

UNIVERSITA' POLITECNICA DELLE MARCHE

DOCTORAL THESIS

Sulfur Metabolism in Microalgae

Tutor:

Prof. Mario Giordano

Co-tutors:

PhD Candidate:

Prof. Arthur Grossman

Hongmin LIN

Department of Life and Environmental Sciences - Di.S.V.A.

Ancona, 2018

To my study life.

Past present and

future.....

		9
9	II	
U		

Abstract

Sulfur is a fundamental element for all living organisms. It is acquired as sulfate, which is also the most abundant S form in the ocean, and is assimilated as sulfide, which is fixed in the S-amino acid cysteine. Sulfate assimilation thus requires its reduction to sulfide. For sulfate to be reduced, it needs to be activated to Adenosine PhosphoSulfate (APS). This reaction is catalyzed by ATP-Sulfurylase, which in eukaryotic algae and oceanic cyanobacteria, differently from all other organisms are subject to redox regulation. The other steps of the sulfate assimilation pathways are believed not to differ in algae, as compared to embryophytes. The only other step on which the lack of information leaves crucial open questions is the synthesis of cysteine. Cysteine synthesis is catalyzed by two enzymes, Serine Acetyl Transferase (SAT) and O-Acetyl Serine (Thiol) Lyase (OAS-TL), which in embryophytes form a complex, the Cysteine Synthase Complex (CSC). My thesis will focus on these two steps, with special attention to cysteine synthesis.

With respect to ATP-sulfurylase, I have tried to assess if redox

III

regulation is mediated by the redox state of the plastoquinon pool of thylakoids. My results suggest that this is not the case. The in vivo blockage of PQ reduction through the use of DCMU, a specific inhibitor of electron transfer from QA to QB, did not affect ATP-S activity.

As for the enzymes of cysteine synthesis, my bioinformatic analysis showed that the phylogeny of SAT and OAS-TL are probably difficult to reconstruct due to the shuffling of these genes across groups with the possible contribution of horizontal gene transfer. By analyzing the protein sequences, I determined that the C-terminal domain of algal SAT, which is believed to be responsible for the interaction with OAS-TL, is very similar to that of embryophytes. This suggests that the interaction of SAT and OAS-TL occurs in algae as in embryophytes. However, the N-terminus of algal SAT, which is believed to be involved in the SAT/SAT interaction, is not equally conserved; therefore, differences in the assemblage of the CSC in algae are possible. In order to clarify this point, I purified OAS-TL from the freshwater cyanobacterium Synechocystis sp. PCC 6803, the Tetraselmis suecica green marine algae and *Dunaliella* green freshwater algae *tertiolecta*. the Chlamydomonas reinhardtii, the marine diatoms Thalassiosira pseudonana and

O IV

Phaeodactylum tricornutum, and from the marine dinoflagellate Amphidinium klebsii. These purified proteins showed some differences in mass, which was however always within the 35-44 kDa range. All the purified proteins were active, although specific activity differed among species. Interestingly, the activity, in most cases, was higher when the enzyme was more diluted; the enzyme is more active, as it also happens in embryophytes. For embryophytes, this has been interpreted as an indication that OAS-TL activity is modulated through protein-protein interaction. To verify the hypothesis that algae have CSC like embryophytes, I studied the ability of algae OAS-TL to form a complex with Arabidopsis thaliana SAT (overexpressed in E. coli). In all cases, a complex was formed, although the strength of the interaction between SAT and OAS-TL appeared to be different for different algal species. The presence of OAS-TL and SAT in the purified native complexes was confirmed by immunodetection of both proteins. The cysteine synthase complexes that were formed in these experiments were appreciably larger (approximately 600 kDa vs 320 kDa) than those of embryophytes. Further experiments will be required to ascertain the actual stoichiometry and structure of the algal CSC. However, based on the above observation, I

propose that algal CSC is composed by two SAT trimers, with an OAS-TL dimer bound to each SAT monomer. This configuration would give a mass of about 600 kDa, compatible with the results obtained in our CSCS purification experiments.

It is also noteworthy that the strength of the binding of algal OAS-TL to AtSAT5 was greater in green algae than in algae of the red lineage. This may be an indication of the fact that a greater proportion of OAS-TL is in the free form, in red-lineage algae, leading to a higher flux of S into cysteines. At this stage, this is only a hypothesis that requires further confirmation.

Keywords:

Sulfate, Cysteine, O-Acetyl Serine (Thiol) Lyase (OAS-TL), Cysteine Synthase Complex (CSC)

_		М
D	VI	

		9
9	VII	
U		

Abstract	
Keywords:	VI
LIST OF FIGURES	XI
LIST OF TABLES	XV
1. Introduction	2
1.1. Impact of sulfur availability on algae ecology, evolution and radiation	2
1.2. Sulfur metabolism	3
1.2.1. Sulfate acquisition	3
1.2.2. Sulfate reduction	4
1.2.3. Cysteine synthesis	5
2. Hypotheses	11
3. Materials and methods	14
3.1. Bioinformatic methods	14
3.1.1. Protein sequences and phylogenetic trees	14
3.1.2. Predictions on the location of SAT and OAS-TL proteins	14
3.1.3. Analysis of SAT and OAS-TL algae sequences	15
3.2 Experimental organisms	16
3.2.1. Synechocystis sp. PCC 6803	16
3.2.2. Chlamydomonas reinhardtii	
3.2.3. Dunaliella tertiolecta	17
3.2.4. Tetraselmis suecica	
3.2. 5. Thalassiosira pseudonana	
3.2.6. Phaeodactylum tricornutum	19
3.2.7. Amphidinium klebsii	
3.3. Cultures	20
3.3.1. Culture conditions	20
3.3.1.1. Synechocystis sp. PCC 6803	21
3.3.1.2. Eukaryotic algae	21
3.3.2. Growth media.	21
3.3.2.1. BG-11 medium	21
3.3.2.2. TAP and TP medium	22
3.3.2.3. Artificial Multipurpose Complement for the Nutrition of Algae	(AMCONA)
3.3.3. Determination of cell concentration	23
3.3.4. Growth rate determination	24
3.3.5. Biomass harvesting	25
3.4. Overexpression of AtSAT5	25
3.4.1. Primer design	
3.4.2. AtSAT5 Colony transformation assessment in <i>E. coli</i>	
3.4.3. Colony PCR	
3.4.4. AtSAT5 overexpression	
3.4.5. Extraction of AtSAT5 protein from <i>E. coli</i>	

CONTENT

3.4.6. OAS-TL purification	32
3.4.7. Algal OAS-TL extraction	34
3.4.8. Determination of protein content	35
3.4.9. SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)	
3.4.10. Western Blots	
3.5. OAS-TL activity measurements	41
3.6. Cysteine Synthase Complex purification	42
3.7. Determination of the impact of the plastoquinone redox state on ATPS activi	ty46
4. Results	51
4.1. Bioinformatics	51
4.1.1. Phylogeny of Serine Acetyltransferase	51
4.1.2. Phylogeny of O-Acetylserine (thiol) lyase	54
4.1.3. Observations on SAT and OAS-TL protein sequences	57
4.1.3.1. Number of cysteine residues in algae SAT sequences	57
4.1.3.2. Predicted location of SAT proteins	57
4.1.3.3. Number of cysteine residues in algal OAS-TL sequences	61
4.1.3.4. Predicted OAS-TL location	61
4.1.4. Comparison of SAT and OAS-TL sequences among algae and with	A. thaliana
sequences	
4.1.4.1. Alignment of the SAT sequences of Cyanobacteria with A. t	naliana SAI
Isolollins.	
4.1.4.2. Alignment of the SAT sequences of green algae with A. I.	raliana SAT
Isololins.	$\dots 0/$
4.1.4.5. Alignment of the SAT sequences of red algae and red-fineage a	angae with A.
A 1 4 4 Alignment of the OAS TL sequence of Cyanobasteria w	00
4.1.4.4. Alignment of the OAS-1L sequence of Cyanobacteria w	Ith UAS-IL
isoloring of A. <i>induana</i>	
4.1.4.3. Alignment of the OAS-1L sequence of green algae with OAS-	· I L ISOIOFMS
01 A. inaliana	/1
4.1.4.0. Alignment of the OAS-TE sequence of red algae and red-lineag	ze algae with
0AS-1 L Isolollis of A. Indiana	
4.1.5.1 SAT sequences main motives in algee	
4.1.5.1. SAT sequences main motives in algae	
4.1.5.2. Main houves in algal OAS-TE sequences	
4.2. OAS-IL field algat	
4.2.1. OAS TL anzuma activity in grude extract	
4.2.2. OAS TL specific activity in crude extract	
4.2.5. OAS-TE specific activityin different interologigae	107
4.2.4. Cysteme Synthese Complex (CSC)	100
5 Discussion	
5.1 SAT and OAS-TL in algae	121
5.2 Cysteine Synthase Complex in algae	
5.3 ATP-S redox regulation	

6. References
7. Supplemental material
7.1. Growth curves
7.2. Correlation between relative mobility of protein with protein size148
7.3. Comparision of algae SAT and OAS-TL with A. thaliana sequences
7.3.1. Alignment of the SAT sequences of Cyanobacteria with A. thaliana SAT isoforms
7.3.2. Alignment of the SAT sequences of green algae with A. thaliana SAT isoforms155
7.3.3. Alignment of the SAT sequences of red algae and red-lineage algae with A
thaliana SAT isoforms
7.3.4. Alignment of the OAS-TL sequence of Cyanobacteria with A. thaliana OAS-TI
isoforms
7.3.5. Alignment of the OAS-TL sequence of green algae with A. thaliana OAS-TI
isoforms172
7.3.6. Alignment of the OAS-TL sequence of red and red-lineage algae with A. thaliand
OAS-TL isoforms
7.4. The amino acid code193
ACKNOWLEDGEMENTS

		Ø
9	Х	
U		

LIST OF FIGURES

Fig. 1-1. Sulphate metabolism in algal cells.	8
Fig. 3-1. Synechocystis sp. PCC 6803	16
Fig. 3-2. Chlamydomonas reinhardtii.	17
Fig. 3-3. Dunaliella tertiolecta	18
Fig. 3-4. Tetraselmis suecica	18
Fig. 3-5. Thalassiosira pseudonana.	19
Fig. 3-6. Phaeodactylum tricornutum.	19
Fig. 3-7. Amphidinum klebsii	20
Fig. 3-8. AtSAT5-pET28 ^a construct map.	27
Fig. 3-9. Protein loading onto the affinity chromatography column.	33
Fig. 3-10. Procedure followed for affinity chromatography	34
Fig. 3-11. Assembly of a western blot sandwich	39
Fig. 3-12. Principle of operation of the Amersham ECL Western blotting detection reagent.	40
Fig. 3-13. Basic principles of size exclusion chromagraphy.	43
Fig. 3-14. Fast Protein Liquid Chromatography (FPLC).	44
Fig. 3-15. FPLC Protein standards for column calibration.	45
Fig. 3-16. FPLC column calibration curve.	45
Fig. 3-17. DCMU blocks the electron transfer from Q _A to Q _B	47
Fig. 4-1. Serine Acetyltransferase phylogenetic tree.	53
Fig. 4-2. The O-Acetylserine (thiol) lyase phylogenetic tree.	56
Fig. 4-3. Alignment of the SAT protein of the freshwater cyanobacterium Synechocystis s	sp.
PCC 6803 and the SAT protein of A. thaliana.	67
Fig. 4-4. Alignment of SAT protein of algae and A. thaliana.	80
Fig. 4-5. Alignment of OAS-TL of algae and A. thaliana	87
Fig. 4-6. Elution pattern of OAS-TL protein from different algal species	94
Fig. 4-7. Immunodetection of OAS-TL purified from Synechocystis sp. PCC 6803	95
Fig. 4-8. Immunodetection of OAS-TL purified from Chlamydomonas reinhardtii grown	in
TAP medium.	95
Fig. 4-9. Immunodetection of OAS-TL purified from Chlamydomonas reinhardtii grown	in
TP medium	95
Fig. 4-10. Immunodetection of OAS-TL purified from Dunaliella tertiolecta	96
Fig. 4-11. Immunodetection of OAS-TL purified from Tetraselmis suecica.	96
Fig. 4-12. Immunodetection of OAS-TL purified from Thalassiosira pseudonana	96
Fig. 4-13. Immunodetection of OAS-TL purified from Phaeodactylum tricornutum	96
Fig. 4-14. Immunodetection of OAS-TL purified from Amphidinium klebsii.	97
Fig. 4-15. OAS-TL enzyme activity in crude extracts of different algae	98
Fig. 4-16. OAS-TL activity per unit of protein in crude and diluted extracts of Synechocys	tis
sp. PCC 6803	99
Fig. 4-17. OAS-TL activity per unit of protein in crude and diluted extracts	of
Chlamydomonas reinhardtii cultured in TAP medium10	00

Fig.	4-18. OAS-TL activity per unit of protein in crude and diluted extracts of <i>Chlamydomonas reinhardtii</i> cultured in TP medium
Fig.	4-19. OAS-TL activity per unit of protein in crude and diluted extracts of <i>Dunaliella</i>
Fig.	4-20. OAS-TL activity per unit of protein in crude and diluted extracts of <i>Tetraselmis</i> suecica
Fig.	4-21. OAS-TL activity per unit of protein in crude and diluted extracts of <i>Thalassiosira</i> pseudonana
Fig.	4-22. OAS-TL activity per unit of protein in crude and diluted extracts of <i>Phaeodactylum tricornutum</i> 105
Fig.	4-23. OAS-TL activity per unit of protein in crude and diluted extracts of <i>Amphidinium klebsii</i>
Fig.	4-24. OAS-TL enzyme activity
Fig.	4-25. FPLC chromatogram for OAS-TL from different algae complexed with SAT-5 from <i>A. thaliana</i>
Fig.	4-26. Immunodetection of OAS-TL from <i>Synechocystis</i> sp. PCC 6803 after elution of the CSC with SAT-5 by FPLC
Fig.	4-27. Immunodetection of OAS-TL from <i>Chlamydomonas reinhardtii</i> in TAP medium after elution of the CSC with SAT-5 by FPLC110
Fig.	4-28. Immunodetection of OAS-TL from <i>Dunaliella tertiolecta</i> after elution of the CSC with SAT-5 by FPLC
Fig.	4-29. Immunodetection of OAS-TL from <i>Tetraselmis suecice</i> after elution of the CSC with SAT-5 by FPLC
Fig.	4-30. Immunodetection of OAS-TL from <i>Thalassiosira pseudonana</i> after elution of the CSC with SAT-5 by FPLC
Fig.	4-31. Immunodetection of OAS-TL from <i>Phaeodactylum tricornutum</i> after elution of the CSC with SAT-5 by FPLC
Fig.	4-32. Immunodetection of OAS-TL from <i>Amphidinium klebsii</i> after elution of the CSC with SAT-5 by FPLC
Fig.	4-33. Western blot using antibodies raised against SAT-5 from A. thaliana114
Fig.	4-34. Fv/Fm of <i>Thalassiosira pseudonana</i> incubated in the presence of 5 and 10 μM DCMU, for 0, 1, 3 and 6 hours
Fig.	4-35. Thalassiosira pseudonana cell number during incubation with 10 μM DCMU116
Fig.	4-36. Thalassiosira pseudonana cell volume during incubation with 10 μM DCMU116
Fig.	4-37. Comparison of ATPS assay blanks obtained with different procedures. The error bars show the standard deviations $(n = 3)$
Fig.	4-38. Comparison of ATPS activity in the presence and absence of DMSO
Fig.	4-39. <i>Thalassiosira pseudonana</i> ATP-S activity in the presence or absence of 10 μ M DCMU over a period of 6 hours. The error bars show the standard deviations (n = 3).
Fig.	5-1. Proposed structure of Algae Cysteine Synthase Complex
Fig.	7-1. <i>Synechocystis</i> sp. PCC 6803 growth curve
Fig.	7-2 Calibration curve to convert the OD of <i>Svnechocystis</i> sp. PCC 6803 cultures to cell
0.	numbers

Fig.	7-3. Growth curve of Chlamydomonas reinhardtii cultured in TAP medium	.145
Fig.	7-4. Growth curve of Chlamydomonas reinhardtii cultured in TP medium	.145
Fig.	7-5. Dunaliella tertiolecta growth curve	.146
Fig.	7-6. Tetraselmis suecica growth curve	.146
Fig.	7-7. Thalassiosira pseudonana growth curve.	.147
Fig.	7-8. Phaeodactylum tricornutum growth curve.	.147
Fig.	7-9. Amphinidium klebsii growth curve.	.148
Fig.	7-10. Standard curve for the determination of protein size from the relative pro-	otein
	mobility in binding affinity test chromatography for Synechocystis sp.PCC 6803	.148
Fig.	7-11. Standard curve for the determination of protein size from relative protein mol	ility
	in binding affinity test chromatography for Chlamydomonas reinhardtiiwith	TAP
	medium culture extract	.149
Fig.	7-12. Standard curve for the determination of protein size from the relative pro-	otein
	mobility in binding affinity test chromatography for Chlamydomonas reinhardtii	with
	TP medium culture extract.	.149
Fig.	7-13. Standard curve for the determination of protein size from the relative pro-	otein
	mobility in binding affinity test chromatography for Tetraselmis suecica extract	.150
Fig.	7-14. Standard curve for the determination of protein size from the relative pro-	otein
	mobility in binding affinity test chromatography for Dunaelilla tertiolecta extract	.150
Fig.	7-15. Standard curve for the determination of protein size from the relative pr	otein
	mobility in binding affinity test chromatography for Thalassiosira psedonana ex	ract.
		.151
Fig.	7-16. Standard curve for the determination of protein size the relative protein mobili	ty in
	binding affinity test chromatography for Phaedactylum tricornum extract	.151
Fig.	7-17. Standard curve for the determination of protein size from the relative pr	otein
	mobility in binding affinity test chromatography for Amphidinium klebsii extract	.152
Fig.	7-18. Alignment of Synechocystis sp. PCC 6803 SAT amino acid sequences with	h <i>A</i> .
	thaliana	.153
Fig.	7-19. Alignment of Synechococcus sp. WH 7803 SAT amino acid sequences with	h <i>A</i> .
	thaliana	.154
Fig.	7-20. Alignment of 1-C. reinhardtii SAT amino acid sequence with A. thaliana isofo	rms.
		.156
Fig.	7-21. Alignment of 2-C. reinhardtii SAT amino acid sequence with A. thaliana isofo	rms.
		.157
Fig.	7-22. Alignment of 1-T. suecica SAT amino acid sequence with A. thaliana isoforms	158
Fig.	7-23. Alignment of 2-T. suecica SAT amino acid sequence with A. thaliana isoforms	159
Fig.	7-24. Alignment of 3-T. suecica SAT amino acid sequence with A. thaliana isoforms	160
Fig.	7-25. Alignment of 1-C. merolae SAT amino acid sequence with A. thaliana isofo	rms.
		.162
Fig.	7-26. Alignment of 2-C. merolae SAT amino acid sequence with A. thaliana isofo	rms.
		.163
Fig.	7-27. Alignment of T. pseudonana SAT amino acid sequence with A. thaliana isofo	rms.
		.164
Fig.	7-28. Alignment of P. tricornutum SAT amino acid sequence with A. thaliana isofo	rms.

166
aliana
168
aliana
169
aliana
170
aliana
171
173
174
175
176
177
178
179
180
182
183
5184
s. .185
s. .186
s. 187
188
189
190
191
192
193

LIST OF TABLES

Table. 3-1. Primer for AtSAT5 amplification
Table. 3-2. Reagents for Peterson's protein assay 36
Table. 3-3. Recipe for the SDS-PAGE resolving gel buffer 38
Table. 3-4. Recipe for the SDS-PAGE Stacking gel buffer
Table. 3-5. Resolving gel (for 2 gels in the Protean minigel system)
Table. 3-6. Stacking gel (for 2 gels in the Protean minigel system).
Table. 3-7. Coomassie Staining solution
Table. 3-8. Coomassie Destaining solution
Table. 4-1. Number of Cysteines residues, sequence length and location of algae serine
acetyltransferase (SAT)
Table. 4-2. O-acetylserine (thiol) lyase (OAS-TL) of algae with different taxonomy, ecology,
and the location prediction62
Table. 4-3. Comparasion of N'-terminus and C'-terminus sequences of algal SAT the
corresponding regions as A. thaliana SAT isoforms69
Table. 4-4. Identity and similarity of algal SAT protein sequence with A. Thaliana isoforms70
Table. 4-5. Alignment of N'-terminus and C'-terminus sequences of algal OAS-TL
corresponding regions in A. thaliana OAS-TL isoforms74
Table. 4-6. Identity and Similarity of algae OAS-TL with reference species of A. thaliana
isoforms75
Table. 4-7. Main binding motives in OAS-TL sequences
Table. 4-8. Features of purified algae OAS-TL91
Table. 4-9. Summary of OAS-TL activity in 100-fold diluted and undiluted crude extracts.

_		_4)
ρ	1	J

1. Introduction

1.1. Impact of sulfur availability on algae ecology, evolution and radiation

Photosynthetic organisms acquire the macronutrient sulfur (S) as sulfate $(SO_4^{2^-})$, with the highest oxidation number of +6. Sulfur, however, is assimilated into organic matter (in cysteine) as sulfide (S⁻²). Consequently, a conspicuous amount of reducing power is needed to support S assimilation. In embryophytes, this reducing power can derive from linear electron transport, from the pentose phosphate shunt or from the mitochondrial electron transfer chain (Schmidt, 1979). Sulfur assimilation in algae is believed to be more strictly dependent on photosynthesis (Schmidt, 1979).

On average, S is typically below 1 mM (sometimes, much below this value) in freshwater, but it is very abundant in the ocean (about 29 mmol L^{-1}). This makes S never limited in the ocean, although in oligotrophic freshwaters, there are indications that S-limitation may be possible (Giordano, 2005).

The concentration of S in the oceans has not always been so high (Ratti et al., 2011). Sulfate concentration was probably around 200 μ mol L⁻¹ when the first cyanobacteria appeared (Habicht et al., 2002), and raised to less than 5 mM in the Proterozoic Era and to 10-15 mM in the late Palaeozoic Era (Shen et al., 2002; Canfield, 2004; Kah et al., 2004). At the beginning of the Mesozoic, sulfate concentration increased stepwise to a concentration of 13-27 mM (Giordano & Prioretti, 2016.) In concomitance with the Mesozoic increase of oceanic S, phytoplankton composition changed and a domination shift from green algae to the red-lineage algae occurred (Giordano, 2005; Ratti et al., 2011; Knoll et al., 2017). It has been proposed that this shift in dominance was favored, although not fully determined, by the sulfate increase (Sulfate

Facilitation Hypothesis, Ratti et al., 2011; Prioretti et al., 2014).

It is still not clear if the influence of S on phytoplankton radiation was associated with differences in the S metabolism of red-lineage algae compared to green algae or if the increased S availability exerted an indirect effect on the success of some clades (Giordano & Prioretti, 2016); the indirect effect of S may have been associated to the higher S quotas of red lineage algae, which allocate a large portion of S to dimethylsulfoniopropionate (DMSP) (Ratti et al., 2011; Norici et al., 2005). The synthesis of DMSP may have been a response to ocean oxygenation, which led to a decrease of N availability: DMSP, under these circumstances, would have been a cheaper osmolyte than the N-containing glycine betaine (Andreae, 1986; Dacey et al., 1987; Turner & Beidel, 1988; Gröne & Kirst, 1992; Andreae & Meinrat, 1990; Liss et al., 1997; McNeil et al., 1999). DMSP, when a cell is lysed due to predation or other causes, is degraded by bacterial lyases (de Souza & Yoch, 1995a, b; Yoch et al., 1997) and marine algae DMSP lyases (Steinke et al., 1996; Steinke & Kirst, 1996; Stefels, 2000); the products of such degradation are DMS and acrylate, both capable of anti-grazing activity (Steinke et al., 2002a; Steinke et al., 2002b).

Thus, the increased grazing pressures exerted by some micrograzers (especially copepods) at the beginning of the Mesozoic era (see Giordano et al., 2018 for a discussion on this event) may have exerted a selective pressure in favor of those phytoplankton clades more capable of responding to the challenge, among these those groups with a higher S cell quota and thus a higher DMSP content (Prioretti & Giordano, 2016).

1.2. Sulfur metabolism

1.2.1. Sulfate acquisition

Three main types of sulfate transporters have been identified in algae. As described in Fig. 1-1. In the plasmalemma of eukaryotic algae, H^+/SO_4^{2-} (SULTR) and Na⁺ /SO₄²⁻ (SLT) co-transporters have been identified; the expression of both types of transporters is induced by low sulfate availability. The proton gradients across the plasmalemma possibly energize, more or less directly, these transporters. In Cyanobacteria, sulfate transport is carried out by an ATP-binding-cassette (ABC) transporter, with a transmembrane channel constituted by the SulP and SulP2 proteins (SULP stands for sulfate permeases). A sulfate binding protein (Sbp) is linked to the Sup and SulP2 proteins, on the side of the protein emerging on the extracellular face of plasmalemma; ATP-binding proteins (Sabc) are instead present on the cytosolic portion of Sulp and Sulp2; the Sabc catalyzes the hydrolysis of ATP, which energizes the transport of sulfate (Melis & Chen, 2005). Interesting, a similar type of transporter is present on the inner chloroplast membrane of *Chlamydomonas reinhardtii* (Lindberg & Melis, 2008).

1.2.2. Sulfate reduction

In photosynthetic organisms, sulfate reduction occurs in the chloroplast. The only known exception is *Euglena gracilis*, which reduces sulfate in the mitochondrion (Takahashi et al., 2011). Sulfate reduction is a rather complicated process, due to the fact that the redox potential of the sulfate/sulfite pair is too negative (E_0 ' = -0.454) for the cell electron donors to provide the energy for this chemical transformation. For sulfate to be reduced to sulfite, it needs to be activated to adenosine 5'-phosphosulfate (APS. E_0 ' = -0.060) (Schmidt & Jager, 1992). This sulfate adenylation was catalyzed by the enzyme ATP sulfurylase (ATPS; EC 2.7.7.4). Algal ATPS differ from those of vascular plants (Prioretti et al., 2014). Among the most typical features of algal ATPS is the high number of cysteine residues. It has been shown that, in oceanic cyanobacteria and in eukaryotic algae, some of these cysteine residues are involved in

the redox regulation of ATPS (Giordano & Prioretti, 2016; Prioretti et al., 2016). The ATPS of dinoflagellates and freshwater and coastal cyanobacteria, instead, appears not to be subject to redox regulation (Giordano & Prioretti, 2016; Prioretti et al., 2016).

The APS generated in the reaction of ATPS is then reduced to sulfite with the intervention of APS reductase (APR; EC 1.8.4.9). In vascular plants, glutathione is used as the donor of reducing power in this reaction; no direct evidence on whether this is the case in algae exists. The sulfite generated in the reaction catalyzed by APR is further reduced to sulfide by a ferredoxin-dependent sulfite reductase (EC 1.8.7.1); 6 electrons are required for this reduction.

Instead of being used for the production of reduced S, APS can also initiate the sulfation pathway. In this case, APS is probably produced by different isoforms of ATPS from those used in the plastid for sulfate reduction, mostly located in the cytosol; unfortunately, not much is known on sulfation in algae and thus I can only provide limited and anecdotical information on this pathway. Sulfation, in vascular plants, requires that APS is further phosphorylated by APS kinase (APK; EC 2.7.1.25); 3'-phosphoadenosine 5'-phosphosulfate is thus produced PAPS; (Takahashi et al., 2011). PAPS is used by sulfotransferases (EC 2.8.2.24) to donate sulfate groups to all sorts of different molecules (Giordano & Prioretti, 2016). This is mostly done to increase the polar character of molecules and make them more soluble (Dahl et al., 2008).

1.2.3. Cysteine synthesis

Once sulfide is produced, it is assimilated into organic matter by the production of the S-amino acid cysteine. Cysteine synthesis requires two reactions. The first reaction is catalyzed by the enzyme serine acetyltransferase (SAT; EC 2.3.1.30), which produces

O-acetylserine (OAS) from serine and acetyl-CoA (Fig. 1-1,). O-acetylserine, together with sulfide, then acts as the substrate of OAS-(thiol) lyase (OAS-TL; EC 4.2.99.8), which catalyzes the synthesis of cysteine (Leustek et al., 2000; Kopriva, 2006). SAT and OAS-TL are regulated through the assemblage and disassemblage of a complex, the so called Cysteine Synthase Complex (CSC) (Bogdanova & Hell, 1997). The complex does not facilitate the reaction by substrate channeling, because the OAS-TL is not functional when complexed with SAT; the synthesis of cysteine is only accomplished by free OAS-TL (Droux et al., 1998; Wirtz et al., 2001).

In vascular plants, SAT is a hexamer of 29 kDa subunits. It is a member of the hexapeptide acyltransferase enzyme family (Olsen et al., 2004). The functional analysis of SAT domains, using the yeast two-hybrid system, showed that the N-terminal α -helical domain of SAT is involved in SAT/SAT interaction; the C-terminal domain, instead appears to be responsible for both enzymatic activity and SAT/OAS-TL interaction (Bogdanova & Hell, 1997). The idea of a bifunctional C-terminal SAT domain was further strengthened by the modelling of the C-terminus of plant SAT using bacterial acyltransferase structures as templates (Hell & Wirtz, 2008). The location of SAT is already known in different higher plants: Arabidopsis SAT isoform located in mitochondria (Roberts & Wray, 1996; Noji et al., 1998; Wirtz et al., 2001; Krueger et al., 2009), Arabidopsis SAT located in the plastid (Murillo et al., 1997; Noji et al., 1998; Krueger et al., 2009), Arabidopsis SAT located in the cytosol (Howarth et al., 1997; Noji et al., 1998; Howarth et al., 2003), Citrullus vulgaris (watermelon) SAT2 (Saito et al., 1995), spinach SATase Allium tuberosum ASAT5 (Urano et al., 2000), Glycine max cytosolic isoform SATase1 (Chronis & Krishnan, 2004), through the domain analised of *O. parapolymorpha* SAT (OpSat1p) and other fungal SATs the new research data revealed a mitochondrial targeting sequence (MTS) at the N-terminus and an α/β hydrolase one domain at the C-terminal region possessed in the fungal (Yeon et al., 2018).

O-acetylserine (thiol) lyase (EC 4.2.99.8) (OAS-TL) is also known as O-acetylserine sulfhydrylase or cysteine synthase (CSase) belongs to the family of β -replacement enzymes (Kopriva et al., 2008). OAS-TL, in embryophytes, is a homodimer with 35

kDa subunits (León et al., 1987). In higher plants and algae, isoforms of OAS-TL are located in the cytosol (Álvarez et al., 2010), mitochondria (Álvarez et al., 2012), and plastids (Heeg et al., 2008).

The structure of the first plant OAS-TL was recently resolved, demonstrating a high degree of conformational similarities between plant and enterobacterial OAS-TL (Bonner et al., 2005); such similarities allow plant and bacteria OAS-TL to form stable homodimers, with a molecular weight from 68 to 75 kDa. Crystallization of OAS-TL from bacteria showed that each OAS-TL subunit carries a tightly bound pyridoxal 5'-phosphate at the catalytic site (Hatzfeld et al., 2000). The conservation of the active site residues strongly supports the idea that the same prokaryotic and eukaryotic OAS-TLs share the same kinetic mechanism.

SAT and OAS-TL of bacteria and embryophytes form CSC of similar size (Becker et al., 1968; Kredich et al., 1969). By using size-exclusion chromatography, a total molecular weight of 309 kDa for the hetero-oligomeric CSC was determined from *Salmonella typhimurium* (Kredich et al., 1969); 160 kDa were attributed to two SAT trimer and 68 kDa were due to a OAS-TL dimer (Kredich & Becker, 1969). In *Arabidopsis thaliana*, the Cysteine Synthase Complex is formed when an excess of sulfide is present and is disassembled when OAS accumulates in the cell (Droux et al., 1998; Hell & Wirtz, 2011).

_		м
0	7	

Fig. 1-1. Sulphate metabolism in algal cells.

An overall view of sulphur assimilation and of sulphation is depicted here (Giordano & Prioretti, 2016): the enzymes are indicated in red, metabolites in blue and transporters in black. The light blue lines indicate the reactions of the reductive sulphate assimilation pathway; the dark purple lines indicate reactions of the sulphation pathway; dashed lines indicate putative pathways for metabolite transport that are not been incon- trovertibly demonstrated. ABC ATP-binding cassette $SO_4^{2^-}$ transporter, APK APS kinase, APR APS reductase, APS adenosine 5'-phosphosulphate, ATPS ATP sulphurylase, CBL cystathionine β -lyase, CGS cystathionine γ -synthase, CLT thiol transporter (chloroquine resistance transporter-like transporter, Cys cysteine, Cyst cystathionine, γ -ECS γ -glutamylcysteine synthetase, GGT γ -glutamyltransferase, Glu glutamate, γ -Glu-Cys γ -glutamylcysteine, GSH glutathione synthetase, GST glutathione-S- transferase, GS-X glutathione conjugate, Hcy homocysteine, Met methionine, MRP multidrug resistance-associated protein, MS methionine synthase, OAS O-acetylserine, OAS-TL OAS (thiol) lyase, OPH O-phosphohomoserine, PAPS 3'-phosphoadenosine 5'-phosphosulphate, R-OH hydroxylated precursor, SAM S-adenosylmethionine, SAT serine acetyltrans- ferase, Ser serine, SiR sulphite reductase, SLT Na⁺/SO₄²⁻ transporter, SOT sulphotransferase, SULTR H⁺/SO₄²⁻ transporter, Thr threonine, TS threo- nine synthase, X-Cys-Gly cysteinylglycine conjugate.

		Ø
9	10	
U		

2. Hypotheses

In this thesis, I focused on the first and on the last step of the S assimilation pathway.

The first step, the one catalyzed by ATPS, still requires to be elucidated with respect to the *invivo* mechanisms for redox regulation. By similarity with other enzymes (e.g. nitrate reductase; Giordano et al., 2005), I hypothesize that:

Hp 1: the perception of the availability of redox power for the initiation of sulfate assimilation is constituted by the redox state of the plastoquinone pool of the electron transfer chain in the chloroplast.

The reduction state of the plastoquinone pool is the indicator of the rate of electron transport and of the level of reduction of ferredoxin, which possibly is the main donor of electrons for sulfate assimilation. It would, therefore, be a good sensor for the overall availability of electrons available for the reduction of sulfate to sulfide. If such a regulation mechanisms exists, this would represent a major difference with respect to embryophytes: in embryophytes, the main control step of sulfate reduction is at APR reduction (Takahashi et al. 2011); if ATPS activity is finely regulated *in vivo* via the redox state of the plastoquinone pool, this would move the first control step of the pathway already at sulfate activation. This is intriguing because it would suggest that a greater control on energy investment exists on S assimilation in algae, which would not commit to the use of ATP for sulfate activation, unless sufficient redox power for the completion of the pathway is available.

The last step of S assimilation is that of cysteine synthesis. In the absence of any

data on SAT and OAS-TL from algae, it is not possible to generalize the regulatory mechanism proposed for embryophytes to all photosynthetic organisms. I thus intended to verify whether a CSC is involved in cysteine synthesis in algae and test the following hypothesis:

HP 2: Cysteine synthesis of algae works through the constitution of a CSC.

		9
9	13	
U		

3. Materials and methods

3.1. Bioinformatic methods

3.1.1. Protein sequences and phylogenetic trees

All protein sequences were obtained from the NCBI Protein Database (http://www.ncbi.nlm.nih.gov/protein/), both by looking for the SAT and OAS-TL sequences of specific organisms and by using BLASTP (protein-Basic Local Alignment Search Tool) (Altschul et al., 1990; Goujon et al., 2010; Sievers et al., 2011). The phylogenetic analysis was conducted using the MEGA 5.0 software (Tamura et al., 2011). The Maximum Likely hood method was used for the construction of phylogenetic trees (Saitou & Nei, 1987; Sanderson & Driskell, 2003). The bootstrap values (Fron et al., 1996) shown on the tree branches represented the confidence level of clades, i.e. the number of reiterations (out of 100) of data analysis that gives the same branch (Karlin & Altschul, 1990). The evolutionary distance between branches (corresponding to the branch length) was computed using the Poisson correction method (Zuckerkandl & Pauling, 1965) and expressed in terms of the number of amino acid substitutions per site. All positions containing gaps and missing data were eliminated.

3.1.2. Predictions on the location of SAT and OAS-TL proteins

Prediction of sub-cellular localization of proteins was performed with the Target P 1.1

online software (http://www.cbs.dtu.dk/services/TargetP/), as described in Emanuelsson and coauthors, 2007. Also, the on line software identified the sequences signal peptides and prediction of their cleavage sites (Nielsen et al., 1997).

The http://mobyle.pasteur.fr/cgi-bin/portal.py#jobs::boxshade online software was used to acquire the bioinformatic about the proteins and then to identify protein homogeneity predicting evolutionary relationship among different species (Koonin & Galperin, 2003).

3.1.3. Analysis of SAT and OAS-TL algae sequences

Fig. 4-4 and Fig. 4-5 showed the degree of SAT and OAS-TL conserved area in different species, respectively. Multiple sequence alignment was done with the T-Coffee on line software (http://tcoffee.crg.cat/apps/tcoffee/do:regular) (Notredame et al., 2000; Felix et al., 2005; Moretti et al., 2011; Weimbs & Santa, 2012). Representation of the alignment was done using the Boxshade program (http://www.ch.embnet.org/software/BOX_form.html). In the Boxshade figures, for clarity, only some species were shown for each algal clade.

Pairwise Sequence Alignment through the on line software (https://www.ebi.ac.uk/Tools/psa/emboss_matcher/) EMBOSS Matcher identifies local similarities between two sequences using a rigorous algorithm based on the LALIGN application (Koonin, & Galperin, 2003; Kleckner et al., 2016).

15

3.2 Experimental organisms

3.2.1. Synechocystis sp. PCC 6803

Fig. 3-1. Synechocystis sp. PCC 6803.

The cyanobacterium *Synechocystis* (phylum Cyanobacteria, order *Chroococcales*) (Fig. 3-1) (Selim et al., 2018) is a freshwater organism with cells of about 2 μ m in diameter, and coccoid in shape. The cells blue-green color is mainly due to phycocyanin, abundant in the antenna complex of photosystem II (PSII). In this thesis I used strain PCC 6803, which is the first photoautotrophic organism whose genome was fully sequenced (Nakamura et al., 1998); the size of *Synechocystis* PCC 6803 genome is 3.57 Mbp. The ease with which this organism can be cultivated and genetically manipulated (Kufryk et al., 2002) made it a model for the study of physiology and genetics of photosynthetic organisms.

3.2.2. Chlamydomonas reinhardtii

The *Chlamydomonas reinhardtii* (phylum Chlorophyta, class Chlorophyceae, order *Volvocales*) (Fig. 3-2) is a ubiquitous freshwater green algae, with ovoid, biflagellate cells of about 10 μm in diameter (Harris et al., 2009). Its mitochondrial (15.8 Kbps;

Trans & Land, 1988; Rochaix, 1995), plastidial (203.4 Kbps; Maul et al., 2002) and nuclear (121 Mbps; Merchant et al., 2010) genomes have been sequenced and a large collection of mutants is available.

Fig. 3-2. Chlamydomonas reinhardtii.

3.2.3. Dunaliella tertiolecta

Unicellular green algae *Dunaliella* belong to the Chlorophytes (Oren-shamir et al., 1990; Oren, 2005). The algae were first described (Dunal, 1838), but it was not until 1905 that the name *Dunaliella* was given by Teodoresco (1905). *Dunaliella tertiolecta* (phylum Chlorophyta, class Chlorophyceae, order *Volvocales*) (Fig. 3-3) (Mesquita et al., 2013) is a marine green flagellate with a cell size of $10-12 \mu m$. This genus is characterized by the absence of a rigid polysaccharide wall (Gibbs & Duffus, 1976), instead, cells are covered by the amorphous mucilaginous layer of variable thickness called a glycocalyx. *Dunaliella* cells are motile with two equally long flagella. In 2017 (Yao et al., 2017), RNA-Seq technology data were *de novo* assembled and annotated, 17,845 protein-coding transcripts resulted in *Dunaliella tertiolecta* (~95% completeness).

Fig. 3-3. Dunaliella tertiolecta.

3.2.4. Tetraselmis suecica

Tetraselmis suecica Strain 1878 (phylum Chlorophyta, class Chlorodendrophyceae, order *Chlorodendrales*) (Fig. 3-4) (Mesquita et al., 2013) is a green marine flagellate alga. It is often classified in the informal group of Chlorella pyrenoidosa prasinophytes, some members of which belong to the basal Chlorophyta. A transcriptome was produced by M. Giordano and C. Delwiche (unpublished).

Fig. 3-4. Tetraselmis suecica.

(Photo by David Patterson and Bob Andersen via Encyclopedia of Life).

3.2. 5. Thalassiosira pseudonana

Thalassiosira pseudonana Cleve 1873 (phylum Heterokonta, class

18

Coscinodiscusphyceae, order *Thalassiosirales*) (Fig. 3-5). *Thalassiosira pseudonana* is a small centric diatom with an average cell diameter of 2-15 μ m. This diatom is found both as a single cell or chain colony of up to 6 cells. It is especially abundant in coastal waters. Its genome has been sequenced (Armbrust et al., 2004).

Fig. 3-5. Thalassiosira pseudonana.

(SEM Photo by N. Kröger, Alfred Wegener Institute, Germany).

3.2.6. Phaeodactylum tricornutum

Phaeodactylum tricornutum Bohlin 1897 (phylum Heterokonta, class Bacillariophyceae, order Naviculales) (Fig. 3-6) (Miyahara et al., 2014) is a pennate marine diatom, with little silicified cells (Lewin et al., 1958), and four morphotypes: oval, fusiform, triradiate and cruciform, the latter being rarely reported (He et al., 2014). *P. tricornutum* genome has been sequenced (Daboussi et al., 2014).

Fig. 3-6. Phaeodactylum tricornutum.

19
3.2.7. Amphidinium klebsii

The dinoflagellate group encompasses a variety of morphologically very dissimilar organisms. It includes marine and freshwater species; autotrophic, mixotrophic, and heterotrophic modes of nutrition; pelagic and benthic forms. *Amphidinium klebsii* (phylum Miozoa, Class Dinoflagellata, order *Gymnodiniaceae*) (Fig. 3-7) is a common dinoflagellate in temperate and tropical marine waters. The cell diameter is around 10-15 μ m. A transcriptome was produced by M. Giordano and C. Delwiche (unpublished).

Fig. 3-7. Amphidinum klebsii.

(photo by Jacob Larsen).

3.3. Cultures

3.3.1. Culture conditions

Prior to any experiment/measurement, algae were allowed to acclimate to their

culture conditions for at least 4 generations.

3.3.1.1. Synechocystis sp. PCC 6803

Synechocystis sp. PCC 6803 was cultured in batch, in 250 mL Erlenmeyer flasks containing 150 mL of algal suspension. Only for protein purification, for all species, larger (4 L) vessels were used. The growth temperature was 20 ± 0.5 °C. Cultures were illuminated continuously with PAR (340-700 nm) light at an irradiance of 50 µmol photons m⁻² s⁻¹. The irradiance was measured with a quantometer (LI-250 Light Meter; LI-COR, Inc.). Cultures were bubbled with filter-sterilized air. As for all species, experiments were conducted on exponentially growing cells.

3.3.1.2. Eukaryotic algae

All eukaryotic species were cultured in the same conditions used for *Synechocystis*, except for the irradiance, which was 120 μ mol photons m⁻² s⁻¹ (PAR).

3.3.2. Growth media.

3.3.2.1. BG-11 medium

For *Synechocystis* PCC 6803, BG-11 medium (Stanier et al., 1971) was used. BG-11 medium contained: NaNO₃ (17.65 mmol L^{-1}), K₂HPO₄ (0.23 mmol L^{-1}), MgSO₄•7H₂O (0.304 mmol L^{-1}), CaCl₂ (0.245 mmol L^{-1}), citric acid (0.031 mmol L^{-1}), Ammonium Ferric Citrate (6 mg L^{-1}), EDTANa₂•2H₂O (0.0027 mmol L^{-1}), Na₂CO₃

(0.0189 mmol L⁻¹), and trace metals. The trace metal solution had the following composition: H_3BO_3 (0.0463 mmol L⁻¹), $MnCl_2 \cdot 4H_2O$ (0.0091 mmol L⁻¹), $ZnSO_4 \cdot 7H_2O$ (0.00077 mmol L⁻¹), $Na_2MoO_4 \cdot 2H_2O$ (0.0016 mmol L⁻¹), $CuSO_4 \cdot 5H_2O$ (0.00032 mmol L⁻¹), $Co(Cl)_2 \cdot 6H_2O$ (0.000172 mmol L⁻¹), Tris-HCl pH 7.6 (10 mmol L⁻¹); 0.5 ml of this trace metal solution was used in 1 L of BG-11.

3.3.2.2. TAP and TP medium

Chlamydomonas reinhardtii was cultured in either Tris-Acetate-Phosphate (TAP) medium or Tris-Phosphate (TP) minimal medium (Gorman & Levine, 1965). TAP medium contained: Trizma base (17.67 mmol L⁻¹), NH₄Cl (7.48 mmol L⁻¹), CaCl₂ (0.45 mmol L⁻¹), MgSO₄•7H₂O (0.41 mmol L⁻¹), Na₂EDTA (0.13 mmol L⁻¹), FeSO₄•7H₂O (0.018 mmol L⁻¹), ZnSO₄•7H₂O (0.077 mmol L⁻¹), H₃BO₃ (0.18 mmol L⁻¹), MnCl₂•4H₂O (0.026 mmol L⁻¹), MnCl₂•4H₂O (8.04 mmol L⁻¹), CuSO₄•5H₂O (0.0064 mmol L⁻¹), Na₂MoO₄•2H₂O (0.0032 mmol L⁻¹), CoCl•6H₂O (0.012 mmol L⁻¹), potassium phosphate buffer (1 mmol L⁻¹), pH 7.2; 0.1% (v/v) glacial acetic acid was added to the medium to adjust the pH to 7.2, after the medium was autoclaved. TP medium had the same composition as TAP, with the exception of the acetic acid, which was omitted; the pH of TP medium was adjusted with HCl, after the medium was autoclaved, to obtain a final pH of 7.2.

3.3.2.3. Artificial Multipurpose Complement for the Nutrition of Algae (AMCONA)

All other species were cultured in AMCONA medium (Fanesi et al., 2014). The composition of this medium was as follows: NaCl (363 mmol L^{-1}), Na₂SO₄ (8.04

mmol L⁻¹), KCl (8.04 mmol L⁻¹), NaHCO₃ (2.07 mmol L⁻¹), KBr (725 μ mol L⁻¹), H₃BO₃ (372 μ mol L⁻¹), NaF (65.7 μ mol L⁻¹), MgCl₂•6H₂O (41.2 mmol L⁻¹), CaCl₂•2H₂O (9.14 mmol L⁻¹), SrCl₂•6H₂O (82 μ mol L⁻¹), NaNO₃ (549 μ mol L⁻¹), NaH₂PO₄•H₂O (21 μ mol L⁻¹), NaSiO₃•9H₂O (205 μ mol L⁻¹), CuSO₄•5H₂O (40 nmol L⁻¹), Tris-HCl, Ph 8.0 (10 mmol L⁻¹), FeCl₃•6H₂O (6.56 mmol L⁻¹), Na₂EDTA•2H₂O (6.56 mmol L⁻¹), ZnSO₄•7H₂O (254 μ mol L⁻¹), CoSO₄•7H₂O (5.69 μ mol L⁻¹), MnSO₄•4H₂O (6.1 μ mol L⁻¹), Na₂EDTA•2H₂O (6.1 μ mol L⁻¹), Na₂SeO₃ (1 μ mol L⁻¹), NiCl₂•6H₂O (6.3 μ mol L⁻¹), Na₂EDTA•2H₂O (8.29 mmol L⁻¹), Thiamine-HCl (297 μ mol L⁻¹), Biotin (4.09 μ mol L⁻¹), B12 (1.47 μ mol L⁻¹).

3.3.3. Determination of cell concentration

Since the cyanobacteria *Synechocystis* sp. PCC 6803 cell size is too small to be easily counted with an optical microscope and also counts with an automatic cell counter are not fully reliable, because cells are undistinguishable from debris and occasional bacteria, cell concentration of *Synechocystis* was routinely measured as optical density at 750 nm with a Beckman DU 640 Spectrophotometer (Beckman Coulter) (Zerulla & Ludt, 2016). At 750 nm, photosynthetic pigments do not significantly absorb light (Rabinowitch & Govindjee, 1969; Govindjee, 2004). In order to convert optical density to cell number, a calibration curve was made with samples containing serially diluted subsamples of a concentrated culture of *Synechocystis* sp. PCC 6803 of known cell concentration. The cell concentration of the reference *Synechocystis* sp PCC 6803 culture was determined by counts under a microscope (Zeiss Axioskop, Germany) applying the following equation:

Cell concentration (cell ml⁻¹) = $[N \times S1/S2]/V1$

Where S1 is the slide area (mm²); V1 is the sample volume (ml); S2 is 5 times the field area at a 400x magnification (mm²); N is the total cell number counted in 5 field areas.

Freshly made, 0.2 µm filtered cell free BG-11 medium was used as the blank.

Slide area (mm^2) was 24×40 , the field area was 400 mm^2 .

To determine cell concentration of all the others experimental algae, cells were counted with an automatic cell counter CASY TT (Roche Innovatis, Mannheim, Germany). An aliquot of 100 μ l of culture was diluted in 10 ml of CASYton, an electrolyte solution specifically developed by the counter manufacturer. The sample was sucked into the counter through a measuring capillary (60 μ m pore size), at a constant flow rate. Then a pulsed low voltage (1 MHz) was applied between two platinum electrodes; the electrolyte provided the background electrical resistance. When a cell intersected the electric field in the capillary, the cell acted as an insulator and increased resistance between the electrodes. The number of cells was determined from the number of events of current disturbance. The duration of this change in conductivity is proportional to the size of cells (corresponding to the volume of electrolytes displaced by cells). This allowed the determination of a cell volume. Since dead cells are partially empty, they exert a lower resistance to the current and can therefore be discriminated from live cells. Cell concentration was determined twice or thrice per day and used to construct growth curved.

3.3.4. Growth rate determination

The specific growth rate, μ , was calculated from the equation below (Maqsood, 1974):

$$\mu = \frac{\ln X1 - \ln X2}{t(day)}$$

Where X_1 is the cell number at time 1 and X_2 is cell number at time 2. Both time points were chosen to be in the exponential growth phase; t is the time expressed in days.

24

3.3.5. Biomass harvesting

For all measurements/experiments, algae acclimated to the growth conditions were collected by centrifugation using are refrigerated centrifuge (Beckman, California, USA) equipped with a JA-10 rotor (Beckman, California, USA). The algal suspension was centrifuged at 5000 g, for 10 min, at 4 $^{\circ}$ C. The pellet was collected and frozen -80 $^{\circ}$ C until used.

3.4. Overexpression of AtSAT5

In order to purify OAS-TL, *Arabidopsis thaliana* SAT5 (AtSAT5 or SAT-5) was used as the ligand in the affinity column. This protein was modified by a histidine tag, in view of its utilization as a ligand in affinity chromatography. It was then overexpressed in *E. coli*, after transfection of the bacterium with the plasmid pET28a, into which the AtSAT5 gene had been inserted (Fig. 3-8). The plasmid containing the His-Tagged AtSAT5 was kindly donated by Prof. Ruediger Hell, Heidelberg University.

The amount of plasmid was determined by reading the DNA concentration in MilliQ water using a NANODROP 1000 spectrophotometer V3.8 (Thermofisher, Massachusetts, USA). The concentration used for the transformation was 20 ng/ μ l.

3.4.1. Primer design

In order to verify that the gene of interest was in the plasmid and then in the transformed cells, primers specific for AtSAT5 (Gene ID: 835778, SAT 5: AT5G56760) (Tabata et al., 2000) were designed with the Prim Primer, 5.0 software. Their sequences were shown in Table. 3-1. the gene regions that these primers amplified were located at the beginning, middle and end of the AtSAT5 DNA sequence.

Gene Name	Length	Primer sequence
AtSAT5-1	187 bp	FW: AAACAGCGGTGATTGGGAAC; RV: ATCAGCACAACAGAACCAGC
AtSAT5-2	307 bp	FW: CAGAAGCAGCGTCAGC; RV: TCACGAACACGAGCAG
AtSAT5-3	285 bp	FW: TCCGATGAAGCAGAAG; RV: GGTGGCGTTACGAAGAG
AtSAT5-4	322 bp	FW: ACAATCACGGAAGCCATTAGCAT; RV: GTCAATCAGCACAACAGAACCAG
Vector		FW: (T7) TAATACGACTCACTATAG; RV: (T7 terminator) GCTAGTTATTGCTCAGCGG

Table. 3-1. Primer for AtSAT5 amplification

FW = forward primer, RV = reverse primer. T7 = T7 RNA Polymerase.

3.4.2. AtSAT5 Colony transformation assessment in E. coli

The pET28a plasmid (Wirtz, 2004) (Fig. 3-8) was used for the insertion of the AtSAT5 gene into *E. coli*. This plasmid was donated by Prof. Ruediger Hell, Heidelberg University.

G

Fig. 3-8. AtSAT5-pET28^a construct map.

Cloning was conducted using *E.coli* DH10 competent cells, according to the protocol shown below:

Subsequently, 950 µl of Super Optimal Broth with Catabolite (SOC) medium

(Sambrook & Russell, 2001) were added to the *E. coli*/plasmid mix and incubated at 37°C, for 1 hour, in an incubator (SSI5 SHEL LAB Floor Model Shaking Incubator, 5 Cu.Ft.), under continuous shaking at 250 rpm. The SOC medium included the following components: 2% Tryptone, 0.5% Yeast extract, 10 mM NaCl, 2.5 mM KCl, 20 mM MgSO₄, 10 mM MgCl, 20 mM glucose.

After incubation, 50 µl of transformed *E. coli* were loaded onto a Lysogeny Broch (LB) agar plate, which contained the antibiotic kanamycin. Additional 250 µl of *E. coli* culture were loaded on another LB agar plate with kanamycin. The LB plates contained 1% Tryptone, 0.5% Yeast extract, 1% NaCl, 1.5% agar. The plates were incubated overnight at 37 °C. The following day, if colonies appeared, they were transferred with a sterilized toothpick into a 2 ml sterile Eppendorf tube containing 1ml of 2×TY (1.6% Tryptone, 1% Yeast extract, 0.5% NaCl) medium with Kanamycin. The Eppendorf tube was whirly mixed for 10 minutes; then the toothpick was removed. The Eppendorf tube was put in an incubator (SSI5 SHEL LAB Floor Model Shaking Incubator, 5 Cu.Ft.) at 37 °C, under shaking at 700 rpm, for 3 hours. The *E.coli* DH10 transformed culture was then resuspended 1:1 in a 40% Glycerol solution. This "cloning stock" was stored at -80 °C.

3.4.3. Colony PCR

Polymerase Chain Reaction (PCR) was carried out using the InvitrogenTMPlatinumTMSuperFiTM PCR Master Mix Kit (Invitrogen, Massachusetts, USA). This kit was designed to work at room temperature. It was a hot-start kit and it was suited for cloning.

The reaction mix had this composition:

3 µl of nuclease-free water

12.5 µl of 2×PlatinumTMSuperFiTM PCR Master Mix

 $1.25 \ \mu l \ of \ 10 \ \mu M$ forward primer

1.25 µl of 10 µM reverse primer

2 µl of Template DNA

5 μ l of 5×SuperFiTM GC Enhancer

The following PCR protocol was applied:

Agarose gels (2%) were used to assess the size of the PCR products. The DNA Ladder with a range 200-300 bp was produced. The gels were run at 100 V for 30

minutes. Then a picture was taken with a Bio-Rad Gel System (Biorad, California, USA).

3.4.4. AtSAT5 overexpression

As expression vector, *E.coli* BL-21(DE3) plysS was used. These cells were kindly provided by Dr. Tiziana Cacciamani, MaSByc, DISVA, Università Politecnica delle Marche. BL-21(DE3) pLysS is a chemically competent *E. coli* strain. The BL-21(DE3) pLysS strain allowed inducible protein expression from the gene of interest, under the control of the lac UV5 promoter, via the T7 RNA polymerase. The pLysS plasmid also contained the T7 lysozyme gene (lysozyme had the function of repressing low-level transcription prior to induction), a chloramphenicol resistance gene and a p15A replication origin which was compatible with those found in pBR322 and pUC derived plasmids.

This competent strain could be made permeable to exogenous DNA through the following procedure:

Subsequently, 90 µl of SOC medium was added to the mix. This suspension was incubated for 1 hour at 37 °C, under continuous shaking at 600 rpm. Then, 600 µl of 2×TY medium containing kanamycin and chloramphenicol, were added. A further incubation at 37 °C and 400 rpm was conducted overnight. The next morning, 40 µl of the culture incubated overnight was added to an Eppendorf tube containing 2×TY medium and kanamycin and chloramphenicol. These cultures were allowed to grow to an optical density (600 nm) of 1. At that point, 100 µl of 100 mM isopropyl-1-thio- β -D-galactopyranoside (IPTG) was added to induce the expression of AtSAT5 protein. The incubation at 37 °C and 400 rpm was continued for 4 hours. The suspension was then centrifuged at 4500 g, 4 °C, for 10 min; the pellet, containing the *E. coli* cells overexpressing AtSAT5, was collected and stored at -80 °C.

The production of the AtSAT5 containing *E. coli* was scaled up by New BrunswickTM Innova® 44/44R Shaker, setting the shaking speed at 250 RPM and a temperature of 37°C. When the OD₆₀₀ reached 0.6-0.8, 250 μ l of 1 M IPTG were added into the culture (250 ml) for inducing the protein SAT5 expression. The incubation at 37 °C and 400 rpm was continued for 4 hours. The suspension was then centrifuged at 4500 g, 4 °C, for 10 min; the pellet, containing the *E. coli* cells overexpressing AtSAT5, was collected and stored at -80 °C, these pellets were used for the followed purification experiment.

3.4.5. Extraction of AtSAT5 protein from E. coli

The *E. coli* cells were resuspended in 10 ml of binding buffer (buffer B: 20 mM Imidazole, 50 mM Tris (pH 8.0) and 250 mM NaCl), then used for the affinity (binding) chromatography. To protect the proteins, buffer B was added containing 10

μl of 500 mM phenylmethylsulfonyl fluoride (PMSF) protease inhibitor (VWR, USA). The PMSF stock solution was prepared in ethanol, filtered through 0.2 μm filter (sterilized, USA) and kept at -20 °C till used. Cells in buffer B were sonicated on ice using a SONICS Vibra-CellTM (SONICS & MATERIALS INC, Newton, CT, USA), with an energy of 60% amplitude for 5 minutes, with 5 seconds bursts and 10 seconds intervals. The slurry was spun down at 12000 g, for 10 min, at 4 °C, in a J2-MC Beckman centrifuge equipped with a JA-20 rotor (Beckman, California, USA). The supernatant was filtrated through a 0.45 μm membrane filter (VWR, Pennylvania, USA), and then again through a 0.2 μm filter (VWR, Pennsylvania, USA) (Fig. 3-9). Then, 10 μl of 500 mM PMSF was added to the filtered crude extract and the samples were stored at -20 °C, until they were used.

3.4.6. OAS-TL purification

The purification of OAS-TL was carried out by affinity chromatography, using the protein overexpressed in *E. coli* as the ligand. A 1 ml HiTrapTM Chelating Column (GE Healthcare, Buckinghamshire, UK) was used (Fig. 3-9). Prior to its utilization, the column was washed with MilliQ water for 5 min, at a flow rate of 1 ml/min (which was maintained for all the following steps). The column was then loaded with 50 mM NiCl₂, for 5 min. Subsequently, the column was equilibrated with the binding buffer (buffer B: 20 mM Imidazole, 50 mM Tris (pH 8.0), and 250 mM NaCl), for 10 min.

Fig. 3-9. Protein loading onto the affinity chromatography column.

The His-tagged AtSAT5 was then loaded onto the column. The loading lasted 1.5 hour. The column was conditioned with washing buffer (Washing buffer: 80 mM Imidazol, 50 mM Tris (pH 8.0), and 250 mM NaCl). Subsequently, the column was washed for 5 minutes with the same buffer (Washing buffer) used for conditioning. Finally, a volume of 5 ml washing buffer containing 10 mM O-Acetylserine was added; this step was applied to remove any residual bacterial OAS-TL. The column was finally washed for 5 minutes with the same washing buffer and the algal extract was loaded.

Fig. 3-10. Procedure followed for affinity chromatography.

3.4.7. Algal OAS-TL extraction

Algae in mid-exponential growth phase were used for the extraction of OAS-TL. Cells were harvested by centrifugation in a J2-MC Beckman centrifuge with a JA-10 rotor (Beckman, California, USA), at 5000 g, 4 °C, for 10 minutes. The pellet was stored at -80 °C until it could be processed further.

When needed, the pellets were resuspended in 10 ml of buffer B additioned with 50 mM PMSF, 0.001 mM MgCl₂, 0.1% Triton-100 (v/v), and 1% Glycerol (v/v) and subject to sonication, centrifugation, and filtration as described above for the extraction of AtSAT5 from *E. coli*.

About 10 ml of crude extract were then loaded onto the column, with a flow rate of 1ml/min. The extract was allowed to circulate through the columns for 1.5 hours (Fig. 3-10). The column was then washed for 10 minutes with 10 mL buffer W, which contained 80 mM Imidazole, 50 mM Tris (pH 8.0), and 250 mM NaCl; this was done to wash out unbound proteins. The column was then washed for 5 min with 5 ml of

Buffer W added with 10 mM OAS; this step was necessary to displace the protein OAS-TL bound to the affinity ligand. The eluted solution was collected in 10 fractions of 500 μ l each. A further 5 min wash with Buffer W followed. Finally, the His-tagged AtSAT5 protein was eluted with 5 ml Buffer E, which contained 400 mM Imidazole, 50 mM Tris (pH 8.0), and 250 mM NaCl.

3.4.8. Determination of protein content

Proteins were determined according to the method by Peterson (1977), a modification of Lowry's method (Lowry et al., 1951). The denaturing power of SDS in combination with NaOH allowed the complete disruption of membranes. To 480 µl of a solution containing 1% SDS and 0.1 M NaOH, a volume of 20 µl of sample was added, followed by 500 µl of reagent A (Table. 3-2); the solution was let sit for 10 min. Reagent A was a mixture of copper and Na-K tartrate: the former specifically binds to proteins in an alkaline environment; the tartrate was used to stabilize the Cu ions (Lowry et al., 1951). Subsequently, 250 µl of solution B (Table. 3-2) were added. Solution B contained the Folin & Ciocalteu's phenol reagent (Sigma-Aldrich) and carried out the oxidation of the Cu-protein complexes; this gave, almost instantaneously, a blue color to the protein solution (Lowry et al., 1951). The samples were incubated for about 30 minutes at room temperature to allow a complete development of the blue color. Finally, the absorbance was measured at 750 nm in a Beckman DU 640 Spectrophotometer (Beckman Coulter, California, USA).

Protein concentration was calculated by interpolating the samples' absorbances into a calibration curve constructed with known quantities of bovine serum albumin (BSA). The BSA standards were prepared as the samples. Standard curves were made for all the buffers employed in the various purification steps, to take into account possible interferences by all buffer components.

Reagents	Stock solution
Solubilizing solution	1% SDS, 0.1 M NaOH
	a: CTC (CopperTartrate/Carbonate)
	0.1% CuSO ₄ 5 H ₂ O
	0.2% NaKTartrate 4 H ₂ O
Reagent A (v/v) (a: b: c: $d = 1: 1: 1: 1$)	10% Na ₂ CO ₃
	b: 10% SDS
	c: 0.8 M NaOH
	d: MilliQH ₂ O
Reagent B (v/v) (d: e = 5: 1)	e: Folin-Ciocalteu reagent (1 Folin-Ciocalteu :5 MilliQ H ₂ O)

Table. 3-2. Reagents for Peterson's protein assay

3.4.9. SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

OAS-TL purity was assessed through SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE). Proteins were denatured by mixing the samples with 4 volumes of 5X Laemmli Sample Buffer containing 10% (w/v) SDS, 20% (v/v) Glycerol, 100 mM Tris pH 7, 0.1% (w/v) Bromophenol blue, 25% (v/v) β-Mercaptoethanol (Laemmli, 1970). The mixture was quickly whirly mixed for 1 min, then incubated for 10 minutes at 95.5 °C, transferred on ice for 2 minutes and finally centrifuged at 12,000 g at room temperature. Samples were then loaded on a 12% polyacrylamide gel. Resolving gel and stacking gel buffers were prepared as described in Table. 3-3 and 3-4. First, an appropriate volume (Table. 3-5) of resolving gel was loaded into the electrophoresis sandwich; a thin layer of isopropanol was deposited on its surface to ensure that the surface was flat and horizontal. After the gel polymerized, isopropanol was removed with the syringe. The stacking gel was then added (Table. 3-6). After polymerization, the gel sandwich was placed in an electrophoresis chamber (Bio-Rad Laboratories Inc., California, USA). The running buffer contained 25 mM Tris-HCl pH 8.3, 192 mM glycine and 0.1% (W/V) SDS. The electrophoresis was performed at 80 V for 30 min (or until samples ran through the stacking gel) and at 120 V for

additional 120 min or until bromophenol blue ran out of the gel. Protein pre-stained molecular weight markers (10-180 kDa, Abcam, Cambridge, UK) were used to identify the mass of the proteins in the samples.

Protein bands were visualized by Coomassie Staining (Table. 3-7). The Coomassie Staining was stopped when the first protein bands became visible, by washing the gel three times with tap water. The Coomassie destaining solution was then added to the stained gel (Table. 3-8).

Table. 3-3. Recipe for the SDS-PAGE resolving gel buffer

1 x Resolving Gel Buffer	Final concentration	For 100 ml	
Tris pH 8.8	1.5 M	18.18 g	
SDS	0.4% (w/v)	0.4 g	

Table. 3-4. Recipe for the SDS-PAGE Stacking gel buffer

1 x Stacking Gel Buffer	Final concentration	Add to 100 ml		
Tris pH 6.8	0.5 M	6.06 g		
SDS	0.4 % (w/v)	0.4 g		
Add few grains of bromphenol blue				

Table. 3-5. Resolving gel (for 2 gels in the Protean minigel system)

Resolving Gel	H_2O	Resolving Gel Buffer	Acrylamide solution, 30% (w/v)	10% APS	TEMED
12%	4.73 ml	3.3 ml	5.37 ml	90 µl	16 µl

Table. 3-6. Stacking gel (for 2 gels in the Protean minigel system)

Stacking Gel	H_2O	Stacking gel buffer	Acrylamide solution, 30% (w/v)	10% APS	TEMED
4%	2.61 ml	0.72 ml	1.13 ml	45 µl	9 µl

Table. 3-7. Coomassie Staining solution

	Final concentration	Add to 1 L
Methanol	50% (v/v)	500 ml
Acetic acid	1% (v/v)	10 ml
Coomassie Brilliant Bleu R-250 (more sensitive)	0.1% (w/v)	0.1 g

TC 11	1 0	<u> </u>	\mathbf{D} $\cdot \cdot \cdot$	1
Ighla	4 8	1 '00m00010	1 loctaining	colution
Table.	.)=().	COOMASSIC	DUSTAILINE	SOLUTION
				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Coomassie Destaining Solution recipe	Final concentration	Add to 1 L
Ethanol	20% (v/v)	200 ml
Acetic acid	10% (v/v)	100 ml

μ.

3.4.10. Western Blots

The transfer of protein from the gel to a 0.45 μ m PVDF membrane (Amersham, GE Healthcare, Buckinghamshire, UK) for immune detection was carried out in a wet system (Bio-RAD, California, USA). The transfer sandwich was assembled as shown in Fig. 3-11. The PVDF membrane was activated by soaking in methanol before the blotting sandwich was assembled. Subsequently, the blotting sandwich was put in the transfer chamber (Biorad, California, USA). The transfer was conducted at 350 mA for 1 hour, at 4 °C.

Fig. 3-11. Assembly of a western blot sandwich.

This scheme was modified from Mahmood, 2012.

The membrane was blocked by soaking for 1 hour in a blocking solution containing 5% (w/v) BSA, 0.5% (v/v) Tween 20 in TBS (20 mM Tris, pH7.6, 0.137 M NaCl) while slowly shaking at room temperature. After blocking, the membrane was washed with

0.5% TBS-T three times, for 5 min each time. As primary antibody, OAS-TL-A antibodies (from rabbit) were used. The membrane was incubated overnight in TBS-T buffer, containing 0.05% (v/v) Tween-20, 0.5% (w/v) BSA and the primary antibody (OAS-TL A as 1:5000 dilution), at 4 °C. It was then washed 3 times, for 5 min each time, with 1x TBS-T. Then the secondary antibody (goat anti-rabbit Horse Radish Peroxidase (HRP), HRP-conjugate (Pierce), Abcam, Cambridge, UK) was added in a 1:10000 dilution. The membrane was incubated for 1 hour in TBS-T buffer containing 0.05% (v/v) Tween-20, 0.5% (w/v) BSA and the secondary antibody. It was then washed 3 times for 5 min with TBS-T buffer (TBS-T contained 0.05% (v/v) Tween-20).

An identical procedure was used for the immunodetection of SAT5. The primary antibody in this case had a 1:5000 dilution.

Immunodetection was carried out with Amersham[™] ECL[™] start Western blotting detection reagent (Amersham, GE Healthcare, Buckinghamshire, UK). The basic principle of operation of this detection kit was shown in Fig. 3-12.

Fig. 3-12. Principle of operation of the Amersham ECL Western blotting detection reagent.

		L
)	40	

After the addition of 1 ml luminol peroxide detection reagent on the membrane, the HRP enzyme catalyzes the oxidation of luminol, which generates the emission of photons at a wave number of 428 nm.

After the membrane was wetted with 1 ml of ECL reagent, the membrane was wrapped in the transparent plastic film and incubated in the dark for 5 min. The excess of working solution was then removed with a pipette, and the membrane was transferred in a light-tight photographic cassette and fixed into position with tape. A photographic film was located on the membranes and the cassette was closed. All these operations were conducted in a dark room. The film was exposed to the membranes for several seconds to minutes, depending on signal strength. The film was then developed with ChemiDocTM XRS+ imaging system (BIO-RAD, California, USA).

The Molecular weight of proteins was determined by comparing the position of protein bands of unknown mass with prestained marker proteins of known molecular weight (Garfin, 1990). A standard curve was prepared by measuring the Retention Factor (R_f) of prestained marker protein bands. The sample R_f was interpolated Log(Mr) vs R_f standard curve to estimate the molecular weight of the protein of interest (Garfin, 1990; Lord, 2003).

3.5. OAS-TL activity measurements

OAS-TL uses sulfide and O-acetylserine (OAS) as substrates (Kredich, 1966). OAS is generated from the reaction between serine and acetyl coenzyme A catalyzed by SAT (Kredich, 1966; Hell et al., 2002; Droux, 2004). The measurement of OAS-TL activity was based on the spectrophotometric determination of cysteine production. In fact, what was measured was the change of absorbance consequent to the reaction

of the cysteine produced by OAS-TL with ninhydrin (cat. 485-47-2, Sigma-Aldrich, MO, USA). Ninhydrin reacted with the primary amino group of cysteine. As a product, Ruhemanns purple was formed, which absorbed at 560 nm (Gaitonde, 1967). O-acetylserine (thiol) lyase activity was measured as described in (Rolland et al., 1996; Droux et al., 1998) the reaction mix contained 50 mM Hepes-KOH, pH 7.5, 5 mM Na₂S, 10 mM O-Acetyl serine (OAS), 5 mM DTT, 10 µl of crude extract or purified OAS-TL protein, in a total volume of 100 µl. The reaction mixture was incubated, in the absence of sulfide, for 5 min, at 25 °C. The reaction was initiated by the addition of Na₂S; the reaction was allowed to run for 10 min at 25 °C and was stopped by the addition of 50 µl of 20% trichloroacetic acid (TCA). In the blank, TCA was added before Na₂S. Samples and blank, after completion of the reaction, were centrifuged (Microfuge* 20, Beckman Coulter, California, USA) at room temperature, at 13,000 rpm, for 5 min. The supernatant was then added to a 0.07 M Ninhydrin solution, which was composed of 12 M HCl and 100% acetic acid in a 1:3 (v/v) ratio, incubated at 95.5 °C for 10 min and cooled down for 1-2 min on ice. A volume of 550 µl of 100% ethanol was added to the mixture and the absorbance at 560 nm was measured in a glass cuvette. OAS-TL activity was expressed as g cysteine $\cdot g^{-1}$ protein $\cdot min^{-1}$; the amount of cysteine produced was derived from the equivalence: 1 unit of Absorbance at 560 nm = 36.6 nmol cysteine (Wirtz & Droux, 2004).

3.6. Cysteine Synthase Complex purification

Purification of CSCs from all the experimental species was conducted by Fast Protein Liquid Chromatography (FPLC) (ÄKTA pure system GE Healthcare, Buckinghamshire, UK), using a size exclusion column. The basic principle of size exclusion chromatography is depicted in Fig. 3-13. Gel filtration does not rely on the chemical interaction of the protein with the mobile phase; rather it is based on the effective molecular radius of the protein, which, for most typical globular proteins, relates to mass.

Fig. 3-13. Basic principles of size exclusion chromagraphy.

(http://www.mikeblaber.org/oldwine/bch5425/lect31/lect31.htm) (BCH5425 Molecular Biology and Biotechnology Spring 1998 Dr. Michael Blaber)

The running buffer contained 20 mM Tris-HCl and 150 mM NaCl; the pH was adjusted to 7.5. The column used for this analysis was a Superdex 200 5/150 GL (GE Healthcare, Buckinghamshire, UK), with 3 ml of bed volume, with a protein separation size range from 10 to 600 kDa. The choice was based on what known for *A. thaliana* CSC having a mass of about 320 kDa (Wirtz et al., 2010). The flow rate of the mobile phase was set at 0.1 ml/ min, and fraction collection was such that each fraction contained 0.1 ml of elution buffer.

The previous algal OAS-TL purified samples (section 3.4.7) were centrifuged for 10 min at 10000 g, at room temperature. The supernatant containing OAS-TL (100 μ l)

was mixed with AtSAT 5 according to the concentration ratio 2 dimer (OAS-TL) to 1 hexamer (AtSAT 5) (Wirtz et al., 2010) and then it was loaded onto the FPLC column with a syringe, as shown in Fig. 3-14. The fractions were collected with Fraction collector F9-R (GE Healthcare, Buckinghamshire, UK).

Fig. 3-14. Fast Protein Liquid Chromatography (FPLC). (ÄKTA pure system, GE Healthcare, Buckinghamhire, UK).

A LMW Gel Filtration Calibration Kit (Cat. No. 17-0442-01, Amersham, Buckinghamshire, UK) was used to calibrate the column (Fig. 3-15 and Fig. 3-16); a

regression curve was generated, which was used to calculate the molecular weight of the proteins in the eluate. The following protein standards were contained in the LMW Kit: 1. Ferritin (440 kDa) 0.4 mg/ml; 2. Aldolase (158 kDa) 4 mg/ml; 3. Ovalbumin (43 kDa) 4 mg/ml; 4. Ribonuclease A (13.7 kDa) 3 mg/mL. The average elution volume was corrected by the total bed column volume and the void volume (Kav). Kav was calculated with the following equation:

 $Kav protein = \frac{Elution volume protein - Void volume}{Column Bed volume - Void volume}$

44

The Column Void Volume was measured with a blue dextran solution (2000 kDa). Proteins were detected at 280 nm, using the UV detector of the ÄKTA pure system (GE Healthcare, Buckinghamshire, UK).

Fig. 3-15. FPLC Protein standards for column calibration.

1, Ferritin (440 kDa) 0.4 mg/ml; 2, Aldolase (158 kDa) 4 mg/ml; 3, Ovalbumin (43 kDa) 4 mg/ml; 4, Ribonuclease A (13.7 kDa) 3 mg/ml; See text for details.

Fig. 3-16. FPLC column calibration curve.

Each dot represents a standard; from left to right: Ribonuclease A (13.7 kDa); Ovalbumin (43 kDa); Aldolase (158 kDa); Ferritin (440 kDa). The average elution volume corrected by the

```
45
```

total bed column volume and the void volume (Kav) is shown on the Y-axis, as a function of the protein mass in kDaltons (on the X-axis).

The Protein fractions were then subject to SDS-PAGE, according to the protocol described in (3.4.9.) paragraph 1. The proteins were transferred onto a PVDF membrane and identified by immunodetection (see section 3.4.10). Before loading the sample, the column was equilibrated with running buffer; 5 column volumes (CV) of running buffer were used.

3.7. Determination of the impact of the plastoquinone redox state on ATPS activity

In order to assess whether ATPS redox regulation (Prioretti et al., 2016) is mediated by the redox state of the plastoquinone pool, *Thalassiosira pseuodonana* cultures were treated with 3-(3' 4'-dichlorophenyl)-1, 1-dimethylurea (DCMU), which specifically and effectively inhibits Q_B reduction at PSII (Fig. 3-17). DCMU was dissolved in 100% DMSO to obtain a stock concentration of 20 mM. An amount of DCMU stock equivalent to 0.5‰ of the total culture volume was added, so that the final DCMU concentration in the culture was 10 μ M.

T. pseudonana was chosen as the experimental organism because its ATPS is likely to be redox-regulated (Prioretti et al., 2016). To control cultures, 0.5% (v/v) DMSO was added.

Fig. 3-17. DCMU blocks the electron transfer from Q_A to Q_B .

The ATPS enzyme activity was measured after 0, 1, 3 and 6 hours from the addition of the inhibitor (or just the solvent for the controls). The concentration of DCMU that consistently stopped PSII electron transfer rate, as determined with a Dual-PAM-100 fluorimeter (Heinz Walz GmbH, Effeltrich Germany), was used in the experiment.

Cells were collected by centrifugation at 3500 g for 10 minutes. The pellet was washed three times with a 0.5 mM NaCl solution and then resuspended in 800 μ l of an extraction medium containing: 50 mM Tris-HCl (pH 8), 1 mM EDTA, 10 mM MgCl₂ (Giordano et al., 2000). The resuspended pellet was frozen by the addition of liquid N₂ and, while frozen, it was homogenized with a ceramic mortar and pestle. The slurry was transferred into a 1.5 ml plastic tube to which Triton X-100 (0.1% v/v) and glycerol (10% v/v) were added to a final volume of 1 ml. Samples were then kept on ice for 30 minutes to allow the Triton to completely solubilize the proteins. Subsequently, the slurry was centrifuged for 15 minutes at 12000 g, at 4 °C. The supernatant was collected and stored at -20 °C until used. The protein concentration in the crude extract was determined by the Peterson's method (Peterson, 1977).

ATP sulfurylase (ATPS) activity was measured spectrophotometrically at 25 °C, according to Burnell (1984). The reaction mixture contained: APS (1 mM), Sodium

diphosphate tetrabasic (PPi, 1 mM), MgCl₂ (5 mM), glucose (5 mM), Nicotinamide adenine dinucleotide phosphate (NADP, 300 μ M), hexokinase and glucose-6-P dehydrogenase from baker's yeast (5 units, H8629 Sigma-Aldrich), Tris-HCl pH 8 (50 mM). The volume of crude extract added to the assay mixture was 40 μ l for a final volume in the cuvette of 0.5 ml.

Since it is difficult to determine ATPS activity in the forward direction, the reverse reaction was used. The ATPS reaction was coupled with the reactions catalyzed by hexokinase and glucose-6-P dehydrogenase; the adenosine 5-phosphosulfate (APS)-depending reduction of NADP to NADPH was measured as the change in absorbance at 340 nm.

1) APS + PPi
$$\xrightarrow{\text{ATPS}}$$
ATP + SO₄²⁻
2) Glucose + ATP $\xrightarrow{\text{Hexokinase}}$ Glucose-6-P + ADP
3) Glucose-6-P + NADP $\xrightarrow{\text{Glucose } -6-p \text{ dehydrogenase}}$ 6-phosphogluconate + NADPH

The rate of NADPH production was recorded for 10 minutes at 340 nm, using a Beckman DU 640 Spectrophotometer (Beckman Coulter). The values of absorbance were converted to enzyme activity using the Lambert-Beer law:

Enzyme activity (µmol min⁻¹ ml⁻¹) = $\left[\frac{\Delta A 340 \text{ nm}}{\epsilon \text{NADH} \cdot d}\right] \cdot \left[\frac{\text{Vtot}}{\text{V sample}}\right]$

Where: $\Delta A340$ nm is the rate of NADPH production per minute measured at 340 nm; $\epsilon NADH$ (6.22 mM⁻¹ cm⁻¹) is the extinction coefficient of NADPH at 340 nm; d (1 cm) is the optical path length; V_{tot} (500 µl) is the total volume in the reaction vessel; V_{sample} (40 µl) is the volume of crude extract used for the assay. The activity of the enzyme per unit of protein was calculated by dividing the results of the above equation (with units of nmol min⁻¹ ml⁻¹) by the concentration of protein in the sample (mg ml⁻¹); the final results thus had units of µmol NADH min⁻¹ (mg protein)⁻¹.

Three different types of blanks were tested: 1) using boiled crude extract, 2) assaying

the crude extract without APS, 3) assaying the complete mixture without enzyme extract. All three types of blanks gave very similar results; for the experiments, blanks were prepared without APS in the assay mixture.

D

D

		Ø
9	50	
U		

4. Results

4.1. Bioinformatics

4.1.1. Phylogeny of Serine Acetyltransferase

The phylogenetic tree of SAT showed two main branches (Fig. 4-1).

1) The first branch showed two main sub-branches. The first one (from the top) comprise sequences from early-diverging chlorophytes, such as the prasinophyte *Tetraselmis suecica*, core-Chlorophyceae belonging to Trebuxiophyceae and Chlorophyceae (Leliaert et al., 2003) and embryophytes (i.e. *Arabidopsis thaliana* and *Glycine max*). The first sub-branch could be divided into two further groups, only the first one of which included embryophyte sequences.

The second sub-branch was constituted by red algae and algae of the red lineage (diatoms and brown algae), but it also includes sequences from the marine cyanobacterium *Lyngbya confervoides*.

2) The second branch of the SAT tree was more heterogeneous; it could be separated into two sub-branches. The first sub-branch from the top included sequences from terrestrial and oceanic cyanobacteria (*Scytonema millei* VB511283, *Prochlorococcus* sp. Scb245), green algae (*Ostreoccus tauri* and *Micromonrias* sp.) cryptophytes (*Guillardia theta*), prymnesiophytes (*Emiliania huxleyi* and *Chrysochromulina* sp.), brown algae such as *Ectocarpus siliquosus* (also present in the first branch), and the diatom *Thalassiosira pseudonana* (also in the first branch).

The second sub-branch contained sequences from mamiellophyceae green algae (*Micromonas* sp., *Bathyococcus prasinos* and *Ostreococcus tauri*), which constituted

a compact group somewhat distant from the heterokonts *Aureococcus anophagefferens* (Pekagophyceae) and *Ectocarpus siliquosus* (Phaeophyceae) and even more distant from the diatom *Thalassiosira oceanica*.

Q

A

Fig. 4-1. Serine Acetyltransferase phylogenetic tree.

Dark green lines indicated green algae and higher plant; light green lines indicated green algae; red lines indicated lineage algae; blue lines indicated Cyanobacteria.

4.1.2. Phylogeny of O-Acetylserine (thiol) lyase

O-Acetylserine (thiol) lyases phylogenetic tree showed two main branches (Fig. 4-2).

1) In the first branch, *Bacillus cereus* sequence constituted a sister clade of a more composite group that included most of the species used to build the tree (Fig. 4-2). In this group, two sub-branches could be identified: the branch in the lower position included dinoflagellates, diatoms, and prymnesiophytes; the green freshwater algae *Monoraphidium neglectum* constituted a sister group to these species.

In the other sub-branch, several groups could be distinguished: all cyanobacteria sequences grouped together. Another group was represented by sequences from green algae (the freshwater species *Chlamydomonas reinhardtii*, the marine species *Coccomyxa subellipsoidea* C-169, *Ostreococcus tauri*, *Ostreococcu slucimarinus* CCE9901, *Tetraselmis* sp. GSL018, *Coccomyxa subellipsoidea* C-169 and *Tetralsemis suecica*) and several sequences from the embryophyte *Arabidopsis thaliana* (due to the presence of different isoforms, in this organism). A third group was given by sequences from red algae and algae of the red lineage (*Porphyrapurpurea, Chondrus crispus, Galdieria sulphuraria, Cyanidioschyzon merolae* strain 10D), with the green mixotrophc algae *Auxenochlorella protothecoides* as the only intruder.

2) The second branch was formed by species belonging to heterogenous taxa: the freshwater green algae Auxenochlorella protothecoides, Chlamydomonas reinhardtii, Monoraphidium neglectum, the marine green algae Tetraselmis suecica, Bathycoccus prasinos and Nannochloropsis gaditana, the dinoflagellate Amphidinium klebsii, the diatom Phaeodactylum tricornutum, the red algae Cyanidioschyzon merolae, thebrown algae Ectocarpus siliculosus, the amoeba Dictyostelium discoideum, the protozoan Thecamonas trahens, the ascomycete Aspergillus fumigates. No obvious

connection could be found between the position of the OAS-TL sequences in this branch and the known phylogeny of the organisms, suggesting a shuffling of genes through horizontal gene transfer.

q

D

Fig. 4-2. The O-Acetylserine (thiol) lyase phylogenetic tree.

5	6

C

The dark green lines indicated green algae and higher plant; light green lines indicated green algae; red lines indicated red lineage algae; purple lines indicated dinoflagellates; the blue triangle indicated Cyanobacteria. The species of cyanobacteria included in this analysis were shown in the Table. 4-2.

4.1.3. Observations on SAT and OAS-TL protein sequences

4.1.3.1. Number of cysteine residues in algae SAT sequences

The number of cysteines represents an indication of the presence of potential disulfide bonds in the protein and of possible sites for redox regulation. For this reason, I verified whether a trend could be identified with respect to the number of cysteine residues (Table. 4-1). In Cyanobacteria, terrestrial, marine and freshwater species contained more or less similar numbers of Cys residues. In Chlorophyta, the SAT sequences from freshwater species had more Cys residues (typically 8 or 9) than marine species (5 to 7 residues). Somewhat interestingly, species able to grow both in freshwaters and marine environments (e.g. *Monoraphidium neglectum*) had the lowest number of cysteine residues (2 or 3) in their SAT sequences. In the red algae and in their descendants, the number of Cys residues was in the most case between 4 and 6. Only sequences from *Emiliania* (7 and 11), *Cyanidioschizon* (9) and some sequence from *Thalassiosira* (7 and 8) contained higher numbers of Cys.

4.1.3.2. Predicted location of SAT proteins

As shown in Table. 4-1, Cyanobacteria, being prokaryotes, did not have organellar localization of proteins (Table. 4-1). The SAT sequences of Cyanobacteria were between 238 and 272 amino acids (aa)-long. In Chlorophyta, SAT protein contained

229-480 aa and its location was in the chloroplasts or in mitochondria, depending on the species. In the case of *Tetraselmis suecica*, it was not possible to obtain a reliable location for SAT. The haptophyte *Emiliania huxley* SAT protein sequence was 344 to 656 aa-long; all two *Emiliania huxleyi* CCMP 1516 sequences appeared to be located in the mitochondrion. In Rhodophyta, SAT protein was from 323 to 406 aa. In Heterokontophyta, the amino acid number varied greatly, from 183 to 603 aa. Prediction software was unable to identify the location of heterokonts SAT.

Phylum	Name	Environment	Total CYS number	Len	cTP	mTP	SP	other	Loc	RC	TPlen
	Lyngbia sp.	М	5	272	-	-	-	-	-	-	-
	Scytonema millei	Т	4	269	-	-	-	-	-	-	-
	Scytonema millei VB511283	Т	4	264	-	-	-	-	-	-	-
Cyanobacteria	Synechocystis sp. PCC 6803	F	3	249	-	-	-	-	-	-	-
	Synechococcus sp. PCC 7803	М	3	247	-	-	-	-	-	-	-
	Prochlorococcus sp. scB245a_518D8	М	3	238	-	-	-	-	-	-	-
	Auxenochlorella protothecoides	F	7	271	0.077	0.522	0.076	0.039	М	3	38
	Auxenochlorella protothecoides	F	3	355	0.243	0.199	0.018	0.064	_	4	38
	Bathycoccus prasinos	М	5	370	0.803	0.097	0.028	0.207	С	3	9
	Bathycoccus prasinos	М	7	286	0.098	0.191	0.032	0.886	_	2	9
	Chlamydomonas reinhardtii	F	8	392	0.915	0.202	0.002	0.044	С	2	26
	Chlamydomonas reinhardtii	F	8	480	0.810	0.503	0.006	0.009	С	4	26
	Chrysochromulina sp.CCMP 291	M/F	3	416	0.240	0.213	0.061	0.087	С	5	26
	Coccomyxa subellipsoidea C169	F	8	296	0.023	0.419	0.022	0.772	_	4	-
	Helicosporidium sp. ATCC 50920	Т	5	309	0.643	0.136	0.017	0.210	С	3	17
	Helicosporidium sp. ATCC 50920	Т	6	307	0.061	0.076	0.019	0.877	_	1	17
	Micromona spusilla CCMP 1545	М	4	350	0.341	0.480	0.012	0.098	М	5	117
Chlorophyta	Micromona spusilla CCMP 1545	М	2	306	0.103	0.144	0.046	0.860	_	2	117
	Micromonas sp. RCC 299	М	1	258	0.069	0.054	0.438	0.721	_	4	117
	Micromonas sp. RCC 299	М	3	363	0.846	0.236	0.006	0.039	С	2	117
	Micromonas sp. RCC 299	М	5	276	0.107	0.109	0.027	0.858	_	2	117
	Monoraphidium neglectum	F	2	318	0.025	0.456	0.120	0.327	М	5	11
	Monoraphidium neglectum	F	3	471	0.261	0.082	0.163	0.676	_	3	11
	Ostreococcus lucimarinus CCE 9901	М	2	374	0.842	0.257	0.005	0.033	С	3	18
	Ostreococcus lucimarinus CCE 9901	М	3	270	0.112	0.315	0.066	0.668	_	4	18
	Ostreococcus lucimarinus CCE 9901	М	5	265	0.154	0.120	0.032	0.827	_	2	18
	Ostreococcus tauri	М	5	284	0.045	0.473	0.014	0.105	М	5	18
	Ostreococcus tauri	М	6	436	0.702	0.235	0.014	0.105	С	3	18
	Tetraselmis suecica-1	М	6	308	0.121	0.225	0.083	0.597	_	4	-

Table. 4-1. Number of Cysteines residues, sequence length and location of algae serine acetyltransferase (SAT)

D

	Tetraselmis suecica-2	М	5	303	0.097	0.148	0.060	0.798	_	2	-
	Tetraselmis suecica-3	М	5	251	0.069	0.161	0.133	0.614	_	3	-
	Tetraselmis suecica-4	М	5	234	0.058	0.276	0.093	0.739	_	3	-
	Tetraselmis suecica-5	М	5	250	0.058	0.276	0.093	0.739	_	3	-
	Tetraselmis suecica-6	М	5	229	0.012	0.090	0.680	0.700	_	5	-
	Tetraselmis suecica-7	М	4	258	0.058	0.276	0.093	0.739	_	3	-
	Tetraselmis suecica-8	М	7	283	0.106	0.440	0.012	0.582	_	5	-
	Chondrus crispus	М	5	380	0.492	0.177	0.016	0.019	С	4	26
	Cyanidioschyzon meroiae 10D	М	4	402	0.565	0.881	0.001	0.022	М	4	38
Rhodophyta	Cyanidios chyzon meroiae	М	9	406	0.751	0.616	0.003	0.030	С	5	38
	Galdieria sulphuraria	М	3	323	0.104	0.082	0.148	0.909	_	2	62
	Galdieria sulphuraria	М	6	344	0.667	0.327	0.019	0.089	С	4	62
Hantanhuta	Emiliania huxleyi CCMP 1516	М	11	656	0.030	0.843	0.014	0.218	М	2	117
Парторпута	Emiliania huxleyi CCMP 1516	М	7	344	0.291	0.863	0.008	0.010	М	3	117
	Ectocarpus siliculosus	М	5	479	0.539	0.083	0.049	0.549	_	5	-
	Ectocarpus siliculosus	М	6	333	0.317	0.130	0.036	0.715	_	4	-
Ustanaliantanhista	Thalassiosira oceanic THAOC 04795	М	7	554	0.017	0.673	0.011	0.737	_	5	26
петегокопторпута	Thalassiosira pseudonana CCMP 1335	М	4	234	0.034	0.113	0.170	0.887	_	2	26
	Thalassiosira pseudonana CCMP 1335	М	8	603	0.020	0.025	0.821	0.079	S	2	26
	Phaeodactylum tricornutum CCAP 1055/1	М	4	539	0.042	0.325	0.353	0.075	S	5	18

The column "Environment" indicates whether the species is marine (M), freshwater (F) or terrestrial (T). The column "Number of Cys" refers to the number of cysteine residues in the sequence; Len, sequence length; cTP, chloroplast transit peptide; mTP, mitochondrial targeting peptide; SP, secretory pathway signal peptide; C, Chloroplast; M, Mitochondrial; RC, reliability class ranging area, from (1 to 5); Tplen, predicted presequence length. If the sequence contained a chloroplast or mitochondrion transit peptides, cTP or mTP score was assigned; if the sequence contained a secretory pathway signal peptide, a SP score was assigned; for any other location an "other" score was assigned. The reliability class RC ranged from (1 to 5), with the higher number indicating a more robust prediction. RC was measured calculating the difference between the highest and the second highest output scores: reliability was 1 when the difference was between 0.600 and 0.800; a reliability score of 3 indicates that the difference between the two highest scores < 0.200. The cleavage site was predicted and the presequence length (TPlen) reported.

4.1.3.3. Number of cysteine residues in algal OAS-TL sequences

As shown in Table. 4-2. all Cyanobacteria, both marine and freshwater species, showed less than 3 cysteine residues in their OAS-TL sequences; some sequences contained no Cys residues at all. The cysteine number in the OAS-TL sequences of Chlorophyta was extremely variable: with no obvious difference between marine and freshwater species. Rhodophyta and their descendants of the red lineage contained an extremely variable number of cysteines. This heterogeneity may reflect the presence of different isoforms. A finer phylogenetic analysis and possibly more sequences (at least for certain groups) were required to ascertain whether the different number of cysteine is associated with different origins of the proteins.

4.1.3.4. Predicted OAS-TL location

As shown in Table. 4-2, Cyanobacteria, being prokaryotes, did not have organellar localization of proteins (Table. 4-2). Cyanobacteria OAS-TL sequence length was between 307 and 336 aa. In Chlorophyta the protein length was between 307 and 491 aa; the predicted location was more often in mitochondria than in chloroplasts, some sequences could not be located in any particular compartment. In Dinophyta the sequences ranged from 331 to 388 aa; the predicted location was mostly in chloroplasts. In *Emiliania huxleyi* CCMP 1516 the sequence length was 382 aa and it was predicted to be located in mitochondria; Rhodophyta showed the OAS-TL length ranging from 326 to 390 aa, located both in chloroplasts and mitochondria. In Heterokontophyta, the sequences were 342-428 aa long.

Table. 4-2. O-acetylserine (thiol) lyase (OAS-TL) of algae with different taxonomy, ecology, and the location prediction

Phylum	Name	Environment	Total CYS number	Len	cTP	mTP	SP	other	Loc	RC	TPlen
	Acaryochloris marina	М	3	336							
	Anabaena 90	F	2	313							
	Anabaena 90	F	0	320							
	Anabaena variabilis ATCC 29413	М	2	320							
	Anabaena sp. Wa102	F	2	320							
	Bacilluscereus group	М	1	307							
	Calothrix sp. 336/3	F	2	313							
	Calothrix sp. PCC 7507	F	1	320							
	Chlorogloeopsis fritschii	М	2	320							
	Cyanobacterium PCC 7702	М	2	320							
	Cylindrospermopsis raciborskii	F	2	314							
	Cylindrospermum stagnale	F	2	322							
	Thermosynechococcus sp. NK55a	М	2	321							
	Dactylococcopsis salina	F	3	317							
	Dolichospermum circinale	F	1	313							
	Fischerella	F	2	311							
	Fischerella muscicola	F	0	320							
	Fischerella muscicola	F	2	319							
	Fischerella sp.JSC-11	F	3	344							
Cuanabaataria	Fischerella sp. PCC 9605	F	2	320							
Cyanobacteria	Fischerella sp. PCC 9431	F	0	320							
	Fischerella sp.PCC 9339	F	0	313							
	Halothece sp. PCC 7418	М	3	322							
	Hapalosiphon sp. MRB220	F	0	320							
	Hassalliabyssoidea VB512170	М	0	319							
	Mastigocladopsis repens	F	2	320							
	Mastigocladus laminosus	F	0	320							
	Microchaete sp. PCC 7126	F	1	320							
	Microcoleus vaginatus	F	1	326							
	Microcystis panniformis	F	2	319							
	Myxosarcina sp. GI1	F	1	321							
	Nodulariaspumigena	F	0	320							
	Nostocpunctiforme	F/M	0	320							
	Nostoc sp. PCC 7107	F/M	0	315							
	Nostoc sp. PCC 7120	F/M	1	320							
	Nostoc sp. PCC 7120	F/M	2	319							
	Nostoc sp. PCC 7524	F/M	1	320							
	Oscillatorianigroviridis sp. PCC 7112	F	1	326							
	Planktothrix agardhii	F	2	311							

D

Planktothrix agardhii NIVA-CYA 126/8	F	2	311							
Planktothrix	F	2	319							
Pleurocapsa sp. PCC 7319	F	1	332							
Pseudanabaena sp. PCC 6802	M/F	1	320							
Raphidiopsis brookii	F	2	314							
Rivularia sp. PCC 7116	F	3	320							
Scytonema hofmanni	F	0	320							
Scytonema hofmanni UTEX B 1581	F	1	319							
Scytonema millei	М	0	320							
Scytonema millei	М	1	320							
Scytonema tolypothrichoides	F	1	317							
Stigonematales	F	2	319							
Synechococcus sp. CC9605	М	4	322							
Synechococcus JA-3-3Ab	F	1	326							
Synechococcus sp. PCC 6312	F	2	320							
Synechococcus sp. PCC 7335	F	3	346							
Synechococcus sp. PCC 7336	F	1	320							
Synechococcus sp. WH 8109	М	4	322							
Synechocystis sp. PCC 6714	F	2	312							
Synechocystis sp. PCC 6803	F	0	331							
Thecamonastrahens ATCC_50062	М	5	385							
Thermosynechococcus sp. NK55a	М	2	321							
Tolypothrix bouteillei	М	2	320							
Tolypothrix campylonemoides VB511288	М	2	320							
Tolypothrix sp. PCC 7601	F	2	320							
Trichormus azollae	F	2	320							
Xenococcus sp.PCC7305	М	2	321							
Auxenochlorella protothecoides	М	1	352	0.034	0.037	0.760	0.057	S	2	26
Auxenochlorella protothecoides	М	5	361	0.308	0.067	0.038	0.644	_	4	26
Bathycoccus prasinos	F	10	384	0.495	0.175	0.034	0236	С	4	13
Bathycoccus prasinos	F	8	491	0.067	0.064	0.235	0.444	_	4	-
Chlamydomonas reinhardtii	F	7	359	0.052	0.863	0.029	0.064	М	2	11
Chlamydomonas reinhardtii	F	6	414	0.885	0.100	0.003	0.070	С	2	53
Chlamydomonas reinhardtii	F	8	382	0.016	0.293	0.612	0.018	S	4	26
Chlamydomonas reinhardtii	F	6	387	0.136	0.890	0.036	0.072	М	2	33
Chlorella variabilis	F	0	328	0.085	0.115	0.035	0.860	_	2	-
Coccomyxa subellipsoidea C-169	F	4	405	0.534	0.335	0.006	0.102	С	5	60
Coccomyxa subellipsoidea C-169	F	1	378	0.081	0.167	0.111	0.587	_	3	60
Monoraphidium neglectum	F	5	406	0.077	0.171	0.283	0.069	S	5	23
Monoraphidium neglectum	М	7	440	0.414	0.794	0.003	0.015	М	4	7

D

Chlorophyta

	Nannochloropsis gaditana	М	9	420	0.081	0210	0.058	0209	М	5	43
	Ostreococcus lucimarinus CCE9901	F	3	305	0.028	0.141	0.222	0.818	_	3	-
	Ostreococcus tauri	F	4	440	0.156	0.281	0.011	0510	_	4	-
	Ostreococcus tauri	F	5	345	0.150	0.675	0.039	0.033	М	3	9
	Tetraselmis sp. GSL0	М	11	428	0319	0.393	0.002	0.044	М	5	17
	Tetraselmis suecica-1	М	3	314	0.121	0.064	0.180	0.715	_	3	-
	Tetraselmis suecica-2	М	3	315	0.137	0.069	0.147	0.762	_	2	-
	Tetraselmis suecicia-3	М	2	297	0.036	0.415	0.145	0391	М	5	21
	Tetraselmis suecicia-4	М	6	345	0.239	0.517	0.023	0.119	М	4	26
	Tetraselmis suecicia-5	М	3	333	0.121	0.064	0.180	0.715	_	3	-
	Amphidinium klebsii-1	М	3	347	0.019	0.196	0.053	0950	_	2	-
	Amphidinium klebsii-2	М	3	331	0.018	0.058	0.125	0.948	_	1	-
	Amphidinium klebsii-3	М	3	342	0.018	058	0.125	0.948	_	1	-
	Amphidinium klebsii-4	М	3	329	0.184	0.207	0.051	0266	_	5	-
	Amphidinium klebsii-5	М	3	334	0.018	0.058	0.125	0.948	_	1	-
D . 1 (Amphidinium klebsii-6	М	3	356	0.018	0356	0.045	0.878	_	3	-
Dinopnyta	Amphidinium klebsii-7	М	3	355	0.016	0.403	0.043	0.893	_	3	
	Amphidinium klebsii-8	М	7	343	0.025	0.037	0.129	0.936	_	1	-
	Karlodinium veneficum	М	4	357	0.838	0.198	0.036	0.058	С	2	46
	Karlodinium veneficum	М	4	388	0.432	0.305	0.074	0346	С	5	34
	Noctiluca scintillan	М	8	356	0.022	0.716	0.022	0531	М	5	12
	Oxyrrhis marina	М	4	385	0.860	0.279	0.037	0.037	С	3	5
	Chondrus crispus	М	6	326	0238	0.094	0.111	0.486	_	4	-
	Cyanidioschyzon meroiae 10D	М	7	390	0.541	0.432	0.031	0.139	С	5	20
Rhodophyta	Cyanidioschyzon meroiae	М	4	389	0.837	0.037	0.023	0.025	С	2	20
	Galdieria sulphuraria	М	9	385	0211	0.402	0.042	0.186	М	5	43
Haptophyta	Emiliania huxleyi CCMP 1516	М	9	382	0.035	0.806	0.014	0.069	М	2	17
	Ectocarpus siliculosus	М	6	345	0.196	0.035	0.116	0.751	_	3	-
	Ectocarpus siliculosus	М	13	422	0.014	0.064	0.576	0.010	S	3	26
	Ectocarpus siliculosus	М	8	354	0.646	0.087	0.285	0.156	С	4	10
neterokontophyta	Phaeodactylum tricornutum CCAP 1055/1	М	3	342	0.052	0.427	0.014	0575	_	5	-
	Phaeodactylum tricornutum CCAP 1055/1	М	6	356	0.265	0.060	0.107	0.450	_	5	-
	Thalassiosira pseudonana CCMP 1335	М	6	355	0.160	0211	0.052	0.589	_	4	-

The column "Environment" indicates whether the species is marine (M), freshwater (F) or terrestrial (T). The column "Number of Cys" refers to the number of cysteine residues in the sequence; Len, sequence length; cTP, chloroplast transit peptide; mTP, mitochondrial targeting peptide; SP, secretory pathway signal peptide; C, Chloroplast; M, Mitochondrial; RC, reliability class ranging area, from (1 to 5); Tplen, predictedpresequence length. If the sequence contained a chloroplast or mitochlondrion transit peptides, cTP or mTP score was assigned; if the sequence contained a secretory pathway signal peptide, a SP score was assigned; for any other location an "other" score was assigned. The reliability class RC ranged from (1 to 5), with the higher number indicating a

more robust prediction. RC was measured calculating the difference between the highest and the second highest output scores: reliability was 1 when the difference was > 0.800; reliability was 2 when the difference was between 0.600 and 0.800; a reliability score of 3 indicates that the difference was between 0.400 and 0.600; a reliability of 4 was attributed when the difference was between 0.200 and 0.400; a reliability of 5 corresponds to a difference between the two highest scores < 0.200. The cleavage site was predicted and the presequence length (TPlen) reported.

4.1.4. Comparison of SAT and OAS-TL sequences among algae and with *A. thaliana* sequences

4.1.4.1. Alignment of the SAT sequences of Cyanobacteria with *A*. *thaliana* SAT isoforms

The alignment of the SAT sequence of freshwater cyanobacteriums Synechocystis sp. PCC 6803 and the marine cyanobacterium Synechococcus sp. WH 7803 with the SAT sequences of the higher plant model organism A. thaliana (Mayer et al., 1999; Lin et al., 1999; Rhee et al., 2000; Theologis et al., 2000) was performed in order to observe the homology. The Table. 4-3 showed the details of this analysis. A. thaliana SAT sequences carried an amino-terminal extension (112-192 aa) that was not present in the cyanobacterial sequence. Synechocystis sp. PCC 6803 SAT contained a C-terminus extension that ranged 1-27 aa. The alignment of Synechocystis sp. PCC 6803 SAT protein with one of the A. thaliana SAT protein is shown in Fig. 4-3. When hypothetical deletions are omitted, a 168 amino acid-long region with the identity of 42.2% (70 identical amino acids) could be found. If the 32 additional equivalent amino acids were included in the identity analysis (i.e. equivalent amino acids are considered equal), the homology was 61.4%. The amino acid alignment with the other four A. thaliana SAT isoforms showed 41.3%, 42.4%, 44.6%, 46.7% identity, respectively (Table. 4-4). If the additional equivalent amino acids were included, the homology was (Table. 4-4) 61%, 60.3%, 63.6%, 63.5%. A. thaliana SAT sequences had an amino-terminal extension (112-192 aa) which was not present in the Synechococcus sp. WH 7803 sequence. Synechococcus sp. WH 7803 had a C-terminus extension of 2-29 amino acid residues. The identity of Synechococcus sp. WH 7803 SAT amino acid sequence to the five SAT isoforms of A. thaliana, ranged between 40.1% and 47.9%; if the equivalent amino acids were included, the

homology range was 56.3-64.2% (See supplementary data for details). The alignments of all other algae species were shown in Table. 4-4.

SAT1-A.thalia	143	SSIRLDVQAFKDRDPACL	SYSSAILHLKGYLALQAYRVAHKLWKQGRKLL	192
Synechocystis	3	NSLIADFRIIFERDPAAR	:::	52
SAT1-A.thalia	193	ALALQSRVSEVFGIDIHP	AARIGKGILLDHGTGVVIGETAVIGDRVSILH	242
Synechocystis	53	PRLMSHLARFFTGIEIHP	GAQIGQGVFIDHGMGVVIGETAIVGDYSLIYQ	102
SAT1-A.thalia	243	GVTLGGTGKETGDRHPNI	GDGALLGACVTILGNIKIGAGAMVAAGSLVLK	292
Synechocystis	103	GVTLGGTGKESGKRHPTL	GENVVVGAGAKVLGNIAIGDNVRIGAGSVVLR	152
SAT1-A.thalia	293	DVPSHSMVAGNPAKLI	308	
Synechocystis	153	DVPADFTVVGVPGRMV	168	

Fig. 4-3. Alignment of the SAT protein of the freshwater cyanobacterium *Synechocystis* sp. PCC 6803 and the SAT protein of *A. thaliana*.

Identical amino acids are marked with a vertical line; equivalent amino acids are marked with a semicolon; positions with lower identity are identified by a point.

4.1.4.2. Alignment of the SAT sequences of green algae with *A*. *thaliana* SAT isoforms

Two of the *A. thaliana* SAT sequences (SAT-1, SAT-3) had an amino-terminal extension which was not present in *C. reinhardtii* SAT1. The alignment data indicated that *C. reinhardtii* SAT1 and SAT2 had an N-terminal extension (2-95 aa) that was not present in the other three *A. Thaliana* sequences. *C. reinhardtii* SAT sequences also showed a C-terminus extension of 4-117 amino acid residues. The identity of the two *C. reinhardtii* SAT sequences to the five SAT isoforms of *A. thaliana*, ranged between 50.2% and 59.1%; if the equivalent amino acids were included, the homology increased to 71.7-78.7%. Only one of the three SAT sequences of *T. suecica* carried an amino-terminal extension (around 20 aa), which was not present in one of *A. thaliana* SAT sequences. Also, the *T. suecica* SAT sequence showed a shorter C-terminus than *A. thaliana* (Table. 4-3). The identity of the three *T. suecica* SATs to the five SAT

isoforms of *A. thaliana*, ranged between 48.6% and 62.7%; it increased to 67.9-76.3% if the equivalent aa were considered identical (Table. 4-4), (See supplementary data for details).

4.1.4.3. Alignment of the SAT sequences of red algae and red-lineage algae with *A. thaliana* SAT isoforms

A. thaliana SAT sequences carried an N-terminus extension (45-83 aa) (Table. 4-3) that was not present in the *C. merolae* strain 10D. *C. merolae* strain 10D showed a 4-30 aa C-terminus extension. The identity of *C.merolae* strain 10D SAT sequences to the five SAT isoforms of *A. thaliana* ranged between 45.3% and 57.0% (65.8%-74.3%. with equivalent amino acids). *T. pseudonana* CCMP 1335 SAT had an N-terminal extension (199-295 aa), which was not present in three out of five *A. thaliana* SAT sequences. *T. pseudonana* CCMP 1335 also had a C-terminal extension.

The identity of *T. pseudonana* CCMP 1335 SAT with *A. thaliana* isoforms ranged between 46.7% and 52.1% (70.9%-74.2%. with equivalent amino acids). The SAT sequence of the diatom *P. tricornutum* CCAP 1055/1 carried N-terminus (164-231 aa) and C-terminus (16-127 aa) extension compared to *A. thaliana* sequences (Table. 4-3). The identity of the *P. tricornutum* CCAP 1055/1 SAT with the five *A. thaliana* isoforms ranged between 26.3% and 50.8% (41.9%-72.6% with equivalent amino acids) (Table. 4-4). *A. thaliana* SAT sequences carried N-terminus (13-18 aa) and C-terminus (21-26 aa) extensions that were not present in the *E. huxleyi* CCMP 1516 sequence (Table. 4-3). The identity of *E. huxleyi* CCMP 1516 SAT to the five *A. thaliana* sequences ranged between 44.1% and 47.7% (58.8%-61.1% with the equivalent amino acids) (Table. 4-4), (See supplementary data for details).

68

	SAT1-A.	SAT1-A. thaliana		thaliana	SAT3-A.	SAT3-A. thaliana		thaliana	SAT5-A.	SAT5-A. thaliana		
	N'-terminal	C'-terminal	N'-terminal	C'-terminal	N'-terminal	C'-terminal	N'-terminal	C'-terminal	N'-terminal	C'-terminal		
Synechocystis sp. PCC 6803	-140	+6	-103	+1	-192	+27	-115	+27	-112	+27		
Synechococcus sp. WH 7803	-140	+17	-103	+12	-192	+29	-116	+29	-112	+29		
1-C. reinhardtii	-6	-17	+86	-22	-34	+4	+20	+4	+42	+4		
2-C. reinhardtii	+2	+95	+64	+90	-11	+117	+22	+117	+41	+117		
1-T. suecica	-14	-21	+17	-26	-75	0	-15	0	-6	0		
2-T. suecica	-17	-32	+20	-37	-74	-11	-15	-11	-5	-11		
3-T. suecica	-68	-35	-31	-40	-120	-14	-14	-14	-40	-14		
1-C. merolae strain 10D	+46	+4	+83	-3	0	+30	+45	+30	+70	+30		
2-C. merolae strain 10D	+40	+16	+77	+11	0	+22	+39	+22	+69	+22		
T. pseudonana CCMP 1335	+263	-17	+295	-26	+199	+5	+263	+5	+278	+5		
1-P. tricornutum CCAP 1055/1	+208	-16	+240	-21	+164	+8	+228	+8	+228	+8		
2-P. tricornutum CCAP 1055/1	+205	-122	+243	-127	+168	-107	+231	-106	+231	-107		
E. huxleyi CCMP 1516	+14	-21	+18	-26	-45	0	+13	0	+18	0		

Table. 4-3. Comparasion of N'-terminus and C'-terminus sequences of algal SAT the corresponding regions as A. thaliana SAT isoforms

In this table, the positive numbers indicate the numbers of additional residues in algae sequences when aligned with their counterparts, the negative numbers indicate the number of residues missing in algae sequences when aligned with *A. thaliana* sequences.

	SAT1-A	. thaliana	SAT2-A	. thaliana	SAT3-A. thaliana		SAT4-A. thaliana		SAT5-A. thaliana		
	Identity	Similarity	Identity	Similarity	Identity	Similarity	Identity	Similarity	Identity	Similarity	
Synechocystis sp. PCC 6803	42.2 %	61.4 %	41.3 %	61.0 %	42.4 %	60.3 %	44.6 %	63.6 %	46.7 %	63.5 %	
Synechococcaus sp. WH 7803	42.8 %	62.0 %	42.8 %	62.0 %	40.1 %	56.3 %	46.4 %	60.8 %	47.9 %	64.2 %	
1-C. reinhardtii	55.1 %	76.7 %	55.3 %	75.1 %	50.2 %	71.7 %	51.9 %	72.2 %	54.4 %	73.0 %	
2-C. reinhardtii	62.2 %	78.7 %	59.8 %	75.0 %	55.7 %	73.4 %	55.3 %	74.7 %	59.1 %	78.5 %	
1-T.suecica	48.6 %	72.1 %	49.8 %	70.1 %	49.8 %	69.0 %	48.3 %	68.5 %	54.6 %	75.0 %	
2-T. suecica	62.7 %	76.3 %	60.7 %	73.8 %	53.6 %	67.9 %	55.0 %	70.8 %	55.4 %	73.8 %	
3-T. suecica	62.7 %	76.3 %	60.7 %	73.8 %	53.6 %	67.9 %	55.0 %	70.8 %	55.4 %	73.8 %	
1-C. merolae strain 10D	51.8 %	68.2 %	50.6 %	67.5 %	49.4 %	72.0 %	45.3 %	65.8 %	54.0 %	70.5 %	
2-C. merolae strain 10D	54.8 %	74.3 %	57.0 %	72.6 %	52.2 %	69.8 %	47.7 %	67.0 %	53.7 %	68.2 %	
Tpseudonana CCMP 1335	52.1 %	71.8 %	52.1 %	71.4 %	46.7 %	74.2 %	47.7 %	73.2 %	50.6 %	70.9 %	
1-P.tricomutum CCAP 1055/1	50.4 %	70.5 %	50.8 %	70.5 %	45.7 %	70.2 %	47.7 %	72.6 %	50.8 %	68.4 %	
2-P.tricomutum CCAP 1055/1	26.3 %	52.6 %	29.7 %	45.9 %	28.0 %	48.0 %	36.0 %	44.0 %	29.0 %	41.9 %	
E. hudeyi CCMP 1516	47.1 %	59.3 %	47.7 %	59.9 %	44.1 %	58.8 %	45.6 %	61.1 %	45.9 %	59.7 %	

Table. 4-4. Identity and Similarity of algal SAT protein sequence with A. Thaliana isoforms

4.1.4.4. Alignment of the OAS-TL sequence of Cyanobacteria with OAS-TL isoforms of *A. thaliana*

A. thaliana contains four major OAS-TL isoforms (A, B, C, C1), (García et al., 2014). The sequences of these enzymes carried N-terminus (2-110 aa) and C-terminus (1-13 aa) extensions (Table. 4-5) that were not present in the cyanobacterial sequences. The identity of the two OAS-TL sequences of *Synechosystis* sp. PCC 6803 to the four OAS-TL isoforms of *A. thaliana* ranged between 34.0% and 61.1% (52.3%-78.5%, with equivalent amino acids) (Table. 4-6). Also the OAS-TL sequence of the marine cyanobacterium *Synechococcus* sp. WH 7803 differed at the N-terminus, in positions 1-110, relative to *A. thaliana* OAS-TL sequences (Table. 4-5). In contrast, *Arabidopsis* and *Synechococcus* had C-terminus domains of similar length. The identity of the two OAS-TL sequences of *Synechococcus* sp. WH 7803 to the four OAS-TL isoforms of *A. thaliana* ranged between 48.5% and 57.6% (66.3%-74.8%, if the equivalent amino acids were considered) (Table. 4-6), (See supplementary data for details).

4.1.4.5. Alignment of the OAS-TL sequence of green algae with OAS-TL isoforms of *A. thaliana*

When the three OAS-TL sequences of the green algae *C. reinhardtii* were compared to *A. thaliana* isoforms, it was observed that one of the *C. reinhardtii* OAS-TL sequences contained an N-terminal extension (36-72 aa) that was not present in *A. thaliana*-A. On the other hand, *A. thaliana* OAS-TL (B, C, C1) sequences carried an N-terminal extension (2-80 aa) that was mostly not present in *C. reinhardtii* OAS-TL sequences. *C. reinhardtii* had a C-terminus extension (2-20 aa) that was not observed

in *Arabidopsis* (Table. 4-5). The identity between *C. reinhardtii* and *A. thaliana* OAS-TL was between 29.7% and 74.1% (Table. 4-6) (50.0%-83.5% including the equivalent amino acids) (Table. 4-6), (See supplementary data for details).

A. thaliana OAS-TL sequences carried an N-terminal extension (5-113 aa) (Table. 4-5), which was not present in *Tetraselmis suecica* sequence. *A. thaliana* OAS-TL sequences carried a C-terminal extension (4-22 aa) that was partially 3 aa present in only one of the *Tetraselmis suecica* OAS-TL isoforms (Table. 4-5). The amino acid identity between *Tetraselmis suecica* and *A. thaliana* OAS-TL ranged between 28.9% and 66.6% (48.2%-80.4% with the equivalent amino acids) (Table. 4-6), (See supplementary data for details).

4.1.4.6. Alignment of the OAS-TL sequence of red algae and red-lineage algae with OAS-TL isoforms of *A. thaliana*

The *C. merolae* strain 10D OAS-TL sequences, when compared to OAS-TL-A of *A. thaliana* had an additional sequence (44-62 aa) at the N-terminus (Table. 4-5). When *C. merolae* OAS-TL sequences were aligned with the other *A. thaliana* OAS-TL sequences, the embryophytes sequences had an extension at the N-terminus (1-42 aa). *C. merolae* sequences also contained a C-terminal extension (3-28 aa) as compared to *A. thaliana* sequences (Table. 4-5). The identity between *C. merolae* OAS-TL and those of *A. thaliana* ranged between 34.7% and 64.2% (54.5%-80.4% with the equivalent aminoacids) (Table. 4-6), (See supplementary data for details).

T. pseudonana CCMP 1335 alignment with AtOAS-TL-A showed additional amino acids (10 aa and 42 aa) in the diatom at the N-terminus. In all other cases, *A. thaliana* OAS-TL had an amino-terminal extension (5-113 aa) (Table. 4-5). One of *T. pseudonana* OAS-TL contained additional aa at the C-terminus (8-11 aa) (Table. 4-5), while the other sequences showed a 1-18 aa C-terminal extension in *A. thaliana*

OAS-TL. The amino acid identity of *T. pseudonana* CCMP 1335 to *A. thaliana* isoforms varied between 33.7% and 63.0% (53.5%-77.4% with the equivalent amino acids) (Table. 4-6), (See supplementary data for details).

P. tricornutum 1055/1 sequences missed a section at the N-terminus that was present in *A. thaliana* (1-106 aa), while the C-terminus between these two species more or less similar (Table. 4-5). The identity of *P. tricornutum* and *A. thaliana* OAS-TL was between 36.2% and 50.8% (52.4%-79.7% if equivalent amino acids were considered identical) (Table. 4-6), (See supplementary data for details).

In *E. huxleyi* CCMP 1516 OAS-TL there was a 22 aa extension at the N-terminus compared to OAS-TL-A. While, the other three OAS-TL sequences of *A. thaliana*, which, in turn had amino acids at the N-terminus (27-79 aa) that were mostly not present in *E. huxleyi* enzyme (Table. 4-5). At the C-terminus, *E. huxleyi* contained a 25 aa amino acid extension, as compared to *A. thaliana* (Table. 4-5). The OAS-TL amino acid identity between *E. huxleyi* CCMP 1516 and *A. thaliana* ranged between 38.1% and 43.0% (53.5%-57.3% if equivalent amino acids were counted) (Table. 4-6), (See supplementary data for details).

When the OAS-TL sequences of *A. thaliana* were compared with those of the dinoflagellate *Amphidinium klebsii*, the embryophyte was found to have an N-terminal extension (4-112 aa) (Table. 4-5). In contrast, the C-terminus showed additional amino acids (1-3 aa; 1-16 aa, depending on isoforms) in *A. klebsii* sequence (Table. 4-5). The OAS-TL amino acid identity between *A. klebsii* and *A. thaliana* was between 32.3% and 39.5% (50.5%-56.8 considering equivalent aa as identical) (Table. 4-6), (See supplementary data for details).

	A-A. thaliana		B- <i>A</i> . <i>t</i> /	B-A. thaliana		haliana	C1-A. thaliana		
	N'-terminal	C'-terminal	N'-terminal	C'-terminal	N'-terminal	C'-terminal	N'-terminal	C'-terminal	
1-Synechocystis sp. PCC 6803	+17	-10	-53	-10	-91	-13	-38	-12	
2-Synechocystis sp. PCC 6803	-2	-1	-72	-1	-110	-4	-46	-3	
1-Synechococcus sp. WH 7803	-2	0	-72	0	-110	-3	-46	-2	
2-Synechococcus sp. WH 7803	-1	+1	-71	+1	-101	-2	-45	-1	
1-C. reinhardtii	+72	+2	-8	+20	-41	+17	+2	+18	
2-C. reinhardtii	+36	+9	-17	+9	-50	+6	-7	+7	
3-C. reinhardtii	+50	+15	-10	+15	-43	+12	0	-7	
4-C. reinhardtii	+35	+2	-51	+2	-89	-1	-19	0	
1-T. suecica	-5	-8	-75	-8	-113	-11	-49	-10	
2-T. suecica	+9	-4	-61	-4	-101	-7	-37	-6	
3-T. suecica	-2	-4	-72	-22	-110	-21	-46	-20	
4-T. suecica	-10	+3	-80	+3	-118	0	-54	1	
1-C. merolae strain 10D	+62	+3	-1	+3	-34	0	-11	+1	
2-C. merolae strain 10D	+44	+21	-9	+21	-42	+11	-4	+28	
1-T. pseudonana CCMP 1335	+10	+11	-63	+11	-101	+8	-39	+9	
2-T. pseudonana CCMP 1335	+42	-1	-6	-1	-39	-4	-2	-3	
3-T. pseudonana CCMP 1335	-5	-15	-72	-15	-113	-18	-49	-7	
1-P. tricornutum CCAP 1055/1	+2	-1	-68	-1	-106	-4	-43	-3	
2-P. tricornutum CCAP 1055/1	+10	+3	-60	+3	-98	0	-37	+1	
E. huxleyi CCMP 1516	+22	+24	-42	+26	-79	+26	-27	+23	
1-A. klebsii	-4	+3	-72	+3	-112	0	-48	+1	
2-A. klebsii	-7	-14	-75	-14	-115	-17	-51	-16	
3-A. klebsii	+5	+3	-115	+3	-103	0	-39	+1	
4-A. klebsii	0	+1	-51	+1	-108	-2	-44	-1	

Table. 4-5. Alignment of N'-terminus and C'-terminus sequences of algal OAS-TL corresponding regions in A. thaliana OAS-TL isoforms

In this table, the positive numbers indicate the numbers of additional residues in algae sequences when aligned with their counterparts, the negative numbers indicate the number of residues missing in algae sequences when aligned with *A. thaliana* sequences.

	A-A. thaliana		B- <i>A</i> .	thaliana	С-А.	thaliana	C1-A.	thaliana
	Identity	Similarity	Identity	Similarity	Identity	Similarity	Identity	Similarity
1-Synechocystis sp. PCC 6803	60.6 %	76.5 %	61.1 %	78.5 %	60.6 %	76.6 %	53.6 %	71.2 %
2-Synechocystis sp. PCC 6803	37.7 %	53.7 %	36.8 %	52.3 %	38.0 %	53.0 %	34.0 %	52.3 %
1-Synechococcus sp. WH 7803	55.2 %	71.9 %	55.2 %	73.7 %	56.5 %	74.4 %	48.5 %	68.3 %
2-Synechococcus sp. WH 7803	57.3 %	72.9 %	57.6 %	74.8 %	55.7 %	74.5 %	50.6 %	66.3 %
1-C. reinhardtii	64.6 %	80.0 %	64.4 %	82.8 %	65.0 %	83.2 %	57.9 %	76.5 %
2-C. reinhardtii	34.2 %	51.7 %	29.7 %	50.0 %	33.2 %	51.2 %	33.0 %	50.3 %
3-C. reinhardtii	66.7 %	83.5 %	65.6 %	79.8 %	68.4 %	82.2 %	56.9 %	74.5 %
4-C. reinhardtii	74.1 %	86.1 %	69.5 %	84.9 %	73.4 %	86.7 %	61.6 %	77.1 %
1-T. suecica	35.7 %	57.2 %	33.0 %	55.9 %	34.3 %	56.9 %	34.9 %	53.7 %
2-T. suecica	66.2 %	79.0 %	66.6 %	80.4%	64.2 %	78.6 %	59.0 %	74.3 %
3-T. suecica	34.1 %	54.0 %	32.7 %	54.0%	31.6 %	48.4 %	28.9 %	48.2 %
4-T. suecica	46.0 %	61.5 %	44.3 %	60.6%	45.4 %	61.4 %	42.8 %	55.9 %
1-C. merolae strain 10D	64.2 %	80.4 %	59.5 %	77.2 %	61.9 %	78.3 %	54.8 %	70.1 %
2-C. merolae strain 10D	35.8 %	52.8 %	35.2 %	52.8 %	38.1 %	55.0 %	34.7 %	54.5 %
3-C. merolae strain 10D	43.9 %	57.5 %	41.4 %	57.2 %	41.1 %	58.9 %	38.5 %	54.7 %
1-T. pseudonana CCMP 1335	40.6 %	56.6 %	39.7 %	57.6 %	40.4 %	58.7 %	37.7 %	55.6 %
2-T. pseudonana CCMP 1335	61.9 %	75.0 %	63.0 %	77.4 %	62.4 %	77.4 %	54.5 %	71.3 %
3-T. pseudonana CCMP 1335	37.6 %	54.0 %	35.5 %	57.0 %	36.6 %	57.0 %	33.7 %	53.5 %
1-P. tricornutum CCAP 1055/1	51.0 %	67.5 %	47.5 %	65.6 %	49.3 %	65.9 %	42.0 %	61.6 %
2-P. tricornutum CCAP 1055/1	43.5 %	58.7 %	40.4 %	57.4 %	42.0 %	57.1 %	36.2 %	52.4 %
3-P. tricornutum CCAP 1055/1	61.7 %	75.7 %	63.2 %	78.9 %	64.7 %	79.7 %	54.6 %	72.2 %
E. huxleyi CCMP 1516	43.0 %	57.3 %	40.2 %	57.1 %	39.8 %	56.0 %	38.1 %	53.5 %
1-A. klebsii	39.5 %	56.8 %	38.5 %	57.4 %	38.2 %	58.0 %	36.1 %	53.4 %
2-A. klebsii	37.4 %	56.3 %	37.0 %	53.8 %	35.9 %	54.9 %	35.7 %	55.1 %
3-A. klebsii	38.8 %	54.7 %	37.3 %	53.7 %	36.3 %	53.1 %	32.4 %	48.3 %
4-A. klebsii	36.6 %	53.9 %	36.5 %	54.0 %	36.4 %	53.5 %	32.3 %	50.5 %

Table. 4-6. Identity and Similarity of algae OAS-TL with reference species of A. thaliana isoforms

A

4.1.5. Main motives of SAT and OAS-TL algal sequences

4.1.5.1. SAT sequences main motives in algae

The SAT protein, apparently, share with the embryophyte enzyme a C-terminal hexapeptide-repeat domain. This domain is common in a number of acyltransferases and is believed to be involved both in catalysis and hetero-oligomerization (i.e. formation of the Cysteine Synthase Complex) (Yeon et al., 2018). Our sequences alignment revealed a partial but long consensus sequence, with the following interesting features: i) a peculiar six-residue periodicity can be found in the consensus region; ii) each of the six hexapeptide units starts with isoleucine (I), leucine (L) or valine (V); iii) in four of the units, the second residue is glycine (G) and the fifth residue isalanine (A) or valine (V).

Fig. 4-4 showed the alignment of algal SATs and the five *Arabidopsis thaliana* SAT isoforms. The alignment revealed the similarity in the structures of algal and embryophyte enzymes. The six-residue periodical amino acid sequence of algae SAT was (-I/V/L)-G-XXXX-(I/V/L)-, thus very similar in structure to that of *Arabidopsis thaliana* (Vuorio et al., 1991; Vuorioa & Taina, 1994; Bogdanova & Hell, 1997; Pye, et al., 2004). In 1997, Bogdanova and Hell proved through truncated proteins experiments that the C-terminus of SAT was necessary for the interaction with OAS-TL. Also, this domain appeared to be associated with the putative transferase activity (Bogdanova & Hell, 1997). The hexapeptide domain was also found to be responsible for the formation of β -turns (Vuorio, 1991). In agreement with Bogdanva and Hell (1997) and based on the structural similarity suggested by the sequence alignments, it seems logical to assume that the catalytically functional domain of algae SATs is the central part of the sequence, where the region with the highest similarity to the *Arabidopsis thaliana* proteins was.

SAT1-A, thaliana 1 _____ 1 -----SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana 1 _____ SAT5-A.thaliana 1 1 -----Synechocystis 1 _____ Synechococcus 1 -----1-C.reinhardtii 1 _____M______ 2-C.reinhardtii 1-T.suecica 2-T.suecica _____ 1 _____ 3-T.suecica 1-C.merolae 2-C.merolae 1 MDNTKKYLOAVLLTAPMLMALAFTPSISTVMSVHOYSSNOCDGFLPPSRARIRHYSSPRO T.pseudonana 1-P.tricornutum 1 -----MVAWLVLLTLSSLELVNGWIHQCTVMSLYIRR-----PTVSASLAFS----2-P.tricornutum _____ E.huxlevi consensus 1 SAT1-A.thaliana 1 -----MA 1 -----SAT2-A.thaliana SAT3-A.thaliana 1 -----ML 1 -----SAT4-A.thaliana _____M SAT5-A.thaliana 1 1 -----Synechocystis 1 -----Synechococcus 1 -----M 1-C.reinhardtii 2-C.reinhardtii 2 -----SF 1 -----1-T.suecica 1 -----2-T.suecica 1 -----3-T.suecica 1-C.merolae 1 _____MF 2-C.merolae _____MF T.pseudonana 61 RCCYQPTLLHHYKSSDDSHKNSTTPSTWQSSLKDLVSQIDSKPSTDDEQPQSRMDLVPQI 1-P.tricornutum 1 -----MD 2-P.tricornutum E.huxlevi 1 consensus 61 3 CING------ENRDFSSSS---SLSSLP-----MIVS------SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana 2 PP-----AGELRHQSPS----KEK------1 Synechocystis 1 _____ Synechococcus 2 RSVFS-----D------TCSAAPSTSRP----HAVSVIPSRPRRYA-GGRT------1-C.reinhardtii 4 PCLG------VVA-----SKHALSGAS---SRAQQS------VVA------2-C.reinhardtii 1 --ES-----LEWVKDAIP-----1-T.suecica -----2-T.suecica 1 TWASP-----D------KAGNLPAYSNG----RPVTVLPR------3-T.suecica 3 SCLTS--V-----AQGNGRLQRTS----KQVPLVARRERRHRLAVRT-----1-C.merolae 3 ATTG-----SR-----RLYQTLRVHPSHRALQSVRKRVR----SR------2-C.merolae T.pseudonana 121 DAKSSQEDQEHRRPKYQLGLGKNRPLKSS----NASMSTADVDVQSKQPDSSPSENKDES 56 GANRTLETSTG-TTRYDLGIGKNAPLGSA----SNTTIPAMLAGPSDPNVPTPVATESTQ 1-P.tricornutum 3 DSGQ-----TYTYLNYPLENGQVLAEAQLRYQTYG-Q--L-----2-P.tricornutum --ML-----RFSRR--TPLP----AARRACS-----E.huxleyi 121 consensus SAT1-A.thaliana 26 -----RNFSA-----R-DDGETGDEFPFERIFP------1 -----MNGDELPFESGFE------SAT2-A.thaliana 29 -----PPSPPP----PPPMAA-SAT3-A.thaliana 1 -----MAT-SAT4-A.thaliana 17 -----DEAE----A--A--SA-SAT5-A.thaliana 1 ------Synechocystis 1 -----Synechococcus 37 -----GSVAVNTMARDRLSAQ-1-C.reinhardtii 26 -----RGGSGRRCSPVLASNTEPASSKPSKA 2-C.reinhardtii 12 -----R-SECSN-----FD 1-T.suecica 2-T.suecica 26 -----GNDNMFSS------3-T.suecica 39 -----FTEO----E-OAFPT-1-C.merolae 32 -----SSNDGV----SEARDS-2-C.merolae T.pseudonana 177 DV---ASAPFQYWNAPQPVAKPITPQH----L-NK----TSRQRYDMGMGKHAPL-1-P.tricornutum 111 SVPFSAASRGENWVALDPVHKPSTPAS-----R-TR----HSPHPVSEQTAKPVNG-2-P.tricornutum 35 -----GNASLH-19 -----CI--SSTSSLQTTI-----E.huxlevi 181 consensus

SAT1-A.thaliana	48	VYARGTLLL
SAT2-A.thaliana	14	VYAКGТК
SAT3-A.thaliana	59	CIDTCRTGKPQISPRDSSKHHDDESGFRYMNYFRY
SAT4-A.thaliana	4	CIDTCRTGNTQDDDSRFCCIKNFFR
SAT5-A.thaliana	32	AISAA
Synechocystis	-	
Synechococcus	65	EDEET EAVEADI NOOT OF
2-C reinhardtii	57	SNNKMSDFD-SIDWTDAGVDAV
1-T.suecica	25	OWLRDASTVSTGGE
2-T.suecica	1	***
3-T.suecica	34	SS
1-C.merolae	60	LKADAKPKTASNSRTAGVPNRLKEEEGACFVEFL
2-C.merolae	62	AIEHITDTRSETSRSAAVGARVVWPLGS
T.pseudonana	220) GETTNRRGNTVTKQHLLTTGDEESARLTKAVWDKGHFHKDGASSLENG
1-P.tricornutum	157	LSSTQKPAPTTSRRMVARDNRSAKLRAALWDEGHYQKHESPLLPSHPHDPT
2-P.tricornutum	56	AWWGDMLGPGKVFDTDK
E. nuxley1	30	
consensus	241	
SAT1-A.thaliana	55	T
SAT2-A, thaliana	21	KSEFDSNLLL
SAT3-A.thaliana	94	LD
SAT4-A.thaliana	29	PG-FSVNRKIHHTQIED
SAT5-A.thaliana	37	àààààà
Synechocystis	1	
Synechococcus	1	
1-C.reinhardtii	107	-NHNCPCEDEVHPSNGWRPMPHH
2-C.reinhardtii	79	LQSNVDFNICGEESQALTL
1-T.suecica	39	EEQMDSQAISE
2-T.suecica	1	000V 0000 V
3-T.SUECICA	35	
2-C merolae	94	
7 pseudonana	268	
1-P. tricornutum	208	TSTAVADTTKOSSSTVPNVHEIVORSTTITADGPSPPTAFYPDIDLSIPDSVY
2-P.tricornutum	73	
E.huxleyi	36	
consensus	301	
SAT1-A.thaliana	67	NSSYDETWDSIREEAKLEAEEEPVLSSELYASILSHD <mark>CLEOALSEVLANRL</mark>
SAT2-A.thaliana	30	DPRSDFIWDAIREBAKLPAEKEPILSSFLYAGILAHDCLECALGFVLANRL
SAT3-A.thaliana	118	RDAEVDDVWAKIREDAKSDIAKEPIVSAYYHASIVSQRSLEAALANTISVKL
SAT4-A.thaliana	45	DDDVWIKMLEEAKSDVKQEPILSNYYYASITSHRSLESALAHIISVKL
SAT5-A.thaliana	39	DAEAAGIWTQIKAEARRDAEAEPALASMLYSTIISHSSILERSISEHIGNKL
Synechocystis	1	
Synechococcus	1	
1-C.reinhardtii	127	HLSKPELWERTROEAOMDASSEPALASNLFSTILAHPSLEKSMAFTLANKL
1-T suppica	48	
2-T. suecica	40	
3-T.suecica	44	HKDTDALWEATBSDARSDSDLDASTASATHSTTTVHHSTAKTMAEVLANKU
1-C.merolae	109	HGTEDLVWERVRLEABAAAREDOLLASFLYATVLNHDTLEAOLAFHLANKL
2-C.merolae	112	YSSDPVWELVRREAEIGAANEPCLASSLYATVLNHRCLEDTLAEHLANEL
T.pseudonana	323	NETASSQPVDLVWDLMRHEAQIEAQREPLLVSELYSTILNHPALEAALAEHLANRL
1-P.tricornutum	261	ADDGSVDLVWDLLRWDAYQDAQREPILVSELYSTIINHPSLESSLSFLLANRL
2-P.tricornutum	73	YLV <mark>VCC</mark> NULGS <mark>C</mark> YGSTSPVSURPGTDQPYGUDFPDVSVKDTVRUQL <mark>C</mark> M
E.huxleyi	36	DTQSTWSM_QSEAREAIASSVKRGYGERDL_EQRVESHGSEADCESATICAKE
consensus	361	
SAT1-A.thaliana	118	QNPTLLATQLMDIF <mark>C</mark> NVMVHDRGIQSSIRLDVQ-AFKDRDP
SAT2-A.thaliana	81	QNPTLLATQLLDIFYGVMHDKCIQSSIRHDIQ-AFKDRDP
SAT3-A.thaliana	170	SNLNLPSNTLFDLFSGVLQGNPDIVESVKLDLL-AVKERDP
SAT4-A.thaliana	93	SNLNUPSNTLFDLFISVLEESPELIESTKODLI-AVKDRDP
SAT5-A.thallana	90	CSSWIISTLI YDLE LNTFSSDESI RNMTVADI R-MARVRDE
Synechocystis	-	
1-C reinbardtii	178	AN
2-C.reinhardtii	148	ANSTML STOLFELEHNELSKEPDWRCAALSDIA-ACREDD
1-T.suecica	99	ADATMLPTELEDIFYDTLKTSPETVFASMODCO-AAMERDP
2-T.suecica	47	ADATMLPTELFDIFYDTLKTSPETVFASMQDCQ-AAMERDP
3-T.suecica	95	QSHTLPATHLLHLFQEAFNDDPDIMAAWVADWN-AWFDRDP
1-C.merolae	160	ASTELPSTMINELIREALEKAREARYALRIDIL-AMADRDP
2-C.merolae	162	ASPFFQATQYVKLERDALYQDKSYREALRADIL-AVVRRDP
T.pseudonana	379	ESSAMLSTQVMELVREALDGDEEFQRNLRADIM-AVRDRDP
1-P.tricornutum	314	QSPAMMISTQLQSLIYASLQR <mark>C</mark> PIFRRALRADIM-AVRORDP
2-P.tricornutum	121	LRDELKVASWHAWVGGSFGGMQAWEFAWQAGST-RAAFTDA
E. nuxley1	423	LUGATGLDIARMUSARIARDA-SIMDAAAABMERASMIHALATUVSSAVVGEALTVVPDA
Consensus	741	···· · · · · · · · · · · · · · · · · ·

78

Ŵ

D

SATI-A.thalian	a 158	B ACLSYSSATTHL	KGYLALQ <mark>AY</mark> RVAHK <mark>LW</mark>	KQG- <mark>R-</mark> KLLALALQSRVSE	/FGIDIHP
SAT2-A.thalian	a 121	1 ACLSYSSAILHL	KGYHALQAYRVAHKLW	NEG-R-KLLALALQSRISE	FGIDIHP
SAT3-A.thalian	a 210) A <mark>c</mark> isyvh <mark>c</mark> flhfi	KGFLA <mark>C</mark> QAHRIAHELW	IQD-R-KILALLIQNRVSE	FAVDEHP
SAT4-A.thalian	a 131	3 A ISMVH <mark>C</mark> FLGF	KGFLA <mark>C</mark> OAHRIAHTLW	QN-R-KIVALLIONRVSE	FAVDIHP
SAT5-A.thalian	a 130) A ISESHCHINM	KGELALQAHRWSHKLW	TQS-R-KPILALAL HSRUSD	EAVDIHE
Synechocystis	10	AARNWLEVEFCMF	GLUAT LINKF SHRLHI	C	TGIEIHP
l-C reinbardti	+ 214	ARGEDEINUN	GEGAL SLERL SHRLW	OKG-P-KALALALOSPMSE	THVDTHP
2-C. reinhardti	1 188	A SSYSHALLYFT	CYHATOTOR TAHATW	NRK-O-KUMALALOSRISE	FAVDVHP
1-T.suecica	13	9 A RGVISDALLYY	KGEHAVOACRCAHVLW	BRG-R-TVLALALOSKVSE	LAIDIHP
2-T.suecica	8	A REMSDALLYY	KGEHAVOACRCAHVLW	RG-R-TVLALALOSKVSE	TAIDIHP
3-T.suecica	13	5 A EKYSHCMLNF	KGECALOSYRISHMLE	RKN-R-RALASALOSRIAD	FHVDLHP
1-C.merolae	200	0 A TRVIDALLEF	KGFHALOTHRVAHWLW	SQN-R-QALAMYLHSOVCK	LOIDIHP
2-C.merolae	203	2 AMKHCVAVLMYS	KGYAALQAYRLAHLLW	RQD-R-KVLALFLQSEISK	FAVDIHP
T.pseudonana	41	9 ACTCLPDVFLYF	KGFHALOSYRVSNYLW	ESG-R-RVLAHYLQSQVSQ	TFQIDIHP
1-P.tricornutu	m 355	5 AVQSLPDVFLMF	KGFHALESHRVAHTLW	KKQN-K-RVLAQYLQSQVSQ	FQIDIHP
2-P.tricornutu	m 161	L HGQPF <mark>C</mark> KHVVPI.		ACG-AQHSAWQIAISE	QRQAIYQDP
E.huxleyi	148	AFAGELRIYLEF	KGFHSVQ <mark>C</mark> ARVAHFWW	NQPNGS-G-RWIALALQSEMSDA	FGVDIHP
consensus	481				
SAT1-A.thalian	a 211	AARIGKG	TIDH(TGVVIGETAV GDR	
SAT2-A.thalian	a 174	AARIGEG	TT.DH(TGVVIGETAVIGNG	
SAT3-A.thalian	a 263	GAKIGTGI	LLDH	TAIVIGETAVVGNN	
SAT4-A.thalian	a 186	GAKIGKG	LLDH	TGVVIGETAVVGDN	
SAT5-A.thalian	a 183	AAKIGKG	LLDH	TGVVVGETAVIGNN	
Synechocystis	71	GAQIGQGV	FIDHG	MGVVIGETAIVGDY	
Synechococcus	73	GARIGHGV	FIDHG	MGVVIGETAEVGDR	
1-C.reinhardti	i 271	AAQLGRGI	LIDH	TGVVIGETAVVGDN	
2-C.reinhardti	i 241	AARIGKG	LLDH	GTGVVIGETAVIGNN	
1-T.suecica	192	2ATRLGEG	II LDH	GTGVVIGETAVVGNY	
2-T.suecica	140	AIRLGEG	IIII D)H	GTGVVIGETAVVGNY	
3-T.SUECICA	183	GARLGRG	DH		
2-C merolae	25.	AARIGIG	DH	TGVVIGETARVGNN	
T nseudonana	472	NATTOSCU	TDH(TCIVICETANCHN	
1-P tricornutu	m 400	NATEOMO		TO TWOETANVOUN	
2-P.tricornutu	m 198	AWPTOPFRATEC	RVAROLGMISYRTPO	WGSKEGBEBOBGBGDDDTDGP	YGSHARWOV
E.huxlevi	204	AARMGRG	T	TGOVIGETAVIGDN	
consensus	= 4	delet Links		and a state of the	
	24	1 · · · · · · · · ·		* * .	
SATI-A thaliana	238	1 <u>*.</u>	WSTINCVTICCTCK		TCDCNTTC
SAT1-A.thaliana	238		-VSILHGVTLGGTGKE	[*] * . TGDRHP TGDRHP	NIGDGALLG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana	238		-VSILHGVTLGGTGKE -VSILHGVTLGGTGKE -VSILHNVTLGGTGKO	TGDRHP TGDRHP CGDRHP	NIGDG <mark>A</mark> LLG KIGEG <mark>A</mark> LLG KIGDGVI
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana	238 201 290 213		VSILHGVTLGGTGKE VSILHGVTLGGTGKE VSILHNVTLGGTGKQ VSILHRVTLGGTGKQ	TGDRHP TGDRHP CGDRHP SGDRHP	NIGDGALLG KIGEGALLG KIGDGVLIG KIGDGVLIG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana	238 201 290 213 210		VSILHGVTLGGTGKE VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA	TGDRHP TGDRHP CGDRHP SGDRHP SGDRHP CGDRHP	NIGDGALLG KIGEG <mark>A</mark> LLG KIGDGVLIG KIGDGVLIG KIGDG <mark>C</mark> LIG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana Synechocystis	238 201 290 213 210 98		VSILHGVTLGGTGKE VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SIIYQGVTLGGTGKES	TGDRHP TGDRHP CGDRHP SGDRHP CGDRHP CGDRHP	NIGDGALLG KIGEG <mark>A</mark> LLG KIGDGVLIG KIGDGVLIG KIGDG <mark>C</mark> LIG LGENVVVG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana Synechocystis Synechococcus	238 201 290 213 210 98 100		VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKQ SILYGGVTLGGTGKAS CLIYQGVTLGGTGKES	TGDRHP TGDRHP CGDRHP SGDRHP CGDRHP CG	NIGDGALLG KIGEGALLG KIGDGVLIG KIGDGVLIG KIGDG <mark>C</mark> LIG LGENVVVG LANNVVIG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana Synechocystis Synechococcus 1-C.reinhardtii	238 201 290 213 210 98 100 298		VSILHEVTLGGTGKE VSILHEVTLGGTGKE VSILHEVTLGGTGKQ VSILHEVTLGGTGKQ VSILHEVTLGGTGKA SI YQGVTLGGTGKA CLIYQGVTLGGTGKD	TGDRHP TGDRHP SGDRHP SGDRHP CGDRHP CG KRHP IG	IGDGALLG KIGDGVLG KIGDGVLG KIGDG <mark>C</mark> LIG LGENVVVG IGNVVIG IGNGVLLG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana Synechocystis Synechococcus 1-C.reinhardtii 2-C.reinhardtii	238 201 290 213 210 98 100 298 268		VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKA SILYQGVTLGGTGKES CLFYQGVTLGGTGKD VSMLHHVTLGGSGTG VSILQNVTLGGTGKE	TGDRHP TGDRHP SGDRHP SGDRHP GGDRHP GG	IGDGALLG KIGEGALLG KIGDGVLIG KIGDG <mark>C</mark> LIG LGENVVG IGENVVG NGNGVLLG KVGDNVIG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana Synechocystis Synechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica	238 201 290 213 210 98 100 298 268 219		VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SILYQGVTLGGTGKES OLFYQGVTLGGTGKE VSMLHHVTLGGSGTG VSILQNVTLGGTGKE SILQGVTLGGTGKE	TGDRHP TGDRHP SGDRHP CGDRHP CGDRHP CG	IGDGALLG KIGEGALLG KIGDGVLIG KIGDGVLIG LGENVVVG LGENVVIG LANNVVIG VGDGVLIG KIGDGVLLG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana Synechocystis Synechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica 2-T.suecica	238 201 290 213 210 98 100 298 268 219 167		VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SILYQGVTLGGTGKES GILYQGVTLGGTGKES VSMLHHVTLGGSGTG VSNLHHVTLGGSGTG VSILQGVTLGGTGKE GSILQGVTLGGTGKA	TGDRHP TGDRHP SGDRHP CGDRHP CGDRHP CGDRHP GG	IGDGALLG KIGEGALLG KIGDGVLIG KIGDGVLIG LGENVVVG LANNVVIG VGDGVLLG KIGDGVLLG KIGDGVLLG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana Synechocystis Synechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica	238 201 290 213 210 98 100 298 268 219 167 215		VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SIIYQGVTLGGTGKES OLYQGVTLGGTGKES VSMLHHVTLGGSGTG VSILHHVTLGGSGTG CSILQGVTLGGTGKA -SILQGVTLGGTGKA	TGDRHP TGDRHP SGDRHP CGDRHP CGDRHP GGDRHP GG	IGDGALLG KIGEGALLG KIGDGVLIG KIGDGVLIG LGENVVVG LANNVVIG VGDGVLLG KIGDGVLLG KIGDGVLLG NIGDGVLLG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana Synechocystis Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae	238 201 290 213 210 98 100 298 268 219 167 215 280		VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SIIYQGVTLGGTGKA GILYQGVTLGGTGKA VSMLHHVTLGGSGTG VSILHHVTLGGTGKA - CSILQGVTLGGTGKA - VSILHHVTLGGGTGKA	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP CG DRHP CG DRHP GG KRHP IG VRHP IG DRHP SG DRHP	IGDGALLG KIGEGALLG KIGDGVLIG KIGDGVLIG IGENVVVG LANNVVIG VGGGVLLG KIGDGVLLG KIGDGVLLG RIEDCVLIG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana Synechocystis Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae	238 201 290 213 201 200 200 200 200 200 200 200 200 200		VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SIIYQGVTLGGTGKA CILYQGVTLGGTGKA VSMLHHVTLGGTGKA VSMLHHVTLGGTGKA SILQGVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP CG DRHP CG DRHP CG DRHP GG KRHP IG DRHP SG	IGDGALLG KIGEGALLG KIGDGVLIG KIGDGVLIG LGDNVVIG LANNVVIG VGNGVLLG KIGDGVLLG KIGDGVLLG RIGDGVLLG RIGDGVLLG RIGDGVLLG RIGDGVLLG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana Synechocystis Synechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae T.pseudonana	238 201 290 213 210 98 200 298 200 298 200 298 200 200 200 200 200 200 200 200 200 20		VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SIIYQGVTLGGTGKBS CIIYQGVTLGGTGKB VSMLHHVTLGGSGTG VSILQGVTLGGTGKA -SILQGVTLGGTGKA -VSILHHVTLGGSGTG VSILHHVTLGGTGKE -SSILHHVTLGGTGKE -SSILHHVTLGGTGKE	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP CG DRHP CG DRHP CG DRHP CG DRHP GG VRHP IG DRHP SG DRHP	IGDGALLG KIGEGALLG KIGDGVLIG KIGDGVLIG LGDVVVIG VCNGVLIG KIGDGVLLG KIGDGVLLG KIGDGVLLG RIEDCVLIG KIGNGVLLG KIGNGVLLG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae T.pseudonana 1-P.tricornutum 2-P.tricornutum	238 2201 2203 213 210 98 100 298 268 219 268 219 215 280 282 499 436		VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SITYOGVTLGGTGKBS CITYOGVTLGGTGKB VSNLHHVTLGGTGKA -SILQGVTLGGTGKA -VSILHHVTLGGTGKA -VSILHHVTLGGTGKA -VSILHHVTLGGTGKA -SSILHHVTLGGTGKA -SSILHHVTLGGSGKA	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP CG DRHP CG DRHP CG DRHP CG DRHP CG DRHP SG DRHP DR DRHP DR DRHP	IGDGALLG KIGDGVLIG KIGDGVLIG KIGDG ^C LIG IGENVVG UGNGVLIG KIGDGVLIG KIGDGVLIG RIEDCVLIG KIGDGVLLG KIGNGVLLG KIGNGVLLG KIGNGVLLG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechocystis Synechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae T.pseudonana 1-P.tricornutum 2-P.tricornutum	238 201 201 210 98 100 298 268 219 160 215 280 282 499 436 282 499		VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SIIYQGVTLGGTGKB VSNLHHVTLGGTGKE SILQGVTLGGTGKE SILQGVTLGGTGKA VSILHHVTLGGTGTK VSILHHVTLGGTGTK VSILHHVTLGGTGTK SILHHVTLGGTGTK VSILHHVTLGGTGKE SILHHVTLGGTGKE	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP CG DRHP CG DRHP CG DRHP CG DRHP SG DRHP NG	IGDGALLG KIGDGVLIG KIGDGVLIG KIGDG ^C LIG IGDNVVG LANNVVIG VGNGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGNGVLIG KIGNGVLIG KIGNGVLIG KIGNGVLIG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae T.pseudonana 1-P.tricornutum E.huxleyi consensus	238 201 201 210 98 100 298 268 219 160 215 280 282 499 436 258 231 601	KSYLEYQGVKFLQ	VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SIIYQGVTLGGTGKE SIIQGVTLGGTGKE SILQGVTLGGTGKE SILQGVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP CG DRHP CG DRHP CG DRHP IG XRHP IG DRHP SG DRHP NG VRP UR DRHP SG DRHP NG VRP UR DRHP NG VRP UR DRHP VTRQ DRHP UR	IGDGALLG KIGDGVLIG KIGDGVLIG KIGDG ^C LIG IGDNVVG LANNVVIG VGNGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLLG KIGNGVLLG KIGNGVLLG KIGNGVLLG RAGSCPGTV KIGNGATLA
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 1-P.tricornutum 2-P.tricornutum E.huxleyi consensus	238 201 201 210 98 100 298 268 219 160 282 282 282 282 282 282 282 282 282 28	L	VSILHGVTLGGTGKE VSILHGVTLGGTGKG VSILHGVTLGGTGKQ VSILHHVTLGGTGKQ VSILHHVTLGGTGKA SIIYQGVTLGGTGKG VSILGVTLGGTGKG VSILGVTLGGTGKA VSILGVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGSGKA SVLHHVTLGGSGKA	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP CG DRHP CG DRHP IG XRHP IG XRHP IG DRHP SG	IGDGALLG KIGDGVLIG KIGDGVLIG KIGDG ^C LIG IGENVVVG IGENVVVG VGNGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGNGVLIG KIGNGVLIG KIGNGVLIG KIGNGVLIG KIGNGVLIG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 1-T.suecica 2-C.reinhardtii 1-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 1-P.tricornutum 2-P.tricornutum E.huxleyi consensus SAT1-A.thaliana	238 201 290 210 98 100 298 268 219 167 219 280 282 499 436 258 231 601 268	L	VSILHGVTLGGTGKE VSILHGVTLGGTGKG VSILHGVTLGGTGKQ VSILHHVTLGGTGKQ VSILHHVTLGGTGKA SIIYQGVTLGGTGKG VSILGVTLGGTGKA SILQGVTLGGTGKA VSILGVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA SILHHVTLGGTGKA VSILHHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGTGKA	TG DRHP TG DRHP CG DRHP CG DRHP CG DRHP CG DRHP CG DRHP IG XRHP IG XRHP IG DRHP SG DRHP GV DRHP GV DRHP GV DRHP SG DR	IGDGALLG KIGDGVLG KIGDGVLG KIGDG ^C LIG IGBNVVVG IGBNVVG VGNGVLG KIGDGVLG KIGDGVLG RIEDCVLG KIGNGVLLG KIGNGVLLG KIGNGVLLG KIGNGVLLG KIGNGVLLG EAGSCPGTV KIGNGALLA
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechocoystis Synechocoystis 1-C.reinhardtii 1-T.suecica 2-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 1-P.tricornutum 2-P.tricornutum E.huxleyi consensus SAT1-A.thaliana	238 201 290 213 213 201 298 100 298 268 219 167 215 282 282 499 436 258 231 601 268 231	KSYLEYQGVKFLQ ACVTILGNIKIGAG	VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKQ VSILHHVTLGGTGKA SI YQGVTLGGTGKA SI YQGVTLGGTGKA VSILGVTLGGTGKA - SILQGVTLGGTGKA - SILQGVTLGGTGKA - VSILHHVTLGGTGKA - VSILHHVTLGGTGKA - SILHHVTLGGTGKA - SILHHVTLGA - SILHHVTLGA	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP CG DRHP G XRHPT IG XRHPT IG DRHP SG SG SG SG<	IGDGALLG KIGPGALLG KIGPGVLIG KIGPGVLIG LGENVVVG IGENVVVG IGENVVVG NGNGVLLG KIGPGVLLG KIGPGVLLG KIGPGVLLG KIGPGVLLG KIGPGVLLG KIGPGVLLG RVGNGVLLG EAGSOPGTV KIGPGAFLA
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechocoystis Synechocoystis I-C.reinhardtii 1-T.suecica 2-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 1-P.tricornutum 2-P.tricornutum E.huxleyi consensus SAT1-A.thaliana SAT2-A.thaliana	238 2210 2213 2210 98 100 298 209 200 298 209 200 298 200 200 282 280 282 280 282 282 282 28		VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKQ VSILHHVTLGGTGKA SI YQGVTLGGTGKD VSILHHVTLGGSGTG VSILGVTLGGTGKA -CSILGVTLGGTGKA -SILQGVTLGGTGKA VSILHHVTLGGSGKA VSILHHVTLGGSGKA VSILHHVTLGGSGKA VSILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGGSGKA SILHHVTLGA SILHHVTLGA SILH	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP SG DRHP GV DRHP GV DRHP SG DRHP SWAGNPAKLIGF V SWVAGNPAKLIGGK DN SWVAGNPAKLIGGK DN	IGDGALLG KIGPGALLG KIGPGVLIG KIGPGVLIG LGENVVVG IGENVVG IGENVVG NGNGVLLG KIGPGVLLG KIGPGVLLG KIGPGVLLG KIGPGVLLG RVGRGVLLG RVGRGVLLG RVGRGVLLG RVGRGVLLG PAGSOPGTV KIGRGAFLA
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechocoystis Synechocoystis I-C.reinhardtii I-T.suecica 2-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae T.pseudonana 1-P.tricornutum 2-P.tricornutum E.huxleyi consensus SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana	238 2210 2213 2210 98 100 298 200 298 219 167 215 280 282 282 282 282 282 282 282 282 282	ACVTILGNIKIGAG ACVTILGNISIGAG AGTCILGNITIGGG	VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKA SIGQCVTLGGTGKA SIGQCVTLGGTGKA VSILHGVTLGGTGKA VSILHGVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA SILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA SILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP CG DRHP CG DRHP CG DRHP CG DRHP CG DRHP GG DRHP IG DRHP SG DRHP GV DRHP GV DRHP SWAGNPAKLIGF VTRQ LHHARRTEMAGMGTSLDH DRHP SWVAGNPAKLIGF V-M-EE - Q SWVAGNPARLIGGK DN - P TAVGNPARLIGGK C	IGDGALLG KIGPGALLG KIGPGVLIG KIGPGVLIG LGENVVVG IGENVVVG IGENVVG NGNGVLLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KVGRGVLLG RVGNGVLLG PAGSCPGTV KIGRGAFLA
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 1-P.tricornutum 2-P.tricornutum E.huxleyi consensus SAT1-A.thaliana SAT2-A.thaliana SAT4-A.thaliana SAT4-A.thaliana	238 201 290 213 210 98 100 298 209 298 219 167 215 280 282 249 1436 258 231 320 243 243 243	ACVTILGNIKIGAG ACVTILGNIKIGAG ACVTILGNISIGAG AGTCILGNITIGG AGSCILGNITIGG AGATILGNVKIGAG	VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKA SIIYQGVTLGGTGKA SIIYQGVTLGGTGKA OLYQGVTLGGTGKA SILQGVTLGGTGKA SILQGVTLGGTGKA VSILHHVTLGGSGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGSGKA SILHHVTLGGTGKA SILHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGTG	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP CG DRHP CG DRHP CG DRHP CG DRHP GG DRHP GG VRHP IG DRHP SG DRHP GV DRHP GV DRHP SG DRHP GV DRHP SGV DRHP SWVAGNPAKLIGF VTRQ LHHARRTEMAGMGTSLDH DRHP SWVAGNPAKLIGF VTRQ SWVAGNPAKLIGGK DN <p< td=""> TAVGNPARLIGGK DN<p< td=""> TTAVGNPARLIGEN CEDUN</p<></p<>	IGDGALLG KIGPGALLG KIGPGVLIG KIGPGVLIG LGENVVVG IGENVVVG IGENVVIG KIGPGVLIG KIGPGVLIG KIGPGVLIG KIGPGVLIG KVGRGVLIG RGVLIG RGVGVLIG FAGSCPGTV KIGRGAFLA
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 1-P.tricornutum 2-P.tricornutum 2-P.tricornutum SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT4-A.thaliana Synechocoscus	238 201 200 213 210 98 100 298 268 215 280 282 282 282 282 282 282 282 282 282	ACVTILGNIKIGAG ACVTILGNIKIGAG ACVTILGNISIGAG AGTCILGNITIGG AGSCILGNITIGG AGATILGNVKIGAG AGAKVLGNIAIGIN	VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKA SLIYQGVTLGGTGKD VSILHHVTLGGGGGG VSILHHVTLGGGGGG VSILGVTLGGTGKA -SILQGVTLGGTGKA -SILQGVTLGGTGKA -SILQGVTLGGTGKA -SILQGVTLGGTGKA -SILQGVTLGGTGKA -SILQGVTLGGTGKA -SILHHVTLGGGGKA SILHHVTLGGGGKA SILHHVTLGGGGKA -SILHHVTLGGGGKA -SILHHVTLGGGGKA -SILHHVTLGGGGKA -SILHHVTLGGGGKA -SILHHVTLGGGGKA -SILHHVTLGGGGKA -SILHHVTLGGGGKA -SILHHVTLGGGGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILGGGSVVLDV -SILGAGSVVLDV -SILGAGSVVLDVFA -SILGAGSVVLDVFA -SILGAGSVVLDVFA	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP SG DRHP GU DRHP GV DRHP SWVAGNPAKLIGF VTRQ SWVAGNPARLIGGK DN TAVGNPARLVGG GERVN TWGVPGRW DR	IGDGALLG KIGDGVLG KIGDGVLG KIGDGCLG LGENVVG LANNVVIG VGNGVLG KIGDGVLG KIGDGVLG KIGDGVLG KIGDGVLG KIGDGVLG KIGNGVLG RIEDCVLG KIGRGVLG AGSCPGTV KIGRGAFLA DP AGSCPGTV KIGRGAFLA DP R-THDKIP R-KHDKIP
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 1-P.tricornutum 2-P.tricornutum 2-P.tricornutum SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii	238 201 201 213 210 98 100 298 268 215 280 282 282 282 282 282 282 282 282 282	ACVTILGNIKIGAG ACVTILGNIKIGAG ACVTILGNISIGAG AGTCILGNITIGEG AGTCILGNITIGEG AGATILGNVKIGAG AGATILGNVKIGAG AGAKVLGAIEVGTN	VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKA SITYOGVTLGGTGKA SITYOGVTLGGTGKA VSILHHVTLGGSGTG VSILQGVTLGGTGKA -VSILHHVTLGGTGKA -VSILHHVTLGGTGKA -VSILHHVTLGGTGKA -VSILHHVTLGGTGKA -VSILHHVTLGGTGKA -VSILHHVTLGGTGKA -VSILHHVTLGGTGKA -VSILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGGTGKA -SILHHVTLGATGA -SILHHVTLGATGA -SILHHVTLGATGA -SILHHVTLGATGA -SILHHVTLGATGA -SILHHVTLGATGA -SILHHVTLGATGA -SILHHVTLGATGA -SILHHVTLGATGA -SILHHVTLGATGA -SILHHVTLGATGA -SILHHVTLGATGA -SILHHVTLGATGA -SILHHVTLGATGA -SILA -S	TG DRHP TG DRHP CG DRHP SG DRHP CG WRHP IG DRHP SG DRHP GV DRHP SWVAGNPAKI IGF VTRQ SWVAGN PARLIGGK DN - P TAVGN PARLIGGK DN - P GTAVGN PARLIGGK DR -	IGDGALLG KIGDGVLIG KIGDGVLIG KIGDG ^L LIG IGENVVG LANNVVIG VGNGVLIG KIGDGVLLG KIGDGVLLG KIGDGVLLG KIGDGVLLG KIGNGVLLG KIGNGVLLG KIGNGVLLG KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGVLLG RAGSCPGTV KIGNGTV RAGSCPGTV
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae T.pseudonana 1-P.tricornutum 2-P.tricornutum E.huxleyi consensus SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana Synechocystis Synechococcus 1-C.reinhardtii	238 201 201 213 210 98 100 298 269 215 280 282 249 167 215 280 282 249 499 436 258 231 320 243 240 128 130 328 243 240	ACVTILGNIKIGAG ACVTILGNIKIGAG ACVTILGNISIGAG AGTCILGNITIGEG AGSCILGNITIGEG AGATILGNVKIGAG AGAKVLGNIAIGIN AGAKVLGAIEVGTN AGATVLGBITVGAG	VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SITYOGVTLGGTGKB VSILHHVTLGGTGKB CSILQGVTLGGTGKA VSILHHVTLGGSGTG VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA SVILHHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHHVTLGGTGKA VSILHVT	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP SG DRHP GV DRHP SVAGNPAKLIGF VRQ TAVGNPARLIGK DN SVA	IGDGALLG KIGDGVLIG KIGDGVLIG KIGDG ^C LIG IGDNVVG LANNVVIG VGNGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGNGVLIG RAGSCPGTV KIGNGVLIG RAGSCPGTV KIGNGVLIG PAGSCPGTV KIGNGVLIG RAGSCPGTV KIGNGVLIG PAGSCPGTV KIGNGVLIG PAGSCPGTV KIGNGVLIG PAGSCPGTV KIGNGVLIG PAGSCPGTV FIENGRIP PLENGRIP PLENGRIP
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 3-T.suecica 1-P.tricornutum 2-P.tricornutum 2-P.tricornutum 2-P.tricornutum SAT1-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 2-C.reinhardtii	238 201 201 210 98 100 298 268 219 160 298 268 219 160 298 282 499 436 258 261 201 268 231 320 243 240 128 130 328 298 249	ACVTILGNIKIGAG ACVTILGNIKIGAG ACVTILGNISIGAG AGTCILGNITIGG AGSCILGNITIGG AGATILGNVKIGAG AGAKVLGNIAIGIN AGAKVLGNIAIGIN AGATVLGNIFIGG	VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SLIYQGVTLGGTGKD VSILHHVTLGGTGKG VSILHHVTLGGTGKG CSILQGVTLGGTGKA VSILHHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHHVTLGGTGKA VSILHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHVTLGGT	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP SG DRHP SV DRHP SWVAGNPAKLIGF DRHP SVAVGNPARLIGGK DN-P TAVGNPARLIGGK DN-P SVAVGIPARIVGG STVVGIPGRVIHQS CTWQIPAKIIK	IGDGALLG KIGDGVLIG KIGDGVLIG KIGDGCLIG IGDNVVG LANNVVIG VGNGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG RIEDCVLIG KIGNGVLIG RAGSCPGTV KIGNGVLIG PAGSCPGTV F
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 3-T.suecica 1-P.tricornutum 2-P.tricornutum 2-P.tricornutum 2-P.tricornutum SAT1-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica	238 238 201 210 98 100 298 268 219 160 298 268 219 160 298 249 436 258 231 601 268 231 320 243 240 128 130 328 249 197	ACVTILGNIKIGAG ACVTILGNIKIGAG ACVTILGNISIGAG AGTCILGNITIGEG AGTCILGNITIGEG AGATILGNVKIGAG AGAKVLGNIAIGDN AGAKVLGNIAIGDN AGAKVLGNIPIGEG ANATVLGNIRVGEG	VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SI TYOGVTLGGTGKA SI TYOGVTLGGTGKA VSILHHVTLGGTGKA SI QGVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA SILHHVTLGGTGKA VSILHVTLGGTGKA VSILHHVTLGGTGKA VSILHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHHVTLGGTGKA VSILHVTLGGTKA VSILHVTLGGTKA VSILHVTLGGTG	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP SG DRHP SWQ DRHP SWVAGNPAKIGF DRHP SVAVGNPAKIGF DRHP SVAVGNPAKIGF SVAVGNPAKIGF SVAVGNPAKIGF SVAVGNPAKIGF SVAVGNPAKIGF	IGDGALLG KIGDGVLIG KIGDGVLIG KIGDGCLIG IGDNVVG IANNVVIG VGNGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG RIEDCVLIG KVGRGVLIG RAGSCPGTV KIGRCAFLA DP K-THDKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLENGNIP
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 1-P.tricornutum 2-P.tricornutum 2-P.tricornutum SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica	238 201 201 201 200 298 200 298 200 298 200 298 200 298 200 298 200 200 200 200 200 200 200 200 200 20	ACVTILGNIKIGAG ACVTILGNIKIGAG ACVTILGNISIGAG AGTCILGNITIGEG AGSCILGNITIGEG AGATILGNVKIGAG AGAKVLGAIEVGTN AGAKVLGAIEVGTN AGATVLGNIRVGEG ANATVLGNIRVGEG ANATVLGNIRVGEG ANATVLGNIRVGEG	VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKQ VSILHHVTLGGTGKA SLIYQGVTLGGTGKD VSILGVTLGGTGKG VSILGVTLGGTGKA VSILGVTLGGTGKA VSILGVTLGGTGKA VSILHHVTLGGSGTGA VSILHHVTLGGTGKA VSILGGSVVKDVPA VSILHHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHHVTLGGTGKA VSILHVTLGGTGKA VSILHHVTLGGTGKA VSILHVTLG	TG DRHP TG DRHP CG DRHP SG DRHP CG DRHP SG DRHP GV DRHP GV DRHP GV DRHP GV DRHP SWAGNPAKLIGF VRO SVVAGNPAKLIGK DN - P GTAVGNPARLIGGK DN - P GTAVGNPARLIGGK DR - P GTVVGUPGRVIHQS GRVNI CTVVGUPGRVIHQS GRVNI S	IGDGALLG KIGDGVLIG KIGDGVLIG KIGDGVLIG UGNGVLIG VGNGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGNGVLIG KIGNGVLIG KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG RCASCOS KIGNGVLIG KIGNG
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechocoystis J-C.reinhardtii 1-T.suecica 2-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 3-T.suecica 3-T.suecica SAT1-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica 3-T.suecica 1-C.merolae	238 201 290 210 98 100 298 268 219 160 225 280 282 499 436 258 231 601 268 231 320 243 240 128 130 328 249 197 245 310	ACVTILGNIKIGAG ACVTILGNISIGAG ACVTILGNISIGAG AGTCILGNITIGEG AGGCILGNITIGEG AGATILGNVKIGAG AGAKVLGNIFIGEG AGAKVLGNIPIGEG ANATVLGNIRVGEG ANATVLGNIRVGEG ANATVLGNIRVGEG ANATVLGNIRVGEG ANATVLGNIRVGEG ANATVLGNIRVGEG	VSILHGVTLGGTGKE VSILHGVTLGGTGKG VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHHVTLGGTGKA SILYQGVTLGGTGKD VSILGVTLGGTGKA VSILGVTLGGTGKA VSILGVTLGGTGKA VSILGVTLGGTGKA VSILHHVTLGGTGKA VSILHVTLGGTGK	TG DRHP TG DRHP TG DRHP SG DRHP SG DRHP CG DRHP SG DRHP GU DRHP SG DRHP SG DRHP GV DRHP SG DRHP SG DRHP SG DRHP SG DRHP SG DRHP SG SG SVAGNPAKLIGF DRHP SVAVGNPARLIG	IGDGALLG KIGDGALLG KIGDGVLIG KIGDGVLIG IGDNVVG IGDNVVG VGNGVLLG KVGDNVLG KIGDGVLLG KIGDGVLLG KIGDGVLLG KIGNGVLLG KIGNGVLLG KVGRGVLLG KIGNGVLLG RVGNGVLLG KIGNGVLLG FACSOPGTV KIGNGVLLG FACSOPGTV KIGNGVLLG FACSOPGTV KIGNGVLLG FACSOPGTV FAC
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechocoystis J-C.reinhardtii 1-T.suecica 2-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 3-T.suecica 1-P.tricornutum E.huxleyi consensus SAT1-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica 3-T.suecica 1-C.merolae	238 238 201 290 213 210 98 200 298 200 298 200 298 200 298 200 298 200 243 240 243 240 243 240 126 231 320 243 240 128 231 320 243 240 128 231 328 249 197 245 310 312	ACVTILGNIKIGAG ACVTILGNIKIGAG AGTCILGNISIGAG AGTCILGNITIGEG AGSCILGNITIGEG AGATILGNVKIGAG AGATULGNIKIGAG AGATVLGNIPIGEG ANATVLGNIPIGEG ANATVLGNIPIGEG ANATVLGNIPIGEG ANATVLGNIPIGEG ANATVLGNIPIGEG ANATVLGNIPIGEG ANATVLGNIPIGEG ANATVLGNIPIGEG ANATVLGNIPIGEG	VSILHSVTLGGTGKE VSILHSVTLGGTGKG VSILHSVTLGGTGKG VSILHSVTLGGTGKQ VSILHSVTLGGTGKA SIIYQGVTLGGTGKA SIIYQGVTLGGTGKA VSILHSVTLGGTGKA VSILGVTLGGTGKA VSILGVTLGGTGKA VSILGVTLGGTGKA VSILHSVTLGGTGKA V	TG DRHP TG DRHP TG DRHP SG DRHP SG DRHP CG DRHP SG DRHP GU DRHP GU DRHP GV DRHP SG DRHP SG DRHP SVAGNPAKLIGF DRHP SVAGNPAKLIGG SVAGNPAKLIGR SVAGNPAKLIGR SVAGNPAKLIGR SVAGNPAKLIGR SVANGNPAKLIGR SVAVGUPAKUR<	IGDGALLG KIGPGALLG KIGPGVLIG KIGPGVLIG IGDVVVG IGDVVVG IGDVVVG VGNGVLLG KIGPGVLLG KIGPGVLLG KIGPGVLLG KIGPGVLLG KIGNGVLLG KIGNGVLLG KIGNGVLLG RVGNGVLLG RVGNGVLLG RVGNGVLLG PACSOPGTV KIGRGASLA POLLA PLEHGKLP PLEHGKLP PLEHGKLP PLEHGKLP PLEHGKLP PLEHGKLP PLEHGKLP PLEHGKLP PLENGKP
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana Synechocoystis Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-P.tricornutum 2-P.tricornutum E.huxleyi consensus SAT1-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SYnechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae	238 201 290 213 210 98 100 298 268 219 167 215 280 282 249 167 215 280 282 249 167 258 231 320 243 240 126 243 240 128 298 249 197 245 310 328 298 249 197 245 310 2529	ACVTILGNIKIGAG ACVTILGNIKIGAG ACVTILGNISIGAG AGTCILGNITIGG AGSCILGNITIGG AGSCILGNITIGG AGAKVLGAILGNIKIGAG AGAKVLGAILGNIKIGAG AGAKVLGAILGNIRVGG ANATVLGNIRVGG AGATULGNIVGG AGATULGNITVGG AGATULGNITGG AGATULGNITGG AGAVLGNIRIGG AGAVLGNIRIGG	VSILHSVTLGGTGKE VSILHSVTLGGTGKG VSILHSVTLGGTGKG VSILHSVTLGGTGKG VSILHSVTLGGTGKA SI YQGVTLGGTGKA VSILHSVTLGGTGKA VSILHSVTLGGTGKA VSILGVTLGGTGKA VSILGVTLGGTGKA VSILGVTLGGTGKA VSILHSVTLGGTGKA V	TG DRHP TG DRHP TG DRHP SG DRHP SG DRHP CG DRHP SG DRHP GU DRHP GU DRHP GU DRHP SG DRHP SG DRHP SG DRHP SG DRHP SG DRHP SG DRHP SVAGNPAKLIGF DRHP SVAVGNPAKL	IGDGALLG KIGPGALLG KIGPGVLG KIGPGVLG IGDVVVG IGDVVVG IGDVVVG IGDVVVG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG FACSOPGTV KIGPGVLG FACSOPGTV KIGPGVLG FACSOPGTV KIGPGVLG FACSOPGVLG FACSOPGTV KIGPGVLG FACSOPG FACSOPG FAC
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechocoystis J-C.reinhardtii J-T.suecica 2-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-P.tricornutum 2-P.tricornutum E.huxleyi consensus SAT1-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT4-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SYnechococcus 1-C.reinhardtii 2-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae 1-C.merolae 1-D.tricornutum	238 201 290 213 210 98 100 298 268 219 167 215 280 282 249 167 258 231 320 243 243 240 1268 231 320 243 243 249 197 245 310 328 298 249 197 245 312 529 466	ACVTILGNIKIGAG ACVTILGNIKIGAG ACVTILGNISIGAG AGTCILGNITIGEG AGSCILGNITIGEG AGAKVLGAIEVGTN AGAKVLGAIEVGTN AGAKVLGAIEVGTN AGATVLGNIPIGEG ANATVLGNIRVGEG AGATLGNITVG AGATVLGNIRVGEG AGATLGNITVG AGATVLGNIRIG AGATVLGNIRIG AGATVLGNIFIGEG AGATVLGNIFIGEG AGATVLGNIFIGEG	VSILHGVTLGGTGKE VSILHGVTLGGTGKA VSILHGVTLGGTGKA VSILHGVTLGGTGKA SIITOGVTLGGTGKA SIITOGVTLGGTGKA SIITOGVTLGGTGKA SIIQGVTLGGTGKA SIIQGVTLGGTGKA SIIQGVTLGGTGKA VSILHHVTLGGSGTG VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA SILHHV	TG DRHP TG DRHP CG	IGDGALLG KIGPGALLG KIGPGVLG KIGPGVLG LGENVVVG IGENVVVG IGENVVVG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG KIGPGVLG FI
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 2-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 1-P.tricornutum 2-P.tricornutum 2-P.tricornutum SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT4-A.thaliana SAT4-A.thaliana SAT4-A.thaliana SAT4-A.thaliana Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 1-P.tricornutum 2-P.tricornutum	238 201 290 213 210 98 100 298 268 219 167 215 280 282 249 167 215 280 282 231 601 268 231 320 243 240 128 130 243 240 128 130 243 249 197 245 310 245 312 259 466 302	ACVTILGNIKIGAG ACVTILGNIKIGAG ACVTILGNISIGAG AGTCILGNITIGEG AGSCILGNITIGEG AGATILGNVKIGAG AGAKVLGAIEVGTN AGAKVLGAIEVGTN AGATVLGNIPIGEG ANATVLGNIRVGEG ANATVLGNIRVGEG AGATLGNITVGHG AGATVLGNIRVGEG AGATVLGNIRVGEG AGATVLGNIRVGEG AGATVLGNIRIGD AGATVLGNIRIGD AGATVLGNIFIGD AGATVLGPVHIGD SKEQVLGHVTIPVL	VSILHSVTLGGTGKE VSILHSVTLGGTGKA VSILHSVTLGGTGKA VSILHSVTLGGTGKA SITYOGVTLGGTGKA SITYOGVTLGGTGKA SILHSVTLGGTGKA SILGVTLGGTGKA SILQGVTLGGTGKA SILQGVTLGGTGKA SILQGVTLGGTGKA VSILHSVTLGGTGKA VSILHSVTLGGTGKA VSILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA VSILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILHSVTLGGTGKA SILGGGSVVLDVPA SILGGGSVVLDVPA SILGGGSVVLDVPA SILGAGSIVLKDVPA SILGAGSIVLKDVPA SILGAGSIVLKDVPA SILGAGSIVLKDVPA SILGAGSIVLSDIPS SVCGAGTIVLSDIPS	TG DRHP TG DRHP CG DRHP SG DRHP SG DRHP CG DRHP CG DRHP CG DRHP CG DRHP CG DRHP CG VRHP IG DRHP SG DRHP GU DRHP GV DRHP TAVGNPAKI I GF CH GTAVGNPAKI I GR CH <td< td=""><td>IGDGALLG KIGDGVLIG KIGDGVLIG KIGDGLIG LGENVVG LANNVVIG IVCNGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG RIEDCVLIG KIGDGVLIG KIGDGVLIG RVGRGVLIG KIGDGVLIG KIGDGVLIG RVGRGVLIG RVGRGVLIG RVGRGVLIG FLENGKIP PLENGKIP PLENGKIP PLENGKIP PLENGKIP PLENGKIP PLANSALP </td></td<>	IGDGALLG KIGDGVLIG KIGDGVLIG KIGDGLIG LGENVVG LANNVVIG IVCNGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG RIEDCVLIG KIGDGVLIG KIGDGVLIG RVGRGVLIG KIGDGVLIG KIGDGVLIG RVGRGVLIG RVGRGVLIG RVGRGVLIG FLENGKIP PLENGKIP PLENGKIP PLENGKIP PLENGKIP PLENGKIP PLANSALP
SAT1-A.thaliana SAT2-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT5-A.thaliana SAT5-A.thaliana SAT5-A.thaliana Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 2-C.merolae 1-P.tricornutum 2-P.tricornutum 2-P.tricornutum 2-P.tricornutum SAT1-A.thaliana SAT3-A.thaliana SAT3-A.thaliana SAT4-A.thaliana SAT4-A.thaliana SAT4-A.thaliana SAT4-A.thaliana Synechocystis Synechococcus 1-C.reinhardtii 1-T.suecica 2-T.suecica 3-T.suecica 1-C.merolae 2-C.merolae 1-P.tricornutum 2-P.tricornutum 2-P.tricornutum 2-P.tricornutum	238 201 201 213 210 98 100 298 268 219 282 282 282 282 282 282 282 282 282 28	ACVTILGNIKIGAG ACVTILGNIKIGAG ACVTILGNISIGAG AGTCILGNITIGEG AGATILGNITIGEG AGATILGNITIGEG AGATULGNIFIGEG AGATVLGBITVGAG AGATVLGNIFIGEG ANATVLGNIFIGEG AGATVLGNIFIGEG AGATVLGNIFIGEG AGATVLGNIFIGEG AGATVLGNIFIGEG AGATVLGNIFIGEG AGATVLGNIFIGEG AGATVLGNIFIGEG AGATVLGNIFIGEG AGATVLGNIFIGEG AGATVLGNIFIGEG AGATVLGNIFIGEG SKEQVLGHVTIPVL CKSTVLGNIQVGAG	VSILHGVTLGGTGKE VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKQ VSILHGVTLGGTGKA SITYOGVTLGGTGKA SITYOGVTLGGTGKA CSILQGVTLGGTGKA CSILQGVTLGGTGKA VSILHHVTLGGSGTG VSILHHVTLGGTGKA VSILHHVTLGGTGKA VSILHHVTLGGTGKA SILHHVTLGGTGKA SILHHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHVTLGGTGKA VSILHHVTLGGTGKA VSILHVTLGGTGKA VVSILHVTLGG	TG DRHP TG DRHP CG DRHP SG DRHP SG DRHP CG DRHP CG DRHP CG DRHP CG DRHP CG WRHP IG VRHP IG DRHP SG DRHP GV DRHP GVAGNARALIGE	IGDGALLG KIGDGVLIG KIGDGVLIG KIGDG ^C LIG IGENVVG IANNVVIG IVCNGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG KIGDGVLIG RIEDCVLIG KIGRGVLIG RIEDCVLIG KIGRGVLIG RIEDCVLIG KIGRGVLIG FAGSCPGTV KIGRGATLA DP R-THDKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP PLEHGKIP

M

G

SAT1-A.thaliana	317 S		MTMEHD	-ATREFFQNVAVAYRETIPNGSSVSGS <mark>C</mark> R-ERRH	
SAT2-A.thaliana	280 S		LAMKHD	-ATKEFFRHVADGYKGAQSNGPSLSAGDT-EKGH-TI	NS
SAT3-A.thaliana	374 G		ITMDQT	-SHISEWSDD	-Y
SAT4-A.thaliana	297 C		TMDQT	-SYLTEWSD	-Y
SAT5-A.thaliana	283 -	KEKPTIHDEE <mark>C</mark> I	PGESMDHT	-SFISEWSD	-Y
Synechocystis	185 D-		-SEGKVI	-RLLLERIELLEQQVATLQQQQSEQAWES-DYRS <mark>C</mark> SF	T
Synechococcus	187 D-		-AEANVI	-RNLMERIDQLEGQVRSLQDNLRTMAAAS-G-RPLR	SV.
1-C.reinhardtii	377 V		KEMDQC	-TDYILDYT	
2-C.reinhardtii	346 A		USMMHW	-SQRLLSAESMDGAGGVGMNGVPLAAAMAPVNGL-A	NG
1-T.suecica	297 A		ENHOW		
2-T.suecica	245 A		HENHOW	-IK	
3-T.suecica	294 N			EYVFDY1	
1-C.merolae	359 A	FDMDQD	PTHCRKRR	-TAVEHPDG	-S
2-C.merolae	364 A		FEMDER	-AATAARVHSTNRARQHAEDSNSSTDWYLG	-D
1.pseudonana	580 5		GMNGL	-GSKEADEG	
1-P.tricornutum	517	5	UGUNOI	MD-ENRKI	
2-P.tricornutum	353 0	jr	-LLEQEQVA-	-AHIQHFLT	L
E.huxley1	324 1	?	SGAPLPLI	DTSYVVFGQGM	
consensus	721				
SATI-A.thaliana					
SAT2-A.thallana	322	TS			
SAT3-A.thallana	390	V1			
SAT4-A.thaliana	313	VI			
SAT5-A.thaliana	311	I			
Synechocystis	228 1	DREPVLCRLGDF	REIEEFLGG		
Synechococcus	229 1	KNGQAQN-LKDF	REILEFLGD		
1-C.reinhardtii	392				
2-C.reinnardtii	389	TAKPAAKVALG	KAAAAAAAAAS.	ASAAPASAAASVQAAKKAAAKLGGAAK <mark>AAAAGSPAA</mark>	PAG
1-T.suecica	-				
2-T.SUECICA	254				
3-T.Suecica	308				
1-C.merolae	383	SH		SLPETGTVD	-V1
2-C.merolae	401	A1			
T.pseudonana	595				-1/
1-P.tricornutum	531				-VA
2-P.tricornutum	3/2	HE	RPT-		
E. nuxieyi	343 (31			
consensus	/81				
SAT1-A.thalian	a				
SAT2-A.thalian	a				
SAT3-A.thalian	a				
SAT4-A.thalian	a				
SAT5-A.thalian	a 312			I	
Synechocystis	248		T	L	
Synechococcus					
1-C.reinhardti.	i 392			I	
2-C.reinhardti.	i 449	KAGTPSGDVS	QKQGRVARS-	-EVIRKKPAPEYEI	
1-T.suecica					
2-T.suecica	254		PIDLD-		
3-T.suecica	308			I	
1-C.merolae	396	STS	TNG	HALDS	
2-C.merolae					
T.pseudonana	597	7 TFG	MDC	I	
1-P.tricornutu	m 533	TFE	SDG	I	
2-P.tricornutu	m 377			TI	
E.huxleyi					
consensus	841				

Fig. 4-4. Alignment of SAT protein of algae and A. thaliana.

The Cysteine residues are highlighted in yellow. Conserved amino acid was shown with dark (absolutely conserved) and grey (highly conserved residues) background. In the consensus line, asterisks indicate highly conserved amino acid. The hexapeptide motif (I/V/L)-G-XXXX-(I/V/L) is underlined in red.

The alignment sequences: SAT1 At2g17642, SAT2 At4g35642; SAT3 At5g56760; SAT4

At3g13110 SAT5 At1g55920; *Synechocystis* sp. PCC 6803 WP_010872790.1; *Synechococcus* sp. WH 7803 WP_011932076.1; 1-*C. reinhardtii* gi|159480774|; 2-*C. reinhardtii* gi|159484729|; *1-C. merolae* strain 10D gi|544212076|; 2-*C. merolae* strain 10D gi|544209228|; *T. pseudonana* CCMP1335 gi|224009682|; 1-*P. tricornutum* gi|224009682|; CCAP 1055/1; 2-*P. tricornutum* CCAP 1055/1 gi|219129378|; *E. huxleyi* CCMP1516 gi|551593375|; 1, 2, 3-*T. suecica* sequences were obtained through the transcriptom.

4.1.5.2. Main motives in algal OAS-TL sequences

In *A. thaliana* OAS-TL as Table. 4-7 showed, there are seven different interaction areas (Bonner et al., 2005). The OAS-TL sequences amino acid alignment data were shown in Fig. 4-5. The functional residue K (lysine, see supplementary materials for the one letter code for amino acids) was involved in the formation of the Schiff base with pyridoxal 5'-phosphate (PLP) and is absolutely conserved in all sequences. Also, the other aa residues in the K area were relatively conserved among all the species. Other portions of the protein are involved in PLP interaction (Bonner et al., 2005); they were separated into three different units: the first unit was formed by a single, highly conserved amino acid, H; the second unit was formed by five highly conserved residues, GTGGT; the last one was formed by a single amino acid, S, which was absolutely conserved. As shown in the Table. 4-7, these structures were pretty much conserved in all algal species. Only in the green algae *T. suecica*, the first unit, H, was substituted with a polar amino acid Y; in the second unit (GTGGT) the first polar amino acid, G, was substituted with the polar amino acid S.

The residues involved in substrates interaction (Bonner et al., 2005) were separated in two different units: the first one was formed by -TSGNT- (five highly conserved residues); the second unit was formed by a single amino acid -Q- which showed an absolutely conserved character. Table. 4-7 showed that, in the first unit involved in the interaction with the substrate, two residues were not highly conserved; they were i)

the second amino acid in the sequence, a -S- residue, which was a polar amino acid, and was substituted with A or -S, with the exception of the marine species *T. suecica*, in which the same position was occupied by the non-polar amino acid -V; ii) the fourth polar residues, N, which was always substituted by another polar amino acid, -S-.

The residues involved in SAT/OAS-TL interaction site were associated with a six amino acid unit, KPGPHK (Bonner et al., 2005). In algae, the first polar amino acid, K, and the last two amino acids, HK, of this motif were often substituted. In one of the sequences of the freshwater cyanobacterium *Synechocysis* sp. PCC 6803, the last two basic amino acid H and K, were substituted with the polar residues S and the non-polar I. In the OAS-TL of the marine cyanobacterium *Synechococcus* sp. WH 7803, one of the sequences showed the presence of a non-polar V in the place of the first basic amino acid K, and the terminal K was substituted by the basic amino acid R.

In *C. reinhardtii*, in one case both the first and the last K were substituted by polar residues (A and Q, respectively); in another isoform, the first K was substituted by the polar residue N, but the non-polar amino acid I, was found in the place of the terminal K.

As shown in Table. 4-7, in *T. suecica* OAS-TL, nearly all residues of the -KPGPHKdomain were substituted. In *T. suecica* OAS-TL 2-4, the first K was substituted by polar amino acids (Q in the 2 and 4 isoforms and N in isoform 3); In *T. suecica* OAS-TL 1, 3 and 4, the last two basic amino acids of the unit were substituted by YQ, TI and T, respectively.

In the OAS-TL of the red algae *C. merolae*, the first K was substituted by another basic amino acid, R. In the last two positions of the motif, the polar amino acid S and the non-polar amino acid I, where found instead of P and H.

In the diatom T. pseudonana CCMP 1335 OAS-TL 1 and 2, the first basic amino acid

of the motif was substituted by the polar amino acid A; in the isoform 3, it was substituted by the polar amino acid H. In the *T. pseudonana* isoform 1 and 3, the last two amino acids were substituted by a non-polar P, a polar T or non-polar F residues.

In *P. tricornutum* CCAP 1055/1 in one case the first basic amino acid K was substituted by a non-polar P residue.

In the OAS-TL of the dinoflagellate *A. klebsii*, in the six amino acid motif, nearly all residues were substituted. In the isoforms 1, 3 the K in the first position in the motif was substituted by a polar A, in the isoform 4 by a non-polar amino L. In *A. klebsii* isoforms 1, 2 and 4, the last two residues were substituted by P, TI and A, respectively.

A-A.	thaliana	1
B-A.	thaliana	1H
C-A.	thaliana	1 MVAMIMASRFNREAKLASQILSTLLGNRSCYTSMAATSSSALLLNPLTSSS-SSSTL
C1-A.	. thaliana	1MASVSRRLLRR
1-SVI	nechocystis	1
2-50	nechocystis	1
1-50	nechococcus	1
2-SV1	nechococcus	1
1-0	reinhardtij	1MPVALEGSBIOSHASAGTS
2-0	reinhardtii	1MUGAULALALAGT
3-0	reinhardtii	1MOSLAKOLSAT-PRKAG
4-0	reinhardtii	
1-7	succion	1
2-7	superios	1
3-7	succion	1
J-1.	Suecica	
4-1.	suecica	
1-0.	meroiae	1MLVSNAMY
2-0.	meroiae	1MVQHAAN
1-1.	pseudonana	1
2-1.	pseudonana	IMKMLLASMA
3-T.	pseudonana	1
1-P.	tricornutum	1
2-P.	tricornutum	1
E. hi	uxleyi	1
1-A.	klebsii	1
2-A.	klebsii	1
3-A.	klebsii	1
4-A.	klebsii	1
conse	ensus	1
A-A.	thaliana	1
B-A.	thaliana	19 RPFKYSPELSSLSLSSRKAAAFDVSSAAFTLKROSRSDVVCKAVSIKP
C-2	thaliana	57 REFRESPEISSISFSSASDESLAMKROSPSEADCSEDDDSUU-CEAUND
C1 - 7	thaliana	
1 C.	. Lhailana	
1-5y1	nechocystis	I
2-5y1	necnocystis	1
1-Syn	nechococcus	1
2-Sy	nechococcus	1
1-C.	reinhardtii	20 SLRH <mark>C</mark> SD <mark>C</mark> IVPLRLSPVTAAGR <mark>C</mark> RGSVTRTVPVRAQAQATQAATPSIAV
2-C.	reinhardtii	22 GAALCWWLLEPR
3-C.	reinhardtii	17 RPQL <mark>C</mark> ARER <mark>C</mark> ARVVRAQAAAAA-AAAANSDE
4-C.	reinhardtii	1PKA-VAAP
1-T.	suecica	1
2-T.	suecica	1EPIAK
3-7.	suecica	1
4-7	suecica	-
1-0	merclae	
2-0	merolae	
2-0.	meroiae	6 GRAQUSIRPERIKALINGKVARSIREKVLRCL
1-1.	pseudonana	
2-1.	pseudonana	10LGAASAFVPSHVSPSSITSTIGSGANTQ
3-1.	pseudonana	1
1-P.	tricornutum	1
2-P.	tricornutum	1MSSSTS
E. hu	uxleyi	1RTVS
1-A.	klebsii	1
2-A.	klebsii	1
3-A.	klebsii	1K
4-A.	klebsii	1
conse	ensus	61
	100 m 2 m 1	
A-A.	thallana	1MASKIAKDVIDLIGNTPLVYLNNVAEIG <mark>C</mark> VICRWAAKIDMMEPCSSVK
B-A.	thaliana	67 EAGVEGENHADNAAQLIICKTPMVYLNNNVKGCVASVAAKHEIMEECC <mark>SVK</mark>
C-A.	thaliana	105 ETGPDGLNHADNVSQLIGKTPMVYLNSHAKGCVANHAAKLEIMEECCS/K
C1-A.	thaliana	41 PKDFPSTNAKRDASLIICKTPINFINKTAECCENYTARKODHFTCSKK
1-Syn	echocystis	
2-Syn		14 LGGPLPMKIASNITELIGRTPLVRLNRIPLLE <mark>GC</mark> <mark>GA</mark> KIVVKIEGMNEAAS <mark>/</mark> K
	echocystis	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLE <mark>CC</mark> GARTVVKIBGMNHAAS <i>IK</i> 1MUHKHGFVLS <mark>IGHTPLIRLNSFSDETGC</mark> ZILGKABFMNBGGSVK
1-Syn	nechocystis nechococcus	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLE <mark>CC</mark> GAKTVVKIBCMNHAAS <i>IK</i> 1MDIKHGFVLSIGHTPLIRLNSESDETCCEILGKABEMNPGGSVK 1MAHAPDITALVGCTPMVRLNRLPKAMCCTAEIVAKLESENPTASVK
1-Syn 2-Syn	echocystis echococcus echococcus	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLE <mark>GC</mark> GARIVVKIBCONFAAS <i>VK</i> 1MIKHGFVDSIGHPLIRLNSFSDETGGDILGRAPFMNPGGSVK 1MARIAPDITALVG <mark>CTPMVRLNRIPKAMGC</mark> TAEIVAKUESFNPTASVK 1MSRVYADNSOALGNPPLVRLNRVTKGCKATVLAKUEGRNFAYSVK
1-Syn 2-Syn 1-C.	nechocystis nechococcus nechococcus reinhardtii	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLE <mark>CCGA</mark> RIVVKIEGUNEAAS <i>IK</i> 1MEHKHGFVESIGHPLIRLNSFSDETGCTILGKREFMNPGGSVK 1MSRUPADNSOAIGUPVRLNRIPKAMGCTAEVLAKUESREFASVK 1MSRUPADNSOAIGUTPMVFLNRVIKGCKAEVLAKUESREFANSVK 69 SVPDPHVGQPDAGRUVGNTPMVFLNSVIRCCGARHAAKUESFEFCGSVK
1-Syn 2-Syn 1-C. 2-C.	nechocystis nechococcus nechococcus reinhardtii reinhardtii	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLE <mark>CC</mark> GARTVVKIBGMNEAAS <i>IK</i> 1MDIKHGFVDSIGHTPLIRLNSESDETGCEILGKREFMNPGGSVK 1MRIAPDITALVGCTPMVRLNRIPKAMGCREIWAKIPSFNPTASVK 1MSRUYADNSQAIGNTPLVRLNHVTKCCKARIAAKLBSFEPCCSVK 69 SVPDPHVGLOPDATRLVGNTPMVELNSVTRCCGARIAAKLBSFEPCCSVK 34 -KRQTGGTPRQGVLDLIGNTPLVRVASLSETGCEIWVKABMINFGGSVK
1-Syn 2-Syn 1-C. 2-C. 3-C.	nechocystis nechococcus nechococcus reinhardtii reinhardtii reinhardtii	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLE <mark>CC</mark> GARTVVKIBCMNEAAS <i>IK</i> 1MDIKHGFVDSIGHTPLIRLNSFSDETCCEILGKABFMNPGGSVK 1MAHAPDITALVGCTPMVRLNRIPKAMGCTAEIWAKIDSFNPTASVK 1MSTVJANSQAIGNTPLVRLNHVTKCCTAEIWAKIDSFNPTASVK 69 SVPDPHVGLQPDATRLVGNTPWVELNSVTRGCGARHAKUDSFPFCCSVK 34 -KRQTGGTERQGVLDLIGNTPLVRVASLSETCCCIARHAKUDSFNPGGSVK 47 PKVVKNDKLCZVTVIGNTPWVLNRVT
1-Syn 2-Syn 1-C. 2-C. 3-C. 4-C.	hechocystis hechococcus reinhardtii reinhardtii reinhardtii reinhardtii	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLE <mark>CCGA</mark> KIVVKIBCONFAAS <i>IK</i> 1MIKHGEVUSIGHPLIRINSESDETGCILGRAPENNPGGSVK 1MARAPDIALVGOTPMVRLNRIPKAMCCTAEIVAKIBSENPTASVK 1MSRVYADNSQAIGNYPLVRLNRIPKRGCGARHAAKIBSFEPCCSVK 69 SVPDPHVGIQPDARIVGNTPMVELNSVIRGCGARHAAKIBSFEPCCSVK 34 -KRQTGGTRAGVLDLIGNTPLVRVASSRGCVARVAAKIBSFEPCCSVK 47 PKVVKNKICKDVISVIGNTPMVELNRVIRGCVARVAAKIBIMEGSVK 32 EKAAVKMNIATDVTSVIGNTPMVELNRVIRGCVARVAAKIBIMEPCSVK
1-Syn 2-Syn 1-C. 2-C. 3-C. 4-C. 1-T.	echocystis echococcus reinhardtii reinhardtii reinhardtii suecica	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLEGCGARTVVKTBCMNFAASJK 1MEHKHGFVDSIGHPLIRLNSFSDETGCEILGKAPFMNPGGSVK 1MSRVADNSQAIGNTPLVRLNRIPKAMGCTATVLAKUSENPASVK 1MSRVADNSQAIGNTPLVRLNRITRGCKATVLAKUSENPASVK 69 SVPDPHVGLOPDAFIVGNTPLVRVFLNSVTRGCGARHAAKUSFFFCSVK 34 -KRQTGGTVRQGVLDLIGNTPLVRVFLNSVTRGCGARHAAKUSFFFCSVK 35 EKAAVKMNTATDVTFLIGRTPNVYLNRVFA
1-Syn 2-Syn 1-C. 2-C. 3-C. 4-C. 1-T. 2-T.	echocystis echococcus reinhardtii reinhardtii reinhardtii suecica suecica	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLEGCGARTVVKIBGONBAASJK 1MDIKHGFVDSIGHTPLIRLNSESDETGCEILGKABEMNPGGSVK 1MRIAPDITALVGCTPMVRLNRIPKAMGCRAFIVAKIBSENPFASVK 1MSRVYADNSQAIGNTPLVRLNRVT
1-Syn 2-Syn 1-C. 2-C. 3-C. 4-C. 1-T. 2-T. 3-T	echocystis echococcus echococcus reinhardtii reinhardtii reinhardtii suecica suecica	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLEGCGARIVVRLBCKNEAAS/K 1MIKHGEVDSIGHPPLIRLNSESDETGCILGRABENNPGGSVK 1MARAPDIALVGOTPMVRLNRIPKAMGCTABIVAKVESENPTASVK 1MSRVYADNSQAIGNTPLVRUNHVTRGCGARIAAKLESEPPCSVK 69 SVPDPHVGIQPDARLVGNTPNVELNSVTRGCGARIAAKLESEPPCSVK 34 -KRQTGGTRQGVIDLIGNTPLVRVASSS
1-Syn 2-Syn 1-C. 2-C. 3-C. 4-C. 1-T. 2-T. 3-T. 4-T	echocystis echococcus echococcus reinhardtii reinhardtii reinhardtii suecica suecica suecica	14 LGGPLPMKHASNITELIGRTPLVRLNRIPL LGC -GARTVVKIBCKNEAS/K 1 MIKHGEVDSIGHPLTRLNSFS DETGCILIGRAPHNPGSVK 1 MIALAPDITALVGCTPWVRLNRIPK DETGCILIGRAPHNPGSVK 1 MATAPDITALVGCTPWVRLNRIPK DETGCILIGRAPSVK 1 MATAPDITALVGCTPWVRLNRIPK
1-Syn 2-Syn 1-C. 2-C. 3-C. 4-C. 1-T. 2-T. 3-T. 4-T.	echocystis echococcus reinhardtii reinhardtii suecica suecica suecica suecica	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLEGCGARTVVKIBGONBAASJK 1MENKHGFVDSIGHPLTRLNSFSDETGCTILGRAPFMNPGGSVK 1MSRVADNSQAIGNTPLVRLNRIPKANGCKATVLAKUBGRNPAVSVK 1MSRVADNSQAIGNTPLVRLNRVT
1-Syn 2-Syn 1-C. 2-C. 3-C. 4-C. 1-T. 2-T. 3-T. 4-T. 1-C.	echocystis echococcus echococcus reinhardtii reinhardtii reinhardtii suecica suecica suecica suecica merolae	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLEGCGARTVVRLBGENREASVK 1METKHGEVDSIGHPPLTRLNSESDETGGCILGRAPFMNPGGSVK 1MATAPDITALVGGTPMVRLNRIPK
1-Syn 2-Syn 1-C. 2-C. 3-C. 4-C. 1-T. 2-T. 3-T. 4-T. 2-C.	echocystis echococcus reinhardtii reinhardtii reinhardtii suecica suecica suecica merolae merolae	14 LGGPLPMKHASNITELIGRTPLVRLNRIPL LGC -GARTVVKIBCKNEASVK 1 MATAPDISIGEPLIRINSFS DETGCILIGREPNPEGSVK 1 MATAPDISCALGEPLIRINSFS DETGCILIGREPNPEGSVK 1 MATAPDISCALGENPLVRLNRIPK DETGCILIGREPNPEGSVK 1 MATAPDISCALGENPLVRLNRIPK MGC MSTVLARVESVK 1 MATAPDISCALGENPLVRLNRIPK
1-Syn 2-Syn 1-C. 2-C. 3-C. 4-C. 1-T. 2-T. 3-T. 4-T. 2-C. 1-C. 2-C.	echocystis echococcus reinhardtii reinhardtii suecica suecica suecica suecica merolae merolae pseudonana	14 LGGPLPMKHASNITELIGRTPLVRLNRIPL LGC -GARTVVKIBCKNEASJK 1 MIGCTLLGRTPLVRLNRIPL DETGCTLLGRRPFMNPGSVK 1 MIGCTLLGRTPLVRLNRIPK DETGCTLLGRRPFMNPGSVK 1 MIGCTLLAKUPCTWINELPK DETGCTLLGRRPFMNPGSVK 1 MIGCTLLAKUPCTWINELPK MIGCTLLAKUPCRNPAVSVK 69 SVPDPHVGLQPDALRLVGNTPMVELNSVT RGCGARHAAKIDSFEPCSVK 34 -KRQTGGTVRQGVLDLIGNTPLVRVASLS
1-Syn 2-Syn 1-C. 2-C. 3-C. 4-C. 1-T. 2-T. 3-T. 4-T. 1-C. 2-C. 1-T. 2-T.	echocystis echococcus reinhardtii reinhardtii reinhardtii suecica suecica suecica suecica merolae pseudonana pseudonana	14 LGGPLPMKHASNITTELIGRTPLVRLNRIPLLEGCGARTVVKIBCONFAASVK 1 MATAPDIALVGSTPMVRLNRIPKDETGCILGRAPFMNPGGSVK 1 MATAPDIALVGSTPMVRLNRIPKDETGCILGRAPFMNPGGSVK 1 MATAPDIALVGSTPMVRLNRIPK
1-Syn 2-Syn 1-C. 2-C. 3-C. 1-T. 2-T. 3-T. 4-T. 1-C. 2-C. 1-T. 2-T. 3-T.	echocystis echococcus reinhardtii reinhardtii reinhardtii suecica suecica suecica suecica merolae merolae pseudonana pseudonana	14 LGGPLPMKHASNITELIGRTPLVRLNRIPL LGC GARTVVKIBCKNEGASIK 1 MATAPDISCUGTPLIRINSES DETGCILIGREPNPEGSVK 1 MATAPDISCUGTPVILINET DETGCILIGREPNPEGSVK 1 MATAPDISCUGTPVILINET
1-Syn 2-Syn 1-C. 2-C. 3-C. 4-C. 1-T. 2-T. 3-T. 1-C. 2-C. 1-T. 2-T. 3-T. 1-P.	echocystis echococcus reinhardtii reinhardtii suecica suecica suecica merolae merolae pseudonana pseudonana tricornutum	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLEGCGARTVVKIBCONFAASJK 1 MATAPDITALVGCTPWVRLNRIPKDETGCZILGRAPFMNPGGSVK 1 MATAPDITALVGCTPWVRLNRIPKAMGCTATVLAKUEGNPASVK 1 MATAPDITALVGCTPWVRLNRIPKAMGCTATVLAKUEGNPASVK 1 MATAPDITALVGCTPWVRLNRIPK
1-Syn 2-Syn 1-C. 2-C. 3-C. 1-T. 2-T. 3-T. 1-C. 2-T. 1-C. 2-T. 1-P. 2-P.	echocystis echococcus reinhardtii reinhardtii suecica suecica suecica suecica merolae pseudonana pseudonana pseudonana tricornutum	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLEGCGARTVVKIBCKNEAAS/K 1MERVHGFVDSIGEPLVRLNRIPLDETGCILLGRAPFMNPGGSVK 1MERVHADNCOALGOTPLVRLNRIPKANGCKARVLAKUSESNEASVK 1MSRVADNCOALGOTPLVRLNRITRGCGARHAKUSESNEASVK 69 SVPDPHVGUCPAARUVGNTPNVELNSVT
1-Syn 2-Syn 1-C. 2-C. 3-C. 1-T. 2-T. 3-T. 1-C. 2-T. 3-T. 1-P. 2-P. E. hu	echocystis echococcus reinhardtii reinhardtii reinhardtii suecica suecica suecica suecica merolae pseudonana pseudonana pseudonana tricornutum tricornutum xxleyi	14 LGGPLPMKHASNITTELIGRTPLVKLNRIPLLEGCGARTVVKLBCKNEAASVK 1 MATAPDISCUGRPLIKINSFSDETGCILGRAPFMNPGGSVK 1 MATAPDISCUGRPLIKINSFSDETGCILGRAPFMNPGGSVK 1 MATAPDISCUGRYPLVKLNRIPK
1-Syn 2-Syn 1-C. 2-C. 3-C. 1-T. 2-T. 3-T. 1-T. 2-T. 1-T. 2-T. 3-T. 1-P. 2-P. E. hu 1-A.	echocystis echococcus echococcus reinhardtii reinhardtii reinhardtii suecica suecica suecica suecica suecica merolae pseudonana pseudonana tricornutum tricornutum tricornutum	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLEGCGARTVKIBCKNEAASVK 1MATAPDITALVGCTPVRLNRIPLDETGCIILGRAPFMNPGGSVK 1MATAPDITALVGCTPVRLNRIPKAMCCTATVLAKVEGRNFAVSVK 1MSRVYADNSCALGNTPVVELNSVI MSRVYADNSCALGNTPVVELNSVI RGCGARTAAKLESFEPCCSVK 34 -KRCTGGTNROGVLDLIGNTPVVELNSVI RGCGARTAAKLESFEPCCSVK 32 EKAAVKMIATDVTLIGKTPVVELNSVI RGCGARTAAKLESFEPCCSVK 32 EKAAVKMIATDVTLIGKTPVVELNSVI
1-Syn 2-Syn 1-C. 2-C. 4-C. 1-T. 2-T. 3-T. 1-C. 2-T. 1-T. 2-T. 1-P. 2-F. hu 1-A.	echocystis echocystis rechococcus reinhardtii reinhardtii suecica suecica suecica suecica suecica suecica pseudonana pseudonana pseudonana pseudonana pseudonana tricornutum tricornutum klebsii klebsii	14 LGGPLPMKHASNITTELIGRTPLVRLNRIPLLEGCGARTVVKIBCONFAASJK 1 MATAPDITALVGCTPVRLNRIPKDETGCTILGRAFFMNPGGSVK 1 MATAPDITALVGCTPVRLNRIPKANGCTATVLAKUPGNPRGSVK 1 MATAPDITALVGCTPVRVLNRIPK
1-Syn 2-Syn 1-C. 2-C. 4-C. 1-T. 2-T. 3-T. 1-C. 2-C. 1-T. 2-T. 1-P. 2-P. E. hu 1-A. 2-A.	echocystis echococcus reinhardtii reinhardtii suecica suecica suecica suecica suecica pseudonana pseudonana pseudonana tricornutum tricornutum xleyi klebsii klebsii	14 LGGPLPMKHASNITTELIGRTPLVRLNRIPLLEGCGARTVVKIBGONFAASVK 1MATAPDIALVGOTPVRLINISFSDETGGCILGRAPFMNPGGSVK 1MATAPDIALVGOTPVRLNRIPK
1-Sym 2-Sym 1-C. 2-C. 3-C. 4-C. 1-T. 2-T. 4-T. 2-T. 2-T. 2-T. 2-T. 2-T. 2-F. hu 1-A. 2-A. 3-A.	echocystis echococcus echococcus reinhardtii reinhardtii reinhardtii suecica suecica suecica suecica merolae pseudonana pseudonana tricornutum tricornutum tricornutum tricosi klebsii klebsii klebsii	14 LGGPLPMKHASNITELIGRTPLVRLNRIPLLEGCGARTVKHBGKNRAAS/K 1MATAPDIALVGCTPVRLNRIPKDETGCTLLGKAPFNNPGGSYK 1MATAPDIALVGCTPVRLNRIPKANGCTATVLAKVEGRNRAVSVK 69 SVPDPHVGLQPDATRUVGNTPVVELNSVTRGCGARHAKKESFPFCCSVK 34 -KRQTGGTRAGVLDLIGNTPVVELNSVTRGCGARHAKKESFPFCCSVK 35 -KRQTGGTRAGVLDLIGNTPVVELNSVT
1-Sym 2-Sym 1-C. 2-C. 3-C. 4-C. 1-T. 2-T. 4-T. 1-C. 2-T. 3-T. 1-P. 2-F. bu 1-A. 2-A. 3-A. 4-O.	echocystis echococcus reinhardtii reinhardtii reinhardtii suecica suecica suecica suecica merolae merolae pseudonana pseudonana tricornutum tricornutum tricornutum klebsii klebsii klebsii nsus	14 LGGPLPMKHASNITTELIGRTPLVRLNRIPLLEGCGARTVKIEGCNFAASJK 1 MATAPDISLAGGTPLVRLNRIPLDETGCILLGRAPEMNPGGSVK 1 MATAPDISLAGGTPLVRLNRIPK

M

Ð

A-A.	thaliana	47	DRIGESMISDAEKKGLIKEGESVLIEPTSGN GVGLAFTAAAKGYKLIITMPASMST-ER
B-A.	thaliana	117	DRIGYSMITDAEEKGLITPGKSVLVE TSGNTGIGLAFIAASKGYKLILTMPASMSL-ER
C-A.	thaliana	155	DRIGYSMUTDAEOKGEISPGKSVLVE TSGN GIGLAFIAASRGYRLILTMPASMSM-ER
C1 - A	thaliana	91	DEBATAMTADAEXXXI TERCHTELTE PTSCN GTSLAEMAAMKGYRTTMTMESYEST - FR
1 0	und a dance	66	
1-Syn	lechocystis	00	DRIGINGINRADOEGEIEPGREELEBETSGNIGIALAGVADARGIOLIIIMPE MSO-DR
2-Syn	echocystis	45	DRAALGIIETAEKEGKIKPG-GTVVE ETAGN TGIGLAHI <mark>C</mark> NAKGYK <mark>O</mark> LIWIPDTOSO-EK
1-Syn	lechococcus	47	DRIAGAMVEAAESAGEIAPERTVLVEPTSGN TGIALAMVAAARGYRLILTMPDTMST-ER
2-Syn	echococcus	46	CRIGANMINDAEKRGALTEGK-VIVEPTSGN GIALAFTAAARGYKLVLTMPESMSI-ER
1-C.	reinhardtii	119	DRIALNMIERAEQAGOISPGVIILIEPISGNIGVALAYVAAAKGYRLALIMPEIMSI-ER
2-C.	reinhardtii	83	DRVALOTVSPALADERIRPE-GUTTPGTAGS IGVSLAMVAAAYGORCSUTMPDDAAU-PK
3-C.	reinhardtii	97	DRTCRNMT DARKRONTKPOVTTLVF PTSCN TGTGLARDAARGYKLTITMPASMST - ER
4-0	reinhardtii	82	DRT CVSMTSSARZECT TERCZEVI VE PESCN CCT CT AFTAAADCVZT TETMPASMST - FD
	reimarutii	02	
1-7.	suecica	42	DRIANHIIS <mark>CABAEGKURPGGU-WVLATSGNIGSAIAWVC</mark> AMRGYRBIVIINDRISK-EK
2-T.	suecica	56	DRIGKNMIEDABKAGKITPGVHTLVEPTSGNTGIGLAEVAASKGYKLILTMPASMSL-ER
3-T.	suecica	45	DRVALQIVTBALADGRIKE-NGIVTE GTVGS IGVSLAMVTAALG <mark>CRCH</mark> VVMPDDAAL-DK
4-T.	suecica	41	DRIAKSMIETAEAEGKUKPGGUV-VEYTSGNIGIGLAMVCAAKGYKCIIIMPQLPPFQER
1-C.	merolae	111	DRICKYMIVEAEKRCDICPCKTVLIPTSCNTGIALAMLAAARCYRLILTMPDSMSI-ER
2-C.	merolae	91	DRALYLINDARKERIKIG SIVE CTAGNIGIGIGI GIRLIGNSRGYRVINI PETOSE-EK
1-7	nseudonana	53	DETAT STTETAEXDOST XPCO-TVVP TSCN VCTAVAMCAORCYPCV TMAEPEST-PP
2	poeudonana	00	
2-1.	pseudonana	50	
3-1.	pseudonana	52	DRAARSMILAADERGEIFPPLSIGEGIIGGSIGISISSISSSRGAASIVVVPDDQSS-QA
1-P.	tricornutum	53	DRIGRSMIDQABQAGLITPGRTTLVEPTSGNTGIALAFIARERGYRCILTMPBQMST-ER
2-P.	tricornutum	57	DRIALSMITEAEKRGDIKPGKTILVEPTSGNIGIGLAMVAAAKGYKLKITMPESMSM-ER
E. hu	xleyi	69	DRLALAVIE AEAS <mark>C</mark> KIKPGD-TVIE ATSGN IGIAVAMV <mark>C</mark> AQRGYK <mark>C</mark> VICMABQFSV-ER
1-A.	klebsii	42	DRLALAIIEDAEKSGELKPG*GTVIEATSGNIGIALAMVCACRGYNFVSTMAASFSV-ER
2-A.	klebsii	40	DRVAWST LAPAPATERI OPGS-TIVE CTSCS TGISLELABSRGYKVL TWMPD DOAE-EK
3-4	klebsij	54	DRTCKRMVTPAPKSCRTKPCD-TITEPTSCNTGTGLCMTAATKGYKMITCTPOKMSG-PK
1-1	klobeij	47	DETAINING TARTAGEN TYDET SAUL PESAN TALAT TO ANT DURL THE STRUDAL DA
4-A.	XIEDSII	101	
conse	nsus	101	
A-A.	thaliana	106	RIILLAFGVELVLTDPAKGMKGAIAKABEILAKTPNGYMLQQFBNPA
B-A.	thaliana	176	RVILRAFGAELVLTEPAKGMTGALQKAEELLKKTPNSMMLQQFDNPA
C-A.	thaliana	214	RVLLKAFGAELVLTDPAKGMTGAVOKAEEILKNTPDAYMLOOFDNPA
C1-A	. thaliana	150	RVTMRSFGAFTVLTDPAKGMGGTVKKANDILDSTPPAFMCOOFANPA
1-51	nechocustis	125	PANE KANAAKI FTUPCSTANCOCTPPACETAESI PNA WALCOFENDA
	nechocystis	100	
2-5Y	nechocystis	103	IDITRIIGADVRIVP-AVPIRDPNNIVRLSGR AAELDNAIWANOF NLA
1-Sy	nechococcus	106	RAMLRAYGAD OLTPGMEGMQGATERARDIVDEIPGAYLLOOFDNPA
2-Sy	nechococcus	104	RVMAVIGADIVLTEAAKGMPGAIAKAKDIAASDPAKYFMPGOFENPA
1-C.	reinhardtii	178	RVILKAFGAELVLTPGRLGMTGAIRKAEEMVRSTPNAFMLQQFDNPA
2-C.	reinhardtii	141	ANMICAYGASVRRVR-PVSIVHPEHPVNVARREAASTPGALFADOFENEA
3-0	reinhardtii	156	BUT LEAFGAPT V LTDPAKGMBGAVEKONETAAKTPNSY LOOFDNPA
4-0	reinhardtii	1.4.1	DITTPARCAPTY
1 - 7	cuecica	100	
2.0	Suecica	100	
2-1.	Suecica	113	NUL CALGATIVITTE DI DE ALGUGUA ATTIVADO ARA TITUTTU ARA
3-1.	suecica	103	SOUDEALGAINORVR-PVS THPDHFVNIDRRRAAEEAGAIFSLOFDNEA
4 - T.	suecica	100	YTH <mark>C</mark> RQDGAEVHLTAPAKGFPCLRAYTDSHMAANPDYDLANOBYN <u>QA</u>
1-C.	merolae	170	RMULRAFGAEVVLTPAAKGMKGAWAKABQUFHTTPNAYMLQQFNNPD
2-C.	merolae	149	KEFLESCGABINQVF-DAPYRNPNNYVRLSERDAKELGAEWANOFDNPA
1-T.	pseudonana	111	RKIMRMLCAKVIVTEKAGKGTCMVEKARDIADKN-GWFLCHOFETDA
2-T.	pseudonana	149	RVILKAFGADVKLTPAAKGMGGATAKAPPTVDSLGPDGYLLOOPNNPD
3-7	pseudonana	111	MEET ORLOOGYVWVK-NOST SNPGHYVNVARBUWELVEPPRLLKAA BMNOFENLA
1 - D	tricornutum	112	DWITTEL CANVARANTE TREATE THE CANAR AND AND A TRANSPORT
	tricornutum	114	
2-2.	LIICOINULUM	110	RVIII AA GADVVETPAARGOGGA AKAEED VNSLGSDAMLEOOPNNPD
E. h	uxleyi	127	RRIMRMIGARVVIJPERAGKGFGMVKKADDILAEKH-GWEIC
1-A.	klebsii	100	RKWMRMLGAKVIWTPAPLGGTGMWKKABBIAEKH*GWWAROFENPA
2-A.	klebsii	98	VQULRLGADVEUVR-PASHVSPDHYVNVPRRRAHELDATGELFADOFENLA
3-A.	klebsii	112	VNTMKCLGAEIIRTPTEARWDRKDSHIFLSQRI -AKDLGCHVLDOMKNPG
4-A.	klebsii	106	RNALXLMGAKLIELDDEL*PKPGAREGATAVAEO*MAKRKNMMGPDOMRNLA
cons	ensus	241	
0 - 0	thaliana	153	
B. A	thaliana	202	NDK I HV POTO DE TO EDTO C-KIDILIVO COTO COTO COLO DE TO EDVD
O .	the lies	223	
C-A.	charlana	201	NPAREMENTIGPET WEDTING-ENDIEVAGEGTEGTITGVGRETIKENNEX
C1-A	. thaliana	197	NTQUEEDWYGPELWEDWLG-NWDIEVMG GSGGTWSGVGRYLKSKNEN
1-Sy	nechocystis	172	NFQHHQQTTALEIWQDIDG-ALDFLVAG GIGGIIIGVASVLKEKKFS
2-Sy	nechocystis	152	NRDAHMHTTGPEIWQQTDG-KVDAWVAA GGTGG YACVALYLKEQSEA
1-Sy	nechococcus	153	NEAVHAASTAEEIWADTEG-SIDAVVAG GTGG ITGCARMLKERQEK
2-Sy	nechococcus	152	NPEIHEXTTGPEIWNDCDG-AIDVLVSC/GTGG/ITCVSRYIKNEAGKA
1-C.	reinhardtii	225	NPEVHLKTTGPEIWRDTAG-NIDMFVAGVGTGGTISGVGOYLKEOKPG
2-C.	reinhardtii	190	NFRAHLK-TGEEIWOOWOG-RWHAFVSGAGTGGWAGVSTALKARNPR
3-C.	reinhardtii	203	NPETHRLTTGPPIWRDTAG-TVDIIVAG UGTGGTVTGTGPPLKSKKPS
4-0	reinhardtii	188	NDKXHMETTOPETOSETDC-KNDILVSC/CTCCTTCTCEVIREXXS
1. 5	augai	100	
1-1.	SUECICA	150	
2-1.	suecica	102	WAAWHKLITGELIERDIAG-LUDILVACIGTGGTTTGAGLYLKSVKGG
3-T.	suecica	152	NMRVHLK-NGQELWDAHAG-RVDAFVSCAGNGGTIAGVSQALKARKES
4 - T.	suecica	147	NPDIHYATTGPDIWEQUGG-KNDYFIACVGTGGIVAGAGRFITDKNED
1-C.	merolae	217	NPKAHMETTGPEIWAATIGG-KVDAFVACVGTGGIVTGAGRYLREQNEH
2-C.	merolae	197	NRRAHEETTGPEINDOLDG-HIDAENCAVGTGGTLAGVSAELRAKNEG
1 - T.	pseudonana	157	NMKFHYETTGPEICNDLKGTKLDYMVTGLGTGGTFHGTAKYLKBOSED
2-T.	pseudonana	197	NPKVHRETTGPEIWEDTDG-KIDILLGG/GTGGTLTGCGCYLKERNED
3-7.	pseudonana	165	NVOSHYSTTGPEIMNOLYG-KVDAFIMSAGTGGTLWGVGGYLKDEWWRDOPLOOOSLSSP
1-P	tricornutum	160	NEWAHRETTGPDIWEDTDG-DIDIEVAGUCTGCUTGVSOVLKGSPAHGLPPLRPM
2-P	tricornutum	164	NPKWHRETTGPPTWSDTDG-EWDTTWGGTGTGGTTTGGNOVIKPTNP
E F	uvlevi	172	
1-2	klobaii	1/3	
2-A.	KIEDSII	140	
2-A.	klebs11	149	
3-A.	KIEDS11	101	WELAHHEGINEDINEQUEC-RUDYMVMSAGYGGIVTGTPLKLKDKILG
4-A.	KIEDS11	156	MPERHERITGPELWKOTEG-RWTHEFMSLIGNCG LISGTOKELKHMSSGK
consi	ensus	301	······

A

Ð

A-A. thaliana	200 VKLYGVEPVESAILSG
B-A, thaliana	270 LKVIGVEPTESAILSGKPGPHKIOGIGAGEVPKNLL
C-A, thaliana	308 TOVI OVERTRESPILLSC
Cl. l thaliana	
CI-A. Enaliana	244 WALLEVERASSNIPNG
1-Synechocystis	219 FQALAVEPQNSPVLSCGKPGPHEIOGIGAGETPEVL
2-Synechocystis	199 CCVVADEMGSGIYSFIKTGEINP
1-Synechococcus	200 SWAVEFAASPWLAC
2- Supechococcus	200 TESUAVERSUSPHILEOTINGE
2-Synechococcus	
1-C. reinhardtii	272 VQVVAVEPABSPVISGGAPGYHIIQGIGAGEVEKNU
2-C. reinhardtii	236 WRWFLWDEPGSSEFNKVKRGVMYTSEEAEGKRIKNEFDT TEGIGINRETANF
3-C. reinhardtii	250 OVTAVEPSESPUTSEGKPGPHLIOGIGAGEVPAIL
A C wainbaudaii	
4-C. reinhardtii	235 VOLVAVDPADSPVISC
1-T. suecica	197 VRVCMPDPKGSVFWDYWKEGVPEAELKPSSYQWEGVCKDSIPTAM
2-T. suecica	209 VQVVAVEPTESPVLSGGQPGPH (IQGIGAGFVPGVL
3-T. suecica	198 VRVELADPPGSSI VNKVORGVLYTBEEAEGKRI BN PYDT WEGMGLNBI TANF
4-1. Suecica	194 IKVAAVEPIESRVAVG
1-C. merolae	264 VYIMAVEPADSPVLSCGRPGPH (IQGIGAGEVPGIL
2-C. merolae	244 KIALT POGAAL RYYCCGELVS
1-7. nseudonana	205 TKI JI APPGAANI, JOSGI KTERNADOSPAGSHPAFAPHI TOCHTPDE TELVIJ
a fill poetaonana	
2-1. pseudonana	244 MKIVAVEPABSAVISG
3-T. pseudonana	224 PENELVE PGSSEYNKVKYGVAYAPQQSEQRLRREYDT AEGIGLDRETGNF
1-P. tricornutum	215 LOTVAVERMEOMLITAALGGAKICPOCPHLIOGMGAGLVPOVL
2-P tricornutum	211 TOTAL PERSON SCHOOL
z-r. cricornocum	
L. nuxleyi	221 WATVLABEEDAGDTASGVPTEHKPDGSPSASHPAFSAH, TOCWTPDSTEKVD
1-A. klebsii	194 LKIVLSEPKPAPILISGIKQTRKEVMGKFGAPAEGHSAWTAH
2-A. klebsii	196 IGUYLADVPGSSI RKVTHGVLYAPEOOERTVERERTDT AEGICLOR TANF
3-2 klobeit	208 TKTUAWDEYCSTI GK**PDNUN
A A MICHSII	200 HALLAR HER OLD THE
4-A. Klebsii	204 WAWUGHHETAQHDEFEVRSLEOLEATOH********
consensus	361
	V
A-A. thallana	237 VDLIDEVVQVSSDESIDMARQLALKEGLLVGISSGAAAAAIKLAQRE
B-A. thaliana	307 LAIVDEYTAISSEEATETSKQLALQEGLLVGISSGAAAAAAIQVAKRE
C-A, thaliana	345 OKIMDEVIALSSEEATETAKOLALKEGIMUGTSSGAAAAAATKUAKET
CI-A. thailana	281 MDVMESVLEVSSEDATRMARELALAEGEMVGTSSGANTVAATRLAAM
1-Synechocystis	256 VNL DEV AVTDEDATAYGRRLAREEGTISGISTGAALAAATKVAKR
2-Synechocystis	242 NVP
1-Supechacoccus	237 M
2 Current concerne	
z-synechococcus	243 LSVVLAVEQVINEDSIAMAQRLAREGILVGIS_GAAAAAAIRLAQOI
1-C. reinhardtii	309 VDLLDEVVKINSNEATEMARRLAVEEGLLCGISSGAAVAAAIRIAKR
2-C. reinhardtii	290 RALDEAFRG DREAVEMAAYLLENECTWCSSAAMNCVCAVKAA-R
3-C reinhardtii	287 T
A C uninhauduli	
4-C. reinnardtii	272 1ALISEVVQVSSDDAIDMARRLALEEGLMVGISSGAAVQAAIKVASK
1-T. suecica	243 FGVVDEMIQLDCKQSFAMCRRVAAEDCMLLCGSSCLNLSAAAELSQT
2-T. suecica	246 THVMDEVVOISSDDAISMARRLAGEEGVICGISSGAAVLAAIKVCKR
3-7 suecica	252 OAR
A The success	
4-1. suecica	231 SLAPGAPLVEGPRGRUSSPERTINSSCATEMACROPOREGONVGPSSGAVISAA0AVAAR
1-C. merolae	301 TKIYNEVKQVTSMDSIEMARRLAVEEGLICGISSGAAVVAALELGRR
2-C. merolae	287 GFVPEMSFEISDAEALOAAYDVVRHEGLHIGLSSGINLAGAIRVA-E
1-T nseudonana	258 KG
2 T magudanana	
2-1. pseudonana	201 1SLIDEVV ISGEDAWAMARKLAIDEGIEGISSGAAIDAAREVGSK
3-T. pseudonana	278 LGCESII DDALSI DQQAVYMAHYULRHEGI FVGSSSAMNHAGAI IVA-S
1-P. tricornutum	259 LTUIDEVVPVHSDCATDMAHELWM-TGLPVGASAGAIVHAAVOVLOR
2-D tricornutum	248 ELECTRONIC SCOTSMANARZYATERC TO COSSOA MULAA TO CZE
z-F. cricornacum	
E. nuxleyi	2/4 DAPMDMINIADIVPVPGAGALATAOSIJAAKISGUTTGISGGGTMMAALETAKKO
1-A. klebsii	251 QGVDAKYHEKWMLWEPKVAMETSHKLARQECIFCCWSGCATWATALDWCAE
2-A. klebsii	250 KGLAEHNPCGGCLDGAWYWSDOEALPMARETLDHEGLELGSSAMVNCAAACKWA-W
3-A klobeii	257 O
A. ALEUSII	
4-A. Klebsii	234 TGHEDBLCEVANDBAFQMCLKUNREDSDIAGPSSCLQVVCAMKUMED
consensus	421*.*
A-A. thaliana	285 -ENAGKLEVALEPSEGERYLSIVLEDATRKEAEAMTFEA
B-A. thaliana	355 -ENACKLIAVVFPSFGERYLSTQLFQSTREECEQMQPEL
C-A. thaliana	393 -ENACKITAWWFESECERYLS PLEOS REPVEKMOPERVSG
Cl=2 theline-	329 - ENKOKI TVT HASECERVI SSUI SPELDYS A FEMYOUS
SI-A. Unditand	
1-Synechocystis	304 -ANKDKITTVN QPSEGERYLS PLEQDIE
a anne she such i	289 -LGPGHTIVTWLCDGGARYOSRLYNOBWLTSKGLTIPD
z-Synechocvstis	
2-Synechocystis	285 -AMEGER WANTASPER VISHPMISSTAAPI, PARPDAOL
1-Synechococcus	285 -AMEGRRIVVILASFGERYLSTPMESTAAPLPARRDAQL
2-Synechococcus 1-Synechococcus 2-Synechococcus	285 -AMEGREIVVILASEGBRYLSEPMESIAAPLPARRDAQL
2-Synechocoystis 1-Synechococcus 2-Synechococcus 1-C. reinhardti	285 -AMEGRRIVVILASEGERYLSTPMESTAAPLPARRDAQL- 291 -AYAGKTIVVVLPDLAERYLSSVMEADVPTGIIEQPVAV- 1 357 -ENRD <mark>KLIVTVLPSFGERYLSIVLENTL</mark> WSVDAEEEVSMPDSWRMASGAE-RPAT
2-Synechocystis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti	285 -AMEGRIVVIUASEGBRYLSNEMESTAAPLPARRDAQL 291 -AYAGKIVVUEDLABRYLSSMEADVPTGIIEQPVAV
2-Synechocystis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti	285 -AMEGRIVVIUASFGERYLSNEMFSTAAPLPARRDAQL
2-Synechococcus 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 3-C. reinhardti	285 -AMEGRIVVILASEGBRYLSIPMESTAAPLPARRDAQL
2-Synechocystis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 4-C. reinhardti	285 -AMEGRIVVIUASEGERYLSIPMESTAAPLPARRDAQL
<pre>2-Synechocystls 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 3-C. reinhardti 4-C. reinhardti 1-T. suecica</pre>	285 -AMEGRIVVILASEGERYLSIPMESTAAPLPARRDAQL 291 -AYAGKIVVILEDLABRYLSSIMEADVPTGILEQPVAV
2-Synechocystis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 3-C. reinhardti 1-T. suecica 2-T. suecica	285 -AMEGRIVVILASEGBRYLSEMENSTAAPLPARRDAQL
2-Synechocyslis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 3-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica	285 -AMEGREIVVIUASEGERYLSEMENESTAAPLPARRDAQL
2-Synechocystis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 4-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica	285 -AMEGRIVVILASEGERYLSEMEMESTAAPLEARRDAGL
2-Synechocyslis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 3-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica	285 -AMEGRIVVIUASFGBRYLSIPMESTAAPLPARRDAQL 291 -AYAGKIIVVIUEDLABRYLSSIMPADWPTGIIEQPVAV
2-Synechocystis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 1-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 4-T. suecica 1-C. merolae	285 -AMEGRIVVILASEGERYLSIPMESTAAPLPARRDAGL 291 -AYAGKIVVILEDLABRYLSSIMEADVPTGILEQPVAV
2-Synechococysils 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 4-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 4-T. suecica 1-C. merolae 2-C. merolae	285 -AMEGREIVVILASEGERYLSEMENSTAAPLEARRDAGL
2-Synechocyslis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 3-C. reinhardti 1-T. suecica 2-T. suecica 2-T. suecica 4-T. suecica 1-C. merolae 2-C. merolae	285 -AMEGRIVV/UASTGRYLSIPMESTAAPLPARRDAGL
2-Synechococyslis 1-Synechococcus 2-C. reinhardti 2-C. reinhardti 4-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 4-T. suecica 4-T. suecica 4-C. merolae 2-C. merolae 1-T. pseudonana	285 -AMEGRIVVILASEGBRYLSIPMESTAAPLPARRDAQL 291 -AYAGKE IVVILASEGBRYLSIVLENTLWSVDAEEEVSMPDSWRMASGAE-RPAT 337 -MGPCHTIVELLCDGCHRHLSKFHSKE YLESMDLAPRETDRSLAFVS 335 -ENAGKLVAVVLPSFGBRYLSIVLENDIRLOCQLKQDERVKVVDAAGRE-RYVH 320 -ENAGKLVAVVLPSFGBRYLSIVLENDIRLOCQLKQDERVKVVDAAGRE-RYVH 231 -PD-GSVIVAVLPSFGBRYLSSIVLEQURDASKMTFEPSA
2-Synechocyslis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 1-T. suecica 1-C. merolae 2-C. merolae 1-T. pseudonana 2-T. pseudonana	285 -AMEGRIVVILASEGERYLSEMENSTAAPLEARRDAQL- 291 -AYAGKE IVVILEDLASERYLSEMEADVETGILEQPVAV- 337 -BRRCKIVGLESEGERYLSEMEADVETGILEQPVAV- 333 -MGFCHTIVGLECGCERYLSEMEADVETGILEQPVAV- 335 -ENACKIVGUEPSEGERYLSEMEADVETCHSVLENDLAPRETDRSLAFVS 335 -ENACKIVGVUEPSEGERYLSEVLENDLEDCERDLASKMTFEPSA- 291 -PD-CSVIVAVLEPSEGERYLSEVLENDLAADSKMTFEPSA- 291 -PD-CSVIVAVLEPSEGERYLSSALFADVOKECAGM- 294 -ENACKLIVVIEPSEGERYLSSALFADVOKECAGM- 299 -LSGKIVVVUEPSEGERYLSSALFADVOKECAGM- 291 -ESACKTEVMCASHELS 349 -EMCKNIVVI PSFGERYLSALFDACKLENDALSKVVPLAAALSKVVVP 349 -EMCKKNIVVI IPSFGERYLSALFDAALSVVVP 36
2-Synechocysils 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 1-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 4-T. suecica 4-T. suecica 1-C. merolae 1-C. merolae 1-T. pseudonana 2-T. pseudonana	285 -AMEGRIVVILASEGERYLSEMENSTAAPLEARRDAQL- 291 -AYAGK IVVILEDLASEGERYLSEMEADV 357 -BRREKIVVLEDLASEGERYLSEMEADV MSVDAEEEVSMPDSWRMASGAE-RPAT 337 -MGPCHTIVELLCOGGERHLSKENSEYLSEMEADLAPRETDRSLAFVS 335 -ENAGKIVAVLPSFGERYLSEVLSVLENDLAPRETDRSLAFVS 320 -ENEGKIVVVLPSFGERYLSSVLENDLRLCOLKODERVKVVDAAGRE-RYVF 320 -ENEGKIVVVLPSFGERYLSSVLENDLRLCOLKODESA
<pre>2-Synechocyslis l-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 4-T. suecica 1-C. merolae 2-C. merolae 1-T. pseudonana 2-T. pseudonana 3-T. pseudonana</pre>	285 -AMEGRINUV ILASEGBRYLSNEMESTAAPLEARRDAQL
2-Synechocyslis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 1-T. suecica 2-T. suecica 2-T. suecica 4-T. suecica 4-T. suecica 4-T. suecica 1-C. merolae 2-C. merolae 1-T. pseudonana 2-T. pseudonana 1-P. tricornutu	285 -AMEGRIVV/UASIGERYLSIPMESTAAPLEPARRDAQL 291 -AYAGKIVV/UEDLABRYLSIMEADVPTGIIEQPVAV 337 -MRRGUIVGUEDLABRYLSIVLENTLWSVDAEEDVSMPDSWRMASGAE-RPAT 333 -MRRGUIVGUESGRYLSIVLENTLWSVDAEEDVSMPDSWRMASGAE-RPAT 335 -ENAGKIVGUESGRYLSIVLENTLWSVDAEEDVSMAFVS 335 -ENAGKIVGVUESGRYLSIVLENCLKSVLENGLAPRETDRSLAFVS 320 -ENEGKIVVUESGRYLSSVLENGLENDEMAMD 291 -PD-GSIVVAUESGRYLSSVLENDEMAMD 294 -ENAGKLIVVIESGRYLSSALEADVQKEGAGM- 299 -LEFGHTVVTUEDSGCRHLS 294 -ENAGKLIVVIESGRYLSSALEADVQKEGAGM- 299 -EGFHTVVTUEDSGCRHLS 294 -ENAGKLIVVIESGRYLSSALEADVQKEGAGM- 299 -LEFGHTVVTUEDSGCRHLS 294 -ENAGKIFVVIESSHERYTAHELMENDEMAMD 294 -ENAGKIFVVIESSKERYTERATAHELMENDEMAMD 294 -ENAGKIFVVIESSKERYTERATAHELMENDEMAMD 294 -ENAGKIFVVIESSKERYTERATAHELMENDEMAMD 294 -ENAGKIFVVIESSKERYTERATAHELMENDEMAMD 294 -ENAGKIFVVIESSKERYTERALEFT 349 -ENAGKIFVVIESSKERYTERATAHELMENDEMAALSKVVVE 334 -LEFGHTIVTILODGGERYLSIFELEGACHEANNEELEIARSTPSWILEP 329 -ENADKRIVUES
<pre>2-Synechococyslis l-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 1-C. merolae 2-C. merolae 1-T. pseudonana 2-T. pseudonana 1-P. tricornutu 2-P. tricornutu</pre>	285 -AMEGRIVVILASEGERYLSIPMESTAAPLEARADAQL- 291 -AYAGKE IVVILASEGERYLSIVLENTLWSVDAEEEVSMPDSWRMASGAE-RPAT 337 -MGPCHTIVELLCDGCHRHLSKEHSKEYLESVLENTLWSVDAEEEVSMPDSWRMASGAE-RPAT 1337 -MGPCHTIVELLCDGCHRHLSKEHSKEYLESVLENDLAPRETDRSLAFVS 1335 -ENAGKLVAVULPSFGERYLSSVLENCLRDGASKMTFEPSA
<pre>2-Synechocyslis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 1-C. merolae 2-C. merolae 2-C. merolae 1-T. pseudonana 3-T. pseudonana 3-T. pseudonana 1-P. tricornutu 2-P. tricornutu 2-P. tricornutu</pre>	285 -AMEGRIVVILASEGERYLSIPMESTAAPLEPARRDAQL 291 -AYAGKEIVVILEPLASERYLSIVERPUSTAAPLEPARRDAQL 337 -BRREKIVGILESEGERYLSIVERVIEWSVDAEEEVSMPDSWRMASGAE-RPAT 333 -MGPGHTIVGILESEGERYLSIVERVIEWSVDAEEEVSMPDSWRMASGAE-RPAT 335 -ENAGKIVAVILESEGERYLSIVERVIEWSVDAEEEVSMRVKVVDAAGRE-RYVI 320 -ENGKIVAVILESEGERYLSIVERVIEWERGERYLSIVERVIEWSVDAEEEVSMRVKVVDAAGRE-RYVI 320 -ENGKIVAVILESEGERYLSIVERVIEWERGERYLSIVERVIEWERGERYLSIVERVIEWERGERYLSINGERGERYLSINGERGERYLSINGERGERYLSINGERGERYLSINGERGERYLSINGERGERYLSINGERGERYLSINGERGERYLSINGERGERGERGERGERGERGERGERGERGERGERGERGERG
<pre>2-Synechocyslis l-Synechococus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 1-C. merolae 2-C. merolae 1-T. pseudonana 3-T. pseudonana 3-T. pseudonana 1-P. tricornutu 2-P. tricornutu E. huxleyi 1-D. bitherid</pre>	285 -AMEGRIVVILASIGERYLSIMENSIAAPLEARADAQL
<pre>2-Synechocyslis l-Synechococcus 2-Synechococcus l-C. reinhardti 3-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 1-C. merolae 2-C. merolae 1-T. pseudonana 2-T. pseudonana 3-T. pseudonana 1-P. tricornutu 2-P. tricornutu 2-P. tricornutu 2-A. klebsii</pre>	285 -AMEGRIVVILASIGERYLSISMMESTAAPLEPARRDAQL 291 -AYAGKE IVVILASIGERYLSIMMESTAAPLEPARRDAQL 337 -ENROKIIVGILASIGERYLSIMEADNE IVVILASIGERYLSIMEADNE 337 -MGEGHIVGILASIGERYLSIMEADNE IVVILASIGERYLSIMEADNE 337 -MGEGHIVGILASIGERYLSIMEADNE IVVILASIGERYLSIMEADNE 337 -MGEGHIVGILASIGERYLSIMEADNE IVVILASIGERYLSIMEADNE 320 -ENAGKIVVILASIGERYLSINEADNE IVVILASIGERYLSINEADNE 291 -PD-GSVIVAVLPSIGERYLSINEADNE IVVILASIGERYLSINEADNE 294 -ENAGKIIVVILASIGERYLSINEADNE IVVILASIGERYLSINEADNE 299 -LGPGHIVVILASIGERYLSINEADNE IVVILASIGERYLSINEADNE 291 -SAGKIIVVILASIGERYLSINEADNE IVVILASIGERYLSINEADNE 299 -LGPGHIVVILASIGERYLSINEADNE IVVILASIGERYLSINEADNE 349 -ENKGKNIVVILASIGERYLSINEADNE IVVILASIGERYLSINEADNE 344 -LGPGHITVVILASIGERYLSINEADNE IVVILASIGERYLSINEADNE 349 -ENAGKIVVILASIGERYLSINEADNE IVVILASIGERYLSINEADNE 349 -ENAGKIVVILASIGERYLSINEADNE IVVILASIGERYLSINEADNE 349 -ENAGKIVVILASIGERYLSINEADNE IVVILASIGERYLSINEADNE 340 -EGGVIVILASIGERYL
2-Synechocyslis 1-Synechococus 2-Synechococcus 1-C. reinhardti 3-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 1-C. merolae 2-C. merolae 2-C. merolae 1-C. pseudonana 2-T. pseudonana 3-T. pseudonana 1-P. tricornutu 2-P. tricornutu E. huxleyi 1-A. klebsii 2-A. klebsii	285 -AMEGRIVVILASIGERYLSIPMESTAAPLEPARRDAQL 291 -AYAGKEIVVILEDLASRYLSIVESIMEADINELWSVDAEEEVSMPDSWRMASGAE-RPAI 337 -MRPCHTIVELLCOGCHRHLSKFHSKEYLESVLENDLAPRETDRSLAFVS 335 -ENACKLIVELLCOGCHRHLSKFHSKEYLESMDLAPRETDRSLAFVS 335 -ENACKLIVELDSFGERYLSSVLENDLAPRETDRSLAFVS 336 -ENACKLIVELDSFGERYLSSVLENDLALECOLKQDERVKVVDAAGRE-RYVI 320 -ENEGKLVVVLPSFGERYLSSVLENDCLRDGASKMFFEPSA
<pre>2-Synechococysils 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 1-C. merolae 2-C. merolae 1-T. pseudonana 2-T. pseudonana 1-P. tricornutu 2-P. tricornutu E. huxleyi 1-A. klebsii 2-A. klebsii 3-A. klebsii</pre>	285 -AMEGRIVVILASEGERYLSISMESTAAPLEARADAQL
<pre>2-Synechocyslis 1-Synechococus 2-Synechococcus 1-C. reinhardti 3-C. reinhardti 1-T. suecica 2-T. suecica 3-T. suecica 1-C. merolae 2-C. merolae 1-C. merolae 2-C. merolae 1-T. pseudonana 3-T. pseudonana 3-T. pseudonana 1-P. tricornutu 2-P. tricornutu 2-P. tricornutu 2-A. klebsii 3-A. klebsii 3-A. klebsii</pre>	285 -AMEGRIVV/UASTGRYLSIMMESTAAPLPARRDAQL 291 -AYAGKEIVV/UFPDLABRYLSIMMEADVPTGIIEQPVAV 337 -MRPGHTIVTUEDLABRYLSIMEADVPTGIIEQPVAV 333 -MRPGHTIVTUEDLABRYLSIMEADVPTGIIEQPVAV 335 -ENROKIVAULPSRGERYLSIVLENTEWSVDAEEDVSMPDSWRMASGAE-RPAT 335 -ENAGKIVAVULPSRGERYLSIVLENTEWSVDAEEDVSMRVKVVDAAGRE-RYVI 320 -ENGKVVVULPSRGERYLSIVLENDEWAME 291 -EDGKVVVULPSFGERYLSIVLENDEWAME 294 -ENGKLIVVILPSFGERYLSIVLENDEWAME 294 -ENAGKLIVVILPSFGERYLSISALFADVOKECAGM- 299 -LGFGHTVVVULPSFGERYLSIALFADVOKECAGM- 294 -ENKGKLIVVILPSFGERYLSIALFADVOKECAGM- 299 -LGFGHTVVULPSFGERYLSIALFADVOKECAGM- 299 -LGFGHTVVILPSFGERYLSIALFADVOKECAGM- 299 -EKGKLIVVILPSFGERYLSIALFADVOKECAGM- 299 -EKGKLIVVILPSFGERYLSIALFADVOKECAGM- 299 -EKGKNEVYCASHGIRYEAHFUNASHEENDKOKECAGMA- 349 -ENKGKNEVYCASHGIRYEAHFUNASHEENCAGAGRALPSQ- PNM- 349 -EKKGKNEVYI PSFGERYLSIALFOKOKECAGRALPSQLPARAALSKVVP 308 -P-EGSVIVAMEDGERYLSIALFONUMDASALKAE- 329 -NADGRIVVILPSFGBRYLSIALFONUMDASALKAE- 329 -MADGRIVVILPSFGBRYLSIALFONUMDASALKAE-
<pre>2-Synechococyslis 1-Synechococcus 2-Synechococcus 1-C. reinhardti 2-C. reinhardti 1-T. suecica 2-T. suecica 2-T. suecica 1-C. merolae 2-C. merolae 1-T. pseudonana 2-T. pseudonana 1-P. tricornutu 2-P. tricornutu 2-P. tricornutu 2-P. tricornutu 2-A. klebsii 2-A. klebsii 4-A. klebsii</pre>	285 -AMEGRIVVILASIGERYLSIMESTAAPLEPAREDAQL 291 -AYAGKE IVVILEPLASIGERYLSIVLENTEWSVDAEEEVSMPDSWRMASGAE-RPAT 1 337 -MGPCHTIVELLCOGGERHLSKIPSVLSVLSVLSVLSVLSVLSVLSVLSVLSVLSVLSVLSVLS

86

M

Ð

A	Α.	tha	11	ana			-	
в-	А.	tha	1i,	ana			-	
C	Α.	tha	11	ana			-	
C1	-A.	th	a1.	iana			-	
1-	Syn	ech	oc	ystis				
2-	Syn	ech	00	ystis				
1-	Syn	ech	00	occus				
2-	Syn	ech	oc	occus				
1-	с.	rei	nh	ardti.	i	41	2	PRL
2 -	с.	rei	nh	ardti.	i			
3-	с.	rei	nh	ardti.	i			
4-	с.	rei	nh	ardti.	i			
1-	т.	sue	ci	ca			-	
2-	т.	sue	ci	ca			-	
3-	Τ.	sue	ci	ca			-	
4-	т.	sue	ci	ca			-	
1-	с.	mer	01	ае			-	
2-	с.	mer	01	ае			-	
1-	т.	pse	ud	onana				
2-	т.	pse	ud	onana				
3-	т.	pse	ud	onana				
1-	Ρ.	tri	co.	rnutu	т			
2-	Ρ.	tri	co.	rnutu	т			
Ε.	hu	xle	уi			383	-	
1-	А.	kle	bs.	ii			-	
2 -	Α.	kle	bs.	ii			-	
3-	Α.	kle	bs.	ii			-	
4-	А.	kle.	bs:	ii			-	
co	nse	nsu	s		5	41		

Fig. 4-5. Alignment of OAS-TL of algae and A. thaliana.

The red rectangle identifies the PLP binding site, with the functional lysine involved in the formation of the Schiff base; the purple triangle, the green rectangle, and the blue triangle indicated the other motif involved in PLP interaction; the blue rectangle and the red triangle indicate the residues involved in substrate interaction; the yellow rectangle indicated the SAT/OAS-TL interaction site. The Cysteine residues are highlighted in yellow. Absolutely conserved amino acids are shown with dark background, highly conserved residues with grey background. At the consensus line, asterisks indicate highly conserved aminoacids.

The alignment sequences: A-At4g14880; B-At2g43750; C-AT3G59760; C1-At3g61440; 1-Synechocystis sp. PCC 6803 BAA17450.1; 2-Synechocystis sp. PCC 6803 BAA16664.1; 1-Synechococcus sp. WH 7803 WP_011934122.1; 2-Synechococcus sp. WH 7803 WP_011932497.1; 1-C. reinhardtii XP_001696139.1; 2-C. reinhardtii XP_001701454.1; 3-C. reinhardtii XP_001703301.1; 4-C. reinhardtii XP_001691935.1; 1-C. merolae strain 10D XP_005539314.1; 2-C. merolae strain 10D XP_005536023.1; 1-T. pseudonana CCMP 1335 XP_002286122.1; 2-T. pseudonana CCMP 1335 XP_002286707.1; 3-T. pseudonana XP_002287864.1; 1-P. tricornutum CCAP 1055/1 XP_002177040.1; CCAP 1055/1; 2-P. tricornutum CCAP 1055/1 XP_002180648.1; E. huxleyi CCMP 1516 gi|485641205|; 1, 2, 3, 4-T. suecica; 1, 2, 3, 4-A. klebsii these sequences were obtained through the transcriptom.

	PLP binding site	Residues binding with substrate		Residues binding with PLP		OAS-TL/SAT interaction site	Residues binding with PLP	
	- <mark>K</mark> -	- <mark>TSGNT</mark> -	- <mark>Q</mark> -	- <mark>H</mark> -	- <mark>GTGGT</mark> -	- <mark>K</mark> PGP <mark>HK</mark> -	- <mark>S</mark> -	
A-A.thaliana	-K-(46)	-TSGNT-(74-78)	-Q-(147)	-H-(157)	-GTGGT-(181-185)	-KPGPHK-(217-222)	-S-(269)	
B-A.thaliana	-K-(116)	-TSGNT-(144-148)	-Q-(207)	-H-(217)	-GTGGT-(251-255)	-KPGPHK-(287-292)	-S-(239)	
C-A.thaliana	-K-(154)	-TSGNT-(182-186)	-Q-(255)	-H-(265)	-GTGGT-(289-293)	-KPGPHK-(325-330)	-S-(377)	
C1-A, thaliana	-K-(90)	-TSGNM-(118-122)	-Q-(191)	-H-(201)	-G <mark>S</mark> GGT-(225-229)	-KPGPH <mark>A</mark> -(261-266)	-S-(313)	
1-Synechocystis sp. PCC 6803	-K-(65)	-TSGNT-(93-97)	-Q-(166)	-H-(176)	-GTGGT-(200-204)	-KPGPHK-(236-241)	-S-(288)	
2-Synechocystis sp. PCC 6803	-K-(44)	-TAGNT-(71-75)	-Q-(146)	-H-(156)	-GTGGT-(180-184)	<mark>-</mark> SGN <mark>SI</mark> -(233-236)	-S-(274)	
1-Synechococcus sp. WH 7803	-K-(46)	-TSGNT-(74-78)	-Q-(147)	-H-(157)	-GTGGT-(181-185)	- <mark>V</mark> AGPH <mark>R</mark> -(217-222)	-S-(269)	
2-Synechococcus sp. WH 7803	-K-(45)	-TSGNT-(72-76)	-Q-(145)	-H-(155)	-GTGGT-(180-184)	-KPGPHK-(223-228)	-S-(275)	
1-C. reinhardtii	-K-(118)	-TSGNT-(145-150)	-Q-(219)	-H-(229)	-GTGGT-(253-257)	- <mark>A</mark> PGYH <mark>Q</mark> -(289-294)	-S-(341)	
2-C. reinhardtii	-K-(82)	-T <mark>A</mark> GST-(109-113)	-Q-(184)	-H-(194)	-GTGGT-(217-221)	- <mark>N</mark> PFD <mark>TI</mark> -(269-274)	-S-(322)	
3-C. reinhardtii	-K-(96)	-TSGNT-(124-128)	-Q-(197)	-H-(207)	-GTGGT-(231-235)	-KPGPHK-(270-275)	-S-(319)	
4-C. reinhardtii	-K-(81)	-TSGNT-(109-113)	-Q-(182)	-H-(192)	-GTGGT-(216-221)	-KPGPHK-(252-257)	-S-(304)	
1-T.suecica	-K-(41)	-TSGNT-(68-72)	-Q-(144)	- <mark>Y</mark> -(154)	- <mark>S</mark> TGGT-(178-182)	-KPSS <mark>YQ</mark> -(221-226)	-S-(375)	
2-T.suecica	-K-(55)	-TSGNT-(83-87)	-Q-(176)	-H-(186)	-GTGGT-(190-194)	- <mark>Q</mark> PGPHK-(226-231)	-S-(278)	
3-T.suecica	-K-(44)	-T <mark>V</mark> GST-(71-75)	-Q-(146)	-H-(156)	-GTGGT-(179-183)	- <mark>N</mark> PYD <mark>TI</mark> -(240-245)	-S-(284)	
4-T.suecica	-K-(40)	-TSGNT-(67-71)	-Q-(149)	-H-(159)	-GTGGT-(175-179)	- <mark>Q</mark> HAPH <mark>T</mark> -(210-215)	-S-(275)	
1-C. merolae strain 10D	-K-(110)	-TSGNT-(138-142)	-Q-(211)	-H-(221)	-GTGGT-(245-249)	- <mark>R</mark> PGPHK-(281-286)	-S-(333)	
2-C. merolae strain 10D	-K-(90)	-T <mark>A</mark> GNT-(117-171)	-Q-(191)	-H-(201)	-GTGGT-(225-229)	- <mark>-</mark> VGD <mark>SI</mark> -(268-271)	-S-(319)	
1-T.pseudonana CCMP 1335	-K-(52)	-TSGNT-(79-83)	-Q-(152)	-H-(162)	-GTGGT-(185-189)	- <mark>A</mark> FAPHP-(237-242)	-S-(292)	
2-T.pseudonana CCMP 1335	-K-(89)	-TSGNT-(117-121)	-Q-(191)	-H-(201)	-GTGGT-(225-229)	-KPGPHK-(261-266)	-S-(313)	
3-T.pseudonana CCMP 1335	-K-(51)	-TSG <mark>S</mark> T-(78-82)	-Q-(259)	-H-(169)	-GTGGT-(193-197)	- <mark>H</mark> RYD <mark>TF</mark> -(257-262)	-S-(314)	
1-P. tricornutum CCAP 1055/1	-K-(52)	-TSGNT-(80-84)	-Q-(153)	-H-(163)	-GTGGT-(188-192)	- <mark>P</mark> QGPHK-(238-243)	-S-(290)	
2-P. tricornutum CCAP 1055/1	-K-(56)	-TSGNT-(84-88)	-Q-(158)	-H-(168)	-GTGGT-(192-196)	-KPGPHK-(228-232)	-S-(280)	
E. huxleyi CCMP 1516	-K-(68)	-TSGNT-(95-99)	-Q-(167)	-H-(177)	-GTGGT-(202-205)	- <mark>A</mark> FSAH <mark>P</mark> -(253-258)	-S-(320)	
1-A. klebsii	-K-(42)	-TSGNT-(69-74)	-Q-(140)	-H-(150)	-GTGGT-(175-179)	- <mark>A</mark> WTAH <mark>P</mark> -(230-235)	-S-(287)	
2-A. klebsii	-K-(39)	-TSGNT-(66-70)	-Q-(141)	-H-(151)	-GTGGT-(177-181)	- <mark>H</mark> RYD <mark>T1</mark> -(229-233)	-S-(291)	
3-A.klebsii	-K-(53)	-TSGNT-(80-84)	-Q-(155)	-H-(165)	-GTGGT-(189-193)	- <mark>A</mark> YH <mark></mark> (239-241)	-S-(289)	
4- <i>4. klebsii</i>	-K-(46)	-TSGNT-(74-78)	-Q-(150)	-H-(160)	-GTGGT-(184-188)	- <mark>L</mark> PQLH <mark>A</mark> -(222-227)	-S-(266)	

Table. 4-7. Main binding motives in OAS-TL sequences (from the N'-terminal to C'-terminal)

9 88

D

Highlighted residues are those that are substituted in the sequence of a given species; the number inside parenthess indicate the position of the amino acids in the sequences.

Æ

4.2. OAS-TL from algae

4.2.1. OAS-TL purification

The elution patterns of OAS-TL showed differences among the experimental species (Fig. 4-6). The western blot analysis of the various fractions evidenced the presence of proteins of different sizes cross-reacting with OAS-TL antibody (Table. 4-8).

90	
----	--

Species	PCP (Elution Volume of protein peak)	Immunoblot positive (+) or negative (-)	OAS-TL protein band number	OAS-TL size (kDa)
Synechocystis sp. PCC 6803	1 and 3 ml	(-) and (+)	2	33, 39
Chlamydomonas reinhardtii-TAP	3.5 ml	(+)	2	37, 40
Chlamydomonas reinhardtii-TP	3 ml	(+)	3	34, 44, 49
Dunaliella tertiolecta	2 and 3.5 ml	(-) and (+)	2	36, 38
Tetraselmis suecica	0.5 and 3 ml	(-) and (+)	2	33, 41
Thalassiosira pseudonana	2 and 3 ml	(-) and (+)	2	36, 37
Phaeodactylum tricornutum	3.5 ml	(+)	1	36
Amphidinium klebsii	2.5 ml	(+)	2	35, 39

 Table. 4-8. Features of purified algae OAS-TL

Note: PCP, protein peak in terms of elution volume (ml) used as cross-reaction with the OAS-TL-A antibody present (+) or absence(-).
In *Synechocystis* sp. PCC 6803 (Fig. 4-6 A), a protein concentration peak appeared already after 1 ml of elution buffer passed through the column. The proteins of this peak (fraction E2), however, did not cross-react with OAS-TL antibody (Fig. 4-7). The main elution peak for *Synechocystis* sp. PCC 6803 was eluted after 3 mL of elution buffer (Fig. 4-6 A). The fractions corresponding with this following peak (fractions E6, 7, 8, 9, Fig. 4-7) were recognized by OAS-L antibody. Two proteins were detected in the western blot and had a mass of around 35 kDa (Fig. 4-7). Mobility analysis (supplemental data), indicated that these bands had sizes of 33 kDa and 39 kDa.

When *Chlamydomonas reinhardtii* was grown in TAP medium, the elution pattern only showed one protein concentration peak after 3.5 ml elution (Fig. 4-6 B). The collected fractions (E7, 8, 9, 10, Fig. 4-8) showed two signals with masses of 37 kDa and 40 kDa (Fig. 4-8). When *C. reinhardtii* was cultured in TP medium, the main elution peak appeared after 3 ml of elution buffer (Fig. 4-6 C). The western blot of the proteins in the peak fraction (E6) and in the following fractions (E7, 8, 9, Fig. 4-9) showed three bands of 34 kDa, 44 kDa and 49 kDa (Fig. 4-9).

The affinity chromatography of *Dunaliella tertiolecta* extract had a rather flat protein concentration profile, with two peaks of similar protein content after 2 and 3.5 ml elution (Fig. 4-6 D). The western blot of the protein sample obtained after 2 ml elution (E4, Fig. 4-10) showed no immunoreaction while it showed a strong band of 36 kDa and another band of 38 kDa in the fractions (E6, 7, 8, 9, Fig. 4-10) belonging to the 3.5 ml elution peak (Fig 4-6 D).

Tetraselmis suecica affinity chromatography afforded a peak at 0.5 ml and another at 3 ml (Fig. 4-6 E). Again, the earlier peak (E1 fraction) did not show any immunoreaction with OAS-TL antibodies (Fig. 4-11). The later peak consisting in fractions E5, 6, 7, 8, instead, showed a dense band of 41 kDa and a fainter one of 33 kDa (Fig.4-11).

Thalassiosira pseudonana showed an elution peak at 1 ml and a major one at 3 ml (Fig. 4-6 F). The first peak (E2 fraction) did not give a signal in the western blot. The

fractions obtained from the peak at 3 ml, instead, showed a band of 36 kDa (E7, Fig. 4-7) and of 37 kDa (E5, 6, 8, Fig. 4-12).

For *Phaeodactylum tricornutum*, one elution peak of protein concentration was observed after 3.5 ml (Fig. 4-6 G) of elution buffer. The mass of the OAS-TL contained in this peak was 36 kDa (E7, 8, 9, 10 fractions, Fig. 4-13).

OAS-TL of *Amphidinium klebsii* was eluted after 2.5 ml elution buffer (Fig. 4-6 H). A band of 35 kDa was visible in the immunoreaction (E5, 6, 7, 8 fractions, Fig. 4-14); only in the fraction E5 an additional band of 39 kDa was visible (Fig. 4-14).

Fig. 4-6. Elution pattern of OAS-TL protein from different algal species.

From the top to the bottom different curve the algal species: A-Sy. PCC 6803: *Synechocystis* sp. PCC 6803; B-C.r-TAP: *Chlamydomonas reinhardtii* with TAP medium; C-C.r-TP:

Chlamydomonas reinhardtii with TP medium; D-D.t: *Dunaliella tertiolecta*; E-T.s: *Tetraselmis suecica*; F-T.p: *Thalassiosira pseudonana*; G-P.t: *Phaeodactylum tricornutum*; H-A.k: *Amphidinium klebsii*. There were three replicates the data was Mean ± SD.

Fig. 4-7. Immunodetection of OAS-TL purified from Synechocystis sp. PCC 6803.

The amount of protein loaded on the gel were fraction $E2 = 1.36 \ \mu g$; $E7 = 2.25 \ \mu g$; $E8 = 0.58 \ \mu g$; $E9 = 0.58 \ \mu g$; $E10 = 0.36 \ \mu g$.

Fig. 4-8. Immunodetection of OAS-TL purified from *Chlamydomonas reinhardtii* grown in TAP medium.

The amount of protein loaded on the gel were fraction E7 = 0.62 μ g; E8 = 0.45 μ g; E9 = 0.29 μ g; E10 = 0.26 μ g.

Fig. 4-9. Immunodetection of OAS-TL purified from *Chlamydomonas reinhardtii* grown in TP medium.

The amount of protein loaded on the gel were fraction $E7 = 0.24 \ \mu g$; $E8 = 0.58 \ \mu g$; $E9 = 0.31 \ \mu g$; $E10 = 0.12 \ \mu g$.

Fig. 4-10. Immunodetection of OAS-TL purified from Dunaliella tertiolecta.

The amount of protein loaded on the gel were fraction $E4 = 0.49 \ \mu g$; $E6 = 0.12 \ \mu g$; $E7 = 0.48 \ \mu g$; $E8 = 0.35 \ \mu g$; $E9 = 0.21 \ \mu g$.

Fig. 4-11. Immunodetection of OAS-TL purified from Tetraselmis suecica.

The amount of protein loaded on the gel were fraction $E1 = 1.35 \ \mu g$; $E5 = 1.50 \ \mu g$; $E6 = 1.75 \ \mu g$; $E7 = 1.31 \ \mu g$; $E8 = 0.92 \ \mu g$.

Fig. 4-12. Immunodetection of OAS-TL purified from Thalassiosira pseudonana.

The amount of protein loaded on the gel were fraction $E2 = 1.01 \ \mu g$; $E5 = 1.43 \ \mu g$; $E6 = 1.33 \ \mu g$; $E7 = 1.01 \ \mu g$; $E8 = 0.52 \ \mu g$.

Fig. 4-13. Immunodetection of OAS-TL purified from Phaeodactylum tricornutum.

The amount of protein loaded on the gel were fraction E7 = 0.47 μ g; E8 = 0.15 μ g; E9 = 0.13 μ g; E10 = 0.01 μ g.

		Μ
9	96	

Fig. 4-14. Immunodetection of OAS-TL purified from Amphidinium klebsii.

The amount of protein loaded on the gel were fraction $E5 = 0.87 \ \mu g$; $E6 = 0.32 \ \mu g$; $E7 = 0.31 \ \mu g$; $E8 = 0.22 \ \mu g$.

4.2.2. OAS-TL enzyme activity in crude extracts

The activity of OAS-TL was present in the crude extracts of all tested algal species. Most of the species had similar OAS-TL enzyme activity on a protein basis except for *Tetraselmis suecica* (especially) and *Thalassiosira pseudonana*, which showed appreciably higher activities (Fig. 4-15, Table. 4-9).

		Ð
]	97	

Fig. 4-15. OAS-TL enzyme activity in crude extracts of different algae.

Different letters show statistically different means (P < 0.05). The error bars represent the standard deviations (n = 3).

In *Synechocystis* sp. PCC 6803, the OAS-TL activity per µg of protein in the crude extract decreased appreciably if the crude extract was diluted 100 times (Fig. 4-16, Table. 4-9).

Different sample protein

Fig. 4-16. OAS-TL activity per unit of protein in crude and diluted extracts of *Synechocystis* sp. PCC 6803.

CE is the activity of the crude extract obtained according to the extraction protocol. CE-100 is the activity in the crude extract with a 100-fold dilution. Different letters show statistically different means (P < 0.05). The error bars show the standard deviations (n = 3).

In the green algae *Chlamydomonas reinhardtii* cultured in TAP medium, the OAS-TL activity of the 100-fold diluted sample was similar to the activity in the undiluted extract (Fig. 4-17, Table. 4-9).

μ

Fig. 4-17. OAS-TL activity per unit of protein in crude and diluted extracts of *Chlamydomonas reinhardtii* cultured in TAP medium.

CE is the activity of the crude extract obtained according to the extraction protocol. CE-100 is the activity in the crude extract with a 100-fold dilution. Different letters show statistically different means (P < 0.05). The error bars show the standard deviations (n = 3).

When *Chlamydomonas reinhardtii* was cultured in TP medium, OAS-TL activity per unit of protein was about 6.5 higher in diluted extracts (Fig. 4-18, Table. 4-9).

_		G
D	100	

Different sample protein

Fig. 4-18. OAS-TL activity per unit of protein in crude and diluted extracts of *Chlamydomonas reinhardtii* cultured in TP medium.

CE is the activity of the crude extract obtained according to the extraction protocol. CE-100 is the activity in the crude extract with a 100-fold dilution. Different letters show statistically different means (P < 0.05). The error bars show the standard deviations (n = 3).

In *Dunaliella tertiolecta*, OAS-TL activity of the 100-fold diluted sample was similar to that in the undiluted crude extract (Fig. 4-19, Table. 4-9).

Different sample protein

Fig. 4-19. OAS-TL activity per unit of protein in crudeand diluted extracts of *Dunaliella tertiolecta*.

CE is the activity of the crude extract obtained according to the extraction protocol. CE-100 is the activity in the crude extract with a 100-fold dilution. Different letters show statistically different means (P < 0.05). The error bars show the standard deviations (n = 3).

In *Tetraselmis suecica*, OAS-TL enzyme activity of the 100 times diluted sample was 1.6 times higher (Fig. 4-20, Table. 4-9).

Fig. 4-20. OAS-TL activity per unit of protein in crude and diluted extracts of *Tetraselmis* suecica.

CE is the activity of the crude extract obtained according to the extraction protocol. CE-100 is the activity in the crude extract with a 100-fold dilution. Different letters show statistically different means (P < 0.05). The error bars show the standard deviations (n = 3).

In *Thalassiosira pseudonana*, OAS-TL enzyme activity of the 100 times diluted sample was 11.4 times higher compared to the undiluted extract (Fig. 4-21, Table. 4-9).

		D
D	103	

Different sample protein

Fig. 4-21. OAS-TL activity per unit of protein in crude and diluted extracts of *Thalassiosira pseudonana*.

CE is the activity of the crude extract obtained according to the extraction protocol. CE-100 is the activity in the crude extract with a 100-fold dilution. Different letters show statistically different means (P < 0.05). The error bars show the standard deviations (n = 3).

In *Phaeodactylum tricornutum*, OAS-TL enzyme activity of the 100 times diluted extract was 3.3 times higher than the activity in the undiluted extract (Fig. 4-22, Table. 4-9).

		G
2	104	

Different sample protein

Fig. 4-22. OAS-TL activity per unit of protein in crude and diluted extracts of *Phaeodactylum tricornutum*.

CE is the activity of the crude extract obtained according to the extraction protocol. CE-100 is the activity in the crude extract with a 100-fold dilution. Different letters show statistically different means (P < 0.05). The error bars show the standard deviations (n = 3).

In *Amphidinium klebsii*, the OAS-TL activity of the 100 times diluted sample was 1.6 times higher than the activity in the undiluted extract (Fig. 4-23, Table. 4-9).

		D
9	105	
_		

Different sample protein

Fig. 4-23. OAS-TL activity per unit of protein in crudeand diluted extracts of *Amphidinium klebsii*.

CE is the activity of the crude extract obtained according to the extraction protocol. CE-100 is the activity in the crude extract with a 100-fold dilution. Different letters show statistically different means (P < 0.05). The error bars show the standard deviations (n = 3).

Species name	OAS-TL enzyme activity (Mean ±SD) nmol cysteine \cdot min ⁻¹ · ng ⁻¹	
	CE	CE-100
Synechocystis sp. PCC 6803	15 (0.4)	5.0 (1.2)
Chlamydomonas reinhardtii TAP	5.3 (0.6)	3.6 (0.2)
Chlamydomonas reinhardtii TP	1.2 (0.0)	8.0 (0.7)
Dunaliella tertiolecta	6.0 (0.0)	7.0 (0.9)
Tetraselmis suecica	14.3 (0.3)	23.0 (2.8)
Thalassiosira pseudonana	13.6 (0.4)	155 (8.8)
Phaeodactylum triconutum	3.9 (0.3)	12.9 (0.6)
Amphidinium klebsii	6.7 (0.4)	10.4 (2.7)

Table. 4-9. Summary of OAS-TL activity in 100-fold diluted and undiluted crude extracts.

CE: crude extract; CE-100: 100 fold diluted crude extract. The results are shown as mean \pm SD (n=3).

106

4.2.3. OAS-TL specific activity in different microalgae

OAS-TL specific activity from the various experimental organisms was determined after purification (Fig. 4-24). The SDS-PAGEs (not shown) suggest that the purified fractions contained negligible amounts of contaminants proteins. The pure OAS-TL of the green freshwater species *Chlamydomonas reinhardtii* cultured in TP medium, and of the green marine species *Dunaliella tertiolecta* and *Tetraselmis suecica*, and especially of the marine diatom *Thalassiosira pseudonana* showed higher specific activities than the other species (Fig. 4-24). It is noteworthy that *C. reinhardtii* OAS-TL specific activity was strongly affected by the growth medium (Fig. 4-24).

		М
9	107	

Fig. 4-24. OAS-TL enzyme activity.

Different letters show statistically different means (P < 0.05). The error bars show the standard deviations (n = 3).

4.2.4. Cysteine Synthase Complex (CSC)

For all species tested, when purified OAS-TL was mixed with *A. thaliana* SAT5 and subject to size exclusion chromatography, a complex of more than 600 kDa was eluted (Fig. 4-25).

Fig. 4-25. FPLC chromatogram for OAS-TL from different algae complexed with SAT-5 from *A. thaliana*.

A: Synechocystis sp. PCC 6803; B: Chlamydomonas reinhardtii-TAP; C: Dunaliella tertiolecta; D: Tetraselmis suecica; E: Thalassiosira pseudonana; F: Phaeodactylum

tricornutum; G: *Amphidinium klebsii*. Red numbers represent fraction numbers in parallel with black numbers representing elution volume (ml).

In *Synechocystis*, fraction 12 (E-12) showed cross-reaction with OAS-TL antibody (Fig. 4-25 A, Fig. 4-26). The size of the protein band involved in the complex formation was 39 kDa as the size of bigger protein band found in the purification (Fig. 4-7). The same fraction also gave an immunological reaction with SAT-5 antibody (35 kDa), as shown in (Fig. 4-33 A, lane 5).

Fig. 4-26. Immunodetection of OAS-TL from *Synechocystis* sp. PCC 6803 after elution of the CSC with SAT-5 by FPLC.

E-9, E-10, E-11 and E-12 were different fractions of the FPLC separation.

The CSC of *C. reinhardtii* cultured in TAP medium was eluted in fractions E10 to E12 (Fig. 4-25 B). Both OAS-TL (Fig. 4-27) and SAT-5 immunoreactions (Fig. 4-33 B, lane 3) were present.

Fig. 4-27. Immunodetection of OAS-TL from *Chlamydomonas reinhardtii* in TAP medium after elution of the CSC with SAT-5 by FPLC.

E-9, E-10, E-11, E-12 were different fraction of the FPLC separation.

In *Dunaliella tertiolecta*, CSC was eluted in fractions E-10 to E-11 (Fig. 4-25 C), as confirmed by western blot analysis (Fig. 4-28 and 4-33 C). Two OAS-TL bands were present in the complex and

their sizes were consistent with the purified OAS-TL bands (Fig. 4-10).

Fig. 4-28. Immunodetection of OAS-TL from *Dunaliella tertiolecta* after elution of the CSC with SAT-5 by FPLC.

E-9, E-10, E-11 were different fraction of the FPLC separation.

The CSC of *Tetraselmis suecica* was eluted in fractions E-9, 10, 11 (Fig. 4-31 D) as confirmed by the results of western blots with OAS-TL (Fig. 4-29) and SAT5 (Fig. 4-33 A, lanes 8 and 9). The OAS-TL of *T. suecica* CSC had a size of 41 kDa (Fig. 4-11), as the size of the strongest band in the western of the purified protein.

Fig. 4-29. Immunodetection of OAS-TL from *Tetraselmis suecice* after elution of the CSC with SAT-5 by FPLC.

E-9, E-10, E-11 were different fraction of the FPLC separation.

The CSC of the diatom *Thalassiosira pseudonana* was eluted in E-10, where also crossreaction with OAS-TL (Fig. 4-30) and SAT-5 (Fig. 4-33 C, lanes 5 and 6) antibodies was observed. The OAS-TL in the complex had a size of 36 kDa.

Fig. 4-30. Immunodetection of OAS-TL from *Thalassiosira pseudonana* after elution of the CSC with SAT-5 by FPLC.

E-9, E-10, E-11 were different fractions of the FPLC separation.

The CSC from *Phaeodactylum tricornutum* was eluted in fractions E-9 to E-11 (Fig. 4-25 F); the presence of the complex in these fractions was confirmed by the western blot analyses (Fig. 4-31, Fig. 4-33 C, lanes 2, 3 and 4). The OAS-TL signal in the complex corresponded to a protein of 36 kDa as shown also in the purified sample (Fig. 4-13).

Fig. 4-31. Immunodetection of OAS-TL from *Phaeodactylum tricornutum* after elution of the CSC with SAT-5 by FPLC.

E-9, E-10, E-11 were different fractions of the FPLC separation.

In the dinoflagellate *Amphidinium klebsii*, the CSC appeared in fractions E-9 and E-10. In the same fractions, a band of 35 kDa cross reacted with OAS-TL antibody (Fig. 4-32) and a band cross reacting with SAT5 antibodies (Fig. 4-33 A, lanes 2, 3 and 4) was observed.

Fig. 4-32. Immunodetection of OAS-TL from *Amphidinium klebsii* after elution of the CSC with SAT-5 by FPLC.

E-9 and E-10 were different fractions of the FPLC separation.

Fig. 4-33. Western blot using antibodies rose against SAT-5 from A. thaliana.

The samples corresponding to the peaks obtained by size exclusion chromatography for which a positive reaction with the antibody for OAS-TL was observed. Note: Marker, the protein ladder (10-180 kDa); A) from left to the right lane 1: SAT-5; lanes 2 to 4: *Amphidinium klebsii* (fractions 9-11); lanes 5 to 7: *Synechocystis sp.* PCC 6803 (fractions 10-12); lanes 8 to 9: *Tetraselmis suecica* (fractions 9-10); lane 10: Marker. B) From left to the right lane 1: Marker; lanes 2 to 4: TAP medium grown *Chlamydomonas reinhardtii* (fractions 9-11); lanes 6 to 8: TP medium grown *Chlamydomonas reinhardtii* (fractions 9-11); lane 10: SAT-5. C) From left to the right lane 1: Marker; lanes 1: Marker; lanes 2 to 4: *Dunaliella tertiolecta* (fractions 9-11); lanes 5 to 6: *Thalassiosira pseudonana* (fractions 9-11); lanes 7-9: *Phaeodactylum tricornutum* (fractions 9-11); lane 10: SAT-5. All the detected AtSAT-5 was showed in the red frame (A and C) and by red arrows (B).

4.3. In vivo redox regulation of ATP-S activity

Thalassiosira pseudonana, whose ATPS is believed to be redox regulated, was used for these experiments. DCMU interrupted electron transfer almost immediately at a concentration of 5 μ M (data not shown). The quantum yield of PSII was determined as Fv/Fm and its response to 0, 5 and 10 μ M DCMU was shown in Fig. 4-34. Already after 1 hour, DCMU at both 5 μ M and 10 μ M caused Fv/Fm to significantly decrease, as compared to the 0 DCMU controls (P < 0.001). This trend was accentuated after 3 and 6 hours. The concentration of 10 μ M DCMU was chosen for the experiments.

Fig. 4-34. Fv/Fm of *Thalassiosira pseudonana* incubated in the presence of 5 and 10 μ M DCMU, for 0, 1, 3 and 6 hours.

The error bars represented the standard deviations (n = 3); asterisks indicated the significance of mean differences (* = p < 0.05; ** = p < 0.01; *** = p < 0.001).

DCMU (10 μ M) had no impact on cell number and cell volume, in the course of the experiments. In the presence of 10 μ M, no significant difference in cell number and cell volume was observed (Fig. 4-35 and Fig. 4-36, respectively).

115

Fig. 4-35. *Thalassiosira pseudonana* cell number during incubation with 10 μ M DCMU. The error bars represented the standard deviations (n = 3). Means were not significantly different.

Fig. 4-36. *Thalassiosira pseudonana* cell volume during incubation with 10 μ M DCMU. The error bars represented the standard deviations (n = 3). Means were not significantly different.

Fig. 4-37. Comparison of ATPS assay blanks obtained with different procedures. The error bars show the standard deviations (n = 3).

Fig. 4-38. Comparison of ATPS activity in the presence and absence of DMSO. The error bars show the standard deviations (n = 3).

The ATP sulfurylase (ATP-S) enzyme activity was not affected by the incubation of the algae in the presence of DCMU (Fig. 4-39). Even though the activity changed over time, there was no statistically significant difference between the DCMU treated samples and the control samples.

Fig. 4-39. *Thalassiosira pseudonana* ATP-S activity in the presence or absence of 10 μ M DCMU over a period of 6 hours. The error bars show the standard deviations (n = 3).

		D
9	119	
1 1		

		Ð
9	120	J
U		

5. Discussion

5.1. SAT and OAS-TL in algae

The SAT protein tree indicates that phylogenetic difference exists between the protein in green algae and vascular plants and sequences obtained from species of the red-lineages (with rare exceptions). Interestingly, cyanobacterial SAT appears to be more closely related to that of red algae. It is hard to interpret this observation. It may simply due to the fact that extant cyanobacteria have acquired their current S assimilation complement secondarily, together with red lineage algae. The similarity between cyanobacteria and red lineage algae SATs also brings to mind the fact that cyanobacteria retained their prominence in post-Mesozoic oceans, together with red lineage algae, whereas green algae declined to a great extent. SAT phylogeny may thus be connected with the Sulfate Assimilation Hypothesis (Ratti et al., 2011), which suggests that sulfate availability in global oceans may have affected algae radiation. How SAT would affect phytoplankton radiation however, cannot be resolved with the data at hand and requires further investigations. The role of SAT in cysteine synthesis may speculatively suggest that a different control/regulation of cysteine synthesis may have repercussions on thiol metabolism and redox power management in the cell (Dickinson & Forman, 2002; Dietz & Hell, 2015).

It is also noteworthy that the C-terminus of algal SATs is rather similar to that of embryophytes with *Arabidopsis* sequence (Fig. 4-4). Thus the C-portion of algae SAT probably has a similar organization to that of *Arabidopsis* (Wirtz et al., 2001), *E.coli* (Pye et al., 2004) and *Haemophilus influenza Rd* (Gorman & Shapiro, 2004), whose SAT monomers contain a carboxyl-terminal left-handed β -helix (Gorman & Shapiro, 2004; Pye et al., 2004). The sequences alignments indicate that the C-terminal region of SATs is highly conserved in algae and other organisms and, based on the work

done on *E. coli* by Pye et al. (2004), it is likely to be responsible for the hetero-oligomerization with OAS-TL. The C-terminal domain is also where the catalytic site is located (Bogdanova & Hell, 1997). The idea of a bifunctional C-terminal SAT domain (involved in catalysis and oligomerization) was further strengthened by the modelling of the C-terminus of plant SAT using bacterial acyltransferase structures as template (Vuorio et al., 1991; Vaara, 1992): the C-terminus of SAT encompasses two sections, a left-handed parallel β - helix (L β H) domain, which carries the catalytically active site, and a C-terminal tail that could not be modelled due to low homology to the acyltransferases (Wirtz et al., 2001). Given the fact that the C-terminus domain aminoacid sequence of algae is very similar to that of empryophytes, it may operate as in embryophytes.

The SAT–SAT interaction domain is instead located at the N-terminal α -helical domain (Bogdanova & Hell, 1997). Here, homology between algae and vascular plants sequences are smaller and this may indicate possible differences in the size of the Cysteine Synthase Complex in algae and plants (see Fig. 5-1).

One thing seems to differentiate red lineage algae from green algae and their descendants: the number of cysteine residues, which are more numerous in the red lineage (especially in haptophyte). In ATPS, the number of cysteines was found to be related to redox regulation (Prioretti et al., 2016). At this stage, my data do not allow to verify if redox regulation exists in SAT and whether such regulation exists only in the SATs with more cysteine residues. In embryophytes, SAT does not appear to be redox-regulated; this is, of course, no proof that this is also the case in algae, as the work on ATPS demonstrates (Prioretti et al., 2014).

OAS-TL bioinformatic data showed a rather unclear phylogeny, possibly representing a higher variety of isoforms and a higher degree of gene exchanges, as compared to SAT. Overall the OAS-TL of algae showed a highly conserved C-terminal region. The OAS-TL protein size of algae is in the range 35-44 kDa, not too different from the enzymes of embryohytes (Table. 4-8; in *A. thaliana* OAS-TL has a mass of 33-37 kDa). The immunoreactions suggest that different sizes may be present in green algae, although further analyses are required to confirm this. Interestingly, OAS-TL activity (as sulfide production) is higher when the enzyme is assayed in diluted crude extracts. This, in the literature (Bogdanova & Hell, 1997; Wirtz et al., 2001) is interpreted as an indication that the enzyme operates when not complexed. This is certainly a very indirect evidence, but support the idea that OAS-TL is regulated in plants as in embryophytes (Takahashi et al., 2011).

5.2. Cysteine Synthase Complex in algae

The main objective of my thesis was to verify whether algae form Cysteine Synthase Complexes, like vascular plants (Saito et al., 1995; Droux et al., 1998; Wirtz et al., 2001, 2010) and bacteria (Kredich & Tomkins, 1966). As reported above, the features of algae OAS-TL and SAT are suggestive that these proteins have structures similarity with the corresponding embryophyte proteins that make them capable of interacting in a Cysteine Synthase Complex. Both algae SAT and OAS-TL appeared to be located in both the chloroplast and mitochondrion. Other isoforms are possibly located in the cytosol. The algal distribution of the enzyme is thus similar to that of embryohpytes, in general terms. In embryophyte, mitochondria seems the main location of OAS production, whereas cysteine is mostly produced in the cytosol (Takahashi et al., 2011). In the chloroplast, cysteine synthesis is limited by the low OAS availability and the role of this organelle in sulfur metabolism is mostly that of producing sulfide. A similar situation is thought to occur in algae.

I observed that the OAS-TL of the green algae *Chlamydomonas reinhardtii*, *Dunaliella tertiolecta* and *Tetraselmis suecica* bound to the AtSAT5 affinity column much more strongly than the OAS-TL from the diatoms *Thalassiosira pseudonana* and *Phaeodactylum tricornutum* and from the dinoflagellate *Amphidinum klebsii*. If with some degree of approximation, I consider the elution time of OAS-TL from AtSAT5 affinity column as an indication of the strength of the interaction of the proteins in the complex, this may be an indication of a lower propension of algae of the red lineage to form CSC complex. In embryophytes, OAS-TL only catalyzes cysteine production when it is free, whereas the complex is conducive to the synthesis of OAS. Therefore, the presumed lower tendency of red-lineage OAS-TL to bind SAT may reflect the higher tendency of red lineage algae to allocate C to cysteine, as compared to green algae. This may be linked to the appreciably higher DMSP concentration in red lineage algae than in green algae (Giordano et, al., 2008), which requires a higher flux of S through cysteine and then methionine (Giordano & Prioretti, 2016). If this will be confirmed by *ad hoc* measurements, it would provide further mechanistic support to the Sulfur Facilitation Hypothesis (Ratti et al., 2011): the different organization of red algae CSC may funnel more S into DMSP. This would lead to the higher S quotas of these cells and may consequently lead to the competitive advantage afforded by the anti-grazing power of the DMSP cleavage products (Norici et al., 2005).

In A. thaliana, E. coli and S. typhimurium, the Cystein Synthase Complex is composed of a hexamer of SAT and two dimers of OAS-TL (Wirtz et al., 2004). My experiments results, which were consisted with the reported data (Salbitani et al., 2014) provide proof-of-concept for the biochemical analysis of the cysteine synthase complex in different microalgal species. Subsequently, my experiments in size exclusion chromatography seem to suggest that the algal complexes (although with A. thaliana SAT) are always larger than the mass of 320 kDa reported by Wirtz et al, (2004) for the embryophytes complex. More recently, it has been suggested that each hexamer of SAT may bind up to six dimers of OAS-TL, one for each C-terminal domain of the protein (Pye et al., 2004). Based on the estimated mass of the eluted native complex, I propose that the stoichiometry of the algae Cysteine Synthase Complex is different from that in embryophytes: the algal CSC may be made of two SAT trimer connected 'head to head' form one hexamer, with one OAS-TL dimer bound to each SAT C-terminus (Fig. 5-1 A); this gives a total mass of about 600 kDa, compatible with the size of the complex eluted from the size exclusion column. Alternatively, given that the sequence difference at the N-terminus would lead to believe that differences between algae and plant CSC are more likely to reside in the SAT-SAT interactions, I proposed a 6 SAT (2 SAT trimers): 12 OAS-TL (6 OAS-TL dimers) stoichiometry.

In *E. coli* and possibly in *Arabidopsis*, the Cysteine Synthase Complex appears to be composed of a SAT homohexamer and two OAS-TL dimmers (Fig. 5-1 Panel B). The SAT hexamer is constituted by two trimers arranged head-to-head with the C-terminal tails of each trimer at opposite ends of the hexamer (Kumaran et al., 2009). The interaction between SAT and OAS-TL occurs through portions of SAT C-terminus, with allegedly a crucial involvement of a hexapeptide with the sequence (I/V/L)-G-XXXX-(I/V/L) (Bogdanova & Hell., 1997; Wirtz et al., 2001). This general hexapeptide is present also in algae (Fig. 4-4). On the OAS-TL side, binding with SAT takes place through a KPGPHK sequence at the C-terminus. In algae the first and last two amino acids of this sequence are often substituted (Table. 4-7). As most proteins consist of multiple domains, and domains determine the function and evolutionary relationships of proteins, it is important to understand the principles of domain combinations and interactions (Vogel et al., 2004).

The purification of the algal CSC showed that the complex was much larger in algae than in plants (Fig. 4-25), with an approximate mass of 600 kDa (Fig. 4-26 to Fig. 4-32). On the basis of the information provided by Birke et al., 2015 and Yi et al., 2013, on the size difference between algal and *Arabidopsis* CSC complex, and on the variations in both SAT and of OAS-TL sequences involved in the interaction between these two proteins in algae, I propose that the algal CSC contains two SAT trimers, as in vascular plant, but each SAT protein binds one OAS-TL dimer through its C-terminus. The proposed structure of the algal CSC is shown in Fig. 5-1 Panel A.

Fig. 5-1. Proposed structure of Algae Cysteine Synthase Complex.Panel A shows the proposed structural organization of theCysteine Synthase Complex of algae (A) in comparison to that of vascular plants (B).

5.3. ATP-S redox regulation

The regulatory process that I envisage for the redox-regulated ATP-S assumed that the perception of the redox state of the cell was mediated by the plastoquinone pool of the photosynthetic electron transfer chain. This hypothesis was based on the fact that other redox-regulated processes involving early stages in nutrient assimilation pathway adopt this mode of regulation. For instance, *Chlamydomonas reinhardtii* nitrate reductase expression and activity are controlled by the redox state of the plastoquinone pool (Giordano et al., 2007). I, therefore, attempted to verify whether blocking plastoquinone reduction by using Dichloromethyl Urea (DCMU) I could modulate ATP-S activity.

The results of my experiments did not show any impact of plastoquinone oxidation on ATP-S activity. The interpretation of these results is difficult. Unfortinately, the limited time at my disposal made it impossible to go deeper in the matter. It is possible that the redox state of the plastoquinone pool only operates in the activation

direction, but not in the deactivation direction. In the case of nitrate reductase, it was observed that the expression of nitrate reductase gene could be effectively blockade blocked by the oxidation of the plastoquinone pool, but the opposite result was not obtained by the over reduction of the pool. It may also be that, as for instance in the case of some diatom carbonic anhydrase (Kikutani et al., 2012), redox regulation is exerted through thioredoxin, thus using the electrons most likely donated from ferredoxin. Unfortunately, I must leave this question open for future studies.
		Ø
9	128	J
U		

6. References

- Álvarez, C., Calo, L., Romero, L. C., García, I., & Cecilia, G. (2010). An O-Acetylserine(thiol)lyase Homolog with L-Cysteine Desulfhydrase Activity Regulates Cysteine Homeostasis in *Arabidopsis*. *Plant physiology*, *152*, 656–669. https://doi.org/10.1104/pp.109.147975.
- Álvarez, C., García, I., Moreno, I., Pérez-pérez, M. E., Crespo, J. L., Romero, L. C., & Gotor, C. (2012). Cysteine-Generated Sulfide in the Cytosol Negatively Regulates Autophagy and Modulates the Transcriptional Profile in *Arabidopsis*. *The Plant Cell*, 1–15. https://doi.org/10.1105/tpc.112.105403.
- Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, Jinghui., Zhang, Zheng., Miller, Webb., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs *Nucleic Acids Research*, 25 (17), 3389-3402. https://doi.org/10.1093/nar/25.17.3389.
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic Local Alignment Search Tool. *Journal of Molecular Biology*, 215 (3), 403-410.
- Andreae, M.O. (1986) The Ocean as a Source of Atmospheric Sulfur Compounds. In: Buat-Ménard P. (eds.), The Role of Air-Sea Exchange in Geochemical Cycling. NATO ASI Series (*Series C: Mathematical and Physical Sciences*), vol 185. Springer, Dordrecht, p: 331-362. https://doi.org/10.1007/978-94-009-4738-2_14.
- Andreae, Meinrat O. (1990). Ocean-atmosphere interactions in the global biogeochemical sulfur cycle *. *Marine Chemistry*, 30, 1–29.
- Armbrust, E. V., Berges, J. A., Bowler, C., Green, B. R., Martinez, D., Putnam, N. H., ... & Rokhsar, D. S. (2004). The Genome of the Diatom *Thalassiosira pseudonona*: Ecology, Evolution, and Metabolsim. *Science (New York, N.Y.)*, 306 (October), 79–85.
- Becker, A., Kredich, N. M., & Tomkins, G. M. (1968). The Purification and Characterization of O-Acetylserine from Salmonella typhimurium *. Journal of biological chemistry 244 (9), 2418-2427.
- Birke, H., Hildebrandt, T. M., Wirtz, M., & Hell, R. (2015). Sulfide detoxification in plant mitochondria. *Methods in Enzymology*, 555, 271–286. https://doi.org/10.1016/bs.mie.2014.11.027.
- Bogdanova, N., & Hell, R. (1997). Cysteine synthesis in plants : protein-protein interactions of serine acetyltransferase from *Arabidopsis thaliana*. *The Plant Journal*, *11* (2), 251–262.
- Bonner, E. R., Cahoon, R. E., Knapke, S. M., & Jez, J. M. (2005). Molecular basis of

cysteine biosynthesis in plants: Structural and functional analysis of O-acetylserine sulfhydrylase from *Arabidopsis thaliana*. *Journal of Biological Chemistry*, 280 (46), 38803–38813. https://doi.org/10.1074/jbc.M505313200.

- Borowitzka, M. A. (2016) Systematics, taxonomy and species names: do they matter? In: Borowitzka, M. A., Beardall, J., Raven, J. A. (eds.), The physiology of microalgae. *Springer, Dordrecht*, p: 655–681. https://doi.org/10.1007/978-3-319-24945-2.
- Bromke, M. A., Hoefgen, R. (2013). Phylogenetic aspects of the sulfate assimilation genes from *Thalassiosira pseudonana*. *Amino Acids* 44:1253–1265. https://doi.org/10.1007/s00726-013-1462-8.
- Burnell, J. N. (1984). Sulfate assimilation in C4. plants. *Plant Physiology* 75, 873–875. https://doi.org/10.1104/pp.75.3.873.
- Calo, L., Romero, L. C., & Garcı, I. (2010). An O-Acetylserine (thiol) lyase Homolog with L-Cysteine Desulfhydrase Activity Regulates Cysteine Homeostasis. *Plant Physiology*, 152 (February), 656–669. https://doi.org/10.1104/pp.109.147975.
- Campanini, B., Speroni, F., Salsi, E., Cook, P.F., Roderick, S.L., Huang, B., Bettati, S., & Mozzarelli, A. (2005). Interaction of serine acetyl-transferase with O-acetylserine sulfhydrylase active site: evidence from fluorescence spectroscopy. *Protein Science*. 14, 2115-2124.
- Canfield, D. E., Thamdrup, B., & Fleischer, S. (1998). Isotope fractionation and sulfur metabolism by pure and enrichment cultures of elemental sulfur-disproportionating bacteria. *Limnology and Oceanography*, 43 (2), 253-264.
- Canfield, D. E. (2004). THE EVOLUTION OF THE EARTH SURFACE SULFUR RESERVOIR. *American Journal of Science*, *304* (December), 839–861.
- Cabello-yeves, Pedro. J., Haro-moreno, Jose. M., & Coleman, Maureen. (2017). Novel *Synechococcus* Genomes Reconstructed from Freshwater Reservoirs. *Frontiers in Microbiology*, *8*, 1-13. https://doi.org/10.3389/fmicb.2017.01151.
- Chronis, D., & Krishnan, Æ. H. B. (2004). Sulfur assimilation in soybean (*Glycine max* [L.] Merr .): molecular cloning and characterization of a cytosolic isoform of serine acetyltransferase. *Palnta*, 417–426. https://doi.org/10.1007/s00425-003-1123-3.
- Daboussi, F., Leduc, S., Maréchal, A., Dubois, G., Guyot, V., Perez-Michaut, C., ... & Duchateau, P. (2014). Genome engineering empowers the diatom *Phaeodactylum tricornutum* for biotechnology. *Nature Communications*, 5 (May), 1–7. https://doi.org/10.1038/ncomms4831.
- Dacey, J. W. H., King, G. M., & Wakeham, S. G. (1987). Factors controlling emission of dimethylsulphide from salt marshes. *Nature 330*, 643–645. https://doi.org/10.1038/330643a0.
- Dahl, C., Hell, R., Leustek, T., & Knaff, D. (2008). Sulfur Metabolism in

Phototrophic Organisms. In: Rüdiger Hell, Christiane Dahl, Thomas Leustek. (eds.), *Sulfur Metabolism in Phototrophic Organisms*, p: 1–14. https://doi.org/10.1007/978-1-4020-6863-8 1.

- de Souza, M. P. & Yoch, D. C. (1995a). Comparative physiol- ogy of dimethyl sulphide production by dimethylsulfoniopropionate lyase in *Pseudomonas doudoroffii* and *Alcaligenes* sp. strain M3A. *Appl Environ Microbiol 61 (11)*: 3986–3991.
- de Souza, M. P. & Yoch, D. C. (1995b). Purification and characterization of dimethylsulfoniopropionate lyase from an Alcaligenes-like dimethyl sulphide-producing marine isolate. *Appl Environ Microbiol 61 (1)*, 21–26.
- Dickinson, D. A., & Forman, H. J. (2002). Cellular glutathione and thiols metabolism. *Biochemical and Pharmacology*, 64 (2002), 1019-1026.
- Dietz, K. (2015). Thiol switches in redox regulation of chloroplasts : balancing redox state , metabolism and oxidative stress. *The Journal of Biological Chemistry*,396 (5), 483–494. https://doi.org/10.1515/hsz-2014-0281.
- Droux, M., Ruffet, M. L., Douce, R., & Job, D. (1998). Interactions between serine acetyltransferase and O-acetylserine (thiol) lyase in higher plants-structural and kinetic properties of the free and bound enzymes. *European Journal of Biochemistry / FEBS*, 255 (1), 235–45. https://doi.org/10.1046/j.1432-1327.1998.2550235.x.
- Droux, Michel. (2004). Sulfur assimilation and the role of sulfur in plant metabolism: A survey. *Photosynthesis Research*, *79 (3)*, 331-348, https://doi.org/10.1023/B:PRES.0000017196.95499.11.
- Emanuelsson, O., Brunak, S., von Heijne, G., & Nielsen, H. (2007). Locating proteins in the cell using TargetP, SignalP and related tools. *Nature Protocols*, 2 (4), 953–971. https://doi.org/10.1038/nprot.2007.131.
- Fabregas, J., Herrero, C., Cabezas, B., & Abalde, J. (1986). Biomass production and biochemical composition in mass cultures of the marine microalga *Isochrysis* galbana Parke at varying nutrient concentrations. Aquaculture, 53 (2), 101–113. https://doi.org/10.1016/0044-8486(86)90280-2.
- Fanesi, A., Raven, J. A., & Giordano, M. (2014). Growth rate affects the responses of the green alga Tetraselmis suecica to external perturbations. *Plant, Cell and Environment*, 37 (2), 512–519. https://doi.org/10.1111/pce.12176.
- Felix Autenrieth., Barry Isralewitz., Zaida Luthey-Schulten., Anurag Sethi., Taras Pogorelov. (2005). Bioinformatics and Sequence Alignment. June 2005.
- Fron, B. R. E., Alloran, E. L. H., & Olmes, S. U. H. (1996). Bootstrap confidence levels for phylogenetic trees. Proc. Natl. Acad. Sci. USA, 93 (14), 7085–7090.
- Gaitonde, M. K. (1967). A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. *The Biochemical Journal*, *104 (2)*, 627–633.

- Garfin, D. E. (1990). One-Dimensional Gel Electrophoresis. *Methods in Enzymology*, *182 (9)*, 497–513. https://doi.org/10.1016/S0076-6879(09)63029-9.
- Gibbs, N., Duffus, C. M., (1976). Natural Protoplast *Dunaliella* as a source of protein. *Applied and environment microbiology*, *31 (4)*, 602–604.
- Giordano, M., Pezzoni, V., Hell, R. (2000). Strategies for the allocation of resources under sulfur limitation in the green algae *Dunaliella salina*. *Plant Physiology 124*, 857–864.
- Giordano, M., Norici, A., & Hell, R. (2005). Sulfur and phytoplankton : acquisition , metabolism and impact on the environment. *New Phytologist*, *166*: 371–382. https://doi : 10.1111/j.1469-8137.2005.01335.x.
- Giordano, M., Chen, Yi-bu., Koblizek, M., Falkowski, P. (2005). Regulation of nitrate reductase in *Chlamydomonas reinhardtii* by the redox state of the plastoquinone pool Regulation of nitrate reductase in *Chlamydomonas reinhardtii* by the redox state of the plastoquinone pool. *European Journal of Phycology*, 0262 (40), 345-352. https://doi.org/10.1080/09670260500334263.
- Giordano, M., Norici, A., Ratti, S., & Raven, J. A. (2008). Role of Sulfur for Algae: Acquisition, Metabolism, Ecology and Evolution. In: Rüdiger Hell, Christiane Dahl, Thomas Leustek. (eds.), *Sulfur Metabolism in Phototrophic Organisms*, p: 397–415. https://doi.org/10.1007/978-1-4020-6863-8_20.
- Giordano, M., & Prioretti, L. (2016). Sulphur and Algae: Metabolism, Ecology and Evolution. In: M.A. Borowitzka, J.A Raven, J. Beardall. (eds.), *The Physiology* of Microalgae, Developments in Applied Phycology 6, p: 185-200. https://doi.org/10.1007/978-3-319-24945-2.
- Govindjee. Chlorophyll a Fluorescence: A Bit of Basics and History. (2004). In:
 George C. Papageorgiou and Govindjee (eds): Chlorophyll Fluorescence: A Signature of Photosynthesis, *Kluwer Academic Publishers. Printed in The Netherlands*, p: 1–42.
- Gorman, J., & Shapiro, L. (2004). Structure of serine acetyltransferase from Haemophilus influenzae Rd. Acta Crystallographica Section D: Biological Crystallography, 60 (9), 1600–1605. https://doi.org/10.1107/S0907444904015240.
- Gorman, D. S., Levine, R. P. (1965). Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of *Chlamydomonas reinhardii*. *Proc Natl Acad Sci*, USA 54:1665–1669.
- Goujon, M, McWilliam, H., Li, W., Valentin, F., Squizzato, S., Paern, J., & Lopez, R. (2010). A new bioinformatics analysis tools framework at EMBL EBI. *Nucleic Acids Research* 38 Suppl: W695–699. https://doi:10.1093/nar/gkq313.
- Gray, M. W., & Bore, P. H. (1988). Organization and expression of algal (*Chlamydomonas reinhardtii*) mitochondrial DNA. *Phil. Trans. R. Soc. Land. B*,

319 (B), 135-147.

- Gröne, T. & Kirst, G. O. (1992). The effect of nitrogen deficiency, methionine and inhibitors of methionine metabolism on the DMSP contents of Tetraselmis subcordiformis (Stein). Marine Biology 112, 497-503.
- Griffiths, L. M., Swartzlander, D., Meadows, K. L., Wilkinson, K. D., Corbett, A. H., & Doetsch, P. W. (2009). Dynamic Compartmentalization of Base Excision Repair Proteins in Response to Nuclear and Mitochondrial Oxidative Stress. *Molecular and Cellular Biology*, *29 (3)*, 794–807. https://doi.org/10.1128/MCB.01357-08.
- Grossman, A. (2000). Acclimation of *Chlamydomonas reinhardtii* to its Nutrient Environment. *Protist*, *151 (3)*, 201–224. https://doi.org/10.1078/1434-4610-00020.
- Habicht, K. S., Gade, M., Thamdrup, B., & Berg, P. (2002). Calibration of Sulfate Levels in the Archean Ocean. *Science*, *298 (December)*, 2372–2375.
- Harris, D. J., Conrad, J. C., & Lewis, J. A. (2009). Evaporative lithographic patterning of binary colloidal films Evaporative lithographic patterning of binary colloidal films. *Phil. Trans. R. Soc. A (2009) 367*, 5157–5165. https://doi.org/10.1098/rsta.2009.0157.
- Hatzfeld, Y., Maruyama, A., Schmidt, A., Noji, M., Ishizawa, K., & Saito, K. (2000). β-Cyanoalanine Synthase Is a Mitochondrial Cysteine Synthase-Like Protein in *Spinach* and *Arabidopsi*. *Plant Physiol.* 123: 1163-1171. https://doi.org/10.1104/pp.123.3.1163.
- He, Liyan., Han, Xiaotian., Yu, Zhiming. (2014). A Rare *Phaeodactylum tricornutum Cruciform Morphotype*: Culture Conditions, Transformation and Unique Fatty Acid Characteristics. *PLOS ONE*, 9 (4), 1-8. https://doi.org/10.1371/journal.pone.0093922
- Henikoff, S., & Henikoff, J.G. (1992). Amino acid substitution matrices from protein blocks. *Proc. Natl. Acad. Sci.*, 89, 10915-10919.
- Heeg, C., Kruse, C., Jost, R., Gutensohn, M., Ruppert, T., & Wirtz, M. (2008).
 Analysis of the *Arabidopsis* O -Acetylserine (thiol) lyase Gene Family
 Demonstrates Compartment-Specific Differences in the Regulation of Cysteine
 Synthesis. *The Plant Cell*, 20 (January), 168–185.
 https://doi.org/10.1105/tpc.107.056747.
- Hell R, Jost R, Berkowitz O, & Wirtz M. 2002. Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant *Arabidopsis thaliana*. *Amino Acids 22*: 245–257.
- Hell, R., & Wirtz, M. (2008). Metabolism of cysteine in plants and phototrophic bacteria. In: Rüdiger Hell, Christiane Dahl, Thomas Leustek. (eds.), *Sulfur Metabolism in Phototrophic Organisms*, p: 59–91. https://doi.org/10.1007/978-1-4020-6863-8 4.

- Hell, R. & Wirtz, M. (2011) Molecular biology, biochemistry and cellular physiology of cysteine metabolism in *Arabidopsis thaliana*. *American Society of Plant Biologist, Arabidopsis* Book 2011, 9, e0154. 1-19, https://doi: 10.1199/tab.0154.
- Howarth, J. R., Dom, R., Guti, G., & Wray, J. L. (1997). Cysteine biosynthesis in higher plants: a new member of the *Arabidopsis thaliana* serine acetyltransferase small gene family obtained by functional complementation of an *Escherichia coli* cysteine auxotroph. *Biochim Biophys Acta 1350*, 123–127.
- Howarth, J. R., Dom, R., Guti, G., Wray, J. L., Romero, L. C., & Gotor, C. (2003). The serine acetyltransferase gene family in *Arabidopsis thaliana* and the regulation of its expression by cadmium. *Plant Molecular Biology*, *51 (4)*, 589–598.
- Kah, L. C., Lyons, T. W., & Frank, T. D. (2004). Low Marine Sulphate and Protracted Oxygenation of the Proterozoic Biosphere. *Nature*, 431, 881-884. https://doi.org/10.1038/nature 02974.
- Karlin, S., & Altschul, S.F. (1990). Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes, *Proc. Natl. Acad. Sci.*, 87, 2264-2268.
- Kikutani, S., Tanaka, R., Yamazaki, Y., Hara, S., Hisabori, T., Kroth, P. G., & Matsuda, Y. (2012). Redox Regulation of Carbonic Anhydrases via Thioredoxin in Chloroplast of the Marine Diatom *Phaeodactylum tricornutum*. *The Journal of Biological Chemistry*, 287 (24), 20689–20700. https://doi.org/10.1074/jbc.M111.322743.
- Kleckner, Nancy., Hanrahan, Michael., Anderson, Greg., & Lawson, Carolyn. (2016). Bioinformatics Tutorial. *Cellular and Mplecular Biology, Bio 242*, 1–28.
- Knoll, A. H., Summons, R. E., Waldbauer, J. R., & Zumberge, J. E. (2007). The Geological Succession of Primary Producers in the Oceans. In: (eds.), Falkowski, P. G., Knoll, A. H. Evolution of Primary Producers in the Sea, p: 133–164. https://doi.org/10.1016/B978-0-12-370518-1.X5000-0.
- Koonin, E. V., & Galperin, M.Y. (2003). Information Sources for Genomics. In: Koonin EV, Galperin MY. (eds.), *Information Sources for Genomics - Sequence* - *Evolution - Function*, chapter 3 p: 1–30.
- Koonin, E. V., & Galperin, M.Y. (2003). Genome Annotation and Analysis. In: Koonin, E. V., Galperin, M. Y. (eds.), *Information Sources for Genomics -Sequence - Evolution - Function*, chapter 5. p: 1–15.
- Kopriva, S. (2006). Regulation of Sulfate Assimilation in *Arabidopsis* and Beyond. *Annals of Botany* 97, 479–495. https://doi.org/10.1093/aob/mcl006.
- Kopriva, S., Patron, N. J., Keeling, P., & Leustek, T. (2008). Phylogenetic analysis of sulfate assimilation and cysteine biosynthesis in phototrophic organisms. In: Rüdiger Hell, Christiane Dahl, Thomas Leustek. (eds.), *Sulfur Metabolism in Phototrophic Organisms*, p: 31–58. https://doi.org/10.1007/978-1-4020-6863-8_3.

- Kredich, M., & Tomkins, G. M. (1966). The and Enzymic Synthesis of L-Cysteine in Escherichia coli and Salmonella typhimurium. The Journal of Biological Chemistry, 241 (21), 4955-4965.
- Kredich, M., & Becker, M. A. (1969). [197] Cysteine Biosynthesis : Serine Transacetylase and O-Acetylserine Sulfhydrylase. *Methods of Enzymology*, 17 (*Part B*), 459–470. https://doi.org/10.1016/0076-6879(71)17082-6.
- Kredich, N. M., Becker, M. A., & Tomkins, G. M. (1969). Purification and Characterization of Cysteine Synthetase a Bifunctional Protein Complex, from Salmonella typhimurium. The Journal of Biological Chemistry, 244. 2428-2439.

Krueger, S., Niehl, A., Martin, M. C. L., Steinhauser, D., Donath, A., Hildebrandt, T., ... & Hesse, H. (2009). Analysis of cytosolic and plastidic serine acetyltransferase mutants and subcellular metabolite distributions suggests interplay of the cellular compartments for cysteine biosynthesis in *Arabidopsis*. *Plant, Cell and Environment, 49*, 349–367. https://doi.org/10.1111/j.1365-3040.2009.01928.x.

- Kufryk, G. I., Sachet, M., Schmetterer, G., & Vermaas, W. F. J. (2002). Transformation of the cyanobacterium *Synechocystis* sp. PCC 6803 as a tool for genetic mapping : optimization of efficiency. *FEMS Microbiology Letters*, 206, 215–219.
- Kumaran, S., Yi, H., Krishnan, H. B., & Jez, J. M. (2009). Assembly of the Cysteine Synthase Complex and the Regulatory Role of Protein-Protein Interactions *. *The Journal of Biological Chemistry*, 284 (15), 10268–10275. https://doi.org/10.1074/jbc.M900154200.
- Leliaert, F., Smith, D.R., Moreau, H., Herron, M., Verbruggen, H., Delwiche, C.F., & De Clerck O. Phylogeny and molecular evolution of the green algae. *Critical Reviews in Plant Sciences* (in press).
- Leliaert, F., Rousseau, F., De Reviers, B. and Coppejans, E. 2003. Phylogeny of the *Cladophorophyceae* (Chlorophyta) inferred from partial LSU rRNA gene sequences: is the recognition of a separate order Siphonocladales justified? *Europen Journal of Phycology, 38 (3),* 233-246. https://doi.org/10.1080/1364253031000136376.
- León, J., Romero, L.C., Galván, F. and Vega, J.M. (1987). Purification and physicochemical characterization of O-acetyl-1-serine sulfhydrilase from *Chlamydomonas reinhardtii*. *Plant Science* 53, 93–99.
- Leustek, T., Martin, M. N., Bick, J., & Davies, J. P. (2000). PATHWAYS AND REGULATION OF SULFUR METABOLISM REVEALED THROUGHMOLECULAR AND GENETIC STUDIES. Annu. Rev. Plant Physiol. Plant Molicology. Biology, 51, 141-165, https://doi.org/1040-2519/00/0601-0141.
- Levine, R. P. (1965). Cytochrome F and plastocyanin: their sequence in the photosynthetic electron transport chain of *Chlamydomonas reinhardtii*. *PROC. N.*

A. S. 54, 1665–1669.

- Lewin, B. Y. J. C., Lewin, R. A., & Philpott, D. E. (1958). Observations on *Phaeodactylum tricornutum. J. gen. Microbiol.* 18: 418–426.
- Lin, X., Kaul, S., Rounsley, S., Shea, T. P., Benito, M., Town, C. D., ... & Venter, J. C. (1999). Sequence and analysis of chromosome 2 of the plant *Arabidopsis thaliana*. *Nature*, 402 (December), 761-768. https://doi.org/10.1038/45471.
- Lindberg, P., & Melis, A. (2008). The chloroplast sulfate transport system in the green algae *Chlamydomonas reinhardtii*. *Planta*, 228, 951–961. https://doi.org/10.1007/s00425-008-0795-0.
- Liss, P. S., Hatton, A. D., Malin, G., Nightingale, P. D., & Turner, S. M. (1997) Marine sulfur emissions. *Philos T Roy Soc B* 352 (1350), 159–168. https://doi.org/10.1098/rstb.1997.0011.
- Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measure- ment with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.
- Mahmood Tahrin and Yang, Ping-Chang. (2012). Western Blot: Technique, Theory, and Trouble Shooting Tahrin. North American Journal of Medical Science, 4 (9), 429-434. https://doi.org/10.4103/1947-2714.100998.
- Maqsood, S. A. (1974). DETERMINATION OF ALGAE GROWTH POTENTIAL IN NATURAL ENVIRONMENT. Thesis Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN CIVIL ENGINEERING.
- Maul, J. E., Lilly, J. W., Cui, L., Claude, W., Miller, W., Harris, E. H., & Stern, D. B. (2002). The *Chlamydomonas reinhardtii* Plastid Chromosome : Islands of Genes in a Sea of Repeats. *The Plant Cell 14 (November)*, 2659–2679. https://doi.org/10.1105/tpc.006155.present.
- Mayer, K., Schuller, C., Wambutt, R., Murphy, G., Volckaer, G., Pohl, T., ..., & McCombie, W. R. (1999). Sequence and analysis of Chromosome 4 of the plant *Arabidopsis thaliana*. *Nature*, 402, 469-477.
- McNeil, S. D., Nuccio, M. L., & Hanson, A. D. (1999). Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. *Plant Physiol* 120: 945–949
- Melis, A., & Chen, H. (2005). Chloroplast sulfate transport in green algae–genes, proteins and effects. *Photosynthesis Research*, *86*, 299–307. https://doi.org/10.1007/s11120-005-7382-z.
- Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, J., Witman, G. B., ...& Grossman, A. R. (2010). The *Chlamydomonas* Genome Reveals the Evolution of Key Animal and Plant Functions. *Science*, *318* (5848), 245–250. https://doi.org/10.1126/science.1143609.

- Mesquita, C., Alexandre, D., Aranda, G., & Couri, S. (2013). Morphological and chemical aspects of Chlorella galbana and Tetraselmis gracilis microalgae. *Natural Science*, 5 (7), 783–791. http://dx.doi.org/10.4236/ns.2013.57094.
- Miyahara, M., Aoi, M., Inoue-kashino, N., Kashino, Y., Ifuku, K., Electroporation, M., ...& Fuku, K. I. (2014). Highly Efficient Transformation of the Diatom *Phaeodactylum tricornutum* by Multi-Pulse Electroporation. *Biosci. Biotechnol. Biochem*, 77 (4), 874-876, https://doi.org/10.1271/bbb.120936.
- Murillo, M., Foglia, R., Diller, A., Lee, S., & Leustek, T. (1997). Serine acetyltransferase from *Arabidopsis thaliana* can functionally complement the cysteine requirement of a cysE mutant strain of *Escherichia coli*. *Cell Mol Biol Res 41*, 425–433.
- Nakamura, Y., Kaneko, T., Hirosawa, M., Miyajima, N., & Tabata, S. (1998). CyanoBase, a www database containing the complete nucleotide sequence of the genome of *Synechocystis* sp. strain PCC 6803. *Nucleic Acids Research*, 26 (1), 63–67. https://doi.org/10.1093/nar/26.1.63.
- Nielsen, Henrik., Engelbrecht1, Jacob., & Brunak, Søren. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 10 (1), 1–6.
- Noji, M., Inoue, K., Kimura, N., Gouda, A., & Saito, K. (1998). Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from *Arabidopsis thaliana*. *The Journal of Biological Chemestry.* 273 (49): 32739-32745. https://doi:10.1074/jbc.273.49.32739.
- Norici, A., Hell, R., & Giordano, M. (2005). Sulfur and primary production in aquatic environments : an ecological perspective. *Photosynthesis Research*, *86*, 409–417. https://doi.org/10.1007/s11120-005-3250-0.
- Notredame, C., Higgins, D, G., & Heringa, J. (2000). T-Coffee : A Novel Method for Fast and Accurate Multiple Sequence Alignment. *Journal Molecular Biology*, *302*, 206-217, https://doi.org/10.1006/jmbi.2000.4042.
- Olsen, L. R., Huang, B., Vetting, M. W., & Roderick, S. L. (2004). Structure of serine acetyltransferase in complexes with CoA and its cysteine feedback inhibitor. *Biochemistry*, *43* (20), 6013–6019. https://doi.org/10.1021/bi0358521.
- Oren-shamir, M., Pick, U., & Avron, M. (1990). Plasma Membrane Potential of the Alga *Dunaliella*, and Its Relation to Osmoregulation. *Plant Physiology*, *93*, 403–408, https://doi.org/10.0032-0889/90/93/0403/06.
- Oren, A. (2005). A hundred years of *Dunaliella* research : 1905–2005. *14*, 1–14. https://doi.org/10.1186/1746-1448-1-2.
- Peterson, G. L. (1977). A Simplification of the Protein Assay Method of Lowry et al. Which is More Generally Applicable, *Analytical Biochemistry*, *83*, 346–356.

- Prioretti, L. (2014). Sulfur metabolism in microalgae. PhD Thesis. Università Politecnica delle Marche.
- Prioretti, L., Gontero, B., Hell, R., & Giordano, M. (2014). Diversity and regulation of ATP sulfurylase in photosynthetic organisms. *Frontiers in Plant Science*, 5 (*November*), 597, 1-12. https://doi.org/10.3389/fpls.2014.00597.
- Prioretti, L., & Giordano, M. (2016). Direct and indirect influence of sulfur availability on phytoplankton evolutionary trajectories. *Journal of Phycological* 52, 1094-1102. https://doi.org/10.1111/jpy.12468.
- Pye, V. E., Tingey, A. P., Robson, R. L., & Moody, P. C. E. (2004). The structure and mechanism of serine acetyltransferase from *Escherichia coli*. *Journal of Biological Chemistry*, 279 (39), 40729–40736. https://doi.org/10.1074/jbc.M403751200.
- Rabinowitch, E., Govindjee, 1969. The photosynthetic pigments. In: Rabinowitch, E., Govindjee. (eds.), Photosynthesis. New York, USA: *John Wiley and Sons*, Inc., 102-123.
- Ratti, S., Knoll, A. H., Giordano, M., & Marche, P. (2011). Did sulfate availability facilitate the evolutionary expansion of chlorophyll a + c phytoplankton in the oceans ?. *Geobiology*, (2011), 301–312. https://doi.org/10.1111/j.1472-4669.2011.00284.x.
- Roberts, M. A., & Wray, J. L. (1996). Cloning and characterisation of an *Arabidopsis thaliana* cDNA clone encoding an organeilar isoform of serine acetyltransferase. *Plant Molecular Biology*, *30*, 1041–1049.
- Rochaix, J. D. (1995). *Chlamydomonas reinhardtii* as the Photosynthetic Yeast. *Annual Review of Genetics*, 29, 209–230. https://doi.org/10.1146/annurev.genet.29.1.209.
- Rolland, N., Ruffet, M.-L., Job, D., Douce, R. & Droux, M. (1996). Spinach chloroplast O-acetylserine (thiol) lyase exhibits two cata lytically non-equivalent pyridoxal-5'-phosphate-containing active sites. *Europen Journal of Biochemistry*. 236 (1), 272–282. https://doi.org/10.1111/j.1432-1033.1996.00272.x.
- Saito, K., Yokoyama, H., Noji, M., & Murakoshi, I. (1995) Molecular cloning and characterization of a plant serine acetyltransferase playing a regulatory role in cysteine biosynthesis from watermelon. *Journal Biological. Chemistry.* 270 (27), 16321-16326. https://doi: 10.1074/jbc.270.27.16321.
- Saitou, N., & Nei, M. (1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. *Mol Biol Evo*, 4 (4), 406–425. https://doi.org/citeulike-article-id:93683.
- Salbitani, G., Wirtz, M., Hell, R., & Carfagna, S. (2014). Affinity purification of O-acetylserine(thiol)lyase from *Chlorella sorokiniana* by recombinant proteins from *Arabidopsis thaliana*. *Metabolites*, 4, 629–639. http://dx.doi.org/10.3390/ metabo4030629.

- Sambrook, J., & Russell, D.W. (2006). The Hanahan Method for Preparation and Transformation of Competent *E. coli*: High-Efficiency Transformation. In: (eds.), Molecular Cloning: A Laboratory Manual, p: 162-167. *Cold Spring Harbor Laboratory Press*, New York, USA.
- San Pedro, A., González-López, C. V., Acién, F. G., & Molina-Grima, E. (2013). Marine microalgae selection and culture conditions optimization for biodiesel production. *Bioresource Technology*, *134*, 353–361. https://doi.org/10.1016/j.biortech.2013.02.032.
- Sanderson, M. J., & Driskell, A. C. (2003). The challenge of constructing large phylogenetic trees. *Trends in Plant Science*, 8 (8), 374–379. https://doi.org/10.1016/S1360-1385(03)00165-1.
- Salanoubat, M., Lemcke, K., Rieger, M., Ansorge, W., Unseld, M., Fartmann, B., ..., Yasuda, M., & Tabbata, S. (2000). Sequence and analysis of chromosome 3 of the plant *Arabidopsis thaliana*, *Nature*, 408 (December), 820–822.
- Schmidt, A. (1979) Photosynthetic assimilation of sulphur compounds. In: Gibbs ML, Latzko E (eds.), *Photosynthesis II. Encyclopedia of plant physiology. Springer*, Berlin, p: 481–496. https://doi.org/10.1007/978-3-642-67242-2_37.
- Schmidt, A., & Jager, K. (1992). Open Questions About Sulfur. *Annual Review of Plant Physiology and Plant Molecular Biology*, *43*, 325–49.
- Selim, Khaled A., Haase, Florian., Hartmann, Marcus D., Hagemann, Martin., Forchhammer, Karl. (2018). PII-like signaling protein SbtB links cAMP sensing with cyanobacterial inorganic carbon response. *Proc. Natl. Acad. Sci. 115 (21)*, E4861-E4869. https://doi/10.1073/pnas.1803790115.
- Mayer, K., Schüller, C., Wambutt, R., Murphy, G., Volckaert, G., Pohl. T., ...& McCombie, W. R. (1999). Sequence and analysis of chromosome 4 of the plant *Arabidopsis thaliana*. (1999). *Nature*, *402*, 769-777.
- Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high quality protein multiple sequence alignments using Clustal Omega. *Molecular Systems Biology* 7 Article number: 539, 1-6. https://doi:10.1038/msb.2011.75
- Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (*Order Chroococcales*). *Bacteriological Reviews*, 35 (2), 171–205. https://doi.org/10.1016/j.jbiotec.2013.07.020.
- Steinke, M., Malin, G., Archer, S. D., Burkill, P. H., & Liss, P. S. (2002). DMS production in a coccolithophorid bloom : evidence for the importance of dinoflagellate DMSP lyases. *Aquatic Microbial Ecology*, 26, 259–270.
- Steinke, M., Malin, G., Gibb, S. W., & Burkill, P. H. (2002). Vertical and temporal variability of DMSP lyase activity in a coccolithophorid bloom in the northern

North Sea. Deep-Sea Reasarch, 49, 3001–3016.

- Steinke, M., Daniel, C., & Kirst, G.O. (1996). DMSP lyase in marine macro- and microalgae. In: Kienem, R. P., Visscher, P. T., Keller, M. D., & Kirst, G. O., eds. Biology and Environmental Chemistry of DMSP and Related Sulfonium Compounds. *New York, USA: Plenum Press*, 317–324.
- Steinke, M., & Kirst, G.O. (1996). Enzymatic cleavage of dimethylsulfonioproprionate (DMSP) in cell-free exctracts of the marine macroalgae *Enteromorpha clathrata* (Roth) Grev. (*Ulvales, Chlorophyta*). Journal of Experimental Marine Biology and Ecology 201 (1-2): 73–85. https://doi.org/10.1016/0022-0981(95)00207-3.
- Tabata, S., Nakamura, Y., Kotani, H., Kato, T., Asamizu, E.,... Robben, J. (2000). Sequence and analysis of chromosome 5 of the plant Arabidopsis thaliana. *Nature*, 408, 823-826.
- Takahashi, H., Kopriva, S., Giordano, M., Saito, K., & Hell, R. (2011). Sulfur Assimilation in Photosynthetic Organisms: Molecular Functions and Regulations of Transporters and Assimilatory Enzymes. *Annual Review of Plant Biology*, 62 (1), 157–184. https://doi.org/10.1146/annurev-arplant-042110-103921.
- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. *Molecular Biology* and Evolution, 28 (10), 2731–2739. https://doi.org/10.1093/molbev/msr121.
- Theologis, A., Ecker, J. R., Palm, C. J., Federspiel, N. A., Kaul, S., White, O., ...& Davis, R. W. (2000). Sequence and analysis of chromosome 1 of the plant *Arabidopsis thaliana*. *Nature*, 408 (December), 816-820.
- Tommaso, P. Di, Moretti, S., Xenarios, I., Orobitg, M., & Notredame, C. (2011). T-Coffee : a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. *Nucleic Acids Research, 39 (May)*, 13–17. https://doi.org/10.1093/nar/gkr245.
- Turner, S. M., & Beidel, D. C. (1988). SOME FURTHER COMMENTS ON THE MEASUREMENT OF SOCIAL PHOBIA. Behavior Research and Therapy, 26 (5), 411–413.
- Urano, Y., Manabe, T., Noji, M., & Saito, K. (2000). Molecular cloning and functional characterization of cDNAs encoding cysteine synthase and serine acetyltransferase that may be responsible for high cellular cysteine content in *Allium tuberosum. Gene, 257*, 269–277.
- Vaara, M. (1992). Eight bacterial proteins, including UDP-N- acetylglucosamine acyltransferase (LpxA) and three other transferases of *Escherichia coli*, consist of a six-residue periodicity theme. *Federation of European Microbiology societies Letters*, 76, 249–254.
- Vogel, Christine., Bashton, Matthew., Kerrison, Nicola. D., Chothia, Cyrus., and Teichmann, Sarah. A. (2004). Structure, function and evolution of multidomain

proteins. *Current Opinion in Structural Biology, 14*, 208–216. https://doi.org/10.1016/j.sbi.2004.03.011.

- Vuorio, R. (1991). The Ssc protein of enteric bacteria has significant homology to the acyltransferase Lpxa of lipid A biosynthesis, and to three acetyltransferases. *Federation of European Biochemical Societie, 292 (1)*, 90–94.
- Vuorio, Riitta., Härkönen, Taina., Tolvanenb, Martti., Vaaraa, Martti. The novel hexapeptide motif found in the acyltransferases LpxA and LpxD of lipid A biosynthesis is conserved in various bacteria. *Federation of European Biochemical Societies Letters, 334,* 289-292.
- Weimbs, T., & Santa, C. (2012). Tutorial : How to generate a publication-quality multiple sequence alignment. University of California Santa Barbara, 11/2012.
- Wirtz, M., Berkowitz, O., Droux, M., & Hell, R. (2001). The cysteine synthase complex from plants: Mitochondrial serine acetyltransferase from *Arabidopsis thaliana* carries a bifunctional domain for catalysis and protein-protein interaction. *European Journal of Biochemistry*, 268 (3), 686–693. https://doi.org/10.1046/j.1432-1327.2001.01920.x.
- Wirtz, M., & Droux, M. (2004). O -acetylserine (thiol) lyase : an enigmatic enzyme of plant cysteine biosynthesis revisited in *Arabidopsis thaliana*. *Journal of Experimental Botany, Sulphur Metabolism Special Issue,* 1–14. https://doi.org/10.1093/jxb/erh201.
- Wirtz, M., Droux, M., & Hell, R. (2004). O-acetylserine (thiol) lyase: An enigmatic enzyme of plant cysteine biosynthesis revisited in *Arabidopsis thaliana*. *Journal* of *Experimental Botany*, 55 (404), 1785–1798. https://doi.org/10.1093/jxb/erh201.
- Wirtz, M., Birke, H., Heeg, C., Müller, C., Hosp, F., Throm, C., ...& Hell, R. (2010). Structure and function of the hetero-oligomeric cysteine synthase complex in plants. *Journal of Biological Chemistry*, 285 (43), 32810–32817. https://doi.org/10.1074/jbc.M110.157446.
- Yao, L., Wei, K., Tan, M., Tan, T. W., & Lee, Y. K. (2017). Exploring the transcriptome of non-model oleaginous microalga *Dunaliella tertiolecta* through high-throughput sequencing and high performance computing. *BMC Bioinformatics*, 18 (122,) 1–11. https://doi.org/10.1186/s12859-017-1551-x.
- Yeon, J. Y., Yoo, S. J., Takagi, H., & Kang, H. A. (2018). A Novel Mitochondrial Serine O-Acetyltransferase, OpSAT1, Plays a Critical Role in Sulfur Metabolism in the Thermotolerant Methylotrophic *Yeast Ogataea* parapolymorpha. *Scientific Reports*, (November 2017), 1–12. https://doi.org/10.1038/s41598-018-20630-8.
- Yi, H., Dey, S., Kumaran, S., Lee, S. G., Krishnan, H. B., & Jez, J. M. (2013). Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone. *Journal of Biological Chemistry*, 288 (51), 36463–36472. https://doi.org/10.1074/jbc.M113.527143.

- Yoch, D. C., Ansede, J. H., & Rabinowitz, K. S. (1997). Evidence for intracellular and extracellular dimethylsulfoniopropionate (DMSP) lyases and DMSP uptake sites in two species of marine bacteria. *Appl Environ Microb* 63 (8), 3182–3188.
- Zerulla, K., & Ludt, K. (2016). The ploidy level of *Synechocystis* sp. PCC 6803 is highly variable and is influenced by growth phase and by chemical and physical external parameters. *Microbiology 162:* 730–739. https://doi.org/10.1099/mic.0.000264.
- Zuckerkandl, E., & Pauling, L. (1965). Molecules as documents of evolutionary history. *Journal of Theoretical Biology*, 8 (2), 357–366. https://doi.org/10.1016/0022-5193(65)90083-4.

		Ð
9	143	
\cup		

7. Supplemental material

7.1. Growth curves

Fig. 7-1. Synechocystis sp. PCC6803 growth curve.

Fig. 7-2. Curve for the conversion of the OD of *Synechocystis* sp. PCC 6803 cultures to cell numbers.

_		м
D	144	

Fig. 7-3. Growth curve of Chlamydomonas reinhardtii cultured in TAP medium.

Fig. 7-4. Growth curve of Chlamydomonas reinhardtii cultured in TP medium.

Fig. 7-5. Dunaliella tertiolecta growth curve.

Fig. 7-6. Tetraselmis suecica growth curve.

Fig. 7-7. Thalassiosira pseudonana growth curve.

Fig. 7-8. Phaeodactylum tricornutum growth curve.

Fig. 7-9. Amphinidinium klebsii growth curve.

7.2. Correlation between relative mobility of protein with protein size

Fig. 7-10. Standard curve for the determination of protein size from the relative protein mobility in binding affinity test chromatography for *Synechocystis* sp. PCC 6803.

_		G
PL	148	

Fig. 7-11. Standard curve for the determination of protein size from relative protein mobility in binding affinity test chromatography for *Chlamydomonas reinhardtii* with TAP medium culture extract.

Fig. 7-12. Standard curve for the determination of protein size from the relative protein mobility in binding affinity test chromatography for *Chlamydomonas reinhardtii* with TP medium culture extract.

		D
0	149	

Fig. 7-13. Standard curve for the determination of protein size from the relative protein mobility in binding affinity test chromatography for *Tetraselmis suecica* extract.

Fig. 7-14. Standard curve for the determination of protein size from the relative protein mobility in binding affinity test chromatography for *Dunaelilla tertiolecta* extract.

μ

Fig. 7-15. Standard curve for the determination of protein size from the relative protein mobility in binding affinity test chromatography for *Thalassiosira psedonana* extract.

Fig. 7-16. Standard curve for the determination of protein size the relative protein mobility in binding affinity test chromatography for *Phaedactylum tricornum* extract.

μ

Fig. 7-17. Standard curve for the determination of protein size from the relative protein mobility in binding affinity test chromatography for *Amphidinium klebsii* extract.

7.3. Comparision of algae SAT and OAS-TL with *A. thaliana* sequences

7.3.1. Alignment of the SAT sequences of Cyanobacteria with *A. thaliana* SAT isoforms

SAT1-A.thalia	143 SSIRLDVQAFKDRDPACLSYSSAILHLKGYLALQAYRVAHKLWKQGRKLL	192
Synechocystis	: ::.: :	52
SAT1-A.thalia	193 ALALQSRVSEVFGIDIHPAARIGKGILLDHGTGVVIGETAVIGDRVSILH	242
Synechocystis	53 PRLMSHLARFFTGIEIHPGAQIGQGVFIDHGMGVVIGETAIVGDYSLIYQ	102
SAT1-A.thalia	243 GVTLGGTGKETGDRHPNIGDGALLGACVTILGNIKIGAGAMVAAGSLVLK	292
Synechocystis	103 GVTLGGTGKESGKRHPTLGENVVVGAGAKVLGNIAIGDNVRIGAGSVVLR	152
SAT1-A.thalia	293 DVPSHSMVAGNPAKLI 308	
Synechocystis	153 DVPADFTVVGVPGRMV 168	
SAT2-A.thalia	106 SSIRHDLQAFKDRDPACLSYSSAILHLKGYHALQAYRVAHKLWNEGRKLL	155
Synechocystis	3 NSLIADFRIIFERDPAARNWLEVLFCYPGLQALLIHRFSHRLYTLGLPFF	52
SAT2-A.thalia	156 ALALQSRISEVFGIDIHPAARIGEGILLDHGTGVVIGETAVIGNGVSILH	205
Synechocystis	53 PRLMSHLARFFTGIEIHPGAQIGQGVFIDHGMGVVIGETAIVGDYSLIYQ	102
SAT2-A.thalia	206 GVTLGGTGKETGDRHPKIGEGALLGACVTILGNISIGAGAMVAAGSLVLK	255
Synechocystis	103 GVTLGGTGKESGKRHPTLGENVVVGAGAKVLGNIAIGDNVRIGAGSVVLR	152
SAT2-A.thalia	256 DVPSHSVVAGNPAKLIRVMEEQ 277	
Synechocystis	153 DVPADFTVVGVPGRMVHPSGER 174	
SAT3-A.thalia	193 IVESVKLDLLAVKERDPACISYVHCFLHFKGFLACQAHRIAHELWTQDRK	242
Synechocystis	1 MLNSLIADFRIIFERDPAARNWLEVLFCYPGLQALLIHRFSHRLYTLGLP	50
SAT3-A.thalia	243 ILALLIQNRVSEAFAVDFHPGAKIGTGILLDHATAIVIGETAVVGNNVSI	292
Synechocystis	51 FFPRLMSHLARFFTGIEIHPGAQIGQGVFIDHGMGVVIGETAIVGDYSLI	100
SAT3-A.thalia	293 LHNVTLGGTGKQCGDRHPKIGDGVLIGAGTCILGNITIGEGAKIGAGSVV	342
Synechocystis	:. . .:::. !! : . :.:: 101 YQGVTLGGTGKESGKRHPTLGENVVVGAGAKVLGNIAIGDNVRIGAGSVV	150
SAT3-A.thalia	343 LKDVPPRTTAVGNPARLLGGKDNPKTHDKIP 373	
Synechocystis	151 LRDVPADFTVVGVPGRMVHPSGERVNPLEHGKLP 184	
SAT4-A.thalia	116 IIESTKQDLIAVKERDPACISYVHCFLGFKGFLACQAHRIAHTLWKQNRK	165
Synechocystis	::	50
SAT4-A.thalia	166 IVALLIQNRVSESFAVDIHPGAKIGKGILLDHATGVVIGETAVVGDNVSI	215
Synechocystis	51 FFPRLMSHLARFFTGIEIHPGAQIGQGVFIDHGMGVVIGETAIVGDYSLI	100
SAT4-A.thalia	216 LHGVTLGGTGKQSGDRHPKIGDGVLIGAGSCILGNITIGEGAKIGSGSVV	265
Synechocystis	101 YQGVTLGGTGKESGKRHPTLGENVVVGAGAKVLGNIAIGDNVRIGAGSVV	150
SAT4-A.thalia	266 VKDVPARTTAVGNPARLIGGKENPRKHDKIP 296	
Synechocystis	::! . :: .:. .: . : 151 LRDVPADFTVVGVPGRMVHPSGERVNPLEHGKLP 184	
SAT5-A.thalia	115 NATVADLRAARVRDPACISFSHCLLNYKGFLAIQAHRVSHKLWTQSRKPL	164
Synechocystis	3 NSLIADFRIIFERDPAARNWLEVLFCYPGLQALLIHRFSHRLYTLGL-PF	51
SAT5-A.thalia	165 ALALHSRISDVFA-VDIHPAAKIGKGILLDHATGVVVGETAVIGNNVSIL	213
Synechocystis	52 FPRLMSHLARFFTGIEIHPGAQIGQGVFIDHGMGVVIGETAIVGDYSLIY	101
SAT5-A.thalia	214 HHVTLGGTGKACGDRHPKIGDGCLIGAGATILGNVKIGAGAKVGAGSVVL	263
Synechocystis	102 QGVTLGGTGKESGKRHPTLGENVVVGAGAKVLGNIAIGDNVRIGAGSVVL	151
SAT5-A.thalia	264 IDVPCRGTAVGNPARLV 280	
Synechocystis	152 RDVPADFTVVGVPGRMV 168	

Fig. 7-18. Alignment of Synechocystis sp. PCC 6803 SAT amino acid sequences with A.

thaliana.

6

SAT1-A.thalia	145	IRLDVQAFKDRDPACLSYSSAILHLKGYLALQAYRVAHKLWKQGRKLL	192
Synechococcus	5	IRADLAIIRERDPAARGPLEILLCYPGFQALSLHRLSHRLWHSRLPLKLA	54
SAT1-A.thalia	193	ALALQSRVSEVFGIDIHPAARIGKGILLDHGTGVVIGETAVIGDRVSILH	242
Synechococcus	55	ARLLSQLGRNLTGVEIHPGARIGHGVFIDHGMGVVIGETAEVGDRCLLYQ	104
SAT1-A.thalia	243	GVTLGGTGKETGDRHPNIGDGALLGACVTILGNIKIGAGAMVAAGSLVLK	292
Synechococcus	105	GVTLGGTGKDHGKRHPTLANNVVIGAGAKVLGAIEVGTNTRIGAGSVVVR	154
SAT1-A.thalia	293	DVPSHSMVAGNPAKLI 308	
Synechococcus	155	DVEADCTVVGIPGRVI 170	
SAT2-A.thalia	108	IRHDLQAFKDRDPACLSYSSAILHLKGYHALQAYRVAHKLWNEGRKL-LA	156
Synechococcus	5	IRADLAIIRERDPAARGPLEILLCYPGFQALSLHRLSHRLWHSRLPLKLA	54
SAT2-A.thalia	157	LALQSRISE-VFGIDIHPAARIGEGILLDHGTGVVIGETAVIGNGVSILH	205
Synechococcus	55	ARLLSQLGRNLTGVEIHPGARIGHGVFIDHGMGVVIGETAEVGDRCLLYQ	104
SAT2-A.thalia	206	GVTLGGTGKETGDRHPKIGEGALLGACVTILGNISIGAGAMVAAGSLVLK	255
Synechococcus	105	GVTLGGTGKDHGKRHPTLANNVVIGAGAKVLGAIEVGTNTRIGAGSVVVR	154
SAT2-A.thalia	256	DVPSHSVVAGNPAKLI 271	
Synechococcus	155	DVEADCTVVGIPGRVI 170	
SAT3-A.thalia	197	VKLDLLAVKERDPACISYVHCFLHFKGFLACQAHRIAHELWTQDRKIL	244
Synechococcus	5	IRADLAIIRERDPAARGPLEILLCYPGFQALSLHRLSHRLWHSRLPLKLA	54
SAT3-A.thalia	245	ALLIQNRVSEAFAVDFHPGAKIGTGILLDHATAIVIGETAVVGNNVSILH	294
Synechococcus	55	ARLLSQLGRNLTGVEIHPGARIGHGVFIDHGMGVVIGETAEVGDRCLLYQ	104
SAT3-A.thalia	295	NVTLGGTGKQCGDRHPKIGDGVLIGAGTCILGNITIGEGAKIGAGSVVLK	344
Synechococcus	105	GVTLGGTGKDHGKRHPTLANNVVIGAGAKVLGAIEVGTNTRIGAGSVVVR	154
SAT3-A.thalia	345	DVPPRTTAVGNPARLLGGKDNPKTHDKIPGLTMDQTSHISEWSD	388
Synechococcus	155	DVEADCTVVGIPGRVIHQSGVRINPLAHSALPDAEANVIRNLMERID	201
SAT4-A.thalia	121	KQDLIAVKERDPACISYVHCFLGFKGFLACQAHRIAHTLWKQNRKIVA	168
Synechococcus	6	RADLAIIRERDPAARGPLEILLCYPGFQALSLHRLSHRLWHSRLPLKLAA	55
SAT4-A.thalia	169	LLIQNRVSESFAVDIHPGAKIGKGILLDHATGVVIGETAVVGDNVSILHG	218
Synechococcus	56	RLLSQLGRNLTGVEIHPGARIGHGVFIDHGMGVVIGETAEVGDRCLLYQG	105
SAT4-A.thalia	219	VTLGGTGKQSGDRHPKIGDGVLIGAGSCILGNITIGEGAKIGSGSVVVKD	268
Synechococcus	106	VTLGGTGKDHGKRHPTLANNVVIGAGAKVLGAIEVGTNTRIGAGSVVVRD	155
SAT4-A.thalia	269	VPARTTAVGNPARLIGGKENPRKHDKIP 296	
Synechococcus	156	VEADCTVVGIPGRVIHQSGVRINPLAHSALP 186	
SAT5-A.thalia	11	9 ADLRAARVRDPACISFSHCLLNYKGFLAIQAHRVSHKLWTQSRKPLALA-	167
Synechococcus		7 ADLAIIRERDPAARGPLEILLCYPGFQALSLHRLSHRLW-HSRLPLKLAA	55
SAT5-A.thalia	16	8 -LHSRIS-DVFAVDIHPAAKIGKGILLDHATGVVVGETAVIGNNVSILHH	215
Synechococcus	5	6 RLLSQLGRNLTGVEIHPGARIGHGVFIDHGMGVVIGETAEVGDRCLLYQG	g 105
SAT5-A.thalia	21	6 VTLGGTGKACGDRHPKIGDGCLIGAGATILGNVKIGAGAKVGAGSVVLIE	265
Synechococcus	10	6 VTLGGTGKDHGKRHPTLANNVVIGAGAKVLGAIEVGTNTRIGAGSVVVR	155
SAT5-A.thalia	26	6 VPCRGTAVGNPARLV 280	
Synechococcus	15	6 VEADCTVVGIPGRVI 170	

Fig. 7-19. Alignment of *Synechococcus* sp. WH 7803 SAT amino acid sequences with *A. thaliana*.

7.3.2. Alignment of the SAT sequences of green algae with *A*. *thaliana* SAT isoforms

SAT1-A.thalia 1-C.reinhardt	73 IWDSIREEAKLEAEEEPVLSSFLYASILSHDCLEQALSFVLANRLQNPTL ::::::::::::::::::::::::::::::::::::	122
SAT1-A.thalia	123 LATOLMDIFCNVMVHDBGIOSSIBLDVOAFKDBDPACLSYSSATLHLKGY	172
1-C.reinhardt	1	232
SAT1-A.thalia	173 LALQAYRVAHKLWKQGRKLLALALQSRVSEVFGIDIHPAARIGKGILLDH	222
1-C.reinhardt	. : . :: . : : 233 QAIQCQRVAHWLWQKGRKALALAIQSRMSEAFHVDIHPAAQLGRGLLIDH	282
SAT1-A.thalia	223 GTGVVIGETAVIGDRVSILHGVTLGGTGKETGDRHPNIGDGALLGACVTI	272
1-C.reinhardt	283 ATGVVIGETAVVGDNVSMLHHVTLGGSGTGRGVRHPTVGNGVLLGAGVTV	332
SAT1-A.thalia	273 LGNIKIGAGAMVAAGSLVLKDVPSHSMVAGNPAKLI 308	
1-C.reinhardt	<pre> :</pre>	85
1-C.reinhardt	::::::::::::::::::::::::::::::::::::::	182
SAT2-A.thalia	86 LATQLLDIFYGVMMHDKGIQSSIRHDLQAFKDRDPACLSYSSAILHLKGY	135
1-C.reinhardt	:.: . :: . : . :	232
SAT2-A.thalia	136 HALQAYRVAHKLWNEGRKLLALALQSRISEVFGIDIHPAARIGEGILLDH	185
1-C.reinhardt	.::	282
SAT2-A.thalia	186 GTGVVIGETAVIGNGVSILHGVTLGGTGKETGDRHPKIGEGALLGACVTI	235
1-C.reinhardt	. : :: : . : . .: : 283 ATGVVIGETAVVGDNVSMLHHVTLGGSGTGRGVRHPTVGNGVLLGAGVTV	332
SAT2-A.thalia	236 LGNISIGAGAMVAAGSLVLKDVPSHSVVAGNPAKLIR 272	
1-C.reinhardt	. :: :. . : :: : . . . ::::: 333 LGPTTVGAGSKVGAGSVVVSDTPCHSVAVGVPARTIK 369	
SAT3-A.thalla	124 DVWAKIREEAKSDIAKEPIVSAYYHASIVSQRSLEAALANTLSVKLSNLN :: .: : :. .::::: :: .:: :. : .	1/3
1-C.reinhardt	132 ELWERIRQEAQMDASSEPALASNLFSTILAHPSLEKSMAFLLANKLANPT	181
SAT3-A.thalia	174 LPSNTLFDLFSGVLQGNPDIVESVKLDLLAVKERDPACISYVHCFLHFKG	223
1-C.reinhardt	182 MLGMQLMRLISEAYEDDAGLIEACMADLQAVYDRDPACDSFSQAMLYFKG	231
SAT3-A.thalia	224 FLACQAHRIAHELWTQDRKILALLIQNRVSEAFAVDFHPGAKIGTGILLD	273
1-C.reinhardt	232 FQAIQCQRVAHWLWQKGRKALALAIQSRMSEAFHVDIHPAAQLGRGLLID	281
SAT3-A.thalia	274 HATAIVIGETAVVGNNVSILHNVTLGGTGKQCGDRHPKIGDGVLIGAGTC	323
1-C.reinhardt	282 HATGVVIGETAVVGDNVSMLHHVTLGGSGTGRGVRHPTVGNGVLLGAGVT	331
SAT3-A.thalia	324 ILGNITIGEGAKIGAGSVVLKDVPPRTTAVGNPARLL 360	
1-C.reinhardt	332 VLGPITVGAGSKVGAGSVVVSDIPCHSVAVGVPARII 368	
SAT4-A.thalia	47 DVWIKMLEEAKSDVKQEPILSNYYYASITSHRSLESALAHILSVKLSNLN	96
1-C.reinhardt	132 ELWERIRQEAQMDASSEPALASNLFSTILAHPSLEKSMAFLLANKLANPT	181
SAT4-A.thalia	97 LPSNTLFELFISVLEESPEIIESTKQDLIAVKERDPACISYVHCFLGFKG	146
1-C.reinhardt	182 MLGMQLMRLISEAYEDDAGLIEACMADLQAVYDRDPACDSFSQAMLYFKG	231
SAT4-A.thalia	147 FLACQAHRIAHTLWKQNRKIVALLIQNRVSESFAVDIHPGAKIGKGILLD	196
1-C.reinhardt	232 FQAIQCQRVAHWLWQKGRKALALAIQSRMSEAFHVDIHPAAQLGRGLLID	281
SAT4-A.thalia	197 HATGVVIGETAVVGDNVSILHGVTLGGTGKQSGDRHPKIGDGVLIGAGSC	246
1-C.reinhardt	282 HATGVVIGETAVVGDNVSMLHHVTLGGSGTGRGVRHPTVGNGVLLGAGVT	331
SAT4-A.thalia	247 ILGNITIGEGAKIGSGSVVVKDVPARTTAVGNPARLI 283	
1-C.reinhardt	332 VLGPITVGAGSKVGAGSVVVSDIPCHSVAVGVPARII 368	
SAT5-A.thalia	45 LWTQIKAEARRDAEAEPALASYLYSTILSHSSLERSISFHLGNKLCSSTL	94
1-C.reinhardt	133 LWERIRQEAQMDASSEPALASNLFSTILAHPSLEKSMAFLLANKLANPTM	182
SAT5-A.thalia	95 LSTLLYDLFLNTFSSDPSLRNATVADLRAARVRDPACISFSHCLLNYKGF	144
1-C.reinhardt	183 LGMQLMRLISEAYEDDAGLIEACMADLQAVYDRDPACDSFSQAMLYFKGF	232
SAT5-A.thalia	145 LAIQAHRVSHKLWTQSRKPLALALHSRISDVFAVDIHPAAKIGKGILLDH	194
1-C.reinhardt	233 QAIQCQRVAHWLWQKGRKALALAIQSRMSEAFHVDIHPAAQLGRGLLIDH	282
SAT5-A.thalia	195 ATGVVVGETAVIGNNVSILHHVTLGGTGKACGDRHPKIGDGCLIGAGATI	244
1-C.reinhardt	283 ATGVVIGETAVVGDNVSMLHHVTLGGSGTGRGVRHPTVGNGVLLGAGVTV	332
SAT5-A.thalia	245 LGNVKIGAGAKVGAGSVVLIDVPCRGTAVGNPARLVGGKEKPTIHDEE	292
1-C.reinhardt	333 LGPITVGAGSKVGAGSVVVSDIPCHSVAVGVPARIIKRDIVKEPVKEMDQ	382
SAT5-A.thalia	293 CPGESMDHT 301	
1-C.reinhardt	383 CTDYILDYT 391	

Fig. 7-20. Alignment of 1-*C. reinhardtii* SAT amino acid sequence with *A. thaliana* isoforms.

```
SAT1-A.thalia
                  73 IWDSIREEAKLEAEEEPVLSSFLYASILSHDCLEQALSFVLANRLQNPTL
                 103 MWKQIRTEAQADANSEPLLSSFLYASILAHDTFEQALAFVLANRLANSTM
2-C.reinhardt
                                                                            152
SAT1-A.thalia
                 123 LATQLMDIFCNVMVHDRGIQSSIRLDVQAFKDRDPACLSYSSAILHLKGY
                 153 LSTQLFEIFHNFLSKEPDVRCAALSDLAACRERDPACSSYSHALLYFKGY
2-C.reinhardt
                                                                            202
SAT1-A.thalia
                 173 LALQAYRVAHKLWKQGRKLLALALQSRVSEVFGIDIHPAARIGKGILLDH
                                                                            222
2-C.reinhardt
                 203 HAIQTQRIAHALWNRKQKVMALALQSRISEVFAVDVHPAARIGKGVLLDH
                                                                            252
SAT1-A.thalia
                 223 GTGVVIGETAVIGDRVSILHGVTLGGTGKETGDRHPNIGDGALLGACVTI
                                                                            272
2-C.reinhardt
                 253 GTGVVIGETAVIGNNVSILQNVTLGGTGKEIGDRHPKVGDNVLIGACATV
                                                                            302
SAT1-A.thalia
                 273 LGNIKIGAGAMVAAGSLVLKDVPSHSMVAGNPAKLIGFVDEQDPSMTMEH
                                                                            322
                 303 LGNIPIGEGAQIAAGSLVLKPVPPHTMVAGSPAKEVGPV-VGNPALSMMH
2-C.reinhardt
                                                                             351
                 323 DATR
SAT1-A.thalia
                             326
2-C.reinhardt
                 352 WSOR
                             355
SAT2-A.thalia
                   36 IWDAIREEAKLEAEKEPILSSFLYAGILAHDCLEQALGFVLANRLQNPTL
                                                                                85
                  103 MWKQIRTEAQADANSEPLLSSFLYASILAHDTFEQALAFVLANRLANSTM
2-C. reinhardt
                                                                               152
                   86 LATQLLDIFYGVMMHDKGIQSSIRHDLQAFKDRDPACLSYSSAILHLKGY
SAT2-A.thalia
                                                                               135
                  |:|||.:||:..:..:.:..||.|.:||||.||.||.|:::.|||
153 LSTQLFEIFHNFLSKEPDVRCAALSDLAACRERDPACSSYSHALLYFKGY
2-C.reinhardt
                                                                               202
SAT2-A.thalia
                  136 HALQAYRVAHKLWNEGRKLLALALQSRISEVFGIDIHPAARIGEGILLDH
                                                                               185
                  203 HAIQTQRIAHALWNRKQKVMALALQSRISEVFAVDVHPAARIGKGVLLDH
2-C.reinhardt
                                                                               252
SAT2-A.thalia
                  186 GTGVVIGETAVIGNGVSILHGVTLGGTGKETGDRHPKIGEGALLGACVTI
                                                                               235
                 253 GTGVVIGETAVIGNNVSILONVTLGGTGKEIGDRHPKVGDNVLIGACATV
2-C.reinhardt
                                                                               302
SAT2-A.thalia
                  236 LGNISIGAGAMVAAGSLVLKDVPSHSVVAGNPAKLIRVMEEQDPSLAMKH
                                                                               285
                  303 LGNIPIGEGAQIAAGSLVLKPVPPHTMVAGSPAKEVGPVVG-NPALSMMH
2-C.reinhardt
                                                                               351
                  286 DATKEFFRHVADGYKGAQSNGPSLSA
SAT2-A.thalia
                                                     311
                  352 WSQRLLSAESMDGAGGVGMNGVPLAA
                                                     377
2-C.reinhardt
                  125 VWAKIREEAKSDIAKEPIVSAYYHASIVSQRSLEAALANTLSVKLSNLNL
SAT3-A.thalia
                                                                               174
                  103 MWKQIRTEAQADANSEPLLSSFLYASILAHDTFEQALAFVLANRLANSTM
2-C.reinhardt
                                                                               152
SAT3-A.thalia
                  175 PSNTLFDLFSGVLQGNPDIVESVKLDLLAVKERDPACISYVHCFLHFKGF
                                                                               224
                  153 LSTOLFEIFHNFLSKEPDVRCAALSDLAACRERDPACSSYSHALLYFKGY
2-C.reinhardt
SAT3-A.thalia
                  225 LACQAHRIAHELWTQDRKILALLIQNRVSEAFAVDFHPGAKIGTGILLDH
                                                                               274
                  203 HAIOTORIAHALWNRKOKVMALALOSRISEVFAVDVHPAARIGKGVLLDH
2-C.reinhardt
                                                                              252
                  275 ATAIVIGETAVVGNNVSILHNVTLGGTGKQCGDRHPKIGDGVLIGAGTCI
SAT3-A.thalia
                                                                               324
2-C.reinhardt
                  253 GTGVVIGETAVIGNNVSILQNVTLGGTGKEIGDRHPKVGDNVLIGACATV
                                                                               302
SAT3-A.thalia
                  325 LGNITIGEGAKIGAGSVVLKDVPPRTTAVGNPARLLG
                                                                361
                  303 LGNIPIGEGAQIAAGSLVLKPVPPHTMVAGSPAKEVG
2-C.reinhardt
                                                                 339
SAT4-A.thalia
                   48 VWIKMLEEAKSDVKQEPILSNYYYASITSHRSLESALAHILSVKLSNLNL
                                                                               97
                  103 MWKQIRTEAQADANSEPLLSSFLYASILAHDTFEQALAFVLANRLANSTM
2-C.reinhardt
                                                                               152
SAT4-A.thalia
                   98 PSNTLFELFISVLEESPEIIESTKODLIAVKERDPACISYVHCFLGFKGF
                                                                               147
2-C.reinhardt
                  153 LSTQLFEIFHNFLSKEPDVRCAALSDLAACRERDPACSSYSHALLYFKGY
                                                                               202
SAT4-A.thalia
                  148 LACQAHRIAHTLWKQNRKIVALLIQNRVSESFAVDIHPGAKIGKGILLDH
                                                                               197
2-C.reinhardt
                  203 HAIQTQRIAHALWNRKQKVMALALQSRISEVFAVDVHPAARIGKGVLLDH
                                                                               252
                  198 ATGVVIGETAVVGDNVSILHGVTLGGTGKQSGDRHPKIGDGVLIGAGSCI
SAT4-A.thalia
                                                                               247
2-C.reinhardt
                  253 GTGVVIGETAVIGNNVSILQNVTLGGTGKEIGDRHPKVGDNVLIGACATV
                                                                               302
                  248 LGNITIGEGAKIGSGSVVVKDVPARTTAVGNPARLIG
SAT4-A.thalia
                                                                 284
                  303 LGNIPIGEGAOIAAGSLVLKPVPPHTMVAGSPAKEVG
2-C.reinhardt
                                                                 339
                   45 LWTQIKAEARRDAEAEPALASYLYSTILSHSSLERSISFHLGNKLCSSTL
SAT5-A.thalia
                                                                                94
                  :|.||:.||:.||.:||.:||::||:.|:::::|.|.:|:
103 MWKQIRTEAQADANSEPLLSSFLYASILAHDTFEQALAFVLANRLANSTM
2-C.reinhardt
                                                                               152
SAT5-A.thalia
                   95 LSTLLYDLFLNTFSSDPSLRNATVADLRAARVRDPACISFSHCLLNYKGF
                                                                               144
                  153 LSTQLFEIFHNFLSKEPDVRCAALSDLAACRERDPACSSYSHALLYFKGY
2-C.reinhardt
                                                                               202
SAT5-A.thalia
                  145 LAIQAHRVSHKLWTQSRKPLALALHSRISDVFAVDIHPAAKIGKGILLDH
                                                                               194
                  203 HAIQTQRIAHALWNRKQKVMALALQSRISEVFAVDVHPAARIGKGVLLDH
2-C.reinhardt
                                                                               252
SAT5-A.thalia
                  195 ATGVVVGETAVIGNNVSILHHVTLGGTGKACGDRHPKIGDGCLIGAGATI
                                                                               244
2-C.reinhardt
                  253 GTGVVIGETAVIGNNVSILQNVTLGGTGKEIGDRHPKVGDNVLIGACATV
                                                                               302
SAT5-A.thalia
                  245 LGNVKIGAGAKVGAGSVVLIDVPCRGTAVGNPARLVG
                                                                 281
                  303 LGNIPIGEGAOIAAGSLVLKPVPPHTMVAGSPAKEVG
2-C.reinhardt
                                                                 339
```

Fig. 7-21. Alignment of 2-C. reinhardtii SAT amino acid sequence with A. thaliana isoforms.

```
SAT1-A.thalia
                71 DPIWDSIREEAKLEAEEEPVLSSFLYASILSHDCLEQALSFVLANRLQNP
                                                                     120
                48 DALWEAIRSEARSDSDLEASLASALHSTILVHHSLAKTMAFVLANKLQSH
1-T.suecica
                                                                      97
SAT1-A.thalia
               121 TLLATQLMDIFCNVMVHDRGIQSSIRLDVQAFKDRDPACLSYSSAILHLK
                                                                     170
                98 TLPATHLLHLFQEAFNDDPDIMAAVVADMNAVFDRDPACEKYSHCMLNFK
1-T.suecica
                                                                     147
SAT1-A.thalia
               171 GYLALQAYRVAHKLWKQGRKLLALALQSRVSEVFGIDIHPAARIGKGILL
                                                                     220
               148 GFQAIQSYRISHWLFRKNRRALASALQSRIAELFHVDLHPGAKLGRGIMI
1-T.suecica
                                                                     197
SAT1-A.thalia
               221 DHGTGVVIGETAVIGDRVSILHGVTLGGTGKETGDRHPNIGDGALLGACV
                                                                     270
               198 DHATGVVIGETATVGDNVSILHHVTLGGSGTGNGVRHPNIGNGVLLGAGV
1-T.suecica
                                                                     247
SAT1-A.thalia
               271 TILGNIKIGAGAMVAAGSLVLKDVPSHSMVAGNPAKLIGFVDEQDPSMTM
                                                                     320
               248 VCLGPITVGHGSKIGAGSLVVSNLPDYCVAVGVPAKVLRRKEGQDPNKTM
1-T.suecica
                                                                     297
SAT1-A.thalia
               321 E 321
1-T.suecica
SAT2-A.thalia
               298 D 298
33 SDFIWDAIREEAKLEAEKEPILSSFLYAGILAHDCLEQALGFVLANRLQN
                                                                      82
                47 TDALWEAIRSEARSDSDLEASLASALHSTILVHHSLAKTMAFVLANKLQS
1-T.suecica
                                                                      96
SAT2-A.thalia
                83 PTLLATQLLDIFYGVMMHDKGIQSSIRHDLQAFKDRDPACLSYSSAILHL
                                                                     132
                97 HTLPATHLLHLFQEAFNDDPDIMAAVVADMNAVFDRDPACEKYSHCMLNF
1-T.suecica
                                                                     146
SAT2-A.thalia
               133 KGYHALQAYRVAHKLWNEGRKLLALALQSRISEVFGIDIHPAARIGEGIL
                                                                     182
               147 KGFQAIQSYRISHWLFRKNRRALASALQSRIAELFHVDLHPGAKLGRGIM
1-T.suecica
                                                                     196
               SAT2-A.thalia
                                                                     232
1-T.suecica
                                                                     246
SAT2-A.thalia
               233 VTILGNISIGAGAMVAAGSLVLKDVPSHSVVAGNPAKLIRVMEEODPSLA
                                                                     282
               1-T.suecica
                                                                     296
SAT2-A.thalia
               283 M
                       283
1-T.suecica
               297 M
                       297
               121 EVDDVWAKIREEAKSDIAKEPIVSAYYHASIVSQRSLEAALANTLSVKLS
                                                                      170
SAT3-A.thalia
                 46 DTDALWEAIRSEARSDSDLEASLASALHSTILVHHSLAKTMAFVLANKLQ
1-T.suecica
                                                                       95
                171 NLNLPSNTLFDLFSGVLQGNPDIVESVKLDLLAVKERDPACISYVHCFLH
SAT3-A.thalia
                                                                      220
                 :..||:..|..|....:|||:.:|..|:|||||..|.|:
96 SHTLPATHLLHLFQEAFNDDPDIMAAVVADMNAVFDRDPACEKYSHCMLN
1-T.suecica
                                                                      145
                221 FKGFLACQAHRIAHELWTQDRKILALLIQNRVSEAFAVDFHPGAKIGTGI
SAT3-A.thalia
                                                                      270
                146 FKGFQAIQSYRISHWLFRKNRRALASALQSRIAELFHVDLHPGAKLGRGI
                                                                      195
1-T.suecica
                271 LLDHATAIVIGETAVVGNNVSILHNVTLGGTGKQCGDRHPKIGDGVLIGA
SAT3-A.thalia
                                                                      320
                1-T.suecica
                                                                      245
                321 GTCILGNITIGEGAKIGAGSVVLKDVPPRTTAVGNPARLLG---GKDNPK
SAT3-A.thalia
                                                                      367
                1...||.||:|.|:|||||:|:::...||.||:||.|::|. |:|..|
246 GVVCLGPITVGHGSKIGAGSLVVSNLPDYCVAVGVPAKVLRRKEGQDPNK
1-T.suecica
                                                                      295
SAT3-A.thalia
                368 THDKI
                           372
                296 TMDQI
                            300
1-T.suecica
SAT4-A.thalia
                43 EDDDDVWIKMLEEAKSDVKQEPILSNYYYASITSHRSLESALAHILSVKL
                                                                      92
                45 KDTDALWEAIRSEARSDSDLEASLASALHSTILVHHSLAKTMAFVLANKL
1-T.suecica
                                                                      94
               93 SNLNLPSNTLFELFISVLEESPEIIESTKQDLIAVKERDPACISYVHCFL
SAT4-A.thalia
                                                                    142
                95 QSHTLPATHLLHLFQEAFNDDPDIMAAVVADMNAVFDRDPACEKYSHCML
1-T.suecica
                                                                     144
               143 GFKGFLACQAHRIAHTLWKQNRKIVALLIQNRVSESFAVDIHPGAKIGKG
SAT4-A.thalia
                                                                    192
               145 NFKGFQAIQSYRISHWLFRKNRRALASALQSRIAELFHVDLHPGAKLGRG
1-T.suecica
                                                                    194
               SAT4-A.thalia
                                                                    242
1-T.suecica
                                                                    244
SAT4-A.thalia
               243 AGSCILGNITIGEGAKIGSGSVVVKDVPARTTAVGNPARLIGGKENPRKH
                                                                    292
               245 AGVVCLGPITVGHGSKIGAGSLVVSNLPDYCVAVGVPAKVLR-----RKE
1-T.suecica
                                                                    289
SAT4-A.thalia
               293 DKIPCLTMDQTSYLTEW
                                     309
               290 GQDPNKTMDQIEYVFDY
1-T.suecica
                                     306
                45 LWTQIKAEARRDAEAEPALASYLYSTILSHSSLERSISFHLGNKLCSSTL
SAT5-A.thalia
                                                                      94
                50 LWEAIRSEARSDSDLEASLASALHSTILVHHSLAKTMAFVLANKLQSHTL
                                                                      99
1-T.suecica
SAT5-A.thalia
                95 LSTLLYDLFLNTFSSDPSLRNATVADLRAARVRDPACISFSHCLLNYKGF
                                                                     144
               1-T.suecica
                                                                     149
SAT5-A.thalia
               145 LAIQAHRVSHKLWTQSRKPLALALHSRISDVFAVDIHPAAKIGKGILLDH
                                                                     194
               1-T.suecica
                                                                     199
SAT5-A.thalia
               195 ATGVVVGETAVIGNNVSILHHVTLGGTGKACGDRHPKIGDGCLIGAGATI
                                                                     244
               200 ATGVVIGETATVGDNVSILHHVTLGGSGTGNGVRHPNIGNGVLLGAGVVC
1-T.suecica
                                                                     249
SAT5-A.thalia
               245 LGNVKIGAGAKVGAGSVVLIDVPCRGTAVGNPARLVGGKE
                                                            284
               1-T.suecica
                                                            289
```

Fig. 7-22. Alignment of 1-T. suecica SAT amino acid sequence with A. thaliana isoforms.

SAT1-A.thalia	72	PIWDSIREEAKLEAEEEPVLSSFLYASILSHDCLEQALSFVLANRLQNPT : .: . :	121
2-T.suecica	53	PVWLAIRSEAGRDAAAEPILSSFLWGSILSHDTFERALAFILANRLADAT	102
SAT1-A.thalia	122	LLATQLMDIFCNVMVHDRGIQSSIRLDVQAFKDRDPACLSYSSAILHLKG : . : . .:::	171
2-T.suecica	103	MLPTELFDIFYDTLKTSPETVFASMQDCQAAMERDPACRGYSDALLYYKG	152
SAT1-A.thalia	172	YLALQAYRVAHKLWKQGRKLLALALQSRVSEVFGIDIHPAARIGKGILLD ::	221
2-T.suecica	153	FHAVQAQRCAHVLWKRGRTVLALALQSKVSEVLAIDIHPATRLGHGLLLD	202
SAT1-A.thalia	222	HGTGVVIGETAVIGDRVSILHGVTLGGTGKETGDRHPNIGDGALLGACVT	271
2-T.suecica	203	HGTGVVIGETAVVGNYCSILQGVTLGGTGKASGDRHPKIGDGVLLGANAT	252
SAT1-A.thalia	272	ILGNIKIGAGAMVAAGSLVLKDVPSHSMVAGNPAKLIGFVD 312	
2-T.suecica SAT2-A.thalia	253 32	VLGNIRVGEGAQIAACSLVLKDVPERTMVAGTPAKLIGRVE 293 RSDPIWDAIREEAKLEAEKEPILSSFLYAGILAHDCLEQALGFVLANRLQ	81
2-T.suecica	50	:!:!.!!.!!.!	99
SAT2-A.thalia	82	NPTLLATQLLDIFYGVMMHDKGIQSSIRHDLQAFKDRDPACLSYSSAILH	131
2-T.suecica	100	::	149
SAT2-A.thalia	132	LKGYHALQAYRVAHKLWNEGRKLLALALQSRISEVFGIDIHPAARIGEGI	181
2-T.suecica	150	. : : : .: :: .:: : YKGFHAVQAQRCAHVLWKRGRTVLALALQSKVSEVLAIDIHPATRLGHGL	199
SAT2-A.thalia	182	LLDHGTGVVIGETAVIGNGVSILHGVTLGGTGKETGDRHPKIGEGALLGA	231
2-T.suecica	200	LLDHGTGVVIGETAVVGNYCSILQGVTLGGTGKASGDRHPKIGDGVLLGA	249
SAT2-A.thalia	232	CVTILGNISIGAGAMVAAGSLVLKDVPSHSVVAGNPAKLIRVMEEQDPSL	281
2-T.suecica	250	!: .: . .: . :: . :: : NATVLGNIRVGEGAQIAACSLVLKDVPERTMVAGTPAKLIGRVEGR-PAL	298
SAT2-A.thalia	282	AM 283	
2-T.suecica	299	. EM 300	
SAT3-A.thalia	12	5 WWAKIREEAKSDIAKEPIVSAYYHASIVSORSI.EAALANTI.SVKLSNI.NI.	174
2-T.suecica	5	////.//	103
SAT3-A thalia	17	5 PSNTLEDLESQULOGNPDIVESVKLDLLAVKERDPACTSYVHCELHEKGE	224
2-T suecica	10		153
SAT3=A thalia	22		274
2-T suecica	15		203
SAT3-A thalia	27		324
2-T.suecica	20	4 GTGVVIGETAVVGNYCSILOGVTLGGTGRASGDRHPKIGDGVLLGANATV	253
SAT3-A.thalia	32	5 LGNITIGEGAKIGAGSVVLKDVPPRTTAVGNPARLLG 361	
2-T.suecica	25	4 LGNIRVGEGAQIAACSLVLKDVPERTMVAGTPAKLIG 290	
SAT4-A.thalia		48 VWIKMLEEAKSDVKQEPILSNYYYASITSHRSLESALAHILSVKLSNLNI	. 97
2-T.suecica		54 VWLAIRSEAGRDAAAEPILSSFLWGSILSHDTFERALAFILANRLADATM	103
SAT4-A.thalia		98 PSNTLFELFISVLEESPEIIESTKQDLIAVKERDPACISYVHCFLGFKGF	147
2-T.suecica		104 LPTELFDIFYDTLKTSPETVFASMQDCQAAMERDPACRGYSDALLYYKGF	153
SAT4-A.thalia		148 LACQAHRIAHTLWKQNRKIVALLIQNRVSESFAVDIHPGAKIGKGILLDH	197
2-T.suecica		154 HAVQAQRCAHVLWKRGRTVLALALQSKVSEVLAIDIHPATRLGHGLLLDH	203
SAT4-A.thalia		198 ATGVVIGETAVVGDNVSILHGVTLGGTGKQSGDRHPKIGDGVLIGAGSCI	247
2-T.suecica		204 GTGVVIGETAVVGNYCSILQGVTLGGTGKASGDRHPKIGDGVLLGANATV	253
SAT4-A.thalia		248 LGNITIGEGAKIGSGSVVVKDVPARTTAVGNPARLIGGKE 287	
2-T.suecica		1 1	
SAT5-A.thalia		45 LWTOIKAFARRDAFAFPALASYLYSTILSHSSLERSISFHLGNKLCSSTI	94
2-T.suecica		:::	1 103
SAT5-A.thalia		95 LSTLLYDLFLNTFSSDPSLRNATVADLRAARVRDPACISFSHCLLNYKGF	144
2-T.suecica		104 LPTELFDIFYDTLKTSPETVFASMODCOAAMERDPACRGYSDALLYYKG	153
SAT5-A.thalia		145 LAIOAHRVSHKLWTOSRKPLALALHSRISDVFAVDIHPAAKIGKGTLLDH	194
2-T.suecica		154 HAVOAORCAHVLWKRGRTVLALALOSKVSEVLAIDIHPATRI.GHGLLDP	203
SAT5-A.thalia		195 ATGVVVGETAVIGNNVSILHHVTLGGTGKACGDRHPKIGDGCLIGAGATI	2.4.4
2-T.suecica		204 GTGVVIGETAVVGNYCSILOGVILGGTGKASGDRHPKIGDGVILGANATU	253
SAT5-A.thalia		245 LGNVKIGAGAKVGAGSVVLIDVPCRGTAVGNPARLVGGKE 284	200
2-T.suecica		::: . ::. : : 254 LGNIRVGEGAQIAACSLVLKDVPERTMVAGTPAKLIGRVE 293	

Fig. 7-23. Alignment of 2-T. suecica SAT amino acid sequence with A. thaliana isoforms.

SAT1-A.thalia	72	PIWDSIREEAKLEAEEEPVLSSFLYASILSHDCLEQALSFVLANRLQNPT : .: . : : :. !! !!!!!!!!	121
3-T.suecica	4	PVWLAIRSEAGRDAAAEPILSSFLWGSILSHDTFERALAFILANRLADAT	53
SAT1-A.thalia	122	LLATQLMDIFCNVMVHDRGIQSSIRLDVQAFKDRDPACLSYSSAILHLKG	171
3-T.suecica	54	MLPTELFDIFYDTLKTSPETVFASMQDCQAAMERDPACRGYSDALLYYKG	103
SAT1-A.thalia	172	YLALQAYRVAHKLWKQGRKLLALALQSRVSEVFGIDIHPAARIGKGILLD	221
3-T.suecica	104	FHAVQAQRCAHVLWKRGRTVLALALQSKVSEVLAIDIHPATRLGHGLLLD	153
SAT1-A.thalia	222	HGTGVVIGETAVIGDRVSILHGVTLGGTGKETGDRHPNIGDGALLGACVT	271
3-T.suecica	154	HGTGVVIGETAVVGNYCSILQGVTLGGTGKASGDRHPKIGDGVLLGANAT	203
SAT1-A.thalia	272	ILGNIKIGAGAMVAAGSLVLKDVPSHSMVAGNPAKLIGFVD 312 :////////////////////////////////////	
3-T.suecica	204	VLGNIRVGEGAQIAACSLVLKDVPERTMVAGTPAKLIGRVE 244	0.1
SAI2-A.thaila	32	RSDPIWDAIREEARLEAEKEPILSSFLIAGILAHDCLEQALSFVLANRLQ	51
3-1.Suecica	1	NASYVULAIRSEAGRUAAAEPILSSELWGSILSRUIFERALAFILANRLA	101
SATZ-A.thalia	82	NPTLLATQLLDIFYGVMMHDKGIQSSIRHDLQAFKDRDPACLSYSSAILH ::	131
3-T.suecica	51	DATMLPTELFDIFYDTLKTSPETVFASMQDCQAAMERDPACRGYSDALLY	100
SAT2-A.thalia	132	LKGYHALQAYRVAHKLWNEGRKLLALALQSRISEVFGIDIHPAARIGEGI	181
3-T.suecica	101	YKGFHAVQAQRCAHVLWKRGRTVLALALQSKVSEVLAIDIHPATRLGHGL	150
SAT2-A.thalia 3-T.suecica	182 151	LLDHGTGVVIGETAVIGNGVSILHGVTLGGTGKETGDRHPKIGEGALLGA LLDHGTGVVIGETAVVGNYCSILQGVTLGGTGKASGDRHPKIGDGVLLGA	231 200
SAT2-A.thalia	232	CVTILGNISIGAGAMVAAGSLVLKDVPSHSVVAGNPAKLIRVMEEQDPSL	281
3-T.suecica	201	:!!!!:.!!.!!!!!!!!!!!!!!!!!!!!!!!	249
SAT2-A.thalia	282	AM 283	
3-T.suecica SAT3-A.thalia	250 125	- H EM 251 VWAKIREEAKSDIAKEPIVSAYYHASIVSQRSLEAALANTLSVKLSNLNL	174
3-T.suecica	5	VWLAIRSEAGRDAAAEPILSSFLWGSILSHDTFERALAFILANRLADATM	54
SAT3-A.thalia	175	PSNTLFDLFSGVLQGNPDIVESVKLDLLAVKERDPACISYVHCFLHFKGF	224
3-T.suecica	55	LPTELFDIFYDTLKTSPETVFASMQDCQAAMERDPACRGYSDALLYYKGF	104
SAT3-A.thalia	225	LACQAHRIAHELWTQDRKILALLIQNRVSEAFAVDFHPGAKIGTGILLDH	274
3-T.suecica	105	154
SAT3-A.thalia	275	ATAIVIGETAVVGNNVSILHNVTLGGTGKQCGDRHPKIGDGVLIGAGT	
3-T.suecica	155		204
SAT3-A.thalia	325	LGNITIGEGAKIGAGSVVLKDVPPRTTAVGNPARLLG 361	
3-T.suecica	205	.: : . . : . . : : LGNIRVGEGAQIAACSLVLKDVPERTMVAGTPAKLIG 241	
SAT4-A.thalia	48	VWIKMLEEAKSDVKQEPILSNYYYASITSHRSLESALAHILSVKLSNLNL	97
3-T.suecica	5	VWLAIRSEAGRDAAAEPILSSFLWGSILSHDTFERALAFILANRLADATM	54
SAT4-A.thalia	98	PSNTLFELFISVLEESPEIIESTKQDLIAVKERDPACISYVHCFLGFKGF	147
3-T.suecica	55	LPTELFDIFYDTLKTSPETVFASMQDCQAAMERDPACRGYSDALLYYKGF	104
SAT4-A.thalia	148	LACQAHRIAHTLWKQNRKIVALLIQNRVSESFAVDIHPGAKIGKGILLDH	197
3-T.suecica	105	HAVQAQRCAHVLWKRGRTVLALALQSKVSEVLAIDIHPATRLGHGLLLDH	154
SAT4-A.thalia	198	ATGVVIGETAVVGDNVSILHGVTLGGTGKQSGDRHPKIGDGVLIGAGSCI	247
3-T.suecica	155	GTGVVIGETAVVGNYCSILQGVTLGGTGKASGDRHPKIGDGVLLGANATV	204
SAT4-A.thalia	248	LGNITIGEGAKIGSGSVVVKDVPARTTAVGNPARLIGGKE 287	
3-T.suecica	205	LGNIRVGEGAQIAACSLVLKDVPERTMVAGTPAKLIGRVE 244	
SAT5-A.thalia	45	LWTQIKAEARRDAEAEPALASYLYSTILSHSSLERSISFHLGNKLCSSTL	94
3-T.suecica	5	: :: . . . : ::: : VWLAIRSEAGRDAAAEPILSSFLWGSILSHDTFERALAFILANRLADATM	54
SAT5-A.thalia	95	LSTLLYDLFLNTFSSDPSLRNATVADLRAARVRDPACISFSHCLLNYKGF	144
3-T.suecica	55	LPTELFDIFYDTLKTSPETVFASMQDCQAAMERDPACRGYSDALLYYKGF	104
SAT5-A.thalia	145	LAIQAHRVSHKLWTQSRKPLALALHSRISDVFAVDIHPAAKIGKGILLDH	194
3-T.suecica	105	HAVQAQRCAHVLWKRGRTVLALALQSKVSEVLAIDIHPATRLGHGLLLDH	154
SAT5-A.thalia	195	ATGVVVGETAVIGNNVSILHHVTLGGTGKACGDRHPKIGDGCLIGAGATI	244
3-T.suecica	155	GTGVVIGETAVVGNYCSILQGVTLGGTGKASGDRHPKIGDGVLLGANATV	204
SAT5-A.thalia	245	LGNVKIGAGAKVGAGSVVLIDVPCRGTAVGNPARLVGGKE 284	
3-T.suecica	205	LGNIRVGEGAQIAACSLVLKDVPERTMVAGTPAKLIGRVE 244	

Fig. 7-24. Alignment of 3-T. suecica SAT amino acid sequence with A. thaliana isoforms.

7.3.3. Alignment of the SAT sequences of red algae and red-lineage algae with *A. thaliana* SAT isoforms

		Ø
9	161	
U		

```
SAT1-A.thalia
                71 DPIWDSIREEAKLEAEEEPVLSSFLYASILSHDCLEQALSFVLANRLQNP
                                                                       120
                113 DLVWERVRLEAEAAAREEQLLASFLYATVLNHDTLEACLAFHLANKLAST
1-C.merolae
                                                                       162
SAT1-A.thalia
                121 TLLATQLMDIFCNVMVHDRGIQSSIRLDVQAFKDRDPACLSYSSAILHLK
                                                                       170
                163 TLPSTMLNEIIREALEKAPEARYAIRLDLLAVADRDPACTRVIDALLFFK
1-C.merolae
                                                                       212
SAT1-A.thalia
                171 GYLALQAYRVAHKLWKQGRKLLALALQSRVSEVFGIDIHPAARIGKGILL
                                                                       220
                262
1-C.merolae
SAT1-A.thalia
                221 DHGTGVVIGETAVIGDRVSILHGVTLGGTGKETGDRHPNIGDGALLGACV
                                                                       270
                263 DHGTGVVIGETARVGNNVSLLHHVTLGGTGTKLGDRHPRIEDCVLIGAGA
                                                                       312
1-C.merolae
                271 TILGNIKIGAGAMVAAGSLVLKDVPSHSMVAGNPAKLIGFVDEQDPSMTM
SAT1-A.thalia
                                                                       320
                313 TILGNITVGYGAMVGACTVLTSDLPPHSTAVGVPARVIGAPRTKAPAFDM
                                                                       362
1-C.merolae
SAT1-A.thalia
                321 EHDAT
                            325
                363 DODPT
                            367
1-C.merolae
SAT2-A.thalia
                 34 DPIWDAIREEAKLEAEKEPILSSFLYAGILAHDCLEQALGFVLANRLQNP
                                                                        83
                113 DLVWERVRLEAEAAAREEQLLASFLYATVLNHDTLEACLAFHLANKLAST
                                                                       162
1-C.merolae
                 84 TLLATQLLDIFYGVMMHDKGIQSSIRHDLQAFKDRDPACLSYSSAILHLK
SAT2-A.thalia
                                                                       133
                163 TLPSTMLNEIIREALEKAPEARYAIRLDLLAVADRDPACTRVIDALLFFK
1-C.merolae
                                                                       212
SAT2-A.thalia
                134 GYHALOAYRVAHKLWNEGRKLLALALOSRISEVFGIDIHPAARIGEGILL
                                                                       183
                |:|||.:|||.|:.|:.|:.|:.|:.|:.|.
213 GFHALQTHRVAHWLWSQNRQALAMYLHSQVCKVLQIDIHPAARIGYGVFI
1-C.merolae
                                                                       262
                184 DHGTGVVIGETAVIGNGVSILHGVTLGGTGKETGDRHPKIGEGALLGACV
SAT2-A.thalia
                                                                       233
                263 DHGTGVVIGETARVGNNVSLLHHVTLGGTGTKLGDRHPRIEDCVLIGAGA
1-C.merolae
                                                                       312
SAT2-A.thalia
                234 TILGNISIGAGAMVAAGSLVLKDVPSHSVVAGNPAKLIRVMEEQDPSLAM
                                                                       283
                1-C.merolae
                                                                       362
                284 KHDAT
                           288
SAT2-A.thalia
                363 DODPT 367
123 DDVWAKIREEAKSDIAKEPIVSAYYHASIVSQRSLEAALANTLSVKLSNL
1-C.merolae
SAT3-A.thalia
                                                                        172
                 113 DLVWERVRLEAEAAAREEQLLASFLYATVLNHDTLEACLAFHLANKLAST
1-C.merolae
                                                                        162
 SAT3-A.thalia
                 173 NLPSNTLFDLFSGVLQGNPDIVESVKLDLLAVKERDPACISYVHCFLHFK
                                                                        222
 1-C.merolae
                 163 TLPSTMLNEIIREALEKAPEARYAIRLDLLAVADRDPACTRVIDALLFFK
                                                                        212
                 223 GFLACQAHRIAHELWTQDRKILALLIQNRVSEAFAVDFHPGAKIGTGILL
 SAT3-A.thalia
                                                                        272
                 213 GFHALQTHRVAHWLWSQNRQALAMYLHSQVCKVLQIDIHPAARIGYGVFI
 1-C.merolae
                                                                        262
                 273 DHATAIVIGETAVVGNNVSILHNVTLGGTGKQCGDRHPKIGDGVLIGAGT
 SAT3-A.thalia
                                                                        322
                 263 DHGTGVVIGETARVGNNVSLLHHVTLGGTGTKLGDRHPRIEDCVLIGAGA
                                                                        312
 1-C.merolae
SAT3-A.thalia
                 323 CILGNITIGEGAKIGAGSVVLKDVPPRTTAVGNPARLLG
                                                             361
                 1-C.merolae
                                                             351
SAT4-A.thalia
                 7 TCRTGNTQDDDSRFCCIKNFFRPGFSVNRKIHHTQIEDDDDVWIKMLEEA
                                                                       56
                74 TAGVPNRLKEEEGACFVEFLRRAVEDCRRNVQAGGHGTEDLVWERVRLEA
1-C.merolae
                                                                      123
SAT4-A.thalia
                57 KSDVKQEPILSNYYYASITSHRSLESALAHILSVKLSNLNLPSNTLFELF
                                                                      106
               1-C.merolae
                                                                      173
               107 ISVLEESPEIIESTKODLIAVKERDPACISYVHCFLGFKGFLACOAHRIA
SAT4-A.thalia
                                                                      156
               174 REALEKAPEARYAIRLDLLAVADRDPACTRVIDALLFFKGFHALQTHRVA
1-C.merolae
                                                                      223
SAT4-A.thalia
               157 HTLWKQNRKIVALLIQNRVSESFAVDIHPGAKIGKGILLDHATGVVIGET
                                                                      206
               224 HWLWSQNRQALAMYLHSQVCKVLQIDIHPAARIGYGVFIDHGTGVVIGET
                                                                      273
1-C.merolae
               207 AVVGDNVSILHGVTLGGTGKQSGDRHPKIGDGVLIGAGSCILGNITIGEG
SAT4-A.thalia
                                                                      256
               1.||:||:||.||||||.:.||||:|.|.||||:..|||||:..|
274 ARVGNNVSLLHHVTLGGTGTKLGDRHPRIEDCVLIGAGATILGNITVGYG
1-C.merolae
                                                                      323
SAT4-A.thalia
               257 AKIGSGSVVVKDVPARTTAVGNPARLIG
                                                 284
               324 AMVGACTVLTSDLPPHSTAVGVPARVIG
                                                 351
1-C.merolae
                 45 LWTQIKAEARRDAEAEPALASYLYSTILSHSSLERSISFHLGNKLCSSTL
SAT5-A.thalia
                                                                        94
                115 VWERVRLEAEAAAREEOLLASFLYATVLNHDTLEACLAFHLANKLASTTL
1-C.merolae
                                                                       164
SAT5-A.thalia
                 95 LSTLLYDLFLNTFSSDPSLRNATVADLRAARVRDPACISFSHCLLNYKGF
                                                                       144
                165 PSTMLNEIIREALEKAPEARYAIRLDLLAVADRDPACTRVIDALLFFKGF
1-C.merolae
                                                                       214
                145 LAIQAHRVSHKLWTQSRKPLALALHSRISDVFAVDIHPAAKIGKGILLDH
SAT5-A.thalia
                                                                       194
                1-C.merolae
                                                                       264
SAT5-A.thalia
                195 ATGVVVGETAVIGNNVSILHHVTLGGTGKACGDRHPKIGDGCLIGAGATI
                                                                       244
                1-C.merolae
                                                                       314
SAT5-A, thalia
                245 LGNVKIGAGAKVGAGSVVLIDVPCRGTAVGNPARLVG
                                                          281
                315 LGNITVGYGAMVGACTVLTSDLPPHSTAVGVPARVIG
1-C.merolae
                                                           351
```

Fig. 7-25. Alignment of 1-C. merolae SAT amino acid sequence with A. thaliana isoforms.

		М
	162	
_		

69 113	SYDPIWDSIREEAKLEAEEEPVLSSFLYASILSHDCLEQALSFVLANRLQ . : :: . . : . : . . SSDPVWELVRREAEIGAANEPQLASSLYATVLNNRCLEDTLAFHLANELA	118 162
119	NPTLLATQLMDIFCNVMVHDRGIQSSIRLDVQAFKDRDPACLSYSSAILH	168
163	: .:.: .::. :.:: . :. ::: SPFFQATQYVKLFRDALYQDKSYREAIRADLLAVVRRDPAMKHCVAVLMY	212
169	LKGYLALQAYRVAHKLWKQGRKLLALALQSRVSEVFGIDIHPAARIGKGI	218
213	: SKGYAALQAYRLAHLLWRQDRKVLALFLQSEISKCFAVDIHPAARIGSGV	262
219	LLDHGTGVVIGETAVIGDRVSILHGVTLGGTGKETGDRHPNIGDGALLGA	268
263	MIDHATGIVIGETAVVGNDVSMLHNVTLGGTGKEAGDRHPKVGRGVLLGA	312
269	CVTILGNIKIGAGAMVAAGSLVLKDVPSHSMVAGNPAKLIG 309	
313	::IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
33	SDPIWDAIREEAKLEAEKEPILSSFLYAGILAHDCLEQALGFVLANRLQN	82
114	SDPVWELVRREAEIGAANEPQLASSLYATVLNHRCLEDTLAFHLANELAS	163
83	PTLLATQLLDIFYGVMMHDKGIQSSIRHDLQAFKDRDPACLSYSSAILHL	132
164	PFFQATQYVKLFRDALYQDKSYREAIRADLLAVVRRDPAMKHCVAVLMYS	213
133	KGYHALQAYRVAHKLWNEGRKLLALALQSRISEVFGIDIHPAARIGEGIL	182
214	KGYAALQAYRLAHLLWRQDRKVLALFLQSEISKCFAVDIHPAARIGSGVM	263
183	LDHGTGVVIGETAVIGNGVSILHGVTLGGTGKETGDRHPKIGEGALLGAC	232
264	: . : : . : . : : : :	313
233	VTILGNISIGAGAMVAAGSLVLKDVPSHSVVAGNPAK 269	
314	ATVLGNIRIGDGAQITASSVVLKDVPPYTIVSGVPAR 350	
123	DDVWAKIREEAKSDIAKEPIVSAYYHASIVSQRSLEAALANTLSVKLSNL	172
115	DPVWELVRREAEIGAANEPQLASSLYATVLNHRCLEDTLAFHLANELASP	164
173	NLPSNTLFDLFSGVLQGNPDIVESVKLDLLAVKERDPACISYVHCFLHFK	222
165	FFQATQYVKLFRDALYQDKSYREAIRADLLAVVRRDPAMKHCVAVLMYSK	214
223	GFLACQAHRIAHELWTQDRKILALLIQNRVSEAFAVDFHPGAKIGTGILL	272
215	GYAALQAYRLAHLLWRQDRKVLALFLQSEISKCFAVDIHPAARIGSGVMI	264
273	DHATAIVIGETAVVGNNVSILHNVTLGGTGKQCGDRHPKIGDGVLIGAGT	322
265	DHATGIVIGETAVVGNDVSMLHNVTLGGTGKEAGDRHPKVGRGVLLGAGA	314
323	CILGNITIGEGAKIGAGSVVLKDVPPRTTAVGNPARLLGGKDNPK 367	7
315	TVLGNIRIGDGAQITASSVVLKDVPPYTIVSGVPAREVGKLSYPK 359	9
27	FRPGFSVNRKIHHTQIEDDDDVWIKMLEEAKSDVKQEPILSNYYYASITS	76
97	FGPVISVDDMVR-TLTYSSDPVWELVRREAEIGAANEPQLASSLYATVLN	145
77	HRSLESALAHILSVKLSNLNLPSNTLFELFISVLEESPEIIESTKQDLIA	126
146	HRCLEDTLAFHLANELASPFFQATQYVKLFRDALYQDKSYREAIRADLLA	195
127	VKERDPACISYVHCFLGFKGFLACQAHRIAHTLWKQNRKIVALLIQNRVS	176
196	VVRRDPAMKHCVAVLMYSKGYAALQAYRLAHLLWRQDRKVLALFLQSEIS	245
177	ESFAVDIHPGAKIGKGILLDHATGVVIGETAVVGDNVSILHGVTLGGTGK	226
246	:	295
227	QSGDRHPKIGDGVLIGAGSCILGNITIGEGAKIGSGSVVVKDVPARTTAV	276
296	EAGDRHPKVGRGVLLGAGATVLGNIRIGDGAQITASSVVLKDVPPYTIVS	345
217	GNPARLIGGKENPR 290	
346	GNPARLIGGKENPR 290 . :]: GVPAREVGKLSYPK 359	
277 346 4	GNPARLIGGKENPR 290 . .: : GVPAREVGKLSYPK 359 5 LWTQIKAEARRDAEAEPALASYLYSTILSHSSLERSISFHLGNKLCSSTL	94
277 346 4 11	GNPARLIGGKENPR 290 . .: : GVPAREVGKLSYPK S19 S19 5 LWTQIKAEARRDAEAEPALASYLYSTILSHSSLERSISFHLGNKLCSSTL ::	94 166
277 346 4 11 9	GNPARLIGGKENFR 290 I.III.I.I.I.G GVPAREVGKLSYPK S5 LWTQIKAEARRDAEAEPALASYLYSTILSHSSLERSISFHLGNKLCSSTL I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.	94 166 144
277 346 4 11 9 16	GNPARLIGGKENPR 290 .: GVPAREVGKLSYPK 359 5 LWTQIKAEARRDAEAEPALASYLYSTILSHSSLERSISFHLGNKLCSSTL :	94 166 144 216
277 346 4 11 9 16	GNPARLIGGKENPR 290 . .:	94 166 144 216 194
277 346 4 11 9 16 14 21	GNPARLIGGKENPR 290 . .: : GVPAREVGKLSYPK 359 GUVAREVGKLSYPK 359 SLUTQIKAEARRDAEAEPALASYLLYSTILSHSSLERSISFHLGNKLCSSTL :	94 166 144 216 194 266
277 346 4 11 9 16 14 21 19	GNPARLIGGKENPR 290 . .: : GVPAREVGKLSYPK S5 LWTQIKAEARRDAEAEPALASYLYSTILSHSSLERSISFHLGNKLCSSTL :	94 166 144 216 194 266 244
277 346 4 11 9 16 14 21 19 26	GNPARLIGGKENFR 290 . .	94 166 144 216 194 266 244 316
277 346 4 11 9 16 14 21 19 26 24	GNPARLIGGKENPR 290 . .: : GVPAREVGKLSYPK 359 5 LWTQIKAEARRDAEAEPALASYLLYSTILSHSSLERSISFHLGNKLCSSTL ::	94 166 144 216 194 266 244 316
	 69 113 119 163 219 263 269 313 33 114 83 164 133 264 233 314 123 264 233 314 123 264 223 215 273 265 323 315 277 316 273 265 323 315 277 146 177 146 177 146 177 146 177 246 227 265 223 215 223 215 223 215 223 215 223 215 223 215 223 216 223 215 223 215 223 215 223 215 223 216 223 215 224 224 224 224 224 224 224 <li< td=""><td><pre>69 SYDPIMDSIREEAKLEAEEEPVLSSFLYASILSHDCLEQALSFVLANRLQ </pre></td></li<>	<pre>69 SYDPIMDSIREEAKLEAEEEPVLSSFLYASILSHDCLEQALSFVLANRLQ </pre>

Fig. 7-26. Alignment of 2-C. merolae SAT amino acid sequence with A. thaliana isoforms.
SATI-A.thalia 71 DPIWDSIREEAKLEAEEEPVLSSFLYASILSHDCLEQALSFVLANRLQNP 120 332 DLVWDLMRHEAQIEAQREPLLVSFLYSTILNHPTLEAALAFHLANRLESS 381 T.pseudonana 121 TLLATQLMDIFCNVMVHDRGIQSSIRLDVQAFKDRDPACLSYSSAILHLK SAT1-A.thalia 170 382 AMLSTQVMELVREALDGDEEFQRNLRADIMAVRDRDPACTCLPDVFLYFK T.pseudonana 431 SAT1-A.thalia 171 GYLALQAYRVAHKLWKQGRKLLALALQSRVSEVFGIDIHPAARIGKGILL 220 432 GFHALQSYRVSNYLWRSGRRVLAHYLQSQVSQTFQIDIHPNATIGSGVML T.pseudonana 481 SAT1-A.thalia 221 DHGTGVVIGETAVIGDRVSILHGVTLGGTGKETGDRHPNIGDGALLGACV 270 482 DHGTGIVIGETAHLGHNCSVLHHVTLGGSGKKGVDRHPKIGNGVLLGAGA T. pseudonana 531 271 TILGNIKIGAGAMVAAGSLVLKDVPSHSMVAGNPAKLIG-FVD-EQDPSM SAT1-A.thalia 318 T.pseudonana 581 SAT1-A.thalia 319 TMEHDATRE 327 582 GMNQLGSKE 590 T.pseudonana 34 DPIWDAIREEAKLEAEKEPILSSFLYAGILAHDCLEQALGFVLANRLQNP 83 SAT2-A.thalia T.pseudonana 381 SAT2-A.thalia 84 TLLATQLLDIFYGVMMHDKGIQSSIRHDLQAFKDRDPACLSYSSAILHLK 133 T.pseudonana 431 SAT2-A.thalia 134 GYHALQAYRVAHKLWNEGRKLLALALQSRISEVFGIDIHPAARIGEGILL 183 432 GFHALQSYRVSNYLWRSGRRVLAHYLQSQVSQTFQIDIHPNATIGSGVML T.pseudonana 481 SAT2-A.thalia 184 DHGTGVVIGETAVIGNGVSILHGVTLGGTGKETGDRHPKIGEGALLGACV 233 482 DHGTGIVIGETAHLGHNCSVLHHVTLGGSGKKGVDRHPKIGNGVLLGAGA 531 T.pseudonana SAT2-A.thalia 234 TILGNISIGAGAMVAAGSLVLKDVPSHSVVAGNPAKLI-RVME-EQDPSL 281 532 SVLGNIHIGDGCQVGAGTLVVEDLPPRSVAVGVPAKIIGRFVDVTAQPSL T.pseudonana 581 SAT2-A.thalia 282 AMKHDATKE 290 582 GMNOLGSKE T.pseudonana 590 SAT3-A.thalia 122 VDDVWAKIREEAKSDIAKEPIVSAYYHASIVSORSLEAALANTLSVKLSN 171 331 VDLVWDLMRHEAQIEAQREPLLVSFLYSTILNHPTLEAALAFHLANRLES T.pseudonana 380 SAT3-A.thalia 172 LNLPSNTLFDLFSGVLQGNPDIVESVKLDLLAVKERDPACISYVHCFLHF 221 381 SAMLSTQVMELVREALDGDEEFQRNLRADIMAVRDRDPACTCLPDVFLYF T.pseudonana 430 222 KGFLACQAHRIAHELWTQDRKILALLIQNRVSEAFAVDFHPGAKIGTGIL SAT3-A.thalia 271 431 KGFHALQSYRVSNYLWRSGRRVLAHYLQSQVSQTFQIDIHPNATIGSGVM T.pseudonana 480 SAT3-A.thalia 272 LDHATAIVIGETAVVGNNVSILHNVTLGGTGKQCGDRHPKIGDGVLIGAG 321 481 LDHGTGIVIGETAHLGHNCSVLHHVTLGGSGKKGVDRHPKIGNGVLLGAG T.pseudonana 530 SAT3-A.thalia 322 TCILGNITIGEGAKIGAGSVVLKDVPPRTTAVGNPARLLG 361 531 ASVLGNIHIGDGCQVGAGTLVVEDLPPRSVAVGVPAKIIG 570 T.pseudonana SAT4-A.thalia 46 DDVWIKMLEEAKSDVKQEPILSNYYYASITSHRSLESALAHILSVKLSNL 95 332 DLVWDLMRHEAQIEAQREPLLVSFLYSTILNHPTLEAALAFHLANRLESS T.pseudonana 381 SAT4-A.thalia 96 NLPSNTLFELFISVLEESPEIIESTKQDLIAVKERDPACISYVHCFLGFK 145 382 AMLSTQVMELVREALDGDEEFQRNLRADIMAVRDRDPACTCLPDVFLYFK T.pseudonana 431 SAT4-A.thalia 146 GFLACOAHRIAHTLWKONRKIVALLIONRVSESFAVDIHPGAKIGKGILL 195 432 GFHALQSYRVSNYLWRSGRRVLAHYLQSQVSQTFQIDIHPNATIGSGVML T.pseudonana 481 SAT4-A.thalia 196 DHATGVVIGETAVVGDNVSILHGVTLGGTGKOSGDRHPKIGDGVLIGAGS 245 482 DHGTGIVIGETAHLGHNCSVLHHVTLGGSGKKGVDRHPKIGNGVLLGAGA T.pseudonana 531 SAT4-A.thalia 246 CILGNITIGEGAKIGSGSVVVKDVPARTTAVGNPARLIG 284 .:||||.||:|.::|::|::|::|:|:|:|:||:||:|| SVI.GNIHIGDGCOVGAGTI.VVFDI.PPRSVAVGVPAKIIG 570 LWTQIKAEARRDAEAPPALASYLYSTILSHSLERSISFHLGNKLCSSTL T.pseudonana SAT5-A.thalia 532 94 334 VWDLMRHEAQIEAQREPLLVSFLYSTILNHPTLEAALAFHLANRLESSAM 383 T.pseudonana SAT5-A.thalia 95 LSTLLYDLFLNTFSSDPSLRNATVADLRAARVRDPACISFSHCLLNYKGF 144 384 LSTQVMELVREALDGDEEFQRNLRADIMAVRDRDPACTCLPDVFLYFKGF T.pseudonana 433 145 LAIQAHRVSHKLWTQSRKPLALALHSRISDVFAVDIHPAAKIGKGILLDH SAT5-A.thalia 194 434 HALQSYRVSNYLWRSGRRVLAHYLQSQVSQTFQIDIHPNATIGSGVMLDH 483 T.pseudonana SAT5-A.thalia 195 ATGVVVGETAVIGNNVSILHHVTLGGTGKACGDRHPKIGDGCLIGAGATI 244 484 GTGIVIGETAHLGHNCSVLHHVTLGGSGKKGVDRHPKIGNGVLLGAGASV T.pseudonana 533 SAT5-A.thalia 245 LGNVKIGAGAKVGAGSVVLIDVPCRGTAVGNPARLVG 281 534 LGNIHIGDGCQVGAGTLVVEDLPPRSVAVGVPAKIIG T.pseudonana 570

Fig. 7-27. Alignment of T. pseudonana SAT amino acid sequence with A. thaliana isoforms.

SAT1-A.thalia	67	NSSYDFIWDSIREEAKLEAEEEPVLSSFLYASILSHDCLEQALSFVLANR :. . .: .: .: .: !. : . : : : : : :	116
1-P.tricornut	263	DGSVDLVWDLLRWDAYQEAQREPLLVSFLYSTILNHPSLESSLSFLLANR	312
1-P.tricornut	313	I STATE AND A STATE AND	362
SAT1-A.thalia	166	ILHLKGYLALQAYRVAHKLWK-QGRKLLALALQSRVSEVFGIDIHPAARI	214
1-P.tricornut	363	. :. :. ::: . .::: : :. . . FLYFKGFHALESHRVAHTLWKKQNKRVLAQYLQSQVSQTFQIDIHPNATF	412
SAT1-A.thalia	215	GKGILLDHGTGVVIGETAVIGDRVSILHGVTLGGTGKETGDRHPNIGDGA	264
1-P.tricornut	413	GMGIMLDHGTGIVVGETAAVGHNCSILHHVTLGGSGKKGVDRHPRVGNGV	462
SAT1-A.thalia	265	LLGACVTILGNIKIGAGAMVAAGSLVLKDVPSHSMVAGNPAKLIG-FVD-	312
I-P.tricornut	463	LLGAGATVLGPVHIGDGSQVGAGTLVISDLPSHCVAVGVPARIIGSFIDV	51Z
1-P.tricornut	513	IIIIII TEOPSIGM 520	
SAT2-A.thalia	30	DPRSDPIWDAIREEAKLEAEKEPILSSFLYAGILAHDCLEQALGFVLANR	79
1-P.tricornut	263	DGSVDLVWDLLRWDAYQEAQREPLLVSFLYSTILNHPSLESSLSFLLANR	312
SAT2-A.thalia	80	LQNPTLL-ATQLLDIFYGVMMHDKGIQSSIRHDLQAFKDRDPACLSYSSA	128
SAT2-A.thalia	129	LUSTADDISTQLQSLIIASLQKCPIFRRALRADLMAVRDRDPAVQSLPDV	177
1-P.tricornut	363	FLYFKGFHALESHRVAHTLWKKQNKRVLAQYLQSQVSQTFQIDIHPNATF	412
SAT2-A.thalia	178	GEGILLDHGTGVVIGETAVIGNGVSILHGVTLGGTGKETGDRHPKIGEGA	227
1-P.tricornut	413	GMGIMLDHGTGIVVGETAAVGHNCSILHHVTLGGSGKKGVDRHPRVGNGV	462
SAT2-A.thalia	228	LLGACVTILGNISIGAGAMVAAGSLVLKDVPSHSVVAGNPAKLI 271	
1-P.tricornut	463	LLGAGATVLGPVHIGDGSQVGAGTLVISDLPSHCVAVGVPARII 506	
SAT3-A.thalia	119	DAEVDDVWAKIREEAKSDIAKEPIVSAYYHASIVSQRSLEAALANTLSVK	168
1-P.tricornut	263	DGSVDLVWDLLRWDAYQEAQREPLLVSFLYSTILNHPSLESSLSFLLANR	312
1-P tricornut	313	L-SNLNLPSNLFDLESGVLQGNPDIVESVKLDLLAVKERDPACTSIVHC	362
SAT3-A.thalia	218	FLHFKGFLACQAHRIAHELWT-QDRKILALLIQNRVSEAFAVDFHPGAKI	266
1-P.tricornut	363	: . .: : . . :::: :!!: :. .: . FLYFKGFHALESHRVAHTLWKKQNKRVLAQYLQSQVSQTFQIDIHPNATF	412
SAT3-A.thalia	267	GTGILLDHATAIVIGETAVVGNNVSILHNVTLGGTGKQCGDRHPKIGDGV	316
1-P.tricornut	413	GMGIMLDHGTGIVVGETAAVGHNCSILHHVTLGGSGKKGVDRHPRVGNGV	462
SAT3-A.thalia	317	LIGAGTCILGNITIGEGAKIGAGSVVLKDVPPRTTAVGNPARLLG 36	1
1-P.tricornut	463	LLGAGATVLGPVHIGDGSQVGAGTLVISDLPSHCVAVGVPARIIG 50	7
1-P.tricornut	4 26	7 DLVWDLLRWDAYQEAQREPLLVSFLYSTILNHPSLESSLSFLLANRLOSP	94 316
SAT4-A.thalia	9	5 LNLPSNTLFELFISVLEESPEIIESTKQDLIAVKERDPACISYVHCFLGF	144
1-P.tricornut	31	7 AMMISTQLQSLIYASLQRCPIFRRALRADLMAVRDRDPAVQSLPDVFLYF	366
SAT4-A.thalia	14	5 KGFLACQAHRIAHTLWK-QNRKIVALLIQNRVSESFAVDIHPGAKIGKGI	193
1-P.tricornut	36	7 KGFHALESHRVAHTLWKKQNKRVLAQYLQSQVSQTFQIDIHPNATFGMGI	416
SAT4-A.thalia	19	4 LLDHATGVVIGETAVVGDNVSILHGVTLGGTGKQSGDRHPKIGDGVLIGA	243
1-P.tricornut	41	7 MLDHGTGIVVGETAAVGHNCSILHHVTLGGSGKKGVDRHPRVGNGVLLGA	466
SAT4-A.thalia	24	<pre>9 GSCILGNITIGEGAKIGSGSVVVKDVPARTTAVGNPARLIG 284 </pre>	
SAT5-A.thalia	3	4 SAAAADAEAAGLWTQIKAEARRDAEAEPALASYLYSTILSHSSLERSISF 	83
SAT5-A.thalia	∠0 8	4 HLGNKLCS-STLLSTLLYDLFLNTFSSDPSLRNATVADLRAARVRDPACI	132
1-P.tricornut	30	8 LLANRLQSPAMMISTQLQSLIYASLQRCPIFRRALRADLMAVRDRDPAVQ	357
SAT5-A.thalia	13	3 SFSHCLLNYKGFLAIQAHRVSHKLWT-QSRKPLALALHSRISDVFAVDIH	181
1-P.tricornut	35	8 SLPDVFLYFKGFHALESHRVAHTLWKKQNKRVLAQYLQSQVSQTFQIDIH	407
SAT5-A.thalia	18	2 PAAKIGKGILLDHATGVVVGETAVIGNNVSILHHVTLGGTGKACGDRHPK	231
1-P.tricornut	40	8 PNATFGMGIMLDHGTGIVVGETAAVGHNCSILHHVTLGGSGKKGVDRHPR	457
SAT5-A.thalia	23	<pre>Z IGDGCLIGAGATILGNVKIGAGAKVGAGSVVLIDVPCRGTAVGNPARLVG : : . : : . : : : : : : : : : : : </pre>	281
SAT2-A.thal	ia.	76 LANRLQNPTLLATQLLDIFYGVMMHDKGIQSSIRHDL	112
2-P.tricorn	ut	. . .:	369
SAT1-A.	tha	lia 276 IKIGAGAMVAAGSLVLKDV	294
		:. : :.:	
2-P.trie	cor	nut 170 VPIACGAQHSAWQIAISEV	188
SAT3-A.t	hal:	ia 73 RDSSKHHDDESGFRYMNYFRYPDRS	9
2		1:	0.54
2-P.tric	orni	10 255 KQKGKGDDDTDGPAYGSHARWQVKS	255
SAT4-A.t			
1033 203 001 000	hal	ia 133 ACISYVHCFLGFKGFLACQAHRIAH	157
2-P.tric	hal orn	133 ACISYVHCFLGFKGFLACQAHRIAH .:: . ut 340 ATLEVIHSDDGHDGFLLEQEQVAAH	364
2-P.tric SAT5-A.th	hal orn hali	a 133 ACISYVHCFLGFKGFLACQAHRIAH 	157 364
2-P.tric SAT5-A.th 2-P.trice	hal orn hali	<pre>1a 133 ACISYVHCFLGFKGFLACQAHRIAH ut 340 ATLEVIHSDDGHDGFLLEQEQVAAH a 124 ARVRDPACISFSHCLLNYKGFLAIQAHRVSH :: : : 334 ARLEPNATLEVIHSDDGHDGFLLEQEOVAAH</pre>	157 364 1:

Fig. 7-28. Alignment of P. tricornutum SAT amino acid sequence with A. thaliana isoforms.

		Ø
9	165	
U		

SAT1-A.thalia	156 DPACLSYSSAILHLKGYLALQAYRVAHKLWKQGRKLLALALQSRVSE	202
E.huxleyi	. : :::: . 146 daafagflriylffkgfhsvqcarvahfwwnqpngsgrwialalqsemsd	195
SAT1-A.thalia	203 VFGIDIHPAARIGKGILLDHGTGVVIGETAVIGDRVSILHGVTLGGTGKE	252
E.huxleyi	196 AFGVDIHPAARWGRGITMDHGTGCVIGETAVIGDNVYIMHDVTLGATGAS	245
SAT1-A.thalia	253 TGDRHPNIGDGALLGACVTILGNIKIGAGAMVAA	286
E.huxleyi	246 LHHARRTEMAGMGTSLDHDRHPKIGRGAFLACKSTVLGNIQVGAGAT	292
SAT1-A.thalia	287 GSLVLKDVPSHSMVAGNPAKLI 308	
E.huxleyi SAT2-A.thalia	293 -ALVNKPVPAGYTAVGSPARML 313 119 DPACLSYSSAILHLKGYHALQAYRVAHKLWNEGRKLLALALQSRISE	165
E.huxleyi	146 DAAFAGFLRIYLFFKGFHSVQCARVAHFWWNQPNGSGRWIALALQSEMSD	195
SAT2-A.thalia	166 VFGIDIHPAARIGEGILLDHGTGVVIGETAVIGNGVSILHGVTLGGTGKE	215
E.huxleyi	196 AFGVDIHPAARWGRGITMDHGTGCVIGETAVIGDNVYIMHDVTLGATGAS	245
SAT2-A.thalia	216 TGDRHPKIGEGALLGACVTILGNISIGAGAMVAA	249
E.huxleyi	246 LHHARRTEMAGMGTSLDHDRHPKIGRGAFLACKSTVLGNIQVGAGAT	292
SAT2-A.thalia	250 GSLVLKDVPSHSVVAGNPAKLI 271	
E.huxleyi	293 -ALVNKPVPAGYTAVGSPARML 313	
SAT3-A.thalia	208 DPACISYVHCFLHFKGFLACQAHRIAHELWTQDRKILALLIQNRVSE	254
E.huxleyi	146 DAAFAGFLRIYLFFKGFHSVQCARVAHFWWNQPNGSGRWIALALQSEMSD	195
SAT3-A.thalia	255 AFAVDFHPGAKIGTGILLDHATAIVIGETAVVGNNVSILHNVTLGGTG	302
E.huxleyi	196 AFGVDIHPAARWGRGITMDHGTGCVIGETAVIGDNVYIMHDVTLGATGAS	245
SAT3-A.thalia	303KQCGDRHPKIGDGVLIGAGTCILGNITIGEGAKIGA	338
E.huxleyi	246 LHHARRTEMAGMGTSLDHDRHPKIGRGAFLACKSTVLGNIQVGAGAT	292
SAT3-A.thalia	339 GSVVLKDVPPRTTAVGNPARLLGGKDN 365	
E.huxleyi	293 -ALVNKPVPAGYTAVGSPARMLPPKPN 318	
SAT4-A.thalia	131 DPACISYVHCFLGFKGFLACQAHRIAHTLWKQNRKIVALLIQNRVSE	177
E.huxleyi	146 DAAFAGFLRIYLFFKGFHSVQCARVAHFWWNQPNGSGRWIALALQSEMSD	195
SAT4-A.thalia	178 SFAVDIHPGAKIGKGILLDHATGVVIGETAVVGDNVSILHGVTLGGTG	225
E.huxleyi	196 AFGVDIHPAARWGRGITMDHGTGCVIGETAVIGDNVYIMHDVTLGATGAS	245
SAT4-A.thalia	226KQSGDRHPKIGDGVLIGAGSCILGNITIGEGAKIGS	261
E.huxleyi	246 LHHARRTEMAGMGTSLDHDRHPKIGRGAFLACKSTVLGNIQVGAGAT	292
SAT4-A.thalia	262 GSVVVKDVPARTTAVGNPARLIGGKENPRK 291	
E.huxleyi	293 -ALVNKPVPAGYTAVGSPARMLPPKPNQTK 321	
SAT5-A.thalia	126 VRDPACISFSHCLLNYKGFLAIQAHRVSHKLWTQSRKPLALALHSR	I 172
E.huxleyi	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	: M 193
SAT5-A.thalia	173 SDVFAVDIHPAAKIGKGILLDHATGVVVGETAVIGNNVSILHHVTLGGT	G 222
E.huxleyi	194 SDAFGVDIHPAARWGRGITMDHGTGCVIGETAVIGDNVYIMHDVTLGAT	G 243
SAT5-A.thalia	223 KACGDRHPKIGDGCLIGAGATILGNVKIGAGAK	V 256
E.huxleyi	244 ASLHHARRTEMAGMGTSLDHDRHPKIGRGAFLACKSTVLGNIQVGAGAT	- 292
SAT5-A.thalia	257 GAGSVVLIDVPCRGTAVGNPARLVGGKEKPT 287	
E.huxleyi	293ALVNKPVPAGYTAVGSPARMLPPKPNQT 320	

Fig. 7-29. Alignment of E. huxleyi SAT amino acid sequence with A. thaliana isoforms.

		Ø
9	166	
\bigcup		

7.3.4. Alignment of the OAS-TL sequence of Cyanobacteria with *A. thaliana* OAS-TL isoforms

		Ð
9	167	

```
A-A.thaliana
                   4 RIAKDVTELIGNTPLVYLNNVA--EGCVGRVAAKLEMMEPCSSVKDRIGF
                                                                           51
                  21 KIASNITELIGRTPLVRLNRIPLLEGCGAKIVVKLEGMNPAASVKDRIGI
 1-Synechocyst
                                                                           70
                  52 SMISDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASM
 A-A.thaliana
                                                                          101
                 1-Synechocyst
                                                                          120
A-A.thaliana
                 102 STERRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFENP
                                                                          151
                 121 SQERRAMLKAYGAKLELTPGSEGMGGCIRRAQELAESLPNAYMLQQFDNP
                                                                          170
1-Synechocyst
                 152 ANPKIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANVK
A-A.thaliana
                                                                          201
 1-Synechocyst
                 171 ANPQIHQQTTALEIWQDTDGAIDFLVAGVGTGGTITGVASVLKEKKPSFQ
                                                                          220
                 202 LYGVEPVESAILSGGKPGPHKIQGIGAGFIPSVLNVDLIDEVVQVSSDES
                                                                          251
 A-A.thaliana
                 221 AIAVEPQNSPVLSGGKPGPHKIQGIGAGFIPEVLDVNLIDEVIAVTDEEA
 1-Synechocyst
                                                                          270
                 252 IDMARQLALKEGLLVGISSGAAAAAAIKLAQRPENAGKLFVAIFPSFGER
 A-A.thaliana
                                                                          301
                 271 IAYGRRLAREEGILSGISTGAALAAAIKVAKRPANKDKLIVMIQPSFGER
1-Synechocyst
                                                                          320
                 302 YLSTVLF
 A-A.thaliana
                                308
                 321 YLSTPLF
1-Synechocyst
                                327
 B-A.thaliana
                 73 LNIADNAAQLIGKTPMVYLNNV--VKGCVASVAAKLEIMEPCCSVKDRIG
                                                                          120
                  20 MKIASNITELIGRTPLVRLNRIPLLEGCGAKIVVKLEGMNPAASVKDRIG
1-Synechocyst
                                                                           69
                 121 YSMITDAEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPAS
                                                                          170
B-A.thaliana
                 70 INMINRAEQEGLIEPGKTLLIEPTSGNTGIALAMVAAAKGYQLILTMPET
1-Synechocyst
                                                                          119
                 171 MSLERRVLLRAFGAELVLTEPAKGMTGAIOKAEEILKKTPNSYMLOOFDN
B-A.thaliana
                                                                          220
 1-Synechocyst
                 120 MSQERRAMLKAYGAKLELTPGSEGMGGCIRRAQELAESLPNAYMLQQFDN
                                                                          169
 B-A.thaliana
                 221 PANPKIHYETTGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKPEL
                                                                          270
 1-Synechocyst
                 170 PANPQIHQQTTALEIWQDTDGAIDFLVAGVGTGGTITGVASVLKEKKPSF
                                                                          219
 B-A.thaliana
                 271 KVIGVEPTESAILSGGKPGPHKIQGIGAGFVPKNLDLAIVDEYIAISSEE
                                                                          320
                 220 QAIAVEPQNSPVLSGGKPGPHKIQGIGAGFIPEVLDVNLIDEVIAVTDEE
                                                                          269
1-Synechocyst
                 321 AIETSKQLALQEGLLVGISSGAAAAAAIQVAKRPENAGKLIAVVFPSFGE
B-A.thaliana
                                                                          370
                 270 AIAYGRRLAREEGILSGISTGAALAAAIKVAKRPANKDKLIVMIOPSFGE
1-Synechocyst
                                                                          319
                 371 RYLSTOLFOSI
                                   381
B-A.thaliana
                 320 RYLSTPLFQDL
                                    330
 1-Synechocyst
                  97 VVCEAVKRETGPDGLNIADNVSQLIGKTPMVYLNSIA--KGCVANIAAKL
 C-A.thaliana
                                                                           144
                    6 VRCRQISLLGGPLPMKIASNITELIGRTPLVRLNRIPLLEGCGAKIVVKL
 1-Synechocyst
                                                                           55
 C-A.thaliana
                 145 EIMEPCCSVKDRIGYSMVTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIA
                                                                           194
                  56 EGMNPAASVKDRIGINMINRAEQEGLIEPGKTLLIEPTSGNTGIALAMVA
 1-Synechocyst
                                                                           105
                 195 ASRGYRLILTMPASMSMERRVLLKAFGAELVLTDPAKGMTGAVQKAEEIL
                                                                           244
 C-A.thaliana
                 106 AAKGYQLILTMPETMSQERRAMLKAYGAKLELTPGSEGMGGCIRRAQELA
 1-Synechocyst
                                                                           155
 C-A.thaliana
                 245 KNTPDAYMLQQFDNPANPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTI
                                                                           294
                 156 ESLPNAYMLQQFDNPANPQIHQQTTALEIWQDTDGAIDFLVAGVGTGGTI
 1-Synechocyst
                                                                           205
                 295 TGVGRFIKEKNPKTQVIGVEPTESDILSGGKPGPHKIQGIGAGFIPKNLD
 C-A.thaliana
                                                                           344
                 206 TGVASVLKEKKPSFQAIAVEPQNSPVLSGGKPGPHKIQGIGAGFIPEVLD
 1-Synechocyst
                                                                           255
                 345 QKIMDEVIAISSEEAIETAKQLALKEGLMVGISSGAAAAAAIKVAKRPEN
 C-A.thaliana
                                                                           394
                 256 VNLIDEVIAVTDEEAIAYGRRLAREEGILSGISTGAALAAAIKVAKRPAN
 1-Synechocyst
                                                                           305
                 395 AGKLIAVVFPSFGERYLSTPLFOSI
 C-A.thaliana
                                                 419
                 306 KDKLIVMIOPSFGERYLSTPLFODL
1-Synechocyst
                                                 330
Cl-A.thaliana
                 56 LIGKTPLVFLNKVT--EGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEK
                                                                         103
                 29 LIGRTPLVRLNRIPLLEGCGAKIVVKLEGMNPAASVKDRIGINMINRAEQ
1-Synechocyst
                                                                          78
                104 KKLIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTM
Cl-A.thaliana
                                                                         153
                79 EGLIEPGKTLLIEPTSGNTGIALAMVAAAKGYQLILTMPETMSQERRAML
1-Synechocyst
                                                                         128
Cl-A.thaliana
                154 RSFGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFANPANTQIHFD
                                                                         203
                129 KAYGAKLELTPGSEGMGGCIRRAQELAESLPNAYMLQQFDNPANPQIHQQ
1-Synechocyst
                                                                         178
                204 TTGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAE
Cl-A.thaliana
                                                                         253
                179 TTALEIWQDTDGAIDFLVAGVGTGGTITGVASVLKEKKPSFQAIAVEPQN
1-Synechocyst
                                                                         228
Cl-A.thaliana
                254 SNILNGGKPGPHAITGNGVGFKPEILDMDVMESVLEVSSEDAIKMARELA
                                                                         303
1-Synechocyst
                229 SPVLSGGKPGPHKIQGIGAGFIPEVLDVNLIDEVIAVTDEEAIAYGRRLA
                                                                         278
                304 LKEGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYLSSVLFD
Cl-A.thaliana
                                                                         353
                279 REEGILSGISTGAALAAAIKVAKRPANKDKLIVMIQPSFGERYLSTPLFQ
1-Synechocyst
                                                                         328
Cl-A.thaliana
                354 EL
                          355
                329 DL
1-Synechocyst
                          330
```

Fig. 7-30. Alignment of 1-*Synechocystis* sp. PCC 6803 OAS-TL amino acid with *A. thaliana* isoforms.

		м
9	168	

A-A.thaliana 13 IGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFSMISDAEKKGL 62 11 IGHTPLIRLNSFSDETGCEILGKAEFMNPGGSVKDRAALGIIETAEKEGK 2-Synechocyst 60 63 IKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMSTERRIILLAF A-A.thaliana 112 61 LKPGGTV-VEGTAGNTGIGLAHICNAKGYKCLIVIPDTQSQEKIDLLRTL 2-Synechocyst 109 113 GVEL--VLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFENPANPKIHYET A-A.thaliana 160 110 GAEVRTVPAVPYRDPNNYVKLSGRIAAELDNAIWANQFDNLANRDAHYHT 2-Synechocyst 159 161 TGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANVKLYGVEPVES A-A.thaliana 210 2-Synechocyst 160 TGPEIWQQTDGKVDAWVAATGTGGTYAGVALYLKEQSEAVQCVVADPMGS 209 A-A.thaliana 211 AILSGGKPGPHK-----IQGIGAGFIPSVLNVDLIDEVVQVSSDESIDM 254 210 GLYSFIKTGEINPSGNSITEGIGNSRITANMENVPIDDAVQIDDPEALRV 2-Synechocyst 259 255 ARQLALKEGLLVGISSGAAAAAAIKLAQRPENAGKLFVAIFPSFGERYLS A-A.thaliana 304 260 VYQLLRRDGLFMGGSVGINVGAAYQLAKKL-GPGHTIVTVLCDGGARYQS 2-Synechocyst 308 B-A.thaliana 73 LNIADNAAQLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYS 122 1 MDIKHGFVDSIGHTPLIRLNSFSDETGCEILGKAEFMNPGGSVKDRAALG 2-Synechocyst 50 123 MITDAEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMS B-A.thaliana 172 51 IIETAEKEGKLKPGGTV-VEGTAGNTGIGLAHICNAKGYKCLIVIPDTQS 2-Synechocyst 99 B-A.thaliana 173 LERRVLLRAFGAEL--VLTEPAKGMTGAIQKAEEILKKTPNSYMLQQFDN 220 100 QEKIDLLRTLGAEVRTVPAVPYRDPNNYVKLSGRIAAELDNAIWANQFDN 2-Synechocyst 149 221 PANPKIHYETTGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKPEL B-A.thaliana 270 150 LANRDAHYHTTGPEIWQQTDGKVDAWVAATGTGGTYAGVALYLKEQSEAV 2-Synechocyst 199 271 KVIGVEPTESAILSGGKPGPHK-----IQGIGAGFVPKNLDLAIVDEYI B-A.thaliana 314 2-Synechocyst 200 QCVVADPMGSGLYSFIKTGEINPSGNSITEGIGNSRITANMENVPIDDAV 249 B-A.thaliana 315 AISSEEAIETSKQLALQEGLLVGISSGAAAAAAIQVAKRPENAGKLIAVV 364 250 QIDDPEALRVVYQLLRRDGLFMGGSVGINVGAAYQLAKKL-GPGHTIVTV 2-Synechocyst 298 365 FPSFGERYLS 374 B-A.thaliana 2-Synechocyst 299 LCDGGARYQS 308 121 IGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYSMVTDAEOKGF 170 C-A.thaliana 11 IGHTPLIRLNSFSDETGCEILGKAEFMNPGGSVKDRAALGIIETAEKEGK 2-Synechocyst 60 C-A.thaliana 171 ISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSMERRVLLKAF 220 61 LKPGGTV-VEGTAGNTGIGLAHICNAKGYKCLIVIPDTQSQEKIDLLRTL 2-Synechocyst 109 C-A.thaliana 221 GAEL--VLTDPAKGMTGAVQKAEEILKNTPDAYMLQQFDNPANPKIHYET 268 110 GAEVRTVPAVPYRDPNNYVKLSGRIAAELDNAIWANQFDNLANRDAHYHT 2-Synechocyst 159 C-A.thaliana 269 TGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQVIGVEPTES 318 2-Synechocyst 160 TGPEIWQQTDGKVDAWVAATGTGGTYAGVALYLKEQSEAVQCVVADPMGS 209 319 DILSGGKPGPHK-----IQGIGAGFIPKNLDQKIMDEVIAISSEEAIET C-A.thaliana 362 210 GLYSFIKTGEINPSGNSITEGIGNSRITANMENVPIDDAVQIDDPEALRV 2-Synechocyst 259 C-A.thaliana 363 AKQLALKEGLMVGISSGAAAAAIKVAKRPENAGKLIAVVFPSFGERYLS 412 57 IGKTPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEKKKL C1-A.thaliana 106 11 IGHTPLIRLNSFSDETGCEILGKAEFMNPGGSVKDRAALGIIETAEKEGK 2-Synechocyst 60 Cl-A.thaliana 107 IIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRSF 156 61 LKPGGT-VVEGTAGNTGIGLAHICNAKGYKCLIVIPDTQSQEKIDLLRTL 2-Synechocyst 109 Cl-A.thaliana 157 GAEL--VLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFANPANTQIHFDT 204 110 GAEVRTVPAVPYRDPNNYVKLSGRIAAELDNAIWANQFDNLANRDAHYHT 2-Synechocyst 159 Cl-A.thaliana 205 TGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAES 254 160 TGPEIWQQTDGKVDAWVAATGTGGTYAGVALYLKEQSEAVQCVVADPMGS 2-Synechocyst 209 Cl-A.thaliana 255 NILNGGKPGPHAITGN----GVGFKPEILDMD--VMESVLEVSSEDAIKM 298 210 GLYSFIKTGEINPSGNSITEGIGNSRITANMENVPIDDAVQIDDPEALRV 2-Synechocyst 259 Cl-A.thaliana 299 ARELALKEGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYLS 348 260 VYQLLRRDGLFMGGSVGINVGAAYQLAKKL-GPGHTIVTVLCDGGARYQS 2-Synechocyst 308 C1-A.thaliana 349 SVLEDE 354 309 RLYNGE 2-Synechocyst 314

Fig. 7-31. Alignment of 2-Synechocystis sp. PCC 6803 OAS-TL amino acid with A. thaliana isoforms.

```
A-A.thaliana
                 5 IAKDVTELIGNTPLVYLNNV--AEGCVGRVAAKLEMMEPCSSVKDRIGFS
                                                                           52
                  3 IAPDITALVGCTPMVRLNRLPKAWGCTAEIVAKLESFNPTASVKDRIAGA
1-Synechococc
                                                                           52
A-A.thaliana
                  53 MISDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMS
                                                                          102
                  53 MVEAAESAGTIAPERTVLVEPTSGNTGIALAMVAAARGYRLILTMPDTMS
1-Synechococc
                                                                          102
A-A.thaliana
                103 TERRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFENPA
                                                                          152
                103 TERRAMLRAYGAELOLTPGMEGMOGAIERARELVDEIPGAYLLOOFDNPA
1-Synechococc
                                                                          152
A-A.thaliana
                153 NPKIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANVKL
                                                                          202
1-Synechococc
                153 NPAVHAASTAEEIWADTEGSLDAVVAGVGTGGTITGCARVLKERQPKLSV
                                                                          202
                203 YGVEPVESAILSGGKPGPHKIQGIGAGFIPSVLNVDLIDEVVQVSSDESI
A-A.thaliana
                                                                          252
                203 VAVEPAASPVLAGGVAGPHRLQGIGAGFIPPVLEMDLIDEIIAVSDDEAM
1-Synechococc
                                                                          252
                253 DMAROLALKEGLLVGISSGAAAAAAIKLAORPENAGKLFVAIFPSFGERY
A-A.thaliana
                                                                          302
                253 DVGRRLAREEGLLCGVSSGAAVAAALRLGQRPAMEGRRIVVILASFGERY
1-Synechococc
                                                                          302
A-A, thaliana
                303 LSTVLF
                            308
                303 LSTPMF
1-Synechococc
                              308
                 75 IADNAAQLIGKTPMVYLNNVVK--GCVASVAAKLEIMEPCCSVKDRIGYS
                                                                           122
B-A.thaliana
                   3 IAPDITALVGCTPMVRLNRLPKAWGCTAEIVAKLESFNPTASVKDRIAGA
1-Synechococc
                                                                            52
B-A.thaliana
                 123 MITDAEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMS
                                                                           172
                 53 MVEAAESAGTIAPERTVLVEPTSGNTGIALAMVAAARGYRLILTMPDTMS
1-Synechococc
                                                                           102
                 173 LERRVLLRAFGAELVLTEPAKGMTGAIQKAEEILKKTPNSYMLQQFDNPA
B-A.thaliana
                                                                           222
1-Synechococc
                103 TERRAMLRAYGAELOLTPGMEGMOGAIERARELVDEIPGAYLLOOFDNPA
                                                                           152
B-A.thaliana
                223 NPKIHYETTGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKPELKV
                                                                           272
1-Synechococc
                153 NPAVHAASTAEEIWADTEGSLDAVVAGVGTGGTITGCARVLKERQPKLSV
                                                                           202
                273 IGVEPTESAILSGGKPGPHKIQGIGAGFVPKNLDLAIVDEYIAISSEEAI
B-A.thaliana
                                                                           322
                203 VAVEPAASPVLAGGVAGPHRLQGIGAGFIPPVLEMDLIDEIIAVSDDEAM
1-Synechococc
                                                                           252
                 323 ETSKQLALQEGLLVGISSGAAAAAAIQVAKRPENAGKLIAVVFPSFGERY
B-A.thaliana
                                                                           372
                 253 DVGRRLAREEGLLCGVSSGAAVAAALRLGQRPAMEGRRIVVILASFGERY
1-Synechococc
                                                                           302
                373 LSTQLFQS
                                380
B-A.thaliana
1-Synechococc
                303 LSTPMFST
                                 310
  C-A.thaliana
                 113 IADNVSQLIGKTPMVYLNSIAK--GCVANIAAKLEIMEPCCSVKDRIGYS
                                                                            160
                  3 IAPDITALVGCTPMVRLNRLPKAWGCTAEIVAKLESFNPTASVKDRIAGA
  1-Synechococc
                                                                             52
  C-A.thaliana
                 161 MVTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMS
                                                                            210
  1-Synechococc
                  53 MVEAAESAGTIAPERTVLVEPTSGNTGIALAMVAAARGYRLILTMPDTMS
                                                                            102
                  211 MERRVLLKAFGAELVLTDPAKGMTGAVOKAEEILKNTPDAYMLOOFDNPA
  C-A.thaliana
                                                                            260
                  103 TERRAMLRAYGAELQLTPGMEGMQGAIERARELVDEIPGAYLLQQFDNPA
  1-Synechococc
                                                                            152
                  261 NPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQV
  C-A.thaliana
                                                                            310
                  153 NPAVHAASTAEEIWADTEGSLDAVVAGVGTGGTITGCARVLKERQPKLSV
                                                                            202
  1-Synechococc
                  311 IGVEPTESDILSGGKPGPHKIOGIGAGFIPKNLDOKIMDEVIAISSEEAI
  C-A.thaliana
                                                                            360
  1-Synechococc
                  203 VAVEPAASPVLAGGVAGPHRLQGIGAGFIPPVLEMDLIDEIIAVSDDEAM
                                                                            252
  C-A.thaliana
                  361 ETAKOLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVFPSFGERY
                                                                            410
                  253 DVGRRLAREEGLLCGVSSGAAVAAALRLGQRPAMEGRRIVVILASFGERY
  1-Synechococc
                                                                            302
 C-A.thaliana
                  411 LSTPLFQS 418
  1-Synechococc
                  303 LSTPMFST
                                 310
  C1-A.thaliana
                   52 DASLLIGKTPLVFLNKVTE--GCEAYVAAKQEHFQPTCSIKDRPAIAMIA
                                                                             99
                   6 DITALVGCTPMVRLNRLPKAWGCTAEIVAKLESFNPTASVKDRIAGAMVE
  1-Synechococc
                                                                             55
  Cl-A.thaliana
                  100 DAEKKKLIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLER
                                                                            149
                   56 AAESAGTIAPERTVLVEPTSGNTGIALAMVAAARGYRLILTMPDTMSTER
  1-Synechococc
                                                                            105
  C1-A.thaliana
                  150 RVTMRSFGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCOOFANPANTO
                                                                            199
  1-Synechococc
                  106 RAMLRAYGAELQLTPGMEGMQGAIERARELVDEIPGAYLLQQFDNPANPA
                                                                            155
                  200 IHFDTTGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGV
  C1-A.thaliana
                                                                            249
                  156 VHAASTAEEIWADTEGSLDAVVAGVGTGGTITGCARVLKERQPKLSVVAV
  1-Synechococc
                                                                            205
                  250 EPAESNILNGGKPGPHAITGNGVGFKPEILDMDVMESVLEVSSEDAIKMA
  C1-A.thaliana
                                                                            299
                  206 EPAASPVLAGGVAGPHRLQGIGAGFIPPVLEMDLIDEIIAVSDDEAMDVG
  1-Synechococc
                                                                            255
  C1-A.thaliana
                  300 RELALKEGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYLSS
                                                                            349
                  256 RRLAREEGLLCGVSSGAAVAAALRLGQRPAMEGRRIVVILASFGERYLST
  1-Synechococc
                                                                            305
                  350 VLF
 C1-A.thaliana
                             352
  1-Synechococc
                  306 PMF
                              308
```

Fig. 7-32. Alignment of 1-Synechococcus sp. WH 7803 OAS-TL amino acid with A. thaliana isoforms.


```
A-A.thaliana
                  3 SRIAKDVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFS
                                                                           52
                  2 SRVYADNSQAIGNTPLVRLNHVTKGCKATVLAKVEGRNPAYSVKCRIGAN
2-Synechococc
                                                                           51
A-A.thaliana
                53 MISDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMS
                                                                          102
                 52 MIWDAEKRGALTEGK-VIVEPTSGNTGIALAFTAAARGYKLVLTMPESMS
2-Synechococc
                                                                          100
A-A.thaliana
                103 TERRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQ-QFENP
                                                                          151
                101 IERRRVMAVLGAEIVLTEAAKGMPGAIAKAKEIAASDPAKYFMPGQFENP
2-Synechococc
                                                                          150
A-A.thaliana
                152 ANPKIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLK-EQNANV
                                                                          200
                151 ANPEIHFKTTGPEIWNDCDGAIDVLVSGVGTGGTITGVSRYIKNEAGKAI
2-Synechococc
                                                                          200
                201 KLYGVEPVESAILSGG-----KPGPHKIQGIGAGFIPSVLNVDLIDEVV
A-A.thaliana
                                                                          244
                201 ESVAVEPSHSPVITQTLNGEEIKPGPHKIQGIGAGFIPENLDLSVVDKVE
2-Synechococc
                                                                          250
                245 QVSSDESIDMARQLALKEGLLVGISSGAAAAAAIKLAQRPENAGKLFVAI
A-A.thaliana
                                                                          294
                251 QVTNEESIAMAQRLAKEEGLLVGISCGAAAAAAIRLAQQDAYAGKTIVVV
2-Synechococc
                                                                          300
                295 FPSFGERYLSTVLF
A-A.thaliana
                                      308
2-Synechococc
              301 LPDLAERYLSSVMF
                                      314
 B-A.thaliana
                  76 ADNAAQLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYSMIT
                                                                           125
                   6 ADNS-QAIGNTPLVRLNHVTKGCKATVLAKVEGRNPAYSVKCRIGANMIW
 2-Synechococc
                                                                           54
 B-A.thaliana
                 126 DAEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMSLER
                                                                           175
                  55 DAEKRGALTEGK-VIVEPTSGNTGIALAFTAAARGYKLVLTMPESMSIER
 2-Synechococc
                                                                           103
 B-A.thaliana
                 176 RVLLRAFGAELVLTEPAKGMTGAIQKAEEILKKTPNSYMLQ-QFDNPANP
                                                                           224
                 104 RRVMAVLGAEIVLTEAAKGMPGAIAKAKEIAASDPAKYFMPGQFENPANP
 2-Synechococc
                                                                           153
                 225 KIHYETTGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIK-ERKPELKVI
 B-A.thaliana
                                                                           273
                 154 EIHFKTTGPEIWNDCDGAIDVLVSGVGTGGTITGVSRYIKNEAGKAIESV
 2-Synechococc
                                                                           203
                 274 GVEPTESAILSGG-----KPGPHKIOGIGAGFVPKNLDLAIVDEYIAIS
 B-A.thaliana
                                                                           317
                204 AVEPSHSPVITQTLNGEEIKPGPHKIQGIGAGFIPENLDLSVVDKVEQVT
 2-Synechococc
                                                                           253
 B-A.thaliana
                 318 SEEAIETSKOLALOEGLLVGISSGAAAAAAIOVAKRPENAGKLIAVVFPS
                                                                           367
 2-Synechococc 254 NEESIAMAQRLAKEEGLLVGISCGAAAAAAIRLAQQDAYAGKTIVVVLPD
                                                                           303
B-A.thaliana
                368 FGERYLSTQLFQSI
                                     381
                304 LAERYLSSVMFADV
2-Synechococc
                                       317
                   114 ADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYSMVT
   C-A.thaliana
                                                                             163
                     6 ADN-SQAIGNTPLVRLNHVTKGCKATVLAKVEGRNPAYSVKCRIGANMIW
   2-Synechococc
                                                                              54
   C-A.thaliana
                   164 DAEOKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSMER
                                                                             213
                  55 DAEKRGALTEGK-VIVEPTSGNTGIALAFTAAARGYKLVLTMPESMSIER
   2-Synechococc
                                                                             103
   C-A.thaliana
                  214 RVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPDAYMLQ-QFDNPANP
                                                                             262
   2-Synechococc 104 RRVMAVLGAEIVLTEAAKGMPGAIAKAKEIAASDPAKYFMPGQFENPANP
                                                                             153
   C-A.thaliana
                 263 KIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKT-QVI
                                                                             311
   2-Synechococc 154 EIHFKTTGPEIWNDCDGAIDVLVSGVGTGGTITGVSRYIKNEAGKAIESV
                                                                             203
                 312 GVEPTESDILSGG-----KPGPHKIOGIGAGFIPKNLDOKIMDEVIAIS
                                                                             355
   C-A.thaliana
   2-Synechococc 204 AVEPSHSPVITQTLNGEEIKPGPHKIQGIGAGFIPENLDLSVVDKVEQVT
                                                                             253
                  356 SEEAIETAKOLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVFPS
                                                                             405
  C-A.thaliana
                  254 NEESIAMAQRLAKEEGLLVGISCGAAAAAAIRLAQQDAYAGKTIVVVLPD
   2-Synechococc
                                                                             303
                   406 FGERYLSTPLFOSI
  C-A.thaliana
                                        419
                   304 LAERYLSSVMFADV
   2-Synechococc
                                         317
                    52 DASLLIGKTPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADA
                                                                             101
  Cl-A.thaliana
                    7 DNSQAIGNTPLVRLNHVTKGCKATVLAKVEGRNPAYSVKCRIGANMIWDA
  2-Synechococc
                                                                              56
                   102 EKKKLIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRV
  Cl-A.thaliana
                                                                             151
                   57 EKRGALTEGKV-IVEPTSGNTGIALAFTAAARGYKLVLTMPESMSIERRR
  2-Synechococc
                                                                             105
  Cl-A.thaliana
                  152 TMRSFGAELVLTDPAKGMGGTVKKAYDLLDSTPDA-FMCQQFANPANTQI
                                                                             200
  2-Synechococc
                  106 VMAVLGAEIVLTEAAKGMPGAIAKAKEIAASDPAKYFMPGQFENPANPEI
                                                                             155
                  201 HFDTTGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSK-NPNVKIYGV
  Cl-A.thaliana
                                                                             249
                  156 HFKTTGPEIWNDCDGAIDVLVSGVGTGGTITGVSRYIKNEAGKAIESVAV
  2-Synechococc
                                                                             205
  Cl-A.thaliana
                  250 EPAESNI----LNGG--KPGPHAITGNGVGFKPEILDMDVMESVLEVSSE
                                                                             293
                 206 EPSHSPVITQTLNGEEIKPGPHKIQGIGAGFIPENLDLSVVDKVEQVTNE
                                                                             255
  2-Synechococc
                 294 DAIKMARELALKEGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFG
                                                                             343
  C1-A.thaliana
                  256 ESIAMAQRLAKEEGLLVGISCGAAAAAAIRLAQQDAYAGKTIVVVLPDLA
  2-Synechococc
                                                                             305
  Cl-A.thaliana
                  344 ERYLSSVLFDEL
                                      355
                  306 ERYLSSVMFADV
  2-Synechococc
                                      317
```

Fig. 7-33. Alignment of 2-*Synechococcus* sp. WH 7803 OAS-TL amino acid with *A. thaliana* isoforms.

7.3.5. Alignment of the OAS-TL sequence of green algae with *A. thaliana* OAS-TL isoforms

		A
9	172	

```
1-C.reinhardt
A-A.thaliana
A-A.thaliana
1-C.reinhardt
A-A.thaliana
1-C.reinhardt
A-A.thaliana
1-C.reinhardt
A-A.thaliana
                305 TVLFD
A-A.thaliana
                377 TVLEN
1-C.reinhardt
B-A.thaliana
1-C.reinhardt
B-A.thaliana
1-C.reinhardt
B-A.thaliana
1-C.reinhardt
B-A, thaliana
B-A.thaliana
B-A.thaliana
1-C.reinhardt
B-A.thaliana
1-C.reinnardt
 C-A.thaliana
 1-C.reinhardt
 C-A.thaliana
 1-C.reinhardt
 C-A.thaliana
 1-C.reinhardt
 C-A.thaliana
 1-C.reinhardt
 C-A.thaliana
 1-C.reinhardt
 C-A.thaliana
 1-C.reinhardt
 C-A.thaliana
 1-C.reinhardt
Cl-A.thaliana
 1-C.reinhardt
 C1-A.thaliana
 1-C.reinhardt
 Cl-A.thaliana
 1-C.reinhardt
 Cl-A.thaliana
 1-C.reinhardt
 Cl-A.thaliana
 1-C.reinhardt
 Cl-A.thaliana
```

A-A.thaliana

77 IQPDATRLVGNTPMVFLNSVTRGCGARIAAKLESFEPCCSVKDRIALNMI 126 55 SDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMSTE 104 1-C.reinhardt 127 ERAEQAGQISPGVTTLIEPTSGNTGVALAYVAAAKGYRLALTMPETMSIE 176 105 RRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFENPANP 154 177 RRVLLKAFGAELVLTPGRLGMTGAIRKAEEMVRSTPNAFMLQQFDNPANP 226 155 KIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANVKLYG 204 227 EVHLKTTGPEIWRDTAGNIDMFVAGVGTGGTISGVGQYLKEQKPGVQVVA 276 205 VEPVESAILSGGKPGPHKIOGIGAGFIPSVLNVDLIDEVVOVSSDESIDM 254 277 VEPAESPVISGGAPGYHQIQGIGAGFVPKNLRVDLLDEVVKINSNEAIEM 326 255 ARQLALKEGLLVGISSGAAAAAAIKLAQRPENAGKLFVAIFPSFGERYLS 304 1-C.reinhardt 327 ARRLAVEEGLLCGISSGAAVAAAIRIAKRPENRDKLIVTVLPSFGERYLS 376 309 381 73 LNIADNAAQLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYS 122 75 VGIQPDATRLVGNTPMVFLNSVTRGCGARIAAKLESFEPCCSVKDRIALN 124 123 MITDAEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMS 172 125 MIERAEQAGQISPGVTTLIEPTSGNTGVALAYVAAAKGYRLALTMPETMS 174 173 LERRVLLRAFGAELVLTEPAKGMTGAIQKAEEILKKTPNSYMLQQFDNPA 222 175 IERRVLLKAFGAELVLTPGRLGMTGAIRKAEEMVRSTPNAFMLOOFDNPA 224 223 NPKIHYETTGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKPELKV 272 1-C.reinhardt 225 NPEVHLKTTGPEIWRDTAGNIDMFVAGVGTGGTISGVGQYLKEQKPGVQV 274 273 IGVEPTESAILSGGKPGPHKIQGIGAGFVPKNLDLAIVDEYIAISSEEAI 322 1-C.reinhardt 275 VAVEPAESPVISGGAPGYHQIQGIGAGFVPKNLRVDLLDEVVKINSNEAI 324 323 ETSKOLALOEGLLVGISSGAAAAAAIOVAKRPENAGKLIAVVFPSFGERY 372 325 EMARRLAVEEGLLCGISSGAAVAAAIRIAKRPENRDKLIVTVLPSFGERY 374 373 LSTQLFQSI 381 375 LSTVLENTL 383 111 LNIADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYS 160 75 VGIQPDATRLVGNTPMVFLNSVTRGCGARIAAKLESFEPCCSVKDRIALN 124 161 MVTDAEOKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMS 210 125 MIERAEQAGQISPGVTTLIEPTSGNTGVALAYVAAAKGYRLALTMPETMS 174 211 MERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPDAYMLQQFDNPA 260 175 IERRVLLKAFGAELVLTPGRLGMTGAIRKAEEMVRSTPNAFMLQQFDNPA 224 261 NPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTOV 310 274 225 NPEVHLKTTGPEIWRDTAGNIDMFVAGVGTGGTISGVGQYLKEQKPGVQV 311 IGVEPTESDILSGGKPGPHKIQGIGAGFIPKNLDQKIMDEVIAISSEEAI 360 275 VAVEPAESPVISGGAPGYHQIQGIGAGFVPKNLRVDLLDEVVKINSNEAI 324 361 ETAKQLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVFPSFGERY 410 325 EMARRLAVEEGLLCGISSGAAVAAAIRIAKRPENRDKLIVTVLPSFGERY 374 411 LSTPLFQSI 419 375 LSTVLFNT 375 LSTVLENTL 383 45 PSTNAKRDASLLIGKTPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPA 94 73 PHVGIQPDATRLVGNTPMVFLNSVTRGCGARIAAKLESFEPCCSVKDRIA 122 95 IAMIADAEKKKLIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSY 144 123 LNMIERAEQAGQISPGVTTLIEPTSGNTGVALAYVAAAKGYRLALTMPET 172 145 TSLERRVTMRSFGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFAN 194 173 MSIERRVLLKAFGAELVLTPGRLGMTGAIRKAEEMVRSTPNAFMLQQFDN 222 195 PANTOIHFDTTGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNV 244 223 PANPEVHLKTTGPEIWRDTAGNIDMFVAGVGTGGTISGVGQYLKEQKPGV 272 245 KIYGVEPAESNILNGGKPGPHAITGNGVGFKPEILDMDVMESVLEVSSED 294 273 QVVAVEPAESPVISGGAPGYHQIQGIGAGFVPKNLRVDLLDEVVKINSNE 322 295 AIKMARELALKEGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGE 344 323 AIEMARRLAVEEGLLCGISSGAAVAAAIRIAKRPENRDKLIVTVLPSFGE 1-C.reinhardt 372

5 IAKDVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFSMI

54

Fig. 7-34. Alignment of 1-C. reinhardtii OAS-TL amino acid with A. thaliana isoforms.

355

383

345 RYLSSVLFDEL

373 RYLSTVLFNTL

C1-A.thaliana

1-C.reinhardt

```
173
```

```
A-A.thaliana
                    5 IAKDVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFSMI
                                                                             54
                   41 VRQGVLDLIGNTPLVRVASLSEETGCEIWVKAEMLNPGGSVKDRVALQIV
  2-C.reinhardt
                                                                              90
  A-A.thaliana
                   55 SDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMSTE
                                                                             104
                   91 SEALADGRLRPG-GLITEGTAGSTGVSLAMVAAAYGCRCSITMPDDAAIE
  2-C.reinhardt
                                                                             139
                  105 RRIILLAFGVELVLTDPAKGM--KGAIAKAEEILAKTPNGYMLQQFENPA
 A-A.thaliana
                                                                             152
  2-C. reinhardt
                  140 KANMIQAYGASVRRVRPVSIVHPEHPVNVARREAASTPGALFADQFENEA
                                                                             189
  A-A.thaliana
                  153 NPKIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANVKL
                                                                             202
  2-C.reinhardt
                  190 NFRAHLKT-GEEIWQQTQGRVHAFVSGAGTGGTVAGVSTALKARNPRVRV
                                                                             238
  A-A.thaliana
                  203 YGVEPVESAILSGGKPG-----PHKI--QGIGAGFIPSVL
                                                                             235
                  239 FLVDPPGSSLFNKVKRGVMYTSEEAEGKRLKNPFDTITEGIGINRLTANF
  2-C.reinhardt
                                                                             288
                  236 NVDLIDEVVQVSSDESIDMARQLALKEGLLVGISSGAAAAAAIKLAQRPE
 A-A.thaliana
                                                                             285
                  289 NRALIDDAFRGTDREAVEMAAYLLRNEGLWVGSSAAMNCVGAVK-AARAM
 2-C.reinhardt
                                                                             337
 A-A.thaliana
                  286 NAGKLFVAIFPSFGERYLS
                                             304
                  338 GPGHTIVTLLCDGGHRHLS
  2-C. reinhardt
                                             356
 B-A.thaliana
                   64 IKPEAGVEGLNIADNAAQLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCC
                                                                            113
                   30 LEPRKRQTGGTVRQGVLDLIGNTPLVRVASLSEETGCEIWVKAEMLNPGG
 2-C.reinhardt
                                                                             79
                  114 SVKDRIGYSMITDAEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKL
 B-A.thaliana
                                                                            163
                  80 SVKDRVALQIVSEALADGRLRPG-GLITEGTAGSTGVSLAMVAAAYGCRC
 2-C. reinhardt
                                                                            128
                  164 ILTMPASMSLERRVLLRAFGAELVLTEPAKGM--TGAIQKAEEILKKTPN
 B-A.thaliana
                                                                            211
                  129 SITMPDDAAIEKANMIQAYGASVRRVRPVSIVHPEHPVNVARREAASTPG
 2-C.reinhardt
                                                                            178
 B-A.thaliana
                  212 SYMLQQFDNPANPKIHYETTGPEIWEDTRGKIDILVAGIGTGGTITGVGR
                                                                            261
                  179 ALFADQFENEANFRAHLKT-GEEIWQQTQGRVHAFVSGAGTGGTVAGVST
 2-C.reinhardt
                                                                            227
 B-A.thaliana
                  262 FIKERKPELKVIGVEPTESAILSGGKPG-----PHKI--O
                                                                            294
                  228 ALKARNPRVRVFLVDPPGSSLFNKVKRGVMYTSEEAEGKRLKNPFDTITE
 2-C.reinhardt
                                                                            277
 B-A.thaliana
                  295 GIGAGFVPKNLDLAIVDEYIAISSEEAIETSKQLALQEGLLVGISSGAAA
                                                                            344
                  278 GIGINRLTANFNRALIDDAFRGTDREAVEMAAYLLRNEGLWVGSSAAMNC
 2-C.reinhardt
                                                                            327
B-A.thaliana
                 345 AAAIQVAKRPENAGKLIAVVFPSFGERYLS
                                                       374
2-C.reinhardt
                 328 VGAVKAA-RAMGPGHTIVTLLCDGGHRHLS
                                                       356
C-A.thaliana
                 110 GLNIADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGY
                                                                           159
                  38 GGTVRQGVLDLIGNTPLVRVASLSEETGCEIWVKAEMLNPGGSVKDRVAL
2-C.reinhardt
                                                                             87
C-A.thaliana
                 160 SMVTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASM
                                                                           209
                  68 QIVSEALADGRLRPG-GLITEGTAGSTGVSLAMVAAAYGCRCSITMPDDA
2-C.reinhardt
                                                                           136
                 210 SMERRVLLKAFGAELVLTDPAKGM--TGAVQKAEEILKNTPDAYMLQQFD
C-A.thaliana
                                                                           257
                 137 AIEKANMIQAYGASVRRVRPVSIVHPEHPVNVARREAASTPGALFADOFE
2-C.reinhardt
                                                                           186
C-A.thaliana
                 258 NPANPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPK
                                                                           307
2-C.reinhardt
                187 NEANFRAHLKT-GEEIWQQTQGRVHAFVSGAGTGGTVAGVSTALKARNPR
                                                                           235
                 308 TQVIGVEPTESDILSGGKPG-----PHKI--QGIGAGFIP
C-A.thaliana
                                                                           340
                236 VRVFLVDPPGSSLFNKVKRGVMYTSEEAEGKRLKNPFDTITEGIGINRLT
2-C.reinhardt
                                                                           285
                 341 KNLDQKIMDEVIAISSEEAIETAKQLALKEGLMVGISSGAAAAAAIKVAK
C-A.thaliana
                                                                           390
                 286 ANFNRALIDDAFRGTDREAVEMAAYLLRNEGLWVGSSAAMNCVGAVKAA-
2-C.reinhardt
                                                                           334
                391 RPENAGKLIAVVFPSFGERYLS
C-A.thaliana
                                               412
2-C. reinhardt
                 335 RAMGPGHTIVTLLCDGGHRHLS
                                              356
                  56 LIGKTPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEKKK
Cl-A.thaliana
                                                                            105
                  48 LIGNTPLVRVASLSEETGCEIWVKAEMLNPGGSVKDRVALQIVSEALADG
2-C.reinhardt
                                                                            97
Cl-A.thaliana
                 106 LIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRS
                                                                            155
                  98 RLRPGGL-ITEGTAGSTGVSLAMVAAAYGCRCSITMPDDAAIEKANMIQA
 2-C.reinhardt
                                                                            146
                  156 FGAELVLTDPAKGMGGT--VKKAYDLLDSTPDAFMCQQFANPANTQIHFD
 Cl-A.thaliana
                                                                            203
                 147 YGASVRRVRPVSIVHPEHPVNVARREAASTPGALFADQFENEANFRAHLK
2-C.reinhardt
                                                                            196
                 204 TTGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAE
C1-A.thaliana
                                                                           253
                 197 T-GEEIWQQTQGRVHAFVSGAGTGGTVAGVSTALKARNPRVRVFLVDPPG
2-C.reinhardt
                                                                            245
Cl-A.thaliana
                 254 SNILNGGKPG-----PHAITGNGVGFKPEILDMD--VMES
                                                                            286
 2-C.reinhardt
                 246 SSLFNKVKRGVMYTSEEAEGKRLKNPFDTITEGIGINRLTANFNRALIDD
                                                                            295
 Cl-A.thaliana
                 287 VLEVSSEDAIKMARELALKEGLMVGISSGANTVAAIRLAKMPENKGKLIV
                                                                            336
                 296 AFRGTDREAVEMAAYLLRNEGLWVGSSAAMNCVGAVKAARAM-GPGHTIV
2-C.reinhardt
                                                                            344
Cl-A.thaliana
                 337 TIHASFGERYLS
                                     348
2-C.reinhardt
                 345 TLLCDGGHRHLS
                                     356
```

Fig. 7-35. Alignment of 2-C. reinhardtii OAS-TL amino acid with A. thaliana isoforms.

A-A.thaliana 4 RIAKDVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFSM 53 54 KICKDVTEVIGNTPMVYLNRVTRGCVAKVAAKLEIMQPCSSVKDRIGRNM 3-C.reinhardt 103 54 ISDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMST A-A.thaliana 103 104 IEDAEKRGMIKPGVTTLVEPTSGNTGIGLAFTAAARGYKLILTMPASMSL 3-C.reinhardt 153 A-A.thaliana 104 ERRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFENPAN 153 154 ERRVLLRAFGAELVLTDPAKGMRGAVEKCNEIAAKTPNSYILQQFENPAN 3-C.reinhardt 203 154 PKIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANVKLY A-A.thaliana 203 204 PEIHRLTTGPEIWRDTAGTVDILVAGVGTGGTVTGTGEFLKSKKPSLQVI 3-C.reinhardt 253 A-A.thaliana 204 GVEPVESAILSGGKPGPHKIQGIGAGFIPSVLNVDLIDEVVQVSSDESID 253 3-C.reinhardt 254 AVEPSESPVLSGGKPGPHKIQGIGAGFVPAILNTTVYDEVIKIPSDDAVR 303 A-A.thaliana 254 MARQLALKEGLLVGISSGAAAAAAIKLAQRPENAGKLFVAIFPSFGERYL 303 304 MASRLAVEEGLFCGISSGAAVLAAVQVAARPENAGKLVAVVLPSFGERYL 3-C. reinhardt 353 304 STVLFDATRKEAEAM A-A.thaliana 318 354 SSVLFNDLRLECEQL 3-C.reinhardt 368 46 AFTLKRQSRSDVVCKAVSIKPEAGVEGLNIADNAAQLIGKTPMVYLNNVV B-A.thaliana 95 27 ARVVRAQAAAAAAAAAASDEPKY-VKNDKICKDVTEVIGNTPMVYLNRVT 3-C.reinhardt 75 B-A.thaliana 96 KGCVASVAAKLEIMEPCCSVKDRIGYSMITDAEEKGLITPGKSVLVESTS 145 76 RGCVAKVAAKLEIMQPCSSVKDRIGRNMIEDAEKRGMIKPGVTTLVEPTS 3-C.reinhardt 125 146 GNTGIGLAFIAASKGYKLILTMPASMSLERRVLLRAFGAELVLTEPAKGM B-A.thaliana 195 126 GNTGIGLAFTAAARGYKLILTMPASMSLERRVLLRAFGAELVLTDPAKGM 3-C. reinhardt 175 B-A.thaliana 196 TGAIQKAEEILKKTPNSYMLQQFDNPANPKIHYETTGPEIWEDTRGKIDI 245 176 RGAVEKCNEIAAKTPNSYILQQFENPANPEIHRLTTGPEIWRDTAGTVDI 3-C.reinhardt 225 246 LVAGIGTGGTITGVGRFIKERKPELKVIGVEPTESAILSGGKPGPHKIQG B-A.thaliana 295 226 LVAGVGTGGTVTGTGEFLKSKKPSLQVIAVEPSESPVLSGGKPGPHKIQG 3-C.reinhardt 275 B-A.thaliana 296 IGAGFVPKNLDLAIVDEYIAISSEEAIETSKQLALQEGLLVGISSGAAAA 345 276 IGAGFVPAILNTTVYDEVIKIPSDDAVRMASRLAVEEGLFCGISSGAAVL 3-C.reinhardt 325 B-A.thaliana 346 AAIQVAKRPENAGKLIAVVFPSFGERYLSTOLFOSIREECEOMOPE 391 3-C.reinhardt 326 AAVQVAARPENAGKLVAVVLPSFGERYLSSVLFNDLRLECEQLKQD 371 C-A, thaliana 113 IADNVSOLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYSMV 162 55 ICKDVTEVIGNTPMVYLNRVTRGCVAKVAAKLEIMOPCSSVKDRIGRNMI 3-C. reinhardt 104 C-A.thaliana 163 TDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSME 212 3-C.reinhardt 105 EDAEKRGMIKPGVTTLVEPTSGNTGIGLAFTAAARGYKLILTMPASMSLE 154 C-A.thaliana 213 RRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPDAYMLQQFDNPANP 262 155 RRVLLRAFGAELVLTDPAKGMRGAVEKCNEIAAKTPNSYILQQFENPANP 3-C.reinhardt 204 263 KIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQVIG C-A.thaliana 312 205 EIHRLTTGPEIWRDTAGTVDILVAGVGTGGTVTGTGEFLKSKKPSLQVIA 3-C.reinhardt 254 C-A.thaliana 313 VEPTESDILSGGKPGPHKIOGIGAGFIPKNLDOKIMDEVIAISSEEAIET 362 255 VEPSESPVLSGGKPGPHKIOGIGAGFVPAILNTTVYDEVIKIPSDDAVRM 3-C.reinhardt 304 C-A.thaliana 363 AKQLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVFPSFGERYLS 412 305 ASRLAVEEGLFCGISSGAAVLAAVQVAARPENAGKLVAVVLPSFGERYLS 3-C.reinhardt 354 413 TPLFQSIREEVEKM-QPERV C-A.thaliana 431 355 SVLFNDLRLECEQLKQDERV 3-C.reinhardt 374 39 DLPKDFPSTNAKRDASLLIGKTPLVFLNKVTEGCEAYVAAKOEHFOPTCS Cl-A.thaliana 88 45 DEPKYVKNDKICKDVTEVIGNTPMVYLNRVTRGCVAKVAAKLEIMQPCSS 3-C.reinhardt 94 Cl-A.thaliana 89 IKDRPAIAMIADAEKKKLIIPGKTTLIEPTSGNMGISLAFMAAMKGYRII 138 95 VKDRIGRNMIEDAEKRGMIKPGVTTLVEPTSGNTGIGLAFTAAARGYKLI 3-C.reinhardt 144 Cl-A.thaliana 139 MTMPSYTSLERRVTMRSFGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFM 188 145 LTMPASMSLERRVLLRAFGAELVLTDPAKGMRGAVEKCNEIAAKTPNSYI 3-C.reinhardt 194 Cl-A.thaliana 189 CQQFANPANTQIHFDTTGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLK 238 195 LQQFENPANPEIHRLTTGPEIWRDTAGTVDILVAGVGTGGTVTGTGEFLK 3-C.reinhardt 244 Cl-A.thaliana 239 SKNPNVKIYGVEPAESNILNGGKPGPHAITGNGVGFKPEILDMDVMESVL 288 245 SKKPSLQVIAVEPSESPVLSGGKPGPHKIQGIGAGFVPAILNTTVYDEVI 3-C.reinhardt 294 289 EVSSEDAIKMARELALKEGLMVGISSGANTVAAIRLAKMPENKGKLIVTI Cl-A.thaliana 338 295 KIPSDDAVRMASRLAVEEGLFCGISSGAAVLAAVQVAARPENAGKLVAVV 3-C.reinhardt 344 C1-A.thaliana 339 HASFGERYLSSVLFDELRKEAEEMK 363 3-C.reinhardt 345 LPSFGERYLSSVLFNDLRLECEQLK 369

Fig. 7-36. Alignment of 3-C. reinhardtii OAS-TL amino acid with A. thaliana isoforms.

		М
9	175	
- 1		

A-A.thaliana 5 IAKDVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFSMI 54 40 IATDVTELIGKTPMVYLNKVATGTHAKIAAKLEIMEPCCSVKDRIGYSMI 4-C.reinhardt 89 55 SDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMSTE A-A.thaliana 104 90 SSAEKEGLITPGKTVLVEPTSGNTGIGLAFIAAARGYKLILTMPASMSLE 4-C.reinhardt 139 A-A, thaliana 105 RRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFENPANP 154 140 RRILLRAFGAELVLTDPAKGMKGAVAKAEEILASTPDAFMLQQFQNPNNP 4-C.reinhardt 189 A-A.thaliana 155 KIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANVKLYG 204 190 KVHYETTGPEIWSATDGKVDILVSGVGTGGTITGTGRYLREKKSDVQLVA 239 4-C.reinhardt 205 VEPVESAILSGGKPGPHKIQGIGAGFIPSVLNVDLIDEVVQVSSDESIDM A-A.thaliana 254 240 VEPAESPVLSGGKPGPHKIQGIGAGFVPAVLDTALISEVVQVSSDDAIDM 4-C.reinhardt 289 255 ARQLALKEGLLVGISSGAAAAAAIKLAQRPENAGKLFVAIFPSFGERYLS A-A.thaliana 304 4-C.reinhardt 290 ARRLALEEGLMVGISSGAAVQAAIKVASRPENEGKLVVVVLPSFGERYLS 339 A-A.thaliana 305 TVLFDATRKEAEAMTFE 321 4-C.reinhardt 340 SVLFQQLRDEASKMTFE 356 B-A.thaliana 51 ROSRSDVVCKAVSIKPEAGVEGLNIADNAAOLIGKTPMVYLNNVVKGCVA 100 4-C.reinhardt 17 RVSRVALVPKAVAAPEKAAVK-MNIATDVTELIGKTPMVYLNKVATGTHA 65 B-A.thaliana 101 SVAAKLEIMEPCCSVKDRIGYSMITDAEEKGLITPGKSVLVESTSGNTGI 150 4-C.reinhardt 66 KIAAKLEIMEPCCSVKDRIGYSMISSAEKEGLITPGKTVLVEPTSGNTGI 115 B-A.thaliana 151 GLAFIAASKGYKLILTMPASMSLERRVLLRAFGAELVLTEPAKGMTGAIQ 200 4-C.reinhardt 116 GLAFIAAARGYKLILTMPASMSLERRILLRAFGAELVLTDPAKGMKGAVA 165 B-A.thaliana 201 KAEEILKKTPNSYMLOOFDNPANPKIHYETTGPEIWEDTRGKIDILVAGI 250 4-C.reinhardt 166 KAEEILASTPDAFMLQQFQNPNNPKVHYETTGPEIWSATDGKVDILVSGV 215 B-A.thaliana 251 GTGGTITGVGRFIKERKPELKVIGVEPTESAILSGGKPGPHKIQGIGAGF 300 216 GTGGTITGTGRYLREKKSDVQLVAVEPAESPVLSGGKPGPHKIQGIGAGF 4-C.reinhardt 265 B-A.thaliana 301 VPKNLDLAIVDEYIAISSEEAIETSKQLALQEGLLVGISSGAAAAAAIQV 350 266 VPAVLDTALISEVVQVSSDDAIDMARRLALEEGLMVGISSGAAVQAAIKV 4-C.reinhardt 315 351 AKRPENAGKLIAVVFPSFGERYLSTQLFQSIREECEQM B-A.thaliana 388 316 ASRPENEGKLVVVVLPSFGERYLSSVLFQQLRDEASKM 4-C.reinhardt 353 C-A.thaliana 111 LNIADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYS 160 4-C.reinhardt 38 MNIATDVTELIGKTPMVYLNKVATGTHAKIAAKLEIMEPCCSVKDRIGYS 87 161 MVTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMS C-A.thaliana 210 88 MISSAEKEGLITPGKTVLVEPTSGNTGIGLAFIAAARGYKLILTMPASMS 4-C.reinhardt 137 C-A.thaliana 211 MERRVLLKAFGAELVLTDPAKGMTGAVOKAEEILKNTPDAYMLOOFDNPA 260 4-C.reinhardt 138 LERRILLRAFGAELVLTDPAKGMKGAVAKAEEILASTPDAFMLQQFQNPN 187 C-A.thaliana 261 NPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQV 310 4-C.reinhardt 188 NPKVHYETTGPEIWSATDGKVDILVSGVGTGGTITGTGRYLREKKSDVQL 237 311 IGVEPTESDILSGGKPGPHKIQGIGAGFIPKNLDQKIMDEVIAISSEEAI C-A.thaliana 360 4-C.reinhardt 238 VAVEPAESPVLSGGKPGPHKIQGIGAGFVPAVLDTALISEVVQVSSDDAI 287 361 ETAKQLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVFPSFGERY C-A.thaliana 410 4-C.reinhardt 288 DMARRLALEEGLMVGISSGAAVQAAIKVASRPENEGKLVVVVLPSFGERY 337 411 LSTPLFQSIREEVEKM C-A.thaliana 426 4-C.reinhardt 338 LSSVLFOOLRDEASKM 353 Cl-A.thaliana 48 NAKRDASLLIGKTPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAM 97 39 NIATDVTELIGKTPMVYLNKVATGTHAKIAAKLEIMEPCCSVKDRIGYSM 4-C.reinhardt 88 Cl-A.thaliana 98 IADAEKKKLIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSL 147 89 ISSAEKEGLITPGKTVLVEPTSGNTGIGLAFIAAARGYKLILTMPASMSL 4-C.reinhardt 138 148 ERRVTMRSFGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFANPAN Cl-A.thaliana 197 139 ERRILLRAFGAELVLTDPAKGMKGAVAKAEEILASTPDAFMLQQFQNPNN 4-C. reinhardt 188 C1-A.thaliana 198 TQIHFDTTGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIY 247 189 PKVHYETTGPEIWSATDGKVDILVSGVGTGGTITGTGRYLREKKSDVQLV 4-C.reinhardt 238 248 GVEPAESNILNGGKPGPHAITGNGVGFKPEILDMDVMESVLEVSSEDAIK Cl-A.thaliana 297 239 AVEPAESPVLSGGKPGPHKIQGIGAGFVPAVLDTALISEVVQVSSDDAID 288 4-C.reinhardt 298 MARELALKEGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYL 347 Cl-A.thaliana 289 MARRLALEEGLMVGISSGAAVQAAIKVASRPENEGKLVVVVLPSFGERYL 4-C.reinhardt 338 348 SSVLFDELRKEAEEM Cl-A.thaliana 362 1111.:11.11.: 339 SSVLFQQLRDEASKM 4-C.reinhardt 353

Fig. 7-37. Alignment of 4-C. reinhardtii OAS-TL amino acid with A. thaliana isoforms.


```
11 ELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFSMISDAEKK
  A-A.thaliana
                                                                            60
                   6 ELIGDTPLVDLSFLSAKPGVKIFGKAEFFNPSGSIKDRIANHIISCAEAE
  1-T.suecica
                                                                            55
  A-A.thaliana
                   61 GLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMSTERRIILL
                                                                           110
                   56 GKLRPGGTV-VAATSGNTGSAIAMVCAMRGYKYIVITNEKTSKEKRDSMA
  1-T.suecica
                                                                           104
  A-A.thaliana
                  111 AFGVELVLTD---PAKGMKGAIAKAEEILAKTPNGYMLQQFENPANPKIH
                                                                           157
                  105 SYGGQVLVGPGGMPADHPLHYQNMAVTLCKENPDYFDVDQYDNPRNPEAY
  1-T.suecica
                                                                           154
  A-A.thaliana
                  158 YETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANVKLYGVEP
                                                                           207
                  155 YLTLGPEIWEQTQGAVTHFVAGGSTGGTISGTGKYLKEMNPAVRVCMPDP
  1-T.suecica
                                                                           204
                  208 VESAILSGGK-----PGPHKIQGIGAGFIPSVLNVDLIDEVVQVSS
  A-A.thaliana
                                                                           248
                  205 KGSVFWDYWKEGVPEAELKPSSYQVEGVGKDSIPTAMNFGVVDEMLQLDC
  1-T.suecica
                                                                           254
                  249 DESIDMARQLALKEGLLVGISSGAAAAAAIKLAQRPENAGKLFVAIFPSF
  A-A.thaliana
                                                                           298
                  255 KQSFAMCRRVAAEDGMLLGGSSGLNLSAAAELSQTAPD-GSVIVAVLPDS
  1-T.suecica
                                                                           303
                 299 GERYLSTVLFD
  A-A.thaliana
                                    309
                   304 GVKYLSKIFND
   1-T.suecica
                                     314
B-A.thaliana
                  81 QLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYSMITDAEEK
                                                                           1:30
                  6 ELIGDTPLVDLSFLSAKPGVKIFGKAEFFNPSGSIKDRIANHIISCAEAE
1-T.suecica
                                                                            55
                                                                           180
B-A.thaliana
               131 GLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMSLERRVLLR
                56 GKLRPGGTV-VAATSGNTGSAIAMVCAMRGYKYIVITNEKTSKEKRDSMA
1-T.suecica
                                                                           104
B-A.thaliana
                181 AFGAELVLTE---PAKGMTGAIQKAEEILKKTPNSYMLQQFDNPANPKIH
                                                                           227
                105 SYGGQVLVGPGGMPADHPLHYQNMAVTLCKENPDYFDVDQYDNPRNPEAY
1-T.suecica
                                                                           154
B-A.thaliana
               228 YETTGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKPELKVIGVEP
                                                                           277
               155 YLTLGPEIWEQTQGAVTHFVAGGSTGGTISGTGKYLKEMNPAVRVCMPDP
1-T.suecica
                                                                           204
B-A.thaliana
               278 TESAILSGGK-----PGPHKIQGIGAGFVPKNLDLAIVDEYIAISS
                                                                           318
                205 KGSVFWDYWKEGVPEAELKPSSYQVEGVGKDSIPTAMNFGVVDEMLQLDC
                                                                           254
1-T.suecica
B-A.thaliana
                319 EEAIETSKQLALQEGLLVGISSGAAAAAAIQVAKRPENAGKLIAVVFPSF
                                                                           368
                255 KQSFAMCRRVAAEDGMLLGGSSGLNLSAAAELSQTAPD-GSVIVAVLPDS
                                                                           303
1-T.suecica
B-A.thaliana
               369 GERYLS
                              374
               304 GVKYLS
                              309
1-T.suecica
C-A.thaliana
                119 OLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYSMVTDAEOK
                                                                          168
 1-T.suecica
                  6 ELIGDTPLVDLSFLSAKPGVKIFGKAEFFNPSGSIKDRIANHIISCAEAE
                                                                           55
 C-A.thaliana
                169 GFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSMERRVLLK
                                                                          218
                 56 GKLRPGGTV-VAATSGNTGSAIAMVCAMRGYKYIVITNEKTSKEKRDSMA
 1-T.suecica
                                                                          104
               219 AFGAELVLTD---PAKGMTGAVQKAEEILKNTPDAYMLQQFDNPANPKIH
 C-A.thaliana
                                                                          265
                105 SYGGQVLVGPGGMPADHPLHYQNMAVTLCKENPDYFDVDQYDNPRNPEAY
                                                                          154
 1-T.suecica
               266 YETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQVIGVEP
 C-A.thaliana
                                                                          315
                155 YLTLGPEIWEQTQGAVTHFVAGGSTGGTISGTGKYLKEMNPAVRVCMPDP
 1-T.suecica
                                                                          204
                316 TES---DILSGG-----KPGPHKIQGIGAGFIPKNLDQKIMDEVIAISS
 C-A.thaliana
                                                                          356
                 205 KGSVFWDYWKEGVPEAELKPSSYQVEGVGKDSIPTAMNFGVVDEMLQLDC
 1-T.suecica
                                                                          254
 C-A.thaliana
                357 EEAIETAKQLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVFPSF
                                                                          406
                 255 KQSFAMCRRVAAEDGMLLGGSSGLNLSAAAELSQTAPD-GSVIVAVLPDS
 1-T.suecica
                                                                          303
 C-A.thaliana
                407 GERYLS
                               412
 1-T.suecica
                304 GVKYLS
                               309
                  56 LIGKTPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEKKK
  Cl-A.thaliana
                                                                           105
                    7 LIGDTPLVDLSFLSAKPGVKIFGKAEFFNPSGSIKDRIANHIISCAEAEG
  1-T.suecica
                                                                            56
  C1-A.thaliana
                106 LIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRS
                                                                           155
                  57 KLRPGGT-VVAATSGNTGSAIAMVCAMRGYKYIVITNEKTSKEKRDSMAS
  1-T.suecica
                                                                           105
  Cl-A.thaliana 156 FGAELVLTD---PAKGMGGTVKKAYDLLDSTPDAFMCQQFANPANTQIHF
                                                                           202
                  106 YGGQVLVGPGGMPADHPLHYQNMAVTLCKENPDYFDVDQYDNPRNPEAYY
  1-T.suecica
                                                                           155
  C1-A.thaliana 203 DTTGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPA
                                                                           252
                  156 LTLGPEIWEQTQGAVTHFVAGGSTGGTISGTGKYLKEMNPAVRVCMPDPK
  1-T.suecica
                                                                           205
  C1-A.thaliana 253 ES---NILNGG-----KPGPHAITGNGVGFKPEILDMDVMESVLEVSSE
                                                                           293
                 206 GSVFWDYWEGVPEAELKPSSYQVEGVGKDSIPTAMNFGVVDEMLQLDCK
  1-T.suecica
                                                                           255
  Cl-A.thaliana 294 DAIKMARELALKEGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFG
                                                                           343
                  256 QSFAMCRRVAAEDGMLLGGSSGLNLSAAAELSQTAPD-GSVIVAVLPDSG
  1-T.suecica
                                                                           304
                  344 ERYLSSVLFDELRKE
 Cl-A.thaliana
                                        358
                  305 VKYLSKIFNDEWMME
  1-T.suecica
```

Fig. 7-38. Alignment of 1-T. suecica OAS-TL amino acid with A. thaliana isoforms.

		М
9	177	
- 1		

2-7. suecica 14 IAESTATUTURE CONTRACT CONTRACT AND ADDRESS AD	A-A.thaliana	5 IAKDVTELIGNTPLVYLNNVAEGOVGRVAAKLEMMEPOSSVKDRIGESMI	54
A thaliana 55 SLALKNOLINPOSEVLIEPTSONTOUGLATVAARAVKLIINPAANTII 10 A thaliana 105 RAILLATVUELUTEPTSONTOUGLATVAARAVKLIINPAANTII 103 A thaliana 105 RAILLATVUELUTEPTSONTOUGLATVAARAVKLIINPAANTII 103 A thaliana 105 RAILLATVUELUTEPAARAVKAEIAAATUSUULUSUULUSUULUSUULUSUULUSUULUSUULU	2-T.suecica	14 IAESIVDLVGNTPLVYLNKVTAGSGARIAAKMESMEPSCSVKDRIGKNMI	63
2-T. Suecica 64 EDERAGNATION TUDE TORNNOLLAR VALUE LATTENDATION AND AND AND AND AND AND AND AND AND AN	A-A.thaliana	55 SDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMSTE	104
 A. thallana 105 RAIILLAFYULUTDPARGNKAALAKABULLAKYPNUVLOQTENPANIP 144 A. thallana 154 KUNLOAFGALUUTDPARGNKGAAVKABULAALAYDQUYDENPANIP 154 KUNLTTGEUENGGAGUUDUYGGGGGTTTGAAKYLAGUNANNULU A. thallana 155 KUNLOAFGALUUTDPARGNGGAVKABULAALAYDGUYGGUUNUSUGGUUNUSUUSUSUSUGUUNUSUGUUNUSUGUUNUSUSUUSUSUSUGUUNUSUGUUNUSUSUUSUSUUSUSUSUS	2-T.suecica		113
2-7. suecica 114 RAVILGATGATIVITOPARGUGAXYALEIAAATOSSYLQOTEIANA 143 A-A.thaliana 155 KINGTORE IFACTACULOPYALOTOTATIONOVULOPYALSESIM 244 A-A.thaliana 205 VEPUERALEGGUYOSCHEADOULDEYOULTRANSVLOQUYAS 2-1. suecica 244 VEPTERVLEGGUYOSCHEADAUAATUCUTURUVQUSEDSAISM 223 A-A.thaliana 205 VEPUERALEGGUYOSCHEADAUAATUCUTURUVQUSEDSAISM 223 A-A.thaliana 205 VEPUERALEGGUYOSCHEADAUAATUCUTURUVQUSEDSAISM 223 A-A.thaliana 205 VEPUERALEGGUYOSCHEADAUAATUCUTURUVQUSEDSAISM 223 A-A.thaliana 205 VEPUERALEGGUYOSCHEADAUAATUCUTURUVQUSEDSAISM 223 A-A.thaliana 205 VEPUERALEGUYOSCHEADAUAATUCUTURUVQUSEDSAISM 223 A-A.thaliana 205 VEPUERALEGUYOSCHEADAUAATUCUTURUVQUSEDSAISM 223 A-A.thaliana 205 VEPUERALEGUYOSCHEADAUAATUCUTURUVQUSEDSAISM 223 A-A.thaliana 225 SUTEDATECHAM 323 D-A.thaliana 22 SUTEDATECHAM 324 D-A.thaliana 22 SUTEDATECHAM 327 D-A.thaliana 22 SUTEDATECHAM 327 D-A.thaliana 22 SUTEDATECHAM 327 D-A.thaliana 22 SUTEDATECHAM 327 D-A.thaliana 22 SUTEDATECHAM 720 D-A.thaliana 22 VEPUERALEGUYERAMOGANAVARATUCHAMAM 720 D-A.thaliana 22 VEPUERALEGUYERAMOGANAVARATUCATIVITYASUNGOTURUAATUCUTURU 247. suecica 313 VEBRAVLARAFANITERATEGUTURUTURUTURUTURUTURU 257. suecica 251 VAVEETESUTUSUGUPERATULURUTURUSASUNGAVARATUCUTURUTURUVQUYUSUBA 257. suecica 251 VAVEETESUTUSUGUPERATURUTURUTURUTURUTURUTURUTURUVQUYUSUBA 257. suecica 251 VAVEETESUTUSUGUPERATURUTURUTURUUTURUVQUYUSUBAATUCUTURUTURUVQUYUSUBAATUSUU 257. suecica 251 VAVEETESUTUSUGUPERATURUTURUUTURUVQUYUSUBAATUSUU 257. suecica 251 VAVEETESUTUSUGUPERATURUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	A-A.thaliana	105 RRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFENPANP	154
A-A, thaliana 15 KINYITTOTE IMMGTGGKI DGYYGGIGTGTITGAGKYIKEQNANYIKYG 204 2-T. Suecica 24 WIRTTGE: FBC7AGEVDI/MGJGGTTITGAGEVLANKGOVGA/223 4-A, thaliana 25 KINYITTGE: FBC7AGEVDI/MGJGGTTITGAGEVLANKGOVGA/223 4-A, thaliana 25 KACLAIKEGI/VISEGGAGPHKI.GGIGAGIYGGULTUV/VISEGGASIBAN 4-A, thaliana 25 KACLAIKEGI/VISEGGAGPHKI.GGIGAGIYGGULTUV/VISEGGASIBAN 4-A, thaliana 25 KACLAIKEGI/VISEGGAGPHKI.GGIGAGIYGGULTUV/VISEGGASIBAN 4-A, thaliana 25 KACLAIKEGI/VISEGGAGANAAKILAR/FENAKLIYAIFEFGGKKLE 323 3-A, thaliana 25 GINIAGNAALIGKTMMVINUVKGVASVAAKLEINEPCCSVKDRIGY 121 2-T. Suecica 314 SALFADVQHECAGM 327 3-A, thaliana 12 GINIAGNAALIGKTMMVINUVKGVASVAAKLEINEPCCSVKDRIGY 121 2-T. Suecica 31 GITIAGEVALIKAGUNUFFEVUVERSGONG GILATIAASKYKILINAAGAM 10 GINIAGNAALIGKTMMVILMIVKGVASVAAKLEINEPCCSVKDRIGY 121 2-T. Suecica 31 GITIAGEVALIKAGUNUFFEVUVERSGONG GILATIAASKYKILINAAGAM 11 GITIAGEVALIKAGAGAALIGKTMMVILMIVKGVASVAAKLEINEPCCSVKDRIGY 121 2-T. Suecica 31 GITIAGEVALIKAGAALIGKTMMVILMIVKGVASVAAKLEINEPCCSVKDRIGY 121 2-T. Suecica 31 GITIAGEVALIKAGAALIGKTMMVILMINGGGASIKAGEVALAIKEGAN 2-T. Suecica 31 GITIAGEVALIKAGAALIGKTMMVILMINGGGASIKAGEVALAIKEGAN 2-T. Suecica 31 GITIAGEVALIKAGAALIGKTMMVILMINGGGASIKAGEVALAIKEGAN 2-T. Suecica 31 GITIAGEVALIKAGAALIGKTMVILMIGGGASIKAGEVALIKAGUN 2-T. Suecica 31 GITIAGEVALIKAGAALIGKTMVILMIGGGASIKAGEVALIKAGUNAA 2-T. Suecica 31 GITIAGEVALIKAGAAAJUNUKKGEVAALAIKGGANVILIIMAAGA 2-T. Suecica 16 ANAAVIRATOGEVALUKAGAAAJUNAKKEEVAALAIKGGANVILIIMAAGA 2-T. Suecica 16 ANAAVIRATOGEVALUKAGAAAJUNAKKEEVAALAIKGGAN 2-T. Suecica 16 ANAAVIRATOGEVALUKAGAAJUNAKKEEVAALAIKGGAN 2-T. Suecica 16 ANAAVIRATOGEVALUKAGAAJUNAKKEEVAALAIKGGAN 2-T. Suecica 16 ANAAVIRATOGEVALUKAGAAJUAAKKUGAAKAEVAALAIKGYVENGAALIAA 2-T. SUECICA 160 ANAAAJUNAKTOGEVALUKAGAAJUAAKKUGAAKAEVAALAIKGYVENGAA 2-T. SUECICA 160 ANAAAJUNAKTOGEVALUKAGAAJUAAKKUGAAKAEVAALAIKGYVENGAA 2-T. SUECICA 160 ANAAAJUNAKTOGEVALUKAGAAJUAAKKUGAAKAEVAALAIKGYVENGAA 2-T. SUECICA 160 ANAAAJUNAKTOGEVALUKAGAAJUAAKKUGAANAAJUNAKKUNUKAGUNAAAJUNAK 2-T. SUECICA 160 ANAAAJUNAKTOGEVAAAJUAAKUGAANA	2-T.suecica	114 RRVLLQAFGATLVLTDPAKGMGGAVKKAEEIAAATDSSYVLQQFENPANA	163
2-T. suecica 164 AVMARTTORIFEDIAGEDOLIVACITATIONITURATEVINAVUOVAS 215 2-T. suecica 214 VERTESVISSOGOPPENKIGOTAARTEVINTURVUVASUUVASUUSSESSIA 2-T. suecica 214 VERTESVISSOGOPPENKIGOTAARTEVINTURVUVASUUSSESSIA 2-T. suecica 214 VERTESVISSOGOPPENKIGOTAARTEVINTURVUVASUUSSESSIA 2-T. suecica 214 VERTESVISSOGOPPENKIGOTAARTEVINTURVUVASUUSSESSIA 2-T. suecica 214 VERTESVISSOGOPPENKIGOTAARTEVINTURVUVASUUSSESSIA 2-T. suecica 314 SALATEVOUSSEAN 2-T. suecica 314 SALATEVOUSSEAN 2-T. suecica 314 SALATEVOUSSEAN 2-T. suecica 11 OTTIAESUUSUUSTEVININVIASOARIAAMMESUESSESVERTEG 2-T. suecica 11 NITEAEKAULTERSVILUETSENTOTALITAEAKAUSUUSTEVAUTINAS 2-T. suecica 11 NITEAEKAULTERSVILUETSENTOTALITAEAKAUSUUSTEVAUTINAS 2-T. suecica 12 NAAVMENTETSENTUUTUSETSENTOTALITAEAKAUSUUSTEVAUTINAS 2-T. suecica 12 NAAVMENTETSENTUUTUSETSENTOTALITAEAKAUSUUSTUUTUSETSENTUUTUSETSENTUUSENTUUSENTUUSENTUUSENTUUTUSETSENTUUS	A-A.thaliana	155 KIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANVKLYG	204
 A., thaliana 205 VEPVERALISGGKPOPINKIGGIGAGF PRVINNULIDEVVQVESDESIEM 265 A., thaliana 215 ARGINERGULY GESGAAAAAAN LAARAPPENGALIVVI PEPGEVIES 313 A., thaliana 300 TVLPAARMEALEAM 318 Z-T. Suecica 214 KALADEGGVIGGISGGAAVAAAN LAARAPPENGALIVVI PEPGEVIES 313 A., thaliana 300 TVLPAARMEALEAM 318 Z-T. Suecica 214 KALADEGGVIGGISGGAAVAAAN LAARAPPENGALIVVI PEPGEVIES 313 A., thaliana 72 GUINADANAAGI GKTEMVYINVINKOVASVAANALEIMEPCCSVKDRIGY 121 Z-T. Suecica 11 GTILLENDINGULGKTEMVYINVINKOVASVAANALEIMEPCCSVKDRIGK 60 B-A, thaliana 122 SITTAAEKALITPEKSVLUPTERSKGGAGARIAAMASKEGSKKDRIGK 7000000000000000000000000000000000000	2-T.suecica	164 AVHRLTTGPEIFRDTAGEVDILVAGIGTGGTITGAGEYLKSVKGGVQVVA	213
2-1. suecica 214 VEPTEFVL8002P0FUKIOCICAGE/PGULNIVVEWQISSOLISM 264 254 ARCHAELSEELUN 313 A-A. thaliana 305 TVLFDATRUELEN 313 A-A. thaliana 122 SUITDATRUELITERUKUTERUKUKKERNAGULIVULTERUKUKKERNAGULIVULTERUKUKKERNAGULIVULTERUKUKKERNAGUKALITUREAN 171 Z-T. suecica 61 INUEDATRUELITERUKUKERNAGUKALITUREANGUKALITURUKANGUKALITURUKANGUKALITURUKANGUKANGUKALITUREANGUKALIT	A-A.thaliana	205 VEPVESAILSGGKPGPHKIQGIGAGFIPSVLNVDLIDEVVQVSSDESIDM	254
 C-A. thaliana 215 ARQLALKGOLVGISGAAAAAAIKLAGPEENAGKLIVNIPEREEVIS 304 C-T. SUBCICA 264 ARACONSTRUCTOR VIA PROVIDE PENAGKLIVNIPEREEVIS 313 C-T. SUBCICA 314 SALFADYOKECAGM 327 DS-A. thaliana 72 GLNIADNAQLIGKTEMVINNIVAGUAAVAAKLEIMEPCCSVKDRIGY 121 DS-A. thaliana 122 SILTADEIKGLIVNIPERVINNIVAGUAAVAAKLEIMEPCCSVKDRIGY 121 DS-A. thaliana 122 SILTADEIKGLIVNIPERVINNIVAGUAAVAAKLEIMEPCCSVKDRIGY 110 DS-A. thaliana 122 SILTADEIKGLIVTEPKANINVAGUAAVAAKLEIMEPCCSVKDRIGY 110 DS-A. thaliana 122 SILTADEIKGLIVTEPKANINVAGUAAVAAKLEIMEPCCSVKDRIGY 110 DS-A. thaliana 122 SILTADEIKGLIVTEPKANINVAGUAAVAAKLEIMEPCCSVKDRIGY 110 DS-A. thaliana 122 SILTAVILLARGARUVITEPKANINVAGUAAVAAKLEIMEPCCSVKDRIGY 110 DS-A. thaliana 222 VIAVAPTALARGARUVITEPKANINVAGUAAVAAKLEIMEPCCSVKDRIGY 110 DS-A. thaliana 222 VIAVAPTALARGARUVITEPKANINGAAVAAKLEIMEPKEK 271 DS-A. thaliana 222 VIAVAPTALARGARUVITEPKANINGAAVAAKLEIMEPKEK 271 DS-A. thaliana 222 VIAVAPTALAGUAAVATALEIGOTAGUTGUAGTUGUTGUAGUAAGUAARIAARGYKUNINGANI 2100 DS-A. thaliana 222 VIAVAPTALAGUAAVATALEIGOTAGUTGUAGUAAUAARIALAARGYKUNINGANI 2100 DS-A. thaliana 222 VIAVAPTALAGUAAVATALEIGOTAGUTGUAGUANVARAPINANGULIVUVIEPGUAAU DS-A. thaliana 222 VIAVAPTALAGUAAUAUGUAGUAAUAUAUTAUUTUKUVIEPGUA DS-A. thaliana 222 VIAVAPTALAGUAAUAUGUAGUAAUAUAUUTUKUVIEPGUANUAUUTUKUVIEPGUA DS-A. thaliana 322 VIATGUTGUAGUAUUTUKUGUAAUAUUTUKUVIEPGUAUUTUKUVIEGUAUUTUKUVIEGUAUUTUKUVIEGUAUUTUKUVIEGUAUUTUKUVIEUGUAUUTUKUVIEGUAUUTUKUVIEGUAUUTUKUVIEUGUAUUTUKUVIEUGUAUUTUKUVIEUGUAUUTUKUVIEUGUAUUTUKUVIEUGUAUUTUKUVIEUGUAUUTUKUVI	2-T.suecica	214 VEPTESPVLSGGQPGPHKIQGIGAGFVPGVLNTHVYDEVVQISSDDAISM	263
<pre></pre>	A-A.thaliana	255 ARQLALKEGLLVGISSGAAAAAAIKLAQRPENAGKLFVAIFPSFGERYLS	304
2-T. suecica 314 SILFARDUÇKECAM 327 D-A.thaliana 72 GLNIADDUÇKECAM 327 D-A.thaliana 72 GLNIADDUÇKECAM 327 D-A.thaliana 122 SILFARDUÇKECAM 400 D-A.thaliana 122 SILFARDUÇKECAM 400 D-A.thaliana 122 SILFARDUÇKECAM 101 D-A.thaliana 122 SILFARDUÇKECAM 101 D-A.thaliana 122 SILFARDUÇKECAM 101 D-A.thaliana 122 SILFARULEARGART PEVLUPETAGUTURU FARANTALIKATINATURU FUNCTORINGULAR MARKETINUTURU FARANTALIKATINATURU FUNCTORINGULAR MARKETINUTURU FUNCTORINGULAR MARKETINU FUNCTORINGULA	2-T.suecica A-A.thaliana	264 ARRLAQEEGVLCGISSGAAVLAAIKVGKRPENAGKLIVVIIPSFGERYLS 305 TVLFDATRKEAEAM 318	313
<pre>P-A.thaliana 72 GUNLADUAGU 12 P-A.thaliana 72 GUNLADUAGU FEWYUNNUVYAGVASVAAKLEIMEPCGSVKDRIGY 12 P-A.thaliana 122 SUNTCARENCLIPEKSUVESTSONFOIGLAFIAASKGYKLIITKPASM 17 P-A.thaliana 122 SUNTCARENCLIPEKSUVESTSONFOIGLAFIAASKGYKLIITKPASM 17 P-A.thaliana 122 SUNTCARENCLIPEKSUVESTSONFOIGLAFIAASKGYKLIITKPASM 17 P-A.thaliana 12 SIERBVLLAGATGATUVIEPKGMTGGIGAGUTKAKULIKTYPSWULOGFNP 121 P-A.thaliana 222 ANKKINEETGBEINGEDFAKIDILVAGIGGGTTAGAGUTKAKULIKTYPSWULOGFNP 121 P-A.thaliana 222 ANKKINEETGBEINGEDFAKIDILVAGIGGGTTAGAGUTKAKULIKTYPSWULOGFNP 121 P-A.thaliana 222 INTEKNEITGBEINGEDFAKIDILVAGIGGGTTAGAGUTKAKULIKTYPSWULOGFNP 122 P-A.thaliana 222 INTEKNEITGBEINGEDFAKIDILVAGIGGGTTAGAGUTKAKULIKTYPSWULOGFNP 122 P-A.thaliana 222 INTEKNEITGBEINGEDFAKIDILVAGIGGGTTAGAGUTKAKUNOFSEGA 200 P-A.thaliana 222 INTEKNEITGBEINGEDFAKIDILVAGIGGGTTAGAGUTKAKUNOFSEGA 200 P-A.thaliana 222 INTEKNEITGBEINGEDFAKIDILVAGIGGGTTAGAGUTKAKUNOFSEGA 200 P-A.thaliana 322 INTEKNEITGBEINGEDFAKIDILVAGIGGGTTAGAGUTKAKUNOFSEGA 200 P-A.thaliana 322 INTEKNEITGBEINGEDFAKIDILVAGIGGGTUKAKUNOFSEGA 200 P-A.thaliana 322 INTEKNEITGBEINGEDFAKIDILVAGIGGGTUKAKUNOFSEGA 200 P-A.thaliana 322 INTEKNEITGPUINGENAMI 227 C-A.thaliana 300 ENVERTOPDUINGENAMI 227 C-A.thaliana 300 ENVERTOPDUINASUIGKSGAUNAKUNOFSEGATIGUALATIAN P-T.Suecica 31 PFIAKAAPTGTTIAESIVUDUNAPPLYUNUNGASGAANAANGAMESMEP 5 C-A.thaliana 300 ENVERTOPDUININEDKAKUNOFSEGATIGUALATIAANESMEN 10 C-A.thaliana 200 ALLINPASHSERAVULAATAUNAPPENSUTUNAFAASAANAAMESMESME 5 C-A.thaliana 300 FINEKEPKINETGPUINAFTOPINTOPKAKUGAANAAANESMESME 5 C-A.thaliana 300 FINEKEPKINETGPUINAFTOPINTOPKAKUGAANAAANESMESME 15 C-A.thaliana 300 FINEKEPKINETGPUINAFTOPINTOPKAKUGAANAAANESMESMEN 16 C-A.thaliana 300 FINEKEPKINETGPUINAFTOPINTOPKAKUGAANAANINAAKUNAKI 17 C-A.thaliana 300 FINEKEPKINETGPUINAFTOPINTOPKAKUGAANAANINAAKUNAKI 17 C-A.thaliana 300 FINEKEPKINETGPUINAFTOPINTOPKAKUGAANAANINAAKUNAKI 17 C-A.thaliana 300 FINEKEPKINETGPUINAFTOPINTOPKAKUMAGAANAANINAKETTI 17 C-A.thaliana 300 FINEKEPKINETGPUINAFTOPINTOPKAKUMAGAANAANINAKETTI 17 C-A.thaliana 300 FINEKEPKINETGPUIN</pre>		:. : 314 SALFADVOKECAGM 327	
<pre>P-A.thaliana 72 GUNIAGUAQUIGNUTUUNUVAGUASYAAALEINETKUSYKENKIG 2-T.suecica 11 GTTIAESIYUUUGNUTUUNUVAGUASYAAALEINETKUSYKENKIG 4 INITEAESIYUUUGNUTUUNUVAGUASYAAALEINETKUSYKENKIG 4 INITEAESIYUUUGNUTUUUTUSTGGGTATIAANNESMEPSCSYKENKIG 4 INITEAESIYUUUGNUTUUUTUSTGGGTATIAANNESMEPSCSYKENKIG 4 INITEAESIYUUUGNUTUUUTUSAGGAAYAALILINAASYYLUUTUASA 2-T.suecica 111 SIERAYULUAAGATUVUTUPAKGMGGAAYAALEINAATUSSYYLOOFENF 221 2-T.suecica 112 SIERAYULUAAGATUVUTUPAKGMGGAAYAALEINAATUSSYYLOOFENF 221 2-T.suecica 113 SIERAYULQAYGATUVUTUPAKGMGGAAYAALEINAATUSSYYLOOFENF 221 2-T.suecica 114 ANAANNEITGPEINEDTGGKUTUVAGUTGGTUTUGAGEYKENGKQVQ 210 D-A.thaliana 222 VIEYOPTSALLGGKOPUKKGGTGAAYAALGYANEPENAGKUTUVUTUSSEDA 226 D-A.thaliana 222 VIEYOPTSALLGGKOPUKKGGTGAAYAALGYANEPENGKUTUVUTUSSEDA 226 D-A.thaliana 322 VIEYOOLAGEONUCGISSGNAAJAATUYANEPENGKUTUVUTUSSEDA 226 D-A.thaliana 322 VIEYOOLAGEONUCGISSGNAAJAGTANEPENGKUTUVUTUSSEDA 226 D-A.thaliana 322 VIEYOOLAGEONUCGISSGNAAJATUVANEPENGKUTUVUTUSSEDA 226 D-A.thaliana 322 VIEYOOLAGEONUCGISSGNAAJATUVANEPENGKUTUVUTUSSEDA 226 D-A.thaliana 322 VIEYOOLAGEONUCGISSGNAAJATUVANEPENGKUTUVUTUSSEDA 227 C-A.thaliana 322 VIEYOOLAGEONUCGISSGNAAJATUVUTUSSGAAJAANUKAREPENGKUTUVUTUSSGGAAYAA VIEKONOPENGKUTUKANAANUKUTUNUTUSSGAAYAATUV</pre>	2-1.Suecica	SIN GALEADVQALCAGN SZ	
<pre>P-A.thaliana 122 SHITDAETGUITPEKSULVENTSONTGIGLAFIAASKOYKILITMAASK 17 P-A.thaliana 172 SLERAVLIAAGAKITPEVTLUVETSONTGIGLAFIAASKOYKILITMAASK 17 P-A.thaliana 172 SLERAVLIAAGAKITPEVTLUVETSONTGIGLAFIAASKOYKILITMAASK 10 P-A.thaliana 172 SLERAVLIAAGAKITPEVTLUVETSONTGIGLAFIAASKOYKILITMAASK 10 P-A.thaliana 222 ANPHINKTTOPEINEDTRAKUNGKAVKKAEIAAATDSSYVLOQTENPF 22 P-T.suecica 161 ANAAVIKAITTOPEINEDTRAKUNGKAVKKAEIAAATDSSYVLOQTENPF 22 P-A.thaliana 272 VIGUPETEALISGGKOPPINICGIGAGTVPANIDLAJINGKYKKESIKAGAVO 210 P-A.thaliana 272 VIGUPETEALISGGKOPPINICGIGAGTVPANIDLAJINGKYKKESIKAGAVO 210 P-A.thaliana 272 VIGUPETEALISGGKOPPINICGIGAGTVPANIDLAJINGKYKKESIKAGAVO 210 P-A.thaliana 272 VIGUPETEALISGGKOPPINICGIGAGTVPANIDLAJINGKYKKESIKAGAVO 210 P-A.thaliana 221 INTEKLALQEGULUGISUSAAAAAAIQUAKKEENAKLIAVVFFSTGER 31 P-T.suecica 211 VVAVEPTEAPVLSGGCGOPIKIQGIGAGTVPAVININIAANLENVIJINSTAK P-T.suecica 221 INTEKLALQEGULUGISUSAAAAAAIQUAKKEENAKLIAVVFFSTGER 310 P-A.thaliana 322 VISTQLFQEINEETGUM 327 P-T.suecica 151 SUARAKIQEEXQUARAKAN 327 P-A.thaliana 100 EAVKRETGEPGINIAENVERJISKKAKUPETSONTGIGLAFVASKAY 10 P-A.thaliana 100 EAVKRETGEPGINIAENVERJISKKAKUPETSONTGIGLAFVASKAY 10 P-A.thaliana 100 EAVKRETGEPGINIAENVERJISKKAKUPETSONTGIGLAFVASKAY 10 P-A.thaliana 200 RILIFWASKVERVLAKAN 327 P-T.suecica 51 SCEVKDRIGKNNIEDAKKAKUPETYEVTINETSONTGIGLAFVASKAY 10 P-A.thaliana 200 RILIFWASKVERVLAKANGALAVKANGAYGAYAKAN</pre>	B-A.thaliana	72 GLNIADNAAQLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGY	121
<pre>2-7.suecica 61 NNIEDDEKAGNIPEVTLUEPESSNNEGGLAVLAAKSKYLLINNPASM 100 B-A.thaliana 172 SLERAVLLPAPGAELVLTEPAKGMAGAVKAAELILKKTPNSYNLQOPENP 221 2-7.suecica 111 SLERAVLLQAPGAELVLTEPAKGMAGAVKAAELILKKTPNSYNLQOPENP 160 B-A.thaliana 222 ANPENINYTTOPEINEDTRAKIDILVAGGTOTITGAGYLLKSVKGOQU 200 B-A.thaliana 222 INTERCLACOGLAUGIESGAAAAAA OVAKPENAGKLIAVUPESFER 321 2-7.suecica 211 VUATETISEVLGAGQAPGHKKQGIAAKAAELINAVTPSTGER 371 2-7.suecica 221 VUATETISEVLGAGQAPGHKKQGIAAKAELINVUPESTGER 372 2-7.suecica 221 INTERCLALOGGLAUGIESGAAAAAA OVAKPENAGKLIAVUPESTGER 371 2-7.suecica 221 INTERCLALOGGLAUGIESGAAAAAA OVAKPENAGKLIAVUPESTGER 372 2-7.suecica 221 INTERCLALOGGLAUGIESGAAAAAA OVAKPENAGKLIAVUPESTGER 372 2-7.suecica 221 INTERCLALOGGLAUGIESGAAAAAA OVAKPENAGKLIAVUPESTGER 310 D-A.thaliana 372 YISTQLFQSIRECCQM 388 11</pre>	B-1 thaliana	122 SMITDLEFERI ITDRESU VESTSCHTALALETLESKEFSCSVERTAR	171
B-A.thaliana 172 SLERRVLIPARGAELVLTEPAKGMTGAIGKAEEILKKTFNSYNLOGTENF 221 2-T.suecica 111 SLERRVLLQAFGAILVLTEPAKGMTGAIGKAELILKKTFNSYNLOGTENF 160 B-A.thaliana 222 ANFRINKETTOPEINEDTGKKLDILVAGIGTGGTITGKAGYLKSVKGGQ 210 B-A.thaliana 222 ANFRINKETTOPEINEDTGKKLDILVAGIGTGGTITGKAGYLKSVKGQQ 210 B-A.thaliana 222 VIGVETTGAILGGKAGGIKKJGUAGIGTGGTITGKAGYLKSVKGQQ 210 B-A.thaliana 222 VIGVETGAILGGKAGGIKKJGUAGIGTGGTITGKAGYLKSVKGQQ 210 B-A.thaliana 222 VIGVETGAILGGKAGGIKKJANUGJIAKTPUNDLAIJOUTJUNISSTAGGA 310 2-T.suecica 261 ISMARALAGUGUUGUSSGAAAAAAIJQVAKRENAGKLIAVVIPSFGER 311 2-T.suecica 311 YLSSGLFGGILGSGAGAGIKLAAIJVQGHAKRENAGKLIAVVIPSFGER 310 B-A.thaliana 100 EAVRARLQCUUGUSSGAAAAAIJQVAKRENAGKLIAVVIPSFGER 310 C-A.thaliana 100 EAVRARLQCUUGUSSGAAUAAIJVQGARLAANKGAGARJAKAKSSKY 19 2-T.suecica 101 KILTMPASKSKERKVLKAGGAQUVAKATEFSKKKVLKYDFYMAKAKSKY 19 2-T.suecica 101 KILTMPASKSKERKVLKAGGAQUVAKATEFSKKKVDIFVKGGAGAVKKAEEIAAATDS 15 C-A.thaliana 260 AYKLQQCFDNRANFINIEDAEKKAGGA	2-T.suecica	61 NMIEDAEKAGKITPGVTTLVEPTSGNTGIGLAFVAASKGYKLILTMPASM	110
2-T.suecica 1111	B-A.thaliana	172 SLERRVLLRAFGAELVLTEPAKGMTGAIQKAEEILKKTPNSYMLQQFDNP	221
B-A.thaliana 222 ANPKINYETGPEIMEDTRGKIDILVAGIGTGGTITGVGRFIKERKPELK 271 2-T.suecica 161 ANAAVHALTGBEIRGTAGEVOLLVAGIGTGGTITGVGRFIKERKPELK 210 B-A.thaliana 272 VIQVEPTESJLIGGGAGFVPRULALIVEVIJSSEEA 321 2-T.suecica 211 VVAVEPTESVLSGGQGPGHKLQGIGAGFVPRULALIVEVIJSSEEA 321 2-T.suecica 221 VVAVEPTESVLSGGQGPGHKLQGIGAGFVPRULALIVEVIJSSEEA 321 2-T.suecica 221 VVAVEPTESVLSGGQPGHKLQGIGAGFVPRULALIVEVIJSSEEA 321 2-T.suecica 221 SVARPLQEEGVLGISSGAAVLAALKVGKAPENAKLIVAVFSGGRF 310 B-A.thaliana 372 YLSTQLFQCJREECEQM 388 111.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	2-T.suecica	111 SLERRVLLQAFGATLVLTDPAKGMGGAVKKAEEIAAATDSSYVLQQFENP	160
2-T. Suecica 161 ANAMUMELTTGPEIRATAGEVOLIVAGIGGTTGAGEVINAVKGGTQ 210 B-A.thaliana 272 VIGVEPTESHLEGGGVEPTKIQGIGAGEVPENLLAIVDEVIGISSEDA 260 B-A.thaliana 322 IETSKQLALQEGLUGISSGAAAAAAIQVARAPENAGKLIVVIPSFGER 371 2-T. Suecica 261 ISVAARLAQEEGVLGGSSGAAVLAAINVGKAPENAGKLIVVIPSFGER 371 2-T. Suecica 311 VISSALFADVGKECGM 327 C-A.thaliana 372 VIGTOLFGSTEECEQM 388 11.1.1.1.1.1.1.2.2.2.2.2.2.2.2.2.2.2.2.	B-A.thaliana	222 ANPKIHYETTGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKPELK	271
B-A.thaliana 272 VIGUETESAILSGURDEPHNIGGIGAGEVPENLLALVUEVIAUSELA 321 2-T.suecica 211 VAVEPTESEVLSGUGGEGENKIGGIGAGEVPENLLALVUEVIAUSEDA 260 B-A.thaliana 322 IETSKULLQEGLUVGISSGAAANLAALKVOKKPENAKKLIAVVEPENGER 311 2-T.suecica 261 ISMARRIAGEEGVLGGISSGAAVLAALKVOKKPENAKKLIAVVEPENGER 310 B-A.thaliana 322 IETSKULLQEGLUVGISSGAAVLAALKVOKKPENAKKLIAVVEPENGER 310 B-A.thaliana 302 YLSQLECCQM 386 111.1.1	2-T.suecica	161 ANAAVHRLTTGPEIFRDTAGEVDILVAGIGTGGTITGAGEVLKSVKGGVQ	210
2-T.suecica 211 VVAVEPTESPULSGGQPGPHKIQGIGAGFVPGVLNTHVVDEVVQISSODA 260 B-A.thaliana 322 ITESQLALGEGLUGISSGAAVALAIKVGKRPENAGKLIVVIPFFGER 311 2-T.suecica 261 ISMARRIAQCEGVLGGISSGAAVLAAIKVGKRPENAGKLIVVIPFFGER 310 B-A.thaliana 372 VLSTQLFQGIREECEQM 388 2-T.suecica 311 VLSSLFADQQKECAGM 327 C-A.thaliana 100 EAVKRETGFDGINIADNVSQLIGKTFMVVLNSIAMGCVANIAAKUEIMEP 14 2-T.suecica 1 EFIAKPARPTGTTIAESIVDLVGNTFLVVLNKVTAGSGARIAAKUESMEP 5 C-A.thaliana 150 CCSVKDRIGVSMVDAEQKGTSPGXSUVPFSGNTGIGLAFIAAKUESMEP 5 C-A.thaliana 200 RLITMPARSMEREVLLAGTGAULUKATGAEUVUNTVARVGAEELKNTPD 24 2-T.suecica 101 KLIILTMPARSMEREVLLAGTGAUUTUPFAGMTGIGLAFIAAKUESMEP 5 C-A.thaliana 200 PLIKKNFCOVIGUEPTESDLSGGKGPHKIQGIGAGFIPHNLOKIND 24 2-T.suecica 101 KLIILTMPARSMEPKULUKATGAEVDILVAGVGAUKKAEEIAATDS 15 C-A.thaliana 300 FUIKKNFCOVIGUEPTESDLSGGCPGPHKIQGIGAGFIPHKIQGIGAGFIPHNLOKIND 34 2-T.suecica 201 FUKKNFCOVIGUEPTESDLSGGKGPHKIQGIGAGFIPHKINDKKKKI 30 <t< td=""><td>B-A.thaliana</td><td>272 VIGVEPTESAILSGGKPGPHKIQGIGAGFVPKNLDLAIVDEYIAISSEEA</td><td>321</td></t<>	B-A.thaliana	272 VIGVEPTESAILSGGKPGPHKIQGIGAGFVPKNLDLAIVDEYIAISSEEA	321
b-A.thaliana 322 IETSKQLALGEGLUVGISGAAAAAAAQVXKREPENAGKLIXVYEPEFGER 311 2-T.suecica 261 ISMARRLAQEEGVLCGISSGAAVLAAIKVGKREPENAGKLIVVIEPEFGER 310 b-A.thaliana 372 YLSTQLFQSTREECCM 388 2-T.suecica 311 YLSSALFADVQKECAM 327 C-A.thaliana 100 EAVKRETGPDGLNIADNVSQLIGKTFMVYLNSIAKGCVANIAAKLEIMEP 14 2-T.suecica 11 EFIAKBARPTGTTIAESTUDUVGNELVULNKVTAGGAGRIAAKMEMPE 5 C-A.thaliana 100 EAVKRETGPDGLNIADNVSQLIGKTFMVYLNSIAKGCVANIAAKLEIMEP 14 2-T.suecica 11 EFIAKBARPTGTTIAESTUDUVGNELVULNKVTAGGAGRIAAKMEMPE 5 C-A.thaliana 100 CSVKDRIGKNMIEDAEKAGKITFGVTTLVEPTSGNTGIGLAFVAASKGY 10 C-A.thaliana 200 RLITMPASMAERRVLLAFGARLUTDFAKGMGGAVKKAEEIKANTED 24 2-T.suecica 101 KLITMPASMAERRVLLAFGARLUTDFAKGMGGAVKKAEEIKANTED 24 2-T.suecica 101 SUVLQOFENPAMAAVIRLITGPEIMDTKGKVDIFVAGIGTGGTTTAGE 20 C-A.thaliana 300 FUKENPRVOYUGVETESPULSGGORGPHKIQGGAGFIFNKDUAGGTTAGAE 29 2-T.suecica 201 YLKSVKGQVQVAVETESPULSGGORGPHKIQGGAGGTFFNUNDAKKLI 30 C-A.thaliana 300 EVIAISSEAFETAKQLALKCOLWGISSGAAALAAXIKVAKRENAKKLI 30 C-A.thaliana 100 VUIFPSFGERVLSTPLFSSIEGEVEKM 42	2-T.suecica	211 VVAVEPTESPVLSGGQPGPHKIQGIGAGFVPGVLNTHVYDEVVQISSDDA	260
2-T.suecica 261 ISMARRLAQEEGVLCGISSGAAVLAAIKVGKRPENAGKLIVVIIPSFGER 310 B-A.thaliana 372 YLSTQLFQGIREECEQM 388 2-T.suecica 311 YLSSALFADVQKECAGM 327 C-A.thaliana 100 EAVKRETGPDGLNIADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEP 14 2-T.suecica 11 EPIAKPARPTGTIAESIVDLVGMTVDAGGAARIAAKMESMEP 5 C-A.thaliana 100 EAVKRETGPDGLNIADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEP 14 2-T.suecica 51 SCSVKDRIGKNMTDAEGKGFISPGKSVLPEPTSGNTGIGLAFIAASKGY 10 C-A.thaliana 100 CAVKRETGPDGNTPLEQKGFISPGKSVLPEPTSGNTGIGLAFIAASKGY 10 C-A.thaliana 200 RLILTMPASMBLERVLLAFGAELVLTDPAKGMTGAVGKAEEILANTPD 24 2-T.suecica 101 KLILTMPASMSLERVLLAFGAELVLTDPAKGMTGAVKAEEILAAATDS 15 C-A.thaliana 200 RILTMPASMSLERVLLAFGAELVLTDPAKGMTGAVKAEEILAAATDS 15 2-T.suecica 101 KLILTMPASMSLERVLLAFGAELVLTDPAKGMTGAVKAEEILAAATDS 15 2-T.suecica 101 KLILTMPASMSLERVLLAFGAELVLTDPAKGMTGAVKAEEILAAATDS 15 2-T.suecica 101 KLILTMPASMSLERVLLAFGAELVLTDPAKGMTGAVKAEEILAAATDS 15 2-T.suecica 201 YLKSVKGQVVAVEPTESPLEGGEKGPEHKIGGIGAAFFIKMLDOKIMD 24 2-T.suecica 201 YLKSVKGQVVAVEPTESPLEGGESSAALAAAKVKMERPENAGKLI <t< td=""><td>B-A.thaliana</td><td>322 IETSKQLALQEGLLVGISSGAAAAAAIQVAKRPENAGKLIAVVFPSFGER</td><td>371</td></t<>	B-A.thaliana	322 IETSKQLALQEGLLVGISSGAAAAAAIQVAKRPENAGKLIAVVFPSFGER	371
B-A.thaliana 372 YLSTQLFQSIREECEQM 388 2-T.suecica 311 YLSSALFADVQKECAGM 327 C-A.thaliana 100 EAVKRETGPDGLNIADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEF 14 2-T.suecica 1 EPIAKPARPTGTIAESIVDLVGMTPLVYLNSIAKGCVANIAAKLEIMEF 14 2-T.suecica 1 EPIAKPARPTGTIAESIVDLVGMTVTLVEPTSGNTGIGLAFIAASRGY 19 2-T.suecica 51 SCSVKDRIGKNMIDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGY 10 C-A.thaliana 200 RLILTMPASMSHERKVLLVAFGAELVLTDPAKGMTGAVQKAEEILKNTPD 24 2-T.suecica 101 KLILTMPASMSHERKVLLQAFGATUUTTDPESGNTGIGLAFVARSKGY 10 C-A.thaliana 200 RLILTMPASMSHERKVLLQAFGATUUTTDPESGNTGIGLAFVARSKGY 10 2-T.suecica 101 KLILTMPASMSHERKVLLQAFGATUUTTDPESGNTGAGUKKAEEILAKATES 15 2-T.suecica 101 KLILTMPASMSHERKVLLQAFGATUUTTDPESGNTGAGUKKAEEILAKTES 15 2-T.suecica 101 YLKSVKGGVQVVAVEFTESPLLGAGGATUKAVDIFVAGUGTGGTITAVGR 29 2-T.suecica 201 YLKSVKGGVQVVAVEFTESPLLGAGGATUKAVDIFVAGUGTGGTITAVGR 29 2-T.suecica 201 YLKSVKGGVQVVAVEFTESPLSGGQGPGPHKIQGIGAGFIKNDQKIM 30 C-A.thaliana 300 EVIATSSEEATETAKQLALKEGLMVGISSGAAAALAKWAKREPENAGKLI 30 C-A.thaliana 56 LICKTPLEYKKVEGEAVVAAKQETGPEVESISGAAALAKWAKREPE	2-T.suecica	261 ISMARRLAQEEGVLCGISSGAAVLAAIKVGKRPENAGKLIVVIIPSFGER	310
2-T.suecica 311 YLSSALFADVQKECAGM 327 C-A.thaliana 100 EAVKRETGPDGLNIADNYSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEP 14 2-T.suecica 1 EPIAKPARPTGTIAESIVDLVGHTPLVYLNSIAKGCVANIAAKLEIMEP 14 2-T.suecica 150 CCSVKDRIGYSMVTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGY 19 2-T.suecica 51 SCSVKDRIGKNMIDAEQKGFISPGKSVLVEPTSGNTGIGLAFVASKGY 100 C-A.thaliana 200 RLILMPASMSLERKAGUITGPEINDTKAUFJSGNTGIGLAFVASKGY 101 C-A.thaliana 200 RLILMPASMSLERVLLQAFGALVLITDPAKGMTGAVCKAEEILKNTPD 24 2-T.suecica 101 KLILMPASMSLERVLLQAFGALVLITDPAKGMTGAVCKAEEILKNTPD 24 2-T.suecica 101 KLILMPASMSLERVLQAFGALVLITDPAKGMTGAVCKAEEILKNTPD 24 2-T.suecica 101 KLILMPASMSLERVLQAFGALVLUTDPAKGMUGAVKAEEILAKTS 15 2-T.suecica 101 YLKSVKGGVQVVAVETESPULSGACGPERVLQAFGALVLTDPAKGKAGAVKAEEILAKTS 16 2-T.suecica 201 YLKSVKGGVQVVAVETESPULSGACGPERVLGGIGAAFVEGVLNTHVD 25 C-A.thaliana 300 EVIATSSEATETAKQLALKGLMVGISSGAAAALAKVAKREPAAGKLI 30 C-A.thaliana 301 VVIFPSFGERYLSSALFADVQKECAGM 327 C1-A.thaliana 56 LICKTFLVYTMVTGSGAAFVAAKGVENDERPAIAMIADAEKKK 10 2-T.suecica 211 LVGTFJVVINVTGSGAAFVAAKGVENDERPAIAMIADAEKKKK	B-A.thaliana	372 YLSTQLFQSIREECEQM 388	
C-A.thaliana 100 EAVKRETGPDGLNIADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEP 14 2-T.suecica 1 EPIAKPARPTGTIAESIVDLVMVVTAGSGARIAAKMESMEP 5 C-A.thaliana 150 CCSVKDRIGYSMVTDAEQXGFISPGKSVLVEPTSGNTGIGLAFIAASRGY 19 2-T.suecica 51 SCSVKDRIGVSMVTDAEQXGFISPGKSVLVEPTSGNTGIGLAFIAASRGY 10 C-A.thaliana 200 RLILTMPASMSMERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPD 24 2-T.suecica 101 KLILTMPASMSMERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPD 24 2-T.suecica 101 KLILTMPASMSMERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPD 24 2-T.suecica 101 KLILTMPASMSMERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKATDGVG 29 2-T.suecica 151 SYVLQQFENPANAKJURITGFEIFRDTAEGVDLLVAGIGTGGGTTGGAE 20 C-A.thaliana 300 FIKEKNPKTQVIGVEPTESDLISGGVFDHKIQGIGAGFIPKNLQQKIMD 34 2-T.suecica 201 YLKSVKGVQVAVEPTESPULSGQFOPHKIQGIGAGFIPKNLQQKIMAKLI 39 2-T.suecica 201 YLKSVKGVQVAVEPTESPULSGGGFOPHKIQGIGAGFIPKNLQKKRPENAGKLI 30 2-T.suecica 201 YLKSVKGVQVAVEPTESPULSGAGM 327 C1-A.thaliana 106 LIGKTFLVFLNKVTEGCEAYVAAKQENFOPTCSIKDRPAIAMIADAEKKK	2-T.suecica	311 YLSSALFADVQKECAGM 327	
2-T. suecica 1 EPIAKPARPTGTILESIUDI/MUNUTALSGARIAAKESMEP 5 C-A.thaliana 150 CCSVKDRIGYSMVTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGY 19 2-T. suecica 51 SCSVKDRIGYSMVTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGY 10 C-A.thaliana 200 RLILTMPASMSMERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPD 24 2-T. suecica 101 KLILTMPASMSMERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPD 24 2-T. suecica 101 KLILTMPASMSMERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPD 24 2-T. suecica 111 SVULQOFDNPANPKIHVETTGPEINDDTKGKVDIFVAGIGTGGTITGVGR 29 2-T. suecica 151 SVULQOFENPANAKURLTGPEINFDAEVULUAGIGTGGAGTITGAGE 20 C-A.thaliana 300 FIKEKNPKTQVIGVEPTESDILSGGKPGPHKIQGIGAGFIPKNLDQKIMD 34 2-T. suecica 201 VLKSVKGQVQVAVEPTESPLSGGQFGPHKIQGIGAGFIPKNLDQKIMD 34 2-T. suecica 21 EVAISSEEAIETAKQLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLI 39 2-T. suecica 21 EVAISSEDAISMARRALAGEEMVGIGGISSGAAAAAAIKVAKRPENAGKLI 30 2-T. suecica 21 EVAISSEDAISMARRALAGEEMVGIGGSGAVLAAIKVAKRPENAGKLI 30 2-T. suecica 301 VVIFPSFGERYLSTPLFQSIREEVEKM 426 301 VVIFPSFGERYLSAFADQVGKECAM 327 30 2-T. suecica 10 EVIFUVENVKVTGGCEAYVAAKGENFPORTGKIKARME	C-A.thaliana	100 EAVKRETGPDGLNIADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEP	149
C-A.thaliana 150 CCSVKDRIGYSMVTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGY 19 2-T.suecica 51 SCSVKDRIGKNMIEDAEKAGKIFPGVTLVVEPTSGNTGIGLAFIAASRGY 10 C-A.thaliana 200 RLILTMPASMSMERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPD 24 2-T.suecica 101 KLILTMPASMSMERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPD 24 2-T.suecica 101 KLILTMPASMSMERRVLLGAFGATLVLTDPAKGMGGAVKKAEEILKNTPD 24 2-T.suecica 101 KLILTMPASMSMERRVLLGAFGATLVLTDPAKGMGGAVKKAEEILAATDS 15 C-A.thaliana 250 AYMLQQFDNPANPKIHYETTGPEIRDDTKGKVDIFVAGIGTGGTITGVGR 29 2-T.suecica 151 SYUQOFENEANAVURLTGPEIRPDTAGGVDIFVAGIGTGGTITGVGR 20 C-A.thaliana 300 FIKEKNFKQVIGVEPTESPILSGGQPGPHKIQGIGAGFIFKNLDQKIMD 34 2-T.suecica 201 YLKSVKGGVQVVAVEPTESPVLSGGQPGPHKIQGIGAGFIFKNLDQKIMD 39 2-T.suecica 201 VVIRPSFGERVLSSALFADVQKECAGM 327 Cl-A.thaliana 56 LIGKTFLVFINKVTEGCENVAKGPHCFOSIKDRFAIAMIADAEKK 100 2-T.suecica 21 LVGNTPLVYLNKVTEGCENVAKGPHCSIKDRFGSIKDRIGHMMIEDAEKAG 101 2-T.suecica 21 LVGNTPLVYLNKVTEGCENVAKGPHATAGKNGYLLINTMPASMSLERRVLLQA	2-T.suecica	1 EPIAKPARPTGTTIAESIVDLVGNTPLVYLNKVTAGSGARIAAKMESMEP	50
2-T.suecica 51 SCSVKDRIGKNNIEDAEKAGKITPGVTTLVEPTSGNTGIGLAFVAAASKGY 10 C-A.thaliana 200 RLILTMPASMSMERRVLLKAFGAELVLTDPAKGMGAVKKAEEILAKNTPD 24 2-T.suecica 101 KLILTMPASMSMERRVLLKAFGAELVLTDPAKGMGAVKKAEEILKNTPD 24 2-T.suecica 101 KLILTMPASMSMERRVLLKAFGAELVLTDPAKGMGAVKKAEEILKNTPD 24 2-T.suecica 101 KLILTMPASMSMERRVLLKAFGAELVLTDPAKGMGAVKKAEEILKNTPD 24 2-T.suecica 151 SVVLQOFENFANAVHRLTTGPEIFDATAGEVDILVAGIGTGGTITGAGE 20 C-A.thaliana 300 FIKEKNPKTQVIGVEPTESDILSGGKPGPHKIQGIGAGFIPKNLDQKIND 34 2-T.suecica 201 YLKVKGGQQVVAVEPTESPULSGQLPGPHKIQGIGAGFIPKNLDQKIND 34 2-T.suecica 251 EVVQISSDDAISMARRLAQEEGVLCGISSGAAVLAAIKVGKRPENAGKLI 30 C-A.thaliana 56 LIGKTPLVEINKVTEGCEAPVAAKQEHFOPTCSIKDRPAIAMIADAEKKK 10 Z-T.suecica 21 LVGNTPLVYINKVTAGGARVAAKQRFIPPTCSIKDRPAIAMIADAEKKK 10 Z-T.suecica 21 LVGNTPLVYINKVTAGGARVAAKQENFOPTCSIKDRPAIAMIADAEKKK 10 Z-T.suecica 21 LVGNTPLVYINKVTAGGARVAAKQENFOPTCSIKDRPAIAMIADAEKKK 10 Z-T.suecica 71 KITGAVTTLVEPTSGNMGISLAFWAAKQKRINTMASSIERRR	C-A.thaliana	150 CCSVKDRIGYSMVTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGY	199
C-A.thaliana 200 RLILTMPASMSMERRVLLKAFGAELULTDPAKGMGAVÇKAEEILKNYPD 24 2-T.suecica 101 KLILTMPASMSMERRVLLQAFGATLULTDPAKGMGAVÇKAEEILKNYPD 24 2-T.suecica 101 KLILTMPASMSMERRVLLQAFGATLULTDPAKGMGAVÇKAEEILKNYPD 29 2-T.suecica 151 SVVQQFENPANNAVNRLTTGPEIFNDLAGEVDILVAGIGTGGTITGVGR 29 2-T.suecica 151 SVVQQFENPANAVNRLTTGPEIFNDLAGEVDILVAGIGTGGTITGVGR 29 2-T.suecica 201 YLKSVKGGVQVVAVEPTESPILSGGKPGPHKIQGIGAGFIPKNLDQKIMD 34 2-T.suecica 201 YLKSVKGGVQVVAVEPTESPILSGGKPGPHKIQGIGAGFIPKNLDQKIMD 34 2-T.suecica 201 YLKSVKGGVQVVAVEPTESPILSGGKPGPHKIQGIGAGFIPKNLDQKIMD 34 2-T.suecica 201 YLKSVKGGVQVVAVEPTESPILSGGAAAAAAIKVAKRPENAGKLI 39 2-T.suecica 201 VLKSVKGGVQVVAVEPTESPULSGGAAAAAAIKVAKRPENAGKLI 39 2-T.suecica 211 EVVQISSDDAISMARALAQEEGQUCCISSGAAAVLAAIKVGKRPENAGKLI 30 C-A.thaliana 400 AVVFPSFGERYLSTPLFQSIREEVEKM 426 .1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	2-T.suecica	51 SCSVKDRIGKNMIEDAEKAGKITPGVTTLVEPTSGNTGIGLAFVAASKGY	100
2-T. suecica 101 KLILTMPASMSLERRVLLQAFGATLVLTDPAKGMGGAVKKAEEIAAATDS 15 2-T. suecica 250 AYMLQQFDNPANPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGR 29 2-T. suecica 151 SYVLQQFENPANAVKHEITGPEIWDDTKGKVDIFVAGIGTGGTITGVGR 29 2-T. suecica 101 KLIKNPKTQVIQVEPTESDILSGGKPGPHKIQGIGAGFIPKNLDQKIND 34 2-T. suecica 201 YLKSVKGWQVVAVEPTESDVLSGGPGPHKIQGIGAGFVPKNLDQKIND 30 C-A. thaliana 350 EVIAISSEEAIETAKQLALKEGLMVGISSGAAVLAAIKVGKRPENAGKLI 39 2-T. suecica 251 EVVQISSDDAISMARLAQEEGVLCGISSGAAVLAAIKVGKRPENAGKLI 30 C-A. thaliana 400 AVVFPSFGERYLSSALFADVQKECAGM 327 2-T. suecica 21 LVGNTPLVYLNKVTAGSGARIAAKMESMEPSCSVKDRIGKNMIEDAEKAG 70 C1-A. thaliana 106 LIFFGKTLIEPTSGNMGISLAFMAAMKSMEIPSCSVKDRIGKNMIEDAEKAG 71 2-T. suecica 21 LVGNTPLVYLNKVTAGSGARIAAKMESMEPSCSVKDRIGKNMIEDAEKAG 71 2-T. suecica 71 KITFGVTLVEPTSGNTGIGLAFVAASKGYKLILTMPASMSLERRVLQA 120 C1-A. thaliana	C-A.thaliana	200 RLILTMPASMSMERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPD	249
C-A.thaliana 250 AYMLQQFENPANAR/HYETGPEIWDDTKGWUDIVAGIGTGGTITGVGR 29 2-T.suecica 151 SYVLQQFENPANAAVHRLTTGPEIFRDTAGEVDILVAGIGTGGTITGAGE 20 C-A.thaliana 300 FIKEKNPKTQVIGVEPTESDILSGGKPGPHKIQGIGAGFIPKNLDQKIMD 34 2-T.suecica 201 YLKSVKGGVQVVAVEPTESPVLSGGGPGPHKIQGIGAGFIPKNLDQKIMD 34 2-T.suecica 201 YLKSVKGGVQVVAVEPTESPVLSGGGPGPHKIQGIGAGFIPKNLDQKIMD 34 2-T.suecica 201 YLKSVKGGVQVVAVEPTESPVLSGGGPGPHKIQGIGAGFVPGVLNHVYD 255 C-A.thaliana 350 EVIAISSEEAIETAKQLALKEGLMVGISSGAAVAAAAKVKKRPENAGKLI 39 2-T.suecica 251 EVVQISSDDAISMARRLAQEEGVLCGISSGAAVLAAIKVGKRPENAGKLI 30 C-A.thaliana 400 AVVFPSFGERYLSSDLFQSIREEVEKM 426	2-T.suecica	101 KLILTMPASMSLERRVLLQAFGATLVLTDPAKGMGGAVKKAEEIAAATDS	150
2-T.Suecica 151 SYVLQQFENFANAAVHRLTTGPEIFRDTAGEVDILVAGIGTGGTITGAGE 20 C-A.thaliana 300 FIKEKNPKTQVIGVEPTESDILSGGK0PHNIQGIGAGFIFNKLDQXIMD 34 2-T.suecica 201 YLKSVKGGVQVVAVEPTESPVLSGGQPGPHKIQGIGAGFIFNKLDQXIMD 34 2-T.suecica 201 YLKSVKGGVQVVAVEPTESPVLSGGQPGPHKIQGIGAGFIFNKLDQXIMD 34 2-T.suecica 201 YLKSVKGGVQVVAVEPTESPVLSGQPGPHKIQGIGAGFIFNKLDQXINHVYD 25 C-A.thaliana 350 EVIAISSEEAIETAKQLALKEGLMVGISSGAAVLAAIKVGKRPENAGKLI 39 2-T.suecica 251 EVVQISSDAAJAAAKQEHGPGGVIGSISGAAVLAAIKVGKRPENAGKLI 30 C-A.thaliana 400 AVVFPSFGERYLSTPLFQSIREEVEKM 426 2-T.suecica 301 VVIPSFGERYLSALFADVQKECAGM 327 C1-A.thaliana 56 LIGKTPLVFINKVTEGCEAYNAAKQEHFQPTCSIKDRPAIAMIADAEKKK 10 2-T.suecica 21 LVGNTFLVYLNKVTAGSGARIAAKMESMEPSCSVKDRIGKNNIEDAEKAG 70 C1-A.thaliana 106 LIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRS 151 2-T.suecica 71 KITPGVTTLVEPTSGNTGIGLAFVAASKGYKLILTMPASMSLERRVLLQA 120 C1-A.thaliana 156 FGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQFANPANTQIHFDT 201 C1-A.thaliana 206 GPEIMEDTLGNVDIFVMGIGSGGTVSGVGVGVGVGVGVAVEPTESP 251 2-T.suecica 171 GPEIFFDTAGEVDLI	C-A.thaliana	250 AYMLQQFDNPANPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGR :::::::::::::::::::::::::::::::::::	299
C-A.thaliana SUD FIREARNEQUISVEPTEDDIESGGK#GPHRIQGIGAGFIPRNLDQRIMD 34 2-T.suecica 201 YLKSVKGGVQVVAVEPTESFVLSGGQFGPHRIQGIGAGFIPRNLDQRIMD 25 C-A.thaliana 350 EVIAISSEALETAKQLALKEGLMVGISSGAANAAARKVAKREENAGKLI 39 2-T.suecica 251 EVVQISSDDAISMARALAQEEGVLCGISSGAAVLAARVGKREENAGKLI 30 C-A.thaliana 400 AVVFFSFGERYLSTPLFQSIREEVEKM 426 2-T.suecica 301 VVIIPSFGERYLSALFADVQKECAGM 327 C1-A.thaliana 56 LIGKTFLVFINKVTEGCEAYVAAKQEHFQFTCSIKDERAIAMIADAEKKK 100 2-T.suecica 21 LVGNTFLVENKVTEGGEAYVAAKQEHFQFTCSIKDERAIAMIADAEKKK 100 C1-A.thaliana 106 LIIFGKTTLIEPTSGNMGISLAFMAANKGYRIIMTMPSYTSLERRVTMRS 151 2-T.suecica 71 KIFPGVTTLVEPTSGNTGIGLAFVAASKGYKLILTMPASMSLERRVLLQA 121 C1-A.thaliana 156 FGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFWQQFANPANTQIHFDTT 201 C1-A.thaliana 206 GPEIWEDTLGNVDIFVMGIGSGGTVSGVGRVLKSKNPNNKIYGVEPAESN 251 2-T.suecica 121 FGATLVLTDPAKGMGGAVKKAEEIAAATDSSYVLQQFENPANAAVHRLTT 171 C1-A.thaliana 206 GPEIWEDTLGNVDIFVMGIGSGGTVSGVGVGVSUKOVEPTESP 251	2-T.suecica	151 SYVLQQFENPANAAVHRLTTGPEIFRDTAGEVDILVAGIGTGGTITGAGE	200
C-A.thaliana 350 EVIAISSEEATETAKQLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLI 39 2-T.suecica 251 EVVQISSDDAISMARRIAQEEGVLCGISSGAAVLAAIKVAKRPENAGKLI 30 C-A.thaliana 400 AVVFPSFGERYLSTPLFQSIREEVEKM 426 2-T.suecica 301 VVIPSFGERYLSTPLFQSIREEVEKM 426 2-T.suecica 301 VVIPSFGERYLSALFADVQKECAGM 327 C1-A.thaliana 56 LIGKTPLVFLMKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEKKK 101 2-T.suecica 21 LVGNTPLVVLNKVTAGGGAAVKAKESMEPSCSVKDRIGKNMIEDAEKAG 70 C1-A.thaliana 106 LIPGKTTLLEPTSGNMGISLAFMAAMKGVRIIMTMPSYTSLERRVTMRS 151 2-T.suecica 71 KIPPGVTTLVEPTSGNTGIGLAFVAASKGVKLILTMPASMSLERRVLQA 120 C1-A.thaliana 156 FGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFANPANTQIHFDT 201 2-T.suecica 121 FGATLVLTDPAKGMGGAVKKAEEIAAATDSSYVLQQFENPANAAVHRLT 170 C1-A.thaliana 206 GPEIMEDTLGNVLFVMGIGSGGTVSQGVGVQVKPTPERSP 221 2-T.suecica 171 GPEIFRDTAGEVDU	2-T succion	201 VIKSUKGGVOUVLVEPTESDU SGGADGBUVIGGIGIGEUPUN	349
2-T.suecica 251 EVVQISSDDAISMARRLAQDEGULGISSGAAVLAAIKVGKRPENAGKLI 30 C-A.thaliana 400 AVVFPSFGERYLSTPLFQSIREEVEKM 426 .:	C-A.thaliana	350 EVIAISSEAIETAKOLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLT	399
C-A.thaliana 400 AVVFPSFGERYLSTPLFQSIREEVEKM 426 2-T.suecica 301 VVIIPSFGERYLSSALFADVQKECAGM 327 Cl-A.thaliana 56 LIGKTPLVFLNKVTGGCAYVAAKQEHFQPTCSIKDRPAIAMIADAEKKK 101 2-T.suecica 21 LVGNTPLVYLNKVTGGSGARIAAKMESMEPSCSVKDRIGKNMIEDAEKAG 70 Cl-A.thaliana 106 LIIPGKTTLIEPTSGNMGISLAFMAAKGYRJINTMPSYTSLERRVTMRS 151 2-T.suecica 21 LVGNTPLVYLNKVTAGSGARIAAKMESMEPSCSVKDRIGKNMIEDAEKAG 70 Cl-A.thaliana 106 LIIPGKTTLIEPTSGNMGISLAFMAAKGYRJINTMPSYTSLERRVTMRS 151 2-T.suecica 71 KITPGVTTLVEPTSGNTGIGLAFVAASKGYKLILTMPASMSLERRVLLQA 120 Cl-A.thaliana 156 FGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFANPANTQIHFDTT 201 2-T.suecica 121 FGATLVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFANPANTQIHFDTT 171 Cl-A.thaliana 206 GPEIWEDTLGNVDIFVMGIGSGGTVSQUGVLKSKNPNVKIYGVEPAESN 251 2-T.suecica 171 GPEIFRDTAGEVDLIVAGIGTGGTITGAGEYLKSVKGQUVVAVEPTESP 220 Cl-A.thaliana 256 ILNGGKPGPHAITGNUGYEKPEILDMDVMESVLEVSSDAIKMARELAKK 301 2-T.suecica 221 VLSGQPGPHKIQGIGAGFVPGVLNTHVYDEVQISSDAISMARRLAQE 270 Cl-A.thaliana 306 EGLMVGISSGANTVAAIRLAKMEPENAGKLIVVIHASFGERYLSSULFDU 351 2-T.suecica 271 EGVLC	2-T.suecica	251 EVVQISSDDAISMARRLAQEEGVLCGISSGAAVLAAIKVGKRPENAGKLI	300
2-T.suecica 301 VVIIPSFGERYLSSALFADVQKECAGM 327 Cl-A.thaliana 56 LIGKTPLVFLNKVTEGCEAYWAAKQEHFQPTCSIKDRPAIAMIADAEKKK 109 2-T.suecica 21 LVGNTPLVYLNKVTAGSGARIAAKMESMEPSCSVKDRIGKNNIEDAEKAG 70 Cl-A.thaliana 106 LIIPGKTTLIEPTSGNMGISLAFMAAMKGYRINTMPSYTSLERRVTMRS 151 2-T.suecica 21 LVGNTPLVYLNKVTAGSGARIAAKMESMEPSCSVKDRIGKNNIEDAEKAG 70 Cl-A.thaliana 106 LIIPGKTTLIEPTSGNMGISLAFMAAMKGYRINTMPSYTSLERRVTMRS 151 2-T.suecica 71 KITPGVTTLVEPTSGNTGIGLAFVAASKGYKLILTMPASMSLERRVLLQA 120 Cl-A.thaliana 156 FGAELVLTDPAKGMGGTVKKAYDLDSTPDAFMCQCFANPANTQIHFDT 201 2-T.suecica 121 FGATLVLTDPAKGMGGAVKKAZELIAATDSSYVLQOFENPANAAVHRLTT 170 Cl-A.thaliana 206 GPEIMEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAESN 255 2-T.suecica 171 GPEIFRDTAGSVDILVAGIGTGGTITAGEYLKSVKGVQVVAVEPTESP 220 Cl-A.thaliana 256 ILNGGKPGPHAITGNQGFKPEILDMDVMESVLEVSSEDAIKMARELAK 300 2-T.suecica 221 VLSGQOFGPHKIQGIGAGFVPGVLNTHVYDEVVQISSDAISMARRLAQE 270 Cl-A.thaliana 306 EGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYLSSULFDEL 353 2-T.suecica 271 EGVICGISSGAAVLAAIKVGKRPENAGKLIVVIPSFGERYLSSALFADV 320 Cl-A.thaliana </td <td>C-A.thaliana</td> <td>400 AVVFPSFGERYLSTPLFQSIREEVEKM 426</td> <td></td>	C-A.thaliana	400 AVVFPSFGERYLSTPLFQSIREEVEKM 426	
C1-A.thaliana 56 LIGKTPLVFLMKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEKKK 100 2-T.suecica 21 LVGNTPLVYLMKVTAGGGARIAAKMESMEPSCSVKDRIGKNMIEDAEKAG 70 C1-A.thaliana 106 LIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRS 159 2-T.suecica 71 KIFPGVTLVEPTSGNTGIGLAFVAASKGYRIIMTMPSYTSLERRVTMRS 159 2-T.suecica 71 KIFPGVTLVEPTSGNTGIGLAFVAASKGYRIIMTMPSYTSLERRVTMRS 120 C1-A.thaliana 156 FGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFKQQFANPANTQIHFDTT 200 C1-A.thaliana 126 FGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFKQQFANPANTQIHFDTT 201 2-T.suecica 121 FGATLVLTDPAKGMGGTVKKAYDLLDSTPDAFKQQFANPANTQIHFDT 201 C1-A.thaliana 206 GPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAESN 251 2-T.suecica 171 GPEIFRDTAGEVDLIVAGIGTGGTTIGAGEYLKSVKQVQVVVPFTESP 221 C1-A.thaliana 256 ILNGGKPGPHAITGNQVGKKPEILDMDVMESVLEVSSEDAIKMARELALK 300 2-T.suecica 221 VLSGGQPGPHKIQGIGAGFVPGVULVTHVDEVVGISSDAAISMARRLAQE 270 C1-A.thaliana 306 EGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYLSSALFADV 320 C1-A.thaliana 306 EGLMVGISSGAAVLAAIKVGKRPENAGKLIVVIPSFGERYLSSALFADV 320 C1-A.thaliana 367 362 362	2-T.suecica		
2-T.suecica 21 LVGNTPLVYLNKVTAGSAGRIAAKMESMEPSCSVKDRIGKNNIEDAEKAG 70 C1-A.thaliana 106 LIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRS 151 2-T.suecica 71 KITPGVTLVEPTSGNTGIGLAFVAASKGYKIIMTMPSYTSLERRVTMRS 152 C1-A.thaliana 106 FGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQOFANPANTQIHFDTT 201 C1-A.thaliana 156 FGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQOFANPANTQIHFDTT 201 2-T.suecica 121 FGATLVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQOFANPANTQIHFDTT 201 C1-A.thaliana 206 GPEIMEDTLGNVDIFVMGIGSGGTVSGVGRVLKSKNPNVKIYGVEPAESN 253 2-T.suecica 171 GPEIFRDTAGEVDLIVAGIGTGGTTGTGAGEYLKSVKOVQVVAPTEBSP 221 C1-A.thaliana 256 ILNGGKPGPHAITGNQUGFKPEILDMDVMESVLEVSSEDAIKMARELALK 300 2-T.suecica 221 VLSGQOFGPHKIQGIGAGFVPGVUNTHVVDEVVQISSDAISMARRLAQE 270 C1-A.thaliana 306 EGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYLSSULFDEL 351 2-T.suecica 271 EGVLCGISSGAAVLAAIKVGKRPENAGKLIVVIIPSFGERYLSSALFADV 320 C1-A.thaliana 306 EGLMVGISSGANTVAAIRLAKMPENAGKLIVVIIPSFGERYLSSALFADV 320 C1-A.thaliana 366 RKEAEEM 362 361	Cl-A.thaliana	56 LIGKTPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEKKK	105
C1-A.thaliana 106 LIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRS 151 2-T.suecica 71 KITPGVTTLVEPTSGNTGIGLAFVAASKGYKLILTMPASMSLERRVLLQA 120 C1-A.thaliana 156 FGAELVLTDPAKGMGGVKKAYDLLDSTPDAFMCQQFANPANTQIHFDTT 201 2-T.suecica 121 FGAELVLTDPAKGMGGVKKAYDLLDSTPDAFMCQQFANPANTQIHFDTT 201 2-T.suecica 121 FGATLVLTDPAKGMGGVKKAYDLLDSTPDAFMCQQFANPANTQIHFDTT 201 C1-A.thaliana 206 GPEIWEDTLGNVDIFVMGIGSGGTVSGVGRVLKSKNPNVKIYGVEPAESN 251 2-T.suecica 171 GPEIFRDTAGEVDLLVAGIGTGGTITGAGEYLKSVKGGVQVVAVEPTESP 220 C1-A.thaliana 256 ILNGGKPGPHAITGNGVGFKPEILDMDVMESVLEVSSEDAIKMARELALK 300 2-T.suecica 221 VLSGQPGPHKIGGIGAGFVPGVUNTHVYDEVVQISSDDAISMARRLAQE 271 C1-A.thaliana 306 EGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYLSSLFADV 320 C1-A.thaliana 306 EGLMVGISSGANTVAAIRLAKMPENAGKLIVVIPSFGERYLSSALFADV 320 C1-A.thaliana 366 REAEEM 362 321	2-T.suecica	21 LVGNTPLVYLNKVTAGSGARIAAKMESMEPSCSVKDRIGKNMIEDAEKAG	70
2-T.suecica 71 KITPGVTILVEPTSGNTGIGLÄPVÄÄSKGYKLILITMPÄSMSLERRVLLQÅ 121 C1-A.thaliana 156 FGÄELVLTDPÄKGMGGTVKKÄYDLLDSTPDÄFMCQQFÄNPÄNTQIHFDTT 201 2-T.suecica 121 FGÄTLVLTDPÄKGMGGTVKKÄYDLLDSTPDÄFMCQQFÄNPÄNTQIHFDTT 201 C1-A.thaliana 206 GPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNFNVKIYGVEPÄESN 251 2-T.suecica 171 GPEIFRDTAGEVDILVAGIGTGGTTTGAGEYLKSVKGVQVVAVEPTESP 220 C1-A.thaliana 256 ILNGGKPGPHÄTGNGVGRYPPEILDMOVMESVLEVSSDAIKMARELÄLK 304 2-T.suecica 221 VLSGGQPGPHÄIQGIGAGFVPGVLNTHVVDEVVQISSDAIKMARELÄLK 304 2-T.suecica 221 VLSGGQPGPHÄIQGIGAGFVPGVLNTHVVDEVVQISSDAIKMARELÄLK 304 2-T.suecica 221 VLSGGQAGPHÄIQGIGAGFVPGVLNTHVVDEVVQISSDAIKMARELÄLE 304 2-T.suecica 221 VLSGGQAGPHÄIQGIGAGFVPGVLNTHVVDEVVQISSDAIKMARELÄLK 304 2-T.suecica 221 VLSGGQAGNTVAAIRLÄKMPENKGKLIVVIHASFGERYLSSVLFDEL 355 2-T.suecica 271 EGVLCGISSGAAVLAAIKVGKRPENAGKLIVVIHPSFGERYLSSALFADV 320 C1-A.thaliana 366 RKEÄEEM 362 361 362	Cl-A.thaliana	106 LIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRS	155
C1-A.thaliana 156 FGRELVITDPAKGMGGTVKKAYDLLDSTPDAFMCQGFANPANTQIHFDT 201 2-T.suecica 121 FGRILVITDPAKGMGGTVKKAYDLLDSTPDAFMCQGFANPANTQIHFDT 170 C1-A.thaliana 206 GPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAESN 251 2-T.suecica 171 GPEIFRDTAGEVDLIVAGIGTGGTITGAGEYLKSVKGVQVVAVEPESP 222 C1-A.thaliana 256 ILNGGKPGPHAITGNGVGFKPEILDMDVMESVLEVSSEDAIKMARELALK 300 2-T.suecica 221 VLSGGVGPGPHKIQGIGAGFVPGVLNTHVYDEVVQISSDAIKMARELALK 301 2-T.suecica 221 VLSGGVGPGPHKIQGIGAGFVPGVLNTHVYDEVVQISSDAIKMARELALK 301 C1-A.thaliana 306 EGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYLSSVLFDEL 351 2-T.suecica 271 EGULCGISSGAAVLAAIKVGKRPENAGKLIVVIIPSFGERYLSSALFADV 320 C1-A.thaliana 366 REAEEM 362 321	2-T.suecica	71 KITPGVTTLVEPTSGNTGIGLAFVAASKGYKLILTMPASMSLERRVLLQA	120
2-T.suecica 121 FGATLVLTDPAKGMGGAVKKAEEIAAATDSSYVLQQFENPANAAVHRLTT 170 C1-A.thaliana 206 GPEIMEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAESN 251 2-T.suecica 171 GPEIFRDTAGEVDLIVAGIGSGTVSGVGRYLKSKNPNVKIYGVEPAESN 252 C1-A.thaliana 256 ILNGGKPGPHAITGNGVGFKPEILDMDVMESVLEVSSEDAIKMARELALK 300 2-T.suecica 221 VLSGGQPGPHKIYGGIGAGFVPGVUNTHVYDEVVQISSDDAISMARRLAQE 270 C1-A.thaliana 306 EGLMVGISSGANVAAIRLAKMPENKGKLIVTIHASFGERYLSSVLFDEL 351 2-T.suecica 271 EGULCGISSGAAVLAAIKVGKRPENAGKLIVVIIPSFGERYLSSALFADV 320 C1-A.thaliana 306 EGLMVGISSGAAVLAAIKVGKRPENAGKLIVVIIPSFGERYLSSALFADV 320 C1-A.thaliana 366 RKEAEEM 362	Cl-A.thaliana	156 FGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFANPANTQIHFDTT	205
C1-A.thaliana 206 GPEIWEDTLGNVDIFVMGIGSGGTVSGVGRVLKSKNFNVKIGVEPAESN 251 2-T.suecica 171 GPEIFRDTAGEVDLLVAGIGTGGTITGAGEYLKSVKGGVQVVAVEPTESP 220 C1-A.thaliana 256 ILNGGKPGPHAITGNGVGFKPEILDMDVMESVLEVSSEDAIKMARELALK 300 2-T.suecica 221 VLSGGQPGPHAITGNGVGFKPEILDMDVMESVLEVSSEDAIKMARELALK 301 2-T.suecica 221 VLSGGQPGPHAITGNGVFPGVLNTHVVDEVVQISSDDAISMARRLAQE 271 C1-A.thaliana 306 EGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYLSSULFDEL 351 2-T.suecica 271 EGVLCGISSGAAVLAAIKVGKRPENAGKLIVVIIPSFGERYLSSALFADV 320 C1-A.thaliana 366 RKEAEEM 362 :::: ::: :: ::	2-T.suecica	121 FGATLVLTDPAKGMGGAVKKAEEIAAATDSSYVLQQFENPANAAVHRLTT	170
2-1.suecica 171 GPEIFRUTAGEVDILVAGIGTGGTITGAGEYLKSVKGGVQVVAVEPTESP 221 C1-A.thaliana 256 ILNGGKPGPHAITGNGVGFKPEILDMDVMESVLEVSSDDAIKNARELALK 301 2-T.suecica 221 VLSGGQPGPHKIQGIGAGFVPGVLNYNVDEVVQISSDDAISMARRLAQE 271 C1-A.thaliana 306 EGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYLSSVLFDEL 351 2-T.suecica 271 EGVLCGISSGAAVLAAIRLAKMPENKGKLIVTIHASFGERYLSSVLFDEL 352 C1-A.thaliana 366 RKEAEEM 362 :::: ::: ::: :::	Cl-A.thaliana	206 GPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAESN	255
2-A.thaliana 200 ILNGGARGPARATEGROOF KPEILDBUVRESVELVSEDALMAARELALK 301 2-T.suecica 221 VLSGGQPGPHKIQGIGAGFVPGVLNTHVYDEVVQISSDDALSMARRLAQE 270 C1-A.thaliana 306 EGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYLSSVLFDEL 351 2-T.suecica 271 EGVLCGISSGAAVLAAIRLAKMPENKGKLIVTIHASFGERYLSSALFADV 320 C1-A.thaliana 366 RKEAEEM 362 ::: : : :	2-T.suecica	171 GPEIFRDTAGEVDILVÄGIGTGGTITGAGEYLKSVKGGVQVVÄVEPTESP	220
Cl-A.thaliana 306 EGLMVGISSGANTVAAIRLAKMPENKGKLIVVIIAASFGERYLSSVLFDEL 35 2-T.suecica 271 EGVLCGISSGAAVLAAIKVGKRPENAGKLIVVIIPSFGERYLSSALFADV 320 Cl-A.thaliana 356 RKEAEEM 362 	2-T. suecica	200 ILNGGRFGFHATIGNGYGFKFEILDMDVMESVLEVSSEDAIKMARELALK : : : :	270
2-T.suecica 271 EGVLCGISSGAAVLAAIKVGKRPENAGKLIVVIIPSFGERYLSSALFADV 320 Cl-A.thaliana 356 RKEAEEM 362	C1-A, thaliana	306 EGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASEGERVISSUI POPI	355
Cl-A.thaliana 356 RKEAEEM 362	2-T.suecica	271 EGVLCGISSGAAVLAAIKVGKRPENAGKLIVVIIPSFGERYLSSALFADV	320
11	C1-A.thaliana	356 RKEAEEM 362	
2-T.suecica 321 QKECAGM 327	2-T.suecica	: 321 OKECAGM 327	

Fig. 7-39. Alignment of 2-T. suecica OAS-TL amino acid with A. thaliana isoforms.

		Ø
D	178	

A-A.thaliana	4 RIAKDVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFSM 53	
3-T.suecica	2 RVHRSVLDAIGNTPLIRINSLSDATGCEILGKAEFLNPGGSVKDRVALQI 51	
A-A.thaliana	54 ISDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMST 103	
3-T.suecica	52 VTEALADGRLKPN-GLVTEGTVGSTGVSLAMVTAALGCRCHVVMPDDAAI 100	
A-A.thaliana	104 ERRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFENP 151	
3-T.suecica	101 EKSQVLEALGATVQRVRPVSITHPDHFVNIARRRAAEEAGAIFSDQFENL 150	
A-A.thaliana	152 ANPKIHYETTGPEIWKGTGGKIDGFVSGIGTGGTTGAGKYLKEQNANVK 201	
3-T.suecica	151 ANMRVHLKT-GQEIWDATAGRVDAFVSGAGTGGTIAGVSQALKARKPSVR 199	
A-A.thaliana	202 LYGVEPVESAI 212 ::: ::	
3-T.suecica B-A.thaliana	200 VFLADPPGSSL 210 83 IGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYSMITDAEEKGL 132	
3-T.suecica	11 IGNTPLIRINSLSDATGCEILGKAEFLNPGGSVKDRVALQIVTEALADGR 60	
B-A.thaliana	133 ITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMSLERRVLLRAF 182	
3-T.suecica	<pre>:</pre>	
B-A.thaliana	183 GAELVLTEPAKGMTGAIQKAEEILKKTPNSYMLQQFDNPANPKIHYET 230	
3-T.suecica	110 GATVQRVRPVSITHPDHFVNIARRAAEEAGAIFSDQFENLANMRVHLKT 159	
B-A.thaliana	231 TGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKPELKVIGVEPTES 280	
3-T.suecica	160 -GQEIWDATAGRVDAFVSGAGTGGTIAGVSQALKARKPSVRVFLADPPGS 208	
B-A.thaliana	281 AI 282	
3-T.suecica	209 SL 210	
C-A.thaliana	116 NVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYSMVTDA	165
3-T.suecica	6 SVLDAIGNTPLIRINSLSDATGCEILGKAEFLNPGGSVKDRVALQIVTEA	55
C-A.thaliana	166 EQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSMERRV	215
3-T.suecica	56 LADGRLKPN-GLVTEGTVGSTGVSLAMVTAALGCRCHVVMPDDAAIEKSQ	104
C-A.thaliana	216 LLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPDAYMLQQFDNPANPK	263
3-T.suecica	:::	154
C-A.thaliana	264 IHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQVIGV	313
3-T.suecica	155 VHLKT-GQEIWDATAGRVDAFVSGAGTGGTIAGVSQALKARKPSVRVFLA	203
C-A.thaliana	314 EPTESDILSGGKPGPHKIQGIGAGFIPKNLDQK	346
3-T.suecica	204 DPPGSSLYNKVQRGVLYTREEAEGKRLRNPYDTIVEGMGLNRLTANFGQA	253
C-A.thaliana	347 IMDEVIAISSEEAIETAKQLALKEGLMVGISSGAAAAAAIKVAKRPENAG	396
3-T.suecica	254 RIDGAYKSSDRESVEMAHFLMREEGLFLGSSACVNCVGAVKAAL-DLGPG	302
C-A.thaliana	397 KLIAVVFPSFGERYLS 412	
3-T.suecica	303 HTVVTVLCDSGORHLS 318	
3-T.suecica	57 IGKTPLVFLNKVTEGCEATVAAROEHPOPTCSIKDRPAIAMIADAEKKL : : :::::::::::::::::::::::::::	106
Cl-A.thaliana	107 IIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRSF	156
3-T.suecica	::	109
Cl-A.thaliana	157 GAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFANPANTQIHFDT	204
3-T.suecica	110 GATVQRVRPVSITHPDHFVNIARRRAAEEAGAIFSDQFENLANMRVHLKT	159
Cl-A.thaliana	205 TGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAES	254
3-T.suecica	160 -GQEIWDATAGRVDAFVSGAGTGGTIAGVSQALKARKPSVRVFLADPPGS	208
Cl-A.thaliana	255 NILNGGKPGPHAITGNGVGFKPEILDMDVMESV	287
3-T.suecica	::. : :	258
Cl-A thaliana	288 LEUSSEDATKMARELALKERI MURI SCRAMMUAATEL AVMERAUVATIO	337
or-A. unarrana		
3-T.Suecica	259 YKSSDRESVEMAHFLMREEGLFLGSSACVNCVGAVK-AALDLGPGHTVVT	307
Cl-A.thaliana	338 IHASFGERYLS 348	
3-T.suecica	308 VLCDSGQRHLS 318	

Fig. 7-40. Alignment of 3-T. suecica OAS-TL amino acid with A. thaliana isoforms.

11 ELIGNTPLVYLNNVAEGCV----GRVAAKLEMMEPCSSVKDRIGFSMISD A-A.thaliana 56 1 ETIGNTPLVRLERALPEEVRANGATILCKMEMQNPGGSIKDRIAKSMIET 4-T.suecica 50 A-A.thaliana 57 AEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMS-TER 105 51 AEAEGKLKPGGTV-VEYTSGNTGIGLAMVCAAKGYKCIIIMPQLPPFQER 4-T.suecica 99 A-A.thaliana 106 RIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFENPANPK 155 100 YTICRQFGAEVHLTAPAKGFPGLRAYTESLMAANPDYFLANQFYNQANPD 4-T.suecica 149 156 IHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEONANVKLYGV A-A.thaliana 205 150 IHYATTGPEIWEQTGGKMDYFIAGVGTGGTVAGAGRFLTEKNPDIKVMAV 4-T.suecica 199 A-A.thaliana 206 EPVESAILSGGKPGPHKIQGIGAG----FIPSVL-NVDLID-----EV 243 200 EPTESRVHVGAQHAPHTILGIGPGVATHFLESLAPGAPLVEGPRGHVSEF 4-T.suecica 249 A-A.thaliana 244 VQVSSDESIDMARQLALKEGLLVGISSGAAAAAAIKLAQRPENAGKLFVA 293 250 LHINSSQAIEWAQRMAQMEGMMVGPSSGAVISAAMAVAARPESAGKTFVV 4-T.suecica 299 A-A.thaliana 294 IFPSFGERYLSTVLFDATRKEA 315 300 MCASHGIRYTAHPLWAELKDEA 4-T.suecica 321 81 OLIGKTPMVYLNNV----VKGCVASVAAKLEIME PCCSVKDRIGYSMITD 126 B-A.thaliana 1 ETIGNTPLVRLERALPEEVRANGATILCKMEMQNPGGSIKDRIAKSMIET 4-T.suecica 50 B-A.thaliana 127 AEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMSL-ER 175 51 AEAEGKLKPGGTV-VEYTSGNTGIGLAMVCAAKGYKCIIIMPQLPPFQER 4-T.suecica 99 176 RVLLRAFGAELVLTEPAKGMTGAIQKAEEILKKTPNSYMLQQFDNPANPK B-A.thaliana 225 100 YTICRQFGAEVHLTAPAKGFPGLRAYTESLMAANPDYFLANQFYNQANPD 4-T.suecica 149 B-A.thaliana 226 IHYETTGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKPELKVIGV 275 150 IHYATTGPEIWEOTGGKMDYFIAGVGTGGTVAGAGRFLTEKNPDIKVMAV 4-T. suecica 199 B-A.thaliana 276 EPTESAILSGGKPGPHKIQGIGAGFVPKNLDLAI-----VDEY 313 200 EPTESRVHVGAQHAPHTILGIGPGVATHFLESLAPGAPLVEGPRGHVSEF 4-T.suecica 249 314 IAISSEEAIETSKQLALQEGLLVGISSGAAAAAAIQVAKRPENAGKLIAV B-A.thaliana 363 250 LHTNSSQAIEWAQRMAQMEGMMVGPSSGAVISAAMAVAARPESAGKTFVV 4-T.suecica 299 364 VFPSFGERYLSTQLFQSIREECEQMQP B-A.thaliana 390 4-T.suecica 300 MCASHGIRYTAHPLWAELKDEACRALP 326 C-A.thaliana 138 ANIAAKLEIMEPCCSVKDRIGYSMVTDAEQKGFISPGKSVLVEPTSGNTG 187 24 ATILCKMEMQNPGGSIKDRIAKSMIETAEAEGKLKPGGTV-VEYTSGNTG 4-T.suecica 72 188 IGLAFIAASRGYRLILTMPASMSM-ERRVLLKAFGAELVLTDPAKGMTGA C-A.thaliana 236 73 IGLAMVCAAKGYKCIIIMPQLPPFQERYTICRQFGAEVHLTAPAKGFPGL 4-T.suecica 122 237 VOKAEEILKNTPDAYMLOOFDNPANPKIHYETTGPEIWDDTKGKVDIFVA C-A.thaliana 286 123 RAYTESLMAANPDYFLANQFYNQANPDIHYATTGPEIWEQTGGKMDYFIA 4-T.suecica 172 C-A, thaliana 287 GIGTGGTITGVGRFIKEKNPKTQVIGVEPTESDILSGGKPGPHKIQGIGA 336 173 GVGTGGTVAGAGRFLTEKNPDIKVMAVEPTESRVHVGAQHAPHTILGIGP 4-T. suecica 222 C-A.thaliana 337 GFIPKNLDQKI-----MDEVIAISSEEAIETAKQLALKEGLMV 374 223 GVATHFLESLAPGAPLVEGPRGHVSEFLHTNSSQAIEWAQRMAQMEGMMV 4-T.suecica 272 C-A.thaliana 375 GISSGAAAAAAIKVAKRPENAGKLIAVVFPSFGERYLSTPLFQSIREEVE 424 273 GPSSGAVISAAMAVAARPESAGKTFVVMCASHGIRYTAHPLWAELKDEAC 4-T.suecica 322 C-A.thaliana 425 KMQPER 430 323 RALPSQ 4-T.suecica 328 Cl-A.thaliana 57 IGKTPLVFLNKV----TEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAE 102 3 IGNTPLVRLERALPEEVRANGATILCKMEMQNPGGSIKDRIAKSMIETAE 4-T.suecica 52 C1-A.thaliana 103 KKKLIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVT 152 53 AEGKLKPGGT-VVEYTSGNTGIGLAMVCAAKGYKCIIIMPQLPPFQERYT 4-T.suecica 101 153 M-RSFGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFANPANTQIH Cl-A.thaliana 201 102 ICRQFGAEVHLTAPAKGFPGLRAYTESLMAANPDYFLANQFYNQANPDIH 4-T.suecica 151 C1-A.thaliana 202 FDTTGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEP 251 152 YATTGPEIWEQTGGKMDYFIAGVGTGGTVAGAGRFLTEKNPDIKVMAVEP 201 4-T.suecica 252 AESNILNGGKPGPHAITGNGVGFKPEILDMDV-----MESVLE Cl-A.thaliana 289 202 TESRVHVGAQHAPHTILGIGPGVATHFLESLAPGAPLVEGPRGHVSEFLH 251 4-T.suecica C1-A.thaliana 290 VSSEDAIKMARELALKEGLMVGISSGANTVAAIRLAKMPENKGKLIVTIH 339 252 TNSSQAIEWAQRMAQMEGMMVGPSSGAVISAAMAVAARPESAGKTFVVMC 4-T.suecica 301 C1-A.thaliana 340 ASFGERYLSSVLFDELRKEA 359 302 ASHGIRYTAHPLWAELKDEA 4-T.suecica 321

Fig. 7-41. Alignment of 4-T. suecica OAS-TL amino acid with A. thaliana isoforms.

7.3.6. Alignment of the OAS-TL sequence of red and red-lineage algae with *A. thaliana* OAS-TL isoforms

6

A-A.thaliana	5 IAKDVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFS	52
1-C.merolae	67 LARDVSDLVGNTPIVELKKIPEEEGVQAHILCKLESMEPCSSVKDRIGKY	116
A-A.thaliana	53 MISDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMS 	102
A-A.thaliana	103 TERRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLOOFENPA	152
1-C.merolae		216
A-A.thaliana	153 NPKIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANVKL	202
1-C.merolae	217 NPKAHYETTGPEIWAATGGKVDAFVAGVGTGGTVTGAGRYLREQNPHVYI	266
A-A.thaliana	203 YGVEPVESAILSGGKPGPHKIQGIGAGFIPSVLNVDLIDEVVQVSSDESI	252
1-C.merolae	267 MAVEPAESPVLSGGRPGPHKIQGIGAGFVPGILDTKIYNEVKQVTSMDSI	316
A-A.thaliana	253 DMARQLALKEGLLVGISSGAAAAAAIKLAQRPENAGKLFVAIFPSFGERY	302
1-C.merolae	317 EMARRLAVEEGLLCGISSGAAVVAALELGRRPEMKGKNIVVIIPSFGERY	366
A-A.thaliana	303 LSTVLFDATRKEAEAM 318	
1-C.merolae	367 LTSALFDKQREEAYNM 382	
B-A.thaliana	75 IADNAAQLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYS	122
1-C.merolae	67 LARDVSDLVGNTPIVELKKIPEEEGVQAHILCKLESMEPCSSVKDRIGKY	116
B-A.thaliana	123 MITDAEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMS	172
1-C.merolae	117 MIVEAEKRGDIQPGKTVLIEPTSGNTGIALAYLAAARGYRLILTMPDSMS	166
B-A.thaliana	173 LERRVLLRAFGAELVLTEPAKGMTGAIQKAEEILKKTFNSYMLQQFDNPA	222
B-1.thaliana	223 NEKINVERAGREVVETARAGANGAVARAEQETTITANANGQUTATE	272
1-C.merolae	217 NPKAHYETTOPE IWAATGGKVDAFVAGVGTGGTVTGAGRYLREONPHVYI	266
B-A.thaliana	273 IGVEPTESAILSGGKPGPHKIQGIGAGFVPKNLDLAIVDEVIAISSEEAI	322
1-C.merolae	267 MAVEPAESPVLSGGRPGPHKIQGIGAGFVPGILDTKIYNEVKQVTSMDSI	316
B-A.thaliana	323 ETSKQLALQEGLLVGISSGAAAAAAIQVAKRPENAGKLIAVVFPSFGERY	372
1-C.merolae	317 EMARRLAVEEGLLCGISSGAAVVAALELGRRPEMKGKNIVVIIPSFGERY	366
B-A.thaliana	373 LSTQLFQSIREECEQM 388	
1-C.merolae	367 LTSALFDKQREEAYNM 382	
C-A.thaliana	106 TGPDGLNIADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSV	153
1-C.merolae	60 TAPPSVALARDVSDLVGNTPIVELKKIPEEEGVQAHILCKLESMEPCSSV	109
C-A.thaliana	154 KDRIGYSMVTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLIL	203
1-C.merolae	110 KDRIGKYMIVEAEKRGDIQPGKTVLIEPTSGNTGIALAYLAAARGYRLIL	159
C-A.thaliana	204 TMPASMSMERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPDAYML	253
C-1.thaliana		303
1-C.merolae	210 OOFNNPDNPKAHVETTGPEIWAATGGKVDAFVAGVGTGGTVTGAGRYLRE	259
C-A.thaliana	304 KNPKTQVIGVEPTESDILSGGKPGPHKIQGIGAGFIPKNLDQKIMDEVIA	353
1-C.merolae	260 QNPHVYIMAVEPAESPVLSGGRPGPHKIQGIGAGFVPGILDTKIYNEVKQ	309
C-A.thaliana	354 ISSEEAIETAKQLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVF	403
1-C.merolae	310 VTSMDSIEMARRLAVEEGLLCGISSGAAVVAALELGRRPEMKGKNIVVII	359
C-A.thaliana	404 PSFGERYLSTPLFQSIREEVEKM 426	
1-C.merolae	360 PSFGERYLTSALFDKQREEAYNM 382	
Cl-A.thaliana	30 SPSFAQRLRDLPKDFPSTNAKRDASLLIGKTPLVFLNKVTEGCEAYVA	77
1-C.merolae	48 SPRARQRVQLALTAPPSVALARDVSDLVGNTPIVELKKIPEEEGVQAHIL	97
Cl-A.thaliana	78 AKQEHFQPTCSIKDRPAIAMIADAEKKKLIIPGKTTLIEPTSGNMGISLA	127
1-C.merolae	98 CKLESMEPCSSVKDRIGKYMIVEAEKRGDIQPGKTVLIEPTSGNTGIALA	147
Cl-A.thaliana	128 FMAAMKGYRIIMTMPSYTSLERRVTMRSFGAELVLTDPAKGMGGTVKKAY :::::::::::::::::::::::::::::::::::	177
Cl-A.thaliana	178 DLLDSTPDAFMCOOFANPANTOIHEDTTGPEIWEDTIGNUDTEUMGIGGG	227
1-C.merolae	198 QLFHTTPNAYMLQQFNNPDNPKAHYETTGPEIWAATGGKVDAFVAGVGTG	247
Cl-A.thaliana	228 GTVSGVGRYLKSKNPNVKIYGVEPAESNILNGGKPGPHAITGNGVGFKPE	277
1-C.merolae	248 GTVTGAGRYLREQNPHVYIMAVEPAESPVLSGGRPGPHKIQGIGAGFVPG	297
Cl-A.thaliana	278 ILDMDVMESVLEVSSEDAIKMARELALKEGLMVGISSGANTVAAIRLAKM	327
1-C.merolae	298 ILDTKIYNEVKQVTSMDSIEMARRLAVEEGLLCGISSGAAVVAALELGRR	347
Cl-A.thaliana	328 PENKGKLIVTIHASFGERYLSSVLFDELRKEAEEMKPVSVD 368	
1-C.merolae	348 PEMKGKNIVVIIPSFGERYLTSALFDKQREEAYNMVAVEVE 388	

Fig. 7-42. Alignment of 1-C. merolae OAS-TL amino acid with A. thaliana isoforms.

Ω

A-A.thaliana 11 ELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFSMISDAEKK 60 55 DAIGNTPLIKLRRASERTGCNIYGKAEFMEPGGSVKDRAALYLLTDAEKR 2-C.merolae 104 61 GLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMSTERRIILL A-A.thaliana 110 105 GTLKLG-SIVVEGTAGNTGIGLTLLGNSRGYRTVIVIPETOSEEKKEFLR 2-C.merolae 153 A-A.thaliana 111 AFGVELVLTDPAKGMK-GAIAKAEEILAKTPNGYMLQQFENPANPKIHYE 159 154 SCGAELVQVPAAPYRNPNNYVRLSERLAKELGAFWANQFDNPANRRAHEE 2-C.merolae 203 160 TTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANVKLYGVEPVE A-A.thaliana 209 204 TTGPEIWDQLDGHIDAFNCAVGTGGTLAGVSAFLRAKNPGIKIALTDPQG 2-C.merolae 253 A-A.thaliana 210 SAILSGGK-----PGPHKIQGIGAGFIPSVLNVDLIDEVVQVSSDESID 253 254 AALVRYYQCGELVSVGDSITEGIGQSRITGNLEGFVPDMSFEISDAEALQ 2-C.merolae 303 254 MAROLALKEGLLVGISSGAAAAAAIKLAORPENAGKLFVAIFPSFGERY A-A.thaliana 302 304 AAYDVVRHEGLHIGLSSGINIAGAIRVAESL-GPGHTIVTILCDGGSRY 2-C.merolae 351 74 NIADNAAOLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYSM B-A.thaliana 123 48 NVYDSFEDAIGNTPLIKLRRASERTGCNIYGKAEFMEPGGSVKDRAALYL 2-C.merolae 97 B-A.thaliana 124 ITDAEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMSL 173 98 LTDAEKRGTLKLG-SIVVEGTAGNTGIGLTLLGNSRGYRTVIVIPETQSE 2-C.merolae 146 B-A.thaliana 174 ERRVLLRAFGAELVLTEPAKGMT-GAIQKAEEILKKTPNSYMLQQFDNPA 222 147 EKKEFLRSCGAELVQVPAAPYRNPNNYVRLSERLAKELGAFWANQFDNPA 2-C.merolae 196 B-A.thaliana 223 NPKIHYETTGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKPELKV 272 197 NRRAHEETTGPEIWDQLDGHIDAFNCAVGTGGTLAGVSAFLRAKNPGIKI 2-C.merolae 246 B-A.thaliana 273 IGVEPTESAILSGGK-----PGPHKIQGIGAGFVPKNLDLAIVDEYIAI 316 247 ALTDPQGAALVRYYQCGELVSVGDSITEGIGQSRITGNLEGFVPDMSFEI 2-C.merolae 296 317 SSEEAIETSKOLALOEGLLVGISSGAAAAAAIOVAKRPENAGKLIAVVFP B-A.thaliana 366 297 SDAEALQAAYDVVRHEGLHIGLSSGINIAGAIRVAESL-GPGHTIVTILC 2-C.merolae 345 B-A.thaliana 367 SFGERYLSTQLFQSIREE 384 2-C.merolae 346 DGGSRYQKKMFQPSFLEQ 363 C-A.thaliana 112 NIADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYSM 161 48 NVYDSFEDAIGNTPLIKLRRASERTGCNIYGKAEFMEPGGSVKDRAALYL 2-C.merolae 97 C-A.thaliana 162 VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 211 2-C.merolae 146 C-A.thaliana 212 ERRVLLKAFGAELVLTD--PAKGMTGAVQKAEEILKNTPDAYMLQQFDNP 259 |::..|::.|||| ... |.:...|:.:|...|...||||| 147 EKKEFLRSCGAELVQVPAAPYRNPNNYVRLSERLAKEL-GAFWANQFDNP 195 2-C.merolae C-A.thaliana 260 ANPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQ 309 196 ANRRAHEETTGPEIWDQLDGHIDAFNCAVGTGGTLAGVSAFLRAKNPGIK 2-C.merolae 245 C-A.thaliana 310 VIGVEPTESDILSGGK-----PGPHKIQGIGAGFIPKNLDQKIMDEVIA 353 246 IALTDPQGAALVRYYQCGELVSVGDSITEGIGQSRITGNLEGFVPDMSFE 2-C.merolae 295 354 ISSEEAIETAKQLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVF C-A.thaliana 403 296 ISDAEALQAAYDVVRHEGLHIGLSSGINIAGAIRVAESL-GPGHTIVTIL 2-C.merolae 344 404 PSFGERY C-A.thaliana 410 345 CDGGSRY 2-C.merolae 351 57 IGKTPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEKKKL 106 C1-A.thaliana 57 IGNTPLIKLRRASERTGCNIYGKAEFMEPGGSVKDRAALYLLTDAEKRGT 2-C.merolae 106 C1-A.thaliana 107 IIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRSF 156 107 LKLG-SIVVEGTAGNTGIGLTLLGNSRGYRTVIVIPETQSEEKKEFLRSC 2-C.merolae 155 157 GAELVLTDPAKGMG-GTVKKAYDLLDSTPDAFMCQQFANPANTQIHFDTT Cl-A.thaliana 205 156 GAELVQVPAAPYRNPNNYVRLSERLAKELGAFWANQFDNPANRRAHEETT 2-C.merolae 205 Cl-A.thaliana 206 GPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAESN 255 206 GPEIWDQLDGHIDAFNCAVGTGGTLAGVSAFLRAKNPGIKIALTDPQGAA 2-C.merolae 255 Cl-A.thaliana 256 ILNGGKPGPHAITGN----GVGFKPEILDMD--VMESVLEVSSEDAIKMA 299 256 LVRYYQCGELVSVGDSITEGIGQSRITGNLEGFVPDMSFEISDAEALQAA 2-C.merolae 305 C1-A.thaliana 300 RELALKEGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERY 346 306 YDVVRHEGLHIGLSSGINIAGAIRVAESL-GPGHTIVTILCDGGSRY 2-C.merolae 351

Fig. 7-43. Alignment of 2-C. merolae OAS-TL amino acid with A. thaliana isoforms.

8 DVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFSMISDA A-A.thaliana 57 14 NISEAVGNTPLVKISDRLCPAGRTIYAKCEFFNPLSSVKDRLALSIIETA 1-T.pseudonan 63 A-A.thaliana 58 EKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMSTERRI 107 64 EKDGSLKPGQTV-VEATSGNTGIAVAMMCAQRGYPCVITMAEPFSIERRK 1-T.pseudonan 112 A-A.thaliana 108 ILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFENPANPKIH 157 113 IMRMLGAKVIVTPKAGKGTGMVEKARE-LADKNGWFLCHQFETDANWKFH 1-T.pseudonan 161 158 YETTGPEIWKGTGG-KIDGFVSGIGTGGTITGAGKYLKEQNANVKLYGVE A-A.thaliana 206 162 YETTGPEICNDLKGTKLDYWVTGYGTGGTFHGTAKYLKEQSPDTKIILAE 1-T.pseudonan 211 207 PVESAILSGG------KPG-----PHKIQGIGAGFIPSVLN--VD A-A.thaliana 238 212 PGAANLIGSGIKTERNADGSPAGSHPAFAPHPIQGWTPDFIPLVLEKGLD 1-T.pseudonan 261 239 LIDEVVQVSSDESIDMARQLALKEGLLVGISSGAAAAAAIKLAQRPENAG A-A.thaliana 288 262 IPHEMFDIPDGAAVETSQALARNEGILTGISGGATMYAAIEIAKKAPE-G 1-T.pseudonan 310 A-A.thaliana 289 KLFVAIFPSFGERYLSTVLF 308 311 SVIVTMLPDTGERYLSTPLF 1-T.pseudonan 330 77 DNAAQLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYSMITD 126 B-A.thaliana 1-T.pseudonan 62 B-A.thaliana 127 AEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMSLERR 176 63 AEKDGSLKPGQTV-VEATSGNTGIAVAMMCAQRGYPCVITMAEPFSIERR 1-T.pseudonan 111 177 VLLRAFGAELVLTEPAKGMTGAIQKAEEILKKTPNSYMLQQFDNPANPKI B-A.thaliana 226 112 KIMRMLGAKVIVTPKAGKGTGMVEKARELADKN-GWFLCHQFETDANWKF 1-T.pseudonan 160 B-A.thaliana 227 HYETTGPEIWEDTRG-KIDILVAGIGTGGTITGVGRFIKERKPELKVIGV 275 161 HYETTGPEICNDLKGTKLDYWVTGYGTGGTFHGTAKYLKEQSPDTKIILA 1-T.pseudonan 210 276 EPTESAILSGG------KPG-----PHKIOGIGAGEVPKNLD--L B-A, thaliana 307 211 EPGAANLIGSGIKTERNADGSPAGSHPAFAPHPIQGWTPDFIPLVLEKGL 1-T.pseudonan 260 B-A.thaliana 308 AIVDEYIAISSEEAIETSKOLALQEGLLVGISSGAAAAAAIQVAKRPENA 357 261 DIPHEMFDIPDGAAVETSQALARNEGILTGISGGATMYAAIEIAKKAPE-1-T.pseudonan 309 B-A.thaliana 358 GKLIAVVFPSFGERYLSTQLFQSIREECEQMQPEL 392 310 GSVIVTMLPDTGERYLSTPLFAGIAEAMNEEELEI 1-T.pseudonan 344 115 DNVSOLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYSMVTD 164 C-A.thaliana 13 NNISEAVGNTPLVKISDRLCPAGRTIYAKCEFFNPLSSVKDRLALSIIET 1-T.pseudonan 62 C-A.thaliana 165 AEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSMERR 214 63 AEKDGSLKPGQTV-VEATSGNTGIAVAMMCAQRGYPCVITMAEPFSIERR 111 1-T.pseudonan 215 VLLKAFGAELVLTDPAKGMTGAVOKAEEILKNTPDAYMLOOFDNPANPKI C-A.thaliana 264 1-T.pseudonan 112 KIMRMLGAKVIVTPKAGKGTGMVEKARE-LADKNGWFLCHQFETDANWKF 160 C-A.thaliana 265 HYETTGPEIWDDTKG-KVDIFVAGIGTGGTITGVGRFIKEKNPKTQVIGV 313 161 HYETTGPEICNDLKGTKLDYWVTGYGTGGTFHGTAKYLKEQSPDTKIILA 1-T.pseudonan 210 314 EPTESDILSGG------KPG-----PHKIOGIGAGFIPKNLDO--C-A.thaliana 345 211 EPGAANLIGSGIKTERNADGSPAGSHPAFAPHPIQGWTPDFIPLVLEKGL 1-T.pseudonan 260 346 KIMDEVIAISSEEAIETAKQLALKEGLMVGISSGAAAAAAIKVAKRPENA C-A.thaliana 395 261 DIPHEMFDIPDGAAVETSQALARNEGILTGISGGATMYAAIEIAKKAPE-1-T.pseudonan 309 C-A.thaliana 396 GKLIAVVFPSFGERYLSTPLFQSIREEVEKMQPE 429 1.:|..:.|..|||||||||||...|.|.:.:. 310 GSVIVTMLPDTGERYLSTPLFAGIAEAMNEEELE 1-T.pseudonan 343 57 IGKTPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEKKKL C1-A.thaliana 106 19 VGNTPLVKISDRLCPAGRTIYAKCEFFNPLSSVKDRLALSIIETAEKDGS 1-T.pseudonan 68 107 IIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRSF C1-A.thaliana 156 69 LKPGQT-VVEATSGNTGIAVAMMCAQRGYPCVITMAEPFSIERRKIMRML 117 1-T.pseudonan 157 GAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFANPANTQIHFDTTG C1-A.thaliana 206 118 GAKVIVTPKAGKGTGMVEKARELADKN-GWFLCHQFETDANWKFHYETTG 1-T.pseudonan 166 Cl-A.thaliana 207 PEIWEDTLGN-VDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAESN 255 167 PEICNDLKGTKLDYWVTGYGTGGTFHGTAKYLKEQSPDTKIILAEPGAAN 1-T.pseudonan 216 C1-A.thaliana 256 ILNGG------KPG-----PHAITGNGVGFKPEILD--MDVMESV 287 217 LIGSGIKTERNADGSPAGSHPAFAPHPIQGWTPDFIPLVLEKGLDIPHEM 1-T.pseudonan 266 288 LEVSSEDAIKMARELALKEGLMVGISSGANTVAAIRLAKMPENKGKLIVT Cl-A.thaliana 337 267 FDIPDGAAVETSQALARNEGILTGISGGATMYAAIEIAKKAP-EGSVIVT 1-T.pseudonan 315 C1-A.thaliana 338 IHASFGERYLSSVLFDELRKEAEE 361 316 MLPDTGERYLSTPLFAGIAEAMNE 1-T.pseudonan

Fig. 7-44. Alignment of 1-T. pseudonana OAS-TL amino acid with A. thaliana isoforms.

A-A thaliana	4	PTAKDUTEL LONT DLUVI NNUA - ECOUCOUAAKI EMMERCESUKDELGES	52
2-T.pseudonan	46	KIAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALS	95
A-A.thaliana	53	MISDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMS	102
2-T.pseudonan	96	MIQEAEARGDISPGKSTLVEPTSGNTGIGLAMVAASKGYKLILTMPESMS	145
A-A.thaliana	103	TERRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKT-PNGYMLQQFENP	151
2-T.pseudonan	146	MERRVLLKAFGADVKLTPAAKGMGGAIAKAEEIVDSLGPDGYLLQQFNNP	195
A-A.thaliana	152	ANPKIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANVK	201
2-T.pseudonan	196	DNPKVHRETTGPEIWEDTDGKIDILLGGVGTGGTLTGCGQYLKPRNPDMK	245
A-A.thaliana	202	LYGVEPVESAILSGGKPGPHKIQGIGAGFIPSVLNVDLIDEVVQVSSDES	251
2-T.pseudonan	246	IVAVEPAESAVLSGGKPGPHKIQGIGAGFIPGNADTSLIDEVVQISGEDA	295
A-A.thaliana	252	IDMARQLALKEGLLVGISSGAAAAAAIKLAQRPENAGKLFVAIFPSFGER	301
2-T.pseudonan	296	MAMARKLATDEGIFCGISSGAAILAAKEVGSRPENADKRIVVILPSFGER	345
A-A. Unallana	502	. . :	
2-T.pseudonan	346	6 YLSTALFQNLWDEASALKAE 365	
B-A.thaliana	75	IADNAAQLIGKTPMVYLNNVV-KGCVASVAAKLEIMEPCCSVKDRIGYSM	123
2-T.pseudonan	47	IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM	96
B-A.thaliana	124	ITDAEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMSL	173
2-T.pseudonan	97	IQEAEARGDISPGKSTLVEPTSGNTGIGLAMVAASKGYKLILTMPESMSM	146
B-A.thaliana	174	ERRVLLRAFGAELVLTEPAKGMTGAIQKAEEILKKT-PNSYMLQQFDNPA	222
2-T.pseudonan	147	ERRVLLKAFGADVKLTPAAKGMGGAIAKAEEIVDSLGPDGYLLQQFNNPD	196
B-A.thaliana	223	NPKIHYETTGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKPELKV	272
2-T.pseudonan	197	NPKVHRETTGPEIWEDTDGKIDILLGGVGTGGTLTGCGQYLKPRNPDMKI	246
B-A.thallana	273	IGVEPTESAILSGGKPGPHKIQGIGAGFVPKNLDLAIVDEYIAISSEEAI	322
R-A thaliana	323	TAVEFALSAVISGERFGFRATGETEGRADISLIDEVVQISGEDAM	372
2-T.pseudopan	297	AMARKLATDEGIECGISSGAALLAAMEVGSRPENADKRIVVILPSEGERV	346
B-A.thaliana	373	LSTOLFOSIREECEOMOPE 391	
2-T.pseudonan	247	111.111.111.111.111.1	
	241	LSTALFUNLWDEASALKAE 305	
C-A.thaliana	113	ISTALFONLWDEASALKAE 365	161
C-A.thaliana 2-T.pseudonan	113	ISTALFUNDUEASALKAE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	161 96
C-A.thaliana 2-T.pseudonan C-A.thaliana	113 47 162	ISIAHUNUBURASALKAL 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM	161 96 211
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan	113 47 162 97	ISTALFUNLWEASALKAE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM ILSINULELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 1.1 IQEAEARGDISPGKSTLVEPTSGNTGIGLAMVAASKGYKLILTMPESMSM	161 96 211 146
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana	113 47 162 97 212	ISTALFONDUDEASLKAL 365 3 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM 1 I.S. 1 IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM 2 VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 1.I.S. 2 IQEAEARGDISPGKSVLVEPTSGNTGIGLAMVAASKGYKLILTMPESMSM 2 ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYNLQQFDNPA	161 96 211 146 260
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan	113 47 162 97 212 147	ISTALFONDUDEASALKAE 365 3 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM 1 IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM 2 VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 3 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 2 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 3 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 3 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 3 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 3 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 3 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 3 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYRLITMPASMSM 4 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASKGYRLITMPASMSM 5 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASKGYRLITMPASMSM	161 96 211 146 260 196
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana	113 47 162 97 212 147 261	ISIAHONUBURASALKAE 365 3 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM 1 IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM 2 VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 1 IQEAEARGDISPGKSVLVEPTSGNTGIGLAMVAASKGYKLILTMPESMSM 2 ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA 3 IERVLLKAFGADVKLTPAAKGMGGAIAKAEEIVDSLGPDGYLLQQFNNPD NPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQV	161 96 211 146 260 196 310
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan	113 47 162 97 212 147 261 197	ISTALFONDEDEASALKAE 365 3 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM 1 IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM 2 VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM 1 IQEAEARGDISPGKSTLVEPTSGNTGIGLAMVAASKGYKLILTMPESMSM 2 ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA 1 ISTALFONDTKGKVDIFVAGIGTGGTITGVGRFIKENPKTQV 1 NPKIHYETTGPEIMEDTKGKVDIFVAGIGTGGTITGVGRFIKENPKTQV 1 NPKVHRETTGPEIMEDTGKIDILLGGVGTGGTLTGCGQYLKPRNPDMKI	161 96 211 146 260 196 310 246
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana	113 47 162 97 212 147 261 197 311	ISTALFONDUDEASALKAE 365 3 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM 1 IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM 2 VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 1 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 2 ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA 3 ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA 4 ERRVLLKAFGADVKLTPAAKGMGGAIAKAEEIVDSLGPDGYLLQQFNNPD NPKHHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQV 1 I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.	161 96 211 146 260 196 310 246 360
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan	113 47 162 97 212 147 261 197 311 247	ISTALFONDUDEASALKAE 365 3 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM 1 IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM 2 VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 1 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 2 IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 2 ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILMT-PDAYMLQQFDNPA 2 ERRVLLKAFGAEUVLTPAAKGMGGAIAKAEEIVDSLGPDGYLLQQFDNPA 1 NPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQV 1 GVEPTESDILSGGKPGPHKIQGIGAGFIPKNLDQKIMDEVIAISSEEAI 2 VAVEPAESAVLSGGKPGPHKIQGIGAGFIPGNADTSLIDEVVQISGEDAV	161 96 211 146 260 196 310 246 360 296
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana	113 47 162 97 212 147 261 197 311 247 361	ISTALFONDEDEASLIKAE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.	161 96 211 146 260 196 310 246 360 296 410
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana	113 47 162 97 212 147 261 197 311 247 361 297 411	ISTALFONDERBALKAE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM VEDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARGDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARGDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARGDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPESMSM PREVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA INFKUHKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA NPKUHKAFGAELVLTDPAKGMTGAVQKAEEIVDSLGPDGYLLQQFNNPD NPKUHKETTGPEIWEDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQV INFKUHRETTGPEIWEDTDGKIDILLGGVAGGTLTGCGQYLKPRNPDMKI IGVEPTESDILSGGKPGPHKIQGIGAGFIPKNLQKIMDEVIAISSEEAI VAVEPAESAVLSGGKPGPHKIQGIGAGFIPGNADTSLIDEVVQISGEDAM ETAKQLALKEGLMVGISSGAAAAAAKVAKRPENAGKLIAVVFPSFGERY	161 96 211 146 260 196 310 246 360 296 410 346
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan	113 47 162 97 212 147 261 197 311 247 361 297 411 343	ISTALFONDEDEASLIKAE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM VEDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARGDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARGDISPGKSTLVEPTSGNTGIGLAMVAASKGYKLILTMPASMSM IQEAEARGDISPGKSTLVEPTSGNTGIGLAMVAASKGYKLILTMPASMSM PRENVLIKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQOFDNPA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	161 96 211 146 260 196 310 246 360 296 410 346
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana	113 47 162 97 212 147 261 197 311 247 361 297 411 341 56	ISTALFONDEDEASLIKAE 365 3 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM 1 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM 1 IADNVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM 2 VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 1 IQEAEARGDISPGKSTLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 2 ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA 3 ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA 4 ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA 5 ERRVLLKAFGAEVKLTPAKGMGAIAKAEEIVDSLGPDGYLLQQFNNPD NPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQV 1 GVEPTESDILSGGKPGPHKIQGIGAGFIPKNLDQKIMDEVIAISSEEAI 1 IGVEPTESDILSGGKPGPHKIQGIGAGFIPGNADTSLIDEVVQISGEDAM ETAKQLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVFPSFGERY 1 AMARKLATDEGIFCGISSGAAILAAKEVGSRPENADKRIVVILPSFGERY 1 LSTPLFQSIREEVEKMQPE 429 1 LSTPLFQNIMDEASALKAE 365 LISTPLFVFINKVT-EGCEAVVAAKQEHFQPTCSIKDRPAIAMIADAEKK	161 96 211 146 260 196 310 246 360 296 410 346
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C1-A.thaliana	113 47 162 97 212 261 147 261 197 311 247 361 297 411 343 56 54	ISTALFONDUDEASALKAE 365 3 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM 1 IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM 2 VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 1 IQEAEARDDISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 2 UTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM 2 ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA 2 ERRVLLKAFGADVKLTPAAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA 3 HENVLKAFGADVKLTPAAKGMGGAIAKAEEIVDSLGPDGYLLQQFNNPD NPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQV 1 JUSEASALKSGKPGPHKIQGIGAGFIPKNLDQKIMDEVIAISSEEAI 2 VAVEPESAVLSGGKPGPHKIQGIGAGFIPGNADTSLDEVVQISGEDAM ETAKQLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVFPSFGERY 1 LSTPLFQSIREEVEKMQPE 429 1 LSTALFQNLMDEASALKAE 365 LIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSMIQEAEAR	161 96 211 146 260 196 310 246 360 296 410 346
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan Cl-A.thaliana	113 47 162 97 2122 147 261 197 311 247 361 297 411 341 265 54	<pre>ISTALFONDEDEASALKAE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.</pre>	161 96 211 146 260 196 310 246 360 296 410 346
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana	113 47 162 97 2122 147 261 197 311 247 361 297 411 341 56 54 105	ISTALFONDERBALKAE 365 3 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	161 96 211 146 260 196 310 246 360 296 410 346 104 103 154
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana	113 47 162 97 212 147 261 197 311 247 361 297 411 347 56 54 105 104 155	ISTALFONDEDEASALKAE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGIASM VDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARGDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARGDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARGDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM PREVVLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQOFDNPA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	161 96 211 146 260 196 310 246 360 296 410 346 104 103 154 153 203
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana	113 47 162 97 212 147 261 197 311 247 361 297 411 34 ² 56 54 105 104 155 154	ISTALFONDERSAIKAE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM VDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARGDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA INPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQV NPKVHRETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQV NPKVHRETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKENPKTQV NPKVHRETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKENPKTQV VAVEPAESAVLSGGKPGPHKIQGIGAGFIPKNLDQKIMDEVIAISSEEAI I	161 96 211 146 260 196 310 246 360 296 410 346 104 103 154 153 203 203
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana	113 47 162 97 212 147 261 197 311 247 361 297 411 345 54 105 104 155 154 204	<pre>ISTALFONDEDEASALKAE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.</pre>	161 96 211 146 260 196 310 246 360 296 410 346 103 154 103 154 153 203 253
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana	113 47 162 97 2122 147 261 197 311 247 361 297 411 347 56 54 105 104 105 154 204 204 204 254	<pre>ISTALFQNLBUEASALKAE 365 ISTALFQNLBUEASALKAE 365 IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM IQEAEARGDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTNPESMSM EERVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA ISTALFQALKAFGADVKLTPAAKGMGGAIAKAEEIVDSLGPDGYLLQQFNNPD NPKIHYETTGPEIWEDTDCKIDILLGGVGTGGTITGVGRFIKEKNPKTQV ISTALFQALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVFPSFGERY ISTALFQNLWGESGAAAAAAIKVAKRPENAGKLIAVVFPSFGERY ISTALFQNLWGESGAAAAAAIKVAKRPENAGKLIAVVFPSFGERY ISTALFQNLWGESGAAAAAAIKVAKRPENAGKLIAVVFPSFGERY ISTALFQNLWGESGAAAAAAIKVAKRPENAGKLIAVVFPSFGERY ISTALFQNLWGESGAAAAAAIKVAKRPENAGKLIAVVFPSFGERY ISTALFQNLWGESGAAAAAAIKVAKRPENAGKLIAVVFPSFGERY ISTALFQNLWGESGVEVYAKLESSNPANSVKDRIALSMIQEAEAR KLIIFGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMR SFGAELVLTDPAKGMGGAIAKAEEIVDSLGPDGYLLQQFNNPDNFKVHRE TTGPEIWEDTLGNVDIFVMGIGSGGTVSGVGGVLKKSNPANKVIYGVEPAE SNILNGGKPGPHAITGNGVGFKPEILDMDVMESVLEVSSEDAIKMARELA</pre>	161 96 211 146 260 196 310 246 360 296 410 346 104 103 154 153 203 253 253 303
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana	113 47 162 97 212 147 261 197 311 247 361 297 411 341 56 54 105 104 105 104 105 104 204 204 204 254	ISTALFONDERBALKAE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM VEDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM VEDAEQKGFISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARDDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARDDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPESMSM PERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQOFDNPA IQEAEARDDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPESMSM PERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQOFDNPA INPKIHYETTGPEIMEDTDKKVDIFVAGIGTGGTITGVGRFIKEKNPKTQV NPKNHRETTGPEIMEDTDKKVDIFVAGIGTGAGTITGVGRFIKEKNPKTQV NPKVHRETTGPEIMEDTDKKVDIFVAGIGTGAGTIFKNLDQKIMDEVIAISSEEAI VAVEPAESAVLSGGKPGPHKIQGIGAGFIFMNLDQKIMDEVIAISSEEAI VAVEPAESAVLSGGKPGPHKIQGIGAAAAAAIKVAKRPENADKRIVVILPSFGERY AMARKLATDEGIFCGISSGAAAIAAAIKVAKRPENADKRIVVILPSFGERY LSTPLFQSIREEVEKMQPE 429 SILSTPLINDUMESALKAE 365 LIGKTPLVKINKVT-EGCEAYVAAKQESNPANSVDRIALAMIADAEKK LIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVDRIALAMIADAEKK LIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVDRIALAMIADAEKK LIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVDRIALAMIADAEKK	161 96 211 146 260 196 310 246 360 296 410 346 104 103 154 153 203 253 253 253 303
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana	113 47 162 97 212 147 261 197 311 247 361 297 411 347 56 54 105 104 155 154 204 204 254 254 304	ISTALFONDERSTIKE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM I.S. I.S. I.S. I.S. I.S. I.S. I.S. I.S.	161 96 211 146 260 196 310 246 360 296 410 346 104 103 154 103 154 153 203 253 253 303 353
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana	113 47 113 47 162 97 212 147 261 197 311 247 361 297 411 347 56 54 105 104 105 104 155 154 204 204 254 304 304	ISTALFONDERSTIKE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM VDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYKLIITMPASMSM IQEAEARGDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLIITMPASMSM ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA ERRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA NPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKENPKTQV NPKVHRETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKENPKTQV NPKVHRETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKENPKTQV VAVEPAESAVLSGGKPGPHKIQGIGAGFIPKNLDQKIMDEVIAISSEEAI IGVEPTESDILSGGKPGPHKIQGIGAGFIPKNLDQKIMDEVIAISSEEAI ISTALFQLALKEGIMVGISSGAAAAAAKVAKRPENAGKLIAVVFPSFGERY ISTALFQNIMDEASALKAE SET LISHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSMIQEAEAR KLIIPGKTTLIPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMR 	161 96 211 146 260 196 310 246 360 296 410 346 103 154 103 154 153 203 253 253 253 303 353
C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan C-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana 2-T.pseudonan Cl-A.thaliana	113 47 162 97 212 147 261 197 311 247 361 297 411 247 361 297 411 347 56 54 105 104 105 104 155 154 204 254 204 254 304 304	ISTALFONDUCEASALKAE 365 IADNVSQLIGKTPMVYLNSIA-KGCVANIAAKLEIMEPCCSVKDRIGYSM IAENVLELIGHTPLVKITKVTGPSCVAEVVAKLESSNPANSVKDRIALSM VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQEAEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQENEARGDISPGKSVLVEPTSGNTGIGLAFIAASRGYKLILTMPASMSM IQENEARGDISPGKSTLVEPTSGNTGIGLAFIAASRGYKLILTMPESMSM IRERVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPA NPKIHYETTGPEIWEDTDCKIDILLGGVGTGGTITGVGRFIKEKNPKTQV NPKUHRETTGPEIWEDTDCKIDILLGGVGTGGTITGVGRFIKEKNPKTQV VAVEPAESAVLSGGKPGPHKIQGIGAGFIPGNADTSLIDEVVQISGEDAM ETAKQLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVPPSFGERY MARKLATDEGIFGISSGAAIAAAAIKVAKRPENAGKLIAVVPPSFGERY MAKKLATDEGIFGISSGAAIAAAAIKVAKRPENAGKLIAVVPPSFGERY AMARKLATDEGIFGISSGAAIAAAAIKVAKRPENAGKLIAVVIPSFGERY LISTALFQNLMDEASALKAE 365 JUGKTPLVFINKVT-EGCEAVVAKQESNPANSVKDRIALSMIQEAEAR KLIIPGKTTLIEPTSGNMGIGILAFMAAKGYKIIMTMPSYTSLERRVTMR GDISPGKSTLVEPTSGNTGIGLAMVAASKGYKLILTMPESMSMERAVLLK SFGAELVLTDPAKGMGGAIAKAEEIVDSLGPDGYLLQQFNNPDNPKNRE TTGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAE TIGIPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAE SFGAELVLTDPAKGMGGAIAKAEEIVDSLGPDGYLLQQFNNPDNPKVHRE S	161 96 211 146 260 196 310 246 360 296 410 346 104 103 154 153 203 253 203 253 303 303 353

Fig. 7-45. Alignment of 2-*T. pseudonana* OAS-TL amino acid with *A. thaliana* isoforms.

1-P.tricornut A-A.thaliana 1-P.tricornut A-A.thaliana 1-P.tricornut A-A.thaliana 1-P.tricornut A-A.thaliana 1-P.tricornut A-A.thaliana 1-P.tricornut A-A.thaliana 1-P.tricornut B-A.thaliana 1-P.tricornut C-A.thaliana 1-P.tricornut C1-A.thaliana 1-P.tricornut Cl-A.thaliana 1-P.tricornut Cl-A.thaliana 1-P.tricornut Cl-A.thaliana 1-P.tricornut Cl-A.thaliana 1-P.tricornut Cl-A.thaliana

47

Fig. 7-46. Alignment of 1-P. tricornutum OAS-TL amino acid with A. thaliana isoforms.

186

```
A-A.thaliana
                  3 SRIAKDVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFS
                                                                          52
                 13 AKIAENVLGLIGQTPLVQLNRVTEGCVAQIVAKLESSNPANSVKDRIALS
2-P.tricornut
                                                                          62
A-A.thaliana
                 53 MISDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMS
                                                                         102
                 63 MITEAEKRGDIKPGKTILVEPTSGNTGIGLAMVAAAKGYKLKLTMPESMS
2-P.tricornut
                                                                         112
                103 TERRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYML-QQFENP
A-A.thaliana
                                                                         151
               113 MERRVLLKAFGADVVLTPAAKGMGGAIAKAEEIVNSLGSDAMLLOOFNNP
2-P.tricornut
                                                                         162
A-A.thaliana
                152 ANPKIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEONANVK
                                                                         201
               163 DNPKVHRETTGPEIWSDTDGEVDIIVGGIGTGGTITGCAOYLKPLNPKLO
2-P.tricornut
                                                                         212
A-A.thaliana
                202 LYGVEPVESAILSGGKPGPHKIOGIGAGFIPSVLNVDLIDEVVOVSSDES
                                                                         251
2-P.tricornut
               213 VVAVEPTESAVLSGGKPGPHKIOGIGAGFIPGNADTSLLDEVVOISGEDS
                                                                         262
                252 IDMAROLALKEGLLVGISSGAAAAAAIKLAORPENAGKLFVAIFPSFGER
A-A.thaliana
                                                                         301
2-P.tricornut
               263 MAMARKMATEEGIFCGISSGAAVLAAIQIGKRPENADKRIVVIIPSFGER
                                                                         312
A-A.thaliana
                302 YLSTVLFDATRKEAEAMTFEA
                                           322
                313 YLSTALFQDLWDEMAALKPES
                                             333
2-P.tricornut
                  75 IADNAAQLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYSMI
 B-A.thaliana
                                                                          124
                 15 IAENVLGLIGQTPLVQLNRVTEGCVAQIVAKLESSNPANSVKDRIALSMI
 2-P.tricornut
                                                                           64
 B-A.thaliana
                 125 TDAEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMSLE
                                                                          174
 2-P.tricornut
                 65 TEAEKRGDIKPGKTILVEPTSGNTGIGLAMVAAAKGYKLKLTMPESMSME
                                                                          114
 B-A.thaliana
                 175 RRVLLRAFGAELVLTEPAKGMTGAIQKAEEILKKTPNSYML-QQFDNPAN
                                                                          223
                115 RRVLLKAFGADVVLTPAAKGMGGAIAKAEEIVNSLGSDAMLLQQFNNPDN
2-P.tricornut
                                                                          164
                 224 PKIHYETTGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKPELKVI
 B-A.thaliana
                                                                          273
                165 PKVHRETTGPEIWSDTDGEVDIIVGGIGTGGTITGCAQYLKPLNPKLQVV
 2-P.tricornut
                                                                          214
                 274 GVEPTESAILSGGKPGPHKIQGIGAGFVPKNLDLAIVDEYIAISSEEAIE
 B-A.thaliana
                                                                          323
                215 AVEPTESAVLSGGKPGPHKIQGIGAGFIPGNADTSLLDEVVQISGEDSMA
 2-P.tricornut
                                                                          264
                 324 TSKQLALQEGLLVGISSGAAAAAAIQVAKRPENAGKLIAVVFPSFGERYL
 B-A.thaliana
                                                                          373
                265 MARKMATEEGIFCGISSGAAVLAAIQIGKRPENADKRIVVIIPSFGERYL
 2-P.tricornut
                                                                          314
 B-A.thaliana
                374 STOLFOSIREECEOMOPE
                                         391
 2-P.tricornut
                315 STALFODLWDEMAALKPE
                                          332
  C-A.thaliana
                113 IADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYSMV
                                                                           162
                 15 IAENVLGLIGQTPLVQLNRVTEGCVAQIVAKLESSNPANSVKDRIALSMI
  2-P.tricornut
                                                                            64
  C-A.thaliana
                163 TDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSME
                                                                           212
  2-P.tricornut
                 65 TEAEKRGDIKPGKTILVEPTSGNTGIGLAMVAAAKGYKLKLTMPESMSME
                                                                           114
  C-A.thaliana
                213 RRVLLKAFGAELVLTDPAKGMTGAVQKAEEILKNT-PDAYMLQQFDNPAN
                                                                           261
  2-P.tricornut 115 RRVLLKAFGADVVLTPAAKGMGGAIAKAEEIVNSLGSDAMLLQQFNNPDN
                                                                           164
                262 PKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQVI
  C-A.thaliana
                                                                           311
  2-P.tricornut 165 PKVHRETTGPEIWSDTDGEVDIIVGGIGTGGTITGCAQYLKPLNPKLQVV
                                                                           214
  C-A.thaliana 312 GVEPTESDILSGGKPGPHKIQGIGAGFIPKNLDQKIMDEVIAISSEEAIE
                                                                           361
  2-P.tricornut 215 AVEPTESAVLSGGKPGPHKIQGIGAGFIPGNADTSLLDEVVQISGEDSMA
                                                                           264
                362 TAKQLALKEGLMVGISSGAAAAAAIKVAKRPENAGKLIAVVFPSFGERYL
                                                                           411
  C-A.thaliana
  2-P.tricornut 265 MARKMATEEGIFCGISSGAAVLAAIOIGKRPENADKRIVVIIPSFGERYL
                                                                           314
                  412 STPLFOSIREEVEKMOPERV
  C-A.thaliana
                                              431
  2-P.tricornut 315 STALFQDLWDEMAALKPESV
                                              334
                   56 LIGKTPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEKKK
   C1-A.thaliana
                                                                            105
                   22 LIGQTPLVQLNRVTEGCVAQIVAKLESSNPANSVKDRIALSMITEAEKF
   2-P.tricornut
                                                                             71
                   106 LIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRS
  Cl-A.thaliana
                                                                            155
                   72 DIKPGKTILVEPTSGNTGIGLAMVAAAKGYKLKLTMPESMSMERRVLLKA
   2-P.tricornut
                                                                            121
                   156 FGAELVLTDPAKGMGGTVKKAYDLLDST-PDAFMCQQFANPANTQIHFDT
  C1-A.thaliana
                                                                            204
                  122 FGADVVLTPAAKGMGGAIAKAEEIVNSLGSDAMLLQQFNNPDNPKVHRET
                                                                            171
  2-P.tricornut
                  205 TGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEPAES
                                                                            254
  Cl-A.thaliana
                  172 TGPEIWSDTDGEVDIIVGGIGTGGTITGCAQYLKPLNPKLQVVAVEPTES
                                                                            221
  2-P.tricornut
                  255 NILNGGKPGPHAITGNGVGFKPEILDMDVMESVLEVSSEDAIKMARELAL
  C1-A.thaliana
                                                                            304
                  222 AVLSGGKPGPHKIQGIGAGFIPGNADTSLLDEVVQISGEDSMAMARKMAT
  2-P.tricornut
                                                                            271
                  305 KEGLMVGISSGANTVAAIRLAKMPENKGKLIVTIHASFGERYLSSVLFDE
  Cl-A.thaliana
                                                                            354
                  272 EEGIFCGISSGAAVLAAIQIGKRPENADKRIVVIIPSFGERYLSTALFQD
  2-P.tricornut
                                                                            321
  C1-A.thaliana 355 LRKEAEEMKPVSV
                                       367
  2-P.tricornut 322 LWDEMAALKPESV
                                       334
```

Fig. 7-47. Alignment of 2-P. tricornutum OAS-TL amino acid with A. thaliana isoforms.

A-A.thaliana 7 KDVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFSMISD 56 29 EDVTEIIGNTPCVKLSEKLCPPGTTVFAKCEFLNPLSSVKDRLALAVIEE E.huxlevi 78 A-A.thaliana 57 AEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMSTERR 106 79 AEASGKLKPGDTV-IEATSGNTGIAVAMVCAQRGYKCVICMAEQFSVERR E.huxleyi 127 107 IILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFENPANPKI A-A.thaliana 156 128 RLMRMLGAKVVLTPKAGKGFGMVKKAEE-LAEKHGWFLCHQFETEANWKF E.huxleyi 176 157 HYETTGPEIWKGTGGK-IDGFVSGIGTGGTITGAGKYLKEQNANVKLYGV A-A.thaliana 205 177 HNVTTGPEILADFEGKRLDYWVTGYGTGGTFHGAGKAIKAARPDVKIVLA E.huxleyi 226 206 EPVESAILSGGKPGPHK-----IQGIGAGFIPSVLN---A-A.thaliana 236 227 EPEDAGLLASGVPTEHKPDGSPSASHPAFSAHPIOGWTPDFIPKVLHDAP E.huxlevi 276 A-A.thaliana 237 VD-LIDEVVQVSSDESIDMARQLALKEGLLVGISSGAAAAAAIKLAQRPE 285 277 MDMLLHELVPVPGAGAIATAQSLAAKEGLLTGISGGGTMWAALETAKKAP E.huxleyi 326 A-A.thaliana 286 NAGKLEVAIEPSEGERYLSTVLE 308 327 E-GSVILAMLPDTGERYLSTPLF 348 E.huxleyi B-A.thaliana 77 DNAAQLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYSMITD 126 29 EDVTEIIGNTPCVKLSEKLCPPGTTVFAKCEFLNPLSSVKDRLALAVIEE E.huxleyi 78 B-A.thaliana 127 AEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMSLERR 176 79 AEASGKLKPGDTV-IEATSGNTGIAVAMVCAQRGYKCVICMAEQFSVERR E.huxleyi 127 177 VLLRAFGAELVLTEPAKGMTGAIQKAEEILKKTPNSYMLQQFDNPANPKI B-A.thaliana 226 128 RLMRMLGAKVVLTPKAGKGFGMVKKAEELAEKH-GWFLCHOFETEANWKF E.huxlevi 176 B-A.thaliana 227 HYETTGPEIWEDTRGK-IDILVAGIGTGGTITGVGRFIKERKPELKVIGV 275 177 HNVTTGPEILADFEGKRLDYWVTGYGTGGTFHGAGKAIKAARPDVKIVLA E.huxlevi 226 B-A.thaliana 276 EPTESAILSGGKPGPHK-----IQGIGAGFVPKNLDLAI 309 227 EPEDAGLLASGVPTEHKPDGSPSASHPAFSAHPIQGWTPDFIPKVLHDAP E.huxleyi 276 310 VD----EYIAISSEEAIETSKQLALQEGLLVGISSGAAAAAAIQVAKRPE B-A.thaliana 355 277 MDMLLHELVPVPGAGAIATAQSLAAKEGLLTGISGGGTMWAALETAKKAP E.huxlevi 326 B-A.thaliana 356 NAGKLIAVVFPSFGERYLSTQLFQSI 381 327 E-GSVILAMLPDTGERYLSTPLFSDI 351 E.huxlevi 115 DNVSOLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYSMVTD C-A.thaliana 164 29 EDVTEIIGNTPCVKLSEKLCPPGTTVFAKCEFLNPLSSVKDRLALAVIEE E.huxlevi 78 165 AEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSMERR C-A, thaliana 214 79 AEASGKLKPGDTV-IEATSGNTGIAVAMVCAQRGYKCVICMAEQFSVERR E.huxlevi 127 C-A.thaliana 215 VLLKAFGAELVLTDPAKGMTGAVQKAEEILKNTPDAYMLQQFDNPANPKI 264 E.huxleyi 128 RLMRMLGAKVVLTPKAGKGFGMVKKAEE-LAEKHGWFLCHQFETEANWKF 176 C-A.thaliana 265 HYETTGPEIWDDTKGK-VDIFVAGIGTGGTITGVGRFIKEKNPKTQVIGV 313 177 HNVTTGPEILADFEGKRLDYWVTGYGTGGTFHGAGKAIKAARPDVKIVLA 226 E.huxlevi 314 EPTESDILSGGKPGPHK-----IQGIGAGFIPKNLDQKI C-A.thaliana 347 227 EPEDAGLLASGVPTEHKPDGSPSASHPAFSAHPIQGWTPDFIPKVLHDAP E.huxleyi 276 348 MD----EVIAISSEEAIETAKQLALKEGLMVGISSGAAAAAAIKVAKRPE C-A.thaliana 393 277 MDMLLHELVPVPGAGAIATAQSLAAKEGLLTGISGGGTMWAALETAKKAP E.huxlevi 326 C-A.thaliana 394 NAGKLIAVVFPSFGERYLSTPLFQSIREEVEK 425 327 E-GSVILAMLPDTGERYLSTPLFSDIPADMSE E.huxleyi 357 Cl-A.thaliana 52 DASLLIGKTPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADA 101 E.huxleyi 79 C1-A.thaliana 102 EKKKLIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRV 151 80 EASGKLKPGDT-VIEATSGNTGIAVAMVCAQRGYKCVICMAEQFSVERRR E.huxleyi 128 152 TMRSFGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFANPANTQIH C1-A.thaliana 201 129 LMRMLGAKVVLTPKAGKGFGMVKKAEELAEKH-GWFLCHQFETEANWKFH E.huxleyi 177 Cl-A.thaliana 202 FDTTGPEIWEDTLGN-VDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVE 250 178 NVTTGPEILADFEGKRLDYWVTGYGTGGTFHGAGKAIKAARPDVKIVLAE 227 E.huxleyi 251 PAESNILNGGKP-----GPHAITGNGVGFKPEILD---M Cl-A.thaliana 281 228 PEDAGLLASGVPTEHKPDGSPSASHPAFSAHPIQGWTPDFIPKVLHDAPM E.huxleyi 277 282 DVM-ESVLEVSSEDAIKMARELALKEGLMVGISSGANTVAAIRLAKMPEN Cl-A.thaliana 330 278 DMLLHELVPVPGAGAIATAQSLAAKEGLLTGISGGGTMWAALETAKKAP-E.huxlevi 326 Cl-A.thaliana 331 KGKLIVTIHASFGERYLSSVLFDELRKEAEE 361 327 EGSVILAMLPDTGERYLSTPLFSDIPADMSE E.huxlevi 357

Fig. 7-48. Alignment of E. huxleyi OAS-TL amino acid with A. thaliana isoforms.

5 IAKDVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFSMI A-A.thaliana 54 1 IYEDITKTIGDTPIVKINKLAP*AGVELYVKIEYFNPLSSVKDRLALAII 1-A.klebsii 50 A-A.thaliana 55 SDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMSTE 104 51 EDAEKSGELKPG*GTVIEATSGNTGIALAMVCAQRGYNFVSTMAASFSVE 1-A.klebsii 100 A-A.thaliana 105 RRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFENPANP 154 101 RRKVMRMLGAKVIVTPAPLGGTGMVKKAEELAEKH*GWYLARQFENPANP 1-A.klebsii 150 A-A.thaliana 155 KIHYETTGPEIWKGTGGK-IDGFVSGIGTGGTITGAGKYLKEQNANVKLY 203 151 EFHYKTTGQEILKDFNGKKLDYWVTGYGTGGTFSGAGKALKEARPDLKIV 1-A.klebsii 200 204 GVEPVESAILSGG------KPGP-----HKIQGIGAGFIPS A-A.thaliana 233 201 LSEPKPAPLLTSGIKOTRKEVMGKFGAPAEGHSAWTAHPIOGWTPNFIPL 1-A.klebsii 250 A-A.thaliana 234 V----LNVDLIDEVVQVSSDESIDMARQLALKEGLLVGISSGAAAAAAIK 279 251 VTEQGVDAKYHEKVMLVEPKVAMETSHKLARQEGIFCGVSGGATVATALD 1-A.klebsii 300 A-A.thaliana 280 LAQRPENAGKLFVAIFPSFGERYLSTVLF 308 301 VCAEAPT*GSVVLAMIPDTAERYLSTPLF 1-A.klebsii 329 75 IADNAAOLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYSMI B-A.thaliana 124 1 IYEDITKTIGDTPIVKINKLAP*AGVELYVKIEYFNPLSSVKDRLALAII 1-A.klebsii 50 B-A.thaliana 125 TDAEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMSLE 174 51 EDAEKSGELKPG*GTVIEATSGNTGIALAMVCAQRGYNFVSTMAASFSVE 1-A.klebsii 100 175 RRVLLRAFGAELVLTEPAKGMTGAIQKAEEILKKTPNSYMLQQFDNPANP B-A.thaliana 224 101 RRKVMRMLGAKVIVTPAPLGGTGMVKKAEELAEKH*GWYLARQFENPANP 150 1-A.klebsii 225 KIHYETTGPEIWEDTRGK-IDILVAGIGTGGTITGVGRFIKERKPELKVI B-A.thaliana 273 151 EFHYKTTGQEILKDFNGKKLDYWVTGYGTGGTFSGAGKALKEARPDLKIV 1-A.klebsii 200 B-A.thaliana 274 GVEPTESAILSGG------KPGP-----HKIOGIGAGFVP-302 201 LSEPKPAPLLTSGIKQTRKEVMGKFGAPAEGHSAWTAHPIQGWTPNFIPL 1-A.klebsii 250 B-A.thaliana 303 ---KNLDLAIVDEYIAISSEEAIETSKQLALQEGLLVGISSGAAAAAAIQ 349 251 VTEQGVDAKYHEKVMLVEPKVAMETSHKLARQEGIFCGVSGGATVATALD 1-A.klebsii 300 B-A.thaliana 350 VAKRPENAGKLIAVVFPSFGERYLSTQLFQSIREECEQ 387 1-A.klebsii 301 VCAEAPT*GSVVLAMIPDTAERYLSTPLFAEIDAEMDO 338 C-A.thaliana 113 IADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYSMV 162 1 IYEDITKTIGDTPIVKINKLAP*AGVELYVKIEYFNPLSSVKDRLALAI 1-A.klebsii 50 163 TDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSME 212 C-A.thaliana 51 EDAEKSGELKPG*GTVIEATSGNTGIALAMVCAQRGYNFVSTMAASFSVE 1-A.klebsii 213 RRVLLKAFGAELVLTDPAKGMTGAVOKAEEILKNTPDAYMLOOFDNPANP C-A.thaliana 262 101 RRKVMRMLGAKVIVTPAPLGGTGMVKKAEELAEKH*GWYLARQFENPANP 1-A.klebsii 150 C-A.thaliana 263 KIHYETTGPEIWDDTKGK-VDIFVAGIGTGGTITGVGRFIKEKNPKTQVI 311 151 EFHYKTTGQEILKDFNGKKLDYWVTGYGTGGTFSGAGKALKEARPDLKIV 1-A.klebsii 200 C-A.thaliana 312 GVEPTESDILSGG------KPGP-----HKIQGIGAGFIP-340 201 LSEPKPAPLLTSGIKQTRKEVMGKFGAPAEGHSAWTAHPIQGWTPNFIPL 1-A.klebsii 250 341 ---KNLDQKIMDEVIAISSEEAIETAKQLALKEGLMVGISSGAAAAAAIK C-A.thaliana 387 251 VTEQGVDAKYHEKVMLVEPKVAMETSHKLARQEGIFCGVSGGATVATALD 1-A.klebsii 300 C-A.thaliana 388 VAKRPENAGKLIAVVFPSFGERYLSTPLFQSIREEVEK 425 301 VCAEAPT*GSVVLAMIPDTAERYLSTPLFAEIDAEMDQ 1-A.klebsii 338 C1-A.thaliana 52 DASLLIGKTPLVFLNKVTEGCEAYVAAKOEHFOPTCSIKDRPAIAMIADA 101 4 DITKTIGDTPIVKINKLAP*AGVELYVKIEYFNPLSSVKDRLALAIIEDA 53 1-A.klebsii 102 EKKKLIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRV Cl-A.thaliana 151 54 EKSGELKPG*GTVIEATSGNTGIALAMVCAQRGYNFVSTMAASFSVERRK 1-A.klebsii 103 Cl-A.thaliana 152 TMRSFGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQOFANPANTOIH 201 104 VMRMLGAKVIVTPAPLGGTGMVKKAEELAEKH*GWYLARQFENPANPEFH 1-A.klebsii 153 Cl-A.thaliana 202 FDTTGPEIWEDTLGN-VDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVE 250 154 YKTTGQEILKDFNGKKLDYWVTGYGTGGTFSGAGKALKEARPDLKIVLSE 1-A.klebsii 203 C1-A.thaliana 251 PAESNILNGG------KPGP-----HAITGNGVGFKPEILD 280 204 PKPAPLLTSGIKQTRKEVMGKFGAPAEGHSAWTAHPIQGWTPNFIPLVTE 1-A.klebsii 253 281 MDV----MESVLEVSSEDAIKMARELALKEGLMVGISSGANTVAAIRLAK Cl-A.thaliana 326 254 QGVDAKYHEKVMLVEPKVAMETSHKLARQEGIFCGVSGGATVATALDVCA 1-A.klebsii 303 C1-A.thaliana 327 MPENKGKLIVTIHASFGERYLSSVLFDELRKEAEE 361 1-A.klebsii 304 EAPT*GSVVLAMIPDTAERYLSTPLFAEIDAEMDQ 338

Fig. 7-49. Alignment of 1-A. klebsii OAS-TL amino acid with A. thaliana isoforms.

A-A.thaliana	12	LIGNTPLVYLNN	IVAEGCVGRVAAKLEMMEPCSSVKDRIGFSMISDAEKKG	61
2-A.klebsii	5	LVGNTPLIELRA	LSAATGGRVVGKAEFLSPGGCQKDRVAVSILAEAEATG	54
A-A.thaliana	62	LIKPGESVLIEP	TSGNTGVGLAFTAAAKGYKLIITMPASMSTERRIILLA	111
2-A.klebsii	55	RLQPG-STIVEG	TSGSTGISLTLAARSRGYKVLIVMPDDQAEEKVQLLRR	103
A-A.thaliana	112	FGVELVLTDPAK	GMKGAIAKAEEILAKTPNGYMLQQFENPANPKIH	157
2-A.klebsii	104	LGAEVELVRPAS	IVSPDHYVNVARRRAHELDATGGLFADQFENLANYKAH	153
A-A.thaliana	158	YETTGPEIWKGT	GGKIDGFVSGIGTGGTITGAGKYLKEQNANVKLYGVEP	207
2-A.klebsii	154	FEGTGPELWEQC	CHRLDAFVMSAGTGGTIVGTGSFLKQQAPEIGVYLADV	203
A-A.thaliana	208	VESAIL 21	13	
2-A.klebsii	204	PGSSLL 20	9	
B-A.thaliana	80	AQLIGKTPMVY	LNNVVKGCVASVAAKLEIMEPCCSVKDRIGYSMITDAEE	129
2-A.klebsii	3	AGLVGNTPLIE	LRALSAATGGRVVGKAEFLSPGGCQKDRVAVSILAEAEA	52
B-A.thaliana	130	KGLITPGKSVL	VESTSGNTGIGLAFIAASKGYKLILTMPASMSLERRVLL	179
2-A.klebsii	53	TGRLQPG-STI	VEGTSGSTGISLTLAARSRGYKVLIVMPDDQAEEKVQLL	101
B-A.thaliana	180	RAFGAELVLTE	PAKGMTGAIQKAEEILKKTPNSYMLQQFDNPANPK	225
2-A.klebsii	102	RRLGAEVELVRI	PASIVSPDHYVNVARRRAHELDATGGLFADQFENLANYK	151
B-A.thaliana	226	IHYETTGPEIW	EDTRGKIDILVAGIGTGGTITGVGRFIKERKPELKVIGV	275
2-A.klebsii	152	AHFEGTGPELW	EQCDHRLDAFVMSAGTGGTIVGTGSFLKQQAPEIGVYLA	201
B-A.thaliana	276	EPTESAIL	283	
2-A.klebsii	202	DVPGSSLL	209	
C-A.thaliana	120	LIGKTPMVYLN	SIAKGCVANIAAKLEIMEPCCSVKDRIGYSMVTDAEQKG	169
2-A.klebsii	5	LVGNTPLIELR	ALSAATGGRVVGKAEFLSPGGCQKDRVAVSILAEAEATG	54
C-A.thaliana	170	FISPGKSVLVE	PTSGNTGIGLAFIAASRGYRLILTMPASMSMERRVLLKA	219
2-A.klebsii	55	RLQPG-STIVE	GTSGSTGISLTLAARSRGYKVLIVMPDDQAEEKVQLLRR	103
C-A.thaliana	220	FGAELVLTDPA	KGMTGAVQKAEEILKNTPDAYMLQQFDNPANPKIH	265
2-A.klebsii	104	LGAEVELVRPA	SIVSPDHYVNVARRRAHELDATGGLFADQFENLANYKAH	153
C-A.thaliana	266	YETTGPEIWDD	TKGKVDIFVAGIGTGGTITGVGRFIKEKNPKTQVIGVEP	315
2-A.klebsii	154	FEGTGPELWEQ	CDHRLDAFVMSAGTGGTIVGTGSFLKQQAPEIGVYLADV	203
C-A.thaliana	316	TESDIL 3	21	
2-A.klebsii	204	PGSSLL 2	09	
Cl-A.thaliana	56	LIGKTPLVFLNK	VTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEKKK	105
2-A.klebsii	5	LVGNTPLIELRA	LSAATGGRVVGKAEFLSPGGCQKDRVAVSILAEAEATG	54
Cl-A.thaliana	106	LIIPGKTTLIEP	TSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRS	155
2-A.klebsii	55	RLQPG-STIVEG	TSGSTGISLTLAARSRGYKVLIVMPDDQAEEKVQLLRR	103
Cl-A.thaliana	156	FGAELVLTDPAK	GMGGTVKKAYDLLDSTPDAFMCQQFANPANTQI	200
2-A.klebsii	104	LGAEVELVRPAS	IVSPDHYVNVARRRAHELDATGGLF-ADQFENLANYKA	152
Cl-A.thaliana	201	HFDTTGPEIWED	TLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVE	250
2-A.klebsii	153	HFEGTGPELWEQ	CDHRLDAFVMSAGTGGTIVGTGSFLKQQAPEIGVYLAD	202
Cl-A.thaliana	251	PAESNIL 2	57	
2-A.klebsii	203	VPGSSLL 2	0.9	

Fig. 7-50. Alignment of 2-A. klebsii OAS-TL amino acid with A. thaliana isoforms.

A-A.thaliana	5	IAKDVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFS	52
3-A.klebsii	10	ICESALDLVGFTPMVRMSRLQKHLDVECELVAKCEFFNAGGSVKDRIGKR	59
A-A.thaliana	53	MISDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMS	102
3-A.klebsii	60	MVEEAEKSGRIKPGD-ILIEPTSGNTGIGLCMTAAIKGYKMIICLPQKMS	108
A-A.thaliana	103	TERRIILLAFGVELVLTDPAKGMKGAIAKAEEILAKTPNGYMLQQFEN	150
3-A.klebsii	109	GEKVNTMKCLGAEILRTPTEAAWDAKDSHIFLSQRLAKDLGGHVLDQYKN	158
A-A.thaliana	151	PANPKIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQNANV	200
3-A.Klebsii	159	PGNPLAHTEGTAEEITEQTEGKLDTMVMSAGTGGTVTGTALKLKEKIPGI	208
A-A.thallana	201	KLIGVEPVESAILSGGRPGF-HK	233
3-A.Klebsii	209	VI NUDI TREVVOUGEREETONADOLAI VEGI TUGI EGGAAAAAAATZ-I AO	200
A-A. thallana	254		202
A-A thaliana	259		300
2. 3. blabaii	200		
B-A.thaliana	75	IADNAAOLIGKTPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYS	122
3-A.klebsii	10	I.::I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I	59
B-A.thaliana	123	MITDAEEKGLITPGKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMS	172
3-A.klebsii	60	I:::I::MVEEAEKSGRIKPG-DILIEPTSGNTGIGLCMTAAIKGYKMIICLPQKMS	108
B-A.thaliana	173	LERRVLLRAFGAELVLTEPAKGMTGAIQKAEEILKKTPNSYMLQQFDN	220
3-A.klebsii	109	GEKVNTMKCLGAEILRTPTEAAWDAKDSHIFLSQRLAKDLGGHVLDQYKN	158
B-A.thaliana	221	PANPKIHYETTGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKPEL	270
3-A.klebsii	159	PGNPLAHYEGTAEEIYEQTEGKLDYMVMSAGTGGTVTGTALKLKEKIPGI	208
B-A.thaliana	271	KVIGVEPTESAILSGGKPGP-HKIQGIGAGFVPK	303
3-A.klebsii	209	KIVAVDPYGSILGK**PDNVNDASPRTGHKRLQAYH***VEGIGYDFVPT	258
B-A.thaliana	304	NLDLAIVDEYIAISSEEAIETSKQLALQEGLLVGISSGAAAAAAIQVAKR	353
3-A.klebsii	259	VLDQDVVDYWVKTDDDESFAMGRNVVRHEGLLIGGSCGATMAGAYKFIKQ	308
B-A.thaliana	354	PE-NAGKLIAVVFPSFGERYLS 374	
3-A.klebsii	309	NNIGAGKRVGVLFADSSRNYMS 330	
C-A.thaliana	113	IADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYS	160
3-A.klebsii	10	ICESALDLVGFTPMVRMSRLQKHLDVECELVAKCEFFNAGGSVKDRIGKR	59
C-A.thaliana	161	MVTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMS	210
3-A.Klebsii	60	MVEEAEKSGRIKPG-DILIEPTSGNTGIGLCMTAAIKGYKMIICLPQKMS	108
C-A.thallana	211	MERRVELKAFGAELVETDPARGMTGAVQKAEEIEKNTPDATMEQQFDN	200
3-A.Klebsii	109	GEKVNTMKCLGAEILKTPTEARWDARDSHIFLSQRLARDLGGHVLDQIKN	158
C-A.thallana	259		208
C-l thaliana	300	OVIGVPDTPS	200
3-2 klebsij	209	VIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIII VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	258
C-A.thaliana	342	NLDOKIMDEVIAISSEEAIETAKOLALKEGLMVGISSGAAAAAAIKVAKR	391
3-A.klebsii	259	VLDQDVVDYWVKTDDDESFAMGRNVVRHEGLLIGGSCGATMAGAYKFIKO	308
C-A.thaliana	392	PE-NAGKLIAVVFPSFGERYLS 412	
3-A.klebsi	300	NNIGAGKRVGVLFADSSRNYMS 330	
Cl-A.thaliana	56	LIGKTPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEK	103
3-A.klebsii	17	LVGFTPMVRMSRLQKHLDVECELVAKCEFFNAGGSVKDRIGKRMVEEAEK	66
Cl-A.thaliana	104	KKLIIPGKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTM	153
3-A.klebsii	67	SGRIKPGDI-LIEPTSGNTGIGLCMTAAIKGYKMIICLPQKMSGEKVNTM	115
Cl-A.thaliana	154	RSFGAELVLTDPAKGMGGTVKKAYDLLDSTPDAFMCQQFANPANTQIH	201
3-A.klebsii	116	KCLGAEILRTPTEAAWDAKDSHIFLSQRLAKDLGGHVLDQYKNPGNPLAH	165
Cl-A.thaliana	202	FDTTGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPNVKIYGVEP	251
3-A.klebsii	166	YEGTAEEIYEQTEGKLDYMVMSAGTGGTVTGTALKLKEKIPGIKIVAVDP	215
Cl-A.thaliana	252	AESNILNGGKPGPHAITGNGVGFKPEILDMDVM	284
3-A.klebsii	216	YGSILGK**PDNVNDASPRTGHKRLQAYH***VEGIGYDFVPTVLDQDVV	265
Cl-A.thaliana	285	ESVLEVSSEDAIKMARELALKEGLMVGISSGANTVAAIRLAKMPE-NKGK	333
3-A.klebsii	266	DYWVKTDDDESFAMGRNVVRHEGLLIGGSCGATMAGAYKFIKQNNIGAGK	315
Cl-A.thaliana	334	LIVTIHASFGERYLSSVLFDE 354	
3-A.klebsii	316	RVGVLFADSSRNYMSKFMDDD 336	

Fig. 7-51. Alignment of 3-A. klebsii OAS-TL amino acid with A. thaliana isoforms.

A-A.thaliana	3 SRIAKDVTELIGNTPLVYLNNVAEGCVGRVAAKLEMMEPCSSVKDRIGFS	52
4-A.klebsii	3 SDITQLLSDEFNPTPLVKLNHVTGFKHAELYAKLEWCNPFGSVKDRIAAN	52
A-A.thaliana	53 MISDAEKKGLIKPGESVLIEPTSGNTGVGLAFTAAAKGYKLIITMPASMS	102
4-A.klebsii	53 LVLAAEEAGHLTKDTESMVEPTSGNTGLGLIMMANTRRVPLTVPISTRVP	102
A-A.thaliana	103 TERRIILLAFGVELVLTDPAKGMK-GAIAKAEEILAKTPNGYMLQQ	147
4-A.klebsii	103 QEKRNALKLMGAKLIELDDEL*PKPGAREGAIAVAEQ*MAKRKNWYGPDQ	152
A-A.thaliana	148 FENPANPKIHYETTGPEIWKGTGGKIDGFVSGIGTGGTITGAGKYLKEQN	197
4-A.klebsii	153 YRNLANPEAHFRTTGPEIWKQTEGKVTHFFASLGTCGTISGTGKFLKHMS	202
A-A.thaliana	198 AN-VKLYGVEPVESAILSGGKPGPHKIQGIGAGFIPSVLNVDLIDEVV	244
4-A.klebsii	203 SGKVKVCGIHPTAQHDIPGVRSLPQLHATQH********YNTGIHDELC	252
B-A.thaliana	86 TPMVYLNNVVKGCVASVAAKLEIMEPCCSVKDRIGYSMITDAEEKGLITP	135
4-A.klebsii	16 TPLVKLNHVTGFKHAELYAKLEWCNPFGSVKDRIAANLVLAAEEAGHLTK	65
B-A.thaliana	136 GKSVLVESTSGNTGIGLAFIAASKGYKLILTMPASMSLERRVLLRAFGAE	185
4-A.klebsii	66 DTESMVEPTSGNTGLGLIMMANTRRVPLTVPISTRVPQEKRNALKLMGAK	115
B-A.thaliana	186 LVLTEPAKGMT-GAIQKAEEILKKTPNSYMLQQFDNPANPKIHYET	230
4-A.klebsii	116 LIELDDEL*PKPGAREGAIAVAEQ*MAKRKNWYGPDQYRNLANPEAHFRT	165
B-A.thaliana	231 TGPEIWEDTRGKIDILVAGIGTGGTITGVGRFIKERKP-ELKVIGVEPTE	279
4-A.klebsii	166 TGPEIWKQTEGKVTHFFASLGTCGTISGTGKFLKHMSSGKVKVCGIHPTA	215
B-A.thaliana	280 SAILSGGKPGPHKIQGIGAGFVPKNLDLAIVDEYIAISSEEAIETSKQ	327
4-A.klebsii	216 QHDIPGVRSLPQLHATQH********YNTGIHDELCEVTNEEAFQMCLR	265
B-A.thaliana	328 LALQEGLLVGISSGAAAAAAIQVAK-RPENAGKLI 361	
4-A.klebsii	266 LNREESLIAGPSSGLOVVGAMKLMEDKPGNVGVII 300	
C-A.thaliana	112 NIADNVSQLIGKTPMVYLNSIAKGCVANIAAKLEIMEPCCSVKDRIGYSM	161
4-A.klebsii	4 DITQLLSDEFNPTPLVKLNHVTGFKHAELYAKLEWCNPFGSVKDRIAANL	53
C-A.thaliana	162 VTDAEQKGFISPGKSVLVEPTSGNTGIGLAFIAASRGYRLILTMPASMSM	211
4-A.klebsii	54 VLAAEEAGHLTKDTESMVEPTSGNTGLGLIMMANTRRVPLTVPISTRVPQ	103
C-A.thaliana	212 ERRVLLKAFGAELVLTDPAKGMT-GAVQKAEEILKNTPDAYMLQQF	256
4-A.klebsii	104 EKRNALKLMGAKLIELDDEL*PKPGAREGAIAVAEQ*MAKRKNWYGPDQY	153
C-A.thaliana	257 DNPANPKIHYETTGPEIWDDTKGKVDIFVAGIGTGGTITGVGRFIKEKNP	306
4-A.klebsii	154 RNLANPEAHFRTTGPEIWKQTEGKVTHFFASLGTCGTISGTGKFLKHMSS	203
C-A.thaliana	307 -KTQVIGVEPTESDILSGGKPGPHKIQGIGAGFIPKNLDQKIMDEVIA	353
4-A.klebsii	204 GKVKVCGIHPTAQHDIPGVRSLPQLHATQH********YNTGIHDELCE	253
C-A.thaliana	354 ISSEEAIETAKQLALKEGLMVGISSGAAAAAAIKVAK-RPENAGKLI	399
4-A.klebsii	254 VTNEEAFQMCLRLNREESLIAGPSSGLQVVGAMKLMEDKPGNVGVII	300
Cl-A.thaliana	60 TPLVFLNKVTEGCEAYVAAKQEHFQPTCSIKDRPAIAMIADAEKKKLIIP	109
4-A.klebsii	16 TPLVKLNHVTGFKHAELYAKLEWCNPFGSVKDRIAANLVLAAEEAGHLTK	65
Cl-A.thaliana	110 GKTTLIEPTSGNMGISLAFMAAMKGYRIIMTMPSYTSLERRVTMRSFGAE	159
4-A.klebsii	66 DTESMVEPTSGNTGLGLIMMANTRRVPLTVPISTRVPQEKRNALKLMGAK	115
Cl-A.thaliana	160 LVLTDPAKGMG-GTVKKAYDLLDSTPDAFMCQQFANPANTQIHFDT	204
4-A.klebsii	116 LIELDDEL*PKPGAREGAIAVAEQ*MAKRKNWYGPDQYRNLANPEAHFRT	165
Cl-A.thaliana	205 TGPEIWEDTLGNVDIFVMGIGSGGTVSGVGRYLKSKNPN-VKIYGVEPAE	253
4-A.klebsii	166 TGPEIMKQTEGKVTHFFASLGTCGTISGTGKFLKHMSSGKVKVCGIHPTA	215
Cl-A.thaliana	254 SNILNGGKPGPHAITGNGVGFKPEILDMDVMESVLEVSSEDAIKMARE	301
4-A.klebsii	216 QHDIPGVRSLPQLHATQH*******YNTGIHDELCEVTNEEAFQMCLR	265
Cl-A.thaliana	302 LALKEGLMVGISSGANTVAAIRLAK-MPENKGKLI 335	
4-A.klebsii	266 LNREESLIAGPSSGLQVVGAMKLMEDKPGNVGVII 300	

Fig. 7-52. Alignment of 4-A. klebsii OAS-TL amino acid with A. thaliana isoforms.

7.4. The amino acid code

Fig. 7-53. Amino acid code and relative character.

		A
9	194	
U		

ACKNOWLEDGEMENTS

First of all, I would like to say thanks to my supervisor Mario Giordano for all useful suggestions he gave me during my whole project. Just after, I must express my deeply and sincerely thanks, Alessandra Norici: when I arrived in Italy my life seems linked with her. She trained me in algal culturing techniques and in the comprehension of lab protocols.

I'm particularly grateful to the whole research group of Prof. Rüdiger Hell Centre for Organismal Studies (COS), Heidelberg Plant Molecular Biology, where I spent un unforgettable period. Not only because the cooperation time, but especially for the people I met. Thanks, guys! I'll never forget you. Especially, Shanshan Wang and Eric Linster!

Deeply thanks for the Masbic of Prof Tiziana cacciamani research group. Thanks for your whole group share the time with my long time working schedule. Dr. Valentina Pozzi and Dr. Enrico Junior Baldassarri, two of these young talent researchers are good research cooperator friends.

It's my great honor to meet the following lab mates: Larisa, Marianna Venuleo, Laura, Andrea Pessina, Lucia Gastoldi, Angela Anxhela, Givonna Simonetti. All these guys are very nice :)

Thanks to my neighbor lab research groups: Prof. Carnevali, Prof. Beolchini, Prof. Cecelia, Prof. Totti and Prof. Danovaro. All of these research groups in our department composed a big research family, I was lucky that I could join them. Luca Lambertucci and Simone Bellagamba you always smile.

Monica Ferraioli thanks for you pay a lot of attention to me. Even you are so busy for dealing with a lot of document, while every time you send the document keeps two languages (English and Italiano) notice.

My big present in Italy I can meet two sisters family Viviana Fonti and Laura Rocchetti. Thanks you bring a lot of unforgettable memory. I will miss you no mater where I will be in the future.

During the past three years study, even far from my homeland, while all of these nice people in my life are all the big surprise from the God. Thanks so much all of you give me the permission I can share these three year with all of you :) My heart will always be with you mum, dad, and all my family. Thank you always stand on my back. Waiting for my long time hug and big kiss:)

Last but not least, thanks the reviewers.

Anyway, all these nice people I mentioned above rise me up :)

		D
M	196	
Г		

		Ø
9	197	
U		