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Abstract

The research activity presented in this thesis concerns the design and develop-
ment of embedded solutions for electromechanical processes in order to obtain
optimised control performances. In detail, the rotary permanent magnets syn-
chronous motor and the linear piezoelectric motor are the processes that have
been studied and deepened in this thesis. For the first process, a “sensorless”
technique has been developed, without the aid of mechanical transducers. A
sliding mode control, model base technique, has been designed combining a
new approach which determines the parameter uncertainty of the model, i.e.
the stator resistance, and the initial condition of an unmeasured state, i.e. the
angular position of the rotor.

Then an optimal control technique has been employed to optimise the be-
haviour of the piezoelectric motor. To this purpose, the Linear Quadratic
Gaussian (LQG) control based on a numerically identified model has been used
with a view to increasing the performances of the overall system. Following the
idea of Reference Governor, the LQG controller regulates a pre-compensated
Piezoelectric Actuator (PA) system manipulating the reference signals.

In recent years, considerable progress have been made in robust nonlinear
control techniques, such as non-linear adaptive control, control based on the
geometric approach, the backstepping and sliding mode control for instance,
which take into account the uncertainties in the synthesis phase, ensuring the
achievement of the objective control in the face of modelling errors. The sliding
control technique is generally recognised as very robust, but the so-called “chat-
tering phenomenon” has given rise to a certain scepticism on this approach.
Nowadays, the control strategies are implementable with the availability of
powerful low-cost microprocessors.
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Sommario

L’attività di ricerca presentata in questa tesi riguarda la progettazione e lo
sviluppo di soluzioni embedded per processi elettromeccanici al fine di ottenere
prestazioni di controllo ottimizzate. In dettaglio, il motore rotante sincrono
a magneti permanenti e il motore lineare piezoelettrico sono i processi che
sono stati studiati e approfonditi in questa tesi. Per il primo processo è stata
sviluppata una tecnica “sensorless” senza l’ausilio di trasduttori meccanici. Un
controllo di tipo Sliding Mode, tecnica basata su modello, è stato progettato
combinando un nuovo approccio che determina l’incertezza dei parametri del
modello, i.e. la resistenza statorica e la condizione iniziale di uno stato non
misurato, i.e. la posizione angolare del rotore.

Quindi è stata impiegata una tecnica di controllo ottimale per ottimizzare
il comportamento del motore piezoelettrico. A tale scopo è stato utilizzato il
controllo LQG basato su un modello numerico identificato, al fine di aumentare
le prestazioni dell’intero sistema. Seguendo l’idea del Reference Governor, il
controller LQG regola un sistema PA pre-compensato che manipola i segnali
di riferimento.

Negli ultimi anni sono stati compiuti notevoli progressi in riguardo alle tec-
niche di controllo non lineare robuste, come il controllo adattivo, il controllo
basato sull’approccio geometrico, il controllo di tipo backstepping e sliding, ad
esempio, che tengono conto delle incertezze nella fase di sintesi, e che garan-
tiscono il raggiungimento dell’obbiettivo di controllo dinanzi a errori di mo-
dellazione. La tecnica di controllo Sliding è generalmente conosciuta per la
sua robustezza, ma il cosiddetto “fenomeno del chattering” ha dato origine a
un certo scetticismo su tale approccio. Al giorno d’oggi, queste strategie di
controllo sono implementabili con la disponibilità di potenti microprocessori a
basso costo.
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Chapter 1.

Summary of PhD Research
Activities

This thesis resumes the activities performed by the author during his PhD in
the triennium 2015-2018, at the Department of Information Engineering of the
“Università Politecnica Delle Marche” (UNIVPM). The thesis is focused on
the development of embedded strategies for electromechanical systems. The-
oretical analysis and experimental results are reported, presenting developed
controllers. Two real-world case studies have been considered for testing the
proposed strategies: a rotary motor and a linear piezoelectric actuator. The
control systems have been designed according to the model-based paradigm,
considering both black-box and white-box approaches [1]. This classification
splits the thesis into two parts, where case-studies are considered separately.

A brushless motor has been considered to test an innovative sensorless de-
veloped control algorithm. The algorithm allows to estimate non-measured
physical variables, i.e. angular position and speed of the rotor [2], by studying
the dynamic model of the motor. In particular, the sensorless approach has
been tested considering the uncertainty reconstruction of the electric parame-
ter of the real model as well as the initial condition of the unmeasured state,
i.e. the winding resistance and the rotor angular position. As already, the full
knowledge of the structure of the mathematical model and of its parameters
plays a fundamental role in the model-based nonlinear control theory. Unfor-
tunately, it only works in the ideal world made of simulations and calculus on
papers. To get around these inconveniences, a sliding mode control has been
designed, by definition, this type of nonlinear control is robust to uncertain on
the model and or its parameters [3].

The second part of the thesis considers a black-box modelling approach to
design a control system. A piezo system has been considered for developing
a non-invasive strategy that allows the improving of the commercial PI pre-
compensated system performances through an external control loop. The plant
has been identified in the form of a Multi-Input Multi-Output (MIMO) Linear
Time-Invariant (LTI) model, exploiting the linear behaviour of the actuated
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axes. In such systems like the PAs commercial applications, it is preferred
to maintain provided PI controllers, avoiding to replace it with advanced al-
ternative regulators, because of: i) usually PAs systems’ stakeholders do not
consider positioning accuracy improvable, ii) theoretically PI could be tuned
to provide an arbitrary small response time, but finally the controller imple-
mentation results impossible for high gains [4]. The proposed solution has
been selected to become an advertise to rapid prototyping [5] through the open
software Scilab/xCos [6].

This thesis proposes a novel approach to reconstruct an uncertain parameter
and the initial condition of an unmeasured state applied to the brushless motor.
In addition, the aim is to increase performances of the piezo system without
invasive changes to the device.
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1.1. Publications

1.1. Publications
From the above research activities, the following publications have been ob-
tained:

• Journal

– Colombo, L., Corradini, M. L., Cristofaro, A., Ippoliti, G., and Or-
lando, G.“An embedded strategy for online identification of PMSM
parameters and sensorless control.”
IEEE Transactions on Control Systems Technology.
Full Paper (20 August 2018).
DOI: 10.1109/TCST.2018.2862415

– Colombo, L., Corradini, M. L., Ippoliti, G., and Orlando, G.“Pitch
angle control of a wind turbine operating above the rated wind speed:
a sliding mode control approach.”
ISA Transactions
(UNDER REVIEW)

– Colombo, L., Corradini, M. L., Ippoliti, G., Orlando, G, and Serrani,
A.“An optimal field-weakening control strategy.”
IEEE Transactions on Industrial Electronics
(ON GOING)

• Conference Proceeding

– Colombo L., Corradini M. L., Cristofaro A., Ippoliti G., and Orlando
G. “A robust sensorless control for PMSM with online parameter
identification.”
In IEEE 15th International Workshop on Variable Structure Systems
(VSS), 2018 (pp. 450-454).
DOI: 10.1109/VSS.2018.8460467

– Cavanini L., Colombo L., Ippoliti G. and Orlando G. âĂĲDevel-
opment and experimental validation of a LQG control for a pre-
compensated multi-axis piezo system.âĂİ
In IEEE 26th International Symposium on Industrial Electronics
(ISIE), 2017 (pp. 460-465).
DOI: 10.1109/ISIE.2017.8001290

– Colombo L., Corradini M. L., Cristofaro A., Ippoliti G., and Orlando
G. “A DSP-based robust sensorless speed control for PMSMs.”
The 42nd Annual Conference of the IEEE Industrial Electronics
Society (IECON), 2016 (pp. 6663-6668).
DOI: 10.1109/IECON.2016.7793048
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1.2. Structure of the Thesis
This thesis is divided into two fundamental parts, namely: Part I White
Box approach, in which the focus is on permanent magnet synchronous mo-
tor. In this case study, the knowledge of its mathematical model has been
exploited. Part II Black Box approach, also a model-based technique has
been developed, but contrary to the Part I, through input/output acquired
data a numerical model has been identified. Both pieces are self-contained, but
for fluency in reading and understanding, it is recommended to read Chap-
ter 2 because it deals with the notation used throughout the thesis and some
mathematical preliminaries.

More specifically, as for the Part I, Chapter 3 reviewers the state of the
art and recent developments about of speed-sensorless of the brushless AC
motor. Chapter 4 addresses the mathematical modelling in three-phase rep-
resentation, and its two reduced models are derived and explained. Chapter 5
presents the innovative and tailored algorithm to reconstruct information about
a parameter of the mathematical model and its initial condition of an unmea-
sured state and also the control design. In Chapter 6, the experimental results
performed in the laboratory are reported.

Part II is organised as follows, Chapters 7 gives an overview of piezoelectric
actuators. Chapter 8 describes the mathematical model and explains how
the numerical model has been obtained. In addition, the control design is also
explained. Chapter 9 shows the simulation and experimental results. Finally,
conclusions and future work are summarised in Chapter 10.

4



Chapter 2.

Preliminaries

For the ease of the reader, this chapter goes over some basic mathematical
preliminaries that will be used in the rest of the thesis. For a detailed discussion
on them, please refer to textbooks [7–10].

2.1. Notation
Let Rn denote the set of real vectors of dimension n and N the set of natural
integers, respectively. Let I ⊂ N be a finite set of integers. For a vector v ∈ Rn,
vi denotes the i-th entry of v. For a matrix A ∈ Rn×m, AT denotes its trans-
pose. The n×n identity matrix, denoted I(n). For a square matrix A ∈ Rn×n,
A−1 denotes its inverse, if it exists. Given a function f(x) : Rn → R, dom f

defines its domain.
In this thesis there are long formulas and vectors, with the need to go to the

next row more than once, for this reason the symbol “ê” at the end of these
has been used.

2.2. Definitions
Definition 2.2.1. (Convex function). A function f : Rn → R is convex if
dom f is a convex set and for any x1, x2 ∈ dom f and any ξ such that
0 ≤ ξ ≤ 1, the following equation holds:

f(ξx1 + (1 − ξ)x2) ≤ ξf(x1) + (1 − ξ)f(x2). (2.1)

If −f is convex, then f is concave.

Definition 2.2.2. (Affine function). A function f : Rn → Rm is affine if it is
of the form f(x) = Gx+ b, with G ∈ Rm×n and b ∈ Rm. All affine functions
are both convex and concave.

Definition 2.2.3. (Quadratic function). A function f : Rn → R is quadratic
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if it can be written in the form:

f(x) : 1
2x

THx+ hTx+ k (2.2)

with H ∈ Rn×n a symmetric matrix, h ∈ Rn and k ∈ R. A quadratic function
is convex if and only if H ≥ 0. In the rest of the thesis k = 0 holds, therefore
the constant term k will be omitted.

Definition 2.2.4. (Convex optimisation). A convex optimisation problem is
of the form

min
x

f0(x)

s.t. fi(x) ≤ bi i = 1, . . . ,m, (2.3)

where f0, . . . , fm : Rn → R are convex functions.

Definition 2.2.5. (Quadratic programming). A quadratic programming (QP)
problem minimises a convex quadratic function over a polyhedron. A QP prob-
lem can be written in the following form:

min
x

1
2x

THx+ hTx

s.t. Gx ≤ b

Gex = be

(2.4)

where H ∈ Rn×n is symmetric, H ≥ 0, h ∈ Rn, G ∈ Rm×n, b ∈ Rm,
Ge ∈ Rme×n and be ∈ Rme .

Definition 2.2.6. (Clarke, forward and inverse transformation). The Clarke
transformation is expressed by the following:

xα = xa (2.5)

xβ = 1
?

3
(xa + 2xb), with x ∈ {i, v}. (2.6)

The three-phase quantities are projected from the three-phase of the reference
frame to the two-axis of the orthogonal stationary reference frame by using
Clarke transformation. These relationships are valid both if the three-phases
system is balanced, namely, xa + xb + xc = 0, and if xα is superposed to xa, as
shown in Fig. 2.1.

6
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Figure 2.1.: a)Balanced three-phase system; b)Transformation of three-phase
system into two-phase orthogonal one.

Otherwise the generalised Clarke transformation is described by:

xα = 2
3xa − 1

3(xb + xc)

xβ = 2
?

3
(xb − xc), with x ∈ {i, v}.

x0 = 2
3 pxa + xb + xcq

The transformation from a two-axis orthogonal stationary reference frame to a
three-phase stationary reference frame is performed by using inverse Clarke. It
expressed by the following equations:

xa = xα

xb = −xα +
?

3xβ
2

xc = −xα −
?

3xβ
2 , with x ∈ {i, v}.

Definition 2.2.7. (Park, forward and inverse transformation). The two-axis
orthogonal stationary reference frame quantities are transformed into rotating
reference frame quantities using Park transformation. The transformation is
expressed by the following equations:

xd = xα cos(θ) + xβ sin(θ)
xq = xβ cos(θ) − xα sin(θ), with x ∈ {i, v}.

7
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While, the inverse Park transformation is described by:

xα = xd cos(θ) − xq sin(θ)
xβ = xq cos(θ) + xd sin(θ), with x ∈ {i, v}.

Definition 2.2.8. (The customised sgnϵ(·)). For ϵ > 0 arbitrarily small, let
define the following continuously differentiable approximation of sign(z):

sgnϵ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sgn(z) |z|≥ ϵ

2ϵ−|z|
ϵ2 z |z|∈ (ϵ/2, ϵ)

3z
2ϵ |z|≤ ϵ/2.

(2.7)

Accordingly, the derivative is given by

χϵ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 |z|≥ ϵ

2(ϵ− |z|)
ϵ2

|z|∈ (ϵ/2, ϵ)

3
2ϵ |z|≤ ϵ/2.

(2.8)

Moreover, for a function f(t), the first and second left derivative operators
D−f(t) and D−,2f(t) are defined as follows:

D−f(t) def= lim
h→0

f(t) − f(t− |h|)
|h|

, (2.9)

D2,−f(t) def= lim
h→0

f(t) − 2f(t− |h|) + f(t− 2|h|)
|h|2

. (2.10)

2.3. Remarks

Remark 2.3.1. It should be noted that, for control implementation purposes,
the left-derivative D−θe(t) can be replaced by a discrete derivative defined by
the incremental ratio

D−
δ θe(t)

def= θe(t) − θe(t− δ)
δ

for δ > 0 sufficiently small.

In a similar way one can discretise the second derivative:

D2,−
δ θe(t)

def= θe(t) − 2θe(t− δ) + θe(t− 2δ)
δ2 .

8
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2.4. Theorems
Theorem 2.4.1. (Bézout’s Theorem). Let Ci, i = 1, ..., n, be algebraic man-
ifolds embedded in the n-dimensional space, having no common components.
Let assume that the degree of Ci is di ≥ 1. Then the number ϖ of intersection
points (possibly complex, and counted with multiplicity) between the manifolds
Ci is finite and it is given by ϖ = d1 · d2 · · · dn.

9
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Chapter 3.

Introduction

As well known, advanced control applications in electrical drives require feed-
back information about rotor positions and, when speed tracking is required,
also rotor speed. Nonetheless, by the adoption of sensorless approaches, speed
and/or position sensors could be substituted by mathematical algorithms, also
because in some compact design, there is no extra installation space for sen-
sors [2]. Costs are this way reduced exploiting low-cost motor drives (this is
especially the case of Permanent Magnet Synchronous Motors (PMSMs), which
are becoming very popular), and sensors inaccuracies and/or faults due to mal-
functioning of sensing devices are avoided [11]. For these purposes, a widely
used control technique is the so called Field Oriented Control (FOC), consist-
ing in closed loop current control. Sensorless techniques could be classified
based on the operational domain [12]. In surface PMSMs, whose low-speed
performances are poor, back-Electro-Motive Force (bEMF) based approaches
are very frequent [11,13]. The main drawback is that observability property is
lost at zero speed [14], given the induced voltage vanishing at low speed [11]. At
low-speed, non-model-based techniques founded on rotor saliency are typically
used, realised with a high frequency signal injection [13, 15]. However, in-
jected high-frequency (HF) signals can produce more losses and larger torque
ripple [2], bringing also high-frequency noise, at frequencies higher that the
bandwidth of the regulators [16]. Whole speed range sensorless operation can
be achieved by combining machine anisotropy based methods with machine
model based methods [17]. However, a hybrid sensorless control system will in-
crease complexity of the system. In order to properly handle such limitations,
observers have been adopted in the literature. An adaptive interconnected
scheme has been proposed in [15], while an extended Kalman Filter approach
has been exploited in [18], this latter requiring intensive computing. Pursuing
easy implementability, robustness and good dynamic behaviour, sliding mode
observers are being currently largely employed [19, 20]. In addition, nonlin-
ear back-EMF-based observers for rotor position estimation have been recently
developed [11,21–24].

In most of the cited cases, the need of theoretically proving closed-loop con-
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vergence often induces the introduction of strong assumptions which are rarely
verified in practice. Just as an example, the initial angular rotor position is of-
ten assumed known (eventually with a bounded uncertainty), but experimental
practice shows that this is hardly the case with real devices. Starting the drive
from unknown initial position is challenging for loads whose torque is constant
and independent of speed or that needs high starting torque. In this case it may
be necessary to assist a sensorless technique with even a low resolution sensor
like hall effect to bring it to a minimum rotational speed at which the observer
converges and provides reliable position and speed information [25]. In [26] a
preliminary alignment procedure is performed with the aim of adhering to the
local nature of the presented results.

On the other hand, several and heterogeneous approaches to the identifica-
tion problem of the motor model parameters have been proposed in the past
decade [27–31]. All the mentioned results require direct measurements of motor
angular position and speed, this making the methods highly sensitive to sen-
sors inaccuracies and/or faults (of course the presence of dedicated sensors is
mandatory). However, the problem of designing a feedback control - with rigor-
ous stability proof - which guarantees the position/speed tracking for sensorless
PMSMs with simultaneous estimation of the uncertain load torque and stator
resistance is still open. Even recent papers addressing the position/speed esti-
mation problem either require the knowledge of stator resistance [32] or rely on
the rotor speed measurements to achieve asymptotic estimation [33,34]. In this
more challenging framework of sensorless PMSMs, fewer results are available.
In particular, online identification of stator resistance is achieved in [35] by
means of a sensorless decoupling controller. An online stator resistance estima-
tion method is proposed in [36], by injecting current into the d-axis, the stator
resistance is estimated with high accuracy, but the effect of injected current
on drive system is ignored. In [37], the stator resistance is estimated only at
steady state based on the addition of rotor position offsets and neural network.
Furthermore, a neural network is not easy to be implemented on a micropro-
cessor. In [2], an online stator resistance estimation scheme is proposed based
on a modified first-order sliding mode observer. Stable conditions of the ob-
server have been obtained but a non-robust PI-based control solution has been
used for the FOC of the PMSM. Moreover, the speed has been estimated by a
low pass filter, causing gain attenuation and phase delay [38]. A nonlinear ob-
server for motors operating in quasi steady-state conditions is proposed instead
in [39], using integral adaptation laws and signal injection. Adaptive estima-
tors with quadratic stability guarantees have been used in [40] for linear models
of PMSMs. The nonlinear nature of the system and the additional challenges
caused by the sensorless setup pose however a number of limitations and/or
constraints reducing the successful applicability of adaptive parameter estima-
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tors for PMSMs in practice. In [26] the local exponential stability of the origin
of the overall closed loop error system guarantees certain robustness proper-
ties, though restricted to sufficiently small uniformly bounded perturbations,
and relatively small initial tracking and estimation errors. A possible strategy
to overcome the problems described above has been presented in [41–43]. A
further improvement and strengthening of such techniques is proposed in the
present note, where a sensorless, back-EMF based, FOC algorithm is designed,
featuring robustness with respect to motor parameters variation.

3.1. Problem statement
The main features of the proposed strategy can be summarised as follows:

(P.1) On-line computation of the model parameter and of the initial angular
position.

(P.2) Rotor angular position estimation using electrical signal.

(P.3) Sensorless speed reference tracking.

(P.4) Robustness to bounded parameter variations affecting the electrical and
mechanical system.

(P.5) Algorithm optimization for the implementation on a Digital Signal Pro-
cessing (DSP) board.

The availability of a reliable identification method, theoretically proved, for mo-
tor parameters and angular initial condition, implementable on a DSP board
has allowed us to propose a fully sensorless, embedded control strategy for
PMSM speed tracking control. In addition, the experimental testing of the
overall sensorless control scheme is here provided, proving the effectiveness of
the proposed approach. The major added value of the method proposed in
this thesis is to provide a fully sensorless scheme for the simultaneous estima-
tion of initial angular position and motor parameters, such as stator resistance
and/or inductance, with the additional feature of being usable with any desired
sensorless control technique for the nonlinear PMSM model.
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Chapter 4.

Permanent Magnet Synchronous
Motor

+

Rotor
Magnets

Stator
Air gap

Figure 4.1.: PMSM cross section.

Permanent magnet synchronous motors, also known in the literature as sinu-
soidal brushless motors, are increasingly used in industry, especially in small
and medium power servo drives. The employed electromechanical conversion
follows the operating principle of the electrodynamic systems. It is based on the
interaction between conductors crossed by currents and magnetic fields created
by permanent magnets. Through the electromagnetic phenomena, it achieves
the electro-mechanical power conversion, which naturally can operate in both
conversion directions (from the electric system to the mechanical one and vice
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versa). In the condition in which the external electric energy is used to generate
mechanical energy, we speak of functioning as a motor; otherwise, we will talk
about a generator. In cases such as this work, in which the machine is used
mainly for the generation of movement, it is classified as a motor, although the
transfer of power may in some moments take place from the mechanical system
to the electric one, e.g. in deceleration. The engine consists of two coaxial
parts joined together by a rotoidal joint [44]. The fixed part to the environ-
ment, generally chosen as an external reference, is called stator in which are
placed the windings. While the other one is called rotor which is subject to the
torque generated and connected to the mechanism to be moved and in which
are placed the permanent magnets; both parts are separated by the air gap as
Fig. 4.1 is depicted. Whilst in the mathematical speaking, the engine can be
considered as a feedback interconnection between the dynamic, i.e. electrical
and mechanical systems, as illustrated in Fig. 4.2.

ẋ1 = fe(i↵� ,!e, ✓e; u↵�)

Te = f(i↵� , ✓e)
ẋ2 = fm(!e, ✓e; Te, TL)

u↵�
i↵�

TL

!e, ✓e

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Figure 4.2.: The interconnection between the mechanic and electric dynamics.
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4.1. Electrical subsystem

4.1.1. The three-phase model, “abc” reference frame
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Figure 4.3.: The equivalent circuit of the stator.

To describe the functioning of the brushless motor it is useful to start from the
KVL to its phases a, b, c, as shown in Fig. 4.3, following the PSC1 convention:

u(t) = Ri(t) + 9ψ(t) (4.1)

where u(t) ∈ R3 is the vector of the stator voltages, R ∈ R+ is the phase
resistance, i(t) ∈ R3 is the vector of the stator currents and ψ(t) ∈ R3 is
the vector of the stator linkage fluxes. If the hypothesis about the absence of
saturation of the magnetic circuits holds, the flux vector can be described by:

ψ(t) = λ(t) + ϕ(t). (4.2)

In detail, (4.2) represents the sum of the permanent magnet flux linkage de-
noted by λ(t) ∈ R3 and the flux generated by the phase currents denoted by

1In electrical engineering, the Passive Sign Convention is a standard rule adopted universally
by the electrical engineering community for defining the sign of electric power. In this
specific case the loader absorbs the electric power.
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ϕ(t) ∈ R3, for each phase:

λ(t) = λPMe
ιpNpθm+hπq with h ∈

{
0, 2

3 ,−
2
3

}
(4.3)

and

ϕ(t) = Lssi(t) − |Lms|Pi(t) with P
def=

»

—

–

0 1 1
1 0 1
1 1 0

fi

ffi

fl

; (4.4)

if the hypothesis of magnetic isotropy and the phase windings symmetry are
held.

The introduced electrical subsystem is a natural consequence obtained fol-
lowing the physics laws that govern the process, despite from a control point
of view the use of these equations is not a smart choice.

KCL:
∑

h∈{a,b,c}

ih(t) = 0 KVL:
∑

h∈{a,b,c}

uh(t) = 0 (4.5)

If the above conditions hold2, it is possible to reduce the three-phase electric
model formulation to two dimensions, as it is convenient for modelling as well
as for the control. Usually, two orthogonal axis systems are used, one is integral
with the stator (so-called Clarke transformation, carried out by the projection
matrix), and the other with the rotor (so-called Park transformation, carried
out by the rotation matrix).

4.1.2. Reduced model, “αβ” reference frame
Applying the projection matrix, Clark transformation, the model described by
(4.1) becomes:

L
d

dt
iαβ(t) = −R

L
iαβ(t) − ψ

L
RT (θe(t))Γωe(t) + 1

L
uαβ(t). (4.6)

iαβ(t) ∈ X1 ≃ R2, uαβ(t) ∈ U ≃ R2, R, L, ψ ∈ P1 ≃ R+,

Γ def=
«

0
1

ff

, R(·) def=
«

cos(·) sin(·)
− sin(·) cos(·)

ff

, (4.7)

where iαβ(t) and uαβ(t) are the equivalent stator vectors of the current and
voltage, respectively. Parameters like the resistance, the inductance and flux

2Usually, these two conditions are always satisfied because the electric motor is a balanced
three-phase load. So in a possible availability of the neutral conductor, its current is equal
to zero.
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linkage, previously reported, do not change using the transformation. θe(t)
and ωe(t) will be introduced in section 4.2, while Γ and R defined as in (4.7)
are employed to obtain a compact matrix formulation. The advantages of
these transformed dynamic are the dimension’s reduction, ra, b, cs → rα, βs,
consequently a minor number of the controllers. However, the benefit is the
decoupling of the mutual inductance.

4.1.3. Reduced model, “dq” reference frame

The next and last step that simplify the model described by (4.6) is obtained
applying the Park transformation, generating the following matrix relationship:

d

dt
idq(t) = −R

L
idq(t) − ωe(t)

„

Υidq(t) + ψ

L
Γ

ȷ

+ 1
L
udq(t). (4.8)

idq(t) ∈ X1 ≃ R2, udq(t) ∈ U ≃ R2, R, L, ψ ∈ P1 ≃ R+,

Γ def=
«

0
1

ff

, Υ def=
«

0 −1
1 0

ff

, (4.9)

where idq(t) and udq(t) are the equivalent stator vectors of the current and
voltage, respectively. Parameters like the resistance, the inductance and flux
linkage, previously reported, do not change using the transformation. θe(t) and
ωe(t) will be introduced in section 4.2, while Γ and Υ defined as in (4.9) are used
to obtain a compact matrix formulation. The employment of the transformed
dynamic (4.8) entails the decoupling of the contributions generated by currents
id(t) and iq(t). Thuse, it makes the motor like a DC motor. The electrical
quantities change from sinusoidal to continuous trends at steady state.

4.2. Mechanical subsystem

So far, the electric dynamic has been well described. However, we must bear in
mind that the electric motor relates electrical and mechanical quantities. The
junction between the two subsystems is made by the electric torque described
by algebric relationship (4.10). It represents the output for the electric dy-
namic and input for the mechanical dynamic. If we therefore also consider the
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mechanical equations, the following relationships must also be respected:

Te(t) = 3
2Npψiq(t) ≡ 3

2Npψ riβ(t) cos(θ) − iα(t) sin(θ)s . (4.10)

d

dt
ωe(t) = −B

J
ωe(t) + Np

J
rTe(iαβ , θe) − TL(t)s (4.11)

d

dt
θe(t) = ωe(t), (4.12)

ωe(t), θe(t) ∈ X2 ≃ R, TL(t) ∈ D ≃ R, B, J ∈ P2 ≃ R+,

Np ∈ P3 ≃ N+, T e(·, ·) : R2 × R → R.

Equations (4.11) and (4.12) describe how the electromechanical energy conver-
sion occurs, where ωe(t) and θe(t) are the velocity and the angular position
of the rotor; Te(t) and TL(t) are the electric and load torques, while J and B

identify the rotor inertia and its viscous coefficient. The constant Np is the
number of pole pairs. At this stage, the mathematical model that describes
the introduced physical process is well defined.

4.3. Assumptions
Let introduce the following assumptions:

(A.1) The parameter B and the load torque TL(t) are uncertain, with bounded
uncertainties:

B = B̄ + ∆B, |∆B| ≤ ρB ;
TL(t) = T̄L + ∆TL(t), |∆TL(t)| ≤ ρTL

;
(4.13)

(A.2) The motor resistor is assumed uncertain, with bounded uncertainty. Pa-
rameter variations slowly varying with respect to the motor dynamics [15]
have been considered:

R = R̄+ ∆R, 9R ≃ 0, −R̄ < ρ∆R ≤ ∆R ≤ ρ∆R (4.14)

being R̄ the nominal values and ∆R the corresponding uncertainty, as-
sumed bounded by the known constants ρ∆R, ρ∆R.
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(A.3) The absolute value of the rotor velocity ωe(t) is bounded by a known
constant, due to physical constraints:

|ωe(t)|≤ ωMe . (4.15)

(A.4) The measurable signals are only iα(t) and iβ(t).

(A.1) is a classical needed assumption for ensuring the robust achievement of
a sliding motion. In order to simplify the mathematical development, parame-
ters J and L have been assumed known. Nonetheless, the presented approach
can be extended to cope with bounded variation of J and L.

(A.2) is necessary for two reasons: i) Since the algorithm acquires uα,β and
iα,β during three different time instants t1 < t2 < t3, R should not vary in
[t1, t3]; ii) ∆R is the resistance variation of R therefore the lower bound ρ

R

cannot be less than −R̄, where R̄ is the nominal value.
(A.3) is useful during control design when the worst case has been taken into

account.
(A.4) corresponds to the usual scenario for all controllers type, i.e. sensored

and sensorless.

23





Chapter 5.

On-line Determination of (θ0, ∆R)
and Control Design

5.1. The unknowns (θ0, ∆R)

In this chapter an analytical method, holding under weak conditions, is pre-
sented for the identification of the resistor variation ∆R in (4.6) and of the
rotor initial angular position θe(0) = θ0 from current measurements. No in-
jection of auxiliary signals is required. The key idea is to analytically solve a
set of polynomial equations, obtained rearranging the motor equations coupled
with an observer. Only a few currents samples are needed to achieve the rank
requirement needed for the solution of the equations set, so that the identifica-
tion procedure can be repeated with arbitrary frequency. A set of polynomial
equations is derived from the output of the electrical subsystem and solved
with respect to ∆R and θ0. Introduce the following pseudo-observers for iα(t)
and iβ(t): ⎧⎪⎪⎨⎪⎪⎩

dîα(t)
dt

= − R̄

L
iα(t) + 1

L
uα(t)

dîβ(t)
dt

= − R̄

L
iβ(t) + 1

L
uβ(t)

(5.1)

and define the errors:

eα(t) = iα(t) − îα(t) (5.2)
eβ(t) = iβ(t) − îβ(t). (5.3)
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From (4.6) and (5.1), the dynamics of eα(t) and eβ(t) are obtained as follow:

9eα(t) = d

dt
iα(t) − d

dt
îα(t) =

= −R

L
iα(t) + ωe(t)

λ0
L

sin(θe(t)) + 1
L
vα(t) −

ˆ

− R̄

L
iα(t) + 1

L
vα(t)

˙

=

= − R̄+ ∆R
L

iα(t) + ωe(t)
λ0
L

sin(θe(t)) + 1
L
vα(t) −

ˆ

− R̄

L
iα(t) + 1

L
vα(t)

˙

=

= −∆R
L
iα(t) + ωe(t)

λ0
L

sin(θe(t)),

the same steps are valid also for 9eβ(t).⎧⎪⎨⎪⎩
9eα(t) = −∆R

L
iα(t) + ωe(t)

ψ

L
sin θe(t)

9eβ(t) = −∆R
L
iβ(t) − ωe(t)

ψ

L
cos θe(t)

(5.4)

Variables eα(t) and eβ(t) are initialized to zero, setting

îα(0) = iα(0) and îβ(0) = iβ(0),

and correspond to the contributions of the unknown terms in the electrical
equations. The following additional integral states Iα, Iβ can be introduced:

Iα(t) =
∫ t

0
iα(τ)dτ, Iβ(t) =

∫ t

0
iβ(τ)dτ,

Integrating equations (5.4), one has:

eα(t) = −∆R
L
Iα − ψ

L
pcos(θe(t)) − cos(θ0)q

eβ(t) = −∆R
L
Iβ − ψ

L
psin(θe(t)) − sin(θ0)q

or equivalently

eα(t) + ∆R
L
Iα(t) − ψ

L
cos θ0 = −ψ

L
cos θe(t);

eβ(t) + ∆R
L
Iβ(t) − ψ

L
sin θ0 = −ψ

L
sin θe(t).

(5.5)
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Taking the sum of the squares yields the identity:
ˆ

eα(t) + ∆R
L
Iα(t) − ψ

L
cos θ0

˙2
+ ê

+
ˆ

eβ(t) + ∆R
L
Iβ(t) − ψ

L
sin θ0

˙2
= ψ2

L2 .

(5.6)

As the time t varies, (5.6) constitutes an infinite family of equations with
unknown variables θ0,∆R. Exploiting the left-hand side, equation (5.6) can be
rearranged as:

W(t) · r∆R2, ∆R, ∆R cos θ0,ê

∆R sin θ0, cos θ0, sin θ0s
T + E(t) = 0

with:

W(t) def=
«

I2
α(t) + I2

β(t)
L2 ,

2 peα(t)Iα(t) + eβ(t)Iβ(t)q

L
,

−2ψ
L2 Iα(t), ê

−2ψ
L2 Iβ(t), −2ψ

L
eα(t), −2ψ

L
eβ(t)

ȷ

(5.7)

E(t) def= e2
α(t) + e2

β(t).

The following result holds:

Theorem 5.1.1. Consider two distinct time instants t1, t2 such that the vector
of coefficients W(t2) is not a multiple of W(t1). The triple (cos θ0, sin θ0,∆R) =
(x, y, z) satisfies the following set of quadratic equations in the variables (x, y, z)⎧⎪⎨⎪⎩

x2 + y2 = 1;
W(t1) · [z2 z zx zy x y]T + E(t1) = 0;
W(t2) · [z2 z zx zy x y]T + E(t2) = 0,

(5.8)

which admits a finite number of solutions. If there exists an additional time
instant t3 such that condition

rank
”

W(t1) W(t2) W(t3)
ıT

= 3 (5.9)

is fulfilled, then considering the equation

W(t3) · [z2 z zx zy x y]T + E(t3) = 0, (5.10)

two cases are admissible:
i) the triple (cos θ0, sin θ0,∆R) is the unique solution of equations (5.8),

(5.10);
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ii) the polynomial system (5.8), (5.10) admits 1 < ν ≤ 4 solutions.

Proof. By Bézout’s theorem [45], the system (5.8) admits at most 8 = 23

distinct solutions. On the other hand, for any t ≥ 0, the equation W(t) ·
[z2 z zx zy x y]T = −E(t) can be rewritten in the equivalent form
z2 = zg(t, x, y) + h(t, x, y), where g(·, x, y), h(·, x, y) are polynomial functions
obtained from the coefficients of W(t) and E(t). Therefore the system (5.8),
(5.10) is equivalent to⎧⎪⎪⎪⎨⎪⎪⎪⎩

x2 + y2 = 1
h(t1,x,y)−h(t2,x,y)
g(t2,x,y)−g(t1,x,y) = h(t1,x,y)−h(t3,x,y)

g(t3,x,y)−g(t1,x,y)
z(g(t2, x, y)−g(t1, x, y)) = h(t1, x, y)−h(t2, x, y)
z2 = zg(t1, x, y)+h(t1, x, y)

(5.11)

The first two equations are quadratic and depending only on the variables x, y;
as a consequence, applying again Bézout’s theorem and observing that z is
completely determined by the third equation, the maximum number of admis-
sible solutions is 4 = 22. It should be pointed out that the second equation in
(5.11) is well-posed if and only if (5.9) is fulfilled.

5.1.1. Multiple solutions: a decision algorithm

Consider the case when the previously described algebraic method fails in iso-
lating the true solution, and suppose that system (5.11) (or system (5.8)) ad-
mits 1 < ν ≤ 4 (1 < ν ≤ 8) distinct solutions (Xk, Yk, Zk), k = 1, ..., ν. An
approach based on multiple models can be used for building a decision algo-
rithm, as described in the following. Consider the following set of ν copies of
the pseudo-observer (5.1), each associated to an admissible triple (Xk, Yk, Zk),
k = 1, ..., ν ⎧⎪⎪⎪⎨⎪⎪⎪⎩

dη
(k)
α (t)
dt

= − R̄+ Zk
L

iα(t) + 1
L
uα(t)

k = 1, ..., ν
dη

(k)
β (t)
dt

= − R̄+ Zk
L

iβ(t) + 1
L
uβ(t).

Writing the dynamics of e(k)
α (t) = iα(t) − η

(k)
α (t), e(k)

β (t) = iβ(t) − η
(k)
β (t) as in

(5.4), and integrating them, one gets:⎧⎪⎪⎨⎪⎪⎩
−L

ψ
(iα(t) − η(k)

α (t)) −Xk
def= ck(t)

k = 1, ..., ν
−L

ψ
(iβ(t) − η

(k)
β (t)) − Yk

def= sk(t),
(5.12)
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where there exists at least one k∗ ∈ {1, ..., ν} such that:

{ck∗(t), sk∗(t)} = {cos θe(t), sin θe(t)} ∀t ≥ 0.

Consider now ν replicas of the original plant (4.6), each associated to an ad-
missible triple (Xk, Yk, Zk), k = 1, ..., ν. Integrating by parts and using the
expressions (5.12), the dynamical response of each copy of the plant is given
by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i(k)
α (t) = e− (R̄+Zk)t

L iα(0) + ψ

L

ˆ

e− (R̄+Zk)t

L Xk − ck(t)
˙

+ ê

+ψ R̄+ Zk
L2

∫ t

0
e− (R̄+Zk)(t−τ)

L ck(τ)dτ + Vα,

i
(k)
β (t) = e− (R̄+Zk)t

L iβ(0) + ψ

L

ˆ

e− (R̄+Zk)t

L Yk − sk(t)
˙

+ ê

+ψ R̄+ Zk
L2

∫ t

0
e− (R̄+Zk)(t−τ)

L sk(τ)dτ + Vβ .

where Vα, Vβ are the forced responses to inputs uα, uβ . Fixing the time horizon
T > 0 and defining the cost functional

J (k, T ) :=
∫ T

0
||iα(t) − i(k)

α (t)||2+||iβ(t) − i
(k)
β (t)||2dt, (5.13)

one gets
min

k=1,...,ν
J (k, T ) = 0,

(cos θ0, sin θ0,∆R) = (Xk∗ , Yk∗ , Zk∗) (5.14)

with
k∗ = arg min

k=1,...,ν
J (k, T ). (5.15)

Note that, if for any T > 0 the integer k∗ is not unique, the triple of parameters
(Xk, Yk, Zk) are indistinguishable: they provide the same effects on the system
output.

Remark 5.1.1. The development discussed so far can account also for constant
uncertainties affecting the inductance parameter L, at the price of an increase of
the number of feasible solutions. In particular, if both R and L are uncertain,
these parameters (together with θ0) have to satisfy a system of 5 quadratic
equations, which is the natural extension of (5.8).
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5.1.2. Numerical solution algorithm for DSP implementation

The experimental validation of the proposed approach requires that equations
(5.8), (5.10) are solved using a DSP architecture. In order to find the zeros
of the non-linear function, alleviating the computational burden, the bisection
method [46] has been chosen due to the particular form of formula (5.7). In-
deed, though the function is transcendent with respect to θ0, is a polynomial
of degree two with respect to ∆R. Taking into account (5.8), (5.10), and re-
casting expression (5.7) into fti(θ0,∆R) with i ∈ {1, 2, 3}, the problem can be
formalised as follows: ⎧⎪⎨⎪⎩

ft1(θ0,∆R) = 0
ft2(θ0,∆R) = 0
ft3(θ0,∆R) = 0

(5.16)

where the first two equations can be solved with respect to ∆R in closed form.
Then, exploiting the third equation, the best numerical solution (θ0, ∆R) can
be found according to Fig. 5.1. When the motor starts (open-loop mode),
the DSP acquires the electrical samples (iα,β , uα,β) in t1 < t2 < t3 such
that (5.9) is fulfilled. Then the coefficients of (5.16) are computed. Namely,
from ft1(θ0,∆R) = 0, two possible roots for ∆R, denoted by f2,∆R1(θ0) and
f2,∆R2(θ0), can be found. These two roots depend on θ0. Inserting the two
expressions in ft2 and applying the bisection method the four pairs of candidate
solutions (θ01 , ∆R1), (θ02 , ∆R2), (θ03 , ∆R3), (θ04 , ∆R4) are obtained. An
arbitrary positive constant ε has been chosen to obtain a tolerance for the
algorithm stopping criterion. The best solution has been selected using the
following criteria:

min
k=1,2,3,4

|ft3(θ0k
,∆Rk)| and ρ∆R ≤ ∆R ≤ ρ∆R.

To be clearer a graphic representation of the system (5.16) is depicted in
Figs. 5.2-5.5. Figures 5.2-5.3 show the scenario with nominal value. whilst,
Figs. 5.4-5.5 show the case with a variation resistance of the +10% of the nom-
inal value R̄. If a single solution cannot be identified, the search algorithm can
be further refined using the multiple-model optimisation scheme (5.15), whose
computational burden is fairly low as it consists in a finite number of compar-
isons. Finally, in order to determine the angle θ3

def= θe(t3) to be used for the
initialisation of the closed-loop controller, the DSP numerically integrates the
model (4.6) using the correction parameter ∆R:

θ3 = arctg
−

´

iβ(t3)+ R̄+∆R
L Iβ(t3)− 1

L

∫ t3
0 uβ(τ)dτ− ψ

L sin(θ0)
¯

−
´

iα(t3)+ R̄+∆R
L Iα(t3)− 1

L

∫ t3
0 uα(τ)dτ− ψ

L cos(θ0)
¯ .
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Figure 5.1.: Flow chart for numerical solution.
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Figure 5.2.: Graphical representation of the system (5.16), case (θe = 0,
∆R = 0)
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Figure 5.3.: The true intersection point of the Fig. 5.2
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Figure 5.4.: Graphical representation of the system (5.16), case ( θe = 0,
∆R = +10% of R̄ )
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5.2. Sliding Mode Control design

5.2.1. Derivation of rotor angular position from currents
In standard drives, rotor position is given by encoder measurements, and rotor
speed is usually estimated as the incremental ratio of encoder positions over
one sampling period. It will be shown that the angular position of the rotor
can be derived from measurements of currents iα(t) and iβ(t).

Remark 5.2.1. Results reported in the section 5.1 show that ∆R and θ0 can
be exactly determined. Accordingly, the quantity R = R̄+∆R will be considered
exactly known.

Consider the following pseudo-observer⎧⎪⎪⎨⎪⎪⎩
dîα(t)
dt

= −R

L
iα(t) + 1

L
uα(t)

dîβ(t)
dt

= −R

L
iβ(t) + 1

L
uβ(t)

(5.17)

and define the observation errors:

ϵα(t) = iα(t) − îα(t) (5.18)
ϵβ(t) = iβ(t) − îβ(t). (5.19)

Lemma 5.2.1. Referring to plant (4.6), the angular position θe(t) of the rotor
can be exactly derived from currents according to

θe(t) = arctan
−ϵβ(t) + ψ

L
sin(θ0)

−ϵα(t) + ψ

L
cos(θ0)

. (5.20)

Proof. The dynamics of the observation errors are:

9ϵα(t) = ψ

L
ωe(t) sin(θe(t)) (5.21)

9ϵβ(t) = −ψ

L
ωe(t) cos(θe(t)), (5.22)

integrating one gets:

ϵα(t) = ϵα(0) − ψ

L
p cos(θe(t)) − cos(θ0)q (5.23)

ϵβ(t) = ϵβ(0) − ψ

L
p sin(θe(t)) − sin(θ0)q. (5.24)

Since the initial condition of the observer (5.17) can be set equal to the initial
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value of the (measured) currents, it follows that the angular position θe(t) can
be computed as in (5.20) [42].

Due to Lemma 5.2.1 and to the prior identification of the initial angular posi-
tion using the algorithm of Section 5.1.2, the angular position θe(t) is a known
quantity and can be used for the synthesis of the speed tracking controller.

5.2.2. The sensorless speed-tracking controller

The tracking problem is here considered, i.e. the variable ωe(t) is required
to track a known reference ω∗(t). The proposed scheme is characterised by
two hierarchical levels. The low-level control action corresponds to the design
of a current input I∗(t) able to guarantee the robust tracking of the assigned
reference in the framework of the FOC scheme, while the high-level controller
is responsible to allocate the voltage inputs uα(t), uβ(t) in order to attain the
desired current I∗(t). The low-level control design is based on the sliding-
surface s(t) = 0, with:

s(t) = Jpθe(t) − θ∗(t)q (5.25)

where θ∗(t) is the reference rotor position. Integrating equations (4.11)-(4.12)
and using (4.10), the time derivative of (5.25) can be computed as follows:

9s(t) = J(ωe(t) − ω∗(t)) = −(B̄ + ∆B)(θe(t) − θ0)+ ê

+NpK
′
∫ t

0
riβ(τ) cos(θe(τ)) − iα(τ) sin(θe(τ))s dτ+ ê

−Np

∫ t

0

“

T̄L(τ) + ∆TL(τ)
‰

dτ − Jω∗(t).

(5.26)

In (5.26) consider two reference currents:

i∗α(t) = −I∗(t) sin(θe(t)) (5.27)
i∗β(t) = I∗(t) cos(θe(t)), (5.28)

whose tracking will be ensured later by the high-level controller, and where
I∗(t) is to be determined. When

iα(t) = i∗α(t) (5.29)
iβ(t) = i∗β(t), (5.30)
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one has:

9s(t) = J(ωe(t) − ω∗(t)) = −(B̄ + ∆B)(θe(t) − θ0)+ ê

+NpK ′v(t) −Np

∫ t

0

“

T̄L(τ) + ∆TL(τ)
‰

dτ − Jω∗(t)
(5.31)

being

v(t) =
∫ t

0
I∗(τ)dτ. (5.32)

Keeping in mind the ideal sliding-mode s(t) = 0, the following result can be
proved, where the practical condition |s(t)|≤ ϵ is required for implementation
purposes.

Lemma 5.2.2. Consider a reference speed with ω∗(0) = 0. Then, for any
ϵ > 0, replacing in (5.27) the following control input I∗

ϵ (t) ensures the uniform
asymptotic boundedness condition |s(t)|≤ ϵ for the sliding surface (5.25):

KI∗
ϵ (t) = J 9ω∗(t) +NpT̄L(t) − ζJ

“

(B̄ + ρB)NpωMe + ê

+ρTL
s sgnϵ(s(t)) − ζJ [(B̄ + ρB)ωMe + ê

+NpρTL
]tχϵ(s(t))(D−θe(t) − ω∗(t))

(5.33)

with K = NpK
′, ζ > 1 and where the function χϵ(·) and the left derivative

D−θe(t) have been defined in (2.8) and (2.9), respectively.

Proof. Following a classical approach [47], a sliding motion on (5.25) is enforced
by v(t) = veq(t) + vn(t), where veq(t) is the control input guaranteeing that
9s(t) = 0 in the nominal case corresponding to ∆TL ≡ 0 and ∆B = 0, i.e.

Kveq(t) = Jω∗(t) +Np

∫ t

0
T̄L(τ)dτ + B̄(θe(t) − θ0), (5.34)

while the discontinuous input signal vn(t) is designed to ensure:

s(t) 9s(t) < 0 ∀t. (5.35)

In particular, the introduction of (5.34) into (5.31) provides

s(t) 9s(t) = s(t)
´

− ∆B(θe(t) − θ0) +Kvn(t)+ ê

−Np
∫ t

0
r∆TL(τ)s dτ

¯

< 0.
(5.36)

Setting s(t) > 0 and taking the worst case, noticing that

|θe(t) − θ0|< ωMe t,
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one gets
K ′vn(t) = −ζ

“

ρBω
M
e t+NpρTL

t
‰

sgn(s(t)) (5.37)

with ζ > 1. The same result is obtained for s(t) < 0. On the other hand, since
the control v(t) is assigned by (5.32), it is not allowed to be discontinuous and a
sliding-mode cannot be properly enforced. In order to satisfy the requested reg-
ularity conditions, the function sgn(s(t)) can be replaced by its approximation
sgnϵ(s(t)) given by (2.7). Let us denote by vn,ϵ(t) such regularized controller.
By construction, since |θe(t) − θ0|≤ ωMe t, the control law v(t) = veq(t) + vn,ϵ(t)
guarantees the uniform boundedness condition |s(t)|≤ ϵ, ∀t ≥ Tϵ > 0, and it
is straightforward that:

sgnϵ(s(t)) = J

∫ t

0
χϵ(s(τ))(D−θe(τ) − ω∗(τ))dτ. (5.38)

This shows that K ′I∗
ϵ (t) = 9vn,ϵ(t), therefore the expression (5.33) can be

immediately derived.

For any ϵ > 0 the derivative d
dzχϵ(z) exists almost everywhere and it satisfies

ˇ

ˇ

ˇ

ˇ

d

dz
χϵ(z)

ˇ

ˇ

ˇ

ˇ

≤ 2
ϵ2

∀z ∈ R. (5.39)

As a consequence the left-derivative D−I∗
ϵ (t) is well defined and it verifies

K ′D−I∗
ϵ (t) = J :ω∗(t)+Np 9TL(t)−ζJNpρTL

d

dz
χϵ(s(t))

´

D−θe(t)+ ê

−ω∗(t)
¯2

− ζJNpρTL
χϵ(s(t))(D2,−θe(t) − 9ω∗(t)),

(5.40)

where D2,−θe(t) is given by formula (2.10). The following result summarises
the control strategy for the robust tracking of an assigned reference velocity,
in the presence of bounded perturbations affecting the motor parameters and
the load.

Theorem 5.2.1. With reference to the plant (4.6) under Assumption (A.1),
the following control inputs uα(t), uβ(t) ensure the (practical) robust tracking
of an assigned reference velocity ω∗(t) using only measurements of the electrical
variables of the motor (i.e. sensorless control):

1
L
uα(t) = R

L
iα(t) −D−I∗

ϵ (t) sin(θe(t))+ ê

− ωMe ζ

„

ψ

L
|sin(θe(t))|+|I∗

ϵ (t) cos(θe(t))|
ȷ

· ê (5.41)

sgnpiα(t) + I∗
ϵ (t) sin(θe(t))q
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1
L
uβ(t) = R

L
iβ(t) +D−I∗

ϵ (t) cos(θe(t))+ ê

− ωMe ζ

„

ψ

L
|cos(θe(t))|+|I∗

ϵ (t) sin(θe(t))|
ȷ

· ê (5.42)

sgnpiβ(t) − I∗
ϵ (t) cos(θe(t))q, ζ > 1;

where the current input I∗
ϵ (t) is assigned by (5.33).

Proof. The overall closed-loop stability can be proved using standard Lyapunov
techniques, imposing iα(t) = i∗α(t), iβ(t) = i∗β(t) by the following Lyapunov
function:

Y (t) = 1
2 riα(t) − i∗α(t)s

2 + 1
2

“

iβ(t) − i∗β(t)
‰2 (5.43)

and observing that, if uα(t) and uβ(t) are chosen according to (5.41)-(5.42),
then the inequality 9Y (t) < 0 holds. In fact, define:

ηα(t) = iα(t) − i∗α(t)
ηβ(t) = iβ(t) − i∗β(t).

Since 9Y (t) = ηα(t) 9ηα(t)+ηβ(t) 9ηβ(t), consider the imposition of ηα(t) 9ηα(t) < 0.
One gets, in the case ηα(t) = iα(t) + I∗

ϵ (t) sin(θe(t)) > 0

− R

L
iα(t) + ωe(t)

ψ

L
sin(θe(t)) + 1

L
uα(t) +D− rI∗

ϵ (t) sin(θe(t))s < 0. (5.44)

It can be easily verified that the control law (5.41) satisfies the previous in-
equality. Following an analogous approach for the case ηα(t) < 0, the ex-
pression (5.41) immediately follows. The expression of (5.42) can be obtained
analogously imposing the condition ηβ(t) 9ηβ(t) < 0.
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Chapter 6.

Setup and Results

6.1. Experimental setup
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Figure 6.1.: Hardware setup.



Chapter 6. Setup and Results

Table 6.1.: Technosoft© MBE.300.E500 PMSM parameters.

Coil dependent parameters

line-to-line resistance Ω 8.61
line-to-line inductance mH 0.713

Back-EMF constant V/kRPM 3.86
Torque constant mNm/A 36.8

Pole pairs – 1

Dynamic parameters

Rated voltage V 36
Max. voltage V 58

No-load current mA 73.2
No-load speed RPM 9170

Max. cont. current (at 5 kRPM) mA 913
Max. cont. torque (at 5 kRPM) mNm 30

Max. permissible speed RPM 15000
Peak torque (stall) mNm 154

Mechanical parameters

Rotor inertia kgm2 11·10−7

Mechanical time constant ms 7

The experimental setup, as show Fig. 6.1, includes a DSP-based controller
board, a power module, a PMSM equipped with a 500-line encoder and a soft-
ware platform to develop motion control applications. Experiments have been
carried out using the Technosoft MBE.300.E500 PMSM. The electric and me-
chanical parameters have been listed in Tab.6.1 [48]. The Technosoft PM50
power module includes a 3-phase inverter, the protection circuits and the mea-
surement circuits for the DC-bus voltage and the motor currents. The 3-phase
inverter uses MOSFET transistors with switching frequency up to 50 [kHz].
The control unit is the Technosoft MSK28335 board based on the high perfor-
mance Texas Instruments TMS320F28335 DSP motion controller. The three-
phase voltage commands are generated using the outputs of the PWM unit,
applied to the 6 transistors of the power inverter (see Fig. 6.2). The DSP has
a 150 MIPS, 32 bit floating point DSP core and operates at a 150 [MHz] fre-
quency. The MSK28335 board is equipped also with 128-kWords 0-wait state
external RAM, 2 channels of 12-bit accuracy D/A outputs, 16 channels of 12-bit
accuracy A/D inputs, RS-232, CAN-bus and JTAG interfaces. The sampling
frequency is selected as 1 [kHz] for the velocity control loop and 10 [kHz] for
the current control loops. The MCK28335-Pro kit includes the DMCD28x-
Pro, the Technosoft software platform, which allows the development of motor
control applications. The code is developed in C language using a modular
approach providing flexibility for further system integration. The control ar-
chitecture is shown in Fig. 6.2: two mechanically coupled motors, i.e. a PMSM
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Figure 6.2.: Block scheme of the sensorless control.

and a DC Motor, are present: the master (PMSM) is controlled according to
the proposed control law, and the slave (DC motor) is used in brake mode,
to generate the torque disturbance. Moreover, the resistance variation (∆R)
has been obtained connecting an external resistor circuit in-line with the motor
phases. The torque disturbance and the resistance variation have been used to
evaluate the performance of the control scheme.

6.2. Results
In order to perform experiments with the sensorless control technique using
the DSP board, a preliminary step is required. In particular, the PMSM has
to be open-loop started and the signals used to drive the motor are shown in
Fig. 6.3. In this time interval, the algorithm solves the equations (5.16), and
the numerical solutions are reported in Tab. 6.2. Once these solutions have
been computed, the proposed robust sensorless speed controller can be enabled
and tested. Two speed profiles, i.e. a trapezoidal and a sine waveforms, have
been considered as shown in Figs. 6.4(a) and 6.6(a). In both tests, the torque
disturbance and the resistance variation have been started in five different time
intervals, i.e. [1.05 to 2.05] [s], [3.55 to 4.55] [s], [6.05 to 7.05] [s] and [8.55 to
9.55] [s] for a torque disturbance of 33 [mNm], and [10.3 to 15.3] [s] for a
resistance variation ∆R = 2.4 [Ω].

The experimental results are reported in Figs. 6.4-6.7: figure 6.4(a) shows
the speed tracking performances with a trapezoidal reference, while Figs. 6.4(b)
and 6.4(c) zoom into the previous picture, showing the good behavior of the
sensorless control under the torque disturbances. The control inputs uα and
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uβ are reported in Fig. 6.5(a). The intervals 0.8 [s] to 1.3 [s] and 3.3 [s] to
3.8 [s], (Figs. 6.5(b) and 6.5(c), respectively), show uα and uβ under the torque
disturbances, while the interval 10 [s] to 11 [s], of Fig. 6.5(d), shows uα and
uβ under the resistance variation. The same tests have been repeated using
a sinusoidal reference, obtaining analogous results, reported in Figs. 6.6(a),
6.6(b), 6.6(c), 6.7(a), 6.7(b), 6.7(c), 6.7(d). The numerical solutions after the
resistance variation are tabled in Tab.6.2.

0 0.05 0.1 0.15 0.2 0.25 0.3
-1.5

-1

-0.5

0

0.5

1

1.5

Figure 6.3.: Signals used to drive open loop the motor, uα (continuous blue-
line) and uβ (dashed red-line).

Table 6.2.: Numerical solutions.

TEST ∆R θ0 θ3 ∆R@10.3[s]
[Ω] [rad] [rad] [Ω]

Trapezoidal 0.0230 0.0125 3.0191 2.4103
Sinusoidal 0.0271 0.0141 3.0137 2.3877
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Figure 6.4.: (a): speed tracking with a trapezoidal reference, ω∗ (continuous
black-line) and D−

δ θe (dashed blue-line); (b) and (c): zoom of the
behaviours of the sensorless control under torque disturbances.

Figure 6.5.: (a): control inputs uα (continuous blue-line) and uβ (dashed red-
line) for the trapezoidal reference; (b) and (c): control inputs due
to the torque disturbances; (d): control inputs due to the resistance
variation.
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Figure 6.6.: (a): speed tracking with a sinusoidal reference, ω∗ (continuous
black-line) and D−

δ θe (dashed blue-line); (b) and (c): zoom of the
behaviours of the sensorless control under torque disturbances.

Figure 6.7.: (a) control inputs uα (continuous blue-line) and uβ (dashed red-
line) for the sinusoidal reference; (b) and (c): control inputs due to
the torque disturbances; (d): control inputs due to the resistance
variation.
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6.2.1. Flops overview

The digital signal processor (DSP) used in the experimental results is the
TMS320F28335 by Texas Instruments with a core at 150 [MHz]. Its computa-
tional effort is 300 [MFLOPS], which means that the DSP can compute up to
300 · 106 operations for each cycle, such as addition, multiplication, data move-
ment and value testing. The computational burden of the proposed algorithm
has been quantified in flops, following the order of the executed operations, as
explained below. At the beginning of the algorithm, the electrical signals (iα, β ,
uα, β) are numerically integrated. This implies a computational burden given
by the following equation:

(t3[s] · 10 × 103[Hz] + 1) · 5 · 4 [FLOPS] (6.1)

where 4 is the number of signals to be considered, i.e. (iα, β , uα, β), 5 is the
number of basic operations required by the numeric integration and (t3[s] ·
10 × 103[Hz] + 1) is the times that the basic operations have to be repeated
during the numeric integration. In the experimental results t3 = 300 [ms]
that implies 60.02 [kFLOPS] of computational effort. For the construction
of the matrices W (t), E(t) in (5.7), and to create the functions f2,∆R1(θ01),
f2,∆R2(θ02) in Fig. 5.1, 42 [FLOPS] and 28 [FLOPS] are used, respectively.
The functions f2,∆R1(θ01), f2,∆R2(θ02) have been evaluated by the bisection
method, providing for each function the following number of iterations:

Nmax =
⌈

|log(b− a) − log(Tol.)|

log 2

⌉
, (6.2)

whereNmax denotes the maximum number of iterations in the bisection method,
(b− a) = π is the distance between the extremes of the interval (b, a) and Tol.
is the given tolerance equal to 10−4. It follows that, the number of flops is
Nmax ·14 ·2 [FLOPS], being the function evaluated two times at each iteration.
If the algorithm fails to find a solution in the range [0, π], the search of the
roots is carried out in the complementary one [π, 2π]. Consequently the max-
imum number of flops is (Nmax + 1) · 14 · 2 [FLOPS], namely 448 [FLOPS]
for each function. In both cases Nmax is equal to 15. The best solution
is chosen using the third equation of the system (5.16), whose operation re-
quires 28 [FLOPS]. Finally, the computation of θ3 requires 132 [FLOPS], i.e.
118 [FLOPS] for the computation of atan2(y, x) and 7 [FLOPS] for each argu-
ment of atan2(·, ·). In conclusion, the computational burden of the proposed
algorithm is 61.146 [kFLOPS] which is fairly low with respect to the computa-
tional effort of 300 [MFLOPS] supported by the DSP.

As far as the existence of feasible solutions is concerned, Theorem 5.1.1
proves that, under weak conditions, four solutions exist for the system (5.16).
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Indeed, the rank condition (5.9) is generically fulfilled: in particular, under a
classical persistency of excitation condition, almost every triple {t1, t2, t3} with
t1 < t2 < t3 satisfies the desired rank requirement. It is worth to note that,
in many cases, the system admits the true solution (cos θ0, sin θ0,∆R) only:
this is a consequence of the strong constraint given by the fourth equation.
Moreover, since by construction the pair of actual values (θ0,∆R) is a solution
to the system for any value of t, a confirmation and/or a refinement to avoid
biased estimation due to noisy measurement can be attained by considering
additional time steps. On the other hand, if it is not possible to isolate the
true solution by means of algebraic methods, one can introduce the decision
algorithm based on multiple models, each one being associated to a feasible
solution as described in the section 5.1.1.
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Chapter 7.

Introduction

Piezoelectric actuators (PAs) are featured by high-frequency, fast dynamics
and string stiffness united to the ultra-fine resolution [49] that allows to use
this technology in several fields requiring high-accuracy movements [50] (biolog-
ical and atomic microscopy, micromanipulation and nanopositioning applica-
tions [51–54]). PA systems also present different behaviour issues due to system
mechanics problems, such as hysteresis [55,56], vibration phenomenons [57] and
output placement drift [58]. Despite these problems, PAs’ nominal position-
ing accuracy and displacement features can be improved by several control
techniques [52], overcoming system mechanical disadvantages and guarantee-
ing prescribed performances. Considering the high fidelity dynamical models
of PAs and the related undesired phenomena [59–61] several advanced control
techniques have been proposed by the research community, such as adaptive
control [62–64], sliding mode control [65–68] or H∞ control [69, 70]. Any-
way standard commercial PAs systems and instruments are still provided with
conventional Proportional-Integral (PI) controllers, allowing to guarantee pre-
scribed stability margins in presence of noise and disturbances [71]. These PI
controllers are often provided in an analog implementation in order to not in-
troduce delays in system response, but usually they cannot be easily tuned
on the considered system, and obtained control performances do not reflect
nominal features [72].

In this activity has been proposed to improve control performances pro-
vided by standard PI controllers by the introduction of an external control
loop based on the Linear Quadratic Gaussian (LQG) control policy. LQG is
a well known technique in the field of PAs plants [73–75] due to the linear
input-output behaviour of this kind of systems. Based on the idea of Refer-
ence Governor (RG) [76], this thesis presents the design of a LQG controller
that regulates a PI pre-compensated PA system manipulating the reference sig-
nal [76,77]. The research related to RG includes several engineering fields, such
as robotics [78], automotive [79] and power electronics [80] but current studies
on PAs devices are focused on the substitution of the standard controller [81].
Instead, in PAs commercial applications it is preferred to maintain provided PI
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controllers, avoiding to replace it with alternative advanced regulators, because
of: i) usually PAs systems’ stakeholders do not consider positioning accuracy
improvable, ii) theoretically PI could be tuned to provide an arbitrary small
response time, even if the controller implementation results impossible for very
high gains [82].

7.1. Problem statement
The main features of the proposed strategy can be summarised as follows:

(P.1) It identifies a numerical model containing any couplings between the axes.

(P.2) It increases system performance of the commercial actuator.

The proposed approach introduces an external control loop allowing to improve
PI control performances overcoming previous limits, maintaining the native low
level controller and introducing a small additive computational effort.

The solution has been tested on a commercial PAs system. The experimental
setup considers a 3-DOF micro-nano resolution piezoelectric actuators system
driven by an external control amplifier that provides a set of analog PI con-
trollers. The system is modelled in the form of a Linear Time Invariant (LTI)
Multi-Input Multi-Output (MIMO) plant obtained by an identification proce-
dure applied to the closed loop system. System identification is a standard
solution for modelling piezoelectric systems due to the linear input-output be-
haviour of real plant [83–85]. The identified system model is used to design the
external LQG control loop and to verify it in simulation tests before to switch
to the experimental validation.
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Chapter 8.

The Mathematical Model and
Control Design

In this chapter, the mathematical model of the piezoelectric actuator for a single
axis is introduced. The overall dynamics, relating to all three axes, is obtained
by considering three parallel models. It is assumed that the dynamics for each
axis is decoupled from the dynamics of the other axes. The dynamics of the
piezoelectric motor can be represented by the following system of second-order
differential equations in the presence of hysteresis and external forces:

m:x(t) + c 9x+ kx = T pu(t) − h(t)q − Fe(t) + p(t), (8.1)

x(t) ∈ X ≃ R, u(t) ∈ U ≃ R, m, c, k ∈ P ≃ R+,

h(t), Fe(t), p(t) ∈ D ≃ R,

where m represents the mass of the actuator, x(t) is the displacement of the
stage, c and k are the damping and stiffness coefficients, T denotes the elec-
tromechanical ratio, u(t) is the control input, h(t) is the non-linear model of the
hysteresis, Fe(t) summarises the external forces, while p(t) models the overall
perturbations acting on the system due to the uncertainty of the parameters,
to unmodeled dynamics and other unknown terms.

8.1. The hysteresis
In piezoelectric actuators and many other physical systems, the hysteresis be-
haviour is the consequence of the presence of elements that accumulate energy
and others that dissipate it. On a mechanical level, this behaviour can be ob-
tained by combining two parts in a single system, like an ideal spring with a
Coulomb friction element, which represent the quantity of energy-storage and
the dissipative part, respectively. This analogy underpins the behaviour of the
hysteresis exhibited by the piezoelectric actuators. In (8.1), the representa-
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tion with concentrated parameters Maxwell Resistive Capacitor (MRC) [86]
has been considered to model the hysteresis.

8.2. Identification of the pre-compensated system

In spite of the complete mathematical description made in Chapter 8, we found
ourselves faced with several problems, i.e. axes coupling, unknown process
parameters and the unknown model of the commercial controller. These issues
have been outflanking by exploiting the black box approach, That is, the whole
model, piezoactuator with its controller, has been identified.

For the identification procedure, input references for the PI pre-compensated
plant, referred to the X, Y and Z axis drivers, are named r1, r2 and r3,
respectively. The measured output displacements are y1 (X axis), y2 (Y axis)
and y3 (Z axis). Signals data are acquired with a sampling rate of 20 [kHz].
The identification is realised forcing the closed-loop real plant, driven by the
analog PI controller, by several sets of input steps and recording the related
outputs. Reference signals have time duration bigger than the settling time
of the open-loop system, considered of 120 [ms]. The smaller reference rate
causing a detectable output variations is |∆ui|≥ 0.05 V and the input signals
bounds are ui ∈ r−1, 10s [V] with i ∈ {1, 2, 3}. During the data acquisition
the axis drivers were forced together in order to model any possible coupling
effects between the axes. Collected input and output data are used to identify
a LTI plant model by a least square identification algorithm. The identified
model is tested comparing the computed outputs of the LTI plant model with
respect to different sets of acquired data not considered in the identification
procedure. Considering the difference between the computed and the acquired
outputs, validation tests results are evaluated in terms of the Normalised Root
Mean Square Error (NRMSE). The goodness of the identified model is proven
by a NRMSE average value of 95%.

In Fig. 8.1 and Fig. 8.2 validation tests results are presented. Output data
computed by the identified LTI model are indicated in Fig. 8.1 by ym1 , ym2

and ym3 for X, Y , and Z axis, respectively. Results in figures show how the
identified model fits with good precision the measured outputs. In particular
Fig. 8.1 shows the fit between the real plant and the identified model forced by
steps of fixed amplitude. Figure 8.2 shows the errors (ex, ey and ez) between
the outputs of the identified LTI model and the outputs of the real plant.
The reduced amplitude of the errors (average value of 0 [µm] and variance of
0.002 [µm], equal to the 1% of the amplitude of the signal variation) proves the
goodness of the model. The proposed LQG controllers have been tuned on the
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identified discrete LTI model:

x(k + 1) = Ax(k) +Br(k)
y(k) = Cx(k) (8.2)

where A, B, C are the identified matrices, r(k) =
”

r1(k) r2(k) r3(k)
ıT

is
the reference vector for the PI pre-compensated system of dimension nr = 3,
y(k) =

”

y1(k) y2(k) y3(k)
ıT

is the output vector with dimension ny = 3,
the number of state variables is nx = 6 and the sample time is Ts = 50 µs.

A =

»

—

—

—

—

—

—

—

–

0.9961 −1.028 × 10−5 2.097 × 10−5

−1.005 × 10−5 0.996 −5.441 × 10−5

1.762 × 10−5 −5.318 × 10−5 0.996
−0.01154 −0.6618 × 10−3 1.086 × 10−3

−0.7019 × 10−3 0.01194 −0.1237 × 10−3

0.7606 × 10−3 1.772 × 10−3 0.01202

0.3409 × 10−3 0.2338 × 10−3 −0.2684 × 10−3

0.1856 × 10−3 −0.3317 × 10−3 −0.3943 × 10−3

−0.279 × 10−3 0.4544 × 10−3 −0.3304 × 10−3

0.9955 2.549 × 10−5 −8.17 × 10−5

8.395 × 10−5 0.9951 −0.3366 × 10−3

−0.2036 × 10−3 −0.2215 × 10−3 0.9949

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

B =

»

—

—

—

—

—

—

—

–

−1.168 × 10−10 1.246 × 10−9 1.361 × 10−6

−4.463 × 10−10 −4.477 × 10−7 1.172 × 10−9

−7.828 × 10−7 1.33 × 10−9 −1.101 × 10−9

−9.337 × 10−8 −1.204 × 10−6 0.1244 × 10−3

−1.371 × 10−7 0.1426 × 10−3 1.05 × 10−6

0.1323 × 10−3 1.454 × 10−7 8.88 × 10−8

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

C =

»

—

—

—

—

—

—

—

–

0.0456 0.1108 −135.4613
0.1199 −132.1904 −0.1133

133.7195 0.1185 0.0463
0.2 × 10−3 1.2 × 10−3 0.0575
0.1 × 10−3 −0.1465 0.5 × 10−3

−0.7 × 10−3 −0.3 × 10−3 0.4 × 10−3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

T

53



Chapter 8. The Mathematical Model and Control Design

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time[s]

0.8

0.85

0.9

0.95

1

y
1
[µ
m
]

r1 ym1 y1

0.8

0.85

0.9

0.95

1

r
1
[µ
m
]

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time[s]

0.8

0.85

0.9

0.95

1

y
2
[µ
m
]

r2 ym2 y2

0.8

0.85

0.9

0.95

1

r
2
[µ
m
]

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time[s]

0.8

0.85

0.9

0.95

1

y
3
[µ
m
]

r3 ym3 y3

0.8

0.9

1

r
3
[µ
m
]

Figure 8.1.: Identification test results, with step input signals.
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Figure 8.2.: Identification test results, with step input signals.
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8.3. LQG design

8.3. LQG design

Considering the identified LTI plant (8.2), the proposed LQG controller min-
imises iteratively a quadratic cost function defined as

min.
∆r

N−1∑
i=0

∥Q(yk+i|k − r̄k)∥2
2+∥Rrk+i|k∥2

2 (8.3a)

s.t. xk|k = x(k), (8.3b)
xk+i+1|k = Axk+i|k +Brk+i|k, (8.3c)
yk+i+1|k = Cxk+i+1|k, (8.3d)
i = 0, . . . , N − 1 (8.3e)

where Q ∈ Rny×ny is a positive semi-definite state weighting matrix, R ∈
Rnr×nr is a positive definite invertible control weighting matrix, N is the con-
sider horizon, yk+i|k is the prediction of plant output y based on measurements
available at time k, r̄k is the reference signal for the controlled system at time
k and rk+i|k is the input signal for the PI pre-compensated system described
by (8.2). Initial minimisation problem (8.3) can be cast in a parametric for-
mulation

min.z
1
2z

THz + ρTkF
Tz (8.4)

with ρk ∈ P the vector of parameters of dimension nρ, P ⊂ Rnρ a bounded
set of interest, z ∈ Rnz the vector of optimisation variables, H ∈ Rnz×nz a
symmetric and positive definite matrix, F ∈ Rnz×nρ . The vector of parameters
considered in the control of the closed-loop system is

ρk =
”

r(k − 1) x(k) r̄(k)
ı

.T (8.5)

The explicit solution z∗ of the problem (8.5) is analytic and equal to

z∗ = H−1Fρk. (8.6)

In (8.5) x(k) is the full system state at time k, but in the real plant it is not
fully measurable and it is iteratively estimated by a Kalman filter (KF) [87],
replacing the true state vector x(k) with its estimate x̂k|k both in the min-
imisation problem (8.3) and in the control law. Note that H and F matrices
are constant and computed offline from A, B, Q and R, and the controller
matrices (8.5) are stored and the control law (8.6) computed iteratively avoids
to recalculate the solution of (8.4). Considering the state estimation computa-
tional effort cK as in [88], the complexity c of the LQG control law (8.4) can
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be explicitly computed as

c = (2np − 1)nu + cK . (8.7)

The proposed control scheme is presented in Fig. 8.3.

LQG

KF

PIs PAs

x̂

r̄ r e u y

−

MicroDAQ PAs system

Figure 8.3.: LQG+PI control scheme of the pre-compensated PAs system.
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Chapter 9.

Setup and Results

9.1. Experimental setup

Figure 9.1 shows the instrumentation used in the experimental setup. Tests
have been performed by the MicroDAQ® E2000 acquisition system by Mi-
crodaq. The MicroDAQ provides a Texas Instruments© C6000 DSP core, an
ARM9 core and a set of I/O analog ports featured by a maximum sampling
frequency of 600 ksps and a resolution of 16 bit. The PA system is composed
of a Piezostage (PI P-611.3®) with movement range of 100 [µm] × 100 [µm]
× 100 [µm] and 1 [nm] of resolution. The driver moves a Strain Gauge Sen-
sor (SGS) characterised by a resolution on 0.2 [nm]. The MicroDAQ® module
is connected to a control amplifier (PI E-505 Amplifier Module®) allowing to
generate an adequate control voltage for the PA system amplifying MicroDAQ
output control signal from [−1 to 10] [V]to the piezostage input signals range of
[−10 to 100] [V]. The amplifier provides an internal set of analog Proportional-
Integral (PI) controllers representing the low-level controllers of the PA system.

Figure 9.1.: Experimental setup.
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9.2. Results
A set of simulation and experimental tests have been considered for the pro-
posed control law. Simulations are realised in the Scilab© simulation environ-
ment in order to verify the effectiveness of the controller on the identified model.
Test scenario consists into move simultaneously the system by step reference
signals of amplitude 0.2 [µm]. The control performances are compared with re-
spect to the results obtained by the provided analog PI controllers. The LQG
controller design parameters are reported in Tab. 9.1. The parameters con-
sidered in the control performance comparison are: rise time τr, settling time
τs and the Integral Square Error (ISE). Figs. 9.2 and 9.3 present simulation
results comparison. In particular, Fig. 9.2 considers simulated controlled out-
put behaviour, showing the slower PI control results with respect to LQG+PI
performances. Simulation results are also summarised in Tab. 9.2 showing the
considered control performances indices. The LQG policy improves control re-
sults, and the faster response is related to a reduced error for each controlled
axis, with an average rise time and settling improvement of 60% and 75%, re-
spectively and an average ISE decrease of 60%. In Fig. 9.3 simulated control
efforts are presented. Due to the prediction, LQG reference signals present
an aggressive behaviour to reduce the rise time and also to limit the output
signals overshoot. Experimental results on the real PAs system confirm the
performance of simulated controllers. Table 9.3 reports data of experimental
step input tests. The LQG+PI controller allows to reduce the rise time of the
25% with respect to PI elapsed time. Also the settling time is improved by
the LQG+PI with respect to the PI, reducing the elapsed time of the 29%.
The average error computed by the ISE during the transient shows an aver-
age reduction of the 40%. Fig. 9.4 presents the controlled real plant outputs
comparison. Such as in the simulation tests, the LQG+PI controlled output
is driven faster to the reference value with respect to the PIs’ signal, avoid-
ing overshoots and oscillations. In Fig. 9.5 the control efforts are reported
where the LQG+PI controller presents an initial aggressive behaviour as in the
simulated test results.

Table 9.1.: Controller specifications for simulation and experimental tests.

LQG Parameters Symbol Value
Horizon N 50
Measured variables weights Q I(3)
Manipulated variables rate weights R 0.95I(3)
Sample time Ts 50 µs
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Figure 9.2.: Simulation comparison between PI and LQG+PI outputs.
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Figure 9.3.: Simulation comparison between PI and LQG+PI control efforts.
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Figure 9.4.: Experimental comparison between PI and LQG+PI outputs.
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Figure 9.5.: Experimental comparison between PI and LQG+PI control efforts.
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Table 9.2.: Simulation results: comparison of PI and LQG+PI under step vari-
ations.

PI LQG+PI

X axis
τr[ms] 0.04 0.02
τs[ms] 0.1 0.025
ISE 0.0018 0.00053

Y axis
τr[ms] 0.04 0.02
τs[ms] 0.1 0.025
ISE 0.0017 0.00050

Z axis
τr[ms] 0.04 0.02
τs[ms] 0.1 0.025
ISE 0.0019 0.00054

Table 9.3.: Experimental results: comparison of PI and LQG+PI under step
variation.

PI LQG+PI

X axis
τr[ms] 0.065 0.048
τs[ms] 0.070 0.050
ISE 0.0011 0.00045

Y axis
τr[ms] 0.065 0.045
τs[ms] 0.070 0.050
ISE 0.0012 0.0005

Z axis
τr[ms] 0.065 0.045
τs[ms] 0.070 0.050
ISE 0.0011 0.00046
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Chapter 10.

Conclusions

The PhD research activity described in the present dissertation has been de-
veloped in the triennium 2015-2018, and it has been sponsored by the Depart-
ment of Information Engineering of the University “Politecnica Delle Marche”
(UNIVPM). Embedded strategies aimed at controlling electromechanical pro-
cesses have been studied, designed and tested on real systems. The model-
based paradigm has been exploited, focusing on both black-box and white-box
approaches. Two real processes have been taken into account, represented by
permanent magnet synchronous motor and a piezoelectric actuator. The white-
box approach has been applied to the first case study whilst the black-box one
the second process. For both systems the literature control solutions have been
studied and analysed, highlighting the existent challenges; as a consequence,
innovative theoretical ideas have been stated and implemented on embedded
boards.

For the permanent magnet synchronous motor, an innovative control method
has been designed. The main feature of the proposed control solution relies on a
tailored algorithm aimed at the on-line computation of winding resistance and
the initial angular position. Furthermore, rotor angular position estimation is
performed through the exploitation of electrical signals and sensorless speed
reference tracking is obtained. A sliding mode control law has been designed in
order to obtain robustness to bounded parameter variations affecting the elec-
trical and mechanical system. The developed controller has been installed on a
Digital Signal Processing (DSP) board for tracking desired speed reference tra-
jectories. Satisfactory results have been obtained, both from a computational
effort point of view and from a disturbance rejections one.

For the piezoelectric actuator, a Linear Quadratic Gaussian (LQG) controller
has been designed in order to provide position reference trajectories to a PI
controller. The PI controller pre-compensates the considered process. The
designed non-invasive control algorithm has been installed on the DSP board.
By using the proposed solution, an optimised generation of the PI reference
trajectories has been obtained, improving rise time, settling time and position
control behaviour. At the same time, the computational effort remains within
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tolerable margins.
The future work of the present research activity will be focused on the ex-

tension of the proposed approach for PMSM winding resistance to another im-
portant electrical parameter, i.e. the inductance. Furthermore, studies about
field-weakening strategies could be performed.
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Appendix A.

Tips on PMSM Model Parameters

This appendix is for people like me who came across cryptic datasheets. Not in
the sense of unconventional units of measurement, because for these problems
there are special conversion tables that through coefficients allow passing be-
tween S.I. and not S.I. Units [89], but for ambiguity in how they are measured
and between which connectors are measured. In detail, I’ll focus on back-EMF
constant since the winding inductance “L” and its resistance “R” are easy to
test.

A.1. The winding inductance “L” and the
resistance “R”

It is well known that the stator windings can be classify as: “∆” and star
“Y ” connections. The neutral conductor is almost never available even if the
star connection is applied. Thus, without loss of generality, whenever we get
a brushless motor in our hands, we can always assume that it connected to a
star. It follows that, it is sufficient to measure “R” and “L” between two motor
terminals and make sure that the third one is floating, and that the obtained
values of “R” and “L” have to be divided by 2.

A.2. bEMF constant
Unlike the parameters described above, the back-EMF constant hides many
pitfalls as first of all the name since it is not defined uniquely. in this the-
sis, a Greek letter “ψ” has been used. “ϕ” or “Ke” mostly used although the
worst drawback is how this constant is measured. Just think in which types
of voltages between two motor connectors can be measured, i.e. peak or RMS
values between two phases or phase and neutral. And also how much angular
speed units exist, i.e. RPM , Hz, rad/s. The math model described in Chap-
ter 4 has been defined using the unit Vpk,l−to−n

rade
s

while the more popular unit in
the datasheets is Vpk,l−to−l/kRPM . By Tab. A.1, it is possible to jump from
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any possible units combination to the right unit adopting a simple conversion
factor.

Table A.1.: Converter.

From peak or RMS, Conversion To
l − to− l factor

V
Hz

RMS

1
π

?
6

Vpk,l−to−n
rad
s

V
rade

s

c

2
3

V
radm

s
Np

c

2
3

V
kRPM

?
6

100πNp

V
Hz

peak

1
2π

?
3

V
rade

s

1
?

3

V
radm

s

1
Np

?
3

V
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?
3

100πNp
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