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Abstract

This thesis provides a study on volumetric acoustic source mapping with microphone
array measurements. The topic has rarely been addressed in literature, despite its
importance in some applications such as aeroacoustics. The aim is to remove the
hypothesis of acoustic sources confined on surfaces, typical of common acoustic imag-
ing applications. This assumption may not be true and produce misleading results.
After the identification of additional issues to deal with, inverse methods have been
chosen to cope them. Two methods have been proposed and both are based on the
method of Iteratively Re-weighted Least Squares (IRLS) to obtain sparse solutions.
This approach is applied to Equivalent Source Method and Covariance Matrix Fitting,
thus leading to ESM-IRLS and CMF-IRLS techniques. A tailored version of IRLS for
acoustic problems has been developed in this work and is strictly linked to Bayesian
Approach to inverse acoustic problems. An improved regularization strategy, rooted
on Bayesian Regularization, has been developed to fulfil the needs of IRLS. Indeed,
Bayesian Iterative Regularization makes IRLS able to produce accurate and reliable
results. A novel use of CLEAN-SC as decomposition tool of Cross-Spectral Matrix
is proposed and compared with the standard Eigenmode Decomposition, when com-
bined with inverse methods. Methods proposed have been validated on simulated
test cases that represent the conditions of standard and volumetric mapping. Also
validation on experimental data is provided. The first is an airfoil in open jet, which
is mapped with single planar array. The second is an aircraft model in wind tun-
nel, where a comparison between the use of one or two planar arrays is performed.
This work aims at showing the feasibility of volumetric acoustic mapping with in-
verse methods, despite its intrinsic difficulty. A detailed discussion on theoretical
hypothesis and algorithmic tricks necessary to achieve this result is provided.

1



Contents

1 Introduction 11

2 Acoustic mapping techniques: Review and Theory 13

2.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Deconvolution approaches . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Inverse methods . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Three-dimensional volumetric acoustic mapping . . . . . . . . . . . . . 16
2.3 Theory: problem formulation and inverse operators . . . . . . . . . . . 17

2.3.1 Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Inverse methods . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Inverse methods for volumetric acoustic source mapping 27

3.1 Issues in volumetric mapping . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 IRLS algorithm for sparse source field reconstruction . . . . . . . . . . 29

3.2.1 Influence of sparsity constraint . . . . . . . . . . . . . . . . . . 30
3.2.2 Convergence criterion . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Discard of potential sources . . . . . . . . . . . . . . . . . . . . 31

3.3 Regularization strategies for IRLS . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Bayesian Regularization . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Dummy columns for minimum system size . . . . . . . . . . . . 33
3.3.3 Upper bound of regularization parameter . . . . . . . . . . . . 33
3.3.4 Bayesian Iterative Regularization . . . . . . . . . . . . . . . . . 34

3.4 ESM-IRLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 CMF-IRLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Cross-Spectral Matrix decompositions . . . . . . . . . . . . . . . . . . 36

3.6.1 Eigenmode decomposition . . . . . . . . . . . . . . . . . . . . . 37
3.6.2 CLEAN-SC decomposition . . . . . . . . . . . . . . . . . . . . 37

3.7 General guidelines on how to set-up an inverse problem . . . . . . . . 39

4 Application and validation on simulated experiments 40

4.1 Test cases description and algorithm settings . . . . . . . . . . . . . . 40
4.2 Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Localization ability . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Quantification ability . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Effect of different regularization strategies on quantification . . 44
4.2.4 Applicability to volumetric acoustic imaging . . . . . . . . . . . 47

2



5 Results of application on experimental data 48

5.1 Volumetric mapping with single planar array . . . . . . . . . . . . . . 48
5.1.1 Maps on regular grids . . . . . . . . . . . . . . . . . . . . . . . 50
5.1.2 Maps on non-uniform mesh . . . . . . . . . . . . . . . . . . . . 62
5.1.3 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Volumetric acoustic mapping with multiple arrays . . . . . . . . . . . 76

6 Conclusions and future works 88

6.1 Theoretical and user-oriented conclusions . . . . . . . . . . . . . . . . 88
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A Results of simulated experiments 93

A.1 Test Case 1 (TC1) - Figures . . . . . . . . . . . . . . . . . . . . . . . . 94
A.1.1 Reconstructed source spectra of Test Case 1 . . . . . . . . . . . 104

A.2 Test Case 2 (TC2) - Figures . . . . . . . . . . . . . . . . . . . . . . . . 108
A.2.1 Reconstructed source spectra of Test Case 2 . . . . . . . . . . . 133

A.3 Test Case 3 (TC3) - Figures . . . . . . . . . . . . . . . . . . . . . . . . 143
A.3.1 Reconstructed source spectra of Test Case 3 . . . . . . . . . . . 153

3



List of Figures

3.1 2D planar mapping of sources with single planar array and CB . . . . 28
3.2 3D volumetric mapping of sources with single planar array and CB . . 28

4.1 Test Case setups. Black dots: microphone locations. Blue diamonds:
source positions. Green line: 1D ROI. Black rectangle: 2D ROI. . . . 42

4.2 Test Case 1 (2D) - Errors in source spectrum reconstruction with ESM-
IRLS (p = 0 and W0 = CB) using different regularization strategies.
Red line: target error. Black line: error of reconstructed spectrum. . . 46

4.3 Test Case 1 (2D) - Errors in source spectrum reconstruction with ESM-
IRLS (p = 0 and W0 = CB) with different levels of noise. Red line:
target error. Black line: error of reconstructed spectrum. . . . . . . . . 47

5.1 Measurement setup and regions of interest. . . . . . . . . . . . . . . . 49
5.2 2000 Hz one-third octave band - 2D mapping on regular grid with 1

cm step - ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 51
5.3 2000 Hz one-third octave band - 2D mapping on regular grid with 1

cm step - CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 51
5.4 2000 Hz one-third octave band - 3D mapping on regular grid with 1

cm step - ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 51
5.5 2000 Hz one-third octave band - 3D mapping on regular grid with 1

cm step - CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 52
5.6 4000 Hz one-third octave band - 2D mapping on regular grid with 1

cm step - ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 52
5.7 4000 Hz one-third octave band - 2D mapping on regular grid with 1

cm step - CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 52
5.8 4000 Hz one-third octave band - 3D mapping on regular grid with 1

cm step - ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 53
5.9 4000 Hz one-third octave band - 3D mapping on regular grid with 1

cm step - CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 53
5.10 8000 Hz one-third octave band - 2D mapping on regular grid with 1

cm step - ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 53
5.11 8000 Hz one-third octave band - 2D mapping on regular grid with 1

cm step - CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 54
5.12 8000 Hz one-third octave band - 3D mapping on regular grid with 1

cm step - ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 54
5.13 8000 Hz one-third octave band - 3D mapping on regular grid with 1

cm step - CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 54
5.14 2000 Hz one-third octave band - Different views of 3D mapping on

regular grid with 1 cm step - CMF-IRLS with p = 0 and CSCD. . . . 55

4



5.15 4000 Hz one-third octave band - Different views of 3D mapping on
regular grid with 1 cm step - CMF-IRLS with p = 0 and CSCD. . . . 55

5.16 8000 Hz one-third octave band - Different views of 3D mapping on
regular grid with 1 cm step - CMF-IRLS with p = 0 and CSCD. . . . 55

5.17 2000 Hz one-third octave band - mapping on regular grid with 1 cm
step - CMF-IRLS on whole CSM with p = 1. . . . . . . . . . . . . . . 56

5.18 4000 Hz one-third octave band - mapping on regular grid with 1 cm
step - CMF-IRLS on whole CSM with p = 1. . . . . . . . . . . . . . . 56

5.19 8000 Hz one-third octave band - mapping on regular grid with 1 cm
step - CMF-IRLS on whole CSM with p = 1. . . . . . . . . . . . . . . 56

5.20 2000 Hz one-third octave band - 2D mapping on regular grid with 5
cm step - ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 57

5.21 2000 Hz one-third octave band - 2D mapping on regular grid with 5
cm step - CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 57

5.22 2000 Hz one-third octave band - 3D mapping on regular grid with 5
cm step - ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 57

5.23 2000 Hz one-third octave band - 3D mapping on regular grid with 5
cm step - CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 58

5.24 4000 Hz one-third octave band - 2D mapping on regular grid with 5
cm step - ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 58

5.25 4000 Hz one-third octave band - 2D mapping on regular grid with 5
cm step - CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 58

5.26 4000 Hz one-third octave band - 3D mapping on regular grid with 5
cm step - ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 59

5.27 4000 Hz one-third octave band - 3D mapping on regular grid with 5
cm step - CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 59

5.28 8000 Hz one-third octave band - 2D mapping on regular grid with 5
cm step - ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 59

5.29 8000 Hz one-third octave band - 2D mapping on regular grid with 5
cm step - CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 60

5.30 8000 Hz one-third octave band - 3D mapping on regular grid with 5
cm step - ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 60

5.31 8000 Hz one-third octave band - 3D mapping on regular grid with 5
cm step - CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . 60

5.32 2000 Hz one-third octave band - CMF-IRLS on whole CSM with p = 1. 61
5.33 4000 Hz one-third octave band - CMF-IRLS on whole CSM with p = 1. 61
5.34 8000 Hz one-third octave band - CMF-IRLS on whole CSM with p = 1. 61
5.35 Boundaries of different regions for non uniform meshing. . . . . . . . . 62
5.36 Double step grid in case of 2D ROI meshing. . . . . . . . . . . . . . . 63
5.37 2000 Hz one-third octave band - 2D mapping on double step grid -

ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.38 2000 Hz one-third octave band - 2D mapping on double step grid -

CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.39 2000 Hz one-third octave band - 3D mapping on double step grid -

ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.40 2000 Hz one-third octave band - 3D mapping on double step grid -

CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.41 4000 Hz one-third octave band - 2D mapping on double step grid -

ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5



5.42 4000 Hz one-third octave band - 2D mapping on double step grid -
CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.43 4000 Hz one-third octave band - 3D mapping on double step grid -
ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.44 4000 Hz one-third octave band - 3D mapping on double step grid -
CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.45 8000 Hz one-third octave band - 2D mapping on double step grid -
ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.46 8000 Hz one-third octave band - 2D mapping on double step grid -
CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.47 8000 Hz one-third octave band - 3D mapping on double step grid -
ESM-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.48 8000 Hz one-third octave band - 3D mapping on double step grid -
CMF-IRLS with p = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.49 2000 Hz one-third octave band - mapping on double step grid - CMF-
IRLS on whole CSM with p = 1. . . . . . . . . . . . . . . . . . . . . . 67

5.50 4000 Hz one-third octave band - mapping on double step grid - CMF-
IRLS on whole CSM with p = 1. . . . . . . . . . . . . . . . . . . . . . 68

5.51 8000 Hz one-third octave band - mapping on double step grid - CMF-
IRLS on whole CSM with p = 1. . . . . . . . . . . . . . . . . . . . . . 68

5.52 2000 Hz one-third octave band - 2D mapping on double step grid -
ESM-IRLS with p = 0 - Compensation of non-uniform mesh. . . . . . 68

5.53 2000 Hz one-third octave band - 2D mapping on double step grid -
CMF-IRLS with p = 0 - Compensation of non-uniform mesh. . . . . . 69

5.54 2000 Hz one-third octave band - 3D mapping on double step grid -
ESM-IRLS with p = 0 - Compensation of non-uniform mesh. . . . . . 69

5.55 2000 Hz one-third octave band - 3D mapping on double step grid -
CMF-IRLS with p = 0 - Compensation of non-uniform mesh. . . . . . 69

5.56 4000 Hz one-third octave band - 2D mapping on double step grid -
ESM-IRLS with p = 0 - Compensation of non-uniform mesh. . . . . . 70

5.57 4000 Hz one-third octave band - 2D mapping on double step grid -
CMF-IRLS with p = 0 - Compensation of non-uniform mesh. . . . . . 70

5.58 4000 Hz one-third octave band - 3D mapping on double step grid -
ESM-IRLS with p = 0 - Compensation of non-uniform mesh. . . . . . 70

5.59 4000 Hz one-third octave band - 3D mapping on double step grid -
CMF-IRLS with p = 0 - Compensation of non-uniform mesh. . . . . . 71

5.60 8000 Hz one-third octave band - 2D mapping on double step grid -
ESM-IRLS with p = 0 - Compensation of non-uniform mesh. . . . . . 71

5.61 8000 Hz one-third octave band - 2D mapping on double step grid -
CMF-IRLS with p = 0 - Compensation of non-uniform mesh. . . . . . 71

5.62 8000 Hz one-third octave band - 3D mapping on double step grid -
ESM-IRLS with p = 0 - Compensation of non-uniform mesh. . . . . . 72

5.63 8000 Hz one-third octave band - 3D mapping on double step grid -
CMF-IRLS with p = 0 - Compensation of non-uniform mesh. . . . . . 72

5.64 2000 Hz one-third octave band - mapping on double step grid - CMF-
IRLS on whole CSM with p = 1 - Compensation of non-uniform mesh. 72

5.65 4000 Hz one-third octave band - mapping on double step grid - CMF-
IRLS on whole CSM with p = 1 - Compensation of non-uniform mesh. 73

5.66 8000 Hz one-third octave band - mapping on double step grid - CMF-
IRLS on whole CSM with p = 1 - Compensation of non-uniform mesh. 73

6



5.67 Test set-up in Pininfarina Wind Tunnel. . . . . . . . . . . . . . . . . . 76
5.68 Average microphone auto-power spectra with side and top arrays. Red

line: test with model CRORs switched on. Blue line: test with model
CRORs switched off. Black line: test without model. . . . . . . . . . . 77

5.69 CRORs switched on - 2500 Hz one-third octave band - Top array . . . 79
5.70 CRORs switched on - 2500 Hz one-third octave band - Side and top

arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.71 CRORs switched off - 2500 Hz one-third octave band - Top array . . . 80
5.72 CRORs switched off - 2500 Hz one-third octave band - Side and top

arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.73 CRORs switched on - 800 Hz one-third octave band - W0 = CB map 81
5.74 CRORs switched off - 800 Hz one-third octave band - W0 = CB map 81
5.75 CRORs switched on - 1000 Hz one-third octave band - W0 = CB map 82
5.76 CRORs switched off - 1000 Hz one-third octave band - W0 = CB map 82
5.77 CRORs switched on - 1250 Hz one-third octave band - W0 = CB map 83
5.78 CRORs switched off - 1250 Hz one-third octave band - W0 = CB map 83
5.79 CRORs switched on - 1600 Hz one-third octave band - W0 = CB map 84
5.80 CRORs switched off - 1600 Hz one-third octave band - W0 = CB map 84
5.81 CRORs switched on - 2000 Hz one-third octave band - W0 = CB map 85
5.82 CRORs switched off - 2000 Hz one-third octave band - W0 = CB map 85
5.83 Background noise - 800 Hz one-third octave band - W0 = CB map . . 86
5.84 Background noise - 1000 Hz one-third octave band - W0 = CB map . 86
5.85 Background noise - 1250 Hz one-third octave band - W0 = CB map . 86
5.86 Background noise - 1600 Hz one-third octave band - W0 = CB map . 87
5.87 Background noise - 2000 Hz one-third octave band - W0 = CB map . 87
5.88 Background noise - 2500 Hz one-third octave band - W0 = CB map . 87

A.1 Test Case 1 (1D) - ESM-IRLS . . . . . . . . . . . . . . . . . . . . . . . 94
A.2 Test Case 1 (1D) - CMF-IRLS on whole CSM . . . . . . . . . . . . . . 95
A.3 Test Case 1 (2D) at He = 2 - ESM-IRLS . . . . . . . . . . . . . . . . 96
A.4 Test Case 1 (2D) at He = 2 - CMF-IRLS on whole CSM . . . . . . . . 97
A.5 Test Case 1 (2D) at He = 4 - ESM-IRLS . . . . . . . . . . . . . . . . 98
A.6 Test Case 1 (2D) at He = 4 - CMF-IRLS on whole CSM . . . . . . . . 99
A.7 Test Case 1 (2D) at He = 8 - ESM-IRLS . . . . . . . . . . . . . . . . 100
A.8 Test Case 1 (2D) at He = 8 - CMF-IRLS on whole CSM . . . . . . . . 101
A.9 Test Case 1 (2D) at He = 16 - ESM-IRLS . . . . . . . . . . . . . . . . 102
A.10 Test Case 1 (2D) at He = 16 - CMF-IRLS on whole CSM . . . . . . . 103
A.11 Test Case 1 (1D) - Errors in source spectrum reconstruction with ESM-

IRLS. Red line: target error. Black line: error of reconstructed spectrum.104
A.12 Test Case 1 (1D) - Errors in source spectrum reconstruction with CMF-

IRLS. Red line: target error. Black line: error of reconstructed spectrum.105
A.13 Test Case 1 (2D) - Errors in source spectrum reconstruction with ESM-

IRLS. Red line: target error. Black line: error of reconstructed spectrum.106
A.14 Test Case 1 (2D) - Errors in source spectrum reconstruction with CMF-

IRLS. Red line: target error. Black line: error of reconstructed spectrum.107
A.15 Test Case 2 (1D) - ESM-IRLS - ED . . . . . . . . . . . . . . . . . . . 108
A.16 Test Case 2 (1D) - ESM-IRLS - CSCD . . . . . . . . . . . . . . . . . . 109
A.17 Test Case 2 (1D) - CMF-IRLS on whole CSM . . . . . . . . . . . . . . 110
A.18 Test Case 2 (1D) - CMF-IRLS - ED . . . . . . . . . . . . . . . . . . . 111
A.19 Test Case 2 (1D) - CMF-IRLS - CSCD . . . . . . . . . . . . . . . . . . 112

7



A.20 Test Case 2 (2D) at He = 2 - ESM-IRLS - ED . . . . . . . . . . . . . 113
A.21 Test Case 2 (2D) at He = 2 - ESM-IRLS - CSCD . . . . . . . . . . . . 114
A.22 Test Case 2 (2D) at He = 2 - CMF-IRLS on whole CSM . . . . . . . . 115
A.23 Test Case 2 (2D) at He = 2 - CMF-IRLS - ED . . . . . . . . . . . . . 116
A.24 Test Case 2 (2D) at He = 2 - CMF-IRLS - CSCD . . . . . . . . . . . 117
A.25 Test Case 2 (2D) at He = 4 - ESM-IRLS - ED . . . . . . . . . . . . . 118
A.26 Test Case 2 (2D) at He = 4 - ESM-IRLS - CSCD . . . . . . . . . . . . 119
A.27 Test Case 2 (2D) at He = 4 - CMF-IRLS on whole CSM . . . . . . . . 120
A.28 Test Case 2 (2D) at He = 4 - CMF-IRLS - ED . . . . . . . . . . . . . 121
A.29 Test Case 2 (2D) at He = 4 - CMF-IRLS - CSCD . . . . . . . . . . . 122
A.30 Test Case 2 (2D) at He = 8 - ESM-IRLS - ED . . . . . . . . . . . . . 123
A.31 Test Case 2 (2D) at He = 8 - ESM-IRLS - CSCD . . . . . . . . . . . . 124
A.32 Test Case 2 (2D) at He = 8 - CMF-IRLS on whole CSM . . . . . . . . 125
A.33 Test Case 2 (2D) at He = 8 - CMF-IRLS - ED . . . . . . . . . . . . . 126
A.34 Test Case 2 (2D) at He = 8 - CMF-IRLS - CSCD . . . . . . . . . . . 127
A.35 Test Case 2 (2D) at He = 16 - ESM-IRLS - ED . . . . . . . . . . . . . 128
A.36 Test Case 2 (2D) at He = 16 - ESM-IRLS - CSCD . . . . . . . . . . . 129
A.37 Test Case 2 (2D) at He = 16 - CMF-IRLS on whole CSM . . . . . . . 130
A.38 Test Case 2 (2D) at He = 16 - CMF-IRLS - ED . . . . . . . . . . . . . 131
A.39 Test Case 2 (2D) at He = 16 - CMF-IRLS - CSCD . . . . . . . . . . . 132
A.40 Test Case 2 (1D) - Errors in source spectrum reconstruction with ESM-

IRLS with ED. Red line: target error. Black line: error of reconstructed
spectrum (left source). Green line: error of reconstructed spectrum
(right source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.41 Test Case 2 (1D) - Errors in source spectrum reconstruction with ESM-
IRLS with CSCD. Red line: target error. Black line: error of recon-
structed spectrum (left source). Green line: error of reconstructed
spectrum (right source). . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.42 Test Case 2 (1D) - Errors in source spectrum reconstruction with CMF-
IRLS on whole CSM. Red line: target error. Black line: error of re-
constructed spectrum (left source). Green line: error of reconstructed
spectrum (right source). . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.43 Test Case 2 (1D) - Errors in source spectrum reconstruction with CMF-
IRLS with ED. Red line: target error. Black line: error of reconstructed
spectrum (left source). Green line: error of reconstructed spectrum
(right source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.44 Test Case 2 (1D) - Errors in source spectrum reconstruction with CMF-
IRLS with CSCD. Red line: target error. Black line: error of recon-
structed spectrum (left source). Green line: error of reconstructed
spectrum (right source). . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.45 Test Case 2 (2D) - Errors in source spectrum reconstruction with ESM-
IRLS with ED. Red line: target error. Black line: error of reconstructed
spectrum (left source). Green line: error of reconstructed spectrum
(right source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.46 Test Case 2 (2D) - Errors in source spectrum reconstruction with ESM-
IRLS with CSCD. Red line: target error. Black line: error of recon-
structed spectrum (left source). Green line: error of reconstructed
spectrum (right source). . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8



A.47 Test Case 2 (2D) - Errors in source spectrum reconstruction with CMF-
IRLS on whole CSM. Red line: target error. Black line: error of re-
constructed spectrum (left source). Green line: error of reconstructed
spectrum (right source). . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.48 Test Case 2 (2D) - Errors in source spectrum reconstruction with CMF-
IRLS with ED. Red line: target error. Black line: error of reconstructed
spectrum (left source). Green line: error of reconstructed spectrum
(right source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.49 Test Case 2 (2D) - Errors in source spectrum reconstruction with CMF-
IRLS with CSCD. Red line: target error. Black line: error of recon-
structed spectrum (left source). Green line: error of reconstructed
spectrum (right source). . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.50 Test Case 3 (1D) - ESM-IRLS . . . . . . . . . . . . . . . . . . . . . . . 143
A.51 Test Case 3 (1D) - CMF-IRLS on whole CSM . . . . . . . . . . . . . . 144
A.52 Test Case 3 (2D) at He = 2 - ESM-IRLS . . . . . . . . . . . . . . . . 145
A.53 Test Case 3 (2D) at He = 2 - CMF-IRLS on whole CSM . . . . . . . . 146
A.54 Test Case 3 (2D) at He = 4 - ESM-IRLS . . . . . . . . . . . . . . . . 147
A.55 Test Case 3 (2D) at He = 4 - CMF-IRLS on whole CSM . . . . . . . . 148
A.56 Test Case 3 (2D) at He = 8 - ESM-IRLS . . . . . . . . . . . . . . . . 149
A.57 Test Case 3 (2D) at He = 8 - CMF-IRLS on whole CSM . . . . . . . . 150
A.58 Test Case 3 (2D) at He = 16 - ESM-IRLS . . . . . . . . . . . . . . . . 151
A.59 Test Case 3 (2D) at He = 16 - CMF-IRLS on whole CSM . . . . . . . 152
A.60 Test Case 3 (1D) - Errors in source spectrum reconstruction with ESM-

IRLS. Red line: target error. Black line: error of reconstructed spec-
trum (left source). Green line: error of reconstructed spectrum (right
source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.61 Test Case 3 (1D) - Errors in source spectrum reconstruction with CMF-
IRLS. Red line: target error. Black line: error of reconstructed spec-
trum (left source). Green line: error of reconstructed spectrum (right
source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.62 Test Case 3 (2D) - Errors in source spectrum reconstruction with ESM-
IRLS. Red line: target error. Black line: error of reconstructed spec-
trum (left source). Green line: error of reconstructed spectrum (right
source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.63 Test Case 3 (2D) - Errors in source spectrum reconstruction with CMF-
IRLS. Red line: target error. Black line: error of reconstructed spec-
trum (left source). Green line: error of reconstructed spectrum (right
source). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9



List of Tables

4.1 Algorithm settings applied to all Test Cases . . . . . . . . . . . . . . . 41
4.2 Regions of interest and its discretization used for Test Cases . . . . . . 41

5.1 Algorithm settings used for volumetric mapping with single planar array. 49
5.2 Regions of interest and their discretization with regular grid of monopoles

used for airfoil noise mapping. . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Regions of interest and their discretization for non uniform meshing

used for airfoil noise mapping. Both for plane and volume, first row is
the outer region and second row is the inner region. The total number
of points is N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Calculation time for planar maps on regular grid with 1 cm step (values
in seconds used as reference for 2D). . . . . . . . . . . . . . . . . . . . 74

5.5 Calculation time for planar maps on regular grid with 5 cm step (ratios
with analogous values in Table 5.4). . . . . . . . . . . . . . . . . . . . 74

5.6 Calculation time for planar maps on double step grid (ratios with anal-
ogous values in Table 5.4). . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 Calculation time for volumetric maps on regular grid with 1 cm step
(values in seconds used as reference for 3D). . . . . . . . . . . . . . . . 74

5.8 Calculation time for volumetric maps on regular grid with 5 cm step
(ratios with analogous values in Table 5.7). . . . . . . . . . . . . . . . 75

5.9 Calculation time for volumetric maps on double step grid (ratios with
analogous values in Table 5.7). . . . . . . . . . . . . . . . . . . . . . . 75

5.10 Region of interest and its discretization with regular grid used for air-
craft noise and background noise mapping . . . . . . . . . . . . . . . . 77

10



Chapter 1

Introduction

Acoustic source characterisation is a research area of interest for many industrial sec-
tors, such as aeronautics or automotive. Indeed, vehicle manufacturer in general are
requested to observe specifications and regulations in force regarding noise emission.
From a commercial point of view, acoustic comfort is a crucial aspect for passengers
that affects quality perceived by customers. Therefore, engineers need tools to char-
acterise and study acoustic noise radiation of products during their design phase, test
phase and after their realization. In this way, focused intervention can be done in
order to reduce noise emissions and meet the acoustic performance requested. Iden-
tification of sound sources means obtaining spatial information about their location
and providing quantitative information about their level. Several techniques were de-
veloped over last decades in order to achieve these results. In industrial context, time
required for testing plays a key role in the choice of measurement technique. For this
reason, microphone array based techniques are of great interest for this application.
Basically, an array is a set of microphones, arranged in known locations, put in front
of the object to characterise. Once measurement setup is ready, only few seconds
of data acquisition are sufficient to produce the acoustic map which makes possible
to retrieve both location and strength of sound sources. These techniques are com-
monly referred to as ”acoustic imaging”, since the output is an acoustic map, hence
an ”image of acoustic emission” by analogy with photography. What really makes
the difference is the method used to elaborate pressure data acquired by microphones.
Commonly, acoustic imaging techniques are used to produce a map on a plane or a
three-dimensional surface representing the object to characterise. If this assumption
is true in some applications, it may not be true in others, such as aeroacoustic ones,
and return misleading results. In fact, acoustic sources are not always confined in the
surface chosen to produce the map. For this reason, a method capable of returning
an acoustic map of a volume will improve the effectiveness of acoustic imaging in this
kind of applications

The core idea of this thesis is to provide a systematic study in the field of volumet-
ric three-dimensional acoustic mapping, since this topic has rarely been addressed in
literature, despite its importance. The the aim is to develop acoustic mapping tech-
niques tailored to volumetric applications. Starting from same data used in common
applications, the methods proposed in this work can recover location of sound sources
in the three-dimensional space and estimate their strengths. The problem has been
faced from two points of view. On the one hand, the use of a single planar array is
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made, since it is the commonest measurement setup. Even though it is not well suited
for volumetric source localization, a method capable of volumetric mapping in this
condition allows to not modify the measurement setup or to re-process data already
acquired and simply obtain more information from maps. On the other hand, the use
of multiple planar arrays looking at the object of interest from different views is inves-
tigated with the same methods and aims. Two aeroacoustic experimental applications
are presented, since this is the field that mostly gains advantage from the volumet-
ric approach, but the methods and the strategies developed in this work are general
enough for any application that requires volumetric sound source identification.

The thesis is organised as follows. Chapter 2 provides an overview of acoustic
source mapping techniques useful for the scope of this work. This part firstly intro-
duces basic techniques, such as beamforming, and then more refined and complex
methods, i.e. deconvolution techniques and inverse methods. In the following part, a
literature review about three-dimensional volumetric mapping is provided. The last
part of this chapter treats the theory useful as basis for the rest of the thesis. Chapter
3 is the core of this thesis. Its first part is dedicated to the analysis of the problem of
volumetric acoustic mapping and related additional issues which entails with respect
to common approach. In the second part, inverse methods developed in this work
are discussed in detail. Finally, the last part is devoted to application of proposed
methods on simulated experiments and to the analysis of results. Chapter 5 is entirely
dedicated to experimental applications of volumetric mapping, where two aeroacous-
tic test cases are presented. The first one is the acoustic mapping of an airfoil in open
jet with a single planar array. The aim of this application is to show the feasibility of
volumetric mapping using only a planar array. The second application is on a 1/7-th
scaled model of a regional aircraft in Pinifarina Wind Tunnel. This facility hosts two
planar arrays: one on top of the test section and one broadside. In this case, advan-
tages and drawbacks of combining data from multiple array are investigated. Chapter
6 draws the conclusions of the entire work. Further developments and research paths
are also discussed in this same chapter.
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Chapter 2

Acoustic mapping techniques:
Review and Theory

2.1 Literature review

Acoustic source mapping techniques based on microphone arrays are extensively used
for noise source localization and quantification. These techniques are important tools
for engineers that helps to identify and rank acoustic noise produced by an object.
Application range is wide, but it is worth mentioning, in particular, automotive and
aeronautics industrial sectors. Several techniques were developed for specific appli-
cations and/or to overcome specific limitations. A first classification can be done
distinguishing time domain from frequency domain techniques. The former can be
used, for example, as super-directive microphones for signal extraction, while the
latter, which are object of interest in this thesis, are the most common for source
characterization. Other classifications can be found in literature that group methods
depending on different characteristics, problem formulation, array shape and others.
A complete review of concepts about acoustic imaging techniques, from the very ba-
sics to more advanced ones, can be found in [12]. In the same work, best practice to
design an acoustic test, having the purpose of sound source localization and quantifi-
cation, is treated. Literature review of this thesis focuses the attention on three kind
of techniques: beamforming, deconvolution techniques and inverse methods. After a
brief description of most diffused techniques available in literature, the review is fo-
cused on three-dimensional volumetric mapping studies conducted in literature, since
they represent the starting point of this thesis.

2.1.1 Beamforming

The oldest and commonest technique for acoustic source mapping is the acoustic
beamforming [34, 17]. A beamformer is intended as the combination of a microphone
array and an algorithm which applies a spatial filter on pressure data. Beamforming
algorithms, such as Delay-and-Sum (DAS) [4] and Conventional Beamforming (CB)
[55], virtually focus the array on a point/direction and return the source level as if
there were only the source in that point/direction. Once scanned all points/directions
in the region of interest, the whole map is obtained. When plane waves are assumed
the beamformer is steered towards a specific direction (infinite distance focusing), in-
stead when spherical waves are assumed the beamformer is focused on a point source
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(finite distance focusing). Beamformer characteristics are strongly linked to micro-
phone layout and frequency of analysis, which determine the array spatial impulse
response, the so-called Point Spread Function (PSF). The ideal PSF is a Dirac delta,
i.e. a unique and unitary peak in the source position and zero everywhere else. Real
PSFs give only finite resolution due to the mainlobe size and limited dynamics due to
artefacts named sidelobes. Resolution is the ability to distinguish close sources and
is limited by the mainlobe width, defined as the distance between the main peak and
the first minimum according to Rayleigh criterion. Sidelobes are caused by the non
perfect ability to suppress source waves coming from other directions with respect
to the focusing one. A measure of useful dynamics of a beamforming system is the
Maximum Sidelobe level (MSL), intended as the level of the highest sidelobe.

The main issue is to design an array having desired characteristics, since it is
difficult to foresee PSF characteristics of particular microphone layout. Some rule of
thumb are known. For example regular arrays have a lot of regularly spaced sidelobes
and high MSL, therefore they are not appropriate for beamforming. In fact, irregular
layouts are preferred for these techniques, but a trial-and-error procedure for array
design is very time consuming and not feasible in industrial context. Different strate-
gies are proposed in literature to generate a microphone layout in order to control
some characteristics. For example Malgoezar et al. [32] proposed a method to op-
timize microphone positions in order to reduce the presence of sidelobes in a region
around the mainlobe and this is obtained minimizing a proper objective function.
Instead, Sarradj [48] proposed to arrange microphone using Vogel spirals, leading to
the possibility to generate really different layouts setting varying only two parame-
ters. The approach proposed allows to design arrays with Pareto-optimal properties
in terms of mainlobe width and MSL. However, it is shown that is not possible to have
fine spatial resolution (narrow mainlobe) and high dynamics (low MSL) at the same
time and this limits the application of simple beamformers. Beamforming techniques
are widely used for their easiness of implementation and robustness, but they pro-
vide mediocre performance in terms of resolution and dynamics. Many variants are
present in literature to overcome limitations, such as Functional Beamforming [18] or
Minimum Variance Distortionless Response Beamforming (MVDR or Capon) [9].

2.1.2 Deconvolution approaches

Deconvolution techniques have been developed in order to overcome beamforming
limitations in terms of spatial resolution and quantification of source strengths. The
aim of these methods is to remove the effect of PSF from beamforming map and
return as output the real source distribution that has generated the beamforming
map, hence pressure data measured at microphone locations. There are different ap-
proaches in deconvolution algorithms. The Deconvolution Approach for the Mapping
of Acoustic Sources (DAMAS) [5, 7] aim to retrieve the source distribution solving
a linear system. The unknowns are the source autopowers and the constant term
is the beamforming map. Each column of the system matrix is the PSF from each
focus point to all other focus points. Even though the system is square, the rank
of the matrix is low for practical applications and therefore ill-conditioned. In the
original formulation, the system is solved using Gauss-Seidel algorithm with a non-
negativity constraint at each iteration to obtain meaningful results. The critical point
of the basic DAMAS version is to estimate the optimal number of iterations of Gauss-
Seidel procedure. Many variants of DAMAS are present in literature with the aim
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to speed up the calculations and/or improve the results. The variants DAMAS2 and
DAMAS3 [16] are a step forward in terms of speed and robustness but restrict PSF to
be traslationally-invariant. Yardibi et al. [51] proposed to add a sparsity constraint to
DAMAS problem, hence obtaining the Sparsity Constrained DAMAS (SC-DAMAS).
In this version, the problem is solved minimizing the fitting error and the number of
non-zeros elements in the solution. The DAMAS problem can also be reformulated to
be solved with different methods such as Non-Negative Least Squares (NNLS), Least
Angle Regression Lasso or Orthogonal Matching Pursuit [25]. A further version is
the DAMAS-C [8], that makes it possible to deal with correlated source at cost of a
non-negligible increase of computational cost.

Another possible deconvolution approach is to decompose Cross-Spectral Matrix
(CSM) of pressure data in single coherent source components and retrieve position
and level of each of them, therefore having no sidelobes in the final map. Orthogonal
Beamforming (OB) [47] makes the assumption that uncorrelated source components
are orthogonal. For this reason an Eigenmode Decomposition (ED) of CSM is per-
formed, then CB map is calculated for each component and finally the maximum
of each component map is used to build the deconvolved source map. The family of
CLEAN algorithms [38] works in slightly different way performing the following steps:

• Calculate the CB map, i.e. the dirty map.

• Find the peak of the current dirty map.

• Subtract a properly scaled PSF from the dirty map.

• Put the peak in the clean map.

This process is iterated until all sources are extracted from the map. The simplest
algorithm is CLEAN-PSF in which the theoretical PSF of point sources are subtracted
from the map. Since the theoretical PSF may not be representative of real sources, a
more refined method was developed by Sijtsma [38] that estimates actual PSF directly
from pressure data exploiting the spatial source coherence [36]. This method is named
CLEAN based on spatial Source Coherence (CLEAN-SC). This algorithm is one of the
most used for deconvolution purposes, due to its robustness and low computational
cost. Localization accuracy of OB and CLEAN algorithms are strictly linked to CB
accuracy, in contrast with DAMAS algorithm family.

2.1.3 Inverse methods

Beamforming methods aim at solving the inverse problem of source reconstruction
from pressure measurements identifying the strength of each potential source inde-
pendently from the others. This means solving a scalar inverse problem. The aim of
inverse methods is to define the direct propagation from a set of elementary sources
to measurement locations and retrieve the whole source distribution which optimally
approximates measured pressure at microphone locations. In this way, it is possible
to take into account also the interaction between coherent and spatially-distributed
sources. Clearly, resulting maps are influenced by size, location and discretization
of the region of interest with elementary sources, in contrast with beamforming ap-
proach. The choice of different kind of elementary sources (e.g. monopoles, dipoles,
plane waves) and solution strategies give rise to different methods such as Generalized
Inverse Beamforming (GIBF) [50], Equivalent Source Method (ESM) [43], Bayesian
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Approach (BA) [1] or Covariance Matrix Fitting (CMF) [56] approach (or CMF-C
and MACS [57] variants for correlated sources). Inversion of direct acoustic propa-
gation has typical characteristics of ill-posed problem in Hadamard sense [21]. More-
over, source reconstruction with inverse methods suffers the under-determination of
the problem due to practical aspects, because generally the number of measurement
points is much lower than the number of potential sources. They can be very sensi-
tive to measurement noise and/or other causes of uncertainty. Even though all these
added complexities, inverse methods are the most promising in terms of localization
and quantification ability, for this reason are of wide interest in literature.

2.2 Three-dimensional volumetric acoustic mapping

In most applications, acoustic source maps are calculated on a plane or on a three-
dimensional surface representing the object which is radiating noise. This entails the
assumption that all acoustic sources are located on the chosen surface. However, real
sources are not necessarily located there and this might cause misleading results. For
this reason, it is interesting to extend the region of interest to a volume, thus con-
sidering the ”volumetric acoustic mapping” approach. In literature, the expression
”three-dimensional acoustic mapping” very often means a map on three-dimensional
surface in contrast with the the volumetric approach that is the object of interest of
this thesis. The most part of attempt in acoustic volumetric imaging available in lit-
erature consists of applications of standard techniques to an extended spatial domain.
When dealing with volumetric acoustic source mapping, limitations of beamforming
become even more evident, mainly because direct beamformers have poor spatial res-
olution along the focusing direction. Sarradj [46, 45] analyzed the problem for direct
beamformers using a single planar array and pointed out that different steering vector
formulations (i.e. different spatial filters) are able to provide either correct location or
correct level. The conclusion is that deconvolution algorithms are the only possibility
to effectively use CB for volumetric mapping. Inverse methods can be successfully
used for this purpose with single planar array. Battista et al. [3] presented a specific
study about volumetric acoustic mapping and used CMF and ESM approaches to
produce maps for accurate localization and quantification of sound sources. Ning et
al. [35] exploited Compressed Sensing techniques to produce volumetric maps with a
planar array. When multiple planar arrays looking at the object from different point
of view are combined, sidelobe level increases dramatically, thus making the use of
CB unfeasible even in simple cases. For example, Döbler et al. [14] used CLEAN-SC
and three planar arrays in a wind tunnel on a real-sized car. They combined maps
obtained from each single array on a part of the car surface that was in line-of-sight
with the array, rather than using all microphone as unique array. Another approach is
the Multiplicative Beamforming in which maps obtained by different arrays are mul-
tiplied together to increase the accuracy and the compactness of localization [19, 44]
when two or more arrays on orthogonal planes are utilized. Padois et al. [39] com-
pared the behaviour of different known acoustic mapping methods using one or two
planar arrays on simulated data. Instead, Battista et al. [20] compared results ob-
tained with one and two arrays on both simulated and experimental data in a wind
tunnel setup, using inverse methods for aeroacoustic source identification. The use
of multiple planar arrays can be successfully used to increase the localization and
quantification ability of deconvolution techniques or inverse methods. In addition, it
is possible to detect sources that are not directly seen by single array because are
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masked by the object itself and to obtain more informations on source directivity.

2.3 Theory: problem formulation and inverse oper-
ators

Let consider the acoustic field generated by a radiating body and a surface/volume of
interest Γ which contains the body. Region of interest not necessarily has to coincide
with the body surface/volume. The propagation problem, at given angular frequency
ω, is completely determined by the following Fredholm equation of first kind:

p(rm) =

∫

Γ

q(r)G(rm|r)dΓ(r) , (2.1)

where r ∈ Γ is a generic location vector. This equation relates the source field
q(r) with the acoustic pressure p(rm) at receiver locations rm, by means of Green
propagation function G(rm|r).

Source reconstruction techniques rely on Wave Superposition Method [28] which
states that the acoustic field, generated by a complex radiator, can be reproduced
as a superposition of fields caused by a set of simple sources enclosed within the
radiator. This makes possible to define a spatial distribution of elementary sources
(e.g. monopoles, dipoles, plane waves etc.) reproducing the same acoustic field of
complex sources. With this purpose, source-receiver propagation problem of Eq. 2.1
is discretized, i.e. q(r) is not considered as continuous source distribution but as finite
set of N elementary sources and pressure p(rm) is evaluated at M receiver locations.
Therefore, the actors of discrete acoustic problem are:

qn = q(rn) (2.2)

pm = p(rm) (2.3)

Gmn = G(rm|rn) (2.4)

where n = 1, ..., N and m = 1, ...,M . Once defined elementary sources (type and
location), receiver positions and acoustic propagator (speed of sound, scattering ef-
fects, flow, etc.), the direct acoustic problem is a linear transformation applied to
source coefficients q ∈ C

N×1 using the acoustic transfer matrix G ∈ C
M×N . For each

frequency, pressure p ∈ C
M×1 at receivers can be written as:

Gq = p . (2.5)

The calculation of acoustic pressure p (effect) from a given q (cause) is the direct
acoustic problem which is well-posed and has unique solution. The inverse acoustic
problem aims to retrieve the source distribution q (cause) from measurement at mi-
crophone locations p (effect). This problem results to be ill-posed in the Hadamard
sense [21, 24], i.e. existence, uniqueness and stability of the solution are not guaran-
teed. Inverse problem formulation can be also expressed as a linear transformation:

q̂ = Tp , (2.6)

where q̂ is the solution for a particular inverse operator T ∈ C
N×M . Indeed, as it

will be shown ahead, the latter term can assume different forms depending on the
assumptions, a priori information considered and, in most cases, on the input data
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p. When the acoustic field is stationary, the both direct and inverse problem can be
rearranged in terms of auto and cross power spectra:

GQGH = P . (2.7)

The matrix P = 〈ppH〉 is the CSM of pressure at microphone locations and Q =
〈qqH〉 is the CSM of source strengths (〈·〉 represents the average operator). The su-
perscript H stands for the complex conjugate transpose operator. Using the quadratic
form, the solution of the inverse problem can be obtained as

Q̂ = TPTH . (2.8)

Despite the enormous number of different acoustic mapping methods, many of
them can be expressed in the same formulation. A complete review about different
inverse operators is provided by Leclere et al. in [31].

2.3.1 Beamforming

Beamforming approach faces each degree of freedom of source distribution indepen-
dently from the others. Beamforming algorithms solve a scalar inverse problem as
if it were only one active source and the inverse operator is built using columns of
G. Each column gn represents the propagation of a unitary source on microphone
positions. What differentiates each beamforming algorithm is the specific spatial filter
to apply on measured pressure. For each focus point the filter can be expressed as
function f(·) of the propagator

tn = f(gH
n ) , (2.9)

these complex vectors are called steering-vectors in literature. It is also possible to
apply different weights to each microphones and source scaling strategies to correct the
source amplitude (e.g. to compensate very different source-array distances). Sarradj
proposed four different formulation of steering-vectors in [46]: two of them can provide
correct source location with an error on source level, the other two can provide the
exact source level with an error on source position. Usually, steering-vectors are data-
independent, but some beamformers calculates them taking into account measured
data. For example, MVDR beamformer minimize the contribution of all sources
except the one in the focusing point considering measured data. In any case, the
beamformer output for each focus point is

q̂n = tnp , (2.10)

or
Âq,n = tnPtHn (2.11)

in the common quadratic form, where source autopowers Âq = diag(Q̂) are estimated
from microphone CSM. It is worth noticing that the product TG 6= I for beamformers
and this causes the non-ideal source reconstruction. Each column of TG represents
the PSF of a source in the n-th scanning point to all other scanning points. From
this expression, it is straightforward to write the linear system for deconvolution with
DAMAS approach

BPSFAq = Âq . (2.12)

The matrix BPSF = TG that is the real coefficient matrix containing the PSFs and
Aq = diag(Q) is the vector of unknowns representing the ”real” source autopowers
which have generated the CB map.
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2.3.2 Inverse methods

In opposition to direct beamforming approach, inverse methods aim to consider all
potential sources together and retrieve the whole source distribution at once. This
should lead to better results in terms of source strength quantification, especially in
presence of correlated and/or spatially distributed sources. However, in common ap-
plications the number of equivalent sources is usually much greater than the number
of microphones, thus leading to an under-determined problem. On one hand, this
enhances the ill-conditioning of the problem, but, on the other hand, it gives the op-
portunity to find the particular solution that optimally fits a property. Depending on
assumptions, a priori information and/or cost functions to optimize, different inverse
operators will come out.

Moore-Penrose pseudo-inverse

A straightforward approach for solving Eq. 2.5 is the Moore-Penrose pseudo-inverse
that is one possible generalization of inverse matrix to rectangular matrices. When
the linear system is over determined, left pseudo-inverse is used as inverse operator
T to obtain the Least Square Error Solution:

q̂ = G+Lp = argmin
q

(

‖Gq− p‖22
)

. (2.13)

T = G+L = (GHG)−1GH , (2.14)

In common application cases, the linear system is under determined and a possible
solution is provided by the right pseudo-inverse. This inverse operator returns the
Least Square Solution, i.e. the solution with the smallest L2 norm among all those
satisfying the linear system of equations in Eq. 2.5 :

q̂ = G+Rp = argmin
q

(

‖q‖22 subject to Gq = p

)

. (2.15)

T = G+R = GH(GGH)−1 , (2.16)

From a physical point of view, this represents the solution with minimum energy which
exactly matches the measured pressure data. This is often referred to as näıve solu-
tion. Both G+R and G+L can be computed using the Singular Value Decomposition
(SVD) of G:

G = USVH (2.17)

G+ = VS+UH , (2.18)

where, for M < N , U ∈ C
M×M is a unitary matrix, V ∈ C

N×M , is such that
VHV = IM and S ∈ R

M×M is a diagonal matrix which contains singular values in
decreasing order s1 ≥ ... ≥ sk ≥ ... ≥ sM ≥ 0. The matrix S+ is the pseudo-inverse
of S, obtained replacing diagonal terms by its reciprocal. Although the pseudo-
inverse approach for under determined inversion provides a simple solution, it suffers
of critical drawback: the solution may not be stable under (even small) variation of
G and p, i.e. errors in the propagation model and noise in measured data. To better
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address the stability of solution, it is useful to rewrite the näıve solution as sum of
orthonormal basis associated to each singular value:

q̂ =

M
∑

i=k

uH
k p

sk
vk . (2.19)

This expression allows to introduce the Discrete Picard Condition (DPC) [22]. A
given right-hand term p of Eq. 2.5 satisfies the DPC if, for all numerically non-zero
singular values, the corresponding Fourier coefficients uH

k p decay to zero faster than
sk on the average. This means that, once defined the terms εk as

εk =
|uH

k p|
sk

, (2.20)

named here Picard coefficients, the solution is stable if εk are constant, or decreasing,
on the average. This condition can be checked by visual inspection of a Picard plot,
which shows the trend of Picard coefficients. The noise has effect on Fourier coefficient,
in particular those related to the smallest singular values, and is amplified during the
inversion thus making the solution unstable.

Tikhonov Regularization

A common approach to lower this amplification effect of noise is to exploit Tikhonov
regularization [52]. The Tikhonov approach consists in jointly minimizing the solution
norm ‖q‖22 and residuals norm ‖Gq−p‖22, thus leading to the following minimization
problem:

q̂(η) = argmin
q

(

‖Gq− p‖22 + η2‖q‖22
)

(2.21)

where the regularization parameter η2 ≥ 0 controls the trade-off between the am-
plitude of the solution and the fitting error. The regularization parameter amplifies
the singular values sk < η, while the singular values sk > η remain almost unal-
tered. Therefore, when matrix inversion is performed, the smallest singular values
are smoothly filtered preventing the over amplification of noise and stabilizing the
solution. The inverse operator is

T = G+η = GH(GGH + η2I)−1 = V(S2 + η2I)−1SUH , (2.22)

where G+η is the pseudo inverse regularized by η. In other words, Tikhonov regular-
ization controls the energy of the solution trading this for a small fit error. As the
”cut-off” on singular values is adjusted varying η, the most critical aspect is to esti-
mate the correct regularization parameter for each specific problem. Some strategies
are commonly used in acoustic problems, such as L-curve criterion or Generalized
Cross-Validation, or a combination of them [23],[27],[29]. In addition, the general
form of Tikhonov regularization makes it possible to have more control on the solu-
tion considering the following problem:

q̂(η,W) = argmin
q

(

‖Gq− p‖22 + η2‖Wq‖22
)

(2.23)

where the term ‖Wq‖22 is named discrete smoothing norm. The square invertible
matrix W is used to introduce additional information about the solution. This
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problem boils down to a standard Tikhonov formulation substituting q̃ = Wq and
G̃ = GW−1:

ˆ̃q(η,W) = argmin
q̃

(

‖G̃q̃− p‖22 + η2‖q̃‖22
)

. (2.24)

The solution of original problem is obtained from q̂ = W−1 ˆ̃q. Considering W as
diagonal matrix, the inverse operator is:

T = W−1(GW−1)+η = W−2GH(GW−2GH + η2I)−1 . (2.25)

Bayesian Framework

A more general approach to inverse problems has been proposed by Antoni in [1]. He
exploited Bayesian inference for developing a method that is able to

• identify the optimal basis functions which minimize the reconstruction error of
the source field;

• include a priori information on source field to better condition the problem and
ease the reconstruction task;

• provide a robust regularization criterion with no more than one minimum.

This method finds an estimate of the source field q̂(r) in the following form:

q̂(r) =

K
∑

k=1

ck φk(r) = Φc , K ≥ M (2.26)

where φk(r) are the spatial basis functions which interpolate the source field indepen-
dently of the measurements, ck are the coefficients which depend on measurements;
K is the dimension of the basis and M is the number of microphones. In other words,
the unknowns of the problem are the spatial functions that guarantee the smallest
reconstruction error possible, their coefficients and their number. The model consid-
ered for direct problem is more general than Eq. 2.5, since it takes into account also
the presence of measurement noise n ∈ C

M×1, thus leading to the following form:

Gq+ n = p . (2.27)

The core idea of the Bayesian approach (BA) to sound source reconstruction is to en-
dow all unknown quantities of interest with a probability density function. Indeed, the
randomness of the source field reflects the lack of knowledge in the reconstruction pro-
cess and its probability distribution is conditioned by measurements. Therefore, the
unknown source field probability density function (pdf) can be expressed as [q(c,Φ)|p]
and it is called posterior probability distribution. Maximization of ”posterior” with
respect to c and Φ will return the optimal parameters ĉ and Φ̂ that best explain
measured data p:

q̂(ĉ, Φ̂) = argmax
c,Φ

[q(c,Φ)|p] (2.28)

that is a maximum a posteriori (MAP) estimate. The Bayesian inference is used to
solve the inverse problem, since Bayes’ theorem allows to express the inverse proba-
bility in terms of direct probabilities:

[q(c,Φ)|p] = [p|q(c,Φ)][q(c,Φ)]

[p]
. (2.29)
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The first term on the numerator, [p|q(c,Φ)], is the likelihood function which repre-
sents the probability of observing measured data p, given the source field q(c,Φ),
and has the same probability density function of measurement noise n. The other
term on the numerator is the a priori probability distribution of source field before
measurements are considered. The denominator [p] is the evidence, that is the proba-
bility of measuring p over the whole space of sources. Noise pdf is assumed as circular
complex Gaussian, thus having:

E{n} = 0 (2.30)

E{nnH} = β2Ωn (2.31)

whereΩn is the structure of noise covariance matrix, normalized such that trace(Ωn) =
M , so that β2 represents the mean energy of noise averaged over microphones. In
most cases Ωn = I is chosen, since it is the most neutral choice and no a priori infor-
mation are introduced. The choice of prior pdf is more flexible and is linked to the
user knowledge on source field before data is measured. A priori information about
spatial distribution and source correlation can be introduced in the spatial covariance
function of the random source field:

E{qqH} = α2Ωq (2.32)

even in this case covariance matrix is normalized such that trace(Ωq) = N , so that
α2 represents the mean source energy. Off-diagonal terms represent the correlation
coefficient between sources, while diagonal elements of Ωq can be used to introduce
spatial information about the regions where sources are most likely to be found. The
latter is often referred to as aperture function that shrinks the source reconstruction
task to a restrained region and enhance the performance in terms of spatial resolution,
quantification accuracy and frequency range. This plays a fundamental role in the
so-called Bayesian focusing mechanism. The implicit assumption of deterministic
approaches is that all sources are uncorrelated and therefore Ωq = IN . By assuming
circular complex Gaussian also for source parameters, the reconstructed source field
can be written as:

q̂(r) =

M
∑

k=1

sk
s2k + η2

φk(r)u
H
k Ω−1/2

n p (2.33)

with η2 = β2/α2. Instead, vectors uk are the columns of U and sk the singular values
resulting from the following SVD:

Ω−1/2
n GΩ−1/2

q = USVH . (2.34)

The dimension of the basis is K = M and optimal basis functions are calculated as

Φ = Ω1/2
q GHΩ−1/2

n US−1 , (2.35)

which depend only on the topology of the problem and a priori information considered.
The Bayesian focusing mechanism is rooted in the fact that propagation operator is
passed through the aperture function and the basis functions are adapted to the
specific a priori information introduced. Instead, the optimal basis coefficients can be
written as:

c = (S2 + η2I)−1SUHΩ−1/2
n p (2.36)

The solution obtained assuming circular complex Gaussian as prior pdf is similar to
Tikhonov regularization mechanism. If a different prior is assumed, different solution
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and regularization mechanisms would appear from Bayesian formalism. Moreover,
Bayesian approach identifies the regularization parameter η2 in the Noise-to-Signal
Ratio (NSR), i.e. the ratio between noise energy β2 and source energy α2.

Empirical Bayesian regularization (BR) provides different strategies for the esti-
mation of these quantities directly from measured data. The interested reader might
refer to [41] for a deeper insight into empirical Bayesian regularization, while here-
inafter only theory useful to the scope of this thesis is reported. The simplest (and
worst) case is when all outcomes of β2 and α2 are assumed a priori equiprobable, i.e.
[α2, β2] ∝ 1. In this condition, the empirical BA is equivalent to maximum likeli-
hood and two strategies can be adopted, namely the Maximum A Posteriori (MAP)
and the Joint approach. The latter consist of a MAP estimation resulting from the
evaluation of joint pdf of α2 and β2, given the measurements, and then their ratio is
calculated. The cost function to minimize with respect to η2 is:

JJoint(η
2) =

M
∑

k=1

ln(s2k + η2) +M ln

(

1

M

M
∑

k=1

|yk|2
s2k + η2

)

(2.37)

η̂2Joint = argmin
η2

JJoint(η
2) (2.38)

where sk are the singular values and yk = uH
k p are the Fourier coefficients. The MAP

approach comes from the direct estimation of η2 without the intermediate estimation
of noise and source energy:

JMAP (η
2) =

M
∑

k=1

ln(s2k + η2) + (M − 2) ln

(

1

M

M
∑

k=1

|yk|2
s2k + η2

)

(2.39)

η̂2MAP = argmin
η2

JMAP (η
2) , (2.40)

Source and noise mean energy can be calculated from the estimated regularization
parameter as:

α̂2 =
1

M

M
∑

k=1

|yk|2
s2k + η̂2

, β̂2 = η̂2 · α̂2 . (2.41)

These two approaches are closely related, in fact

JMAP (η
2) = JJoint(η

2)− 2 ln(α̂2(η2)) , (2.42)

but they are not identical since a MAP estimate of a ratio (η̂2MAP ) is generally not
equal to the ratio of MAP estimates (η̂2Joint). These two cost functions share the
property of having a unique global minimum with an high probability, under certain
conditions that are verified in most practical configurations. This property is rather
unique among regularization criteria, in addition, they return similar estimate of
regularization parameter for many practical applications. The value of η2 obtained
from these two criteria is often near to the optimum one that minimize the mean
squared error with the exact solution (see [43, 41]). The main difference between
MAP and Joint approaches is that the latter may return an unbounded estimate of
η2 for bad signal-to-noise ratios, while MAP cost function always forces a finite value
for the regularization parameter.
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Another possible scenario is that the user may have some information about ex-
pected noise energy β2. Bayesian approach gives the possibility to introduce this
knowledge in the estimate of η2. One possible choice is to use an inverse Gamma pdf
for β2 that leads to:

[α2, β2] ∝ [β2] = G-1(a, b) ∝ β−2ae−bβ−2

, a ≥ 0, b ≥ 0 . (2.43)

From this assumption, modified cost functions come out. For the Joint approach, Eq.
2.37 becomes

JJoint,G-1(η2) =

M
∑

k=1

ln(s2k + η2) + (M + a) ln
(

α̂2
G-1

)

+ a ln(η2) (2.44)

where the subscript G-1 indicates the use of the inverse Gamma as prior pdf of β2.
The mean source and noise energy are modified as follows

α̂2
G-1 =

1

(M + a)

(

M
∑

k=1

|yk|2
s2k + η2

+
b

η2

)

, β̂2
G-1 = η̂2G-1 · α̂2

G-1 . (2.45)

Modified cost function of MAP approach follows from Eq. 2.42. It is worth noticing
that this second scenario is more general and include the first one when a = 0 and
b = 0. A particular and useful choice is when only the mean value is imposed, i.e.
E{β−2} = b−1 and a = 0 having the Maximum Entropy solution. From practical
point of view, this helps in reducing the risk of under-estimation of η2.

Once the inverse problem is solved, Bayesian framework returns several byproducts
providing further information on reconstructed source field, like:

• quantity of information provided by the array measurements in attempting to
reconstruct the source field;

• measure of the quality of reconstructed source field;

• sensitiveness of the acoustic inverse problem to regularization.

The knowledge of these information turn out to be useful in many contexts, but are
usually not available with other approaches. A complete discussion about this aspects
is out of the scope of this thesis. Only a short description about the measure of quality
of the result is reported here, since it will be used in the following chapter. A possible
measure of the quality of reconstructed sources is the relative variance

P =
1

M

M
∑

k=1

1

1 + s2k/η
2

(2.46)

that is a normalized measure limited between 0 and 1. As the regularization parameter
increases this value approaches to 1 and reflects the fact that the reconstruction is
more reliable but with bad spatial resolution [1].

Sparse solutions

The L2 norm minimization process takes advantage in spreading the energy of the
source field into several equivalent sources to reduce the total energy of the solution.
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In addition, in [43] it is shown the tendency of sources reconstructed by L2 norm
minimization to have a directivity pattern towards the array, especially at high fre-
quency, and this leads to systematically underestimate source powers. Actually, the
choice to seek the solution with minimum energy is in a way arbitrary in this context.
If localization can be satisfactory with minimum L2 norm solution, quantification
requires further a priori information about sources. This can be done assuming that
source distribution can be represented by only few non-zero elements in the solution,
when proper basis is used. In fact, the choice of elementary sources is crucial, since
it represents the basis with respect to the sparsity is assumed. Sparsity can be mea-
sured by the L0 norm of the solution, that is the number of non-zero components of
a vector. However, the exact solution is difficult to obtain since it is a non-convex
optimization problem and the solution may not be unique. Therefore, the L0 norm
is commonly relaxed with the L1 norm, because it turns to be a convex optimization
problem. A more general formulation makes use of the generic Lp norm to finely
adjust the amount of sparsity:

q̂(η, p) = argmin
q

(

‖Gq− p‖22 + η2‖q‖pp
)

, (2.47)

where the solution Lp norm is minimized jointly to the fitting error similarly to
Tikhonov solution. The Lp norm of a generic vector x ∈ C

N×1 is defined as:

‖x‖pp =
N
∑

i=1

|xi|p . (2.48)

A clarification about the definition of Lp norm is needed. For p ≥ 1, ‖x‖p is a proper
norm because it satisfies the triangle inequality, but this property is lost for p < 1.
However, for 0 < p < 1, ‖x‖pp is a metric and can be used to measure distances in
vector spaces. When p = 0, ‖x‖00 should be called L0 ”norm” (with quotation marks)
and it counts the number of non-null elements in the vector. Anyway, for sake of
simplicity, in this work the name Lp norm is used in general for ‖x‖pp, with 0 ≤ p ≤ 2.
As already said, L0 norm minimization is difficult to solve exactly, but can be ap-
proximated using heuristic algorithms that search a solution near the optimum one
without any guarantee to provide the global optimum. Examples are Matching Pur-
suit [33] or Orthogonal Matching Pursuit (OMP) [40] algorithms. Instead, different
algorithms exist for L1 norm minimization [54, 53], such as Least Absolute Shrinkage
and Selection Operator (LASSO) or Basis Pursuit Denoise (BPDN).

Another possible approach is related to the Iteratively Reweighted Least Squares
(IRLS) family of algorithms [11, 13]. The idea is to solve a Weighted Least Square
problem at each iteration, that is the Eq. 2.23, and use the result of current iteration
to calculate weights for the next one and converge to a sparse solution. The inverse
operator has the same form of Eq. 2.25, but is the result of certain number of
iterations. For example, to obtain a solution to the Lp norm minimization of Eq.
2.47, weights can be computed using the following consideration:

‖q‖pp =

N
∑

n=1

|qn|p =

N
∑

n=1

w2
n|qn|2 = ‖Wq‖22 . (2.49)

The weighting matrix W is a real diagonal matrix and the set of weights depends on
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the result of the previous iteration with the following expression:

w(it)
nn =

∣

∣

∣
q̂(it−1)
n

∣

∣

∣

(p−2)
2

(2.50)

where it is the current iteration and wnn is the generic diagonal element of W. From
a Bayesian point of view this method can be seen as an Expectation-Maximization
algorithm which converges to MAP solution [10]. In addition, there is a direct link
between the exponent p of the norm and the a priori pdf of source distribution, i.e.
the generalized Gaussian law, as demonstrated in [30].
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Chapter 3

Inverse methods for
volumetric acoustic source
mapping

This chapter is dedicated, in its first part, to the analysis of volumetric acoustic source
mapping and the requirements needed to fulfil this task. Literature is poor about spe-
cific and systematic study on volumetric acoustic source mapping and mainly eval-
uation of existing techniques applied to an extended spatial domain are available.
The first objective is to describe the additional issues to face when dealing with vol-
umetric mapping and explain how to address them. Then, strategies and algorithms
developed in this work are described in detail. The most common measurement setup
in acoustic imaging, independently from the specific technique utilized, is a planar
array placed in front of the source/sources of interest and the acoustic map is calcu-
lated on a plane or surface which represents the object of interest. Figure 3.1 shows
the common mistake when sources are out of plane. One of the aims of new tech-
niques developed in this thesis is to give the possibility to successfully map volumes
at simple cost of (re)processing acquired data and no additional hardware request.
Unfortunately, this kind of setup represents a really challenging layout for volumet-
ric mapping, since the radial spatial resolution in the direction from array centre is
bad and this is particularly evident in volumetric maps obtained with CB (Fig. 3.2).
Given the nature of the volumetric acoustic problem, there are some limitations (fre-
quency range, array-source distance, etc.) for the applicability of these techniques to
obtain good accuracy, especially when single array is utilized. However, a powerful
characteristic of techniques described here is that they can be used with arrays of any
kind and therefore they give the possibility to process data acquired, for example,
by two or more planar arrays, looking at the same object, as a unique array. When
beamforming is performed with multiple arrays sidelobe level increase dramatically
and deconvolution techniques are still needed to obtain useful results. Contrarily, in-
verse methods benefit of multiple planar arrays when they are utilized for volumetric
mapping: the lower limit of frequency range is extended, the accuracy of localization
is improved and more information of source directivity can be extracted from maps.
In addition to the set of problem with inverse methods, volumetric acoustic imaging
compels to face additional issues. Two methods for acoustic mapping are proposed:
one is based on the Equivalent Source Method and the other on the Covariance Ma-
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trix Fitting approach. Both rely on a specific version of Iteratively Re-weighted Least
Squares algorithm suited for acoustic inverse problem which exploits the Bayesian
Approach.

(a) (b)

Figure 3.1: 2D planar mapping of sources with single planar array and CB

(a) (b)

Figure 3.2: 3D volumetric mapping of sources with single planar array and CB

3.1 Issues in volumetric mapping

From the analysis of volumetric acoustic mapping , three additional issues emerged:

• potential sources located at very different distances from the array centre;

• poor spatial resolution of arrays in radial direction from the array centre;

• high number of potential sources with no contribution to the acoustic field.
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The first issue can be faced balancing energy needed by each potential source to
produce the same pressure on a microphone, therefore, the different source-receiver
distances must be somehow compensated. This can be done exploiting the strength-
to-pressure acoustic transfer function in pair with a weighting strategy, as suggested
by Pereira et al. [42]. For example, when monopoles and free-field propagation are
considered, the elements of G can be computed as

Gmn =
e−jkrmn

4πrmn
, (3.1)

where k = ω/c is the wavenumber, c is the speed of sound in the medium and the
terms rmn represent the geometric distance between the generic points m (micro-
phone) and n (source). In this case, the greater is the distance of a generic source
from microphones the more energy is needed to generate a certain pressure on them.
Therefore, a diagonal weighting matrix can be used for compensating the effect of
source-microphone distances, whose generic diagonal elements are Wnn = 1/r0n. The
point named as ”0” (r0) is a reference point that has to be chosen by the user.
The other possible choice to achieve the same result, is to use a pressure-to-pressure
acoustic transfer function formulation:

Gmn =
r0n
rmn

e−jk(rmn−r0n) . (3.2)

This propagator returns the acoustic pressure at microphone location m depending
on sound pressure at reference point ”0” caused by the monopole source at location n.
This formulation automatically balances the energy needed by sources to produce a
certain pressure at microphone locations without any weighting strategy needed. The
second point of the list is a limitation due to the finite sampling of the acoustic field.
Even when multiple planar arrays are combined radial spatial resolution from the
array centre may be problem. The high number of potential sources makes the inverse
acoustic problem heavily under-determined and increases the difficulty of retrieving
correctly the source field. Last two issues are addressed together enforcing a sparsity
constraint on the solution. On one hand, the ”lobe” effect in radial direction is
reduced or eliminated, but the accuracy still depends on many other factors (e.g.
frequency, calculation grid step, source-array distance, noise level etc.), on the other
hand, the assumption that only ”few” potential source are active in the source field is
introduced. The assumption of sparse solution gives critical importance to the choice
of basis function to describe the direct problem. For example, the most common
choice is to use a spatial distribution of monopoles to discretize the region of interest.
When real source can be approximated with monopoles, the resulting sparse solution
will be accurate, but, for example, when real source has relevant spatial extension,
the sparse solution may not give the same accuracy. In the latter case, the strength
of sparsity constraint is important.

3.2 IRLS algorithm for sparse source field recon-
struction

A specific version of IRLS algorithm has been formulated for (volumetric) acoustic
inverse problems. The sparsity constraint on solution is enforced in terms of Lp norm
minimization (Eq. 2.47), where p gives the possibility to choose different levels of
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sparsity. The IRLS procedure can be formalized with the following expression:

q̂(it) = F
(

q̂(it−1),W(it), η2 (it),G(it),p, p
)

, (3.3)

where the function F is given by Eq. 2.23 or the equivalent version from Bayesian
framework obtained with Ωn = I and Ωq = W(it). The solution is calculated using
the following procedure:

1. Set the weighting matrix W(it) for the current iteration:

W(it) = W0 W
(it)
sp , (3.4)

where Eq. 2.50 is used to force the sparsity, W
(1)
sp = I. A second diagonal matrix

W0 is used to introduce further a priori information on source distribution.

Both matrices are normalized such that ‖W0‖∞= ‖W(it)
sp ‖∞= 1. The resulting

matrix W(it) is normalized such that trace(W(it)) = N .

2. Estimate the regularization parameter η2 (it) for the current iteration using
Bayesian regularization.

3. Calculate the solution q̂(it) using Eq. 2.25.

4. Discard potential sources which do not contribute significantly to the acoustic
field using the following criterion

10 log10

(

q̂(it)

‖q̂(it)‖∞

)

< THRdB . (3.5)

Therefore, propagation matrix G(it) is updated removing columns associated to
discarded sources.

5. Evaluate a convergence criterion, if not fulfilled go back to step 1 otherwise the
algorithm ends.

This procedure returns a sparse solution for the inverse acoustic problem. In the next
paragraphs, a detailed discussion on each aspect of IRLS is conducted.

3.2.1 Influence of sparsity constraint

The norm exponent can be set in the range 0 ≤ p ≤ 2 to vary the amount of sparsity
desired. When 1 < p < 2 the solution norm minimization process still gain advantage
in spreading energy over more source coefficients. In this case, the sources can be
detected with better spatial resolution and slightly wider dynamics with respect p = 2.
The convergence is fast, but dynamics and spatial resolution of maps obtained are
still not satisfying, especially for volumetric mapping. Contrarily, when p < 1, there
is the advantage in squeezing the total energy in few non-null source coefficients.
For this reason, maps returned contain the minimum number of equivalent sources
that match well pressure data. In case of real sources with spatial extension, the
reconstruction is made with a certain number of equivalent sources that may not be
contiguous. The more p is near to zero the quicker is the convergence. The case p = 1
gives the maximum sparsity achievable with convex optimization and represents the
edge between the convex and non-convex optimization. It is a neutral condition that
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tends to preserve the real source shape. Unfortunately, this case has the slowest
convergence.

One drawback of trying to get the source field with a sparse estimate occurs when
a real source is between the grid of potential sources (e.g. grid of monopoles). In fact
with 1 < p < 2, the spread of energy allows some strategy to retrieve the accurate
source position such as the calculation of centroid weighted with strength of equivalent
sources. The latter strategy can be adopted also with p = 1. When p < 1, the sparse
estimation usually converges on the potential source nearest to the real one. When
the grid of potential sources is fine enough, the error committed is in the order of
magnitude of half grid step in case of regular grids and can be easily predicted. As
the grid step increases, real sources are mapped into two or more equivalent sources
and the strategy of centroid can be adopted. The difficulty can be to recognise which
phenomenon occurs in a particular application.

3.2.2 Convergence criterion

A crucial aspect of iterative methods is the convergence criterion. A good stopping
criterion is rather important to guarantee uniformity of results because the optimal
number of iterations is strongly dependent on characteristics of the specific problem,
such as number/shape of real sources, frequency or noise level and IRLS parameters
such as p. In [37], it is suggested the following convergence criterion:

ε(it) = 10 log 10
(〈∣

∣

∣
q̂(it)n /q̂(it−1)

n

∣

∣

∣

〉)

(3.6)

where the operator 〈·〉 represents the spatial average. This criterion requires that
source complex amplitudes remain almost unaltered in the last 2 iterations to stop
the algorithm. The value of ε(it) starts from big negative values and approaches 0 dB.
The discarding strategy or other phenomena that occur throughout IRLS iterations
may cause sudden variation of ε(it). In order to improve the reliability of results, in
[3], a slightly different criterion is proposed:

ε(it) = 10 log10

(

MSR−
∣

∣

∣

∣

d(MSR)

d(it)

∣

∣

∣

∣

−
∣

∣

∣

∣

d2(MSR)

d(it)2

∣

∣

∣

∣

)

(3.7)

MSR =
〈
∣

∣

∣
q̂(it)n /q̂(it−1)

n

∣

∣

∣

〉

(3.8)

where MSR stands for Mean Source Ratio. This criterion can be evaluated only
for it > 2 and is more restrictive because it requires that variation in the solution
are small at least over last 3 iterations. When sudden variation of MSR occurs in
consecutive iterations, the absolute value of first and second derivative (actually finite
differences) prevent the end of IRLS procedure despite the sign of the variation. The
algorithm stops when ε(it) ≥ −0.1 dB.

3.2.3 Discard of potential sources

The discard of sources, which do not contribute to the acoustic field, is done for
avoiding the division by zero in weights calculation, progressively reduce the under-
determination and speeding up the algorithm. Number of left potential sources at
each iteration is indicated asN (it). The threshold used in this work is THRdB = −100
dB. Such a value ensures that discarded potential sources are not relevant any more
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in q̂(it), considering the total energy of solution, thus resulting non-intrusive in the
final result. Contrarily, threshold values closer to 0 dB might be intrusive and have
an effect on the final result.

3.3 Regularization strategies for IRLS

Regularization is the most critical aspect of inverse problems and solutions returned
by IRLS are heavily affected by the chosen strategy. Several different regularization
mechanisms can be included in IRLS. In this thesis, the regularization mechanism
proposed is based on Bayesian framework. The aim of this section is to explain how
Bayesian regularization has been adapted to the IRLS requirements to improve the
robustness and the accuracy of final results.

3.3.1 Bayesian Regularization

The simplest and straightforward way to estimate the amount of regularization is to
find the minimum of Eq. 2.39 or Eq. 2.37 provided by BR. Otherwise, if an estimate
of noise energy is available, it is possible to introduce this information using for exam-
ple Eq. 2.44. The global minimum is sought in two steps. Firstly, a rough estimation
is obtained taking the value of η2 that minimize the cost function among a grid of
values from 0 to an upper bound η2max. After that, the real minimum is calculated
with a numerical optimizer in a neighbourhood of the rough estimate. When the lin-
ear system switches from being under-determined to over-determined, because of the
discarding of potential sources, some troubles happen in the regularization process.
Over-determined systems with few columns occur frequently when the sparsity con-
straint is strong (p ≤ 1) and, in the very last IRLS iterations, few potential sources
remain in the inverse problem.

The first issue is that the minimum of cost functions moves towards or beyond
the maximum singular value (s21), thus having systematically overestimated values
of η2. This leads to systematically underestimated source strengths, even though
maps can be considered reliable for localization purposes because instabilities are
suppressed even more than necessary. To avoid this effect, the value of M in cost
functions must be changed from the number of microphones (rows) to the number of
left potential sources (left columns, N (it)) for over-determined systems, in other words,
the number of singular values used to define the cost function. However, even with
this correction, when the number of columns becomes much smaller than the number
of rows (N (it) → 1), the acoustic problem is described by very few singular values
(and related basis) and this undermines the robustness of regularization parameter
estimation of BR. In this condition, a critical issue happens: both cost functions tend
to have a minimum towards 0 or η2max, depending on the particular case, with no
guarantee of robust regularization. Bayesian MAP cost function tends very often to
have a minimum towards zero, thus giving under-regularized solutions. Contrarily, the
Bayesian Joint approach keeps more often its well defined minimum, resulting a bit
more reliable. Furthermore, it has been experienced that local minima or stationary
points appears in the cost functions when the problem size gets smaller.
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3.3.2 Dummy columns for minimum system size

A simple strategy is proposed here to enable BR to work properly even in condition
of few singular values. The idea is to add dummy columns (DC) zi to propagation
matrix G(it) in sufficient number to keep a minimum dimension of the system. These
columns are associated to fake unknowns with no physical meaning. In this case, the
matrix used to solve the inverse problem is modified as:

G
(it)
mod =

[

G(it),Z
]

. (3.9)

In order to avoid that these fake sources affect the physical unknowns of the inverse

problem, they must be severely penalized with low weights in W
(it)
mod. Weights of

dummy columns wd can be set as fraction of the mean of W(it), in order to assure a
fixed ratio on the average, between weights of real and fake unknowns. Empirically,
it has been experienced that wd = 10−6 · 〈W(it)〉 is a good compromise between the
non-intrusiveness of fake unknowns and reliability with respect to numerical issues.
In this thesis, elements of dummy columns are generated using the complex noise
model available in [43]:

zm = 10−SNR/20

(

γeiεgmax,m + δeiζ
√

‖gmax‖2
M

)

, (3.10)

where γ and δ are zero mean Gaussian random variables (V ar(γ) = V ar(δ) = 1), ε
and ζ are random variables uniformly distributed between 0 and 2π and m is the mi-
crophone (row) index. The complex vector gmax is the column of G(it) corresponding
to the source coefficient with the maximum amplitude at the current IRLS iteration.
Signal-to-Noise ratio in Eq. 3.10 is set to 0 dB, thus returning columns with the same
order of magnitude of gmax. The choice of the ”seed” column and the realization of
random columns are made irrelevant with the proper weights mentioned before. This
practice makes cost functions of BR (Joint and MAP) able to keep their well defined
unique minimum, since the number of singular values remains above a minimum.
Once calculated the solution with dummy columns, fake unknowns are removed from
solution vector.

3.3.3 Upper bound of regularization parameter

The maximum value of regularization parameter may be beyond s21 in poor signal-
to-noise ratio conditions. The upper bound in the search of the minimum of cost
function can be set for example η2max = s21. This limit works well in a great variety
of cases, but there is no control on the quality of solution. As previously mentioned
in the description of BA, it is possible to have a measure of quality of reconstruction
using Eq. 2.46. Values of P near to 1 (or 100%) mean reliable solutions. The same
formula can be used in the reverse way, i.e. it is possible to retrieve the value of the
regularization parameter that guarantees a certain level of good reconstruction. In
other words:

η̂295% = argmin
η2

(

‖P(η2)− 0.95‖2
)

. (3.11)

In this work, the upper bound of regularization parameter is set selecting the maxi-
mum value between η̂295% and s21:

η2max = max(η̂295%, s
2
1) . (3.12)
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3.3.4 Bayesian Iterative Regularization

Before explaining the regularization strategy proposed, it is important to better un-
derstand the reason behind the need of an improvement of this aspect. One of the
requirements of IRLS for obtaining a good final solution is to have reliable, rather
than optimal, solution at each iteration. In fact, the result of each iteration is normal-
ized and introduced as a priori information for the next one, with exception of the last
one that returns the final output of IRLS. Sure enough, the ”shape” of the solution
is more important than the absolute level that is actually used for the convergence
criterion only (see Eq. 3.8). For this reason, at first iterations of IRLS procedure,
it is important to suppress all instabilities, so that the last iteration needs the least
regularization possible, in order to recover the correct source level. These intuitive
considerations can be translated in the principle that over-regularization is preferred
to under-regularization, especially at the beginning of the procedure because the so-
lution is not yet addressed. It is worth to remember that the higher is η2 the less is
the energy of the solution according to Eq. 2.41 or 2.45.

From these considerations, it has been developed an iterative method to estimate
the regularization parameter that naturally matches the characteristics just described.
The name coined here for this procedure is Bayesian Iterative Regularization (BIR).
Indeed, the starting point is the BR, in particular the scenario that allows to include
noise energy in the estimation of regularization parameter using the inverse Gamma
as prior pdf for β2 (Eq. 2.43). The idea is to use the value of η̂2

G-1 to get an estimate

of β̂2
G-1 and insert this value in a new estimate of the regularization parameter until a

convergence is met. The parameter a of inverse Gamma is always set to 0. Instead,
b = β̂2

G-1
(0) = 0 is the initialization that boils down to the simple BR without a priori

information on the noise energy. The procedure to obtain an estimate of regularization
parameter with BIR is the following:

1. Find the minimum of Eq. 2.44 to get η̂2
G-1

(ir) using b = β̂2
G-1

(ir−1).

2. Calculate β̂2
G-1

(ir) from Eq. 2.45.

3. Evaluate ‖η̂2
G-1

(ir)/η̂2
G-1

(ir−1) − 1‖ < δ.

4. If the convergence is met stop the algorithm, otherwise go back to step 1.

The superscript (ir) indicates the iteration of BIR process, that is different from the
current IRLS iteration. The final estimate of regularization parameter obtained from
this strategy is indicated as η̂2BIR. The tolerance used in this work is δ = 10−6, in
other words, the BIR procedure ends when the ratio of consecutive estimate of η2

tends to 1. This algorithm always increases the value of the regularization parameter,
with respect to BR, due to the insertion of a priori information about β2. As rule of
thumb, the minimum increase of η2 is about of a factor 2. Another aspect to consider
is that the Bayesian Joint cost function may return an unbounded value of η2, and
this characteristic still holds when a = 0 and b ≥ 0. This means that there may not
be an upper limit to the increase of regularization parameter with respect to simple
BR. Such a phenomenon, that may occur especially in the early iterations of IRLS,
represents a critical condition, i.e. the inverse problem is not well addressed and
the regularization strategy sees only noise. In this case, the over-regularized solution
helps to keep a ”safe” condition suppressing the instabilities until the problem is
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better addressed. However, the upper bound of regularization parameter is set as Eq.
3.12 to avoid uncontrolled values of η2.

This strategy significantly increases the amount of regularization when the noise
level is under-estimated by BR and reduces the risk of instabilities at each iteration.
When this happens, the convergence of IRLS gets slower, but its reliability is im-
proved. However, the risk of instabilities and/or under-estimated source level are not
completely avoided but drastically reduced. In Section 4.1, a comparison of different
regularization strategies is provided, focusing the attention on quantification accu-
racy. Both Joint and MAP cost functions can be used with BIR, but, where not
explicitly specified, the cost function used with BIR is the Joint approach.

3.4 ESM-IRLS

The Equivalent Source Method developed in this work aims at finding a sparse solution
of the inverse acoustic problem using the IRLS algorithm explained in the previous
section. In this approach, IRLS is applied to linear formulation of direct propagation,
Eq. 2.5. The acoustic transfer matrix G is built after the propagation model is chosen
and the volume of interest is discretized using monopoles. Clearly, also different
type of elementary sources can be used. The regularization strategy adopted is BIR
with the method of dummy columns. The minimum problem size is kept M × M .
Measured data can be used in different forms. Indeed, the generic vector of complex
pressure p can be: the Fourier Transform of time data acquired by microphones,
the averaged Fourier Transform over several snapshots using a phase reference sensor
or a component of CSM obtained by proper decomposition. Since acoustic imaging
techniques commonly utilize the CSM as input data, CSM decomposition is chosen
here. An inverse problem is set for each relevant component and all partial results
are summed together to have the total map. Section 3.6 provide further information
on different CSM decompositions.

3.5 CMF-IRLS

The Covariance Matrix Fitting approach, described in [51], aims at finding the source
field that best approximates the pressure CSM on microphones. Therefore, the solu-
tion is sought in quadratic formulation. In the standard version of CMF, the assump-
tions of uncorrelated sources is done, hence source CSM Q becomes diagonal since
all the cross-terms are set to zero. This allows to easily rewrite Eq. 2.7 as a standard
linear system of equation:

Pc = Gc Aq (3.13)

where Aq = diag(Q), Pc is the CSM of measured pressure in vector form and the
matrix Gc is computed using the terms of direct operator G. The explicit form of
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Eq. 3.13 is:
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(3.14)
where i, j = 1, . . . ,M are the indices of microphones and n = 1, . . . , N is the index
of potential sources. Each term GniG

∗
nj represents the cross-spectrum between mi-

crophones i and j, when the n-th source with unitary power is active. The system
has N unknowns and M2 equations. Since the CSM is hermitian, only the upper (or
lower) triangular part is needed to totally define the problem. Therefore, the number
of equations can be reduced to Mc = (M2 −M)/2 +M when auto-powers are con-
sidered, or to Mc = (M2 − M)/2 if only cross-power terms are used for setting the
problem. The latter formulation is useful to exclude self-noise on microphones and it
is the one utilised in this work. The values Qnn = qnq

∗
n must be real and non-negative

to have the physical meaning of auto-powers. In order to force a real solution, the
system can be solved in the following form:

[

Re(Pc)
Im(Pc)

]

=

[

Re(Gc)
Im(Gc)

]

Aq . (3.15)

This system of equation is real and of size 2Mc ×N , since each complex equation is
split in two real ones. This trick is equivalent to assume that the solution has only a
real part. The IRLS algorithm described in this chapter is used to obtain a solution
to the inverse problem exploiting the quadratic formulation of Eq. 3.15. Since this
formulation forces the solution to be real but not positive, at each IRLS iteration a
positivity constraint is applied and sources having negative power are forced to 0 as in
the Gauss-Seidel procedure of DAMAS [6]. Therefore, sources having negative power
are removed from calculation, in addition to the discard of sources already mentioned
in the IRLS description. The regularization strategy adopted is the same of ESM-
IRLS with the only difference of the minimum system size. In fact, the 2Mc ×M is
sufficient to have enough singular values to have reliable regularization. The IRLS-
CMF can be used to fit the whole CSM, but also the single component extracted from
CSM by a proper decomposition.

3.6 Cross-Spectral Matrix decompositions

In acoustic imaging, pressure data is commonly processed in frequency domain to ob-
tain the CSM. This is required in some contexts, such as aeroacoustic measurements,
where the nature of noise is random. When multiple sources are present at same
time, it is useful to be able to separate different contribution to the acoustic field.
The problem of source separation has been explained and faced in [15]. In this sec-
tion, two methods of coherent source component extraction from CSM are described:
the typical Eigenmode Decomposition and the possibility to exploit the CLEAN-SC
as method to extract spatially coherent components. Other methods can be used to
decompose microphone CSM and used in combination with inverse methods proposed
in this thesis.

36



3.6.1 Eigenmode decomposition

Eigenmode Decomposition (ED) relies on the property of CSM to be Hermitian and
non-negative definite by construction. Therefore, it can be decomposed as

P = Evec Eval E
H
vec , (3.16)

where Evec is a unitary matrix of M orthonormal eigenvectors and Eval is a diagonal
matrix containing the corresponding real positive eigenvalues. It is possible to define
the eigenmode ei as the eigenvector including its amplitude

ei =
√
eval,i evec,i i = 1, . . . ,M (3.17)

where evec,i is the i-th eigenvector and eval,i is the corresponding eigenvalue. Under
the constraint of orthogonality, each eigenvector represents a coherent signal across
the microphones. For this reason Suzuki [50] proposes to solve an inverse problem for
each eigenmode

Gqi = ei i = 1, . . . , C (3.18)

where C ≤ M is the number of most energetic eigenmodes that are considered as
relevant. Under some conditions explained in [15], each real uncorrelated source is
associated to a single eigenmode, otherwise each ED component is a mixture of several
contributions. This is an issue when a sparse solution is sought for each eigenmode
because the hypothesis of sparse source field is not fulfilled. Indeed, the orthogonal
transformation ensures only that the sum of the powers of all components equals the
sum of the powers of all real sources observed at the array location. The choice of
C is complicate task for several reasons. First of all, the number of real sources is
unknown. In any case, it would be difficult to know how many eigenmodes contains
the sources of interest since a real source can be split into several components. In
simple cases with spatially separated sources and with low background noise, the most
energetic eigenvalues are associated to the sources of interest, but, when dealing with
aeroacoustic measurements, the trend of CSM eigenvalues is typically smooth, thus
making difficult to properly set C for each frequency.

3.6.2 CLEAN-SC decomposition

A different method to extract source components from CSM is to exploit the CLEAN-
SC procedure described in the paragraph 2.4 of reference [38]. This approach was
originally developed for deconvolution purposes but here it is exploited as a tool to
decompose CSM and combined with inverse methods for the first time, according
to the author’s knowledge. The iterative procedure extracts the coherent source
components exploiting the fact that side lobes of single source CB map are spatially
coherent with the main lobe. The concept of spatial source coherence is explained in
[36]. The procedure utilized is summarized here (the superscript in the parentheses
refers to the iteration):

1. Initialize the degraded CSM: D
(0)

= P (overline stands for removing diagonal
elements).

2. Begin the new iteration calculating the CB map (the so called ”dirty map”);

the degraded CSM of previous iteration D
(it−1)

is used.
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3. Find the peak location of the current dirty map and identify the source power

P
(it−1)
max and the steering-vector w

(it)
max associated to the peak.

4. Calculate the single coherent source component h(it) solving the following equa-
tion

h(it) =
1

(

1 +w
H (it)
max H(it) w

(it)
max

)1/2

(

D
(it−1)

w
(it)
max

P
(it−1)
max

+H(it)w(it)
max

)

, (3.19)

where H(it) contains the diagonal elements of h(it)hH (it). This is an implicit

expression that can be solved iteratively staring with h(it)= w
(it)
max.

5. Update the degraded CSM

D
(it)

= D
(it−1)− P (it−1)

max h(it)hH (it). (3.20)

6. Go back to step 2 and iterate until the following stop criterion is not satisfied:

‖D(it)‖1≥ ‖D(it−1)‖1 . (3.21)

This procedure was originally developed to create a ”clean map” where only peaks

P
(it−1)
max identified at each iteration (position and level) are considered, thus having

a map without sidelobes. The source location and the overall level can be correctly
reconstructed from clean maps. However, a loss of spatial information happens when
distributed and/or coherent sources are present. In these cases, phase information of
coherent/distributed sources is actually contained in h(it), but it is not exploited to
produce the map. The original idea presented here is to use all information extracted
from the degradation process of CSM to build coherent source components ci similarly
to the eigenmodes:

ci =

√

P
(i−1)
max h(i) i = 1, . . . , IT (3.22)

Gqi = ci i = 1, . . . , C (3.23)

where IT is the number of iterations for each frequency. Similarly to the eigenmode
decomposition approach, an inverse problem is solved for each component (Eq. 3.23)
and the full map is obtained summing all contributes. In this case the number of rel-
evant components C for each frequency is given directly by the number of iterations
IT , which corresponds to the number of components extracted. When sources are
uncorrelated and spatially well separated in CB maps, CLEAN-SC returns distinct
components and each of them contains the information of a single source. Other-
wise, if two uncorrelated sources are not spatially well separated, the peak location
in CB map is detected somewhere in between and the components returned are a
mixture of two contributions. In case of correlated sources, they are contained in a
single component (e.g. source and its reflections, distributed radiators). The CSM
decomposition procedure described above is named here CLEAN-SC Decomposition
(CSCD) to differentiate it from the original deconvolution algorithm.
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3.7 General guidelines on how to set-up an inverse
problem

The success in solving correctly an inverse problem is strictly linked to the choice made
in its definition and then in the solution strategy. As rule of thumb it is possible to
say that the more the hypothesis in the definition of the problem are realistic the
less is the risk of inaccurate solution. The first step is to define the direct problem.
This entails the choice of position and extent of ROI and the definition of the direct
discrete operator G. The chosen ROI should contain the entire object to map and
should be even wider because sound sources near the edge cause artefacts that may
address solution in a wrong direction. In fact, sources inside the ROI, but near its
edge, cause a concentration of energy in the very last layers of equivalent sources
with sharp increase of amplitude. This is particularly evident for low Helmholtz
number and when no a priori information is considered in the problem. The first
iteration of IRLS seeks a simple (Weighted) Least-Squares solution that spreads the
energy all over the equivalent sources. From heuristic point of view, it is possible
to compare this kind of solution to a CB map where the PSF depends on ROI, its
discretization and the a priori information. The ”edge effect” happens because the
border of ROI represents a barrier for splitting the energy among equivalent sources
close to the real one. Consequently, equivalent sources at the edge take much more
energy than others and this result in an evident increase of amplitude. Therefore,
following IRLS iteration are contaminated by these artefacts. A good practice to
deal with this issue is to have a ROI with sufficient extension to contain the object
and use an aperture function in W0 that strongly penalise potential sources near the
edges. A similar effect is generated by sources outside the ROI, therefore when it is
possible, it is better to include the zones of all active sound sources in the ROI. As
regard the direct operator G, the first choice is the type of elementary sources and the
propagation law. In addition, it is possible to consider any effect such as propagation
in a flow field, scattering effects, reflections and others. Also discretization of ROI
plays a crucial role. Indeed, the more is the density of equivalent sources the finer
is the accuracy achievable, but, on the other hand, as the problem size increases
the major is the ill-posedness of inverse problems. When dealing with volumetric
imaging, the number of equivalent sources easily becomes huge (105−106), even with
discretization of moderate spatial resolution. Therefore, two conflicting needs occurs:
size of ROI large enough to avoid edge effects and the huge problem size when the
spatial density of equivalent sources increases. A good meeting point between this
two needs is the following: at low Helmholtz numbers it is convenient to have bigger
ROI and coarse grid of potential sources. The former reduces edge effects, while
the latter keeps the ill-posedness under control, since an ultra-fine grid of potential
sources may be counter-productive for large wavelength. With the increase of the
Helmholtz number, i.e. with smaller wavelength, ROI can be made smaller, while the
density of potential sources can be increased to match the reduction of wavelength in
order to keep the problem size under control. In any case, a priori spatial information,
or aperture function, reduces the ill-posedness of the problem and helps the source
reconstruction task, even with coarse information that is usually available (e.g. CB
maps). The more focused on real sources is the a priori information, the more accurate
is the result obtained.
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Chapter 4

Application and validation on
simulated experiments

4.1 Test cases description and algorithm settings

Simulated experiments are used to evaluate localization and quantification capability
of the methods proposed in this thesis. In order to ease the readability of results,
the volumetric problem with a planar array is reduced to a planar problem with a
linear array. Acoustic maps of two regions of interest (ROI) are provided: maps on
a line of monopoles and maps on a plane which extends in orthogonal direction with
respect to the array line. The former provides the same problems of typical acoustic
mapping, the latter provides the same issues of volumetric mapping. A non-uniform
array layout is designed giving 31 equally spaced numbers in the range [−1, 1] to the
function arcsin(·)/π. Microphone coordinates obtained in such a way are scaled by the
array aperture D, that has been chosen to be equal to 1 m for these simulations. The
IRLS procedure discussed in the previous section allows different settings that lead
to different characteristics of results. The norm exponent p and a priori information
are the ”user-defined” inputs that mostly affect the final result. As already said, the
strength of sparsity constraint is given by the particular p chosen. Three meaningful
values of p are tested:

• p = 2: no sparsity constraint, simple (Weighted) Least-Square solution;

• p = 1: maximum sparsity constraint achievable in case of convex optimization;

• p = 0: maximum sparsity constraint, non-convex optimization.

Also the choice of W0 heavily affects the final result because it allows to include any
spatial information on source distribution that the user have a priori. Even though
several choices can be done, only two are tested in this work:

• W0 = I: no a priori information introduced;

• W0 = CB map: robust and smooth information are introduced.

Conventional Beamforming maps are calculated using Eq. 2.11 on same pressure data
of each inverse problem. In case of ESM, pressure data is always a single component
resulting from CSM decomposition, instead, in case of CMF may be also the whole
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Method Pressure decomposition p W0

ESM-IRLS
ED

0, 1, 2 none , CB
CSCD

CMF-IRLS
none

0, 1, 2 none , CBED
CSCD

Table 4.1: Algorithm settings applied to all Test Cases

x (m) y (m) step (m) N
1D [−0.5, 0.5] 1.0 0.01 101
2D [−0.5, 0.5] [0.1, 2.0] 0.01 19291

Table 4.2: Regions of interest and its discretization used for Test Cases

CSM. The a priori information injected in ESM-IRLS is square root of source au-
topowers estimated with CB, while in CMF-IRLS source autopowers are used. The
threshold THRdB and the convergence criterion tolerance are set to the default values
already defined in this chapter. The estimate of regularization parameter is obtained
here exploiting BIR with the trick of dummy columns. The analysis is conducted here
in terms of Hemlholtz Number (He), that is a non-dimensional number proportional
to frequency and normalized by the array aperture (He = D/λ = Df/c). In such
way, it is possible to generalize results to any array size. The analysis is conducted
in the range from He = 2 to He = 16.

Simulations of three Test Cases (TC) have been created with Acoular (Acoustic
testing and source mapping software) that is an open source object-oriented Python
package for microphone array data processing. Simulations are obtained using free-
field propagation with PointSource class to simulate monopoles andWNoiseGenerator
class to generate white noise as source signals. Further information about Acoular are
available in [49]. The speed of sound is c = 343 m/s and the sampling frequency is set
to provide an Helmholtz number equal toHe = 64 (21952 Hz). Length of simulation is
40 s. Microphone CSM is estimated with Welch’s method using 1024 samples as block
size, an overlap of 50% and Hanning window. This leads to a frequency resolution
of ∆f = 21.4375 Hz corresponding to ∆He = 0.0625. The first test case (TC1,
Fig.4.1(a)) is a monopole at 1 m of distance from the array that emits white noise.
Source level is 1 Pa rms at 1 m distance from the monopole. The other two cases
(TC2 and TC3, Fig.4.1(b)) consist of 2 monopoles emitting respectively uncorrelated
and correlated white noise. Even in these cases, source level for both sources is 1
Pa rms at 1 m distance from the monopoles. Table 4.2 summarizes the information
about two different regions of interest discretized with regular grids of monopoles. It
is worth noticing the increase in the order of magnitude of problem size between 1D
and 2D problem, since it reflects the same issue encountered switching from surface to
volume mapping in common applications. Microphone locations (black dots), source
positions (blue diamonds) and regions of interest are depicted in Fig. 4.1, where the
black rectangle represents 2D problem and the green line represent 1D problem.

41



(a) Test Case 1 - One monopole (b) Test Case 2 and 3 - Two monopoles

Figure 4.1: Test Case setups. Black dots: microphone locations. Blue diamonds:
source positions. Green line: 1D ROI. Black rectangle: 2D ROI.

4.2 Analysis of results

The three test cases just described, allow to analyse the behaviour of the methods
presented in this thesis in controlled conditions. The analysis is mainly focused on the
difference in source reconstruction between 1D and 2D ROI, remembering that the
former is representative of classic planar mapping with a planar array while the latter
is representative of volumetric mapping with a planar array. Results are analysed
in terms of source localization and quantification, in particular, how these aspects
are influenced by different parameters. All maps show the output of these methods
obtained with the acoustic transfer function of Eq. 3.2, i.e. pressure induced at the
reference point by a monopole in a generic point of the region of interest. In this case,
the reference point is the array centre, that is the origin of coordinate system r0 = 0.
Dynamics of maps shown here is fixed at 30 dB. Maps of 1D ROI show the results
for all spectral lines in the range He = [2, 16]. While for 2D ROI, maps of only 4
spectral lines are shown, i.e. He = 2, 4, 8, 16. Exact source positions are depicted on
maps by means of green vertical dotted lines for 1D maps and blue diamonds for 2D
maps. All maps and source spectra obtained from maps are depicted in Appendix A
to keep the readability of the text, because of the large number of figures.

First simulated experiment (TC1) aims at showing results of source reconstruc-
tion with inverse methods when only one monopole is active and no noise is present.
In such simple and ideal case, both CSM decomposition methods used in this work
(ED and CSCD) return components with negligible difference, hence the same map
is obtained as solution of inverse problem. For this reason, results shown are repre-
sentative of both decompositions. Instead, CMF-IRLS is applied to whole CSM since
any separation of source components is needed in this scenario. The same happens
in TC3: the sources emit exactly the same signal and again only one relevant com-
ponent is available. Contrarily, in the second experiment (TC2), two uncorrelated
sources are active at same time, therefore, some difference between ED and CSCD
are experienced. This experiment makes it possible to evaluate the effect of CSM
decomposition on results obtained with ESM-IRLS and CMF-IRLS. The two most
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energetic components are considered as relevant with both decompositions. Total
map for each spectral line is the energetic sum of inverse problem solutions of all
components.

4.2.1 Localization ability

All maps show the huge advantage in enforcing sparsity of solution both in 1D and
2D case. In fact, L2 norm solution minimization returns a map similar to those
obtained with beamformers, therefore, even with a single point source, maps have lots
of artefacts and poor dynamics. Besides, minimum L2 norm solutions may produce
the edge effect previously described, especially at low frequencies. This effect can be
reduced broadening ROI or with a proper spatial window as aperture function (this is
partially done by CB map). However, when sparse solution is sought, the most part
of artefacts disappears. If the constraint is strong enough, exactly a single source is
retrieved from solution of inverse problem in TC1. For example, in 1D case (Figs. A.1
and A.2), it can be seen that for p = 0 a single monopole is reconstructed in the whole
frequency range analysed, while for p = 1, this still depends on frequency and method.
In 2D case, sparsity constraint is mandatory to reconstruct the correct source-array
distance, since the L2 minimum norm returns a lobe that may not have its maximum
in the correct location, especially at low frequencies. A priori information introduced
by CB map helps the source reconstruction process. This is much more effective at
high frequency, where CB has finer resolution and wider dynamics. In spite of this,
there are some benefits even in the lower frequency range. At He = 2, ESM-IRLS
necessarily needs sparsity constraint and a priori information to retrieve the correct
source position. Indeed, when the problem is strongly ill-conditioned, great part of
energy in the solution may be concentrated near the array, as happens in Fig. A.3.
Instead, in the same conditions, CMF-IRLS can recover the exact source position
even without a priori information (Fig. A.4). As frequency increases, these effects
tend to be less relevant since the problem is better conditioned (Figs. A.9 and A.10).

When two uncorrelated sources are present (TC2), in the low frequency range
(He < 6), both decomposition have problems in separating components such that
correct source positions are not retrieved. However, this issue is related only to CSM
decomposition, indeed, when CMF is applied to whole CSM, it returns good source
localization both in 1D (Fig. A.17) and 2D mapping (Fig. A.22). A particular
phenomenon happens in with ESM-IRLS (Figs. A.15 and A.16). In 1D mapping
with CB as a priori and p = 0, hence in the most simple case, some spectral lines
have hugely over-estimated source level, even if the accuracy of localization is satis-
fying. This might occur when the problem is well addressed and low level of noise is
present in data, indeed, the regularization mechanism under-estimates the amount of
regularization needed, but non-ideal component separation still may cause numerical
instabilities. When two correlated sources are present (TC3) and no sparsity con-
straint is imposed, they are seen as a unique radiator at low frequencies and start to
be separated at different Helmholtz number depending on method and settings. In
1D condition, sparse solutions obtained with ESM-IRLS show two separate sources
in the whole range analysed (Fig. A.50). Instead, CMF-IRLS has more difficulty
especially in the low frequency range, since it happens that they are reconstructed as
two sources closer each other than their real distance (Fig. A.51). Major problems
experienced with CMF-IRLS in this test case may be related to the hypothesis of
uncorrelated sources made in the problem definition. In 2D mapping, both inverse
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methods shows more difficulty in source localization of these two correlated sources.

4.2.2 Quantification ability

Reconstructed source spectra (RSS) are obtained from integration of maps over a cir-
cle of 0.1 m radius around the exact source position. The error between exact source
spectra (ESS) and RSS is reported in terms of difference in dB. Source quantifica-
tion again shows the need of sparsity constraint to obtain good accuracy in strength
estimation. In fact, independently on 1D or 2D problem, L2 norm solution minimiza-
tion with ESM approach leads to a severe underestimation of source level due to the
strong directivity pattern toward the array that have the equivalent sources when
they are re-propagated. This effect is well explained in [43]. With CMF approach,
L2 norm solution minimization also leads to incorrect estimation of source strength.
In the latter, no information about phase are obtained, but only about amplitude,
therefore, nothing about directivity pattern can be said. In case of ESM-IRLS ap-
proach, L0 norm generally produces the best results in the whole frequency range,
while L1 norm behaviour varies with the frequency, in fact, good strength estimation
is obtained only at higher frequencies where a sparse solution is reached even with
weak sparsity constraint. Switching from 1D to 2D ROI, ESM-IRLS suffer a decrease
of performance in source quantification. Results obtained with CMF-IRLS (L0 and
L1 norm minimization) are the most reliable and accurate in terms of source strength
estimation. The decrease of performance is less evident when ROI switches from 1D
to 2D, but the main issues are mostly related to CSM decomposition and correlated
sources.

Instabilities experienced in source strength estimation can be classified in two cat-
egories: wrong source localization or regularization issues. When the detected source
position is outside the zone of integration, RSS is null or under-estimated for these
spectral lines. The other aspect is the regularization that is as crucial as challenging
task. In fact, a degradation of performance in quantification may be experienced
when the degree of difficulty of the problem increases. For example: 1D vs 2D ROI,
single vs multiple sources or uncorrelated vs correlated sources. Some steps or peaks
in the error of RSS are present. Peaks in RSS are due to under-regularization that
does not sufficiently suppress instabilities. Steps are usually generated by significant
difference in the regularization process between adjacent spectral lines. These test
cases are particularly challenging for Bayesian approach because of the total absence
of noise, hence there is an high risk of under-estimated regularization parameter even
with BIR.

4.2.3 Effect of different regularization strategies on quantifi-
cation

As already mentioned, the IRLS algorithm allows to include different regularization
mechanism that influence the final result in a non-negligible way. The effect of reg-
ularization on result is not easily predictable since IRLS procedure involves several
parameters and inputs that are really different among the multitude of practical con-
figurations. However, general consideration can be made, by means of an example,
about the effect of regularization on sound source quantification. Two different reg-
ularization approaches are described in this work: BR and BIR; in combination with
them, two types of cost functions can be used: Joint and MAP. Four combinations
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can be obtained, that become eight considering the trick of dummy columns to make
the regularization process more stable. The limit of η2 is fixed by Eq. 3.12. The
comparison between regularization strategies is made applying ESM-IRLS to TC1 in
case of 2D mapping. In all cases, p = 0 and CB map as a priori information are
used. From the point of view of localization ability, all these regularization strategies
provide comparable and satisfying results. Therefore, only RSS vs ESS are depicted
in Fig. 4.2.

The first consideration is that MAP cost function generally produces over-estimated
and unstable source spectra. This is symptom of under-regularization and amplifica-
tion of small instabilities in the inversion process. The only exception is BIR-MAP
combination that produces an accurate source spectrum. On the contrary, Joint cost
function tends to over-regularize the solution. The worst case is BIR-Joint combi-
nation that produces an under estimation of more than 10 dB because of the non-
bounded estimation of η2 that tends to η2max. The most stable case is BIR-Joint with
dummy columns, even if it gives a constant offset of about -1.5 dB. Hence, this ex-
ample suggest BIR-MAP and BIR-Joint with dummy columns as the best candidates
for regularization strategy in IRLS. Another test conducted compares the robustness
to noise of these two regularization strategies. The conditions are exactly the same
of previous test but complex noise is added to pressure vector used in the inverse
problem. Complex noise is generated using Eq. 3.10 for two signal-to-noise ratios: 20
and 10 dB.
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(h) BIR with DC - MAP

Figure 4.2: Test Case 1 (2D) - Errors in source spectrum reconstruction with ESM-
IRLS (p = 0 and W0 = CB) using different regularization strategies. Red line: target
error. Black line: error of reconstructed spectrum.
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(a) BIR with DC - Joint - SNR 20 dB
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(b) BIR - MAP - SNR 20 dB
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(c) BIR with DC - Joint - SNR 10 dB
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(d) BIR - MAP - SNR 10 dB

Figure 4.3: Test Case 1 (2D) - Errors in source spectrum reconstruction with ESM-
IRLS (p = 0 and W0 = CB) with different levels of noise. Red line: target error.
Black line: error of reconstructed spectrum.

The second test shows a clear trend: BIR-Joint with dummy columns produces
much more stable and reliable estimation of source strength. Indeed, it outperforms
BIR-MAP strategy and the offset experienced in noise-free condition disappears. Re-
minding also at the theoretical discussion about regularization strategies, it is possible
to conclude that BIR with Joint cost function and dummy columns perfectly matches
the needs of IRLS. For these reasons, it has been adopted in this work for ESM-IRLS
and CMF-IRLS. The effect of different regularization strategies on CMF-IRLS is not
showed here since results in Appendix A widely demonstrate the accuracy of quan-
tification achieved with the same regularization mechanism chosen for ESM-IRLS.

4.2.4 Applicability to volumetric acoustic imaging

From the analysis of these results, it is possible to conclude that inverse methods pro-
posed in this thesis can deal successfully with volumetric acoustic mapping. Degra-
dation of performance is experienced, turning from 1D to 2D (i.e. from planar to
volumetric) mapping, in the low frequency range. The effectiveness of methods de-
pends on different factors. Surely, one of the most important is frequency of analysis,
or better the Helmholtz number. As rule of thumb it is possible to claim that He > 8
is a condition to fulfil to have reliable maps in most applications. When satisfied,
these methods provide good accuracy in source localization, while some instabilities
may remain in source quantification. For He < 8, the results are not always satisfy-
ing, especially when CSM is decomposed in components. Indeed, in these conditions,
better results are achieved with CMF-IRLS applied to whole CSM. Two approaches
proposed, ESM and CMF, have different advantages and drawbacks. On one hand,
ESM-IRLS has better behaviour with correlated sources and provide also information
about phase. On the other hand, CMF-IRLS works better in the low frequency range
and provide more reliable strength estimation.
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Chapter 5

Results of application on
experimental data

In this chapter, experimental applications of volumetric mapping with inverse meth-
ods are shown. Both the cases of study shown in the following sections are typical
measurement setups for aeroacoustic applications. Sound sources generated by the
interaction of an objects with air flow are not bounded to be on the object surface,
hence this kind of applications benefits of volumetric mapping. The first experimen-
tal test is an airfoil placed in an open jet, where pressure data are acquired with a
single planar array. This application represents, from the author’s point of view, a
breakthrough in acoustic source mapping techniques. Indeed, it will be shown that
much more information can be extracted from volumetric maps without changing the
hardware and the experimental setup. The second application of inverse methods
for volumetric acoustic mapping is on 1/7th scale aircraft model placed in a large
Low Speed Wind Tunnel. In this typical wind tunnel setup, two arrays looking at
the model from different points of view are present. Acoustic mapping techniques
presented in this thesis allow to combine data of multiple arrays as it were a unique
array without any change in the algorithm. Therefore, the experimental configuration
gives the opportunity to study drawbacks and advantages in using a single array or
multiple planar arrays combined together.

5.1 Volumetric mapping with single planar array

The application here is an experiment conducted in the aeroacoustic wind tunnel at
Brandenburg University of Technology [25]. A NACA 0012 airfoil is positioned in an
open jet of diameter 0.2 m and core velocity 50 m/s. The airfoil has a span of 0.28
m and a chord length of 0.25 m. The boundary layer tripping was realized with a 2.5
mm anti-slip tape applied at 10% of the chord, both on the suction and the pressure
side. The array utilized has 56 microphones and a diameter of 1.3 m; it was placed
0.715 m above the airfoil, outside the flow. Figure 5.1 shows the position of the airfoil
and the nozzle with respect to the array. Data were sampled at 51200 samples/s
for 40 s and the CSM is estimated averaging 4000 blocks of 1024 samples (overlap
50 %) using Hanning window. The frequency resolution obtained is 50 Hz. Sound
propagation through the flow field is calculated using Acoular OpenJet environment
class and virtual propagation distances, corresponding to actual travel time through
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Algorithm p CSM decomposition W0

ESM-IRLS 0
ED

CB map
CSCD

CMF-IRLS
0

ED
CSCD

1 none

Table 5.1: Algorithm settings used for volumetric mapping with single planar array.

(a) 2D - Planar problem (b) 3D - Volumetric problem

Figure 5.1: Measurement setup and regions of interest.

the flow field, are used in Eq. 3.2 instead of geometric ones. Reference point for
acoustic propagator is the coordinate system origin r0 = 0 that coincides with the
array centre.

A comparison between 2D planar mapping and 3D volumetric mapping is pre-
sented here. The objective is to show advantages and issues encountered in practical
applications. Table 5.1 summarizes algorithm settings used in this application on ex-
perimental data. Both ED and CSCD are used in combination with ESM and CMF,
enforcing the maximum sparsity with L0 norm minimization. The number of eigen-
modes is empirically set to C = 20 for all frequency bands of interest. Instead, the
number of iterations of CSCD (i.e. the maximum number of components) is limited
to be C ≤ 20 for each frequency within the bands analysed. Also an approach without
decomposition is tested: CMF-IRLS with p = 1 applied to whole CSM with the aim
of minimizing the total source energy. In all cases, CB map is introduced as a priori.
Maps are produced for three one-third octave bands: 2000 Hz, 4000 Hz and 8000
Hz. These bands correspond approximately to following Helmholtz number ranges:
He ≈ [6.7, 8.2], He ≈ [13.5, 16.7] and He ≈ [26.8, 33.5]. This means that only the
first band might have issues in source identification for volumetric case, while planar
mapping should not suffer any problem related to frequency range. All maps in this
section are depicted with a dynamic range of 25 dB.
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x (m) y (m) z (m) step (m) N

Plane [−0.400, 0.300] [−0.400, 0.400] −0.715
0.05 255
0.01 5751

Volume [−0.400, 0.300] [−0.400, 0.400] [−1.015,−0.415]
0.05 3315
0.01 350811

Table 5.2: Regions of interest and their discretization with regular grid of monopoles
used for airfoil noise mapping.

5.1.1 Maps on regular grids

The commonest choice is to map the region of interest using a regular grid. Table 5.2
reports ROI of planar and volumetric mapping. It is worth noticing that the problem
size increases considerably from 2D to 3D. Two different steps are used and tested
for regular grids: 1 cm and 5 cm. These maps show the evident difference between
volumetric acoustic mapping and the classic approach, indeed, some sources are lo-
cated on the chord plane but others are located outside. As example, some volumetric
maps are depicted from different views to underline the difference between 2D and 3D
mapping. Figures 5.3(b),5.7(b) and 5.11(b) can be compared with top and side views
of their 3D analogous, i.e. Figs 5.14,5.15 and 5.16. Common planar/surface mapping
approach forces the mapped noise sources to be located on the chosen surface, thus
giving misleading results. Exploiting methods described in this thesis, more spatial
information can be extracted from volumetric maps, at the only cost of re-processing
data. In the lowest band, not always clear structure can be recognized on volumetric
maps, while clear source identification can be done for higher bands. As shown on
simulated experiments in previous chapter, He = 8 represents somehow a practical
limit of these techniques at lower frequency, when single planar array is used for vol-
umetric applications. In volumetric mapping, CMF-IRLS returns better maps, while
in 2D mapping both methods have comparable results. Difference between ED and
CSCD is also well evident from maps shown. Decomposition based on CLEAN-SC
makes the inverse methods capable to suppress lots of artefacts due to background
noise present in pressure data. Good results are also obtained with CMF-IRLS ap-
plied to whole CSM with p = 1, but in this case, sources having lower level than the
principal one may not be detected. The drawback CMF-IRLS with CSM decomposi-
tion, is that it is computationally demanding given the problem size. For this reason
can be useful a first quick rough estimation of sound source location on a coarse grid
(e.g. 5 cm step in this application). This information can be used to better address
the problem and get similar results of those obtained with fine grid resolution, but
with less computational effort. In the next section non-uniform discretization of ROI
is tested.

50



(a) ED (b) CSCD

Figure 5.2: 2000 Hz one-third octave band - 2D mapping on regular grid with 1 cm
step - ESM-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.3: 2000 Hz one-third octave band - 2D mapping on regular grid with 1 cm
step - CMF-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.4: 2000 Hz one-third octave band - 3D mapping on regular grid with 1 cm
step - ESM-IRLS with p = 0.
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(a) ED (b) CSCD

Figure 5.5: 2000 Hz one-third octave band - 3D mapping on regular grid with 1 cm
step - CMF-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.6: 4000 Hz one-third octave band - 2D mapping on regular grid with 1 cm
step - ESM-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.7: 4000 Hz one-third octave band - 2D mapping on regular grid with 1 cm
step - CMF-IRLS with p = 0.
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(a) ED (b) CSCD

Figure 5.8: 4000 Hz one-third octave band - 3D mapping on regular grid with 1 cm
step - ESM-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.9: 4000 Hz one-third octave band - 3D mapping on regular grid with 1 cm
step - CMF-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.10: 8000 Hz one-third octave band - 2D mapping on regular grid with 1 cm
step - ESM-IRLS with p = 0.

53



(a) ED (b) CSCD

Figure 5.11: 8000 Hz one-third octave band - 2D mapping on regular grid with 1 cm
step - CMF-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.12: 8000 Hz one-third octave band - 3D mapping on regular grid with 1 cm
step - ESM-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.13: 8000 Hz one-third octave band - 3D mapping on regular grid with 1 cm
step - CMF-IRLS with p = 0.
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(a) Top view (b) Side view

Figure 5.14: 2000 Hz one-third octave band - Different views of 3D mapping on regular
grid with 1 cm step - CMF-IRLS with p = 0 and CSCD.

(a) Top view (b) Side view

Figure 5.15: 4000 Hz one-third octave band - Different views of 3D mapping on regular
grid with 1 cm step - CMF-IRLS with p = 0 and CSCD.

(a) Top view (b) Side view

Figure 5.16: 8000 Hz one-third octave band - Different views of 3D mapping on regular
grid with 1 cm step - CMF-IRLS with p = 0 and CSCD.
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(a) 2D (b) 3D

Figure 5.17: 2000 Hz one-third octave band - mapping on regular grid with 1 cm step
- CMF-IRLS on whole CSM with p = 1.

(a) 2D (b) 3D

Figure 5.18: 4000 Hz one-third octave band - mapping on regular grid with 1 cm step
- CMF-IRLS on whole CSM with p = 1.

(a) 2D (b) 3D

Figure 5.19: 8000 Hz one-third octave band - mapping on regular grid with 1 cm step
- CMF-IRLS on whole CSM with p = 1.
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(a) ED (b) CSCD

Figure 5.20: 2000 Hz one-third octave band - 2D mapping on regular grid with 5 cm
step - ESM-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.21: 2000 Hz one-third octave band - 2D mapping on regular grid with 5 cm
step - CMF-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.22: 2000 Hz one-third octave band - 3D mapping on regular grid with 5 cm
step - ESM-IRLS with p = 0.
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(a) ED (b) CSCD

Figure 5.23: 2000 Hz one-third octave band - 3D mapping on regular grid with 5 cm
step - CMF-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.24: 4000 Hz one-third octave band - 2D mapping on regular grid with 5 cm
step - ESM-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.25: 4000 Hz one-third octave band - 2D mapping on regular grid with 5 cm
step - CMF-IRLS with p = 0.
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(a) ED (b) CSCD

Figure 5.26: 4000 Hz one-third octave band - 3D mapping on regular grid with 5 cm
step - ESM-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.27: 4000 Hz one-third octave band - 3D mapping on regular grid with 5 cm
step - CMF-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.28: 8000 Hz one-third octave band - 2D mapping on regular grid with 5 cm
step - ESM-IRLS with p = 0.
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(a) ED (b) CSCD

Figure 5.29: 8000 Hz one-third octave band - 2D mapping on regular grid with 5 cm
step - CMF-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.30: 8000 Hz one-third octave band - 3D mapping on regular grid with 5 cm
step - ESM-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.31: 8000 Hz one-third octave band - 3D mapping on regular grid with 5 cm
step - CMF-IRLS with p = 0.

60



(a) 2D mapping on regular grid with 5 cm
step

(b) 3D mapping on regular grid with 5 cm
step

Figure 5.32: 2000 Hz one-third octave band - CMF-IRLS on whole CSM with p = 1.

(a) 2D mapping on regular grid with 5 cm
step

(b) 3D mapping on regular grid with 5 cm
step

Figure 5.33: 4000 Hz one-third octave band - CMF-IRLS on whole CSM with p = 1.

(a) 2D mapping on regular grid with 5 cm
step

(b) 3D mapping on regular grid with 5 cm
step

Figure 5.34: 8000 Hz one-third octave band - CMF-IRLS on whole CSM with p = 1.
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5.1.2 Maps on non-uniform mesh

In order to reduce degrees of freedom of source space, a non uniform mesh of ROI
can be used. The idea is to have dense distribution of equivalent sources where it is
necessary and sparse elsewhere. For this application, the mesh utilized is made by two
regular grids with different steps, but any kind of mesh can be used (e.g. tetrahedral
mesh). Figure 5.35 depicts two zones that enclose the airfoil, while Table 5.3 reports
the boundaries and the steps used to obtain grids with different resolutions for outer
and inner regions. It is worth noticing the dramatic reduction of number of points
with respect grids (2D and 3D) used in the previous section, when 1 cm step has been
used for regular grid. Figure 5.36 depicts the discretization of planar ROI made with
a grid having two different steps for inner and outer regions. This section aims at
showing how this simple strategy allows to achieve results similar to those obtained
with fine regular grid, but with smaller problem size and all benefits that comes from
it. Since potential sources are not uniformly distributed over space, it happens that a
sound source in a zone dense of equivalent sources is mapped into several of them, on
the contrary in sparse zone, it would be mapped in few of them. This cause the energy
of a sound source to be split into few or several equivalent sources depending on the
zone. However, this does not need any change in the algorithm, but it can be an issue
for localization purposes. To overcome this issue, maps can be visualized in terms
of strength per volume, in this way density of equivalent sources is compensated.
Normalization of solution by volumes/areas related to each potential sources is done
using volumes/areas of Voronoi cells [2] of non-uniform mesh. Maps depicted in Figs.
from 5.37 to 5.51 show each result as is, while maps in Figs. from 5.52 to 5.66 show
the effect of compensation of non-uniform mesh. The latter are also normalized by
its maximum, since are intended for localization purpose only.

(a) 2D - Planar problem (b) 3D - Volumetric problem

Figure 5.35: Boundaries of different regions for non uniform meshing.
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x (m) y (m) z (m) step (m) N

Plane
[−0.400, 0.300] [−0.400, 0.400] −0.715

0.05
2149

[−0.300, 0.150] [−0.240, 0.240] 0.01

Volume
[−0.400, 0.300] [−0.400, 0.400] [−1.015,−0.415] 0.05

50199
[−0.300, 0.150] [−0.240, 0.240] [−0.815,−0.615] 0.01

Table 5.3: Regions of interest and their discretization for non uniform meshing used
for airfoil noise mapping. Both for plane and volume, first row is the outer region and
second row is the inner region. The total number of points is N .

(a)

Figure 5.36: Double step grid in case of 2D ROI meshing.

(a) ED (b) CSCD

Figure 5.37: 2000 Hz one-third octave band - 2D mapping on double step grid -
ESM-IRLS with p = 0.
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(a) ED (b) CSCD

Figure 5.38: 2000 Hz one-third octave band - 2D mapping on double step grid -
CMF-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.39: 2000 Hz one-third octave band - 3D mapping on double step grid -
ESM-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.40: 2000 Hz one-third octave band - 3D mapping on double step grid -
CMF-IRLS with p = 0.

64



(a) ED (b) CSCD

Figure 5.41: 4000 Hz one-third octave band - 2D mapping on double step grid -
ESM-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.42: 4000 Hz one-third octave band - 2D mapping on double step grid -
CMF-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.43: 4000 Hz one-third octave band - 3D mapping on double step grid -
ESM-IRLS with p = 0.
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(a) ED (b) CSCD

Figure 5.44: 4000 Hz one-third octave band - 3D mapping on double step grid -
CMF-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.45: 8000 Hz one-third octave band - 2D mapping on double step grid -
ESM-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.46: 8000 Hz one-third octave band - 2D mapping on double step grid -
CMF-IRLS with p = 0.
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(a) ED (b) CSCD

Figure 5.47: 8000 Hz one-third octave band - 3D mapping on double step grid -
ESM-IRLS with p = 0.

(a) ED (b) CSCD

Figure 5.48: 8000 Hz one-third octave band - 3D mapping on double step grid -
CMF-IRLS with p = 0.

(a) 2D (b) 3D

Figure 5.49: 2000 Hz one-third octave band - mapping on double step grid - CMF-
IRLS on whole CSM with p = 1.
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(a) 2D (b) 3D

Figure 5.50: 4000 Hz one-third octave band - mapping on double step grid - CMF-
IRLS on whole CSM with p = 1.

(a) 2D (b) 3D

Figure 5.51: 8000 Hz one-third octave band - mapping on double step grid - CMF-
IRLS on whole CSM with p = 1.

(a) ED (b) CSCD

Figure 5.52: 2000 Hz one-third octave band - 2D mapping on double step grid -
ESM-IRLS with p = 0 - Compensation of non-uniform mesh.
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(a) ED (b) CSCD

Figure 5.53: 2000 Hz one-third octave band - 2D mapping on double step grid -
CMF-IRLS with p = 0 - Compensation of non-uniform mesh.

(a) ED (b) CSCD

Figure 5.54: 2000 Hz one-third octave band - 3D mapping on double step grid -
ESM-IRLS with p = 0 - Compensation of non-uniform mesh.

(a) ED (b) CSCD

Figure 5.55: 2000 Hz one-third octave band - 3D mapping on double step grid -
CMF-IRLS with p = 0 - Compensation of non-uniform mesh.
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(a) ED (b) CSCD

Figure 5.56: 4000 Hz one-third octave band - 2D mapping on double step grid -
ESM-IRLS with p = 0 - Compensation of non-uniform mesh.

(a) ED (b) CSCD

Figure 5.57: 4000 Hz one-third octave band - 2D mapping on double step grid -
CMF-IRLS with p = 0 - Compensation of non-uniform mesh.

(a) ED (b) CSCD

Figure 5.58: 4000 Hz one-third octave band - 3D mapping on double step grid -
ESM-IRLS with p = 0 - Compensation of non-uniform mesh.
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(a) ED (b) CSCD

Figure 5.59: 4000 Hz one-third octave band - 3D mapping on double step grid -
CMF-IRLS with p = 0 - Compensation of non-uniform mesh.

(a) ED (b) CSCD

Figure 5.60: 8000 Hz one-third octave band - 2D mapping on double step grid -
ESM-IRLS with p = 0 - Compensation of non-uniform mesh.

(a) ED (b) CSCD

Figure 5.61: 8000 Hz one-third octave band - 2D mapping on double step grid -
CMF-IRLS with p = 0 - Compensation of non-uniform mesh.
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(a) ED (b) CSCD

Figure 5.62: 8000 Hz one-third octave band - 3D mapping on double step grid -
ESM-IRLS with p = 0 - Compensation of non-uniform mesh.

(a) ED (b) CSCD

Figure 5.63: 8000 Hz one-third octave band - 3D mapping on double step grid -
CMF-IRLS with p = 0 - Compensation of non-uniform mesh.

(a) 2D (b) 3D

Figure 5.64: 2000 Hz one-third octave band - mapping on double step grid - CMF-
IRLS on whole CSM with p = 1 - Compensation of non-uniform mesh.
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(a) 2D (b) 3D

Figure 5.65: 4000 Hz one-third octave band - mapping on double step grid - CMF-
IRLS on whole CSM with p = 1 - Compensation of non-uniform mesh.

(a) 2D (b) 3D

Figure 5.66: 8000 Hz one-third octave band - mapping on double step grid - CMF-
IRLS on whole CSM with p = 1 - Compensation of non-uniform mesh.

These maps show clearly that non-uniform mesh allows to achieve results equiva-
lent to those obtained with full fine regular grid, but with less computational demand.
Only in few cases (mostly 3D), there is a relevant quantity of energy outside the inner
box. This means, on one hand, that the main source of noise is the airfoil and, on
the other hand, that the algorithms manage to suppress background noise. Even in
this case, it is particularly evident the difference between ED and CSCD.

5.1.3 Computation time

It is useful to analyse here the time needed for computation of maps in all cases
just shown. Since the same computer were used to calculate the solutions of inverse
problems, differences in computation time depend only on the algorithm, its settings
and size of the problem. Following tables reports computation time for planar and
volumetric mapping. These values consider only net computation time attributed to
the algorithm and not to other operations (e.g. loading data, CSM computation or
saving data). In both cases, maps on regular grid with 1 cm step are considered as
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reference cases (Tables 5.4 for 2D and 5.7 for 3D) and expressed in seconds. For
the other discretizations of ROI, it is reported the ratio with the value of analogous
reference case. The number of spectral lines is different for each one-third octave
band: 2000 Hz band contains 9 spectral lines, 4000 Hz band contains 18 spectral lines
and 8000 Hz band contains 37 spectra lines.

Algorithm Settings 2000 Hz 4000 Hz 8000 Hz

ESM-IRLS p = 0
ED 73 153 351

CSCD 41 89 185

CMF-IRLS
p = 0

ED 3649 7506 15932
CSCD 2545 5592 11378

p = 1 none 480 1069 1264

Table 5.4: Calculation time for planar maps on regular grid with 1 cm step (values
in seconds used as reference for 2D).

Algorithm Settings 2000 Hz 4000 Hz 8000 Hz

ESM-IRLS p = 0
ED 0.494 0.500 0.411

CSCD 0.565 0.524 0.296

CMF-IRLS
p = 0

ED 0.014 0.017 0.016
CSCD 0.015 0.015 0.009

p = 1 none 0.018 0.028 0.027

Table 5.5: Calculation time for planar maps on regular grid with 5 cm step (ratios
with analogous values in Table 5.4).

Algorithm Settings 2000 Hz 4000 Hz 8000 Hz

ESM-IRLS p = 0
ED 0.777 0.794 0.746

CSCD 0.838 0.788 0.698

CMF-IRLS
p = 0

ED 0.440 0.520 0.469
CSCD 0.448 0.551 0.406

p = 1 none 0.853 0.940 0.757

Table 5.6: Calculation time for planar maps on double step grid (ratios with analogous
values in Table 5.4).

Algorithm Settings 2000 Hz 4000 Hz 8000 Hz

ESM-IRLS p = 0
ED 2774 5689 10306

CSCD 1626 3604 6966

CMF-IRLS
p = 0

ED 51745 101991 234417
CSCD 31220 69742 153186

p = 1 none 6549 8360 16480

Table 5.7: Calculation time for volumetric maps on regular grid with 1 cm step (values
in seconds used as reference for 3D).

74



Algorithm Settings 2000 Hz 4000 Hz 8000 Hz

ESM-IRLS p = 0
ED 0.027 0.034 0.027

CSCD 0.032 0.036 0.017

CMF-IRLS
p = 0

ED 0.022 0.025 0.047
CSCD 0.028 0.030 0.040

p = 1 none 0.019 0.033 0.058

Table 5.8: Calculation time for volumetric maps on regular grid with 5 cm step (ratios
with analogous values in Table 5.7).

Algorithm Settings 2000 Hz 4000 Hz 8000 Hz

ESM-IRLS p = 0
ED 0.134 0.131 0.156

CSCD 0.126 0.152 0.154

CMF-IRLS
p = 0

ED 0.169 0.158 0.145
CSCD 0.162 0.182 0.157

p = 1 none 0.316 0.290 0.228

Table 5.9: Calculation time for volumetric maps on double step grid (ratios with
analogous values in Table 5.7).

The analysis of these data shows the huge reduction of calculation time obtained
when a non-uniform mesh is used with respect to a fine regular grid for the entire
volume. Reduction of computation time is more than 80% for both ESM-IRLS and
CMF-IRLS when CSM decomposition is performed, while is about 70 % when CMF
is applied to whole CSM. It is worth noticing that, in the latter case, only one in-
verse problem is solved for each spectral, but L1 norm minimization has the slowest
convergence. The strategy of non-uniform mesh, with dense distribution only where
needed, compensates the increase of spectral lines of bands at high frequency, thus
keeping computation time at reasonable level.
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5.2 Volumetric acoustic mapping with multiple ar-
rays

In this section it will be shown the advantage of combining data of multiple planar
arrays, in the context of volumetric acoustic mapping. This kind of setup is quite
common in wind tunnel testing, i.e. planar arrays lying on orthogonal planes and
looking the same object from different points of view. The test program was conducted
at the Pininfarina Aerodynamic and Aeroacoustic Research Center in Turin, Italy
within the EU WENEMOR project. Pininfarina’s facility contains a test section of
8 m × 9.6 m × 4.2 m (see Figure 5.67(a)). The Pininfarina Wind Tunnel (WT)
was specifically acoustically treated in order to reduce reverberation and background
noise.

(a) Front view of the aircraft model (b) Microphone array layout

Figure 5.67: Test set-up in Pininfarina Wind Tunnel.

The aircraft model tested featured two counter rotating open rotors (CRORs) of
12 blades each. Both left and right engines of the aircraft model were driven from
a single power supply and controlled by dedicated control systems (one per motor).
Strouhal number scaling was performed to represent flight conditions of the full scale
aircraft. Different design configurations of the model were tested during the whole
test campaign (different tails, CROR in pusher and tractor configuration, different
distances of CRORs with respect to the model fuselage, etc.) at different flow speeds
and angles of attack. Angle of attacks (AoA) differed also with respect to the take-off
or approach model configuration. However, all the results discussed here refer to the
T-tailed model, in approach condition with CRORs in pusher configuration for AoA =
8 deg and flow speed of 28 m/s. The flow direction is considered to be the X positive
axis of the coordinate system represented in Figure 5.67(b). In this application, the
assumption of propagation in an uniform flow is made. This leads to the following
expression for distances rmn corresponding to the actual propagation path [26]:

rmn =
‖rn − rm‖2

−Cmn +
√

C2
mn −M2

a + 1

Cmn = (rn − rm) · f̂ Ma

(5.1)

where f̂ is a unitary vector representing the flow direction andMa is the Mach number.
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x (m) y (m) z (m) step (m) N
Model

[0.10, 6.00] [−2.50, 3.00] [0.00, 3.00]
0.06 464508

Background noise 0.20 13440

Table 5.10: Region of interest and its discretization with regular grid used for aircraft
noise and background noise mapping
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Figure 5.68: Average microphone auto-power spectra with side and top arrays. Red
line: test with model CRORs switched on. Blue line: test with model CRORs switched
off. Black line: test without model.

Two planar microphone arrays were installed at Pininfarina Wind Tunnel, as
depicted in Figure 5.67(b): a 78 microphone wheel array (3 m diameter) placed at the
ceiling of the WT at a distance of 2.5 m from the model axis and a 66 microphone half-
wheel array (3 m diameter) located broadside, parallel to the axis of the open rotor
and 4.2 m far from the longitudinal axis of the model. Acquisitions were performed
in three different conditions: model with CRORs switched on, model with CRORs
switched off and WT background noise without model in the test section. Signals were
synchronously sampled at a sample rate of 32768 Hz for a total observation length
of 10 s. Time data has been processed to estimate the CSM using Welch’s method
(block size: 1024 samples, overlap: 50%, window: Hanning).

Region of interest and its discretization with a regular grid of monopoles is defined
in Table 5.10. Two different discretization are used: fine grid resolution to map the
noise produced by the model and a coarse grid for background WT noise mapping.
In this application, only regular grids are used. The number of relevant eigenmodes
is empirically set to C = 30. Instead, all CSCD components extracted are processed
resulting to be C < 30 for each frequency within the bands analysed. Only ESM-
IRLS is applied, since the analysis here is focused on differences that results from
the use of multiple arrays with respect to a single one. Problem size of CMF-IRLS
is proportional to the square of the number of microphone, thus having a quite large
matrix to be decomposed with SVD, that is computationally demanding especially at
first iterations. Maximum sparsity constraint is applied in this case (p = 0). Reference
point for acoustic propagator is the coordinate system origin r0 = 0.

Maps are calculated for one-third octave bands from 800 to 2500 Hz and are de-
picted using a dynamic range of 30 dB. Figure 5.68 shows the average microphone
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auto-power spectra measured with side and top arrays in each condition tested. When
the rotors are switched on, the difference with the background noise is about 15 dB
on the average, while, when only aerodynamic noise is present, the difference is only
about 8 dB. The first analysis presented aims at showing the crucial effect of introduc-
tion of a priori information with CB map in such noisy conditions. For this purpose,
maps at 2500 Hz are shown in Figs. from 5.69 to 5.72. It is possible to see that in
some cases, in particular those with single array, great part of equivalent sources are
concentrated near the microphone array. This means that source reconstruction pro-
cess failed for some components due to the excessive level of noise and ill-conditioning.
Contrarily, when CB map is introduced as a priori information, maps do not show
these artefacts. Therefore, in severe SNR conditions or particularly ill-conditioned
problems, the introduction of a priori information is mandatory to obtain meaningful
results and not only a strategy to improve them. For this reason, maps of other bands
are produced only with CB map as a priori (Figs. from 5.73 to 5.82). As frequency
increases, source localization is more and more compact and accurate, since the prob-
lem tends to be less ill-conditioned and the spatial information introduced by CB
become more refined. In addition, as already stated in this thesis, volumetric maps
with single array has a practical low limit in frequency range that is influenced by
source-array distance, noise level and other factors. In this application, maps with
top array start to be meaningful from 1000 Hz, which corresponds approximately to
He ≈ 8.7, while maps with side and top arrays are meaningful even at 800 Hz. In
any case, the accuracy and the compactness of source localization is improved by the
use of the side array. Also the pressure decomposition method heavily influences the
quality of results. Basically, almost in every case presented in this section CSCD
outperforms ED. In fact, the former return maps with less artefacts, thus giving more
accurate and intelligible map. Only in the lowest bands mapped with the top array,
ED returns better maps. This is probably due to the bad accuracy of CB at lower
frequencies (in all spatial directions) that does not allow a good component extrac-
tion by means of spatial coherence. Figures from 5.83 to 5.88 show maps, on coarse
grid, of WT background noise only, obtained leaving empty the test section. This
is useful to know the spatial distribution on maps of noise source not related to the
model. Background noise is mainly located near the boundary of ROI and its spatial
distribution changes for each band. It is likely that is generated outside the ROI.
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(a) CSCD - no a priori weighting (b) ED - no a priori weighting

(c) CSCD - W0 = CB map (d) ED - W0 = CB map

Figure 5.69: CRORs switched on - 2500 Hz one-third octave band - Top array

(a) CSCD - no a priori weighting (b) ED - no a priori weighting

(c) CSCD - W0 = CB map (d) ED - W0 = CB map

Figure 5.70: CRORs switched on - 2500 Hz one-third octave band - Side and top
arrays
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(a) CSCD - no a priori weighting (b) ED - no a priori weighting

(c) CSCD - W0 = CB map (d) ED - W0 = CB map

Figure 5.71: CRORs switched off - 2500 Hz one-third octave band - Top array

(a) CSCD - no a priori weighting (b) ED - no a priori weighting

(c) CSCD - W0 = CB map (d) ED - W0 = CB map

Figure 5.72: CRORs switched off - 2500 Hz one-third octave band - Side and top
arrays
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(a) CSCD - Top array (b) ED - Top array

(c) CSCD - Side and top array (d) ED - Side and top array

Figure 5.73: CRORs switched on - 800 Hz one-third octave band - W0 = CB map

(a) CSCD - Top array (b) ED - Top array

(c) CSCD - Side and top array (d) ED - Side and top array

Figure 5.74: CRORs switched off - 800 Hz one-third octave band - W0 = CB map
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(a) CSCD - Top array (b) ED - Top array

(c) CSCD - Side and top array (d) ED - Side and top array

Figure 5.75: CRORs switched on - 1000 Hz one-third octave band - W0 = CB map

(a) CSCD - Top array (b) ED - Top array

(c) CSCD - Side and top array (d) ED - Side and top array

Figure 5.76: CRORs switched off - 1000 Hz one-third octave band - W0 = CB map
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(a) CSCD - Top array (b) ED - Top array

(c) CSCD - Side and top array (d) ED - Side and top array

Figure 5.77: CRORs switched on - 1250 Hz one-third octave band - W0 = CB map

(a) CSCD - Top array (b) ED - Top array

(c) CSCD - Side and top array (d) ED - Side and top array

Figure 5.78: CRORs switched off - 1250 Hz one-third octave band - W0 = CB map
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(a) CSCD - Top array (b) ED - Top array

(c) CSCD - Side and top array (d) ED - Side and top array

Figure 5.79: CRORs switched on - 1600 Hz one-third octave band - W0 = CB map

(a) CSCD - Top array (b) ED - Top array

(c) CSCD - Side and top array (d) ED - Side and top array

Figure 5.80: CRORs switched off - 1600 Hz one-third octave band - W0 = CB map

84



(a) CSCD - Top array (b) ED - Top array

(c) CSCD - Side and top array (d) ED - Side and top array

Figure 5.81: CRORs switched on - 2000 Hz one-third octave band - W0 = CB map

(a) CSCD - Top array (b) ED - Top array

(c) CSCD - Side and top array (d) ED - Side and top array

Figure 5.82: CRORs switched off - 2000 Hz one-third octave band - W0 = CB map
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(a) CSCD (b) ED

Figure 5.83: Background noise - 800 Hz one-third octave band - W0 = CB map

(a) CSCD (b) ED

Figure 5.84: Background noise - 1000 Hz one-third octave band - W0 = CB map

(a) CSCD (b) ED

Figure 5.85: Background noise - 1250 Hz one-third octave band - W0 = CB map
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(a) CSCD (b) ED

Figure 5.86: Background noise - 1600 Hz one-third octave band - W0 = CB map

(a) CSCD (b) ED

Figure 5.87: Background noise - 2000 Hz one-third octave band - W0 = CB map

(a) CSCD (b) ED

Figure 5.88: Background noise - 2500 Hz one-third octave band - W0 = CB map
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Chapter 6

Conclusions and future works

6.1 Theoretical and user-oriented conclusions

This work has been conducted in order to investigate the field of volumetric acoustic
mapping. The extension of acoustic source mapping from a surface to a volume was
not fully treated in literature. In fact, most part of previous attempts were simply
applications of existing techniques to an extended spatial domain. Among different
approaches, inverse methods have been chosen to deal with the problem of volumetric
acoustic mapping. The drawback is that inverse problems in this application have
typical characteristics of ill-posed problems. Nevertheless, this thesis demonstrated
that inverse methods can successfully cope also the additional issues that volumetric
mapping entails with respect to standard surface mapping. Three additional issues
have been identified when dealing with volumetric imaging:

• potential sources located at very different distances from the array centre;

• poor spatial resolution of arrays in radial direction from the array centre;

• high number of potential sources with no contribution to the acoustic field.

The first issue of the list requests the balance of energy needed by each potential
source to cause a certain pressure at microphone locations, in fact, potential sources
near the array may be advantaged in the inversion process. This issue can be settled
using the acoustic propagator in pressure-to-pressure formulation. In this way, there
are no sources ”preferred” when a solution is sought. Spatial resolution of arrays is
good in lateral direction and much worse in radial direction from the array centre, due
to the way the acoustic field is sampled. In conventional surface imaging, only lateral
spatial resolution is usually considered since the distance between the array and the
surface to map is fixed. However, when dealing with volumetric mapping, also the
radial spatial resolution becomes important, because source position must be retrieved
in the three-dimensional space and not on a surface. The radial direction is the most
critical and the resolution worsens as the source-array distance increases. The third
item of the list means that only ”few” potential sources are actually sufficient, amongst
all present in the region of interest, to approximate the real ones. This suggests to
introduce the assumption of sparse source field when a solution to the inverse problem
is sought. The sparsity constraint on solution fits well also with the issue of spatial
resolution of array in radial direction.
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Several approaches to obtain sparse solutions to inverse problems are available
in literature. The method of Iteratively Re-weighted Least Squares has been chosen
because it enables to adjust the amount of sparsity desired. This method yield a
sparse solution using the result of current iteration to obtain a more refined result
in the next iteration, therefore, the sparsity is progressively achieved. The algorithm
developed is endowed with a strategy to discard potential sources that do not con-
tribute significantly to the acoustic field. Moreover, a robust convergence criterion is
proposed. The inverse method proposed has a strong connection with the Bayesian
approach to inverse acoustic problems. Indeed, each iteration of IRLS can be seen
from Bayesian perspective: the estimate of source field produced in the previous it-
eration is injected as a priori information in the current one. In addition to this, any
other a priori knowledge on the source field can be introduced to improve the source
reconstruction. This mechanism is also known as Bayesian focusing. This procedure
can be used to calculate a solution to inverse problems in linear formulation, so to
have the Equivalent Source Method based on IRLS (ESM-IRLS). While, under the
assumption of uncorrelated sources, the same procedure can be also used to solve
inverse problems in quadratic formulation. The latter leads to the Covariance Matrix
Fitting approach based on IRLS (CMF-IRLS).

A critical aspect of inverse methods is the estimation of the proper amount of
regularization, that is problem and data dependant. Each IRLS iteration requires
the estimate of a regularization parameter and the final result is heavily affected by
the particular regularization mechanism adopted. Bayesian regularization has been
chosen to accomplish this task since it is the best performer among all regularization
criteria available in literature, to the best of author’s knowledge. Bayesian Regular-
ization boils down to search for the minimum of a cost function to have an estimate
of the regularization parameter. Different cost functions are available in Bayesian
framework, but all of them share the property of having a unique global minimum,
under some conditions. This is a rather unique property among regularization crite-
ria. However, some issues are experienced when Bayesian Regularization is combined
with IRLS. When the number of potential sources left in the problem approaches
to one, Bayesian Regularization gives unstable estimate of regularization parameter.
To overcome this problem, the artifice of dummy columns has been implemented to
keep a well defined minimum of cost functions. Despite Bayesian Regularization has
been stabilized, the final result of IRLS may not be satisfying, especially in terms of
source quantification, because of an high risk of under/over-regularized solutions that
produces unwanted fluctuations of reconstructed source spectra. In order to obtain
an accurate final result, IRLS needs to produce reliable, rather than optimal, solution
at each iteration, since only the ”shape” of solution is injected in the next IRLS itera-
tion. This can be translated into the principle that over-regularization is preferred to
under-regularization, at least when the solution is not yet addressed, i.e. in the early
IRLS iterations. The strategy of Bayesian Iterative Regularization has been proposed
in this work to fulfil the needs of IRLS. In fact, it always increases the estimate of
regularization parameter, with respect to simple Bayesian Regularization. The incre-
ment obtained is more evident in the early iteration of IRLS. Once the estimate of
source field has been addressed, the amount of regularization needed decreases. This
effect makes it possible to obtain more accurate and reliable results with IRLS.

Another aspect has been considered in this thesis: pre-processing of pressure data.
Commonly, microphone pressure data is provided to acoustic imaging methods as
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Cross-Spectral Matrix. When multiple sources having different levels are present in
a scenario, it is useful to separate source components and set an inverse problem for
each of them. Two different methods of Cross-Spectral Matrix decomposition have
been used in combination with inverse methods: the standard Eigenmode Decompo-
sition and a novel use of CLEAN-SC to extract spatially coherent source components.
Eigenmode Decomposition produced poor results in aeroacoustic applications. Com-
ponents extracted by this approach are very often a mixture of several contributions.
The effect of this is twofold: a source component may be highly contaminated by
noise and the hypothesis of sparsity may be contradicted when the inverse problem
is solved. Another issue is the automatic selection of relevant source components.
Conversely, CLEAN-SC decomposition produced high quality results in aeroacous-
tic applications, when combined with inverse methods described in this thesis. The
CLEAN-SC procedure was originally developed as deconvolution algorithm of Con-
ventional Beamforming maps, but in this thesis its use as CSM decomposition is
proposed for the first time, to the best of author’s knowledge. This method exploits
the concept of spatial source coherence to get single coherent source components.
As consequence of this, the assumption of sparsity is more likely fulfilled and ma-
jor robustness to noise is achieved with respect to Eigenmode decomposition. The
other meaningful advantage is that CLEAN-SC decomposition provides an automatic
estimation of the number of relevant source component.

All theoretical aspects of volumetric source mapping discussed in this thesis have
been validated on simulation of simplified test cases. These tests represent the differ-
ent conditions of 2D versus 3D mapping with a planar array. The aim was to show
the increase of difficulty in retrieving correct source location and strength when also
the source-array distance is unknown. From the analysis of results, the necessity of
imposing a sparsity constraint and introducing a priori information on source field
arises to obtain very accurate results. The benefit is evident both in localization and
quantification of sound sources. Both methods suffer the issues of CSM decomposi-
tions in component separation at low frequency, thus leading, in some cases, to wrong
source localization. Generally, CMF outperformed ESM resulting much more reliable
in two aspects: source localization at low frequency and reconstruction of correct
source strength. It was experienced that CMF applied to the whole CSM is still able
to recover exact source position and level in the full frequency range tested. On the
other hand, ESM can better deal with correlated sources. In fact, the presence of
correlated sources is in contrast with the hypothesis of IRLS-CMF. The main differ-
ence between ESM-IRLS and CMF-IRLS is that the former returns amplitude and
phase information, making it possible to propagate the equivalent sources, while the
latter produces only information about amplitude. This is likely the reason of bet-
ter accuracy of CMF in source level estimation. From these results emerges a rule of
thumb: ESM-IRLS and CMF-IRLS are able to produce accurate results in volumetric
mapping for Helmholtz numbers greater than 8, when single planar array is used.

The first experimental test case was an airfoil placed in an open jet. This ex-
periment demonstrated the feasibility of volumetric acoustic mapping with inverse
methods using a single planar array in real configurations. Since planar arrays are
the most used for acoustic imaging, the techniques proposed in this thesis may have
great impact because they do not require any change in experimental setup. In
fact, they make it possible to obtain much more spatial information, with respect to
the standard planar mapping, only with computation requirements. In this context,
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CMF-IRLS often outperforms ESM-IRLS, especially at low frequency, but it is much
more computationally expensive. When CMF-IRLS is applied to whole CSM, only
the strongest sources sensed by the array are recovered in the map. This is the reason
why it is preferred to apply CMF to single source components, despite the compu-
tational demand. It is convenient to apply CMF to whole CSM only when source
decomposition is not effective. A practical aspect has been considered too: the in-
crease of problem size and computational cost with any method utilised when dealing
with volumetric problems. If ESM-IRLS produces good results in reasonable time
even with problems having hundred thousands of unknowns, CMF-IRLS takes much
more time to produce a result for the same problem. The effect of non-uniform mesh
within the calculation volume has been tested. The idea is to use different densities
of equivalent sources to have fine resolution only where needed. The aim is to have
a drastic reduction of the number of potential sources. Results with non-uniform
mesh are comparable to those obtained with fine regular grid, but drastic reduction
of computation time is experienced. Indeed, reduction of about 80% of computation
time is experienced for CMF-IRLS and ESM-IRLS with the implementation of this
simple strategy.

The second experimental application aimed at showing the advantage of com-
bining data of multiple planar arrays, in the context of volumetric mapping. An
aircraft model was tested in Pininfarina Wind Tunnel using one array on top and
one broadside. As expected, the combined use of two arrays increases the compact-
ness and accuracy of localization. Moreover, it moves to a lower frequency the limit
experienced with a single array. In such challenging and noisy environment, the in-
troduction of a priori information does not only increase accuracy, but it turns out
to be necessary to obtain meaningful maps, especially with a single array.

Both experimental applications have highlighted the great difference between two
decompositions, at least for aeroacoustic applications. Maps obtained with Eigen-
mode Decomposition of CSM are usually spoiled by several artefacts that can not be
attributed to mapped sources. Contrarily, CSM decomposition based on CLEAN-SC
returns maps without those artefacts, thus resulting in wider dynamic range and more
intelligibility of maps.

The feasibility of volumetric acoustic source mapping with inverse methods has
been clearly demonstrated. Aeroacoustic source mapping is the application that surely
will gain more benefit from these techniques. An important feature of methods pro-
posed is the applicability to any kind of array layout. Indeed, multiple planar arrays
produce high quality results in a large frequency range. However, it has been shown
that even a single planar microphone array returns satisfying results with some limi-
tations at lower frequencies. This aspect turns out useful because it enables to obtain
more information from data already acquired with the commonest measurement setup
at cost of simply re-processing data.

6.2 Future works

Some general guidelines on how to set-up an inverse problem are provided in this
thesis. However, it is still a matter of experience and trial-and-error procedure. Thus,
it is important for industrial applications to provide well-defined rules for defining the
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region of interest, its discretization and other aspects that influence the final result.
For example, it could be useful a rule which provides a suggestion on how dense the
mesh should be to have the best results for a certain frequency. In other words, a
relationship between the wavelength (or Helmholtz number) and grid resolution (or
mesh density). Such information would help to avoid excessive degrees of freedom in
the inverse problem, thus reducing the ill-conditioning. A deeper study on the use
of non-uniform meshes of region of interest can improve the effectiveness of inverse
methods proposed and, as already shown, the computation demand. In addition to the
definition of the inverse problem, a systematic characterisation of different strength of
sparsity constraint could help the user to impose the optimal sparsity for a particular
problem.

Further research could be focused also on the extension of the frequency range
of applicability, especially towards low frequencies when a single array is utilized.
This aspect can be faced from different directions. One is the introduction of fine a
priori information that can be retrieved in different ways. Instead, a better source
component separation of CSM could make the hypothesis of sparse source field well
respected, thus leading to better results with IRLS. In addition, it could enable an
accurate source localization with other simple acoustic imaging methods and again it
could help to define very focused a priori information. Another aspect that can be
improved is the quantification of source strength with ESM-IRLS, that demonstrated
to be more problem dependant with respect to CMF-IRLS. A possible solution could
be to somehow correct outcomes of IRLS in function of the regularization parameter
to obtain more accurate source quantification. Finally, an optimal array design for
volumetric acoustic mapping can be studied, instead of combining multiple planar
arrays.
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Appendix A

Results of simulated
experiments

This appendix shows the complete set of results obtained with inverse methods devel-
oped in this thesis and applied to three simulated experiments described in Section
4.1. All maps show the output of these methods obtained with the acoustic transfer
function of Eq. 3.2, i.e. pressure induced at the reference point by a monopole in a
generic point of the region of interest. In this case, the reference point is the array
centre, that is the origin of coordinate system r0 = 0. Dynamics of maps shown
here is fixed at 30 dB. Maps of 1D ROI show the results for all spectral lines in the
range He = [2, 16]. While for 2D ROI, only maps of 4 spectral lines are shown, i.e.
He = 2, 4, 8, 16. Exact source position is depicted on maps by means of green vertical
dotted lines for 1D maps and blue diamonds for 2D maps. Source quantification is
also evaluated. Reconstructed source spectra are obtained from integration of maps
over a circle of 0.1 m radius around the exact source position. The error between real
and reconstructed spectra is reported in terms of difference in dB.
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A.1 Test Case 1 (TC1) - Figures

(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.1: Test Case 1 (1D) - ESM-IRLS
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.2: Test Case 1 (1D) - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.3: Test Case 1 (2D) at He = 2 - ESM-IRLS
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.4: Test Case 1 (2D) at He = 2 - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.5: Test Case 1 (2D) at He = 4 - ESM-IRLS
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.6: Test Case 1 (2D) at He = 4 - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.7: Test Case 1 (2D) at He = 8 - ESM-IRLS
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.8: Test Case 1 (2D) at He = 8 - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.9: Test Case 1 (2D) at He = 16 - ESM-IRLS

102



(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.10: Test Case 1 (2D) at He = 16 - CMF-IRLS on whole CSM
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A.1.1 Reconstructed source spectra of Test Case 1
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Figure A.11: Test Case 1 (1D) - Errors in source spectrum reconstruction with ESM-
IRLS. Red line: target error. Black line: error of reconstructed spectrum.
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Figure A.12: Test Case 1 (1D) - Errors in source spectrum reconstruction with CMF-
IRLS. Red line: target error. Black line: error of reconstructed spectrum.
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Figure A.13: Test Case 1 (2D) - Errors in source spectrum reconstruction with ESM-
IRLS. Red line: target error. Black line: error of reconstructed spectrum.
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Figure A.14: Test Case 1 (2D) - Errors in source spectrum reconstruction with CMF-
IRLS. Red line: target error. Black line: error of reconstructed spectrum.
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A.2 Test Case 2 (TC2) - Figures

(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.15: Test Case 2 (1D) - ESM-IRLS - ED
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.16: Test Case 2 (1D) - ESM-IRLS - CSCD
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.17: Test Case 2 (1D) - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.18: Test Case 2 (1D) - CMF-IRLS - ED
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.19: Test Case 2 (1D) - CMF-IRLS - CSCD
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.20: Test Case 2 (2D) at He = 2 - ESM-IRLS - ED
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.21: Test Case 2 (2D) at He = 2 - ESM-IRLS - CSCD
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.22: Test Case 2 (2D) at He = 2 - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.23: Test Case 2 (2D) at He = 2 - CMF-IRLS - ED
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.24: Test Case 2 (2D) at He = 2 - CMF-IRLS - CSCD
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.25: Test Case 2 (2D) at He = 4 - ESM-IRLS - ED
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.26: Test Case 2 (2D) at He = 4 - ESM-IRLS - CSCD
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.27: Test Case 2 (2D) at He = 4 - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.28: Test Case 2 (2D) at He = 4 - CMF-IRLS - ED
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.29: Test Case 2 (2D) at He = 4 - CMF-IRLS - CSCD

122



(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.30: Test Case 2 (2D) at He = 8 - ESM-IRLS - ED
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.31: Test Case 2 (2D) at He = 8 - ESM-IRLS - CSCD
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.32: Test Case 2 (2D) at He = 8 - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.33: Test Case 2 (2D) at He = 8 - CMF-IRLS - ED
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.34: Test Case 2 (2D) at He = 8 - CMF-IRLS - CSCD
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.35: Test Case 2 (2D) at He = 16 - ESM-IRLS - ED
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.36: Test Case 2 (2D) at He = 16 - ESM-IRLS - CSCD
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.37: Test Case 2 (2D) at He = 16 - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.38: Test Case 2 (2D) at He = 16 - CMF-IRLS - ED
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.39: Test Case 2 (2D) at He = 16 - CMF-IRLS - CSCD

132



A.2.1 Reconstructed source spectra of Test Case 2
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Figure A.40: Test Case 2 (1D) - Errors in source spectrum reconstruction with ESM-
IRLS with ED. Red line: target error. Black line: error of reconstructed spectrum
(left source). Green line: error of reconstructed spectrum (right source).
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Figure A.41: Test Case 2 (1D) - Errors in source spectrum reconstruction with ESM-
IRLS with CSCD. Red line: target error. Black line: error of reconstructed spectrum
(left source). Green line: error of reconstructed spectrum (right source).
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Figure A.42: Test Case 2 (1D) - Errors in source spectrum reconstruction with CMF-
IRLS on whole CSM. Red line: target error. Black line: error of reconstructed spec-
trum (left source). Green line: error of reconstructed spectrum (right source).
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Figure A.43: Test Case 2 (1D) - Errors in source spectrum reconstruction with CMF-
IRLS with ED. Red line: target error. Black line: error of reconstructed spectrum
(left source). Green line: error of reconstructed spectrum (right source).
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Figure A.44: Test Case 2 (1D) - Errors in source spectrum reconstruction with CMF-
IRLS with CSCD. Red line: target error. Black line: error of reconstructed spectrum
(left source). Green line: error of reconstructed spectrum (right source).
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Figure A.45: Test Case 2 (2D) - Errors in source spectrum reconstruction with ESM-
IRLS with ED. Red line: target error. Black line: error of reconstructed spectrum
(left source). Green line: error of reconstructed spectrum (right source).
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Figure A.46: Test Case 2 (2D) - Errors in source spectrum reconstruction with ESM-
IRLS with CSCD. Red line: target error. Black line: error of reconstructed spectrum
(left source). Green line: error of reconstructed spectrum (right source).
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Figure A.47: Test Case 2 (2D) - Errors in source spectrum reconstruction with CMF-
IRLS on whole CSM. Red line: target error. Black line: error of reconstructed spec-
trum (left source). Green line: error of reconstructed spectrum (right source).
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Figure A.48: Test Case 2 (2D) - Errors in source spectrum reconstruction with CMF-
IRLS with ED. Red line: target error. Black line: error of reconstructed spectrum
(left source). Green line: error of reconstructed spectrum (right source).
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Figure A.49: Test Case 2 (2D) - Errors in source spectrum reconstruction with CMF-
IRLS with CSCD. Red line: target error. Black line: error of reconstructed spectrum
(left source). Green line: error of reconstructed spectrum (right source).
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A.3 Test Case 3 (TC3) - Figures

(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.50: Test Case 3 (1D) - ESM-IRLS
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.51: Test Case 3 (1D) - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.52: Test Case 3 (2D) at He = 2 - ESM-IRLS
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.53: Test Case 3 (2D) at He = 2 - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.54: Test Case 3 (2D) at He = 4 - ESM-IRLS

147



(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.55: Test Case 3 (2D) at He = 4 - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.56: Test Case 3 (2D) at He = 8 - ESM-IRLS
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.57: Test Case 3 (2D) at He = 8 - CMF-IRLS on whole CSM
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.58: Test Case 3 (2D) at He = 16 - ESM-IRLS
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(a) p = 2 (b) p = 2 - W0 = CB

(c) p = 1 (d) p = 1 - W0 = CB

(e) p = 0 (f) p = 0 - W0 = CB

Figure A.59: Test Case 3 (2D) at He = 16 - CMF-IRLS on whole CSM
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A.3.1 Reconstructed source spectra of Test Case 3
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Figure A.60: Test Case 3 (1D) - Errors in source spectrum reconstruction with ESM-
IRLS. Red line: target error. Black line: error of reconstructed spectrum (left source).
Green line: error of reconstructed spectrum (right source).
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Figure A.61: Test Case 3 (1D) - Errors in source spectrum reconstruction with CMF-
IRLS. Red line: target error. Black line: error of reconstructed spectrum (left source).
Green line: error of reconstructed spectrum (right source).
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Figure A.62: Test Case 3 (2D) - Errors in source spectrum reconstruction with ESM-
IRLS. Red line: target error. Black line: error of reconstructed spectrum (left source).
Green line: error of reconstructed spectrum (right source).
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Figure A.63: Test Case 3 (2D) - Errors in source spectrum reconstruction with CMF-
IRLS. Red line: target error. Black line: error of reconstructed spectrum (left source).
Green line: error of reconstructed spectrum (right source).
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d’Acoustique, pages –, Poitiers, France, 2014.

[31] Quentin Leclère, Antonio Pereira, Christophe Bailly, Jerome Antoni, and
Christophe Picard. A unified formalism for acoustic imaging techniques: illus-
trations in the frame of a didactic numerical benchmark. In Proceedings on CD
of the 6th Berlin Beamforming Conference, 29 February-1 March 2016, February
2016.

[32] Anwar Malgoezar, Mirjam Snellen, Pieter Sijtsma, and Dick Simons. Improving
beamforming by optimization of acoustic array microphones positions. In 6th
Berlin Beamforming Conference, 2016.

[33] S.G. Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictio-
naries. IEEE Transactions on Signal Processing, 41(12):3397–3415, 1993.

[34] U. Michel. History of acoustic beamforming. In 1st BeBec, 2006.

[35] Fangli Ning, Jingang Wei, Lianfang Qiu, Hongbing Shi, and Xiaofan Li. Three-
dimensional acoustic imaging with planar microphone arrays and compressive
sensing. Journal of Sound and Vibration, 380:112–128, oct 2016.

[36] S. Oerlemans and P. Sijtsma. Determination of Absolute Levels from Phased Ar-
ray Measurements Using Spatial Source Coherence. In 8th AIAA/CEAS Aeroa-
coustics Conference and Exhibit, Breckenridge, Colorado, June 17-19, 2002,
2002.

[37] B. Oudompheng, A. Pereira, C. Picard, Q Leclère, and B. Nicolas. A theoretical
and experimental comparison of the iterative equivalent source method and the
generalized inverse beamforming. In 5th BeBec, 2014.

[38] Sijtsma P. Clean based on spatial source coherence. International Journal of
Aeroacoustics, 6(4):357–374, December 2007.

[39] Thomas Padois and Alain Berry. Two and three-dimensional sound source local-
ization with beamforming and several deconvolution techniques. Acta Acustica
united with Acustica, 103(3):392–400, may 2017.

[40] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit:
Recursive function approximation with applications to wavelet decomposition. In
in Conference Record of The Twenty-Seventh Asilomar Conference on Signals,
Systems and Computers, pages 1–3, 1993.

[41] A. Pereira, J. Antoni, and Q. Leclère. Empirical bayesian regularization of the
inverse acoustic problem. Applied Acoustics, 97:11–29, oct 2015.

[42] A. Pereira and Q. Leclère. Improving the Equivalent Source Method for noise
source identification in enclosed spaces. In 18th International Congress on Sound
and Vibration (ICSV 18), page R31, Brazil, July 2011.

159



[43] Antonio Pereira. Acoustic imaging in enclosed spaces. PhD thesis, INSA de Lyon,
2014.

[44] Ric Porteous, Zebb Prime, Con.J. Doolan, Danielle.J. Moreau, and Vincent
Valeau. Three-dimensional beamforming of dipolar aeroacoustic sources. Journal
of Sound and Vibration, 355:117–134, oct 2015.

[45] E. Sarradj. Three-dimensional acoustic source mapping. In 4th Bebec, 2012.

[46] E. Sarradj. Three-dimensional acoustic source mapping with different beam-
forming steering vector formulations. Advances in Acoustics and Vibration,
2012(292695):1–12, 2012.

[47] E. Sarradj, C. Schulze, and A. Zeibig. Identification of Noise Source Mechanisms
using Orthogonal Beamforming. In Noise and Vibration: Emerging Methods,
2005.

[48] Ennes Sarradj. A generic approach to synthesize optimal array microphone ar-
rangements. In 6th Berlin Beamforming Conference, 2016.

[49] Ennes Sarradj and Gert Herold. A python framework for microphone array data
processing. Applied Acoustics, 116:50–58, jan 2017.

[50] Takao Suzuki. L1 generalized inverse beam-forming algorithm resolving coher-
ent/incoherent, distributed and multipole sources. Journal of Sound and Vibra-
tion, 330:5835–5851, 2011.

[51] Yardibi T, Liy J, Stoica P, and Cattafesta L N. Sparsity constrained deconvolu-
tion approaches for acoustic source mapping. 14th AIAA/CEAS Aeroacoustics
Conference, AIAA 2008-2956, 2008.

[52] A. N. Tikhonov. Solution of incorrectly formulated problems and the regulariza-
tion method. Soviet Math. Dokl., 4:1035–1038, 1963.

[53] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse
reconstruction, June 2007. http://www.cs.ubc.ca/labs/scl/spgl1.

[54] E. van den Berg and M. P. Friedlander. Probing the pareto frontier for basis
pursuit solutions. SIAM Journal on Scientific Computing, 31(2):890–912, 2008.

[55] Jack R. Williams. Fast beam-forming algorithm. The Journal of the Acoustical
Society of America, 44(5):1454–1455, nov 1968.

[56] Tarik Yardibi, Jian Li, Petre Stoica, and Louis N. Cattafesta. Sparsity con-
strained deconvolution approaches for acoustic source mapping. The Journal of
the Acoustical Society of America, 123(5):2631–2642, 2008.

[57] Tarik Yardibi, Jian Li, Petre Stoica, Nikolas S. Zawodny, and Louis N. Cattafesta.
A covariance fitting approach for correlated acoustic source mapping. The Jour-
nal of the Acoustical Society of America, 127(5):2920–2931, may 2010.

160


	Introduction
	Acoustic mapping techniques: Review and Theory
	Literature review
	Beamforming
	Deconvolution approaches
	Inverse methods

	Three-dimensional volumetric acoustic mapping
	Theory: problem formulation and inverse operators
	Beamforming
	Inverse methods


	Inverse methods for volumetric acoustic source mapping
	Issues in volumetric mapping
	IRLS algorithm for sparse source field reconstruction
	Influence of sparsity constraint
	Convergence criterion
	Discard of potential sources

	Regularization strategies for IRLS
	Bayesian Regularization
	Dummy columns for minimum system size
	Upper bound of regularization parameter
	Bayesian Iterative Regularization

	ESM-IRLS
	CMF-IRLS
	Cross-Spectral Matrix decompositions
	Eigenmode decomposition
	CLEAN-SC decomposition

	General guidelines on how to set-up an inverse problem

	Application and validation on simulated experiments
	Test cases description and algorithm settings
	Analysis of results
	Localization ability
	Quantification ability
	Effect of different regularization strategies on quantification
	Applicability to volumetric acoustic imaging


	Results of application on experimental data
	Volumetric mapping with single planar array
	Maps on regular grids
	Maps on non-uniform mesh
	Computation time

	Volumetric acoustic mapping with multiple arrays

	Conclusions and future works
	Theoretical and user-oriented conclusions
	Future works

	Results of simulated experiments
	Test Case 1 (TC1) - Figures
	Reconstructed source spectra of Test Case 1

	Test Case 2 (TC2) - Figures
	Reconstructed source spectra of Test Case 2

	Test Case 3 (TC3) - Figures
	Reconstructed source spectra of Test Case 3



