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Analysis of Complex and Chaotic Electromagnetic Structures: the Reverberation

Chamber and its Applications

by Luca BASTIANELLI

This dissertation deals with the study of complex electromagnetic cavities, evaluated

by theoretical, numerical and experimental results obtained by using the reverberation

chamber. This facility was chosen due to their characteristics, in particular the possi-

bility to create a random field within it. The main activity was based on the develop-

ment of techniques and assumptions in order to improve the performance of the cham-

ber, focusing at relatively low frequency, in other words near the minimum frequency

where the chamber well operates. Performance can be improved by design a new stir-

rer optimized and tailored for the specific chamber or applications. Another solution

is to modify the geometry of the chamber, this solution contrary to the adoption of a

new-shaped stirrer is less expensive and applicable in already existing chambers. The

challenge was to connect the improvement due to these irregular-shaped chamber to

the lowest usable frequency, empirically evaluated as three-six times the frequency of

the fundamental mode of the considered chamber. New shaped chambers have been

carried out by adding curved diffractor along their perimeter. Simulations performing

the finite-difference time-domain method have been done in order to investigate the

effects due to diffractors. In this dissertation the performance were evaluated in terms

of characteristic parameter used in electromagnetic compatibility tests. Results show

that the improvement at relatively low frequency (considering a large chamber w.r.t. the

wavelength) is given by the increase of the modal overlap whereas a typical parameter

taken into account during electromagnetic compatibility tests, i.e. number of uncorre-

lated positions, decreases. This relevant improvement that could arise to a lower shift of

the lowest usable frequency is predictable by a simple model derived using the quality

factor without a priori information of the chamber. Experimental measurements were

performed in the reverberation chamber of our laboratory (DII – UNIVPM), just, to pro-

vide a qualitative comparison with simulations. Not all configurations were replicated

in the laboratory. Moreover, the reverberation chamber was used in order to carry out

more experimental measurements, i.e. emulation of a real life environment, shielding

effectiveness tests.
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1

Introduction

Since the last 20 years the reverberation chamber (RC), beside the use in acoustic, have

been receiving more and more interest as facility test in particular in electromagnetic

compatibility (EMC) tests. The peculiarity of this facility is that the electromagnetic field

is statistically uniform, isotropic and without depolarization in a defined region called

working volume (WV), within an acceptable uncertainty and confidence limit. More-

over, another notable advantage of this facility is that performed measurements are ro-

bust, repeatable in the radio-frequency (RF) and microwave ranges [2–6]. The same mea-

surement after long time (if necessary) will have the same results, due to the statistical

properties. The field within the cavity consists of alternate maxima and minima that

due to the continuous change of the boundary conditions, then an average between the

chamber’s realizations is made. The statistical properties of this cavity are attained by

the field mixing (stirring) obtained in different ways. There are more than one stirring

processes, the most common is due by an irregular metallic structure called stirrer that

rotates continuously n order to change the boundary conditions within the chamber.

Besides the mechanical stirrer it is possible to apply a source stirring, positioning stirrer,

frequency stirring or a combination of them. Each chamber realization, correspond-

ing to a stirrer position, consists to a set of different modes that are independent each

other and remarking that the deterministic field in the cavity evolves randomly as the

boundary conditions are stochastic [7] will be adopted a random plane wave spectrum

as a model for the field. This supports a statistical approach for the analysis (e.g. mean

value, high-order momentum, probability density function). The operation of an RC in

opposite to the anechoic chamber.

During my Ph.D. in engineering information I was engaged in theoretical, experi-

mental and numerical investigation of electromagnetic fields in complex cavity, i.e. the

RC [8, 9].

Most efforts have been addressed on the study of chaotic cavities with the purpose

of improve the performance of an already existing (large) RC, in particular focusing at

low frequency, as mush as possible below the lowest usable frequency (LUF). One of the

most relevant challenge is the establishment of a physically motivated description for

the LUF [10], still empirically evaluated [11]. This analysis was done in collaboration with

Dr. Gabriele Gradoni (University of Nottingham) where I spent part of my Ph.D. improv-

ing my knowledge in advanced and applied mathematics. The basic idea is to adopt a

new shape of the RC inspired by geometries explored in dynamical systems belong to the

quantum chaos field. The simplest way is to design a chamber with non-parallel walls,

but this is not a convenient approach if the RC is already made. Besides non-parallel
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one can modify the geometry by inserting curved diffractors i.e. spheres/hemispheres

within the RC, easier solution for an existing RC w.r.t. the non-parallel walls. In this way

the energy localization drastically decreases and a consequence is the decrease of regu-

lar orbits in the phase space as well. In fact regular modes are basically stationary waves

given to the symmetry of the problem. On the contrary chaotic modes are ergodic and

do not exhibit regular paths [12, 13]. Several works were addressed to this field in partic-

ular by adopting the Random Matrix Theory (RMT) [14, 15]. In this thesis was adopted

another approach, closer to the EMC where their characteristic parameters were con-

sidered and analyzed, i.e. number of uncorrelated stirrer positions, field uniformity. The

analysis was done by powerful simulations that implementing the finite-difference time-

domain (FDTD) method. This study and preliminary results have gathered positive and

constructive criticism by the community. The results that stem from this work are useful

to the community as they show the impact of diffractors on key parameters defined in

the standard, which must be met for valid use of the reverberation chamber in an lectro-

magnetic compatibility (EMC) tests.

In order to improve the chamber’s behavior new stirrer/s can be designed. This is

a common and efficient practice to optimize the proper chamber, but this solution is

tailored to the specific chamber and difficult to export for other chambers. Anyway, the

definition and evaluation of a helically shaped stirrer was done.

Moreover, the RC can be used to replicate real-life environments, because it is a rich

multipath environment, exploited for emulating real-life sites e.g. indoor/outdoor envi-

ronment, over-the-air test (OTA). In this thesis is reported the analysis done in order to

match the standard requirements for the validation of the chamber for tests and some

results. Further experimental measurements were performed, using the reverberation

chamber facilities at the University of Nottingham. The capability of an RC to reproduce

a real scenario is very important and allows to save money and time for measurements

e.g. remaining in the laboratory instead of moving all instruments out of the laboratory,

i.e. OTA tests.

Results about the electromagnetic characterization of concrete samples were reported,

this emphasize the wide use of the RC.
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Chapter 1

The reverberation chamber

The reverberation chamber (RC), Figure 1.2, is basically an overmoded electrically large

cavity, with an high quality factor. Its name derive by the reverberating room used in

acoustics. The main feature of this environment are that the electro-magnetic field in-

side a defined region, called working volume (WV), is statistically uniform, isotropic and

depolarized within an acceptable uncertainty and confidence limit. The capability to

obtain the previous statistical properties are due to the stirring process.

The RC is used in electromagnetic compatibility (EMC) tests. We are going to de-

scribe more deeply its feature later. We begin this thesis with a brief recall of the Electro-

magnetic Theory, used for the analysis and for explain the basis of the Finite-Difference

Time-Domain (FDTD) technique described in Chapter 2.

1.1 Maxwell’s equations

As previously mentioned, the RC is a cavity made by conducting walls and uniformly

filled by a dielectric, usually air. A brief remark of fundamentals of electromagnetic the-

ory is needed to understand and explain the properties of a cavity, i.e. modes exited in a

rectangular cavity. The International System of Units (SI) will be used on this thesis.

Consider a region of the space without electric or magnetic current sources, the time

dependent Maxwell’s equations are: Faraday’s Law:

∂ B

∂ t
=−∇×E−M (1.1)

Ampere’s Law:
∂D

∂ t
=∇×H− J (1.2)

Gauss’ Law for the electric field:

∇·D = 0 (1.3)

Gauss’ Law for the magnetic field:

∇·B = 0 (1.4)
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in differential form, whereas Faraday’s Law:

∂

∂ t

∫∫

A

B ·d A =−
∮

l

·Ed l−
∫∫

A

M ·d A (1.5)

Ampere’s Law:
∂

∂ t

∫∫

A

D ·d A =

∮

l

H ·d l−
∫∫

A

J ·d A (1.6)

Gauss’ Law for the electric field: �
A

D ·d A = 0 (1.7)

Gauss’ Law for the magnetic field: �
A

B ·d A = 0 (1.8)

for the integral form, where

• E is the electric field [V/m]

• D is the electric flux density [C/m2]

• H is the magnetic field [A/m]

• B is the magnetic flux density [Wb/m2]

• J is the electric current density [A/m2]

• M is the equivalent magnetic current density [V/m2]

• A is a three dimensional surface [m2] and d A the differential normal vector of the

surface A [m2]

• l is the contour of the surface A [m] and d l the differential length vector of the

contour l [m].

For isotropic, linear and nondispersive materials the constitutive relations are:

D = εE = εr ε0E B = µH = µrµ0H (1.9)

J = Js o u r c e +σE M = Ms o u r c e +σ
∗H (1.10)

where

• J and M act as independent source of the E -field and H -field energy, Js o u r c e and

Ms o u r c e
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• ε is the electrical permittivity [F/m]

• εr is the relative electrical permittivity [dimensionless]

• ε0 is the free-space permittivity [F/m]

• µ is the magnetic permeability [H/m]

• µr is the relative permeability [dimensionless]

• µ0 is the free-space permeability [H/m]

• σ is the electric conductivity [S/m]

• σ∗ is the equivalent magnetic loss [Ω/m]

Then, substitute (1.9) and (1.10) into (1.1) and (1.2), assuming linear, isotropic, lossy

and nondispersive materials we obtain:

∂H

∂ t
=−

1

µ
∇×E−

1

µ
(Ms o u r c e +σ

∗H) (1.11)

∂ E

∂ t
=

1

ε
∇×H−

1

ε
(Js o u r c e +σE) (1.12)

now, for the six vector components expressed in the Cartesian coordinates of the curl

operators of (1.11) and (1.12) we can write the following system of six coupled scalar

equations:

∂Hx

∂ t
=

1

µ

�

∂ Ey

∂ z
−
∂ Ez

∂ y
−
�

Ms o u r c ex
+σ∗Hx

�

�

(1.13)

∂Hy

∂ t
=

1

µ

�

∂ Ez

∂ x
−
∂ Ex

∂ z
−
�

Ms o u r c ey
+σ∗Hy

�

�

(1.14)

∂Hz

∂ t
=

1

µ

�

∂ Ex

∂ y
−
∂ Ey

∂ x
−
�

Ms o u r c ez
+σ∗Hz

�

�

(1.15)

and

∂ Ex

∂ t
=

1

ε

�

∂Hz

∂ y
−
∂Hy

∂ z
−
�

Js o u r c ex
+σEx

�

�

(1.16)

∂ Ey

∂ t
=

1

ε

�

∂Hx

∂ z
−
∂Hz

∂ x
−
�

Js o u r c ey
+σEy

�

�

(1.17)

∂ Ez

∂ t
=

1

ε

�

∂Hy

∂ x
−
∂Hx

∂ y
−
�

Js o u r c ez
+σEz

�

�

(1.18)

This system of equations, from (1.13) to (1.18), are very important because they form

the basis for the FDTD algorithm for the electromagnetic wave interactions in relation

with a general three dimensional object [16], discussed later.
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Considering the curl equations (1.1) and (1.2) and using the curl of the curl identity1

we obtain the wave equations:
∂ 2E

∂ t 2
= c 2

0

∂ 2E

∂ x 2
(1.19)

∂ 2H

∂ t 2
= c 2

0

∂ 2H

∂ x 2
(1.20)

where c0 is the speed of the light in the free space, c = 1/pµ0ε0 [m/s].

1.2 Reverberation chamber features

1.2.1 Plane wave superposition

In order to satisfy the Maxwell’s equations it has been chosen a plane wave integral repre-

sentation for the electric and magnetic field. For an RC, the statistical behavior of fields is

taken into account by random variables that represent the plane wave coefficients. The

use of a plane wave spectrum for the reverberation chamber was proposed in [7]. The

field of a cavity can be analytically represented by an angular spectral expansion of an

ensemble plane waves (PWS)

E(r) =

∫∫

4π

F(Ω)exp(ȷ k ·r)dΩ . (1.21)

The electric field E(r) of a region, without sources can be represented as an integral

of plane waves: where F is the angular spectrum and the Ω the angle that includes both

the elevation and azimuth angles referring to Figure 1.1, α and β respectively, and dΩ=

sinαdαdβ ; k represents the vector wavenumber:

k =−k (x̂ sinαcosβ + ŷ sinαsinβ + ẑ cosα), . (1.22)

The geometry for a component, Figure 1.1, is given by

E(r) =

∫ 2π

0

∫ π

0

F(αβ)exp(ȷ k ·r)sin dαdβ . (1.23)

The angular spectrum is

F(Ω) = α̂Fα(Ω)+ β̂Fβ (Ω) (1.24)

where α and β are unit vectors orthogonal each other and to k . Both Fα and Fβ are com-

plex and can be written as

Fα(Ω) = Fαr (Ω)+ ȷ Fαȷ (Ω) , Fβ (Ω) = Fβ r (Ω)+ ȷ Fβ ȷ (Ω) (1.25)

1∇× (∇×A) =∇(∇·A)−∇2A
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The F can be deterministic or random. However, for the field generated inside the RC F is

considered to be a random variable. In the RC the ensemble is due to the chamber’s real-

ization, i.e. stirrer positions when a mechanical stirring technique is used. Appropriate

statistical assumptions for such a field are

〈Fα(Ω)〉= 〈Fβ (Ω)〉= 0 (1.26)

〈Fαr (Ω1)Fαȷ (Ω2)〉= 〈Fβ r (Ω1)β ȷ (Ω2)〉=

〈Fαr (Ω1)Fβ r (Ω2)〉= 〈Fαr (Ω1)Fβ ȷ (Ω2)〉=

〈Fαȷ (Ω1)Fβ r (Ω2)〉= 〈Fαȷ (Ω1)Fβ ȷ (Ω2)〉= 0 ,

(1.27)

〈Fαr (Ω1)Fαr (Ω2)〉= 〈Fαȷ (Ω1)αȷ (Ω2)〉=

〈Fβ r (Ω1)Fβ r (Ω2)〉= 〈Fβ ȷ (Ω1)Fβ ȷ (Ω2)〉= CEδ(Ω1−Ω2) ,
(1.28)

〈Fα(Ω1)F ∗β (Ω2)〉= 0 , (1.29)

〈Fα(Ω1)F ∗α (Ω2)〉= 〈Fβ (Ω1)F ∗β (Ω2)〉= 2CEδ(Ω1−Ω2) , (1.30)

where δ is the Dirac function, CE = E 2
0 /(16π) [V/m2] is a constant, < . > denotes the

ensemble average, (Ω1−Ω2) represents the difference between two sets of random plane

waves and ∗ denotes the complex conjugate. basically, results of these relations mean

that the field is due by several rays with random phase, the in-phase and quadrature

components with orthogonal polarizations of the angular spectrum are uncorrelated,

how indicated by the δ function of (1.28). In order to derive statistical properties of the

field we can start with

〈E〉=
∫∫

4π

〈F(Ω)〉exp(ȷ k ·rdΩ= 0 (1.31)

that is the random polarization property. Thus, the mean value of electric field is null.

From the square of the absolute value of electric field is given by

|E|=
∫∫

4π

∫∫

4π

F(Ω1) ·F∗(Ω2)exp[ȷ (k1−k2) ·r]dΩ1dΩ2 (1.32)

and manipulating 1.32 is obtained

〈|E|2〉= 4CE

∫∫

4π

∫∫

4π

δ(Ω1−Ω2)exp[ȷ (k1−k2) ·r]dΩ1dΩ2 =

= 4CE

∫∫

4π

dΩ2 = 16πCE ≡ E 2
0

(1.33)
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Equation (1.33) gives the spatial uniformity property. Similarly can be derived the mean

square values for the Cartesian components of electric field as

〈|Ex |2〉= 〈|Ey |2〉= 〈|Ez |2〉=
E 2

0

3
, (1.34)

this denotes the ideal isotropy properties. From (1.26) follows

〈Ex r 〉= 〈Ex ȷ 〉= 〈Ey r 〉= 〈Ey ȷ 〉= 〈Ez r 〉= 〈Ez ȷ 〉= 0 , (1.35)

then by the variance theorem yields

σ2 ≡
E 2

0

6
, (1.36)

where σ2 is the variance. The maximum entropy method can be adopted to derive the

probability density function (pdf) from (1.35) and (1.36), i.e. considering the complex

Cartesian components Ex r with zero mean the maximum entropy points out the pdf

f (Ex r ) in order to maximize the entropy given by

−
∫ +∞

−∞
f (Ex r )ln [ f (Ex r )]d Ex r , (1.37)

then
∫ +∞

−∞
f (Ex r )d Ex r = 1 . (1.38)

After the maximization the result is the non-unique Gauss normal distribution

f (Ex r ) =
1
p

2πσ
exp

�

−
E 2

x r

2σ2

�

. (1.39)

The same probability is applied to others real and imaginary parts of electric field com-

ponents. Upon the spherical to rectangular transformation of the angular spectrum is

possible to prove the complex field uncorrelation for all the components

〈(Ex r )(Ex ȷ )〉= 0 . (1.40)

Since the Gauss normal distributed with zero mean and same variance the pdf of the

field magnitude and squared magnitude (intensity and power) becomes χ and χ2 with

appropriate degree of freedom (dof ). In particular for the magnitude of a Cartesian com-

ponent χ distributed with two dof, a Rayleigh distribution [17]

f (|Ex |) =
|Ex |
σ2

exp

�

−
|Ex |2

2σ2

�

, (1.41)
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FIGURE 1.1: Reference system of the F(Ω) components.

with σ2 denotes the variance of the Cartesian components. Then, the squared magni-

tude of the Cartesian component is χ2 distributed with two dof, an exponential distri-

bution

f (|Ex |2) =
1

2σ2
exp

�

−
|Ex |2

2σ2

�

, (1.42)

the eq. (1.41) and (1.42) were validated by observations and measurement [18–20]. Fur-

thermore, the total electric field magnitude |E | is χ distributed with six dof with the fol-

lowing pdf

f (|Ex |) =
|E |5

8σ6
exp

�

−
|E |2

2σ2

�

, (1.43)

while the squared magnitude of the total electric field is χ2 distributed with six dof with

the following pdf

f (|Ex |2) =
|E |4

16σ6
exp

�

−
|E |2

2σ2

�

. (1.44)

The dual probability density functions, and previous results, for the magnetic field can

obtained by, i.e.

〈H 2
x r 〉=

E 2
0

6η2
≡σ2

H (1.45)

replacing E by H andσ andσH .

1.2.2 Modal description

Modes within a rectangular cavity are determined by the boundary conditions. For a de-

terministic analysis it is possible to use the modal approach. This kind of description is
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not rigorous, but useful for our scope. In a rectangular resonator, without losses with di-

mensions a , b and c representing the length, width and height respectively, the electro-

magnetic field is stationary and solving the transverse wave equation the wavenumber

is given by [21]:

kl ,m ,n =





√

�

lπ

a

�2 �mπ

b

�2 �nπ

c

�2
(1.46)

where l , m and n are non-negative indexes of modes, related to the Cartesian compo-

nents x̂ , ŷ and ẑ respectively. The propagation starts above the cut-off frequency of the

cavity, evaluated by:

fl ,m ,n =
1

2
p
µε





√

�

l

a

�2 �m

b

�2 �n

c

�2
. (1.47)

When indexes l , m and n are not-null the mode degeneracy occurs, modes with five

components. Conversely, if at least one index is null will exist three field components,

summarized in Table 1.1. The total modal density N (k ) of a cavity can be obtained as a

linear combination of the densities Ni (k )

N (k ) = N1(k )+N2(k )+N3(k )+N4(k )+N5(k ) (1.48)

Alternatively, an approximated definition for the evaluation of the overall modal density

is given by the Weyl’s law [22]:

Ns ( f ) =
8πV f 3

3c 3
− (a + b + c )

f

c
+

1

2
(1.49)

where c is the speed of the light in the vacuum. This law can be adopted also for a not-

rectangular cavity [23]. In spite of many studies have been directed to give a more rig-

orous definition of the LUF based on the Weyl’s law and by a physical point of view, the

LUF is still evaluated by empirical approach [11]. This empirical law “separates” the over-

moded from the undermoded regime is from 3 to 6× f0 where f0 represents the frequency

of the fundamental mode2.

Mode family Cartesian field components Modal density

T Ml mn Ex , Ey , Ez , Hx , Hy N1(K )
T El mn Ex , Ey , Hx , Hy , Hz N2(K )
T Ml m0 Ez , Hx , Hy N3(K )
T E0mn Ex , Hy , Hz N4(K )
T Ml 0n Ey , Hx , Hz N5(K )

TABLE 1.1: Modal structure for a static cavity, and densities.

2TE101
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1.2.3 Quality factor

Further attained the regime of well-operating condition the quality factor (Q ) can be

evaluated. For an unstirred cavity the Q (dimensionless) is defined by [19]

Q =ω
U

Pd
(1.50)

whereω is the angular frequency, U the energy stored and Pd the total dissipated power.

The energy U can be expressed as a product of

Us = W ·V (1.51)

where W is the energy density and V the volume of the cavity. The energy density in a

RC is statistically uniform because of the field homogeneity

W = ε0E 2 (1.52)

where ε0 is the electrical permittivity of the vacuum and E 2 is given by the ensemble

average over the chamber’s realization, i.e. stirrer rotation. The power density can be

rewritten as

SC =
E 2

η
=



√ ε0

µ0
E 2 = c W (1.53)

where µ0 is the magnetic permeability in the free-space and c is the speed of the light

in the vacuum; SC [W/m2] and W [J/m3]. Losses within an enclosure is mainly due to

the power dissipated by the metallic boundaries (Pd 1), power absorbed by internal ob-

jects (Pd 2), power leaking through apertures (Pd 3) and the power dissipated by anten-

nas (Pd 4). Considering these four contribute averaged over the lossy objects within the

RC. Losses due to the aperture can be evaluated in a similar way, defining before the

equivalent transmission cross sectionσL , averaged over 2π steradians hemisphere that

surrounds the aperture. A factor of 1/2 has to be accounted, so the result is

Pd 3 =
〈σL 〉Sc

2
. (1.54)

The third term is given by

Q3 =ω
US

Pd 3
=ω

2V

〈σL 〉c
=

4πV

λ〈σL 〉
(1.55)

If the RC is well shielded this term should not be taken into account. At low frequency

the power dissipated on the antenna loads become dominant. The received power can

be found by

Pd 4 = SC 〈Al 〉 (1.56)
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where 〈Al 〉 represents the effective area of an isotropic radiator

〈Al 〉=
mλ2

8π
(1.57)

where m is the mismatching antenna factor (m = 1 for matched load) and the relative

Q4 is given by

Q4 =
16π2V

mλ3
(1.58)

if there are N identical receiving antennas we have to multiply (1.57) and divide (1.58)

by N . We can note that this contribute∝ f 3 is dominant at low frequency.

Considering a coupled RC, the power transmitted by an external source is given by

the equivalent cross sectionσL

PT =
Si 〈σL 〉

2
(1.59)

where Si is the incident power density through the aperture; at the stationary state

the PT must to be the same of the dissipated power Pd

Pd =ω
US

Q
, (1.60)

which respects the power conservation principle. The balance equation give

SC =
� 〈σt 〉Qλ

4πV

�

Si (1.61)

then considering SC to be uniform so the shielding effectiveness (SE) for the aperture

can be defined by the following expression

S E = 10log
Si

SC
= 10log

�

4πV

〈σt 〉λQ

�

. (1.62)

It is noticing that a lossy cavity has a higher shielding effect compared to a cavity with a

high Q -factor. In order to highlight the effect of losses consider before a lossless cavity

except the aperture, it means Pd 1 = Pd 2 = Pd 4 = 0 and

Q =Q3 =
4πV

〈σL 〉λ
(1.63)

then substituting (1.63) in (1.61) yields

SC =
〈σt 〉
〈σL 〉

Si . (1.64)

Introducing the power balance PT = Pd by using (1.58) (1.51) and (1.53) we obtain

PT =
2πV SC

λQ
(1.65)

and

SC =
PT λQ

2πV
, (1.66)
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and the received power is

Pr = SC 〈Al 〉= SC

�

λ2

8π

�

=

�

λ3Q

16π2V

�

PT (1.67)

at the end the Q -factor is given by [11]

Q =
16π2V

λ3ηT X ηR X

�

Pr

PT

�

(1.68)

where e t aT X andηR X are antenna coefficients representing their efficiency, for the trans-

mitting and receiving respectively. In Chapter 6 is described the setup for the SE evalu-

ation of different elements, and the nested reverberation chamber as well.

1.2.4 Uncorrelated stirrer positions

In order to create a random field within the RC there are several stirring techniques [24,

25]:

• mechanical stirring

• frequency stirring

• source stirring

• positioning stirring

• “wall” stirring

• combination of them.

FIGURE 1.2: Picture of the Ancona’s RC.

The mechanical stirring is the most common, it is basically a metallic, non-symmetric

structure placed inside the RC that continuously rotates. By rotating, the stirrer provides

to increase the set of excites modes3, for each position the set of excites mode should not

3different for each stirrer position due to the fact that changes the boundary condition
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be the same, otherwise two close positions that do not exhibit an appreciable different

means that they are correlated and the stirrer performance is low. The stirrer perfor-

mance are evaluated by the number of uncorrelated stirrer positions, discussed later. In

this sense, a well-operated stirrer improves the chaoticity of the field within the RC. More

than one stirrer could be used at the same time both in synchronous or interleaved way.

During the experimental measurements the stirrer can be used in two modality [26]:

• tuned mode: where the frequency sweep is completed for each stirrer position

(step by step)

• stirring mode: opposite to the tuned mode the stirrer rotates continuously for each

frequency of the band.

The shape and dimension of the stirrer are very important parameter and they affect

the behavior of the RC, in fact a stirrer should be electrically large corresponding at least

to λ/4. Moreover, like in the acoustic reverberating room, inserting diffractor improves

the performance [27, 28]. The most common shape of a stirrer is the z-folded, where a

metallic sheet (thin sheet) is bended similar to a “z” (avoiding any symmetries) Figure 1.3.

Obviously other shapes have been designed and proposed over the years [27, 29–31] in

FIGURE 1.3: Picture of the vertical z-folded stirrer of the Ancona’s RC.

order to improve the performance, Figures 1.3, 1.4 and 1.5 report some examples. As

previously mentioned, the number of uncorrelated stirrer positions (stirrer efficiency)
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FIGURE 1.4: Picture of the (temporary) horizontal stirrer of the Ancona’s
RC.

FIGURE 1.5: Picture of the vertical stirrer of the Nottingham’s RC.

is a key parameter in order to evaluate the performance of the considered stirrer and

consequently affects the overall behavior of the RC. To this purpose considering many

stirrer steps is useful because

• the larger the steps the larger the points used for the statistical analysis, increasing

the precision on the mean value of the field
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• the larger the steps the greater the ratio between maximum and mean value of the

field, in order to achieve the maximum field less power is needed
�

f (N ) = |EM AX |
〈|E |〉

�

with N the tuner steps. This feature is relevant about immunity tests,

unfortunately increasing the stirrer steps imply a rise of the measurement time.

Considering that for each stirrer position N samples4 of the receiving power are ac-

quired by the vector network analyzer (VNA) and stored in an array a

ai = ai+k N k ∈Z, , (1.69)

the i − t h value of this array is computed by [11]

ρi =

∑N−1
j=0 a j a j+i

σ2a
(1.70)

where 0≤ i ≤N −1 and

σ2a =
1

N −1

N−1
∑

j=0

�

a j−< a >
�2

(1.71)

corresponds to the variance of the array a , this method is called auto-correlation func-

tion (ACF). Hence, the number of uncorrelated stirrer positions of the stirrer Ni nd are

FIGURE 1.6: Example of a 1-D correlation. The crosses indicate the un-
correlated states.

given by the ratio between the samples N and the autocorrelation values that are greater

than a threshold, which is reported in the standard [11] and is computed by

r =
1

e

�

1−
7.22

N 0.64

�

(1.72)

If there are two stirrers (or more set of samples see Figure 2.4 in Chapter 2) that op-

erate in interleaved mode5 it is possible to adopt the multivariate approach [32]. The

multivariate approach is based on the field probed points within the WV. First of all the

matrix of the fields (e ) is filled

e =

⎡

⎢

⎢

⎢

⎢

⎣

e
(1)
1 . . . e

(Ns )
1

e
(1)
2 . . . e

(Ns )
2

...
...

...

e
(1)
Np

. . . e
(Ns )
Np

⎤

⎥

⎥

⎥

⎥

⎦

(1.73)

4the number of samples depend on the VNA resolution
5otherwise if two or more stirrers operate in synchronous way they correspond to a unique stirrer where

the total steps are due to the sum of each stirrer.
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where the rows represent the probed points on the grid and the columns represent vec-

tors made of stirrer positions. Then, the Pearson correlation coefficient between the stir-

rer positions field arrays j and k is computed for all the probed points by

ρ j k =
Cov

�

e ( j ), e (k )
�

r

Var
�

e ( j )
�

Var
�

e (k )
�

(1.74)

and the correlation matrix is completed as:

R =

⎡

⎢

⎢

⎢

⎢

⎣

ρ11 ρ12 . . . ρ1Ns

ρ21 ρ22 . . . ρ2Ns

...
...

...
...

ρNs 1 ρNs 2 . . . ρNs Ns

⎤

⎥

⎥

⎥

⎥

⎦

(1.75)

The last step is to count the uncorrelated stirrer positions by using the same threshold

r [11] in this way

Nu =
N 2

s

#[R > r ]
. (1.76)

In practice the number of uncorrelated stirrer states is given by the total number of the

matrix elements divided by the elements greater than the threshold.

Figure Figure 1.7 shows an example of the autocorrelation whereas Figure 1.7 an ex-

ample of the correlation matrix.

FIGURE 1.7: Example of a 2-D correlation. The crosses indicate the un-
correlated states.

a peculiarity of the correlation matrix is that the evaluation of the uncorrelated states

does not depend on the order. More precisely, the same results are obtained if the pi , j

are computed following the rows or columns. This property is not true for the autocorre-

lation function. The multivariate approach is more accurate than the ACF method, but

it requires longer time in order to collect fields value to fill the matrix of events.
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1.2.5 Field uniformity

The field uniformity is a very important parameter for the validation of the RC and pro-

vides to guarantee a correct position of the DUT (within the validated WV). The field

is considered uniform if it is below the limit reported in the standard [11] (3 dB above

400 MHz, 4 dB at 100 MHz decreasing linearly to 3 dB at 400 MHz, and within 4 dB below

100 MHz). The standard deviation, reported in eq. (1.77), provides the values within the

tolerance accepted by the normative [11]. The standard deviation [dB] is expressed by:

σ24 = 20log

�

σ24 + 〈Ex ,y ,z 〉
〈Ex ,y ,z 〉

�

(1.77)

where theσ24 is the standard deviation evaluated on 24 probe positions, 8 for each Carte-

sian component, and 〈Ex ,y ,z 〉 is the arithmetic mean of the normalized EM AX from all

the 24 probed positions. The average E -field for all the three Cartesian components was

evaluated by:

〈E 〉24 =

∑

Ex ,y ,z

24
(1.78)

where < . > represents the arithmetic mean and and
∑

was done by the 24 rectangular

probed E -values and

σ24 =





√

∑8
m=1

∑3
n=1 (Em ,n −〈E 〉24)

2

24−1
(1.79)

is the standard deviation made by all vectors x̂ , ŷ and ẑ ; m and n denote the probe

location 1 to 8 and the axis 1 to 3 respectively.
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Chapter 2

The Finite-Difference Time-Domain

method

2.1 Introduction

The Finite-Difference Time-Domain (FDTD) is a numerical method able to solve com-

plex problems as the Maxwell’s equations in the time domain, i.e. analysis and design of

antennas, evaluation of the propagation of signals etc. The FDTD is based on the Yee’s

algorithm [33], presented the first time in [1] in 1966 and still valid. It is one of the most

used/common numerical techniques, in particular thanks to the advent of higher per-

formance computers.

The FDTD method has got pros and cons, as whichever numerical method. Also in

the FDTD some approximations were done. The main advantages of the FDTD are:

• is conceptually simple to understand

• take advantage of the time domain, using a broadband signal (Gaussian pulse) it

is possible to cover a wide range of frequencies with a single simulation

• E and H fields are evaluated in the considered domain, so it is possible to trace

their evolution

• this technique allows us to specify the material at all grid points in the computa-

tional domain

• the FDTD code is easily parallelizable with the OpenMP1 and MPI2 libraries

whereas, the main disadvantages of this technique are:

• it requires that the whole domain must be gridded and the discretization has to

be sufficiently fine in order to take into account the smallest wavelength of the

electromagnetic field

• space and time steps have to satisfy the Courant condition [1]

• requires high powerful computers and a large amount of memory

1http://www.openmp.org/
2http://www.open-mpi.org/
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• for a cavity with a high Q-factor implies very long time for simulations.

In the FDTD differential equations are transposed and approximated3 into finite-

difference equations (FDE) for both spatial and temporal derivatives (Ampere’s 1.2 and

Faraday’s 1.1 laws) by means of the Taylor’s series expansions [1].

Yee’s algorithm, developed by Kane Yee [33], can be highlighted with following steps:

1. replacing the finite differences of the Ampere’s and Faraday’s laws, discretize the

space and time obtaining electric and magnetic field staggered in space and time

2. compute the equations in order to have the “updated equations” that allow us to

know the future fields by the past fields (2.9)

3. compute the magnetic fields one time step into the future

4. compute the electric fields one time step into the future

5. repeat step 3 and 4 for all the duration.

The resulting scheme consists by linear equations where future values (ti+1) of the elec-

tric/magnetic field are going to be evaluated by their previous values (ti ), already stored

in the memory, see (2.9).

The iterative procedure has the 6 Cartesian components of the field. Figure Figure 2.1

shows the elementary cubic cell that forms the Yee lattice [1]. The electric filed is com-

puted at the center of the faces of the cubic cell whereas the magnetic one at the edges. In

this way the electric field component is surrounded by four magnetic components and

every magnetic component surrounded by four electric ones [1]. Moreover, the elec-

tric and magnetic components are evaluated at different time steps, i.e. electric ones at

n ·∆t and the magnetic ones at (n +1/2) ·∆t , where n = 1, 2, 3, · · · , see Figure 2.2 that

shows the leapfrog scheme for the time derivative. Then the whole geometry4 will be

discretized by a 3-D lattice, the cell size is an important parameter because it defines the

spatial resolution of the whole simulation. It is worth noticing that a finer cell size shows

a better resolution but implies a higher computational burden. On the contrary, a small

cell size make worse the resolution and affects the discretization of relative small object.

Starting from the curl equations (1.1) and (1.2) we obtain the following system:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂Hz
∂ y −

∂Hy

∂ z = ε ∂ Ex
∂ t +σEx

∂Hx
∂ z −

∂Hz
∂ x = ε

∂ Ey

∂ t +σEy

∂Hy

∂ x −
∂Hx
∂ y = ε ∂ Ez

∂ t +σEz

∂ Ey

∂ z −
∂ Ez
∂ y = µ ∂Hx

∂ t +σ∗Hx

∂ Ez
∂ x −

∂ Ex
∂ z = µ

∂Hy

∂ t +σ∗Hy

∂ Ex
∂ y −

∂ Ey

∂ x = µ ∂Hz
∂ t +σ∗Hz

(2.1)

3after a spatio-temporal quantization
4the RC and devices for our case
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FIGURE 2.1: Elementary cubic (unitary) cell size of the Yee space lattice
where the position of the electric and magnetic field components are re-

ported [1].

FIGURE 2.2: Space-time scheme of the Yee algorithm [1].

whereσ∗ is the equivalent magnetic conductivity5.

5added in order to make the system symmetric.
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In order to transform the differential equations in finite difference equations we need

some steps [16]. Considering the function u(x , tn ) and its expansion about the space

point x0 to the space point x0±∆x , the time step (tn ) remains fixed, we have:

u (x0±∆x ) |tn = u |x0,tn
±∆x

∂ u

∂ x
|x0,tn

+
(∆x )2

2

∂ 2u

∂ x 2
|x0,tn
±
(∆x )2

3

∂ 3u

∂ x 3
|x0,tn

+
(∆x )4

24

∂ 4u

∂ x 4
|x i ,tn

(2.2)

where the last term indicates the error. Adding the two expansions of 2.2, referred to

(+∆x ) and (−∆x ) respectively, we obtain:

u (x0 +∆x ) |tn +u (x0−∆x ) |tn = 2u |xo ,tn
+

(∆x )2

2

∂ 2u

∂ x 2
|x0,tn

+
(∆x )4

24

∂ 4u

∂ x 4
|x i ,tn

(2.3)

and rearranging the terms:

∂ 2u

∂ x 2
|x0,tn

=

�

u (x0 +∆x )−2u (x0)+u (x0−∆x )

(∆x )2

�

+O
�

(∆x )2
�

(2.4)

where O
�

(∆x )2
�

is the notation for the term error. It approaches to zero as the square

of the space increment. Adopting another notation for (2.4), that represents the central

difference approximation to the second partial space derivative of u with second-order

of accuracy (2.4), i for the space position and n for the time step we can rewrite it as:

∂ 2u

∂ x 2
|x0,tn

=
u n

i+1−2u n
i +u n

i−1

(∆x )2 +O
�

(∆x )2
�

(2.5)

and the for the time derivative of u :

∂ 2u

∂ t 2
|x0,tn

=
u n+1

i −2u n
i +u n−1

i

(∆t )2 +O
�

(∆t )2
�

(2.6)

Then, substituting (2.5) and (2.6) into the one-dimensional scalar wave equation ∂ 2u
∂ t 2 =

c 2 ∂ 2u
∂ x 2 we obtain:

u n+1
i −2u n

i +u n−1
i

(∆t )2
+O

�

(∆t )2
�

= c 2

�

u n
i+1−2u n

i +u n
i−1

(∆x )2 +O
�

(∆x )2
�

�

(2.7)

that represents an approximation of the second-order accuracy to the scalar wave equa-

tion both in space and time. Disregarding remainders O
�

(∆x )2 +(∆t )2
�

and solving for

the latest value of u at the point i on the grid we obtain the fully explicit expression for

u n+1
i with the second order of accuracy:

u n+1
i = (c∆t )2

�

u n
i+1−2u n

i +u n
i−1

(∆x )2

�

+2n
i −u n−1

i (2.8)

We can note that on the right side of (2.8) the quantities are known; in fact they were

obtained in the previous steps n and n −1. In this way the process can be repeated for

all space points, this repetition represents the FDTD solution of the scalar wave equation.



2.1. Introduction 23

A case of special interest is when c∆t = ∆x , for its peculiarity this value is called

magic time-step. For this value, the solution of the FDTD equation is an exact solution

to the differential wave equation; the result is:

u n+1
i =

�

u n
i+1−2u n

i +u n
i−1

�

+2n
i −u n−1

i = u n
i+1 +u n

i−1−u n−1
i , . (2.9)

Finally, considering the function u(x , t ) = F (x +c t )+G (x −c t ) as the one-dimensional

scalar wave equation solution with F and G are taken as arbitrary functions and knows

as propagating-wave solutions.

By using the Yee’s notation the volume of the cell is given by

∆v =∆x ·∆y ·∆z (2.10)

and for a uniform spatial discretization a space point in a rectangular lattice is denoted

by:

(i , j , k ) = (i∆x , j∆y , k∆z ) (2.11)

with ∆x , ∆y and ∆z are the lattice space increment about the x̂ , ŷ and ẑ directions

respectively. Then, considering any function of space and time F (x , y , z , t ) after its dis-

cretization over the space and time we obtain

F |ni , j ,k = F (i∆x , j∆y , k∆z , n∆t ) (2.12)

where∆t is the time increment. With the new notation the partial derivatives of 2.1 with

the proper incremental ratios yield:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂ F
∂ x =

F |ni+1, j ,k−F |ni , j ,k

∆x +O ((∆x )2)

∂ F
∂ y =

F |ni , j+1,k−F |ni , j ,k

∆y +O ((∆y )2)

∂ F
∂ z =

F |ni , j ,k+1−F |ni , j ,k

∆z +O ((∆z )2)

∂ F
∂ t =

F |n+1
i , j ,k−F |ni , j ,k

∆t +O ((∆t )2)

(2.13)

Avoiding the second-order O ((∆)2) terms, the error does not exceed than the squared

increment; if ∆x , ∆y and ∆z are inhomogeneous the error comes to the first order6

O ((∆)). The next step is to apply of this formalism to (2.1), considering the fourth equa-

tion we obtain:
∂ Ey

∂ z
−
∂ Ez

∂ y
= µ

∂Hx

∂ t
+σ∗Hx (2.14)

and substitute the partial derivatives yields to

1

µi , j ,k

 

Ey |ni , j ,k+ 1
2
−Ey |ni , j ,k− 1

2

∆z
−

E |n
i , j+ 1

2 ,k
−Ez |ni , j− 1

2 ,k

∆y
−σ∗i , j ,k Hx |ni , j ,k

!

=
Hx |

n+ 1
2

i , j ,k −Hx |
n− 1

2
i , j ,k

∆t

(2.15)

6relevant where a subgridding is applied
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where it is noticing that the terms on the left hand have field components computed at

time step n whereas in the right hand the magnetic components is not computed yet

(not stored in the memory) and it can be computed through a semi-implicit technique:

Hx |ni , j ,k =
Hx |

n+ 1
2

i , j ,k −Hx |
n− 1

2
i , j ,k

2
(2.16)

and substituting in (2.15) yields

Hx |
n+ 1

2
i , j ,k =

⎛

⎝

1−
σ∗i , j ,k∆t

2µi , j ,k

1+
σ∗i , j ,k∆t

2µi , j ,k

⎞

⎠Hx |
n− 1

2
i , j ,k +

⎛

⎝

∆t
µi , j ,k

1+
σ∗i , j ,k∆t

2µi , j ,k

⎞

⎠ ·

=

 

Ey |ni , j ,k+ 1
2
−Ey |ni , j ,k− 1

2

∆z
−

Ez |ni , j+ 1
2 ,k
−Ez |ni , j− 1

2 ,k

∆y

!

(2.17)

With the same procedure it is possible to obtain the other field components w.r.t (2.1):

Hy |
n+ 1

2
i , j ,k =

⎛

⎝

1−
σ∗i , j ,k∆t

2µi , j ,k

1+
σ∗i , j ,k∆t

2µi , j ,k

⎞

⎠Hy |
n− 1

2
i , j ,k +

⎛

⎝

∆t
µi , j ,k

1+
σ∗i , j ,k∆t

2µi , j ,k

⎞

⎠ ·

=

 

Ez |ni+ 1
2 , j ,k
−Ez |ni− 1

2 , j ,k

∆x
−

Ex |ni , j ,k+ 1
2
−Ex |ni , j ,k− 1

2

∆z

!

(2.18)

Hz |
n+ 1

2
i , j ,k =

⎛

⎝

1−
σ∗i , j ,k∆t

2µi , j ,k

1+
σ∗i , j ,k∆t

2µi , j ,k

⎞

⎠Hz |
n− 1

2
i , j ,k +

⎛

⎝

∆t
µi , j ,k

1+
σ∗i , j ,k∆t

2µi , j ,k

⎞

⎠ ·

=

 

Ex |ni , j+ 1
2 ,k
−Ex |ni , j− 1

2 ,k

∆y
−

Ey |ni+ 1
2 , j ,k
−Ey |ni− 1

2 , j ,k

∆x

!

(2.19)

Ex |
n+ 1

2
i , j ,k =

⎛

⎝

1−
σ∗i , j ,k∆t

2εi , j ,k

1+
σ∗i , j ,k∆t

2εi , j ,k

⎞

⎠Ex |
n− 1

2
i , j ,k +

⎛

⎝

∆t
εi , j ,k

1+
σ∗i , j ,k∆t

2εi , j ,k

⎞

⎠ ·

=

⎛

⎝

Hz |
n+ 1

2

i , j+ 1
2 ,k
−Hz |

n+ 1
2

i , j− 1
2 ,k

∆y
−

Hy |
n+ 1

2

i , j ,k+ 1
2
−Hy |

n+ 1
2

i , j ,k+ 1
2

∆z

⎞

⎠

(2.20)

Ey |
n+ 1

2
i , j ,k =

⎛

⎝

1−
σ∗i , j ,k∆t

2εi , j ,k

1+
σ∗i , j ,k∆t

2εi , j ,k

⎞

⎠Ey |
n− 1

2
i , j ,k +

⎛

⎝

∆t
εi , j ,k

1+
σ∗i , j ,k∆t

2εi , j ,k

⎞

⎠ ·

=

⎛

⎝

Hx |
n+ 1

2

i , j ,k+ 1
2
−Hx |

n+ 1
2

i , j ,k− 1
2

∆x
−

Hz |
n+ 1

2

i+ 1
2 , j ,k
−Hz |

n+ 1
2

i− 1
2 , j ,k

∆x

⎞

⎠

(2.21)
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Ez |
n+ 1

2
i , j ,k =

⎛

⎝

1−
σ∗i , j ,k∆t

2εi , j ,k

1+
σ∗i , j ,k∆t

2εi , j ,k

⎞

⎠Ez |
n− 1

2
i , j ,k +

⎛

⎝

∆t
εi , j ,k

1+
σ∗i , j ,k∆t

2εi , j ,k

⎞

⎠ ·

=

⎛

⎝

Hy |
n+ 1

2

i+ 1
2 , j ,k
−Hy |

n+ 1
2

i− 1
2 , j ,k

∆x
−

Hx |
n+ 1

2

i , j+ 1
2 ,k
−Hx |

n+ 1
2

i , j− 1
2 ,k

∆y

⎞

⎠

(2.22)

For the Ex , Ey and Ez theσE n+1/2 term due to the electric losses is evaluated by using a

semi0implicit procedure such as (2.16). Equations (2.17), (2.18), (2.19), (2.20), (2.21), (2.22),

with the boundary conditions, allow for the computation of the electric and magnetic

fields from the previous values and from the surrounding magnetic and electric fields.

2.2 Numerical dispersion and stability

The FDTD causes a non-physical dispersion due to the propagation through the discrete

lattice region. This affects the phase velocity of the modes occouring a deviation from c

of a quantity that depends on the wavelength and by the direction of propagation within

the grid. If the spatial resolution increases the dispersion significantly will decrease. Ef-

fects due to the numerical aether can originate distortion, delays. The numerical dis-

persion play a key role when an electrically large structure is modeled. In order to avoid

these artificial dispersions first of all proper values for the spatial and time steps have to

be choose. Considering the compact form of the Maxwell’s equations for a source-free

region with µ= 1, ε= 1,σ= 0 andσ∗= 0 we have

ȷ∇× (H+ ȷ E) =
∂

∂ t
(H+ ȷ E) (2.23)

where ȷ =
p
−1 and introducing the complex vector V = H+ ȷ E yields

ȷ∇×V =
∂ V

∂ t
. (2.24)

Being the region uniform linear and isotropic, considering a plane wave field:

V|ni , j ,k = V0et (ωn∆t−k̂x i∆x−k̂y j∆y−k̂z k∆z (2.25)

in the Yee stace-time lattice yields

�

x̂

∆x
sin

�

k̃x∆x

2

�

+
ŷ

∆y
sin

�

k̃y∆y

2

�

+
ẑ

∆z
sin

�

k̃z∆z

2

��

×V|ni , j ,k =

=
−ȷ
∆t

V|ni , j ,k sin
�

ω∆t

2

�

(2.26)
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where the central finite differences have been used. Performing the operations in (2.26)

the Vx , Vy and Vz are obtained by7

�

1

c∆t
sin

�

ω̃∆t

2

��2

=

=

�

1

∆x
sin

�

k̃x∆x

2

��2

+

�

1

∆y
sin

�

k̃y∆y

2

��2

+

�

1

∆z
sin

�

k̃z∆z

2

��2 (2.27)

For a 1-D plane waves k̃ is given by

k̃ =
2

∆
arcsin

�

∆

c∆t
sin

�

ω∆t

2

��

. (2.28)

The relationship between the phase velocity and the wavenumber is

ṽp =
ω

k̃
(2.29)

and it points out how the spatial resolution influences the numerical phase velocity.

Defining the cell density per wavelength as

Ny =
λ

∆
(2.30)

that represents a kind of transition factor between continuous and discrete electromag-

netic region. Empirically a good choice is Ny = 20, so the inaccuracy provided by the

numerical dispersion can be negligible if

∆⩽
λmi n

20
. (2.31)

Equation (2.28) shows a key parameter for this method, the Courant number

S =
c∆t

∆
(2.32)

In order to choose∆t we consider (2.27) and solve it for ω̃

ω̃=
2

∆t
arcsin(ξ) (2.33)

where

ξ= c∆t





√ 1

(∆x )2
sin2

�

k̃x∆x

2

�

+
1

(∆y )2
sin2

�

k̃y∆y

2

�

+
1

(∆z )2
sin2

�

k̃z∆z

2

�

(2.34)

From (2.34)

0≤ ξ≤ c∆t



√ 1

(∆x )2
+

1

(∆y )2
+

1

(∆z )2
≡ ξl i mi t (2.35)

7setting the determinant of the system equal to zero
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The maximization of ξ is obtained by:

k̃y =±
π

∆x
,

k̃x =±
π

∆y
,

k̃z =±
π

∆z
.

(2.36)

If ξ exceed the unity due to∆t , the numerical wavenumber becomes complex driv-

ing to the instability [16], yielding a multiplicative factor (∆t )−n in (2.25). The stability

condition is given by

ξl i mi t ≤ 1 (2.37)

hence

∆t ≤
1

c
r

1
(∆x )2 +

1
(∆y )2 +

1
(∆z )2

. (2.38)

For a cubic cell8
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and the stability factor S is

S =
c

∆

∆

c
p

3
=

1
p

3
. (2.40)

There will be divergence if S > 1.

Moreover, after the choice of the cell size the domain is going to be discretized but ob-

viously it is impossible to consider an infinite domain. The domain of computation must

be truncated, to this purpose have been developed some techniques available in the lit-

erature. The grid truncation is known as absorbing boundary conditions (ABC) problem

and the most common are the Mur’s ABS [34] and the perfectly matched layer (PML) for-

mulations. Despite the PML, introduced by Berenger, is more complicated than others

is better in terms of performance [35–37].

The choice of the “shape”9 of cells for the mesh is a key feature when the FDTD will

be implemented. The simplest choice is to consider cubic cells (uniform mesh) in order

to facilitate the implementation of the FDTD code and in addition to make the FDTD

execution faster w.r.t. other configuration, i.e. subgridding [38, 39], non-cubic cells [40].

The finer the cell size the better approximation of the objects but implies a longer com-

putational time e.g. in a 3-D domain a cell size reduced by a factor 2 corresponds to

an increment of 8 times the memory needed and 16 times the computational time [41].

The cell size must be smaller enough in order to avoid anisotropy issues and of course

8∆x =∆y =∆z
9cubic, hexagonal, non-orthogonal, etc.
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FIGURE 2.3: Example of non-uniform orthogonal cubic cell.

to respect the stability criterion. Therefore, it is obvious that subgridding a defined re-

gion or all the domain yields a finer resolution and allows to take into account variations

of the structure that occurs within the (desired) Yee cells [42]. This involves to increase

(drastically for big domain) the complexity of the code and the computational burden,

i.e. memory requested, time step reduced means greater computational time, stability

problem, etc. On the contrary, the subgridding or a non-uniform mesh arises neces-

sary when the geometry details have to be modeled (locally or global). Many works in

the literature are addressed on the study of these techniques, or a combination of them,

i.e. the discontinuous-Galerkin time-domain (DGTD) [43–50]. Our FDTD code is imple-

mented by using uniform cubic cells (staircase approximation), note that the accuracy

of the method discussed previously does not include the inaccuracies introduced by the

mesh [51, 52].

2.3 Code implementation

Basically, our homemade code10 (that implements the FDTD) simulates the whole RC

and is divided in three modules gathered in a single job. The three modules are:

1. the electromagnetic solver (the FDTD technique)

2. the Fast Fourier transform (FFT)11 in order to obtain the frequency domain behav-

ior

3. the statistical module, which is used to obtain the RC features, i.e. number of un-

correlated stirrer position/frequencies/spatial points, field uniformity, etc.

10developed by our group during these years
11On the FERMI/MARCONI supercomputer is available the FFTW library (http://www.fftw.org/) in order

to perform the FFT
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The code accounts well for the received power of the antennas (both Tx and Rx ) be-

cause transmission lines are simulated connected to the antennas [16, 53] and it allows

to recover the scattering parameters (S21 and S11). In the simulations the

The cavity was excited by a Gaussian pulse modulated by a sinusoid, in order to cover

the all band with a single FDTD simulation. The pulse excitation is:

V (t ) = Ae
(t−t0)

2

2σ2 sin(ωt ) (2.41)

where

σ=

p
6

π( fma x − fmi n )
(2.42)

and A indicates the amplitude of the pulse whereas ω = π( fma x − fmi n ) with respect

to the minimum and maximum frequency values set on the simulation. The FFT was

evaluated by a step∆ f ≈ 38 kHz.

The FDTD is an electromagnetic solver well suited for a parallel implementation,

such as the computation of the six components of the electromagnetic field. Moreover,

the RC as well could be interpreted in a parallel way. In fact, considering a mode stirred

RC, each stirrer position corresponds with a chamber realization, consequently each re-

alization is a single run on the code, and obviously, each run is independent of the oth-

ers. In parallel computing this structure is called “embarrassingly parallel”, which means

that little efforts are needed to divide the whole problem into many parallel tasks and the

communication between these parallel tasks is very limited. In particular:

• in the time-domain(when FDTD and FFT were performed), each stirrer position

can run on a different MPI process, (are independent by the stirrer position)

• in the frequency domain (when statistical analysis were performed), each frequency

can run on a different MPI process (each frequency block is independent)

Each MPI process correspond to a single node on the old machine (FERMI), whereas in

the new machine (MARCONI) we are able to increase the number of MPI processes in

each node, in our case, after some attempts we fixed four MPI processes for each node.

Subsequently, inside each node the FDTD was parallelized again by using OpenMP in

order to compute the electromagnetic field values. Therefore the FDTD C-code is hybrid,

using both MPI and OpenMP. Here is reported piece of the FDTD code used to compute

the magnetic field:
/* COMPUTE THE MAGNETIC FIELD */
void
compute_h (struct_fieldEM * field , struct_fdtd * fdtd , struct_grid * grid)
{

register int i, j, k;
#pragma omp parallel for default(none) \ shared(griglia , campo , fdtd) \ private(i,j,k) \ num_threads(RCFDTD_THREADS)

for (i = 0; i < grid ->dimxm1; i++)
for (j = 0; j < grid ->dimym1; j++)
for (k = 0; k < grid ->dimzm1; k++)
{
field ->Hx[i][j][k] += (fdtd ->coef4z_1[k] * (field ->Ey[i][j][k + 1] - field ->Ey[i][j][k])) -

(fdtd ->coef4y_1[j] * (field ->Ez[i][j + 1][k] - field ->Ez[i][j][k]));
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field ->Hy[i][j][k] += (fdtd ->coef4x_1[i] * (field ->Ez[i + 1][j][k] - field ->Ez[i][j][k])) -
(fdtd ->coef4z_1[k] * (field ->Ex[i][j][k + 1] - field ->Ex[i][j][k]));

field ->Hz[i][j][k] += (fdtd ->coef4y_1[j] * (field ->Ex[i][j + 1][k] - field ->Ex[i][j][k])) -
(fdtd ->coef4x_1[i] * (field ->Ey[i + 1][j][k] - field ->Ey[i][j][k]));

}
}

24 where #pragma denotes OpenMP directives.

In our code it is possible to arrange the data (field values picked up on the WV) in a 3-

D array considering different chamber’s realizations, Figure 2.4. In this way by using the

FIGURE 2.4: Scheme of the data arranging in the code implemented by
Ancona’s group. Angular positions are the stirrer positions/steps whereas

spatial points are a defined number of points defined within the WV.

multivariate approach [32]where choosing and combining two of the three realizations

it is possible to evaluate the third as:

• the uncorrelated stirrer positions adopting:

– spatial correlation matrix (for each frequency)

– frequency correlation matrix (for each spatial point)

• uncorrelated spatial points adopting:

– spatial correlation matrix (for each stirrer position)

– stirrer position correlation matrix (for each spatial point)

• uncorrelated frequencies adopting:

– stirrer position correlation matrix (for each frequency)

– frequency correlation matrix (for each stirrer position).
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2.4 Effect of losses

Losses of an RC can be caused by many mechanisms [19] such as antenna losses origi-

nated by the antenna total efficiency [54,55], losses of the walls due to the finite conduc-

tivity, leakages in joints/screws/door, losses due to the antenna’s tripod, cable inserted

to connect antennas to the VNA ports, devices under test (DUTs), rubber cable jackets,

finner stirrer conductivity. Localized losses are difficult to take into account in a rig-

orous way and not efficient in numerical simulations. Moreover, the discretization of

the whole chamber and devices with uniform cells does not assist to well account the

localized losses in objects with a complex geometry. It is more convenient consider dis-

tributed losses with an effective equivalent conductivity σv , it facilitates not only the

implementation of the problem but also improves the efficiency and performance when

the code run on supercomputers [56, 57]. In fact, for the wall losses we have to consider

the existing relationship between the tangential components of electric and magnetic

field:

Etan = Zs Js = Zs n×Htan (2.43)

then, considering a good conductor withσw the internal impedance is

Zs ≃


√ jωµ

σw
= Rs + jωL s (2.44)

where the resistance of the surface is

RsωL s =
1

σwδ
(2.45)

and

δ=
1

p

π f µσw

(2.46)

is the skin depth. At a fixed frequency both Rs and L s can be treated as a constant and

applying the inverse Fourier transform (IFT) we get the time-domain FDTD constant

surface impedance boundary conditions [16]:

Etan(t ) =
�

Rs + L s
∂

∂ t

�

n×Htan(t ) . (2.47)

that was implemented in [58] and the advantages of this method are: ease and velocity.

For a broadband excitation this method returns the exact value at the considered center

frequency [59]. On the contrary, in our code walls and objects are simulated as perfect

ideal conductor (PEC) (Et a n = 0). This choice permits to maximize the speed up of the

code and to simplify the accounting of losses, now distributed losses within the volume

of the RC, call it volumetric losses which a conductivity: σv . The conductivity (σv ) of

each FDTD cell could be set to the chosen value. This procedure is included in the FDTD

development and it does not need more computational resources [16].

As shown in [60, 61], losses could be taken into account in a temporal simulation
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FIGURE 2.5: Simulated transmission coefficient amplitude S21 of the
measurement (black) simulation with both wall (blue) wall with fre-
quency dependence (green) and volumetric (red) losses. A sliding aver-
age window over 40 and 400 frequency points was applied for the mea-
sured and simulated data respectively, main graph whereas the inset re-

ports raw data.

by tailored filter applied to the response of a lossless cavity, previously evaluated by an

FDTD simulation. Moreover, wall losses should be evaluated for each frequency over the

whole band, this is another weakness of this choice.

In this thesis, apart where specified, results were obtained by using volumetric losses,

and simulate walls, stirrers, antennas (discone) and spheres as (PEC). The staircase ap-

proximation weakly affects the reflection coefficient of antennas because the wavelength

is greater than the cell size, i.e. λ/20 at 0.5 GHz (related to the following simulated re-

sults). Despite we considered volumetric losses in the simulations, a comparison be-

tween the use of wall and volumetric losses were done [62, 63]. Values for the two con-

ductivities were evaluated with different procedures. It was not applied a rigorous pro-

cedure in order to reach the best fit value for σv (compared to the experimental re-

sults), but several attempts were done until the “best” value was reached, just by a vi-

sual inspection [64]. For our chamber (Ancona’s RC) the values of the conductivities are:

σw = 5000 [S/m] andσv = 10−5 [S/m] for wall and volumetric losses respectively.

In Figure 2.5 it is reported the comparison between simulated and measured S21 of

Ancona’s RC. The measurement is the black curve, whereas the others are from simu-

lations. In particular the red curve was obtained by considering volumetric losses, the

blue for wall losses considering the constant surface impedance and the green12 curve

again wall losses but evaluated with a variable surface impedance. Resistance and in-

ductance of (2.47) were evaluated at the center frequency (blue curve) but actually they

are frequency dependent. For a better evaluation the whole band was divided in five

12obtained by concatenating the considered subbands, Table 2.1
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FIGURE 2.6: Comparison of the Q -factor. Dashed lines represent the the-
oretical proportional frequency law of the Q -factor (w.r.t. our values). In
particular, the a segment represents the f 3 trend, the b segment follows

a f 2 trend and the c segment a linear behavior with the frequency f .

TABLE 2.1: Subbands and intermediate frequency for parameter evalua-
tions.

Band (MHz) f0 (MHz)

200–375 300

375–525 450

525–675 600

675–825 750

825–1000 900

subbands reported in Table 2.1. It is worth noticing that in order to obtain “best” results

(more accurate) the Rs and L s should be evaluated for many frequencies, this choice

increases the complexity and time of simulations. However, Figure 2.5 points out that

volumetric losses fit quite well the experimental data, the value of the equivalent con-

ductivity isσv = 10−5 [S/m]13. Indeed, the blue and green curve are perfectly overlapped

at 600 MHz, in fact in blue curve the Rs and L s were evaluated at the fixed frequency of

600 MHz and a conductivity of 5000 [S/m].

One of the most parameter used to evaluate if the distributed losses is an acceptable

approach is the Q -factor. Figure 2.6 reports the Q -factor evaluated by the three meth-

ods and compared to the experimental results. Curves match well at about 600 MHz,

the frequency chosen for the evaluation of σw . The plot also reports the slope of the

13this value was retrieved after several attempts
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Q -factor, ≈ f 3 at low frequency (antenna’s losses are dominant), further the slope re-

duces to f around 1 GHz whereas wall losses dominates at high frequency14 and the

slope approaches to
p

f . The slope of obtained (simulated) Q -factor follows the slope

of experimental results both at low frequency and high frequency.

These results show that the use of equivalent volumetric losses (distributed within

the volume of the chamber) is acceptable artifact w.r.t. the use of wall losses that allows

to improve the simulations performance on supercomputers.

14for Ancona’s chamber at frequencies much higher than 1 GHz)
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Chapter 3

Chaotic reverberation chamber

The RC, as previously introduced in previous Chapter 1, is widely used in EMC tests.

The smallest dimension of the cavity is larger w.r.t. the minimum wavelength at the LUF.

Depending on the type of test (and devices under test – DUTs) the LUF is a constraint that

must be satisfied in order to meet the operational requirements [11] to ensure a reliable

test. The main efforts during these years were focused to improve the RC’s behavior, i.e.

an existing large chamber that has to well operate close or better just below the LUF.

There are different possibilities in order to attain this purpose:

• improve the stirring performance, with a proper design of stirrer/s with specific

shape and dimension

• by using more stirrers or mixing more stirring techniques at the same time

• deforming the shape/geometry of the chamber

• enlarge the dimensions of the RC, but obviously it is not the best solution.

This chapter initially treats a brief introduction to the quantum chaos where de-

formed cavity was studied [65–68]. Afterwards a brief description of the most relevant

works available in the literature and then simulated results obtained during the last two

years (partially spent at the University of Nottingham, UK) of hard work are reported.

The earlier idea was concentrated to characterize chaotic1 cavity by the presence of

curved diffractors (spheres) just as function of their radius. Meanwhile new results came

out, it was noticed that not only the dimensions play a relevant role about the evaluation

of the new geometry. Others parameters must be taken into account during the analysis,

i.e. the placement inside the chamber, the kind of diffractor and losses introduced by

them.

3.1 A brief introduction to the quantum chaos

The quantum chaos studies dynamical systems in terms of the quantum mechanics,

which describes the behavior of the matter into the molecular and atomic (sub-atomic)

levels. In fact, the quantum chaos approach is applied in the study of molecular, atomic

1the adjective “chaotic” means: derived by structure studied in the quantum chaos literature
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and nuclear systems as well as microwave resonators, where energy levels play an im-

portant role to the characterization/study of these systems, e.g. evaluating the statistics

of energy levels. According to the quantum mechanics, energy levels are described by

the eigenvalues of a Hermitian operator H [69], more precisely called Hamiltonian. The

Hamiltonian is represented by a matrix with finite dimension.

By the following equation:

Hψi = Eiψi (3.1)

it is possible to evaluate eigenvalues and eigenfunctions of the system. This operator

(H ) is represented by a matrix filled by random variables belonging to a predetermined

distribution with appropriate statistical hypotheses.

We can have the Poisson distribution

p (s )d s = e −s d s (3.2)

where s = S/D is the relative mean spacing [69]. Afterwards is reported just few words

for a better comprehension about the statistics of energy levels. Considering the the en-

ergies E1, E2, ... of the system in the intervalδE with E1 ⩽ E2, and S1,S2, .... their distances,

we have Si = Ei+1−Ei ; whereas D denotes the mean spacing, namely the average value

of Si ; we can define the relative spacing as si = Si /D . The probability density function

p (s ) could be defined as the probability p (s )d s that any spacing si will have a value

between s and the next spacing s +d s . When the positions of energy levels are not cor-

related the probability that any Ei will be within E and E +d E is independent of E and

is ρd E , where ρ= D −1 represents the average number of levels in a unit interval of en-

ergy. Then, to establish the probability of a spacing S given at the level E we want to

evaluate the probability of having no level in the interval (E , E +S) and one level in the

interval (E +S , E +S +d S). To this purpose the S interval is divided into n parts, equals

each others, Figure 3.1. Due to the independence of levels, the probability of having no

levels in (E , E +S) is given by the product of probabilities of no having no level in any

of these n parts.

......E + 2 S/nE + S/nE E + S + dSE + (n − 1)S/n E + S

FIGURE 3.1: Energy interval divided in n parts.

For a large n , the ratio (S/n) becomes small and we can write (1−ρS/n)n and its

limit for n→∞ is

lim
n→∞

�

1−ρ
S

n

�n

= e−ρS . (3.3)

Therefore, the probability that a level in d S at E +S is given byρd S , whereas considering

an E level, the probability that there is no level in (E , E +S) and one level in d S at E +S

is

e −ρSρd S (3.4)
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FIGURE 3.2: Sketch of a 2-D regular cavity.

or equivalently

p (s )d s = e −s d s (3.5)

as defined previously the Poisson distribution.

Hamiltonian classic systems (regular) which are integrable follow the Poisson distri-

bution. Conversely, if a system (chaotic) displays a classical chaos behavior, it follows a

Wigner distribution. The Wigner probability density function for a spacing is:

p (s ) =
πs

2
e−

π
4 s 2

(3.6)

where s is the relative spacing defined as S/D .

In this field the RMT [69–71]plays a key role because the statistical properties of many

systems without a defined Hamiltonian could be predicted by using random matrices

using an appropriate distribution. Moreover, RMT could also be useful in order to predict

the statistical properties of eigenvalues of chaotic systems with a know Hamiltonian.

Physicists have been studied properties of these systems [13, 65, 72–78], where the

shape of the cavity or enclosure was modified. The new geometry improves the field dis-

order within it, because the non-parallel walls permits to break the symmetry, in terms

of ray’s trajectories.

In fact, inside a regular (rectangular) cavity the rays follow a close path each other,

due to the reflection by walls. On the contrary, in a chaotic cavity rays have a greater ran-

dom incidence and after a certain number of reflections the whole volume of the cavity

will be covered; this behavior is called ray’s divergence. As example in Figure 3.2 is re-

ported a 2-D regular cavity (same issue for a 3-D cavity) where two rays, starting from the

same point inside the cavity, were launched at slightly different direction remain close

each other geometrically, this involves that only certain region will be filled and the en-

ergy remain localized.

Modifying the shape of the cavity, i.e. tilting their walls as reported in Figure 3.3, the

same rays reported in the previous case (launched at slightly difference from the same

starting point) now they exhibit a chaotic behavior, the rays diverge geometrically and

the energy will be spread over the whole volume of the cavity after a certain number of

reflections, Figure 3.7. Figure 3.7 shows a typical chaotic system where alternation of
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FIGURE 3.3: Sketch of a 2-D chaotic cavity where two walls were tilted in
order to improve the ray’s divergence.

FIGURE 3.4: Sketch of 2-D chaotic dynamical system after a certain num-
ber of ray’s reflections.

straight and non-straight reflection come in succession.

The Hamiltonian (3.1)of billiards can by substituted by the stationary-state Schrödinger

equation

−
ħh

2m
∇2ψn (q ) = Enψn (q ) (3.7)

where∇ is the Laplacian operator,ψ the wave function (orthonormal) at the point q , m

the mass of the system and ħh the Planck constant (ħh = h/2π). The Dirichlet boundary

conditions define:

ψn (q ) = 0 for q /∈ Ω . (3.8)

The free-field Schrödinger equation coincides with the Helmholtz equation

�

∇2 +k 2
�

ψ= 0 (3.9)

where k 2 = 1
ħh 2m En .

We can note that for a 2-and-3D billiards with an integrable equation of the mo-

tion, the quantum mechanical billiards system can be evaluated. On the contrary, for

a chaotic classical system it will not be exactly evaluated and its behavior will be study

by the quantum chaos, that identifies the statistical feature of these systems. In par-

ticular, chaotic systems exhibit universal properties, i.e. regular and chaotic dynamical
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FIGURE 3.5: Sketch of 2-D chaotic dynamical system called Bunimovich
stadium, temporal picture after more reflections than depicted in Fig-

ure 3.4.

FIGURE 3.6: Example of 2-D chaotic system.

behavior of the underlying classical limit, [12, 79–81].

There were studied many interesting configurations of dynamical systems, i.e. mush-

room billiard [82], Sinai billiard [83, 84] and so on.

3.2 Introduction to the chaotic cavities

The frequency range for a well stirred RC is considered above a predetermined limit that

corresponds to the LUF (see Chapter 1) and its referred to the value of the fundamental

mode of the cavity, given by

fl ,m ,n =
1

2
p
µε





√

�

l

a

�2 �m

b

�2 �n

c

�2
(3.10)

where indexes l , m , n that indicate the modes whereas a , b , c represent the dimensions

of the cavity; length, width and height respectively. From (3.10) the wavenumber (k ) can
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FIGURE 3.7: Example of 2-D chaotic system: mushroom billiard.

FIGURE 3.8: Example of 2-D chaotic system: Sinai billiard.

be obtained by the relationship k = 2π f /c , (1.46). For the Ancona’s RC the fundamental

mode is f1,1,0 = f0 ≈ 45 MHz. At high frequency, enough far from the LUF, the field will

be certainly ergodic.

The idea of improve performance of a rectangular (quasi-cubic) RC was the purpose

of several works during past years, in particular focusing at low frequency [23, 85]. In or-

der to achieve this intent many solutions have been explored, i.e. add diffusers within the

cavity, design a new shape. A first approach was similar to the solution adopted in acous-

tic, where the Schroeder diffusers were inserted into the room. The aim of acoustic dif-

fusers is to create an optimal and predictable diffusion of sound waves due to the reflec-

tion attained by means of an accurate design of them [86]. As showed in Figure 3.9, the

Schroeder diffuser is a structure made by “holes” of different depths; the sound-waves

hit the irregular surface of diffusers and they bounce out of each “holes” at slightly time.

The dimension of diffusers determine the operating frequency of the structure.
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FIGURE 3.9: Example of Schroeder diffuser with seven cells, each of them
with different depth.

This kind of diffusers were adopted also in the electromagnetic chamber in order to

improve the field diffusion within the RC, i.e. in [87–89]. In addition to the use of acous-

tic diffusers, another explored solution to break the symmetry is to design a chamber

without parallel walls [87, 88, 90].

The mode density of an electromagnetic lossless cavity is given by the generalized

Weyl’s law [91–95]:

d N ( f )

d f
=

8πV

c

�

f

c

�2

−
�

4

3π

∫∫

S=∂ V

d s

ρ(r )
−

1

6πc

∫

L=∂ S

[π−ϕ(r )] [π−5ϕ(r )]

ϕ(r )
d l

�

(3.11)

where the variation of modes d N ( f ) within a frequency interval d f depends on the

radius of the curvature ρ(r ) of the surface element d s which a radius r for an angles

φ and θ (in spherical coordinates). In [23] was studied the effect of convex, rounded

and concave edges of a cavity, in order to facilitate a design of diffractors for a practi-

cal use. It was showed that when the modal density increases there will be a lower shift

of the “threshold” from the region with a weak modal overlap to the region of moder-

ate overlap. Considering the input due to the quantum chaos, it is possible design other

kind of diffractors. In particular spherical-shaped diffractors were analyzed in many pa-

pers [14, 23, 68, 73, 96–98]. The chaotic RC exhibit an improvement of their performance

and consequently a reduction of the LUF could be possible [23, 96–100]. A rigorous cre-

ation for a physically-motivated definition of LUF are still to be achieved, and constitutes

a relevant task to be obtained. During my Ph.D. i focused on effects due to the spheri-

cal diffractors. Conversely to other works there are two substantial differences w.r.t. my

analysis:

• instead of RMT, FEM or commercial software here the FDTD method have been

adopted

• the analysis was carried out by taking into account characteristic parameters used

in the EMC instead of a pure physic approach already discussed in many works.
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3.3 FDTD simulations

Simulations were performed by means of the FDTD. Figure 3.10 shows the setup of the

Ancona’s RC which has dimensions 6×4×2.5 m3. The investigated band is from 0.2 to

2.0 GHz and the cell size is 1.5 cm which corresponds to λ/10 at 2.0 GHz. Within the

RC there are two discone antenna in order to get the transmission S21 and reflection S11

scattering parameters. The working volume (red box in Figure 3.10) is composed by 125

points each of them equispaced by 30 cm where field values were picked up. The area

FIGURE 3.10: Setu-up of the simulated RC equipped by a z-folded vertical
stirrer, two antennas Tx and Rx respectively and diffractors. The red box

represents the working volume.

of the WV is 1.20×1.20×1.20 m3, which preserves the distance from the walls, antennas

and diffractors reported in the standard [11]. The field mixing is due by a vertical z-folded

stirrer, 256 positions have been considered; a shift of 1.4◦ for each step. Geometry of the

rectangular chamber was modified by means of spherical diffractors (spheres). They can

be placed in different position along the chamber’s perimeter, on a corner (blue sphere),

between two walls (green sphere) or on a single wall (red sphere) of the chamber, see Fig-

ure 3.10.

In addition to spherical diffractors it is possible to simulate other kind of diffractors,

i.e. spherical caps or mushroom-shaped diffractors depending on the length of penetra-

tion through the RC.

For each kind of diffractor the proper volume and surface is computed by following

formulas:

• hemisphere, Figure 3.11

• spherical cap, Figure 3.12

• spherical mushroom, Figure 3.13.
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C Wall
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FIGURE 3.11: Kind of diffractor: hemisphere with h/r = 1. C indicates
its center, r the radius and h the length of penetration through the RC.
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y
Wall
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r−h

Wall

h

a

r

FIGURE 3.12: Kind of diffractor: spherical cap with h/r < 1. C indicated
its center, r the radius and h the length of penetration through the RC.

Figure 3.15 shows a comparison between different kind diffractors. For a better com-

parison each of them was placed in the same position, i.e. on a wall of the chamber.

As expected the mushroom-shaped diffractor exhibits a better performance in terms of

uncorrelated frequencies, in fact this configuration has a larger penetration through the

chamber and facilitates the field diffusion w.r.t. others configurations. In this thesis re-

sults are focused just on hemispheres, further analysis with spherical caps and mush-

room is ongoing. Diffractors can be placed within the RC in different positions, see Fig-

ure 3.14, or a combination of them. In particular:

A) on a corner – corresponding to an eighth of the whole sphere

B ) between two walls – corresponding to a quarter of the whole sphere

C ) on a wall – corresponding to half sphere.

Of course, it is possible to simulate a whole sphere within the RC, but this configuration

was discarded because it is not a practical choice for real test when DUT will be insert in

the WV.
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x

y
Wall

C

Wall

h
r

FIGURE 3.13: Kind of diffractor: spherical mushroom with h/r > 1. C
indicated its center, r the radius and h the length of penetration through

the RC.

FIGURE 3.14: Possible ways where diffractors can be placed along the
perimeter of the chamber.

Each position of spheres points out a different behavior, i.e. half sphere (on a wall)

has higher impact on the performance w.r.t. a sphere on a corner or between two walls,

as showed in Figure 3.16.

Different configurations of the loaded2 chamber have been simulated, see Table 5.1.

In the simulations spheres are centered far enough each others, means that they are

not overlapped. Moreover, considering spheres only on a single wall of the RC, results

showed that their placement along the wall do not affect the behavior but taking care that

they do not overlap each others and they have to maintain their shape, i.e. half sphere

must not become an eighth or quarter of sphere, Figure 3.17.

After a first and brief evaluation we are going to deeply analyses how diffractors af-

fect the modal density and the characteristic parameter of the RC for a practical use, i.e.

uncorrelated stirrer positions, field uniformity (σ24). Moreover, adding objects inside

2by spherical diffractors
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FIGURE 3.15: Comparison of different kind of diffractors, evaluated by
the number of uncorrelated frequencies evaluated by means of the mul-

tivariate approach.

FIGURE 3.16: Number of uncorrelated frequencies for different position-
ing of a single hemisphere inside the RC evaluated by means of the mul-

tivariate approach.

the RC the Q -factor has to be evaluated. As showed in Chapter 1, the Q -factor can be

evaluated:
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#1 #2 #3 #4 #5 #1 #2 #3 #4 #5

FIGURE 3.17: Different placement for the same number, dimension and
type of spheres along the same wall of the chamber. The enumerations

#1...#5 denote five centers for spheres.

TABLE 3.1: Table which reports the total number of diffractors (# indicates
the ordinal counting), their radius, their placement inside the RC and the
total volume and surface of the RC. Inserted spheres are not overlapped

each others.

Label ID # Diffractors r (m) # 1/8 # 1/4 # 1/2 Volume (m3) Surface (m2)

Empty RC 0 // / / / 60.0 98.00
A) 4 0.50 0 0 4 58.95 101.14
B ) 10 0.50 2 4 4 58.29 102.31
C ) 20 0.50 1 17 2 56.65 107.80
D ) 30 0.50 4 18 8 55.45 110.50
E ) 10 0.75 2 4 4 54.25 107.71
F ) 8 1.00 0 4 4 47.43 116.84
G ) 0 0 0 0 0 54.25 91.83
H ) 0 0 0 0 0 47.46 82.88

• analytically by means of formulas for the composite Q -factor [101] (depending on

dimension and position of spheres)

• numerically by means of full wave simulations.

Simulations are very useful and customizable3 because it is possible to consider many

configurations otherwise hard to realize in an experimental setup, i.e. simulate the RC

with a large number of diffractors.

The Q -factor of a cavity is given to the contribute of more factors, see Chapter1. For

numerical analysis the quality factor is computed by [11]:

Q =
16π2V




|S21|2
�

ηT X ηR X 〈|S11|2〉〈|S22|2〉

�

f

c

�3

(3.12)

with c the speed of light in the vacuum, V the volume of the RC, f the frequency, S21

is the complex scattering transmission coefficient, whereas S11 and S22 are the complex

scattering reflection coefficients. The antenna efficency coefficientsηT x andηR x for the

transmitting and receiving antennas respectively, are ≈ 1 because well matched.

3a fortiori by using the homemade FDTD code of my group which allows us to implement “easily” new
geometries
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For analytical analysis when wall losses are dominant, the quality factor can be eval-

uated by:

Q =
3V

2Sµrδ
(3.13)

where V and S are the total4 volume and total5 surface of the RC respectively,δ is the skin

depth and µr the relative magnetic permeability (equal to 1). The value of the conduc-

tivity used for analysis was σ= 5000 S/m (the same used in the FDTD setup when wall

losses σw have been considered). Actually, the losses mechanism of antennas (domi-

nant at low frequency) has to be considered, and is computed by:

Qa =
16π2V

λ3
(3.14)

then the total Q -factor is given by

Q−1
t o t =Q−1 +Q−1

a , (3.15)

used later and called Q -model. Remarking that volume and surface of the deformed

cavity have to be considered with geometrical corrections, that are known. In partic-

ular, keep in mind that the volume and surface of a sphere are (4/3πr 3) and (4πr 2)

respectively, it is possible to compute the whole volume and surface of the chaotic RC by

applying following formulas:

V s = V w −αi
4

3
πr 3

i (3.16)

and

S s = S w +βa i 4πr 2
i −βb iπr 2

i = S w +βt o ti
πr 2

i (3.17)

where

βt o t = 4βa −βb (3.18)

and i represents the i − t h sphere or cap, s (sphere) denotes the chaotic cavity and w

(without spheres) the empty RC. The term α is a constant and depends by the portion

of added volume whereas the term βt o t takes into account two different areas, βa rep-

resents the surface added by a sphere whereas βb the surface (of the chamber) removed

(covered by the added sphere) when a sphere was inserted. Assuming that the inserted

hemispheres have the same radius and they were placed in the same way i.e. on the

corner of the chamber we set:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

r1 = r2 = r3 = · · ·= rn = r

α1 = α2 = α3 = · · ·= αn = α

βa1
= βa2

= βa3
= · · ·= βan

= βa

βb1
= βb2

= βb3
= · · ·= βbn

= βb .

(3.19)

4means that the reduction due to spheres is considered
5means that the increase and/or reduction due to spheres is considered
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Considering k diffractors we can distinguish:

• Sphere on a corner (1/8 of the whole sphere):

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

αi =
1
8 ⇒α=

∑k
i=1αi

βa = 1
8

βb = 1
4 ·3

β =
∑k

i=1βt o t i

(3.20)

• Sphere on a surface (1/4 of the whole sphere):

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

αi =
1
2 ⇒α=

∑k
i=1αi

βa = 1
2

βb = 1

β =
∑k

i=1βt o t i

(3.21)

• Sphere between two surfaces e.g. wall-wall or wall-ceiling/floor (1/2 of the whole

sphere):
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

αi =
1
4 ⇒α=

∑k
i=1αi

βa = 1
4

βb = 1
2 ·2

β =
∑k

i=1βt o t i

(3.22)

Those relationships are still valid with spherical cap or spherical mushroom, but the

geometrical correction coefficients are different, in particular:.

• hemisphere:

V =
4

3
πr 3 and S = 4πr 2 , (3.23)

• spherical cap:

V =
π

3
h 2 (3r −h) and S =π

�

a 2 +h 2
�

where a =
p

2h r −h 2 ,
(3.24)

• spherical mushroom:

V =
4

3
πr 3−

π

3
(2r −h)2 (3r − (2r −h)) and

S = 4πr 2−2πr (2r −h) .
(3.25)

Figure 3.18 shows the transmission coefficient S21 averaged over the stirrer posi-

tions. Below 300 MHz the spheres enhance the S21 whereas above about 350 MHz

there are no significant improvement. On the contrary the larger the number of
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FIGURE 3.18: Simulated transmission coefficient amplitude. The inset
reports raw data whereas in the main plot an average sliding window over

400 points has been used.

FIGURE 3.19: Simulated quality factor of different configurations. The
inset reports a zoom from 1 to 2 GHz. In both plots an average sliding

window over 400 point has been used.

spheres the lower the S21. This fact affects the Q -factor computed by 3.12, Fig-

ure 3.19.

Moreover, Figure 3.20 reports the number of uncorrelated stirrer positions for different
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FIGURE 3.20: Simulated number of uncorrelated stirrer positions increas-
ing the number of spheres within the RC. The main plot reports just cases
where there is an appreciable difference whereas in the inset are reported

all cases.

cases, evaluated by means of the ACF. As the S21 and Q they decrease as function of the in-

serted spheres. At this point, the purpose is to evaluate the improvement due to diffrac-

tors and then compare the simulated data with the analytical ones. In this way if an-

alytical results fit the simulated ones, it is possible to evaluate a-priori the behavior of

the chamber and/or how many and where diffractors have to be added inside the RC, in

order to meet the requirements for a specific application. In Figure 3.21 the field unifor-

mity evaluated by (1.77) is reported. Nevertheless the number of spheres within the RC

are consistent, 30, they do not badly affect the behavior of the RC. Considered config-

urations meet the required values according to the IEC-standard. Increasing the radius

of sphere the field uniformity get worse and there are some frequencies that exceed the

limit, in some case with larger radius and larger number of spheres the filed uniformity is

not acceptable and the RC cannot be used. From the Q -factor we can recover the modal

bandwidth defined as

B ( f ) =
f

Q ( f )
(3.26)

and the average modal overlap

M ( f ) = m( f )
f

Q ( f )
(3.27)

where m( f )denotes the average modal density that can be predicted by the Weyl’s law (3.11):

m( f ) = 8πV
f 2

c 3
(3.28)
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FIGURE 3.21: Field uniformity of different configurations. The inset re-
ports raw data whereas in the main plot a sliding window over 400 fre-
quency point has been used. The red dashed line denotes the IEC-limit.

where c is the speed of the light in the vacuum. Combining (3.27) and (3.28) we can

re-write the modal overlap as

M ( f ) =
8πV

Q ( f )

f 3

c 3
. (3.29)

It is possible to define the internal power transmission [100] which specifies a fraction

of the transmitted power within the RC as:

P ( f ) =
〈|S21|2〉

ηT xηR x (1−|S11|2)(1−|S22|2)
(3.30)

where < . > denotes the ensemble average, ηT x and ηR x the efficiencies of antennas.

Combining (3.12) with (3.30) we can express P ( f ) as

P ( f ) =
Q ( f )

Qa
, (3.31)

Figure 3.23 shows a comparison of the simulated K -factor. This parameter quantifies

the direct energy between the two antennas [102]. Note that the two Q -factors can be

estimated without any information6 about the chamber. Now it is possible to point out

an estimator

M̄ =
1

2πP ( f )
(3.32)

6S21, pdf, etc
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FIGURE 3.22: Internal power transmission for different configurations.
Spheres have radius of 0.50 m and Table 5.1 indicates their positioning.

FIGURE 3.23: Simulated K-factor for different configurations. A sliding
average window over 400 points has been applied.

which is relevant and easier to evaluate w.r.t M ( f ) and do not require a-priori informa-

tion about the cavity. In fact, M̄ can be evaluated only by geometrical information, em-

phasizing the role of diffractors. By means simply geometrical corrections we can eval-

uate, roughly and fast, the improvement due to spherical diffractors. Figure 3.22 shows

a comparison of the P ( f ), evaluated by (3.30), for different cases where the number of
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spheres were increased (with same radius).

FIGURE 3.24: Comparison of the modal overlap evaluated by (3.32). The
P ( f ) was evaluated by the simulated Q and by the estimated Qt o t by

using the simplified model.

Figure 3.24 reports the comparison between the modal overlap M̄ obtained by (3.32)

where the internal power transmission P ( f ) can be evaluated in two ways: by consid-

ering the resulted quality factor (results of FDTD simulation) or considering the Q esti-

mated by (3.15) where geometrical corrections due to spheres have to be considered 7.

Curves of Figure 3.24 can be compared in two ways. The first is between the black (red)

curve w.r.t. the green (violet) one and denotes an improvement in terms of modal overlap

when spheres were added into the chamber. The second is the comparison between the

black (green) curve and green (violet) one where the two ways for the evaluation of the M̄

were applied. Namely, adopting the Q due the FDTD simulations (3.12) or the Qt o t (3.15)

in (3.31) and this result asserts that the simplified model for the Q (3.15) meets the sim-

ulated results. In other words by using the Q -model we can estimate the improvement

given by spheres without a priori information about the chamber. The model is still valid

up to about 1.2 GHz, above the model overestimate the modal overlap, obviously the sim-

ulated Q is more accurate. However, this result asserts that if we want to reach a desired

improvement we can chose the dimensions, kind and position of curved diffractors just

by a simple evaluation of the Q (3.15).

Figure 3.25 reports the comparison of the chaotic chamber E ) and F ) cases w.r.t.

the regular (rectangular) RC with the same “effective” volume. Effective volume means

the total (reduced) volume taking into account the presence of spheres. Dimensions of

the reduced chamber were chosen in order to maintain the same positions of antenna,

7volume reduction for both Q and Qa and surface reduction for Q
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FIGURE 3.25: Uncorrelated stirrer positions of the chaotic RC compared
to a rectangular empty RC with the same “effective” volume.

stirrer and WV. The plot has to be read comparing pairs E )-G ) and F )-H ). We can note

that trends remain similar each other, just some peaks are different, probably due to the

shift of resonances caused by the variation of the chamber’s size.

Moreover, this result suggests us to deeply investigate the effect due to the volume

reduction. As stated in previous papers, i.e. [96–98] and the increase of the modal over-

lap, diffractors increase the behavior of the RC and permits to obtain a shift of the LUF at

lower frequencies. At this point, considering characteristic parameters used in EMC i.e.

uncorrelated stirrer states (positions) we observed that the lager number of spheres the

lower the number of uncorrelated stirrer positions. This is due to the losses that have to

be accounted in the simulations, see next section.

Furthermore, to turn the table another possible way to evaluate the improvement

due to spheres comparing a smaller chamber equipped by spheres to a larger chamber.

If performance will be better or the same the role of spheres will be demonstrated. The

trad-off is the available volume, because a smaller chamber (w.r.t. the original one) with

spheres will have a limited WV, in some case not sufficient for measurements where DUT

has to be tested.

Thanks to the random coupling model (RCM) [103–107]method it is possible to eval-

uate another estimator due to the ratio between modal densities of the chaotic (with

spheres) and the regular (empty) chamber, denoted by M c and M r respectively,

M c

M r
−−→
α>1

1+
∆S c (rs , #N )

∆S r
(3.33)

where the superscript r indicates the regular chamber whereas c the chaotic one, rs in-

dicates the dependence from the radius of spheres and from #N which represents the
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cardinal number of spheres. The α denotes the loss parameter of the cavity to apply in

the RCM, it is necessary in order to describe a chaotic system, it can be evaluated by

α=
k 3V

2π2Q
(3.34)

where V is the volume of the cavity, Q the quality factor and k the wave number; in a

loss environment α> 18. It is worth noticing that in (3.33) the ratio depends only by the

FIGURE 3.26: Comparison between theoretical and simulated ratio of the
modal densities as function of number of spheres. The simulated points

were picked up at 1 GHz.

surfaces, in particular, ∆S c indicates the exceeding portion of surface w.r.t. the start-

ing one, whereas ∆S r consists of the whole surface of the RC. Figure 3.26 reports the

trend of the modal densities ratio evaluated by (3.33) as function of the number of in-

serted spheres. Theoretical point were obtained by calculating the ratio between sur-

faces whereas the simulated (blue curve) is obtained doing the ratio of M c and M r by

means the S21 and (3.29). Theoretical results meet the simulated one and it is worth

noticing the improvement due to spheres, in particular for spheres with radius of 1 m

(about 20% for five spheres). Continuing by attempts it is possible to find the right po-

sition, dimension and number of spheres that has to be inserted to reach the desired

improvement in terms of modes.

Recalling the adoption of the distributed losses within volume of the chamber (Chap-

ter 1) we have to take into account the volume reduction due to insertion of spheres. Due

to this observation there are two considerations about the volume reduction:

• reducing the total volume means decrease the “overall losses” (less volume means

less cubic cells)

8it can be evaluated by the variance of elements that form the normalized impedance matrices of the
waveguides connected to the ports of the considered cavity
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• insert objects i.e. spheres, affect (increase) the losses of the cavity (expecting a

lower Q -factor).

If wall losses were/are considered, it is simple to guess that the complexity of the code

increases and the speed-up decreases, i.e. subgridding the contour of spheres by non

cubic cells, “find” the conductivity value of spheres9. In each simulation the value of

σv was increased proportionally both to the decrement of the total volume and to the

increment of the total surface, the best matching value with experimental results in going

to be evaluated. Hypothesis that spheres lower the Q -factor of the RC is reported in the

next section.

Although the volume reduction seems to play a relevant role in this analysis, further

investigation by a statistical analysis is ongoing, i.e. pdf of the scattering parameters,

evaluation of higher order momentum.

FIGURE 3.27: Side view of the RC with tilted walls (three walls). The red
box denotes the WV. The RC was equipped by two discone antennas and

a z-folded vertical stirrer.

Another idea was to consider a rectangular RC and tilt their walls Figure 3.27. An

improvement to this configuration could be to insert some spheres in order to make the

RC fully chaotic at very low frequency.

3.4 Experimental evaluation

In order to confirm the increase of the value for losses (volumetric) in simulations re-

garding the chaotic RC, few (at the moment) qualitative measurements were performed

in the Ancona’s RC. Figure 3.28 shows the only sphere placed within the chamber a cor-

9spheres simulated as PEC
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FIGURE 3.28: Picture of the sphere placed on the corner of the RC. The
sphere was covered by aluminum. Radius: 0.75 m about.

ner. Its radius is 0.50 m and the contour was covered by aluminum10. We considered

360 stirrer positions of the z-folded vertical stirrer only. Two log-periodic antennas col-

lected the S21 transmission coefficient reported in Figure 3.29. We can note that at low

frequency the S21 is slightly higher than the chamber without the sphere. It is important

FIGURE 3.29: Measured transmission coefficient S21. An average sliding
window over 400 points has been applied.

to remark that the comparison has to be done between the chamber with sphere/s and

the empty chamber but with aluminum sheet/s inside; because the insertion of mate-

rial within the RC affects the Q , Figure 3.30, which is very sensible when the chamber is

unloaded. Then is discounted that the RC without anything inside exhibits always bet-

ter performance. As a consequence of the decrement of S21 and the Q , as expected the

number of uncorrelated stirrer positions decrease as well [108], Figure 3.31.

10it is simply cookie sheets, the same used in the oven
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FIGURE 3.30: Measured quality factor. The inset reports the raw data
whereas in main plot an average sliding window over 400 points has been

applied.

FIGURE 3.31: Measured uncorrelated stirrer positions. A sliding window
average over 400 points has been applied.
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Chapter 4

Enhancing the stirrer performance

4.1 Introduction

In Chapter 3 has been evaluated the improvement of chamber’s performance by mod-

ifying its shape. Conversely, here are reported results obtained by considering a new

stirrer’s shape. Performance of a stirrer depends on its shape, dimension and position

in the chamber [29, 109–113]. Moreover, it is possible to combine more stirrer concur-

rently [26,27,114–116]. During my Ph.D. in collaboration with my Ancona’s group and L.

R. Arnaut a new helically shaped stirrer has been proposed. This stirrer was completely

made step by step and two analyses were done. The first one was done considering an

helical path along the stirrer axis whereas in the second case an actual helically-shaped

stirrer was evaluated.

4.2 Setup description

Figure 4.1 shows a sketch of the measurement setup. Within the RC there are two log-

Rx antenna

Horizontal stirrer

Tx antenna

Door

x

zy

Vertical stirrer

FIGURE 4.1: Sketch of the measurement set-up. Just one paddle is
mounted in this representation.
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periodic antennas in order to collect the Si j parameters. The investigated band is from

0.25 to 6.5 GHz, which is divided in several subbands of 400 MHz where 1601 frequency

point were acquired (every 250 kHz). and two stirrers. The z-folded vertical stirrer re-

mains fixed at 0◦ during all measurements, it is used just as a kind of diffuser. The hori-

zontal stirrer indeed is formed by a variable number of paddles, from one to six, mounted

on the stirrer axis properly equispaced. Paddles are equal each other and its shape is re-

ported in Figure 4.2. The dimensions of a paddle are:

d

e

b

c

y

x

a
g

f

l

O
ih

FIGURE 4.2: Sketch of the measurement set-up.

• a = 0.675 m

• b = 0.410 m

• c = 0.170 m

• d = 0.510 m

• e = 0.570 m

• f = 0.500 m

• g = 0.240 m

• h = 0.055 m

• i = 0.020 m

• l = 1.140 m

• paddle made by silhouette of corrugated cardboard with dimensions: 0.675×0.570×
0.050 m3

• “cornered” steel plate with an azimuthal angle of 45◦ with dimensions: 0.040×
0.090×0.030 m3

• aluminum hollow alloy bar with dimensions: 1.140×0.020×0.010 m3



4.2. Setup description 61

• aluminum coated brick with dimensions: 0.250×0.120×0.060 m3

• steel clamp with eighth of 0.075 m.

The red box in Figure 4.2 represents the counterweight used to correctly balance the pad-

dle over the stirrer axis, the green circle denotes the point where the paddle is fixed on

the stirrer axis, the blue highlights the aluminum foil that covers the paddle and the black

color represents the shaft that connect the foil and the counterweight to the stirrer’s axis.

Along the horizontal axis it is possible to mount maximum six paddles (see Figure 1.4)

D3

y

x

H−axis

543210
Wall Wall

D2 D2 D2 D2D2D1

FIGURE 4.3: Sketch of the horizontal stirrer axis. Red numbers denote the
position of paddles when all of them (six) were mounted.

equispaced by D 2 = 0.50 m, Figure 4.3. The entire length of the axis is 4 m whereas the

distance from the walls are D 1 = 0.67 and D 3 = 0.33 m. The analysis was conducted in

two ways:

1) mounting a single paddle on the stirrer axis the helical stirring is given by simul-

taneous translatory and rotational deviation of the paddle along the axis (helical

stirring)

2) considering the whole stirrer composed by paddles (helical stirrer).

4.2.1 Helical stirring

Basically, the helical stirring process was implemented combining both rotational and

axial translation by several steps. The finer the step the better the resolution and the

longer the measurements campaign. The goal of this study was to highlight the effect

due to the path geometry that follows an arbitrary stirrer, it is a dynamic way opposite

to the static one [23,117–119]. The helical path (due to one paddle mounted on the axis)

is showed in Figure 4.3. Along the horizontal axis it is possible to mount maximum six

paddles (see Figure 1.4).

Each measurement lasted about 4 or 20 hours, depends on the number of considered

steps. To ensure that oscillations after each movement of the paddle along the axis do

not affect the results a dwell time of 6 s was set. The finer resolution was fixed every

6.25 cm that implies 45 translatory stir circles combined to the cylindrical tuning. For
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FIGURE 4.4: Representation of the path (red dots) followed by the paddle
during the whole rotation.

FIGURE 4.5: Setup of the emulated helical stirring. The paddle is
mounted on the center just for a better view, actually its position along

the axis was translate in many points.

each position along the axis a full rotation of the blade was performed, i.e. for 72 steps by

5◦ the cylindrical tuning results a set of 45×72 states. Afterwards, increasing the initial

phase angle θi (= 0 at the beginning) stir helices were obtained Figure 4.6. Figure 4.6

FIGURE 4.6: Example of three helical turns that generate three stirrer re-
alization. In particular, θ0 = 0◦ (clack curve), θ1 = 40◦ (red curve) and

θ2 = 110◦ (blue curve).
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reports the number of

Figure 4.4 shows the route followed by the paddle (Figure 4.5). Now, considering the

paddle mounted at the first point along the horizontal axis, i.e. at 0.67 m from the left

wall (Figure 4.3) with the elevation angle equal to 45◦, the whole helical stirring is given

by the collection of the following paddle positions equispaced by a determined distance

with an elevation angle increased by 5◦1 for each step. The exact sampling scheme for all

the possible helices is reported in [115]. Here is not reported the detailed description of

the method and the experimental results, well explained in the paper but improvement

due to this configuration.

The analysis was done by considering the Pearson autocorrelation coefficient ρ of

the |S21|2, the mean value of the maximum-to-average ratio and the minimum-to-average-

ratio of both |S21| and |S21|2; also the effects of chirality were explored. The peculiar-

ity of these results is the were obtained by measurements (by-passing theoretical mod-

els); they provide directly to assert that helical stirring exhibits better performance w.r.t.

circular stirring. However, a comparison with theoretical probability density functions

were done.

Experimental results pointed out that helical stirring reduces auto- and cross-correlation

leading a better stirring method, in particular w.r.t. a circular stirring at low frequencies.

For a better design of this kind of solution parameters to take into account are radius

of the blade, its angular step and size, the pitch that depends on the required frequency

range. Conversely, helical stirring occupies larger volume w.r.t. circular stirring. Inter-

esting results are reported in [115] and some animations for a better comprehension of

the geometry are available here.

4.2.2 Helical stirrer

Conversely to the analysis done in the previous paragraph, here was considered the whole

stirrer made by different configurations of paddles ( Figure 1.4 shows the horizontal stir-

rer with 6 paddles). The helically shaped stirrer, but it consists by more than one paddles

at the same time. Paddles are made by the same material and have the same dimen-

sion, Figure 4.2. The investigated band is from 0.25 to 1.25 GHz and the acquisition step

by the VNA is 250 kHz (1601 point in subbands of 400 as in the foregoing setup). Perfor-

mance of this geometry were evaluated by means of the number of uncorrelated stirrer

positions, by the ACF [11]. Figure 4.7 reports the number of uncorrelated stirrer positions

Ni nd for the horizontal stirrer when one or more paddles (up to 6) were mounted on its

axis. Paddles were mounted by a shift of 60◦ each other along the horizontal stirrer axis.

The red curve represents the Ni nd of the vertical stirrer in the same chamber. Adding

paddles we reached the saturation (72 stirrer positions) at lower frequencies. There are

not significant benefit using 5 or 6 paddles. It is evident that increasing the paddles gives

a relevant improvement of this parameter, this means that the helical stirrer improves the

15◦ for 72 stirrer positions whereas 1◦ for 360 stirrer positions

http://ieeexplore.ieee.org/document/7827075/media
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FIGURE 4.7: Number of uncorrelated stirrer positions when the num-
ber of paddles were increased. Comparison with the vertical stirrer (red
curve) is showed. A sliding average window over 400 frequency points

has been used.

capability of the stirrer to well operate at low frequency range w.r.t. other existing stir-

rer (the z-folded in this case). Figure 4.8 reports the Q -factor for the horizontal stirrer

FIGURE 4.8: Measured quality factor of the chamber with different con-
figurations, from one up to six paddles. A sliding average window over

400 frequency points has been applied.
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composed by different number of paddles. As expected, the larger number of paddles

the lower the Q , because adding objects (paddles surface and counterweight) inside the

chamber involves to the increase of ohmic losses. The position of paddles does not af-

fect theQ , that depends only by the inserted material. Moreover, was evaluated the effect

due to combinations of pairs, triplets and four paddles mounted along the axes, varying

their positions. As expected there were no relevant variations, in fact in [111] the same

behavior was observed. However, if two paddles are titled each other, the more the tilting

the more the uncorrelated stirrer position. Figure 4.9 is a picture of the horizontal stirrer

with two paddles shifted by 40◦ whereas Figure 4.10 reports the number of uncorrelated

stirrer positions for different cases. It is worth noticing that increasing the tilting angle

FIGURE 4.9: Picture of the horizontal stirrer with two paddles mounted
on it. Paddle #1 is fixed at 0◦ whereas #2 is fixed at 40◦.

between the paddles arise the stirring effect. In other words it is convenient to create

a staggered stirrer instead of increase its length and maintain them aligned, obviously

considering the same number of paddles. This feature is clear at low frequency as well.

These analyses show that the helical stirring/stirrer is able to improve performance,

evident in the low frequency range where, usually, the stirrer optimization is worth notic-

ing. Required specifications can be attained by choose the dimension of paddles/stir-

rers. The trade-off is the volume consuming, that can be stringent is some application.

Moreover, the volume play a key role, because there will be an “optimal” stirrer for each

specific chamber. In other words, there is an operating “limit” for the designed stirrer,
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FIGURE 4.10: Number of uncorrelated stirrer positions of two close pad-
dles when they were shifted incrementally. The tilting angles are reported

in the label.

below this limit the stirrer does not perform well. On the contrary, when the stirrer be-

comes small w.r.t. chamber’s dimensions its effect is not relevant and becomes inappro-

priate, see Figure 4.11 [112]. Having a tailored stirrer (shape, dimensions) its a constraint

that should be satisfied in order to obtain reliable results. Figure 4.11 reports the optimal

Volume

P
er
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rm

a
n

ce

Small chambers Big chambers

FIGURE 4.11: Estimation of the trend performance for a stirrer within a
small/big chamber. The abscissa denotes the performance whereas the

ordinate denotes the expected performance.

behavior of a stirrer w.r.t. the volume of the chamber. There will be an “optimal” (indi-

cated by maximum value of the curve) value of the volume for a specified stirrer and vice
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versa.

Further evaluations/optimization is ongoing by numerical simulations that allow:

save time w.r.t experimental measurements and analyze many configurations hard to

try in the laboratory2.

4.3 Ongoing works

During my PhD some stirrers’ shape have been evaluated. The purpose of this analysis

was to design a proper (mechanical) stirrer that enhances the performance of the cham-

ber, hopefully focusing on the low frequency (w.r.t the chamber’s dimensions) range. Fig-

FIGURE 4.12: Prototype of the helical stirrer with two axes rotations. The
red box represents the WV.

ure 4.12 shows a possible configuration of a new-shaped stirrer. The horizontal stirrer is

placed close to the ceiling. It is helically shaped and rotates along the ŷ and ẑ Cartesian

directions. A part the dimension, the pitch between two adjacent helices is a key param-

eter. This configuration is under investigation and preliminary results show a very good

performance, at low frequency as well. The problem is that exhibits a large occupied vol-

ume and from a practical point of view it need a consistent support in order to hold its

weight.

2waste of time and money customize an already existing RC for every stirrer’s shape (think to buy new
controller/motor for the stirrer)
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Chapter 5

Reverberation chamber for emulate

real multipath propagating

environments

5.1 Introduction

The reverberation chamber, apart for EMC tests, is used for replicate real environments

which exhibit a Rician propagation channel [120–123]. Emulate this propagation con-

ditions is very useful in order to test wireless devices inside the RC [124–127] instead of

for example on-site measurements where move all necessary instrumentations could be

hard. The ability of control the power delay profile (PDP) of the chamber plays a key role

for the replication of the desired environment. Desired environment because loading

conveniently the chamber, according to the standard [128, 129] it is possible to replicate

the chosen one. Experimental results have been addressed to this purpose [122, 123],

namely relate the R M S time delay spread (τR M S ) to a loaded chamber. The τR M S de-

fines the testing condition [128, 129]. Ensured the correct emulation of the real environ-

ment the chamber is ready for tests and some applications are described in [102, 130–

134].

The use of RC for wireless measurements can be summarized (roughly) in this com-

parison:

• conducted tests are repeatable but antennas are not included in tests, i.e. not use-

ful for measurements regarding smartphone

• in over-the-air (OTA) tests antennas are included in tests and devices which have

integrated antennas, moreover very useful for MIMO test.

Moreover, the possibility of reproduce specific environments allow to test not only

wireless devices but also performance of the communication standard, i.e. the evalua-

tion of 4G-LTE and 5-G standards in particular conditions/scenarios. I was engaged in

these activities collaboration with the Ancona’s group and Telecom Italia. The charac-

terization of the RC is only the first step before performing reliable measurements.

During my visiting at the University of Nottingham, measurements were done in or-

der to characterize its RC for further activities.
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5.2 Setup description

For the emulation of real-life environments the Ancona’s RC was used. Preliminary mea-

surements were done in the Nottingham’s RC as well. The setup of the Ancona’s RC is

described in previous Chapters of this thesis. In these measurements, both stirrer were

used in synchronous way, 20 stirrer positions in total. The investigated band is from

50 MHz to 8.5 GHz putting together many (169) subbands of 50 MHz. In each subband

1601 frequency points were acquired. With these values the band was sampled by steps

of 31.5 kHz, this choice is needed in order to correctly perform an Inverse Fourier trans-

form (IFT) to get the chamber’s response [135]

h(t ) = I F T [s21] (5.1)

without aliasing, in compliance to the sampling theorem. Measurements were repeated

for N stirrer positions, achieving:

P D P (t ) =
¬
�

�h(t )
�

�

2¶

N
, (5.2)

where 〈.〉 denotes the ensemble average over N stirrer positions. From the P D P we can

evaluate the R M S time delay spread

τR M S =

Ç

∫∞
0

(t −τa v e )2P D P (t )d t
∫∞

0
P D P (t )d t

, (5.3)

where

τa v e =

∫∞
0

t P D P (t )d t
∫∞

0
P D P (t )d t

. (5.4)

When we apply 5.2, a threshold of −30 dB is considered, as described in [136]. The

amount of absorbers placed within the RC is strictly related to the required performances,

such as the quality factor value, the LUF, the chamber time response [120, 137, 138] and

the statistics of the RC.

5.3 Results

The P D P of the chamber depends not only by the number of absorbers put in the cham-

ber but also on their positioning. In fact, absorbers on vertical position have larger sur-

face to the RC field so they have more impact on the overall behavior.

Figures 5.1, 5.2, 5.3 and 5.4 show different loaded configuration of the RC. There were

used three kind of absorbers, the ANW-77 flat absorber, VHP-18-NRL (big pyramidal)

and VHP-8-NRL (small pyramidal). The quality factor of the previous configurations is

reported in Figure 5.5. Absorbers in the center of the RC and in vertical position have

a higher impact on the overall absorbing decreasing the Q and consequently the decay
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FIGURE 5.1: Absorbers are placed on the floor along a single side of the
RC.

FIGURE 5.2: Absorbers placed on the center of the RC and along its
perimeter.

TABLE 5.1: Time delay spread of the analyzed configurations.

Delay spread (ns) A B C D

Average 167.15 125.53 116.4 118.98

RMS 273.70 351.11 223.24 592.33

Average – threshold -30 dB 160.23 119.69 112.93 105.60

RMS – threshold -30 dB 125.86 78.46 72.04 70.06

time, due to the relationship:

τ=
Q

ω
(5.5)

where the Q was computed by (3.12). Table 5.1 reports the measured time delay spread

of the RC for #A, #B , #C and #D configurations. Table 5.2 reports typical values of real

scenarios as function of the time delay spread [128]. Comparing obtained values for the
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FIGURE 5.3: Absorbers placed along the perimeter, on the center of the
RC, horizontal and vertical position.

FIGURE 5.4: Absorbers placed on the corners and on the center of the RC.
This configuration is called “barrier”.

τR M S with values reported on the standard [128] the Urban Micro environment (NLOS)1

was obtained with the #A setup and th Suburban Macro (NLOS) by the #C configuration.

It is possible to reach lower value of τR M S by adding absorbers inside the chamber.

In order to estimate the needed number of absorbing material for a desired τR M S ,

FDTD simulations can be used. As discussed in Chapter 2, our FDTD uses uniform cubic

cell, but the absorber inserted in the measurements are pyramidal. Pyramidal absorber

were simulated by stratified structure Figure 5.6 whereas the ANW-77 absorber was sim-

ulates just by one sheet because it is flat and does not need further approximation. Cell

size is 1.5 cm, the dimension of the pyramidal absorber (VHP-8) are:

• a = 0.60 m = 41 cells

• b = 0.60 m = 41 cells

1non line-of-sight, whereas LOS stands for line-of-sight
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FIGURE 5.5: Measured Q -factor of different configurations of absorbers
within the RC. An average sliding window over 400 frequency points have

been applied.

TABLE 5.2: Values of the time delay spread according to ITU guidelines.

Scenario Ds (ns)

Indoor Hotspot
LOS 20

NLOS 39

Urban Micro

LOS 65

NLOS 129

O-to-I 49

Suburban Macro
LOS 59

NLOS 75

Urban Macro
LOS 93

NLOS 365

Rural Macro
LOS 32

NLOS 37

• c = 0.06 m = 4 cells

• d = 0.03 m = 2 cells

• e = 0.60 m (square panel)

• f = 0.24 m .
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FIGURE 5.6: Sketch of the stratified structure adopted to simulate the
VHP-8 pyramidal absorbers.

TABLE 5.3: Values for the simulated pyramidal absorbers. Permittivity
and conductivity of each layer both VHP-8 and VHP-18.

Layer number 1 2 3 4 5 6

εr (VHP-8) 1.2 1.5 1.7 - - -

σ (S/m) (VHP-8) 0.01 0.05 0.08 - - -

εr (VHP-18) 1.2 1.5 1.7 1.9 2.2 2.5

σ (S/m) (VHP-18) 0.01 0.05 0.08 0.1 0.12 0.14

The adoption of a layered model for simulate the behavior of absorbers is given for two

reasons: the staircase approximation and because the permittivity of the absorbers is un-

known. In Table 5.3 are reported values of permittivity and conductibility of simulated

absorbers (VHP-8 and VHP-182). Figure 5.7 shows a comparison between measured and

simulated PDP for the barrier case (#D ), and we can note the reliability of the model for

the absorber. Values chosen and then reported in Table 5.3 were evaluated after several

attempts, because the factory that produces absorbers does not publish their electro-

magnetic properties. Moreover, those parameters are frequency dependant, there is dif-

ferent concentration of absorbing material on the edge w.r.t. the base. This is very com-

plex to predict and taking into account in the simulations. These issues justify the layered

model. The simulated PDP results a RMS delay spread value of 79 ns, that compared to

the experimental one equal to 70 ns demonstrates the reliability of the simulation code.

Moreover, we checked the ACS of a single absorber and a comparison between simula-

tion and measurement is reported in Figure 5.8. The PDP of a reverberation chamber

can be adjusted in order to emulated the desired environment. The FDTD allows to save

time and money, very useful and reliable for preliminary analysis.

2VHP-18 has the same square dimensions w.r.t. VHP-8 but is higher
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FIGURE 5.7: Measured and computed PDP for the barrier of absorbers
inside the larger chamber.

FIGURE 5.8: Comparison of the measured and simulated ACS for a single
VHP-8 absorber.
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Chapter 6

Shielding effectiveness

measurements

6.1 Introduction

The reverberation chamber is also used to determine the shielding effectiveness (S E [dB]),

i.e. enclosures, samples material for specific purposes. In the EMC the S E is a relevant

parameter to take into account during the design and test of circuitry of in general elec-

tronic devices. In fact, electronic devices have to be immune to electromagnetic inter-

ferences (EMI) from external sources. The effects due to interferences cause malfunc-

tioning or disruption (worst case) to the victim device. The S E is not only associated

to electronic device but also at dedicated environment, i.e. shielding room for medical

purpose where interferences are not permitted [139–144]. In order to obtain shielding

environment it is possible to cover the existing building/environment (not a smart so-

lution) or using conductive texlite [145] or build the structure/walls directly with these

materials [146, 147]. During my Ph.D., in collaboration with my group, G. Gradoni from

University of Nottingham, the SIMAU group of UNIVPM, D. Micheli, R. Pastore and A.

Vricella from Università di Roma “La Sapienza” different sample of concrete composites

were analysed, in terms of S E 1. Concrete composites were filled by different conductive

elements, i.e. metallic fibers, and with different concentrations w.r.t. the weight of the

concrete and dimensions [148, 149].

6.2 Setup and nested reverberation chamber

In order to ensure that the sample under test was invested by a random excitation com-

ing from many and random polarizations and incidence angles [150], to this purpose the

nested reverberation chamber was used. To evaluate the S E and the absorption cross

section (AC S [m2]) of a material can be adopted a traditional approach based on mea-

surements by waveguides [151, 152]. The use of the nested reverberation chamber was

already adopted in [153, 154]. Basically a larger chamber was used to create a Rayleigh

distributed field that excites the target sample which is mounted on the aperture of the

smaller chamber (nested RC). Figure 6.1 shows the measurements setup where the larger

1mechanical properties were evaluated in other laboratories, we conducted the electromagnetic analysis
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(outer) chamber, the smaller (inner) chamber and the aperture are highlighted. Both

FIGURE 6.1: Setup picture for the evaluation of the S E . In this picture the
aperture was open and no samples are mounted on it.

FIGURE 6.2: Metallic “T” holder.

vertical and horizontal stirrer were used in synchronous way, 72 stirrer positions. The

nested has dimensions 1.3× 0.9× 0.8 m3 whereas the aperture is 270× 170 mm2. The

sample under test is mounted on a metallic “T” shaped structure, Figure 6.2. The “T”

has play a duple role:

• the inner edge helps to improve the contact with the concrete Figure 6.3

• the outer edge is useful to insert a multi-hole frame that permits to force the sample

on the underlying gaskets Figure 6.5.

The role played by the multi hole-frame is relevant because there will be a very good con-

tact between the edges of the “T” holder and the aperture perimeter in order to avoid any
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FIGURE 6.3: Picture of the metallic “T” holder filled by concrete.

field leakages (note also the use of gaskets), Figure 6.5 shows a mounted sample on the

aperture ready for the test. Two log-periodic antennas were used in the outer chamber

whereas a horn and a discone antennas were placed within the nested. The investigated

FIGURE 6.4: Multi hole-frame.

band is from 0.80 to 8.4 GHz divided in subbands of 400 MHz where 1601 points were ac-

quired, corresponding to a frequency step of about 250 kHz. Scattering parameters were

acquired by means of a 4-port VNA2. Antennas in the outer chamber are denoted by 1

and 2, whereas antennas within the inner chamber are denoted by 3 and 4 as showed

in Figure 6.6.

2Agilent E5071
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FIGURE 6.5: Picture of the sample mounted on the aperture. Gaskets are
not visible because covered by the “T” holder. In this case an aluminum
foil covers the aperture in order to evaluate the maximum achievable S E

(called floor level in next results).

Chamber’s realizations of outer chamber were given by the stirrer positions whereas

in the inner chamber a frequency stirring over 400 frequency points was applied (cor-

responding to a chamber realization). Frequency stirring was adopted because place a

stirrer or made a source stirring in the nested chamber is not ease to realize.

6.3 Shielding effectiveness and absorption cross section

The definition of the S E is simply (see Chapter 1) the ratio between the received signal

(from a transmitter) without the shield to the received signal inside the shield. It can be

computed by the ration of the averaged transmission cross sections of the aperture with

σt ,S and without theσt ,N S sample/object under test.

S E = 10log10

〈σt ,N S 〉
〈σt ,S 〉

(6.1)

The transmission cross sections were averaged over incident angles and polarizations.

Result is equal to one (0 dB) when nothing is mounted on the aperture. Transmission

cross section in a nested reverberation chamber is determined with following formulas.

〈σt ,S 〉=
〈Si n ,S 〉
〈So ,S 〉

2πV

λQi n ,S
, and 〈σt ,N S 〉=

〈Si n ,N S 〉
〈So ,N S 〉

2πV

λQi n ,N S
(6.2)

where Si n denotes the averaged scalar power densities in the inner chamber with (S)

and without sample (N S) whereas So is the averaged scalar power densities in the outer

chamber with (S) and without sample (N S). Qi n denotes the Q -factors with (S) and

without the sample (N S), V the volume of the inner chamber and λ the wavelength,
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and are evaluated by

Qi n ,N S =
16π2V

λ3

〈Pr Q ,i n ,N S 〉
Pt x ,i n ,N S

and Qi n ,S =
16π2V

λ3

〈Pr Q ,i n ,S 〉
Pt x ,i n ,S

. (6.3)

The power density S can be expressed as

〈S〉=
8π

λ2
〈P 〉 (6.4)

the ratio of the of the power through the effective area of the receiving antenna. in terms

of the averaged measured power through the effective area of the receiving antenna. Av-

eraged powers P ri n ,S ,N S and P ro ,s ,N S are referred to the inner and outer chambers with

and without the sample (for these parameters the source is always in the outer cham-

ber). P rQ i n ,S ,N S denote the average power in the inner chamber with a sample in the

aperture when the transmitting antenna is located in the inner chamber with an output

power Pt x ,i n ,S . The S E was computed by

FIGURE 6.6: Simple representation of the antennas positioning inside
both chambers.

S E =−10log

��

P41,S

P41,N S

��

P21,N S

P21,S

��

P43,N S

P43,S

��

(6.5)

where Pi , j is the power received by antenna i when antenna j transmits. The terms in 6.5

represent respectively: the first ratio denotes the variation of the power received of the

inner chamber when the outer chamber is fed due to the insertion of the sample (S)w.r.t.

when no sample is mounted on the aperture (N S). Second and the third terms denote

the ratio return the quality factor variation due to the sample insertion in the outer and

inner chamber. Due to the fact that the VNA directly measures the scattering parameters,
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the evaluation was done by using

S E =−10log

�

< |S21|2N S >< |S41|2S >< |S43|2N S >

< |S21|2S >< |S41|2nS >< |S43|2S >

�

(6.6)

where < .> denotes the ensemble average over the chamber’s realizations. Terms of 6.6

are useful for take into account the variations of the Q for both chambers (outer and

inner) due by the presence of the sample. The presence of material under test has a

large contribute to the evaluation of the S E , in fact sample losses i.e. absorption effects,

affects the Q and the power density inside both chambers.
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FIGURE 6.7: Measured shielding effectiveness.

Figure 6.7 shows a comparison between two different samples w.r.t the floor level.

The floor level is achieved by covering the aperture by an aluminum sheet and in theory is

the maximum value attainable for the S E . The samples are referred to a regular concrete

(blue curve) and a concrete filled by metallic fibers [149].

Moreover, considering the energy variation it is possible to evaluate the averaged ab-

sorption cross section (AC S ) for the samples by

AC S =
〈PS 〉
Si

(6.7)

and then

AC S =
ωV

c Qs
=

2πV

λQs
. (6.8)

Figure 6.8 reports a comparison of the AC S for the two concrete samples. The AC S of

the nester (inner) chamber is given by considering the S43 whereas the AC S of the larger
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FIGURE 6.8: Comparison of the measured AC S s .

(outer) chamber by the S21. In this case it is worth noticing that the AC S of the surface

exposed to the outer RC is quite the same for both samples whereas the lower surface

of the concrete without fibers has higher AC S . This means that surface exposed to the

inner chamber has higher reflection and lower absorption.

Moreover, our FDTD code is able to well estimate the ACS [155].

Concluding, the RC was/is used in order to evaluate the electromagnetic properties

(S E , AC S) of concrete samples (in this analysis, but non only concrete, i.e. apertures,

enclosures) for preliminary tests. Consequently, other properties have to be analyzed,

i.e. mechanical, chemical properties and so on.
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Conclusions

Analysis performed during my Ph.D. (the main items) have been reported in this thesis.

Most efforts were addressed in order to improve the performance of an existing RC. Start-

ing from the design of new geometries for the stirrer/s it was chosen to move in another

direction because the design of a stirrer is restrictive to the analyzed RC and consider-

ing other RCs the dimension and shape of the stirrer can be likely useless. The analysis

of a new geometry for the stirrer has been conducted. The homemade helical stirrer

shows good performance at low frequency. In order to avoid this “waste” of time (just

because too specific) we approached to consider new geometries for the RC. At the end

of the analysis carry out after many solutions, it was shown that chaotic RCs improve

the overall behavior w.r.t a regular RC. However, there are many factors that one need to

control. The number of diffractors has to be relevant, few diffractors have a negligible

effect. Dimension (radius) of diffractors is correlated to the number themselves. Con-

sidering a larger number of diffractors, i.e. 30 with a radius of 1 m is not recommended

because they cover a large portion of the volume reducing the available volume needed

to place antennas and devices; taking alway into account, the distance of λ/4 between

walls (spheres’ surface) and objects within the RC must be maintained in order to ensure

a reliable measurement.

Adding spheres causes a decreasing of the Q -factor because lossy material is inserted

into the volume, the higher the Q the more sensitive to the variation of the load. Qual-

itative measurement was done to check this behavior. In fact, in the simulations stir-

rer, antennas and spheres were simulated as PEC considering the losses localized in the

whole volume of the RC. In this way adding spheres the whole volume decrease and in

order to simultaneously compensate effects due to volume reduction and the decrement

of the Q -factor value of the distributed losses have to be increased. With these consider-

ations simulated results meet the experimental ones. Other parameters were analyzed.

The number of uncorrelated stirrer positions, that decreases according to the lowering

of the transmission coefficient S21. Despite the larger number of spheres, regarding the

analyzed cases the field uniformity (σ24) respects the limit required by the standard. The

main advantage of adding sphere within the RC is given by the improvement of the modal

density. This means that a low frequency the exited mode increases. This may lead to

getting low the minimum frequency of work (LUF). This analysis can be roughly made



86 Chapter 7. Conclusions

by a priori analysis, starting from the dimensions of the chamber, i.e. volume and sur-

face. Those dimension are easy to obtain by simple geometrical operations. The simply

method to evaluate the Q -factor of the chamber is reliable and meet quite well the re-

sults obtained by the FDTD simulations. Basically it is possible to determine how many

and where one has to place diffractors inside the RC to achieve the desired performance,

translate the LUF. This could be a very important and “revolutionary” challenge/objec-

tive. Further analysis have to be concluded in order to quantitative quantify the transi-

tion between undermoded and ergodic region. Moreover, also the volume reduction of

the chamber plays a key role in this analysis and has to be considered.
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Future perspectives

Several developments may be addressed to improve the analyzed performed in this dis-

sertation. Related to the FDTD simulations the main issues are the definition of losses

for the chaotic cavity. One way could be to proceed with a subgridding to consider the

surface of the sphere and compare the benefits to the required computational burden.

This solution should eliminate the accuracy errors due to the staircase approximation

and facilitates the possibility to run simulations considering localized losses (wall losses)

instead distributed losses, which should serve to improve the accuracy of the results.

However, as shown in this work, the wall losses must be evaluated for all frequencies of

the band, and is not necessarily the best solution. Of course the effect that the volume

reduction plays is a relevant issue that needs to be explored.

Another open point is the statistical analysis, i.e. the probability density function

(pdf) of S21, the coherence bandwidth or high-order momentum. It was shown that from

a practical point of view, a part from the field uniformity other parameters become worse

through adding spheres due to both volume reduction and increment of losses, but the

modal overlap increases at low frequency. A next step is to evaluate if actually the spec-

trum becomes irregular. Using the FDTD is difficult to proceed with a classical analysis,

i.e. considering the spacing distribution. There are some techniques however the reso-

nances in a cavity such as the RC (at relatively high frequency) are not trivial.

Another task could be to optimize dimensions position and kind (hemisphere/hemi-

spherical cap/mushroom) of diffractors by means of the Cost function.

Additionally, performing measurements with a device present within the working

volume, will prove to be a useful comparison and extension of this work.
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