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Abstract

The impossibility of recognizing the Data Generating Process leads to poten-
tial uncertainties in model specification that are often ignored in common selection
methodologies: the model averaging approach is a promising alternative which di-
rectly deals with this issue by simply considering a quantity of interest across the
model space, with the obvious advantage of avoiding possible miss-specifications or
wrong conclusions induced by the choice of a single “best” model.

From a practical viewpoint, model averaging belongs to both the Frequentist and
the Bayesian framework, but in the present dissertation, I will follow the second one
due to its major flexibility and potentiality: in particular, a Bayesian Model Aver-
aging (BMA) scheme based on Markov Chain Monte Carlo (MCMC) simulations,
which jointly samples parameters and models, is proposed for Generalized Linear
Models. The interest in Generalized Linear Models finds its motivation in Microe-
conometrics where, for instance, binary choice models are in common use and where
the application of such techniques is still an unexplored field.

A software implementation in Gretl, via a package of functions, is then provided,
having care of addressing new computational challenges, mainly the parallelization of
the process via MPI (Message Passing Interface): parallelization is somehow a typical
routine in standard Monte Carlo experiments, where, due to the independence of
the sampling procedure, the maximal benefit in terms of CPU time gain could be
achieved; however the same is not so straightforward in MCMC experiments. I
will show how a simple application of parallelization in MCMCs is still useful, both
in terms of a better exploration of model and parameter space and in terms of
time savings. Finally, the afore-mentioned Gretl package opens the possibility of
an automated procedure ready for use for the common user too, with the implicit
recommendation of “reading carefully the package leaflet”.

The economic implications of model averaging are explored in a Treatment Evalu-
ation problem with Propensity Score matching: model averaging is commonly used in
forecasting problems with linear models, where the driving-idea of producing an esti-
mate which balances the ones of each specification (properly weighted) leads to more
robustness with respect to “guessing” any single one. In Propensity Score evaluation
the choice of which variables should be included is often ignored, and the consequent
specification could be determinant in the final treatment effect estimation; a simi-
lar argument can be, therefore, applied: could model averaging be profitable in the
Propensity Score definition instead of guessing which variable should be included?

I will investigate, as empirical illustration, the economic effect of tax rebates on
consumption, using as case study the 2014 Italian income tax rebate, which intro-
duced an increase in individual monthly salary of 80e to employees. A dataset from
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the “Survey on Household Income and Wealth” (SHIW) held by the Bank of Italy
is built and three different techniques concerning model averaging are compared: a
first one, which uses the model averaged posterior mean of the parameter of interest
to build the Propensity Score, and then performs matching and treatment evaluation
in the Frequentist manner; a second one averages the Frequentist treatment effects
across the different models recognized by the BMA procedure, using as weight the
posterior model distributions; and finally, a fully Bayesian procedure in which each
sampled parameter by the BMA procedure defines a propensity score used to derive
a model specific treatment effect, which is then aggregated according to the model
probabilities. Matching is performed via pairwise nearest neighborhood under dif-
ferent caliper and different data order: the last two BMA methodologies balance
the estimates between different specifications, leading to a treatment evaluation less
affected by the discretion in the choice of which variables include in the Propen-
sity Score definition; the first proposed BMA technique, instead, does not always
guarantee this condition. Moreover, it manifests a higher variability across different
matching set-ups, as opposed to the fully Bayesian method which shows the highest
robustness taking into account an additional source of uncertainty: the propensity
score distribution.
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Chapter 1

Literature review

1.1 Introduction

Economists have inherited from physical sciences the myth that scientific inference is objective,
and free of personal prejudice. This is utter nonsense. All human knowledge is human belief;
more accurately human opinion. What often happens in physical sciences is that there is a high
degree of conformity of opinion. When this occurs, the opinion held by most as asserted to be an
objective fact, and those who doubt it are labeled as “nuts”. [...] The false idol of objectivity has
done great damage to economic science.

E. Leamer, 1983

By using these words Edward Leamer cast doubt on most empirical works of
the time: Economics was apparently following the right route, but in the end, it
was just wandering into the fog: as is often the case, practitioners had in mind a
representation of the reality, which, in theory, should have helped to simplify the
understanding of the world, but in practice was advocated as an absolute truth.

This misleading behavior was mainly due to two different tendencies: a theory-
driven one where empirical results were secondary and on the other hand, just the
opposite, a data-driven approach. The former could easily lead to a dogmatic and
aseptic scenario where theory is totally disconnected from reality; whereas the latter
is what Leamer would address as Sherlock Holmes inference (Leamer, 1974, 1983),
where the detective weaves together all pieces of the evidence into a plausible story,
what is inferred without data is considered biased and finally the “culprit” confess!
The consequence is the impoverishment of the Science, with even worst effects when
this is translated into action.

It is quite clear how both approaches are not antithetical but should coexist and
a fair compromise is the equilibrium between what can be inferred from data, what
data really say and what the scientist has in his mind. Science is a public process,
where ideas are continuously judged; nothing, in general, is eternal just because
is human thought1: if exceptions are initially regarded with suspicion, when many
appear, a shift in knowledge (Kuhn, 1962; Lakatos, 1976) occurs which reshapes
previous thoughts. The main ingredient and, at the same time, the main output
of the whole process is the notion of model. A model is a simplification of the

1Leamer (1974).
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10 CHAPTER 1. LITERATURE REVIEW

world, a caricature that cannot say the whole story in every detail, but can help
in understanding the main drivers of a phenomenon thanks to its simplicity, in a
similar fashion as a geographical map leads to a destination even though it does not
represent the real space2.

This line of reasoning becomes particularly interesting in Economics, where there
is no room for a correct experimental design like in physical sciences: the object of
interest is the human behavior whose determinants are variable, numerous and inter-
dependent. A model in Economics still has a raison d’être, but it should be handled
much more carefully, because of its complex nature: we have just partial informa-
tion and the Data Generating Process (DGP) is even more mysterious than in other
cases. When we hear about the bad consequences of econometric models we should
ask whether the motivation lies in this miscalculation: to quote Hendry (1980), for
many years economists have been proud of the discovery of some philosopher’s stone,
but history teaches that transmuting metal into gold is a taboo.

Starting from this premise the correct way of facing the problem is not surely
the fear of acting, but it should be the fear of not acting properly: in order to
let Economics gain a “general” and “resonated” consensus, we should consider our
“experimental” design accurately, the context, the analytical tools, their motivations
and assumptions as expressed by Angrist and Pischke (2010).

What I will present in this Chapter is a brief overview of the main techniques
of model building, in particular: Section 1 is concerned with the model selection
approach, where, given a set of rival specifications the interest is in finding the
best one according to some criteria; in Section 2, I will consider a totally different
view: model averaging. The idea behind is that choosing a single model implies many
uncertainties (Chatfield, 1995), so it could be a reasonable alternative calculating our
interest quantities over a set of specifications, weighted according to the probability
of each model to be “true”.

A final remark is necessary: model selection will be mainly analyzed from a
Frequentist perspective, whereas model averaging from a Frequentist and Bayesian
one; this choice can be motivated by the fact that Bayesian selection is extremely
close, in the methodologies used, to the model averaging one, so I will postpone any
comments in that Section.

1.2 Selection

The model building process could be thought, in its simplest form, as a reply to
three main questions:

• Which kind of relationship exists between the variables?

• Which variables are important?

• How to make proper inference once answered the previous ones?

Using mathematical notation, we can represent a model as:

y = f(X) + ε

2See Magnus and Vasnev (2007).
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where y is the dependent variable, X the matrix of independent variables, ε the error
term, and f() a generic function, such as a linear one (linear model).

Our set of questions could be reformulated in: how to choose f , which elements
of X are relevant and how we can use the whole expression to make, for example,
forecast or further analysis.

Unfortunately, the first topic will remain mostly unexplored in this work, not
because of its lack of importance, but because some route choices have to be made;
hence we will assume the functional form f() as known and fixed for each speci-
fication: sometimes, actually quite often, this is synonymous with nesting, which
actually leads to the second question, variable selection.

In this case, two key notions seem to be parsimony and encompassing. Let us
suppose to choose between a general and a restricted model, i.e. obtainable omitting
variables from the general one, regardless of the choice we incur in the so-called bias-
variance trade-off : the more variables we use, the less we are prone to omit relevant
information but at the potential cost of less efficiency (bigger variance); conversely
if we use few regressors we may face the opposite problem, biases3.

The concept of parsimony tries to balance the two; a useful analogy could be
the Occam’s razor principle: focusing only on the relevant information and shaving
every useless repetition.

Encompassing is the tool used to reach this equilibrium: it is said of a model
to encompass another one if it coveys the same amount of information, with the
implicit consequence that a small specification encompassing a bigger one is a more
appropriate choice (parsimony); the problem is how to establish this condition and
following both the literature and the common routines applied in practice, the two
major guidelines are surely Information measures and testing.

What is implicitly assumed throughout the thesis is the adherence to the so-
called M-closed framework: in the Bayesian literature (Bernardo and Smith, 1994),
model comparison problems can be distinguished into three different categories, the
M-closed, the M-complete and the M-open settings. The M-closed one assumes that
the DGP is included in the model space, i.e. the set of models of interest, and it
represents the predominant assumption in both model selection and model averaging
works. However, the underlying idea is quite restrictive, since DGP can be too
complex or totally unknown, so more general perspectives, i.e. the M-complete and
the M-open settings, could be necessary. In particular, the M-complete framework
assumes that the DGP is known, but is too complex to be implemented and so
it is excluded from the model space. In this way every specification is seen as an
approximation which tries to balance accuracy and simplicity. The M-open setting
is even more extreme, as it postulates either the totally ignorance of the DGP or the
knowledge of it, but the impossibility of obtaining any consistent approximation4.

Despite the fact that this distinction has been enlarged to embrace the Frequentist

3This is actually much more complicated: as explained in De Luca et al. (2018), adding more
variables does not always mean reducing the bias of the parameter of interest, since this is only
valid when the general model coincides with the DGP. When restricted and general models are both
underspecified, i.e. smaller that the real DGP, adding more variables does not mean necessarily
improving the omitting variable bias. Conversely, bigger specifications do not always lead to less
efficient estimates: in homoskedastic linear models, restricted regression coefficients will be more
efficient than the general counterparts, but the condition is no more guaranteed outside this context.

4In practice, the M-complete framework is often included in the M-open one.
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perspective, the M-complete and M-open assumptions are extremely challenging,
even though some recent works have started to be concerned with them (Hoeting
et al., 1999; Clyde and Iversen, 2013; Lu and Su, 2015; Zhang et al., 2016; Ando and
Li, 2017); as a consequence any discussion related to these settings will be avoided
and the M-closed framework is assumed unless otherwise specified.

Moreover, the general set-up assumes less regressors than observations (despite
the brief overview in subsection 1.2.4), so big data analysis is not of primarily concern,
but will be of course covered in future developments.

1.2.1 Selection based on Information

The idea behind the Information-based approach starts with the so-called Kullback-
Leibler (KL) information measure (Kullback and Leibler, 1951): given an unknown
density function f and an approximation g(|θ) which depends on some parameters
θ, the KL measure is defined as5:

KL(f, g) =

∫︂
f(x)[log f(x)− log g(x|θ)]dx = Ef [log f(x)]− Ef [log g(x|θ)] (1.1)

Equation (1.1) represents the discrepancy between the theoretical distribution and its
approximation: the impossibility of knowing f (hence its expected value Ef [log f(x)])
and the parameter θ, which needs to be estimated, prevents us to employ (1.1) di-
rectly. This turns out to be a minor issue, because the element Ef [log f(x)] simplifies
when comparing different models based on the same distribution, as in the following
example

KL(f, gi)−KL(f, gj) = Ef [log f(x)]− Ef [log gi(x|θ)]− Ef [log f(x)] + Ef [log gj(x|θ)]
= Ef [log gj(x|θ)]− Ef [log gi(x|θ)]

where gi and gj correspond to two different model specifications.
We should, thus, restrict the attention to Ef [log g(x|θ)]. In this case, we can-

not directly compute this quantity because the expectation operator depends on f .
However we could overcome this obstacle, by simply moving to Ey[Ef (log g(x|θ))],
where y denotes the data.

It can be proved, following Akaike (1998), that the log-likelihood of the selected
model g(x|θ) evaluated in its maximum θ̂ML, i.e. log p(y|θ̂ML) = l(θ̂ML) plus a
correction term asymptotically equal to the number of regressors k, is an unbiased
estimator of this quantity:

Ey[Ef (log g(x|θ))] = l(θ̂ML)− k

this leads ultimately to the celebrated Akaike’s Information Criterion:

AIC = −2l(θ̂ML) + 2k (1.2)

Given a set of concurrent models, the AIC identifies the loss given by the KL
divergence, so hypothetically the specification which minimizes it, is the most adher-
ent to f(x). From Akaike’s discovery, several aspects of the Information approach

5Notice that f does not depend on parameters. According to the original framework: “parameters
are human concepts” (Kullback and Leibler, 1951).
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were questioned: the implicit assumptions that among the set of models the correct
one exists or the asymptotic nature of the results. The former was dealt by Takeuchi
(1976) with the derivation of a possible generalization, often named nowadays as
Takeuchi’s Information Criterion (TIC, in brief). The second issue, instead, was
partly addressed by Sugiura (1978); Hurvich and Tsai (1989) who derived a cor-
rected version of AIC (AICc) when the sample is “relatively” small in relation to the
regressor number6. Both of them were characterized by the adjustment of the penal-
ized term 2k, which conducts to a even more general representation of Information
Criteria:

IC = −2l(θ̂ML) + p(n, k) (1.3)

where p(n, k) represents a penalty function depending on the sample size n and the
number of regressors k. However, only Akaike’s IC and the two aforementioned
extensions (TIC, AICc), following Burnham and Anderson (2003), are Information
Criteria per se, since they directly derive from the “Information theory”; a wide and
quite acknowledged category composed by the Bayesian IC (BIC, Schwarz (1978))
or the Hannan-Quinn IC (Hannan and Quinn, 1979), despite the fact that they can
be obtained from (1.3), convey a different information. Consider as an example the
BIC:

BIC = −2l(θ̂ML) + k log n

In Burnham and Anderson (2003), the BIC is categorized as a dimension con-
sistent Information Criterion, which implies a balance between the loss given by the
KL measure and the number of regressors, assuming that the fewer variables we
use the better our approximation is. In other words if we assume a set of different
specifications, a model which is favorite by the AIC, could be easily outperformed by
another one according to the BIC if the difference in the KL is small and has fewer
variables.

From a historical point of view, moreover, the BIC arises in Bayesian Statistics
as a crude approximation of the posterior model probability, once a non-informative
prior is assumed. We will deepen these definitions later, for the moment it is enough
to state that by posterior model probability P (Mi|y), where y identifies the data and
Mi a specific model in a model space M, we mean the probability of the selected
specification to be the true one, after our initial idea provided by the prior is updated
through the data. In particular, following Raftery (1995):

P (Mi|y) ≈
exp (−1

2∆BICi)∑︁M
j=1 exp (−

1
2∆BICj)

where ∆BICi = BICi − BIC∗, with BICi as the BIC of the i-th model (Mi) and
BIC∗ as the minimum BIC obtainable in the set M.

It is quite clear how, at least from this perspective, the Bayesian Information
Criterion has little to do with the KL measure in its original formulation, but actually,
an artificial relationship can be built thanks to the general formula (1.3).

6The thumb rule is n/k < 40 where n and k are respectively the number of observations and of
regressors.
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1.2.2 Selection based on Testing

The second, and probably most known, approach for undertaking model selection
is testing, i.e. verifying if a parameter is significantly different from zero through a
simple t-test or F-test7.

Despite its simplicity, many drawbacks can be found. The main one, in order of
importance, is inferential: as noted in many works such as Chatfield (1995); Magnus
and Durbin (1999) when a specification is selected, the inference is conditioned on
that one, a fact that is quite often ignored. It can be shown that the conditioning is
likely to imply biases in the estimator (if the selected model is not “true” or at least
it is not a good approximation of the DGP), hence all derived conclusions could be
misleading.

Another theme that happens to be crucial is the reuse of the same data set:
virtuous practice implies the division of the sample into three different sets, a training
set for estimation, a validation and testing one for verifying the fit. When the same
data are repeatedly exploited for the same scope such as iteratively testing some
hypothesis, i.e. data mining, spurious relationships may appear. Using an example
illustrated by White (2000), let us suppose to send to a large number of individuals
a free copy of a stock market newsletter: the group, in particular, is split into two on
the basis of the type of the news, on the one hand an upward prediction, on the other
a downward one. The next week only the group who receives the correct prediction
will have a new copy, and the sub-division is then repeated. After several months
there can still be a rather large group who have received perfect predictions, and
who might pay for such “good forecasts”, but in fact, this is merely a coincidence!

Actually, the data mining problem deserves a closer look: especially in recent
years, a renewed interest in the theme has been brought into attention thanks to
the so-called machine learning techniques. Following these procedures, it is possible
to build algorithms which, given a big dataset, can recollect the “correct” pattern
among variables (a model) adjusting iteratively their output to the desired level of
goodness of fit. It could appear a bit confusing considering data mining positively
given the previous argument, but “carving” information in the same dataset could
not be so negative if some conditions are met, such as high dimensionality of the
sample.

A similar thesis is shown in our context of testing by White (1990): for a given
set of models and a battery of tests, the more the sample size grows (toward infinity)
and the smaller test sizes are employed, the more likely tests will select the correct
specification. Thus type I and type II errors fall asymptotically to zero, and only
the true specification survives8.

Therefore, stepwise procedures, i.e. testing iteratively if a variable is significant or
not, could make sense provided asymptotic theory could apply and some further reg-
ularities are met: two common views are specific-to-general and general-to-specific.

Specific-to-general starts with an essential specification, quite often the null
model with the only constant as regressor, and then adds a variable at each step:
if the addition improves the fit according to a goodness measure or simply through

7As a matter of fact there are also alternatives such as the more general Wald test, or the other
Likelihood based tests, such as the LM or LR tests.

8It is worth noting, however, that the bias issue illustrated at the beginning of the section still
persists and could be quite troublesome.
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a comparison test (F or W ) between the initial model and the new one, then the
new variable is retained and the procedure is repeated. General-to-specific works
in the opposite direction: a wide model (GUM, Generalized Unrestricted Model) is
simplified till every remaining variable is rejected to be discarded.

PC-GETS and Autometrics

General-to-specific has known a very interesting development towards automati-
zation in recent years: in case of linear or Augmented Distributed Lag (ADL) models
it is possible to build a stepwise procedure with some interesting features known as
PC-GEtS9(Hendry and Krolzig, 1999).

The differences with respect to the standard procedure mainly lie in10: a) the
validation of some desirable property on the residuals of each model (congruence11),
which, if not verified, prevents the deletion of the variable until the condition is
restored; b) the dynamics of the deletions.

The removal of a regressor is analyzed through a multi-path search: every irrel-
evant variable defines a deletion path in which the stepwise regression is separately
held together with the congruence analysis and where each initial model has the
related insignificant regressor omitted by default. With k irrelevant variables, multi-
path search produces k final models that could be different, in which case the final
choice is driven by the minimum BIC.

Deletions are performed via simple t-test or F-test in case of blocks of variables;
moreover, in order to enhance the whole procedure, two common extensions are:
pre-search, which runs initial significance tests with particularly high size to remove
highly insignificant variables; and post-search (Hendry and Krolzig, 2004) which, in
turn, implies the repetition of the multi-path search or a simplified version when
different final specifications are obtained before advocating the use of BIC.

Automated GEtS possesses some interesting and potential pros such as consis-
tency in model selection if all assumptions are met (Campos et al., 2003) and a
possible extension if there are more variables than observations (Doornik, 2009b),
but several cons too, which can be split into computational ones and statistical ones.
In the first category we find the useless repetitions of the same models during multi-
path search and the continuous congruence testing. Both of them are, in fact, dealt
in an evolution of GEtS, Autometrics (Doornik, 2009a). Autometrics is based on
the same principle with the not negligible difference of implementing a tree structure
search, where from the initial GUM several branches, corresponding to models with
an insignificant variable less, are produced via testing until the whole model space
is analyzed, having care of skipping or pruning already encountered specifications:
if a deletion test is rejected and a model could not be furthermore simplified it is
named as “terminal”. Only terminals are tested for congruence: if this condition is
not met, the model is discarded and we backtrack to its first parent which respects
the criterion. All these models are then collected and the procedure repeated until
only relevant variables are held or the most simplified congruent model is achieved.

9PC-Gets is actually the name of the package which implements this procedure in the software
Ox.

10See Granger and Hendry (2005) for further details.
11It is a said of a model to be congruent if its residual are homoskedastic (both conditionally and

not), not autocorrelated and normal.
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The statistical drawbacks, excluding the common stepwise issues12, concern pri-
marily the so-called cost of inference and cost of search, which, respectively, identify
the problem of detecting relevant variables and of retaining insignificant ones. As
a matter of fact, when a variable of interest has a near-zero value coefficient, the
stepwise procedure struggles to retain it (Castle et al., 2013), while in the case of
cost of search, unless we imply a strict significant test size α, we will always have an
expected number of adventitious variables equal to k̄ = αk where k is the number of
irrelevant covariates.

Finally, another aspect should be considered, the lack of flexibility: despite Au-
tometrics seems to work even in more general context than linear models, this op-
portunity does not seem fully explored; moreover when the congruence conditions
are not met, it is not really clear how to proceed: it is possible to lower the tolerance
(the size of the tests) but the properties of the whole procedure are not guaranteed
anymore. For these reasons some alternatives are worth of interest.

1.2.3 Model Confidence Set

A quite different approach to selection, even though it is often categorized as a
selection one, is the model confidence set (MCS) by Hansen et al. (2011). A very
elementary introduction could be the following: building a set of models that contains
the best one with a certain probability according to some criteria, in a similar way
like the usual confidence interval works for estimators.

As a matter of fact, MCS aims to construct a set of plausible models with similar
explicative power, so in general its definition becomes highly dependent on the data
availability: with less informative data it is likely to have a wide model set (sometimes
correspondent to the whole model space), whereas in the opposite case a small one13.

The formal description starts with a set of concurrent models M0, whose ele-
ments are checked via an equivalence test δM for their equal “goodness”. When δM is
rejected, the equivalence is not verified, so an elimination rule eM deletes the bad per-
formance models; the procedure is repeated until the first acceptance14 occurs. The
individual specifications inside M0 are evaluated in terms of a loss function LMi

15,
where Mi identifies the i-th element of M0. The losses are then mutually compared
using d(Mi,Mj) = LMi −LMj which is the main ingredient for the equivalence test;
it is possible to state the null hypothesis as:

H0 : E(d(Mi,Mj)) = 0 ∀ i, j ∈ M0

where E() identifies the expected value operator. The whole algorithm is summarized
as follows:

1. Define the set M0 and calculate d(Mi,Mj) = LMi − LMj for each element;

12The afore-mentioned biases and small sample problems.
13This feature opens the possibility of model uncertainty (Chatfield, 1995) as we will see more

accurately in the next section.
14The authors underline the similarity of the MCS procedure with the trace-test for selecting the

rank of matrix such as Anderson (1984); Johansen (1988). Notice, moreover, that the problem of
sequential testing, in this case, is avoided because the procedure is halted when the null is accepted.

15As an example if y is the dependent variable and ŷ its forecast, the loss is any function of their
difference.
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2. Test H0 as above, via the equivalence test δM with size α;

3. If the null hypothesis is accepted, stop the precedure and define M0 = M∗
1−α

where M∗
1−α is the Model Confidence Set for 1−α; otherwise use the elimination

rule to reduce M0 and repeat from Step 2.

As for the elimination rule we can assume many different formulations, as long
as models contributing the most to E(d(Mi,Mj)) i.e. the worst ones, are erased
firstly; what should be verified is the so-called coherency between equivalence test
and elimination rule. The coherency condition guarantees that the probability of
our final model set asymptotically tends to the selected confidence 1−α and from a
practical point of view, it assures to avoid anomalies which can emerge from absurd
combinations of δM and eM.

Finally, in Hansen et al. (2011) we found a disclosure of some common examples
of equivalence tests and elimination rules too: some interesting ones can be mutated
from the common quadratic-form test or t-test, whereas another category, based on
linear regression models, is based on a likelihood framework which links MCS to the
Information Criteria.

Except for the quadratic-form equivalence test which has a χ2 distribution, the
other ones do not have a standard one, so bootstrap methods are required with a
slight modification to the original framework16.

1.2.4 Shrinkage regression and LASSO type estimators

The availability of bigger and bigger datasets, which turns to be a major theme
in recent years, poses new questions and challenges to variable selection problems, in
particular how to handle situations of few significant variables among a huge amount
of not significant ones (sparsity), where there are potentially more regressors than
observations.

Under this second scenario traditional least squares methods become problematic;
consider as an example a linear model y = Xβ+ε where y is the dependent variable,
X a matrix of regressors and ε the error term; then the solution of the optimization
problem

min (y −Xβ)T (y −Xβ)

is not unique anymore17.
But even assuming less variables than observations in a big dataset with many

regressors makes common selection routines unfeasible: quite rarely coefficients are
set to zero during the estimation process so testing is strongly required, but as we
have seen, spurious relationships may be included and biases can heavily undermine
each conclusion. Information Criteria are equally troublesome, since all models need
to be investigated, leading to a computational complexity which grows exponentially
in the number of regressors (with k variables, 2k models are available).

16It should be noted how de facto the quadratic-form has little application in practice compared
to the correspondent t-test version: this is mainly due to the estimation of the variance matrix
which could become easily not feasible.

17In this subsection I will focus on linear models, but the same argument can be easily extended
to more complex ones, such as Generalized Linear Models.
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A plausible solution could be imposing some regularization inside the estimation
procedure, which, loosely speaking, corresponds to imposing a constraint on the
coefficients in the optimization problem of least squares:

min (y −Xβ)T (y −Xβ) subject to f(β) ≤ t (1.4)

with f() as a constraint function and t a given threshold.
Equation (1.4) identifies the shrinkage regression framework, where depending on

the choice of the constraint function, different estimators with different properties
are obtained. A common choice in variable selection problem seems to be the l1
norm ∥∥1, which leads to the celebrated LASSO estimator by Tibshirani (1996):

min (y −Xβ)T (y −Xβ) subject to ∥β∥1 ≤ t (1.5)

Notice that the peculiar shape of the constraint imposes sparsity in the coeffi-
cients, so not only some parameters are shrunk exactly to zero, but also assuming
the number of significant regressors always smaller than the number of observations,
implies the uniqueness of LASSO estimator even if there are more regressors than
observations. Finally the choice of the threshold t is fundamental as well because it
determines the magnitude of the shrinking effect: some common methods used for
choosing this value range from cross-validation to the minimization of goodness of
fit measures.

It appears that LASSO is the solution to all variable selection problems, but
there are many aspects that merit a closer look: hypothetically, we would like to
have a procedure which classifies all zero coefficients with probability tending to one
and whose asymptotic distribution for non-zero coefficients is the same as if only
those significant variables are included18. If this is the case, the obtained estimator
is defined as oracle efficient, but LASSO does not guarantee this condition; in fact,
zero coefficients may have a probability mass at zero, but this probability is not
tending to one and the non-zero coefficient estimates have an asymptotic bias.

An oracle consistent estimator could be easily obtained from LASSO by adjusting
the shrinkage induced in the constraint function: Zou (2006) shows that weighing
coefficients inside the penalty function by the inverse of the absolute value of their
OLS estimate, produces a LASSO estimator with the oracle property (the so-called
adaptive LASSO).

Some final remarks seem to be necessary since oracle property and adaptive
LASSO have limitations: oracle property induces a problem of efficiency in the final
estimator, and even if an equivalent condition for finite sample can be established,
when data are not (much) sparse, the robustness of the procedure is affected. For
these reasons second generation LASSO estimators (often named as debiased or
desparsified LASSO19) have been introduced: these kind of methods simply estimate
standard LASSO coefficients in a first step, and then correct for their bias in the
second one; it could be proven that debiased estimators are more efficient, robust
and finally are easily usable for inference too20.

18Hence obtainable using simple least squares.
19Van de Geer et al. (2014).
20Remember that LASSO requires simulated methods for inference or post-model-selection ones

(Belloni et al., 2011).
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1.3 Model Averaging

Model building, as we have seen so far, is often concerned with the selection of
an optimal model in order to explain data at best: the main issue is that, in practice,
we do not know exactly the Data Generating Process (DGP), so we cannot have the
certainty to choose the correct specification (model uncertainty); and if we still want
to select one, we are prone to make inference conditional on this selection, often
incurring in biases and, sometimes, in even worst consequences21.

Possible solutions are the aforementioned Model Confidence Set approach or
shrinkage methods but in the model selection literature, an appealing alternative,
which takes into account both previous problems, is known as model averaging22.
The idea of model averaging is quite simple: considering the estimates across many
specifications, instead of focusing only on a single one and building the related in-
terest quantity (e.g. a simple estimator or a forecast) as an averaged measure over
the model space, i.e. the set containing models.

In mathematical terms:

f(β)AV =
M∑︂
i=1

f(βi)ωi (1.6)

0 ≤ ωi ≤ 1

M∑︂
i=1

ωi = 1

where β is the parameter of interest, f() a generic functional form, βi and ωi are
respectively the parameter and the weight attached to the i-th model, where we
assume that our model space M contains M different specifications.

The advantages of considering more than one model allow precisely to not ignore
information that sometimes (actually quite often) the selection of a unique model
excludes and that can be useful.

For this reason model averaging in Economics has quickly enjoyed popularity in
recent years: in economic growth literature, for example, model averaging techniques
have led to a much more complete and balanced inference about the growth determi-
nants, with particular reference to the role of geography, integration and institutions,
which were only partially analyzed in previous works. Some example of such model
averaging literature are Brock and Durlauf (2001); Fernandez et al. (2001b); Sala-
i Martin et al. (2004); Eicher and Newiak (2013); Lenkoski et al. (2014); Durlauf
(2018).

Koop et al. (1997), instead, exploits the use of Bayesian Model Averaging in au-
toregressive (fractional) integrated moving average (ARIMA and ARFIMA) models
for evaluating the real GNP; Cogley and Sargent (2005) consider the use of model av-
eraging for analyzing inflation; Strachan and Van Dijk (2013) explore Bayesian Model
Averaging methods with dynamic stochastic general equilibrium (DSGE) models,
whereas George et al. (2008); Koop (2017) propose application of model averaging

21Chatfield (1995) is a wonderful reference point for understanding the pros of model uncertainty.
22As a matter of fact model averaging can be considered as a shrinkage method too, at least in

a broad sense. This point will be clear soon.
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to Vector Autoregression Models (VAR) 23. In Microeconometric literature some
examples are Van den Broeck et al. (1994) which deals with uncertainty in produc-
tion modeling via stochastic frontier models or Sickles (2005) which examines firm
inefficiency through Bayesian Model Averaging.

What remains to be explained is how to deal with model averaging; in particular,
two main perspectives are available: on the one hand, the Bayesian viewpoint and
on the other the Frequentist one. The former focuses on the posterior distribution
of the parameter, so our f(β) is a density or a probability distribution; the latter,
instead, simply replaces f(β) with the (Frequentist) parameter estimator, let us say
β̂. The weight ωi represents in both cases a measure of the probability of a model
to be the appropriate one; in the Bayesian case we will use the so-called posterior
model distribution, whereas in the Frequentist one some “Information Criteria” based
measure.

Finally it is worth mentioning how the so-called hybrid methods have reached
great consensus recently too. By hybrid methods we generally mean model averaging
techniques which combine aspects from the Frequentist and Bayesian perspective in
order to achieve a grater flexibility: the major examples are Bayesian Average of
Classical Estimates (BACE) by Sala-i Martin et al. (2004), Weighted-Averaged Least
Squares (WALS) by Magnus and Durbin (1999); Magnus et al. (2010) and Bayesian
Averaging of Maximum Likelihood Estimates (BAMLE) by Moral-Benito (2012).

I will analyze only the strictly Bayesian and the strictly Frequentist method-
ologies throughout this work, postponing the analysis of hybrid methods for future
developments: I will start from the Frequentist Model Averaging (FMA) framework,
where the main issues are how to deal with weights24 and how to make inference with
the new averaged quantities (multimodel inference, Burnham and Anderson (2003)).
I will then cover the Bayesian framework, having care of analyzing the main ingredi-
ents of the recipe even though some details will be left for the next Chapter, where
a suitable scheme for Generalized Linear Model is provided25.

1.3.1 Frequentist Model Averaging

Despite the fact that some applications of model averaging in a Frequentist sense
can be dated back to Box and Jenkins (1970), a correct and rigorous dissertation
of this method should be considered as a reply to some (computational) difficulties
of its Bayesian counterpart. Since throughout this work I will favor the Bayesian
perspective, I will try to sketch a brief description of FMA before the analysis of
Bayesian Model Averaging: in doing so I will lose the chance of drawing any useful
parallelism but the benefit will be a major adherence to the structure of this work.

In the FMA framework we are interested in weighing a Frequentist estimator β̂
or some function of it across several specifications; just as an example consider the
linear model:

23This is only a short overview of some applications of model averaging in Economics. For a more
detailed analysis see Steel (2018)

24Remember that the quantity of interest is simply the estimate of the parameter, which can be
obtained straightforwardly in Frequentist case.

25More detailed overviews on specific model averaging techniques include Clyde and George
(2004); Claeskens and Hjort (2008); Wang et al. (2009); Moral-Benito (2015); Magnus and De Luca
(2016); Steel (2018).
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y = Xβ + ε

where y is a n×1 vector of response variable, X is the n×k matrix of explanatory
variables and ε the usual disturbance term.

Using the same notation of the previous section the Frequentist correspondent to
equation (1.6) is:

β̂AV =
M∑︂
i=1

ωiβ̂OLS,i,
M∑︂
i=1

ωi = 1

where β̂OLS,i is simply the OLS estimator of the correspondent model, where we
set β̂i,j = 0 if the j-th regressor is absent from the model i.

The definition of the weight ωi becomes crucial, since all the properties of the
averaged estimator are a consequence of this choice: there is not an unique solution
and the possibility to make proper inference becomes unclear due to the complexity
involved in the calculation of standard errors or asymptotic distributions (Burnham
and Anderson, 2003, 2004).

Some common choices are presented in the following subsubsections.

FMA with IC weights

One of the first method implied to calculate weights was due to Buckland et al.
(1997): in particular recalling the definition of Information Criteria given in (1.3)
and assuming the same notations as before,

IC = −2l(θ̂ML) + p(n, k)

after some rearrangements and by taking the exponential operator we obtain a
measure of the “penalized” likelihood:

exp(−1

2
IC) = L(θ̂ML) exp(−

1

2
p(n, k)) (1.7)

where L is the likelihood of the model. Normalizing (1.7) over the whole model
space allows us to treat it as a probability, but also as a weight of the i-th model:

ωi =
exp(−1

2ICi)∑︁M
j=1 exp(−

1
2ICj)

(1.8)

where to a higher ωi corresponds a high probability of the model to be plausible.
For computational easiness Burnham and Anderson (2004) proposes a slightly

different version26:

ωi =
exp(−1

2∆i)∑︁M
j=1 exp(−

1
2∆j)

(1.9)

with:

∆i = ICi − ICmin

26Very similar to the previous result of Raftery (1995).
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where ICmin is the minimum of the M different IC values.
As for the choice of the Information Criterion, Akaike’s Information Criterion

(AIC) and Bayesian Information Criterion (BIC), with the same difference in usage
as the one previously sketched in subsection 1.2.1, are the main options.

It is worth noting that a quite different alternative is provided in Hjort and
Claeskens (2003) with the Focussed Information Criterion (FIC): while in IC model
averaging the weight calculation does not consider the scope of the averaging proce-
dure, mainly because the commonly applied IC are built for only model comparison
purposes, the FIC and its derived weights are meant to take into account the “use” of
the model. In other words it can easily happen that the weights chosen to be optimal
for inference, cannot be equally good for forecasting or analysis of variance: in order
to fulfill this task the author introduce an objective function of the parameter of
interest, which embodies this “scope”27, and define a related Information Criterion,
the FIC, as asymptotic approximation of the Mean Squared Error of this function.
A curious fact that deserves more attention and could affect the effectiveness of this
measure is the dimensionality: it turns out that the structure of the chosen function
could lead to have a multidimensional FIC (vector) for each model; in these cases
its interpretation could be quite challenging and a lot depends on the context of the
analysis.

FMA with Mallow’s C based weight

Information Criteria weights derived from AIC or BIC provide a compromise
between computational easiness and the benefits of averaging28; however, little is
said about efficiency, i.e. the possibility of building weights so as a corresponding
measure of risk is minimized29, hence a potential most efficient estimator among the
averaged ones.

A first attempt in this direction is the afore-mentioned FIC by Hjort and
Claeskens (2003) which, depending on the function of interest chosen, produces a
more efficient model averaging estimator than the standard IC-based ones; how-
ever, in the context of homoskedastic linear models, Hansen (2007) shows how
it is possible to reach the most efficient model averaging estimator by simply
choosing the weights so as the Mallows’C criterion is minimized: it is proved
that Mallow’s C is asymptotically equivalent to the average squared error L(ω) =
(Xβ−Xβ̂AV (ω))

T (Xβ−Xβ̂AV (ω)), where β̂AV (ω) is the model averaging estimator
considered as a function of the weight ω, so the weight ω which minimizes it, defines
the most efficient estimator.

Following the author, the standard linear model scenario is slightly changed: let
(yi,xi), i = 1..n be a random sample with xi = (xi1, xi2, ...) the vector of variables;

27A useful example is the function used for forecasting in linear model, defined as: Xβ where X
is the matrix of regressors, and β the parameters.

28Burnham and Anderson (2004) show the gains of Akaike’s and BIC weights in terms of MSE
compared to standard procedures.

29The typical example of such a risk measure is the Mean Squared Error (MSE).
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the regression set assumes infinite covariates30 so,

yi =

∞∑︂
j=1

βjxij + εi → yi = xT
i β + εi (1.10)

where ε ∼ N(0, σ2) and
∑︁∞

j=1 βjxij converges in mean-square.
Consider now m = 1...M models where each one contains the first km elements31

of xi with 0 ≤ k1 < k2 < ... and km ≤ n. The m-th model is:

yi =

km∑︂
j=1

βjxij + ei, → yi = xT
i,mβm + ei (1.11)

where ei =
∑︁∞

km+1 βjxij + εi is the new error term.
In matrix notation:

y = Xmβm + e (1.12)

with:

y =

⎛⎜⎜⎜⎜⎜⎜⎝

y1
y2
.
.
.
yn

⎞⎟⎟⎟⎟⎟⎟⎠ ; Xm =

⎛⎜⎜⎜⎜⎜⎜⎝

xT
1,m

xT
2,m

.

.

.
xT
n,m

⎞⎟⎟⎟⎟⎟⎟⎠ ; βm =

⎛⎜⎜⎜⎜⎜⎜⎝

β1
β2
.
.
.

βkm

⎞⎟⎟⎟⎟⎟⎟⎠ ; e =

⎛⎜⎜⎜⎜⎜⎜⎝

e1
e2
.
.
.
en

⎞⎟⎟⎟⎟⎟⎟⎠
The typical OLS estimates are:

β̂m = (XT
mXm)−1XT

my

Therefore, the model average estimator over the set M is defined as:

β̂AV =
M∑︂

m=1

ωmβ̃m (1.13)

where β̃m is β̂m filled with zeros where regressors are excluded in the m-th model
(to make the summation conformable)32.

A closely related quantity is the fitted value ŷAV :

ŷAV = PXm(ω)y, PXm(ω) =

M∑︂
m=1

ωmPm (1.14)

30With a finite set the results are unchanged, even though it is requested in general an high
number.

31Notice that each km has to be defined, Hansen (2014) suggests each group differs from the other
by 4 variables, i.e. km = 4m, for further details see the related work.

32The impact of each βm on the whole averaged estimator depends heavily on the order of the
variables: in other words as each specification is based on the previous one plus some new variables,
the first regressors are weighted in each model whereas the last one only in the final.
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Pm is the projection matrix33 Xm(XT
mXm)−1XT

m.
Hansen’s result follows from the definition of Mallow’s C based on the averaged

estimator:

C(ω) = êT ê+ 2σ2K(ω) (1.15)

where ê = y − ŷFMA and K(ω) =
∑︁M

m=1 ωmkm.
Taking the expectation and calling the average squared error L(ω) = (Xβ −

Xβ̂AV (ω))
T (Xβ −Xβ̂AV (ω)) we obtain:

E(C(ω)) = E(L(ω)) + nσ2

where the following result is exploited:

E(êT ê) = E(L(ω)) + nσ2 − 2E(εTPXm(ω)ε) = E(L(ω)) + nσ2 − 2σ2K(ω)

Mallow’s C is an unbiased estimate of the expected squared error plus a constant;
moreover (and above all) it is possible to rewrite (1.15) as:

C(ω) = ωT eT e ω + 2σ2KTω (1.16)

where ω is the M × 1 vector of weights; e is a n ×M matrix which collects the
M residuals of each model in (1.11); K a M × 1 vector of the number of parameters.

Equation (1.16) displays how the Mallow’s C is a quadratic function, so that its
minimization should not be problematic; in particular if we choose the minimizing
vector ω∗ = argmin C(ω), under the constraint

∑︁M
m=1 ωm = 1, as long as the

following requirements are met:

a) (yi,xi) are i.i.d.;

b) a homoskedastic linear framework is used;

c) nesting;

d) the weight set should be restricted to a finite one of the form ωi ∈ {0, 1c ,
2
c , ..., 1}

for some constant c;

then, ω∗ asymptotically minimizes the squared error based on averaged estimators
with respect to any other choices of ω ∈ W , where W is the set of weights consistent
with the above constraint:

L(ω∗)

infW L(ω)

p→ 1

Conditions a)-d) have been the object of many analysis in further studies, since
if on the one hand, they guarantee the final result, on the other hand, they appear
a bit binding: condition a) is extremely difficult to be relaxed as the applicability
of asymptotic theorems depends heavily on this one; b) can be split into two dif-
ferent cases: departure from linear models and heteroskedasticity. The former is

33Notice that PXm(ω) is symmetric but, in general, not idempotent. However it has other inter-
esting properties, see Hansen (2007).
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quite challenging too, because Mallow’s C is closely linked to linear specifications,
so embracing a wider perspective means finding an equivalent measure with similar
properties for non-linear cases, a task still unexplored. Heteroskedasticity, instead,
has been addressed directly by Hansen and Racine (2012) which proposes, following
quite the same procedure as before, a robust average least squares estimator with
jackknife weights (leave-one-out cross validation); and by Liu et al. (2016) with a
Feasible Generalized Least Squared approach. Finally assumptions c) and d) are
both modified in Wan et al. (2010) achieving similar conclusions.

Multimodel inference

Frequentist Model Averaging is primarily used in forecasting, so little attention
is devoted to inference aspects: what is requested to the averaged estimator is con-
sistency, a property which is easily satisfied both with IC weights and Mallow’s C
ones.

However, overcoming this limitation is fundamental to expand the applicability
of Frequentist Model Averaging: a first attempt in this direction is the standard error
estimation by Buckland et al. (1997).

Assuming that the parameter vector of interest β is common to all specifications34

and the weights are known (not random), we can calculate the variance of (1.6) as:

V (β̂AV ) =
M∑︂
i=1

ω2
i V (β̂i) +

M∑︂
i=1

∑︂
j ̸=i

ωiωjCov(β̂i, β̂j)

which can be rewritten as:

V (β̂AV ) =
M∑︂
i=1

ω2
i V (β̂i) +

M∑︂
i=1

∑︂
j ̸=i

ωiωjρi,j

√︂
V (β̂i)V (β̂j) (1.17)

where ρi,j is the correlation between parameter i and j. The principal problem
in (1.17) is exactly ρi,j : in the extreme cases of perfect correlation (less probable) or
uncorrelation, we obtain simplified versions of (1.17), which respectively are

V (β̂AV ) =

[︃ M∑︂
i=1

ωi[V (β̂i)]
1
2

]︃2
(1.18)

and

V (β̂AV ) =

M∑︂
i=1

ω2
i V (β̂i)

It is obvious that choosing one of the two is quite challenging, since it is rare
to have such particular situations, so what is suggested is to consider the above
formulas as simple starting points. Intermediate cases (0 < ρi,j < 1) are surely
more interesting but require a different approach to the problem, such as simulated
inference (bootstrap).

34This should also imply the case in which one or more parameters are excluded from the model,
i.e. their coefficients are zero.
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Two elements, however, are worth noting: in the original framework the variance
of each parameter is substituted by their MSE, so for instance (1.18) becomes:

V (β̂AV ) =

[︃ M∑︂
i=1

ωi[V (β̂i) + b2i ]
1
2

]︃2
where bi = βi − β is the misspecification bias which arises in estimating β in the

i-th model and it is calculated by using b̂i = β̂i − β̂AV .
The second element is just a refinement by Burnham and Anderson (2003): if

we do not want to rely on simulated inference, the previous variance equations seem
to perform badly when nesting is assumed, so an alternative version of (1.17) is
provided as a possible solution35:

V (β̂AV ) =

M∑︂
i=1

ωi[V (β̂i + b2i )]

which can also be extended into the original framework36.
Turning the discussion to the asymptotic distribution of (1.6), it is appealing

to apply the result that a linear combination of Normal variables is Normal too;
nevertheless this is not always the case since a lot depends on the assumptions of
randomness of the weights: Hjort and Claeskens (2003) show how, depending on
the type of weights and on the framework, not standard distribution could arise and
the Normal approximation becomes not so advisable. A bias corrected procedure,
together with a plausible general framework for asymptotic distribution, is then
derived following a Focussed Information Criterion driven perspective: this could
appear a huge advance, but as a matter of fact the same problems encountered in
the derivation of FIC (multidimensionality) still persist.

1.3.2 Bayesian Model Averaging

From a historical perspective Bayesian Model Averaging (Madigan and Raftery,
1994; Raftery, 1996; Hoeting et al., 1999) was the first attempt to consider the model
averaging idea in a coherent and consistent framework, and, thanks to the flexibility
of the Bayesian set-up, it surely has the advantage to lead to a clearer and more
immediate inference about model comparisons or variable inclusions, an aspects that
is not directly available in FMA. Accordingly, model averaging weights implied in
FMA, are not always imputable as model probabilities, e.g. consider FIC weights
which derives from an optimization procedure based on a specific chosen function37.

It is a well known fact that in Bayesian statistics we consider the parameter of
interest, let us say β, as a random variable, so talking of its distribution should
not surprise; in particular we refer to its posterior distribution as p(β|y), where y
identifies the data. In math terms:

35Even in this case however we are using an approximation!
36An apparently different approach is provided in Magnus et al. (2010).
37AIC and BIC weights, instead, can be thought as model probabilities: Burnham and Anderson

(2003), in particular, show how both ones can be represented as approximations of posterior model
probabilities (see next sections) under particular conditions.
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P (β|y) ∝ p(y|β)P (β)

where p(y|β) is the likelihood of the parameter38, and P (β) its prior distribution,
that is our initial idea about the parameter of interest.

The correspondent model averaged quantity is thus:

P (β|y) =
M∑︂
i=1

P (β|Mi, y)P (Mi|y) (1.19)

where Mi represents the i-th model drawn from a model space M = (M0,M1, ..),
P (β|Mi, y) is the posterior distribution of the parameter in model Mi and P (Mi|y)
the posterior model distribution. Notice, how in the Bayesian framework a model
Mi is seen as a “parameter” too, in particular, it is often labeled as a categorical
variable which embodies the link between dependent and independent variables.

Model averaging expected value and variance are:

E(β|y) =
M∑︂
i=1

E(β|y,Mi)P (Mi|y) (1.20)

V (β|y) =
M∑︂
i=1

[︁
V (β|y,Mi) + E(β|y,Mi)

2
]︁
P (Mi|y)− E(β|y)2 (1.21)

with E(β|Mi, y), V (β|Mi, y) as, respectively, the expected value and the variance of
the parameter in the i-th model.

In general, we are more interested in these two last expressions, but if we can find
a way to easily compute the posterior distribution too, these are obtained straight-
forwardly from it and the additional gain could be potentially high.

We will see in the next part, that an effective method of doing this could be
sampling, that is obtaining a sample of parameter drawings whose distribution and
moments (obtained easily by their sample counterparts) should reflect the poste-
rior. In model averaging, however, some additional difficulties which can undermine
canonical sampling schemes for the parameter, are encountered, as a consequence, a
more general framework needs to be defined.

Finally the model posterior P (Mi|y) is the weight attached to each element in
the above equations and defines how much each specification is plausible, but, un-
fortunately, its computation is pretty challenging.

From this brief introduction, it could appear how BMA is extremely complex to
be performed especially in comparison to its Frequentist alternative and, as a matter
of fact, it is. However the potential gain in terms of higher information provided and
in terms of applicability are surely more substantial than the costs.

In the following subsection, I will draw reader’s attention to the two main ele-
ments of (1.19) taken each one individually; I will provide only afterwards a more
complete and scrupulous disclosure on how model averaging is performed in practice.

38What in the previous sections was named L().
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Posterior parameter distribution: the linear case

Posterior parameter distribution can be obtained using either analytical formulas
or sampling. In the first case a common example is the linear model:

y = Xβ + ε, ε ∼ N(0, σ2I)

where y is a n× 1 dependent variable, X a n× k matrix of k covariates, ε the error
term and I the identity matrix.

In order to obtain the posterior P (β, σ2|y) ∝ p(y|β, σ2)P (β, σ2), the canonical
way to proceed is assuming a Normal-Inverse Gamma conjugate prior39:

P (β, σ2) = P (β|σ2)P (σ2) = N(µ0, σ
2V0)IG(a0, b0)

where β|σ2 ∼ N(µ0, σ
2V0), σ2 ∼ IG(a0, b0), with µ0, σ

2, a0, b0 as the related param-
eters. It is a common convention to write in compact form this whole distribution
as NIG(µ0, V0; a0, b0), the Normal-Inverse Gamma.

The likelihood function is defined as:

p(y|β, σ2) =

(︃
1

2πσ2

)︃n
2

exp

[︃
−1

2

(y −Xβ)T (y −Xβ)

σ2

]︃
where n identifies the number of observations.

The posterior, after some rearrangements can be seen as:

p(β, σ2|y) ∝
(︃

1

σ2

)︃ k
2

exp

[︃
− 1

2σ2
(β − µ)TV −1(β − µ)

]︃
×
(︃

1

σ2

)︃a
2
+1

exp

[︃
− 1

2σ2
b

]︃
with:

µ = [V −1
0 +XTX]−1(XT y + V −1

0 µ0)

V = (XTX + V −1
0 )−1

a = a0 +
n

2

b = b0 +
1

2
[µT

0 V
−1
0 µ0 + yT y − µTV −1µ]

That is a NIG(µ, V ; a, b).
In order to have the posterior on a particular model Mi, assuming nesting, all

we have to do is just selecting the related variables in X and adapting priors and
likelihood.

A sampling approach from the NIG posterior is equally simple: in Bayesian
framework it is quite common to simulate a target distribution, in our case the
posterior, especially if not of a standard form: among the various procedures ranging
from standard Monte Carlo experiments to Importance Sampling, the most known for
its flexibility is the Markov Chain Monte Carlo simulation. In a MCMC experiment
a stochastic process governed by the Markov property is constructed such that, after

39A conjugate prior, once combined with the likelihood, yields a posterior falling in the same
distribution family. A natural conjugate prior has the additional property that it has the same
functional form as the likelihood function.
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some burn-in iterations, it converges to the desired distribution. In the linear case
we can use the Gibbs MCMC, i.e. starting from an initial value for σ2, sample β
from a multivariate Normal with mean µ and covariance matrix σ2V . Then sample
σ2 from a IG(a, b), where the parameter b is currently updated with β. The process
is then iterated, and the resulting sampled {β;σ2} represents the joint distribution,
while each component individually provides the marginal posterior distribution.

The prior for model parameters

Prior distributions represent the information available before analyzing the data
and that it could be meaningful to include as part of the posterior; despite from a
theoretical point of view any plausible distribution can be considered, in practice
some common choices are made in order to make computation much easier. The
previous conjugate prior is an example, but for what concerns the present work whose
first aim is BMA, the solution proposed by Fernandez et al. (2001a) is particularly
appealing and so it will be briefly described40.

Let us rewrite the linear model framework as:

y = ια+Xβ + ε, ε ∼ N(0, σ2I)

where we expressly exclude the constant term ι (a vector of ones) and its parameter α
from the set of regressors X. This choice is easily motivated by the assumption of the
constant term always included in every specification: when a parameter is common
to all models, Fernandez et al. (2001a) show how an improper prior41 can be placed
on that parameter with no significant consequences to the general framework and
with potential great interpretative and computational benefits.

As a consequence, they assume not only a common α, but also a common σ2

with prior distributions:

P (α) ∝ 1

P (σ2) ∝ σ−2

Furthermore, a diffuse improper prior on the constant term often leads to assume
its independence with respect to the other regressors, a condition easily achievable
by simply centering all the covariates (ιTX = 0).

Model specific parameters, βi, instead, requires only proper priors42, and in our
case:

P (βi|Mi, σ
2) ∼ N(0, σ2g(XT

i Xi)
−1)

where Xi identifies the matrix of covariates included in model Mi, and g > 0 a
parameter. Such peculiar structure is known as Zellner’s g-prior (Zellner, 1986),

40As a matter of fact Fernandez et al. (2001a) propose a disclosure of different priors, but what
will be presented here is probably the most used in BMA analysis.

41Improper priors are not actually probability distributions, as they do not integrate to unity over
its domain; nevertheless they can be equally useful because they express uninformative conditions.

42The posterior model distribution will be not determined in case of diffuse priors of model specific
parameters (Fernandez et al., 2001a; Steel, 2018).
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where the covariance matrix “reproduces” the one of a standard OLS estimator.
A common alternative could be the so-called ridge prior covariance, cI, with I as
the identity matrix and c > 0 as a shrinkage parameter: it implies the a priori
independence of coefficients and it tends to reduce the impact of the likelihood;
however for the moment I will draw reader’s attention to the Zellner’s prior following
Fernandez et al. (2001a).

Under this peculiar set-up, βi becomes the main parameter of interest and its
posterior distribution is given by a Student t, with respectively posterior mean and
variance as:

E(βi|Mi, y) =
g

1 + g
β̂OLS,i

V (βi|Mi, y) =
(y − ȳι)T (y − ȳι)

n− 3

g

1 + g

(︃
1− g

1 + g
R2

i

)︃
(XT

i Xi)
−1

where β̂OLS,i is the OLS estimator for model Mi, ȳ is the mean of the dependent
variable, n the number of observations and R2

i the OLS R-squared for model Mi.
It is quite clear how the choice of the scalar g is determinant since it works as

a regularization parameter: a high value of g is associated with a higher impact
of the likelihood function in the posterior, whereas a small value favors the prior
distribution impact.

Two common approaches used for defining g are to choose a fixed value which
reflects some desirable properties or to place an hyperprior. The first one is often more
convenient, even though its real contribution should be analyzed with care, because
some fixed choices of g can lead to counterintuitive results in model comparison
contexts (Liang et al., 2008), so it is highly recommended to verify the impact of
different fixed choices before choosing the final value. Some common values are:

• g = n, with n as the number of observations, which represents the so-called
Unit Information Prior (UIP) by Kass and Wasserman (1995);

• g = k2 with k as the number of regressors in the full model, as suggested by
the Risk Inflation Criterion (RIC) by Foster and George (1994);

• g = n/ki with ki as the number of covariates in model Mi;

• g =
√
n;

• g = max(k2, n), the so-called benchmark prior by Fernandez et al. (2001a).

Placing an hyperprior on g, instead, would mean building a hierarchical Bayesian
model: in other words, g is considered as a random variable with a given prior distri-
bution defined hyperprior, which in turn depends on some parameter (hyperparame-
ters) chosen by the researcher. In this way the estimation proceeds as a chain from
the hyperprior to the prior to the final posterior; the use of hyper-priors is very com-
mon in Bayesian Statistics or Econometrics as it allows to avoid the choice of a fixed
value parameter which can be sometimes quite arbitrary, enhancing the flexibility
and the precision of the method. The choice of hyperpriors and hyperparameters,
moreover, is not so strict as the one requested for the typical prior and its parameter.
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The major drawback of using hyperpriors is the complexity involved, especially from
a computational point of view43.

Despite the use of a fixed value g or a hyperprior on g, what should be the
main concern, especially in a BMA framework, is that such a choice, so as the more
general choice for a prior, is fundamental and heavily determinant in the definition
of posterior distributions for both parameters and model too (as we will se in the
next subsection): in general, there is not such a universal choice which will work
in the same manner for every kind of data; furthermore a lot depends also on the
methodology used since a particular prior can work extremely well under a particular
design, but poorly performs under a different one. Unfortunately, robustness to prior
choices is a “quite” difficult objective to reach.

Posterior model distribution: the model prior

Let us start by the formal definition of the posterior model distribution through
Bayes’ rule:

P (Mi|y) =
p(y|Mi)P (Mi)∑︁M
j=1 p(y|Mi)P (Mi)

(1.22)

where p(y|Mi) is the marginal data density44 and P (Mi) the prior distribution of
model i. Before examining these two elements in detail, it is worth noting that the
posterior model probability is also the main ingredient in Bayesian model selection,
where the aim is to find the specification which maximizes it45. As a consequence, the
methods used in this section for computing the model posterior in model averaging,
can be extended without loss of generality to model selection too.

The prior distribution P (Mi) is chosen by the “model builder” according to its
belief: the general procedure is to assume that models are equally probable (uni-
form distribution, P (Mi) = 1

|M| where |M| identifies the cardinality of the set M)
when there is little awareness or information about the distribution (diffuse prior);
otherwise a very common alternative is the Binomial one:

P (Mi) =
k∏︂

j=1

π
δij
j (1− πj)

1−δij

where given k total variables, 0 ≤ πj ≤ 1 is the prior probability that the j-th variable
is significant and δij is an indicator of the variable inclusion in the model46. When
a common π is assumed, the Binomial prior can be expressed as:

P (Mi) = πki(1− π)k−ki

with ki as the number of regressors in Mi. Notice that π < 0.5 will imply that
parsimonious models are more probable a priori, whereas π > 0.5 will favor larger

43Some applications of hyperpriors in BMA literature are Zellner and Siow (1980); Liang et al.
(2008).

44Sometimes named as marginal likelihood.
45Sometimes, instead of using the model posterior, the marginal data density is used for model

comparison: the ratio between two different marginal data density is known as Bayes Factor.
46Notice again that if πj = 0.5 we fall in the case of uniform distribution; and if πj = 1 variable

j is always included (in every model).
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models. If we further assume a common inclusion probability π distributed as a Beta
with parameters a, b we end up with the Binomial-Beta47:

P (Mi) =
B(ki − 1 + a, k − ki + b)

B(a, b)

with B() the Beta distribution.
According to these distributional forms, it is supposed that the inclusion of one

variable is independent of one another: this is often not true in practice due to the
correlation. A plausible alternative is the so-called dilution prior, where a correction
term is added to include this effect; however, the possible benefits from a practical
point of view are still under analysis48.

Posterior mode distribution: the marginal data density

It should be quite obvious how the prior model distribution is not a concern from
a computational point of view; what, instead, is much more troublesome to compute
is the marginal data density. In mathematical terms:

p(y|Mi) =

∫︂
p(y|βi,Mi)P (βi|Mi)dβi (1.23)

with p(y|βi,Mi) as the likelihood in Mi and P (βi|Mi) the prior on the correspondent
parameter βi.

The integral involved does not often have a closed expression: a remarkable
example of an explicit solution is the linear model, where assuming the previous
Normal-Inverse Gamma set-up leads to:

y|Mi ∼ t

(︃
Xiµ0,

b0
a0

(I +XiV0X
T
i )

)︃

p(y|Mi) =
b
a0
0 Γ(a0+

n
2
)

(2π)
n
2 Γ(a0)

|I +XiV0X
T
i |−

1
2 [b0 + (y −Xiµ0)

T (I +XiV0X
T
i )

−1(y −Xiµ0)]
a0+

n
2

with Xi as the regressor matrix in model Mi, t() as a Student t distribution and
Γ() as the Gamma function. Recalling Fernandez et al. (2001a), the marginal data
density under a Zellner-g prior for β and an improper one for α and σ2 becomes:

p(y|Mi) ∝
(︃

1

1 + g

)︃ ki
2
[︃
(y − ȳι)T (y − ȳι)

(︃
1− g

1 + g
R2

i

)︃]︃n−1
2

where I assume the same notation as the previous part.
From these expressions it is possible to verify the influence of the parameter prior

on the marginal data density too: the Zellner-g prior set-up, in particular, allows
to extend the previous analysis on the choice of the scalar g in model comparison
frameworks.

In the case of parameter posterior, high values of g will imply the prevalence
of the likelihood function over the prior; in model averaging or selection problems,
instead, they will also lead to a strong preference for parsimonious models. However,

47The parameters a and b are in general defined ad hoc.
48For a detailed example in an economic scenario see Durlauf et al. (2008).
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allowing g → ∞ will produce the so-called Lindley paradox, that is the preference
for the null model (model with only the constant term) over any others. A correct
evaluation of priors, therefore, becomes again a crucial and fundamental aspect to
consider.

Apart from linear models closed formula solutions for marginal data density are
extremely rare, so we have to rely on approximations, a common distinction is be-
tween a) analytical approximations; b) numerical approximations (sampling).

I will turn attention on the first category for the rest of the subsection mainly
because they are extremely common and used in practice; as for the second one
what can be said is that it will produce more precise estimates, but it requires a full
Markov Chain Monte Carlo for each model to be computed (see Chib (1995)), hence
it would be very time consuming if an additional sampling were performed on the
model space as well.

The most known analytical approximation is based on the so-called Laplace’s
method : assuming P (β|y,Mi) ∝ P (y|β,Mi)P (β|Mi) peaked in its maximum49 β∗

the Laplace method builds a Taylor expansion up to the second order of the log-
posterior around β∗ and after exponentiating obtains a normal distribution with
mean β∗ and variance equal to Σ∗ = (−H(β∗))−1, with H() as the Hessian of the
log-posterior.

Integrating this new expression leads to:

p(y|Mi) ≈ (2π)k/2|Σ∗|
1
2 p(y|β∗,Mi)P (β∗|Mi) (1.24)

where k is the dimension of β. As the sample size grows to infinity the approximation
improves and the error term is negligible50.

In practice, however, (1.24) is somehow modified, in particular a very used vari-
ation is defined by substituting β∗ with the Maximum-Likelihood (ML) estimator
and Σ∗ with the information matrix. The accuracy is lower, especially if the prior on
the parameter vector has some informative power, but the calculation is much more
easier51.

Before concluding a useful remark is necessary: following Raftery (1996) it is
possible to compute the posterior model probability as

P (Mi|y) =
P (Mi)
P (M0)

Bi,0∑︁M
j=1

P (Mj)
P (M0)

Bj,0

(1.25)

where Bi,0 = P (y|Mi)
P (y|M0)

is the Bayes Factor between the i-th model and a reference
one (M0), in general, the model with the only constant. As a matter of fact, (1.25)
is only apparently a remedy to our problems, as the computation of Bayes Factor
implies the one of marginal data density.

It could be proven that a similar approximation to the Laplace’s one for the whole
Bayes factor is available, and if additional conditions are met, notably a normal prior

49In general this corresponds to the case where the likelihood is peaked in its maximum β̂ too.
50The thumb rule is the following: in order to have a good approximation the sample size must

be at least bigger than 5k; the optimal result is achieved for values bigger than 20k.
51See Kass and Vaidyanathan (1992); Kass and Raftery (1995); Bollen et al. (2012) for the general

framework.
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on the parameters, the resulting formula is quite simple52.
A rough, but sometimes used approximation for the Bayes Factor is provided by

the difference Si,0 between the Schwarz Criteria (BIC) of the two models:

Si,0 = log p(y|βi,Mi)− log p(y|β0,M0)−
1

2
(ki − k0) log(n)

where log p(y|βi,Mi) is the log-likelihood of Mi, ki the number of parameters in
the correspondent model and n as the number of observations. Following Kass and
Raftery (1995):

log(Bi,0)− Si,0

log(Bi,0)
→ 0

Notice how this calculation neglects prior specifications, and implicitly assumes
exp(Si,0) → Bi,0, but as a matter of fact, the violation of this last condition is more
common than one could expect53.

At this point, it is quite clear that we can follow different paths to determine
P (Mi|y): using (1.22) with the Laplace approximation for the marginal likelihood or
(1.25) with the Bayes Factor. Regardless of the choice, we incur in a computational
issue, i.e. both denominators have calculations over the whole model space which
can be easily huge, hence some refinements are requested.

Posterior model probability: a further look

Computing directly model posteriors via (1.22) could be extremely demanding
from a computational point of view, due to the impact of the normalizing factor
i.e. the denominator. A plausible alternative with the not negligible advantage of
avoiding this computation, could be building a Markov Chain Monte Carlo simulation
which moves inside the model space and allows for the specification of P (Mi|y) as
the number of transitions in Mi, normalized for the total amount of iterations.

The idea is mutated from the Metropolis-Hastings scheme (Hastings, 1970): given
a model space M and a starting specification Mi, we sample Mj from a transitional
kernel q(Mj |Mi), which represents the probability of the movement from Mi to Mj

and accept this one with probability ρ(Mi,Mj) defined as:

ρ(Mi,Mj) = min

{︃
1,

P (Mj |y)q(Mi|Mj)

P (Mi|y)q(Mj |Mi)

}︃
, Mi → Mj (1.26)

where P (Mj |y) is the target distribution computable as before.
Following this method we exploit the convergence property of the Markov Chain,

which allows us to identify important specifications with a higher precision than
common approximation methods.

Notice, moreover, that P (Mj |y)q(Mi|Mj)
P (Mi|y)q(Mj |Mi)

can be rewritten as:

P (Mj |y)q(Mi|Mj)

P (Mi|y)q(Mj |Mi)
=

p(y|Mj)P (Mj)q(Mi|Mj)

p(y|Mi)P (Mi)q(Mj |Mi)

where we exploit the fact that the normalizing constant simplifies.
52See Raftery (1996) for the full explanation.
53Kass and Wasserman (1995) is the main reference for this problem and how to handle it.
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What remains to be defined is q(Mj |Mi), which identifies the proposal distribu-
tion of how models are sampled in the chain from the current Mi. It is built according
to the definition of the neighborhood of the current model: by neighborhood we gen-
erally mean models which directly derives from the current one through addition,
deletion or switching of variables. The original framework, known as Markov Chain
Monte Carlo Model Composition (MC3) due to Madigan et al. (1995), assumes a
symmetric and uniformly distributed kernel: starting from model Mi we move to a
model either with a variable more or with a variable less with the same probability54,
in particular if k is the total number of regressors, q(Mj |Mi) =

1
k , ∀i, j.

As an example consider the case of four regressors x1, x2, x3, x4 and the cur-
rent specification as Mi = (x1, x2, x3): following the scheme we can end up in
Mj = {(x1, x2); (x1, x3); (x2, x3); (x1, x2, x3, x4)} each one with probability 0.25. The
symmetry in the kernel also implies that the return movement q(Mj |Mi) has the same
probability.

This leads to:

ρ(Mi,Mj) = min

{︃
1,

P (Mj |y)
P (Mi|y)

}︃
, Mi → Mj

Unfortunately, despite its simplicity, the original MC3 pattern has several draw-
backs: firstly it includes only local moves, i.e. only one variable per time is changed,
as opposed to global ones where many variables are changed; secondly, some specifi-
cations are not considered at all through the iterations; finally from a computational
point of view as k grows or there is a high correlation between regressors, the con-
vergence can be very slow.

Many solutions have been proposed in the literature, notably the introduction
of different kernels q() (Hans et al., 2007; Bottolo and Richardson, 2010), or even
totally new sampling methods (Clyde et al., 2011; Hastie, 2005; Lamnisos et al.,
2013): we will briefly cover the Shotgun Stochastic Search (Hans et al., 2007) for the
first case and adaptive sampling by Lamnisos et al. (2013) for the second one for
their theoretical and computational contribution.

In Shotgun Stochastic Search the neighborhood of a generic model Mi is split
into three subsets according to additions moves (M+

i ), where all specifications with a
variable more are considered; deletions moves (M−

i ) with all models with a variable
less; and replacement moves (M0

i ) with models with the same dimension obtained
by swapping a variable55.

From each one a specific model (proposal) is sampled using a probability pro-
portional to a score function defined as S() = p(y|M)P (M) normalized within the
set, and finally the new model is sampled among these three according to the up-
dated score for the three proposals. The computational burden of the operation is
dramatically reduced by the means of parallel computing.

54Notice that the “switch” case, i.e. the substitution of a variable with another one without
changing dimensionality, is not considered.

55It is actually possible to consider bigger movements, that is changing more than one single
variable per time.
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It can be shown how the standard acceptance probability could be rewritten as:

ρ(Mi,Mj) = min

{︃
1,

∑︁
s∈nbd(Mi)

p(y|Ms)P (Ms)∑︁
s∈nbd(Mj)

p(y|Ms)P (Ms)

}︃
, Mi → Mj

where nbd(Mi) indicates exactly the set of models (M+
i ∪M−

i ∪M0
i )

56. SSS leads
to a great boost in convergence time as the proposal identifies, through the score
function, more probable models with a higher frequency.

Turning the discussion to the second case, i.e. when the whole sampling scheme
is modified, an appealing tool whose importance has grown incredibly in recent year,
is the adaptive MCMC simulation.

Intuitively, an adaptive MCMC tunes some parameters of the chain automati-
cally by inserting additional information at each or at some iteration. This can be
thought of as a sort of learning mechanism which enhances the quickness of the con-
vergence and the mixing capacities. The additional information could come from the
past history (or some statistics based on the past history) of the chain, or in more
advanced studies from simultaneously launching the simulation via parallel program-
ming. However in doing this the Markov property is broken, so the convergence of
the MCMC to an invariant distribution is not guaranteed anymore. In Atchadé and
Rosenthal (2005); Roberts and Rosenthal (2007, 2009) some criteria are shown to
reestablish similar properties, in particular it is requested a diminishing importance
of the learning as the number of iterations grows.

Lamnisos et al. (2013) is an example of adaptive methods for model search:
in particular starting from model movements which include addition, deletion and
switching as equally probable, the number of the changing variable from a model to
another is the object of the adaption. It is assumed that this quantity is generated
from a Binomial distribution with probability of success equal to ζ and number of
trials K − 1 where K is the maximum amount of variables that can be changed. In
general, K is chosen ad hoc, and only the parameter ζ is updated inside the Markov
Chain for model dynamics: small values of ζ lead to few changes (local movements),
high values imply instead the contrary (global movements). It can be proven that
adaption leads to a better exploration of the model space avoiding the controversial
choice of the number of changing variables; a quicker and a more efficient convergence
may be established as well.

1.3.3 BMA in practice

So far we have analyzed the individual components of (1.19) separately, however
it seems appropriate to move towards a more complete and wider perspective, trying
to consider how de facto BMA is used: it is said that “in theory there is no difference
between theory and practice, but in practice there is” and nothing is more valid in
this context than this statement.

If we are lucky enough to have analytical formulas it could be reasonable to use
directly (1.19-1.21): since the mixture distribution involved by the model averaging

56It is a common assumptions to reduce the cardinality of this whole set by erasing the elements
with the lowest score up to a threshold arbitrarily chosen.
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posterior distributions is often complex to be handled, only the posterior mean and
variance are computed. The major problem is related to the cardinality of the
model space: remember that with k variables excluding the constant term, there are
2k potential models to analyze, an amount that can grow extremely fast with the
addition of new covariates.

The most known solution is probably the Occam’s window by Madigan and
Raftery (1994) which simply reduces the models to be considered exploiting two
simple principles:

1. if some models are significantly worst than the best one according to the poste-
rior model distribution than these are removed. The threshold for significance
is in general chosen arbitrarily;

2. exclude complex models if simpler (nested) ones receive major support from
data (P (Mi|y)).

Occam’s window can greatly reduce the elements of the summation over the model
space, however there are still some drawbacks: in order to perform the procedure the
whole model set must be mapped at least once, hence we will save time in computing
E(β|y) and V (β|y) for the sole selected set, but P (Mi|y) will be calculated for every
model57.

This leads to the second approach for BMA, MCMC simulations for a numeri-
cal approximation of P (Mi|y), without the necessity of the normalizing factor. The
classical choice is the MC3 framework with symmetric and uniform movements,
which can be easily generalized with different model proposals as we have seen in
subsection 1.3.2. If analytical formulas for the marginal data density are available
no problems should emerge, otherwise a very common solution is the already men-
tioned Laplace’s approximation. Model averaged posterior moments are then easily
obtained, provided model specific posterior moments have a closed formula.

As a matter of fact, the main difficulty that could be faced adopting this pro-
cedure is the lack of analytical formulas for moments too: approximations can be
used, but their applicability could be questioned, especially, when they are applied
for even the marginal data density.

It could be appealing to sample parameters simultaneously with the sampling of
models, in this way, we could not only obtain model averaging posterior distribution
for parameters, but also solve the previous issue concerning moments by using their
sample counterpart.

Unfortunately, trying to accommodate the standard MCMC design to these new
requirements is quite troublesome and actually arises many questions regarding how
to proceed: sampling parameters at each accepted model during iterations is mean-
ingful as long as we do know ex-ante their posterior, but when this is not possible,
every time we change model specification, the chain on the parameter in that par-
ticular model is broken.

We could try to run a whole MCMC on the parameter after a first one on the
model space is concluded, so that to sample exactly many parameters as many time
each model appears, avoiding every problem during the first MCMC. But is it truly
optimal? Not really, first of all because we treat the two MCMCs separately.

57And the related marginal data density is the big computational problem!



38 CHAPTER 1. LITERATURE REVIEW

For this reason the classical BMA approach, i.e. the one depicted in this part,
is particularly suitable for linear models, where analytical expression are available,
but becomes unfeasible in more general contexts such as the one considered in this
work i.e. Generalized Linear Models. Next chapter will introduce the modern BMA
framework, where we can actually simultaneously sample model and parameters,
overcoming this huge limitation.



Chapter 2

Reversible Jump MCMC and
Parallelization in Gretl

In the previous Chapter we have seen a brief and hopefully comprehensive dis-
closure of the main model building strategies: model selection on the one hand and
model averaging on the other.

The impossibility of recognizing the true Data Generating Process leads to po-
tential uncertainties in model selection, inducing potential wrong conclusions; model
averaging, instead, deals with this issue directly, guaranteeing more robust and more
accurate estimations. Some applications of model averaging in Economics were pre-
viously outlined, but what seems really interesting is the few attention for Microe-
conometrics, so the main focus of this Chapter will be providing a software imple-
mentation via Gretl of Bayesian Model Averaging (BMA) for Generalized Linear
Models (GLMs), where, for example, binary choice models reflect economic agent
behavior in terms of taking a particular action or not.

The choice of a Bayesian framework could be motivated by its great flexibility
and potentiality: despite the Frequentist counterpart, BMA leads directly to poste-
rior model probabilities together with the probability of inclusion for each singular
regressor, making inference immediate; statistical properties such as consistency in
the model choices1 (Fernandez et al., 2001a) or estimates which minimize the Mean
Squared Errors (Raftery and Zheng, 2003) are easily verified too and, finally, the
applicability in finite-sample contexts is not negligible as well.

However, the choice of BMA is not painless as it could appear either: the choice
for prior distributions is often crucial and in case of GLMs analytical formulas are
generally not available neither for the posterior model distribution nor for the pos-
terior parameter distribution. The classical BMA methodology, as we have seen
previously, is tailored for linear models (which of course are a special case of GLM),
but unless we are ready to use lots of approximations or to apply two-step procedures
for posterior parameter distributions, it is quite inadequate in a more general context
like this one.

The modern BMA approach is the answer to the problem: the idea is to build a
MCMC which samples simultaneously parameters of interest and the related models,

1Model choice consistency refers to the fact that if the data have been generated by a specific
model inside the model space, as the sample size grows, the posterior distribution of that model
should converge to unity.

39
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in doing so not only it is possible to derive model averaging parameter posteriors,
but also the new Markov Chain target distribution allows for some computational
gains in terms of not approximating model posteriors.

Different methods are available, but the Reversible Jump Markov Chain Monte
Carlo (RJMCMC) by Green (1995) seems to be the more adherent to the scope
of this work due to its greater flexibility, so the software implementation will be
entirely based on this technique. RJMCMC can be considered as a modification of
the standard MCMC framework sketched in the previous Chapter, where, instead of
focusing only on models, the joint posterior of parameters and models is the target
distribution of interest: in this way the different dimensionality of parameters is
taken into account leading to a sample scheme for parameters too.

The focus of this Chapter, however, is not much on the methodology applied,
which is already known and has already been used in the context of model selection
(Lamnisos et al., 2009), but on the software implementation of this one in a BMA
context for GLMs: in doing so, several computational aspects which were often
ignored and commonly not considered in previous available software packages are
now analyzed, first of all the parallelization of the MCMC thanks to the new MPI
(Message Passing Interface) support provided by Gretl. The idea of parallel MCMCs
seems a bit counterintuitive mainly because parallelization works extremely well in
standard Monte Carlo experiment where statistical independence between drawings
can be established, but is actually feasible even with sequential processes. Not only
under some circumstances we can gain a massive boost in CPU time, but we can
enhance the exploration of the model/parameter space too.

In particular, the here-proposed Gretl package will deal with binary and count
models2 (offering different choices for the link function) with flexibility in the choice
of parameter priors, model movement kernel, and finally the already mentioned pos-
sibility of parallelization. Therefore, a quick solution for model building in common
microeconometric problems is proposed, making it simple, even for the common user,
to perform such a complex procedure.

The Chapter is organized as follows: Section 2 sketches the statistical background
of GLMs (very briefly) and of RJMCMCs, with great attention to the original idea
of a plausible “automated” choice of MCMC (Green, 2003); Section 3 describes the
concept of running multiple MCMCs in parallel and the related convergence issues.
I will devote Section 4 to describing the peculiarities of this Gretl package, since
different computational aspects will be analyzed. A simple empirical illustration is
also offered whose scope is to underline the impact of model averaging compared to
a standard estimation strategy and the gains due to parallelization.

2.1 Statistical background: GLMs

Let y1, ..., yn be n observations of a dependent variable from the exponential
family with density function f(y):

2Linear model are non analyzed because common MCMCs routines can be easily applied with
greater efficiency than the RJMCMC (due to the availability of closed formulas). Moreover BMA
packages for linear models are available in almost any statistical-econometric software.
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f(yi) = exp

[︃
yiθi − b(θi)

ai(ϕ)
+ c(yi, ϕ)

]︃
where θi and ϕ are respectively a location and a scale parameter, a(), b(), c() are
known functions.

It can be shown that:

E(yi) =
∂b(θi)

∂θi

V (yi) =
∂2b(θi)

∂θ2i
ai(ϕ)

The design of Generalized Linear Models assumes that, given a set of k regressors,
the mean E(yi) = µi is related to these covariates by the following expression:

l(E(yi)) = ηi = xTi β (2.1)

where l() is known as link function, and ηi = xTi β is the usual linear predictor. Ac-
cording to the formulation of the link l, we can model data from the exponential
family, which ranges, for instance, from the canonical Gaussian distribution to Bi-
nomial or Poisson ones3: in the Gretl package here proposed, in particular, the link
functions included are

Distribution yi Model Link function
Bernoulli Binary choice Probit

Logit
Cloglog

Poisson Count Log

In order to fully understand which problems arises in a Bayesian framework, let
us assume, as an example, that we are dealing with binary data yi ∼ Be(µi) and
suppose a logit link function:

xTi β = log

(︃
µi

1− µi

)︃
→ µi =

exp(xTi β)

1 + exp(xTi β)

It can be shown quite easily that the likelihood function is given by:

p(y|β) =
n∏︂

i=1

[︃(︃
exp(xTi β)

1 + exp(xTi β)

)︃yi(︃
1− exp(xTi β)

1 + exp(xTi β)

)︃1−yi]︃

and if the prior on β4 is normal N(µ0, V0), the resulting posterior has no more a
closed expression (and implicitly the resulting moments too):

3The linear model is a particular case of GLM which derives from the identity link function,
however in the rest of the work I will refer the term GLMs to non-linear cases such as Binomial or
Poisson models.

4In the binary framework the only parameter of interest is β.
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p(β|y) ∝
n∏︂

i=1

[︃(︃
exp(xT

i β)

1 + exp(xT
i β)

)︃yi
(︃
1− exp(xT

i β)

1 + exp(xT
i β)

)︃1−yi
]︃
×exp

(︃
−1

2
(β−µ0)

TV −1
0 (β−µ0)

)︃
The same argument can be extend for other kinds of models and link functions5,

so it could be appealing to find a different path, i.e. sampling, with the chance of a
general framework that could be used for any or almost many link functions6.

A powerful idea is provided by Gamerman (1997) which exploits Fisher’s result on
maximum-likelihood estimation of GLMs, in particular we can obtain an equivalent
Frequentist estimator using Iterative Weighted Least Squares on the transformed
variable z = η + (y − µ) ∂η∂µ , where η, y, µ are the matrix correspondents of ηi, yi, µi;
in particular:

β̂ = (XTWX)−1XTWz (2.2)

where the weight matrix W is defined as diagonal with elements:

wi =

[︃
∂2b(ηi)

∂η2i

(︃
∂ηi
∂µi

)︃2]︃−1

The value of z is the one updated step by step via η̂ = XT β̂.
Gamerman (1997) transposes this procedure in a Bayesian viewpoint, starting

from a normal prior on β with mean m0 and variance-covariance matrix V0, i.e.
β ∼ N(m0, V0), proposes the following sampling scheme mutated from Metropolis-
Hastings MCMC:

1. Set as initialization β0;

2. At the i-th iteration, sample β(i) from the proposal q(β|β(i−1)) = N(m(i), V (i)),
where:

V (i) = (V −1
0 +XTW i−1X)−1 (2.3)

m(i) = V i(V −1
0 m0 +XTW i−1zi−1) (2.4)

where for the computation of zi−1,W i−1 we use β(i−1);

3. Accept the new parameter with probability α(β(i−1), β(i)) and set β(i) = β(i),
otherwise β(i) = β(i−1). The accept-reject probability is defined as in standard
Metropolis-Hastings scheme as:

α(β(i−1), β(i)) = min

[︃
f(β(i)|y)q(β(i−1)|β(i))

f(β(i−1)|y)q(β(i)|β(i−1))
; 1

]︃
where f(β(i)|y) ∝ f(y|β(i))f(β(i)), that is the product between likelihood function
and prior; q(β(i)|β(i−1)) is a normal density evaluated at β(i) with mean and

5Binary/multinomial data with probit or logit links, or the count model with the logarithm link
are all examples of not analytical posteriors.

6Different sampling schemes can be proposed, but it is quite difficult to find a sufficient general
framework which can embody different GLMs: of course, there is a lack in efficiency, but the
flexibility is of primary interest in our case.
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variance, respectively, equal to eqs. (2.3) and (2.4); the same argument is valid
for q(β(i−1)|β(i)) with β(i) used to compute the mean and variance of the normal,
evaluated this time in β(i−1).

2.2 BMA in GLMs: a brief overview

As we have already seen, BMA is primarily concerned with the computation of
the mixture distribution:

P (β|y) =
M∑︂
i=1

P (β|Mi, y)P (Mi|y)

and the related moments:

E(β|y) =
M∑︂
i=1

E(β|y,Mi)P (Mi|y)

V (β|y) =
M∑︂
i=1

[︁
V (β|y,Mi) + E(β|y,Mi)

2
]︁
P (Mi|y)− E(β|y)2

where it is assumed the same notation of Chapter 1.
However, unlike linear models, no analytical solution are provided under stan-

dard prior set-up7 for neither moments nor model posteriors, so the canonical BMA
application based on the directly exploitation of the above formulas, maybe with the
Occam’s window help or the MCMC framework, seems to be a bit restrictive. Com-
mon routines, quite often applied in practice involve the use of maximum-likelihood
estimators and the corresponding variance as proxies for posterior moments, and the
use of Laplace or BIC approximations for posterior model distributions. Neverthe-
less, all of these shortcuts heavily rely on some regularities conditions which are often
not met in practice, so their contribution may be questionable8 and incomplete.

A generalization of the standard paradigm is required, and two alternative con-
tributions in this direction are the Reversible Jump Markov Chain Monte Carlo
(RJMCMC) by Green (1995) and the Stochastic Search Variable Selection (SSVS)
by George and McCulloch (1993). RJMCMC can be literally considered as a mod-
ification of the MCMC framework for model exploration where, instead on focusing
only on models, parameters and models are jointly sampled: at each step a specifica-
tion is proposed and the related parameters are attached not using another sampling
scheme, but simply transforming the ones of the previous step via an ad-hoc func-
tion. The potential different dimensionality between parameters is taken into account
thanks to the so-called matching variable, which acts as a substitute parameter in
order to balance the overall dimension9. In Green (2003); Green and Hastie (2009);

7The Normal distribution is an example.
8As an example consider the article by Amini and Parmeter (2011), who analyzes different BMA

packages for linear models in R, comparing their different outputs.
9Further details can be found in the next section.
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Hastie and Green (2012) the general framework is extended to consider model se-
lection and automated procedure; whereas some notable contribution in GLMs are
Holmes and Held (2006); Fouskakis et al. (2009); Lamnisos et al. (2009).

SSVS, instead, tackles the problem of simultaneous sampling by using the Gibbs
MCMC via data augmentation: parameters are sampled from their posterior distri-
bution conditioned on the model, which in turn are used to sample the model from
the posterior model probability conditioned on the parameters. Parameters are al-
ways drawn from the full model, avoiding any transdimensional transformation and
in case a variable is likely to be absent, its related probability in the conditional
model posterior and consequently the sampled parameter, are set near zero. Nev-
ertheless, the definition of the conditional posterior model distribution is far from
being simple, and depends heavily on the model set-up (linear models, binary ones,
etc.10).

The computational efficiency is surely higher for SVSS, but it lacks of flexibility:
in RJMCMC the same sampling scheme can be applied for different kind of GLMs,
a feature precluded in SVSS, and for this reason RJMCMC is the framework here
adopted11. Notice, moreover, how both procedures lead to the model averaging
posterior distributions and moments by simply handling accordingly the sampled
values.

Before concluding it is intriguing to discuss a third possibility which comes up
besides RJMCMC and SSVS: the framework illustrated by Chen et al. (2008). As-
suming parameter conjugate priors as stated in Chen and Ibrahim (2003) results in
posterior model probabilities computable drawing drawing only two MCMC sam-
ples: one from the posterior distribution and one from the prior distribution of the
parameters under the unrestricted model. In this way common model comparison
measures (Bayes factor) can be easily derived, and at the same time, model averaging
quantities too, with the not negligible advantage of the conjugate prior set-up.

2.3 Reversible Jump Markov Chain Monte Carlo

The Reversible Jump Markov Chain Monte Carlo (Green, 1995, 2003), allows to
sample the parameter of interest β, accounting for its potential different dimension
iteration per iteration: this corresponds, for instance, to the case in which across
simulations we are investigating different models for the parameter, such as from a
general one with many covariates to some more specific ones with few.

This is accomplished by introducing a differentiable function (βj , uj) = g(βi, ui)
which maps the current βi of dimension ki into a different space of dimension kj ,
which corresponds to βj . In this way, it is possible to connect different drawings with
different dimensionality, an aspect that is ignored in classical MCMC applications.
The variable ui is the so-called matching variable: it is assumed to be a random
variable (a standard Normal or a Student t), whose scope is nothing but guaranteeing
that the total dimension of the space given by (βi, ui) is equal to the dimension of
(βj , uj). This is the most important assumption that must hold during the MCMC,

10Frühwirth-Schnatter and Wagner (2006); Frühwirth-Schnatter and Frühwirth (2007, 2010);
Frühwirth-Schnatter and Wagner (2010) are some examples.

11RJMCMC can be easily applied to not nested cases too, whereas, for SSVS, nesting is a funda-
mental requirements.
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as a consequence, the variable ui contains the potential parameters which are deleted
or added in order to match the dimensionality of βj and vice versa.

For example suppose that βi is a vector of elements (βi1, βi2), and we want to
obtain a βj = (βj1, βj2, βj3) as βj = g(βi); since the dimension of βj is greater than
the dimension of βi, we need to add to βi a variable u whose dimension is simply the
difference between the two. Therefore βj = g(βi1, βi2, ui1).

In our context we can identify the indexes “i ” or “j ” by the correspondent model
specification of each β, hence βi refers to βMi .

The general framework starts from the definition of the target distribution,
P (βi,Mi|y):

P (βi,Mi|y) ∝ p(y|Mi, βi)P (β|Mi)P (Mi)

where p(y|Mi, βi) is the likelihood of model Mi; P (β|Mi) the prior on the parameter
conditioned on the model, and finally P (Mi) the prior distribution of the specifica-
tion.

The RJMCMC algorithm samples the couple (βj ,Mj), given the current state
(βi,Mi) firstly proposing a model movement from Mi to Mj with probability given by
the kernel q(Mj |Mi), and then deterministically computing (βj , uj) = g(βi, ui). The
required matching variables are generated accordingly, and the overall acceptance
probability of the movement is12:

ρ = min

[︃
P (βj ,Mj |y)f(uj)q(Mi|Mj)

P (βMi ,Mi|y)f(ui)q(Mj |Mi)

⃓⃓⃓⃓
∂g(βi,Mi;ui)

∂(βi,Mi;ui)

⃓⃓⃓⃓
; 1

]︃
(2.5)

where f() denotes density functions, ∂g(βi,Mi;ui)
∂(βi,Mi;ui)

the Jacobian of the transformation
g() which is requested in order to take into account the change of measurement from
(βi, ui) to βj , uj .

As a matter of fact the framework can be further generalized: the function g()
can be substituted by a proposal kernel for the parameter β,

ρ = min

[︃
P (βj ,Mj |y)q(Mi|Mj)q(βi, ui|βj , uj)
P (βMi ,Mi|y)q(Mj |Mi)q(βj , uj |βi, ui)

; 1

]︃
where the proposal q(βj , uj ,Mj |βi, ui,Mi) = q(Mj |Mi)q(βj , uj |βi, ui) allows to
specify separately the model movement q(Mj |Mi) from the parameter proposal
q(βj , uj |βi, ui)f(ui), where we need to account for the generation of the random
variable ui

13.
Great attention should be devoted to the choice of correct proposal kernels and

transformation functions: as pointed out by Green (2003), this choice is crucial and

12In Godsill (2001, 2003) some additional considerations and remarks regarding RJMCMCs are
provided.

13Notice how the previous scheme is actually a particular case of this one: the variable u is
generated from a standard Normal ad then deterministically via g() the new parameter is generated.
In this case q(βj , uj ,Mj |βi, ui,Mi) reduces to q(Mj |Mi)f(ui), but the Jacobian term needs to be
added. Moreover, it is implicitly assumed that both schemes, the one which uses the function g()
and the one which uses a proposal q(βj , uj |betai, ui) can be combined too.
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the closer they are to the real posteriors, the more efficient the chain is14. Quite un-
fortunately this choice is often troublesome, but a fair compromise is provided in the
next Subsection, following the idea of a plausible automated method for RJMCMCs.

2.3.1 An automated RJMCMC for GLM

In Green (2003); Green and Hastie (2009) and, especially in Lamnisos et al.
(2009, 2013) we find a particularly suitable function g() for GLMs15: assume that
the parameter βi has posterior mean µi and variance Vi, then the transformation
function from (βi,Mi) to (βj ,Mj) = g(βi,Mi) could be16

βj = g(βi,Mi, ui) = µj +Bjυ (2.6)

where B is the Cholesky decomposition of the correspondent covariance matrix, µj

and Vj the mean and variance of βj and υ is defined as:

υ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[RB−1

i (βi − µi)]
kj if kj < ki

RB−1
i (βi − µi) if kj = ki

R

(︄
B−1

i (βi − µi)

u

)︄
if kj > ki

with k as the number of variables, R a random permutation matrix; the notation
[...]kj indicates the first kj elements of the vector and finally u, a kj − ki vector
of random numbers with density f(), in general a standard normal. Notice that
the parameter β is actually treated as a multivariate normal, which in a first step is
standardized and then the mean and covariance matrix of the new model are attached
to it. The normal choice could be questionable, but Green (2003) shows how this
proposal is a good compromise between efficiency of the chain and simplicity.

The probability (2.5) becomes:

ρ = min

[︃
P (βj ,Mj |y)q(Mi|Mj)

P (βi,Mi|y)q(Mj |Mi)

|Bj |
|Bi|

G; 1

]︃
(2.7)

with q(Mj |Mi) as the model transitional kernel, where we implicitly assume its in-
dependence from the sampling of β, and:

G =

⎧⎪⎨⎪⎩
f(u) if kj < ki

1 if kj = ki

f(u)−1 if kj > ki

The independence of the kernel from the parameter allows us to separately de-
termine the model movements from those of the parameters, in particular we can

14Some contributions in this direction are Brooks et al. (2003) and Barker and Link (2013): the
former extends the framework considering efficient proposal distribution, whereas the latter trans-
forms the RJMCMC into a Gibbs sampling with potential tremendous advantages in computational
terms.

15Another interesting approach for only binary data is provided by Holmes and Held (2006).
16It turns out that this kind of transformation is particularly suitable for GLMs with a unique

parameter vector to estimate, such as the ones for binary or counting models: in linear models, on
the contrary, the parameters of interest are β and σ, each one with its particularity. For this reason
this particular function is not recommended and additional modifications are required.
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select firstly the new model Mj , and then its related βj via the function g(). The
permutation matrix R makes the movements to lower dimensional models stochastic
and actually plays no role in the acceptance ratio.

Notice that if the posterior parameter distributions P (βi|Mi, y) are actually Nor-
mal, (2.7) reduces to the common MCMC acceptance rate:

ρ = min

[︃
P (Mj |y)q(Mi|Mj)

P (Mi|y)q(Mj |Mi)
; 1

]︃
via the fact that P (βi,Mi|y) = P (βi|Mi, y)P (Mi|y).

2.3.2 Prior choices and how to approximate µ and V

The sample scheme here defined represents a general solution for model building
problems, but, actually, its effectiveness depends a lot on the regularity of the data,
the quality of the approximations µi and Vi, and, of course, the prior choices.

Obviously, this final element plays an important role which is exacerbated in this
context by the fact that the acceptance probability (2.7) depends heavily on these
via the joint posterior P (βi,Mi|y) and the Jacobian term. It could easily happen for
example, that a particular prior choice for a peculiar GLM, performs poorly when
we use a different GLM.

The definition of priors which is here proposed follows the common routines in
BMA literature, that is:

βi|Mi ∼ N(µ0,i, V0,i)

represents the prior of β on model Mi, with respectively, prior mean µ0,i and prior
variance V0,i.

Some clarifications, however, are needed: in general, the parameter connected to
the constant term of the regressor matrix has a separated prior distribution, an im-
proper one, according to the argument of Fernandez et al. (2001a) for linear models.
This comes from the fact that the the constant is assumed to be always included,
and, in practice, this is accompanied by the demeaning of all other regressors in
order to establish independence between constant and other covariates. The same
argumentation, unfortunately, cannot be fully applied to GLM due to the impact of
the link function.

A solution could be either considering the constant as another regressor, so pre-
venting any special treatment or the compromise of allowing for a diffuse constant
prior with a Normal distribution of the following form:

α ∼ N(0, h) →
(︃
α
βi

)︃
∼ N

(︃[︃
0

µ0,i

]︃
,

[︃
h 0T

0 V0,i

]︃)︃
(2.8)

where α is the parameter of the constant term, h its variance, which in general
is set to 100 (Lamnisos et al., 2009)17; 0 is a vector full of zeros to match the
different dimensionality between the constant and the other covariates. Using this
second possibility implicitly assumes that the constant is always present in every

17In general this choice is not so determinant.
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specification, and all the other regressors have to be demeaned as in the original
framework.

The prior covariance matrix V0,i is another fundamental element: as already seen,
two common alternatives are the ridge prior cI, with c > 0 or the Zellner-g one i.e.
g(XT

i Xi)
−1 with g > 0. The ridge prior does not allow for prior correlation among

regressors as the Zellner-g prior does, and tends to produce a more evident shrinkage
effect, i.e. more parsimonious models are preferred, even though it is heavily affected
by the measurement scale of the variables; for this reason when such prior is used the
a priori standardization of the regressors is highly recommended. Lamnisos et al.
(2009, 2013) are some examples of Bayesian model selection procedure with probit
models using ridge priors.

As for the Zellner-g alternative, a well-known modification for GLMs is
gn(XT

i Xi)
−1, where n is the number of observations: this reflects more directly how

this covariance should be considered as a function of the Unit Information Prior co-
variance matrix by Kass and Wasserman (1995), which is generally the most common
choice. The parameter c and g can be fixed or a hyperprior can be placed: the second
choice is surely more correct, but leads to a heavier computational burden. It is not
a mere coincidence that, in practice, the fixed value approach is favored: the ridge
prior c is commonly chosen via grid-search or cross-validation approaches (Lamnisos
et al., 2012); whereas for g, some proposed values are g = 1, which is an easy and
common solution often adopted in practice; g = 4 as suggested by Fouskakis et al.
(2009) for logistic regressions; g = 9.87/k, with k as the total number of covariates,
by Hanson et al. (2014)18.

As for the model prior we assume the Binomial distribution:

P (Mi) =

k∏︂
j=1

π
δij
j (1− πj)

1−δij

where given k total variables, 0 ≤ πj ≤ 1 is the prior probability that the j-th variable
is significant and δij is an indicator of the variable inclusion19.

Turning the discussion on the posterior mean µi and covariance matrix Vi of
the parameters of interest, these can be determined in various ways ranging from
Laplace method to more advanced techniques: Green (2003) suggested to run pre-
vious MCMCs on each model to detect correct estimates; Green and Hastie (2009)
introduces, instead, the use of mixture distributions. An appealing alternative, which
is also the one proposed in this Chapter can be found in Lamnisos et al. (2009, 2013),
who show how the moments estimates20 obtained via Gamerman MCMC on GLMs
are a good solution; moreover relying on a single iteration initialized on the frequen-
tist estimator seems to provide good results too.

2.3.3 The RJMCMC “in a nutshell”

The dynamics of the whole Markov Chain is summarized in Lamnisos et al.
(2013):

18Another important reference for g-prior choices is Gelman et al. (2008)
19Notice again that if πj = 0.5 we fall in the case of uniform distribution; and if πj = 1 variable

j is always included (in every model).
20eqs. (2.3) and (2.4).
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1. Set the initial βi related to the model Mi, in general the full specification;

2. Propose a new model Mj from a transitional kernel q(Mj |Mi) and compute its
βj as in (2.6);

3. Accept the move with probability (2.7), otherwise stay in (βi,Mi);

4. Repeat from 2, till convergence.

However this scheme, when top specifications appear, produces the storage of
the same estimate of the parameter, with potential consequences for its posterior
distribution, therefore, a resampling (within move) may be introduced when a new
couple (βj ,Mj) is rejected; in other words, when we fail to move to a new model,
given the current state (βi,Mi), a new βi, which corresponds exactly to an iteration of
Gamerman’s MCMC, is proposed. The correspondent µi and Vi for the new sampled
parameter may be updated with eqs. (2.3) and (2.4) obtained in the resampling step.

In sum:

1. Set the initial βi related to the model Mi, in general the full specification;

2. Propose a new model Mj from a transitional kernel q(Mj |Mi) and compute its
βj as in (2.6);

3. Accept the move with probability (2.7), otherwise propose a resampling of βi in
Mi following a single iteration of Gamerman procedure.

4. Repeat from 2, till convergence.

2.4 Parallel MCMCs

Parallel computing applied in Monte Carlo simulations exploits two different
ideas:

• running the same process over different cores or networked computers, simul-
taneously, and then aggregating each result with the aim of obtaining as many
replications as possible;

• splitting a “long” process into smaller units, that can be separately computed
by different machines (“divide et impera” philosophy).

The gains are double, because we highly speed up procedures that generally would
take long time to be fully performed, moreover, we can try to build ad hoc schemes,
which can overcome some limitations, such as the impossibility of analyzing huge
dataset or huge model spaces.

A simple application of parallelization in a Monte Carlo experiment could be the
simulation of a known random variable x: suppose to be interested in calculating the
mean of this variable, we can either simulate in a unique run N values xi and then
compute the sample mean X̄,
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X̄ =
1

N

N∑︂
i=1

xi

or exploit parallel processing by splitting the N iterations across c cores, indepen-
dently. In each one, the sample mean of the related population is obtained and then
each result is appropriately aggregated to have the final estimate,

X̄i =
1

Ni

Ni∑︂
j=1

xj → X̄ =
1

c

c∑︂
i=1

X̄i

where Ni = N/c, i.e. the fraction of simulations per core.
Therefore, when iterations are independent, the only problems derive from phys-

ical failures of the single machines involved, which lead to the impossibility of ob-
taining a part of the parallelized process21.

However this whole line of reasoning concerns standard Monte Carlo simulations,
is it possible that all the previous arguments are equally valid for Markov Chain
Monte Carlo too?

The answer is positive, but, of course additional attention is requested.
Firstly MCMCs are sequential processes with a necessary burn-in time, so the

divide et impera philosophy should be analyzed with much care, as the benefit of
multiple chains over the benefit of a single one is not so straightforward.

At a first glance, the impossibility of shortening (splitting) the burn-in could
undermine the possible time gain but, as a matter of fact, the issue seems to be ill-
posed. Replicating the same MCMCs in parallel as chunks of a bigger one leads to
a speed-up in sampling, as long as the convergence rate is fast and the proportion of
burn-in period is small compared to the total amount of iterations (Amdahl, 1967).
When this is not the case, a single long chain can be more suitable.

A plausible guideline is provided by Gelman and Rubin (1992); Brooks and Gel-
man (1998), who introduce some indexes which can help to monitor the convergence
rate of each chain, and the possible advantages of using additional machines: I will
investigate these ones in the next subsection.

Notice, however, that when we are only interested in obtaining replications of
the same process for a better exploration of the parameter space, with little atten-
tion paid in CPU time, the use of simultaneous MCMCs is extremely useful: as an
example consider the problem of multimodal distribution. A single chain can halt in
local maximum points, preventing a full exploration of the parameter space unless
a sufficient high number of iteration is provided; in these cases running the same
MCMC algorithm in parallel can solve the problem, possibly with different starting
points.

An interesting extension of the these two applications is proposed by Scott et al.
(2016), where a dataset is split into different non-overlapping subsets, each one dis-
patched for the execution of an identical MCMC. Finally synthesis measures are
individually applied and combined according to a consensus scale, such as a variabil-
ity measure, which summarizes the importance of the relative restricted dataset.

21This issue is deeply analyzed in Rosenthal (2000). Some common solutions involve queuing the
work to reliable computers or simply parallelizing in different cores of a single device.
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Possible further applications of parallelization to MCMCs are the so-called “hori-
zontal” chains, as opposed to the previous ones which are often labeled as “vertical”22,
where only some components of a single long chain are computed in parallel in or-
der to gain a boost in computational time. The conditional independence is the
requested assumption so that the Markov Property is not violated: for instance, as-
sume to have three parameters θ1, θ2, θ3, if θ1 and θ2 are conditionally independent
given θ3, in symbols θ1 ⊥ θ2|θ3, we can compute separately MCMCs for θ1 and θ2,
once obtained the values of θ3.

The conditional independence condition is extremely difficult to support in prac-
tice, hence the use of horizontal MCMCs have often been “resized” to the ex-ante
parallel calculation of some quantities that will be used in a single MCMC e.g.
the a priori computation of each marginal data density on the whole model space.
Alternatively, the so-called pre-fetching by Brockwell (2006), where in a canonical
Metropolis-Hastings MCMC, the task of sampling and accept the move are sepa-
rated: a binary tree is built where each node represents a sampled parameter and
its “sons” are the correspondent parameters in case of acceptation and in case of
rejection, without having care of which one is correct. In order to ascertain which
crossroads to take, the accept-reject ratios of the MCMC are computed in parallel
after the sampling step; the motivation lies in the fact that sampling is in general
not computational expensive, whereas judging the move is.

2.4.1 Convergence in parallel

Vertical MCMCs may appear less effective and rawer than horizontal ones, but
their applicability is easier and actually can be extremely beneficial: the idea of
independently running the same MCMC on different cores exploits the fact that if
convergence is reached, similar results should be achieved by each chain, and aggre-
gating is comparable to having run a single long chain in its stationary distribution.
This allows to apply parallelization for both the applications previously encountered:
splitting a long procedure to save time and encouraging a better exploration of the
parameter space. We will see very soon as the software implementation of the RJM-
CMC employs both the vertical and the horizontal strategy, with particular attention
for the first one, whose presence is somehow dominant with respect to the second,
as a consequence of this, an in-depth analysis of the convergence and in particular
of how to monitor the convergence in parallel is necessary.

A first analysis of the problem is considered by Fosdick (1959) where multiple
chains are run till the sample average of the parameters becomes approximately equal
in each MCMC, which corresponds to a very simple idea of convergence. However
many other works seem to propose naive methodologies or, in other words, the
topic was restricted to “qualitative” analysis, such as visual comparison of density
functions: a famous example is Gelfand and Smith (1990). The most known studies
which tried to build some quantitative and more rigorous measure, are due to Gelman
and Rubin (1992) and its extension due to Brooks and Gelman (1998).

Gelman and Rubin (1992) assume to have a univariate random variable x sim-
ulated n times in c cores, with mean µ and variance σ2, and an unbiased estimator
µ̂ = X̄ for µ. If xji identifies the sampled x in iteration j of the core i, the be-

22Or “embarrassingly” parallelisable, but this is not very kind!
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tween (intra core) variance B/n and the within (inside the same core) variance W
are defined as:

B/n =
1

c− 1

c∑︂
i=1

(X̄i − X̄)2

W =
1

c(n− 1)

c∑︂
i=1

n∑︂
j=1

(xji − X̄i)
2

where X̄i =
1
n

∑︁N
j=1 xji and X̄ = 1

c

∑︁c
i=1 X̄i are respectively the sample mean cal-

culated with the data obtained in the i-th core, and the sample mean on the whole
data.

The parameter σ2 can be estimated now with:

σ̂2 =
n− 1

n
W +

B

n

where in general a correction term due to the sampling variability of X̄ is added, i.e.
B
cn

23, so we have finally:

V̂ = σ̂2 +
B

cn
(2.9)

The Gelman-Rubin convergence measure is then:

R̂ =
V̂

W
(2.10)

with the following meaning: if R̂ is large, more simulation will probably improve the
convergence, by contrast, if it is close to 1 the convergence is reached24.

Equation (2.10) is further improved by taken into account sampling variability in
the variance estimates: assuming normality in xij allows to adjust the statistics by
a correction factor, derived from the degrees of freedom of a Student t distribution,
obtainable as df = 2V̂ /V ar(V̂ ). This leads ultimately to:

R̂c =
df

df − 2
R̂

or the updated version by Brooks and Gelman (1998):

R̂c =
df + 3

df + 1
R̂

Notice that the normality assumption is not requested for the standard measure
(2.10), even though in the original paper it is implicitly assumed; whereas the cor-
rected version needs it. In order to circumvent the problem Brooks and Gelman
(1998) propose additional statistics and refinements: firstly, and maybe surprisingly,
the R̂c performs well even in case of non normality, but instead of computing it at

23This is the variance of the sample mean X̄, given by 1
c

times the sample variance of X̄i, B/n.
24A quantification of the goodness of R̂ often depends on the data, however in the literature

a thumb rule is provided: R̂ < 1.2 is considered as a good proxy for convergence even though
sometimes a stricter threshold is placed (1.1) in order to guarantee better estimates.
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the end of the chain, the correct approach would be monitoring it throughout the
chain, together with V̂ and W .

Secondly, additional statistics (more robust to distribution assumptions) can be
computed, in particular the so-called interval-based R̂ and the empirical central mo-
ment R̂s.

The former is simply obtained calculating the ratio between a quantile range in
the empirical distribution of the parameter of the aggregate chain (the one obtained
by combining all the single chains), and the mean of the same quantile range on the
individual chains:

R̂int =
quantile range of the whole chain
mean of individual quantile range

The latter instead is defined as:

R̂s =
1

cn−1

∑︁c
i=1

∑︁n
j=1 |xji − X̄|s

1
c(n−1)

∑︁c
i=1

∑︁n
j=1 |xji − X̄i|s

Obviously the existence of the “s-th” moment is assumed. Notice that the second
moment measure is extremely similar to the classical R̂ and, as a matter of fact, all
central moments statistics tend to be very close to the original one.

So far univariate measures have been analyzed, however an extension in a mul-
tivariate set-up is possible: apart from the “easy option” of applying the univariate
statistics to each parameter, Brooks and Gelman (1998) provides the multivariate
correspondent of R̂, in particular given:

W =
1

c(n− 1)

c∑︂
j=1

n∑︂
i=1

(xij − x̄j)(xij − x̄j)
T

B/n =
1

c− 1

c∑︂
j=1

(x̄j − x̄)(x̄j − x̄)T

which are the multivariate versions of the previous defined quantities, with xij , x̄j
and x̄ as vectors of parameters.

If we define λ as the maximum eigenvalue of W−1B/n, the new convergence
statistics is:

R̃ =
n− 1

n
+

c+ 1

c
λ (2.11)

The interpretation is the same as the canonical case, an index near the unity
implies convergence.

It could happen moreover that the matrix W is singular, in this case R̃ would be
incalculable, so a possible alternative is to monitor the determinant of both W and
B/n. A nice feature of (2.11) is that the index approximates the upper bound of the
maximum of the univariate R̂ statistics over all the variables. Finally a comment
related to plausible alternative is necessary: interval-based indexes are equally feasi-
ble in theory, but when the dimensionality is high the computational effort becomes
excessive so (2.11) remains a “cheap” and efficient choice.
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2.5 The package

Gretl packages are collection of functions (defined by the user), which add new
procedures, estimation methods, etc. to the repertory of already implemented ones
(built-in functions). In order to use packages, we have to ascertain firstly that they
are downloaded and then loaded in our current work session: the first task can
be accomplished either via the GUI, or simply invoking in the Gretl console the
command install followed by the name of the package; the second task, if our aim
is to execute the package inside a script or in the command line, implies another
built-in command, that is include followed, even in this case, by the name of the
package file plus its extension (.gfn or .zip). If a GUI implementation is available for
the package too, we can skip the loading part, and simply invoking in Gretl windows
its related commands25.

The package I am going to present is named “bma_glm” and performs, as already
mentioned, RJMCMC for GLMs introducing parallel computing in MCMC simu-
lations, with the Gelman and Brooks multivariate measure as additional proof of
convergence. The contributions of parallelization are substantial since, on the one
hand, long simulations can be split into smaller units with a remarkable boost in
CPU time and on the other hand, a better exploration of possibly huge parameter
and model spaces is encouraged too. Notice, moreover, that parallelization in BMA
or selection procedure is not dealt by other competing software packages, making
this contribution even more interesting.

The package bma_glm includes a main public function with several private ones
which handle specific part of the former. In the rest of the section I will briefly
describe the core function and the more relevant private ones. A final remark con-
cerns the implementation of MPI (Message Passing Interface): in Gretl, MPI can be
invoked via external softwares such as “Open MPI” or “MPICH” and the usual way
of compiling a code needs to be adjusted. We will see the main modifications, but
any details can be found in the Gretl MPI Guide (Cottrell and Lucchetti, 2017).

2.5.1 The public function

function bundle bma_glm(series y "dep variable",
list X "list of regressors",
int type[1:4] "link function",
matrix pr_mean "prior mean",
matrix pr_var "prior var",
int prior_mod[0:1] "model prior type",
matrix Phi "parameter of prior on beta",
bool const_case[0] "const prior distribution",
int kernel "movement kernel q(M_j|M_i)",
int change_var[1] "numb of variable to change",
scalar resamp[0] "resampling moves",
int threads[1] "number of cores for mpi",
int nrep "iterations of MCMC",
int burn "burn-in sample")

25For any details we refer to the Gretl Guide (Cottrell and Lucchetti, 2018).
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The function bma_glm produces as output a bundle, that is a collection of Gretl
elements, whose principal ones are are the matrix of sampled parameters (the rows
correspond to the regressors, the columns to the iterations), the sampled models, as
well as the correspondent of (1.20) and (1.21) provided by the sample moments26.

The inputs, despite the short description provided inside the quotation marks are
here examined in depth:

• y and X are the dependent variable and the list of covariates, wheres the integer
type identifies the link function used for GLMs, available until now:

– type=1 probit link (binary);

– type=2 logit link (binary);

– type=3 cloglog link (binary);

– type=4 log link (Poisson).

• the matrices pr_mean and pr_var identify the prior mean and prior variance
of the parameter β, following (2.8): pr_mean is a k × 1 vector where k is the
number of covariates in the full model; whereas pr_var is 2× 1 vector, whose
first entry should be a integer value equal to 1 or 2 identifying the kind of
covariance matrix, 1 for a ridge prior cI, 2 for a Zellner one g(XT

i Xi)
−1; the

second entry instead specify the shrinkage parameter c or g. The user should
specify expressly both values, since no default choices are provided inside the
function.

• prior_mod and Phi are respectively the typology of prior distribution on models
and the related parameter: two alternatives are available, prior_mod=0 is a
uniform distribution, i.e. the prior probability of a model Mi is P (Mi) =

1
|M| ,

where the denominator is the cardinality of the whole model set. prior_mod=1
identifies the Binomial prior, where Phi if scalar, is a common probability of
relevance for the variables; if in matrix form it allows to attach to each singular
regressor the probability of being significant27. The possibility of choosing
focus regressors, i.e. variables always included in each model, is not expressly
provided inside the function, at least at the moment, but an easy alternative
is to place high probabilities of inclusion in the entries of Phi representing the
focus regressors.

• const_case represents, if 0 a diffuse prior on the constant term of the regres-
sors; if 1 an informative distribution; in this case the constant is treated as
another regressor, so its information should be included in pr_mean. When the
diffuse prior is used, the other regressors are centered by default if a Zellner
prior is used or standardized in case of ridge prior, the overall prior structure
on the parameter is the one in (2.8), with h = 100. The constant term is always
added, so its inclusion in the initial list X is optional as well as in pr_mean.

• kernel can assume three values ranging from 0 to 2:
26These are the main components, we can find other ones with no practical interest except for

recalling the initial set-up implied.
27We allow probability in the range (0, 1). We exclude the extreme values in order to prevent

computational issues.
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– kernel = 0 standard symmetric and uniform proposal;

– kernel = 1 uniform proposal with addition, deletion and switching;

– kernel = 2 Shotgun Stochastic Search

The additional value change_var defines the maximum amount of changing
variable in case of kernel=1;

• the scalar resamp, if different from 0, allows for the resampling scheme as
sketched in Section 2.3.1.

• the integer threads is simply the number of threads to use for MPI. Additional
details will be provided in the dedicated subsection.

• nrep and burn represent, respectively, the total number of iteration (per core)
of the MCMC and the burn-in sample (per core).

Finally, notice that the numbers in square brackets defined in the above function
such as type[1 : 4], are the minimum and maximum admissible value for the corre-
spondent quantity. When a single entry is provided such as threads[1] this has to
be intended as the default value.

2.5.2 Private functions: the model ID set-up

Since a nesting framework is analyzed, each model could be represented as a
binary vector, whose length is equal to the total number of covariates provided in
the full specification and each single element corresponds to a variable: if a regressor
is included in the current specification the related entry is 1, otherwise 0. For example
consider a four regressor set-up {x1, x2, x3, x4}, the model {x1, x3} can be identified
as
(︁
1 0 1 0

)︁
.

The binary vector represents, thus, the structure of the model, but has another
peculiarity: it can be also seen as a binary number; following the previous example
the model containing x1, x3 is univocally defined by the base-2 number 1010.

Each binary number can be converted into a decimal one, with the advantage
of dealing with a more manageable representation: in the package an array of 2k

bundles is built given k total regressors, each one labeled with an integer ranging
from 1 to 2k. Each bundle, hence, corresponds to a specific model which can be
invoked using the name of the array and the correspondent decimal representation
as in MOD[decimal id], where MOD is the name chosen for the array. We can actually
understand the decimal notation usefulness only considering the fact that it allows
for a simple and immediate representation of a model as a bundle; whereas the use
of bundles is motivated by the fact that they store model specific values avoiding the
need to compute them every time the model appears. The model-bundle strategy
here proposed works extremely well when the total number of covariates k ≤ 30,
however it seems to suffer from slowdowns or even potential out-of-memory issues
when larger and larger regressor matrices are used. A solution is currently under
development.

The private functions convert(matrix model), where the matrix “model” is the
binary vector representation and reconv(scalar numb, scalar n) with “numb” as
the decimal representation and “n” the number of total regressors, are the ones used,
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as the name suggest, to convert a binary vector into a decimal number and vice
versa.

Finally, with the function fillthebundle(MOD, model, numb, ...) literally
initializes the model-bundle selected via the identifiers model, numb in the array
MOD with its information such as the related regressors, the prior mean and variance
of β adapted to the corrected dimension, and also the initial estimate of (2.4) and
(2.3). The bundles are “filled” only the first time they appear as proposal, alongside
the MCMC proceeds: in this way every useless repetition is avoided with obvious
computational benefits.

2.5.3 Private functions: the RJMCMC

After an initial check-up routine which includes collinearity checks, adjustments
in case of diffuse constant and the set-up for the parallelization28, the entire body of
RJMCMC dynamics is executed entirely inside the private function BMA().

The procedure follows exactly the one provided in section 2.3.1: a loop of nrep
iterations is run, where a proposal new model is chosen via the function modelmove(¬
)29. The sampled β for the new model is computed through (2.6): the correspondent
private function is named b_born(). Finally the accept-reject probability is defined
as rho=xmin(1, alpha), where xmin is a built-in function which computes the min-
imum of the two quantities provided inside the parenthesis; alpha represents the
Metropolis-Hastings accept rate30 calculated with the private function ratio().

When the proposed move is accepted the related model and parameter are stored
inside matrices containing the sampled values, provided the burn-in time is over;
when the move is rejected a resampling step is available with the option resamp¬
=1. This task is accomplished via the sampling function, which simply execute a
single iteration of Gamerman MCMC; in this case the sub-function A_R defines the
Metropolis-Hastings ratio.

2.5.4 Private functions: the model dynamics

The method for choosing the new proposal model is defined through the function
modelmove(), in particular according to the value of the integer kernel, one of the
following proposal kernels is used:

• kernel=0 implies the standard symmetric kernel for MC3 proposed by Hoeting
et al. (1999); no additional explanations are required since the definition of a
new model is obtained by choosing, from a uniform distribution, one of the
entries of the binary vector model, i.e. the current specification, and setting
the related element to 0, if 1, and vice-versa. Since the resulting proposal
kernel is symmetric, the ratio prop_ratio defined as q(Mi|Mj)/q(Mj |Mi) in
(2.7), is equal to 1.

• kernel=1 represents the uniform movement kernel with addition, deletion and
swapping of at least change_var variables. In this case the auxiliary function

28All of them are run in the initial part of the public function bma_glm.
29See the next subsection for further details.
30The first element of (2.7).
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Unif_II is used, where at an initial step the actual number of variables to
change is chosen from a uniform distribution; then the move is selected between
the available ones31, using again a uniform distribution. The final proposal
model is randomly drawn among the possible specifications obtained from Mi

with the selected move and selected number of changing variables, assuming
each possible specification as equal probable.

• kernel=2 corresponds to the Shotgun Stochastic Search by Hans et al. (2007).
An ex-ante computation of the score for every possible specification is accom-
plished via MPI: the model space is split into classes according to the number
of cores of the machine, then, in parallel, the score() function attaches to each
model in the class the related P (β̂,Mi|y), where β̂ is simply the Frequentist
estimator32. In the original framework the score function computes the poste-
rior model distribution, however, since the joint distribution of parameter and
model is the new target, in this particular context P (β̂,Mi|y) has been chosen
as new score33. Finally, in the modelmove function, the neighborhood of the
current model is built using the function neighbor by following the theoretical
framework of SSS, where the score attached to each model is normalized with
the total score of the neighborhood; the proposal is then chosen accordingly.

2.5.5 MPI implementation

MPI implementation in Gretl requires the preliminary installation of a suitable
MPI package, such as Open MPI or MPICH, in addition to some specific platform
requirements which can be consulted in the Gretl MPI guide.

Once the parallelization is enabled, this can be executed either directly invoking
in a shell prompt the command gretlmpi and the selected file to be parallelized,
or indirectly, that is inside a Gretl script with the MPI command block mpi...end
mpi.

The main differences lie in the fact that using the first alternative implies that
the whole content of the script has to be replicated in each thread34 and the MPI
invocation needs to be executed outside the Gretl environment; whereas in the sec-
ond one only the part inside the MPI block is run in parallel and the execution is
not different from how any other Gretl script is run. For this reason the indirect ap-
plication is particularly suitable when using parallelization inside a Gretl function,
as in our case.

31When all three dynamics are not possible, the choice is restricted to only the ones available
(uniformly again).

32Major details for MPI application can be found in the next subsection.
33Alternatives are under investigations.
34I recall very briefly the distinction between cores and threads: the core is the physical processing

unit, the thread is the logical one: the term should be interchangeable as the physical core is also
the logical one, but when technological progress did not allow for multiple core processors, the
necessity of speeding up tasks led to the concept of hyperthreading. The idea is to split the core
into two logical processors, and so enabling parallel procedures (any detail of how this is performed
is skipped) even if we are using a single core machine. With the advent of multicore processor, the
hyperthreading phenomenon has continued to be used, so a device with c cores, has 2c threads.
In Gretl and Open MPI we refer explicitly to the threads of the machine. For any detail consult
Cottrell and Lucchetti (2017).
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Before analyzing the MPI features of the package, we will provide a short overview
about how MPI should be implemented since an ad-hoc set up is requested and some
“new” gretl MPI functions which will be (ab)used in our code are necessary.

Any parallelizable process, which starts with the declaration of the MPI block,
in general, requires a preparation phase where variables need to be initialized in the
root thread, operation which is available in our context through a conditioning with
an if statement of this kind:

if $mpirank==0
...

endif

where mpirank represents the ID of the thread, where it is assumed that the root
corresponds to ID = 0. Then the data are sent or shared across threads through
the commands mpibcast() and mpiscatter(), where the former simply share ei-
ther a scalar or a matrix to all the other threads; the latter splits a matrix into
submatrices, each one destined to a thread35. Once these steps are accomplished
all processors execute some work in parallel and finally the output of each one is
processed again in the root which collects the results and apply a synthesis via the
command mpireduce36.

Notice that the parallelization of MCMCs poses a practical problem related to
the generation of random numbers: using the same seed for random numbers ends
up in replicating the same results in every core; whereas different seeds for each core
using the standard Pseudo-Random Number Generator (PRNG) process may lead to
producing sequences of numbers with arbitrary dependency. In Gretl the problem is
handled by using the DCMT mechanism (Dynamic Creation of Mersenne Twisters)
so that each MPI process gets its own, independent PRNG37.

In the package two application of MPI are available: the vertical MCMC, which
parallelizes the RJMCMC and then aggregates the result; and the preliminary com-
putation of the score for the Shotgun Stochastic Search.

The framework of the vertical MCMC is exactly the same as the one introduced
in section 2.4: in a preliminary phase the file initial is built, i.e. a bundle with
all the inputs of bma_glm which is then broadcasted to all processors. Each thread,
then, replicates the function BMA which contains the whole transdimensional model
averaging procedure. Once concluded the MCMC, in each thread the sample mean
and the within variance of the sampled parameters are computed before sending the
whole information38 to the root process which simply concatenate each result into a
synthesis matrix.

In the end we will have three different matrices, each one stored in a different
file:

• the matrix sampled.mat of dimension 2k × (nrep-burn)threads, where k is
the number of regressors in the full model. The first k rows represent the

35There are also other commands such as mpisend which allows to send an object (scalar, matrix)
to a specific core, however this is not used in our code.

36mpireduce allows for vertical or horizontal concatenation of matrices; summation or product of
scalars or matrices. For details consult the Cottrell and Lucchetti (2018).

37See Cottrell and Lucchetti (2017).
38Sampled parameters and sampled models.
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sampled parameters obtained in each parallel process stacked horizontally; the
other k rows are the correspondent sampled models in binary representation;

• a matrix named id.mat which contains in the first row the decimal ids of the
sampled models (repeated only once), in the second row the number of times
they were accepted.

• the matrix synth.mat which is obtained by vertically stacking a synthesis ma-
trix provided in each thread. The synthesis matrix has the following structure:⎛⎝ m̄ V p

⏞⏟⏟⏞
mean

⏞ ⏟⏟ ⏞
cov

⏞⏟⏟⏞
pip

⎞⎠
where m̄ is the sample mean of the parameters, V the (within) covariance
matrix and p the vector containing the posterior inclusion probability (PIP),
i.e. the number of times the parameter appears over the total amount of
iteration minus the burn-in39.

All the three matrices are stored in the final bundle, but both id.mat and synth¬
.mat are also used in order to print the final result via the function printres. We
will have a look on the output of this function in the empirical illustration section.

The second application of MPI provided in the function concerns Shotgun
Stochastic Search. A vector named sss.mat is built with the computation of the
score for each possible specification, the order of its elements follows the model deci-
mal id, i.e. the first element is model with id=1, the second one the model with id=2
and so on. Finally inside the BMA, if SSS is invoked, the entry of sss.mat is added
to the relative model bundle.

2.5.6 A brief analysis of currently available RJMCMC and BMA
packages

The implementation of RJMCMCs is quite challenging to be handled in practice,
because the generality which is common requested for software functions is at odds
with the details required for the transdimensional function g(): in other words the
choice of a particular proposal is often problem-specific and the possibility of building
an effective RJMCMC needs to face the trade-off of choosing some common proposal
functions g() with the cost of restricting the application to only some families of
problems or building a very general framework with potential great applicability,
but with an insane amount of complexity and often high computational costs.

For this reason RJMCMC softwares are quite rare, and apart from the origi-
nal script AUTORJ by Green (2003) written in Fortran or its modified version due
to Green and Hastie (2009) written in C, which, however, were closely related to
only some common model exploration problems, other applications were not directly
available since the recent R package “rjmcmc” by Gelling et al. (2018). This pack-
age, in particular, exploits the modified framework by Barker and Link (2013) which
converts the Metropolis-Hastings framework into a Gibbs sampling one. Moreover

39It is obtained as the sum by row of the sampled model matrix in binary form. In this case we
have the entry equal to 1 which represents presence; the entry 0 absence.
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it has potentially no limits in the definition of the transdimensional function g(),
since it is possible to specify any functional form (in symbolic notation) and the
related Jacobian is numerically computed. The package, therefore, aims to be as
general as possible, but at the same time some soft options are applied to main-
tain “low” computational costs: the models to consider inside the algorithm (Mi)
needs to be specified a priori leading to a huge limitations in terms of quantity of
explorable models, especially if nesting is assumed. Additionally, some preliminary
information needs to be attached, remarkably a sample from the parameter posterior
distribution under each specification: the package itself, however, does not provide
such individual sampling schemes, as a consequence external functions which deal
with this issue are necessary, making the whole “rjmcmc” dependent to other MCMC
sampler algorithms.

The software implementation here presented, instead, is for sure not equally gen-
eral, but aims to perform as efficiently as possible model explorations in nesting
problems without the necessity of external samplers: GLMs are the core of the anal-
ysis, a good amount of flexibility is guaranteed thanks to the automated framework
in subsection 2.3.1, and computational efficiency, which is a primary concern, is dealt
with parallelization. Of course RJMCMCs can be extended to more complex scenar-
ios, but for what concerns this work, RJMCMC is just a tool for analyzing model
averaging in standard non-linear problems which can be encountered in Economics,
hence this restriction to the class of GLMs seems to be well motivated. Further-
more, the limitation in terms of explorable models which derives from the package
by Gelling et al. (2018) is far from being negligible in our context, as a consequence
I have favored the possibility of analyzing wide model spaces “at the cost” of consid-
ering only some GLMs, providing an independent sampling scheme which does not
rely on preliminary posterior draws or two-step procedures.

As regards the available softwares for BMA, many have been developed for linear
models: some examples are the R packages “BMA” by Raftery et al. (2014), which
exploits both Occam’s window or MCMCs with BIC approximations for model pos-
teriors; the package “BMS” by Zeugner and Feldkircher (2015) which, in turns, per-
forms model averaging using a MCMC on the model space with great flexibility in
the choice of prior or model proposal kernel; and finally the package “BAS” (Clyde
et al., 2012) for Bayesian Adaptive Sampling40. In Gretl, Bayesian Model Averag-
ing is implemented in the package BMA by Błażejowski and Kwiatkowski (2015),
which deals with linear models using Markov Chain Monte Carlo Model Composi-
tion with the addition of jointness measures; Błażejowski and Kwiatkowski (2018)
introduces the BACE package, which runs Bayesian Average of Classical Estimates
(Sala-i Martin et al., 2004) for linear and time series (Augmented Distributed Lags)
models.

As a matter of fact both R packages “BMA” and “BAS” can be applied to GLMs
too, but several simplifications are used such as the use of frequentist estimators
(Maximum-likelihood) instead of appropriate Bayesian counterparts or the lack of
appropriate MCMC schemes: “BMA” provides the Occam’s Window solution for
GLM model averaging using BIC approximation for model posterior, with the MCMC
alternative for the solely computation of Bayes Factor; “BAS”, instead, performs the
so-called Bayesian Adaptive Sampling (Clyde et al., 2012), which examines model

40A wide and complete analysis of the three packages is performed by Amini and Parmeter (2011)
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space according to a tree search, demanding the use of MCMCs only for a preliminary
definitions of model posteriors (standard MC3 with Laplace approximations are
used)41.

The Gretl package that I have presented, provides a full exploration of both
parameter and model space, a feature not considered in other packages, with the
possibility of specifying some more general parameter prior structure and model
proposal kernel. Parallelization, finally, improves considerably computational times
and in particular this represents a true novelty since its contribution in BMA software
functions has not been considered so far.

2.6 Empirical example

In this section I will illustrate an application of the package bma_glm using a
dataset from Mroz (1987): I will focus on a probit estimation of the female labour
force participation in 1975. The dataset contains information about 753 women,
where our dicothomic dependent variable is named LFP, which is equal to 1 in case
of labour participation; 0 otherwise.

The set of regressors used is:

• KL6, the number of children under the age of 6;

• WA, wife’s age;

• WE, wife’s education attainments, in years;

• HA, husband’s age;

• HE, husband’s education attainments;

• HW, husband’s hourly wage;

• MTR, marginal tax rate facing the wife;

• UN, unemployment rate in the country of residence;

• CIT, dummy variable - 1 if living in a a large city, 0 otherwise;

• AX, actual years of wife’s previous labour experience.

The output of a standard Probit estimation is the following:

41A comparison between BMA, BAS and the current bma_glm package is not provided because
each one performs a different model averaging strategy which is differently affected by prior choices,
and only asimptotically they should lead to similar conclusions. Moreover, as regards BMA and
BAS, Amini and Parmeter (2011); Błażejowski and Kwiatkowski (2015) shows some comparison
in linear models where under a similar set-up both packages produce quite different results with
respect to the benchmark.
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Model 1: Probit, using observations 1-753
Dependent variable: LFP
Standard errors based on Hessian

coefficient std. error z p-value
--------------------------------------------------------
const 0.238379 0.0523348 4.555 5.24e-06 ***
KL6 -0.813479 0.117719 -6.910 4.83e-12 ***
WA -0.0604316 0.0145616 -4.150 3.32e-05 ***
WE 0.117676 0.0299991 3.923 8.76e-05 ***
HA -0.00364750 0.0141875 -0.2571 0.7971
HE -0.0522828 0.0235334 -2.222 0.0263 **
HW -0.0897814 0.0198192 -4.530 5.90e-06 ***
MTR -5.57322 1.04103 -5.354 8.62e-08 ***
UN 0.00303028 0.0170686 0.1775 0.8591
CIT 0.0555055 0.117783 0.4713 0.6375
AX 0.0693860 0.00752985 9.215 3.12e-20 ***

Mean dependent var 0.568393 S.D. dependent var 0.495630
McFadden R-squared 0.239902 Adjusted R-squared 0.218537
Log-likelihood -391.3541 Akaike criterion 804.7083
Schwarz criterion 855.5730 Hannan-Quinn 824.3039

I would like to point out right now, that the example has a statistical motivation
and meaning as the main interest is in identifying the most relevant variables and
how the relative coefficients are shrunk in the model averaging procedure. For an
economic interpretation we should consider the impact of endogeneity, a well known
problem in this kind of studies42.

Let us assume the following set up for the function: a diffuse prior on the constant
term (const_case=0), a prior on the parameter defined as

βi ∼ N(0, n(X̃i
T
X̃i)

−1)

where n is the total number of observations; X̃i is the matrix of demeaned regres-
sors in model Mi

43. The dynamics is set to 0, but similar conclusions are reached
with different dynamics as well; resamp=0 and threads=1. Finally the number of
iterations and burn-in are respectively set to 100000 and 10000.

The algorithm is run in a Linux Debian Machine (server), with 20 physical pro-
cessors.

42An economic application is provided in the next Chapter.
43Remember that in case of diffuse prior on the constant term, the constant is always included,

and the overall prior distribution on the parameters is provided by (2.8).
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The Gretl version is 2018_d git, with Open MPI 1.6.5 for parallel computing.
The correspondent Gretl script is:

open mroz87
#since I use diffuse const, no need to include it
list X= KL6 WA WE HA HE HW MTR UN CIT AX

modeltype = 1 # 1:probit, 2: logit
prior_mean = zeros(nelem(X), 1) #prior mean for coefficients
prior_var = {2,$nobs} # prior covariance for coefficients -
zellner prior UIP

prior_dist = 0 # 0 = uniform distribution for models

constant_special = 0 #diffuse prior for const
dynamics = 0 #MCMCMC
change_var=0 #max number of changing variable per model move
resamp = 0 #within model move
threads = 1

n_iter = 100000
burn_in = 10000

b=bma_glm(LFP, X, modeltype, prior_mean, prior_var, \
prior_dist, phi, constant_special, \
dynamics, change_var, resamp, threads, n_iter,burn_in)

The visual output of the function is the following:

------------------------------------------------------
Bayesian Model Averaging with Generalized Linear Model
------------------------------------------------------
Type of specification: Probit model
Model Prior: P(M) ~ Uniform
Model dynamics: MCMCMC - add/delete (1)var
Prior on const: Diffuse const
Resampling allowed: No
MPI - threads: 1
Number of iterations/burn-in: 100000/10000
Elapsed time (in sec): 436.869
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------------------------------------
Overall sampling statistics

mean stderr pip
const 0.23398 0.05131 1.00000

KL6 -0.81784 0.11592 1.00000
WA -0.06223 0.00878 1.00000
WE 0.09487 0.03699 0.96013
HA -0.00022 0.00446 0.09808
HE -0.02009 0.02882 0.40062
HW -0.09095 0.01887 0.99997

MTR -5.44952 1.02652 1.00000
UN 0.00020 0.00396 0.04893

CIT 0.00214 0.02845 0.05391
AX 0.06958 0.00739 1.00000

------------------------------------
Best specifications:

Model_615: P(M|D)=0.460167
const KL6 WA WE HW MTR AX

Model_631: P(M|D)=0.320544
const KL6 WA WE HE HW MTR AX
------------------------------------

where mean, se are respectively the model averaged mean (1.20) and the model
averaged standard errors obtained from (1.21) obtained using sample counterparts;
pip refers to the posterior probability of inclusion. Top models44 with respect to
their posterior model probability are also provided.

What can be inferred by comparing the two outputs perfectly conveys the idea of
model averaging: starting by considering the probability of inclusion, it is possible to
conclude that the most significant variables from the simple Probit estimation are also
the ones which exhibits a pip equal or near to one. The related coefficient estimates
are close to the model averaging expected values too. Less important variables have
their model averaging means reflecting a shrinkage effect, which expresses the model
uncertainty issue in a more evident manner. Finally, the top specifications which are
encountered in the model averaging procedure are also the ones recognized as best
ones according to Frequentist measures: Model_615 is the best specification in terms
of BIC and hypothesis testing with significance level at 0.01; whereas Model_631 is
the second best model according the BIC and the best one using tests at size 0.05
or Akaike’s IC.

A possible extensions could be the analysis of how different priors (on models
and parameters) affect the result, but for the moment this exceeds the scope of this
part.

44By top models we mean every specification whose posterior probability exceeds the 10%.
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2.6.1 The importance of being parallelized

The previous example performed the RJMCMC on a single physical core: since
one of the main aim of this Chapter is ascertaining the importance of parallelization
in MCMCs, it is surely interesting to replicate the previous example allowing, this
time, for parallelization, in order to monitor the effective gain in CPU time.

Two different scenarios are proposed: in the first one I split the number of iter-
ations per core up to a maximum of eight cores45 assuming a fixed burn-in period,
i.e. despite the fact that parallelization is enabled, in each core the same burn-in as
the single-core experiment is used. In this case, in order to have the same amount of
sampled units of the single-core experiment, it is necessary to balance the number of
iterations per core. A fixed burn-in scenario represents a quite conservative choice
because it assumes the ignorance of the real convergence speed of the chain, and
imposing an equal amount of burn-in time as the one that would be used in a single
long chain tends to assure certainly the stationarity of the sampled values.

In particular, I compare the results in terms of time, posterior model distributions
of top models and Gelman and Brooks multivariate measure across a single core,
two cores, four cores and eight cores simulations. Individual estimates of posterior
moments are not provided, but the definition of the Gelman and Brooks statistic
should assure that, if convergence is reached, quite the same conclusions as the long
chain case are produced.

The results are presented in the following table:

cores c=1 c=2 c=4 c=8
Iterations per core 100000 55000 32500 21250

Elapsed time (sec) 436.860 276.992 170.022 142.984
BG statistic 1.004 1.015 1.014

P (M |D)
Model 615 0.46 0.456 0.452 0.458
Model 631 0.32 0.32 0.316 0.311

Firstly, convergence is reached as we can note from the Brooks and Gelman (BG)
statistic and from the posterior model distributions of the two top models. Once
established this condition, it is possible to compare CPU time: the improvement
of using two parallel chains instead of a single one is approximately 36%, whereas
applying four cores or eight cores lead, respectively, to save the 60% and the 70%
of the single-core CPU time, which is actually a huge enhancement. Of particular
interest is the fact that the relative advantage of using more cores tends to manifest
an upward tendency until a maximum point (four cores in the experiment) and then
a downward one: this is in line with the current literature about vertical MCMCs
when using a fixed burn-in time.

The second experiment introduces a flexible burn-in time equal to the 10% of
the total iterations per core: the idea behind this assumption is that, in assuming

45Only physical cores are used and the analysis uses a maximum of eight cores in order to maintain
the example replicable in common devices.
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fixed burn-in time, we are induced to overestimate (or maybe underestimate) its
appropriate value, so it may be appealing to ask whether using smaller burn-in leads
to similar result in terms of convergence and whether there may be improvements in
computational time46. As we can see from the following table:

threads c=1 c=2 c=4 c=8
Iterations per core 100000 50000 25000 12500

Elapsed time (sec) 436.860 239.606 117.848 75.619
BG statistic 1.011 1.014 1.031

P (M |D)
Model 615 0.46 0.451 0.46 0.45
Model 631 0.32 0.309 0.31 0.326

even in this case convergence is reached (this is actually a symptom of quick
convergence), so turning the attention to the computational time, we can end up
with a time reduction of over 70% and 80% using respectively, four and eight cores,
with respect to the single-core performance. This certainly derives from the fact
that we do not need to balance iterations for the fixed burn-in, but the underlying
idea is that if a smaller burn-in time can be employed and the convergence is fast,
then parallelization leads to even bigger advantages. Notice that, even in this case,
the relative advantage of using more cores exhibits a similar tendency to the one
sketched before, but less evident.

It is clear from these examples that parallelization can drastically improve com-
putational time as long as the convergence is quick and the requested burn-in is small.
Even in the case of a fixed burn-in, which somehow represents a “safe” experiments
in terms of convergence, the advantage is evident. What could be really appealing is
determining whether such good results hold for bigger datasets, and, as we will see
through the example of the next Chapter the answer is positive.

2.6.2 Summary

The package presented provides an application of Bayesian Model Averaging for
Generalized Linear Model with the aim of making simple, even for a common user,
the performance of an automatic model building procedure which accounts for model
uncertainty. The potentiality of the model averaging procedure has been underlined,
but its use in microeconomic problems is still unexplored, so applications in this
context could provide a new flourishing area of interest.

The benefits of parallelization, moreover, suggest a remedy for many common
computational issues typical in MCMC simulations, so parallelization should be en-
couraged not only for a better analysis of the parameter and model space but also for
accelerating the CPU time even if this is somehow not typical of vertical MCMCs.

Future improvements could be the addition of more link functions; additional
proposal kernels for models; alternative approximation for the posterior moments
of parameters; different prior specifications and the possibility of averaging in not
nested scenarios.

46Assuming a burn-in time which is tuned inside the MCMC is not recommended following the
argument by Rosenthal (2000).
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Chapter 3

A BMA analysis of Propensity
Score Matching

Economic applications of model averaging primarily concern forecasting, due to
the higher accuracy of the estimates: accounting for model uncertainty leads to a
more robust evaluation and it could be reasonable to ask if this effect persists even
in other possible scenarios.

The idea that will be studied in this Chapter is exactly whether Bayesian Model
Averaging induces a more robust approach in Propensity Score Matching in terms of
stability in the treatment evaluation when the choice of variables is crucial: in these
cases parsimonious models lead to different conclusions (sometimes very different)
with respect to more general ones and a compromise estimator, e.g. model averaging
estimator, seems to be necessary.

3.1 Introduction

Propensity Score matching methods, since the seminal paper of Rosenbaum and
Rubin (1983), have become a very popular approach to evaluate treatment effects. In
observational studies, it is a well known fact how the counterfactual is not identified,
so a plausible solution could be using for this scope a group of individuals (control
group), not necessarily from the same population of the treated units, but with
some chosen characteristics particularly similar to the treated ones. Unlike exact
matching methods, where similarity between treated and control units is ascertained
by directly comparing some observable characteristics and performing the pairing
only when these exactly corresponds in the selected treated and control individual,
with possible problems whenever continuous variables are included in the comparison
or many variables are considered, Propensity Score matching proposes an intriguing
alternative by allowing the evaluation of the similarity using a scalar measure which
summarizes those individual features. In particular, such a measure is represented
by the Propensity Score, i.e. the conditional probability of being treated given the
comparison characteristics, which is commonly estimated via parametric methods
such as binary choice models (logit or probit). The consecutive matching phase is
then performed on these values via nearest neighbor or stratification and the average
treatment effect is obtained accordingly.

69
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However, in building Propensity Scores little attention is commonly devoted to
selecting the variables to be included in the binary choice model: these variables iden-
tify the characteristics of interest which should guide the definition of the matched
group, but estimation is often carried out either on every available covariate, ignoring
possible complications in some assumptions which are requested in order to guaran-
tee the reliability on Propensity Score matching1, or on a subset arbitrarily chosen
by the practitioner with some “knowledge-driven” approach.

A different strategy could be applying some variable selection procedures, but
focusing exclusively in the best specification would condition the further analyses
on this choice; it is quite obvious how a problem of model uncertainty arises: if a
single specification can capture some aspects of the reality, it is probable that other
models can capture other aspects, so a choice which favors only a single specification
is obviously misleading. To acknowledge this uncertainty some different analysis
based on Bayesian Model Averaging (BMA), using the previously illustrated bma_¬
glm package, are here proposed: the choice for a Bayesian framework derives from
its flexibility and its inferential and model comparisons properties, which will lead
us to build different treatment effect estimators, which will be potentially precluded
in Frequentist Model Averaging methods2.

This methodology, in particular, will be applied to evaluate the economic im-
pact of the Italian tax credit reform (Decree Law 66/2014), which introduced a
monthly wage increase of about 80e for all employees with an annual gross income
between 8145e and 26000e. A tax reduction is supposed to encourage household
consumptions, however the effectiveness of tax credit policy is a debated topic in the
literature (Shapiro and Slemrod, 2003a,b, 2009). In particular, I will try to replicate
the approach proposed by Neri et al. (2017), based on propensity score difference-
in-differences estimation and in doing so I will show how actually the results are
sensitive to model specification in the propensity score definition. The application,
therefore, exactly conveys the model uncertainty importance, and how taking into
account for this aspect can contribute to improve the quality of the estimation in
terms of reducing the “arbitrariness” in the choice of variables to use. Notice, more-
over, that application of BMA techniques in Propensity Score problems, especially
in Economics, is a novelty since previous works concerned with this topic belongs to
Biostatistics (Kaplan and Chen, 2014; Zigler and Dominici, 2014).

A clarification is, however, necessary: the adherence to a Bayesian analysis in
the present work, is in part restricted to the solely Propensity Score definition, since
BMA is adopted in the variable choice of the related binary model, but the final
treatment effect is computed in a standard Frequentist fashion. A purist Bayesian
perspective would also have computed this element according to Bayesian guidelines,
but this would have been far beyond the scope of this work, whose primarily aim is
to ascertain the consequences of model uncertainty and to find an easy way to deal
with them.

The Chapter is organized as follow: in the next Section a quick overview on
Propensity score matching (both Frequentist and Bayesian) and Model Averaging
applied in this context is provided; then I will illustrate some economic background

1See next section.
2This comes from the fact that in FMA, the definition of model probabilities is not straightfor-

ward.
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to the tax credit policy, and then compare the study by Neri et al. (2017) with the
“replica” here proposed; finally I will illustrate the Bayesian Model Averaging analysis
on the same study with a short discussion concerning the possible implications.

3.2 Propensity Score matching and uncertainty

3.2.1 A quick overview on Propensity Score

Let D denote an indicator of treatment assignment, which takes value one in case
the individual is assigned, and zero otherwise; further, assume a vector of covariates
x and an outcome dependent variable y: it is common practice to define the outcome
variable for a treated unit as y1, whereas y0 for a control one. The propensity score
p(x) is defined as the conditional probability measure of being treated given x,

p(x) = P (D = 1|x)
which can be simply computed using a probit or logit model. Two particular as-
sumptions needs to hold:

• the overlap assumption, which simply states that 0 < p(x) < 1;

• the balancing condition, which implies D ⊥ x|p(x).

The overlap assumption guarantees that for each treated case there is another
matched untreated one with a similar x, in other words, the treated and untreated
subsamples overlap; the balance condition, instead, allows for a random assignment
of the treatment for individuals with the same propensity score.

Moreover Rosenbaum and Rubin (1983) prove that, if conditional independence
assumptions hold, i.e. y0, y1 ⊥ D|x, then:

y0, y1 ⊥ D|p(x)
These conditions ensure the possibility of using the observed outcome of the

“correct” control unit to impute the counterfactual of the correspondent treated one.
However, once defined the propensity score measure, what remains to be done is ex-
actly the choice of the correct control unit per treated; this is performed via matching
methods, some common choices are:

• nearest neighbor matching, which pairs each treated unit with the correspon-
dent control whose propensity score is closest. A tolerance interval (caliper)
on the maximum distance between treated-control propensity score is often
introduced in order to avoid bad matches3; traditional nearest neighbor is
performed without replacement, however allowing this feature has often good
consequences but at the cost of a reduced set of controls. The order in which
the matching is performed could be a crucial aspect (Austin, 2014).

• caliper/radius matching, starts from the same idea of nearest neighbor with a
caliper, but instead of pairing the treated with a single control, the match is
performed with the k nearest neighbors within the caliper (k-nearest neighbors)
or with all the units inside the caliper;

3In case no matches are found the treated remains unmatched and excluded from further analysis.
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• optimal matching, where a loss function is attached to the overall matching
scheme; this translates into action by forming matches which minimize not
the individual loss (like in nearest neighbor if we consider the distance as a
loss function) but the overall one. The difference with traditional methods is
particularly evident in optimal pairwise matching: once a matched coupled is
established this one can be further modified by reassigning to the treated a new
control unit, if for some other treated the previous control provides a reduction
in the overall loss;

• stratification matching, in which the empirical distribution of the propensity
score is split into a set of intervals (quantiles): Rosenbaum and Rubin (1983)
show how the units assigned respectively to treated or control groups can be
used efficiently to estimate the related treatment effect inside each stratum.
The number of optimal strata is often set to 5 according to the argument
by Rosenbaum and Rubin (1983), even though this choice may be rectified if
the number of treated or control units is particularly small in some intervals.
If balance property is not satisfied, a very common solution for stratification
matching is the addition of dummies or interaction terms in the set of co-
variates for the propensity score model until the condition is verified: for this
reason stratification matching is not particularly suggested in variable selection
experiments.

The final step of the propensity score matching procedure is the computation
of the treatment effect γ; following the matching schemes previously introduced, a
general and comprehensive estimation of the average treatment effect on the treated,
could be:

γ =
1

N1

∑︂
i∈D=1

(yi −
1

N0,i

∑︂
j∈D=0

yj) (3.1)

where the indexes i and j refer respectively to the i-th treated unit and the j-th
control; N1 is the number of matched treated units and N0,i the number in the
comparison group corresponding to the i-th observation4.

An alternative method is to run a simple regression on the final group defined
via the matching and retaining as estimate of the treatment impact γ̂:

y = µ+ γD + ε (3.2)

where µ is the intercept and ε the usual error term5.

3.2.2 The Bayesian Treatment evaluation

In a Bayesian perspective, the main differences with respect to the Frequentist
framework concern the propensity score estimation and the evaluation of the treat-

4In case of radius matching, a weight to each control inside the radius could be attached with
the aim of imposing different contribution according to the distance from the treated unit; in case
of stratification matching (3.1) is, instead, computed per each stratum and then averaged to obtain
the final average treatment effect on the treated.

5Even in this case additional attention is required in case of stratification or whenever more than
one control is attached to each treated. Weighting the observations in the linear model could be an
easy solution.
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ment; the matching phase is often the same. As for the first element, the simple
binary model estimation is substituted by an MCMC simulation which samples the
coefficients of x, let us say β. In this way a sample of parameters can be used to
compute directly a sample of propensity scores: if the initial MCMC leads n sam-
pled parameters, we will end up with n propensity scores, each one used to build a
matching scheme. The final computation of the output model can be then performed
either using a simple Frequentist estimation on (3.2) for each obtained propensity
score and aggregating accordingly the result (An, 2010) or in a fully Bayesian fashion
with a MCMC on each output model too (Kaplan and Chen, 2012).

In the first case we simply use, as treatment effect estimator over the whole
propensity score distribution, the sample mean of γ̂i, where γ̂i is the OLS estimate
of the treatment effect in the output model corresponding to the i-th propensity
score. The motivation of this choice lies in the assumptions that the treatment γ̂i
could be thought as a posterior mean of the parameter γ conditional on the data
(the outcome variable y and the matching variables x), the treatment assignment D
and the parameter β (which actually represents the impact of the propensity score),
in math terms γ̂i = E(γ|β, y,x, D). The overall treatment estimator γ̂, therefore, is
nothing but the the posterior mean of γ, given the outcome y, the covariates x and
the treatment D:

γ̂ = E(γ|y,x, D) = E(E(γ|β, y,x, D)|y,x, D)) =

∑︁n
i γ̂i
n

(3.3)

where n is the total amount of sampled propensity scores; in a similar way the
variance is computed as:

V (γ|y,x, D) = E[V (γ|β, y,x, D)|y,x, D] + V [E(γ|β, y,x, D)|y,x, D] (3.4)

where V (γ|y,x, D) is the posterior variance of the treatment effect, whereas
V (γ|β, y,x, D) is the posterior variance conditioned to the propensity score via the
parameter β, which following An (2010) is simply computed as the variance σ̂2

i of
the OLS estimator γ̂i in the i-th outcome model. In other words:

V (γ|y,x, D) =

∑︁n
i σ̂

2
i

n
+

∑︁n
i (γ̂i − γ̂)2

n− 1

where the first element of the right hand-side is the sample mean of the OLS variances
of the treatment effects, and the second one the sample variance of the treatment
estimates.

The fully Bayesian alternative, instead of assuming γ̂i = E(γ|β, y,x, D) and
V (γ|β, y,x, D) = σ̂2

i runs for each sampled propensity score a separate MCMC for
γ in the outcome model, conditioned on that particular propensity score. In this
way both E(γ|β, y,x, D) and V (γ|β, y,x, D) are estimated by the related sample
counterparts, and the computation of the overall treatment effect and its variance
follow eqs. (3.3) and (3.4).

So far, I have considered a sequential estimation of the treatment effect which
starts from the propensity score and ends with the outcome model by the way of
the matching, but it is worth noticing that in the Bayesian analysis of Propensity
Score and treatment evaluation an alternative and somehow intriguing approach is
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considered by McCandless et al. (2009, 2010) and partially by An (2010). Follow-
ing the pioneer idea by McCandless et al. (2009), it is possible to jointly modeling
propensity score and outcome model via a “simultaneous” sampling scheme in which
propensity score model affects the outcome one and vice versa, allowing for quan-
tities which would have been commonly included only in one of the two, to affect
both. Notably, the outcome variable y would directly enter into the computation of
the propensity score distribution, which is then used to define the treatment effect γ.
Despite the authors provide some good motivations for their methodology, the fact
that treatment determines propensity score via the outcome is highly questionable:
not only overlapping or conditional independence assumptions could be violated, but
also additional sources of biases are introduced as the propensity score distribution
changes with the outcome variable y.

3.2.3 Model Uncertainty issues

As previously anticipated, Propensity Score is often computed with little atten-
tion paid on the variables included in the underlying binary model: common routines
range from the inclusion of every possible covariate, ignoring in this way their real
importance in the matching scheme, to the selection via hypothesis testing or Infor-
mation Criteria of a sufficiently parsimonious specification, with the obvious draw-
back of potentially not including determinant variables which will then invalidate
the outcome model analysis.

In such a scenario, it could be meaningful to ask whether considering model un-
certainty could lead to a better definition of the matching problem and consequently
of the causal effect estimation: in particular, with k variables, 2k models are avail-
able and we can assume that among them there is a particular one, M∗ which is not
known, but which reflects all of the desirable conditions and leads to a correct treat-
ment effect estimation. M∗ could not be a parsimonious model, but assuming this
additional condition often guarantees a sufficient control on bias-variance trade-off.
We could then average model-specific estimates according to a weight which reflects
the model probability to be the closest to reality, with the benefit of avoiding any
choice of a single specification, which can be seen as a guess about M∗.

However, since the whole treatment evaluation is often a sequential procedure,
in which in a first phase the propensity score is defined and then in the following
ones matching and outcome model are performed, from a practical perspective it
could be meaningful to ask how model averaging quantities are used: we could com-
pute propensity score using the model averaged posterior mean (leading to what is
commonly referred in the literature as a plug-in estimator) and performing the subse-
quent phases on this specific values; or we could build a more proper model averaging
estimator as a weighted sum of model specific γ̂Mi = E(γ|y,xi, D,Mi), i = 1..M
which according to the Bayesian framework of the previous subsection, is the poste-
rior mean of the treatment effect under a particular propensity score model Mi with
covariates xi,

γ̂ = E(γ|y,x, D) =

M∑︂
i

E(γ|y,xi, D,Mi)P (Mi|xi, D) (3.5)

where the weight are posterior model probabilities P (Mi|xi, D), and
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E(γ|y,xi, D,Mi) can be computed using the OLS estimator of the treatment
in that particular outcome model or more appropriate Bayesian alternatives.

The choice is not obvious, but a very reasonable guideline is to perform different
model averaging estimator and compare their results; a very brief overview of current
model averaging literature in propensity score matching is, therefore, considered,
before explaining which particular choices have been made in this work.

BMA in Propensity Score matching

As already state, the topic of model uncertainty in Propensity Score is still largely
unexplored in the literature: two notably examples can be found in Biostatistics and
are respectively Zigler and Dominici (2014) and Kaplan and Chen (2014).

Zigler and Dominici (2014) propose three different Bayesian Model Averaging
techniques6:

• a standard MC3 paradigm which relies on Probit models for both propensity
score and outcome model (a binary outcome model is used) with additional
regularities assumptions in order to obtain analytical posterior model distri-
bution (Albert and Chib, 1993). The joint modeling of propensity score and
outcome à la McCandless et al. (2009) is implemented;

• a pseudo-Bayesian MC3 scheme where a canonical sequential treatment evalu-
ation is performed, from the propensity score to the outcome model. The term
“pseudo-Bayesian” derives from the fact that the joint procedure is not used;

• Stochastic Search Variable Selection (SVSS), with again joint modeling of
propensity score and outcome model.

The matching is performed in each case via stratification and the treatment is
obtained via (3.5). The authors obtain very promising result in simulation studies
with respect to common selection methods using all of the three procedures. In
empirical examples, instead, model averaging seems to recover similar treatment
effect estimation as standard selection routines, but this outcome is mainly driven
by the design of the experiment. What is remarkable in this case, is the difference
which emerges between the pseudo-Bayesian and the SVSS schemes, but these are
motivated by the different sampling approaches, a sequential one and a joint one.

Kaplan and Chen (2014) propose a more standard analysis based on Propensity
Score (sequential approach) computed with model averaged expected values using
Occam’s windows (R package “BMA”) on the one hand and individual sampled pa-
rameters obtained in a two step procedure on the other. This second methodology
aims to build the model averaged Propensity Score distribution, but it requires a
method for sampling parameters from a model averaging procedure: the authors
propose to explore the model space in a first phase, using Occam’s window again
with the sole purpose of discovering high probable models; and then, in a second
step, the parameters are defined in separate MCMCs on each previously detected
model, using as weight the posterior model distributions7. Propensity Scores are

6Not treatment effect estimators!
7The procedure is similar to sampling from a mixture, in particular, each posterior model dis-

tribution defines the weight, and the parameters are sampled from each specification accordingly.
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then obtained for each sampled value and for each one an outcome model is de-
fined. The final treatment is evaluated aggregating the single ones obtained from
each Propensity Score through eqs. (3.3) and (3.4).

Since a sequential analysis of propesity score is adopted in this work, both appli-
cations provided by Kaplan and Chen (2014) seem to be extremely valuable for the
idea that is developed throughout this Chapter, for this reason I will partially follow
their guidelines: the treatment evaluation based on a Propensity Score defined via
the model averaged posterior mean (the plug-in estimator) and the fully Bayesian
procedure are applied. However, substantial differences are introduced too: the orig-
inal work exploits the classical BMA point of view, hence the definition of sampled
parameters needs to be addressed separately in additional MCMCs. Moreover, the
implementation of the whole procedure is linked to the R package “BMA”, which uses
BIC approximations for model posteriors and, in case of GLM, frequentist estima-
tors instead of proper Bayesian ones are applied. The modern BMA approach with
RJMCMC is here proposed as alternative not only for the possibility of sampling
simultaneously models and parameters (with tremendous advantages with respect
to the two-step procedure), but also because more adherent to a Bayesian estima-
tion. The previously presented Gretl package bma_glm will be the protagonist and I
will explore the consequences of applying such techniques in an economic scenario:
Kaplan and Chen (2014) present some examples where variables selection is not so
influential in the treatment evaluation, and in fact, BMA leads to similar conclu-
sions as using a full model or more specific ones; the empirical illustration of the
present work will actually show how BMA handles cases where the inclusion of a
variable rather than another one is determinant in the final evaluation. Moreover,
an additional technique is shown, i.e. an average of the treatment effect estima-
tors of the models encountered in the RJMCMC, using Propensity Scores computed
with the model-specific probit estimates and weights equal to the posterior model
distribution, which actually mimics equation (3.5) with γ̂Mi as the OLS estimate of
the outcome model defined via the propensity score model Mi. The fully Bayesian
estimator is similar, since the main difference is the accounting for the Propensity
Score distribution, which leads, following again equation (3.5), to define γ̂Mi as the
sample mean of the OLS estimate of the treatment effects obtained for each set of
propensity score in model Mi.

These two methodologies, in particular, average the treatment estimation across
the model space by construction; whereas the first one does not, so it could be
meaningful to ask whether using the model averaging posterior mean of the parameter
of interest to build Propensity Score can address equally the model uncertainty issue.

3.3 Empirical analysis

In order to investigate the validity of the afore-mentioned BMA procedure, an
empirical study is conducted on an extremely debated economic subject: the effect
of tax rebates on consumption. This topic, despite its problematic tractability, is
renowned for the instability of results due to model specification, an aspect that
should encourage the validity of model averaging.

The contribution of this analysis, in particular, aims to discover new interpreta-
tions of the 2014 Italian income tax rebate, which introduced an increase in individual
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monthly salary of 80e to employees whose gross annual income was included in the
brackets 8145− 26000e.

The work by Neri et al. (2017) provides a good starting point, as it is concerned in
a propensity score difference-in-difference analysis. Even if it is conceptually different
from standard propensity score applications like the ones seen before, it could be
considered, actually, as a slightly modification of the framework, so similar conclusion
can be drawn. I will try to replicate their analysis of the tax credit bonus and then
apply BMA in order to ascertain if accounting for model uncertainty could improve
the final estimation of the policy.

3.3.1 The 80e tax credit and some economic background

Tax rebate policies are common stabilizing instruments applied by policymak-
ers to reduce the impact of business cycle: such fiscal interventions should induce
economic agents to rise their propensity to consume, hence countering the negative
effect of recessions.

The 2014 Italian tax credit was not an exception from this pattern: its introduc-
tion via Decree Law 66/2014 implied, according to Government estimates, a total
transfer of 5.9e billion to households (about 10 million employees), equal to 0.4% of
GDP. From a technical point of view, the reform allowed for a reduction in the tax
withheld8 by the employer on behalf of the employee with the aim of increasing the
monthly salary by 80e. The recipients were all payroll employees with a total annual
income between 8145e and 26000e; eligibility was defined on individual bases, so
households could have more than one member benefitting from the bonus; finally the
delivery of the rebate was automatic, since it was directly integrated in the monthly
paycheck, starting from May 2014.

Since eligibility status referred to 2014 income, whose certainty have been assessed
only in 2015, misclassifications of people near the lower threshold could have been
occurred, in fact it was estimated that about 1.5 million people were falsely classified
as eligible, with the consequence of reimbursing their bonus.

It is worth noting, finally, that the standard bonus amount of 80e was reduced
for those people whose income was 24000-26000e and for those ones who obtained
a job during 2014, as the bonus was proportional to the number of months spent in
employment9 across the year.

As for the economic consequences of tax rebates, economic literature has not
an unique interpretation: according to the Life Cycle-Permanent Income Hypothesis
policy interventions which have a transitory nature should not affect the consump-
tion. Economic agents are assumed to smooth consumption through lifetime, so tax
rebate could be efficient only if they were perceived as permanent and so integrated
in the lifetime income10. However history tells us of tax rebate interventions as pro-
visional ones, so their real utility should be small. Additionally, as long as the policy

8Or in some cases in the pension contributions.
9Those employee who lost their job during 2014 may have had to repay part of the received

bonus for the same reason.
10A proxy sometimes used to signal the temporariness of tax rebate policies is the simultaneous

cut in government spending. This reflects the Barro/Ricardo equivalence: households integrate
government budget in their choice, so consumption is increased only if government is not expected
to raise taxes in the future.
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is anticipated11, consumers are expected to adjust their consumption pattern prior
to the policy implementation, making the intervention even more difficult to analyze.

On the other hand, however, if we take into account that households may face liq-
uidity constraints which prevent them to maintain their desired level of consumption,
we could partially reconsider the impact of tax credits: we should expect that an
income increase favors a realignment of the actual consumption to the the Life Cycle
one, producing a positive effect. Behavioral literature, instead, considers factors such
as “myopia”, “ rule of thumbs” or “mental accounting” as main drivers for a positive
effect and in doing so, it explains how, in theory, the response to fiscal policies which
increase disposable income should be excessive, implying the absorption of most of
the bonus (Loewenstein and Thaler, 1989; Thaler, 1990).

If we turn our attention to empirical works, conclusions remain the same: un-
certainty in the impact evaluation is still persistent and even more pronounced.
Historically the first attempts (Modigliani et al., 1977; Blinder, 1981; Blinder et al.,
1985; Poterba, 1988) focused only on a time series analysis, searching for a struc-
tural break which could convey information about policy effects. However in time
series any other simultaneous or concurrent aggregate economic events could induce
variation in spending, so the validity of the results were not so clear.

Micro-data analysis, instead, allows for a more genuine outlook, since the cross-
sectional components can be studied: within this strand of literature two different,
but somehow similar approaches are used. The first one uses directly Survey re-
sponses to evaluate the policy effect: Shapiro and Slemrod (2003b,a, 2009) are fa-
mous examples where, using additional questions enclosed to the Michigan Survey of
Consumers, it is possible to directly verify the behavior of the consumer to the USA
2001 and 2008 tax credits, thorough his reply to the related question. Economists are
quite skeptical about this methodology, as the response may not correspond to the
real action, nonetheless more sophisticated estimation methods using similar dataset
seem to confirm their findings: only the 21.8% of the interviewees seems to have in-
creased significantly their spending, whereas the remaining part seems to have saved
the tax rebate in order to pay down previous debt. Liquidity constraints seems to be
irrelevant as well as possible lag effects between announcement and implementation.

The second approach, instead, relies on survey data equally, but, instead of fo-
cusing mainly in descriptive statistics and in individual responses, tries to elaborate
a more complete method, such as treatment evaluation in order to study consump-
tion and expenditure responses. Wilcox (1989); Parker (1999); Souleles (2002), for
instance, using a regression like framework and difference-in-difference estimation
evaluate significant responses to pre-announcement tax cut, leading to a potential
counter-argument to the Life Cycle theory. Again, Souleles (1999) finds positive
evidence for liquidity constraints significance: tax refunds seems to be used for non
durables expenditure by low income/ low liquidity households; whereas high income
and high liquidity individuals seems to prefer durables expenditure.

Johnson et al. (2006) confirms a positive effects of tax rebate policies, whose
magnitude seems to be more pronounced in the case of liquidity constraints. The
authors measure an estimated 20-40% of the rebate used for non durables goods in
the quarter of the bonus receipt and then a lagged effect which covers about the 30%
of the amount on the next quarter. Agarwal et al. (2007) using an innovative dataset

11This happens in practice when there is a lag between announcement and implementation.
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related to credit card movements of households, detect a plausible new pattern in
tax rebates use: consumers initially tend to save the bonus, by increasing their
credit line use and thereby paying down debt; an increase in spending occurs only
afterwards. Following this line of reasoning household balance sheet mechanisms
seem to be extremely relevant in case of tax rebates. Finally Parker et al. (2013) find
that households spend most of the rebate in durables goods, estimating a response
of 50-90% of the payment.

However as highlighted by Heim (2007) additional care should be paid in such
kind of studies: first of all it is extremely common to obtain different results by
changing slightly both the methodology used and the model specification; moreover
the significance of the result should be further investigated with greater attention:
most studies obtain not statistically significant effects, and even in those cases where
the significance is proved, the computation of standard error could be easily ques-
tioned. Finally differences in the data and in how some variables are built are crucial
aspects too.

3.3.2 Dataset and a first analysis

In this subsection the analysis proposed by Neri et al. (2017) is studied in detail:
as mentioned before, the idea is to follow their empirical methodology, firstly trying
to be as adherent as possible to their framework and then noticing some possible
source of uncertainty which will motivate our next steps.

The data come from the Survey on Household Income and Wealth (SHIW) held by
the Bank of Italy every two years: the SHIW, in particular, consists of two different
kind of datasets, the cross-sectional ones which reflect the biannual interviews and a
panel one, which simply aggregates these covering the years 1977-201612. However
in the 2014 Survey, respondents were asked whether they received the tax rebates,
and in case of positive reply, its amount and the way it was spent: of the 8156
interviewed households, 1514 declared to have at least a member who benefited from
the bonus. The average amount received per household was equal approximately
to 85e and according to the reported replies, most of the bonus (about 90%) was
devolved to consumption, even though additional information about possible lags
in the expending pattern cannot be directly inferred through questionnaire answers.
Neri et al. (2017) exploits for their treatment evaluation analysis the panel structure
of the historical dataset, focusing only on years 2012− 2014.

In line with previous works (Brzozowski, 2007; Stuart et al., 2014), the methodol-
ogy applied by the authors is based on propensity score difference-in-differece, that is
at a first step a suitable sample of treated and control units is built using propensity
score methods and then, on this sample, the difference-in-difference analysis is run.

Propensity score difference-in-difference is motivated by the fact that simple
difference-in-difference is strongly related to the common trend assumption, how-
ever it could easily happen that, this is invalidated by group or time heterogeneity
components: by group heterogeneity we mean the fact that some units belonging
to a particular group (treated or control) are substituted by new ones across time;

12Households and individuals are aggregated via their number of questionnaire and number of
order, respectively, which, for already registered units are not modified through time.
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whereas time heterogeneity arises when, even if we have the same units, their behav-
ioral pattern changes across time.

Introducing propensity score matching allows to partially disentangle difference-
in-difference method from the common trend assumption, in order to build an ad
hoc sample, which reflects, instead, propensity score features, such as the balancing
property.

Despite the e80 tax rebate eligibility is deterministically defined, a propensity
score analysis can be equally performed as long as it is used as a mere matching
method i.e. establishing good matches between treated and untreated. In particular
overlapping and balance assumptions should hold, and in general this is guaran-
teed by the choice of covariates in the binary choice model (probit model) and by
additional diagnosis, prior to the matching scheme.

In their paper, Neri et al. (2017) refer almost each variable in the propensity score
matching to 2012 (pre-treatment period); in this way, in theory, they further enhance
the quality of propensity score estimates by avoiding that some not stochastic compo-
nents in the treatment period (2014) affect the outcome. Group heterogeneity issue
is avoided by building a sample of units which appear both in 2012 and in 2014;
the authors account for time heterogeneity, instead, by introducing time variation
covariates (see below).

The estimation of the treatment effect is carried out via an output model on the
matched sample, in particular:

ci,t = β0 + β1TEMPt + β2BONUSi + β3TEMPt ∗ BONUSi + εi,t

where ci,t is the average monthly consumption of the i-th household in time t =
{2012; 2014}; TEMP is a time dummy equal to one in 2014; BONUS is a dummy
equal to one if the i-th subject is treated and finally the interaction term, whose
coefficient is the object of interest (monthly fraction of bonus spent on those goods).
The authors consider three dependent variables ci,t: the food consumption (as a
proxy for non durable goods); transportation consumption (cars and other vehicles)
and other durables.

Notice that the output model can be considered as the difference-in-difference
counterpart of (3.2): in doing this we are implicitly computing (3.2) at each time
and using the difference in the estimated γ̂ as β̂3.

Starting from the premise that I cannot replicate their data because of the impos-
sibility of determining exactly how some variables are obtained in the original work
and due to the confidentiality of some information, the design of the study is the
following: propensity score is performed in a dataset with 4458 households that were
simultaneously observed in 2012 and 201413; of which 864 were declared as eligible
for the bonus (treated units).

13Missing observation were dropped.
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The chosen covariates, which reflect demographic, socio-cultural characteristics
as well as the general economic condition, are14:

• Dcly1_1..5 is a group of dummy variables which identify the income class
(each category corresponds to a fifth of the total distribution);

• free_cash1 is the actual family income left over once actual rents and house
mortgage are paid (in thousand euros);

• nequ is the normalized number of components in the household, according to
the OCSE measure;

• Darea3_1..3 is a group of geographical dummies which identify respectively
North, Centre and South;

• Deta5_1..5 are dummies for the age class (under 34, 35− 44, 45− 54, 55− 64,
over 65);

• Dstudio_1..6 are dummies for the educational level (None, Primary school,
lower and upper secondary school, university and postgraduate degrees);

• Dqualp3_1..3 are a set of dummies related to the employment activity (em-
ployee, self-employed, not employed);

• con_1..3 are dummies which identify the ability of the household to make
ends meet (with difficulty, with some difficulties, easily);

• vd is a dummy which reflects the quality of income responses (if evaluation is
above 6, in a scale from 1 to 10, the household is considered reliable);

• d_eta is the variation occurred between 2014 and 2012 of older people in the
household (by older we mean above 65);

• d_edu is the variation of high educated people (with at least university degrees)
in 2014-2012;

• d_employ is the variation in the number of employees in 2014-2012;

• d_weight is the variation of the sample weights.

14Individual covariates refer to the head of the household; with respect to the original analysis
the variable delta income after bonus is omitted.
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The probit estimates are here summarized:

Model 1: Probit, using observations 1-4458
Dependent variable: bonus
Standard errors based on Hessian

coefficient std. error z p-value
-----------------------------------------------------------
const -0.419927 0.283758 -1.480 0.1389
Dcly1_2 0.504043 0.100149 5.033 4.83e-07 ***
Dcly1_3 0.674237 0.105475 6.392 1.63e-10 ***
Dcly1_4 0.828705 0.118678 6.983 2.89e-12 ***
Dcly1_5 1.00555 0.157218 6.396 1.60e-10 ***
free_cash1 -0.004189 0.002437 -1.719 0.0857 *
nequ 0.312766 0.052769 5.927 3.08e-09 ***
Darea3_2 -0.036931 0.067704 -0.5455 0.5854
Darea3_3 -0.172973 0.061481 -2.813 0.0049 ***
Deta5_2 -0.165574 0.158171 -1.047 0.2952
Deta5_3 -0.444218 0.152357 -2.916 0.0035 ***
Deta5_4 -0.678368 0.151385 -4.481 7.43e-06 ***
Deta5_5 -1.18339 0.167406 -7.069 1.56e-12 ***
Dstudio_2 -0.247115 0.194222 -1.272 0.2033
Dstudio_3 -0.193147 0.193901 -0.9961 0.3192
Dstudio_4 -0.435061 0.198435 -2.192 0.0283 **
Dstudio_5 -0.624287 0.210175 -2.970 0.0030 ***
Dstudio_6 -1.28717 0.323128 -3.983 6.79e-05 ***
Dqualp3_2 -0.903884 0.092638 -9.757 1.72e-22 ***
Dqualp3_3 -0.821156 0.066997 -12.26 1.55e-34 ***
con2 -0.082903 0.064247 -1.290 0.1969
con3 -0.375594 0.121211 -3.099 0.0019 ***
vd 0.091344 0.121190 0.7537 0.4510
d_eta -0.141438 0.081679 -1.732 0.0833 *
d_edu 0.069263 0.094296 0.7345 0.4626
d_employ 0.427701 0.049609 8.621 6.62e-18 ***
d_weight 0.041215 0.0412063 1.000 0.3172

Mean dependent var 0.193809 S.D. dependent var 0.395325
McFadden R-squared 0.242448 Adjusted R-squared 0.230131
Log-likelihood -1660.549 Akaike criterion 3375.097
Schwarz criterion 3547.963 Hannan-Quinn 3436.037

Matching is then performed via nearest-neighbor without replacement, with a
caliper of 0.0115; the treatment estimates (not winsored and winsored to the bot-
tom/top 1%) are shown in Table 3.1, together with those by Neri et al. (2017).

15As for the order of units, the choice is the minimum distance order (Austin, 2014). Com-
mon support hypothesis is verified, even though this is not requested in nearest neighbor method,
especially with small caliper. Balance properties are reported in the Appendix.
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Table 3.1: Outcome model results: Full model specification

Food Cars Other durables
Current Model 2.56/6.19 13.98/3.93 16.64/10.32∗

(21.85/20.53) (22.51/18.70) (10.49/6.24)
Baseline 14.5 27.2 −0.1

(21.2) (283.2) (147.5)

Standard errors are in parenthesis: notice that the baseline values are clusterized at province level, however this cannot be

reproduced due to the unavailability of the province information. Cars are obtained as net value between total purchases

and total sales; for every entry two values are provided, the former is not winsorized, the latter is winsorized to the bottom

and top 1%. Baseline results are provided only winsorized. Cars are obtained as net value between total purchases and total

sales. ∗ significant at 10%, ∗∗ significant at 5%.

The results here obtained are not similar to the authors’ ones16. Statistical
significance is ascertained for other durables (only in the winsorized output), but this
conclusion should be handled with extremely care, since standard error computation,
in such kind of experiment, is extremely problematic: clusterization at province
level should produce bigger standard errors than the ones obtained without clusters
for durables categories, however province information is confidential; other types of
corrections do not lead to substantial changes.

The discrepancy, in addition to the aforementioned data differences, could be
also motivated by the model specification, so it could be interesting to verify what
happens to the outcome estimation over different nested specifications. Many not
significant variables can be detected in the probit model, so let us focus, as an
example, only on those significant ones: with a simple stepwise procedure where we
omit every variables whose significance is not guaranteed at a size of 1%17 we end
up with the output reported in Table 3.2:

Table 3.2: Reduced model
Food Cars Other durables

Stepwise Model 20.25/20.11 25.00/11.07 11.35/9.01
(21.64/20.24) (25.08/20.01) (10.06/6.34)

The results are quite different again, so a problem of model uncertainty arises; this
leads to the possibility of applying model averaging tools.

3.3.3 A Bayesian Model Averaging counter-analysis

Let us assume the following set-up:

16The category Other non durables is not considered because highly variable: some plausible
explanations range from the heterogeneity of goods which are included in this category (apparel,
entertainment, charity...) to the impossibility of the methodology to catch this effect.

17Variables free_cash1, Darea3_2, Deta5_2, Dstudio_2, Dstudio_3, con2, vd, d_eta, d¬
_edu, d_weight are omitted.
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• a normal prior on the parameter of interest β with a diffuse normal distribution
attached to the parameter of the constant term α:

βi ∼ N(0, n(X̃i
T
X̃i)

−1), α ∼ N(0, 100)

where n is the total number of observations; X̃ is the matrix of demeaned
regressors18, the subscript i identifies model Mi, which simply stands for the
model with the subset of regressors X̃i;

• a diffuse distribution on models, that is each model in the model space has the
same prior probability (uniform);

• the number of iterations and burn-in are respectively 100000 and 10000.

The output of the RJMCMC is here summarized:

------------------------------------------------------
Bayesian Model Averaging with Generalized Linear Model
------------------------------------------------------
Overall sampling statistics

mean stderr pip
const -1.12347 0.02888 1.00000

Dcly1_2 0.46436 0.09731 1.00000
Dcly1_3 0.60534 0.10295 1.00000
Dcly1_4 0.73129 0.11894 1.00000
Dcly1_5 0.83886 0.16273 1.00000

free_cash1 -0.00165 0.00285 0.31307
nequ 0.30866 0.05482 1.00000

Darea3_2 0.00036 0.01122 0.02580
Darea3_3 -0.06253 0.08079 0.43237
Deta5_2 -0.00687 0.06325 0.08094
Deta5_3 -0.29906 0.11040 0.95481
Deta5_4 -0.56507 0.10197 1.00000
Deta5_5 -1.04204 0.12488 1.00000

Dstudio_2 0.00046 0.04509 0.05991
Dstudio_3 0.02186 0.07437 0.14636
Dstudio_4 -0.21730 0.10353 0.88927
Dstudio_5 -0.44281 0.13882 0.96361
Dstudio_6 -1.12579 0.28774 0.99410
Dqualp3_2 -0.94225 0.09319 1.00000
Dqualp3_3 -0.86087 0.06644 1.00000

con2 -0.00375 0.02259 0.05540
con3 -0.25892 0.16790 0.77974

vd 0.00341 0.02799 0.03876

18Remember that in case of diffuse prior on the constant term, the constant is always included.
The choice of a variance equal to 100 is a standard assumption.
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d_eta -0.01749 0.05525 0.12049
d_edu 0.00261 0.02299 0.03420

d_employ 0.43664 0.04957 1.00000
d_weight 0.00151 0.01111 0.04197

------------------------------------

The mean column represents the model averaged estimation (1.20) where we can
notice how variable parameters are shrunk according to their probability of inclusion
(last column). The columns stderr and pip are respectively the model averaged
standard errors (1.21) and posterior probability of inclusion, which represents the
number of times the related variable appeared throughout the MCMC19.

A similar analysis with respect to the one of the previous Chapter can be pro-
vided: variables with a posterior inclusion probability near or equal 1 have their
model averaging posterior mean close to the standard Frequentist Probit coefficient20;
other regressors exhibit a shrinkage effect with respect to the standard Probit pro-
portional to their inclusion. It is very interesting to notice, moreover, how Darea3_3
which is considered as an highly significant variable in the standard model, it is
highly shrunk now. This could appear surprising, but it is possible to conclude,
analyzing the model space, that the best specifications in terms of BIC are obtained
exactly by removing this variable.

Three different BMA treatment effect estimators are evaluated:

• “BMA mean”, which identifies the plug-in estimator based on a propensity score
computed via the above model averaging posterior mean;

• “BMA Frequentist”, which is based on equation (3.5), where the posterior model
probability are provided by the RJMCMC, whereas the model specific treat-
ments are obtained via the outcome models from the corresponding model
specific propensity score, built using simple probit models;

• “BMA full”, which replicates the fully Bayesian method by Kaplan and Chen
(2014), and can be considered as the sample counterpart of equation (3.5),
built on each outcome model derived from the sampled propensity scores21.

In case of “BMA Frequentist” and “BMA full” the model specific treatment effects
are obtained using the OLS estimators γ̂i in the related outcome models; in “BMA
mean” a single outcome model is defined and the related OLS estimator for the
treatment effect is employed.

19The choice between using or not within movements (resampling) for the RJMCMC is secondary,
as they lead to the same results; different thinning intervals have been applied too, as additional
check, but the result does not change. For the example, I do not assume any thinning window.
Same conclusions can be drawn for the proposal kernel for the movements between models: the
standard one (addition and deletion of a single variable) has been used.

20With the exception of the constant term: this comes from the fact that I am assuming a diffuse
prior with demeaned regressors; however this does not affect the further results in any way.

21Remember that the RJMCMC design allows to determine at each step a sampled parameter,
which can be used, in turn, to define a sampled propensity score.
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The estimators are presented in the following table, alongside the treatment effect
for the best five specifications identified by the same BMA approach in order to
highlight again the model uncertainty issue22,

Table 3.3: Outcome model results: Model Averaging

Food Cars Other durables
BMA (mean) 14.36/17.44 25.00/16.80 17.73∗/13.08∗∗

(21.28/20.19) (24.36/19.53) (9.64/6.40)
BMA (Frequentist) 11.63/12.68 22.75/9.82 13.99/10.36

(22.13/20.92) (26.04/20.53) (10.59/7.04)
BMA (full) 8.05/9.48 19.07/8.63 13.89/10.35

(22.11/20.76) (26.07/20.90) (11.26/7.47)
I BMA model 9.59/11.89 34.37/17.65 15.74/11.53∗

(20.99/19.87) (24.93/19.41) (10.07/6.60)
II BMA model 20.25/20.11 25.00/11.07 11.35/9.01

(21.64/20.24) (25.08/20.01) (10.06/6.34)
III BMA model 4.35/3.59 21.30/5.98 9.32/4.93

(20.97/19.78) (22.17/18.13) (9.51/6.57)
IV BMA model 22.81/25.24 14.56/8.76 16.65∗/11.51∗

(21.20/20.04) (24.02/18.94) (9.80/6.17)
V BMA model 8.75/11.42 18.33/7.33 17.11/13.03∗

(21.39/20.31) (25.46/20.22) (10.47/7.17)

Standard errors are in parenthesis: notice that the baseline values are clusterized at province level, however this cannot be

reproduced due to the unavailability of the province information. Cars are obtained as net value between total purchases

and total sales; for every entry two values are provided, the former is not winsorized, the latter is winsorized to the bottom

and top 1%. Baseline results are provided only winsorized. Cars are obtained as net value between total purchases and total

sales. ∗ significant at 10%, ∗∗ significant at 5%.

At a first glance, all three BMA methods lead to different treatment estimations,
but the difference is not so remarkable, in particular, it is quite curious the fact that
“BMA Frequentist” provides an evaluation which is halfway between the one of BMA
mean and the one of BMA full.

The fully Bayesian alternative balances individual treatment effects by default, as
the BMA Frequentist does, but unlike this one, it introduces the uncertainty related
to the Propensity Score. The difference between the two can be imputed to this
element.

“BMA mean” produces a different effect which somehow takes into account model
uncertainty, but not as the other two methods: the motivation lies in the fact that
averaging the treatment across models is different than estimating the treatment
evaluation on the shrinkage parameters, firstly because of the non-linearity induced
by the Propensity Score function. Moreover, the treatment evaluation is a two step
procedure, in which, in a first phase the propensity score is built, and then, in
a second one the matching and the evaluation is performed, hence the treatment
estimate depends heavily on the matching method too, in our case nearest neighbor,
which may introduce additional uncertainty in the choice.

22Simple Probit estimations are used for the Propensity Score.
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The fully Bayesian method implicitly incorporates these side-effects considering
the propensity score distribution, so it should provide a more reliable evaluation: the
smallest effects are detected, but as I will explain further on, they are also the more
robust to different matching schemes.

Finally, we can notice how the policy effect is positive across the three differ-
ent good categories, even if not in line with the original ones; winsoring implies a
greater effect for goods and a lower one for durables classes. Standard errors, as
anticipated, should be handled with extremely care, especially for cars and other
durables, therefore any analysis concerning statistical significance is avoided.

Table 3.4: Best model specifications

P (M |y) Variables
I BMA model 0.18 const Dcly1_2 Dcly1_3 Dcly1_4 Dcly1_5 nequ

Deta5_3 Deta5_4 Deta5_5 Dstudio_4 Dstudio_5 Dstudio_6
Dqualp3_2 Dqualp3_3 con3 d_employ

II BMA model 0.14 const Dcly1_2 Dcly1_3 Dcly1_4 Dcly1_5 nequ Darea3_3
Deta5_3 Deta5_4 Deta5_5 Dstudio_4 Dstudio_5 Dstudio_6
Dqualp3_2 Dqualp3_3 con3 d_employ

III BMA model 0.05 const Dcly1_2 Dcly1_3 Dcly1_4 Dcly1_5 free_cash1 nequ
Deta5_3 Deta5_4 Deta5_5 Dstudio_4 Dstudio_5 Dstudio_6
Dqualp3_2 Dqualp3_3 con3 d_employ

IV BMA model 0.04 const Dcly1_2 Dcly1_3 Dcly1_4 Dcly1_5 free_cash1 nequ
Deta5_3 Deta5_4 Deta5_5 Dstudio_4 Dstudio_5 Dstudio_6
Dqualp3_2 Dqualp3_3 d_employ

V BMA model 0.04 const Dcly1_2 Dcly1_3 Dcly1_4 Dcly1_5 free_cash1 nequ
Darea3_3 Deta5_3 Deta5_4 Deta5_5 Dstudio_4 Dstudio_5
Dstudio_6 Dqualp3_2 Dqualp3_3 con3 d_employ

3.3.4 More checks

In the previous example we have seen how three different BMA methodologies
behave in front of an extremely model sensitive Propensity Score matching problem:
the matching method was nearest neighbor without replacement within a caliper
of 0.01, using the minimum distance principle as data ordering (Austin, 2014), i.e.
matched couples are formed starting from the treated and control unit which are
nearest and so on. Since pairwise matching methods generally tend to be sensitive
to the choice of the caliper and to the data ordering, that is the order in which
the treated units are chosen to be matched, in this subsection I will show how the
previous results change when a different caliper or a different data ordering is used;
finally radius matching is also considered for comparison purpose.

The tables report the treatment estimation for the three categories (not winsored
and winsored) using BMA mean, BMA Frequentist and BMA full under nearest
neighborhood, using the default order (minimum distance), the natural data order,
a stochastic order and finally, reordering treated units in an increasing and decreasing
order of Propensity Score. Three different caliper are analyzed: 0.1, 0.01 and 0.001.
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Table 3.5: Outcome model results: Minimum distance order

caliper
0.1 0.01 0.001

BMA mean

food 17.77/20.75 14.36/17.44 7.65/12.47
(20.93/19.88) (21.28/20.19) (23.09/21.96)

car 27.12/18.98 25.00/16.80 15.28/11.90
(23.87/19.20) (24.36/19.53) (26.02/20.94)

other 16.65/12.49 17.73/13.09 13.86/12.00
(9.89/6.41) (9.65/6.40) (10.17/6.92)

BMA Frequentist

food 11.67/12.64 11.63/12.68 11.75/13.36
(21.50/20.34) (22.13/20.92) (23.74/22.43)

car 21.70/9.02 22.75/9.82 27.50/13.64
(25.76/20.18) (26.04/20.53) (29.28/22.83)

other 13.19/10.36 13.99/10.36 14.18/10.75
(10.46/7.02) (10.59/7.04) (11.26/7.56)

BMA full

food 8.64/10.03 8.05/9.48 9.06/10.62
(21.71/20.39) (22.11/20.76) (24.12/22.64)

car 19.00/8.26 19.07/8.63 21.79/10.71
(25.55/20.44) (26.07/20.90) (28.47/23.02)

other 13.52/10.37 13.89/10.35 14.35/10.42
(11.08/7.43) (11.26/7.47) (12.36/8.14)

Standard errors are in parenthesis; for every entry two values are provided, the former is not winsorized, the latter is

winsorized to the bottom and top 1%.

Table 3.6: Outcome model results: Natural data order

caliper
0.1 0.01 0.001

BMA mean

food 16.36/19.67 11.13/14.83 8.83/13.24
(20.75/19.70) (21.24/20.15) (23.03/21.78)

car 23.56/16.15 26.20/17.80 26.67/17.93
(23.65/18.83) (24.37/19.34) (26.35/20.60)

other 16.02/11.91 18.85/13.73 13.24/15.05
(9.74/6.31) (9.96/6.44) (10.37/6.87)

BMA Frequentist

food 10.54/11.46 10.90/12.00 11.65/13.35
(21.27/20.09) (22.17/20.89) (23.71/22.39)

car 24.69/11.88 22.03/9.60 25.03/11.10
(25.98/20.54) (27.13/21.22) (30.76/23.74)

other 14.55/11.08 17.81/12.69 15.43/11.61
(10.41/6.87) (10.88/7.11) (11.27/7.52)

BMA full

food 8.19/9.56 7.25/8.71 7.88/9.57
(21.47/20.17) (22.06/20.71) (24.07/22.60)

car 20.90/9.62 18.96/7.98 20.77/9.11
(25.28/20.35) (26.01/20.89) (28.30/22.86)

other 15.04/11.19 16.05/11.58 15.35/10.96
(10.87/7.23) (11.16/7.31) (12.27/8.01)

Standard errors are in parenthesis; for every entry two values are provided, the former is not winsorized, the latter is

winsorized to the bottom and top 1%.
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Table 3.7: Outcome model results: Stochastic order

caliper
0.1 0.01 0.001

BMA mean

food 17.57/21.16 14.33/18.04 8.84/13.26
(20.91/19.86) (21.27/20.18) (22.86/21.72)

car 22.76/14.28 26.39/17.86 14.42/9.65
(23.69/18.71) (24.39/19.51) (25.71/20.97)

other 16.29/11.94 17.57/12.24 13.26/13.90
(9.84/6.40) (9.98/6.49) (9.76/6.48)

BMA Frequentist

food 10.77/11.91 10.83/11.99 8.46/10.20
(21.25/20.10) (22.02/20.82) (23.66/22.30)

car 22.17/8.50 25.87/11.74 28.07/12.73
(25.43/20.03) (26.71/21.22) (28.97/22.43)

other 15.19/11.41 16.82/11.73 16.25/11.98
(10.56/7.08) (10.66/7.03) (11.26/7.88)

BMA full

food 8.35/9.76 7.60/9.10 8.15/9.74
(21.56/20.26) (22.10/20.76) (24.13/22.66)

car 21.97/10.70 20.49/9.97 23.10/11.51
(25.68/20.70) (26.32/21.13) (28.61/23.03)

other 13.51/10.40 13.67/10.29 13.84/10.33
(10.97/7.36) (11.26/7.52) (12.42/8.41)

Standard errors are in parenthesis; for every entry two values are provided, the former is not winsorized, the latter is

winsorized to the bottom and top 1%.

Table 3.8: Outcome model results: Increasing order

caliper
0.1 0.01 0.001

BMA mean

food 13.99/17.77 11.27/15.32 12.76/17.37
(21.08/20.02) (21.10/20.06) (22.72/21.48)

car 22.75/17.70 13.39/9.09 10.24/7.46
(23.67/18.69) (23.96/19.09) (25.16/20.05)

other 10.19/9.12 13.01/12.51 13.51/11.58
(9.67/6.82) (9.78/6.89) (9.61/6.29)

BMA Frequentist

food 9.88/11.09 10.04/11.37 11.26/12.95
(21.85/20.58) (21.82/20.56) (23.61/22.19)

car 22.86/10.76 20.84/9.02 26.47/13.01
(26.47/20.80) (26.90/21.17) (31.07/23.73)

other 13.96/11.01 14.41/11.22 15.95/11.62
(10.77/7.41) (10.84/7.36) (11.59/7.97)

BMA full

food 7.59/9.00 8.01/9.47 8.91/10.49
(22.00/20.67) (22.07/20.74) (24.05/22.59)

car 19.02/8.47 17.98/7.95 21.39/10.08
(25.57/20.41) (25.96/20.78) (28.29/22.84)

other 14.19/11.11 14.21/10.71 14.84/10.81
(11.24/7.70) (11.27/7.52) (12.30/8.11)

Standard errors are in parenthesis; for every entry two values are provided, the former is not winsorized, the latter is

winsorized to the bottom and top 1%.
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Table 3.9: Outcome model results: Decreasing order

caliper
0.1 0.01 0.001

BMA mean

food 20.33/22.41 21.32/24.46 15.10/18.44
(20.16/19.12) (21.24/20.14) (22.94/21.79)

car 29.82/22.52 31.47/23.83 25.87/17.39
(23.12/18.91) (24.11/19.44) (26.28/20.81)

other 15.48/12.84 16.23/12.88 18.91/16.49
(9.56/6.65) (9.98/6.79) (10.50/7.32)

BMA Frequentist

food 11.97/12.80 11.95/12.77 10.39/11.89
(20.41/19.34) (21.60/20.54) (23.84/22.65)

car 27.65/15.76 20.82/9.81 27.51/12.75
(24.82/19.81) (26.99/21.01) (29.90/23.09)

other 13.29/10.67 13.83/10.46 14.35/11.18
(9.96/6.92) (10.67/6.94) (11.32/7.58

BMA full

food 10.56/11.92 8.23/9.70 8.75/10.37
(20.70/19.46) (21.88/20.56) (24.07/22.59)

car 24.55/13.45 18.55/8.42 21.19/10.07
(24.40/19.70) (25.77/20.66) (28.35/22.84)

other 13.42/10.53 14.08/10.60 14.75/10.75
(10.41/7.04) (11.11/7.39) (12.30/8.11)

Standard errors are in parenthesis; for every entry two values are provided, the former is not winsorized, the latter is

winsorized to the bottom and top 1%.

The treatment effects defined via the minimum distance, the natural data or-
der, the stochastic one and partly the increasing one are generally similar given each
caliper inside each estimation method class; whereas the decreasing order produces
quite different estimates. However, considering how the results changes across dif-
ferent calipers, it is possible to notice how the BMA mean is particularly sensitive
of the chosen caliper23, whereas both BMA Frequentist and BMA full are more ro-
bust. Moreover, BMA mean sometimes shows some counterintuitive results given
the overall tendency of the other estimates: the unwinsorized treatment effect for
cars, which is generally detected as the highest compared to the other categories, is
strangely small in the BMA mean case with caliper 0.001 for stochastic, increasing
or default order.

Therefore, BMA Frequentist leads to a more robust estimate across data orders
and especially calipers, even though some outliers are still detected, such as car
estimate in decreasing data order with caliper 0.01 or default order with caliper
0.001; BMA full, instead, provides an even more robust output but, again, it has the
smallest effects.

It could be meaningful to ask whether some differences in the results are due to
the natural variability of the categories we are considering, so having a look at the
winsored output, we can conclude how even in this case the previous differences are
maintained but the differences are slighter for BMA Frequentist and BMA full.

Turning the discussion on radius matching, two different calipers are chosen, 0.01
23The effect for food is an example.



3.3. EMPIRICAL ANALYSIS 91

and 0.001, and the output of the three methods are here shown:

Table 3.10: Outcome model results: Radius matching

caliper
0.01 0.001

BMA mean

food 6.22/8.67 3.32/7.02
(31.30/30.49) (36.81/35.93)

car 22.12/14.13 19.67/9.93
(23.33/17.88) (22.63/17.42)

other 13.68/8.81 12.29/8.38
(9.21/5.74) (9.45/6.33)

BMA Frequentist

food 8.52/10.50 9.26/11.13
(31.53/30.83) (37.39/36.33)

car 19.84/11.95 27.05/14.43
(24.63/18.78) (26.78/20.80)

other 12.12/7.41 14.40/8.54
(9.31/5.52) (13.34/6.47)

BMA full

food 7.86/9.66 8.07/9.78
(31.56/30.86) (36.69/35.76)

car 20.54/12.43 23.81/12.65
(25.18/19.07) (27.93/21.52)

other 11.87/7.58 11.26/7.12
(9.65/5.66) (11.93/6.77)

Standard errors are in parenthesis; for every entry two values are provided, the former is not winsorized, the latter is

winsorized to the bottom and top 1%.

Notably, the BMA mean leads to a quite different food effect estimate with
respect to the previous matching method, car and other durables are slightly smaller,
instead; BMA Frequentist equally shows smaller effects, whereas BMA full recovers
an incredibly similar estimate if compared to nearest neighbor ones.

A fact that deserves attention is how both BMA mean and BMA Frequentist
outputs tend to be more in line with the ones provided by BMA full, as if considering
more matched units per treated produces similar effects to considering the propensity
score uncertainty, but further investigations are necessary to ascertain this effect.

In sum, BMA full treatment evaluation seems to be the more stable across dif-
ferent calipers and data ordering (and different matching scheme too), especially
considering the winsored results. BMA Frequentist, except for some outliers (in par-
ticular in the decreasing order case) is stable too, but not as the previous technique.
Finally, BMA mean represents a very intriguing case, since its result in the natural
data, stochastic and default order are very close to each other given each caliper;
however if we consider the two additional data ordering or the variability across
calipers, BMA mean is the less stable method, with some “weird” results too.

3.3.5 An additional experiment

Let us try now, as a final experiment, to slightly change the model set-up proposed
in Subsection 3.3.3: in particular, the dummy variable vd, which previously assigned
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the value 1 if the reliability signaled by the individual was above or equal to the
score of 6, and 0 otherwise, is now split into:

• vd1 assumes the value 1 if the income quality score is equal or above 6 and less
than 9 (excluded), and 0 otherwise;

• vd2 assumes value 1 for score equal or higher 9 and 0 otherwise.

The idea is to consider more income quality classes, but both the previous vd
variable and the new ones are highly insignificant, so the treatment estimation pro-
duced by the BMA mean should not vary considerably as the shrinkage effect is high
for those variables. In other words, it is interesting to verify whether adding, chang-
ing, or deleting not relevant variables affects the three methods, considering in this
way the impact of this kind of miss-specification. The estimates of the model aver-
aging procedure are reported in the Appendix, but as it could have been expected,
the difference in terms of posterior mean, probability of inclusion and best models
achieved are minimal with respect to the original experiment.

Both nearest neighborhood with minimum distance order within the 0.01 caliper
and radius matching are proposed in the following table:

Table 3.11: Outcome model results: NN - Old vs. New

Previous model New model

BMA mean

food 14.36/17.44 10.77/12.84
(20.93/19.88) (21.79/20.58)

car 25.00/16.80 17.40/5.16
(24.36/19.53) (22.97/18.59)

other 17.73/13.09 8.08/7.60
(9.65/6.40) (10.49/6.79)

BMA Frequentist

food 11.63/12.68 12.35/13.32
(22.13/20.92) (22.16/20.95)

car 22.75/9.82 24.18/10.66
(26.04/20.53) (26.05/20.49)

other 13.99/10.36 14.03/10.46
(10.59/7.04) (10.54/7.00)

BMA full

food 8.05/9.48 7.76/9.21
(22.11/20.76) (22.13/20.78)

car 19.07/8.63 19.29/8.71
(26.07/20.90) (26.00/20.83)

other 13.89/10.35 13.86/10.31
(11.26/7.47) (11.21/7.44)

Standard errors are in parenthesis; for every entry two values are provided, the former is not winsorized, the latter is

winsorized to the bottom and top 1%.

BMA mean leads to different estimates, and in part, this could have been pre-
dictable since pairwise matching is extremely sensitive to the numerical value of the
propensity score, which is, of course, modified. BMA Frequentist and, above all,
BMA Full, however, produce an extremely similar result even in this case; therefore
using these methods guarantee an insurance for the miss-specification here presented.
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In order to verify if the changes are amplified by nearest neighborhood choice, as
it could be expected, radius matching within a caliper of 0.01 is also analyzed.

Table 3.12: Outcome model results: NN - Old vs. New

Previous model New model

BMA mean

food 6.22/8.67 5.31/7.75
(31.30/30.49) (31.34/30.54)

car 22.12/14.13 20.56/12.83
(23.33/17.88) (23.40/17.81)

other 13.68/8.81 13.47/8.51
(9.21/5.74) (9.17/5.63)

BMA Frequentist

food 8.52/10.50 8.69/10.69
(31.53/30.83) (31.55/30.86)

car 19.84/11.95 19.97/12.12
(24.63/18.78) (24.66/18.74)

other 12.12/7.41 12.11/7.44
(9.31/5.52) (9.29/5.53)

BMA full

food 7.86/9.66 7.88/9.68
(31.56/30.86) (31.53/30.82)

car 20.54/12.43 20.57/12.50
(25.18/19.07) (25.23/19.06)

other 11.87/7.58 11.86/7.58
(9.65/5.66) (9.66/5.66)

Standard errors are in parenthesis; for every entry two values are provided, the former is not winsorized, the latter is

winsorized to the bottom and top 1%.

It is possible to notice how the variation is remarkably smaller for BMA mean,
therefore the impact of the matching scheme has clearly its importance, however
BMA Frequentist and especially BMA Full exhibit minimal changes.

3.3.6 Summary

In this Chapter we have explored the effect of BMA in Propensity Score matching:
the choice of which variables should be included in the Propensity Score estimation
is often ignored, but the consequences can be severe. Model averaging has been
proposed as a plausible solution which avoids problems of miss-specification; in par-
ticular, three different techniques concerning BMA have been used: BMA mean,
BMA Frequentist and BMA full. Using data from the Bank of Italy SHIW, a similar
analysis to the one proposed by Neri et al. (2017) for the Italian 2014 tax rebate has
been performed, with the aim of verifying the validity of BMA method and their
robustness to different set-ups instead of merely replicating their results. BMA full
in particular has shown the most robust results with respect to different calipers and
data order for nearest neighborhood, radius matching and finally to miss-specification
scenarios where some insignificant variables have been modified. The consequences
of this fact can be remarkable, even though additional analyses are surely required:
firstly the choice of priors for both parameters and models could be determinant,
so a further study in this direction seems to be necessary and an extension, which
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embraces the so-called Spike and Slab priors could be very interesting. As for the
matching methods, throughout the Chapter I have adopted pairwise matching and
radius matching; considering different methods such as stratification, kernel or op-
timal matching should be appropriate. Finally, analyzing BMA methods for other
datasets or simulated examples is necessary too.



Conclusion

Models have a central role in science: we have seen at the beginning of this “brief
journey” how this fact is also true for Economics and Econometrics, where the human
behavior is the object of the study. In particular, we would like to think of a model
like a mathematical tool which helps to understand and interpret the reality: for
what concerns this dissertation, I have assumed the model functional form as given,
so that I have turned the attention to the choice of which variables should enter in
this relationship and their causality.

Commonly, this is translated into practice via model selection, or more properly,
with variable selection methods, which range from more traditional ones such as
hypothesis testing or Information Criteria, to more advanced ones such as shrinkage
regression; but all of them have in common the scarce care for uncertainty. Choosing
a single best specification can be considered as an innocuous but necessary fiction,
however it hides several traps: model averaging is the solution here proposed, since
taking into account not just one, but more models clearly reduces the risk of miss-
specifications.

The choice made has led us to Bayesian Model Averaging in Generalized Linear
Models, where the Reversible Jump Markov Chain Monte Carlo design has come to
the aid thanks to its extreme flexibility; of course the efficiency of the MCMC and
the accuracy of the estimates could be smaller if compared to its main antagonist,
i.e. Stochastic Search Variable Selection, but in this efficiency-flexibility trade off, I
have favored the second aspect.

A Gretl algorithm, thus, has been provided with the aim of introducing a ready-
to-use procedure for every kind of user; in order to circumvent possible problems with
poor mixing, local maxima which temporarily halt the MCMC and the CPU time
which can grow faster, several computational aspects have been taken into account,
in particular the parallelization of the MCMC. Using a very simple example, it has
been possible to show the advantages of parallelization in terms of CPU time gains
and how the convergence has not been affected as well.

In order to investigate the utility of BMA procedure in typical econometric rou-
tines, an application on Propensity Score matching for treatment evaluation has been
proposed: when the choice of variables is crucial, in the sense that different mod-
els lead to different Propensity Scores, hence different treatment estimations, the
necessity of a model averaged technique is impelling. The economic consequences
of tax rebates, with the particular case of the recent Italian Tax rebate, has been
studied, and three different methodologies concerning BMA have been used: BMA
mean, BMA Frequentist and BMA Full. BMA Full has shown an intrinsic robust-
ness to different matching set-ups, and even though it has produced the smallest
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estimates, on the other hand, considering the propensity score distribution takes
into account an additional source of uncertainty ignored by the other methods. It
could be interesting to compare this result with matching methods not considered in
this work, i.e. optimal matching or kernel matching methods; as well as considering
a simulated design experiment, where it would be possible to identify the effect in
an ad-hoc environment.

As for the possible developments of the Gretl algorithm, different extensions
would be interesting (and currently in process) such as integrating more link func-
tions for even more GLMs, considering additional model proposal kernels, adaption
schemes and further applications of parallelization (including horizontal MCMCs).
The first aspect deserves a closer look, since the flexibility of the RJMCMC allows
for even greater designs: for practical purposes, more general and complex models
than GLMs can be studied, extending the scheme for not-nested cases as well. A
potential guideline in this direction could be Barker and Link (2013), who modified
the RJMCMC into a more general Markov Chain Monte Carlo simulation with Gibbs
sampling. It could be desirable, moreover, to perform detailed studies on how differ-
ent prior choices impact on the averaging procedure, analyzing the Spike and Slab
cases which are somehow extremely famous in the literature. Finally, extensions of
BMA to other applications such as Heckit models (Heckman, 1979) or endogeneity
issues seems equally valuable.

To conclude, I sincerely hope that in these pages the reader have had the chance
to taste a bit of the world of model building, and why not, find it a little amus-
ing. Rephrasing the introduction of “The Evolution of Physics” (Einstein and Infeld,
1961), in imagination there exists the perfect mystery story, a story in which all clues
lead the reader, if he follows the plot carefully, to the ultimate riddle solution just
before the author provides it; but is it possible to compare this kind of reader to a
scientist? The answer is negative, as the theory may explain many facts, but the
general solution compatible with all clues is far from being discovered. The more
we read from our incomplete “book of Nature”, the more we appreciate it, though a
complete solution seems to recede as we advance.
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Appendix A

Balancing properties: full probit
model and BMA mean

The balancing properties for the Full model and BMA mean are reported in the
following tables: using simple t-tests for the equality of the means between the two
populations (treated and control units)1, it is possible to conclude how in the full
model the balance is achieved.

In the BMA mean case the same conclusions can be drawn, even though, appar-
ently, the variables free_cash and Darea3_3 reject at a significance level of 5% and
10%, respectively; however we should take into account the shrinkage effect imposed
by the averaging procedure.

If we consider the posterior probability of inclusion (the last column in table A.2,
pip) as additional element in the balancing property check, both free_cash and
Darea3_3 appear the 30% and the 40% of times across the MCMC, so their impact
in the final matching scheme should not be the same as the one of those variables
with the highest pip.

In this regards, all test statistics should be “re-scaled” by taking into account this
quantity, hence, the balancing properties are verified for BMA mean too.

1Other methods such as Cohen’s d or McFadden R test have been applied but not reported as
they lead to the same conclusions.
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Appendix B

RJMCMC output for the
miss-specification example

In this Appendix the function output for the experiment in Subsection 3.3.5 is
reported; the set-up for the function i.e the choice of the priors, number of iterations
etc. are the same ones presented in the leading example (Subsection 3.3.3).

------------------------------------------------------
Bayesian Model Averaging with Generalized Linear Model
------------------------------------------------------

Overall sampling statistics
mean se pip

const -1.12301 0.02969 1.00000
Dcly1_2 0.46721 0.10240 1.00000
Dcly1_3 0.60731 0.10602 1.00000
Dcly1_4 0.73610 0.12186 1.00000
Dcly1_5 0.84987 0.16778 1.00000

free_cash1 -0.00170 0.00290 0.31726
nequ 0.30784 0.05439 1.00000

Darea3_2 0.00020 0.01331 0.02708
Darea3_3 -0.06188 0.08158 0.42278
Deta5_2 -0.00554 0.06297 0.07964
Deta5_3 -0.29880 0.11066 0.95670
Deta5_4 -0.56334 0.10374 1.00000
Deta5_5 -1.04278 0.12603 1.00000

Dstudio_2 -0.00107 0.03435 0.04929
Dstudio_3 0.01620 0.06021 0.10906
Dstudio_4 -0.22259 0.09340 0.90952
Dstudio_5 -0.45010 0.12832 0.97216
Dstudio_6 -1.11800 0.28091 0.99428
Dqualp3_2 -0.94132 0.09530 1.00000
Dqualp3_3 -0.85862 0.06792 1.00000
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con2 -0.00325 0.02110 0.04712
con3 -0.25676 0.16889 0.77322
vd1 0.00110 0.01157 0.02011
vd2 -0.00043 0.00895 0.01393

d_eta -0.01713 0.05531 0.11906
d_edu 0.00148 0.01678 0.02249

d_employ 0.43891 0.05020 1.00000
d_weight 0.00144 0.01102 0.03797

------------------------------------
Best specifications:

Model_35114543: P(M|D)=0.195311
--
const Dcly1_2 Dcly1_3 Dcly1_4 Dcly1_5 nequ Deta5_3
Deta5_4 Deta5_5 Dstudio_4 Dstudio_5 Dstudio_6 Dqualp3_2
Dqualp3_3 con3 d_employ
------------------------------------
Model_35114671: P(M|D)=0.151022
--
const Dcly1_2 Dcly1_3 Dcly1_4 Dcly1_5 nequ Darea3_3
Deta5_3 Deta5_4 Deta5_5 Dstudio_4 Dstudio_5 Dstudio_6
Dqualp3_2 Dqualp3_3 con3 d_employ



Appendix C

Parallelization in the tax rebate
example

A comparison between CPU time and the impact of parallelization is here pro-
posed using the dataset and model proposed in Chapter 3 for Propensity Score
matching.

The experiment is similar to the one of subsection 2.6.1, a fixed and a flexible
burn-in design is proposed with 100000 iterations; the single core, 4-cores and 8-cores
performances are compared in terms of CPU time and convergence.

Table C.1: Fixed burn-in set-up

cores c=1 c=4 c=8
Iterations per core 100000 32500 21250

Elapsed time (min) 5128.96 1175.30 820.33
BG statistic 1.06 1.08

P (M |D)
Model I 0.18 0.19 0.19
Model II 0.14 0.14 0.13

The fixed burn-in design leads to better convergence diagnosis as we could have
expected since the same burn-in time is elapsed in each core; however, moving from 4
cores to 8 cores implies a worsening of the multivariate Brooks and Gelman statistics.
As for the time gain, the 4 core experiment allows to save up to the 78% of the time
of the single core run; the 8 core experiment up to the 84%.

Even in this case, the relative advantage of using more cores exhibits a downward
tendency when moving from 4 to 8 cores.

Turning the discussion to the flexible burn-in experiment, the CPU time advan-
tage is more pronounced, in particular the 8 core design leads to an improvement of
about 90% of the single core performance, but at a cost: the BG convergence statis-
tics exceeds the 1.1 threshold, which is considered as a first signal of convergence
problems.

In many cases this is not a big issue, as real convergence issues are detected over
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Table C.2: Flexible burn-in set-up

cores c=1 c=4 c=8
Iterations per core 100000 25000 12500

Elapsed time (min) 5128.96 836.10 404.10
BG statistic 1.08 1.11

P (M |D)
Model I 0.18 0.19 0.19
Model II 0.14 0.14 0.13

the 1.2 threshold; however the deterioration of the quality of the MCMC output due
to smaller burn-in time seems to be not negligible.

To conclude, when many variables are used, the impact of parallelization seems to
be more evident in both fixed and flexible burn-in designs, even though convergence
statistics tend to worsen especially in the flexible set-up, where the small burn-
in period may be inadequate. However further investigations are surely required,
especially when much more variables are involved.

Table C.3: Best model specifications

Variables
Model I const Dcly1_2 Dcly1_3 Dcly1_4 Dcly1_5 nequ

Deta5_3 Deta5_4 Deta5_5 Dstudio_4 Dstudio_5 Dstudio_6
Dqualp3_2 Dqualp3_3 con3 d_employ

Model II const Dcly1_2 Dcly1_3 Dcly1_4 Dcly1_5 nequ Darea3_3
Deta5_3 Deta5_4 Deta5_5 Dstudio_4 Dstudio_5 Dstudio_6
Dqualp3_2 Dqualp3_3 con3 d_employ



Appendix D

RJMCMC algorithm - the package

#private functions

function void glm_stuff(matrix eta "linear predictor: X’b",
const matrix Y "dependent variable",
const matrix X_0 "matrix of regressors",
int type[1:4] "type of link function for glm",
matrix *XWX,
matrix *XWz,
matrix *b,
matrix *V)

#THIS FUNCTION COMPUTES SOME BASIC QUANTITIES FOR GENERALIZED LINEAR MODELS
#Linear models are not considered in this function

if type==1 #probit
mu = cnorm(eta) #mean
d = 1/dnorm(eta) #derivative of eta w.r.t. mu
v = mu .* (1 - mu) #~variance~

elif type==2 #logit
mu = logistic(eta)
d = 1./(mu.*(1-mu))
v = mu .* (1 - mu)

elif type==3 #cloglog (binary)
mu = 1-exp(-exp(eta))
d = 1./exp(eta-exp(eta))
v = mu .* (1 - (mu))

elif type==4 #poisson
mu=exp(eta)
d = 1./exp(eta)
v = mu

endif

z = eta + (Y - mu).*d #transformation of ’y’

w = 1./((d.^2) .* v)

XW = X_0 .* w
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XWX = XW’X_0 # correspondent of (X’X) for glm
XWz = XW’z # correspondent of (X’y) for glm

if type==3
V=invpd(XWX) #covariance matrix
b=V*XWz #parameter estimator (b_hat) -- frequentist

endif

end function

function void glm(series y "dependent variable, as a series",
list X "list of regressors",
const matrix X_0 "matrix of regressors",
int type[1:4],
matrix *b "vector containing parameter estimation",
matrix *v "matrix containing covariance estimation")

#FREQUENTIST ESTIMATION OF GLM
#we use std Gretl functions for each model except for ’cloglog’
#where Iterative Weighted Least Squares are used

if type == 1
probit y X --quiet
b = $coeff
v= $vcv

elif type == 2
logit y X --quiet
b = $coeff
v= $vcv

elif type == 4
poisson y X --quiet
b= $coeff
v= $vcv

else #cloglog case
matrix Y = {y}
matrix XWX={}
matrix XWz={}
matrix thres=1
loop while thres>1.0e-20 #iterated weighted least squares

b_1=b
eta = X_0*b
glm_stuff(eta, Y, X_0, type, &XWX, &XWz, &b, &v)
thres=abs(b-b_1)

endloop

endif

end function
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function matrix multi_norm(const matrix meanx "mean of multivariate normal",
const matrix A "Cholesky decomposition covariance matrix")

#THE FUNCTION GENERATES A RANDOM VECTOr
#FROM A MULTIVARIATE NORMAL WITH MEAN "meanx" AND VARIANCE "V=AA’"

matrix x = mnormal(rows(meanx),1)
matrix Y=meanx + A*x

return Y

end function

function void fillthebundle(bundles *MOD "bundles of models",
matrix model "binary vector representing model",
scalar id "id of the selected model",
series y,
list X,
const matrix X_0,
const matrix pr_mean,
const matrix pr_var,
int type,
bool const_case "diffuse(0) or informative(1) prior const")

#GIVEN THAT EACH MODEL "m" CORRESPONDS TO A SINGLE BUNDLE IN THE ARRAY "MOD",
#THIS FUNCTION FILLS EACH MODEL BUNDLE WITH SOME

#QUANTITIES OF INTEREST (INITIALIZATION)

bundle m = MOD[id]

if inbundle(m, "already")==0 #Verify that the bundle in not already initialized
m.already=1
m.flag=1 #for resampling
if const_case ==0 #adapt for diffuse prior on const

model=1|model
endif

matrix Z_0=selifc(X_0,model’) #matrix of regressors of id-model
scalar k=cols(Z_0) #number of regressors of id-model

list Z = X #update Z
loop j=1..rows(model) --quiet

if model[$j,1]== 0
Z -= X[$j]

endif
endloop
# or with indexes
#matrix var_x=X
#var_z=selifc(var_x,model’)
#list Z = var_z
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m.regr_list= Z #list of regressors of id-model
m.regr_matrix= Z_0

m.numb = k

m.acctimes=0 #number of times that the model is accepted in the MCMC
m.rejtimes=0 #number of times that the model is rejected in the MCMC

matrix p_mean = selifr(pr_mean, model)
if const_case==0

if pr_var[1]==1
p_varino = pr_var[2]*I(k-1)
p_var = diagcat(100,p_varino)

elif pr_var[1]==2
p_varino = pr_var[2]*inv(Z_0[,2:]’Z_0[,2:])
p_var = diagcat(100, p_varino)

endif
else

if pr_var[1]==1
p_var = pr_var[2]*I(k)

elif pr_var[1]==2
p_var = pr_var[2]*inv(Z_0’Z_0)

endif
endif

m.priormean = p_mean #prior mean of parameter of model id
m.priorvar = p_var #prior var of parameter of model id
inv_pv=invpd(p_var)
m.invpv=inv_pv #inv of prior var -- for computation

matrix b=zeros(k,1)
matrix V=zeros(k,k)

glm(y, Z, Z_0, type, &b, &V) #freq estimates
ivar=invpd(V)

###bayesian average and covariance matrix based on frequentist estimation
VAR_freq=invpd(inv_pv+ivar)
Chol_freq=cholesky(VAR_freq)

ot_va=invpd(V+p_var)
b_freq=b-(V*ot_va*(b-p_mean))

m.bsamp=b #frequentist initialization
m.varfreq=VAR_freq #bayesian VAR of paramete on freq. estimation
m.cholfreq=Chol_freq #Chol decomposition of bayesian VAR
m.avfreq=b_freq #bayesian mean of parameter on frequ. estiamtion

#bayesian average and covariance for MCMC re-sampling
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m.avchain=b_freq
m.varchain=VAR_freq
m.cholchain=Chol_freq

#bayesian average and covariance for MCMC re-sampling,
# 1-step ahead -- to speed up computations
m.avchain_1=b_freq
m.varchain_1=VAR_freq
m.cholchain_1=Chol_freq

MOD[id] = m
endif

end function

#THE FOLLOWING TWO FUNCTIONS CONVERT A MODEL FROM DECIMAL TO BINARY NOTATION AND VICEVERSA
function scalar convert(matrix one)

n = nelem(one)
return (2 .^seq(0,n-1))*vec(one)

end function

function matrix reconv(scalar num, scalar n)
x = num
ret = zeros(n, 1)
i = 1
loop while x>0 --quiet

y = x % 2
ret[i++] = y
x -= y
x /= 2

endloop
return ret

end function

function void sampling(series y, bundles *MOD, scalar id, int type, bool const_case, scalar U1)
#IT COMPUTES A STEP (ITERATION) OF GAMERMAN’S BAYESIAN
#ITERATED WEIGHTED LEAST SQUARES FOR GLM
#I use this function to sample the initial vector of parameters and then
#for resampling when no new movement is accepted
#to speed uo the procedure we use the chain_1 values, avoiding useless repetition.
#Note that this is true only when we stay for more than 1 times.
#The first time needs some adjustments which are provided via the bool ’flag’

bundle m = MOD[id]
matrix Y = {y}
matrix Z_0=m.regr_matrix
matrix prvar=m.priorvar
matrix invpv=m.invpv
matrix prmean=m.priormean

b_old=m.bsamp
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if m.flag==0 #it guarantees that when a new model is accepted
#and then a resample occurs the beta used is the current one for the model

eta_1 = Z_0*b_old

matrix ZWZ_1={}
matrix ZWz_1={}
matrix b_1={}
matrix V_1={}
glm_stuff(eta_1, Y, Z_0, type, &ZWZ_1, &ZWz_1, &b_1, &V_1)

varchain=inv(invpv+ZWZ_1)

varx_1=0.5*(varchain+varchain’)
b_new_ch_1=cholesky(varx_1)
b_new_av_1 = varx_1*(invpv*prmean + ZWz_1)

m.avchain_1=b_new_av_1
m.varchain_1=varx_1
m.cholchain_1=b_new_ch_1

m.flag=1
endif

b_av=m.avchain_1
b_var=m.varchain_1
b_ch=m.cholchain_1

b_samp=multi_norm(b_av, b_ch)

eta = Z_0*b_samp #update

matrix ZWZ={}
matrix ZWz={}
matrix b={}
matrix V={}
glm_stuff(eta, Y, Z_0, type, &ZWZ, &ZWz, &b, &V)

b_new_var=inv(invpv+ZWZ)

varx=0.5*(b_new_var+b_new_var’)
b_new_ch=cholesky(varx)
b_new_av = varx*(invpv*prmean + ZWz)

AR=A_R(y, b_samp, b_old, prmean, prvar, type, Z_0, b_av, b_var, \
b_new_av, b_new_var, const_case)#Metropolis-Hastings AR

alpha=xmin(1,AR)

if U1 <= alpha #accept --> update values in the bundle
m.bsamp=b_samp

m.avchain=b_av
m.varchain=b_var
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m.cholchain=b_ch

m.avchain_1=b_new_av
m.varchain_1=b_new_var
m.cholchain_1=b_new_ch

endif
MOD[id] = m

end function

function scalar ln_LikPrior(series y, const matrix beta, const matrix X, \
const matrix prmean, const matrix prvar, int type, bool const_case)

#ln(likelihood*prior) CALCULATED ON beta
#The function can be also used to compute directly the ratio
#between two different betas (provided they have the same dimension):
#in this case beta must have two columns
#representing each one the parameters

scalar k = rows(beta)
matrix i_prvar = inv(prvar)
matrix ld_prvar = ldet(prvar)
scalar lK = -k/2*ln(2*$pi) - 0.5 * ld_prvar
pr = lK - 0.5 * qform((beta .- prmean)’, i_prvar) #prior on beta (log)

if cols(beta)==2
pr0 = pr[1,1]
pr1 = pr[2,2]

endif

matrix eta= X*beta

if type==1
mu = cnorm(eta)

elif type==2 #logit
mu = logistic(eta)

elif type==3 #cloglog
mu = 1-exp(-exp(eta))

elif type==4 #poisson
mu=exp(eta)

endif

if cols(beta)==1
if type == 1 || type==2 || type==3 #likelihood #1.binary models

lik=sum(y.*log(mu)+(1-y).*log(1-mu))

elif type == 4 #2.poisson

lik=sum(y.*log(mu)-lngamma(y+1).-mu)

endif
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ret=pr+lik

elif cols(beta) ==2

if type == 1 || type==2 || type==3

lik0 = sum(y.*log(mu[,1])+(1-y).*log(1-mu[,1]))
lik1 = sum(y.*log(mu[,2])+(1-y).*log(1-mu[,2]))

elif type == 4
matrix lgy = lngamma(y+1) .+ mu

lik0 = sum(y.*log(mu[,1]) - lgy[,1])
lik1 = sum(y.*log(mu[,2]) - lgy[,2])

endif

ret = (pr0 + lik0) - (pr1 + lik1)

endif

return ret
end function

function scalar A_R(series y, matrix beta, matrix b, matrix pr_mean, matrix pr_var, \
int type, matrix X_0, matrix M_star_1, matrix V_star_1,\
matrix M_star, matrix V_star, bool const_case)

# M_star and V_star are respectively the current proposal posterior mean and variance
# M_star_1 and V_star_1 are the old ones

#THE FUNCTION COMPUTES PART OF THE TRANSITION PROBABILITY USED TO ACCEPT-
REJECT THE NEW SAMPLED beta

f1 = exp(ln_LikPrior(y, beta ~ b, X_0, pr_mean, pr_var, type, const_case))

scalar k = rows(beta)

matrix i_posvar_1 = inv(V_star_1)
matrix i_posvar_1 = 0.5*(i_posvar_1+i_posvar_1’)#force simmetry
matrix d_posvar_1 = ldet(V_star_1)
scalar lK_1 = -k/2*ln(2*$pi) - 0.5 * d_posvar_1
d1 = lK_1 -0.5 * qform((beta-M_star_1)’,i_posvar_1) #proposal density -

- transitional kernel

matrix i_posvar = inv(V_star)
matrix i_posvar= 0.5*(i_posvar+i_posvar’)
matrix d_posvar = ldet(V_star)
scalar lK = -k/2*ln(2*$pi) - 0.5 * d_posvar
d2 = lK -0.5 * qform((b-M_star)’,i_posvar)
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d = exp(d2 - d1) #ratio between proposal

scalar a_r= f1*d #transition probability
return a_r

end function

function matrix random_perm(matrix beta)
n=rows(beta)
a = seq(1,n)’
b = msortby(muniform(n,1) ~ a,1)
perm=b[,2]
return beta[perm]

end function

function matrix b_born(bundles MOD,
scalar id "id of the model in the previous iteration step",
scalar idnew "id of the new proposed model",
matrix *u "transdimensional variable",
scalar *det_ratio "ratio between cholesky var of the two model",
scalar *g_u "distribution of u")

###TRANSFORMATION OF BETA THROUGH DIFFERENT MODELS --
REVERSIBLE JUMP MCMC DIMENSIONAL FUNCTION

bundle m_old=MOD[id] #previous-step model
k_old=m_old.numb
b_old=m_old.bsamp

av_old=m_old.avchain
ch_old=m_old.cholchain

bundle m_new=MOD[idnew]
k_new=m_new.numb
av_new=m_new.avchain
ch_new=m_new.cholchain
B1=det(ch_new)

matrix iCh_old=inv(ch_old)
B2=det(iCh_old)

matrix b_std=iCh_old*(b_old-av_old) #standardize beta of the previous iteration
#print b_std

if k_old>k_new

matrix b_std1 =random_perm(b_std)
matrix u=b_std1[k_new+1:k_old,1]
matrix b_std1=b_std1[1:k_new]
#print b_std1
#print u

elif k_old<k_new
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matrix u = mnormal(k_new-k_old,1)

matrix b_std1 = b_std | u
matrix b_std1=random_perm(b_std1)

else

matrix b_std1=random_perm(b_std)

endif

scalar det_ratio=B1*B2 #part of accept-reject probability in transdimensional case

if k_old!=k_new
densit=dnorm(u) #u is a (multivariate) std normal
g=prodc(densit)

g_u=k_new<k_old ? g : 1/g #part of accept-
reject probability in transdimensional case

endif

matrix b_trans=ch_new*b_std1
matrix b_new= av_new + b_trans #new beta

return b_new
end function

function scalar ratio(series y,
const matrix newb "new sampled beta",
bundles MOD,
scalar newid "bundle of the new model",
scalar id,
scalar det_ratio,
scalar g_u,
int type,
bool const_case,
scalar prop_ratio)

#PART OF ACCEPT-REJECT PROBABILITY FOR RJMCMC.
#See Green(2003) for details

bundle m_old=MOD[id]
matrix Z_old=m_old.regr_matrix
matrix prvar_old=m_old.priorvar
matrix prmean_old=m_old.priormean
matrix b=m_old.bsamp

bundle m_new=MOD[newid]
matrix Z_new=m_new.regr_matrix
matrix prvar_new=m_new.priorvar
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matrix prmean_new=m_new.priormean

P_1 = ln_LikPrior(y, newb, Z_new, prmean_new, prvar_new, type, const_case)
P_0 = ln_LikPrior(y, b, Z_old, prmean_old, prvar_old, type, const_case)

alpha=exp(P_1 - P_0)
alpha_dyn=alpha*det_ratio*g_u*prop_ratio

return alpha_dyn

end function

function scalar model_prior( matrix Phi, const matrix model)
#IT COMPUTES MODEL PRIOR IN CASE OF BINOMIAL
#’Phi’ can be a scalar (average inclusion prob) or a vector \
(each probability is specified)
#Notice that we accept values in the range (0,1), with extremes excluded
#if const_case==0 Phi in vector should not include the const term,\

as it is always included!

if nelem(Phi)==1
Phi=Phi.*ones(rows(model),1)

endif

w=log(Phi)’model
cw=log(1-Phi)’(1-model)

pro=w+cw
prior=exp(pro)

return prior

end function

function void accept(matrix *model, matrix modelnew, scalar *id, scalar newid,\
matrix bnew, bundles *MOD)

#It updates the new values inside the selected bundle when the movement to
a new model is accepted

matrix model = modelnew
scalar id = newid
MOD[id].bsamp=bnew

MOD[id].flag=0

end function

###The following parts are related to the model dynamics
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function scalar binomial_coeff(int n, int k)
num=gammafun(n+1)
den=gammafun(k+1)*gammafun(n-k+1)
return num/den

end function

function void Unif_II(const matrix model, matrix *modelnew, scalar change_var,\
int dynamics, scalar adaption, scalar *prop_ratio, bool const_case)

#movement from uniform, with delete, add, switching
#dynamics ==1 you must specify the number of changing variable
#if dynamics==2 this number is determined automatically,
# you must specify the total number of potential variable to be changed

k=nelem(model)
#print model
if dynamics==1

change_var=randint(1,change_var)
elif dynamics == 2

change_var=randgen1(b,adaption,change_var-1)+1 #adaption case
endif

#print change_var
if sum(model)>change_var #we specify the moves available

#print "prim"
if k-sum(model)>=change_var

move=randint(1,3)
qm=1/3
#print "p1"

else
#print "p2"
move=1
qm=1

endif
elif sum(model)<=change_var && change_var<=k-sum(model)

#print "second"
if sum(model)==change_var && const_case==1

move = randint(2,3)
qm=0.5
#print "s1"

elif sum(model)==change_var && const_case==0
move = randint(1,3)
qm = 1/3
#print "s2"

elif sum(model)<change_var
move=3
qm=1
#print "s3"

endif
elif sum(model)<=change_var && change_var>k-sum(model) && const_case==0

move=1
qm=1
#print "terz"

endif
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if move==1 #proposal of new models
#focus only on the available variables --1s in model
matrix subset = {}
loop i=1..k --quiet

if model[$i]==1
subset~=$i

endif
endloop

loop while sum(modelnew)!=(sum(model)-change_var) --quiet
proposal=randint(1,nelem(subset))
modelnew[subset[proposal]]=0

endloop

neigh_p=(1/ncount_move(model, move, k, change_var))
#q_go= (dynamics==1)? qm*neigh_p : q*qm*neigh_p
q_go=qm*neigh_p
aw=ncount_move(model, move, k, change_var)

elif move==3
#focus only on the missing variables -- 0s in model
matrix subset = {}
loop i=1..k --quiet

if model[$i]==0
subset~=$i

endif
endloop

loop while sum(modelnew)!=(sum(model)+change_var) --quiet
proposal=randint(1,nelem(subset))
modelnew[subset[proposal]]=1

endloop

neigh_p=(1/ncount_move(model, move, k, change_var))
#q_go= (dynamics==1) ? qm*neigh_p : q*qm*neigh_p
q_go=qm*neigh_p

else
#switch movement
matrix modelnew_1=modelnew
matrix modelnew_0=modelnew
matrix subset_1 = {}
matrix subset_0={}
loop i=1..k --quiet

if model[$i]==0
subset_0~=$i

else
subset_1~=$i

endif
endloop

loop while sum(modelnew_0)!=(sum(model)+change_var) --quiet
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proposal=randint(1,nelem(subset_0))
modelnew_0[subset_0[proposal]]=1
modelnew[subset_0[proposal]]=1

endloop

loop while sum(modelnew_1)!=(sum(model)-change_var) --quiet
proposal=randint(1,nelem(subset_1))
modelnew_1[subset_1[proposal]]=0
modelnew[subset_1[proposal]]=0

endloop

endif

#return movement
if sum(modelnew)>change_var

if k-sum(modelnew)>=change_var
qm_r=1/3

else
qm_r=1

endif
elif sum(modelnew)<=change_var && change_var<=k-sum(modelnew)

if sum(modelnew)==change_var && const_case==1
qm_r=0.5

elif sum(modelnew)==change_var && const_case==0
qm_r=1/3

elif sum(modelnew)<change_var

qm_r=1
endif

elif sum(modelnew)<=change_var && change_var>k-
sum(modelnew) && const_case==0

qm_r=1

endif

if move==1
move_r=3
neigh_pr=(1/ncount_move(modelnew, move_r, k, change_var))
q_ret=qm_r*neigh_pr

prop_ratio=q_ret/q_go
elif move==3

move_r=1
neigh_pr=(1/ncount_move(modelnew, move_r, k, change_var))
q_ret=qm_r*neigh_pr

prop_ratio=q_ret/q_go
else

prop_ratio=1
endif
#print modelnew
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end function

function void neighbor(bundle *m, bundles MOD,const matrix modelnew,\
scalar k, bool const_case)

#Computes the neighborhood of a selected model, for dynamics==3
if inbundle(m, "neigh")==0

set_red={}
set_switch={}
set_add={}

loop i=1..k --quiet #delete/add moves
if modelnew[$i]==1 #deletion move neightborhood

modelnew_del=modelnew
modelnew_del[$i]=0
id_red=convert(modelnew_del)
if id_red!=0 && const_case==1

prob_red=MOD[id_red].sss_prob
r=id_red | prob_red
set_red ~= r

elif const_case==0
if id_red==0

id_red=2^k
endif
prob_red=MOD[id_red].sss_prob
r=id_red | prob_red
set_red ~= r

endif

else #addition move neightborhood
modelnew_add=modelnew
modelnew_add[$i]=1
id_add=convert(modelnew_add)
prob_add=MOD[id_add].sss_prob
a=id_add | prob_add
set_add ~= a

endif
endloop

loop i=1..k --quiet #switch moves
if modelnew[$i]==1

modelnew_switch=modelnew
modelnew_switch[$i]=0
loop j=1..k --quiet

if modelnew[$j]==0
mod_switch=modelnew_switch
mod_switch[$j]=1
id_switch=convert(mod_switch)
prob_switch=MOD[id_switch].sss_prob
s = id_switch|prob_switch
set_switch~=s

endif
endloop

endif
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endloop

neigh=set_red~set_add~set_switch

row=neigh[2,]/sum(neigh[2,])
neigh|=row

#reduce neighborhood dimension
neigh=-msortby(-neigh’, 3)’
reduction = (neigh[3,].>0.001) #maybe to change
if sum(reduction)>=1

#neigh=neigh[,1:sum(reduction)]
neigh=selifc(neigh, reduction)
neigh[3,]=neigh[2,]/sum(neigh[2,])

endif

m.neigh=neigh
endif

end function

function scalar ncount_move(const matrix model, int move, int k, int change_var)
#IT COUNTS THE NUMBER OF POSSIBLE MOVEMENTS (MODELS)\
FROM ’model’ WITH ’chang_var’ AS NUMBER OF VAR CHANGED.

n_ones=sum(model)
n_zeros=k-n_ones

if move==1 #deletion case
count=binomial_coeff(n_ones, change_var)

elif move==3 #addition
count=binomial_coeff(n_zeros, change_var)

endif #In case of switch the number of moves has no meanings
# because it simplifies with the return move

return count
end function

function matrix modelmove(const matrix model, int dynamics, int k, int change_var,\
scalar adaption, scalar *prop_ratio, bundles *MOD, bool const_case)
#THE FUNCTION DEFINES THE TYPE OF MOVEMENT IN MODEL SPACE (THE PROPOSED NEW MODEL)

modelnew = model

if dynamics==0 #std MC3 dynamics, a variable more or a variable less

potentialvar=randint(1,k) #number of var in list Z

if modelnew[potentialvar]== 1 && sum(modelnew)>1 && const_case==1
modelnew[potentialvar]= 0

elif modelnew[potentialvar]==1 && const_case==0
modelnew[potentialvar]= 0

else
modelnew[potentialvar]= 1
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endif

elif dynamics== 1 || dynamics==2 #generalization of dynamics == 0

Unif_II(model, &modelnew, change_var, dynamics, adaption, &prop_ratio, const_case)

else #dynamics ==3 Shotgun Stochastic Search

id=convert(model)
if id==0

id=2^k
endif

bundle m = MOD[id]
neighbor(&m, MOD, model, k, const_case)

MOD[id]=m
proposal = randgen1(u, 0,1)
neigh_model=m.neigh
print neigh_model
cum_neigh=cum(neigh_model[3,]’)’
loop i=1..cols(neigh_model) --quiet

if cum_neigh[$i]>=proposal
newid=neigh_model[1,$i]
if newid==2^k

modelnew=zeros(k,1)
else

modelnew=reconv(newid,k)
endif

q_go=neigh_model[3,$i]

break
endif

endloop

bundle mnew=MOD[newid]
neighbor(&mnew, MOD, modelnew, k, const_case)
MOD[newid]=mnew
neigh_modelnew=mnew.neigh
q_ret=0
loop i=1..cols(neigh_modelnew) --quiet

if neigh_modelnew[1,$i]==id
q_ret=neigh_modelnew[3,$i]
break

endif
endloop

prop_ratio=q_ret/q_go

endif
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return modelnew

end function

function matrix score(const matrix Y,const matrix X_0, list X, const matrix M,int type,\
const matrix pr_mean,const matrix pr_var, int prior_mod,\
const matrix Phi, bool const_case)

#THE FUNCTION COMPUTES THE SCORE OF EACH SINGULAR MODEL FOR SSS
matrix SC={}

loop i=1..cols(M) --quiet
id = M[$i]
if const_case==0

if id==2^(cols(X_0)-1)
model = 1 | zeros(cols(X_0)-1,1)

else

model=reconv(id, cols(X_0)-1)

model=1|model
endif

else
model=reconv(id, cols(X_0))

endif

matrix Z_0=selifc(X_0,model’) #matrix of regressors of id-model
scalar k=cols(Z_0) #number of regressors of id-model

list Z = X #update Z
loop j=1..rows(model) --quiet

if model[$j,1]== 0
Z -= X[$j]

endif
endloop

matrix p_mean = selifr(pr_mean, model)
if const_case==0

if pr_var[1]==1
p_varino = pr_var[2]*I(k-1)
p_var = diagcat(100,p_varino)

elif pr_var[1]==2
p_varino = pr_var[2]*inv(Z_0[,2:]’Z_0[,2:])
p_var = diagcat(100, p_varino)

endif
else

if pr_var[1]==1
p_var = pr_var[2]*I(k)

elif pr_var[1]==2
p_var = pr_var[2]*inv(Z_0’Z_0)
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endif
endif

matrix b=zeros(k,1)
matrix V=zeros(k,k)
series y = Y

glm(y, Z, Z_0, type, &b, &V) #freq estimates

matrix P_bm=ln_LikPrior(y, b, Z_0, p_mean, p_var,type, const_case)

if prior_mod==1
if const_case==0

Pm=log(model_prior(Phi, model[2:]))
else

Pm=log(model_prior(Phi, model))
endif

P_bm+=Pm
endif

SC~=P_bm

endloop

return SC

end function

###print the results
function void printres(bundle *res, list X, int type, int prior_mod, \
int dynamics,scalar change_var, scalar adapt_rate,int threads, bool resamp, bool const_case)

b_mean=res.sampled_mean
pip_mean=res.sampled_pip
b_var=res.sampled_var
nrep=res.nrep
burn=res.burnin
tim=res.temp

### heading

if type==1
string ty="Probit model"

elif type==2
string ty="Logit model"

elif type==3
string ty="Cloglog model"

elif type==4
string ty="Poisson model"

endif
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if prior_mod==0
string mopr="P(M) ~ Uniform"

else
string mopr="P(M) ~ Binomial(Phi)"

endif

if dynamics ==0
string dyn="MCMCMC - add/delete (1)var"

elif dynamics ==1
string dyn=sprintf("MCMCMC - add/delete/switch (%d)var\n", change_var)

elif dynamics ==2
string dyn = "Adaptive MCMCMC"

else
string dyn= "Shotgun Stochastic Search"

endif

if const_case==0
string conca="Diffuse const"

else
string conca="Informative const"

endif

if resamp
string resampling="Yes"

else
string resampling="No"

endif

#### overall stat
average=meanr(b_mean) #overall sampled mean

if threads==1
std=sqrt(diag(b_var))

else

k_variables=rows(b_mean)
n_obs=nrep-burn
#within variance
matrix W=zeros(k_variables, k_variables)
loop i=1..threads --quiet

#b_part=b_var[(($i-1)*k_variables)+1:$i*k_variables,]

W+=b_var[(($i-1)*k_variables)+1:$i*k_variables,]
endloop

W/=threads #mean of covariance
n_rat=(n_obs-1)/n_obs
W1=W*n_rat #adjustment

#between variance
B1=mcov(b_mean’)*(threads-1)/(threads)
B2=mcov(b_mean’)
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#total variance
V=W1+B1
#throds=(threads*n_obs)/(threads*n_obs-1)
#V*=throds #correction of variance

std=sqrt(diag(V))

#variance in Brook & Gelman
correct=(threads+1)/(threads)
V_hat=W1+(correct*B2)

std_hat=sqrt(diag(V_hat))
endif

#v=mcov(b’)
#std=sqrt(diag(v))

pip=meanr(pip_mean) #overall pip

if threads ==1

matrix result=average~std~pip

string title="mean stderr pip"
else

matrix result = average~std~std_hat~pip

string title="mean se adj_se pip"
endif

string co=strsub(varname(X),","," ")

colnames(result, title)
rownames(result, co)

res.overall_result=result

#Brooks & Gelman statistics of convergence

if threads !=1
iW=inv(W)
WB=iW*B2
eigenvalue= eigengen(WB)#here
if cols(eigenvalue)==2

mod=eigenvalue[1,].^2 + eigenvalue[2,].^2
eigenvalue=sqrt(mod)

endif

lambda = max(eigenvalue)

GB=n_rat + (correct*lambda)
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endif

#top models
id=res.sampled_id

models=values(id[1,])’

mod_count={}
loop i=1..nelem(models) --quiet

corresp=id.*(id[1,].=models[$i])

mod_count~=sumr(corresp[2,]) #counting of total models
endloop

post_model= mod_count./sum(mod_count) #posterior model distribution

tot_models= models|post_model

top_models= -msortby(-tot_models’, 2)’ #ordered models by their posterior \ prob (decreasing order)

res.listmodels=top_models

#I focus in the best three specifications, if available,\
provided their posterior is above 0.1

threshold=top_models[2,].>0.1

threshold=threshold[1:3]
#print threshold
name_vars=varnames(X)

loop i=1..sum(threshold) --quiet
if const_case ==0

if top_models[1,$i]==2^(nelem(X)-1)
model_$i= 1|zeros(nelem(X)-1,1)

else

model_$i=reconv(top_models[1,$i],nelem(X)-1)
model_$i=1|model_$i

endif

else

model_$i=reconv(top_models[1,$i],nelem(X))
endif

string var_names$i
loop j=1..nelem(X) --quiet

if model_$i[$j]==1
var_names$i ~= name_vars[$j]
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var_names$i ~= ","
endif

endloop

var_names$i=strsub(var_names$i,","," ")

endloop

#print
print "------------------------------------------------------"
print "Bayesian Model Averaging with Generalized Linear Model"
print "------------------------------------------------------"
printf "Type of specification: %s\n", ty
printf "Model Prior: %s\n", mopr
printf "Model dynamics: %s \n", dyn
printf "Prior on const: %s \n", conca
printf "Resampling allowed: %s\n", resampling
printf "MPI - threads: %d\n", threads
printf "Number of iterations/burn-in: %d/%d\n", nrep, burn
printf "Elapsed time (in sec): %6.3f \n", tim
print "------------------------------------"
print "Overall sampling statistics"
printf "%10.5f", result
print "------------------------------------"
print "Best specifications:"
printf "\n"
loop i=1..sum(threshold) --quiet

printf "Model_%d: P(M|D)=%f\n", top_models[1,$i], top_models[2,$i]
print var_names$i
printf "\n"
#print "------------------------------------"

endloop
print "------------------------------------"
if threads!=1

printf "Gelman & Brooks convergence statistics: %3.3f \n", GB
print "------------------------------------"

endif

end function

#################
#####
#In order to perform mpi we need to build and save a bundle with all initial information

function bundle initial_setup(const matrix Y,const matrix X_0, int type,\
const matrix pr_mean, const matrix pr_var, int prior_mod, const matrix Phi,\
bool const_case,int dynamics,int change_var, scalar adapt_rate,\
bool resamp, int threads, int nrep, int burn)

bundle setup

setup.depvar = Y
setup.matregr = X_0
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setup.link = type
setup.pm = pr_mean
setup.pv = pr_var
setup.pmod = prior_mod
setup.phi = Phi
setup.cons = const_case
setup.dyn = dynamics
setup.change = change_var
setup.adaptrate = adapt_rate
setup.resamp = resamp
#setup.core = threads
setup.iterat = nrep
setup.burnin = burn

return setup

end function

function bundle BMA(matrix Y, matrix X_1, scalar type,\
matrix pr_mean, matrix pr_var, scalar prior_mod, matrix Phi, scalar const_case,\
scalar dynamics, int change_var, scalar adapt_rate,\
bool resamp, scalar nrep, scalar burn, matrix points)

series y = Y
list X = X_1
matrix X_0 = {X}

scalar k=cols(X_0)
scalar obz=rows(X_0)

matrix b_samp=zeros(k,nrep) #matrix which contains the beta sampled at each step
matrix m_samp=zeros(k,nrep) #matrix which contains model specifications
matrix id_samp=zeros(1,nrep-burn)

if const_case==0 #adapt for diffuse const
#notice that this influences only the binary representation,\
but not the decimal one!

k-=1
scalar max_modnumb= 2^k
#we also consider the null model, with only the const in this case

else
scalar max_modnumb= 2^k-1
#total number of possible models (void model excluded!)

endif

bundles MOD = array(max_modnumb) #array of bundles, each one is a single model

if dynamics == 3
loop j=1..max_modnumb --quiet

MOD[$j].sss_prob=points[$j]
endloop

endif
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matrix U1 = muniform(nrep,1)#for param sampling
matrix U2 = muniform(nrep,1)#for model sampling

####initial model, full model
matrix model=ones(k,1)
scalar id = convert(model)

fillthebundle(&MOD, model, id, y, X, X_0, pr_mean, pr_var, type, const_case)

sampling(y, &MOD, id, type, const_case, randgen1(u,0,1))

scalar prop_ratio=1 #ratio between model proposal distribution for MCMC use

scalar adaption_0 = 0.5
scalar adaption = adaption_0

loop i=1..nrep --quiet

#model movement
modelnew=modelmove(model, dynamics, k, change_var,\
adaption, &prop_ratio, &MOD, const_case)

newid=convert(modelnew)

if const_case==0
newid = (newid==0) ? max_modnumb : newid #the null model has id = maxmodnumb

endif

fillthebundle(&MOD, modelnew, newid, y, X, X_0, pr_mean, pr_var, type, const_case)

scalar det_ratio=1
scalar g_u= 1
matrix u={}

#transformation

newb = b_born(MOD, id, newid, &u, &det_ratio, &g_u)

#judge the new model
scalar alpha = ratio(y, newb, MOD, newid, id, det_ratio, g_u, type,\
const_case, prop_ratio)

if prior_mod != 0 #not uniform
Pm_0= model_prior(Phi, model)
Pm_1= model_prior(Phi, modelnew)
Pm= Pm_1/Pm_0
rho=xmin(1,alpha*Pm)

else #uniform
rho=xmin(1,alpha)

endif

if dynamics==2 #adaption!
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if adapt_rate==0
sgen=adaption_0/$i
adaption = adaption + sgen*(rho-0.3)
if adaption>1

adaption=1
elif adaption < 0

adaption =0
endif
#print adaption

else
prog= $i/nrep*100

if !(prog%adapt_rate)==1 && prog!=100
sgen=adaption_0/$i
adaption = adaption + sgen*(rho-0.3)
if adaption>1

adaption=1
elif adaption < 0

adaption =0
endif

endif

endif

endif

################
if U2[i] <= rho

if i>burn
MOD[newid].acctimes+=1
MOD[id].rejtimes+=1

endif

accept(&model, modelnew, &id, newid, newb, &MOD)

else
if resamp #if move not accepted resampling

sampling(y, &MOD, id, type, const_case, U1[$i])
endif

if i>burn
MOD[id].acctimes+=1
MOD[newid].rejtimes+=1

endif

endif

if const_case==0
m_samp[,$i]=1|model

else
m_samp[,$i]=model

endif
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matrix bar=MOD[id].bsamp

if i>burn
id_samp[i-burn]=id

endif

scalar count=0
loop j=1..rows(m_samp) --quiet #build the b extraction according to its model

if m_samp[$j,$i] == 1
b_samp[$j,$i]=bar[$j-count]

else
count += 1

endif
endloop

endloop

#bundle ultima

b_samp=b_samp[,burn+1:]
m_samp=m_samp[,burn+1:]

#now let us count number of times the model are occured
id_s=values(id_samp)’
matrix id_count=zeros(1,cols(id_s))

loop i=1..cols(id_s) --quiet
id_count[$i]= MOD[id_s[$i]].acctimes

endloop

bundle BMAstuff
BMAstuff.coeffmodel=b_samp|m_samp
BMAstuff.ids=id_s|id_count

return BMAstuff
end function

####################################################################################
#public function ###################################################################
####################################################################################

function bundle bma_glm(series y "dep variable",
list X "list of regressors",
int type[1:4] "link function",
matrix pr_mean "prior mean",
matrix pr_var "prior var",
int prior_mod[0:2] "model prior type",
matrix Phi "parameter of prior on beta",
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bool const_case[0] "const prior distribution",
int dynamics "movement kernel (model)"",
int change_var[1] "n of var to change",
scalar adapt_rate[0]"regeneration time in adaption",
bool resamp[0] "resampling",
int threads[1] "number of threads(core) mpi",
int nrep "n of MCMC simul",
int burn "burn-in sample")

######################################### START #######################

set stopwatch

#adjust the regressor in case of diffuse prior on const
if const_case == 0

inside=inlist(X,const)
if inside!=0

con=ones(nelem(X),1)
con[inside]=0
list X-=const
matrix pr_mean = selifr(pr_mean, con)

endif

if pr_var[1]==1

loop foreach i X --quiet
$i = (X.$i - mean(X.$i))/sd(X.$i) #stdize regressors
X[i] =$i

endloop
elif pr_var[1]==2

loop foreach i X --quiet
$i = X.$i - mean(X.$i) #demeaned regressors --

see Fernandez et al(2001)
X[i] =$i

endloop
endif

# the diffuse case is different in linear and in glm
list X = const || X

pr_mean = 0 | pr_mean

endif

#Initialization
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matrix Y = y
matrix X_0 = X
bundle setup = initial_setup(Y, X_0, type, pr_mean, pr_var, prior_mod,\
Phi, const_case, dynamics,change_var, \
adapt_rate, resamp, threads, nrep, burn )

bwrite(setup, "initial")

if dynamics==3 #In Shotgun we need a first mpi exploration for computing the score

mpi --send-functions --send-data

matrix Y_s
matrix X0_s
scalar type_s
matrix pr_mean_s
matrix pr_var_s
scalar prior_mod_s
matrix Phi_s
scalar const_case_s
matrix S
matrix mod

if $mpirank == 0
bundle Ini = bread("initial")
Y_s = Ini.depvar
X0_s = Ini.matregr
type_s = Ini.link
pr_mean_s = Ini.pm
pr_var_s = Ini.pv
prior_mod_s = Ini.pmod
Phi_s = Ini.phi
const_case_s = Ini.cons

scalar k=cols(X0_s)
if const_case_s==0

k-=1
scalar max_modnumb= 2^k

else
scalar max_modnumb= 2^k-1

endif

matrix mod = seq(1,max_modnumb)

endif

mpibcast(&Y_s)
mpibcast(&X0_s)
mpibcast(&type_s)
mpibcast(&pr_mean_s)
mpibcast(&pr_var_s)
mpibcast(&prior_mod_s)
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mpibcast(&Phi_s)
mpibcast(&const_case_s)

mpiscatter(&mod, bycols)

list Z_s= X0_s
matrix Z0_s={Z_s}

S=score(Y_s,Z0_s, Z_s, mod,type_s, pr_mean_s, pr_var_s,\
prior_mod_s, Phi_s, const_case_s)

mpireduce(&S,hcat)

if $mpirank == 0

S=exp(S-max(S))
#for computational easiness we subtract a same quantity
to all values

mwrite(S, "sss.mat")
endif

end mpi
endif

mpi --send-functions --send-data

matrix Y
matrix X_1
scalar type
matrix pr_mean
matrix pr_var
scalar prior_mod
matrix Phi
scalar const_case
scalar dynamics
scalar change_var
scalar adapt_rate
scalar resamp
scalar nrep
scalar burn
matrix RES_coeffmod
matrix RES_synth
matrix RES_ids

if $mpirank == 0
bundle Big = bread("initial")
Y = Big.depvar
X_1 = Big.matregr
type = Big.link
pr_mean = Big.pm
pr_var = Big.pv
prior_mod = Big.pmod
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Phi = Big.phi
const_case = Big.cons
dynamics = Big.dyn
change_var=Big.change
adapt_rate=Big.adaptrate
resamp=Big.resamp
nrep = Big.iterat
burn = Big.burnin

endif

mpibcast(&Y)
mpibcast(&X_1)
mpibcast(&type)
mpibcast(&pr_mean)
mpibcast(&pr_var)
mpibcast(&prior_mod)
mpibcast(&Phi)
mpibcast(&const_case)
mpibcast(&dynamics)
mpibcast(&change_var)
mpibcast(&adapt_rate)
mpibcast(&resamp)
mpibcast(&nrep)
mpibcast(&burn)

if dynamics == 3
matrix points=mread("sss.mat")

else
points=0

endif

RES_partial = BMA( Y, X_1, type, pr_mean, pr_var, prior_mod, Phi,\
const_case, dynamics, change_var, adapt_rate,\
resamp, nrep, burn, points)

matrix RES_coeffmod=RES_partial.coeffmodel
matrix RES_ids=RES_partial.ids

#in order to build the matrix of syntesis measures we have to
perform some calculus

matrix mean_coeff=meanr(RES_coeffmod[1:floor(0.5*(rows(RES_coeffmod))),])
matrix cov_coeff=mcov(RES_coeffmod[1:floor(0.5*(rows(RES_coeffmod))),]’)
matrix pip_coeff=meanr(RES_coeffmod[floor(0.5*(rows(RES_coeffmod)))+1:,])
#print mean_coeff cov_coeff pip_coeff
matrix RES_synth=mean_coeff~cov_coeff~pip_coeff

mpireduce(&RES_coeffmod, hcat)
mpireduce(&RES_ids, hcat)
mpireduce(&RES_synth, vcat)
if $mpirank == 0
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#eval RES
mwrite(RES_coeffmod, "sampled.mat")
mwrite(RES_ids, "id.mat")
mwrite(RES_synth, "synthesis.mat")

endif
end mpi --np=threads

#########################################################################
mat_coeffmod=mread("sampled.mat")
mat_synth=mread("synthesis.mat")
mat_id=mread("id.mat")

#now rearrange matrix of synthesis measure - for computation easiness
mat_sampmean=mat_synth[,1] #first col are sampled means
mat_sampmean=mshape(mat_sampmean, nelem(X), threads)

mat_sampvar=mat_synth[,2:nelem(X)+1] #the within matrix are covariances

mat_samppip=mat_synth[,nelem(X)+2] #last col are sampled pips
mat_samppip=mshape(mat_samppip, nelem(X), threads)

bundle ultima
tim=$stopwatch

ultima.sampled_coeff=mat_coeffmod[1:floor(0.5*(rows(mat_coeffmod))),]
ultima.sampled_model=mat_coeffmod[floor(0.5*(rows(mat_coeffmod)))+1:,]
ultima.sampled_id=mat_id
ultima.sampled_mean=mat_sampmean
ultima.sampled_var=mat_sampvar
ultima.sampled_pip=mat_samppip
ultima.nrep=nrep
ultima.burnin=burn
ultima.temp=tim

printres(&ultima, X, type, prior_mod, dynamics, change_var,\
adapt_rate, threads, resamp, const_case)

return ultima

end function

########################################################################################
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