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Abstract

At present, Ambient Intelligence represents the challenge of the future. To ob-

tain an ecosystem that is fully functional and calibrated to the user need, nu-

merous systems, each of them dedicated to a specific task, must be integrated.

One of these sub-systems is the human fall detection. Both research commu-

nity and governments gave particular attention to the human fall detection

because the fall is the first cause of death for people over 65. In this thesis, the

human fall detection is addressed from an audio perspective: a dataset named

A3FALL, composed of a corpus of several audio fall events of every-day objects

and both simulated and real human falls recorded in 3 different rooms, has

been presented. In particular, a special floor acoustic sensor (FAS) has been

developed from this purpose and used to record the dataset together with an

array of a microphone array. Different approaches that work with a different

knowledge base according to the specific task have been proposed: first, two su-

pervised approaches have been described that have highlighted the peculiarities

of the audio drop detection and demonstrated the effectiveness of the proposed

sensor. The human falls hardly available for systems development, unsuper-

vised systems have been proposed that do not need examples of the target

class in the learning phase. It has been shown that unsupervised approaches

have better performance than the art state systems, but they do work well in

not very complex scenarios. Finally, methods that work under more realistic

conditions have been developed and described. A system where the user inter-

venes by correcting the system’s operation for a considerable reduction of false

alarms is proposed. Then a few-shot learning approach that without any user

intervention can achieve promising results using only a few examples of human

fall in the training phase has been presented. The thesis concludes with an

extensive evaluation of a Siamese Convolutional Autoencoder based approach.

It has been shown that this approach outperforms all the previously proposed

systems when assessed in a complex scenario.
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Chapter 1

Introduction

The origins of Ambient Intelligence are rooted in the birth of domotics and

Home Automation. In fact, the concept of home automation design was al-

ready being started in the 80s for residential buildings. Information revolution,

microprocessors, and telecommunication networks are the main elements that

have allowed the development of domotics. At the same time, increasingly so-

phisticated automation processes in the manufacturing field are at the base of

building automation and domotics applications, transferring the control and

automation systems present in the factories, with appropriate measures, to

the building and its plants. During the decade ’70 ’80, the foundations for the

transformation of household appliances were laid. In this phase, we witness the

first transition from the electric house to the electronic house; subsequently, the

progress of the sector will lead to the current concepts of the integrated home

system, bringing with it the concept of services that put man at the center,

and therefore of ambient intelligence. The vision of the Ambient Intelligence

(AmI) [1] has its foundations in the article by M. Weiser [2]. He states that

“the deepest technologies are those that disappear” and that computer tech-

nology at the time of its maturity should be invisible. Today the efforts in

this direction are aimed at creating a “non-deterministic and open” cyberspace

within which autonomous and intelligent entities will interact in order to put

man at the center of a design that will see the realization of the fully integrated

home of the future. This space will be able to self-organize and self-adapt to

the user and anticipating his needs. The systems that conform to this vision

will offer technological solutions that will be integrated into the environment,

context-aware, tailored to the user need, able to adapt actions in new scenarios

and able to anticipate the needs and wishes of users, all with minimal user

intervention. The objects and the environment will interact with each other in

order to support users in carrying out their daily activities in a natural way,

using the information and the intelligence that is hidden in the technological

infrastructure that connects the devices (the technological complexity will be-

come invisible for the user). In an AmI system, many heterogeneous devices

work in cooperation to support users in everyday activities. As a result, the

1
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intelligence has been introduced in the domestic environment to provide more

comfortable spaces for the inhabitants and allow the automatic implementation

of different functions, such as ensuring greater independence and autonomy of

the inhabitants acting in the areas of security/safety and issues of Ambient As-

sisted Living (AAL). A particular application in the field of AAL is precisely

the human fall detection. The decreasing birth rate [3] and the simultaneous

increase of the life expectancy at birth [4] in the majority of industrialized

countries have been generating new challenges in the assistance of the elderly.

The scientific community, companies, and governments are trying to face them

by investing in the development of efficient healthcare systems and solutions.

The direction taken goes towards the development of smart home capable of

taking care of the inhabitants by supporting and monitoring them in their

daily actions [5, 6]. Since falls are one of the leading cause of death for the

elderly [7], several efforts have been devoted to the development of algorithms

for automatically detecting this kind of events.

1.1 Fall Detection Systems

The continuous and unprecedented growth rate of the elderly world population

is one of the primary aspects of concern for society and governments. Nowadays

about 8.5% of people in the world are more than 65 years old [8, 4]. Although

the average life of the world population is getting longer, older adults may not

necessarily live a healthier life. It is enough to say that 37.5 million falls require

medical interventions and more than 600 thousand are the cause of death every

year worldwide. In particular, the population segment most affected by this

problem is composed of elderly over 65 years that, with the growing mobility of

the population, are more frequently left alone in their homes without aid in the

case of need. Moreover, since falls are the leading cause of death and hospital-

izations for older adults, this phenomenon leads to a substantial increase in the

cost of healthcare [9, 7]. It is not surprising, thus, that the research community

is encouraged, even by governments, to find reliable and performing solutions

to minimize the damage caused by the human falls problem. The above is

also confirmed by the presence in the literature of several reviews dedicated

to this specific topic [7, 10, 11, 12, 13, 14]. In fact, in the past few years, a

variety of systems have been presented. One way to divide the methodologies

for approaching the falls detection problem is based on the placement of the

sensing devices [7]. The main categories are wearable, vision and environmen-

tal, with each category presenting advantages and disadvantages. Wearable

systems do not suffer from ambient condition, but people may forget to wear

them, and they are not operational during the charging time; thus, some peo-

ple may consider them annoying. Furthermore, a device must be installed on
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each person to be monitored. An environmental sensor may be used to avoid

this kind of problems, but with other limitations. Vision systems, although

they are actually environmental sensors, deserve a dedicated category because

of many systems proposed in the literature based on this type of sensors [7].

This category includes several types of sensors like, e.g., cameras for which the

major limitations are field-of-view constraints, lighting condition, the position-

ing of multiple cameras and lack of privacy. The ambient category includes

several types of sensors. For example, radar doppler based systems used in [15]

raise fewer privacy concerns, but they suffer from reflection and blind spots.

In particular, for a data-driven system, another aspect that should not be un-

derestimated is the need for a re-training when changing the environment to

be monitored or even just some of its components such as the arrangement of

furniture as happens in [16]. All this implies that there is no optimal choice,

which is instead, a compromise that depends on the type of environment that

is monitored as well as on personal sensitivity of the subjects under monitoring.

Going into more detail, another significant distinction between falls detection

systems can be made based on the type and amount of data used for the al-

gorithm development [10]. In fact, the problem can be approached either as

supervised or unsupervised based on the availability of data in the hands of the

researchers as well as their goals. Most state-of-the-art works tackle the prob-

lem under fully supervised conditions assuming they have enough data for falls.

Almost all of these falls are simulated with professional mannequins [17, 18] or

by people with adequate protections [19, 20] that however may not correctly

emulate an actual fall. Although this approach leads to more accurate results,

there is no guarantee that it will generalize well in real situations. Other re-

searchers opt for approaches based on outlier/anomaly detection [21, 22, 23]

because of the plentiful availability of data that can represent normal activity.

However, it is challenging to define what “normal activities” are for such ap-

proaches, and the risk is to raise several false alarms. Perhaps the situation

that most closely approximates reality is a hybrid between the previous ones,

in which a large amount of data representing the normality are easily available,

with just a few samples of real human fall and eventually some related syn-

thetic or simulated data. In these situations, supervised approaches that suffer

from strong data imbalance have to apply subsampling [24] or weighting [10]

techniques to mitigate this effect. Thus, the need to find an effective way to

exploit the few available falls data is evident.

1.2 State-Of-The-Art

Fall detection approaches can be divided based on their sensing technology, in

particular if they employ wearable or ambient sensors. Several fall detection

3
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systems have been presented in the literature, the majority of which are based

on wearable accelerometers or smart cameras [7, 10, 11, 12, 13, 14].

1.2.1 Wearable

Regarding the first ones, the most common choice is to employ accelerometers.

The algorithms proposed in [25] and [26] detect a fall by verifying if the ac-

celeration signals exceed a certain threshold. In contrast, in [27] the authors

implemented several machine learning techniques and studied their classifica-

tion performance. For the experiments, a fall events dataset has been developed

using six sensor units with three-axis accelerometers and worn by 14 persons

who simulated falls from different angles. The best performing classifier has

been the k-Nearest Neighbour classifier. [28] employed radio tags worn on the

user’s chest, waist, and ankles, and an optional three-axial accelerometer worn

on the chest. The algorithm performs a basic activity recognition, distinguish-

ing from walking, standing, sitting, sitting on the ground, lying down, the

process of sitting or lying down, the process of standing up and falling. The

actual fall is detected combining the results of two classifiers, an SVM and a

decision tree, and hand-crafted rules. The authors performed the experiments

on a laboratory scenario and reported accuracies of 100% combining radio tags

and the accelerometer.

1.2.2 Environmental

Differently from wearable sensors, the physical quantities captured by ambi-

ent sensors are more heterogeneous. Generally, fall detectors are based on

vibration, video or acoustic sensors, sometimes in combination with presence

detectors. In [29] the fall detector is based on a floor vibration sensor and the

algorithm detects a fall when the vibration pattern matches the one of a hu-

man fall. The authors do not give further details on the algorithm and report

100% sensitivity, and specificity on tests conducted on a dummy falls dataset.

Yazar and colleagues [30] employ both passive infrared (PIR) sensors and floor

vibration sensors. PIRs are employed to reduce false alarms, i.e., by detecting

if a person is present in the region of interest. Single-tree complex wavelet

transform features are extracted from the vibration signal and classified as fall

or non-fall. In their dataset, the non-fall classes are represented by human

(walking or running and sitting) or non-human activities (door slamming and

a book falling). Three different classifiers have been compared: Euclidean dis-

tance, Mahalanobis distance and SVM, with the latter resulting in the most

performing one, since it is able to classify human falls without errors regardless

the employment of PIR sensors.
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Audio based system

Regarding approaches based on audio signals, a common solution is to install

several microphones in the building, usually on the ceiling or near the walls.

Single Microphone Indeed, also single-microphone approaches exist but they

are much less robust to environmental noise, thus resulting in poor performance.

For example, in [31], the authors employ a single far-field microphone and they

model audio segments by means of perceptual linear predictive (PLP) coeffi-

cients and GMM supervectors. An SVM with a kernel based on the Kullback-

Leibler divergence, then, classifies the segment as being a fall or noise. For this

purpose, nine classes of noise have been considered. In the experiments, the al-

gorithm achieves an F1-Measure of 67% in the classification task, and accuracy

equal to 64% in the detection task. Cheffena [32] propose a supervised fall de-

tection algorithm based on smartphone microphones. The falls were performed

and recorded from different volunteers with a smartphone placed within 5 m

from them. This system may not work when the person is far or in a differ-

ent room. The author has evaluated different types of features and supervised

algorithms, achieving the best accuracy performance of about 98% with spec-

trogram features as the input of an artificial neural network. Collado et al. [33]

present a comparison with 7 binary supervised machine learning methods, using

10 standard audio features like the energy of the signal, zero-crossing, spectral

centroid, etc. They assessed the performance on a dataset composed of falls

performed by a stunt actor. The non-fall class was represented by a human

conversation and television background. Due to the strong classes unbalance,

they have sub-sampled the non-fall class, getting the same number of instances

of the fall class. In this context, a Logistic Regression approach achieved the

best results of 93.3% in terms of F1-measure. Differently, Irtaza et al. [34]

show a Support Vector Machine approach trained on Acoustic-Local Ternary

Patterns features. Similarly to [33], the problem of an unbalanced dataset has

been faced by under-sampling the non-fall class. In this case, the non-fall class

is represented by human activity sounds and some object falling, while they

have used human falls sounds recorded with the aid of human subjects.

Microphone Array The difficulty in using a single microphone drove the sci-

entific community to employ multi-channel algorithms. In [21] the authors

present an unsupervised algorithm based on two microphones. The algorithm

comprises a source separation and localization block to reduce the impact of

background noise. Then, a One-Class Support Vector Machine is trained on

MFCCs of non-fall events only. The SVM is then applied to distinguish ordi-

nary sound events (i.e., sounds originating from normal activities) from unusual

ones (i.e., falls sounds). The authors validated the algorithm using simulated
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falls of persons only in the presence of television that produced the interfer-

ing sound. The results, in terms of Area Under Curve, are 99.28% without

interference and 97.38% with 75% interference. The work by Li and colleagues

[19] employs a circular microphone array to firstly determine the position of

the sound source and then to enhance the signal by applying a beamformer.

The height of the sound source is used as the first filter to discriminate falls

from non-falls. If the sound originates from a source positioned on the ground,

MFCC features are extracted and a k-Nearest Neighbour classifier is employed

to detect persons’ falls. The algorithm has been tested on a dataset composed

of 120 simulated fall sounds and 120 non-fall sounds recorded in different acous-

tic conditions. In the presence of background noise and TV interference, the

resulting AUC was equal to 0.989 (accuracy 95%) on clean conditions and 0.932

at 10 dB SNR (accuracy 89%). Popescu et al. [20] proposed a 2-stage thresh-

old based method using a microphone array. The first step is to compute the

energy of the acquired signal. Then if the value exceeds a threshold, a sound

localization is performed to remove possible false alarms. In the end, if the

sound was detected from above a specific height, the alarm is removed. The

human falls for testing were performed by only one stunt actor falling on a

mattress.

Combined Solutions An approach to improve the performance of fall detec-

tion systems is to combine the information coming from different sensors. The

approach proposed by Zigel et al. [18] is based on a combination of sound

and vibration sensors attached to the floor with an adhesive tape. The algo-

rithm employs energy features extracted from the vibration signal to detect

the fall event. Then, the event is classified as fall or non-fall with naive Bayes

classifier employing features from both the vibration and sound signals. The ex-

periments were conducted on a dataset containing falls of the “Rescue Randy”

human mimicking doll and four objects, and the resulting sensitivity and speci-

ficity were respectively 97.5% and 98.6%. [35] fuse the information coming from

a Doppler sensor and motion sensors and classify the falls with an SVM. The

authors report an AUC equal to 0.98 with Doppler sensor only, and a further re-

duction of false alarms by 63% employing motion sensors information. Motion,

sound and video signals are employed in [36]. Signals are captured both from

environment sensors and from body sensors. A fall is detected by analyzing

sounds and motion information, while visual and motion behavior indicates the

severity of the fall. The work by Toreyin and colleagues [37] combines PIRs,

microphones and vibration sensors. Signals are processed to extract features

in the wavelet domain, and HMM classifier is then employed to detect falls.

The authors showed the using PIR signals 100% accuracy could be obtained.

In [38] a solution based on wearable accelerometers and microphones has been
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proposed. The solution employs empirical rules to detect a fall and validate

it combining the sound pressure information utilizing fuzzy logic. The fall in-

stances for training have been performed by volunteer falling on a soft rubber

foam mat to cushion the impact of falls.

1.3 Motivations and Contributions

Generally speaking, the “analytical methods” distinguish between fall and non-

fall events by applying a threshold directly on the acquired signals or on the

features sequences extracted from them [39]. These methods are generally built

exploiting some a priori knowledge to operate in a specific scenario and needs

manual tuning of the hyperparameters of the algorithm. For these reasons,

the “analytical methods” can hardly perform when the operating conditions

and the subjects are variable. In “machine learning” methods, the algorithm

learns from the data how to discriminate falls from non-falls [39]. Between

them can be distinguished “supervised” and “unsupervised” approaches. The

first requires a labeled dataset for training the classifier, while the latter builds

a normality model considering only the non-fall events. Regardless of the used

approach, machine learning tasks require that the inputs be mathematically

and computationally convenient to process, so researchers have traditionally

relied on a two-stage strategy: some features are extracted from the raw sig-

nals of the dataset and are then used as input for the successive tasks. The

choice and design of the appropriate features requires considerable expertise

about the problem and constitutes a significant engineering effort. The main

contribution is to demonstrate that the audio human fall detection is a reliable

solution and not only the mainstream systems based on vision or wearable sen-

sors can be used for this kind of problem. A particular acoustic sensor specially

designed for the fall detection task is proposed and evaluated. Moreover, the

dataset used to assess all the proposed methods has been created by the same

authors and made available by the scientific community. The authors aim to

provide a complete dataset to the scientific community, that other researchers

can use in order to compare the performances of their proposed systems in

the audio field concerning the detection of human falls. In this work, different

applications of computational audio processing based on machine learning tech-

niques for ambient intelligence are analyzed. Particular attention was given to

the knowledge condition each proposed approach. In fact, the presented works

start from a total knowledge of the data describing first the supervised methods

dedicated to the falls detection. Because of the difficulty in recovering examples

of human fall for algorithm training, this is primarily just a case study. Subse-

quently, methods that operate in the opposite condition are described, that is,

without the a priori knowledge of signals related to the human fall. This would
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be the ideal condition, but that does not present very high reliability in terms

of false alarms rate. Finally, the problem is dealt with from a more realistic

point of view, in which only a small portion of data related to the human fall

is available, while a vast knowledge of what is not human fall can be accessed.

The outline of the dissertation is the following. In Section 1.1 has been

introduced the human fall classification task with an updated followed by a

state-of-the-art mainly focused on the audio based approaches. Chapter 2 gives

an overview of the theoretical background of the data-driven techniques used

during the development of the presented systems. The Chapter 3 described the

dataset made by the authors, used for the assessment of the systems. Chapter 4

presents the supervised approaches aimed to evaluate both the created dataset

and the innovative proposed sensor. The unsupervised systems are described in

Chapter 5 where no human fall data has been used to train the algorithms. In

Chapter 6 approaches that operate in more realistic conditions are described,

where additional information is provided by the user or available for the target

class.

8
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Background

In recent years, the IoT revolution has led to the creation of enormous amounts

of data. The use of intelligent devices that can interface with cloud comput-

ing systems or perform complex calculations directly on board, in homes and

cities, has allowed the affirmation of data-driven algorithms compared to other

methodologies used so far. In fact, these approaches try to emulate the func-

tioning of the human mind, enabling computers to perform tasks that are

unthinkable until now. In this chapter are resumed the data-driven algorithms

used for developing the proposed methodologies for fall classification systems.

2.1 Support Vector Machines

Support Vector Machines (SVM) [40] are one of the most popular classification

algorithms and are well known for their strong theoretical foundations, general-

ization performance and ability to handle high dimensional data. This section

presents an overview of support vector machine, starting with linear SVMs, fol-

lowed by their extension to the nonlinear case and finally the One-Class SVM

for novelty detection.

Linear Support Vector Machines In the binary classification setting, let

((x1, y1) . . . (xn, yn)) be the training dataset where xi ∈ <
n are the n-dimensional

feature vectors representing the instances (i.e. observations) and yi ∈ {−1, +1}

be the labels of the instances. Support vector learning is the problem of finding

a separating hyperplane that separates the positive examples (labeled +1) from

the negative examples (labeled -1) with the largest margin:

f(~w) = sign(~wT · ~x + b), (2.1)

where a value of −1 indicates one class, and a value of +1 the other class. In

the simpler linearly separable problem, the margin of the hyperplane is defined

as the shortest distance between the positive and negative instances that are

closest to the hyperplane. The intuition behind searching for the hyperplane

9
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The problem can be expressed in the Lagrangian formulation:

L(~w, b, λ) =
1

2
‖~w‖2 +

m
∑

i=1

λi(1− yi(~w · ~xi + b)) (2.7)

with Lagrange multipliers λi ≥ 0 for each constraint in 2.6. The objective is

then to minimize 2.7 with respect to ~w and b and simultaneously require that

the derivatives of L(~w, b, λ) with respect to all the λ vanish. The advantage

is twofold: the training vectors only appear as a scalar product among the

vectors, and the constraints are easier to manage.

With the formulation presented above, the SVM fails in some situation. In

fact, there is no solution if samples can not be separated by a hyperplane.

Moreover, although data are linearly separable the SVM may overfit to some

outlier compromising system performance. For dealing with this type of prob-

lem, has been developed the soft margin SVM [40] which allows data points to

lie within the margins. Introducing slack variables ξi into the constraints and

penalize them in objective, the new problem becomes

min
~wi,b,~ξ

1

2
‖~w‖2 + C

m
∑

i=1

ξi (2.8)

subject to yi(~w · ~xi + b) ≥ 1− ξi and ξi ≥ 0 for i = 1 · · ·m.

The cost coefficient C > 0 is a hyper-parameter that specifies the misclassifi-

cation penalty and is tuned by the user based on the classification task and

dataset characteristics.

Non-Linear Support Vector Machines A way to solve the problem when data

are not linearly separable, is to map the data on to a higher dimensional space

and then to use a linear classifier in the higher dimensional space. This methods

is referred to as “the kernel trick ” that exploit the fact that the training data

appears as a dot product between vectors in the Lagrangian formulation to

from non-linear decision boundaries. Suppose to use a transformation Φ : ~x→

φ(~x) to map every data sample into higher dimensional space, the dot product

becomes φ(~xi)T φ(~xj). By the use of a kernel function

K(~xi, ~xj) = 〈φ(~xi), φ(~xj)〉, (2.9)

it is possible to compute the separating hyperplane without explicitly carrying

out the mapping into feature space. The classifier become:

f(~x) = sign(
∑

i

λiyiK(~xi, ~xj) + b) (2.10)
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The most popular kernel functions are:

• Linear Kernel:

K(~xi, ~xj) = 〈~xi, ~xj〉 (2.11)

• Polynomial Kernel:

K(~xi, ~xj) = (〈~xi, ~xj〉)
d (2.12)

• Sigmoid Kernel:

K(~xi, ~xj) = tanh(γ〈~xi, ~xj〉 − θ) (2.13)

• RBF Kernel:

K(~xi, ~xj) = exp(−
‖~xi − ~xj‖

2σ2
) (2.14)

Up to now the SVM algorithm for binary classification has been described.

This algorithm can be extended to the multi-class case using the “one vs all”

technique [41].

2.1.1 One-Class Support Vector Machines

One-Class SVM (OCSVM) proposed by Schölkopf et al. [42] is the extension

of the support vector machine to the case of unlabeled data that makes them

useful for novelty detection problems. In the OCSVM, a new parameter ν that

controls the trade-off between maximizing the distance of the hyperplane from

the origin and the number of data points contained by the hyperplane has

been introduced. To separate the data from the origin, the following quadratic

program has to be solved:

min
~wi,~ξ,ρ

1

2
‖~w‖2 +

1

νl

m
∑

i=1

ξi − ρ (2.15)

subject to (~w · φ(~xi)) ≥ ρ− ξi and ξi ≥ 0 for i = 1 · · ·m.

In fact, One-Class SVM consists in a discriminant function that takes the value

+1 in a small region that captures the majority of the data points of a set

and −1 outside that region [43]. The discriminant function has the following

expression:

f(x) = sgn

(

∑

i

αi · k(xi, x)− ρ

)

, (2.16)

where ~xi denotes the i-th support vector. The position of the hyperplane, thus,

defines the region that represents normal data points. For each point x that

lies outside this region, the function f(~x) takes the value −1, whereas for point
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inside the region, it takes the value +1. The terms λi can be found by solving

the solution to the dual problem:

The terms λi can be found by solving the solution to the dual problem:

min
λ

1

2

∑

ij

K(~xi, ~xj) (2.17)

subject to 0 ≤ λi ≤
1

νl
and

∑

i

λi = 1,

where λi is a Lagrange multiplier and l is the number of points in the training

dataset. The term ν ∈ (0, 1] is an hyperparameter of the algorithm that is

determined on a validation set.

The offset ρ can be obtained from the Karush-Kuhn-Tucker (KKT) condition

with the expression [44]:

ρ =
∑

j

λik(~xj , ~xi), (2.18)

which is satisfied for any λi that is not at the upper or lower bound.

2.2 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a parametric probability density function

represented as a weighted sum of Gaussian component densities. Generally,

GMMs are used as a parametric model of the probability distribution of some

features and then are used to extract higher level features such Gaussian Mean

Supervectors (GMS). GMSs are higher level features composed of the means of

a Gaussian mixture model (GMM) adapted with maximum a posteriori (MAP)

algorithm [45, 46]. The GMM models a Universal Background Model (UBM)

and is trained on a large set of audio data by using Expectation Maximization

(EM) algorithm [47]. Then, a GMS is calculated by adapting the GMM with

the MAP algorithm [48] and concatenating the adapted GMM mean values.

More in details, consider a sequence of L feature vectors X = {x1, x2 . . . , xL},

where each xl has size D × 1. The GMM representing an UBM is given by

p(xl|λ) =
J
∑

j=1

wjp(xl|µj , Σj), (2.19)

where λ = {wj , µj , Σj |j = 1, 2, . . . , J}, wj are the mixture weights, and

p(·|µj , Σj) is a multivariate Gaussian distribution with D × 1 mean vector

µj and D ×D diagonal covariance matrix Σj .

The GMS M of the sequence X is obtained by adapting the means of the
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Figure 2.2: The human brain.

UBM model with maximum a posteriori (MAP) algorithm and then concate-

nating the mean vectors:

M = [µT
1 , µ

T
2 , · · · , µ

T
J ]T , (2.20)

where T denotes the transpose operator. Regardless the number of vectors in

the sequence X, M is a DJ × 1 vector.

The number of Gaussians J are generally determined on a validation set.

2.3 The Artificial Deep Neural Networks

The human brain is composed of a big set of specialized cells (neurons) con-

nected among them, which memorize and process information, thus controlling

the body activities they belong to as depicted in Figure 2.2. The human brain

is probably the most remarkable result of evolution for its ability to elaborate

information. The Artificial Neural Networks are mathematical models that rep-

resent the interconnection between elements defined "Artificial Neurons", math-

ematical constructs that somehow imitate the properties of biological neurons,

going to reproduce the functioning of the human nervous system.

2.3.1 The Human Nervous System

A biological Neural Networks is a big set of specialized cells (neurons) connected

among them, which memorize and process information, thus controlling the

body activities they belong to.

The neuron model is composed of:

• Soma, which is the calculation unit

• Axon, that acts as a transmission line output
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Figure 2.3: The neuron model.

• Dendrite is the input terminal ot the cell that receive messages from other

connected cells

• Synapses: permits a neuron to pass an electrical or chemical signal to

another neuron or to the target effector cell.

The neuron properties can be described in:

• local simplicity: the neuron receives stimuli (excitation or inhibition) from

dendrites and produces an impulse to the axon which is proportional to

the weighted sum of the inputs;

• global complexity: the human brain possess O(1010) neurons, with more

than 10K connections each;

• learning: even though the network topology is relatively fixed, the strength

of connections (synaptic weights) can change when the network is exposed

to external stimuli;

• distributed control: no centralized control, each neuron reacts only to its

own stimuli;

• tolerance to failures: performance slowly decrease with the increase of

failures.
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Figure 2.4: The artificial neuron model.

The biological Neural Networks are able to solve very complex tasks in few

time instants (like memorization, recognition, association, and so on.)

The Artificial Neural Networks (ANNs) are defined as Massively parallel dis-

tributed processors made up of simple processing units having a natural propen-

sity for storing experiential knowledge and making it available for use (Haykin,

2008).

An ANN resembles the brain in two aspects:

1. Knowledge is acquired by the network from its environment through a

learning process;

2. Synaptic weights are used to store the acquired knowledge.

An artificial neural network (ANN), is a mathematical/informatical model

calculation based on biological neural networks. This model is constituted by

a group of interconnections of information consisting of artificial neurons and

processes using a connectionist approach to computation. In most cases, an ar-

tificial neural network is an adaptive system that changes its structure, which

is based on external or internal information that flows through the network

during the learning phase. In practical terms neural networks are non-linear

structures of statistical data organized as modeling tools. They can be used to

simulate the complex relationships between inputs and outputs that other an-

alytic functions fail to represent. An artificial neural network receives external

signals on a layer of nodes (processing unit) input, each of which is connected

with a number of internal nodes, organized in several levels. Each node pro-

cesses the received signals performing a very simple task and transmits the

result to subsequent nodes.

The artificial neuron is an information-processing unit that is fundamental

to the operation of a neural network. The model of a neuron is composed of
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three basic elements, as shown in Figure 2.4:

• a set of synapses, or connecting links, each of which is characterized by

a weight or strength of its own, wkm; The neural model also includes an

externally applied bias, denoted by bk.

• an adder for summing the input signals, weighted by the respective synap-

tic strengths of the neuron; the operations described here constitute a

linear combiner;

• an activation function for limiting the amplitude of the output of a neu-

ron. Typically, the normalized amplitude range of the output of a neuron

is written as the closed unit interval [0,1], or, alternatively, [-1,1].

The neural model also includes an externally applied bias, denoted by bk.

Therefore, the mathematical description of neuron activity can be defined

as:

uk =
m
∑

j=1

wkjxj (2.21)

yk = ϕ (uk + bk) (2.22)

where:

• x1, x2, · · · , xm are the input signals;

• wk1, wk2, · · · , wkm are the respective synaptic weights of neuron k;

• uk is the linear combiner output due to the input signals;

• bk is the bias;

• ϕ(·) is the activation function;

• yk is the output signal of the neuron.

The types of activation non-linear functions ϕ(x) are:

• the threshold function: in engineering, this form of a threshold function

is commonly referred to as a Heaviside function;

ϕ (v) = 1 if v ≥ 0 (2.23)

ϕ (v) = 0 if v < 0 (2.24)

17



“PhDthesis_Droghini” — 2019/2/11 — 19:18 — page 18 — #36

Chapter 2 Background

Figure 2.5: The threshold non-linear function.

Figure 2.6: The sigmoid non-linear function.

• the sigmoid function: it is defined as a strictly increasing function that

exhibits a graceful balance between linear and nonlinear behavior; an

example of the sigmoid function is the logistic function defined by:

ϕ (v) =
1

1 + exp (−av)
(2.25)

• the hyperbolic tangent (tanh): it is simply a scaled and shifted version

of the sigmoid function:

ϕ(x) =
1− e−2x

1 + e−2x
(2.26)

• the Rectifier Linear Unit (ReLU):

ϕ(x) = max(0, x) (2.27)

• the softmax: it is used on the last layer of a classifier setup: the outputs

of the softmax layer represent the probabilities that a sample belongs to

the different classes. Indeed, the sum of all the output is equal to 1.

ϕ(xk) =
exk

∑N
j=1 exj

for k = 1, . . . , K (2.28)
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Figure 2.7: The tanh non-linear function.

Figure 2.8: The ReLU non-linear function.

In past years, many models of neurons and neural architectures have been

proposed in the literature, each with its peculiarities. A brief description of the

leading models used in the works described in the following chapters will now

be given:

1. Multilayer Feedforward Networks - (FFNN):

it is characterized by the presence of one or more hidden layers, whose

computation nodes are correspondingly called hidden neurons (or hidden

units); the term hidden refers to the fact that this part of the neural net-

work is not seen directly from either the input or output of the network.

The function of hidden neurons is to intervene between the external input

and the network output in some useful manner. By adding one or more

hidden layers, the network is enabled to extract higher-order statistics

from its input.

The MLP is a well known kind of artificial neural network introduced in

1986 [49]. Each node applies an activation function over the weighted

sum of its inputs. The units are arranged in layers, with feed forward

connections from one layer to the next. The stochastic gradient descent

with error back-propagation algorithm is used for the supervised learning

of the network. In the forward pass, input examples are fed to the input

layer, and the resulting output is propagated via the hidden layers towards

the output layer. At the backward pass, the error signal originating
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connected to a local receptive field, and all the neurons form a matrix

called feature map. The weights in each feature map are shared: all

hidden neurons are aimed to detect exactly the same pattern just at

different locations in the input image.

The main advantages of this network is the robust pattern recognition

system characterized by a strong immunity to pattern shifts.

Pooling layer just reduces the dimension of the matrix by a rule: a sub-

matrix of the input is selected, and the output is the maximum value of

this submatrix.

The pooling process introduces tolerance against shifts of the input pat-

terns. Together with convolution layer it allows the CNN to detect if a

particular event occurs, regardless its deformation or its position.

CNN is a feed-forward neural network [50] usually composed of three

types of layers: convolutional layers, pooling layers and layers of neurons.

The convolutional layer performs the mathematical operation of convo-

lution between a multi-dimensional input and a fixed-size kernel. Succes-

sively, a non-linearity is applied element-wise. The kernels are generally

small compared to the input, allowing CNNs to process large inputs with

few trainable parameters. Successively, a pooling layer is usually applied,

in order to reduce the feature map dimensions. One of the most used

is the max-pooling whose aim is to introduce robustness against transla-

tions of the input patterns. Finally, at the top of the network, a layer of

neurons is applied. This layer does not differ from MLP, being composed

by a set of activation and being fully connected with the previous layer.

For clarity, the units contained in this layer will be referred as Hidden

Nodes (HN).

Denoting with Wm ∈ R
K1m×K2m the m-th kernel and with bm ∈ R

D1×D2

the bias vector of a generic convolutional layer, the m-th feature map

hm ∈ R
D1×D2 is given by:

hm = ϕ

(

D3
∑

d=1

Wm ∗ ud + bm

)

, (2.31)

where ∗ represent the convolution operation, and ud ∈ R
D1×D2 is a matrix

of the three-dimensional input tensor u ∈ R
D1×D2×D3 . The dimension

of the m-th feature map hm depends on the zero padding of the input

tensor: here, padding is performed in order to preserve the dimension of

the input, i.e., hm ∈ R
D1×D2 . Please note that for the sake of simplicity,

the time frame index n has been omitted. Commonly, (2.31) is followed

by a pooling layer in order to be more robust against patterns shifts
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in the processed data, e.g. a max-pooling operator that calculates the

maximum over a P1 × P2 matrix is employed.

A Deep Learning definition: A class of machine learning techniques that

exploit many layers of non-linear information processing for supervised or un-

supervised feature extraction and transformation, and for pattern analysis and

classification. Artificial Neural Networks are often referred as deep when they

have more than 1 or 2 hidden layers.

2.3.2 Stochastic gradient descent (SGD)

Most deep learning training algorithms involve optimization of some sort. The

most widely used is the gradient based optimization, which belongs to the first

order type.

Optimization is the task of either minimizing some function f(x) by altering

x: f(x) is called objective function, but in the case when it has to be minimized,

it is also call the cost function, loss function, or error function. The aim of the

optimization is reached doing small change ε in the input x, to obtain the

corresponding change in the output f(x):

f(x + ε) ≈ f(x) + ε f ′(x). (2.32)

This formulation is based on the calculation of the derivative f ′(x). The gradi-

ent descent is the technique based on the reduction of f(x) by moving x in small

steps with the opposite sign of the derivative. The aim is to find the minimum

of the cost function: when f ′(x) = 0, the derivative provides no information

about which direction to move, therefore this point is defined as stationary

points. A local minimum is a point where f(x) is lower than at all neighbour-

ing and it is no longer possible to decrease f(x) by making infinitesimal steps.

The absolute lowest value of f(x) is a global minimum.

For the concept of minimization to make sense, there must still be only one

(scalar) output. For functions that have multiple inputs f : R
n → R, the

concept of partial derivatives is introduced. The gradient ∇xf(x) is the vector

containing all the partial derivatives.

The method of steepest descent or gradient descent states that decrease f by

moving in the direction of the negative gradient.

x’ = x− ε∇xf(x), (2.33)

where ε is the learning rate, a positive scalar determining the size of the step.

Large training sets are necessary for good generalization, but large training

sets are also more computationally expensive. The cost function decomposes

as a sum over training example of per-example loss function: i.e., the negative
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conditional log-likelihood of the training data is defined as:

J(θ) = E(L(x, y, θ)) =
1

m

m
∑

i=1

L(x(i), y(i), θ), (2.34)

where L is the per-example loss L(x, y, θ) = − log p(y|x; θ). The gradient de-

scent requires computing:

∇θJ(θ) =
1

m

m
∑

i=1

∇θL(x(i), y(i), θ). (2.35)

The computational cost of this operation is proportional to the number of

example m, therefore as the training set size grows the time to take a single

gradient step becomes prohibitively long.

Stochastic gradient descent (SGD) is an extension of the gradient descent

algorithm: the insight is that the gradient is an expectation estimated using

a small set of samples. On each step of the algorithm, a sample of example

B = {x(1), . . . , x(m′)}, called minibatch, is drawn uniformly from the training

set. The minibatch size m′ is typically chosen to be a relatively small number

of examples. The estimate of the gradient is: g = 1
m′
∇θ

m′

∑

i=1

L(x(i), y(i), θ) using

examples from the minibatch B. The SGD algorithm then follows the estimated

gradient downhill:

θ ← θ − ε g (2.36)

where ε is the learning rate.

2.3.3 Autoencoder

An Autoencoder is a kind of neural network typically consisting of only one

hidden layer, trained to set the target values to be equal to the inputs.

x̃ = f(W2h(x) + b2) (2.37)

Given an input set of examples X , autoencoder training consists in finding

parameters θ = {W1, W2, b1, b2} that minimize the Reconstruction Error:

J (θ) =
∑

x∈X

‖x− x̃‖2 (2.38)

Defining M the number of hidden units, and N the number of input units,

output units, features size:

• (a): M = N → Basic Autoencoder (AE);
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Dataset

The importance of using public data sets for algorithm evaluation is very impor-

tant. Only in this way can a direct comparison be made between the different

approaches to determine which of these is actually the best. There are publicly

available datasets for the fall detection task, the majority of them are all related

to wearable or vision sensors and often include both types [53, 54, 55, 56, 57].

Since in this work, we face the problem of human fall detection from an au-

dio perspective, a preliminary search for datasets containing audio signals has

been performed. Only one dataset containing audio recording has been found

[58]. However, the audio files available in the dataset are suitable for speech

recognition related works rather than sound event detection. In fact, only the

utterance of short sentences or interjections of the actors involved during the

human falls recordings have been annotated. Although the principal limitation

in that the human falls were made by volunteers by using various protections,

which do not allow the correct acquisition of the acoustic pattern produced by

the sound event. As in this work, several data-driven approaches for pattern

recognition produced by the sound generated by the human fall are presented,

the dataset [58] result useless. Given the lack of available audio datasets, we

have created a suitable one in order to assess the proposed approaches. This

choice was also forced by the fact that in these works an innovative acoustic sen-

sor explicitly developed for the fall detection and described in Section 3.1 has

been used. In this chapter, the instrumentation, the procedure for recording

the audio corpus and its composition are described.

3.1 The floor acoustic sensor

The floor acoustic sensor (FAS) is composed of a resonant enclosure and a

microphone located inside it (Figure 3.1) [59]. At the bottom of the enclosure,

a membrane is in direct contact with the floor and guarantees the acoustic

coupling with the surface. The inner container accommodates the microphone

and is where the acoustic resonance phenomenon takes place. It can be covered

by a layer of acoustic isolation material and it is enclosed by the outer container
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Figure 3.2: A picture of the floor acoustic sensor used during the recordings.

cantilever beam. In addition, the considerable distance of the supporting

pillars facilitates the transmission of a fall vibrations through the floor.

• the second location for the recording was the university auditorium room

(R1) in which the flooring is composed of fitted carpet (Figure 3.4). This

makes it particularly suitable for evaluating system performance on sur-

faces with acoustical behavior that can mitigate the impact sound trans-

mitted through the floor and in the air; all the recordings were performed

near the auditorium stage in an area of 8×3 m.

• a recording studio (R2) was selected as the third location for its particular

characteristics (Figure 3.5). Here, it was possible to make the acquisi-

tions by placing the sensors in the live room while the audio events were

performed in the control room. In particular, the sensors were positioned

immediately behind the soundproof wall with the window overlooking the

live room. The size of the live room is 5×7 m, while the size of the control

room is 3×8 m.

The recording equipment comprises the floor sensor, a linear array of three

aerial microphones (the same AKG 400 BL included in the floor sensor) and a

Presonus AudioBox 44VSL sound card connected to a laptop. The microphones

of the array are separated by 4 cm and positioned on a table 80 cm high. Signals

were sampled at 44.1 kHz with a resolution of 32 bits. Levels were calibrated

to assure the maximum dynamic range at the smallest distance.
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Figure 3.4: The auditorium (R0): the fall events were carried out in front of
the desk, under the stage, within 6 meters.

doll has been dropped from upright position and from a chair, both forward and

backward, for a total of 44 events (Figure 3.7). Differently from the everyday

objects, the distribution of the fall events with the distance is not uniform: 10

events have been performed from 2 m, 18 from 4 m (7 of which from the chair),

and 16 from 6 m (6 of which from the chair).

Moreover, several backgrounds sounds has been added to the dataset. Nor-

mal activities sounds have been recorded while persons were performing com-

mon actions, such as walking, talking, and dragging chairs. Three musical

tracks have been played from a loudspeaker and acquired back with the FAS.

The first track contained classical music4, while the second5 and the third6

rock music. Musical tracks and normal activities sounds have been divided

in segments whose lengths have mean and standard deviation estimated from

instances of fall events. In addition, they have been employed alone and to

create noisy versions of human and object falls occurrences in order to assess

the algorithm in presence of interferences.

In R2 and R1 other every-days objects,in addition to those used in R0, have

4W. A. Mozart, “Piano trio in C major”
5Led Zeppelin, “Dazed and confused”
6Led Zeppelin, “When the levee breaks”
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Figure 3.5: The studio room (R2) of the LOw Latency LAboratory (LOLA):
the fall events were carried out in front of the desk, while the sensors
were placed beyond the windows, in the recording room.

been recorded for a total of 12 different object fall classes and 1420 instances.

While the manikin doll has been used only in R0, in R1 and R2 a total 80

human falls have been performed by 4 people. These falls were performed in

different ways: forward, backward and on the side, trying to use the arms to

cushion the fall and without any protections. As in R0, also in R2 and R2 all

events were performed from 1, 2, 4 and 6 m away from the FAS.

As shown in Table 3.1 background noises have been recorded also in R1

and R2 rooms rooms, which include: human activities noise as, i.e., footsteps,

human and phone conversation, dragging objects and so on; classic, rock and

pop music played from loudspeakers; TV shows like newscast and satiric.

Since the data relating to rooms R1 and R2 have been collected at different

times to those of room R0, in the following chapters, for each proposed ap-

proach, it will be specified which subset of the total dataset has been used as

well as the usage of the noisy version of falls events.

3.2.3 Signal analysis

The signal related to the same fall event acquired with the floor sensor and with

the aerial microphone exhibits different spectral characteristics. In this section

and in depth analysis of the audio signals acquired in the R0 room is presented.

Figure 3.8 shows the spectrograms of a doll fall acquired with the floor sensor

(above) and with the aerial microphone (below) in the clean acoustic condition.

Observing the figures, it can be noticed that the aerial microphone is more
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Table 3.1: Composition of the A3Fall-v2.0 dataset.

Class R0 R1 R2
Nr. of occurrences

Basket 64 40 40
Fork 64 40 40
Ball 64 40 40
Book 64 40 40
Bag 64 30 40

Chair 96 40 40
Table 0 40 40

Guitar Slide 0 40 40
Nipper 0 40 40
Keys 0 40 40
Hook 0 40 40

Coat Hook 0 40 40
Manikin Doll 44 0 0
Human Fall 0 40 40

Total length (s)
Background 2530 9055 5550

sensitive to high frequencies, in particular to the ones above 1.5 kHz. On the

contrary, the majority of the energy of the signal acquired with the floor sensor

concentrates below 1 kHz.

This is even more evident by plotting the values of the mel coefficients (Fig-

ure 3.9): the first and second mel channels of the FAS, corresponding to the fre-

quency bands 0–128.10 Hz and 61.30-200.60 Hz, are higher respect to the aerial

microphone. Channels 3 to 7, respectively corresponding to bands 128.10–

279.50 Hz and 458.70–670.70 Hz, are almost equivalent, while from channel 8

(560.30–790.80 Hz) to 29 (6654.60–8000.00 kHz) the aerial microphone mels are

greater.

The analysis of noisy signals highlights the different behaviour of the floor

sensor respect to the aerial microphone in presence of external interferences.

In fact, taking into account the backgrounds tracks as interferences, the floor

sensor has a global signal-to-noise ratio (SNR) equal to 20.94 dB and a segmen-

tal SNR equal to 7.28 dB. The global SNR of the central aerial microphone is

8.92 dB and the segmental SNR is -1.47 dB. The values of the aerial microphone

SNRs are thus considerably lower than the ones of the floor sensor.The global

SNR of the floor sensor noisy dataset is 13.66 dB higher than the one of the

aerial microphone, highlighting the superior ability of the former to isolate fall

signals from external interferences. However, it is worth investigating how the
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Figure 3.6: Objects employed for creating the fall events dataset.

SNR distributes over the frequency range of the acquired signals in order to

have a better insight of the physical phenomenon. Figure 3.10 shows the SNR

calculated for each mel channel and averaged across the noisy datasets. It can

be noticed that the SNR of the floor sensor exceeds the one of the aerial micro-

phone for channels below the fourth. Then, the opposite occurs and the SNR

of the aerial microphone assumes greater values. The “valley” in the curves are

due to the pitch of the music signal.
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(a) Fall from upright position. (b) Fall from the chair.

Figure 3.7: Falls of the “Rescue Randy” doll from upright position (a) and from
the chair (b). carried out in the R0 room
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(a) Spectrogram of the signal acquired with the floor sensor.

(b) Spectrogram of the signal acquired with the aerial microphone.

Figure 3.8: Frequency content of the same fall event (file
“rndy_d2st_bar_0.wav”) acquired with the FAS (a) and with the
aerial microphone (b).
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Figure 3.9: Average value of the mel channels.
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Figure 3.10: Average value of the SNR for each mel channel.
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Supervised Approaches

The supervised learning is the most used strategy in machine learning. It ba-

sically consists in inferring a function that maps an input to an output from a

dataset composed of examples with an associated label each. In machine learn-

ing, this is an optimal scenario to work with, in which the examples for each

class to classify and the exact labels are available. The supervised approaches

are generally able to achieve better performance with respect to unsupervised

or weakly-supervised systems because of the more precise knowledge with which

they are trained. In this chapter, the supervised approach is used to work in

favourable conditions in order to evaluate the quality of the created dataset as

well as the performance of the FAS compared to standard aerial microphones.

Below, a GMM-SVM based multi-class classifier able to discriminate which

type of object has fallen to the ground in both clean and noisy sound condi-

tions is presented first. Then the binary classifier counterpart of the previous

one is tailored to discriminate a human fall with respect to other sounds

4.1 SVM based algorithm for multi-class fall

classification

The fall detection task consists in recognize which object produced the pattern

of a signal and it mainly consists of two subtasks: the location of the time

boundaries of the fall event and the classification of that event. In this section,

we concentrate on the second subtask, since the main objective is determining

the performance of the FAS as compared to common aerial microphones. The

entire falls detection activity will be addressed in the works presented below.

4.1.1 Proposed System

The fall classification algorithm is composed of a feature extraction stage and

a classification stage. The first extracts MFCCs from the input audio signal,

while the second classifies the audio event by means of Gaussian means super-

vectors and SVM. Following is a detailed description of the two stages.
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and the Discrete Cosine Transform (DCT):

c(j) =
N
∑

k=1

log [H(k)] cos

[

πj

N
(k − 0.5)

]

, j = 0, 1, . . . , M − 1 ≤ N (4.3)

The set {c(0), c(1), . . . , c(M − 1)} forms the static coefficients elements of the

feature vector. Here M has been set to 13. The final feature vector is com-

posed of 39 coefficients, i.e., the 13 static coefficients plus their first and second

derivatives.

Classification stage

The approach proposed in this section is based on a One-Class Support Vector

Machine (OCSVM) [43]. The general idea is that a human fall produces a

sound considerably different from the ones commonly occurring in a home (e.g.,

voices, sounds from electronic devices, footsteps, etc.). The OCSVM is trained

on a large set of “normal” sounds to detect acoustic events that deviate from

normality. However, it is expected that certain acoustic events are as abnormal

as a human fall (e.g., the fall of book, a chair, etc.), thus they could raise false

alarms.

The classification stage employs Gaussian Mean Supervectors (GMS) and

a Support Vector Machine classifier as in speaker recognition systems [45].

The algorithms consists in modelling the entire acoustic space with a Universal

Background Model (UBM) represented by mixture of gaussians (Gaussian Mix-

ture Model, GMM). The GMM is trained using the Expectation Maximization

(EM) algorithm [47] on a large corpus of acoustic events. Then, for each acous-

tic event class in the training corpus a GMS is calculated by adapting the UBM

with the Maximum A Posteriori (MAP) algorithm [48] and concatenating the

adapted GMM mean values. The block diagram of the approach is shown in

Figure 4.2. The final step of the training phase is the estimation of the SVM

parameters. In this work, an SVM with a radial basis function has been used.

The complete diagram of the training phase is shown in Figure 4.3.

Classification is performed by extracting the supervector from an input audio

signal as in the training phase, and then determining the acoustic event class

evaluating the SVM discriminant function (Figure 4.4). Since the number of

classes is greater than two and SVMs are binary classifiers, the “one versus all”

technique has been adopted [41]. LIBSVM [61] has been employed both in the

training and testing phases of the SVM.
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Table 4.1: Data related to R0 room used in this work.

Classes Nr. of occurrences
Basket 44
Fork 44
Ball 44
Book 44
Bag 44

Chair 44
Manikin Doll 44

Backgrounds Total length (s)
Classic Music 882
Rock Music 616

metrics definitions for class i is:

Pi =
C(i, i)

∑

j C(j, i)
, (4.4)

Ri =
C(i, i)

∑

j C(i, j)
, (4.5)

Fi =
2PiRi

Pi + Ri

, (4.6)

where C = [C(i, j)] is the confusion matrix.

4.1.4 Results

Results in matched condition

Figure 4.5 shows the results obtained in matched condition. As shown in the

figure, the FAS exceeds the F1-Measure of the aerial microphone both with

clean and noisy signals regardless the feature setup employed. In particular, in

clean conditions the aerial microphone achieves the highest F1-Measure with

standard MFCCs, while the FAS with the NOPRELP ones, which results in

6.50% absolute improvement. In noisy conditions, the aerial microphones best

performance is again achieved with STD features, while the FAS one is achieved

with the NOPRE features, with the NOPRELP setup performing almost the

same. The absolute improvement of the FAS respect to the aerial microphone

is 5.36%.

Focusing on the FAS performance with the various feature extraction pipelines,

the highest F1-Measure is obtained by removing the pre-emphasis and low-pass

filtering the signals (NOPRELP) in clean conditions. Notice, however, the stan-
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Table 4.2: Aerial microphone confusion matrix related to the STD configura-
tion in clean condition. The average precision is 91.48%, the average
recall 91.23%, and the average F1-Measure 91.04%.

Doll Bag Ball Basket Book Chair Fork F1

Doll 93.18 0 0 0 2.27 4.55 0 90.11
Bag 0 86.36 0 0 13.64 0 0 82.61
Ball 0 0 100.00 0 0 0 0 100.00

Basket 2.27 0 0 97.73 0 0 0 98.85
Book 0 22.73 0 0 77.27 0 0 78.16
Chair 11.36 0 0 0 4.55 84.09 0 89.16

Fork 0 0 0 0 0 0 100 100.00
Precision 87.27 79.17 100.00 100.00 79.07 94.87 100.00

Table 4.3: FAS confusion matrix related to the NPRELP configuration in clean
condition. The average precision is 98.13%, the average recall
98.05%, and the average F1-Measure 98.06%.

Doll Bag Ball Basket Book Chair Fork F1

Doll 100.00 0 0 0 0 0 0 100.00
Bag 0 97.73 0 0 2.27 0 0 97.73
Ball 0 0 100.00 0 0 0 0 100.00

Basket 0 0 0 95.45 2.27 2.27 0 97.67
Book 0 2.27 0 0 97.73 0 0 94.51
Chair 0 0 0 0 4.55 95.45 0 96.55

Fork 0 0 0 0 0 0 100.00 100.00
Precision 100.00 97.73 100.00 100.00 91.49 97.67 100.00

dard pipeline performs almost the same, thus in this condition the influence is

minimal. The sole removal of the pre-emphasis, on the other hand, is detrimen-

tal for the classification performance. The opposite occurs in noisy condition,

where the removal of the pre-emphasis improves the results by 3.99%. Low-pass

filtering, on the other hand, does not give further improvements. Overall, the

feature pipeline that gives the highest F1-Measure is the NOPRELP, as argued

in Section 3.2.3.

Further insights on the results are given by the confusion matrices of the

aerial microphone (Table 4.2) and of the FAS (Table 4.3) for the feature pipeline

giving the highest F1-Measure. With the only exception of the basket falls, the

FAS is able to achieve superior performance for all the objects in the dataset.

In particular, the doll F1-Measure improves by 9.89% respect to the aerial

microphone. The object exhibiting the lowest performance regardless the sensor

is the book: this can denote a limit in the algorithm suggesting that further

improvements could be obtained by properly modifying the features or the

classifier.
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Results in mismatched condition

Figure 4.6 shows the results obtained in mismatched condition, i.e., with train-

ing and validation performed on clean data and testing on noisy data. As

expected, both the performance of the aerial microphone and of the floor sen-

sor decrease. Notice, however, that regardless the features employed, the floor

sensor is able to achieve considerably higher F1-Measures respect to the aerial

microphone. In particular, the floor sensor highest F1-Measure, obtained with

the NPRE features, exceeds the one of the aerial microphone obtained with the

standard MFCC pipeline by 8.76%. This value confirms that the higher SNR

of the floor sensor signals actually results in better classification performance.

Regarding the features, the hypothesis that the pre-emphasis could be detri-

mental for the performance of the sensor is confirmed: indeed, the highest

F1-Measure has been obtained with the NOPRE configuration and exceeds the

one of the standard MFCC pipeline by 1.32%. Differently, the introduction of

the low-pass filter does not result in better performance respect to the NOPRE

case.

Results in multicondition

Figure 4.7 shows the results obtained in multicondition, i.e., when training

and test sets both contain clean and noisy data. The results further confirm

the superiority of the FAS respect to the aerial microphone, with the first

reaching 90.82% using the NOPRE features and the latter reaching 85.28%

using the standard MFCC pipeline. Regarding the features, Figure 4.7 confirms

that removing the pre-emphasis indeed improves classification results, while

introducing the low-pass filtering does not give further benefits.

4.1.5 Remarks

The experimental results taken as a whole provide important insights on the

system behavior and allow us to express possible future directions for its im-

provement. In particular, the experiments demonstrated the superiority of the

floor acoustic sensor compared to the aerial microphone. The results in matched

condition are notable, since the F1-Measure is greater than 98% in clean condi-

tion and close to 90% in noisy condition. The experiment in matched condition

is important to compare the performance of the two sensors, but it puts the

classifier in a favourable scenario. The mismatched condition is closer to a real

scenario, where the classifier is trained on a dataset whose characteristics differ

from testing ones. The floor sensor still achieves higher results compared to the

aerial microphone, but respect to the matched condition they are considerably

lower. This suggests that there is room for improvement both on the sensor

side and on the algorithmic side.
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Regarding the sensor, the insertion of isolating material in the enclosure

would further reduce the impact of external interferences. On the algorithmic

side, different low-level features could be employed instead of MFCCs. In

addition, the SVM classifier here employed has not been designed to recognize

a specific class. In the latter case, e.g., focusing on the human fall class, the

problem can be tackled in two ways: as a two class problem, where one class is

the class of interest and the other comprises “the rest of the world” that will be

addressed in Section 4.2 or as a novelty detection problem, where the “novel”

events are represented by the specific class occurrence that will be addressed in

Section 5.1. In both cases, the classification task is simpler, since the number

of classes to discriminate is reduced and the overall performance is expected to

increase [41].

4.2 Binary SVM based classifier for human fall

detection

The classification algorithm proposed here is based on the previous work (Sec-

tion 4). It employs both low-level features, i.e., MFCCs [62], and high-level

features, i.e., Gaussian Mean Supervectors which are then used by a Support

Vector Machine to distinguish falls from no-falls. Despite MFCCs were origi-

nally developed for speech and speaker recognition tasks, they have been suc-

cessfully applied also for acoustic event classification [63] and fall detection [18].

Differently from the algorithm presented in the previous section, where the al-

gorithm discriminated falls of general objects, here the focus is specifically

on the classification of human falls. The classifier, thus, has been designed

to discriminate between two classes: human falls and generic sound events.

In order to assess the performance of the approach, the dataset described in

Section 4.1.2 has been augmented with instances of everyday sounds (speech,

footsteps, etc.), thus making the task more challenging. As a reference, results

employing the original dataset (Section 4.1.2) are also reported.

4.2.1 Proposed System

The classification algorithm is composed of two main parts. The first is the

features extraction phase where we have extract the Mel Frequency Cepstral

Coefficients from all audio files that comprise the dataset. For doing this, the

feature extraction pipeline is the same used in Section 4.1.1. In particular, the

signal is segmented in frames 16 ms long overlapped by 8 ms, the parameter α

of the pre-emphasis filter has been set to 0.97 and the number of filters which

compose the filterbank has been set to 29. At the end, after the Discrete Cosine

Transform, 13 statics coefficients are extracted that, together with their first

48



“PhDthesis_Droghini” — 2019/2/11 — 19:18 — page 49 — #67

4.2 Binary SVM based classifier for human fall detection

and second derivatives, form the final feature vector of a signal. The classi-

fication phase is similar to that one adopted in Section 4.1.1: first it uses a

mixture of gaussians (GMM), trained on a large corpus of audio events with

the Expectation Maximization algorithm to model the acoustic space (Univer-

sal Background Model, UBM). Then, for each audio segment, the Maximum a

Posteriori (MAP) algorithm is used to calculate the Gaussian Mean Supervec-

tor (GMS) from the MFCCs. In contrast with the previous work Section 4.1.1,

where we used a multi-class approach, here we employ a binary SVM to discrim-

inate the class “fall” from “rest” which allows to distinguish human falls from

the other types of sounds. In addition, the class decision is usually performed

by evaluating the sign of the SVM discriminative function, which ultimately

consists in deciding whether in example belongs to a class by setting a threshold

equal to zero. However, in a human fall classification task, it is important to

minimize the probability of missing a fall event, i.e., false negatives. In order to

push the system towards this direction, we decided to consider the entire value

of the SVM discriminative function, and then to set an appropriate threshold

in order to minimize the occurrence of false negatives.

4.2.2 Data Used

As can be seen in the Table 4.4, the dataset used for training and assess the pro-

posed method is an enlarged version of the one used in Section 4.1. Moreover, in

order to further stress the system, a 20 minutes long recording session in which

2 persons have produced everyday noises such as talking, walking, dragging

chairs, and playing with the ball was used. Then this background recording

has been divided in 665 sub-tracks. The lengths of these sub-tracks have been

randomly generated with gaussian distribution. Mean value and standard de-

viation of this distribution have been calculated based on the lengths of the

other files that form the dataset. In addition to the clean dataset, a noisy

version has been created to assess the performance in noisy condition. The

noisy dataset consists in a musical background recorded with both sensors and

digitally added to the clean events.

4.2.3 Experiments

In this section, the experimental procedure is firstly discussed and then the

algorithm performance is presented. In the experiments, the signals of the

dataset described above have been downsampled to 8 kHz and the bit depth

has been reduced to 16 bit. Both the choice of the sampling frequency and the

choice of MFCCs are justified by the analysis performed in the Section 3.2.3,

where it was shown that the signals recorded with the FAS have the majority of

the energy concentrated at low frequencies (below 1 kHz). Indeed, the mel scale
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Table 4.4: Data related to R0 room used in this work.

Classes Nr. of occurrences
Basket 44
Fork 44
Ball 44
Book 44
Bag 44

Chair 44
Manikin Doll 44

Backgrounds Total length (s)
Classic Music 882
Rock Music 616

human activities 665

used in the feature extraction pipeline has a higher resolution at low frequencies,

that allows to better describe the portion of the spectrum where the majority

of the energy resides. In addition, the algorithm has been evaluated using two

features extraction pipelines:

• the first is the same described in the Section 4.1.1 and will be denoted as

STD;

• the second pipeline does not include the pre-emphasis filter and will be

denoted with NOPRE.

The experiments have been conducted with a 4-fold cross-validation strategy

and a three-way data split in three different operating conditions:

• matched, where the training, validation and test sets share the same

acoustic condition, i.e., clean or noisy;

• mismatched, where the training set is composed of clean signals while the

validation and test sets are composed of noisy signals;

• multicondition, where the training, validation and test sets contain both

clean and noisy data. In this case the sets have been divided so that they

contain 1/3 of clean data and 2/3 of noisy data.

The tests have been conducted also without using the signals of everyday

noises, i.e., using the same dataset employed in Section 4.1.2. The perfor-

mance is evaluated in terms of F1-Measure per class and the values have then

been averaged to obtain a single performance metric. To better describe the

algorithm behavior, we have used the Detection Error Trade-off (DET) curve,
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as defined in [64]. This graph allows evaluating the false alarm probability

when miss probability is equal to 0 (henceforward named as FPM0), which is

particularly relevant in a fall classification task.

4.2.4 Results

Results in matched condition

Figure 4.8 shows the results obtained in the matched condition case study using

the enlarged version of the dataset. In Figure 4.8a, the FAS achieves higher F1-

Measures both in clean and noisy conditions. In the first case, the floor sensor

exceeds the F1-Measure of the aerial microphone obtained with the standard

MFCC pipeline by 0.11%. In the noisy condition case study, the FAS with STD

features achieves an F1-Measure greater than 0.3% with respect to the aerial

microphone with NOPRE features.

The DET curves are shown in Figure 4.8b. Note that the lines relative to the

FAS in clean condition are both absent. This is because independently from

the threshold, either the miss probability or the false alarm probability is 0 and

the DET curves assume values towards minus infinite (in logarithmic scale).

This means that the FPM0 are 0 for both these configurations, while the lower

FPM0 for the aerial microphone in clean condition is 1.3%. Regarding the

tests with noisy signals, the performance difference between the two sensors

increases, since the FPM0 is equal to 2.2% with the FAS (NOPRE) and is

equal to 12.5% with the aerial sensor (STD).

In order to facilitate the analysis, Table 4.5 summarises the results obtained

with the dataset version used in Section 4.1.2, which does not comprise every-

day noises. As it can be observed, with respect to the previous results, the

performance decreases in all tests and for both the F1-Measure and the FPM0,

although the gap between the FAS and the aerial microphone increases.

Results in mismatched condition

The mismatched condition is the most difficult case for the classifier. As ex-

pected, the performance decrease for both sensors. Focusing on Figure 4.9a,

the best F1-Measure is obtained with the NOPRE pipeline for both the FAS

and aerial microphone, and is equal to 99.14% and 98.43% respectively. A

consistent performance difference between the two sensors can be observed in

Figure 4.9b, where the smallest FPM0 for the FAS, obtained with NOPRE, is

around 13% while for the aerial one is 95%, this time obtained with STD.

The results of the mismatched experiments obtained with the dataset with-

out everyday noises are reported in Table 4.7a. Regarding the F1-Measure, a

performance decrease can be observed compared to the results in Figure 4.9a.
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Table 4.5: Fall classification performance in matched condition with the dataset
excluding everyday noises.

STD NOPRE
F1-
Measure

FPM0 F1-
Measure

FPM0

Clean
Aerial 96.29 9.85 93.11 4.95
FAS 98.81 0.00 100.00 0.00

Noisy
Aerial 97.22 43.00 96.92 73.00
FAS 99.63 6.05 99.62 9.85

Table 4.6: Fall classification performance in mismatched condition (a) and mul-
ticondition (b) with the dataset excluding everyday noises. F1 de-
notes the F1-Measure.

(a)

% STD NOPRE
F1 FPM0 F1 FPM0

Aerial 96.20 87.50 95.44 76.00
FAS 97.80 34.50 98.11 12.50

(b)

% STD NOPRE
F1 FPM0 F1 FPM0

Aerial 96.80 16.50 96.78 31.4
FAS 99.62 0.00 99.43 0.00

Differently, the aerial microphone FPM0 improves, but it is again below the

FPM0 achieved by the FAS with NOPRE MFCCs (12.5%).

Results in multicondition

Figure 4.10 shows the results in the multicondition case. The FAS superiority

is confirmed, since it achieves an F1-Measure equal to 99.78% regardless the

feature extraction pipeline, while the aerial sensor obtains an F1-Measure equal

to 99.19% with the STD pipeline.

Regarding the DET plot (Figure 4.10b), an FPM0 equal to 2.9% is achieved

by the FAS, but differently from the previous cases, with the STD feature. The

aerial microphone achieves an FPM0 equal to 9.8% with the NOPRE pipeline.

In the last table (Table 4.7b) are shown the result of the multicondition tests

obtained by using the smaller dataset. Again there is an overall decrease for

the F1-Measure, greater for the aerial microphone, while the FAS exhibiting a

FPM0 equal to 0% contrary to the increasing FPM0 for the aerial sensor.
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4.2.5 Remarks

In this section, a human fall classification system based on the previous work

discussed in Section 4.1 has been described. The main sensor used in the FAS

the sensor operates similarly to stethoscopes, with a microphone embedded in

a resonant enclosure and a membrane in contact with the floor that captures

the acoustic waves resulting from a fall. The performance of that sensor has

been compared with the one obtained by a standard aerial microphone. The

classification algorithm extracts MFCC features from the signal acquired with

the FAS, and then discriminates a fall from a generic event by using GMM

supervectors and an SVM classifier. Differently from the works discussed in

Section 4.1, here we specifically addressed the human fall classification task by

designing the classifier to discriminate human falls from other events.

The performance of the system has been evaluated on a corpus containing

recordings of several events: falls of a human mimicking doll, falls of com-

mon objects and everyday noises (speech, footsteps, etc.). In order to assess

the performance of the solution in adverse acoustic conditions, a noisy ver-

sion of the dataset has been created. The experiments have been performed

in three operating conditions: matched, mismatched and multicondition, and

the performance has been evaluated in terms of average F1-Measure and false

alarm probability when the miss probability is equal to 0. The superiority of

the FAS resulted evident in all the addressed conditions, in particular with an

F1-Measure equal to 100% and an FP0 equal to 0% in clean matched condi-

tions, and an F1-Measure equal to 99.14% and an FP0 equal to 13% in noisy

mismatched conditions.

Moreover, by looking at the results obtained with the two different features

pipeline, the FAS based solution always show robust performance and it is diffi-

cult to determine which represents the best choice. The increasing performance

(F1-Measure) obtained with the largest version of dataset, in truth, are due to

the fact that signals corresponding to the everyday noises are extremely easy

to classify being very different from a fall.

Given the nature of the floor acoustic sensor employed, it is questionable

how it can perform in case the falls occurs in a different room respect to the

one where the FAS is placed or in different scenario as falls occurs in presence

of furniture or with a different paving. Both this aspect will be addressed in

Section 6.3.
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Figure 4.5: Fall classification performance in matched condition with clean (a)
and noisy signals (b).
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Figure 4.6: Fall classification performance in mismatched condition.
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Figure 4.7: Fall classification performance in multicondition.
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Figure 4.8: Fall classification performance in matched condition with the
dataset comprising everyday noises.
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Figure 4.9: Fall classification performance in mismatched condition with the
dataset comprising everyday noises.

57



“PhDthesis_Droghini” — 2019/2/11 — 19:18 — page 58 — #76

Chapter 4 Supervised Approaches

Aerial FAS

98.8

99

99.2

99.4

99.6

99.8

100

99.19

99.78

99.09

99.78

F
1
-M

ea
su
re

(%
)

STD NOPRE

(a) F1-Measure histogram plot.

0.1 0.2 0.5 1 2 5 10 20 40
0.1

0.2

0.5

1

2

5

10

20

40

False Alarm probability (in %)

M
is
s
p
ro
b
ab

il
it
y
(i
n
%
)

FAS STD
FAS NOPRE
Aerial STD
Aerial NOPRE

(b) Comparison of DET curves.

Figure 4.10: Fall classification performance in multicondition with the dataset
comprising everyday noises.
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The problem with supervised approaches is that they require that each class of

interest is well represented in the training dataset. However, in some case the

variability of the environmental conditions or the subjects makes difficult or

impossible to collect a sufficient number of examples that allow the algorithm

to generalize well on unseen conditions [65]. This is the case of human falls.

Unsupervised approaches tackle the problem as a novelty detection task [66, 67],

i.e., by learning a normality model from data not related to human falls. In

this chapter two approaches are proposed. The fist (Section 5.1) in based

on One-Class SVM Section 2.1.1 trained with only background noises. The

second Section 5.2 instead, approaches the problem from an end-to-end learning

prospective by means of neural network autoencoder Section 2.3.3 for novelty

detection.

Since the previous results have shown the superiority of the FAS with respect

to the standard microphone, in the next sections only the samples recorded with

the FAS has been used, unless otherwise specified.

5.1 One-Class Support Vector Machine based

algorithm

The approach proposed in this section is based on a One-Class Support Vector

Machine (OCSVM) [43] to obtain an unsupervised framework for Fall Detec-

tion. The acoustic signals are captured by means the Floor Acoustic Sensor

and then MFCCs and Gaussian Mean Supervectors (GMSs) are extracted by

using the same methods described in Section 4.1.1: GMSs are higher level fea-

tures computed by adapting the means of a Gaussian mixture model (GMM)

with maximum a posteriori algorithm (MAP). In the training phase, a large

set of audio data is used to model an Universal Background Model (UBM)

composed of the GMM extracted by using Expectation Maximization (EM)

algorithm [47]. Then, the GMS of each event is calculated by adapting the

GMM with the MAP algorithm and concatenating the resulting GMM mean
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Table 5.1: Composition of the dataset.

Class Nr. of occurrences Total length (s)

Basket 64 86
Fork 64 82
Ball 64 129
Book 64 63
Bag 64 57

Chair 96 157
Human Falls 44 76

Human Activity 665 1218
Music 776 1498

values. Abnormal acoustic events are discriminate from normal ones employing

the OCSVM classifier.

5.1.1 Data Used

The performance of the algorithm has been evaluated on a corpus containing

sounds of human falls, falling objects, human activities, and music. In partic-

ular, from the dataset presented in Section 3.2, have been used the samples

reported in Table 5.1.

Musical tracks and normal activities sounds have been divided in segments

whose lengths have mean and standard deviation estimated from instances of

fall events. In addition, they have been employed alone and to create noisy

versions of human and object falls occurrences in order to assess the algorithm

in presence of interferences.

In the experiments, signals have been downsampled to 8 kHz and the res-

olution has been reduced to 16 bit. As in the approach presented previously,

the choice of the sampling frequency is motivated by the analysis performed

in a previous work by the authors Section 3.2.3, where it was shown that the

signals recorded with the FAS have the majority of the energy concentrated at

frequencies below 1 kHz.

5.1.2 Experimental setup

The dataset described previously has been divided in one set for training the

UBM and the OCSVM and three sets for evaluating the performance.

Training has been performed on the set shown in Table 5.2 composed of 947

occurrences (1773 s) of human activities, classical music and rock music. The

assessment of the algorithm has been performed on the following datasets:
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Table 5.2: Composition of the training-set.

Class Nr. of occurrences Total length (s)

Human Activity 320 593
Music 627 1180
Total 947 1773

Table 5.3: Composition of “Set 1”.

Class Nr. of
occurrences

Human Falls 44
Human Activity 15

Music 29

• Set 1 (Human fall and background sounds): this set comprises 44 exam-

ples of human fall sounds and 44 examples of human activity and music

sounds (Table 5.3).

• Set 2 (Human fall and object fall sounds): this set comprises 44 examples

of human fall sounds and 44 examples of object fall sounds (Table 5.4).

• Set 3 (Human fall, object fall and background sounds): this set comprises

44 examples of human fall sounds, 22 examples of background sounds and

22 examples of object fall sounds (Table 5.5).

For each set, the data have been divided in four folds, each composed of 11

human falls and 11 non-falls. Then, one fold has been used for estimating the

hyperparameters of the algorithm and three for calculating the performance.

The final performance is calculated by using the cumulative true positives, false

positives, and false negatives obtained by varying the test folds. The validation

phase consisted in searching for the number of components of the UBM, the

values of ν and γ of the OCSVM. The values assumed by these variables are

summarised in Table 5.6.

Comparative method The proposed approach has been compared to the al-

gorithm presented in [68] based on OCSVM. The same algorithm has also been

employed in [21] with a multi-microphone acquisition setup and a source sep-

aration stage. As in [68], the audio signals are divided in windows of the same

lengths, and the related MFCCs are used for training the OCSVM and for

classification. In [68], 7 MFCCs were extracted from audio signals sampled at
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Table 5.4: Composition of “Set 2”.

Class Nr. of
occurrences

Human Falls 44
Basket 7
Fork 7
Ball 8
Book 7
Bag 8

Chair 7

Table 5.5: Composition of “Set 3”.

Class Nr. of
occurrences

Human Falls 44
Basket 3
Fork 4
Ball 4
Book 3
Bag 4

Chair 4
Human Activity 8

Music 14

20 kHz and the length of the window was set to 1 s. Here, the feature vectors

are the same of the proposed approach, i.e., they are composed of the first 13

MFCCs and their first and second derivatives. The same window length of

[68] cannot be employed here, since the dataset used in this paper comprises

signals with lengths less than 1 s. Thus, the length of the window corresponds

to the duration of the shortest event in the dataset, and it is equal to 576 ms

(71 frames). Windows are overlapped by 50%, and, as in [68], an event is clas-

sified as fall if at least two consecutive frames are classified as novelty by the

OCSVM. The same grid search procedure of the proposed approach has been

adopted to search for the optimal values of ν and γ of the OCSVM.

The performance has been evaluated in terms of F1-Measure calculated as:

F1-Measure =
2 · tp

2 · tp + fn + fp
, (5.1)

where tp is the number of correctly classified falls, fn is the number of falls
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Table 5.6: Hyperparameters of the algorithm and search space explored in the
validation phase.

Stage Hyperparameter Range
UBM J 1, 2, 4, . . . , 64

OCSVM
ν 0.1, 02, . . . , 1.0
γ 2−15, 2−13, . . . , 23

misclassified as non-falls, and fp is the number of non-falls misclassified as falls.

5.1.3 Results

Figure 5.1 shows the results in clean conditions obtained with the proposed

method named “OCSVM” and the comparative method proposed in [68] de-

noted as “Popescu (2009)”. Observing the figure, it is evident that in all the

three cases the OCSVM approach is able to improve the performance with

respect to “Popescu (2009)” [68]. In particular, in “Set 1”, that comprises hu-

man falls, human activities and music, the performance improves by 16.73%

with respect to “Popescu (2009)”. This case can be considered as the least

challenging of the three, since non-falls events are considerably different from

falls ones. Conversely, “Set 2” comprises both human falls and object falls,

thus it includes abnormal events whose pattern is similar to the one of human

falls. Indeed, the performance with respect to “Set 1” is 17.91% lower, mostly

due the increased false positives rate that goes from 13.64% to 50.76%. Re-

garding “Popescu (2009)” [68], the F1-Measure is below both OCSVM and the

proposed approach, however it is less affected by the presence of object falls,

since the F1-Measure decreases only by 0.64% . “Set 3” comprises human falls,

human activities, music and object falls and represents the most realistic test

condition of the three. The results obtained by using the OCSVM classifier

alone is 82.25%. As expected, this result is lower than “Set 1”, since object

falls are also present, and higher than “Set 2”, since human activities and mu-

sic segments are easier to discriminate. Differently, the approach by Popescu

and Mahnot [68] degrades by 5.25% with respect to “Set 1”, and by 4.61%

with respect to “Set 2”, demonstrating that it is less robust to the concurrent

presence of object falls and daily human activities sounds.

Figure 5.2 shows the results obtained for the three cases in noisy conditions.

As expected, the performance decreases in all the two evaluated methods. In

“Set 1”, the performance decrease is modest (2.32% for the OCSVM and 1.44%

for “Popescu (2009)”), demonstrating that the OCSVM is able to effectively

reject non-fall events corrupted by music interference. In “Set 2”, the presence

object falls corrupted by music significantly decreases the performance of the

OCSVM, reducing the F1-Measure by 12.74% with respect to the clean “Set 2”.
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70% 80% 90% 100%

Set 3: Human falls with
object falls, human

activities and music

Set 2: Human falls with
object falls

Set 1: Human falls with
human activities

and music

82.25%

75.71%

93.62%

70.76%

75.37%

76.01%

F1-Measure

Popescu (2009) OCSVM

Figure 5.1: Results in clean conditions for the three test cases. “Set 1” com-
prises human falls, human activities and music. “Set 2” comprises
human falls and object falls. “Set 3” comprises human falls, object
falls, human activities, and music.

The method by Popescu and Mahnot [68] achieves the highest F1-Measure in

this case, confirming the good capabilities of rejecting dropping objects sound

events observed in clean conditions. In “Set 3”, the proposed approach improves

the performance by 3.91% with respect to “Popescu (2009)”, confirming that

it is able to achieve the highest performance in the most realistic scenario of

the three.

5.2 End-To-End Unsupervised Approach employing

Convolutional Neural Network Autoencoders

In recent years, thanks to the success of deep learning methods have become

increasingly popular the feature learning approaches that independently trans-

form the raw data inputs to a representation that can be exploited in machine

learning tasks, minimizing the need of prior knowledge of application domain.

Furthermore, such approaches are often able to generalize well real-world data

compared to traditional hand-crafted features [69], resulting in an increase in

performance of classification or regression tasks. The end-to-end learning is a

particular example of feature learning, where the entire stack, connecting the

input to the desired output, is learned from data [70]. As in feature learning,
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70% 80% 90% 100%
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Set 2: Human falls with
object falls

Set 1: Human falls with
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and music

75.15%

62.97%

91.3%

71.24%

73.88%

74.57%

F1-Measure

Popescu (2009) OCSVM

Figure 5.2: Results in noisy conditions for the three test cases. “Set 1” com-
prises human falls, human activities and music. “Set 2” comprises
human falls and object falls. “Set 3” comprises human falls, object
falls, human activities, and music.

only the tuning of the model hyperparameters requires some expertise, but

even that process can be automated [71].

In this section, an end-to-end acoustic fall detection approach is presented.

A deep convolutional neural network autoencoder is trained with the signals,

gathered by the Floor Acoustic Sensor (Section 3.1), corresponding to sounds

that commonly occurring in a home (e.g., voices, footsteps, music, etc.). Since

the sound produced by a human fall should be considerably different from the

ones used for the training, it will be recognized as “novelty” by the network

and classify as Fall. The performance of the algorithm has been evaluated on a

subset of the dataset described in Section 3.2, which contains human fall events

simulated by employing the “Rescue Randy” human mimicking doll [72, 18, 29]

and sounds related to common human activities. Dieleman et al. [73] address

the content-based music information retrieval tasks, investigating whether it

is possible to apply end-to-end feature learning directly to raw audio signals

instead that on a spectrogram representation of data. Up to the authors’

knowledge, the end-to-end strategy has never been applied to a unsupervised

fall detection approach with acoustic sensors. However, many works in other

research fields can be founds in literature. Their convolutional neural networks

trained on raw audio signals do not outperform a spectrogram-based approach

in the automatic tagging task but are able to autonomously discover frequency
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AWGN frames added at the end. Each input consist in a f × t matrix, where

f are the positive points of discrete Fourier transform and t are the number

of windows considered in time. The output of the autoencoder are the recon-

structed spectrograms. To classify an event, a distance measurement between

input and output must be made with some heuristic. If the distance exceeds a

certain threshold, automatically defined by the algorithm during the training

phase, the system label the output as "Fall" or as "Non Fall" otherwise. In this

work the cosine distance has been used:

DC(v, u) = 1−
u · v

‖u‖ ‖v‖
= 1−

∑n
k=1 u(k)v(k)

√

∑n
k=1 u(k)2

√

∑n
k=1 v(k)2

(5.2)

where u and v are the the vectors obtained flattening the input and the output

spectrograms and n are the length of this vectors. According to the cosine

definition, the value of the distance always has a value between −1 and +1,

where +1 indicates two equal vectors while −1 indicates two opposite vectors.

The added AWGN part of the spectrums was not considered to calculate the

distance. The choice of this heuristic allowed to make distance measurements

independents of the size of the initial spectrum. The structure of the autoen-

coder is not defined a priori, but it is chosen through a phase of cross-validation

during which the network parameters are varied with a random search strategy.

5.2.2 Experiments

In this section are described the composition of the dataset used in this work

and the experimental set-up.

Data Used

The instances used in this approach are summarized in table Table 5.7. It is

composed of two type of sounds: the first, namely novelty, comprises several

human fall sounds that have been simulated by means of a human-mimicking

doll employed in water rescues. The doll has been dropped from upright po-

sition and from a chair, both forward and backward. The drops have been

then repeated at three distances from the FAS, i.e., 2, 4 and 6 m, for a total

of 44 events, all included in the “Human fall” class. The second type, i.e, the

background, comprises sounds of normal activities (voices, footsteps, etc.) for

a total of 1218 s, and three musical tracks123, for a total of 1498 s, played from

a loudspeaker and acquired back with the FAS. In addition, the signals of the

second type have been employed alone and to create noisy versions of human

1W. A. Mozart, “Piano trio in C major”
2Led Zeppelin, “Dazed and confused”
3Led Zeppelin, “When the levee breaks”
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Table 5.7: Composition of the dataset.

Class Nr. of occurrences Total length (s)

Human Falls 44 76
Human Activity 665 1218

Music 776 1498

falls occurrences in order to assess the algorithm in presence of interferences.

The signals have been acquired with a sampling rate equal to 44.1 kHz and 32

bit depth. Based on previous experience in using the FAS, in order to exploit

the acoustic characteristics of the sensor, signals have been downsampled to 8

kHz and the resolution has been reduced to 16 bit.

Experimental Setup

Since in this work a novelty approach is presented, the dataset has been di-

vided in two groups: the former composed only of background sounds (i.e

human activity sounds and musical background) used for the training; the lat-

ter composed of both background sound and novelty sounds, i.e, the human

falls, used in development and test phase. In order to assess the classification

accuracy in noisy conditions, a second version of human fall sounds were crated

in which a musical background was recorded and then digitally added to the

fall events.

The input spectrograms of the audio signals has been calculated with a fft

point number of 256 and a windows size of 256 samples (32 ms at sample rate of

8000 kHz). The longest spectrogram present in the dataset is composed of 197

frame. Therefore the resulting input matrix dimension f × t is 129× 197. The

optimization of the experiment hyper-parameters has been carried out using the

random-search technique. Table 5.8 shows the parameters used in the random-

search, and their ranges. The parameters of the network architecture are related

only to the encoding part of autoencoder since the decoding part is its mirrored

version. Instead other parameters, described below, have been set to the same

value for all experiments. The activation function for each layer, whether they

are convolutional or fully connected, have been set to tanh. “Adam” [77] has

been used as optimization algorithm for the traing phase. The loss function

used was mlse. The initialization algorithm for the weight of the autoencoder

was Glorot Uniform [78]. The number of epoch has been set to 1000, while

the patience, that is the number of epoch without an Auc improvement on a

devset to wait before stopping the training phase, has been set to 40.

In order to implements a 4 fold cross-validation, the signals not being part of
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Table 5.8: Hyper-parameters optimized in the random-search phase, and their
range.

Parameter Range Distribution Parameter Range Distribution

Cnn layer Nr. [1-3] uniform Batch size [10%-25%] log-uniform
Kernel shape [3x3-8x8] uniform Max pool shape [1x1-5x5] uniform

Kernel Nr. [4-64] log-uniform Max Pool All4-Only end5 uniform
MLP layers Nr. [1-3] uniform Dropout [Yes-No] uniform

MLP layers dim. [128-4096] log-unifom Drop rate [0.5-0.6] normal
Stride [1x1-3x3] uniform Learning rate [10−4-10−2] log-unifom

Table 5.9: Best hyper-parameters find in random-search phase for clean and
noisy condition

Clean Noisy
Parameter Fold1 Fold2 Fold3 Fold4 Fold1 Fold2 Fold3 Fold4

Cnn layer Nr. 3 3 3 2 3 3 3 3
Kernel shape 8x8 7x7 5x5 8x8 8x8 7x7 8x8 8x8

Kernel Nr. [16,16,8] [32,16,16] [8,8,8] [32,16] [32,32,8] [32,32,8] [32,32,32] [8,8,8]
Max Pool Position only end only end all all only end only end all only end

Max pool shape 5x5 3x3 5x5 4x4 3x3 5x5 5x5 3x3
Stride 3x3 3x3 1x1 3x3 3x3 3x3 1x1 3x3

MLP layers Nr. 2 1 1 1 2 2 1 3
MLP layers dim. [16,231] 96 32 32 [48,153] [16,2084] 128 [48,1952,1952]

Learning rate (×10−4) 4.89 4.08 15.09 15.44 1.56 4.46 1.01 1.00
Batch size 11.26% 10.81% 13.59% 21.10% 20.06% 12.55% 13.51% 13.13%
Drop rate 0.64 0.57 0.53 0.55 0.58 0.53 0.55 0.59

training-set have been divided in four folds, each composed of 11 human falls

and 11 non-falls signals. Then, one fold has been used as validation-set and

the remaining three for calculating the performance in test phase. In cross-

validation phase the scores have been evaluated in term of AUC. Here also the

optimal thresholds have been infer by searching points on ROC curves closest to

the (0, 1): dmin =
√

(1− fpr)2 + (1− tpr)2. At the end the final performance

has been evaluated in term of F1−Measure by mediating the results obtained

on individual folds.

Since this approach share the same train-set (Table 5.2) and test-set (Sec-

tion 5.3) that has been used in Section 5.1 for both the clean and noisy con-

ditions, the results scored here were compared with those obtained showed in

Figure 5.1 and related to Set 1.

5.2.3 Results

The results for both clean and noisy are reported in Figure 5.4. The compara-

tive algorithms are denoted with “Popescu (2009)” and “OCSVM” respectively,

while the proposed approach is named “Autoencoder”. It is immediately clear

that the proposed approach outperforms the other in both conditions. In fact,

in clean condition, it gains about 1% compared to “OCSVM” and about 18.6%

compared to “Popescu (2009)”. Moreover the proposed algorithm results to be

4After each Conv. layer
5At the end of cnn part
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very robust in noisy condition, whereas both other cases get worse a bit. In par-

ticular the performance improves by 3.72% with respect to “OCSVM” and by

20.45% with respect to “Popescu (2009)”. Clearly the end-to-end method seems

insensitive with respect to the corrupted human fall signals when the novelty

sounds are dissimilar respect to normality model learned from the background

sounds. In Table 5.9 are reported the hyperparameters that have led to the

results discussed above.

Furthermore other experiments were made up with a manual tuning of pa-

rameters. Particularly have been investigated deeper architectures composed

up to 5 convolutional layer. We found that increasing the depth on cnn part

(5 layers) with a different kernel number for each layers of [32,32,16,16,8] and

a kernel dimension for all layers of 4x4, a max pooling after only the first three

convolutional layer of 2x2 and two MLP layer of 1024 and 512, leads to con-

siderable improvements. In effect the final F1 −Measure rise up to 95,42% in

both clean and noisy condition.

60% 70% 80% 90% 100%

Noisy

Clean

95.02%

94.61%

91.3%

93.62%

74.57%

76.01%

F1-Measure

Popescu (2009) OCSVM Autoencoder

Figure 5.4: Results in clean and noisy conditions for the three test cases.

5.2.4 Remarks

The methods presented is an end-to-end approach composed by a deep-convolutional-

autoencoder with a downstream threshold classifier, that is a purely unsuper-

vised approach to acoustic fall detection. Our method exploits the reconstruc-

tion error of the autoencoder. When a sound that the network has never seen in

training phase occurs, the reconstruction error raise up allowing the recognition

of novelty. The algorithm has been trained with a large corpus of background
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signals, i.e, human activity noise and music, and evaluated with human-fall

sound and other instances of background sounds. It has been evaluated in two

different condition: the first with a clean version of human fall sounds and

the second with corrupted version of the same. The results showed that the

proposed solution leads to an average improvement about 20% with respect to

the [68] and about 2.3% towards the OCSVM based approach.
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Weakly-supervised Approach

Unsupervised methods, consider a human fall as an event that deviate from

normality and they are based on one-class classifiers. The main advantage

of an unsupervised methods for fall detection is that it can works without

knowing any examples related the the class of interest, i.e. the human fall.

As aforementioned, this should be the perfect way to go in an application like

this, where what we are interested in is very difficult to retrieve or we only

have very few data available, but the principal weakness of an unsupervised

system is that certain events deviate from normality as the human fall (e.g.,

the fall of an object), thus they may produce false alarms. Moreover, in some

applications, like the fall detection task, it can be difficult to obtain strong

supervision information due to the high cost of the data-labeling process. Thus,

it is desirable for machine-learning techniques to be able to work with weak

supervision. The weak-supervision is a generic term that include different kind

of techniques [79]:

• “incomplete supervision” where the labels are available only for a small

subset of training;

• “inexact supervision” where only coarse labels with respect to the samples

are provided

• “inaccurate supervision” where the labels are not always correct.

In this chapter, methods belonging to the first an second category are de-

scribed: in Section 6.1 a semi-supervised OCSVM method, that is a subcat-

egory of the “incomplete supervision” problem [79], is exposed in which the

user provides some additional labels to the system.. Instead, in Section 6.2

present an approach based on Siamese neural network for one-shot learning in

a “inexact supervision” context, where only information on the difference in

belonging to the same fall class is provided. Both of them, has been assessed

with samples related to R0 room of the employed dataset Section 3.2. An ex-

tension of the Siamese approach is presented in Section 6.2 where the entire

dataset described in Section 3.2 has been used, proving the effectiveness of the

Siamese approach in a complex scenario.

73



“PhDthesis_Droghini” — 2019/2/11 — 19:18 — page 74 — #92

Chapter 6 Weakly-supervised Approach

6.1 A Combined One-Class SVM and Template

Matching Method

The approach proposed here, is the extension of the one presented in Section 5.1

thus, consists of a combined One-Class Support Vector Machine (OCSVM)

based method and template-matching classifier that operate in cascade. The

template-matching classifier operates in a user-aided supervised manner and it

is employed to reduce such errors by using a set of templates that represent

these events. Templates are identified by the user that marks the occurrence

of a false positive instead of a true human fall event. As shown in the previ-

ous section, “unsupervised methods” are able to overcome the need of manual

tuning of “analytical methods” and the necessity of a large labelled dataset of

“supervised methods”. In “unsupervised methods”, falls are discriminated from

non-falls based on a model of “normality” constructed from a large amount of

non-fall events. However, certain events differ from the “normality” as human

falls, and they may induce the classifier to produce false alarms. As an ex-

ample, Figure 6.1a and Figure 6.1b show respectively the waveform and the

spectrogram of a segment of “normal” human activity (footsteps and speech)

Figure 6.1c and Figure 6.1d show the waveform and the spectrogram of a seg-

ment of human fall, and Figure 6.1e and Figure 6.1f the waveform and the

spectrogram of a book fall. The figures show clearly that both falls signals dif-

fer significantly from the human activity one, thus a classifier may be induced

to consider the fall of a book as the fall of a person.

The algorithm proposed in this work reduces the problem by employing a

multi-stage classification approach that combines a one-class classifier based on

OCSVM with a template-matching stage. The OCSVM is trained unsupervis-

edly on a large corpus containing sounds that represent the “normality”. On the

contrary, the template-matching stage employs a set of templates represented

by a small number of feature vectors marked as false alarm by the user. Thus,

robustness against possible false alarms is achieved by using only few examples

of false positive classes without the need of multiple sensors. An additional

advantage with respect to the state of the art is that the proposed approach is

able to evolve and improve after its initial training, since the template set can

be augmented as non-falls events are detected.

6.1.1 Proposed System

The proposed approach is composed of three stages Figure 6.2: the first (“Fea-

ture Extraction”) extracts MFCCs from the input audio signal and then GMSs

to describe the entire audio segment. The second stage (“Abnormal Event

Detection”) consists of a One-Class SVM classifier that discriminates between
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time domain.
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(b) Normal human activity signal in the
frequency domain.
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(c) Human fall signal in the time domain.
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(d) Human fall signal in the frequency do-
main.
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(e) Book fall signal in the time domain.
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(f) Book fall signal in the frequency do-
main.

Figure 6.1: Time domain (on the left) and frequency domain (on the right)
representation of a normal human activity signal (a-b), human fall
signal (c-d), and book fall signal (e-f).
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normal and abnormal sounds. Up to the authors’ knowledge, OCSVM to-

gether with GMSs have never been jointly used for acoustic fall detection. The

third stage represents the innovative contribution of this work for reducing

false alarms in unsupervised approaches: it consists of a “Template-Matching”

block that refines the output of the OCSVM and classifies the input data as

fall or non-fall. The OCSVM is trained unsupervisedly on a large dataset of

everyday sounds with the objective of discriminating normal from abnormal

sounds. As aforementioned, the basic assumption is that the acoustic events

related to human falls are “rare” respect to sounds normally occurring inside

a home. The template-matching stage, on the other side, requires a set of

“template” instances that represent rare events that can be confused with a

fall. Referring to Figure 6.2, the “Template-Matching” stage is composed of

a set of “Templates”, a block that calculates the distance between the input

GMS and the templates (“Euclidean Distance Calculation”), and a “Decision”

block the decides whether the event is a fall or a non-fall by evaluating the

magnitude of the distance. The rationale here is that certain acoustic events

are as abnormal as falls and confuse the OCSVM: the template-matching stage

reduces false positives by using a set of examples related to the most confusing

classes. In this work, the algorithm is “user-aided”, i.e., templates are indicated

by the user each time the OCSVM produces a false positive. This is shown

in Figure 6.2 with the person silhouette near the block that decides whether a

detected fall is a false positive or not (“False Positive?”). In general, however,

it is possible to create the templates set a-priori by recording several instances

of possible false alarms events. Although rare, false alarm events (e.g., falls of

objects) are certainly easier to reproduce in laboratory respect to human falls.

Template Matching

The template-matching classifier operates on a set of templates, i.e., supervec-

tors, that can be defined a-priori or selected by the user when the OCSVM

detects an abnormal sound that is not a human fall. Denoting with x the su-

pervector of the input signal and with Y = {y1, . . . , yN} the set of templates,

the algorithm operates by calculating the Euclidean distance D(i) = ‖x − yi‖

between the supervector to be classified and all the templates in the set. In-

dicating with Dmin = min
i

D(i), the supervector x is classified as a fall if

Dmin > β and as non-fall otherwise. The threshold β is a hyperparameter of

the algorithm that can be determined on a validation set.

6.1.2 Data Used

The dataset employed in this method is the same used for the approach pro-

posed in Section 5.1 and reported in Table 5.1. Please refer to Section 5.1.1 for
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Table 6.1: Data used in “Set 1”.

(a) Composition of “Set 1”.

Class Nr. of
occurrences

Human Falls 44
Human Activity 15

Music 29

(b) Templates of “Set 1”.

Class
Nr. of templates
Clean Noisy

Human Activity 13 11
Music 8 16
Total 21 27

Table 6.3: Data used in “Set 2”.

(a) Composition of “Set 2”.

Class Nr. of
occurrences

Human Falls 44
Basket 7
Fork 7
Ball 8
Book 7
Bag 8

Chair 7

(b) Templates of “Set 2”.

Class
Nr. of templates
Clean Noisy

Basket 55 57
Fork 39 55
Ball 11 52
Book 26 57
Bag 26 56

Chair 86 89
Total 243 366

for estimating the hyperparameter and the final performance is calculated by

using the cumulative true positives, false positives, and false negatives obtained

by varying the test folds. Differently from the previous method, the validation

phase consisted not only in searching for the number of components of the UBM

and the parameters (ν and γ) of the OCSVM, but also the value of the threshold

β in the template-matching stage. The values assumed by these variables are

summarized in Table 6.7. The method employed for the template-matching

decision threshold is explained in Section 6.1.4.

All the aforementioned datasets require a set of templates for the template-

matching stage of the algorithm. In the case of object falls, the set of templates

has been created by classifying a set of 372 object falls with the OCSVM and

selecting the occurrences misclassified as human falls. In the case of background

sounds, the set of templates has been created by calculating the Euclidean

distance between each occurrence of the development-set and each occurrence

of a set of 470 background signals and then selecting the segment whose distance

is minimum. Details on the templates sets are shown in Table 6.2b, Table 6.4b,

and Table 6.6b respectively for “Set 1”, “Set 2”, and “Set 3”.

The proposed approach has been compared with the method from which it

derives (Section 5.1) and the algorithm presented in [68] based on OCSVM
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Table 6.5: Data used in “Set 3”.

(a) Composition of “Set 3”.

Class Nr. of
occurrences

Human Falls 44
Basket 3
Fork 4
Ball 4
Book 3
Bag 4

Chair 4
Human Activity 8

Music 14

(b) Templates of “Set 3”.

Class
Nr. of templates
Clean Noisy

Basket 52 57
Fork 57 57
Ball 19 55
Book 53 57
Bag 50 56

Chair 89 89
Human Activity 11 4

Music 4 11
Total 335 386

Table 6.7: Hyperparameters of the algorithm and search space explored in the
validation phase. The search space of the template-matching thresh-
old β is not reported, since is determined with the procedure de-
scribed in Section 6.1.4.

Stage Hyperparameter Range
UBM J 1, 2, 4, . . . , 64

OCSVM
ν 0.1, 02, . . . , 1.0
γ 2−15, 2−13, . . . , 23

Template-matching β See Section 6.1.4

(please revert to Paragraph 5.1.2 for the details)

The performance has been evaluated in terms of F1-Measure (5.1)

6.1.4 Choice of the template-matching decision threshold

A key point of the proposed approach is the decision threshold β in the template-

matching stage. Choosing a too low value would result in a low number of false

negatives and a high number of false positives. On the contrary, a too high

value would result in a high number of false negatives and a low number of

false positives. The choice of β has been performed by calculating the mini-

mum Euclidean distance between each fall and non-fall event in the validation

set and the set of templates. Figure 6.3 and Figure 6.4 show respectively the

probability distributions for the three sets in clean and noisy conditions. The

decision threshold β has been chosen at the intersection point between the dis-

tribution of fall and non-fall distances. This choice represents a compromise

that balances false positives and false negatives. Observing clean condition

distributions, in “Set 1” the two density are considerably overlapped, while in
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“Set 2” the overlap is modest. It is expected that the possible improvement

of the template-matching stage will be more consistent for “Set 2” respect to

“Set 1”. “Set 3” contains human activity and music occurrences as “Set 1” and

object falls as “Set 2”: indeed, the probability distributions (Figure 6.3c) are

more distinct respect to the ones of “Set 1”, but not so much as the ones of

“Set 2”. Noisy condition distributions, shown in Figure 6.4, are in general less

distinct compared to clean condition ones. The effect of noisy is to flatten the

distances of the fall and non-fall classes, thus resulting in a less discriminative

capabilities of the classifier. Thus, it is expected that the performance improve-

ment in noisy conditions will be more modest respect to the one obtained in

clean condition.
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(a) Probability distributions related to “Set 1”.
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(b) Probability distributions related to “Set 2”.
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(c) Probability distributions related to “Set 3”.

Figure 6.3: Probability distributions of the minimum Euclidean distances
among the template sets, and human falls and non-falls in clean
acoustic condition.
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(a) Probability distributions related to “Set 1”.
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(b) Probability distributions related to “Set 2”.
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(c) Probability distributions related to “Set 3”.

Figure 6.4: Probability distributions of the minimum Euclidean distances
among the template sets, and human falls and non-falls in noisy
acoustic condition.
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Figure 6.5: Results in clean conditions for the three test cases. “Set 1” com-
prises human falls, human activities and music. “Set 2” comprises
human falls and object falls. “Set 3” comprises human falls, object
falls, human activities, and music.

6.1.5 Results

Figure 6.5 shows the results in clean conditions obtained with and without

the template-matching stage, respectively denoted as “OCSVM+Template-

Matching” and “OCSVM”. The results obtained with the method proposed

in [68] are denoted with “Popescu (2009)”. Observing the figure, it is evident

that in all the three cases the template-matching approach is able to improve

the performance with respect to “Popescu (2009)” [68] and the OCSVM only

approach. In particular, in “Set 1”, that comprises human falls, human activ-

ities and music, the performance improves by 2.03% with respect to OCSVM

and by 19.64% with respect to “Popescu (2009)”. This case can be considered

as the least challenging of the three, since non-falls events are considerably

different from falls ones. Conversely, “Set 2” comprises both human falls and

object falls, thus it includes abnormal events whose pattern is similar to the one

of human falls. The introduction of the template-matching stage considerably

reduces the number of false positives, leading to an overall performance im-

provement of 20.76%. “Set 3” comprises human falls, human activities, music

and object falls and represents the most realistic test condition of the three.

Introducing the template-matching stage, the performance improves by 7.64%,

leading to an F1-Measure equal to 89.89%.

Figure 6.6 shows the results obtained for the three cases in noisy conditions.
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As expected, the performance decreases in all the three evaluated methods. In

“Set 1”, the performance decrease is modest (2.32% for the OCSVM, 2.63% for

the proposed approach, and 1.44% for “Popescu (2009)”), demonstrating that

the OCSVM is able to effectively reject non-fall events corrupted by music in-

terference. The use of the template-matching stage increases the performance

by 1.72%, thus providing a significant improvement also in noisy conditions.

In “Set 2”, Template-matching provides a performance improvement of 8.02%

with respect to the OCSVM, leading to an F1-Measure higher than 70%. The

improvement is lower with respect to the clean “Set 2”, since the variability of

the music interference makes the Euclidean distances of fall and non-fall classes

more similar and is not sufficient to overcome the “Popescu (2009)” [68]. In

“Set 3”, the proposed approach improves the performance by 4.77% with re-

spect to OCSVM and by 8.68% with respect to “Popescu (2009)”. In summary,

the results demonstrated that the introduction of a template-matching stage

significantly improves the performance both of the OCSVM only approach and

of the method by Popescu and Mahnot [68]: averaging the results over “Set 1”,

“Set 2”, and “Set 3”, the absolute improvement with respect to the former is

10.14% in clean conditions and 4.84% in noisy conditions. With respect to the

latter [68] the improvement is 19.96% in clean conditions and 8.08% in noisy

conditions. As shown in Figure 6.5 and Figure 6.6, both in clean and noisy

conditions the F1-Measure of the method by Popescu and Mahnot [68] is close

to 75% in “Set 1” and “Set 2”, and close to 71% in “Set 3”. The different

behaviour compared to the OCSVM only approach can be attributed firstly

to the different feature representation of the audio signal (MFCCs instead of

supervectors). Secondly, to the strategy adopted for classification: in [68], sig-

nals are divided in windows and a fall is detected if at least two consecutive

windows are classified as fall. Differently, in the proposed algorithm, the over-

all signal is represented by a single supervector and classified as fall or non

fall. Comparing the results in clean (Figure 6.5) and noisy (Figure 6.6) con-

ditions, it is evident that techniques for reducing the impact of additive noise

are needed. Additionally, the proposed solution requires the intervention of the

user for selecting the templates after the first classification stage performed by

the OCSVM. This aspect will be addressed in next sections in order to make

the algorithm completely independent of the user and using only few examples

related to human fall.
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Figure 6.6: Results in noisy conditions for the three test cases. “Set 1” com-
prises human falls, human activities and music. “Set 2” comprises
human falls and object falls. “Set 3” comprises human falls, object
falls, human activities, and music.

6.2 Few-shot Siamese Neural Networks employing

LogMel features

As already mentioned, the main challenge for falls detector systems is the lack

of human falls examples in the dataset, that are rare and hardly recoverable.

Hence the need to develop systems that are able to work with no or few such

data. In fact, Khan et al. [10] analyze Fall Detection techniques and di-

vides them based on data availability prospective in two groups. The group

is composed of algorithms that can draw form dataset with sufficient number

of human falls that can be used in training. Mostly based on supervised ma-

chine learning, thresholding and one-class techniques, this methods attempt

to detect a fall directly given their training data. As we show here, although

these supervised techniques can achieve a high reliability, they needs a large

labelled dataset including many human fall, that is not easy to retrieve for

this specific application. Moreover, applying this techniques when there are no

training data for human falls leads to an unacceptable miss rate. As a com-

parative model for this category, has been evaluated an algorithm based on

SVM.. The second group include algorithms that can draw form dataset with

insufficient or no training data for falls mostly based on over/under-sampling,

semi-supervised learning, novelty detection and one-class classification. Those
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techniques differ from the previous ones because uses the available data as a

description of normal activities. Once it is trained on these data, can be able to

classify a test sample as a human fall or non-human fall. The major drawback

here is that they need a good description of what “normal activities” are. In

fact to give a good representation of this concept, a big data set comprising

all the normal activities is needed [80]. In real scenario, this is very difficult

to obtain and this may induce the classifier to produce a high number of false

alarms. As a comparative models for this category, 2 approaches have been

evaluated: a OCSVM that is a totally unsupervised method and a extremely

unbalanced SVM that use only one human fall for the training phase. The

proposed algorithm belongs to the second category, and as a first step, we

demonstrate that the SNN can achieve better results than both unsupervised

and supervised methods when they are tested under similar conditions.

One-shot or few-shot methods have been recently revived in other fields of

application. The Siamese approach was introduced by Bromley et al. [81] for

signature verification and later also used in [82] for face verification, both of

them in a supervised framework. Regarding the one-shot learning approach, the

Siamese framework was first employed by Koch et al.[83] for image recognition.

In [84] an attention mechanism over a learned metrics is used. In that work,

the authors propose so-called Matching Networks trained by showing only a

few examples per class for each minibatch in order to mimic the few-shot task

by subsampling classes in a meta-learning perspective. In the audio field, one-

shot approaches have been rarely used up to now. Lake et al. [85] proposed a

hierarchical Bayesian acoustic-based approach to model the way a person learns

a word of a new language from a few examples. They use a Hierarchical Hidden

Markov model that induces the set of phone-like acoustic units directly from the

raw unsegmented speech data in a completely unsupervised manner, identifying

segments that should be clustered together and learning a set of phone-like

acoustic units for the language. Manocha et al.[86] proposed a method based

on Siamese networks for audio Content-based Representations.

6.2.1 Proposed System

In this work the authors propose a Siamese Neural Network able to learn a

latent representation of an audio event. In particular, a SNN is composed

of two twin networks with binded weights. A pair of inputs is provided to

the system, one to each twin network. Downstream, the network maps these

inputs into two different representation vectors. Then, a certain type of distance

between those two representations is computed. In this work euclidean distance

was used. In Figure 6.7, are reported two example of mel-spectrograms: the

spectrum that is given as input to the function first network represents a chair
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that is overturned. The other inputs instead represent a human fall. As can

be seen, the signals are not distinguishable at a glance, thus we think that the

differential approach of the SNN, described below, seems to be appropriate.

Consider X1, X2 as a pair of two input samples and Y (X1, X2) as the label

assigned to this pair, we assign Y = 0 (positive example) if the inputs X1 and

X2 are from the same distribution, Y = 1 (negative example) otherwise. The

euclidean distance between the mapping Se(X1) and Se(X2) performed by the

network is defined as:

Ew = ‖Se(X1)− Se(X2)‖ . (6.1)

The training procedure consists in minimize the differences of X1, X2 for inputs

belonging to the same class (Y = 0) while maximize the differences for inputs

of different classes (Y = 1). The loss function used to achieve this minimization

is the contrastive loss, described by LeCun et al. in [82]:

Loss = (1− Y )
1

2
(Ew)2 + (Y )

1

2
{(max(0, m− Ew)}2. (6.2)

Here the parameter m > 0 is the margin that allows only negative examples

whose distance is less than the radius defined by m itself, to contribute to the

loss function. In this way the system should be able to learn embedded features

allowing classification even of the unseen rare sound event such as human fall.

Our Siamese network has been trained on a corpus of labelled object fall events

and not including any human fall. Pairs of events belonging to the same class

correspond to the positive examples while pairs of events belonging to the

different class a negative one as explained in section 6.2.3. In particular, the

term few-shot comes from the fact that although, in this case study, human

falls have not been used for training, some of them are used in the optimization

phase, before the final test.

Feature Extraction

The example provided to the system are preprocessed in a features extraction

stage that computes the log mel-energies. These features have been chosen as

they are very popular for computational audio analysis [87, 88, 89]. In partic-

ular, for this work the log mel-energies have been computed as follows. First

the signals were padded with some AWGN samples to the length of the longest

audio event present in the dataset in order to work with the designed neural

network. Then the audio has been downsampled to 16 kHz and normalized.

After that signal has been segmented in frames 40 ms long overlapped by 20 ms
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directional directivity pattern instead of hyper-cardioid pattern.

Table 6.8 shows the number of instances for each class used in this work

considering only audio recorded with FAS.

Table 6.8: Composition of the dataset.

Class Nr. of occurrences Total length (s)
Basket 64 86
Fork 64 82
Ball 64 129
Book 64 63
Bag 64 57

Chair 96 157
Human Falls 44 76

6.2.3 Experiments

Two methods previously described have been taken as a baseline for the com-

parison: in Section 4.2 a supervised approach based on bi-class SVM able to

discriminate fall event from non-fall event was employed. In this works the

training set was composed of labeled data representing fall and non-fall event.

In Section 5.1 instead, an unsupervised method based on OCSVM was pre-

sented. In this case the training set was composed only from background that

comprises human daily activities sounds, classical and rock music played from

a loudspeaker. . For a correct comparison baseline, experiments have been

repeated using the same data employed here for the SNN as described below

Section 6.2.3.

Data Selection

All the experiments have been conducted with three-way data split and a 10

folds cross-validation strategy. In particular, for each fold, the data has been

divided in 90% for indicated, 5% for validation and 5% for the test, so in each

set, all the classes indicated in the Table 6.8, are present in a balanced way.

Since here we approach the problem as a binary classification, this has led, of

course, to an imbalance between the human fall and the rest. Because each

evaluated approach differs from the other, it was necessary to select the data

for each of them. To keep the various experiments comparable to each other,

starting from the set above, we have constructed the various data sets for each

approach as follows:
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• SNN: first all the signals corresponding to the human fall class have been

removed from the training set. Inasmuch as the Siamese network works

with paired inputs we generated all the combinations, without repetitions,

between all the training examples and then randomly 80000 pairs were

selected. In prediction phase, the Siamese Network needs a template

to classify the events, so the development set has been subdivided in

sub-test: in each of these a human fall present in the validation set has

been paired with all the other events present in the same set. In the

test, instead, a single human fall was selected randomly to be used as a

template for each fold. This was done to keep the test set comparable

between the different methods;

• SVM: no changes have been made to the lists;

• SVM-unbalanced: in the training set only a human fall has been left;

• OCSVM: as this is an unsupervised method all the signals corresponding

to the human fall class have been removed from the training set.

For each method, the development and test set have been used only the FAS

signals while the training set has been augmented with the instances of the

events recorded with all others the microphones.

Validation and Evaluation

The performances of the compared algorithm have been evaluated in term

of F1 − Measure referred to the human fall class. Due to the unbalanced

nature of development and test set, the metric has been computed starting

from a normalized confusion matrix. In particular, for the final evaluation,

all the absolute confusion matrices coming from each fold have been summed.

The cumulative confusion matrix has been then normalized and the final F1 −

Measure was computed from it.

To optimize the hyper-parameters of the methods the following strategies

have been adopted:

• for the SNN a small random search of 30 network configurations has been

performed. The hyper-parameters varied during the search are reported

in Table 6.9. The search of the threshold value of the output layer of the

network which yielded the best F1−Measure has been performed on the

validation set. The threshold found in this way was then used for the test

of the same fold;

• for the SVM methods a grid search strategy has been adopted to optimize

the parameters. In particular the parameters have assumed values in the
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ranges {2−5, 2−3, . . . , 215} for C (SVM) and ν (OCSVM), {2−15,

2−13, . . . , 23} for γ (both SVM and OCSVM) and {1, 2,

. . . , 64} for the number of mixture of the GMM-UBM. The parameter’s

values that led to the highest result were then used during the test of the

same fold.

For the Siamese network, a Glorot uniform weight initializer has been used

for all layers. Adadelta has been used as optimizer algorithm with default

initial parameters [90]. Different values of learning rate decay have been tried

in the random-search. We trained the network for a maximum of 300 epochs,

but an early stopping on the F1−Measure has been used to interrupt training

if there were no improvements for 25 consecutive epochs. At the ends, the

model corresponding to the epoch that gave the best result was selected for the

evaluation on the test set.

Table 6.9: Hyper-parameters optimized in the random-search phase, and their
range.

Parameter Range
Cnn layer Nr. [2-5]
Kernel shape [3x3-9x9] 3

Kernel Nr. [8-256]
MLP layers Nr. [1-5]
MLP layers dim. [30-8000]

Stride [1x1-2x2]
Dilation [1x1-20x20]3

Batch size [100-2000]
Max pool shape [1x1-5x5]3

Dropout [Yes-No] 2

Drop rate [0.3-0.8]
Learning rate decay [0-0.2] % 3

Batch normalization [Yes-No]

6.2.4 Results

The results obtained for each method are reported in Figure 6.8. The figure

shows the F1−Measure, false negative rate (miss rate) and false positive rate

(false alarm rate) referred to the human fall class. It is clear that the supervised

SVM method outperforms all other in terms of F1 − Measure as expected.

The OCSVM instead is the worst method if used in this context, because its

2For all layers.
3After each epoch.
5Also not squared shape has been used.
6Value in the square brackets represents the value adopted for each layer.

91



“PhDthesis_Droghini” — 2019/2/11 — 19:18 — page 92 — #110

Chapter 6 Weakly-supervised Approach

training procedure does not include any human fall, but the normality model

is composed of others types of falls, making it difficult to identify the human

fall as “novelty”. The Siamese and the SVM-unbalanced, which start from

the same data for the training, are classified in the intermediate positions as

expected. However, we note that the proposed approach achieves a better

result, exceeding the F1 −Measure of SVM-unbalanced of about 11%.

As the fall detection is a task that needs to give a higher weight to the miss

with respect to the false alarm, Figure 6.9 reports those metrics. Here can be

seen that both SVMs methods outperform the others, obtaining an optimum

false alarm rate of 0%. For the Miss rate, instead, while SVM reach a good

result of 11%, SVM-unbalanced give an unacceptable result of about 50%. The

Siamese network behaves in an opposite manner with respect to the SVM-

unbalanced. Although it has an high false alarm rate, it manages to reduce to

zero the miss rate. For a complete overview of the scores, in tables 6.10 to 6.12

are reported the normalized confusion matrix.

Another consideration is about the generalization capacity of these 4 meth-

ods. Figure 6.10 reports the score achieved by the algorithms for both vali-

dation and test set in the 10 folds. The trends show that while for the SVM

there is always a set of hyper-parameter able to achieve a 100 F1−Measure in

validation phase, this does not happen for the SVM-unbalanced due to the lack

of human falls during the training phase. Moreover, the results of validation

are not always similar to the test value. The OCSVM instead, have a stable

performance in validation, but they drop during the test, showing the poor

generalization capacity of the algorithm. For the proposed method, instead,

the trends in test follow closely the validation ones. This is highlighted in Fig-

ure 6.11 where the trends of the differences in the results between the tests and

validations score are shown.

Table 6.10: Normalized confusion matrix of the SVM approach.

% Human Falls Objects
Human Falls 89 11

Objects 0 100

Table 6.11: Normalized confusion matrix of the SVM-unbalanced approach.

% Human Falls Objects
Human Falls 52 48

Objects 0 100
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Figure 6.8: F1−Measure, precision and recall: the metrics are referred to the
human fall class

Table 6.12: Normalized confusion matrix of the OCSVM approach.

% Human Falls Objects
Human Falls 55 45

Objects 45 55

The Siamese Network seems to be promising. By using jus few human fall

samples for the training and validation phase, it can reduce to zero the miss

rate showing also a good generalization performance with respect to the others

methods. All these elements suggest that it can be used in a real scenario,

but it has to be assessed also in others conditions. In Section 6.3, a method

based on this work will be evaluated inserting in the test even more types of

audio events and noises. Another interesting evaluation, as future work, could

be to evaluate how the system behaves if trained on different data sets with

respect to the one used here, also using transfer learning techniques. This is

important because it could relax the necessity of carrying out a data collection
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Figure 6.9: Miss and false alarm rate: the metrics are referred to the human
fall class

Table 6.13: Normalized confusion matrix of the Siamese Neural Network ap-
proach.

% Human Falls Objects
Human Falls 100 0

Objects 51 49

campaign in every environment in which the system is going to be installed. In

addition, other types of networks such as Recurrent Neural Networks or Long

Short-Term Memory that have not been explored in this work could be tested.

6.3 Audio Metric Learning by using Siamese

Autoencoders for One-Shot Human Fall

Detection

As aforementioned, the fall detection task is very challenging due to the diffi-

culty in retrieving examples for human fall modeling. Falls simulated by using

a dummy may not represent properly real human falls (RHF), because they
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(c) OCSVM
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(d) Siamese Network

Figure 6.10: F1 −Measure in validation and test achieved by the 4 methods
in each folds

can not recreate falls in which arms are used to mitigate the impact. Moreover,

the use of protections, such as mattresses, knee pads or foam during the acqui-

sitions of falls performed by volunteers, can significantly modify the samples,

especially in the audio field. We assess our proposed method in a complex

scenario. The whole dataset described in Section 3.2 has been used. Moreover,

an innovative Siamese approach for fall detection, that exploits the similarities

between simulated and real human falls by using only one RHF template per

each room during training into a one-shot learning perspective is proposed. In

order to do this, we used a Siamese Autoencoder (SAE) for metric learning.

Selecting the pairs appropriately for training the SAE, the network learns how

to map simulated falls to real falls applying a transformation directly into the

embedding space. After that, we use the encoder part of the whole network to

create new human fall templates by using simulated falls. Concluding, a clas-

sifier is trained by using the new synthetic templates in addiction with the real
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Figure 6.11: Absolute value of differences between the validation and test F1−
Measure for each fold

fall templates to discriminate between fall and non-fall event. As shown in Sec-

tion 1.2, although the literature provides several supervised and unsupervised

approaches, no solution has been proposed exploiting one-shot learning for fall

detection, nor to fill the gap between simulated falls and scarcely available real

human falls.

6.3.1 Data Used

The dataset used here in an extension of the dataset used in all our previous

works that was created specially for this work: the new recordings have been

performed in 2 different rooms (R1 and R2) with respect to the original one.

Each room has different characteristics that make the propagation of waves less

favorable: one room is paved with a fitted carpet floor, while in the other, the

FAS was placed beyond a soundproof wall and the floor is made of stoneware

tile. We also recorded other objects and background types in addition to those

present in the previous dataset. Here the human falls were reproduced by

volunteers without additional protections. Only the signals recorded with FAS

has been used in this work. For a more detailed description, refer to the

dedicated Section 3.2 and Table 3.1. This complete dataset allows a more

exhaustive experimental evaluation of the Siamese approach highlighting its

effectiveness in a one-shot learning framework with respect to other state-of-

the-art methods.
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Table 6.14: Best hyper-parameters find in random-search phase for Siamese
network6.

Parameter Value
Cnn layer Nr. 4
Kernel shape [[3x3],[3x3],[3x3],[3x3]]
Kernel Nr. [32,32,32,32]

Stride [[1x1],[1x1],[1x1],[1x1]]
Dilation [[1x1],[1x1],[1x1],[1x1]]

Max pool shape [[2x1],[1x3],[1x2],[3x2]]
MLP layers Nr. 3
MLP layers dim. [3000,300,30]

Batch size [100]
Dropout [Yes]

Drop rate [0.5]
Learning rate decay [0.1] %
Batch normalization [yes,no,no,no,yes,yes,yes]

6.3.2 Proposed System

The proposed fall classification system is composed of 3 main parts described in

this section. First, the features are extracted from row audio file and later used

to train a Siamese neural network for metric learning. At the end a metric-

based classifier is used to discriminate human falls from non-human falls.

Feature Extraction Stage

In the feature extraction stage, the raw audio signals have been preprocessed

to compute the log mel-energies, thus obtaining a 2D matrix representing the

samples. Such features have been chosen for their popularity in computational

audio analysis [87, 89, 88].

Metric Learning Stage

The second block is a nonlinear metric learning stage based on Siamese Neural

Network (SNN). The SNN is directly trained on semantic similarity informa-

tion, that aims at modeling the relationships between classes in order to extract

more robust features. The proficiency of a SNN mostly depends on the objective

function used to train the network as well as the training set selection strategy.

Our contribution consists in defining these two aspects. The proposed neural

network architecture, depicted in Figure 6.12, consists in a Siamese Convolu-

tional Autoencoder (SCAE). This is composed by an encoder that applies a

transformation of the input into the latent space and a decoder that performs

the reverse operation. The encoder includes some convolutional layers alter-
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with

Ew = ‖Sw
e (x̂p1

)− Sw
e (x̂p1

)‖ . (6.6)

the Euclidean distance between the two mappings performed by the encoder

and Sw
e (xp) the actual encoder function. To strengthen the metric learning,

the decoder part of the network has been used to add two more terms to the

loss function. The first is the contrastive loss function between the two signals

reconstructed at the end of the autoencoder, that is Sw
a (x̂p1

) and Sw
a (x̂p2

). This

is possible thanks to the average pooling layer previously mentioned. In fact,

with this layer the autoencoder reconstructs a signal with fixed time length,

regardless of the length of the input signals, allowing the Euclidean distance

between the two reconstructions to be computed. Without the temporal av-

erage pooling layer, the reconstructed zero padded part of the input signals

would control the value of the Euclidean distance, invalidating the result and

leading to incorrect training. The typical capability of an autoencoder to ex-

actly reconstruct the input signal is now lost. This is a fundamental feature

that forces the autoencoder to engage in robust feature learning. Since it is

impossible to add this term in a standard way due to the different dimensions

between input x̂p and reconstructed input Sw
a (x̂p), the network has been forced

to rebuild the latent layers of the input Sw
e (x̂p) and the reconstructed signal

Sw
e (Sw

a (x̂p)) by adding the following Mean Squared Error terms to the loss:

E[Se

(

x̂p2

)

− Sa

(

Se

(

x̂p2

))

]. (6.7)

As mentioned previously, another crucial aspect of SNN is the selection of

training pairs. Since we are creating a fall detection system that uses as few

examples of RHF as possible, it is necessary to take full advantage of the

limited information available. Moreover, since examples of simulated falls are

available, the similarities between these two types of fall must be exploited. In

order to do this, the training set for the SCAE was created by combining the

following signals:

• to compose the negative set N , all classes of objects available in the

dataset and background noises have been used. No real or simulated

human falls have been coupled with other sounds;

• all classes available in the dataset has been used to compose the positive

set P.

The idea is to let the network map the real and simulated without particular

constraints, in order to identify the hyper-space region where the RHF of the

test set will be mapped. The only restriction is to make them similar to each

other in the embedding representation of the autoencoder. This allows the
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network to learn, during the training, to make a transformation of human falls

directly into the latent space. For further details, please refer to Section 6.3.4.

Classification Stage

In the end, the resulting function is used to improve the performance of metric-

based classifier that discriminates falls from non-falls. All the train set is first

transformed using the encoder function Sw
e (·). Moreover, we apply this trans-

formation also to some instances of SHF previously left out of the train set of

the SCAE, thus obtaining a total number of templates for the human fall equal

to

Thf = Tshf + Trhf , (6.8)

with Tshf the number of SHF from R0 and Trhf the total number of RHF

templates selected from R1 and R2 used in SCAE training, two in our case. To

train the knn classifier, a set of templates composed of Thf instances have been

selected for each other class in order to obtain a balanced training set. Besides,

the parameter K of the classifier has been set to Thf . Finally, a human fall is

detected if there is at least one human fall template in the set of Thf neighbors

related to the sample under test at that moment. This classification technique

has been used to reduce to a minimum the miss rate which, for this particular

application, have a greater weight compared to false alarm rate.

6.3.3 Comparative methods

In this section, the methods compared with the proposed work are summa-

rized. The first method is based on a bi-class Support Vector Machine. It uses

a mixture of gaussians (GMM), trained on a large corpus of audio events with

the Expectation Maximization algorithm to model the acoustic space (Univer-

sal Background Model, UBM). Then, for each audio segment, the Maximum

a Posteriori (MAP) algorithm is used to calculate the Gaussian Mean Super-

vector (GMS) from the MFCCs. Please refer to Section 4.2 for further details.

This method will be shown in 2 variants, the first (SVM from now on) with

a balanced train set, while the second (One-shot-SVM from now on) with an

unbalanced train set for direct comparison with the proposed approach. The

second is the unsupervised variation of the previous one based on OCSVM

(Section 5.1). The third is the method that has been extended in this work,

presented in Section 6.2 and named Original Siamese from now on. It consists

of a simple SNN instead of SCAE thus equivalent to the encoded part of the pro-

posed autoencoder architecture, but without the average pooling layer before

the fully connected layers. In Section 6.2 the algorithm worked in a more facil-

itated scenario as several human falls were used during training. Hear instead
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we perform the method in a one-shot learning framework. Since dummy-like

falls were not used in this method, the pairs generation technique consists in

the combination of the non-human fall data and the available template of RHF

in order to compose the positive P and negative N as indicated in Eq. 6.3

and Eq. 6.4. Furthermore, a threshold based classifier is used. A human fall

is detected if the sample is mapped within a radius from a real human fall

template.

6.3.4 Experiments

This section presents, first, how data was selected for each compared methods.

Then, an in-depth analysis of the preliminary experiments is discussed to gain

insights on the behavior of the proposed approach and some of its variant.

In the end, the classification performances of the optimized algorithms are

reported. All the experiments have been assessed on the dataset described in

Section 3.2, but signals have been downsampled to 8 kHz and the resolution

has been reduced to 16 bits. All the following experiments have been conducted

with 120000 pairs, on average between folds, for training the SCAE. Results are

expressed in terms of F1-Measure, calculated from the normalized confusion

matrix, cumulative of all the folds. The same metric has also been used to

optimize the results shown in Section 6.3.4. This choice was made to give

more weight to false negatives than false positives, as the test set is highly

unbalanced, being composed from 6973 non-human fall events and 390 human

fall events in total. In particular, since the background tracks have been divided

into segments of 5 seconds each, the non-fall events are composed of 5275

background instances and 1698 object fall events.

Data Splitting

Firstly, dataset has been split into 5 folds for cross-validation: in particular,

the data related to R0 room, except for SHF, have been used only for training

and used in each fold. Differently, the samples related to R1 and R2, except for

RHF, have been split into 5 folds with 20% for test and 80% for the training

set. Both simulated and real human falls have been treated differently, based

on the algorithm under examination:

• SCAE: for the proposed approach, one RHF per room has been randomly

selected for each fold and then added to the related trainset. The SHF,

instead, have been split in 5 folds with 80% for train the SCAE, while

the remaining 20% has been left out from the training set of the Siamese

network but used only to train the classifier as explained in Section 6.3.2.

The pairs for training the SNN have been generated keeping balanced all

the combinations between the classes.
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• OCSVM: since this is a completely unsupervised method, both real an

simulated human falls have been removed from trainset.

• SVM: since this is a completely supervised method, the RHF have been

split in 5 folds with 20% for test and 80% for train and then added to

the respective sets.

• One-shot-SVM: in order to keep this experiment comparable with the

proposed method, the same selection carried out for the SCAE has been

used for train the SVM, i.e. with just one real human fall sample for each

environment to monitor.

• Original Siamese: the same lists used for SCAE have also been used for

this approach. The only difference is that the SHF were not used because

are not contemplated by this method.

Preliminary Experiments

Before running the optimization phase, the behavior of different pairs genera-

tion techniques for SCAE training has been studied. To do this, 4 preliminary

experiments have been performed with a fixed autoencoder architecture, that

has a hidden layer composed of just 2 neurons in order to visualize how the

system maps the input signals when varying the way in which real and simu-

lated falls are paired. Table 6.15 reports the hyper-parameter of that network.

In Figure 6.13, Figure 6.14, Figure 6.15 and Figure 6.16 it can be seen how

training and testing signals are encoded by the network, after its training, in

the 4 different cases named P-N -PAIRS, N -PAIRS, NO-PAIRS and P-PAIRS

. The mappings in Figure 6.13a, Figure 6.14a, Figure 6.15a and Figure 6.16a

are then used to train the related knn classifier, following what was said in

section Section 6.3.2. The final decision boundaries are reported in all figures:

the data found in the white area are classified as human fall. Moreover, the

RHF have been highlighted with orange stars while SHF with green X. The

turquoise X instead, represent the encoded SHF previously left out from the

SCAE trainset, but then added to the train set of the knn classifier. The 4

strategies for generating the pairs containing RHF and/or SHF are described

below:

• P-N -PAIRS (Figure 6.13): the RHF and SHF were joined together to

form positive examples and with other signals to form negative examples.

In this case, it can be observed how the network manages to separate

the signals of human falls well during training. However, this is not

generalized on the test set where the RHF are mapped to a different

area. This means that the knowledge of a few human falls is not exploited

properly.
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Table 6.15: Hyper-parameters used in the preliminary experiments, and their
value

Parameter Range Parameter Range

CNN layer Nr. 3 Drop rate 0%
Kernel shape [4x4,4x4,4x4] CNN Padding same

Kernel Nr. [4,4,4] Batch Size 512
MLP layers Nr. [3] MLP Act. ReLU4

MLP layers dim. [40,512,2]% Optimizers Adadelta
Max pool shape [1x2,2x3,2x3] Weight Initializers Glorot Uniform

• N -PAIRS (Figure 6.14): the human fall-related instances have been cou-

pled only with signals of different classes, thus obtaining only a subset to

add to the negative examples set. As it can be seen from Figure 6.14a,

in this case, the contrastive loss tries to repulse the human fall instances

from everything else, but without grouping them together (no positive ex-

amples were generated). This results in poor classification performance as

shown in Table 6.16. Moreover, in both the P-N -PAIRS and N -PAIRS

methods, the usage of SHF seems not useful.

• NO-PAIRS (Figure 6.15): neither RHF nor SHF were used for the train-

ing of the SCAE, but only for the training of the classifier. In this situ-

ation, the SCAE spreads the simulated human fall signals in the hyper-

plane (Figure 6.15a) that, when used to train the classifier, leads to the

generation of too many false alarms as can be observed in Figure 6.15b.

• P-PAIRS (Figure 6.16): is best performing strategy. In this case, the

human fall-related instances have been coupled only together, thus ob-

taining only a subset to add to the positive examples set. In this way,

the SCAE is free to map human falls (both real and simulated) in the

zone of space it wants, but keeping them close to each other. In this

way, the network learns to transfer the features of the real falls to the

simulated falls directly in the latent space. Now the SHF left out of the

SCAE training can be used as additional templates for training the knn

classifier.

The results for these preliminary experiments are reported in Table 6.16, where

can be observed the best performance obtained with the fourth pairs generation

strategy.

4In the decoder, an additional Cnn layer with tanh activation function has been used to
ensure a good reconstruction.
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Table 6.17: Hyper-parameters optimized in the random-search phase and their
range.

Parameter Range Distribution

Cnn layer Nr. [1-3] Uniform
Kernel shape [1x1-8x8] Uniform

Kernel Nr. [1-32] Uniform
MLP layers Nr. [1-2] Uniform

MLP layers dim. [1-4096]% Log-uniform
Max pool shape [0x0-3x3] Uniform

Drop rate [0-0.2]% Uniform

this approach. For the SVM based methods a grid-search strategy has been

adopted to optimize the parameters. In particular the parameters have as-

sumed values in the ranges {2−5, 2−3, . . . , 215} for C (SVM) and ν (OCSVM),

{2−15, 2−13, . . . , 23} for γ (both SVM and OCSVM) and {1, 2, . . . , 64} for the

number of mixtures of the GMM-UBM.

Figure 6.17 shows the results obtained for each approach. Regarding the

completely supervised SVM method, although it is not directly comparable

with the others due to different training and test set, it gives an idea of how

much the task is hard also for such a system. Moreover, using an extremely

unbalanced dataset for a supervised approach, as the same used for the Siamese

network, leads to a very marked decrease in performance. In fact, the One-

Shot SVM reaches an overall F1-Measure of only 14.72%. When having an

extremely unbalanced dataset available is better to use a completely unsuper-

vised method such as OCSVM, that achieves a score of about 72%. The best

performing method is the SCAE that reaches a 93.58% of F1-Measure, outper-

forming the Original Siamese of 3.25%. The improvement was significant for p

< 0.002 according to one-tailed z-test [91]. The remarkable results obtained by

both the Original Siamese and SCAE methods show that the use of Siamese

framework is very powerful in this type of scenario, where only a few data for

the class of interest are available and possibly some additional simulated data.

In Table 6.18 and Table 6.19 the normalized confusion matrix for the Siamese

based approach are reported. As can be seen, the miss rate of the proposed

method is less than 4% compared to the Original Siamese method, without

losing in term of false alarm rate that, instead, has increased by 1%, resulting

in good improvements regarding the reliability of the system. Since there are

many instances of background noise in the dataset, the low number of false

alarms indicates that this approach could also be used as a detection system.
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Figure 6.17: Results.

Table 6.18: Normalized confusion matrix of the Original Siamese approach.
Absolute values are shown in brackets.

% Human Falls Objects
Human Falls 90 (6283) 10 (690)

Objects 9 (37) 91 (353)

6.4 Remarks

In this more realistic scenario, composed of sound events recorded in different

environments and with different flooring and augmented with 80 human falls

performed by four actors, the preeminence on the Siamese framework for one-

shot learning with respect to conventional methods has been shown. A further

improvement in performance has been achieved with an extension of the method

previously proposed in Section 6.2. It is composed of 3 stages: log-mel feature

extraction, metric learning employing a Siamese autoencoder neural network

named SCAE and, in the end, a final decision stage base on knn classifier.

The network exploits the few information on the real fall by using a particular

strategy of pairs generation for the SCAE training. In doing so, the system

learns how to transform the available simulated human fall instances to create

a more suitable set of templates that can be used to train the final classifier.
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Table 6.19: Normalized confusion matrix of the SCAE approach. Absolute val-
ues are shown in brackets.

% Human Falls Objects
Human Falls 91 (6362) 9 (611)

Objects 4 (17) 96 (373)

Although the system seems to be reliable because of the low miss rate, the false

alarm rate, of just about 3 false alarms raised every 2 real human falls, may

even so be annoying for some users.
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Other contributions

7.1 An End-to-End Unsupervised Network for

Timbre Transfer in Musical Applications

A successful application of end-to-end computational intelligence in the field of

image processing is the so-called “style transfer”, i.e., the creative modification

of a “content” image applying textures, strokes and colours from a reference

image providing stylistic information. In the audio field, however, and specifi-

cally with music signals, the task is yet to be properly defined and addressed.

More recently, researchers and machine learning developers asked themselves

whether the algorithms that works for images were able to produce similar

results with audio signals, and specifically, musical signals. In the past years,

several hybridization techniques have been proposed to synthesize novel audio

content owing its properties from two audio sources. These algorithms, how-

ever, usually provide no feature learning, leaving the user, often intentionally,

exploring parameters by trial-and-error. The introduction of machine learning

algorithms in the music processing field calls for an investigation to seek for

possible exploitation of their properties such as the ability to learn semanti-

cally meaningful features. The main aim of this work is to propose a method

to tackle the so-called timbre transfer, a topic that we consider being a sub-

problem of the more general musical style transfer. We adopt a Neural Network

Autoencoder architecture and we enhance it to exploit temporal dependencies.

In our experiments the architecture was able to modify the original timbre, re-

sembling what it learned during the training phase, while preserving the pitch

envelope from the input.

7.1.1 Proposed approach

Neural Network Architecture

The proposed neural network architecture is designed to capture spectral char-

acteristics of audio signals in the time and frequency domain. The architecture
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composed of 3F and 9F elements.

The encoding section of the network is composed of a stack of fully connected

layers of gradually narrower size, reaching the inner hidden layer that yields the

latent code of representation. Similarly, the decoding section is composed of a

stack of fully connected layers, excepts for the fact that the layer size gradually

grows from the inner hidden layer to the output layer.

The output layer of the network is composed of 3 groups of F neurons, so that

the output vector is arranged as x[k]. Each group is specialized to reconstruct

a component of the complex S(f, k) as:

x̃[k] =







∣

∣S̃(f, n)
∣

∣

cos( S̃(f, k))

sin( S̃(f, k))






. (7.3)

The ReLU activation function is only applied to the group related to the mag-

nitude reconstruction, in order to constrain the output values to be positive.

The tanh activation function is applied to all other neurons in the architecture,

in order to allow the signals to assume values in the range [−1, 1].

Such a simple configuration is able to learn and reproduce an averaged spec-

trum, so that a dataset containing chromatic scales reproduces a signal that

contains all musical notes at the same time. This is not sufficient in the cur-

rent context, thus, temporal dependencies must be learned by the network.

This can be obtained by using one or more recurrent layers as inner layer of

the network. In particular, we used one hidden layer composed of Long-Short

Term Memory block (LSTM). These blocks can efficiently exploit a long-range

temporal context by means of connections between units which form directed

cycles, and store state information in the cell.

A feature-wise batch normalization is applied to the output of each layer

of the network in order to reduce the internal covariance shift and to better

distribute the latent representations obtained during the network training pro-

cedure. In addition, the dropout technique was employed during the neural

network training to prevent overfitting and increase the generalization perfor-

mance of the neural network in reconstructing the input signal.

Training is performed by using a dataset composed of audio signals charac-

terized by the desired timbre. The network is trained to minimise the mean

squared error between the estimated signal x̃[k] and the input signal x[k] by

using the AdaDelta stochastic gradient-based optimization algorithm. It was

chosen because it is well-suited for dealing with sparse data and is robust to

different choices of model hyperparameters. Furthermore no manual tuning of

learning rate is required.
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Resynthesis

During the generation phase, a novel input is employed featuring a different

instrument/timbre from the ones used during training. Special care must be

taken in the inverse STFT processing in order to provide time-domain recon-

struction without phase artefacts. Owing from works in cross-synthesis and

spectral morphing [96], the predicted spectral magnitude and phase can be

mixed with the magnitude and phase of the input signal. Denoting with Ŝ

the DFT of the final reconstructed signal, the output magnitude and phase are

obtained as:

|Ŝ| = a|S|+ (1− a)|S̃|+ aM

√

|S| · |S̃|, (7.4)

∠Ŝ = b∠S̃ + (1− b)∠S, (7.5)

where 0 < a, b, aM < 1 determine the proportion between the estimated and

original signal components. In practice, the original magnitude information

is not used, i.e., |Ŝ| = |S̃|, while choosing b close to 0.5 allows to obtain a

time domain signal with reduced artefacts. This is the choice followed for all

reported experiments.

7.1.2 Comparative Methods

To provide a comparison to the proposed approach, the following methods

for timbre transfer have been implemented to be tested with the same audio

material. The implemented algorithms are:

• spectral envelope hybridization: in this case, the timbre transfer is

performed by computing the spectral envelope of both signals, flattening

the envelope of the target signal by deconvolution and then multiplying

it by the source signal; in this context, the spectral envelope is based on

the cepstrum as follows:

E = DFT (WLP (DFT −1(log(|DFT (s)|)))) (7.6)

where WLP is a low-pass filter in the cepstral domain called liftering filter

and S is a signal in time domain;

• MFCC-based mosaicing: this method performs timbre transferring

by replacing the frames of the source signal by specific frames of a target

dataset of sounds (that we call dictionary), where the match is done by

some distance measure in a specific domain; in this context, we used a

k-nn algorithm applied on the first 14 Mel-frequency cepstral coefficients

(MFCC) of each frame [97].
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For the MFCC-based approach, the length of the generated output sound is

equal to the length of the input sound. For the other methods, instead, the

generated output is as long as the longest between input and target, where the

shorter one is repeated as necessary during the process.

The spectral envelope hybridization and the MFCC-based mosaicing meth-

ods do not require parameters and perform a full timbre transfer between the

processed signals; on the other hand, the DFT morphing requires the setting

of the interpolation parameters. In this context we decided to create the out-

put sound by using the phases of the source signal and the amplitudes of both

signals while keeping some bias on the target signal. To achieve this, we set

the interpolation parameters as follows: a = 0, b = 1, aM = 1.

7.1.3 Experiments

Experimental Setup

The algorithm has been implemented in the Python programming language

using the Keras deep learning libraries. All the experiments were performed

on a CINECA Galileo computational node with Nvidia K80 accelerators.

The neural networks were trained with the Adadelta gradient descent algo-

rithm and a learning rate equal to 1.0, ρ = 0.95, ε = 10−6. The maximum

number of epochs was set to 300 and an early stopping strategy on the valida-

tion set loss with 20 epochs of patience was employed for regularization. Each

training iteration involved a number of samples (i.e., batch size) between the

5% and the 10% of total samples present in the training set, depending on the

amount of samples present on the latter.

The network weights were initialized with a random Gaussian distribution

with mean µ = 0 and standard deviation σ = 0.1, as it usually provides an

acceptable initialization in our experience. Several network topologies were

tested, varying the number of layers and units per layer. Indeed the number

of layers of the encoder has been varied from 1 to 4 while the number of unit

for each layer from 80 to 4096. The decoder part was mirrored with respect to

the encoder. The number of LSTM layers has been varied from 0 (no LSTM

layer) to 1 with a number of units from 80 to 1024.

Two datasets have been employed for the evaluation of the proposed ap-

proach. Dataset 1 is an internal dataset of recorded solo instrumental or vocal

tracks. Each audio file consisted of 30-120 seconds of audio. The following

instruments were considered: clean electric guitar (2 files), distorted electric

guitar (3 files), synth pad (2 file), trumpet (3 files), electric piano (3 files),

male voice (1 file), female voice (2 files). All the files are real recordings of solo

performance and thus contains a rich content of notes, chords (for polyphonic

instruments), legatos, glissandi, and other expressive effects. Each file is played
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on a single tonality.

Dataset 2 is built from a very large musical instrument dataset shared by

the Magenta project team1, containing single notes for eleven classes of musi-

cal instruments. In creating Dataset 2 we picked ten from the eleven classes,

discarding the bass class because of its narrow coverage of the frequency spec-

trum, and randomly selected 3500 audio files for each class, to give each class

the same dimensionality. This dataset is composed of short files containing a

single note each, at different dynamic levels and pitches. The differences be-

tween the two datasets have been exploited to observe the role of the training

data on the resulting output.

All files from Dataset 1 have been sub-sampled to 22050 Hz to reduce the

computational cost, while the files from Dataset 2 are sampled at 16 kHz and

were left as such. The STFT of the audio signals were computed with a 2048-

points DFT, 50% overlap and window size calculated in order to reach 43 frames

per second.

Audio samples are available at https://gitlab.com/a3labPapers/

CompanionFiles/tree/master/AES-XSynth.

7.1.4 Results

This section reports experiments with different audio sources as target and

input conducted on Dataset 1 and 2 together with a qualitative analysis of the

synthesized outputs. A first batch of experiments was conducted with Dataset 1

to tune the network hyperparameters. The outputs produced by autoencoders

trained on each file in the dataset have been evaluated by analysis of their

spectrograms and informal listening tests. The hyperparameters reported in

Table 7.1 have been found to obtain acceptable results, which will be discussed

shortly. Without considering the output layer and input layers, the network is

composed of five layers: 2 layers respectively of 1024 and 808 units, one LSTM

layer composed of 808 units, and 2 layers respectively of 808 and 1024 units.

Reconstruction Tests

Preliminary tests were conducted to ensure that the autoencoder is able to

reconstruct an input signal if it is also used for training. The network is able

to reconstruct sufficiently well the original file, although some compression is

inherent to the compressive autoencoding process. Figure 7.2 shows the spec-

trogram of an electric guitar from Dataset 1 playing arpeggios and chords and

its reconstruction. The compression is visible from the spectrograms especially

at high frequency.

1https://magenta.tensorflow.org/nsynth
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Table 7.1: Hyperparameters used for the experiment with training on the dis-
torted guitar track of the song Sweet Child O’ Mine.

Network
Dropout

layout
Encoder: 1024, 808 input units

LSTM: 808 to drop
Decoder: 808, 1024 p = 0.1

Training Optimiser
epochs parameters

300, 20 patience learning rate = 1
Validation split = 10% ρ = 0.95, ε = 10−6

Batch Normalization: ε = 10−6, µ = 0.9

Dataset 1

These experiments were done with a female singing voice input file (from now

on, in short FV1). This choice is motivated by the fact that the voice has

subtle pitch variations (vibratos, glissandi, etc.) and the voice presents pitched,

unpitched and unvoiced audio.

As an example of the results that can be obtained by the proposed archi-

tecture, some selected outputs are analysed in detail. A distorted guitar track

from Dataset 1 (playing the tune in Sweet Child O’ Mine by Guns N’Roses)

is taken as the target for the proposed architecture with parameters shown in

Table 7.1. The resulting output file is named R1 for short, and its spectrogram

is shown in Figure 7.3(b). For comparison, the distorted guitar track has also

been used for the MFCC-based mosaicing algorithm and for the spectral flat-

tening algorithm. The input file used for all techniques is FV1. Its spectrogram

is shown in Figure 7.3(a), followed by the spectrograms obtained by the other

methods.

With the proposed approach, timbre is quite coherent from frame to frame

if compared, for example, to the MFCC-based method, thus resulting in a

more convincing output. In the MFCC hybridization, furthermore, it is also

quite apparent that frames from the target signal appear from time to time

in an inconsistent way exposing explicit features of the target (for example,

a recognizable note in a riff). Finally, the spectral flattening method has a

recognizable vocoder-like timbre, with the musical structure of the target file

appearing together with its spectral content, which is an undesired feature in

this context (see, for example, the arpeggios of the target song appearing in

the spectrogram and chromagram approximately at 5 s on to the end).

Chromagrams from audio files shown in Figure 7.3 are shown in Figure 7.4,

to compare the pitch trajectories and the presence of spurious chromatic com-

ponents. The chromagrams obtained from the proposed architecture (Figure
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follow glissando, pitch bending and vibrato from the input because the dataset

has no time-varying pitch to be learned, being composed of static single notes

only. This is apparent by applying FV1 as input and results in lower-quality

note transitions compared to the autoencoder trained on Dataset 1.

Judging timbre learning and transferring with this dataset is difficult because

of the extremely large variety of tones in an instrument class and the large

number of files to evaluate. The network cannot learn all the timbres of the

different instruments in a class, but it learns instead an averaged spectrum

of the whole class. It must be noted that we are not conducting supervised

training in this work, thus, the network was not instructed with labels regarding

the instrument type or any other property of the target sound that could help

in clustering the timbre families inside a class. The bandwidth of the output is

related to that of the class used for training with, e.g.,brass instruments having

a wide spectrum and flutes having a reduced bandwidth when producing an

output with the same input. We also noted that the autoencoder trained on

vocal samples produces tones with a voice-like texture.

Pitch Tracking Accuracy

We conducted more systematic tests to quantify the pitch tracking accuracy

of the architecture. These tests were conducted with Dataset 2 because of the

precise pitch of its content and its stability over time, allowing for an easier

pitch accuracy evaluation. Five audio files were generated systematically from

a MIDI file containing 20 random notes. Each audio file was generated from

a different digital instruments using sampling synthesis and employing equal

temperament and 440.0 Hz tuning. Using the 5 files as input to the 10 networks,

resulted in 50 outputs for a total of 1000 notes.

Pitch accuracy was evaluated by employing a peak picking algorithm in the

frequency domain [98], using a thresholded parabolically-interpolated STFT2.

For each note, the accuracy was evaluated considering 128 pitch classes (those

defined by the MIDI protocol), plus one unpitched class (i.e.,the output shows

no clear pitch information, despite the input content which was always pitched).

A pitch tolerance of ±50 cents and an octave tolerance of ±1 were allowed.

Only 12% of the 1000 notes lost the original pitch, showing a good reliability

of the network in retaining the original pitch of the input.

Discussion

Overall, some properties of the proposed method are summarized.

• The output pitch follows quite closely the pitch of the input signal if

the training set contains pitched audio in the same range as the input,

2https://librosa.github.io/librosa/generated/librosa.core.piptrack.html
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systematically evaluated because it is very sensitive to the features of its input

and target signals and an evaluation framework is missing. More research work

is required to make the network robust to changes in frame energy, spectral

bandwidth, time decay and pitch range of the target and input audio, in order

to increase the intelligibility and the quality of the output signal. Furthermore,

the network must be able to generalise for pitch ranges not learned from the

target signal, and must be more expressive in order to learn different timbres

in a large dataset.
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Conclusions

In this dissertation, the problem of human fall detection has been widely ad-

dressed. An innovative sensor named FAS was initially proposed in Section 3.1.

Its operating principle is similar to the one of stethoscopes: a membrane is in

contact with the floor, i.e., the transmitting medium of the fall waves and a

resonance enclosure accommodates a microphone that captures the waves and

converts them in electrical signals. The floor sensor minimizes the impact of

aerial sounds into the audio recordings, making it suited to deal with sounds

induced by falls. In order to evaluate the effectiveness of the floor acoustic

sensor and due to the lack of publicly available audio dataset for fall detection,

we have created a dedicated corpus comprises recordings of fall events related

to everyday objects and background noises. The sounds have been collected in

3 different rooms with different acoustic characteristics. The human fall has

been simulated employing a human mimicking doll and also performed by 4

volunteers for a total of 124 (44 simulated and 80 real). The dataset has been

made publicly available to the research communities. By analyzing the signals

collected in the database Section 3.2.3, we have highlighted the behavior of

the FAS that show a better SNR at low frequencies with respect to the other

standard microphones. That allowed to work at low sampling frequencies, con-

siderably reducing the computational cost of the algorithms. In particular, in

Chapter 4 the two types of microphones were compared by using SVM-based

supervised approach. It has been shown that by working at lower sampling

rates the FAS can achieve better results than the other microphones due to

its acoustic properties. However, human falls are tough to find in a real situa-

tion; the supervised approaches are therefore not feasible. Hence, in Chapter 5

methods that work in the opposite condition have been proposed: the non-

supervised approaches indeed can work without examples of the target class

for their training. In Section 5.1 an OCSVM method has been proposed and

trained with background noises only. Although the proposed system can work

well when the test set is composed by only the same categories used for the

training plus the human fall class, performance decays when the test set is com-

posed of signals not included in the normality model, such as events of falling
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objects. Indeed, the challenge in such approaches is to have enough data to

shape normality. In Section 5.2 has been proposed a different novelty detection

approach that works in an end-to-end learning process. This system employs

a neural network autoencoder to remove the need for handcrafted features. It

has been shown that this system outperforms the OCSVM based method in the

less difficult scenario where the test is composed only of the background noises

and the human fall signals. In Chapter 6 have been proposed the systems that

work in an intermediate condition of knowledge compared to previous ones. In

Section 6.1 has been proposed an extension of the OCSVM based system: a

user-aided approach for template matching able to reduce the false alarm rate

with respect to the base method. Template matching stage requires user feed-

back on several false alarm prediction. The system memorizes signaled audio

segments to use them in future classifications in order to improve performance

reducing the true negatives. These preliminary results prompted us to further

investigate the Siamese approach. In Section 6.3 an improvement is proposed

that provide a convolutional Siamese autoencoder (SCAE) for metric learning.

The whole A3FALL dataset was used (Chapter 3) to assess the system. In

particular, the system is able to exploit the similes between simulated and real

falls, making a useful transformation for the training of the downstream Knn

classifier. In this way, only a real fall is required in the training set. In this very

complex scenario, has been shown that supervised approaches are not able to

guarantee reliable performance as well as unsupervised approaches. Contrari-

wise basic Siamese approach confirmed to be robust, while its proposed SCAE

improvement gave a further boost to performance.

In conclusion, in this thesis, a path of innovation was presented regarding

approaches dedicated to human fall detection, which followed a data availability

perspective. We started from facilitated conditions in which all samples were

labeled and available for each class, to end up with a system that faces one of

the major problems regarding the fall classification task: the scarce availability

of real human falls. Then we got to the development of a system ready to be

evaluated in a real environment. The proposed sensor can be embedded on the

bottom of a ground lamp and made invisible to the user’s eye. The algorithm

can be integrated with an interoperability framework to become an integral

part of an Ambient Intelligence system.

8.0.1 Future Works

Although the audio-based methods can work stand-alone, in an AmI vision,

these approaches can support other fall detection systems that are based on

different sensors such as vision or wearable, to obtain a very robust and reliable

system. In this context, should be investigated the fusion with data acquired
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by different sensors, but, in order to exploit vision an AmI ecosystem, the in-

teraction and the feedback coming from different system could be employed in

with some heuristic rules to improve de performance. For example, the sys-

tem could be extended to include information coming from other algorithms,

running in the same environment, for fall recovery recognition able to detect

whether a person is continuing his normal activity or if he/she is still lying in

the ground. Moreover, putting together the available information of an AmI

system, a system could be developed that works to continuous learning. An-

other interesting evaluation is to see how it behaves if trained on different data

sets with respect to the one used here, also using transfer learning techniques.

This is important because it could relax the necessity of carrying out a data

collection campaign in every environment in which the system is going to be

installed. With particular attention to the work presented in Section 6.3, could

be interesting to verify that the system can also work if trained with templates

of real human fall available online or recorded with different microphones like

smart-phone
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