human auditory system, it does not work as well as a system that is
trained (i.e., finds its own filters) across a number of reverberation conditions.
One reason for this is that the system may elect to emphasise frequency regions
during training that provide more robust cues to localization.

Indeed, when MCT is used, the WaveLoc-CONV model is better able to
exploit features in the high frequency regions above 2kHz, which tend to be
less corrupted by reverberation. This mirrors findings from human perception
suggesting that ILD (which is primarily available at high frequencies) is more
robust than ITD when reverberation is present.

Future work, not addressed in this thesis, will focus on improving the abil-
ity of end-to-end systems to generalise to unseen room conditions and mul-
tiple sources. Another possible direction is to combine sound identification
with sound localization within an end-to-end system. Finally, conducting ‘psy-
chophysical’ studies on trained networks will allow to fully understand their
underlying mechanisms, e.g. by using the cue trading protocol described in
[92].
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6.4 Estimate Sound Source Elevation using Phase
and Magnitude Spectra

The focus of this research is to develop a machine learning system for estimating
the elevation of a sound source. For the same reasons addressed in Section 6.3,
the multi-room environment considered for the task of localizing a speaker
in Section 6.1 and Section 6.2 is no more taken into account. Alternatively,
binaural localization is now addressed, with the purpose of investigating a novel
approach independently from issues related to a multi-room environment.

6.4.1 Preliminaries and Problem Statement

Human beings determine both the azimuth of a sound source in the horizontal
plane and its elevation in the vertical plane by using two binaural sensors [82].
Horizontal sound localization is largely based on binaural cues such as the ITD,
or the related Interaural Phase Difference (IPD), and the ILD, which encode
an azimuth location in terms of the difference between the left and right ears in
both phase and magnitude [82, 83]. In addition, the human outer ear, together
with the head, shoulders and torso, form direction-selective filters. Within this
process, the two ears receive sound going through direction-specific frequency
responses, which are referred to as spectral cues. These cues are responsible
for vertical sound localization in the median plane (directly in front of and
behind the listener), where binaural cues provide little information [82, 93,
94]. When a source is located away from the median plane, the binaural cues
become more useful for perceiving its elevation, as different elevation angles
will cause a disparity in the frequency responses of the left and right ears [36,
95]. Based on these principles, several machine systems for sound localization
in the horizontal plane have been proposed [81, 96, 97]. Few works target
localization in the vertical plane [36, 37], where the pursued strategy consists
in concatenating binaural cues and monaural spectral cues in a single feature
vector. Rodemann et al. [98] added binaural hearing to a robotic head in
order to make use of spectral cues for elevation localization. They showed that
by combining binaural cues (ITDs and ILDs) and spectral cues, localization
accuracy improved in both azimuth and elevation. O’Dwyer et al. [38] used
the CCF, which was previously used for azimuth localization [81], for elevation
estimation using a DNN system. Their studies suggest that using the CCF can
greatly reduce elevation estimation errors in reverberant environments when
combined with spectral features. Their later study in [39] further improved the
system by integrating MFCCs features.
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Contribution

This research proposes a novel binaural machine system that robustly esti-
mates the elevation of a speech source using a CNN framework. The approach
here discussed differs in two important respects from previous studies. First,
instead of using explicitly extracted IPDs and ILDs as features, the proposed
system uses a convolutional layer with 2-D kernels that operate directly on the
phase spectrum and the magnitude spectrum of the binaural ear signals. Such
operations extract binaural features that are similar to IPDs and ILDs, but
have better robustness, particularly in reverberant environments. Secondly,
this approach combines monaural and binaural features with the same DNN
architecture. The 2-D kernels also operate along the frequency dimension, and
therefore combine binaural features with monaural spectral features. Features
extracted from both the phase spectrum and the magnitude spectrum are con-
catenated and used as input to a DNN with fully connected layers in order to
map them to the corresponding source elevation. Evaluation shows that the
proposed system is able to accurately estimate the elevation of a speech source,
even in challenging reverberant conditions, and substantially improves upon
the performance of previous approaches.

6.4.2 Proposed Method
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Figure 6.18: A convolutional neural network using phase and magnitude spec-
tra for binaural sound localization. ‘L’ and ‘R’ represent the left
and the right channels, respectively.

The proposed CNN system for binaural sound localization is illustrated in
Fig. 6.18, which can be broadly divided into two stages. First, a feature extrac-
tion stage with a cascade of convolutional layers is designed to extract suitable
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features for localization. Two feature pathways are considered: a phase path-
way operating on the phase spectrum and a magnitude pathway operating on
the magnitude spectrum. The extracted localization features are passed to the
second stage for sound localization, which uses several fully connected layers
to perform elevation localization as a classification task.

Frequency Analysis

The input to the CNN system includes both the phase spectrum and the mag-
nitude spectrum. The binaural ear signals are framed using a 20 ms window
with 10 ms overlap. At a 16 kHz sampling rate each frame contains 320 samples.
A STFT with 512 points is applied to each frame after zero-padding with a
Hamming window, and then the phase spectrum and the magnitude spectrum
are extracted. The phase spectrum is wrapped to the range [—m, 7] and the
magnitude spectrum is converted to log-magnitude in dB. Finally, the left and
right channels are stacked together so that both phase and magnitude features
are combined in a matrix of size 2 x 256, with the left and right channels indi-
cated by ‘L’ and ‘R’ respectively in Fig. 6.18. The input phase is normalised
to the range [-1, 1] and the magnitude is normalised to zero mean and unit

variance.

Feature Extraction Layers

It is not clear how best to combine binaural cues and monaural spectral cues
in a machine system for binaural sound localization. Most systems simply
concatenate all the features as one feature vector to be used as input to a
classifier, such as a DNN [38, 81]. In this study, a cascade of convolutional
layers is applied to the phase spectrum and magnitude spectrum with the
intention of extracting features that are closely related to both the binaural
features (IPDs and ILDs) and the monaural spectral features.

The first convolutional layer consists of 32 2-D kernels. The size of each kernel
is [2 x 9], where 2 corresponds to the binaural channels and 9 corresponds to 9
FFT bins (~281Hz with a 16 kHz sampling rate). When applied to the phase
spectrum, the 2-D kernels model the phase correlation not only between the
left and the right channels, extracting features similar to the IPD, but also the
spectral correlation across the frequency. Similarly, the magnitude pathway
produces features similar to the ILD as well as spectral features.

Next, in each pathway, the correlation-based features are down-sampled by a
[1 x 4] max pooling layer, which helps to reduce over-fitting and also reduces the
computational cost. The resulting features are further elaborated by another
convolutional layer with 32 1-D kernels of size [1 x 3], in order to identify specific
patterns that are related to the localization task. The output features are again
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down-sampled with a [1 x 2] max pooling layer. In both convolutional layers,
the activation function is the ReLU.

Finally, the features produced by the convolutional layers from each pathway
are flattened and the phase features and magnitude features are concatenated
to form the input to the localization layers.

Localization Layers

The localization stage maps the correlation-based features to sound elevation
angles using two fully connected hidden layers. FEach of the layers has 512
hidden nodes, with the ReLU as the activation function and a dropout rate
of 0.5. Finally, the output layer uses the softmax activation function. In this
study the elevation angles range from -70° (below the head) to 70° (above the
head) with a step of 10°. Thus the output layer consists of 15 neurons.

Training

The network is trained using the Adam optimiser with a learning rate of 5e-4
and a batch size of 128 samples. Categorical cross-entropy is used as the loss
function. The training procedure involves 50 epochs in total, but early stopping
is applied if no improvement is observed on the validation set for more than
5 epochs. A decreasing learning rate is also adopted with a decreasing factor
of 0.5 when no loss reduction is achieved after 2 epochs. The learning rate is
fixed once le-4 is reached.

6.4.3 Experimental Setup
Binaural Simulations

Binaural stimuli used in this study are created by convolving a speech database
with a set of HRIRs measured on a KEMAR 45BC binaural mannequin from
the SADIE database [68], previously addressed in Section 4.2.2. The database
contains measurements spanning across many different azimuth and elevation
locations, distributed in steps of 5° in the azimuth plane and 10° in the eleva-
tion plane. All the measurements are taken with an Equator D5 loudspeaker
positioned 1.5m from the centre of the KEMAR head.

As shown in Fig. 6.19, 15 elevation angles ranging between [-70°, +70°] in
steps of 10° are selected in this study. For each elevation angle, the simulation
also includes 19 azimuth locations in the frontal hemifield ranging between [-
90°, +90°] in steps of 10°. Therefore the simulation contains a total of 285
source locations.

Speech sentences from the TIMIT database [70], discussed in Section 4.2.3,
are used for simulating the binaural signals. 30 speech sentences are randomly
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Figure 6.19: Schematic diagram of the virtual listener configuration. Target
source positions were limited to the elevation range [-70°, +70°].

selected for each of the 285 source locations totalling 8,550 sentences. Since
the TIMIT sentences are sampled at 16 kHz, the SADIE HRIRs are resampled
to 16 kHz first. Each TIMIT sentence is then convolved with a pair of HRIRs
from a source location to simulate spatialised binaural signals.

The training set includes 285 sentences per elevation angle. The networks
are only trained using the anechoic dataset. The validation set includes 95 sen-
tences per elevation angle, while the evaluation test set includes 190 sentences
per elevation angle. To avoid the effect of silence that occurs at the beginning
and the end of a TIMIT sentence, only the central 1-s segment of each sentence
is used for evaluation [39, 81]. Care is taken to make sure there is no overlap
between the datasets, and the number of sentences is evenly distributed across
all azimuth and elevation locations.

Evaluation Dataset

While the networks are trained on just HRIR data, the evaluation dataset
also includes RIR data to simulate the effect of reverberation. Following [38],
binaural signals from the HRIR evaluation set are further convolved with four
sets of RIRs from the OpenAIR library [69], of which details are discussed in
Section 4.2.2. The details of these four RIRs are given in Table 6.12. Therefore
the evaluation dataset includes in total five room conditions. To investigate the
effect of room reverberation, each room condition uses the same 190 TIMIT
sentences per elevation angle.
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Label Description Tso
Room A Domestic living room 0.2s
Room B A church built in the 11th century in Italy 0.53 s
Room C A disused mine in the UK 0.71s

Room D A church built in the 16th century in Italy 1.16 s

Table 6.12: Details of the four reverberant room environments from the Ope-
nAIR library [69] used in this study.

Experimental Setup

The proposed system exploiting both phase and magnitude spectra is referred
to as PHASE-MAG. To investigate the separate contributions of the phase and
the magnitude features, the proposed system is also altered so that only one
feature pathway was exploited. They are referred to as PHASE and MAQG,
respectively.

The localization performance is measured by comparing reference source el-
evation angle with the estimated elevation angle using various chunk sizes. A
chunk consists of a number of frames (10 ms frame rate) and the network output
is averaged across a chunk to predict one elevation angle per chunk, following
the method used in [81]. Two chunk size values were used for evaluation: 10 ms
(single frame) and 50ms (5 frames).

The results were reported using two metrics. The elevation prediction accu-
racy was measured by counting the number of chunks for which the predicted
elevation angle matched the reference angle. The Root Mean Square (RMS)
errors were reported in degrees by comparing the predicted and reference ele-

vation angles.

Baseline Systems

A GCC-PHAT system is developed as a baseline. The GCC-PHAT algorithm
is a popular cross-correlation based method for estimating the TDOA with a
phase amplitude transform. The GCC-PHAT features are computed based on
cross-correlations of binaural signals for lags between £1.1 ms. With the 16 kHz
sampling rate this produced a 37-D feature vector for each frame. The GCC
features are standardised by removing the mean and scaling to unit variance,
and directly used as input to a DNN system with three fully connected hidden
layers. Each hidden layers has 512 nodes with ReLU as the activation function
and a dropout rate of 0.5. The learning rate is 1le-3. Otherwise the topology of
the DNN is identical to the localization layers described in Section 6.4.2 (also
in Fig. 6.18). This system is referred to as GCC-PHAT.

In addition, the evaluation setup adpoted here is broadly in line with the
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one used by O’Dwyer et al. [39]. Thus the results from their best-performing
system, a DNN using MFCCs and CCF features, are directly taken for com-
parison. Note that the CCF features are similar to the GCC-PHAT features,
and the main difference is the use of MFCCs in their system. This system is
referred to as MFCC-CCF.

6.4.4 Main Results

Anechoic Room A Room B Room C Room D

10ms 50ms| 10ms 50ms| 10ms 50ms| 10ms 50ms| 10ms 50ms
MFCC-CCF [39]7 96.9% N/A |94.4% N/A |79.4% N/A |625% N/A | N/JA N/A
GCC-PHAT 60.9% 78.4%|44.6% 58.1%| 49.4% 61.8%|54.3% 68.6%]| 40.7% 52.6%
PHASE 93.4% 98.9% | 82.2% 92.5% | 88.9% 96.8% | 91.6% 97.8%| 83.5% 93.9%
MAG 96.5% 99.8%]90.7% 97.9%| 93.8% 99.0%] 95.6% 99.5%[ 91.4% 98.3%

PHASE-MAG [99.0% 100% [95.3% 100% |97.6% 100% [98.6% 100% [96.6% 99.8%

T O'Dwyer et al. [39] reported results with a +5° accuracy threshold.

Model

Table 6.13: Elevation localization accuracy in different reverberant conditions,
evaluated using 10 ms and 50 ms chunks.

Model Anechoic Room A Room B Room C Room D
I0ms 50ms | 10ms 50ms | 10ms 50ms [ 10ms 50ms | 1I0ms 50 ms
MFCC-CCF [39]|1.59° N/A |2.08° N/A |10.07° N/A [12.97° N/A | N/JA NJ/A
GCC-PHAT [37.74° 25.96° [45.88° 37.65°[42.05° 33.82°[40.08° 31.10°[47.05° 39.09°
PHASE 9.97° 2.21° [17.31° 10.08°[12.65° 5.62° [11.23° 4.18° [15.76° 7.83°
MAG 3.62° 0.29° [ 7.20° 2.37° [ 4.90° 1.02° | 4.03° 0.61° [ 5.80° 1.50°
PHASE-MAG 1.78° 0° 4.53° 0.02° [ 2.69° 0.02° [ 1.95° 0° 3.07° 0.07°

Table 6.14: Elevation RMS errors in degree in different reverberant conditions,
evaluated using 10 ms and 50 ms chunks.

Tables 6.13 and 6.14 show the elevation estimation accuracy rates and the
RMS errors, respectively, with 10ms and 50 ms chunk sizes. Among all the
models evaluated, GCC-PHAT is the worst performing system. Using 10 ms
chunks, the estimation accuracy decreases from 60.9% in the anechoic condi-
tion to 40.7% in Room D which is a reverberant church. The performance
degradation in RMS errors is similar. This is not surprising, given that GCC
is designed to mainly measure the I'TD. However, since the evaluation dataset
includes source locations spanning the frontal sphere, off the median plane the
ITD will also change across elevation. Furthermore, as the entire GCC function
is used as input, the DNN is able to learn systematic changes in the GCC with
source elevation.

The MFCC-CCF results from O’Dwyer et al. [39] suggest that the use of
MFCCss is beneficial for elevation localization as they provide spectral cues as
well as the ILD information (via the use of the energy term in MFCCss) that
are not available in the GCC features. However, the model was not very robust
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in reverberant conditions, with only a 62.5% accuracy in Room C, even though
the reported results are computed using a £5° accuracy threshold.

The proposed PHASE-MAG model demonstrates high robustness to rever-
beration with a localization accuracy above 95% in all the room conditions using
10 ms chunks, and close to 100% using 50 ms chunks. When using just the phase
features or magnitude features, there is a substantial performance drop across
all conditions. This suggests that the two features provide synergistic informa-
tion for elevation localization that is exploited in the joint CNN. Comparing
the PHASE model and the MAG model, it can be seen that the magnitude
spectrum provides more discriminative features for elevation estimation than
the phase features, as the standalone MAG model performs significantly better
than the PHASE model across all room conditions.

307 1 PHASE kernelsize 1 [ MAG kernel size1 [ PHASE-MAG kernel size 1
Emm PHASE kernel size 9 W MAG kernel size 9 W PHASE-MAG kernel size 9

25

20

15 M

104

Elevation Estimation Error Rate (%)

04
Anechoic Room A Room B Room C Room D

Figure 6.20: Elevation estimation error rates (10 ms chunk size) comparing var-
ious CNN models with different kernel sizes in the first layer.

It is interesting to note the relatively good performance produced by the
standalone PHASE model. This is apparently due to the proposed network
architecture, which is able to extract spectral cues from both the convolutional
layers and the dense layers. To investigate this further, the size of the 2-D
kernels in the first convolutional layer is reduced from [2 x 9] to [2 x 1] and thus
the layer can only extract phase correlation between the left and right channels
without correlations across frequency. The estimation error rates using 10 ms
chunks are shown in Fig. 6.20, which also includes results of other CNN systems
with the same modification. It can be seen that with a kernel size 1 along the
frequency dimension, all the systems (the white bars) produce significantly
higher error rates. Although the subsequent layers are still able to capture
spectral cues to some extent, they do so less effectively.

93



Chapter 6 Speaker Localization

Conclusions

This research proposes a novel binaural system that robustly estimates the el-
evation of a sound source. Instead of using explicitly extracted features such
as IPDs and ITDs, the system exploits a CNN with 2-D kernels to extract
features directly from the phase and magnitude spectra. Such operations al-
low binaural information and monaural spectral information to be combined
effectively. Computer simulations show that neither the phase nor magnitude
spectrum alone provide a robust basis for identifying the elevation of a sound
source under reverberant conditions; combining the two is necessary. By doing
so, the performance of the proposed system substantially improves upon that
of previous approaches.

Future directions include full 3-D localization in both azimuth and elevation.
In addition, further studies will address the integration of sound localization
and sound identification within a common CNN architecture, similarly to the
studies conducted in the next Section 7.1 and Section 7.2. However, no studies
have been addressed in this direction within this thesis work.
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Integrating Voice Activity
Detection and Speaker Localization

The research conducted here aims to the development of a unique DNN-based
framework capable of simultaneous VAD and SLOC. The idea driving these
works concerns the possibility of virtuously exploiting localization and detec-
tion related features to increase the overall performance of the system.

Experiments deal with the multi-room environment previously addressed in
Chapter 5 and then in Section 6.1 and Section 6.2. The novel framework pro-
posed here relies on the previous research conducted in terms of VAD and SLOC
against the DIRHA environment. For this reason, several winning strategies of
the previous models are adopted, such as the features considered as input, the
typology of the DNN, the exploitation of a temporal context, and so forth. On
the other hand, features such as the signal spectrogram and the raw waveform,
plus the related DNN architectures employed for their processing, discussed in
Section 6.3 and Section 6.4, are not considered. Indeed, these strategies have
never been addressed in this thesis for a multi-room environment and for the
purpose of VAD, hence an already established approach is preferred.

7.1 Joint VAD - Preliminary Model

The study here conducted addresses the development of a new model relying on
multiple input and outputs, for the purpose of joint detection and localization
of a speaker. Nevertheless, due to the novelty of the model and the particularity
of a multi-room environment, a specific strategy has been adopted for properly
evaluating the proposed method. In the first instance, only one framework [3]
is present in literature for joint VAD and SLOC, but due to its complexity and
due to the fact that it relies on a specific testing strategy not really suitable for
DNN-based models, it is not considered here. This comparative model will be
then dealt with in Section 7.2. Furthermore, it is in the interest of this research
to compare the proposed method to a baseline data-driven model, in order to
achieve the fairest comparison as possible. For this purpose, two CNN-based
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models are developed for comparison to act as VAD and SLOC, being the result
of the research discussed in Section 5.2 and Section 6.2, respectively. Indeed,
following this strategy, it is possible to train and test all the discussed models
within the same experimental set up. In addition, being the CNN architectures
similar, the dependency of the results from this factor is extremely reduced.

7.1.1 Preliminaries and Problem Statement

The focus in this work is on VAD and SLOC. Different techniques have been
proposed in the literature to tackle VAD problem in indoor environments.
Among the most recent ones, an approach recognizing a reference anchor word
with the help of mean subtraction is discussed in [99], the interaction between
VADs based on the SNR estimate is investigated in [100]. DNNs have been
employed in [14] and in Section 5.1. Further advancements have been proposed
by means of CNNs in Section 5.2. At the same time, several approaches have
been proposed for localizing a speaker in closed environments. In particular,
the SLOC problem has been recently faced by means of neural networks in
[33, 101], especially with a focus on CNN [28, 29, 35]. Similarly, Section 6.1
and Section 6.2 proposes a SLOC system based on MLP and CNN, respectively.

In the last years, some works focused on systems simultaneously addressing
the speech detection and the speaker localization tasks. A common approach
consists in grouping VAD and SLOC considering a cascade [3, 40, 41, 42] or a
parallel [102] configuration. Up to the writers’ knowledge, only two contribu-
tions investigate the cooperation between VAD and SLOC. One is the approach
proposed in [3], in which an ensemble integration of speaker localization and
statistical speech detection data in domestic environments is implemented. The
second technique jointly performs VAD and SLOC [4] by employing a modified
version of SRP-PHAT algorithm.

Contribution

Although the effort spent for developing models for joint speaker detection and
localization, a single data-driven model has never been investigated within this
context. Therefore, this research is intended to simultaneously exploit both
VAD and SLOC data in order to improve the overall performance, both in
terms of speech detection and speaker localization. DNNs are employed on
purpose, for two main reasons. First, DNN have already shown remarkable
performance on the two separate tasks, as mentioned above. Second, a neural
architecture with its multiple inputs and outputs allows to easily make use of
VAD and SLOC feature data and decision variable values.

In details, here is proposed a new model based on CNN, simultaneously op-
erating as detector and localizer exploiting standard VAD and SLOC features.
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The training of this network is performed by using both speech and non-speech
signals, raising the issue of performing localization even for non-speech frames.
The model is tested against a comparative framework relying on a classic cas-
cade configuration, where a neural SLOC trained by means of an Oracle VAD
is cascaded to a neural VAD, and speaker localization errors are considered
only in correspondence of correctly detected speech frames (true positive).

For the proposed study, the multi-room scenario already addressed in Chap-
ter 5 and in Chapter 6 is taken as reference, in order to have a solid experimental
background for evaluating the proposed approach.

7.1.2 Proposed Method

The proposed model named Joint VAD is discussed in this section. Although
it is capable of detecting and localizing the speaker at the same time, it is
employed only for VAD. After that, the comparative model is described. It
consists in the cascade of the so-called Neural VAD and Neural SLOC, which are
the results of the research conducted in Section 5.2 and Section 6.2, respectively.

Joint VAD Model

Convolutional Layers Fully Connected Layers

]
VAD
Prediction

LogMel

GCC-Phat
Patterns

Figure 7.1: The Convolutional Neural Network employed for the Joint VAD
Model. Pooling layers are absent. The outputs of the network
are three neurons, one for speech detection and the other two for
speaker localization.

In this neural model, the simultaneous detection of speech frames and local-
ization of speaker position is performed. As discussed in Section 7.1.1, the
objective is to exploit the synergy between these two tasks to improve their
performance, and a fully data-driven technique was identified as the most vi-
able solution to implement the idea. Several options have been investigated,
and the most performing one is the model depicted in Fig. 7.1. It consists in a
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¥
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Figure 7.2: The application of the 2-D threshold. The square box is the room,
in which speech is expected to be predicted. The thin red line is
the threshold. If prediction lies in the red region then it is labeled
as non speech, otherwise it is considered as speech.

single CNN with two standalone stacks of convolutional layers separately pro-
cessing LogMel and GCC-PHAT Patterns features, being then concatenated
and finally followed by a common set of standard feed-forward layers. The
network ends with three outputs, being the voice activity prediction and the
two speaker position coordinates.

A specific strategy has been adopted for labelling the network outputs. In-
deed, a 0 or 1 label is used for speech/non-speech classification. On the other
hand, localization is performed over speech frames in a 2-D plane, where the
room coordinates (x, 1) are given in the [0, 1] range. As a consequence of that,
the non speech frames lack of a label for the coordinates outputs. Hence, the
two (x,%) coordinates are labelled as —1 for non-speech frames. This solu-
tion is basically labelling the speaker position in the non speech condition as a
physical location outside the considered room, as similarly done in [4].

The result of this labelling method is that also the two coordinates are eligible
to represent the speech/ non-speech condition. A specific threshold needs to
be used on purpose, being the straight line depicted in Fig. 7.2 in a 2-D plane.
In details, speech detection is performed by means of the room coordinates, to
whom this threshold is applied, while VAD predictions are rejected.

Furthermore, this labelling strategy forces the model to range in [—1,1].
Hence, a specific activation function must be selected for the network output,
for its neuronal dense layers and the convolutional layers. For this purpose, the
Hard Tanh nonlinearity has been chosen, which acts as f(z) = z in [—1, 1] and
saturates to -1 and 1 out of this range, being previously discussed in Section 3.3.
In addition, the neural network training is dealt with as a regression problem,
since labels are clearly not eligible for a classification-based training.
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Last but not least, a smoothing technique is employed to tackle the variability
of the speech prediction. In details, the hangover technique is applied, being
described in Section 5.1.2, and with its counter set to 8.

Features

GCC-PHAT Patterns features, described in Section 4.1.2, are extracted by
considering only adjacent microphone pairs. Plus, due to the spatial disposition
of the microphones, the first 51 values of the cross correlation are selected.
Signals are sampled at 16 kHz, while frame size and hop size are set to 30 ms
and 10 ms respectively. Zero mean and unit variance normalization is applied.

LogMel features, also reported in Section 4.1.2, are extracted by using frame
size equal to 25 ms and hop size 10 ms. Zero mean and unit variance is applied
for normalizing this features.

An improvement of CNN performance has been observed in the previous
research described in Chapter 5 by extending the processed input data including
also past and future occurrences. The same approach has been used here as
well. Two are the parameters to set in this case, i.e., context and strides.
The first indicates the total number of frames considered as input instead of
the single actual frame, where an equal number of past and future frames is
selected. The latter recursively pilots the the frames selection.

An important consideration has to be made with respect to the feature ar-
rangement discussed in Section 6.2.2. Indeed, in this research the third di-
mension of the input matrix is formed by the microphone pairs (GCC-PHAT
Patterns) or by the single microphone (LogMel), while the 2-D matrix, where
the true 2-D convolution process takes place, is composed by the features and
the temporal context. On the other hand, in Section 6.2.2 the third dimen-
sion is formed by the temporal context, so that the true 2-D convolution takes
place over the matrix composed by features and microphones. This new ar-
rangement aims to weight more the temporal evolution of the signal instead of
the employed multiple microphones.

Comparative Model: Cascade Configuration

Speech detection is performed by the Neural VAD. It consists in a CNN fed
by LogMel features extracted from all the available microphones. Training and
testing of Neural VAD is accomplished over speech and non speech data ac-
quired by means of environmental microphones. A boolean label is employed
for representing the speech / non-speech condition, allowing to train the net-
work as a classification problem. ReLU activation, described Section 3.3, is
employed as non linearity within the model. Hangover technique with counter
set to 8 is used for smoothing the network prediction.
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The Neural SLOC performs the speaker localization task in terms of room
coordinates (x , ¥) and employs a CNN processing GCC-PHAT Patterns. An
Oracle VAD selecting only speech frames is used during the training phase of
the Neural SLOC, as in Section 6.1 and Section 6.2. Also the Neural SLOC
is characterized by ReLU activation, however its training is dealt with as a
regression problem. The coordinates predicted by the network go through
smoothing by means of a moving average filter of window size equal to 5.

Again, input features are presented as discussed above, differently from
Chapter 6. Hence, the third dimension of the 3-D matrix consists in the con-
sidered microphones, while the 2-D convolution takes place along with features
and the temporal context.

Finally, in computer simulations, as discussed later on, the Neural SLOC has
been tested using only speech frames detected by Oracle VAD and by Neural
VAD, i.e., considering all the available speech frames in the dataset and the
true positive predictions of the Neural VAD, respectively.

7.1.3 Experimental Setup

Simulations take place over the Simulated dataset of the DIRHA dataset, previ-
ously described in Section 4.2.1. The Real dataset has not been considered due
to its short amount of speech, which may be insufficient for a proper training
of the models. Simulations address two of the five rooms, which are the Living
Room and the Kitchen. These rooms are chosen since most of the speech events
occurs there, plus a higher number of microphones is available.

In details, no microphone selection stage is adopted in this research, hence
a fixed set of microphones is considered. For the Neural VAD, all the avail-
able microphones are considered, from which LogMel features are evaluated.
Regarding the Neural SLOC, GCC-PHAT Patterns are extracted from all the
couples of adjacent microphones installed in the wall and the ceiling array (i.e.,
microphones pairs distancing 50 cm). The central microphones of the ceiling
arrays (KA6, LAG) are excluded. Differently, the Joint VAD relies on Log-
Mel extracted from a reduced set of microphones which are K1R, K2L, K3C,
KAS5 for the kitchen and L1C, L2R, L3L, L4R, LA5 for the living room, and
GCC-PHAT Patterns extracted with the same strategy adopted for the Neural
SLOC.

The metrics employed for evaluating VAD accuracy are the ones described
in Section 5.1.3, being the FA, Del and SAD. On the other hand, SLOC perfor-
mance are tested in terms of metrics defined in Section 6.1, being the RMSE
and P..
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Neural Networks details

The CNN training is performed by using standard backpropagation with the
Adam optimizer [55]; plus, early stopping and variable learning rate are em-
ployed. Details are reported in Table 7.1.

The CNN hyper-parameters optimization is executed by random search; a
total of more than 30 neural architectures is investigated for each model. Con-
text and strides have been chosen a priori, as follows: context is set to 15 in
all cases, while strides is equal to 4 for Neural VAD, 5 for Neural SLOC and 3
for the Joint VAD-SLOC Model.

Training Early Learning
Epochs | Stopping Rate

Neural VAD 30 10 le—5
Neural SLOC 500 50 2.5e—4
Joint VAD Model 500 50 2.5e—4

Table 7.1: CNN Training Parameters
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