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Chapter 1:  Introduction 

1.1 Background 

The development of autonomous vehicles to perform mission in critical and 

hazardous environments or situations is a field of study that can be considered 

fundamental for the whole mankind. 

However, in the past, robots had limited processing, sensorial and actuating 

capabilities, usually requiring well structured environment to allow an autonomous 

navigation in an efficient and affordable manner. An example of this design is the 

usage of markers in domotic environments or the exploitation of lines on the floor 

and basic sensor to detect collisions like the AGVs (Automated Guided Vehicles) in 

an industrial environment.  In the case of advanced intelligent vehicles, like Shakey 

The Robot [1], that was able to use a complex language to reason and plan the 

navigation in different indoor scenarios, all the processing was computed, quite 

slowly, in an external processing unit, that was able to act and sense remotely from 

the vehicle.  

Nowadays, the environments and scenarios where autonomous robots are asked to 

operate are loosely structured and very complex requiring tailored strategies to 

navigate. Along with other complex environments, the marine one is considered 

very important and very challenging at the same time from different points of view, 

being fundamental to sustain a high number of human activities and life species, 

while being rich of artefacts from different ages of the human history. In this 

environment, the communication could be spotty and slow, the visibility reduced 

and there is no easy way to use odometry to estimate the position in an affordable 

and precise way. Luckily, along with the increase of complexity of the problem to 

solve, there has been also an empowerment of processing power, sensors, actuators 

and communicating devices available at a cheaper price. This process, in the marine 
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environment, allowed during last decades to allow a transition to the usage of ROVs 

(Remotely Operating Vehicles) to AUVs (Autonomous Underwater Vehicles). 

Another level of complexity is given from scenario that considers cooperation 

and/or coordination between robots, where different vehicles need to build a 

society, exchange and share information to perform a joint mission. In literature, to 

manage this kind of complexity, Multi-Agent System (MAS) theory is cited as a tool 

capable to manage this issue, by modelling autonomous software components 

(called agent) that, together, can perform activities than one unique entity wouldn’t 

be able to perform, or with worse performances. 

But these agents need to know, reason and plan in a dynamic and unstructured 

environment, and this kind of actions require a higher level of abstraction, which 

can be provided by means of a formalization. Because of this, agents could exploit 

formal models to express concepts such as what they are, what they can do, where 

they are and how they can cooperate to perform a given mission.   

1.2 Motivation and Objectives 

This dissertation has two main objectives: 

• To analyse different systems and technologies for distributed intelligence 

through a review of a wide state-of-the-art. 

• To design an architecture of a multi-robot infrastructure for the exploration 

of complex, loosely structured environments by means of the MAS. 

The proposed infrastructure, that is the innovative aspect of this dissertation, has 

two main objectives: 

• To express different aspects of Robot and Multi-Robot systems by means of 

different models. 

• To show a layout of a middleware that is able to equip different kind of 

robots, interpret the proposed models and manage the whole Multi-Robot 

System. 

In order to design this infrastructure, the three years of research had the following 

phases: 
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• Analysis and revision of the current state of the art of MAS theory and related 

technologies to provide a robust background of knowledges 

• Analysis and development of different technologies that addressed different 

aspects of interests such as robot definitions, MASs and system integration. 

• Design of models and a middleware to exploit as an infrastructure for multi-

robot systems for generic scenarios. 

1.3 Thesis overview 

This dissertation is organized as follows: in Chapter 2, describes the state-of-the-

art of different arguments that were investigated. The first topic is about ontologies 

related to single and multi-robot systems. The second topic is related to agent 

models, proposing two different classifications and providing some notable 

examples. The third topic is related to Multi-Agent Systems (MASs) with an 

introduction to its classification, the usage of this theory in different scenario and 

some of the most notable MAS frameworks.  The last topic is related to the concept 

of Environment: its characteristics, possible structures, and responsibilities in a 

Multi-Agent scenario. The Chapter 3 is tailored to the presentation and analysis of 

five technologies that have been studied and/or developed inside the LabMACS 

laboratory during its activity before or during the PhD that contributed, in different 

measures, to the definition of the models and infrastructure designed and developed 

in this dissertation. The first one is DocuScooter: an innovative device, able to equip 

different components called Payload, which can provide a model that allows an 

abstraction of these components. The second one is OpenFISH, a modular 

biomimetic AUV that exploits a MAS to control the Navigation, Guidance and Control 

(NGC) algorithms and the communication with the underlining hardware. The third 

technology is the Home Automation System (HAS), a MAS tailored for domestic 

purposes, where the different apparel can communicate and coordinate to manage 

different domestic utilities called resources. The fourth    technology is a Python and 

ROS based MAS for general purpose ASV. Finally, the fifth study is about the LabMACS 

Integrated System Architecture, a structuring and modelling paradigm to define 

technologies and processes used in different missions in the marine environment. 

Chapters 4 and 5 present two different aspects of the infrastructure developed for a 
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Multi-Robot System: models that represent different aspects of a robot and multi-

robot societies and a middleware able to interpret the models and allow the 

functioning of different type of robots.  In Chapter 4 three different models are 

presented. The first model, called Robot Part Model, characterizes the hardware that 

can be connected to the system and that can be used dynamically by the system. The 

second model, called Skill Tree Model, is able to represent the abilities that are 

enabled for the Robot Parts that are currently equipped in the system. The third 

model, called Organization Model is able to model three different aspects of Multi-

Robot Systems: the Environment where the robots are situated, the different Roles 

that the robot can play in the system and the Mission that they must carry on. In 

Chapter 5 the four-layered vertical middleware is introduced. Each Layer 

(respectively called Connector, Platform, Organization and Agent) is presented and 

deepened. The main purpose of the infrastructure is to interpret and allow the 

exploitation of the models introduced in chapter 5. In Chapter 6 an implementation 

of the infrastructure and a preliminary simulated application is presented. The 

simulation reproduces the functioning of the MAS of the ASV presented in Chapter 

3. Finally, Chapter 7 concludes the dissertation by showing some considerations 

and possible future developments of the infrastructure. 
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Chapter 2:  State-of-the-art 

In this chapter, the analysis and study of the state-of-the-art has been carried out by 

analysing 4 main areas: 

• Robotic ontologies for single and multi-robot systems: fundamental 

ontologies about the definitions of robot and multi-robot system will be 

introduced. The definitions in the rest of this dissertation are related to these 

ontologies; 

• Intelligent agents: a rapid introduction of two classifications of agents from 

two different points of view, from the bibliography, is shown. In the first, the 

idea is to classify agents by means of general capabilities and ability to 

express intelligence. In the second one, the classification exploits different 

concrete architecture layouts that allows to the agent the mapping from the 

sensors to the actuators. For each architecture, some relevant examples are 

introduced; 

• Multi Agent Systems: in this context, a classification for multi-agent system 

is described and some relevant examples are introduced; 

• Environment: in this context, a brief review of considerations, dimensions 

and evolution of the environment is given, in order to gather a good number 

of requirements about this important component of a multi-agent system. 

2.1 Robotic ontologies for single and multi-robot 

systems 

This first part is focused on the ontologies used to define some concepts that will be 

used during this dissertation. The definitions that will follow are based on the IEEE 

standard for Ontologies for Robotics and Automation [2]. This standard defines a 

core ontology that allows the representation of, reasoning about, and 

communication of knowledge in the Robotics and Automation (R&A) domain. In this 

reference, the SUMO (Suggested Upper Merger Ontology) ontology is extended to 

carry out concepts related to this discipline.  
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SUMO is considered a top-level ontology that defines basic ontological categories 

across all domain. The SUMO taxonomy can be briefly described in figure 1. 

The ontology is presented by means of statements in the SUO-KIF [3](Standard 

Upper Ontology - Knowledge Interchange Format) language and graphs of some of 

its main concepts. 

 

FIGURE 1 SUMO ARCHITECTURE FROM [2] 

As shown in the previous figure, the main concept is Entity, that defines an 

“universal class of individual”. Other relevant concepts are: 

• Physical and Abstract: These two concepts split the main Entity one. They 

respectively represent entities that they have or lacks a spatial-temporal 

extension.  

• Object: an object is a physical entity, and it roughly corresponds to the class 

of ordinary objects.  

• Process: a process is a particular kind of physical entity, because it has a 

spatial-temporal extension but it is related to entities that happen in time and 

have a temporal part or stages. An example of Process could be a football 

match or a race. This definition means that SUMO follows an endurantist 

perspective instead of a perdurantist one. For an endurantist, an object keeps 
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its identity through time and so, while some processes might change things 

about it, every part that is essential to it is always present. On the other hand, 

for a perdurantist, an object is composed of every temporal part it has at all 

times, so all things about it are indexed in time. 

• Agent: Something or someone that can act on its own and produce changes 

in the world. 

• Artefact and Device: the first is an object that is the product of a making, the 

second one is an artefact whose purpose is to serve as an instrument in a 

specific subclass of a process. 

 Further explanation of other concepts in SUMO are extensively explained in [4]. 

2.1.1 Robotic ontologies for single robot systems 

In the CORA axioms, a Robot is a Device and an Agent at the same time. How this 

concept is inserted in the SUMO architecture is shown in figure 2. 

 

FIGURE 2: CORA ROBOT CONCEPT IN SUMO FROM [2] 

Because a Robot is a subclass of Agent, this general definition can lead to 

misunderstanding, in situation where, for example, a robot requires inputs from an 

external user in order to execute task. This is a point of ambiguity to differentiate a 

robot from other machines. This issue is related to the degree of Autonomy of the 

Robot.  
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CORA assumes that autonomy is related to the particular occurrence of a process 

while a Robot plays as an agent. CORA allows to a robot to play different roles for 

different processes. 

These levels are: 

• Fully autonomous robot: with this mode, the robot is able to perform its 

mission, within a defined scope, without human intervention, while being 

able to adapt its behaviour to operational and environmental conditions. 

• Semi-autonomous robot: with this mode, the robot is able to perform task 

autonomously between human interactions, while the robot acts in an 

autonomous manner. The human operator can set new task to perform 

during interactions. 

• Teleoperated robot: with this mode, the robot needs a human operator to 

perform its mission. The user receives feedback from the sensorial devices 

and act through the actuating ones or sets incremental goals during 

operation, from a location outside the robot; 

• Remote controlled robot: with this mode, the human operator controls the 

robot in a continuous way, from a location off the robot and with its direct 

observation. The robot takes no initiative in this mode and relies in the 

continuous input from the human operator; 

• Automated robot: in this case the robot acts as an automaton, with no 

possibility to altering their actions  

The first 4 definitions are directly related to the standard definition of the Autonomy 

Level of Unmanned Systems (ALFUS) [5] where the different Mode of Operation for 

Unmanned Systems are described.  

Instances of Robot can exhibit characteristics through two relations that are 

indirectly inherited from Object. The Attribute relation allows the robot to get 

qualitative characteristics by instantiating the abstract class Attribute. The Measure 

relation allows the robot to get quantitative characteristics instantiating the 

abstract class PhysicalMeasure. 

A Robot have other devices as parts, called RobotPart. A device can be considered 

dynamically a RobotPart when attached to the robot. The union of all the RobotParts 
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are part of the unique RobotInterface device of the Robot. The RPARTS ontology 

aggregates some of the most general and typical specific types of robot parts. Four 

typologies of robot part are described: 

• RobotSensingPart: a part that allows the robot to percept from the 

environment 

• RobotActuatingPart: a part that allows the robot act and/or move in the 

surrounding environment 

• RobotCommunicatingPart: a part that server as an instrument for robot-

robot or robot-human communication process by allowing the robot to send 

or receive information. 

• RobotProcessingPart: a part that allows the root to process information  

2.1.2 Robotic ontologies for multi-robot systems 

In the context of Multi-Robot Systems (MRS) two main sources were taken in 

account. The first is the same document used to show the taxonomy of Single Robot 

System [2], that defines briefly this concept, the second reference takes in account 

two different dimensions to describe MRSs: the first defines different levels of 

coordination complexity between robots, the second defines different parameters 

to take in account while developing a MRS. 

In the ontology proposed in [2], the concept of RobotGroup is introduced, following 

to SUMO’s definition of Group as a “collection of agents”. In fact, a RobotGroup is a 

Group whose member are Robots (figure 3).  

The term RobotGroup also includes complex robots. These are embodied agents 

attached to each other in the same physical structure. 

 

FIGURE 3 : ROBOTGROUP CONCEPT FROM [2] 
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Robots and other devices can form a RoboticSystem. A RoboticSystem is an artificial 

system formed by robots and devices intended to support the robots to carry on 

their tasks. Robotic systems might have only one or more than one robot. Robotic 

systems are partitioned into SingleRoboticSystems and CollectiveRoboticSystems 

(figure 4). 

 

FIGURE 4: ROBOTICSYSTEM CONCEPT FROM [2] 

It is assumed that all robots in a CollectiveRoboticSystem collaborate in some way 

to achieve a common goal. Naturally, each robot may have its own local goal, but 

these goals must be sub goals of the larger one, i.e., the group’s goal. As such, all 

robots in a CollectiveRoboticSystem must be members of a single robot group. This 

is the case even in situations where there is no direct interaction between robots, 

such as in an automated assembling line. 

In the second reference [6] a taxonomy tailored to Multi-Robot System is proposed. 

This taxonomy proposed is characterized by two groups of dimensions: 

Coordination and System. The first is related to the characterization of the type and 

level of coordination among robots in a MRS, the latter to define characteristics of 

essential components that must be taken in account when developing this kind of 

systems. 

The hierarchical structure of the coordination dimension is shown in figure 5. 
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FIGURE 5: COOPERATION DIMENSION FROM [6] 

Cooperation Level: this level concerns the ability of the system to cooperate in 

order to accomplish a specific task. At this level, cooperative and non-cooperative 

systems are distinguished. This is similar to the previous concept of 

CollectiveRoboticSystem. A non-cooperative system cannot be intended as a Multi-

Robot System so it is not included in the previous schema. 

Knowledge Level: the second level of the hierarchical structure is about the 

knowledge that each robot has about its team mates. Two categories are 

distinguished: Aware and Unaware robots. The first kind of robots have some 

knowledge about other robot of its group, while an unaware robot act without any 

knowledge of the other robots in the system. Because cooperation is a prerequisite 

for knowledge, unaware robots doesn’t act on their own, but they still must 

cooperate with other (e.g. by exchanging information) to fulfil the requested tasks. 

Coordination Level: the third level is concerned with the mechanism used for 

cooperation. Following the definition used for Multi-Agent Systems (MAS), 

coordination is considered as cooperation in which the action performed by each 

robot considers the actions executed by other robotic agent managing inter-

dependencies between the activities of agents in a way that the whole ends up being 

a coherent and high performance operation [7] [8]. Different levels of coordination 

are taken in account, based by different coordination protocols that are in use in the 

MRS. It is possible to have Not coordinated, Weakly coordinated and Strongly 
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coordinated systems, by means of a missing, weak or strong coordination protocol. 

Obviously, for robots to coordinate, they need to know which are the team mates, so 

the presence of an Aware System as Knowledge level is required. 

Organization Level: this level is about the way the decision system is realized 

within the MRS. This level points a distinction in the forms of coordination, 

separating centralized approaches from distributed ones. Three forms of 

organization are introduced: Strongly centralized, Weakly centralized and 

distributed. In a centralized organization, the leader role is present while it is 

missing in a distributed one. In strongly centralized organization the leader that 

takes the decisions during the mission duration is predefines. In the weakly one, 

agents can obtain the leader role in a dynamic way during the mission. In a 

distributed system, no leader role exists: each robot acts in a completely 

autonomous way. 

The second dimension is the System dimension. This dimension is useful to 

characterize different features relevant for the development of this kind of system. 

These features are: 

Communication: communication processes among robots are fundamental to 

obtain cooperation in a MRS by means message exchanges. Two types of 

communication are taken in account: Direct and Indirect communication. Direct 

communication is obtained by exploiting dedicated hardware to communicate, 

while Indirect communication makes use of stigmetry, where the trace left by an 

action of a robot in an environment stimulates subsequent actions. This technique 

of indirect communication is defined as a mechanism for universal coordination 

mechanism [9].  

Team composition: team composition can be divided in two main classes: 

heterogeneous and homogeneous. In the first class, the members of the team are 

composed by basically the same hardware and control software, while in the second 

one the robots differ for different for hardware or software capabilities. In relation 

to the previous definition of robot, robots with different RobotParts are members of 

a heterogeneous team. 
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System architecture: this is a fundamental dimension to characterize how the 

system and its components recover to an unpredicted situation. Two different 

architectures are introduced: deliberative and reactive. In the first architecture, as 

a particular event occurs, there are strategies to alter, if necessary, the behavior of 

all the component of team. In the second one, each robot cope with the event by 

modifying its behaviour internally to fulfil the assigned task. It is important to notice 

that this definition does not define which architecture is used for each agent, but 

how and at which level the overall system copes with particular events. 

Team size: this dimension takes in account the number of robots that are involved 

in the system at the same time. 

2.2 Intelligent Agents 

The second part of the state of the art is related to intelligent agents. After a brief 

explanation of what an intelligent agent is, and which are the main differences 

between a common software, two classic agent classifications are taken into account 

in this state of the art.  

The first one is from Russel & Norvig, introduced in their book “Artificial 

Intelligence: A Modern Approach” [10]. In this classification, agents are 

differentiated in five different standardized models. This approach aims to classify 

agent by their ability to express perceived intelligence, and it is related to different 

way how software maps perceptions from their sensor to actions through actuators. 

No strict information is given on how these models need to be implemented in a real 

machine, that are to be intended as a guide to describe which essential component 

must be present in an agent in order to express a defined grade of perceived 

intelligence from an external observer. 

The second classification defines five categories of concrete agents, and it’s highly 

inspired to the classification performed by Weiss in his book [8]. This classification 

aims to differentiate agent by their concrete different implementation of the 

decision-making process.  
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2.2.1 Characteristics of Intelligent Agents 

In the previous definition of Agent, the schema that is proposed is shown in figure 

6.  

 

FIGURE 6 : SCHEMA OF AN AGENT 

An agent is essentially an entity able to perceive the environment through sensors 

and act through is actuators in an autonomous way, and it is endowed with the 

following characteristics: 

• Autonomy: agents operates without direct intervention of a human 

operator, and they have a grade of control of their actions; 

• Mobility: agent could be able to move in an electronic network; 

• Veracity: agent do not communicate false communication on purpose;  

• Benevolence: agent do not have conflicting goals and they will do try to do 

what is asked to reach them;  

With this definition, any control system could be defined an agent. A thermostat, for 

example, is able to control the room temperature by means of a formula that maps 

the input (the room temperature) to an output (heating on or off).  

A necessary augmentation for an agent regards the ability to act in a rational manner 

in the environment, by exhibiting intelligence. Rationality is the assumption that an 

agent will act in order to achieve its goals, and will not act in a such way to prevent 

them to be achieved. An intelligent agent is one that is capable of flexible 

autonomous action in order to meet its design objectives, where flexibility means 

three things [8]: 
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• Reactivity: agents can perceive their environment, and respond in a timely 

fashion to changes that occur in it in order to satisfy their design objectives; 

• Social ability: agents can interact with other agents (and possibly humans) 

in order to satisfy their design objectives; 

• Proactiveness: agents can exhibit goal-directed behaviour by taking the 

initiative in order to satisfy their design objectives. 

2.2.2 Agent models 

1.1.2.1Simple reflex agents 

This class of agents acts on the exclusive basis of the current perception, ignoring 

the perception history. The processing is conducted by so-called condition-action 

rules of the written as “IF condition THAN action”. This is considered the most basic 

type of agent. A representation of this class is shown in figure 7. A consideration is 

that this kind of agent will be able to success only if the environment is fully 

observable. 

 

FIGURE 7 : SIMPLE REFLEX AGENT 

1.1.2.2Model-based reflex agents 

In this class, the concept of internal state is introduced. This kind of agent takes in 

account different real world-related problem. An example is an agent for 

autonomous underwater exploration. If the visibility is limited, the agent must keep 

track of its position and of detected underwater object also if they are currently not 
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visible. To perform this consideration, the precedent schema of figure 7 is updated 

in figure 8.  

 

FIGURE 8: MODEL-BASED REFLEX AGENT 

The figure shows that the current percept is combined with the old internal state 

and with other knowledge. In fact, to update the internal state information, the agent 

must take into account two kind of knowledge: first, information is needed to 

considerate how the world evolves independently of the agent. Second, the agent 

should take into account how its action modifies the external world. 

1.1.2.3Goal-based agents 

This kind of agent programs introduces the concept of Goal, which describes a 

situation that is desirable. The internal state by its own it is not always enough to 

decide the actions to perform. For example, for the agent for underwater 

exploration, the necessity to obtain a situation where the goal “complete the 

mission” is achieved, will make it plan to obtain this situation, by taking into account 

which will be the consequences of its action, and which is the best move to do in 

order to finish the mission. The schema of a goal-based agent is shown in figure 9. 
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FIGURE 9: GOAL-BASED AGENT 

The decision-making process is different from the previous ones and is indeed more 

complex and less efficient that the two presented before, but is far more flexible. 

Without the concept of goal, a reflex agent, in order to reach the same objective, 

should have all the procedures that are able to track the goal hard-coded, and a 

simple modification of the goal means a modification of part of its rules. 

1.1.2.4Utility-based agents 

Goals alone are not able to generate high-quality behaviour. For example, there 

could be many possible action sequences that allow the underwater vehicle to 

complete its mission, but probably only a few (or just one) are more efficient in some 

dimension (time, safeness, cost). The goal is quite a “crisp” concept (goal achieved 

or not achieved), while usually more soft and measurable criteria is needed to 

evaluate the performance of different world states. This criteria is called Utility. The 

Utility is a function that maps a state into a real number, which defines the 

associated degree of desirability of the actual situation. The schema of a utility-

based agent is shown in figure 10. 
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FIGURE 10: UTILITY-BASED AGENT 

The use of a utility function instead of goals have some advantages specifically in 

two kinds of case, where it allows to perform rational decisions in comparison to a 

goal-based architecture. The first case regards conflicting goals: when only some of 

them could be achieved at the same time (for underwater case an example could be 

vehicle energy efficiency and speed), the utility function could be able to perform a 

trade-off between these two conflicting goals. The second scenario is related to goals 

that the agent cannot be sure to have achieved, but there is a certain degree of 

uncertainty that it is reached totally. Utility in this case allows to weight the 

likelihood of success against the importance of reaching that goal. 

Because the world, in real world scenario, is usually partially observable and 

stochasticity are ubiquitous, decision making is made under uncertainty. Therefore, 

a rational utility-based agent chooses the action that maximize the expected utility 

of its actions. 

1.1.2.5Learning agents 

Learning allows an agent to improve it performances and to operate in an initially 

new unknown environment and to become more and more capable than its initial 

knowledge alone might allow. As shown in figure 11, the structure of a learning 

agent has a very different structure and is possible to describe it as an ensemble of 

four conceptual components. 
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FIGURE 11 : LEARNING AGENT 

The Performance element is what was until now considered to be an entire agent: 

an entity able to percept the environment through its sensors and to select an 

external action to perform through its effectors. The Learning element is the 

component responsible to perform improvement. It uses the feedback from the 

Critic in order to determine how the agent is behaving and how the Performance 

element should be modified to perform better over time. This component is 

necessary because perceptions on their own give no clue to the agent about how 

well it is behaving or if it is succeeding in its task with respect to a fixed performance 

standard. In the previous schema, it is possible to notice that the Performance 

Standards are considered fixed and external to the agent. The last component is the 

Problem generator. It is responsible for suggesting actions that will lead to new and 

informative experiences. Without this component, the learning element will provide 

the best actions for the knowledge that it has instead of finding new ways to act that 

are more efficient than the already known ones.  

2.2.3 Agent Architectures 

Each architecture represents a different way to implement how the agent is able to 

map its perception to its actions. It is possible to define at least five different 

architectures: 
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• Logic based/Deliberative reasoning architectures: where decision 

making is performed by means of logical deduction; 

• Reactive architectures: where decision making is performed by some form 

of direct mapping from situation to action; 

• Belief-Desire-Intention architectures: where decision making is 

performed by the manipulation of data structures representing beliefs, 

desires and intentions; 

• Layered/Hybrid architectures: where decision making is performed by 

different software layers, each of them with a different level of abstraction of 

the environment; 

• Cognitive architectures: where decision making is performed replicating 

human cognitive phenomena; 

For each architecture, a rapid explanation of its strength and weakness is given, then 

the most notable and relevant examples of each architecture are presented. 

2.2.3.1 Logic based/ Deliberative reasoning architectures 

In the traditional and first approach to building artificial intelligent system (known 

as symbolic AI), suggests that an intelligent behaviour can be achieved by giving to 

the system a symbolic representation of the environment and its desired behaviour, 

and then syntactically manipulating this representation. In the case of Logic 

based/Deliberative reasoning architecture, these symbolic representations are 

expressed by means of logical formulae, and the syntactic manipulation corresponds 

to logical deduction, or theorem proving. 

This approach has pros and cons. As positive aspects, the whole process used to 

manipulate the logic formulae follows rigid and proven theorems, and, if a decision 

is taken from the agent, how and why was chosen is logically explainable and 

provable. Furthermore, the logical semantic used in these architecture is simple and 

elegant. By the other hand, this approach has a lot of problems. As instance, when 

the first examples of these architecture were investigated it was obvious that these 

architectures were anything but instantaneous and, in some cases (if the agent uses 

classical first-order predicate logic to represent the environment, and its rules are 

sound and complete) there is no guarantee that the decision-making process will 
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terminate. Moreover, a symbolic representation of the actual real-world 

environment is very complex and too cumbersome for resource limited systems 

(space and computation power).  Finally, since this system aims to provide the best 

solution to solve the problem each time, any change in symbolic representation of 

an element of the environment (for example if an obstacle is detected) requires that 

all the process solving (theorem proving) mechanism must be performed again. This 

is an issue especially when the state of the world changes faster than the agent can 

make decisions. 

Three examples of this architecture will be presented: Concurrent MetateM, based 

on temporal formulae, ConGolog, based on situation calculus and then Situated 

Automata, based on a total different approach, in which the modelled behaviour is 

directly compiled in the agent. 

Concurrent MetateM 

Concurrent MetateM [11] is a multi-agent programming language that uses 

temporal formulae as logical language. These agents are able to communicate 

through broadcast message passing. Each concurrent MetateM agent has two main 

components: an interface, which defines how it is able to interact with the 

environment or other agents and a computational engine, which defines how the 

agent will act through the definition of a set of temporal formulae. Three sets are 

described: 

• PML+: formulae referring to the present or future called commitments; 

• PML-: formulae referring to the past called history formulae. It is a collection 

of message received and action performed by the agent during its whole life-

cycle. 

• PML±: formulae in the from past => future called rules; 

The history formulae and the commitment together form the agent’s internal state,  

Each agent is programmed by giving it a specific temporal logic called First-Order 

MetateM Logic (FML) and its execution is a cycle that: updates the history of the 

agent by receiving messages, check which rules can fire by comparing past-time 

antecedents of each rule against current history and then jointly execute the fired 

rules together with any commitments carried over from previous cycles.  
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ConGolog 

In [12] the authors propose a particular methodology to avoid computationally 

demanding plan synthesis in real-world scenario, where dynamic and partially 

observable environments conduct to very complex systems. The alternative 

approach is based on high-level program execution [13]. Instead to search for a 

sequence of action that are able to take the agent from the initial state to the goal 

state, the idea is to find a sequence of domain-dependent actions that are part of a 

legal execution of a high-level non-deterministic program. The objective is to 

conveniently express with these high-level programs the most part of the agent 

needs and, doing this, by easing computationally the execution of the program in 

comparison to the corresponding planning task.  

The language used to define these high-level non-deterministic program is called 

Concurrent Golog (ConGolog) that is based on situation calculus [14]. This language 

is an evolution from the previous Golog language [13]. ConGolog is able to model 

goal-oriented agent controllers while concurrently monitoring and reacting to 

condition in their environment.  

Situation Calculus is a first-order language (with some second-order features) for 

representing dynamic domains. A world history, that is a sequence of action, is 

represented by a first order term called a situation.  

Situated Automata 

Another approach was introduced by Rosenbach and Kaelbling with their Situated 

Automata architecture. Instead of syntactically define and manipulate the world 

through logical languages on order to provide a formal planning method during the 

runtime of the agent, in this architecture the logical specifications are compiled to 

provide a light, more efficient decision-making process. Situated automata has its 

fundamentals in a formal semantic of embedded computation [15]. It gives a 

specification of the information content of the internal states of a machine in terms 

of the external states of the environment in which that machine is embedded.  

An agent, in this architecture, is seen as an entity capable of performing a 

transduction between the inputs that are acquired from the environment to a 
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stream of actions that interact with the environment. This transduction is modelled 

as a finite state machine by means of fixed sequential circuit. The formalism of the 

language allows to compile this software in a digital machine, which must satisfy the 

declarative specification. The schema of the circuit that implements this theory is 

shown in figure 12. 

 

FIGURE 12: SITUATED AUTOMATA CIRCUIT SCHEMA FROM [15] 

A sequential circuit (and so the agent) can be decomposed into two functions: 

function f calculates the new state of the internal circuit and can be considered as 

the perception module of the machine. Function g calculates its output as a function 

of the old value of the state and an input function i. this latter function can be 

considered a free-state action component, capable to decide at each instant which 

action to take and can be considered the action module of the machine. 

Two different languages manage the development of these two models: RULER 

[16](perception) and GAPPS [17] (action). RULER synthetizes machines able to 

track semantically complex conditions in the environment by means of constant-

time update circuitry. GAPPS can maps a top-level goal and a set of goal-reduction 

into an efficient parallel compiled program able to make a transduction from a 

stream of input incoming from the perception component of the robot to a stream 

of output actions.  

2.2.3.2 Reactive architectures 

A reactive architecture approaches the problem of defining the architecture of an 

agent by taking in consideration the necessity of a more robust and real-time 

behaviour. In fact, researches in the mid-to-late 1980s started to investigate 

alternatives to the previous symbolic AI paradigm. Some emergent ideas were: 



Chapter 2: State-of-the-art 

  24 

• Rejection of symbolic representations, and decision making based on the 

syntactic manipulation of such representation 

• The idea that intelligent, rational behaviour is linked to the environment an 

agent occupies, a product of the interaction the agent has with the 

environment 

• The idea that intelligent behaviour emerges from the interaction of different 

simpler behaviour 

Some practical limitations of the deliberative reasoning architectures were 

appointed by Brooks [18] while introducing his subsumption reactive architecture 

like:   

• Management of multiple goals: usually an agent will have multiple 

(sometimes in contrast) goals to achieve like reach a specific point while 

avoiding obstacles. 

• Managing of multiple sensors 

• Robustness: the agent must adapt and cope to malfunctioning to its sensors 

or actuators or to drastic changes of the environment.  

• Extensibility: the agent must cope with sub sequential modification to its 

structure, also allowing the minimum effort to change a single component of 

the system. 

• Real-Time behaviour: the problem of high computational effort of problem 

solving of logic architectures is not good for real-world/real-time scenarios. 

In opposition to the traditional decomposition of a mobile control system at that 

time, commonly deigned as figure 14 shows, this type of architecture is decomposed 

as a series of horizontal-stacked layers as figure 13 shows. It is possible to notice 

that, in this latter kind of architecture, each layer can access directly to the sensors 

and act through the actuators. 

Another important aspect is the lack of an explicit model of the environment: all the 

useful information to perform the decision-making process must be acquired from 

the current local environment. 



Chapter 2: State-of-the-art 

  25 

 

 

FIGURE 13: HORIZONTAL ARCHITECTURE 

FROM [18] 

 

FIGURE 14: VERTICAL ARCHITECTURE 

FROM [18] 

In summary, this architecture since its beginning has proven to be simple, robust, 

easy to implement and to embed, but there are some problems still partially or 

totally unresolved as: lacking an environment model or history, that forces the agent 

to take decision based on an actual local knowledge and of some advanced features 

like learning. Other problems are related to the actual development of these agent 

as challenges related to the development of complex agents composed by a high 

number of layers: these agents could have an emergent behaviour difficult to build 

without a proper methodology and to track while many layers are interacting 

between each other’s.  

Two examples of Reactive Architectures are proposed. The first is the most famous 

one: Brooks’ Subsumption Architecture, the second is the Agent Network 

architecture, that is based on the relationship of different modules expressed 

Subsumption agents. Other notable examples are the PENGI system [19] and Firby’s 

[20] Reactive Action Packages. 

Subsumption Architecture 

The subsumption architecture has been proposed by Brooks in [18] and is known to 

be the best pure reactive architecture. This architecture has been proposed due to 

the dissatisfaction with the performances of the representation-inspired robots in 

dealing with the real world like Shakey the robot [1]. 

The subsumption architecture is a hierarchy of task-accomplishing behaviour each 

one in a so called different “layer of control”, each one with a different competence. 

Its underling schema is shown in figure 15.  
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FIGURE 15: SUBSUMPTION ARCHITECTURE FROM [18] 

As can be seen, this architecture allows to all layers to access to the sensor’s and 

actuator data and operate in parallel. The low-level layers take in account more 

primitive typologies of behaviour (like avoid obstacles and wander) and are 

designed to react fast to environment changes while high-level layers have the duty 

to control the system towards overall goals. The low-level layers have precedence 

over further layers.  

Each layer has its own simple and unique goal and it can fulfil it without the aid of 

other layers, enabling a modular view to robot programming. This allows easier 

testing and debug of each functionality of the system, instead of testing a bigger 

system that take care of all aspects of the robot. There are two aspects of the 

modules of each layer to be considered: the internal structure of the module and the 

way they communicate.  

Each module is developed as an Augmented Finite State Machine (AFSM) with a 

series of input and output lines. The augmentation is composed by added instance 

variables to hold data structures. A schema of a ASFM is shown in Figure 16. The 

ASFMs are synchronized and receive perceptions from the sensors at the same time. 
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FIGURE 16: AUGMENTED FINITE STATE MACHINE FROM [18] 

The communication between modules is performed by connecting input and output 

lines of different modules through wires. A wire has a source and a destination. In 

addition, outputs can be inhibited and inputs suppressed for a certain amount of 

time. These mechanisms allow to override and alter the external behaviour of a 

module.  

If an input is suppressed. Any signal received will be substituted with the 

replacement provided by the suppressor. In a similar way, if an output is inhibited, 

any messages sent by the module will be lost. Both inhibitor and suppressor 

terminals have a time constant.  

ANA 

The Agent Network Architecture (ANA) that is based on the studies of Maes [21] and 

it proposes an architecture to develop autonomous agents. It is inspired on the 

Minsky’s Behaviour-Based AI [22] and by Brook’s subsumption architecture [18].  

The architecture is divided in different competence modules, which correspond to 

different Subsumption behaviour. Two types of modules are defined: the first is the 

Action Module, which allows to the agent to perform some physical action in the 

environment, and the Belief Module, which allows to adopt a belief for a limited time. 

Each module is described by different parameters: a list of conditions to be met, of 

added and removed conditions and an activation level. The last parameter indicates 

how much a module is relevant in the current context and is used to define which 

module will take control of the agent.  
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The modules are divided in groups that are incompatible among each other. An 

action module is incompatible with another one if it has a shared resource, so they 

can’t act at the same time. In a similar way, Belief Modules are incompatibles if they 

express contradictory belief. These modules are considered as black box, and more 

implementation of them are proposed (some proposed examples are theorems, 

neural nets, a piece of software).  

An important task that the architecture must perform is the selection of the actual 

running module. This problem involves the use of a spreading activation network to 

assign an order to modules to run. The description of each module allows to build a 

net of predecessors and successors. If a module accumulates enough activation 

energy through its connected links it acts (if it is an action module) or its beliefs are 

adopted (if it is a belief module).  More specifically, there are two components to the 

spreading activation dynamics. First there is the external input/output of activation 

energy: goals, data acquired from sensors and protected goals (goals achieved but 

that must remain achieved during long term). Secondly the internal spreading of 

energy among competence modules: a non-executable module can increase the 

energy associated to its predecessor, an executable module increases the level of its 

successor and every conflicting module lowers the energy of its conflictors. An 

example of this network is shown in figure 17. 
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FIGURE 17 : EXAMPLE OF SPREADING ACTIVATION NETWORK FROM [21] 

For each loop, the external and internal activation is computed, a decay function is 

applied and finally the strongest module that has an energy higher than its activation 

level is selected. 

2.2.3.3 Belief-Desire-Intention architectures 

The Belief-Desire-Intention model is based on Dennett’s theory of intentional 

systems [23] and on Bratman’s theory of human practical reasoning [24] that is a 

reference to explain future-directed intentions. Practical reasoning is about 

deciding, moment by moment, which action to perform in order to reach our goals. 

This activity is composed by two different stages: the first regards the decision about 

which state an agent want to achieve (called deliberation) the second regards how 

to reach these states (called means-end reasoning). This process is different from 

the theoretical reasoning that derives knowledge or reaches conclusions by using 

one’s beliefs and knowledge. 

In Bratman’s theory Beliefs are facts regarding the environment. Among those there 

can also be inference rules that can lead to the acquisition of new beliefs. Desire is 

the so called motivational state: the goal that the agent want to achieve. Intention is 
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the deliberative state of the agent, the commitment of the agent to plan and try to 

reach the chosen desires.  

 

FIGURE 18 : A BDI AGENT ARCHITECTURE 

There are some basic functions and structures in these architecture, shown in 18: A 

Belief Revision Function that determines new beliefs starting from the perception 

of the environment, a set of current Beliefs, an Option Generator Function that 

determines the options available to the agent based on the current beliefs and 

intentions(it represent the agent’s means-end reasoning process), a set of Desires, a 

Filter Function that determines the agent’s intentions based on current beliefs, 

desires and intentions (it represents the agent’s deliberation process) a set of 

Intentions and an action Selection Function that determines an action to perform 

based on current intentions. 

The resulting BDI architecture is very intuitive indeed, by using processes of “decide 

what to do” and then “how to do it” that are common to human behaviour as the 

concept of belief, desire and intention. Then there is a clear functional 

decomposition, which indicates what sorts of subsystem are required to build. The 

problem that remains is to find a way to implement these functions efficiently. 

An example of BDI system is proposed: Georgeff and Lansky’s PRS.  
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PRS 

The architecture of a PRS [25] (Procedural Reasoning System) agent is shown in 

figure 19. Some of its features are: reactivity to the environment (the agent is able 

to easily select a new plan if new relevant events happen), reflection (the agent is 

able to reason about its internal state), partial planning strategy and use of 

procedural knowledge. 

 

FIGURE 19: PRS ARCHITECTURE FROM [25] 

The architecture consists of a central core composed by five components:  a 

database containing current belief describing what is believed as true at the current 

instant of time. They are defined as facts representing static properties of the 

application domain. To express them a language based on first-order predicate 

calculus is used. Then the architecture is composed by set of current goals (the 

desires of the BDI model), representing desired behaviour rather than static world 

states that the agent tries to achieve. Then there is a set of plans called knowledge 

areas (KAs) describing how certain sequences of actions and tests may be 

performed to achieve given goals or react to different situations. Each KAs consists 

of a body, which describes the steps of the procedure, and an invocation condition, 

that specifies under which situations the KA is useful. The stack of the intentions of 

the agent and contains all the currently active KAs. Finally, the interpreter (or 

reasoner) is the main component that can manage and manipulate these previous 

components.  

Its functioning is an interleaving of plan selection, formation and execution. 

Essentially, at a particular time, certain goals are active and beliefs are present in 
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the data base and, in accord with these condition, only some KAs will be applicable. 

The interpreter will choose which KA to execute and will apply the consequences of 

the choice by means of new sub-goals or beliefs derived. If a new goal is pushed in 

the goal stack, it will select a relevant applicable KA and will start to execute it. If a 

new belief is added in the data base it will perform consistency maintenance with 

the current KA or will select a new, more relevant KA if necessary. 

This architecture was initially used to equip a robot named Flakey [26] to perform 

tasks such as autonomous navigation through hallways, corners and avoid obstacles 

and then it was used to implement malfunction-handling tasks [27]. 

2.2.3.4 Layered/hybrid architectures 

Hybrid architecture interleaves the pros of the two previous architectures 

integrating the deliberative and reactive architecture in a unique one. This main 

reason of this approach is to exploit the reasoning, planning, goal handling and 

abstraction capabilities of deliberative architectures and the real-time, robust 

responsiveness of reactive architectures. Hybrid architecture can be subdivided in 

vertical and horizontal layered. 

In horizontal layering (figure 20) the software layers are each directly connected to 

the sensory input and the actuating output. Each layer acts as an agent on its own, 

usually at different levels of abstraction, and are able to produce suggestions to 

action to perform. It has the advantage to be conceptually simple: if an agent must 

exhibit different types of behaviour, it is possible to implement more horizontal 

layers. By the other way, these layers concurrently compete to make its own 

decisions, so it is necessary to implement some sort of “control” mechanism. This 

latter is usually called mediator, which acts as a bottleneck, limiting the possibility 

to have actual parallelism thanks to autonomous layers. 
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FIGURE 20 : HYBRID HORIZONTAL 

ARCHITECTURE 

 

FIGURE 21 : 

HYBRID VERTICAL 

ONE-PASS 

ARCHITECTURE 

 

FIGURE 22 :  HYBRID 

VERTICAL TWO-PASS 

ARCHITECTURE 

 

 

In vertical layered architectures, by the other hand, because they are composed as a 

stack of layers, just one of these layers can have direct access to inputs and outputs. 

More precisely, vertical structure can be subdivided in two groups: one pass 

architectures (figure 21) and two pass architectures (figure 22). In the first, control 

flows sequentially through each layer (so, for example, two separate layers manage 

the sensory input and the actuating output) while in the latter, the information 

passes from low-level layers to high level and then flows back. This partially solves 

the problem of complex mediator for horizontal layered architecture. 

Different kind of architectures are proposed: four two-tiered vertical architectures 

(SSS, 3T, AURA and InteRRaP) in a sort of complexity order, and one horizontal 

layered architecture (TuringMachines).  

SSS 

SSS [28] is an architecture introduced by Jonathan H. Connell. Its schema is shown 

in figure 23. It is a 3-layered vertical two-pass hybrid architecture. The layers are 

called Servo, Subsumption and Symbolic (the three layers compose its acronym). It 

was tailored to develop a system able to fully control a robot for indoor navigation.  
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FIGURE 23: SSS ARCHITECTURE FROM [28] 

The architecture exploits the features of three different technologies: the servo layer 

allows to process real-time signals by interacting directly with sensors and 

actuators; the subsumption layers, by means of Brooks Subsumption architecture 

allows to act quickly to events occurring such as obstacle detection by acquiring the 

sensor signal in a discrete manner; the last layer allows to have a model of the world 

where the robot is situated and take deliberations on order to fulfil the given goal.  

Another aspect to be taken in account in this architecture is the connections 

between each layer that exploit different technologies. In the architecture when the 

interface is between a lower level to an upper one is called “sensor” interface, by the 

other way it is called “command” interface. The command connection between the 

subsumption and servo layers is performed through the setting of set points for the 

lower layer while the sensor communication is performed by means of matching 

filters, which can filter significant values of the data acquired from the Servo level. 

The sensor interface between the Symbolic and Subsumption is accomplished by a 

mechanism that generates events that signals to the upper layer if specific 

conditions are met. Finally, the command interface between the uppermost layer 

and the middle one, allows to enable and disable each behaviour selectively and 

parametrize them.  

It is possible to notice that, although this is a hybrid architecture, there is a strict 

information passage between the three layers, different layers can access to 
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incrementing abstract versions of the same data. The three layers in the system 

come from progressively quantizing first space then time.  

The resulting robot, called “TJ”, could automatically map indoor buildings and 

navigating through them. The tactical navigation (moment-to-moment control of the 

robot) was carried out by the Servo and Subsumption level using odometer data, 

while the strategic navigation (planning about what to do next) was carried out by 

the Symbolic level. This level could keep in memory a coarse map of the 

surroundings by means or IR proximity detectors. The average speed during the 

real-world test was 32 inches per second. 

3T 

3T is a 3-tiered vertical two-pass hybrid architecture (this characteristic gave its 

name) developed during an 8-year work [29]. An important aspect is that, along with 

the architecture, specific software to design and develop features for specific robots 

or mission has been developed. An example of a robot exploiting this architecture is 

shown in figure 24, while the generic intelligent control architecture is shown in 

figure 25. It is possible to easily notice the three different layers: a dynamically 

reprogrammable set of skills with a skill manager to coordinate them, a sequencer 

that can activate and deactivate skill to accomplish specific tasks and a deliberative 

planner that takes on accounts constraints such as goals, timing and resources.  
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FIGURE 24: 3T ARCHITECTURE FROM 

[30] 

FIGURE 25: EXAMPLE OF A ROBOT USING 3T 

FROM [29] 

 

Regarding the architecture, the skill manager can interface the set of situated skill 

to the rest of the architecture. A situated skill is considered the connection between 

the architecture and the external world. The term situated skills is intended to 

denote a capability that, if placed in the proper context, will achieve or maintain a 

specific state in the world. The modular approach to skill development, which must 

be followed for each different robot that implements 3T, forces a standard interface 

among the skills and the sequencer. This representation includes information about: 

input/out specifications, a computational transform, an initialization routine and an 

enable/disable function. Each skill is developed to be totally independent from 

others. These are particular skills that take input from other skill and notify the 

sequencer if a desired state is detected. 

The sequencer is the second tier of the architecture and it is implemented with a 

RAP (Reactive Action Package) interpreter [31]. A RAP is a planning system that 

uses decomposition rules and an interpreted language to represent sequences of 

action in order to accomplish the mission’ task. It is notable to notice that usually 

RAPs allow different approach to solve a specific task by means of the actual 

knowledge of the environment or of the capabilities of the vehicle. The interpreter 

runs in a continuous loop installing new goal in its agenda, removing old ones that 
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have been achieved or failed, enabling/disabling skills, and watching for response 

events from event skills. 

The planner is specific for tasks that are difficult to specify as a list of common 

robotic skills. The planner used in 3T is AP [32]. The AP planner can also to reason 

about uncontrolled agents (like humans or even nature) by using a counter-planning 

mode to reason about how preconditions or during conditions in a plan might be 

negated by an uncontrolled agent, thus thwarting the plan.  

3T deals with failure at three levels: environmental variation in the skills, variation 

in routine activity in the RAPs, and variation in time and resources in the planner. 

This architecture has been used in different projects: a robotic wheel chair [30] 

using the skill manager and an abstraction of the sequencing layer, three different 

robots with different following and approaching tasks using the skill manager and 

the sequencing layer, the full architecture has been used for a simulation of a three-

armed EVA Helper/Retriever robot to carry out tasks around a space station and 

finally the full architecture has been implemented for a robot project, with the task 

of simply running errand. 

AuRA 

AuRA [33] (Autonomous Robot Architecture) is a two-tiered vertical two-pass 

hybrid architecture, its schema is shown in 26. Its development began in the mod 

1980 as a hybrid approach to robot navigation, dividing the deliberative and the 

reactive aspect of a robot. It is considered the first robot navigation system with this 

kind of approach. 
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FIGURE 26: AURA ARCHITECTURE FROM [33] 

The deliberative aspect is represented by the hierarchical component, while the 

reactive part by the reactive component. The hierarchical component is divided in 

three modules: the mission planner, the spatial reasoner and the plan sequencer. 

The first component has the duty to interface with a human operator to receive the 

mission/prompt its status. The second can update and maintain a local map of the 

area and plans paths to execute the requested mission. Finally, the last component 

translates the single paths received from the spatial reasoner in a set of motor 

command. Then these commands are sent to the robot to execution. This 

communication divides the deliberative and reactive component.  

The functioning of the hierarchical component is bottom-up: if the plan sequencer 

fails to plan a set of action to get to a certain point of the path, the spatial reasoner 

is invoked to plan another path to the goal. If it is impossible to find a feasible path 

to reach the goal, the mission planner is then invoked, informing the operator of the 

difficulty found and asking for reformulation or abort of the mission. 

In the reactive controller, the schema manager is responsible to monitor and control 

the different motor and perceptual schemas during run-time. Each motor schema is 

associated with a perceptual schema capable of providing the stimulus for it. Once 

reactive execution begins, the deliberative layer is invoked only if a failure is 

detected. A failure could be denoted by the lack of progress or by the reach of a 

timeout. 
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InteRRaP 

The InteRRaP architecture [34], is an evolution of the RATMAN architecture [35]. 

The overall agent schema is shown in figure 27.  

 

FIGURE 27: INTERRAP ARCHITECTURE FROM [34] 

It is clearly divides the knowledge and functionality aspect of the agent with its two-

pass hybrid vertical architecture composed by two components: 

• Multi-stage control unit (left side of the image). 

• Hierarchical agent knowledge base (right side of the image) 

In the bottom of the multi-stage control unit there is the World Interface (WIF) that 

is the facility for agent perception, action and communication. To be effective, the 

information that the agent receives or perceives must be filtered and adapted into 

an explicit representation, which is stored in the World Model (WM).  

The second layer is the Behaviour-Based Component(BBC). It allows to react fast in 

certain critical and routine situations. This reaction is done by selecting and 

managing the execution of one or more Pattern of Behaviour (PoB). This component 

has access to the world model (because its decision and action are closely linked to 

the real world) and to a storage of available PoBs.  

By one hand, PoB represent a basic reactive problem-solving facility of an agent 

(avoid obstacle), by the other hand, they allow to describe pieces of procedural 

knowledge, mechanisms that are not represented in a declarative manner, but are 
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basically procedures as routines procedures, action that can be taken without a deep 

reflection or planning but that cannot be considered as a reactive behaviour (power 

on engine). 

The data associated to a PoB are name, priority, description, situational context of 

the pattern (condition that must be verified to be able to execute it), the mental 

context of the pattern (defines the goals that are affected by the pattern), 

postconditions, termination conditions, failure conditions and the execution part of 

the PoB. This information is used at runtime by the BBC to check if the current 

executing PoB is still valid. 

The Plan-based Component is the third element of the control unit. It contains a 

planning mechanism capable to deliberate about single agent plans. The plans are 

hierarchical skeletal plans whose nodes could be new subplans, executable PoB or 

primitive actions. The plans are stored in the Local Plans Knowledge Base. The 

component shall be able to devise and monitor its correct execution a plan when 

requested, devise but not execute a plan, evaluate a plan and interpret a plan 

received from another agent. 

The CC contains a mechanism for devising joint plans. It has access to protocols, a 

library of joint plans and knowledge about communication strategies stored in the 

cooperation knowledge level of the KB. It is important to notice that this layer is 

used to generate collaboration among agent in a Multi Agent System, which is 

modelled and integrated in the agent model itself.   

The access to the information is hierarchical and must be passed among levels. The 

idea is that lower level information is visible from higher level layers, but not vice 

versa. The flow of control between layers are performed by means of messages. A 

layer can communicate with adjacent layers. An important field of the message it the 

type data. There is a fixed type of message that are allowed to pass between different 

layers. 

A simulation example is provided with InteRRaP. The scenario is a loading-dock 

with shelves with different goods, a loading truck with goods and different robots 

that load and unload trucks. The robots must also negotiate their movement with 
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other agents when a bottleneck is detected, there procedures are stored in the CC 

component. 

TuringMachines 

TuringMachines was introduced in [36] by Innes A. Ferguson and it is a 3-layered 

horizontal hybrid architecture. The architecture layout is shown in figure 28.  

 

FIGURE 28 : TURINGMACHINES ARCHITECTURE FROM [36] 

It is composed by three separate control layers: a reactive layer R, a planning layer 

P, and a modelling layer M. As it is possible to notice, the three layers are directly 

connected to the sensory layer (through the Perception Subsystem) that uses an 

internal computational mechanism to processing appropriate aspects of the 

received information, and to the effector apparatus (through the Action Subsystem) 

to which they send appropriate motor-control and communicative action 

commands. 

The three layers operate concurrently, they are independently-motivated, activity-

producing and mediated by a control framework. Each layer is designed to model 

the agent’s world at a different level of spatial-temporal abstraction and so is 

endowed with different task-oriented capabilities. The layer R is capable to provide 

fast reactive capabilities to cope with immediate short-term events, while layer P 

can generate long-term plans and finally layer M can incrementally store and 
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provide mental and partial model of the world entities. Collectively, the three 

control layers are aimed at providing a TuringMachines agent with a variety of 

deliberative and non-deliberative task-achieving behaviours; these include 

behaviours that are situationally determined or reactive, goal-directed, reflective 

and predictive. 

The Perception and Action Subsystems provides for sensing and acting in a 

dynamically changing world. Input and output are synchronized and the processing 

cycle is managed by an internal agent clock. Each synchronization is called time-

slice. The perception system is composed by two components: a set of symbolic 

sensors and a perception buffer, the first can cope with the real hardware that 

generate the data, the second acts as a temporary buffer where the information is 

stored and acquired by the three layers in a multi-attribute record.  The action 

system, in a similar fashion, is composed by a limited-size action buffer for receiving 

the motor-control and communicative action commands sent by the agent’s control 

layers and a series of effector capable to translating these commands in a concrete 

action in the real world. 

The Reactive Layer R is endowed with the capability to react fast and robustly to 

externa unpredicted events. Its main component is a series of situation-action rules. 

There is no model of the world in this layer, only actual world assumptions are taken 

in account. A situation action-rule consists of two parts: a condition set and an 

action. The condition set defines which conditions must met, the action is the 

reactive command for the agent’s effector. Because rules operate in parallel, more 

of them could try to send different command to the same effector, generating a 

conflict. In order to cope with this situation a filtering mechanism selects one of the 

actions. Moreover, when a new rule is triggered, a message is sent to layer M. 

The Planning Layer P has the duty to build and execute plans with the aim to achieve 

the agent’s tasks and goals. The functionality of this layer is distributed in two 

components: the Focus of Attention Mechanism and the Planner. The first acts as a 

filtering module, selecting the most relevant information and events in the world to 

pass to the planner. The second module generates effective goal-oriented behaviour, 

instead of a fully plan (like the STRIPS planner). 
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Finally, the Model Layer M has the role to provide reflective and predictive 

capabilities to the agent, allowing it to interact in a multi-agent environment. It 

provides to the agent tools to maintain mental and causal models of the world. This 

layer is divided in three components, a focus attention mechanism (like the P layer 

one) an Explanation module and a Prediction module. The Explanation module is 

capable to provide plausible or inferred reasons about the behaviour that has been 

observed, by building and maintaining models of all observed entities and by 

detecting discrepancies between entities current behaviour and the anticipated one. 

If a conflict is detected, this module tries to explain why the conflict has been 

generated. The predictions of the behaviour are provided by Prediction module that 

builds simulations of each entity that is modelled. This module has also the role to 

provide solutions to resolve detected conflicts. Finally, this module is able to 

construct expectations to be used subsequently by the Explanation module. 

A consequence of using three concurrently-operating activity-producing layers, is 

that they have independent access to sensors and effectors of the agent, allowing 

conflicting access to them. Two types of conflicts are taken in account: different 

actions from different layers to manage the same event in the environment and 

different action for different goals. These conflicts are managed by mediatory 

control rules. These rules are applied at the beginning and at the end of a time-slice. 

If the rule is applied at the beginning of the slice it is called censor rule because it 

filters some information to some layer, if it is at the end of a time slice, it is called 

suppression rule, because It silences some action command from some layer to the 

action system. 

2.2.3.5 Cognitive Architectures 

Cognitive architectures tackle the problem of decision making by taking reference 

from the human mind. In these architectures both common human processes (as 

example memory, learning) and apparatus (vision, different components of the 

brain) are represented in some sort of software program. Research related to 

cognitive architecture can be subdivided in three approaches [37] [38] , that 

represent cognition in different ways: Symbolic (or cognitivist), Connectivist (or 

emergent) or Hybrid.  
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The symbolic or cognitivist approach, that is the predominant one, represent 

cognition by means of symbolic representation. All the processes related to 

perception, reasoning, learning, adaptation, memory storing and action are 

manipulation of these symbols in appropriate data-structures. This approach has 

also been labelled as the information processing approach to cognition. Because the 

symbolic representations are the descriptive product of a human designer, they can 

be accessed directly and understood or interpreted easily by humans. This is a great 

advantage but has also drawbacks: the representations are dependent by the 

programmer and they constraint the system to an idealized description of the 

processes of the human activity. This approach leads to usually complex 

architectures, limited by the symbol representation. It is possible, however, to 

extend the available knowledge by means of machine learning algorithms, 

probabilistic modelling or other techniques to deal with the uncertain, time-varying 

and incomplete nature of sensor data used. This type of approach generates usually 

models tailored for well-defined problem domains, while showing difficulty to 

handle complex, noisy and dynamic environments. It is also very difficult to gather 

higher order capabilities such as creativity or learning. 

The connectivist or emergent approach, cognition is the process of adapting to the 

environment. The goal of this kind of system is to maintain its own autonomy by 

means of self-organization processes through which it reacts on the environment to 

maintain a real-time operability. Perception is a fundamental phase of this approach 

because is the acquisition of sensory data, at the contrary in a cognitivist approach 

the environment and the perception itself is modelled. This cognitive agent 

constructs its internally represented reality as a result of its operations and 

experiences from the world. Connectivist systems have also the possibility to get 

familiar with and learn how to control the body it is embodied in. This allows to the 

designer to do not model each body-characteristic into the system. Although very 

powerful, these systems are very complex and hard to model. 

The hybrid approach combines aspects of the symbolic and connectivist to 

represent cognition. The idea is to avoid explicit programmer-based knowledge in 

the creation of artificially intelligent systems and to use perception-action 

behaviours rather than the perceptual abstraction of representations. These 



Chapter 2: State-of-the-art 

  45 

systems are able to exploit symbolic knowledge to represent the agent’s world and 

logical role-based systems in order to reason about its knowledge in order to expose 

a goal-oriented behaviour. In the same time, they use an emergent model of 

perception and action able to explore the world and construct its knowledge.  

Two cognitive architecture are proposed: SOAR as example of a cognitivist 

architecture, and CLARION as an example of a hybrid one. A review of more different 

architectures based on different approaches can be found in [37] [39]and in the 

references therein. 

SOAR 

Soar (State, Operator and Result) [40] has its root in the classical AI and based on 

Newell’s physical symbolic hypothesis [41] and is considered one of the first 

cognitive architecture proposed and it is based on the cognitivist approach. Its main 

goal is to handle the full range of capabilities of an intelligent agent through a general 

mechanism of learning from experience. 

 

FIGURE 29 : SOAR ARCHITECTURE FROM [40] 

The architecture of SOAR is shown in figure 29. It is possible to notice different 

structures related to memory such as long-term memory (to store knowledge in 

general), split in Procedural (to store knowledge of performing tasks), Semantic (to 

store declarative knowledge related to facts of the actual world) and Episodic (to 
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store knowledge about past events experienced). The first two are universally 

applicable, the last one is considered context-dependent. Furthermore, SOAR tries 

to solve problem by means of the only Procedural memory. If this type of memory is 

not enough, Semantic and Episodic are employed to aid in problem solving. 

Procedural memory stores SOAR’s knowledge of how to select and perform discrete 

actions, in a form if if-then rules called productions. Production fire in parallel 

whenever they match working memory. Productions allows the proposition, 

evaluation, selection and application of operators. Operators are the main feature 

that allows decision making in SOAR. Operators are proposed (created in working 

memory) by rules of the procedural memory based on the current context. 

Additional rules can evaluate the proposed operators, creating preferences among 

them.  

The working memory stores all knowledge that is relevant in the current situation. 

It contains the goals, perceptions, hierarchy of states, and operators. The goals direct 

the architecture in the desired state and states give information about the current. 

The Decision Cycle is the process to support cognition. Its elaboration its composed 

by two phases: elaboration and decision. During the first phase has parallel access 

to Long Term Memory to update features and values stored in the working memory.  

In the second phase, an operator is chosen in the current problem space and applied, 

in order to reach the goal. When the choice of a unique operator to perform is not 

unambiguous, SOAR reaches an impasse. When this happens, SOAR sets up a new 

state in a new problem space, with the goal of resolving the impasse: this is the way 

in SOAR to implement learning, by actively reasoning how to solve the impasse. This 

process is called universal subgoaling. Three causes of impasses are considered: 

• No operator is proposed: need to fine an applicable operator 

• Two operators are proposed and SOAR is unable to define which one is ore 

applicable: need to choose between them 

• An operator is proposed, but it doesn’t know which chance will happen if it 

uses it: need to find a state that implements the operator 

When the impasse is solved, a new production summarizing the processes that 

occurred in the substate in solving the subgoal is created (this operation is called 
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chunking) and stored in the Procedural memory. If SOAR will face the same or 

analogous problem, it will be able to exploit the new production.  

CLARION 

Connectionist Learning with Adaptive Rule Induction On-line (CLARION) [42] is 

considered a hybrid architecture because it combines connectionist and symbolic 

representation and combines implicit and explicit psychological processes. Overall 

CLARION is a modular architecture composed by different functional subsystems 

(with many modules within them). It has a dual representation structure, with both 

implicit and explicit representations in separate modules within each subsystem. 

Implicit processes are generally less accessible and more “holistic” while explicit 

processes are more accessible and crisper. The schema of the architecture is shown 

in figure 30. 

 

FIGURE 30 : CLARION ARCHITECTURE FROM [42] 

The subsystems include the action-centered subsystem (ACS), the non-action-

centered subsystem (NACS), the motivational subsystem (MS), and the 

metacognitive subsystem (MCS). Each subsystem has two different modules with 

different levels of representation. The top level encodes explicit knowledge while 

the other encodes implicit memory. Together they form a dual representation 

structure.  
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The role of the ACS is to control action, based on procedural knowledge, regardless 

of the action is an actuation in the physical environment or internal mental 

operations. The implicit layer is formed by Action Neural Network, while the explicit 

one is composed by action rules. The NACS maintains general knowledge for 

retrieval of appropriate information and inferences on that basis (ultimately in the 

service of action decision making by the ACS). The knowledge store can be semantic 

(general knowledge) or episodic (knowledge of past events). The MS provides 

underlying motivation for perception, action and cognition and, finally, the MCS 

monitors, directs and modifies the operation of the other subsystem in order to 

improve the overall performance of the system.  

2.3 Multi Agent Systems 

Since their beginning during ‘80s Multi Agent Systems(MAS) have been considered 

as an entity, composed by a society of agent, that interact together in order to 

coordinate their behaviour. It was obvious that the environment where agents need 

to operate (cooperating and collaborating) are very complex, and a modular, 

systematic and distributed approach was necessary to manage this overall 

complexity 

Langley stated [43] that there are three different approaches to carry out these 

problematics: 

• application of principles and techniques from software engineering, which 

are used regularly in developing traditional largescale software systems; 

• Cognitive architecture; 

• Multi agent systems. 

By another point of view in [44], because there are problems related to restriction 

to computational and knowledge limitations, no unique agent can manage the 

succeed in its task and cooperation become mandatory. In these conditions two 

concept could be useful to overcome these difficulties: modularity and abstraction. 

A MAS offers modularity. If a problem is rather complex the only way it can be 

reasonably addressed is to develop a number of functionally specific and modular 



Chapter 2: State-of-the-art 

  49 

components called agents, which are specialized to solve a particular problem 

aspect.  

The most important characteristics of MAS are: 

• Autonomy: the agents have at least a minimum grade of autonomy  

• Local views: no agent as a global knowledge of the environment or a single 

software could not be able to process all the information from the 

environment 

• Decentralization: there is no designated controlling agent  

• Asynchronous Computation 

The main motivation to develop and research MAS technology are: 

• Solve problem too large for a centralized agent; 

• Allow interoperation between existing legacy systems; 

• Provide solutions to problems that can naturally be regarded as a society of 

autonomous components that are able to interact; 

• Provide solutions that efficiently use information sources that are 

distributed; 

• Provide solutions that efficiently use distributed expertise; 

• Enhance performance along the dimensions of: computational efficiency, 

reliability, extensibility, robustness, maintainability, responsiveness, 

flexibility and reuse. 

First of all, a characterization of different typologies of approaches to the MAS 

theory is proposed from the actual state of the art, then three notable examples of 

MAS are exposed then some real-world applications and concrete MAS framework 

are introduced. 

2.3.1 MAS characterization 

Aim of this paragraph is recall the most used MAS characterization. In order to 

analyse a MAS architecture in [45] and in the references therein two dimensions are 

proposed: the awareness/unawareness of agents of the existence of the organization 

structure and the type of architecture. The type of architecture can follow two 
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different approaches, which take in account if organization is considered a process 

inside the MAS or an entity by itself.  

In the first case organization is considered a process endowed with the task to 

organize a set of individual agents and it is linked to the Agent-Centered MAS 

(ACMAS) approach. In this approach, the focus is given to individual agents, to their 

local behaviour and interactions, without concerning the global structure of the 

system. The main idea is that organization is a phenomenon that emerges thanks to 

the collective behaviour of different agents that have individual behaviours, total 

control on their actions and interact in a common shared and dynamic environment. 

This global process is usually called self-organization. An example of this approach 

is ant colony, where there is no organizational behaviour and constraints are 

explicitly and directly defined inside the ants. In [46] some problem with ACMAS are 

appointed such as interaction pattern hard to track and the difficult to predict the 

global behaviour caused by the strong possibility of unwanted emergent behaviours.  

The second approach, called Organization-Centered MAS (OCMAS) considers agents’ 

organization as an entity with its own requirements, its own objectives and is 

represented by a group of agents. The use of an organization provides a new way for 

describing the structure and the interaction that take place in a MAS, allowing to 

decrease complexity in the development of the single agents while increasing 

efficiency and the capability to model the problem to solve. This organization model 

that represents the MAS is an abstract representation of the concrete organization. 

The model describes the expected relationships and patterns of activity which 

should occur at the agent level and therefore the constraints and potentialities that 

constitute the horizon in which agents behave. 

It is possible to recognize two different levels of the organization: the organizational 

structure and the concrete organization. The first is what persists when agents enter 

or leave the organization and it is the static aspect of the organization, the second, 

which resides at agent level, is one possible instantiation of an organizational 

structure and is related to the dynamic aspect of the organization, defining also rules 

to join and leave organization.  

Some features are essential in a OCMAS model: 
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• An organization is constituted of agents (individuals) that manifest a 

behaviour. 

• The overall organization may be partitioned into groups(partition) that may 

overlap. 

• Behaviours of agents are functionally related to the overall organization 

activity (concept of role). 

• Agents are engaged into dynamic relationship which may be “typed” using a 

taxonomy of roles, tasks or protocols, thus describing a kind of supra-

individuality. 

• Types of behaviours are related through relationships between roles, tasks 

and protocols. 

There are some principles that must be followed [46] to develop a mas following an 

OCMAS approach: 

Principle 1: the organization level describes the “what” and not the “how”. It defines 

and imposes a structure into the pattern of agents’ activities, but does not define 

how agents behave, it has not any code to be executed by the agent, but provides 

specifications, in form of norms or laws, of the limits and expectations that are 

placed on the agents’ behaviour.  

Principle 2: no agent description and no mental issue at this level. The 

organizational level should not say anything about the agent would interpret this 

level. Any kind of agent (from reactive through cognitive) may act in the 

organization. Moreover, this level should get rid of any mental issue such as beliefs, 

desires, intentions, goals etc.: it should provide only description of the expected 

behaviours. 

Principle 3: an organization provides a way to partitioning a system, each partition 

constitutes a context of interaction for agents. Thus, a group is an organizational unit 

in which all members are able to interact freely. Agents belonging to a group may 

talk to one another, using the same language. Whereas the structure of a group A 

may be known by all agents belonging to A, it is hidden to all agents that do not 

belong to A. Thus, groups are opaque to each other and do not assume a general 

standardization of agent interaction and architecture. 
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Four different models of MAS architectures are addressed in [45], by arranging the 

two dimensions (Architecture and awareness) in a Cartesian space as shown in 

figure 31: 

 

FIGURE 31 : MAS ARCHITECTURE MODELS FROM [45] 

• Emergent Organization MAS (Agent Centered/Unaware): the agents 

don’t represent the organization (since it is not modelled), although the 

external observer can see an emergent organization. Agents are unaware 

that they are part of any kind of organization 

• Coalition Oriented MAS (Agent Centered/Aware): each agent has an 

internal and local representation of cooperation patterns which it follows 

when deciding what to do, this local representation is obtained either by 

perception, communication or explicit reasoning.  

• Agent-oriented software engineering (Organization 

Centered/Unaware): the organization exists as a specified and formalized 

schema, made by a designer but agents don’t know anything about it and 

even do not reason about it. They simply comply with it as if the 

organizational constraints were hard-coded inside them. 

• Organization Oriented MAS (Organization Centered/Aware): agents 

have an explicit representation of the organization which has been defined, 

the agents are able to reason about it and to use it in order to initiate 

cooperation with other agents in the system. 
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Three MAS models will be exposed. The first two of them (AGR and MOISE) are 

aware OCMAS approaches, where the agent are aware of the presence of other 

agents in the system, the third one (MACODO) is a hybrid approach: there is a 

defined model and structuration of roles in the agency, but the agents are free to 

self-organize if necessary.   

2.3.2 Reference Models 

2.3.2.1 AGR 

The AGR (Agent-Group-Role) model, also known as Aalaadin model [47], is a generic 

meta-model for a MAS, and it is based on three core concepts: Agent, Group and Role. 

The disposition of these concept is shown in figure 32.  

 

FIGURE 32: THE AGR MODEL FROM [47] 

The Agent is specified as an entity that can play a Role within Groups. The model 

doesn’t apply any constraint to how the agent is developed or modelled.  

The Group is considered as an aggregation unit. Basically, it could be a used to tag a 

set of agents. It is defined by the tuple: 

< R; G; L> 

R is a list of roles, G is an oriented graph specifying valid interactions between two 

roles and L is the interaction language. 

Groups have these characteristics: 

• An agent can take part to more than one group. 

• Can overlap 

• Can be founded by any agent, and other agent must ask for admission 

• Can be distributed among different machines. 
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The Role, finally, is an abstract representation of an agent function, service or 

identification within a group. Each agent can handle several roles, and each role 

handled by an agent is local to a group. As with group admission, handling a role in 

a group must be requested by the candidate agent, and is not necessary awarded. By 

relating communications to roles, and by authorizing an agent to play several roles, 

our model allows agents to handle several heterogeneous dialog situations 

simultaneously. 

A role is characterized by:  

• Uniqueness: a role can be unique or multiple within a group. A role 

identified as unique must be held by one only agent within a given group.  

• Competence: identifies a condition an agent must satisfy to be able to play 

the role within the group.  

• Capacity: a property awarded to an agent when it plays this particular role. 

To demonstrate the effectiveness of the model, a framework called MADKIT (Multi 

Agent Development Kit) had been developed [48]. It is able to manage the agent-

group-role model and has three design principles: micro-kernel architecture, 

agentification of services and a graphic component model. The micro-kernel can 

manage agent life-cycle, control of local groups and local message passing 

management. 

2.3.2.2 MOISE 

Moise [49] extends some aspects of AGR model, by structuring its proposed model 

in three levels:  

• Individual level: for each agent, there is the definition of the task that it is 

responsible for, based on the concept of Role, that is able to constraint the 

agent’s individual behaviour; 

• Aggregate level: takes in account aggregation of agent in large structures, 

based on the concept of Group that can constraint the layout of agents that 

take part are part of strong interactions between each other’s; 

• Society level: in this level, the global structure and interconnection of the 

agent inside the agency is defined and it is based on the concept of 



Chapter 2: State-of-the-art 

  55 

Organizational Link, that can regulate social exchanges between the agent 

society; 

It defines three different aspects of the organization, gathered in a unique 

Organizational Specification (OS), a web of roles, groups, and links which is a way 

for the designer to structure the system independently of the agents in the system. 

The Organization Entity (OE) is considered a set of agents functioning under an OS, 

and it is essentially a real-world instance of the OS. Each aspect covers a different 

level of the organizational model. 

The first aspect of the OS is structural specification (SS). This specification has a 

similar aim to the AGR model, defines the roles and groups inside the organization. 

It is defined by a tuple with the following fields: 

<R; C; rg; L> 

R is set of identifiers of roles, C an inheritance relation among roles, rg the root group 

(the groups are specified by a Group Specification GS) and L a list of links between 

roles. A link is composed by a tuple with 4 fields: source  

<s; t; k; p> 

Where s is the source role, t is the target role of the link, k is the type of link and p is 

the scope of the link. Three types are defined:  

• Acquaintance: the link allows to an agent playing a role to acquire 

information about another role of another agent; 

• Communication: the link allows to an agent playing a role to communicate 

with another agent with a precise role; 

• Authority: the link defines a power relation between two roles; 

While two scopes are defined: intra and inter. This parameter specifies if the link is 

intra or inter groups. 

A group specification is defined by the following elements: 

<id; compat; maxrp; minrp; maxsg; minsg> 

Where, in order, it defines a unique ID for the group, a map of roles, a maximum and 

minimum cardinality for each role and a maximum and minimum cardinality of 

subgroups. 



Chapter 2: State-of-the-art 

  56 

Functional specification (FS): defines the mission that the agent in the MAS has to 

achieve. It defines a tuple with three fields: 

<M; G; S> 

Where M is a set of mission identifiers, G is a set of goals of the organization and S a 

set of scheme specification. The goal is specified by an identifier, a list of mission 

containing the goal, a type parameter that can be achievement or maintenance, a 

cardinality of agent that must fulfil the goal in order to consider it achieved a 

deadline and a plan, that is a list of sub-goal that decompose the goal. The scheme 

specification defines schemas for goal decomposition. 

Finally, the Normative specification states both the required roles for missions and 

missions’ obligations for roles. It is composed by a list of norms. A norm is defined 

by an id, an activation condition, a role, a type parameter that can be obligation of 

permission, a mission and a deadline to fulfil the mission. 

2.3.2.3 MACODO 

MACODO [50] (Middleware Architecture for COntext-Driven dynamic agent 

Organizations) has two different objectives:  

• Develop an organization model able to formally define abstraction that allow 

to define dynamic agent organization; 

• Describe the components of a distributed middleware capable to handle the 

model and the agent life cycle. 

The model is formally defined by means of the Z language [51]: it defines the core 

data models as group and role and functions and operation schemas to describe laws 

that represent the behaviour in the MACODO framework. A synthetic schema of the 

model is shown in figure 33.  
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FIGURE 33 : MACODO ORGANIZATION MODEL FROM [50] 

 

The main concept in MACODO are: 

• Context: represents information in the environment of an agent that is 

relevant for the organizations in which the agent participates 

• Capability: refers to ability of an agent to perform tasks. Capabilities 

describe required qualifications of an agent to participate in an organization. 

How an agent uses its capabilities to achieve its goals is an issue private to 

the agent. 

• Role: A role describes a coherent set of capabilities that are required to 

realize a functionality that is useful in an organization. It is defined as a set of 

capabilities 

• RolePosition: A role position is a vacancy for a specific role in a specific 

organization. 

• RoleContract: is an agreement between an agent an organization that allows 

to the agent to play a specific role in a specific organization. 
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• Agent: an agent is defined as an entity able to take a role inside the MACODO 

system. It is defined by a unique name, a set of capabilities, a context and a 

list of role contracts. An agent can only play roles for which all the required 

capabilities are fulfilled. An Agent must have at least a capability. 

• OrgContext: Organization context represents all the relevant information 

upon which the dynamics of the organization depend. Useful for 

organizations dynamics. 

• Organisation: Is a container that allows the agent to collaborate. It is defined 

by a name, a set of RolePosition, a set of RoleContracts and by a context.  

• Law: they define how agent can perform specific action in the MAS such as 

create, join or leave a group, 

• MACODOSystem: the whole system is defined as a set of organizations and 

a set of agents.  

The middleware has the role to handle role positions and manage role contracts, to 

maintain the organization context in a distributed environment and to enforce laws. 

Other requirements are: adaptability, robustness to node failure, scalability and 

portability. 

The middleware is arranged in a four-tiered architecture as shown in figure 34: 

 

FIGURE 34 : MACODO MIDDLEWARE ARCHITECTURE FROM [50] 
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• Host Infrastructure Layer. The host infrastructure encapsulates common 

middleware services and basic support for distribution, hiding the 

complexity of the underlying hardware. 

• Agent Middleware Layer. The agent middleware layer provides basic 

services in multiagent systems. It includes basic support for perception, 

action, and communication.  

• Organization Middleware Layer. The organization middleware layer 

provides support for dynamic organizations. This layer encapsulates the 

management of dynamic evolution of organizations and it provides role-

specific services to the agents for perception, action, and communication. The 

organization middleware layer is the main focus of the software architecture 

described in this section.  

• Agent Layer. The agents in the agent layer use the organization middleware 

to interact with the environment and each other through the roles they play 

in the organizations. 

The middleware and the organizational model has been used to develop a prototype 

platform for a traffic monitoring application to assess its adaptability, scalability and 

robustness. 

2.3.3 MAS applications in different scenarios 

The MAS theory proved to be useful is different kind of situations and scenario, as a 

general tool to design and simulate coordination and behaviour of different 

interoperating entities.  

Examples of employment of the MAS theory can be found in the energy scenario [52] 

and [53] with specific applications related to power system restoration [54] and 

protection [55] with a particular effort focused to the development of solutions 

tailored to microgrids ( [56] and [57]) that can exploit the distributed nature of 

Multi-Agent Systems to obtain benefits such as increased autonomy, reactivity, 

proactivity and social ability. In [58], a review of solutions employed to manage 

microgrids, MAS are in fact declared the main solution in the decentralized approach 

for the so called “secondary control”, which is endowed with the task to allow 

economical and reliable operation of the microgrid. More specifically in [59], it is 
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shown that MAS are exploited to develop tailored controllers are designed to 

manage optimization and power restoration in microgrids. Another employment is 

in the context of the industry and industrial production, where MAS are employed 

mainly for manufacture process managing ( [60], [61] and [62]) and assembly. In 

[63], for example, a multi-agent model is employed to self-organize the behaviour of 

two or more robotic system to allow collaborative operation in the same assembly 

workspace. 

Furthermore, a wide employment of the MAS theory is related to automation. It is 

possible to detect at least two important applications: home automation and 

robotics. In the first scenario MAS has been extensively used to provide intelligent 

to home apparel in order to distribute and manage different resources. For example, 

in [64] authors exploited a MAS with a proper model to define and manage a Home 

Automation System (HAS), in [65] a BACnet intelligent home supervisor system was 

implemented by means of BDI agents while in [66], [67] and [68] the focus is in the 

managing and orchestration of the requirement of energy in smart homes by using 

a multi-agent approach. 

In the second scenario MAS are extensively used to coordinate the behaviour of 

different components or robots to reach a common goal, which is not satisfiable or 

less performing if carried out by a single entity. Some common tasks that can be 

found in the state of the art are, for example, navigation( [69], [70] and [71]), 

localization( [72], [73] and [74]), exploration and mapping( [75], [76] and [77]), 

search and rescue( [78] and [79]) and human assistance( [80] and [81]). A particular 

interest in in the coordinate movement of robots by means of a flocking behaviour.  

Other applications are related to some specific cooperative tasks such as foraging, 

where agents are endowed with the task to collect resources using different 

approaches such as stigmetry [82] to avoid communication bottleneck. In this 

scenario agents were able to coordinate to find a target without direct 

communication. Another example is [83], where authors exploited Augmented 

Markov Models as a tool to define the behavioural dynamics of different robots. 

Other tasks are object moving and pushing and toxic waste cleaning. In the first one 

agents are used, for example, to co-ordinately move furniture [84] by means of a 
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global control able to co-ordinately change the pose objects. Another similar 

example is shown in [85] where, more in detail, the procedure to coordinate the 

actions between agents are explained.  

More specific employments exploit MAS to organize the entities of soccer teams of 

robots [86] and [87]. This scenario is considered an excellent platform for testing 

artificial intelligence platforms in an adversarial environment, and competitions are 

frequent (such as FIRA or RoboCup).  

One environment that profited from the use of this theory is the marine one. In fact, 

numerous studies were performed to design MAS tailored for underwater and 

surface vehicles that collaborate usually with a ground station to cope with this 

difficult environment. In fact, these systems must take in account many issues such 

as degraded visibility, slow communication and a highly variable environment. 

Some studies are focused in specific tasks such as mine countermeasures and 

marine surveillance [88].  

Moreover, particular algorithms are developed to manage different controls 

extended to be used in a multi-agent environment such as fault detection [89] and 

robot formation( [90], [91], [92] and [93]).  

In addition, MAS are extensively used as a tool to provide simulation in different 

scenario such as the economical one, where these technologies are employed to 

simulate markets where a focus is dedicated to the simulation of the energy market 

( [94], [95], [96] and [97]). Simulations with MAS are exploited to simulate crowd 

behaviour, where each agent acts autonomously in different environments [98] and 

situations, such as an emergency to test evacuation plans [99]. Another application 

is related to medicine [100] where the MAS theory is applied in simulations related 

to nano-robots drug delivery in cancer body tissues 

An important orthogonal field of study is the development of different, general 

purpose framework to design and develop MASs (like MACODO shown in the 

previous section) implementing common standards to save developers time and aid 

the standardization of MAS development. Before introducing other reference 

framework, it is important to introduce FIPA (Foundation of Intelligent Physical 

Agents) [101], one of the most widely used and accepted standards and 
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specifications to promote agent-based technologies and interoperability of its 

standards to other technologies. The specifications regard different aspects of MASs 

such as agent communication, agent transport, agent management, abstract 

architecture and applications. 

JADE [102] is a Java based multi-agent system and run-time middleware to develop 

application that are compliant to FIPA standards. JADE most notable features are 

transparent message-passing layer based on FIPA ACL (agent communication 

language), white and yellow pages services, support for strong mobility, and built-

in FIPA protocols. An agent is defined as a Java Thread Object with a set Behaviour 

attached. These behaviours represent task-achieving jobs, and they are executed by 

a round-robin scheduler internal to the agent. Agent can communicate between each 

other by means of FIPA ACL messages. 

Jason [103] is, at the same time, an agent language, an agent development 

framework and a run-time system. As a language, it implements a dialect of 

AgentSpeak [104] that is a language based on logic programming and the BDI 

architecture (Belief-Desire-Intention, explained in 2.2.3.3 ) for develop cognitive 

autonomous agents. As a development framework, API are provided to design 

agents and MAS. As running system, it provides a centralized infrastructure and a 

set of tools in Java to execute the multi-agent system, but the system is easily 

extendible and a proof of this is that it is possible to use JADE as agent container for 

Jason agents with a proper wrapper to adapt Jason agents to the JADE ones.  

An agent in Jason is defined by the following architecture, which is executed 

repeatedly by the agent container: 
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FIGURE 35 : JASON AGENT ARCHITECTURE FROM [103] 

It is important to notice that this kind of agent has a concept of Environment 

embedded, in fact, there are modules tailored to perceive and act.  

The CArtAgO (Common ARTifact infrastructure for AGents Open environments) 

[105] framework and infrastructure is based on the A&A(Agents&Artifact) meta-

model [106]. Artefacts are tools that the agent can use to enhance their capabilities 

for achieving their own goals, in a similar way human do with their tools. Artefacts 

are used by the agent as an environmental resource to act or sense. They include 

different technologies such as sensor, actuators, databases etc. These artefact-based 

environments are structured in open workspaces, possibly shared between 

different nodes of the MAS network. 

2.4 Environment 

The environment is a fundamental aspect of the life cycle of robots performing a 

mission. As per definition, a Robot is able to perceive the environment and to act in 

it through its sensing and acting RobotParts, while the knowledge of presence of 

other robots or a model of the surrounding area is fundamental to reason and 

coordinate to fulfil a mission. So, it is important to characterize it and define roles of 

the environment in a Multi-Agent System. 
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2.4.1 Environment Characterization 

2.4.1.1 Environment Dimensions 

In [10] the authors provide some dimensions to determine the task environment. 

These dimensions should be taken in account during the design of the model of the 

environment and of the agents that live in it. These dimensions are: 

Fully Observable or Partially Observability: if an agent’s sensors give access to 

all the relevant data at each point of time, the task environment is Fully Observable. 

This typology of environment is convenient because, thanks to the fact that the agent 

is able to percept any useful information from the environment, it is not necessary 

to store an internal state to keep track of the world. An environment might be 

Partially Observable if the sensor used to percept are noisy or because some part of 

the state is missing from the sensor data. For example, in a search mission and a fully 

observable environment, the robot would be immediately able to know the position 

of the target to be found. If the agent has no sensor, the environment is 

unobservable. 

Single agent or Multiagent: meanwhile the distinction between single agent and 

multiagent environment is quite straightforward, it is necessary to define different 

multiagent environment. Multiagent environment can be divided in competitive and 

cooperative. Obviously a multiagent environment has more challenges to be 

addressed such as communication, cooperation and coordination between agents. 

Deterministic or Stochastic: if the next state of an environment is completely 

determined by the current state and the action executed by the agent, the 

environment is considered Deterministic. By the other way, it is considered 

Stochastic. An environment is considered Uncertain if it is not fully observable and 

deterministic. 

Episodic or Sequential: if an environment is episodic, the agent’s experience can 

be divided is single atomic episodes with a proper cycle percept-think-act and each 

decision is not linked to previous decisions. In a sequential environment, at the 

opposite, the current decision could affect future decisions, so the agent needs to 

think ahead in order to choose its action. 
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Static or Dynamic: in a Static environment, while the agent is deliberating, no 

change could happen. At the opposite, the environment is Dynamic. If the 

environment itself doesn’t change, but the agent performance score does (for 

example, if too much time is spent on reasoning), the environment is considered 

Semidynamic. 

Discrete or Continuous: this distinction is based on three factors: the state of the 

environment, how time is handled and to the perceptions and actions of the agent. 

A Discrete environment has fixed locations or time intervals or a finite set of actions 

that can be performed in it, a Continuous environment could be measured 

quantitively to any level of precision and they are based usually on fast-changing 

and unknown data sources. 

Known or Unknown: This is linked to the knowledge of the agent about the laws 

that shape the environment. For example, in a Known environment, the outcome (or 

its probability of the environment is Stochastic) are given, by the other way, in an 

Unknown environment, the agent will have to adapt in order to learn how the 

environment works in order to make good decisions.  

Real world scenarios are, usually, Partially Observable, Multi Agent, Stochastic, 

Sequential, Dynamic, Continuous and (usually) partially unknown. This is the most 

difficult combination of dimensions. 

2.4.1.2 Environment representation 

In [10] are presented three ways to represent concretely the environment the agent 

inhabits by means of software components, where the main dimensions between 

each one is the increasing complexity and expressiveness of the solution employed. 

A more expressive representation is able to capture everything a less expressive one 

can capture plus something more. This leads to usually more complex 

representations, but able to express the same concepts in a more concise manner. 

These three representations are called atomic, factored and structured. Figure 36 

shows these three representations. 
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FIGURE 36 : STATE REPRESENTATIONS FROM [10] 

Atomic: in this representation, each state of the world is indivisible and there is no 

internal structure and it is considered a single atom of knowledge, a black box whose 

only discernible property is that of being identical or different to another one. 

Factored: In this representation, each state of the world is split in a fixed set of 

variables or attributes, each of which can have a value. While two atomic states have 

nothing (or everything) in common, two factored states could have come attributes 

in common while other could be different. Moreover, with factored representation, 

it is possible to represent uncertainty by leaving some attributes blank.  

Structured: In this representation, the state of the world is represented by objects 

(that internally could have a factored or atomic representation) with explicit 

description of their relationship with each other.  

2.4.2 Environment and MASs 

In [107] an introduction of the importance of the consideration of the Environment 

is shown and an important focus is towards the definition of the responsibilities that 

the environment should implement, to be an added value to the shape of the Multi-

Agent System. In fact, most approaches in agent research still views the environment 

as something that is modelled in the agent’s minds, reflecting a minimal and implicit 

representation of this concept instead to being considered as a first-order 

abstraction.  An environment designed as a first-order abstraction can be 

considered an independent program building block which responsibilities differs 

from the ones of the agents, providing a layer of abstraction working as an interface 

between the agents and the real world, allowing to change the module’s 

implementation without requiring any change to other modules.  
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The duties of the environment are synthetized as: 

• Provide a structure: the environment is conceptualized as a common stared 

space for the agents, that is used to give a structure to the whole system. The 

structuration could be spatial (regions, positions, locality, etc.) or 

organizational (the groups and roles of the agents). 

• Manage Resources and Services: an important aspect of an organization 

situated in a real-world scenario is that there are usually limited resources 

(such as time, an instrument, the quantity of hot water in a house etc.) and a 

set of services that agent could need to access in a controlled way.  Resources 

are defined as “objects with a specific state” while resources are considered 

“reactive entities that encapsulate functionality”. The duty of the 

environment is to allow and monitor the access to resources and services. 

• Enable Communication: the environment must allow the agents to 

communicate. This could happen, as introduced before, with two kinds of 

interaction: direct and indirect communication. Direct communication is 

mostly based on message-passing technology, in which an agent is able to 

send a message to another agent, while indirect communication is based on 

other techniques (one approach is based on stigmetry) where and agent is 

able to perceive and gain information from the modification of the 

environment around him or by communication objects produced by an agent 

within the environment, that other agent can detect and consume (like a 

simulated pheromone). 

• Rule the multiagent system: another important aspect of the environment 

is the use of a set of rules or laws to manage the multi-agent system. Rules 

could limit the access to specific resources or services, determine the 

outcome of agent’s interactions or monitor the consistency of the overall 

system. 

• Observability: a feature of the environment is its complete observability. 

This allows to agents to discover and understand at run-time the 

environment they are discovering in a transparent way. A complex 

environment should also allow agent to observe the actions of other agents. 
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This can be done by defining an environment ontology that describes the 

environment, its resources and services, and possibly the regulating laws. 
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Chapter 3:  Case studies 

In this chapter, will be introduced and analysed technologies and ideas developed 

inside the LabMACS laboratory that influenced and aid the development of the 

robotic infrastructure that will be explained further in the next chapters. For each 

technology, there will be an introduction and a list of key features that were taken 

in account in further developments. These are the discussed technologies: 

• DocuScooter: a novel instrumentation to equip different underwater 

scooter to ease the acquisition of heterogeneous data from the marine 

environment. Its structure exploits a formally defined protocol, used 

between the whole structure, which enables modularity and a shared 

representation of the connected devices. This latter feature was extended in 

the development of the connection between the robot and its RobotParts; 

• The Home Automation System (HAS): this research proposed a MAS 

approach for home automation, by defining a formal definition of its 

structure. It influenced the importance of the environment and limited 

resource to be shared between different agents, the idea to have explicit 

different agent classes, from an architectural point of view, able to 

communicate and coordinate in the environment, and to design, along with 

the MAS architecture, tailored tools to aid simulation and debug of the whole 

system;  

• OpenFISH: this bio-inspired autonomous underwater vehicle is a good 

example of robot that could be used to test the future infrastructure: it uses 

a unique bus to connect all the devices (I2C) and uses, in a transparent 

manner, two different communication technologies (Wi-Fi and an acoustic 

modem). Due to hardware and software limitations, the developed software 

is also tailored to be used in other contexts. 

• MAS for general purpose ASV: the developed MAS exploits ROS as 

communication framework to enable messages exchange between behavior 

-based agents addressing modularity while the exploitation of a hardware 

structure that divides the low-level and the high-level of the agents addresses 



Chapter 3: Case studies 

  70 

abstraction and easiness of usage. Some ideas (dependencies, usage of ROS 

as communication framework, hardware abstraction) are taken in account as 

features of the designed infrastructure while other aspects such as the type 

of organization are enhanced. 

• LabMACS Integrated System Infrastructure: provides a wide view of the 

different technologies employed in LabMACS, how they are structured and 

which communication protocols are used in order interoperation between 

different software and hardware solutions. The developed system must able 

to transparently merge with the infrastructure in a transparent way, to 

increase the number of available technologies and vehicle that can be used. 

3.1 DocuScooter 

The Green Bubbles project (www.greenbubbles.eu), funded by the EU’s H2020 

Research and Innovation programme under the Marie Sklodowska-Curie grant 

agreement N. 643712, takes care of sustainability diving. Its main goal is to 

maximize the benefits of the diving activities while minimizing the negative impacts, 

to achieve the environmental, social and economic sustainability of the whole 

system.  

To reach them, the development of tailored IT tools to support divers in the 

acquisition, collection and analysis of data from the marine environment is a 

fundamental aspect. The usage of these tools has been proven to ease the workload 

and carry out efficiently different activities regarding professional and amateur 

diving activities [108] [109] [110]. 

In the context of this project, UnivPM, with the aid of two partners of the project, 

designed and developed an innovative modular low-cost platform called 

DocuScooter [111] capable of acquiring heterogeneous data from the marine 

environment. After the survey, the diver can upload all the data to an external 

service [112] and obtain an output tailored to different typologies of end users: 

georeferenced data, 3D reconstructions of different qualities, files ready for 3D 

printing etc. The system is designed to equip different commercial underwater 

scooters that the diver can use to gather data from the marine environment while 

performing his leisure activity. Figure 37 shows its architecture. 
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FIGURE 37 : DOCUSCOOTER ARCHITECTURE FROM [111] 

DocuScooter is structured as an array of different devices called Payload Units 

composed by a commercial component (e.g. commercial action cameras, lights, 

sensor) and a microcontroller. All the Payload Units are connected to a main central 

unit, namely Motherboard Unit, and to an optional underwater Android tablet that 

communicates with the rest of the platform through a subsystem. These latter two 

components constitute the User Interface Unit.  

Main ideas behind the DocuScooter platform are: 

• Modularity: different missions require a different sensor payload so it is 

necessary to have a system that allows the hot plug of different components 

(also during the diving activity itself) without compromising the entire 

system. 

• Low-Cost: to be easily employed by the diving industry, the platform must 

be low-cost and tailored to different available COTS (Components-Off-The-

Shelf). This helps to lower the costs of the whole structure because a diver 

could use its own instrumentation. 

• Highly extensible: to obtain this goal, to add a new compatible component, 

it is only mandatory to respect the communication protocol used to transit 

the data and the cable connector type. 

• Works up to 50mt: this specification derives from the maximum depth that 

can be reached by waterproof housings of commercial sports cameras. 

At the moment, these Payload Units are available:  
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• Intova Edge-X Camera Unit, GoPro Hero 3Black Unit and Kodak PixPro 

SP360 Unit: each module is composed of a microcontroller that 

communicates with the camera using a wireless link. Each camera has an 

own battery, so it does not need a power source. Exploiting the Wi-Fi 

communication allows all the final users to use their personal Wi-Fi camera 

within this infrastructure, without limiting customers only to one camera 

brand. In this way, the flexibility of the system is maximized. 

• Light Unit: this unit is a single, pilotable light source of the system.  

• Battery Unit: this unit is a single, pilotable power source of the system. 

• Sensor unit: it represents any specialized sensor the user wants to employ 

in the mission.  

With the option to add as many devices as there are needs, in addition to the fact 

that the peripherals are independently controlled, it is possible to change each part 

with an updated one, for example, in the future, without compromising the entire 

system.  

Each payload type is distinguished by means of three different values: Type (e.g. 

Camera), Vendor (e.g. GoPro) and Model (e.g. Hero3). There are two specification 

that allows to define the available commands for each Type or specific Payload Unit. 

The first is the Type Specification (TS). It allows to define the available commands 

for each Type of Payload Unit. Each TS is a tuple composed by the Type and a list of 

Commands (Generic Commands): 

<T, CMD> 

The second is the Payload Specification (PS). It allows to define the available 

commands for each specific Payload Unit. Each PS is a tuple composed by the Type, 

Vendor, Model and a list of Commands (Specific Commands): 

< T, V, M, CMD> 

The distinction is fundamental because the protocol allows to send a command to a 

Payload Unit using a Specific Command (e.g. set the resolution of a camera), defined 

in the PS, or to all the payloads of the same type through a Generic Command (e.g. 

shoot a synchronized photo with all the connected cameras), defined in the TS. 

Specific Commands between different Payload Unit of the same Type could have 
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different arguments or errors, so it is necessary to make a syntactic difference to the 

same semantic concept. 

A Command (CMD) is defined by the following tuple: 

< C, REQ, RES, RETC> 

The first is the Command Code, the second is the array or Request Arguments that 

represents the request to send to the Payload Unit (can be empty), the third is an 

array of Response Arguments that represent the reply that will be received by the 

Payload Unit (can be empty) and finally an array of possible Return Codes. Each 

one has its own code and explanation through a string. An Argument is defined by a 

unique name and a type. The available types for arguments are: Boolean, Integer, 

Float, Enum, List, String and Object. 

In the DocuScooter, the tablet stores all the PSs of all available Payload Units, and 

has proper utilities to wrap and unwrap the messages that receives from the 

subsystem.  

The DocuScooter could be seen as a 3-tiered architecture, which is exploited to have 

a high-level abstraction of the data acquired from the environment. This 

architecture is shown in figure 38. 

 

FIGURE 38 : DOCUSCOOTER 3-TIERED ARCHITECTURE 

The levels are arranged in the following way: The Low-Level is composed by Payload 

Units connected in the shared bus, that are the concrete sensors (depth meter, 

batteries, etc.) and actuators (lights, etc.) of the system. The microcontroller applies 
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the first abstraction, by converting the raw data received from a sensor to the format 

defined in the Payload Specification and vice-versa. The higher layer can access to 

the information through the Middleware Level, composed by the Motherboard Unit 

and the Subsystem of the User Interface Unit. This level can monitor the status of the 

Payloads Units and manage the shared access to the common Low-Level bus. This 

level can understand if a message received from a Payload Unit is well formed or 

corrupted, but has no knowledge about the meaning of the messages exchanged. 

Through the Payload Specification, the High Level (in this case this component is 

represented by the application in the tablet) can understand which Payload are 

connected in the system and use them accordingly. 

Extending this idea, the Middleware Level could be able to monitor the access to 

different Low-Level buses and devices, by providing transparency to the higher 

levels of the architecture. The different devices that are attached to the bus and that 

are used by the rest of the system can be considered RobotParts. For example, a 

depth sensor could be a RobotSensingPart with a message composed by an 

argument named “depth” with a value of type “float”, in a similar way a light could 

be a RobotActuatingPart with a message composed by an argument named “On” 

with a value of type “Boolean”. The idea of exploiting a common format to represent 

in a formal way hardware that is detected in the system is used also in the 

development of the infrastructure proposed in this dissertation. This allows a high 

grade of abstraction, by freeing the high level of the architecture to bother about 

how the communication with the hardware is done or to permit the same 

functionalities with different attached hardware. 

3.2 OpenFISH 

Another field of study in LabMACS, in collaboration with the DIISM department is 

the study, design and development of Autonomous Underwater Vehicles (AUVs). 

One of the output of this collaboration is the development of OpenFISH, a bio-

inspired Autonomous Underwater Robot able to exploit an ostraciform swimming 

model to improve its performance and battery life. In LabMACS, we focused our 

research in the development of an effective and efficient NGC structure to govern 

the vehicle behaviour. A deeper analysis on the mechanics and structure of 
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OpenFISH can be found in  [113] and [114]. A photo of the vehicle is shown in figure 

39. 

 

FIGURE 39 : OPENFISH AUV, BRAVE VERSION 

The purpose of OpenFISH is to design a modular, low-cost and efficient underwater 

vehicle for general missions of marine exploration. The hardware design reflects 

these requirements: the system is divided in a series of different interconnected 

underwater cylindrical hulls, with a common waterproof connector between hulls 

that shares the low-level communication bus (I2C) and the power signals (that is 

common for the whole vehicle). If new devices are needed to extend the 

functionality of OpenFISH and to perform a specific underwater mission, it is just 

necessary to design just the interior of the hull (some starting models of the 

mechanics to store the internal component are also present) that must store the new 

sensors. The bus allows the connection of all the devices to the main controller that 

implements the NGC system of the vehicle. The main requirements of this system 

are: 

• Connection with different sensors and actuators by means of one 

communication bus (I2C). The NGC system acts as a Master of the bus; 

• Connection with different communication devices (e.g. Wi-Fi, cable and 

acoustic modem) in a transparent way for the rest of the architecture; 

• Control of the thrusters for horizontal and vertical movement, providing 

auto-depth and auto-heading algorithms; 

• Development of a mission model to be downloaded in the vehicle and 

interpreted; 

• Management of internal exceptions and hardware failures; 

• Development of the system to be contained in a single NI-MyRIO board. 
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Since these requirements demand a high degree of modularity and abstraction, a 

Multi-Agent Architecture was chosen and the robot mechatronic architecture was 

designed accordingly as shown in figure 40. 

 

FIGURE 40 : OPENFISH SYSTEM ARCHITECTURE 

The architecture of the biomimetic underwater robot can be described as a partially 

two-tiered vertical architecture composed by two main components: the Low-Level 

and the High Level. The union of these two components is the so-called NGC system.  

The Low-Level is composed up by an array of devices connected with the rest of the 

system by means of an I2C bus. There are two types of devices connected: 

Commercial-Off-The-Shelf (COTS) devices, such as the Inertial Measurement Unit 

(IMU) the Global Positioning System (GPS) and the depth meter, and custom-made 

devices, such as the energy, the vision and thruster manager. The custom-made 

devices have a minimum degree of autonomy in case of emergency by means of 

tailored hardware and software, which has the duty to take the device into a safe 

steady-state with a faster and predictable response to a wide range of malfunctions 

such as low battery or water leaks inside the vehicle. This approach avoids single 

point failures in the NGC system if there is a major fail related to the High Level. 

The High-Level component, implemented on Linux Real-Time device (NI-MyRIO), 

follows the MAS characterization theory, allowing the increment of the system 

abstraction and modularity with the design of agents able to fulfil different tasks 

autonomously. In OpenFISH these techniques are simplified in a point to make the 

vehicle components purely reactive following the intelligent agent definition 
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provided in [115]. The developed agents, in fact, lack on proactiveness and social 

capabilities. Cognitive capabilities are not required either for the type of missions 

performed by the present vehicle but the control architecture is ready to be 

connected with other entities such as the ROS compatible robot agency shown in 

chapter 3.4. Simplification is also needed because of the on-board hardware 

limitations.  

The software architecture is mainly composed by five threads (one for each agent): 

Navigation Manager, Guide Manager, Low-Level Manager, Communication Manager 

and Log Manager. Each agent manages a specific section of the entire vehicle 

autonomy. The software modules are synchronized with each other to allow for the 

exchange of messages.  

The Navigation Manager agent manages the different functioning modalities: 

manual guide, automatic guide and emergency. The system starts in manual mode, 

where the user can manually control and monitor the status of the robot, this mode 

makes OpenFISH similar to a ROV. If necessary, it is also possible to enable or disable 

the auto-depth and auto-heading algorithms. The system changes from manual 

mode to automatic mode when the start command is received from the base station 

and a mission is correctly loaded into the system. Once the automatic mode is active, 

the mission executor (that is a set of subroutines of this agent) processes the loaded 

mission. When the external emergency switch is triggered, or some particular fault 

event occurs, the entire system enters in emergency mode and all the thrusters are 

shut down until the external switch is triggered again.  

The Guide Manager agent executes the commands sent from the navigation agent 

related to movement routines such as advance, alignment and reach depth, and 

transforms them in commands for the thrusters by means of tailored algorithms. 

When the command is successfully performed or an error is raised, this module 

sends a feedback to the navigation agent. The guide module also manages the 

controls loops related to auto-depth and auto-heading algorithms by exploiting data 

coming from the IMU and the GPS.  

The Low-Level Manager agent communicates with all the devices connected through 

the Low-Level bus (I2C) and keeps the system status information up-to-date. In 
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addition, the Low-Level module updates the status of all the connected devices that 

the guide manager has access to. Each device attached to the bus is queried in 

sequence with a proper scheduler with non-blocking criteria, in order to avoid 

overlap between requests to different devices. When a new device is connected to 

the system, the Low-Level module is able to discover it and signals its existence to 

the rest of the agency. Any agent can read data and interact with the Low-Level 

devices through a blackboard-type software module that maintains synchronized all 

the data of the NGC system.  

The Communication Manager agent maintains the communication with the base 

station. Specifically, it transforms the information received and transmitted through 

two different communication media (Wi-Fi and acoustic modem) in a standardized 

way, in order to be used simultaneously by the other agents, adding a basic level of 

abstraction related to the used medium exploited during the mission to provide 

communication (for example, until OpenFISH is floating it is possible to use the Wi-

Fi communication, while it is possible to use the acoustic modem if the vehicle is 

submerged). The base station has two main purposes: to create, modify and upload 

a mission (the Mission Creator) and to remotely control the AUV through a custom-

made interface (the Remote User Interface). The custom-made interface is used to 

perform tests, initiate the mission and gather data. 

The final agent is the Log manager. It has the duty to write log files in different 

formats and to save them in a USB pen-drive. The data is recorded along with the 

timestamp in order to analyse the behaviour of the vehicle and reproduce its 

movement with other software. 

An important aspect is the definition of the Mission that the vehicle has to perform. 

A Mission is defined by different Tasks and a mission timeout. When the mission 

timeout is reached, the mission is over. Each Task has its own timeout and is 

arranged as a finite state machine. Each State of a Task state is composed of a series 

of elements that allow the system to perform cyclically repeatable actions, as well 

as actions conditioned by the system status and its global variables, like depth and 

heading, along with battery and thrusters’ operative status. For example, one 

element of the state structure represents a single vehicle moving action to be sent 
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to the guide module. Before processing the following element, the mission executor 

waits for the end signal from the guide module. The mission is editable and loadable 

to the vehicle through a proper graphical user interface (GUI) and it is exchanged 

and stored as a JavaScript Object Notation (JSON) string. When all the states of a task 

have been executed or the task timeout is reached, the mission executor processes 

the following task. When the mission reaches a timeout or all the tasks have been 

handled, the automatic mode manages the surfacing action of the vehicle. Once the 

vehicle is out of water, the system switches to manual mode. If a critical condition is 

experienced, such as low battery or a hardware failure, the mission terminates. 

A version of OpenFISH (called BRAVe: Biomimetic Research Autonomous Vehicle 

[114]) was developed to participate to the Student Autonomous Underwater 

Competition – Europe 2016 (SAUC-E) powered by NATO where the vehicle, thanks 

to its unique features related to the propulsion system and its modularity won the 

Innovation Award. 

The OpenFISH project, that will be a good scenario to implement the designed 

robotic infrastructure, is still in progression and some of its features will be 

enhanced with the new solution that will be further designed and developed: 

• The functional structure in five agents is good and viable for the new system 

in terms of division of responsibilities (communication, low-level interface, 

navigation, guide and logging). Unfortunately the hardware and software 

limitations made the system not suitable to be implemented in other similar 

scenarios; 

• In this development, only I2C has been used. To increase the modularity of 

the system, more low-level buses and interfaces should be used. Some 

examples could be a serial link (that usually is exploited in the umbilical cable 

to communicate with underwater vehicles or could be used to interface with 

the Payload Units of the DocuScooter), CAN, and ROS (to easily connect third-

party software and hardware). 
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3.3 The Home Automation System (HAS) 

One scenario of application of the MAS theory in the studies conducted in the 

LabMACS laboratory was the domotic environment. The output of this study was the 

development of a Home Automation System (HAS) [64] to manage the connection of 

a number of appliances and devices for house management, which are connected by 

a communication line of some kind. 

Among the tasks of the home automation system, those of major concern at the 

present stage of development consist in: 

• regulating energy consumption, in order to avoid peaks in the electric load 

that may exceed either fixed or time depending thresholds and, possibly, 

planning the use of energy according to tasks and to time varying cost; 

• monitoring the behaviour of different appliances and, possibly, detecting and 

signalling malfunctions or failures; 

• facilitating the interaction with human users by allowing remote control, 

planning and monitoring. 

From the underlying MAS theory [44], an agent is defined as a virtual or physical 

entity able to possess, up to different degrees, the following capacities: 

1. it can perform specific actions in a given environment; 

2. it can perceive elements of the environment; 

3. it can construct (partial) models of the environment; 

4. it can use personal resources and environmental resources; 

5. it can orient its actions toward specific goals; 

6. it can communicate directly with other agents in the environment; 

7. it can offer services to other agents; 

8. it can govern its action per its possibilities and limitations, to its goals, to its 

knowledge of the environment, to the resources available in the 

environment. 

From this list of capacities two specific types of agents: the Domotic Object (DO) and 

the Domotic Agent (DA). The first that has at least the general capacities 1, 4, 5 and 

8 and, concerning capacity 6, it can communicate to other agents in the 
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environments at least its requirements about environmental resources. The latter is 

a DO that has at least in addition the general capacities 2. A domotic agent is called 

Cognitive if it has also capacity 3. 

General control strategies for the above described systems consist of a set of Rules 

that establish priorities in gaining access to limited resources on the basis of the 

available information. Such rules are assumed to have been synthesized in such a 

way to maximize a functional that, more or less abstractly, describes user’s 

satisfaction. 

A representation of the proposed scenario is shown in figure 41: 

 

FIGURE 41 : THE HAS SCENARIO FROM [64] 

We can recognize four different aspects: 

• Agents: in this scenario agent are represented by a human and by the 

different domotic devices (washing machine, dishwasher, gas boiler, heating 

system, power meter and power delimiter). Other different devices could be 

added if needed. The presented devices are the ones that are employed 

during the simulations and tests; 

• Resources: the domotic environment has three basic external resources: 

cold water, gas and electricity. Hot water, which is viewed as an additional 

resource, can be produced internally, by transforming other resources. The 

available amounts of cold water and gas at a given time are assumed to be 
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free from limitations, while the available amount of hot water and that of 

electricity at a given time are subject to limitations. The Gas Boiler (GB) 

supplies hot water both for sanitary use and for heating purposes through 

the Hot Water Circuit (HW). The Heating Circuit (HC) and the Human User 

(USER) can obtain hot water from the Hot Water Circuit. The washing 

machine and the dishwasher can both use hot water produced by the boiler, 

competing between them, with the HC and with the User(s) in the 

exploitation of this limited resource, or they can produce hot water for 

internal use employing electricity and cold water; 

• Communication lines: Information flows on a communication line that 

exploits power line and it is connected to a residential gateway. With this 

latter component, data can be exchanged for remote assistance or control. In 

normal operation, each agent uses a part of the available resources, and 

clearly, since the availability of two of them are limited, it is useful to have an 

allocation strategy that can be implemented by the various agents. So, the 

agents must be able to coordinate their functioning by means of exchange of 

information.  

• Nodes: the communication through the power line is made by exploiting 

suitable interconnection devices called Nodes (N). Their basic function is to 

measure the actual energy load imposed by the appliance they are connected 

to and to make this data available through the communication network they 

are linked to. In addition, the nodes could be endowed by the capability to 

read some data from the appliance they are connected to and transmit to the 

appliance commands or data coming from other nodes of the network, per 

the ability of the appliance to establish a dialogue with the node. The nodes 

are also capable to process the data they collect by means of an internal 

microprocessor and a set of software instructions. In this structure, the 

Nodes incorporate part of the intelligence of the systems and, individually or 

together with the appliance they are connected to, they can implement the 

control strategies which optimize the global system performances. 

Referring to the system we have described above, the problems in regulating the 

overall rational behaviour are: 
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• Distribution of limited resources, like electricity and hot water according to 

specific priorities in order to avoid unpleasant events for the user (for 

example, in case the user is using hot water for taking a shower, this action 

should have a higher priority compared to the washing machine that need 

how water in order to work); 

• Organization and scheduling of the operation of different appliances, in order 

to keep the global electric load with the supplier’s established limits, in order 

to avoid an unexpected shutdown; 

• Planning related to the use of electricity and gas that must take in account 

economic priorities; 

• Optimization of the performance of individual appliances in relation to 

specific criteria of user’s satisfaction, and the previous constraint imposed by 

strict requirements. 

After having defined the principal elements that form the overall system, we can give 

the following definition of HAS. A HAS consists of the following elements: 

• A set GR of Global Resources; 

• A set DO of Domotic Objects; 

• A set DA of Domotic Agents, subset of DO; 

• One Information Network IN, that connects domotic objects and agents; 

• A set R of Rules that govern the individual behaviour and the concurrent 

operation of domotic objects and concerns: 

• use and transformation of external resources, 

• communication, 

• perception and understanding; 

• A set L of operators, called Laws, which describe the time evolution of the 

global system according to the individual behaviour of objects and of agents. 

 

This characterization of the notion of HAS agrees with the general point of view of 

MAS theory. The behaviour over time of the HAS agents are described on the basis 

of previous definition is completely determined by L and it depends, in particular, 

on the Rules which form R. Then, it is possible to study the effects of different choice 

of the Rules that form R on the global evolution and behaviour of the system and, in 
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particular, to evaluate its performances in terms of functionals that represents user 

satisfaction.  

This formalization can help to design and develop framework that, in addition, being 

able to track and foresee the global behaviour, it is able to detect and analyse critical 

parameters of the systems by means of simulations procedures. 

The study related to the HAS was a very preliminary one, but some of its main 

concepts are still valid as requirement for the that will be designed and developed: 

• Environment and resources: The concept of environment is not directly 

modelled, but the idea of Global Resources will be an important component of 

the environment, that will act as a shared space where agents will be able to 

coordinate considering limited resources (if any); 

• Different types of agents: Two types of different agent are introduced, that 

take part in the same agency: the Domotic Object (that acts as a reflex agent 

with a reactive architecture) and the Domotic Agent (that acts like a utility 

based agent with a BDI/Hybrid architecture). In the infrastructure that will 

be developed, it will be important to define different agent schemas, 

endowed with different capabilities, but all of them will be able to contribute 

at the same agency; 

• Simulation environment: when there is the analysis of a complex system, it 

is fundamental to have tailored tools that ease the debug process. Moreover, 

if the system is formally defined, it is possible to have a full simulation 

environment that could be used to detect anomalies in a safe environment. 

3.4 MAS for general purpose ASV 

In the recent years, with the objective to develop a low-cost and effective solution to 

perform support to marine researchers, LabMACS designed and developed an ASV 

(Autonomous Surface Vehicle) composed mostly by COTS components for general 

purpose missions. This solution is able to avoid the elevated cost for a supply vessel 

and its crew, allowing a modular approach to different similar problems, easing the 

work related to add new hardware and software architectures in the system. The 

developed platform can be endowed with tasks to perform different inspection and 
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research missions. An extended explanation of the whole architecture functioning 

can be found in [116]. One possible scenario is shown in figure 42. 

 

FIGURE 42 : AN EXAMPLE SCENARIO FROM [116] 

In the proposed scenario, the user from a Shore Ground Station, using a wireless 

link, can remotely deploy and teleoperate a micro-ROV in a point of interest, while 

the Autonomous Surface Vehicle (ASV) is endowed with the task to autonomously 

navigate to the defined point in the ocean, to manage the deployment of the micro-

ROV, to maintain formation with the underwater vehicle by means of a USBL 

tracking device in order to keep a safety distance from it and to recover it at the end 

of the mission.  

This scenario could be easily modelled as a MAS problem, where the different 

components (the micro ROV, the ASV and its constituent components) could be 

intended as autonomous agents with different tasks to perform towards the 

common goal to perform the mission.   

Focusing in the ASV, its mechanical, hardware and software components have been 

constructed using commercially available, low cost Components-Off-The-Shelf 

(COTS). The considered ASV is a mono-hull boat with a unique steering, outboard 

electric motor, differently from the most part of existing literature, that is based on 

a catamaran-like double hull ASV.  
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The mechatronic structure of the ASV is composed by a set of subsystems, consisting 

of hardware and software components. The various subsystems can be described as 

follows: 

• Central Control Subsystem: Host an IMU and a GPS device, which are used 

to evaluate position, orientation, velocity and acceleration of the ASV, and a 

video-camera, with motorized pan and tilt mount, are directly connected a 

Single Board Computer (SBC). 

• Engine subsystem: It is composed of the outboard electric motor and by a 

custom board that governs it. 

• Rudder subsystem: It is composed of a mechanical steering system, which 

is actuated by a stepper motor endowed with an incremental shaft encoder. 

The stepper motor is closed loop controlled by a microcontroller. 

Each subsystem, from an operational point of view, is divided in three levels, called, 

respectively, the Agent Level, the Interface Level and the Hardware Level.  

The Agent Level refers to software components, called Agents, which are organized 

per a Multi-Agent System (MAS) architecture that exploits the Robot Operating 

System ROS [117] as communication middleware. In each subsystem, the software 

agents take care of the high-level tasks and of the communication with other entities 

in the ROS framework. This solution allows the subsystems to interact between 

them by exchanging data by exploiting ROS and to perform specific tasks in response 

to external inputs in a coordinated way. The Interface Level refers to the low-level 

software routines that interface each agent with various I/O devices. The Hardware 

Level refers to actuators, sensors, computing devices and other electronics 

components.  

The agents and the low-level software routines are implemented on computing 

devices of various kind that form the ASV computing structure. Each computing 

structure is composed by two layers: the High-Level Layer and the Low-Level Layer. 

The first is composed by an ARM board with a Linux distribution. This level has the 

duty to run the agent and the related ROS infrastructure. The second is composed 

by a microcontroller, which has tailored routines to manage the underlying 

hardware. 
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In practice, the ARM boards are used to execute behavioural and decisional tasks at 

the Agent Level and at the Interface Level, while the micro-controller boards 

implement the control strategies that govern actuators and sensors at the Hardware 

Level. The advantages of this architecture are the high computational capabilities to 

run decisional and ROS protocols provided by the ARM boards and the reliability of 

control performances assured by the use of dedicated microcontrollers. The two 

boards communicate between them using a serial communication link and an error 

handling protocol. 

In this implementation, agents are self-sustained routines that are able to control 

their life cycle, which is shown in figure 43. The most important phase of the 

execution is the “processing” phase, where the agent uses different Behaviours to 

operate in the agency. The agents, together, form the so-called Boat agency. 

 

FIGURE 43 : AGENT LIFE CYCLE 

These are the agents implemented in the ASV: 

• Master agent: this agent coordinates the MAS in the ROS framework; it is 

used to monitor the status of the infrastructure and to alert about MAS 

failures (failure of the ROS middleware or shutdown of the Boat agency) and 

explicit shutdowns; 

• Engine agent: this agent implements the open-loop control of the angular 

speed of the thruster of the outboard electric motor; 

• Rudder agent: this agent implements the control of the steering angle of the 

outboard electric motor; 

• GPS agent: this agent acquires and publishes, the position of the vehicle 

obtained by the GPS; 

• IMU agent: this agent acquires and publishes attitude, rotational speeds and 

accelerations of the vehicle obtained by the IMU; 

• Controller agent: this agent implements the Navigation Guidance and 

Control (NGC) procedures of the ASV such as autonomous and remote 
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navigation. This agent exploits the Engine, Rudder, GPS and IMU agent to 

operate the whole ASV; 

• Camera agent: this agent streams video from an on-board surveillance IP-

Camera and manages pan, tilt and focus according to external requests. This 

aids the teleoperation of the ASV; 

• Logger agent: this agent logs the data published by the agents in a file stored 

in the disk; 

• ROV agent: this agent implements the control and sensor of the micro-ROV; 

• USBL agent: this agent implements the driver for the USBL tracking system 

by publishing the position of the underwater micro-ROV. 

The functioning of an agent is regulated by its Behaviours. A behaviour allows to an 

agent to interact with the environment or between them within the agency. The life 

cycle of a behaviour, shown in figure 44 is managed by the agent itself.  

 

FIGURE 44 : BEHAVIOUR LIFE CYCLE 

Agents can exhibit four types of behaviours: 

• OneShotBehaviour: one or more actions associated to the behaviour are 

executed only one time and instantly; 

• CountdownBehaviour: one or more actions associated to the behaviour are 

executed only one time after a given delay; 

• CyclicBehaviour: one or more actions associated to the behaviour are 

executed periodically with a given period; 

• EventDrivenBehaviour: one or more actions associated to the behaviour 

are executed only if and when a specific event is triggered. The possible 

events are: notification of a new message, notification of a service request 
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and cancellation of subscription by an agent on which the one at issue is 

dependent. 

Dependencies are another important feature of the system, and it is a way to 

coordinate agents’ behaviour when a related agent stop its normal functioning. 

When a dependency is defined between two agents, if the first leaves the agency or 

its functioning is not corrected, the dependent one triggers a EventDrivenBehaviour 

to handle this eventuality. This feature is usually exploited to keep a safe state in the 

dependent agent.  

The communication between agents is performed through ROS topics, which acts as 

a middleware between agents. ROS uses the publish/subscribe messaging pattern 

where senders of messages, called publishers, do not send directly data to specific 

receivers, called subscribers, but instead use the concept of topic to categorize topics 

without any knowledge if there is a subscriber that receives the message. Each agent 

has the duty to make their existence clear in a well-defined topic, in order to 

coordinate with other agents. In addition, the exchanged data is also published in 

ROS topics. There is no specific mechanism to deliver a message from an agent to 

another one, the data is freely available in the ROS framework. The content of these 

messages is managed through a ROS message definition. 

In [116] and [118] some experimental results are provided: the ASV was tested to 

perform different tasks in different modalities (remote control, different types of 

path following, target tracking), while simulating failures between agents, in order 

to affirm its robustness in different situations. 

The architecture and technology used for the ASV has proven a valid starting point 

to be enhanced, from different points of views: 

• Organization architecture: the developed agency acts as an Aware ACMAS 

architecture. There is no explicit definition of an organizational model, but 

other agents are aware of the presence of the other relevant agents by means 

of the exploiting of the Dependency concept, acting in some cases as a 

mechanism of indirect coordination(stigmetry). The idea is to implement an 

Aware OCMAS architecture;  
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• Agent architecture: it is difficult to implement a real Goal oriented agent 

with the architecture of agent proposed. It could be possible, however, to 

have this typology of agent in the same Agency together with agent with 

other architectures; 

• Agent life-cycle management and control: there is no centralized way to 

manage the agent life cycle: the idea is that, for each device able to run 

agents, there must be a component that is able to manage, in a platform-wise 

manner, their life-cycle in order to obtain a more robust and modular 

system; 

• Dependency links: the management of the Dependency between agents is 

defined inside the agent, and is in the sake of the programmer to manage it 

correctly. A more explicit way to exploit the Dependency between agents in 

an organization is by means of the concept of Roles and Links between them. 

If in a group there are some specific roles one of them is missing and there 

is some explicit dependency between two of them in the organizational 

model, the dependent one is aware of the missing role; 

• Abstraction of connected hardware: there is a strong separation between 

the Agent Level and the Hardware Level by means of the Interface Level, but 

there is no standardization of the last two levels, like the one designed for 

the DocuScooter by means of Payload Specifications. Moreover, some of the 

agents (e.g. IMU and GPS) could be modelled as RobotSensingParts and not 

as real agents. By the other hand, modelling these components as agents, 

there is the advantage to ease the access to the data provided to other agents 

through ROS topics; 

• Abstraction of communication interfaces: The employment of ROS has 

advantages and disadvantage. By a way, it is possible to interface the 

developed architecture with a high number of third-party hardware and 

software, but at the actual state, ROS is the only communication channel 

available. The idea is to provide a common communication interface as 

abstraction of more, different, concrete Low-Level communication 

interfaces (RobotCommunicatingParts). This will allow to achieve systems 
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where Robots can communicate through different channels in a transparent 

way. 

3.5 LabMACS integrated system architecture 

In the recent years, in the LabMACS laboratory we started to design a modular 

vertical-layered architecture to allow interconnection between different surface 

and underwater technologies from different vendors in order to obtain provide a 

wide typology of available setup for different marine missions such as 3D 

reconstruction for archeologic purpose ( [119],  [120]) and biological data 

acquisition and gathering. The process of standardization of technologies arranges 

them by the role that they can acquire in the system. So, for example, different 

vehicles or technologies can acquire externally the same role, performing analogue 

actions that provide the same kind of information. This process allows to design 

different formal processing pipelines that transfer, gathers and transforms the input 

data in a requested output. 

The design is inspired by two main theories: 

• System of Systems (SoS) [121]: in this approach, a global system is 

composed by the large-scale integration of different self-contained systems 

with the goal to satisfy global needs in a more efficient way.  

• Internet of Underwater Things (IoUT): in this approach, that is a 

specialization of the IoT theory, numerous devices are connected in a wide 

distributed network that can collect robust and localized data from the 

marine environment in an autonomous, modular and extensible way in 

which the modules are able to self-organize accordingly. 

A schema of the proposed architecture is shown in figure 45. 



Chapter 3: Case studies 

  92 

 

FIGURE 45 : LABMACS INTEGRATED SYSTEM ARCHITECTURE 

In the previous image. it is possible to notice four different layers:  

• Physical Layer: this level includes all the available the commercial or custom 

hardware that must be able to cooperate and coordinate through the system 

in a transparent way, my making a unique agency of agents. In the previous 

image it is possible to notice some of the integrated technologies, such as: 

o A custom made ASV. It is the same ASV of the previous case study, but 

it is possible to use it with the rest of the infrastructure; 

o Ultra-Short Base Line(USBL) devices that allow underwater 

positioning of mobile underwater targets; 

o Custom made underwater nodes that provide communication 

through optical transmission; 

o The DocuScooter used as an underwater data acquiring device 

supporting the activities of scuba divers; 

o different commercial ROVs of different sizes: small micro ROVs 

(VideoRay Pro4) and a large working class ROV; 

o A shore ground station where the end users can use different 

technologies such as command consoles, mission planning and 

monitoring application and control devices like a smart force 

feedback joystick [122] that helps amateur pilots to better control an 

underwater vehicle; 
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• Operational Layer: this level is endowed with the task to separate the 

hardware implementation from the higher layers. It embodies the routines 

to control and manage the underlining Physical Layer while providing its 

access from outside. This layer is implemented by means of commercial or 

custom hardware solutions (servers, PCs, Single-Board computers or 

microcontrollers) that exploit different kind of communication media to 

exchange information. 

• Communication Layer: this layer allows the transmission of information 

defined in a formal way by means of different communication channels and 

protocols, allowing to add and remove devices in a modular way. Some 

examples are: 

o Wireless networks: Wi-Fi (by means of TCP/UPD sockets), 

Bluetooth, LoRa; 

o Wired networks: Ethernet (by means of TCP/UPD sockets), Serial 

channels (RS232, RS485 and UART), CAN bus and I2C; 

Some used protocols are the LabMACS protocol, ROS [117] and Janus 

STANAG while others (LMS and LCM) are currently in development. The first 

protocol, in particular, is designed for efficient serial communication, and it 

is similar to the one used for the DocuScooter platform; 

• Supervision Layer: this layer acts as a headquarter of the whole 

infrastructure where each connected device at the Operational Level is 

visible and its status is constantly monitored. This level allows to: 

o Monitor the status and operation of the whole architecture by means 

of a list of performance indexes. Indexes allow to statistically analyse 

the situation while providing easily readable parameters to evaluate 

the overall operating condition and mission; 

o Assign global tasks and goals.  

The SoS concept is similar to the MAS theory, and this analogy has been already 

analysed [123], because they have, in overall, the same objective: generate an 

infrastructure able to solve problems in a collaborative, coordinate and efficient 

way. The main differences are related on: 
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• Nature of the entities: in the SoS theory, the elements are concrete 

technologies, initially not designed to be interconnected. On the other way, 

in the MAS theory, the entities forming the infrastructure are essentially 

software agents, in which the social nature is embedded in the concept of 

agent itself. 

• Main effort: in the SoS theory, the effort is directed to seamlessly integrate 

different technologies in order to allow interoperation and control between 

different components of the infrastructure, starting from a lower level of 

integration. In fact, different systems that use different protocols and 

technologies to communicate need to be translated in a subset of protocols 

able to interoperate in the same network. On the other way, in the MAS 

theory, the effort is directed to allow integration to a functional level, by 

allowing seamlessly communication between different entities, thanks to the 

fact that the scenario is higher levered, with abstractions from the lower and 

concrete level.  

The idea is that the infrastructure that will be developed should be able to merge 

transparently with the proposed infrastructure, providing different roles that can 

be inserted in different processing pipelines, in relation to the overall mission of 

scenario that the system is situated. 
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Chapter 4:  Design and characterization 

of models for Robots and Multi-Robot 

Systems 

In order to express in a more formal manner some aspects of the Robots and of a 

whole organization of robots, a great effort has been put in the definition of different 

models able to define different aspects of this type of problem. The usage of models 

has many advantages such as: 

• Concise representation; 

• Usually provides a high level of abstraction; 

• Possibility to reason on these models to take proper actions; 

• Usually defined in a readable format and platform independent, allowing to 

be easily shared and interpreted by different devices; 

Three models are presented in this dissertation, each of them representing a 

different aspect of the Robot: the RobotPart Model, the Skill Tree Model and the 

Organization Model.  

The RobotPart Model is used to provide a first abstraction of the hardware 

connected in the robots by defining different classes of components (called 

RobotParts) that can be connected to the robot. If two different components apply 

to the same RobotPart class, external software can use this definition to efficiently 

gain access to the component, regardless to the real nature of the hardware 

connected.  

The Skill Tree Model is used to define which are the roles that a specific robot can 

play in an environment. The applicable roles are defined by which components are 

currently attached. The list of requirements to play a role can, for example, change 

between different instances of the infrastructure.  

Finally, the Organizational Model is shared among all the infrastructures in the 

network and it is used to manage different three different aspect of the organization: 
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the Environment where the robots are situated, the Mission to be completed and the 

list of Roles that can be played in the organization. 

4.1 RobotPart Model 

A Connector of the infrastructure can register one or more RobotPart to the 

Platform. The concept or RobotPart follows the idea explained in [2], where a 

RobotPart is defined as a Device used by the Robot to interact with the environment. 

Four classes of RobotPart are included: 

• RobotSensingPart: defines a type of sensing device that is able to sense the 

surrounding environment. An example could be a IMU or a GPS receiver. This 

part can provide different sources of information called Topics.   

• RobotActuatingPart: defines a type of actuating device that is able to act 

with the surrounding environment. An example could be a thruster or a light 

that can be toggled. This part, in a way similar to the previous RobotPart, can 

provide different sources of information called Topics.   

• RobotCommunicatingPart: defines a type of communicating device that is 

able to send and receive messages through a network.  

• RobotProcessingPart: defines a type of processing device that is able to 

process information. It can act as a bridge to some external or internal data 

processing. This part provides different processes called Services that can be 

called. An example could be some tailored function provided by a third-party 

software.  

The model of a RobotPart is implemented as a tuple with these fields: 

<Name, Description, Type, [Decorator]> 

Where Type can be SENSING, ACTUATING, COMMUNICATING and PROCESSING. In 

the first two types, also the field Topic is included, while in the PROCESSING case, 

the field Service is included. [Decorator] is a list of Decorators. Topic is a field 

composed by an array of tuples defined as: 

<Name, [Params]> 

Where Param is defined by a couple:  
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<Name, Type> 

Where Name is a unique string, while Type is a value included in a group formed 

by INTEGER, FLOAT, BOOLEAN, STRING, LIST or OBJECT or is a name of an instance 

of Custom Type (explained below). When the Type is LIST or OBJECT another 

element of the tuple is allowed, represented by a list of Params. 

Service is a field composed by an array of tuples defined as: 

<Name, Request, Response> 

Where Request and Response have the same format of Topic. 

A Decorator is an additional and optional property of the RobotPart. Its semantic is 

not defined, its interpretation is a duty of the higher levels of the framework. 

The RobotPart of a Robot, together, create the RobotInterface of the Robot. There is 

no limitation to the number of RobotParts that a Connector can provide. For 

example, a connector able to manage a CAN bus could register different actuating, 

sensing and processing parts. 

4.1.1 Custom Type Model 

Custom Types help to reduce the amount of code that is used to define RobotParts. 

They define a set of commonly used types of messages. Some rules are used to avoid 

complexity: 

• Each Custom Type must have a unique name; 

• Only the fields INTEGER, FLOAT, BOOLEAN, STRING, LIST or OBJECT can be 

used as Type; 

• It is not possible to define a Custom Type through another custom type (this 

is a consequence of the previous rule). 

These are some examples of some used Custom Types: 

• 2DPos: an object composed by two FLOAT fields: X and Y; 

• 3DPos: an object composed by three FLOAT fields: X, Y and Z; 

• 3DOri: an object composed by three FLOAT fields: Roll, Pitch and Yaw; 

• GPSPos: an object composed by the couple Latitude and Longitude. 
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4.2 Skill Tree Model 

Different robot can play different roles, and this depends from two conditions: it has 

all the required RobotParts to achieve this role and it knows “how” to do it. For 

example, if a “Grabber” Role is available in the organization, only a robot that has a 

manipulator can play it and should have tailored software and procedures to 

manage this role. While the second condition relies to the ability of the Agent Layer 

to assure the maintenance and correct usage of the manipulator, the first condition 

is ruled by means of a Skill Tree (ST). Essentially, a ST is used to transform a set of 

decorated local RobotPart to available roles that the can be played.  

This representation is elaborated by the Organizational Module together with a list 

of vacant Roles, and the list of actual RobotPart. The ST is used to decide if the 

infrastructure has all the requirements to create an agent to fulfil a vacant Role. Of 

course, there must be coherence with the Role defined in the Organizational Model 

and the one defined in the Skill Tree. 

The model, shown in figure 46 (while, in figure 47 an example for the “grabber” role 

is shown) shows three different elements: decorated RobotPart, Skill and decorated 

Role. 

 

FIGURE 46 : SKILL TREE STRUCTURE 
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FIGURE 47 : SKILL TREE EXAMPLE WITH “GRABBER” ROLE 

• Decorated RobotPart: this element represents a single RobotPart of the 

local RobotPartInterface with the addition of decoration properties added to 

the element. These properties are used only at this layer and they have no 

implication to the lower layer and they can modify how roles are assigned. 

These are the allowed decorations: 

o Unique: if this keyword is used, only one role can use possess the 

RobotPart. This allows, for example, to lock the “Engine” RobotPart of 

the platform to just one role with the keyword “unique” to the 

RobotPart; 

o Optional: if this keyword is used, the connected decorated skill or 

role can be achieved also without this specific RobotPart. 

• Skill: this element acts as a grouping concept, defining skills that the robot 

achieves by possessing some sub-skills or robot parts. 

• Decorated Role: this element represents a single applicable role with the 

addition of decoration properties. A Decorated Role can be composed by 

different skills and Decorated RobotParts These are the allowed decorations: 

o Group: this property specifies that a role can be achieved if and only 

if any RobotPart that composes it has the property “Group” that has 

the same value. This is helpful for example in a simulation 

environment, where a single Connector could be able to define 

different instances of the same type of RobotPart; 
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o Priority: this property modifies how the algorithm that analyse 

possible roles tries to satisfy them. A Role with this property will be 

tested before others, so there is a higher chance that it is fulfilled. 

4.3 Organization Model 

The main concepts of the Organization Model are arranged as shown in figure 48. 

From the top of the structure three subparts that regroup different aspects of the 

organization are defined: Environment, Role and Mission.  

 

FIGURE 48 : THE ORGANIZATION MODEL 

Environment 

This subpart of the model defines the static properties of the environment where 

the agents act. The environment is essentially defined by the following couple:  

<[Reg], [GR]> 

Where [Reg] is a set of Regions and [GR] is a set of Global Resources. 

A Region is a logical and/or spatial subdivision of the environment where the robots 

are situated and operating. At least a region must be defined. For example, in a 

complex scenario composed by different water and land vehicles that must 

cooperate, it is possible to define at least two regions: “water” and “land”. A region 

is defined by the tuple: 

<Name, [Reg], [LR]> 
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Where Name is a unique string defining the region, [Reg] is a ret of sub-Regions and 

[LR] a set of Local Resources. Cycles among regions are not accepted. As example, 

two sub-Regions of the previous “water” region could be “submerged” and “surface”.  

A Global Resource is a Resource that is shared among all regions while a Local 

Resource is shared in the related Region and in its sub-Regions.  

A Resource is defined by the following tuple: 

<Name, Type> 

Where Name is a string defining the name of the resource and Type a value 

between INTEGER, FLOAT, BOOLEAN, STRING, identifying the type of data stored. 

Role 

This subpart of the model defines the different roles that an agent can play in the 

infrastructure. An agent can play one role at the same time, but more agents can run 

in the same platform. 

A Role is defined by the following couple: 

<RC, [B], [G], [T], [SR] > 

Where RC is the Role Context, [B] a list of Behaviour, [G] a list of Goals, [T] a list of 

Tasks and [SR] is a list of Super Roles. 

The Role Context is a list of Properties that the agent must share to the rest of the 

agency and they define a current external state of the role that the agent is playing. 

For example, a Robot that has the Carrier role that is endowed with the role to 

transport some objects, could use a Property in the Role Context to share the actual 

count of elements that it is carrying. 

A Property is defined by the following couple: 

<Name, Type> 

Where Name is a string defining the name of the property and Type a value 

between INTEGER, FLOAT, BOOLEAN, STRING. 
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A Behaviour is a functionality that can be invoked for a specific role. The Behaviour 

can be called by another agent in an autonomous way or as inside a joint mission 

between more agents. It is expressed by the tuple: 

<F, [ReqA], [ResA]> 

Where F is the Functor of the command to invoke, representing the name of the 

function to call, [ReqA] a list of Request Arguments used as input if the command to 

invoke and [ResA] a list of Response Arguments used as outputs of the command to 

invoke. 

A Goal represent a state that the role should achieve. How to reach it is dependent 

on the agent that plays that role. It is expressed by the tuple: 

<N, [Args]> 

Where N is the Name of the Goal, while [Args] a list of Arguments used as 

parameters to configure the goal. For example, a Goal GoTo could have as 

parameters the position to reach in order to fulfil the goal. During runtime, when a 

role is endowed with the task to fulfil a Goal, it can have four possible states:  

• INACTIVE: this is the default state, and signals that the agent is not trying to 

fulfil this goal; 

• REACHED: this state is obtained when the goal is successfully reached and 

satisfied; 

• PROCESSING: this state is obtained when action is currently performed by an 

agent that is playing the role to reach the Goal; 

• FAILED: This state is reached when it is impossible to satisfy the goal. Usually 

this last state requires a replanning of the future actions. 

A Task represents a subroutine of the role, composed by well-defined set of 

behaviour of the role to perform.  

Finally, a Super Role is the identifier of another role and it is useful to combine 

Behaviours and Role Contexts in a modular way. For example, if a generic Role 

“Robot” with a unique behaviour “move” that allows movement, is a Super Role of 

another Role, this latter can use the “move” behaviour. It is important to notice 
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that, by convention, corresponding behaviours, goals, tasks and properties of the 

Role Context are not overridden with the ones of the Super Roles. 

Mission 

This subpart of the model defines all the information related to the mission that the 

different agents, that play a role, should fulfil. It is defined by two elements: a list of 

vacant roles and a Joint Task. 

Vacant Roles are Roles required to the fulfilment of the mission, and agent must 

apply to a vacant role in order to perform the mission playing in the agency. It is 

defined by the tuple: 

<Name, Role, MinCard, MaxCard> 

Where Name is a unique string defining the Vacant Role name, Role is the identifier 

of the corresponding role, MinCard is the minimum required cardinality while 

MaxCard is the maximum allowed cardinality. If the minimum cardinality is 0, the 

Vacant Role is defined as optional. 

A Joint Task is similar to a task of a single role but the elements combined in the 

behaviour tree concerns all the available roles. 
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Chapter 5:  Design and characterization 

of the middleware of a Multi-Robot 

System 

With the experience and feedback received from the previous technologies and the 

study of the actual state of the art of Robots, Agents, Multi-Agent Systems and 

Environment modelling, in this dissertation a general-purpose infrastructure for 

exploration of non-structured environment and coordination of different robots in 

a shared environment is designed and presented.  

The general requirements of the infrastructure are: 

• General purpose: the solution proposed must be viable for different 

simulated and concrete vehicles, tailored for different environments (sea, 

surface and land) that must exploit the same infrastructure to communicate 

and coordinate; 

• High modularity: the solution proposed must allow the connection and 

recognition of different components attached to it, without compromising 

the entire system and by modifying its behaviour if necessary. Because of 

this, a unified way to connect third-party and custom external hardware 

components must be defined; 

• High extensibility: the solution proposed must allow to add new compatible 

components or functionalities easily. This is reached by means of the 

definition of interfaces between software modules and the formulization of 

models to represent the different components; 

First of all, the overall infrastructure will be presented, then each layer will be 

deepened in order to present the fundamental components and objectives for each 

one. 
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5.1 The infrastructure layout 

The overall infrastructure is shown in figure 49. It is a four-tiered vertical 

architecture divided in the following layers: 

• Connector Layer (CL): this layer groups the different Connectors that are 

attached to the Robot that provide access to the hardware connected to each 

Connector.  

• Platform Layer (PL): this layer defines the component that implement the 

logic that provides abstraction and access to the RobotParts connected to the 

robot and that provides communication between different robot in the 

network through a unique interface; 

• Organization Layer (OL): this layer defines the components that 

implements the organizational and environment models and logic of the 

infrastructure. It is the component that decides, together with other OLs, the 

roles that the robot must play in the environment.  

• Agent Layer (AL): this layer is composed by different Agent Containers that 

exploit the interface provided by the Organization Layer to manage the life 

cycle of different agents and to access to information useful to their 

operations. There could be numerous Agent Layer instances in the 

infrastructure, each of them providing a different set of agents or ways to 

implement them.  
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FIGURE 49 : INFRASTRUCTURE MODEL 

An important aspect that enable abstraction and high modularity in the system is 

the usage of interfaces between each layer: if a component of the Agent Layer 

changes its internal logic but the interface with the Organization Level remains the 

same, it is still compatible with the lower layers of the system, except for losing 

compatibility (if not tailored handled) with different Agent Layers technologies if, 

for example, another structure to pass message between agents is used. 

This allows to have different platforms in the network that can implement a 

different stack but, until the interfaces are the same, different stacks are able to 

inter-operate. An example is shown in figure 50, where, if a higher layer is missing 

or exploits another technology, lower layers are able to communicate and provide 

functionalities to the network.  
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FIGURE 50 : INTERCONNECTION BETWEEN DIFFERENT INFRASTRUCTURES 

Some component could be tailored designed to provide only a sub-part of the 

functionalities of the whole framework (for example, a component composed just 

by a compatible Platform Layer, could be exploited to act as a communication bridge 

between two full-stacked infrastructures).  

5.2 The Connector Layer 

This Layer is composed by different Connectors connected to the higher Platform 

Layer by means of a provided interface. A Connector is a unique media or physical 

bus that can provide the connection to different RobotParts devices to the Robot. An 

example of Connector could be the CAN bus, ROS, a web socket, a software used to 

simulate the movement of the vehicle software or a utility to provide the log of some 

data. Each connector is defined by a unique name, a description and a version. The 

Connector Layer is the first and lower level of the infrastructure and act in two 

different levels: 

• Hardware level: manage the life cycle of the underlining hardware; 

• Connector level: manages the connection of the Connector to the Platform 

layer and the related RobotParts. 

5.3 The Platform Layer 

The Platform Layer provides the first level of abstraction, providing interfaces for 

the higher Organization Layer to the RobotPartInterface and to a communication 

channel by exploiting the RobotParts connected through Connectors provided by 
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the Connector Layer. The Platform Level is the second level of the infrastructure and 

act in different levels: 

• Connector level: manages the different Connector connected to the system 

by means of a proper interface 

• RobotPart level: maintains the RobotPartInterface by collecting and 

organizing the RobotParts from each connected Connector while maintains a 

database of known RobotPart models that are compatible with the platform 

and; 

• Workspace level: provides abstraction of the local and remote Workspace; 

• Communication level: provides access to a unified communication channels 

(exploiting different RobotCommunicatingParts) in order to allow a unique 

transparent communication channel, provides functions to keep track and 

maintain the topology of a network of platforms and provides abstraction of 

the remote Workspaces of other platforms deployed in the network; 

• Utility level: provides functions to monitor and manage the platform. 

A model of this layer is shown in figure 51: 

 

 

FIGURE 51 : THE PLATFORM LAYER MODEL 

In the model it is possible to notice that this layer is composed by five different 

modules (Platform, Connector, Workspace, Communication and Utility), four of 

them implement an interface for other software components (Connectors of the 
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Connector Layer, the Organization Layer and a set of external utilities that can 

exploit some provided functions in order to show the internal state of the platform 

and two external databases: one related to compatible RobotParts (RP) and the 

other regards available Custom Types (MSG). Another file is the Platform Properties 

file (PP) that defines properties of the Platform instance such as name and version. 

5.3.1 Remote Messages Model 

A RemoteMessage is a message transmitted between Platforms. The receiver of the 

message could be the Platform Layer or the Organization Layer of the local platform 

or another platform. In this last case, the Platform Layer must be able to forward to 

the target platform, if possible. A Remote Message is composed by the following 

fields: 

• ReceiverPlatform: the name of the platform that will receive the message; 

• SenderPlatform: the name of the platform that sends the message; 

• ReceiverMailbox: the name of the mailbox that will receive the message.  

• SenderMailbox: the name of the mailbox that sends the message; 

• Type: the type of message. The type can be: 

o Forward: this type identifies a message that must be received from a 

higher layer and must be forwarded to the correct Mailbox. 

o Query: this type identifies a request from a remote platform.  

o Response: this type identifies the response from a remote platform.  

o Event: this type identifies a particular event that happened in the 

network. In this case, the Content field has a named value eventType 

with different values: 

▪ NEWPLATFORM: A platform has been discovered in the 

network; 

▪ DELPLATFORM: A platform has been removed from the 

network; 

• Content: a map of named values. This is the actual payload of the message. 

A Mailbox identifies a node where message can be sent or received. A Platform can 

have different Mailboxes, identified by a unique name, operative at the same time. If 
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the message is directed to the Platform Layer, the ReceiverMailbox and 

SenderMailbox fields are empty.  

Query and Response message refers to the same subset of message that can be 

exchanged between two different Platform Layers. The type of message is bundled 

in the Content field through the “type” named value. When a Platform receives a 

Query message, the receiver elaborates the requested data and then replies with a 

Response message to the same platform. The possible messages are: 

• Info: a resume of the actual status of the platform is requested by another 

platform. The following information are bundled: platform name, version, 

robot parts and mailboxes. 

• Remote: a request of the access to a Robot Part is requested. As content of 

the message there is the link of the topic or the service of the robot part to be 

queried.  

The usage of Query and Response message allows to have connectionless 

communication between different platforms. 

5.3.2 Modules 

As already shown in figure 51, the Platform Layer is structured in 5 modules, with 

different relevance and duties. It is important to remark that this subdivision is not 

mandatory but just a reference for the further implementation and to ease the logic 

division of software components. In fact, until the interfaces are not modified, the 

internal software can be arranged differently. 

The Platform Module can be considered the central module of the Platform. It has 

the duties to: 

• Maintain the RobotPartInterface (the group of all the RobotParts actually 

connected to the robot) by managing: 

o the creation and removal of RobotParts from the system  

o the coherence between requests from the Connector Module about 

the class of RobotParts to be created 



Chapter 5: Design and characterization of the middleware of a Multi-Robot System 

  111 

• Manage a set of Properties of the SP. These define a set of characteristics that 

can be shared among different platforms in order to be able to recognize 

themselves. At the moment, the following properties are included: 

o UUID (Universally Unique Identifier): a string defining a unique 

identifier of the platform; 

o Name: a string defining the name of the platform; 

o Description: a string defining a brief description of the purpose of the 

platform; 

o Version: a string identifying the version and type of the platform, 

useful to manage interoperation with different versions of platforms. 

For example, will allow usage of memory constraint devices (such as 

microcontrollers) that will have a tailored version of the platform, 

which can be able, however, to communicate with other platforms. 

• Interpret and store the database of available RobotParts and Custom Types.  

The Connector Module manages the different Connectors connected to the system. 

It has the duties to: 

• Creation and maintenance of different Connectors; 

• Control if the sensorial data received to from RobotSensingPart and the 

actuating data that should be sent to a RobotProcessingParts are coherent 

with the RobotPart model provided during its creation; 

• Provide the ConnectorService interface that allows to a lower layer to: 

o Create a new connector; 

o Create/Use/Remove a RobotParts from the connector;  

o Remove the connector from the platform.  

The Communication Module exploits one or more RobotCommunicatingPart 

provided from the Platform Module to provide communication functionalities to the 

higher levels. This module has the duties to: 

• Manage the different RobotCommunicatingParts connected to the system; 

o Share the local RobotPartInterface to the other platforms in the 

system. There are two level of compliance of this property: 

▪ Level 0: No sharing and acquisition of remote 

RobotPartInterface; 
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▪ Level 1: Sharing and acquisition of remote RobotPartInterface. 

This feature allows, for example, to have a remotely controlled 

Robot by using a communication channel to pilot it by 

remotely acting and sensing; 

• Manage different Mailboxes.  

• Manage Messages incoming from other Platforms of sent from the local 

Organization Layer to other Platforms.  

• Provide the CommunicationService interface able to provide to a higher layer: 

o Create Mailboxes 

o Send/receive message through a Mailbox 

o Remove Mailboxes 

There are four different levels of compliance of this module: 

• Level 0: No RobotCommunicatingPart managed. With this level, only local 

resources are accessible, no communication is possible with other platforms; 

• Level 1: One RobotCommunicatingPart managed. With this level, it is 

possible to have a unique network type, and all platforms, to communicate, 

must be connected through the same one; 

• Level 2: Managing of more, separated RobotCommunicatingPart, with this 

level, it is possible to have more communication channels, each one with a 

separated list of connected platforms that can be reached through the 

channel; 

• Level 3: Managing of more, connected, RobotCommunicatingPart; with this 

level, it is possible to have more communication channels, which one with a 

separated list of connected platforms that can be reached. This is the most 

complex level. Each module acts as a router that is able to take track of 

different platform on different channels  

The Workspace Module has the duty to manage the Workspace of the platform. The 

Workspace is a subset of the RobotPartInterface where the 

RobotCommunicatingParts are removed. It represents all the RobotParts that can be 

actively used by the higher layers to interact with. With this module, an external 

component can register to a topic of a RobotSensingPart or of a RobotActuatingPart 

or call a process of a RobotProcessingPart.  
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The process of registration to a topic is similar to the common Publisher/Subscriber 

pattern, where the first entity does not program to send a message to a specific 

receiver (subscriber), but instead categorize published messages into classes 

without knowledge if there is any subscriber. In a similar way, subscribers express 

interest in a class of message, without knowing if there is any publisher that send 

messages. 

The topic or process (called resource) is expressed in a unique way by means of a 

Link. A link is a string defined as: 

Platform:RobotPartName/Resource 

Where Platform is the platform where the Resource will be searched, 

RobotPartName the name of the RobotPart and finally the Resource the name of the 

Topic or Process of the RobotPart. If the Resource is on the local platform, the 

reserved platform name “local” is used. The division by means of platform is useful 

in the case that similar robots (with analogous RobotParts) are deployed in the 

system. This module has the duties to: 

• Manage the local and remote Workspaces; 

• Manage the publisher/subscriber logic of the different RobotParts 

• Manage the WorkspaceService interface that allows to a higher layer to: 

o List links of local and remote Workspaces; 

o Allow to a higher layer to subscribe to a topic/process through a link; 

o Allow to a higher level to be notified when a new topic/process link is 

added or removed 

The Utility Module provides some functions useful to access to some data and 

functionalities of the Platform. This information could be used to develop some 

accessory utility (such as a web server) that is able to show some information. Its 

only duty is to manage a PlatformUtility interface able to: 

• Print the Properties of the local and remote platforms; 

• Print the list of local connectors; 

• Print the list of local mailboxes; 

• Print the local RobotPartInterface; 

• Allow to act or sense a RobotPart of the local RobotPartInterface 
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• Print a list of events that happened in the Platform; 

• Print the content of the local RobotPart database; 

• Print information related to other connected platform (such as properties, 

connectors, RobotPartInterface and mailboxes). 

In order to be easily elaborated, it is advised to use a structured human-readable 

format such as JSON.  

5.4 The Organization Layer 

The Organization Level is the third level of the infrastructure and the main tasks are: 

• Coordinate the operations of different Organization Layer through the 

exploitation of a common Arbiter 

• Share and follow an Organization Model; 

• Follow the processing of the loaded Mission 

• Assign Roles to available Agents; 

• Keep updated the shared environment. 

Roles that are played in the same Organization Layer creates a so-called Group of 

Roles(GoR). Each Organization can have only one GoR. 

As it is possible to notice, Agents are considered as resources of the Organization 

Layer, which can be assigned to a specific role. The outline of the modules of this 

layer is shown in figure 52, where it is possible to notice five different modules, one 

Knowledge Database and one External model. The Modules are the Coordination 

Manager, the Organization Manager, the Environment Manager, the Agent Container 

Manager and the Organization Utility. The Knowledge Database is the Knowledge 

Tree, that stores a tree structure used to map RobotPart to compatible Roles, while 

the External model is the Organizational Model, that express three fundamental 

aspects of the organization: the Environment, the Roles and the Mission. 
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FIGURE 52 : ORGANIZATION LAYER 

5.4.1 Modules 

The Coordination Manager Module manages the cooperation and coordination of 

different Organization Layers in order to perform joint operations. The coordination 

is performed by a special Organization Layer that acts as an Arbiter, that decides 

the shared model and coordinate the role assignment. Two scenarios are proposed: 

• Static coordination: in this scenario, the role of Arbiter is static and related 

to a specific instance of an Organization Layer. This approach allows to 

simplify the communication procedures between Organization Layers but 

can suffer from bottlenecks and single point of failure.  

• Dynamic coordination: in this scenario, the role of arbiter is dynamically 

assigned to one Organization Layer. This approach requires proper contract 

protocols to allow the joint decision of the Arbiter, and the dynamic 

modification of the shape of the organization.  

More specifically, this module is able to: 

• Coordinate with other Organization Layers differently in two different cases: 

o In case of dynamic organization:  

▪ Choose an Organization Layer instance that will act as Arbiter 

through a contracting procedure; 

▪ Perform and reply to Arbiter requests; 

o In case of static organization: 

▪ Register to the local Arbiter or advertise to be the local 

Arbiter; 
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▪ Perform and reply to Arbiter requests.  

• Manage the flow of information received from and transmitted to the 

Platform Layer to the other modules of the Organization Layer: 

o Addition/removal of RobotParts; 

o Sense/Act from RobotParts associated to agents; 

o Updates to/from the Environments; 

o Messages directed to running agents; 

o Messages directed to the local Organization; 

• Manages some information about the actual organization: 

o Actual local and remote assigned Vacant Roles; 

o Status of the actual mission; 

• Manage the execution of the Joint Task; 

An important figure in the Organization Layer is the Arbiter, a specific Organization 

Layer with some tailored responsibilities: 

• Selection and sharing of a common Organization model; 

• Valuation of local and remote Role proposal; 

• Sharing of the actual status of the ongoing Mission and of the organization, 

In a Dynamic organization, it is not mandatory that all the running Organization 

Layer are able to acquire the Role of Arbiter. For example, memory constraint 

devices (such as microcontrollers) will probably refuse to acquire this 

responsibility.  

The Organization Manager Module manages the assignment and reasoning of 

Roles to local agents. More specifically, this module is able to: 

• Valuate Vacant Roles which requirements are currently met by the local 

infrastructure and propose its assignment to an available Agent. The 

assignment proposal must be accepted from the local Arbiter by sending a 

request to the local Coordination Manager Module. 

• Signal the loss of requirements of a running Role to the local Arbiter by 

sending a request to the local Coordination Manager Module; 

• Request to start and stop agents assigned to roles to a local Agent Container; 

• Receive information and requests from the Coordination Layer Module: 
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o New RobotPart added/removed; 

o New list of Vacant Roles available; 

o Request to start/stop a role; 

o Request to compute the reasoning; 

When a particular event occurs from the Coordination Layer Module, this module 

acts a reasoning process in order to evaluate if it is necessary to take some kind of 

action. Each action must be subsequently accepted by the local Arbiter. The reasoner 

takes as input: 

• The type of event that occurred;  

• The actual Vacant Roles of the Organizational model from the Coordination 

Manager; 

• The Skill Tree model; 

• The available Roles from the different connected Agent Containers; 

And proposes a list of applicable Roles to the local Coordination Manager, that will 

forward it to the local Arbiter. Events can be defined for different aspects such as: 

• Addition/removal of RobotPart; 

• Addition/ removal of available Agents; 

• Addition/ removal of applied Role; 

• Modification of the actual Organization Model. 

The Environment Manager Module keeps updated the shared environment, 

expressed in the Organization model, and the actual status of RobotParts used by 

Agents. The overall requirement of this module is to keep updated the Environment. 

The Environment is composed by two different scopes of visibility: 

o Local Environment: this component is considered local to the single 

infrastructure instance and contains the actual values of connected 

RobotParts. These statuses are used by Agents to modify their 

functioning; 

o Global Environment: this component is shared and synchronized by 

the Arbiter between different instances of the infrastructure. It 

contains information useful to an organizational level: it has the set of 
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regions (with the related actual resources’ value) and the contexts of 

the running Roles, associated to a region. 

The Agent Container Manager Module keeps track of different Agent Container 

connected through the Agent Level and to the associated Agents. These are the main 

duties: 

• Manage the connection of different Agent Containers 

• Assign resources to a newly created agent such as: 

o Functions to provide communication with the Organization Manager 

Module; 

o A communication channel to provide communication to other agents; 

o Access to the shared Environment and to the assigned RobotParts. 

o Provide an AgentContainerService interface to allow Agent Layers 

instances to register and unregister an Agent Container; 

The Organization Utility Module provides some functions useful to access to some 

data and functionalities of the Organization Layer. This information could be used 

to develop some accessory utility (such as a web server) that is able to show some 

information. Its only duty is to manage a OrganizationUtility interface able to: 

• Provide information on the loaded Organizational Model and Skill Tree 

Model; 

• Provide information on the connected Agent Container; 

• Provide information on the local running Roles and related Agents; 

• Provide information about the status of the Environment. 

5.5 The Agent Layer 

The Agent Layer is the fourth and last level of the proposed infrastructure. There 

could be more instances of this level on top of the same Organizational Layer. Each 

instance of this layer possesses these duties: 

• Manage, register and unregister an Agent Container by means of the 

AgentContainerService interface provided by the Organizational Layer. 

• Manage a database of possible Agents that can be assigned to proper Roles.  

• Manage the life cycle of Agents. 
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A representation of the Level is shown in figure 53, where it is possible to notice four 

different modules (Agent Container Module, Agent Executor Module, Agent Factory 

Module and Agent Utility Module) and one knowledge database, which stores Agent 

Models (ADB). 

 

FIGURE 53 : AGENT LAYER 

The first module of the Agent Layer is the Agent Container Module. This module 

has the duty to exploit the interface provided by the Organizational Layer to register 

the Agent Container, and acts as a middleware between the interface and the rest of 

the Agent Layer, by calling functionalities of other modules. 

The Agent Executor Module, is the module that manages and monitors the 

execution of one or more Agents that have a Role assigned. These are the duties of 

this module: 

• Maintain a list of running agents; 

• Assign resources at the creation of the agents, following the model of the 

general Agent showed below; 

• Inspect agents, by monitoring their internal stare and functioning; 

• Start and stop agents, by requesting them to the Agent Factory Module. 

The overall layout of an agent is shown in figure 54. 
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FIGURE 54 : AGENT MODEL 

It is possible to define four different components: 

• Agent Executor: this component manages the life cycle of the agent, which 

is common for agent from different classes. The life cycle is shown in figure 

55. First, the Agent is initialized and reaches the IDLE state. If the agent is 

cancelled agent state is CANCELLED and then it ends its life cycle. If the agent 

from the IDLE state is executed the state becomes RUNNING. In this state, the 

internal logic is executed repeatedly until the agent is stopped, reaching the 

END state, or paused reaching the IDLE state.  

 

 

FIGURE 55 : AGENT LIFE CYCLE 

• Communication Manager: this component takes care of the communication 

channel of the agent to allow reception of incoming messages from other 

agents; 

• Workspace Manager: this component allows the Agent to access to the 

associated RobotParts; 
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• Inspector: this component allows to inspect and monitor the current state 

of the agent. 

The Agent Factory Module is able to read and store internally an Agent Model 

Database in order to create an Agent instance requested from the Agent Execution 

Module when needed.  

Finally, the Agent Utility Module provides some functions useful to access to some 

data and functionalities of the Agent Layer. This information could be used to 

develop some accessory utility (such as a web server) that is able to show some 

information. Its only duty is to manage a AgentUtility interface able to: 

• List current available and running agents, by showing information provided 

by the agent’s Inspector component; 

• Load/unload new Agent Model instances. 

5.5.1 Agent Models 

The models formally designed (but it is possible to develop other kind of agents) are 

the following: 

• Automata: its functioning is based on strict rules called Behaviour; 

• Reactive: its functioning is based on the execution of a Behaviour Tree (BT);   

• Hybrid: its functioning is based on a two-tiered vertical architecture. 

5.5.1.1 Automata model 

In this type of model, the functioning of the agent is highly programmed following a 

set of rules called Behaviour. The agent has different Behaviour that are active at the 

same time and they are able interact with the environment and other agents. The 

structure of the functioning of behaviours are like those defined in [118].  

These are the common rules for Behaviours: 

• It is defined by a unique Name, a Status, a Type and the Execution Code; 

• Its status can be Enabled or Disabled; By default, Behaviours are disabled; 

• A Behaviours can be enabled at the starting phase of an Agent or in the 

execution phase by other Behaviours; 

• A common life cycle, shown in figure 56. After the starting phase, where the 

Behaviour is loaded in the Load phase, it remains in the Idle phase, where it 



Chapter 5: Design and characterization of the middleware of a Multi-Robot System 

  122 

remains disabled. When the Behaviour is enabled it reaches Running state 

after its initialization in the Start phase. When the behaviour finishes its 

operations, the finalization is carried out in the End phase, then the 

behaviour is removed. 

 

 

FIGURE 56 : BEHAVIOUR LIFE CYCLE 

There are different types of Behaviour:  

• SingleShotBehaviour: a Behaviour that is executed immediately, one time; 

• CountdownBehaviour: a Behaviour that is executed delayed, one time. Can 

be stopped before execution of the code; 

• CyclicBehaviour a Behaviour that is executed repeatedly, with a defined 

period. The period can be changed during runtime; 

• EventBehaviour: this type of behaviour is executed each time a bounding 

event occurs such as: 

o New message received from another agent; 

o New Sense data received. 

• SFMBehaviour: This Behaviour defines different States, while one of them is 

the called the Running State. Each time this type of Behaviour is called, the 

Actual State is processed. Inside the State it is possible to alter the current 

Actual State. 

The Behaviour has tailored functions to access to different features during its 

execution:  

• Possibility to act using one of the assigned RobotParts by accessing to the 

agent’s Workspace Manager; 

• Send messages to other agents by name or role by accessing to the agent’s 

Communication Manager; 

• Store/load values that could be used for future executions of the same 

behaviour; 

• Start/stop another behaviour. 
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5.5.1.2 Reactive model 

In this type of Agent model, the functioning of the agent is defined by means of a 

Behaviour Trees (BT). A BT is a mathematical model of plan execution. It has been 

shown in [124] that this type of structure is able to successfully generalize many 

other control architectures such as the Brook’s Subsumption Architecture [18], that 

is the most well-known reactive architecture. Each Behaviour Tree has many 

parameters that can be used to parametrize the execution of the tree. 

The execution of a Behaviour Tree starts to the Root Node which sends ticks to its 

child. A tick is a signal that allows the execution of a child. When the execution of a 

node is allowed a result is provided. The possible results are: 

• SUCCESS: if the node has achieved its goal; 

• FAILURE: if the node failed to achieve its goal; 

• EXECUTION: if the node has not finished yet. 

These are the possible type of nodes: 

• Root Node: this node is unique for each BT, has no parent and just one child, 

this is the entry point of the execution of the BT; 

• Control Flow Nodes: they have one parent and at least one child. It is 

possible to have different type of Control Flow Nodes: 

o Selector Node: this node executes its children with a specified order 

and returns the same result of the first child that returns SUCCESS or 

EXECUTION. If all children fail, the node will fail. It acts as a OR 

operator. 

o Sequence Node: this node executes its children with a specified order 

and returns FAILURE when a child returns FAILURE. It acts as a AND 

operator. 

o Parallel Node: this node executes its children at the same time and 

returns FAILURE when a child returns FAILURE.  

• Decorator Node: they have one parent and one child. This node applies a 

transformation to the output of the connected child. For example: 

o Repeat: repeats the child node a certain number of times. Returns 

SUCCESS when finished. 



Chapter 5: Design and characterization of the middleware of a Multi-Robot System 

  124 

o Limit: controls the maximum number of times that a part of the 

subtree is executed. This node returns SUCCESS until this limit is 

reached. 

o Invert: this node changes the result of the child node from SUCCESS 

to FAILURE and vice-versa. 

o Print: prints a message in a log, useful for testing the node. Always 

returns the return of the child. 

• Task Node: they have one parent and no child and they store the execution 

code of the BT. The features of the execution code are similar to the ones 

provided by a SingleShotBehaviour of an Automata Agent. 

An example of Behaviour Tree is shown in figure 57. In the example, the agent is an 

ASV that must get to a certain position, deploy a ROV and maintain a safe distance 

from it while taking care of the sending of data to a base station. After the end of the 

mission, the ROV is recovered and the ASV returns to the base. 

 

 

FIGURE 57 : BEHAVIOUR TREE EXAMPLE 

5.5.1.3 Hybrid model  

In this type of Agent model, the functioning of the agent is defined by a two-tiered 

horizontal hybrid architecture. A representation of this agent is shown in figure 58. 
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FIGURE 58 : HYBRID AGENT MODEL 

It is possible to notice three main components: the input feed, which considers data 

coming from the Sensors Interface and messages received from other Agents, the 

concrete agent and the output feed, which considers data flowing through the 

Actuators Interface and to output messages to other agents. 

The concrete agent is characterized by two layers that are called “Reactive” and 

“Cognitive”. They have their own purposes and communicate in order to provide an 

internal coordination of the development of each one goals. They follow two 

different agent models: the reactive model and the BDI model. 

It is possible to notice different Knowledge Bases (KB) assigned to different parts of 

the agents. These KBs are included in a unique Agent Definition that is stored and 

interpreted by the modules of the Agent Layer. 

The Reactive Layer acquires directly data feed from the Sensor Component, which is 

used to provide data to one or more Behaviour Trees that are concurrently executed 

in the BT Executor component. Their life cycle is maintained by a component called 

BT Control, which is able to communicate with the higher Cognitive layer to start, 

pause and stop BTs. The BT Executor is called by the BT Control at a fixed rate or 

when a new sensor data is received to perform a new execution of the BTs. The goal 

of this layer is to execute correctly the loaded BTs. 

It is important to notice that this layer can be connected only to the input and output 

related to sensors and actuators. In fact, being a reactive component, its reasoning 

it is based on only the data received from the environment. 
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The allowed Behaviour Trees are maintained in a proper Knowledge Base. Each BT 

is defined by the following information: 

• A unique name; 

• A list of pre-conditions; 

• A list of post-conditions; 

• The behaviour tree itself, expressed in a similar way to the Reactive Agent 

model; 

The pre- and post- conditions are, respectively, facts that must be valid in order to 

execute the BT and facts that will be added in the Cognitive Layer when the BT will 

finish its operations successfully. They are evaluated by the Cognitive layer and 

embedded in the definition of the BT. This layer has no duty to know what these 

statements mean.  

The generated outputs are collected by a filtering module called Inhibitor Module 

that will inhibit some of the overlapping outputs (if any) before sending them to the 

Actuator Component. An output is overlapping with another one if they try to 

control at the same time the same Actuator. This module evaluates different rules 

stored in a proper KB.  

The Cognitive Layer, by the other way, collects filtered information from the Sensor 

feeds and incoming messages from other agents. This data is gathered in a filtering 

module called Attention Module, which can be considered a rule evaluator, like the 

Inhibitor Module. The different Filter Rules are contained in a proper KB. These 

rules are able to modify and generate sets of Beliefs (sentences that the Agent 

considers as true) that are used in the Planner Component. Another input to this 

module are the post-conditions from the BT Executor Module. The Planner 

Component is motivated as a BDI agent. The Beliefs are provided by the Attention 

Module and stored in a proper structure. The fact that the structure is permanent 

but modifiable from the external or the agent itself (representing a sort of memory) 

differs this layer to the Reactive one that acts in relation to just the real-time external 

input. The enabled Desires are a subset of the Goals related to the Role from the 

Organization Model that the agent is currently playing. The KB of this module is 

represented by a list of Plans, which are a set of action that the agent can do in order 
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to achieve one or more if its intentions. Tailored functions in the Plans allows to send 

message to other agents or to communicate with the Reactive Layer to start or stop 

a Behaviour Tree. 

 



   

128 

 

Chapter 6:  Development of the 

infrastructure 

In this chapter, two topics will be discussed: 

• A first concrete implementation of the infrastructure (models and 

middleware). For the middleware the requirements and some structural 

technologies will be introduced; then the implementation of each layer will 

be briefly presented. 

• The description and implementation of a simulation scenario used as a proof 

of concept to test the functioning of the infrastructure. 

6.1 First implementation 

In this section, the first implementation of the infrastructure will be shown. This 

implementation has the following objectives: 

• Implement and test Models and their reasonings; 

• Show the functioning of a prototype of the middleware; 

• Show the implementation of the models related to two types of agents 

(Automata and Reactive). 

6.1.1 Models 

Related to the three models (Robot Part model, Skill Tree model and Organization 

Model) there is no much to add. This information is stored in different text files as 

JSON [125] (JavaScript Object Notation) objects and structures. JSON is a simple 

object serialization approach that has been selected for different positive aspects: 

• Human readable format; 

• Coincide format thanks to named/value pair-based approach; 

• High number of libraries in different languages to automatically serialize and 

de-serialize JSON structures; 
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• Possibility to write a validations schema, but there is no formal grammar 

definition such as XML schemas or DTD. 

6.1.2 Middleware 

6.1.2.1 Employed technologies 

To implement the middleware, the language Java has been chosen, together with 

OSGi (Open Service Gateway initiative) and Apache Karaf technologies. 

OSGi is a framework that usually runs on top of the Java Virtual Machine able help 

the development and deployment of complex, modular software programs and 

libraries. As shown in figure 59 the framework is structured in four layers: 

 

FIGURE 59 : OSGI STRUCTURE 

• L0: Execution Environment: defines which methods and classes are available 

for a specific platform; 

• L1: Modules: an essential feature of OSGi is modularity. This layer allows to 

define encapsulation and declaration of dependencies between Bundles; 

• L2: Life Cycle Management: manages the Bundle life cycle without requesting 

the restart of the VM. This allows to be able to add, remove and update 

Bundle without compromising the entire system; 

• L3: Service Registry: predisposes function to allow bundle to communicate 

between each other’s with a publish-find-bind model. 

A Bundle is essentially a group of Java classes and additional resources made by 

external developers equipped with a detailed Manifest file. The Manifest file is able 

to declare some important feature of the Bundle such as the name, version, the 

activator class (the access point to the Bundle) and imported and exported 

packaged. In fact, OSGi adds a package-wise visibility in the bundles, allowing to 
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other bundles to import packages, usually representing interfaces to the 

functionalities of the Bundle. 

Apache Karaf is a lightweight, powerful and enterprise-ready container that 

implements usually Apache Felix as OSGi frameworks and it has been used as 

container of the whole infrastructure. Some additional features are advanced log 

capabilities, definition of property files in order to provide a configuration of the 

bundle system-wise, a command line to manage the life-cycle of the Bundles and 

additional classes to allow the definition of new console commands. This latter is 

useful to exploit the Utility services provided by the different layers of the 

middleware. 

6.1.2.2 Middleware implementation 

These are the features of the developed middleware: 

• Complete parsing and interpretation of the three models; 

• Arbiter implemented as static arbiter; 

• Allow the connection of different Connectors; 

• Allow the connection of different Agent Containers; 

• Managing of one unique communication channel (Level 1 compliance); 

• No managing of dynamic topology; 

• No managing of remote Robot Parts; 

Using OSGi, the different layers are implemented as separated bundles, deployed 

together inside Karaf following the schema of figure 49. The interfaces between 

layers shown in middleware structure are developed exploiting OSGi services and 

dynamic binding capabilities. This allows, for example, to dynamically unregister 

and register again Connectors and Robot Parts when the Platform component is 

updated, of to automatically register a new Agent Container when a new Agent Layer 

is deployed in the system. 

About the agents, they are also stored in a JSON file that includes the Behaviours of 

an Automata Agent and the Behaviour Trees of a Reactive Agent, incorporating the 

information showed in 5.5.1.1 and 5.5.1.2 . The agent Factory module can read these 

files and to create models of agents that can be created when requested from the 

Agent Executor module. Each agent follows the structure shown in figure 54. The 
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executing part of the Behaviours and of the Task nodes are performed by means of 

Lua scripts embedded in the structure that is processed at execution time by the Java 

code. The script has access to a set functions to send messages to other agents, act, 

sense the environment, store/recall values in memory and so on. In the meantime, 

different sources of information (such as parameters of the agent and of the 

Behaviour or Behaviour Tree), are transferred to the script by means of Lua tables, 

that can be directly accessed from the script. This allows to add, modify or remove 

the agent logic code while the system is running without compromising it. In case of 

a Task node of a Behaviour Tree, it is requested to return the state of its execution 

(SUCCESS, FAILED or PROCESSING). 

6.2 Test of the concrete implementation: model of 

an ASV system for autonomous navigation 

6.2.1 Scenario 

In this scenario, a simulation of the functioning of the ASV shown in paragraph 3.4  

will be implemented. First of all, the three models will be introduced and then the 

actual implementation of the connector and of the agent functioning. 

Reassuming, the scenario regards the modelling of two entities, an ASV and a Ground 

Station. The ASV is composed by different components: a processing board that 

stores the infrastructure and communicates with the other components through a 

unique bus, a rudder that is able to allow the steering to the vehicle, a thruster that 

is able to provide speed to the vehicle, an IMU able to provide orientation 

information and the GPS that can provide the actual position of the vehicle. The 

Ground Station is provided with a GUI to allow the monitoring of the ASV and to 

provide the reference GPS position to the ASV. 

The mission of the agency is to allow the automatic navigation to the ASV by 

reaching the reference point provided by the Ground Station. 
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6.2.2 Models 

6.2.2.1 Robot Part Model 

In the model are defined four different RobotParts: 

• Thruster: represents the electric offboard engine. It is an Actuating 

RobotPart and its only Topic is called “speed”. This topic has just one FLOAT 

parameter called value. 

• Rudder: represents the rudder that is allow the boat to steer. It is an 

Actuating RobotPart and its only Topic is called “angle”. This topic has just 

one FLOAT parameter called value. 

• Gps: represent a device able to provide the position data for the Robot. Is s 

considered a Sensing RobotPart and its only topic is “position”. This topic is 

composed by two FLOAT parameters: latitude and longitude. 

• Imu: represent a device able to provide the orientation data for the Robot. It 

is considered a Sensing RobotPart and its only topic is “orientation”.  This 

topic is composed by three FLOAT parameters: pitch, roll and yaw.  

6.2.2.2 Skill Tree Model 

The Skill Tree Model of the simulation is shown in figure 60: 

 

FIGURE 60 : SKILL TREE MODEL OF THE SIMULATION 

It is possible to notice that there are four decorated roles: 

• ThrusterRole & RudderRole: these roles have one decorated RobotPart 

child each: thruster and rudder, respectively; 

• AsvRole: this role has two decorated RobotPart children: imu and gps. 

• GroundStationRole: this role has no child, if an Agent Container proposes 

this role as available, it will be allocated without any kind of constraint. 
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6.2.2.3 Organization Model 

The Organization Model is the following: 

• Environment: two regions are modelled: Marine and Land. The ASV will be 

inserted in the first environment, while the Ground Station in the second one. 

In this scenario, no Global or Local resources are inserted. 

• Roles: there are 4 roles in the organization: 

o ThrusterRole: the Role Context of the role is composed by a single 

FLOAT argument called Speed, and there is only a behaviour called 

setSpeed that receives as parameter the speed to set. There are no 

Goals, Tasks or Super Roles. 

o RudderRole: the Role Context of the role is composed by a single 

FLOAT argument called Angle, and there is only a behaviour called 

setAngle that receives as parameter the angle to set. There are no 

Goals, Tasks or Super Roles. 

o AsvRole: the Role Context of the role is composed by three FLOATS, 

and there is only a behaviour called GoTo that receives as parameter 

the position (defined as latitude and longitude) to reach. There are no 

Goals, Tasks or Super Roles. 

o GroundStationRole: this role has no Role Context, Behaviours, Goals, 

Tasks or Super Roles. 

• Mission: 

o Vacant Roles: the vacant roles are four, one for each role with a 

minimum and maximum cardinality of 1. 

o Joint Task: in this simple scenario, no joint task is available, because 

the only interaction between agents is through direct message 

sending. In this case the Arbiter doesn’t know directly when the 

mission is completed. 

6.2.3 Connectors 

There is a unique connector that allows to simulate the actuators and sensors of the 

system called SimulatedAsvConnector. This connector is able to generate the four 
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required RobotParts to allow the functioning of the ASV (Rudder, Thruster, Imu and 

GPS) and is able to: 

• Simulate the movement of the ASV by receiving the speed of the Thruster and 

angle of the Rudder and generating the simulated orientation and position 

data; 

• Provide a GUI to allow the monitoring of the simulation, to confirm the 

correct functioning of the system. This simple GUI is shown in figure 61. In 

the centre, the tracking and the actual position and orientation of the ASV is 

shown by means of an arrow marker, while the track done is presented in 

blue. In the bottom of the GUI, some labels show the speed and the angle 

received from the ASVAgent and actual simulated position and orientation. 

During the simulation, data related to the actual position, speed of the 

thruster and angle of the rudder is logged in a tailored text file. 
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FIGURE 61 : SIMULATEDASVCONNECTOR GUI 

6.2.4 Agents 

About the agents, there are two different Agent Containers, providing two different 

set of Agents.  

The first one is called ASVContainer and is able to generate and maintain Automata 

and Reactive agents. The agents that are included are: 

• ThrusterAgent and RudderAgent: these agents are two Automata agents 

that can play the respectively the ThrusterRole and RudderRole roles. They 

are composed by a single MessageEventBehavior that allows to receive the 

information related to speed of the thruster and the angle of the rudder, filter 

it and send an act command to the respective RobotParts; 

• ASVAgent: this agent is implemented as a Reactive agent and can play the 

ASVRole with a Behaviour Tree called “Navigation” that receives, as 

parameters, two floats that identify target latitude and longitude. The BT is 

shown in figure 62. The Behaviour Tree implements the following logic 

through a sequence node: first of all, in the Calculate Task Node the bearing 

and the Distance between the ASV and the target are calculated and stored. 

Then in the Align Task Node the correct alignment with the target is checked 

and performed if the ASV is misaligned by sending messages to the agents 

that play the ThrusterAgent and RudderAgent roles and returning 

PROCESSING as state. When the alignment is performed, the state return 

SUCCESS and the Proceed Task node is executed. This node assigns a speed 

to the thruster proportionate to the distance from the target and resets the 

angle of the rudder. If the distance from the target is less than a fixed value 

the ASV keeps the position by stopping the thruster. If during the Proceed 

phase the ASV loses its alignment, the sequence allows to give predominance 

to the Align Task Node. 
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FIGURE 62 : BEHAVIOUR TREE OF THE ASVAGENT 

The second container is called GroundStationContainer and is able to generate one 

type of custom agent, named GSAgent, which is able to play the GroundStationRole 

role. This role is provided with a simple GUI (shown in figure 63) which allows to 

monitor the status of the underlining agent, to send a message to the ASVAgent 

concerning the GPS coordinates to acquire and to show the status of the shared 

environment. 

 

FIGURE 63: GROUND STATION GUI 

6.2.5 Simulations 

Some simulations were performed by exploiting a single Karaf instance and 

deploying the developed middleware, the simulated ASV Connector and the two 

Agent Containers, one for the Agents related to the ASV, and one for the Agent of the 

Ground Station.  

At the start of the infrastructure the RobotParts are correctly registered to the 

system, the models loaded and the Agent Containers are ready to start new agents. 

When the Organizational Model is loaded and parsed, the four agents are requested, 

with the correct RobotParts associated to them. 

An external Bundle is able to communicate through the Utility Modules of different 

Layers of the Middleware and to provide command through the Karaf command 
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interface to monitor the current values in the Environment, the status of the running 

roles and the status of the connected RobotParts. 

With the GUI of the Ground Station it is possible to set a new target point for the 

ASVAgent by sending the request of a new behaviour to it. At the reception of the 

request, a proper Behaviour Tree is created and executed by the ASVAgent, 

following the Behaviour Tree shown in figure 62. This BT is repeatedly executed 

until the requested point is reached. In a more complex scenario, this tree could be 

just one of the running Behaviour Trees, or a sub tree of another one. 

One of the simulation result is shown in figure 64. The target position is indicated 

with the red circle. 

 

FIGURE 64 : GUI DURING THE SIMULATIONS 
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FIGURE 65 : DATA ACQUIRED FROM SIMULATIONS 

The results of the simulation shown in figure 65 show that the navigation algorithm 

implemented through the reactive agent that uses BTs can successful reach the 

requested GPS position. In the figure it is possible to notice that the distance 

diminishes until the dead zone value is obtained and the speed of the thruster is 

zeroed after less than 800s. In the first part of the algorithm the vehicle rapidly 

aligns and then approaches with the target by regulating the rudder angle and speed 

in relation to the distance.  
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Chapter 7:  Conclusions 

7.1 Thesis review 

In Chapter 1 a state of the art of different arguments related to the main topic of this 

dissertation has been introduced. From the analysis of ontologies for single-robot 

and multi-robot systems, models of agents, of Multi-Agent Systems characterization 

and of researches about specifications and features of the environment a solid 

terminology and knowledge of this field of study was collected. Starting from the 

technologies presented in Chapter 3 different ideas were taken to shape and design 

the infrastructure presented in chapter 4 and 5. The DocuScooter presented the 

requirement to express in a formal way different third-party technology that could 

be attached by means of a model able to express not only the type of device but also 

the type of data exchanged, in a similar way to the concept of RobotPart introduced 

in the infrastructure. With OpenFISH, inside the laboratory we started to design a 

first version of multi-agent system divided in two vertical layers: a lower one that 

could be compared with the Connector Layer of the architecture and a higher one 

that implements the NGC logic. Another important aspect was the designing of the 

mission by means of an interpreted language, in the same way the Joint Task and 

Agents are designed. In the Home Automation System, a focus was put in the 

formalization of agents and of the resources of environment. The MAS for a general 

purpose ASV has been another good example of custom, general purpose MAS based 

on ROS, where the agent were shaped as Automata agents. In Chapter 4 the first 

component of the infrastructure has been presented: a set of three models able to 

express the components of the robots, how the robot can use these components and 

how the robot can coordinate with other robots in a shared environment. In Chapter 

5 the second component of the infrastructure is presented: a four-layered vertical 

middleware model. The model proposes a set of guidelines, requirements and duties 

of each layer hat can be implemented using different technologies and for different 

situated robots. It is possible to be compliant up to different degrees for each 

component and the usage of interfaces enables easy interoperation between 
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different robots. Finally, Chapter 6 presents a first and partial implementation of the 

infrastructure using Java and OSGi, by providing a ground to develop a first 

simulated scenario composed by an ASV with different, autonomous components 

that must be able to coordinate with a ground station to reach a given position.  

7.2 Realization of objectives 

The two main objectives of this dissertation have been achieved.  

In the first part (Chapter 2 and 3) of the dissertation a wide analysis of the state-of-

the art related to robots, MAS and related concepts is presented together with 

technologies that influenced the following development. 

In the second part of the dissertation (Chapter 4, 5 and 6), three models and the 

layout of the architecture which allows the control of the whole MRS has been 

introduced, implemented and partially tested in a simulated scenario. 

7.3 Future steps 

Future improvements on the infrastructure could be considered on three different 

aspects: models, middleware and implementation. 

About the models, a refactoring could be made especially for the Organization 

Model, when considering more complex and general scenario. For example, a 

deepened importance should be given to the Environment, implementing, as 

instance, laws (expressed in logical language) able to manage and control the 

resource allocation by means of the Arbiter. Up to now, how resources are used and 

shared are a responsibility embedded by the single agents or the Arbiter, but no 

standardization is given to how the resource are allocated. Another kind of 

consideration could be made for the Mission part of the model. At the moment, for 

example, there is no strict specification and language for the Joint Task.  

About the middleware, a refactoring should be conducted to better specifies some 

aspects of it such as managing of the communication channel with tailored protocols 

to maintain a dynamical topology of the network through different 

RobotCommunicatingParts while a study should be conducted about the Arbiter 
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managing by implementing more robust contracting algorithms to manage Arbiter 

disconnection and information update in a dynamic organization scenario. 

The actual implementation is not at full potential, a lot of component should be 

refactored and enhanced by following the modifications of the structure of models 

and middleware such as provide better reasoning by evaluating performance of 

different agents, better communication and middleware manager modules and 

implement the Hybrid agent model. Moreover, a lighter version of the middleware 

could be designed aimed for memory constraint devices, which could be anyway 

able to communicate with more complex and complete instances of the 

infrastructure. Finally, an important step will be the actual implementation of the 

designed technologies in tailored simulation, concrete vehicles by implementing a 

wire amount of connector in order to have access to a wide number of available 

hardware.
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