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Abstract

Over recent years, the improvement of Computational Intelligence tools has led
to the development of industrial techniques for monitoring conditions both for
processes and single devices. Each monitored system has its peculiar charac-
teristics, so each monitoring solution must be adapted to the specifics of the
case. The present thesis forms part of this scenario with the aim of propos-
ing innovative solutions for condition monitoring of industrial systems by ex-
ploiting Machine Learning techniques. The flexibility and versatility of these
techniques make it possible to develop customized solutions for each problem.
In this work, different case studies coming from industrial contexts have been
addressed and for each one the most appropriate Machine Learning tools have
been selected, with the purpose of developing effective solutions for the spe-
cific condition monitoring problem. The proposed solutions want to represent
an improvement from those currently employed in the industrial procedure by
applying Machine Learning techniques in new industrial contexts.

Firstly, a new system for monitoring the operating conditions of pulverized
coal burners employed in a coal fired power plant is developed with the aim
to determine if the whole combustion system is working properly under the
most energy efficient conditions. This part of the work begins with the inves-
tigation of Machine Learning techniques to provide a solution for non-invasive
estimation of the coal powder particle size. The particle size estimation forms
the foundation of the proposed method. Further research exploited heteroge-
neous data from similar but not same application, thus delivering more accurate
modelling. With the aim of improving the implementability of the method by
reducing the number of observations needed, the problem of particle size es-
timation has been reviewed in the form of a classification problem, therefore
the previously implemented Machine Learning algorithms have been appro-
priately modified and adapted to solve a classification problem. Finally, the
classification-based algorithms have been used to develop a complete monitor-
ing system.

Fault detection for roller bearings is another industrial relevant problem that
has been tried to solve using a machine learning approach similar to the previ-
ous case. In particular a classifier based on Support Vector Machine has been
developed to detect and classify different types of faults. Real experimental
data has allowed development of a fault detection system that exploits the
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time-frequency analysis and image analysis, and the obtained results proved
its suitability for both stationary and non-stationary operating conditions of
roller bearings.

The last case study proposed is a novel unsupervised method to detect faults
in DC electric motors during quality control at the end of the production line.
The proposed scheme uses a novelty detection approach consisting in using of
a Denoising Autoencoder network for modelling the normality condition of the
motors without faults, with the purpose of distinguish from this background
the motors with faults that do not respect the quality requirements.

The results obtained with tests on experimental data demonstrate the va-
lidity of the solutions developed for each addressed case study, applicable for
the implementation of monitoring systems for industrial processes and devices
devoted to quality check and equipment maintenance.

viii
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Chapter 1

Introduction

This thesis is intended to study new applications for Machine Learning tech-
niques developed over the years in order to design for specific industrial prob-
lems effective solutions that can represent an improvement on the existing
standard procedures.

In the past decades, the industrial processes have been subjected to a rapid
evolution, with new standard requirements to meet in order to ensure the high-
est quality level to the final user. At the beginning of the industrial era, during
the so called first industrial revolution, the goal for every system designer was
to develop systems able to make products at the lowest cost, however over the
years, new fundamental aspects have emerged. These include workers safety,
quality of the products and energy consumed. Nowadays in the fourth in-
dustrial revolution, with the increasing demand of production quality, system
performance, economic and energetic requirement, the industrial processes are
becoming more complicated in both structure and degrees of automation. The
reliability and safety issues on complex industrial processes have became more
critical for system design. In response to these new tasks, the attention of both
industrial and academic research has started to focus on two important aspects
for providing valid solutions to the raised issues: the maintenance process and
the quality control.

The maintenance process aims to preserve the original features of a system
for its all life cycle. Many strategies can be adopted for maintenance pur-
pose, and among them the Preventive Maintenance (PM) [2, 3] strategies are
the most efficient to reduce the failure rate of the equipment because they in-
volve the performance of maintenance activities prior to the failure. In the last
years a new strategy of PM based on Condition-based Maintenance (CBM)
[4, 5] is emerging aimed to maximise the effectiveness of PM decision making
by recommending maintenance operations based on the information collected
through condition monitoring process. In CBM, the equipment status is moni-
tored through its operating condition, which can be measured based on various
monitoring parameters, such as vibration, temperature, pressure, and noise
levels. The CBM goal is to detect the signs that precede device failures or

1



i

i

“thesis” — 2018/2/13 — 9:38 — page 2 — #16
i

i

i

i

i

i

Chapter 1 Introduction

breakdowns and to alert for the incoming fault. The foundation of CBM is
the Condition Monitoring (CM) process, that analyses signals from sensors
installed on the working component. In this way, CBM performs a real-time
assessment of equipment conditions making smart decisions about maintenance
activity, consequently reducing unnecessary maintenance and related costs.

If, from one side, maintenance process aspire to conserve the system char-
acteristics during its working life, from the other side quality control has the
purpose of assuring that since the production these characteristics are within a
strict specification range. Quality control is a process by which entities review
the quality of all factors involved in production, and it is a part of quality
management focused on fulfilling quality requirements. In other words, quality
control is a continuous check, along or at the end of production line, aimed to
monitor the conditions of produced products

The CM is then a cross aspect for maintenance and quality assurance, and
a complete CM system can provide a useful solution to both issues. Many
works presented in literature have proposed the CM as adequate method for
process monitoring in order to improve reliability, quality, and productivity in
industry [6, 7, 8]. CM techniques are continually evolving by embedding latest
technological advances and computer technology is supporting the development
of both hardware and software. Moreover, under the push of Industry 4.0 more
and more industrial systems have been embedding complex monitoring and
metering solutions that provide a great amount of experimental data. Recent
developed methods have been exploiting the new data availability to train
expert system based on Machine Learning (ML) [9] techniques and use them as
tools for improving the performance of monitoring systems. These techniques
develop an intelligent monitoring system, which aims to provide a conditions
and quality control similar to human decision making.

1.1 Literature Survey

ML techniques have been widely exploited by many contributions to deal with
condition monitoring problems. For this reason, an overview on the recent
researches proposed in literature is fundamental to understand the context in
which the industrial solutions proposed in this work have been developed. In
the following, a survey on the most popular ML technique employed for the
condition monitoring is reported.

Among the solution for industrial CM systems, the Artificial Neural Networks
(ANN) is undoubtedly one of those techniques that have raised a strong interest.

Ghate and Dudul [10] developed a simple and economical fault detection
scheme for small and medium sizes three-phase induction motors. The pro-
posed method uses a cascade connection of multilayer perceptrons ANN with
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1.1 Literature Survey

Radial Basis Function as activation function. In this scheme, stator current
is captured, and simple statistical parameters of current waveform are used as
network inputs to detect the conditions of motor. Also other works dealt with
the fault detection problem for induction motors and provided valid solutions
with ANN-based algorithms [11, 12].

An evolution of classic ANN was used by Jia et al. [13] to design a new
method for intelligent diagnosis of rotating machinery. Through deep learning,
deep neural networks (DNNs) with deep architectures, could be established
to mine the useful information from raw data and approximate complex non-
linear functions. Based on DNNs, a novel intelligent method is proposed and
its effectiveness is validated using datasets from rolling element bearings and
planetary gearboxes.

In a completely different field of application, Fast and Palmé [14] created an
online system for condition monitoring and diagnosis of a combined heat and
power plant. The system in question consisted of ANN models, representing
each main component of the combined heat and power plant, connected to a
graphical user interface. The ANN models were integrated on a power genera-
tion information manager server in the computer system of the combined heat
and power plant. The proposed method obtain accurate predictions from the
ANN models on experimental data from a working power plant.

An ANN based method is developed by Tian [15] for achieving more accurate
remaining useful life prediction of equipment subject to condition monitoring.
The ANN model takes the age and multiple condition monitoring measurement
values at the present and previous inspection points as the inputs, and the life
percentage as the output. A validation mechanism is introduced in the ANN
training process to improve the prediction performance of the ANN model. The
proposed ANN method is validated using real-world vibration monitoring data
collected from pump bearings in the field.

The Support Vector Machine (SVM) is another CI technique that gained its
relevance among the solution for CM [16]. Particularly, the One Class SVM
(OC-SVM) has been used by many works to provide an unsupervised method
for CM and fault diagnosis.

Yang et al. [17] performed condition classification of small reciprocating
compressor for refrigerator using SVM. In this paper, wavelet transform and
statistical method were used to extract salient features from row noise and
vibration signal. Moreover, iteration method was employed to select the proper
RBF kernel parameters in SVM.

Another research was conducted by Han et al. [18] for hot spot detection in
power plant boiler air pre-heater based on Least Squares SVM. In this system,
discriminate models of 3 pairs of fire status have been built based on Least
Squares SVM using RBF kernel and polynomial kernel. The hyper parameters

3
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Chapter 1 Introduction

of classifiers were tuned by leave-one-out cross validation. Receiver operating
characteristic curve showed that Least Squares SVM has good classification
and generalization ability.

In another research concerning CM for rotating machines, Jack and Nandi
[19] performed fault detection of roller bearing using SVM and ANN. They used
vibration data taken from small test rig and simulate the bearing condition,
which has four faults: inner race fault, outer race fault, rolling element fault and
cage fault. They defined and calculated statistical features based on moments
and cumulants and selected the optimal features using genetic algorithm. In
the classification process, they employed SVM using RBF kernel with constant
kernel parameter.

Above the well-know ANN and SVM, others techniques have been success-
fully employed for the monitoring purpose.

The Canonical Variant Analysis has been used by Ruiz-Cárcel et al. [8] to
design a method that merges process data and vibration features to improve
the detectability of mechanical faults in systems working under varying oper-
ational conditions. Their results show how CVA is able to detect changes in
selected vibration, current and pressure features during the test, distinguishing
deviations from normal operation even under operational conditions that were
not considered in the training period.

The article proposed by Kruger et al. [20] presents an extension to the
standard Partial Least Squares (PLS) algorithm, referred to as Extended-PLS,
which leads to the definition of new PLS scores, denoted as generalized scores.
This approach is capable of detecting abnormal process conditions that mani-
fest themselves in process response variables as well as predictor variables, even
when no process feedback is present.

Allen et al. [21] presented a novel method of monitoring the health of heat-
ing ventilating and air conditioning equipment. Fuzzy Logic techniques were
demonstrated to monitor the health of a variable air volume unit and to create
a fault signature for each individual fault type. A health monitor fault clas-
sification neural network was also demonstrated to recognize and classify the
fault signature.

Two computational intelligence algorithms, i.e. Particle Swarm Optimization
and Bacterial Foraging Optimization, have been used to detect a developing
induction motor stator winding fault by Ethni et al. [22]. The condition moni-
toring method is based on the comparison of measured machine stator currents
with those obtained from a machine mathematical model, and then using the
algorithms to minimise the resulting error function. The two algorithms have
been shown to be effective in determining the winding fault type and location.

A different method that applies many ML techniques for condition monitor-
ing and fault detection is the Novelty Detection approach. During the past

4
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years, many research works have proposed application for this approach to
address different industrial monitoring problems.

Carino et al. [23] presented a condition-based monitoring methodology based
on novelty detection applied to industrial machinery. The proposed approach
includes both the classical classification of multiple a priori known scenarios,
and the detection capability of new operating modes not previously available.
The posterior combination of a feed-forward ANN and OC-SVM machine allows
the proper interpretation of known and unknown operating conditions.

The Gaussian Mixture Model (GMM) was used by Filev et al. [24] to present
a practical framework for autonomous monitoring of industrial equipment based
on novelty detection. The approach utilizes unsupervised learning techniques
to continuously learn the necessary parameters needed to identify a significant
change in the pattern of monitored features. The input to the evolving novelty
detection model is a feature vector that characterizes the status of monitored
equipment. The model of the feature space is essentially a set of evolving GMM
which are dynamically updated as new feature vectors become available through
continuous monitoring. This approach proved its efficacy on experimental data
of two accelerated bearing failure.

Wang and Jiao [25] a non-linear quality-related fault detection approach is
proposed based on Kernel Least Squares (KLS) model. The proposed method
uses a non-linear projection function to map original process variables into
feature space in which the correlation between feature and output matrices
is realized by means of KLS. Then, the feature matrix is decomposed into
two orthogonal parts by singular value decomposition and the statistics for
each part are determined appropriately for the purpose of quality-related fault
detection.

The SVM is used also by Clifton and al. [26] in a method that calibrates
the novelty scores output by the one-class SVM into estimated posterior class
probabilities, where special care was required due to the one-class formulation,
utilises the probabilistic nature of the result to define a novelty threshold with-
out the need for the conventional validation set, and proposes a procedure for
determining other SVM parameters.

In addition to the present survey, in each chapter that expose one of the
industrial issues addressed in this thesis, a more detailed literature is reported
in a dedicated paragraph.

1.2 Thesis Outline and Contribution

Although there are common issues for the various scenarios, each monitoring
solution needs to be customized for the specific analysed system by taking into
account the available resources for the monitoring. Each case brings with it
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Chapter 1 Introduction

different problems due to the working environment of the system, the operating
conditions, and the time under work. In other words, each condition monitoring
solution must be able to use the analysis tools made available by the technology
and to make them fit the particular problem dealt with.

As aforementioned, the works presented in this thesis aim to propose new
applications of ML tools to solve specific industrial issues. The starting point of
each proposed study has been a problem raised in a particular industrial field,
for which there was the necessity to find a more effective solution than those
already available. The solution development explained in this dissertation is
based on the available experimental data for the process under examination
and uses signal processing tools and ML techniques to implement new data-
driven monitoring methods that could provide the information needed for the
control of these processes. The outline of the thesis is the following.

An overview of the Machine Learning techniques adopted for the condition
monitoring is presented in Chapter 2 concerning the following methods: Artifi-
cial Neural Networks, Autoencoders (AE), Support Vector Machines, Support
Vector Regression (SVR), One-Class Support Vector Machines, and Extreme
Learning Machines (ELM).

One of the proposed monitoring solution is based on the case study of a
monitoring system, named POWdER, which performs the estimation of the
coal powder size in a non-invasive way. The data collected by this system have
been used to lead on the research activities concerning this solution, and in
Chapter 3 an overview of this system is proposed together with the description
of the datasets employed for the studies.

The development of an effective method for condition monitoring based on
particle size analysis has started from the study of the most suitable ML tech-
niques for this task. In Chapter 4 SVR, ANN and ELM will be used and
compared for the estimation of particle size. The available data for the study
are limited in quantity, for this reason a solution for the use of data acquired
from different sources will be presented.

The previously proposed algorithms have been modified and used to perform
the particle size classification, in order to provide a solution that does not need
reference targets for the model training. In Chapter 5 a condition monitoring
approach suitable for coal fired power plant is proposed. This approach use the
particle size classification as an indication of the operating state of a monitored
boiler burner where the combustion of the powdered coal takes place. The re-
sults shows that the powder size classification is suitable to face the monitoring
task for a boiler burner.

Some experimental tests have been conducted to explore a different context
for the application of ML techniques for monitoring. A common problem for
many industrial devices are connected with the faults related to basic device
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1.2 Thesis Outline and Contribution

components, therefore a fault detection method for rolling bearing is reported
in Chapter 6. A SVM- based algorithm is proposed to provide a fault detection
and classification for both stationary and non-stationary working conditions.

A novelty detection based approach for the identification of faulty DC mo-
tor during the en-line check is presented in Chapter 7, Autoencoder ANN and
One-Class SVM, are exploited to characterize the normality condition, or back-
ground. The validity of the approach is confirmed by the achieved results,
proving its suitability for the end-line quality control. The two algorithms are
compared and the Autoencoder emerged as the best one.

The main findings of this research related to the case studies are presented
in Chapter 8.
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Chapter 2

Background

2.1 Neural Networks

In order to mimic the brain capabilities a first model of artificial neuron, namely
Threshold Logic Unit (TLU), has been proposed by McCulloch and Pitts et

al. [27]. After many years, inspired by the biological neuron, Figure 2.1, the
original idea has been improved to accomplish the nowadays artificial neuron
model illustrated in Figure 2.2.

Figure 2.1: Biological multipolar neuron.

As the biological neuron, the artificial one presents the same fundamental
parts:

9
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Chapter 2 Background

• dendrites: propagate the electrochemical stimulation received from other
neural cells to the cell body, or soma;

• cell body (soma): sum all the received electrochemical stimulations;

• axon: reached a certain potential conducts the electrical impulses away
from the neuron’s cell body.

x3 w3 Σ f

Activation
function

y

Output

x1 w1

Weights

x2 w2

xi wi

xn wn

Bias
b

Dendrites Cell body
(Soma)

Axon

Figure 2.2: Artificial neuron.

Therefore, considering the general representation of an artificial neuron, Fig-
ure 2.2, with Nc input connection, its output state, y, is given as:

y = f





Nc
∑

j=1

Wj · Xj − b



 , (2.1)

assuming W0 = −b and x0 = 1, is obtained the generic formulation below: Nc

input connection, its output state, y, is given as:

y = f





Nc
∑

j=0

Wj · Xj



 , (2.2)

where W and X are the weight and input vectors, respectively, and f is the
activation function (e.g., linear, sigmoid, etc.).

In a typical Neural Network (NN), without feedback connections (feedfor-
ward), the neurons are organized in layers, characterized by a fixed number of
parallel neurons. Specifically, in each layer the neurons share the same inputs,
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2.1 Neural Networks

but not the weights, and these are connected with the outputs of the previous
layer neurons. In the first layer, the inputs correspond to the system inputs.
In the same way, for the last layer the number of outputs, thus the neurons
number, is set by the system outputs. Therefore, assuming a network with M

layers and Nl neurons in the l-th layer, with l = 1, . . . , M , the description of the
output state for the k-th neuron in the l-th layer, y

(l)
k , is obtained reformulating

the equation (2.2) in:

y
(l)
k = f





Nl−1
∑

j=0

W
(l)
kj · X

(l)
j



 , (2.3)

where W and X respectively become the weights and the inputs matrices.
In particular, W

(l)
kj represents the weight adopted by k-th neuron into the l-th

layer and applied at the j-th input. X
(l)
j represents the j-th input value for

the neurons in the l-th layer. Consequently, for the first and the last layer it is
assumed that:

x =
[

X
(1)
0 , . . . , X

(1)
N1

]

, y =
[

y
(M)
0 , . . . , y

(M)
NM

]

, (2.4)

where x and y are the input and output data vectors, respectively.

Different activation functions can be chosen for the neurons: hyperbolic tan-
gent, unipolar and bipolar sigmoid, and a set of radial basis functions. In the
experiments, the unipolar sigmoid function has been used:

1
1 + e−x

, (2.5)

During the training process, the weights W are updated with the Backprop-
agation [28] algorithm. The standard structure selected for the tests uses one
input layer, two hidden layers and one output layer. For each test, in order
to select the best configuration, the number of hidden layers nodes have been
varied, from 50 to 100 for the first layer and from 30 to 80.

The analysis with the ANN have been performed by using a proper imple-
mentation of the algorithm running on MATLAB®.

2.1.1 Autoencoders and Denoising Autoencoders

Generally speaking, an autoencoder [29] is any neural network trained to get
target values equal to input ones: x = y. Specifically, given a generic input
x ∈ R

n, the goal of the autoencoder is to first map the input with an encoder
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Chapter 2 Background

to an hidden representation z ∈ R
m, as:

z = f(W1 · x + b1), (2.6)

where f is a non-linear activation function (e.g. tanh or sigmoid), W1 the
weight matrix, and b1 the bias vector. This level of representation, y is then
mapped back into a reconstruction y of the same shape of x, as:

y = f(W2 · z + b2), (2.7)

where W2 and b2 denote the weight matrix and the bias vector of the reverse
mapping, respectively. y is seen as a prediction of x, give the code z.

Given an input set of examples X autoencoder training consists in finding pa-
rameters θ = {W1, W2, b1, b2} that minimise the reconstruction error, which
corresponds to minimising the following objective function:

O(θ) =
∑

x∈X

‖x − y‖
2
, (2.8)

The minimization is usually realised by stochastic gradient descent or Adam
algorithm [30].

Different type of configurations can be obtained by varying the size and
the dimension of the hidden representation, thus layers and neurons number.
Among the state-of-the-art applications, the Denoising Autoencoder (DAE)
[31] and the Compression Autoencoder (CAE) are ones of the most adopted
configurations.

Figure 2.3: Structure of the Denoising Autoencoder [1].

Denoising autoencoders are characterized by the use of a corrupted training
sequence, in order to force the hidden layer to learn robust features and prevent
it from learning the identity. Typically, a DAE is composed of multiple hidden
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2.2 Support Vector Machines

layers that have a number of neurons greater than the input one, as the Fig-
ure 2.3 shows. The initial input x is corrupted by means of additive isotropic
Gaussian noise in order to obtain: x′|x ∼ N(x, σ2I). The corrupted input x′

is then mapped, as with the basic autoencoder, to a hidden representation:

z′ = f(W1
′ · x′ + b1

′), (2.9)

from which we reconstruct a the original signal as follows:

y′ = f(W2
′ · z′ + b2

′), (2.10)

The parameters θ′ are trained to minimise the average reconstruction error
over the training set, to have y′ as close as possible to the uncorrupted input
x which corresponds to minimising the objective function in (2.8).

The tests with DAE have been carried out by using the Keras API [32],
written in Python and running on Theano.

2.2 Support Vector Machines

Support Vector Machines [33] are binary classifiers that discriminate whether
an input vector x belongs to class +1 or to class −1 based on the following
discriminant function:

f(x) =
N
∑

i=1

αitiK(xi, x) + d, (2.11)

where ti ∈ {+1, −1}, αi > 0 and
∑N

i=1 αiti = 0. The terms xi are the “support
vectors” and d is a bias term that together with the αi are determined during
the training process of the SVM. The input vector x is classified as +1 if
f(x) ≥ 0 and −1 if f(x) < 0, given by the separation hyperplane, as depicted
in Figure 2.4, defined by the "support vectors".

The kernel function K(·, ·) can assume different forms [34], common ones are
the linear, the polynomial, and the Gaussian. Specifically, the linear one is
defined as:

K(xi, xj) = xi
T xj + c , (2.12)

that gives the inner product between xi and xj plus an optional constant c.
This is the simplest kernel function that provide a separation hyperplane only
for linearly separable vectors. By considering the case of non-separable data, a
non-linear kernel is needing to provide an optimal hyperplane. The Gaussian
kernel is an example of Radial Basis Function (RBF) kernel, which is defined
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Chapter 2 Background

Figure 2.4: Example of SVM separation hyperplane with linear kernel.

as:

K(xi, xj) = exp
(

−γ‖xi + xj‖
2
)

, (2.13)

where γ plays a major role in the performance of the kernel. If underestimated,
the function will lack regularization and the decision boundary will be highly
sensitive to noise in training data. On the other hand, if overestimated, the
exponential will behave almost linearly and the higher-dimensional projection
will start to lose its non-linear power. The γ parameter is determined by per-
forming the grid search approach to find the optimal value, within the following
range: γ =

[

2−5, 2−4, . . . , 23
]

.

All the experiments have been performed using the tools provided by LibSVM
[35], a library for Support Vector Machines running on MATLAB®.

2.2.1 Support Vector Regression

The Support Vector Regression (SVR) [36] approach, or SVM regression, is
derived from the SVM [33] technique. Its goal is to find the function f(x)
that represents the target outputs with a maximum deviation ε, and, at the
same time, is as flat as possible. Therefore, deviations lower than ε are not
considered as errors, however, higher deviations are not allowed.

Differently from SVM, the solution of a linear model (in the feature space)
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2.2 Support Vector Machines

for the SVR is obtained starting from a dual optimization problem, given as:

maximize

{

1
2

∑l
i,j=1 (αi − α∗

i )
(

αj + α∗

j

)

K(xi, xj) ,

−ε
∑l

i=1 (αi + α∗

i ) +
∑l

i=1 (αi − α∗

i ) ,

subject to

{

∑l
i=1 (αi − α∗

i ) = 0 ,

αi, α∗

i ∈ [0, C] ,

(2.14)

to obtain:

f(x) =
N
∑

i=1

(αi − α∗

i ) · K(xi, x) + d, (2.15)

where αi, α∗

i are determined during the training process, and C > 0 represents
the trade-off between the flatness of f and the amount up to which deviations
larger than ε are tolerated.

Also for the SVR, the experiments have been performed using LIBSVM li-
brary. The experiments have been carried out by using the C and γ parameters
chosen by performing the grid search approach within the ranges:

C =
[

20, 21, . . . , 28
]

, γ =
[

2−5, 2−4, . . . , 23
]

, (2.16)

2.2.2 One-Class Support Vector Machine

In the One-Class Support Vector Machine (OC-SVM) theory [37], in order to
separate the data set form the origin, the following quadratic problem has to
be solved:

min
w∈F,ξ∈Rl,ρ∈R

1
2

‖w‖2 +
1
vl

∑

i

ξi − ρ ,

subject to (w · Φ(xi)) ≥ ρ − ξi, ξi ≥ 0 ,

(2.17)

to obtain the decision function:

f(x) = sgn

(

∑

i

αi · k(xi, x) − ρ

)

, (2.18)

where ν ∈ (0, 1), xi denotes the i-th Support Vector (SV) and k(·, ·) represents
one of the kernel presented above.

The function f returns +1 in the “small” region where most of the data
points fall and −1 everywhere else. The strategy is to map the data into a
features space corresponding to the kernel and to separate the data from the
origin with the maximum margin. For a new point x, the value of f(x) is
determined by evaluating on which side of the hyperplane of the features space
x falls, as depicted in Figure 2.4.
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Chapter 2 Background

2.3 Extreme Learning Machine

Extreme Learning Machine (ELM) has been presented by Huang et al. [38] as
a fast learning algorithm for single hidden layer feedforward neural networks
(SLFNs). Differently from standard ANNs approaches, the input weights are
randomly generated and the output ones are tuned by a least-square method.
In later work [39], an unified solution for regression, binary, and multi-class
classification has been presented. Specifically, given a set of pairs (xi, ti), i =
1, · · · , N , where xi ∈ R

L is the training data, and ti ∈ {−1, 1} denotes the
corresponding label, the output function of the ELM for regression is computed
as:

f(x) = h(x)HT

(

I

C
+ HHT

)−1

T, (2.19)

where h(x), namely the feature mapping, denotes the hidden layer output for
the corresponding input x, and C is the regularization coefficient, whereas the
matrices H and T denote the hidden layer output matrix and the input labels
matrix, respectively.

Moreover, a kernel-based approach has been also proposed [38] if a feature
mapping h(x) is unknown. Differently from the standard ELM, the number of
hidden neurons must not be known in advance, and the output relation (2.19)
becomes:

f(x) =









K(x, x1)
...

K(x, xN )









T

(

I

C
+ Ω

)−1

T, (2.20)

where K(·, ·) denotes the chosen kernel function, and Ω defines the kernel
matrix, so that Ωi,j = h(xi) · h(xj) = K(xi, xj). In this study the RBF kernel
has been evaluated, as for SVM Section 2.2. Also in this case the optimal γ

parameters for the kernel are calculated by performing the grid search approach,
within the same range of SVM in (2.16).

The MATLAB® code of ELM with kernels provided by the algorithm devel-
opers has been used to perform the algorithms evaluation.
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Chapter 3

The POWdER System

The POWdER system[40] is a particle size monitoring system used as case
study for this thesis. The experimental data collected by this system have
been used to develop a solution for condition monitoring of boiler burner used
in an industrial power plant, as reported later in Chapter5.

3.1 Acquisition System

The POWdER system has been installed on the burners feeding ducts of two
different industrial power plants. This system continuously monitors Acoustic
Emission (AE) produced by coal powder impacting on the inner surface of the
duct where its is conveyed. The AE signals are processed and used to provide
an estimation of the size of coal powder. The POWdER sensors are installed
near a duct curve because in this point there is the highest probability that the
particles hit the surface of the duct and generate the AE. The curve is the final
part of a feeding duct that carries the coal powder from mill to the burners in
the boiler. In Figure 3.1 the scheme of a typical installation of AE sensors on
a plant is sketched; the mill that grinds the coal, the feeding ducts that carry
the coal powder and the boiler where the coal combustion occurs are shown.
Instead in Figure 3.2 an example of a real POWdER installation is shown.

The size of coal powder is expressed with Particle Size Distribution, a list
of values that defines the relative amount, typically by mass percentage, of
particles present in a sample according to size. It is given in terms of mesh, a
measurement of particle size often used in determining the PSD of a granular
material. Within an industrial plant, the most used approach to measure PSD
is the sampling and sieving method: in a first phase, a certain amount of powder
is sampled inside the process by introducing a probe into the duct conveying
the powder; in a second phase, the sample is sent to the laboratory where it
is sieved and classified through a nested column of sieves of decreasing screen
openings to obtain the values that characterized the PSD. In the case study
proposed in this work, three sieves, corresponding to 50MESH (i.e. 300µm),
100MESH (i.e. 150µm), and 200MESH (i.e. 75µm), were taken into account.
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Chapter 3 The POWdER System

Figure 3.1: Schematic of the power plant structure and the POWdER sensors

Figure 3.2: Example of real POWdER installation in a power plant

Each PSD is therefore represented by three numerical values, corresponding

18



i

i

“thesis” — 2018/2/13 — 9:38 — page 19 — #33
i

i

i

i

i

i

3.1 Acquisition System

(a) Plant A

(b) Plant B

Figure 3.3: Different pipeline structure of two plants

to the percentage of coal particles in the initial sample whose dimensions are,
respectively, lower than 300µm, 150µm, and 75µm.

The acquisition of AE signals has been carried out in several ducts and
different operating conditions, acquiring 200 consecutive acquisitions sampled
on a 50ms time interval and a sample-rate of 2MHz, for a total of 10 seconds.
The recorded signals are used in the model training procedure along with the
targets vector or the label associated with the corresponding PSD measure.

The data related to two different industrial plants are involved in this work.
Hereinafter, the two plants are referred as Plant A and Plant B. The plants
differ in terms of pipeline layout, type of coal employed, and structure of mills,
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Chapter 3 The POWdER System

Figure 3.4: Typical time-waveform of acquired AE signal. On the y-axis, the
amplitude represents the sampled voltage signal at the sensor out-
put.

which use different grinding elements. The coal mass flow rates are 5 t/h and
4.5 t/h for the Plant A and the Plant B respectively. Furthermore, the plant
B has a 660 MWh boiler, double compared to the 330 MWh of Plant A. In
both plants five ducts were monitored and all AE acquisitions were performed
under different working conditions of the plant. Another important difference
between these datasets regards which ducts were monitored inside the plant:
in Plant A the five monitored ducts are connected with five different mills
(Figure 3.3a), whereas for Plant B the five ducts are connected with the same
mill (Figure 3.3b).

3.2 Data Processing

Let xi(t) be the generic voltage signal acquired trough an AE transducer, where
t is discrete time index and i denotes the specific acquisition, as the one shown
in Figure 3.4. The signal energy distribution in frequency domain holds the
information about the PSD profile, therefore, it is important to identify a
suitable set of features able to characterize that distribution so that the AE
signals corresponding to similar PSD lead to similar feature vectors, while the
difference among feature vectors increases as PSD changes.

The proposed feature extraction procedure is based on complete Wavelet
Packet (WP) decomposition [41] as introduced by Bastari and al. [42], who
demonstrated the effectiveness of WP for the estimation of PSD of coal powder
via AEs on a similar application.

A WP decomposition over 6 levels was used to decompose the signal xi(t) into
26 = 64 sub-band sets of coefficients. The feature vector Xi in then obtained
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3.2 Data Processing

Figure 3.5: Wavelet packet based features extracted from data of a single duct
in Condition 1 (dashed line) and in Condition 2 (solid line).

by calculating the energy content of each of these sub-bands. These 64 values
are the parameters used to characterize the AE signal and, trough this, the
PSD. Figure 3.5 shows an example of how the features look like, 4 vectors Xi

extracted from data of one duct, in two operating conditions. Vectors belonging
to the same condition are almost identical, while it is possible to distinguish
vectors associated with Condition 1 from those associated with Condition 2.

Feature vectors have been averaged on a proper time interval in order to
obtain a single vector Xi for minimizing the effects of signal fluctuations. Thus,
averages on vectors Xi have been performed on 200 time contiguous acquisitions
for 10 seconds of time signal, obtaining an WP-based average vector Xi.
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Chapter 4

Estimation of Particle Size

Distribution for Industrial Plants

The particle size of the powder is an important parameter in many industrial
processes, as it affects to the physical and chemical properties of materials. In
most cases the powder particles have irregular shapes and speed, and travelling
within structures that change its characteristics over time due to usury. Fur-
thermore, it is not interesting to describe the size of single particle but the size
of an ensemble of particles, so it is necessary to use cumulative parameters to
describe it, such as the PSD. As it is mentioned in the Section 3.1, in industrial
plants the evaluation of the PSD is typically performed with the sample and
sieve method. This method produces an accurate estimation of the PSD for a
given time instant, but it is time consuming and difficult to use for continuous
monitoring. To have a continuous monitoring of powder size, it is necessary to
employ a system that carries out the estimation in a non invasive way, for the
all time horizon of interest.

The main challenge is to find physical model able to describe a very complex
system, with unknown and uncontrolled variables, and then to select a set
of physical quantities related to the particles size. In this study, AE signals
produced by a powder impacting on a metallic surface have been identified as
meaningful quantities in order to obtain PSD measure. Leach et al. [43, 44]
were the first to use AE signals for particle sizing. They collected AE spectra
in the range 50-200 kHz, from the impact among particles. By measuring the
beat frequencies from different resonance frequencies of particles with varying
diameters, they could determine their average diameter and size range. The
method gave satisfactory results just for regularly shaped particles, i.e. spheres
and cylinders. Unfortunately, this explicit method is impractical for most of
industrial applications where are involved fluxes of irregular shaped of particles.
However it was demonstrated, at least from a theoretical point of view, that a
particle impinging on a metallic surface generate an AE signal containing the
information about its size. Many applications of this theoretical result have
appeared in the literature [45, 46, 47], confirming the suitability of AEs for
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Chapter 4 Estimation of Particle Size Distribution for Industrial Plants

PSD measurement in engineering problems.

The industrial environment provides many other complications for an AE
analysis, due to the presence of several sources of AE, so it is also not easy
to distinguish between the AE produced by powder and the other sources. To
deal with such a complex scenario, suitable techniques have to be developed in
order to create a mathematical model without knowing all the variables and
all noise sources that influence the process.

The Computational Intelligence methodologies, such as Machine Learning
(ML) techniques, can provide useful tools with which develop an appropriate
approach that allows to overcome all the raised issues.

4.1 Machine Learning Techniques for Particle Size

Estimation

There are many different machine learning algorithms in the literature, in this
study the most common algorithms used for regression problems have been
considered: ANN, SVR and ELM. Each algorithm has been used with a pro-
cedure of Cross Validation (CV), in the form K-Folds with folds containing
15% of the entire dataset available. At each cycle of the CV is selected 15%
of the total dataset that is then used as Testing set, while the remaining 85%
is used as the Training set. In total 6 different pairs of Training and Testing
are involved, making sure that each Testing set had different observations than
the others. In order to perform the optimization of the parameters required for
the training of the models, a further K-Folds CV has been performed in which,
at each cycle, 15% of the Training set is used as a Validation Set. Also in this
case 6 combinations of the Training and Validation set have been used. The
parameters yielding the lower estimation error in the Validation set has been
selected as the optimal parameters. In all tests, features and targets have been
normalized in the range [0:1].

4.1.1 Computer Simulation and Results

The tests have been performed with MATLAB® running on a PC with a pro-
cessor i5 dual-core 2.3 GHz, 4 GB of RAM and Windows 7® OS.

To evaluate the accuracy of the models created by means of the Machine
Learning algorithms, the results obtained with the POWdER system3 on the
same task, have been taken as useful reference. In this case, only the data
related to three ducts from Plant A have been used. In Table 4.1 are reported
the partition in Training, Validation and Testing for the employed datasets.
The performance evaluation of various models is performed by taking into
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4.1 Machine Learning Techniques for Particle Size Estimation

Table 4.2: Algorithms Performance on DUCT 1 dataset.
Duct 1

Rmse Mesh 50

POWdER ANN ELM SVR
Avg Train 0.0750 0.0780 0.0763 0.0813
Var Train 1.83e-4 2.20e-5 5.06e-5
Avg Test 0.1390 0.1386 0.1094 0.1043

Var Test 7.34e-4 2.94e-4 3.29e-4
Mesh 100

POWdER ANN ELM SVR
Avg Train 0.7600 0.8533 0.8874 0.8461
Var Train 3.30e-3 1.00e-3 9.41e-2
Avg Test 1.4000 1.6845 1.3494 1.4007
Var Test 1.90e-2 1.62e-2 2.01e-1

Mesh 200

POWdER ANN ELM SVR
Avg Train 1.4200 1.2191 1.7546 0.6798
Var Train 1.25e-2 3.70e-3 2.02e-2
Avg Test 3.2200 2.8612 2.4950 2.3023

Var Test 1.27e-1 2.45e-2 6.83e-2

account the values of the mean and variance of the Root Mean Square Error
(RMSE) on the Testing set obtained with the CV.

Table 4.1: Datasets Partition.

Observations Number

DUCTS TOTAL TRAIN VALID TEST

Duct 1 272 188 38 46

Duct 2 251 174 35 42

Duct 3 286 198 40 48

In Table 4.2, Table 4.3 and Table 4.4 the error values obtained from tests
on selected datasets have been reported. Each table refers to one different
duct and reports the result for three Mesh values. The first column shows
the values of the system reference POWdER and subsequent columns the error
results obtained with the three algorithms of machine learning studied. In the
tables, the better results for the Testing set are reported in bold.

By analysing the average values of the error on the Testing data for this
firsts two Ducts, it can be observed that the SVR and ELM provide the lower
estimation error, while the ANN has the worse results. This trend is also
confirmed for the Training data, where the SVR and ELM outperforms the
ANN. The SVR and ELM perform also better than POWdER in all cases.
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Chapter 4 Estimation of Particle Size Distribution for Industrial Plants

Table 4.3: Algorithms Performance on DUCT 2 dataset.
Duct 2

Rmse Mesh 50

POWdER ANN ELM SVR
Avg Train 0.0600 0.0968 0.0842 0.0408
Var Train 3.44e-4 8.63e-6 7.55e-6
Avg Test 0.1400 0.1453 0.1359 0.1134

Var Test 8.43e-4 1.07e-4 4.08e-4
Mesh 100

POWdER ANN ELM SVR
Avg Train 0.5700 1.3245 0.6519 0.4421
Var Train 4.08e-2 2.20e-3 3.80e-3
Avg Test 1.1100 2.5003 1.0583 1.0383

Var Test 2.32e-1 1.20e-2 5.50e-2
Mesh 200

POWdER ANN ELM SVR
Avg Train 0.9200 1.3331 0.7825 0.6591
Var Train 2.50e-2 7.50e-3 2.33e-2
Avg Test 1.9600 2.7403 1.6679 1.6618

Var Test 2.24e-1 5.41e-2 8.72e-2

Looking at the variance values, it can be seen that the SVR and the ELM to
have a very similar variability, lower than ANN.

For the third Duct, only the algorithm SVR perform better than the POW-
dER system for he first two meshes, instead, for the Mesh 200, the POWdER
system provides better result than all machine learning algorithms.

In the Figure 4.1 and Figure 4.2 the estimation results obtained with the
various algorithms are plot in comparison with the corresponding real targets
and the targets estimated by POWdER. Both training and testing data related
to Mesh 50 of Duct 1 have been used on purpose. In x axis are shown the
number of observation and in y axis are shown the values of PSD in terms of
percentage, the real and estimated values.

4.2 Heterogeneous Data to Improve the Particle

Size Estimation

Several tests conducted with the experimental setup reported in the previous
section showed that the number of patterns used for training plays a crucial
role and the availability of further data can significantly boost the regression
performance. In order to augment the number of training examples, diverse
strategies can be considered. The most immediate method involves collect-
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4.2 Heterogeneous Data to Improve the Particle Size Estimation

Table 4.4: Algorithms Performance on DUCT 3 dataset.
Duct 3

Rmse Mesh 50

POWdER ANN ELM SVR
Avg Train 0.0710 0.0935 0.1006 0.0443
Var Train 2.56e-4 1.10e-4 3.15e-5
Avg Test 0.1400 0.1776 0.1463 0.1091

Var Test 1.16e-4 2.49e-4 1.41e-4
Mesh 100

POWdER ANN ELM SVR
Avg Train 0.6200 0.8489 0.8095 0.4370
Var Train 2.42e-2 1.60e-3 1.50e-3
Avg Test 1.0300 1.5623 1.1413 0.9898

Var Test 1.33e-2 2.03e-2 6.40e-3
Mesh 200

POWdER ANN ELM SVR
Avg Train 1.0900 1.2111 1.5067 0.5963
Var Train 3.88e-2 1.10e-3 1.50e-3
Avg Test 1.6400 2.5308 2.1146 1.7313

Var Test 6.17e-1 4.15e-2 2.31e-2

ing further samples of powder in the target industrial plant, then measuring
the PSD in laboratory. However, this procedure can be time consuming and
cost effective. During the acquisition phase, the normal production cycle of
the plant has to be interrupted to allow labelling of the target data. A sec-
ond possibility is represented by the adoption of an active learning strategy; a
technique aimed at automatically labelling the unlabelled data gathered during
standard operational conditions. The active learning paradigm has been used
in many works [48, 49, 50] to face regression problems in which unlabelled data
are abundant but labelled examples are difficult to obtain. Another way fol-
lowed by many Machine Learning researchers, with special focus on the Neural
Network area, consists of initializing the network free parameters using suitable
unsupervised learning algorithms, thus not requiring target data and related
labels. This paradigm has encountered recent success within the Deep Learning
community. It has been investigated for different neural architectures, such as
Convolutional Neural Network (CNN) [51], Deep Belief Networks (DBN) [52],
Recurrent Neural Networks (RNN) [53, 54], and the objective is always the
same: inserting some kind of a-priori knowledge into the network by exploiting
the available data in order to improve the fine-tuning performance.

This section proposes an approach, alternative with respect to the previous
ones. The idea is to use data collected from multiple sources in order to in-
crease the amount of training examples. This was already investigated in the
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Chapter 4 Estimation of Particle Size Distribution for Industrial Plants

Figure 4.1: Comparison of estimated output values with real target ones on the
Training set

field of image processing with CNN [55] and in a biological context with SVM
[56]. In many industrial applications, it happens that data related to differ-
ent plants present some important similarities. In our case study, we have the
same type of sensors and process for acquisition, conditioning and processing
of signals. Therefore the author wants to explore supervised strategies able to
exploit extended availability of heterogeneous data, coming from the nature of
the industrial environment and application under study, to improve the PSD
estimation performance. Two distinct supervised techniques are proposed to
show how such idea can be effectively implemented. They employ ANN as ma-
chine learning tool and use the heterogeneous data coming from two different
plants to embed some form of a priori-knowledge into the expert system to
enhance the regression performance. In particular, a first approach with super-
vised pre-training of the ANN free parameters by means of data related to the
plant not addressed in testing, as preliminary step before the fine-tuning phase,
has been investigated. A second approach uses multiple datasets from diverse
plants for training ANN models, with the aim to create general mesh-based
models. The effectiveness of the proposed techniques has been experimentally
proven by computer simulations, as detailed later in the paper.

4.2.1 Datasets

Both the POWdER datasets, from Plant A and Plant B, have been involved
in this study. For each duct, the set of data is divided into two distinct sets,
namely Primary and Secondary. They differ as they were collected in distinct
time periods and under diverse plant operating conditions (different coal flow
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4.2 Heterogeneous Data to Improve the Particle Size Estimation

Figure 4.2: Comparison of estimated output values with real target ones on the
Testing set

rates). The two datasets can be used to evaluate the generalization capability
of the expert system for a certain duct. The number of observations in each
Primary and Secondary dataset for both plants is shown in Table 4.5. As
detailed later on, in some cases the Primary and Secondary sets correspond to
the Training and Test ones, but in others cases the Training and Test sets are
extracted solely from the Primary.

4.2.2 Pre-training

The first proposed method is based on a supervised pre-training of ANN by
using a dataset related to a distinct plant with respect to the reference one
considered for testing. In this way, the ANN free weights are initialized accord-
ing to the a-priori knowledge learnt from data coming from the non-reference
plant, and then fine-tuned to optimize the PSD estimation performance ac-
cording to the characteristics of the reference plant. The available datasets
of plants A and B are used for pre-training and fine-tuning, according to the
following combinations:

• Pre-train Case 1: the pre-training phase is performed on the union of
Primary and Secondary dataset of Plant B and Fine Tuning and Test on
Primary dataset of Plant A;

• Pre-train Case 2: the pre-training phase is performed on the union of
Primary and Secondary dataset of Plant A and Fine Tuning and Test on
Primary dataset of Plant B.
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Chapter 4 Estimation of Particle Size Distribution for Industrial Plants

Table 4.5: Number of observations for each dataset.

Plant A Primary Secondary

Duct 1 272 36

Duct 2 251 36

Duct 3 333 36

Duct 4 232 36

Duct 5 286 36

Plant B Primary Secondary

Duct 1 295 99

Duct 2 290 99

Duct 3 280 99

Duct 4 270 99

Duct 5 280 99

The overall algorithm is depicted in Figure 4.3, where training is indeed
divided into two steps. First, the data for the pre-training are organized into
three datasets, each one containing the data of all ducts referring to a specific
mesh. Each dataset is used as a training set to obtain three models for each
plant, identified as Model 50mesh, Model 100mesh and Model 200mesh. After
that, the weights and biases obtained at the end of such training are used to
initialize the network, before the completion of the fine-tuning phase. All tests
have been performed by using CV with 6 not-overlapping folds. At each CV
iteration, a different combination of Training and Test sets is selected from one
Primary dataset. The Validation set is extracted from the selected Train set
and used to identify the best number of neurons for each network layer.

4.2.3 Multiple Training Sets (TS)

The ANN is also involved in this second method simply based on the collection
of both plant datasets in one single training set. The related block scheme is
depicted in Figure 4.4. Three specific 50mesh, 100mesh and 200mesh models
are trained by using all data from Primary datasets of both plants as training
set. The three models created are then applied to the Secondary datasets of
individual ducts, used as test set. It must be observed that, due to the nature
of the plants and related datasets, there is no correspondence among the ducts
of the two plants. This aspect motivated the choice to create the three mesh-
based models, with the aim of using them for PSD estimation of any duct in
any plant.
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4.2 Heterogeneous Data to Improve the Particle Size Estimation

Figure 4.3: Supervised Pre-training Approach

The dataset combinations are the following:

• Multiple TS Case 1: the model is trained on the union of Primary
datasets of Plant A and Primary datasets of Plant B; then this model is
applied on Secondary of Plant A;

• Multiple TS Case 2: the model is trained on the union of Primary
datasets of Plant A and Primary datasets of Plant B; then this model is
applied on Secondary of Plant B.

Different to the previous procedure, in this case the model for the final re-
gression is trained in one phase and not in two phases as previous. This is due
to the fact that the heterogeneous data are merged together so just a single
training phase is necessary for the PSD estimation.
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Chapter 4 Estimation of Particle Size Distribution for Industrial Plants

Figure 4.4: The Multiple Training Sets Approach

4.2.4 Computer Simulation and Results

Also in this case, the tests have been performed with MATLAB® running on a
PC with a processor i5 dual-core 2.3 GHz, 4 GB of RAM and Windows 7® OS.

The performance evaluation of techniques discussed in Section 4.2 is per-
formed in terms of Root Mean Square Error (RMSE) on the Testing set. For
each case study, the standard approach (ANN directly trained and tested on a
single duct and mesh dataset) and the proposed supervised method are com-
pared for each duct and each mesh.

However, different RMSE ranges are experienced for the three meshes. This
drove the authors to apply a normalization procedure to the RMSE values
in order to better compare the regression performance of the three meshes,
and likely provide an overall performance index for each experimental case
study. According to this procedure, the RMSE performance of the standard
and the proposed supervised approach are put in comparison for each duct and
each mesh. The two RMSE values are divided by the higher between the two.
Finally, due to the large number of duct/mesh combinations and of experiments
accomplished, the Normalized RMSE values related to the five ducts of a plant
are averaged, providing a total of three indicators (one per mesh) for each
experimental case study. In Table 4.6 an example of normalization for the
ANN Pre-training Case 1 Duct 1, is shown.
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Table 4.6: Normalization Example. Reported values are related to the pre-
trained ANN technique applied to Duct 1-Plant A data.

50 MESH 100 MESH 200 MESH

RMSE without pre-train 0.1144 1.3555 2.3616

Normalized RMSE 0.8338 1.0000 1.0000

RMSE with pre-train 0.1372 1.2742 2.2329

Normalized RMSE 1.0000 0.9400 0.9455

The results obtained from these experiments will now be discussed. First,
the performance achieved with the standard ANN-based approach and the
proposed ANN pre-training technique will be compared. In this case study,
training and testing are applied in CV and for each CV iteration, the test set
is represented by one CV-fold taken from the Primary dataset of the reference
plant. In Figure 4.5 the average Normalized RMSE values for the three meshes
are reported, with and without pre-training. In this case, the pre-trained mod-
els outperform the models without pre-training for 50 mesh (0.9146 vs 0.9340)
and 100 mesh (0.9305 vs 0.9368), only for 200 mesh the pre-training provides
a mean error of 0.9456 that is higher than the average Normalized RMSE of
0.9436 obtained with the model without pre-training. Figure 4.6 shows the
results of Case 2. With this combination of datasets, the standard ANN ap-
proach outperforms the new proposed approach for the 100 mesh, providing an
average Normalize RMSE of 0.9789. For the others meshes, the new approach
returns the best outcomes of 0.9174 for 50 mesh and 0.9610 for 200 mesh.

In the second set of experiments, the effectiveness of the second proposed su-
pervised method described in Section 4.2.3 was tested. The models are trained
by using all data contained in the Primary datasets of two plants. This means
having three distinct models, one per mesh, which are finally tested against
the Secondary dataset of the reference plant for each duct. In this case, the
comparison is made with the standard approach involving ANN as an alterna-
tive. Figure 4.7 and Figure 4.8 show that the use of multiple training sets to
train ANN models provides a lower estimation error than the model trained on
a single training set.

In Table 4.7 all obtained results are summarized. A single indicator is
reported for each technique denoting the mean of three average Normalized
RMSE values associated with the three meshes. In the first comparison, the
standard approach uses the ANN to model one single duct by means of a CV
procedure. In contrast, in the second approach, the ANN is used to train Mesh-
based models, by using the Secondary datasets as Test sets. In the light of this
difference, we named the standard techniques in the first and second case study
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Figure 4.5: Pretrain Case 1

Table 4.7: Overall Mean Normalized RMSE for the two plants taken as refer-
ence for testing and for all machine learning techniques under study.
Reported values are obtained by averaging the Normalized RMSEs
of the three meshes.

PLANT A PLANT B

ANN-D 0.9594 0.9768

ANN with Pretrain 0.9518 0.9537

ANN-M 0.9091 0.9779

ANN Multiple TS 0.7282 0.7938

as ANN-D and ANN-M, respectively. The best results between the standard
techniques and the proposed ones are reported in bold for each plant. It can
be immediately observed that the new supervised approaches outperform the
corresponding standard ones in simulations related to Plant A and Plant B.

4.3 Remarks

The results reported in this chapter demonstrate the possibility to apply the
Machine Learning techniques for developing an effective solution for the PSD es-
timation in non-intrusive way. The new solution wants overcome the drawbacks
of the sampling and sieving method usually employed for the PSD estimation.
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Figure 4.6: Pretrain Case 2

Three algorithms based on ML techniques, i.e. ANN, SVR, and ELM, have
been studied. The results obtained with experimental data demonstrate that
the proposed solution provides better performance than POWdER system, that
has been used as reference, and that can represent a valid substitute for the
sampling and sieving method. Among all those employed, the algorithm SVR
returns the best results in terms of average error, while algorithms ANN and
ELM have worse outcomes than SVR but in line with the reference POWdER
values.

The application of heterogeneous information, coming from two POWdER
datasets, leads to further improvement with two proposed approaches based
on ANN. The obtained results show that the new ANN-based approaches have
succeeded to improve the performance previously obtained with standard ANN,
for both addressed datasets.
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Figure 4.7: Multiple TS ANN Case 1
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Figure 4.8: Multiple TS ANN Case 2
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Chapter 5

A Condition Monitoring Technique

for Industrial Power Plants

In this chapter, a condition monitoring approach suitable for coal fired power
plant is proposed. A thermal power plant produces energy from the coal com-
bustion and it must keep the condition of highest efficiency in order to reduce
fuel consumption and emissions. Inside a power plant, fine ground coal powder
is used as fuel and it is conveyed by air within ducts in order to feed boiler
burners. One key aspect that affected the combustion efficiency is the size of
the coal powder, for this reason it is important that PSD of coal feeding the
burners remains within specific ranges to avoid an efficiency dropping. It is
possible to correlate PSD to operational failure or wrong setting of coal grind-
ing mills that lead to poor efficiency, thus the possibility to on line monitor of
coal particle size within the process can be an useful tool in order to set the
plant working parameters to keep acceptable combustion efficiency.

In Chapter4, the effectiveness of ML techniques to train models for the esti-
mation of PSD of coal powder has been demonstrated. Moreover, the AE based
informations have proved to be suitable for the estimation of powder size in
a non invasive way. The proposed regression approach relies on the reference
PSD targets in order to compute supervised learning, and this information is
not easily obtainable. For many practical applications, where it is not neces-
sary to have a punctual estimation of the PSD, a classification approach can
be a valuable alternative to relate the AE and PSD. Once it has been defined
a threshold PSD beyond which the plant performances decrease, it is possible
to distinguish at least 2 classes of PSD, the one associated with good working
conditions and the one associated with bad working conditions. Therefore, it
is possible identifying the working conditions that ensure an useful monitoring
of the plant, and dividing these conditions according the defined classes.

The problem of powder, or particles, detection and classification is com-
mon in many applicative contexts and during the past years several solutions
were presented to solve specific tasks that involve pulverized material for both
civil [57, 58] and industrial [59, 60] environments.
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Chapter 5 A Condition Monitoring Technique for Industrial Power Plants

Figure 5.1: Test Rig Layout

For the task addressed in this investigation, it is important to prove the
suitability of POWdER acquisition system in combination with a ML-based
classifier for classification of pulverized material based on particles size. With
this purpose, as first step for designing a CM technique based on particle size
classification, a preliminary study has been carried out to investigate the effi-
cacy of an algorithm based on ML technique for the classification of two kinds
of powder with different particle size.

5.1 Food Powder Classification with POWdER

System

For this test, the POWdER system has been used to measure the AE signals
produced by a food powder that flowing inside a test rig set up for this exper-
iment. The powder used for this test is composed by a mix made of sugar and
dry milk usually involved in bakery and sweets industry. The test rig is made
by an open ring piping where the powder mix is suspended in air and circu-
lated. The average length of the piping is 10m while the diameter is DN50. Air
circulation is operated by an ejector that allows changing air velocity between
10m/s and 18m/s by adjusting the pressure of ejector driving air. Air velocity
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5.1 Food Powder Classification with POWdER System

is measured trough a pitot tube. At the end of the piping there are two elbows
so that there is a reasonable chance that the powder hits against the pipes,
and a bag filter in order to collect launched powder at the exit. POWdER AE
sensor is installed by means of a clamp on the external wall of one of the final
elbows of the piping. In Figure 5.1 is showing the complete layout.

Two mixtures of sugar and dry milk with two different PSDs have been anal-
ysed, and a classification algorithm based on SVM has been used to distinguish
between this two kinds of powder. The performance of the SVM model is eval-
uated in terms of accuracy by means of the procedure of K-folds CV. For this
test, each fold contains the 15% of whole available dataset, thus 6 subsets are
selected. The complete dataset includes 388 examples, divided into 3 classes,
so each fold is made up by 65 examples. The following list shows the classes
association:

• Class 0, associated with the signals generated by the only airflow inside
the pipe;

• Class 1, associated with the signals generated by the powder mix 1;

• Class 2, associated with the signals generated by the powder mix 2.

The average accuracies, obtained from the CV, are reported in Table 5.1,
both for Training set and Testing set, in terms of mean and variance. Another
tool to better understand these results is the Confusion Matrix. Each column
of the matrix represents the instances in a predicted class while each row rep-
resents the instances in an actual class. In Table 5.2 is reported the mean
confusion matrix, obtained by averaging the confusion matrices of Testing set
coming from the CV.

Table 5.1: Accuracy Results the implemented SVM algorithm.

Mean Accuracy Train Set 99.64%

Variance Train Set 0.21

Mean Accuracy Test Set 93.27%

Variance Test Set 15.55

Table 5.2: Accuracy Results the implemented SVM algorithm.

Predicted

Class 0 Class 1 Class 2

A
c
tu

a
l Class 0 188 38 46

Class 1 174 35 42
Class 2 198 40 48
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Chapter 5 A Condition Monitoring Technique for Industrial Power Plants

Results show that the proposed approach provides an average accuracy, both
in the test and training sets, over 90% that indicates the good robustness of
this technique. More in details, around 93% of 65 AE signals, used as test
set, have been classified correctly. By analysing the Table 5.2, it is possible to
see that the air (Class 0) is misclassified only one time as mixture 1 (Class 1);
mixture 1 is misclassified 1 time as air and 1 time as mixture 2, mixture 2 is
misclassified both times as air.

These results demonstrate that the information extracted from the AE signal
can be exploited to distinguish between two powder mixture, by means ML
techniques.

5.2 The Proposed Condition Monitoring Approach

Moving from the results obtained with previous studies presented in Section 4.1
and Section 5.1, a new approach for condition monitoring of coal powder burned
as fuel in power plants has been designed. The method proposed in this section
uses the PSD, measured by means of AEs, as an indication of the operating
state of a monitored boiler burner where the combustion of the powdered coal
takes place.

Applying a regression on the data provides with an estimation of the actual
PSD value, but the training of a monitoring system via supervised regression
algorithms implies the need of reference PSD data obtained by collecting and
sieving samples of powder during specific system set-ups. This procedure must
be repeated several times to collect enough examples for the training, leading
to longer time for the set-up of the whole monitoring system.

For a condition monitoring purpose the evaluation of the general state of
the system is needing, so it is not necessary to know the punctual PSD value.
In this situation, the usage of a classification approach can allow to reduce
the effort for labelling data and to use qualitative feedbacks get from the final
phase of the monitored process for clustering the AEs signals associated with
different PSDs and system set-ups. For this case study, coal powder is used to
feed a boiler and the combustion efficiency can be evaluated by measuring the
coal specific consumption, the ashes and the exhausted gas composition.

Three different machine learning algorithms have been implemented and
compared in our analysis, i.e. SVM, ANN, and ELM, to correlate AE signals
acquired on the feeding ducts and PSD. The proposed method was tested on
both available dataset coming from both the two industrial power plants, Plant
A and Plant B. Differently from the previous tests, for this study only two out
three meshes have been considered, i.e. 50MESH and 200MESH. These two
represent the limits of the particle size range considered to discretize the PSD
curve for this case study, for this reason they are the most useful to character-
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5.2 The Proposed Condition Monitoring Approach

ize the operating condition of the system. Three tests have been designed and
carried out to show the response of the proposed approach to specific issues.

5.2.1 Binary Classification

The standard approach to the problem of PSD classification involves the use
of only two classes to identify two particle size ranges associated with different
operating conditions of the system. With the aim of developing a control
system, the classes association was designed to distinguish those values of PSD
that are good for efficient combustion from the ones that can lead to non-
optimal combustion. For this reason the first class, that can be identified as the
corrected class or good PSD (G-PSD), is associated with the PSD values which
are required for the correct operation of the system and for maximizing the
combustion efficiency. Under these conditions, the monitoring system provides
with a positive feedback the operator who can verify that the monitored system
is operating within the parameters established for proper functioning. The
negative class is associated with those PSD values which indicate the non-
optimal operating conditions or poor PSD (P-PSD), in this case the monitoring
system reports a negative feedback that indicates the necessity to modify the
system parameters in order to return to the proper functioning.

The association of the examples with the proper labels is performed by mean
a threshold-based labelling that divides the range of boiler operating conditions.
Control room operator may set different action for the mill, the burners and the
boiler, and each set-up leads to a different combustion efficiency. The threshold
is identified for each mesh size and each power plant by using the information
from real coal combustion process in terms of cycle efficiency, ash composition
and exhaust gas composition.

5.2.2 Multi-class Classification

Adding more classes has an impact on the accuracy of the classification. This
kind of modification to the original classification can be useful in order to obtain
early warnings as the plant approaches to the critical condition. Two series of
tests with 4 and 6 classes were carried out to show the variation of performance
depending on the number of classes. The performance obtained is compared
with that obtained with the algorithms with 2 classes.

In order to increase the number of classes, it is necessary to set up new
thresholds for a further division of the range of the operating conditions. These
thresholds are chosen in the range of the critical threshold, previously defined
for the binary classification, for a double purpose: identifying how much the
powder size is getting close to the critical threshold, and quantifying how much
the PSD is over this threshold. Figure 5.2 shows a comparison between the
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5.3 Computer Tests and Results

with the whole dataset, other three sets of models were trained using a sub-set
of the whole dataset. To select the sub-sets, the last acquired examples in
terms of time were removed from the original dataset. This selection aims to
simulate a shorter period for the acquisition of the examples that populate the
training set, delivering insight on how much these examples should be for a
proper training. The three sub-set contain respectively 90%, 75% and 50% of
the dataset. In order to exploit all available data, the removed portion of the
dataset is added to the selected Testing set during the K-folds CV procedure.
In this way, the dataset used for the test is composed by a fixed part, the
removed portion from the original dataset, and a variable part, chosen among
the K folds. The Training set is extracted at each CV iteration from the reduced
dataset, so each of the three tests with a different sub-set has a different amount
of examples for the training.

5.2.4 False Positive Reduction

A crucial issue for a monitoring system is the possible presence of P-PSD that
are classified as G-PSD. The presence of FP can lead to unwanted operating
situations and compromising the system operation.

Many works in literature face this issue and provide with many solutions
[61, 62, 63]. The complete elimination is not achievable because in the real
case it is always possible dealing with a peculiar scenario. On the other hand,
reducing the FP it is possible by improving the classification algorithm with
other techniques, as it is detailed in this section where the procedure will be
presented.

The proposed procedure employs a variant of the Receive Operating Curve
(ROC), the Detection Error Trade-off (DET). The ROC is created by plotting
the True Positive Rate (TPR) against the False Positive Rate (FPR) at various
threshold settings, the DET is slightly different and it is a graphical plot of
False Negative Rate (FNR) against the False Positive Rate (FPR). Through
this representation the decision threshold that provides zero FPR and minimum
FNR on the Training set is selected and used with the Testing data.

5.3 Computer Tests and Results

The tests have been performed with MATLAB® running on a PC with a pro-
cessor i5 dual-core 2.3 GHz, 4 GB of RAM and Windows 7® OS.

The performance evaluation of the techniques discussed in Section 5.2 is
carried out in terms of Mean and Standard Deviation of Accuracy array for the
Testing set obtained at the end of the 6 iterations of the CV procedure.
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Chapter 5 A Condition Monitoring Technique for Industrial Power Plants

Table 5.3: Binary Classification VS 4 and 6 classes classification for 50 mesh

Plant A Plant B

SVM ANN ELM SVM ANN ELM

2 classes 96.59% 97.77% 96.50% 97.51% 97.34% 97.55%

4 classes 94.47% 94.26% 92.92% 93.08% 93.37% 92.53%

6 classes 92.29% 92.26% 90.54% 90.21% 88.72% 88.58%

5.3.1 Binary Classification Results

The first set of results is related to the tests carried out with the three im-
plemented algorithms for binary classification. The binary classification is the
simplest classification used in this study, for this reason these outcomes will be
used from now on as reference for assessing the performance of all the results
shown in this Section.

In order to make easier the comparison between the results of the various
tests, Tables 5.3-5.4 show the average values of the accuracy of the signals
collected on all the ducts for each plant and algorithm.

Looking at the differences between the performance obtained for 50 mesh
and 200 mesh, it is possible to observe that for Plant A, all the algorithms give
similar results for both meshes. For Plant B, all the algorithms provide lower
performance on 200 mesh than on 50 mesh. This disparity may be addressed to
the higher degree of dispersion of PSD values for 200 mesh than for 50 mesh.
A greater data diversity leads to more uncertainty during the classification
process and thus a higher number of miss-classifications.

By comparing the results of different algorithms, none of them emerges as
the best overall, but for all cases the difference between the best and the worst
result is less than 2%. In detail, the ANN-based algorithm provides the best
performance for Plant A 50 mesh with an average accuracy of 97.77%, if com-
pared with 96.59% of SVM and 96,50% of ELM; for Plant B the performance
is very similar for all the algorithms, 97.51% for SVM, 97.34% for ANN and
97.55% for ELM. The algorithm which uses the SVM achieves for both plants
for the 200 mesh the best performance, providing an average accuracy of 97.13%
for Plant A, while ANN and ELM obtain respectively the 96.59% and 96.75%,
and an average accuracy of 94.02% for Plant B, higher than 92.86% and 93.28%
respectively of ANN and ELM.
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5.3 Computer Tests and Results

Table 5.4: Binary Classification VS 4 and 6 classes classification for 200 mesh

Plant A Plant B

SVM ANN ELM SVM ANN ELM

2 classes 97.13% 96.59% 96.75% 94.02% 92.86% 93.28%

4 classes 91.37% 91.21% 90.95% 87.98% 85.30% 86.03%

6 classes 89.07% 88.91% 88.44% 82.70% 80.02% 80.50%

5.3.2 Multi-class Classification Results

In Tables 5.3-5.4 the results obtained with binary classification are compared
with those obtained with 4 and 6-classes classification.

By analysing the averages for each plant, it is possible to appreciate a de-
creasing trend correlated with the increasing of the classes number, for both the
considered meshes. As it is natural to expect, the introduction of more classes
leads a greater uncertainty for the classification model and the accuracy get
worse. Despite this loss of performance, the average accuracy remain above
the 90% with 4 classes for both plants in the case of 50 mesh. For the 200
mesh only for Plant A all the algorithms provide an accuracy higher than 90%,
with Plant B data all the algorithms return lower accuracies. By increasing the
number of classes to 6, there is a further overall reduction of accuracies and in
this case only the 50 mesh for Plant A, with all the algorithms, and for Plant
B, with SVM, there is a mean accuracy higher than 90%. ELM and ANN for
Plant B and 50 mesh and all the algorithms for both of the plants and 200
mesh return average accuracies between 80% and 90%. Comparing the SVM,
ANN and ELM models, the SVM-based algorithm achieve the best results for
almost all the datasets.

An important parameter that must be considered in this analysis, together
with the mean accuracy, is the accuracy variation due to the classes increasing.
For this reason, Table 5.5 reports the accuracy changes between the 2 and
6 class classifiers. By taking into consideration the tests for 50 mesh, it can
be seen for both plants that the SVM based algorithm is the less affected by
the increase of the classes, presenting an average accuracy reduction of 4.3%
for Plant A and of 7.30% for Plant B, while ANN and ELM have a greater
reduction in both cases. For 200 mesh, ANN provides the best results for
Plant A, with a variation of 7.68%, while SVM returns the minimum variation
for Plant B with a difference of 11.32%. Comparing the performance variation
for the two meshes, 50 mesh is less affected by the classes variation then 200
mesh, confirming as said in the Section 5.3.1 about the 50 mesh data and 200
mesh data.
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Chapter 5 A Condition Monitoring Technique for Industrial Power Plants

Table 5.5: Accuracy variation between classification with 2 and 6 classes.

PLANT A PLANT B

SVM -4.30% -7.30%

50 mesh ANN -5.48% -8.62%

ELM -5.96% -8.97%

SVM -8.06% -11.32%

200 mesh ANN -7.68% -12.84%

ELM -8.31% -12.78%

Table 5.6: Dataset reduction for 50 mesh

Plant A Plant B

%Dataset SVM ANN ELM SVM ANN ELM

100% 96.59% 97.77% 96.50% 97.51% 97.34% 97.55%

90% 97.40% 97.39% 97.50% 97.51% 97.02% 97.38%

75% 84.61% 79.83% 93.73% 84.98% 85.46% 83.82%

50% 76.12% 74.07% 81.63% 79.68% 80.92% 80.42%

5.3.3 Dataset Reduction Results

The reduction of the number of samples needed for the models training is a
crucial aspect to consider during the design of a monitoring system based on
machine learning techniques. Since reducing the number of training samples
leads to the reduction of costs and development time. The tests carried out have
assessed the variation of classification accuracy on the Testing set in relation
with the progressive reduction of the observations number used for training the
models with the developed algorithms. The studies were performed by using
binary classification and three sub-sets of data, respectively with 90%, 75%
and 50% of the whole dataset.

According to Table 5.6 referring to the 50 mesh data, it can be seen that with
90% of the dataset, for all cases, the accuracies do not decrease significantly
and the performance are comparable with those obtained with 100% of the
dataset. The performance starts to get worse by reducing to 75% and 50% of
the samples. For both the target datasets, the accuracies go down under the
90%-threshold with Training sets extracted from 75% of the datasets, the only
exception is the ELM-based algorithm with Plant A data. With 50% of the
datasets, the decreasing continues and the accuracies reach values under 80%
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Table 5.7: Dataset reduction for 200 mesh

Plant A Plant B

%Dataset SVM ANN ELM SVM ANN ELM

100% 97.13% 96.59% 96.75% 94.02% 92.86% 93.28%

90% 96.57% 96.13% 96.37% 94.86% 94.39% 94.27%

75% 91.19% 92.44% 90.47% 95.15% 94.98% 94.85%

50% 81.72% 81.55% 87.57% 89.14% 90.60% 91.40%

Table 5.8: Accuracy variation between classification with 100% and 50% of the
dataset.

PLANT A PLANT B

SVM -20.47% -17.83%

50 mesh ANN -23.70% -16.42%

ELM -14.87% -17.13%

SVM -15.41% -4.88%

200 mesh ANN -15.04% -2.26%

ELM -9.18% -1.88%

with SVM and ANN algorithms.

Comparing the two plants, better performance is achieved with Plant B data,
since the accuracy follows an uniform decreasing and reaches minimum value
in the range of 80%. With data from Plant A data the decreasing trend is less
uniform and with the SVM and ANN, the accuracies reach values of 76.12%
and 74.07% with 50% of the dataset.

Table 5.8 summarizes the variations of accuracy going from 100% to 50% of
the dataset. Observing the case of 50 mesh, it can be noted as for Plant A,
the ELM-based algorithm returns the smallest variation in the accuracy on the
Testing set, with a difference of 14.87%. For Plant B, instead the ANN returns
the smallest difference of 16.42%. The 200 mesh data are subjected to a lower
reduction than the 50 mesh data, and, for both systems, the ELM returns
the least significant reductions, which are -9.18% for Plant A and -1.88% for
Plant B. Comparing the performance among the three algorithms, the ELM
outperforms the others for 3 out of 4 cases, and therefore it demonstrates to
be less affected by the dataset variation.
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Chapter 5 A Condition Monitoring Technique for Industrial Power Plants

5.3.4 False Positive Reduction Results

The metric used to evaluate the performance of the techniques proposed to
reduce the FP, is the False Positives Rate (FPR). Let’s define the True Positives
(TP) and the True Negatives (TN) as actual positive and negative examples of
the Testing set that were correctly classified as positive and negative. The FP
are negative examples that were incorrectly labelled as positive and the False
Negative (FN) are the positive examples marked as negative. It then defines
the FPR as:

FPR =
FP

FP + TN
(5.1)

In the Figures 5.3, 5.4, 5.6 and 5.5 the FPRs are reported for each duct (5
ducts for Plant A and 8 ducts for Plant B) and three graph compared the
values of FPR calculated with Eq.(5.1) for the original classifier (STD), and
the proposed Decision Threshold Technique (DTT). For sake of simplicity of
exposition, the average FPR for each plant is used as metric to evaluate the
performance in the comments.

The Figure 5.3 shows that the proposed technique succeeds to reduce the false
positives. The SVM-based algorithm obtained an average FPR of 3.27% with
STD and 0.63% with DTT. The original ANN classifier achieves the average
FPR of 2.26%, while DTT the 0.97%. Also with ELM-based algorithm, DTT
outperforms STD, 1.20% against the 3.40%.

As it is represented in the Figure 5.4, for the data of 50 mesh, Plant B,
SVM classifier achieves an average FPR of 6.74%, with the addition of DTT a
FPR of 2.29%. ANN classifier allows to obtain an average FPR of 5.96%, this
value decrease at 2.02% with DTT. With ELM the behaviour of the proposed
technique is the same, it provides better results then STD, an average FPR of
1.96% for DTT and 6.40% for the STD.

Also with the 200 mesh data the employment DTT improves the performance
of STD. In the Figure 5.5 the results of Plant A are reported. The average
FPR with original SVM classifier is 8.79%, the DTT provide the best result
with the 3.10%. ANN results are 9.46% for STD, and 3.91% for the DTT. With
ELM, DTT has again the best result of 6.32%, against the 11.18% without any
technique.

The Figure 5.6 shows the results for Plant B and 200 mesh. The best average
FPR with the SVM is obtained with the DTT (4.83%), whereas the STD
achieves worst FPR of 19.82%. The ANN-based algorithm achieves the lowest
FPR of 10.03% with DTT, and a value of 21.37% with STD.

Comparing the averages for the two meshes, for the 50 mesh the proposed
technique succeeds to reduce the level of FP and the resulting FPR is under the
3%, with the data of 200 mesh the technique still reduces FPR with values under
the 20%. This performance difference is due to the same reason highlighted
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Figure 5.3: FPRs comparison for data 50 mesh, Plant A: (a) SVM, (b) ANN,
(c) ELM.

in the Section 5.3.1, the 200 mesh data have more variability in the output
space and this do not allow to find an optimal threshold to obtain a greater
FP reduction.

5.4 Remarks

In this chapter a new solution for non-invasive condition monitoring has been
proposed. This solution is designed for the monitoring of burners devoted to
coal powder combustion in an industrial power plant. The core of the solution
is the classification algorithm that classifies the coal powder on the basis of its
PSD as it enters the burner. The final goal is to monitor the boiler burner
operating condition with the purpose of holding the optimal powder particle
size that ensures the maximum combustion efficiency. With this solution it is
possible detect non-optimal system set-up before the begin of the combustion
process, and so act consequently to avoid drops in energy production efficiency.

Three classification algorithms based on ML techniques, i.e. SVM, ANN and
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Figure 5.4: FPRs comparison for data 50 mesh, Plant B: (a) SVM, (b) ANN,
(c) ELM.

ELM, have been implemented and compared. A series of tests was performed
with three sets of classes, containing respectively 2, 4 and 6 classes, to evaluate
the variation of accuracy depending on the number of classes. As it is easy
to predict, the results demonstrated that the binary classification is the most
accurate, but at the same time such results point out the capability of using
multiple classes to improve the condition monitoring capabilities by accepting
the accuracy reduction as a compromise. It was shown that a decrease of the
number of samples used for the training causes a decrease of performance of
algorithms. Therefore a 10% data reduction is reasonable and in that case the
accuracies don’t decrease significantly. A major reduction of 25% is possible
but it must be accepted that the accuracies are lower than 90%. The results
obtained using a technique for the false positive reduction showed that for
the problem of granulometry classification it is not possible eliminate all the
occurrences of false positives, but it is possible to reduce their level.
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Figure 5.5: FPRs comparison for data 200 mesh, Plant A: (a) SVM, (b) ANN,
(c) ELM.
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Figure 5.6: FPRs comparison for data 200 mesh, Plant B: (a) SVM, (b) ANN,
(c) ELM.
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Chapter 6

Faults Detection for Rolling

Bearings

The detection and the prediction of faults in industrial machines is a crucial
aspect to enhance reliability and reduce maintenance cost. Bearings are widely
used in induction motors and rotating machines, so they are common compo-
nents in many mechanical systems. Due to their diffusion, many of the failures
that occur in industrial machines are ascribed to these components, in fact sta-
tistical studies show that bearing failures account for around 50% of the total
failures of these devices [64, 65, 66]. A bearing failure can accelerate machin-
ery deterioration and bring dangerous consequences for the machine operators
present, so bearing condition monitoring becomes an important measure to
ensure machine safety. Due to the importance of this topic, a lot of works
and studies were published during past years by providing many different ap-
proaches to improve the detection and the classification of the faulty bearings
[67]. Fault diagnosis of bearings is usually based on vibration signals, and a
set of features is extracted from these signals in order to classify the faults.
The features could be in the time domain, frequency domain or time-frequency
domain, and the prevalent techniques include Kurtosis [68, 69], Wavelet Trans-
form [70, 71], Cepstrum [72], or Envelope Spectrum [73].

The bearing behaviour depend on several parameters and their diagnosis
during regular operation will often involve analysis of non-stationary signals as
the rotating speed, loads, and environmental conditions vary with time. There-
fore, the algorithms for fault detection and classification should allow analysis
of non-stationary or quasi-stationary signals. Zvokelj et al. [74] realized the
non-stationarity of the data collected from the monitoring of bearings, and so
proposed an approach that combine the Principal Component Analysis (PCA)
and the Ensemble Empirical Mode Decomposition (EEMD) methods. PCA
reduces the dimensionality of the data and EEMD decomposes the signals into
various time scales to allow the extraction of appropriate characteristics from
the faulty bearing signals. Both time and frequency domains provide some
features that can be used as characteristics of these non-stationary vibration
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Chapter 6 Faults Detection for Rolling Bearings

signals, useful to determinate the healthy state of the bearing. A means to
extract these characteristics is by using images, which can provide a compre-
hensive description of vibration signals, including information about the various
bearings faults. In the work presented by Wei Li et al. [75], the spectrum im-
ages are processed with two-dimensional PCA to reduce the dimensions, then a
minimum distance method is applied to classify the bearing faults. Liang Hua
et al. [76] presented a method where the acquired mechanical vibration signals
are converted into colour time-frequency spectrum images by the processing
of pseudo Wigner-Ville distribution. Then a feature extraction method based
on quaternion invariant moment is used, combining image processing technol-
ogy and multi weight neural network technology. Klein et al. [77] provided a
method for the bearing fault diagnosis by applying the image processing tech-
niques such as ridge tracking and related algorithms on the time-frequency
representation, available by STFT or wavelet, of the non-stationary bearing
signals. All the works in literature deal with the analysis and the diagnosis
of the bearing faults by trying to get as close as possible to the real working
conditions of a bearing. The main problems for this type of analysis are the
non-stationarity of the signals or the variation of the operating parameters.

The method presented in this chapter provides an innovative monitoring
approach that uses time-frequency analysis and image processing with a ma-
chine learning technique for the bearing faults classification; dealing with the
aforementioned problems simultaneously. The proposed method involves a fea-
ture extraction technique that decomposes the vibration signals with Empirical
Mode Decomposition (EMD) and Principal Component Analysis. Then Spec-
trograms and Images Moments are used to extract characteristics that allow
the discrimination between different bearing faults by using a classification
algorithm. This approach provides a classification of damaged bearings for dif-
ferent and variable set-ups in stationary and non-stationary conditions. Due
to its characteristics, the method can be used to obtain a single control model
suitable to monitor various bearings that operating under different conditions.

6.1 Theoretical Principles

This section gives a brief overview of the theoretical principles of the techniques
used for the development of the proposed faults detection and classification
method.

6.1.1 Vibration signals generated by bearing defects

The vibration response of a defective bearing consists of a series of impulses
that are generated every time a running roller passes over the surface of the
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6.1 Theoretical Principles

bearing damages. The amplitude of the impulses are a measure of the intensity
of the shock. Their size depends on the speed, the spatial extent of the damage
as well as on the load conditions on the bearing. The frequency at which these
impulses are produced is called the Bearing Characteristic Frequency (BCF),
which depends on the shaft speed, the geometry of the bearing, and the site
of defects. Generally, four types of BCFs are encountered for ball bearings:
bearing pass frequency of outer race, bearing pass frequency of inner race,
ball spin frequency, and the fundamental train frequency, which correspond to
defects on the outer race, the inner race, the roller, and the cage, respectively.
The amplitude of these BCFs is characteristically a sign of defect severity, and
the presence of harmonics of the BCFs is an indication of the defect origin.

6.1.2 Empirical Mode Decomposition

Empirical Mode Decomposition [78] is based on the direct detection of local
signal extrema at a variety of intrinsic time scales to decompose the signal. The
resulting Intrinsic Mode Functions (IMFs) are considered as the most important
characteristics of the signal, and since the decomposition is based on localized
time-scales, is readily applicable to non-linear and non-stationary signals. An
IMF of a signal from EMD satisfies the following two conditions: (1) the number
of extrema and the number of zero crossings are equal, or their difference is no
more than 1, and (2) its local mean is zero. Specifically, given a signal x(t),
the constituent IMFs, ci(t), can be obtained and summed such that:

x(t) =
K
∑

i=1

cj(t) · rK(t), (6.1)

where K is the number of IMFs, rK(t) the final residue, which is the mean
trend of the signal, and ci(t) represents the IMFs that are nearly orthogonal to
each other and whose mean is close to 0.

6.1.3 Principal Components Analysis

Principal Components Analysis [79] is a feature extraction method that reduces
the dimensionality J of data XMJ , where M is the number of observations and
J the number of features, with a minimum loss of information by projecting
the data into a lower dimensional subspace, which contains most of the vari-
ance of the original data. PCA thus represents data as the product of the
mutually orthogonal data called scores TMn = [t1, t2, . . . , tn] and transposed
linear transformation matrix PJn = [p1, p2, . . . , pn] also called the principal
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component matrix, as shown in Eq.6.2:

X = TPT =
n
∑

i=1

ti · pT
i , (6.2)

with n < J .

To create the best subspace for our signals, it is crucial to determine the
appropriate number of principal components n to select. Due to the importance
of this aspect, many studies have been presented in literature with different
techniques proposed. For this study, the selection of the number of principal
components has been performed by a comparative test. The procedure is based
on the evaluation of classification accuracy provided by each different number
of principal components in order to select the number that provides the best
performance.

6.1.4 Spectral Analysis

Spectrograms are a visual representation of the spectrum of frequencies in a
sound or other signal as they vary with time. They provide a way to recog-
nize fault patterns in the time-frequency domain characteristics. In this work,
spectral analysis is employed to create images that characterize the signals.
A spectrogram is obtained by calculating the Short Time Fourier transform
(STFT) [80] of the signal:

STFT {x(t)}(τ, ω) =
∫

∞

−∞

x(t) · w(t − τ) · e−jωtdx, (6.3)

where x(t) is the original signal, and w(t) is the window function, for this
work a Hamming window is used, and then:

spectrogram(t, ω) = |STFT (t, ω)|2, (6.4)

The spectrogram provide an image where the darkest colours represent higher
amplitude of energy and show the relation between the signal in time domain
and frequency domain.

6.1.5 Image Moments

In image processing, moments are scalar quantities used to characterize an
image and to capture its significant features. Given an function I(x, y), that
represent the pixel intensity of an image, if this function is piecewise continuous
and has non-zero values only in a finite region of the (x, y) plane, then the
moments sequence Mij is uniquely determined by I(x, y). By considering that
an image segment has finite area, or at least is piecewise continuous, moments of
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6.2 Bearing Faults Simulator

all orders exist and a complete moment set can be computed and used uniquely
to describe the information contained in the image. In the case of a grey-scale
image, the image moments Mij are calculated by:

Mij =
∑

x

∑

y

xi · yj · I(x, y), (6.5)

where x and y are the pixel abscissa and ordinate. The central moments µij

are invariants with respect to translation and are defined as:

µij =
∑

x

∑

y

I(x, y) · (x − x)i · (y − y)j , (6.6)

where x = M10

M00

and y = M01

M00

are the components of the centroid. The 10
central moments up to order 3 are used to calculate the 7 Hu moments [81],
that are invariant to translation, changes in scale, and rotating. For this work,
all the 10 central moments and the 7 Hu moments are used as features set for
the images.

6.2 Bearing Faults Simulator

The data used for this study were obtained from a Bearing Faults Simulator,
Figure 6.1, a laboratory device produced by GUNT that mimics the behaviour
of a standard rotary machine. An electric motor transmits rotation via a shaft
to the bearing located in its housing. A micrometer screw generates a radial
force that acts on the movably mounted housing with the stationary outer
bearing race, thereby exerting a radial load on the bearing. The vibration
sensor is a piezoelectric accelerometer with integral electronics mounted on the
vertical axis that transforms vibrations into electrical signals collected by the
control unit, then transferred into the PC.

Figure 6.1: Bearing Faults Simulator.
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Chapter 6 Faults Detection for Rolling Bearings

Table 6.1: Description of Bearing Faults Simulator Setups.

Stationary State
Parameters

Rotating Speed (rpm) Load (mm)

Setup 1 1700 4

Setup 2 1700 6

Setup 3 3000 4

Setup 4 3000 6

Non-Stationary State
Parameters

Rotating Speed (rpm) Load (mm)

Setup 1 1700 Variable Load from 4
to 6 and from 4 to 6

Setup 2 3000 Variable Load from 4
to 6 and from 4 to 6

Setup 3 Variable Speed from
1700 to 3000 and from
3000 to 1700

4

Setup 4 Variable Speed from
1700 to 3000 and from
3000 to 1700

6

Three bearings are used for this work, each one characterized by a fault
associates to a single BCF: bearing with fault on the outer race (BOF), bearing
with fault on the inner race (BIF) and bearing with fault on the rolling element
(BRF). A fourth bearing with no faults (BNF) is used as reference.

Rotating machinery usually works under different loads and speeds, for this
reason the presented technique is aimed to be suitable under stationary and
non-stationary conditions. Hence, two rotating speeds and two loads are used
to create 4 different simulator set-ups with which demonstrate the effectiveness
of the proposed method. A first set of signals was recorded under constant
conditions, in order to simulate stationary or quasi-stationary behaviour. To
simulate a more real situation that involves variable speed and load, a second
acquisition was carried out by using simulator set-ups with the same speeds
and loads of the previous case, but by varying one of the two parameters
during the acquisition. All acquired signals have duration of 8 seconds and
they were acquired with a sample frequency of 32 KHz. The characteristics
of the used set-ups are listed in Table 6.1, for both the stationary and non-
stationary case. The loads 4 and 6 mm, corresponding to a force applied on
the cage of approximately 5 and 32 N respectively.
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6.3 The Proposed Fault Detection Method

Figure 6.2: Example of IMFs of bearing vibration signal.

The proposed method combines EMD, which adaptively decomposes signals
into various time scales, with PCA, which provides a mechanism to extract
useful information from a signal by reducing the number of involved variables.
The EMD technique is suitable for analysing non-stationary signals recorded
from non-linear systems, which is often the case of real systems that use bear-
ings. Furthermore due to its adaptive empirical nature appropriate for the
processing of signals exhibiting non-linear characteristics.

In the second step, PCA gets a new representation of the IMFs matrix in a
new space created by the Principal Components (PCs). Figure 6.3 shows the
PCs obtained from the IMFs shown in the Figure 6.2.
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Chapter 6 Faults Detection for Rolling Bearings

Figure 6.3: PCs of the IMFs after performing EMD on the original signal.

In the first step of the presented technique, the vibration signal is decomposed
into the IMFs through the EMD algorithm. For example, Figure 6.2 shows
the extracted IMFs for a signal decomposition case; the residual is not shown
because it will not be considered in the next step. All IMFs, less the residual,
are arranged in a matrix so that each column corresponds with an IMF, and
each row represents a different time instant. This matrix is used for the PCA
in the following step.

Each PC is taken as a standalone signal to obtain a representation in the
time-frequency domain through the spectrogram. The spectrogram is saved and
used as an image to characterize the PC. By calculating the spectrograms of all
the PCs, a series of images that characterized the time-frequency relationship of
the original signal is obtained, as shown in Figure 6.4. A selection is performed
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6.3 The Proposed Fault Detection Method

Figure 6.4: Spectrograms of the PCs.

to keep only those images that contain information useful to differentiate the
signals exhibiting different faults. The choice of the number of images, thus
the number of PCs, used to characterize a signal has been made by evaluating
the classification accuracy provided by the classification algorithm that will be
introduced later. The algorithm needs the same number of features for each
observation, for this reason, to find the best number of PCs, the accuracy is
evaluated on the overall dataset, and for each signal, the same number of images
has been chosen.

As expressed earlier, the behaviour of a bearing is dependent on many fac-
tors, some under the control of the operator, such as the rotating speed and
the load, while others are due to internal and external sources to the machine,
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Chapter 6 Faults Detection for Rolling Bearings

independent of human control. A monitoring system that must provide infor-
mation about the state of a device must be robust to minimal changes of the
system and take into account all factors that may affect the system, including
those that are difficult to control. The use of a machine learning algorithm is
suitable for a black box approach to create a model that takes into account all
the factors that influence the phenomenon, both controllable and uncontrol-
lable. In order to use the algorithm based on SVM to classify faulty bearings,
it is necessary convert the images into a series of values that can be handled by
the algorithm. To obtain this new representation, the selected images are con-
verted into grey-scale images in order to extract their image moments, 17 for
each image. The moments related to the images of a single signal are gathered
together to form the feature vector associated with that signal.

6.4 Computer Simulation and Results

To demonstrate the efficacy of the proposed method for identifying different
faulty bearings for stationary and non-stationary conditions, two typologies of
tests are presented. The first test shows the accuracy obtained with a dataset
composed by stationary signals only. The second tests the possibility to use
a model trained on stationary data to classify signals collected under non-
stationary conditions.

The tests have been performed with MATLAB® running on a PC with a
processor i5 dual-core 2.3 GHz, 4 GB of RAM and Windows 7® OS.

6.4.1 Bearing faults classification with stationary signals

All the observations related to the stationary signals are gathered together to
form a unique dataset. The evaluation of the accuracy has been performed
using a CV K-Folds technique with 6 non-overlapping folds. At each CV it-
eration, a different combination of Training and Test sets is selected from the
dataset. The Validation set is extracted from the selected Training set and
used to identify the best values for the parameters C and γ, necessary to train
the SVM model. The final performance is evaluated in terms of mean accu-
racy and standard deviation of the Test set. The accuracy of a model trained
with a machine learning algorithm is strongly influenced by the data used for
training, because the data must be able to characterize the phenomenon under
observation, providing examples of all operating conditions that must be moni-
tored. For this reason, an important parameter to take into account in order to
obtain an accurate classification, is the number of observations associated with
each class. Therefore, various tests were carried out with an increasing number
of observations to see how the accuracy varies and then select the appropri-
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6.4 Computer Simulation and Results

ate number of observations. Along with the study on number of observations,
the evaluation of the number of PCs, to take into account to obtain the best
classification accuracy, has been performed. The graph in Figure 6.5 shows
the evolution of the average accuracy obtained on the Test set with CV as a
function of the number of observations that each class contains as well as the
number of PCs.

Figure 6.5: Accuracy evolution in function of the number of the observations
and the number of PCs.

It is possible to see that with 8 PCs and 40 observation for each class, so
160 observations for the dataset, a mean accuracy of 85% is obtained for the
Test set. As referred in the Section 6.1.5, 17 moments are extracted from each
image so the selection of 8 PCs produces a features vector with 136 elements.
Table 6.2 shows in detail the mean accuracies and the corresponding standard
deviations for each bearing obtained for the different number of observations
per set-up with 8 PCs. The detailed results provide a complete view on the
performance of the method for each bearing and show how increasing the num-
ber of observations per class leads to an increase of accuracy for each bearing.
It is observable a common trend on the single bearing results, with an accuracy
improvement at each observation increment. Only one case for BIF shows an
opposite trend, an accuracy decrease in the step from 20 to 40 observation.
This behavior is due to the specific observations added in the last increment
that introduced some information that lead to an incorrect classification for
this fault. In parallel with the overall increase of the mean accuracy, the stan-
dard deviation decreases, confirming the best performance is obtained with 40
observations per class.
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Chapter 6 Faults Detection for Rolling Bearings

Table 6.2: Classification Accuracy on Test Set for Each Bearings Under Sta-
tionary Conditions.

Test Accuracy

n
(a) BNF BOF BIF BRF Mean STD

8 37.50% 50.00% 37.50% 12.50% 34.38% 23.83

12 58.33% 50.00% 75.00% 75.00% 64.58% 21.53

20 85.00% 90.00% 85.00% 75.00% 83.75% 10.14

40 87.50% 90.00% 80.00% 85.00% 85.63% 9.99

(a) n is the number of observations per class in the Dataset

Table 6.3: Classification Accuracy on Test Set for Each Bearings Under Non-
Stationary Conditions.

n
(a) BNF BOF BIF BRF Test Accuracy

8 50.00% 81.25% 56.25% 37.50% 56.25%

12 87.50% 0.00% 93.75% 56.25% 59.38%

20 68.75% 68.75% 93.75% 25.00% 64.06%

40 75.00% 93.75% 87.50% 31.25% 71.88%

(a) n is the number of observations per class in the Dataset

6.4.2 Bearing faults classification with non-stationary signals

The proposed bearing faults classification technique is also suitable for provid-
ing accurate classification for signals recorded under variable rotating speed
and load.

In this case, the classifiers trained with the stationary datasets introduced in
the previous test are used to classify the signals measured under non-stationary
conditions. Due to the best performance provided in the previous test, 8 PCs
are maintained in this test to characterize the signals. For the training phase,
the 4 datasets with a different number of observations for each class, respec-
tively 8, 12, 20 and 40 observations, are used. The Test set is composed by all
those signals measured under variable speed and load, in this case 16 obser-
vations are chosen for each class. This test does not involve a CV procedure
since the Training and Test sets are fixed, so the performance is evaluated only
in terms of accuracy on the Test set, and no standard deviation values are
reported as in the stationary case study. Table 6.3 details the results obtained
for each bearing.

This test confirms the good performance of the proposed technique for the
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classification of faulty bearings. Obviously, the classification performance using
non-stationary data for the test is inferior to that using the stationary data for
both train and test, but the dataset with the highest number of observation
per class in the Train set provide however an accuracy on Test set of 71%. By
looking in detail the results for each bearing, it is not possible observe a common
trend among the results. For each characteristic bearing fault the accuracy
does not follow the increase of the number of observations. This behavior is
different from the stationary case where a common trend is visible. The main
reason for this difference is that with the non-stationary case the CV is not used
and therefore the classification accuracies are not averaged. The lack of average
causes the fluctuation of the single accuracies but at the same time it is possible
to see that the overall accuracy shows an improvement at each increment of
observations. It is also important to note that for BNF, BOF and BIF the
performance are comparable with those obtained with the test on stationary
data. For the BRF instead, the method provides an accuracy remarkably
low and this accuracy drags down the overall accuracy. The changing of the
operating conditions affects the frequency response of bearings and in the BRF
case this leads the classification algorithm to misclassifying the fault.

6.5 Remarks

In this chapter, a condition monitoring solution for faulty bearings is exposed.
The proposed solution applies the SVM classifier to classify the different faults
that may occur on bearing. This solution has been developed to effectively
work with bearing working under variable set-up of speed and load, for this
reason it has been tested on experimental data coming from a bearing fault
simulator and recorded with different speeds and loads. The proposed method
has achieved a Test set accuracy of 85% with stationary signals and an accuracy
of 75% with non-stationary signals. The obtained results demonstrate that the
developed method is able to detect and to classy the faults present on roller
bearing. Moreover, it has been demonstrated that this method is suitable for
multiple rotating speeds and loads conditions as well as stationary and non-
stationary signals.

65



i

i

“thesis” — 2018/2/13 — 9:38 — page 66 — #80
i

i

i

i

i

i



i

i

“thesis” — 2018/2/13 — 9:38 — page 67 — #81
i

i

i

i

i

i

Chapter 7

Quality Control for Electric Motors

DC electric motors are components widely used in many manufacturing in-
dustries, from home appliances to automotive. Given the widespread diffusion
of commonly used objects and instruments, it is essential to ensure low levels
of vibration and noise in order to provide high quality standards to the final
consumer. For this reason, in the past few years, the standards and limits for
the homologation of component and equipment have become more stringent
in every industrial sector. Such components are produced in large quantities
and with low production costs, it is therefore impossible to guarantee all the
quality tests set by law for each engine produced. Testing takes time and
often requires proper structures and equipment, making them unsuitable for
integration within a production line.

The most common solution for the end-of-line quality control is to rely on
the experience of qualified operators who manually check the status of the
motors. However, this type of test is characterized by little repeatability as
the evaluation is influenced by the operator’s sensitivity and perception, by
the background noise of the environment, and by his psycho-physical state.
In order to ensure a more reliable quality control and to test each element
produced by the line, it is necessary to replace the human operator’s control
with an automatic system that allows an automatic test of the component in
a limited time interval to impact as less as possible on the production time of
the line.

Due to the importance of the subject, over the years, many solutions have
been presented to face the task of fault detection and quality control on electric
motor. The solutions adopt a wide range of very different techniques but that
can be divided into two main categories: data-driven methods and model-based
methods. Model-based methods use mathematical models that describe motor
behavior by using the physical relationship between the stimuli applied to the
motor and its responses. An exact model allows to characterize every condi-
tion of the component and to identify if there are any faults, on the base of the
measured parameters. The main problem of this approach is the a priori knowl-
edge required to describe the motor with a proper mathematical model. It is a
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Chapter 7 Quality Control for Electric Motors

complex system, subject to many variables that change its characteristics over
time due to wear and changing operating conditions. It is therefore difficult
to find a fixed relationship between the available parameters and the motor
status. The second class of methods uses the data extracted from the motor to
characterize its state. These methods use signal analysis and ML techniques
to train expert systems able of detecting faulty motors. The training of the
expert systems use the signals measured from the device under test, and needs
only the knowledge of the motor condition, faulty or non-faulty, that is easily
derivable from test performed by human operators. The main drawback for
using data-based methods lies on the amount of needing data that must be col-
lected to properly train the system. This difficult has been partially overcome
in recent years thanks to the introduction of more accurate and economical
sensors and measurement systems integrated within the production lines. The
availability of more data facilitated the implementation of data-based methods
that use both self-supervised and non-supervised techniques for the training.
Many existing work in the field of fault detection for electric motors and rotary
machines apply supervised classification techniques for detecting faulty motors
and classification of fault types [82, 83, 10]. However, the impossibility to know
any type of fault that may occur during the lifetime of an electric motor moves
the interest in seeking un-supervised approaches for error detection, such as
clustering and one-class classification [84, 85, 86]. Among the non-supervised
methods, an alternative is the Novelty Detection approach. This approach has
the goal of identifying new or unknown data that the machine learning model
has not been trained with. The novelty approach has been used to develop
many systems in different application fields,and in general in those contexts
where the amount of normal data consists of a very large set, and the nor-
mal class can be accurately modelled, whereas the events not belonging to the
normality are considered as novel events.

7.1 A Novelty Approach for Electrical Motors Fault

Detection

The work presented in this chapter utilizes an un-supervised approach to pro-
vide a monitoring tool for the end-line quality control. The goal is to identify
faulty motors and then discard them. The developed technique is based on
Denoising Autoencoders (DEA) with Long Short-Term Memory (LSTM) Re-
cursive Neural Network. The network is used as a one-class classifier to detect
faulty motors, regardless of the type of defect. The approach is based on the
evaluation of the reconstruction error committed by the trained network when
it attempts to reconstruct a signal that does not belong to the dataset used dur-
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ing the training phase. The training dataset has been populated with signals
collected from motors that have been classified un-faulty by human operators,
in order to create a reference background model.

The presence of construction defects in the motor causes an abnormal vibra-
tion if compared with the normal vibration emitted by a non-defective motor.
For this reason, the vibration signals have been measured and used to extract
useful information about the status of the motor. Measured signals have been
appropriately processed and two sets of features have been extracted for use in
network training. Log Mel Coefficients and Mel Frequency Cepstrum Coeffi-
cients (MFCC) are set of parameters widely used for speech analysis [1, 87, 88],
but some works presented in literature have successfully applied these coeffi-
cients for the study of vibration signals [89, 90, 91]. A set of tests have been
designed to compare the results obtained with each of these two feature sets.

7.2 Mel Spectrum and Mel-Frequency Cepstral

Coefficients

The MFCC [92] are a representation of the short-term power spectrum of a
signal, based on a linear cosine transform of a log power spectrum on a non-
linear mel scale of frequency. The first step for the coefficients extraction is the
computation of the frequency domain representation of the input signal by a
Discrete Fourier Transform:

Xi(k) =
N−1
∑

n=0

xi(n) · exp(−i2πkn/N), (7.1)

for the ith frame of the signal, where N is number of sampling points for the
signal x(n), and k = 0, 1, ..., (N/2) − 1.

The second processing step is the computation of the mel-frequency spec-
trum. Therefore, the spectrum is filtered with Nf different band-pass filters
and the power of each frequency band is computed. This processing step is
described by:

Si(j) =
(N/2)−1
∑

k=0

Xi(k) · Fj(k), (7.2)

where Fj(k) is the amplitude of the band-pass filter with the index j, and
j = 0, 1, ..., Nf . For this study Nf = 26. Then the logarithm of mel-frequency
spectrum is computed:

Li(j) = log[Si(j)] (7.3)

The results of this step are the Log Mel coefficients used as first features set
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operator is: taking a motor from a quality inspection bin; performing visual
inspection of the motor and check if all components are assembled correctly;
connecting power cable; checking that the shaft rotates; rotating the motor in
order to assess noise and vibration at different tilt angles; disconnecting the
power cable; assigning a verdict (pass or fail). The weight of the rotor creates
an unbalance force when the rotor axis is not aligned with gravity, so it is
important to test the motor in different tilt angles, paying particular attention
to the angle at which the motor will be mounted in the end product. The au-
tomatic control system mimic the human operator behaviour and follows the
following steps for its measurement procedure:

1. The robot takes the piece from the line and places it horizontally on the
"cradle" of one of the 2 measuring stations;

2. The clamp is closed that is lowered by rotating 90° to keep the engine
in the cradle. In the upper part of the clamp there is a single-axis PCB
352C33 accelerometer (sensitivity of 100 mV/g) with IEPE technology.
The pressure of the pneumatic cylinder that moves the clamp is monitored
and kept constant in order to have a constant motor-cradle coupling force
and thus increasing the repeatability of the measure;

3. During the step 2, the entire measurement area is released so that it
remains floating on pneumatic suspension so as to avoid vibration trans-
mission from the floor;

4. A 3V power supply is supplied with a TDK lambda ZUP 20-20 power sup-
ply, driven by an analogue output of a National Instrument PCI express
6351 board. At this voltage, the motor accelerate up to 1000 rpm. A PID
controller regulates the voltage so that it has a speed of 1000 ± 5 rpm. It
is therefore possible to assume that the tests take place at constant speed
of 1000 rpm;

5. Once the speed is stable, the actual test in which vibrations are measured
starts. During the test, the motor is rotated 90°, from the horizontal
to the vertical position in 3s. This rotation is necessary because some
motors are noisy only horizontally, others only in vertical, it depends on
the defect;

6. After the test is concluded, the motor returns quickly horizontally, the
clamp is opened, the robot takes it and puts it back on the line. In the
case of a faulty motor, the motor is retested, if the fault is confirmed it
is definitely classified as faulty.

The acceleration signals are acquired for each station with the NI PCIe 6351
with a sample rate of 25,6 kS/s, moreover the accelerometer channel passes
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through an signal conditioner IEPE MMF M32, which has an anti-aliasing
filter at 10kHz.

Figure 7.2: Example of Time Vibration Signal.

Figure 7.3: Example of Frequency Spectrum.

From each acquisition, the signal of 3s corresponding to the time interval
during which the motor kept constant speed is extracted. An example of time
signal is shown in Figure 7.2. Instead, in Figure 7.3 the frequency spectrum of
the same signal is shown. How it is possible to appreciate, useful component up
to a frequency of 6 KHz, for this reason the signals were down-sampled at 12.8
KS/s in order to maintain only the portion of spectrum containing information.
From each raw signal, 3 s have been extracted and framed into frame of 600ms,
with a 50% overlap, so as to get 10-frame set for each acquisition. The feature
extraction is made frame by frame. For the Log Mel coefficients, 26 Mel filters

72



i

i

“thesis” — 2018/2/13 — 9:38 — page 73 — #87
i

i

i

i

i

i
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have been selected so 26 features characterize each frame. For the MFCC, 13
coefficients have been extracted together with delta and delta-delta coefficients
for a total of 39 features.

7.4 Experimental Setup

Several tests have been carried out to find the most suitable network topology
for the problem dealt with. The networks have been trained with the ADAM
algorithm [30] by keeping the configuration parameters suggested by the orig-
inal paper: learning rate = 0.001, beta1 = 0.9, beta2 = 0.999 and ε = 10−8.
Given the use of DAE networks, different noise sigma values σ = [0.1, 0.25, 0.5]
have been evaluate. Different network topologies have been tested, by using 2
hidden layers as basic structure, and varying the LSTM units from 26-52 to
78-104 for each layer with Log Mel coefficients and from 39-78 to 117-156 with
MFCC. The input and output layers of the network have a constant number
of units, N = 26 equal for Log Mel feature set and N = 39 for MFCC. This
allows the network to reconstruct the input feature set and to detect faulty
motor signals from the reconstruction error. The reconstruction error is eval-
uated by computing the Euclidean distance between the original normalized
feature vector and the network’s output, the distances are summed up and the
sum is averaged by the number of features. The result is a single parameter
representing the error for each frame. The novelty detection have been done for
each frame sequence, so a decision threshold has been set in order to obtain a
binary signal. The classification of a sequence as faulty or non-faulty depends
on the number of frames that exceed the threshold. Although each sequence
is associated with a single condition (faulty or non-faulty), it is unlikely that
all frames in the sequence have the same error. During the signal recording
phase, the robotic arm turns the motor and certain abnormal vibrations can be
highlighted only for few time instants. For this reason, some tests have been
carried on to identify the minimum number of frames over the error threshold
that identify a faulty motor. This parameter, identifies as F for brevity, has
been varied from 2 up to 8 frames. The results obtained with the Denois-
ing Autoencoder network were compared with those obtained with OC-SVM.
OC-SVM models have been trained with Radial Basis Function as kernel and
different values of γ and ε parameters: γ = [20, ..., 2−5], and ε = [2−1, ..., 2−4].

7.5 Dataset

The dataset used for this study contains signals measured at the end of a motors
production line. Each motor is checked and a vibration signal is acquired to
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evaluate its condition. The dataset contains 1178 signals associated with non-
faulty motors and 14 signals that human operators have classified as defective.
The available data have been subdivided into a Train dataset containing only
non-defective motor signals, and a Test set containing signals of both categories.
The Train set consists of 1170 non-defective signals, while the Test set consists
of 14 faulty signals and 8 non-faulty signals.

7.6 Computer Simulations and Results

The tests used to evaluate the performance of the proposed method have been
performed with the KERAS tools implemented in PYTHON and running on a
PC with a processor i7 quad-core 2.3 GHz, 8 GB of RAM and Windows 10®

OS.

Figure 7.4 shows the reconstruction error for 4 example sequences. As it
is possible to appreciate, the level of reconstruction error is higher for faulty
sequences and many frames have an error above the decision threshold. This
shows how the DAE network commits a higher reconstruction error by trying
to reconstruct faulty motor signals.

Figure 7.4: Example of residual error for 4 different sequences associated to 2
faulty motors and 2 normal motors.

For this study, the Receiver Operating Curve (ROC) has been used to evalu-
ate the behavior of the trained networks at the variation of the decision thresh-
old and the corresponding Area Under Curve (AUC) has been used as evalua-
tion metric. The set of thresholds used to create the ROCs corresponds to the
set of network reconstruction errors get as result by the background model.

In Table 7.1 the results obtained with different values of error sigma are com-
pared. The network topology is kept same for all test as well as the minimum
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7.6 Computer Simulations and Results

Table 7.1: AUC for the two features set varying the amount of noise σ used in
the training phase.

Noise Variance

Features Set Topology 0.1 0.25 0.5

Log Mel 52-52 0.95 0.83 0.83

MFCC 78-78 0.66 0.62 0.63

Table 7.2: Comparison of AUC values for different network topology.

Features Set Topology AUC

Log Mel

26-52 0.84

52-52 0.95

52-78 0.84

78-104 0.74

MFCC

39-78 0.65

78-78 0.66

78-117 0.62

117-156 0.63

number of frames to have above the decision threshold to identify a faulty mo-
tor. The results show that for both the feature sets the best performance are
achieved with σ = 0.1, with the Log Mel that outperforms the MFCC for each
noise value.

A comparison among different topologies of the network is reported in Ta-
ble 7.2. For both the features set, the best configurations use for each hidden
layer a number of LSTM units equal to double of feature number.

The results obtained for different thresholds for the minimum number of
frames F for detecting faulty motor is given in Table 7.3, for both DAE and
OC-SVM. Also from this set of results, it is possible to appreciate better per-
formance with Log Mel feature. With the DAE, the MFCC reach its best
performance of AUC = 0.79 with F ≥ 8, while for the Log Mel set F ≥ 4 and
F ≥ 6 provide the best result of AUC = 0.95. The OC-SVM provides AUC
= 0.68 with F ≥ 8 for the MFCC feature set, and AUC = 0.82 with F ≥ 2
with the Log Mel coefficients. The results demonstrate that with the Log Mel
features it is possible to extract information from the raw signal that highlight
the difference between faulty and non-faulty signals, and this lead to both an
overall best performance and minor number of needing frames to distinguish
faulty sequences from the background.
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Chapter 7 Quality Control for Electric Motors

Table 7.3: Comparison of AUC values for different values of the F for DAE and
OC-SVM.

F = Number of Frames

Feature Set Algorithm 2 3 4 5 6 7 8

Log Mel DAE 0.84 0.85 0.95 0.81 0.95 0.82 0.80

MFCC DAE 0.70 0.71 0.63 0.67 0.66 0.71 0.79

Log Mel OC-SVM 0.82 0.75 0.73 0.71 0.71 0.76 0.76

MFCC OC-SVM 0.63 0.62 0.64 0.63 0.59 0.57 0.68

Figure 7.5: Comparison af two ROCs obtained with DAE network (red) and
OC-SVM (blue).

Figure 7.5 shows the ROCs obtained with the bets configuration of DAE
and OC-SVM. How it is possible to see, the DAE outperforms the OC-SVM,
by providing an AUC of 0.95, instead the OC-SVM obtains an AUC of 0.82.
The better performance of a DAE is due to in its ability of encoding the input by
preserving the information about the input itself and simultaneously undoing
the effect of a corruption process applied to the input of the auto-encoder. The
combination of these two learning processes seems to be effective in this task.

7.7 Remarks

In this chapter a new solution for the end-line quality check for DC motor has
been proposed. This solution has been designed to identify the faulty motors,
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7.7 Remarks

regardless the kind of faults, by using the novelty detection approach. DAE
network has been employed to train a suitable model that characterize the
normality of the system, i.e. the normal motors. Differently from a classifi-
cation approach, the proposed solution uses less a-priori information because
it does not need the knowledge of every kind of motor fault. Two features
set have been compared, the first one containing Log Mel coefficients and the
second composed by MFCC. Different tests have been carried out to find the
best configuration for the DAE network, and a further comparison with an
un-supervised method widely used in literature for novelty approach has been
performed, i.e. OC-SVM. The proposed algorithm with its best configuration
and the Log Mel features set achieves an AUC of 0.95, demonstrating that this
novelty method is suitable for the detection of faulty DC motors. Moreover, in
the comparison with the DAE outperforms the OC-SVM that achieves for its
best configuration an AUC of 0.82.
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Chapter 8

Conclusions

This thesis explored possible methodologies to solve industrial relevant prob-
lems related to quality checks and condition monitoring by using a machine
learning approach. The variety of problems that have been solved by means
of the developed algorithms demonstrates that machine learning techniques
are effective tools to achieve the goal of monitoring quality of products along
the production line and to monitor condition of industrial equipments during
working condition in order to optimize their performances. With the purpose of
demonstrate the effectiveness of the proposed algorithms on data coming from
real situations, the datasets used for the tests were composed by experimental
data collected from industrial working systems and devices.

The first case is related to the estimation and classification of particle size
of powder employed in industrial processes. This problem has been analysed
under different aspect with the final goal of designing a methodology for the
combustion optimization of coal burner in a coal fired power plant. The stan-
dard procedure for the PSD estimation within an industrial power plant is
the sampling and sieving method that can provide with a precise measure of
the PSD. However, this method is time consuming and it is not suitable for
a continuous on-line monitoring of the powder size. In Chapter 4, the author
propose a new solution that applies a ML technique to perform a continuous
non-invasive PSD monitoring, and so overcoming the limits of the sampling and
sieving method. Different kind of ML algorithms, i.e. ANN, SVR and ELM,
have been tested for this solution. The obtained results have been compared
with those obtained with the system POWdER, an industrial system that per-
form the PSD monitoring, and the new solution has proven to obtain better
performance than the reference system. Moreover, a further improvement for
the PSD estimation is reached by using heterogeneous data coming from dif-
ferent industrial plant. The proposed solution has proven to be able to exploit
data from multiple source, this aspect is particularly important in an indus-
trial context where it can be not easy collecting enough data for the training
of the expert monitoring system. The Chapter 5 proposes a new scheme for a
non-invasive condition monitoring approach based on classification for burners
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Chapter 8 Conclusions

devoted to coal powder combustion in the same industrial power plant of the
previous case study. The usual procedure to perform the efficiency estimation
the burner/boiler system considers the measurement of the produced energy
and the produced ash to asses if the system is operating under optimal condi-
tion. With this procedure it is possible to act only after the end of the energy
production process. The new proposed solution uses the algorithms previously
implemented for the PSD estimation modified to fulfil a classification task. The
size of the powder that feeds the burners is continuously monitored and clas-
sified in order to immediately identify non-optimal operating conditions. The
proposed method has the great advantage of using a-priori knowledge already
available in an industrial power plant, as is the energy efficiency of the burner
combustion, to avoid further data collection. This aspect is particularly rele-
vant because represents a substantial time saving during the phase of system
set-up. Moreover, despite this method is applied on a specific task it can be
suitable for all those scenarios where it is requested a monitoring system to
discriminate between a discrete number powder types, different by material or
dimension.

In Chapter 6 a maintenance tool for roller bearings is proposed with the
objective of detecting and classifying different fault types that occur on this
device. The available techniques that deal with the problem of bearing fault
identification perform the analysis on vibration signals measured under station-
ary conditions of speed and load. The new proposed technique applies images
analysis together with the SVM classifier and it is designed and tested on
roller bearing operating in different working conditions. The suitability of this
method for multiple rotating speeds and loads conditions as well as stationary
and non-stationary signals represents an important feature for a monitoring
system devoted to control of the bearing status, because it is able to asses the
device conditions under every operating set-up.

The last addressed problem is illustrated in Chapter 7. The Novelty Detec-
tion approach is applied for the end-line quality control of DC motors. Con-
versely to the standard classification techniques that require the knowledge of
all the different faults that may occur, the proposed novelty approach use the
characterization of the normality, i.e. the motors without faults, a task rela-
tively simple due to the great amount of working motor available during the
production phase, to detect the faulty motors among all the produced motor.
This aspect makes the proposed quality control system able to distinguish the
faulty motors regardless the type of fault present on the device, and without
the informations about the possible faults. A Denoising Autoencoder network
with Long Short-Term Memory modules has been used to implement the al-
gorithm that exploits features extracted from vibration signals for the model
training.
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8.1 Future Works

In conclusion, the solutions proposed in this thesis for actual industrial issues
have demonstrated, trough the tests on proper experimental data, that ML
techniques can be effectively applied for the implementation of industrial CM
systems, suitable to be used for system monitoring in maintenance and quality
control processes.

8.1 Future Works

With the spread of more advanced monitoring and control system in manufac-
turing, following the trend of automation and data exchange of Industry 4.0,
the author is confident that more and more amount of data will be available in
the future. The more experimental dataset the more practical issues could be
possible to address by means of expert systems based on ML tools

With this idea, future works will be oriented mainly toward two direction.
For the first one, new cases study of the same kind of those addressed in

this thesis will be analysed with the purpose of understand the generalization
degreed of the proposed solutions. Additionally, a further in-depth study is
needed to find optimal ML technique and parameters for each specific issue.

A second research direction will seek to find diverse industrial and manufac-
turing problems where to develop advanced monitoring solution able to improve
the performance of the systems in terms of reliability, security and quality.
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