
i





Università Politecnica delle Marche
Scuola di Dottorato di Ricerca in Ingegneria Industriale

Curriculum in Ingegneria Meccanica

Constitutive behaviour
identification of anisotropic

plasticity using non-linear VFM

Ph.D. Dissertation of:
Attilio Lattanzi

Advisor:
Prof. Marco Rossi

Coadvisor:
Prof. Dario Amodio

Curriculum Supervisor:
Prof. Ferruccio Mandorli

XVI edition - new series





Università Politecnica delle Marche
Scuola di Dottorato di Ricerca in Ingegneria Industriale

Curriculum in Ingegneria Meccanica

Constitutive behaviour
identification of anisotropic

plasticity using non-linear VFM

Ph.D. Dissertation of:
Attilio Lattanzi

Advisor:
Prof. Marco Rossi

Coadvisor:
Prof. Dario Amodio

Curriculum Supervisor:
Prof. Ferruccio Mandorli

XVI edition - new series



Università Politecnica delle Marche
Scuola di Dottorato di Ricerca in Ingegneria Industriale

Facoltà di Ingegneria
Via Brecce Bianche – 60131 Ancona (AN), Italy



Alla materia che costituisce i miei sogni e le mie aspirazioni,
per la loro pazienza e supporto: la mia famiglia, e te.





Acknowledgments

Although the following dissertation represent an individual work, I could never
explore the depths without the guidance and support of a lot of people.

I owe my deepest gratitude to my supervisor Dr. Marco Rossi, who sets up
my the qualities required for being a good scientist and engineer. His guidance
and cheerful enthusiasm have been an essential source of inspiration. Also, my
personal and technical growth could not have happened without the support
of my research group at Università Politecnica delle Marche. So, I would like
to thank Prof. Marco Sasso, Gianluca Chiappini, Edoardo Mancini and Prof.
Dario Amodio for their teachings and the joyous time spent together.

I am deeply grateful to Prof. Frédéric Barlat and all the guys of MML Group
at GIFT-Postech, which have taken me with my most sincerely honour during
my semester abroad. Their intellectual inputs and spurring insights helped me
to push forward my research.

I wish to express my special gratitude to Dr. Sam Coppieters from KU Leuven,
who inspected and examined my thesis together with Prof. Barlat: their precious
suggestions have been a fundamental improvement to this dissertation.

Ancona, 15th February 2017
Attilio Lattanzi

ix





Abstract

The Virtual Fields Method (VFM) is an inverse technique that allows to identify
the material parameters of a constitutive model using full-field strain data. In
this research activity, the VFM is employed to characterize the anisotropic
plasticity behaviour of metals. This aspect, in fact, is particularly important
in many industrial processes such as sheet metal stamping and metal forming
in general. So, the VFM is used accordingly with its formulation for the
finite deformation theory. In such application, the identification of material
parameters is performed through an iterative procedure; in this, the algorithm
for the integration of constitutive equations has significant effects on accuracy
and computational time. A fast computational method for stress reconstruction
from strain data in general plasticity is formalized and validated. This algorithm,
called Direct Method, is implemented in the VFM and will be exploited for all
the analysis given below.

The VFM, and the inverse methods in general, allow to consider heterogeneous
strain fields for the identification, in order to introduce as much informations
about the material as possible. This, also, leads to the development on new
experimental procedures capable of collecting a large amount of material data.
Employing the Digital image Correlation (DIC) as main tool for the full-field
measurement, new experimental procedures are proposed, facing such problems
as the optimization of specimens for the elasto-plastic behaviour characterization,
the evaluation of the volume displacement from surface DIC measurements, the
characterization of sheet metals through-thickness behaviour at large strains.
The methodology applied relies on both numerical analysis and experimental
validation.

The last part is focused on the identification of the material parameters of an
anisotropic plasticity model, the YLD2000-2D yielding criterion. The results
coming from the inverse identification by means of VFM are compared with the
standard procedure based on the uniaxial test at three material orientations
and the equi-biaxial stress state by means of bulge test. This experimental
investigation is extended on two AHSS steels, the BH-340 and TRIP-780, widely
employed in automotive applications.
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Sommario

Il Virtual Fields Method (VFM) è una tecnica di identificazione inversa che
permette di calibrare i paramtri di un generico modello costitutivo del mate-
riale, impiegando campi di deformazioni misurati tramite tecniche full-filed.
Nel lavoro di ricerca intrapreso, il VFM è utilizzato per la caratterizzazione
del comportamento anisotropro del materiale in condizioni di plasticità. Tale
aspetto, infatti, è particolarmente rilevante in molte applicazioni industriali
come, ad esempio, processi di stampaggio e, più genericamente, di formatura.
Dunque, il VFM è utilizzato secondo la sua formulazione per la teoria delle
grandi deformazioni. In tali impieghi, l’identificazione dei parametri caratter-
istici del materiale è realizzata attraverso un processo iterativo; ne consegue
che l’algoritmo d’integrazione delle equazioni costitutive adottato ha effetti
sostanziali sull’accuratezza dei risultati e sui tempi di calcolo. A tal fine, un
nuovo metodo computazionale per la ricostruzione delle tensioni di Cauchy è qui
formulato ed analizzato. Grazie alle sue performances computazionali, questo
algoritmo, definito Direct Method, costituisce uno degli strumenti fondamentali
impiegati nella presente tesi.

Il VFM, e più in generale i metodi inversi, permettono di considerare campi
di deformazioni eterogenei ai fini dell’identificazione. Questo ha portato allo
sviluppo di nuove procedure sperimentali, capaci di raccogliere un gran nu-
mero di informazioni sul comportamento del materiale. L’attività di ricerca
si è dunque interessata anche dello studio di nuovi protocolli sperimentali, af-
frontando tre temi principali: l’ottimizzazione di provini per la caratterizzazione
del comportamento elasto-plastico di lamiere, la valutazione del campo di defor-
mazione all’interno del materiale a partire da misure di superficie tramite DIC,
la caratterizzazione del comportamento lungo lo spessore di laminati sottili. La
metodologia seguita si basa sull’impiego di analisi numeriche non-lineari agli
Elementi Finiti come strumento di sviluppo e la successiva verifica sperimentale.

La parte finale è dedicata all’identificazione dei parametri costitutivi di un
modello di plasticità anisotropa complessa, lo YLD2000-2D. I risultati derivanti
la calibrazione effettuata con il VFM sono confrontati con la procedura standard,
la quale prevede l’impiego di dati da prove uniassiali a tre differenti orientazioni
del materiale e relativi alla condizione di equi-biassialità, ottenuta tramite
bulge test. Tale attività sperimentale è applicata a due acciai AHSS impiegati
nell’industria dell’automotive: il BH-340 ed il TRIP-780.
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Chapter 1

Introduction

1.1 Introduction
In the engineering design process the conception of a product crucially relies on
the correct knowledge of material behaviour and its characterization. In fact, for
any application, the material has to achieve the required functions, becoming an
essential stage of the project development [1]. However, the material response
can be extremely various and heterogeneous, and among the years an enormous
number of mathematical models has been introduced. Obviously, the accuracy
of the mechanical behaviour prediction depends first on the employed model
and, second, on its calibration.

Looking into a specific problem, sheet metals forming represents a widely
diffused industrial process. In particular, under plastic deformation sheet metals
often exhibit an anisotropic behaviour, mainly due to its texture and texture
evolution during the plastic deformation. In fact, the rolling manufacturing
process gives to blank sheets preferential orientations, which can have a relevant
influence on the whole sheet metal forming process. Nowadays, being able to
correctly simulate the behaviour of sheet metals through the Finite Element
Analysis (FEA) is a fundamental task for the process design. Thereby, sev-
eral anisotropic plasticity models are successfully implemented, each of them
requiring the identification of a set of constitutive parameters.

In the field of experimental mechanics many techniques have been studied
to face the issue of material properties identification. The common approach,
essentially, considers to produce an homogeneous stress state, which is basically
deduced from the measured load. However, in the recent years, the diffusion of
full-field measurement techniques was followed by the development of methods
to characterize inversely even complex material models. Many inverse methods
can be found in literature [2, 3], the most widespread ones able to retrieve the
material parameters from a full-field measurement are the Finite Element Model
Updating (FEMU), and the Virtual Fields Method (VFM) [4]. In particular,
the latter one offers the main advantage of higher computational efficiency
compared to FEMU, since no Finite Element simulations must be iteratively
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Chapter 1 Introduction

performed to reach the identification. This aspects, in fact, becomes particularly
important in non-linear problems applications.

The purpose of this thesis and research activity in general, thus, is to deeply
analyse benefits and drawbacks of non-linear VFM application to identify the
metals anisotropic plasticity behaviour.

Anyway, this Introduction Chapter does not have the aim to anticipate and
summarize the contents of this thesis work, but it represents the "bunch of keys"
necessary to open each chapter’s "door". Hence, no more general informations
about the state of art will be reported here, since each chapter contains its
introduction framework.

Chapter 2 illustrates the indispensable theoretical basis of Plasticity on which
this thesis relies. Such fundamental concepts of Yield Surface, Flow Rule, Hard-
ening Rule are provided, so that in Chapter 3 they will be exploited to formalise
a new method for elasto-plastic integration of constitutive equations. The
Direct Method for stress state reconstruction is, then, validated and compared
to other traditional stress integration algorithms. In particular, the Direct
Method is particularly suitable to be implemented with the VFM technique,
whose formulation for non-linear problems is described in Chapter 4. VFM, and
inverse identification techniques in general, represent a powerful tools thanks to
their ability to employ a large amount of material data. Thereby, they inspire
new ideas for experimental procedures development. So, Chapter 5 introduces
new experimental protocols to be employed in inverse calibration of material
models. All these concepts converge in the Chapter 6, where the VFM is applied
to calibrate the YLD2000-2D material model. This also represents the main
experimental part, where the VFM identification results are compared with the
traditional calibration procedure on two AHSS steels.

2



Chapter 2

Plasticity theoretical framework

2.1 Introduction
From its early origin traced back to a series of studies by Tresca [5] in 1872,
which was followed by the observations of Bauschinger in 1886 and von Mises
[6] in 1928, theory of plasticity is enriched with significant scientific inputs and
experiences among the year, becoming nowadays a well-established and mature
topic of solid mechanics. Research community has reached a deep understanding
of governing equations, and, in the last decades, the increasing computational
power in numerical simulations made possible to solve also highly complex
problems.

The aim of this Chapter, thus, is to make an essential overview on elasto-
plastic problem, furnishing the basis of the theoretical framework on which the
following Chapters of this thesis rely. However, plasticity represents an incredibly
wide research area, and the dissertation will be limited to the fundamental
concepts of rate-independent plasticity like yielding criterion, plastic flow rule
hardening behaviour and anisotropic plasticity. More complete treatise of this
topic can be found in [7, 8, 9, 10].

2.2 Fundamentals of plasticity
One of the simplest way to determine the stress-strain relation of an elasto-
plastic material is represented by the uniaxial loading/unloading test, whose
general results are reported in Figure 2.1. Starting from zero stress level (point
O), the material point is loaded until point A describing a linear path. If the
same material point is unloaded from A to O and again loaded to A, it follows
the same path without exhibiting memory of the previous load. Thus, the
material does not accumulate a permanent deformation, and remains into the
elastic range.

Now, the load increase exceeding point A and arriving to point B through a
non-linear path. Unloading again to point C, the material shows a memory in

3
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Figure 2.1: Schematic of hardening/softening curve.

the elasto-plastic regime keeping a permanent deformation. Thereby, the total
strain can be divided in two parts: the elastic and plastic.

ε = εe + εp . (2.1)

So, basically, when material behaviour changes from elastic to elasto-plastic, it
yields. In this case the material point yields first at point A, and successively
at point B, whose stresses σY 0 and σY 1 are obviously called yield stresses.
Moreover, looking at the curve, when the yield stress increase, material exhibit
strain hardening, while it is called strain softening in case of decreasing yield
stress trend. In general, this behaviour is mathematically considered through
the hardening rule. Also a third case can be distinguished when the yield stress
remains constant, and it is called perfectly-plastic behaviour.

2.2.1 The Yield Function

The same conclusions can be extended to the multiaxial loading case, where the
yield stress scalar quantity becomes a surface function of the whole stress tensor.
In other words, if we consider a Cartesian reference system where principal
stresses are taken as coordinates, the yield point can be represented according to
the stress state with which is experimentally obtained. Displaying the yielding
points coming from different loading conditions (i.e. pure shear, biaxial stress
state, traction-torsion, etc. [11, 12]), they can shape a surface that can be
described by a certain mathematical function: the yield surface.

Since the uniform hydrostatic stress accordingly has no influence on yielding,
the yielding surface can be expressed in function of the second and third
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2.2 Fundamentals of plasticity

deviatoric stress common invariants assuming the following general form:

ϕ(J2, J3) = const . (2.2)

As already observed, elasto-plastic materials behaviour has memory of its
loading history, and the material state must contain this kind of informations.
Thus, the plastic internal variables ξi are introduced so that the constitutive
equations can be expressed as follows:

σ = σ(ε, ξi) (2.3)

Practically, ξi can represent a scalar parameter, a second order tensor, etc.
Usually these internal plastic variables ξi can represent an hardening variable
that defines the size of yield surface, or anisotropic plasticity parameters which
consider the texture of material, or even variables connected to back stress.
Thereby, it is possible to define the yield function such that:

⎧⎪⎪⎨⎪⎪⎩
ϕ(σ, ξi) > 0 outside the surface
ϕ(σ, ξi) = 0 on the surface
ϕ(σ, ξi) < 0 inside the surface

(2.4)

where the domain inside yield surface is purely elastic. The outer domain is
actually inaccessible by the material state.

Now, let’s consider a stress state that lies on the yield surface (ϕ(σ) = 0).
In order to observe how the yield surface behaves when the material point is
exposed to variable loading conditions, a scalar quantity l called loading index
is introduced, which is defined as the scalar product between the rate of stress
dσ and the normal n̂ to the yield surface at the current stress point:

l = dσ n̂ = dσ
∂ϕ

∂σ
(2.5)

This can help us to define a loading/unloading criterion such as the event can
be distinguished in:

⎧⎪⎪⎨⎪⎪⎩
l > 0 elasto-plastic loading
l = 0 neutral loading (elastic)
l < 0 unloading (elastic)

(2.6)

This principle is particularly important for the integration of elasto-plastic
constitutive equations, since it helps to know whether the updated stress will
rely inside the yield surface (unloading) or the yield locus is exceeded.
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Chapter 2 Plasticity theoretical framework

2.2.2 Plastic Flow rule

Up until this point the necessary conditions to initiate yielding have been
reported. Therefore, what it is to be analysed regards what will happens when
loading continues and plastic flow occurs.

Considering the stress-strain relation is rate-independent, the plastic strain
rate dεp may be defined as:

dεp = f(σ, ξi) (2.7)

where f represents an homogeneous and order 1 function that does not have
dependency on stress rate dσ, and the plastic internal variables ξi are related
to the hardening behaviour of material. In particular, the function f represents
magnitude and direction of plastic strain rate. So, the direction of can be
derived form the potential function ψ, also know as plastic potential; viz.:

dεp = dλ
∂ψ(σ, ξi)

∂σ
(2.8)

the parameter dλ is also called plastic consistency parameter, and is necessary
positive during plastic flow because deformation is an irreversible phenomenon.
Define the normal to plastic potential surface as r̂ = ∂ψ

∂σ
, it follows:

dεp = dλ r̂ . (2.9)

Eq. 2.9 indicates that there is a relation between the direction of plastic
flow and the plastic potential ψ, called flow rule. In addition, when the plastic
potential is equal to the yield function ψ = ϕ, also r̂ = n̂ the flow rule is defined
as associated, otherwise, when ψ ̸= ϕ and consequently r̂ ̸= n̂, it is called
non-associated flow rule.

2.2.3 Consistency Condition

When a material point is loaded, the stress point moves away from the yield
locus, going outward the yield surface in case of hardening behaviour (or inward
for softening materials). However, the material point cannot be defined in the
outer domain of yield surface, therefore the yield surface must be modified. In
other words, it can change its shape, size or location so that the updated point
is still on the yield surface. This requirement represents an important basic
principle of plasticity theory and is called Consistency Condition.

Assuming associated Flow Rule, basically Consistency Condition can be
mathematically expressed as:

dϕ(σ, ξi) = 0 (2.10)
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2.3 Anisotropic Plasticity Criteria

that, according to the chain rule, becomes:

∂ϕ

∂σ
: dσ + ∂ϕ

∂ξi
: dξi = 0 (2.11)

2.2.4 Hardening rule
The way how yield surface modify due to the loading increment is regulated by
the hardening rule. Thereby, the hardening behaviour is classified as isotropic
when the yield surface expands (or contract) uniformly in all directions, keeping
fixed its centre during the loading path.

On the contrary, when the yield surface maintains its shape unmodified but
translates its centre, hardening rule is defined kinematic. This approach is
typically used, for instance, in pressure-dependent plasticity materials such as
soil, or to predict the Bauschinger effect introducing a back stress tensor function
only of pure deviatoric stresses. Several formulations of kinematic hardening
rules can be founded in literature, as the classical Prager’s rule [13, 14] or the
Chaboche model for non-linear kinematic hardening [15].

However, kinematic hardening rules represents just a small classification of
the larger group of Anisotropic hardening models, which includes for example
combined isotropic-kinematic hardening, or two yield surfaces plasticity model
[16], or dislocation-based hardening model [17].

2.3 Anisotropic Plasticity Criteria

2.3.1 Hill48 material model
The first definition of anisotropic yield criterion can be traced in 1928, when
von Mises proposed a yield function based on single crystal plasticity. In 1948,
Hill formulated a quadratic yield function as generalization of the isotropic von
Mises criterion, assuming that the material shows anisotropic behaviour on three
symmetry planes. This criterion [18], commonly called Hill48, is still widely used
in metal sheet forming applications thanks to its simplicity. Material parameters
of Hill48 model can be calibrated either employing directional R-values [19]
from tree different material texture orientations or directional flow stresses (0◦,
45◦, 90◦ and equi-biaxial stress state).

The R-value based Hill48 function can be expressed as follows:

2ϕ(σ) =f(σyy − σzz) + g(σzz − σxx) + h(σxx − σyy)
+ 2lσ2

xz + 2mσ2
yz + 2nσ2

xy = 1
(2.12)

under the assumption that the material presents only normal anisotropy, the
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Chapter 2 Plasticity theoretical framework

six coefficients can be obtained from the ratio between the transverse strain
and the through-tickness strain from uniaxial tensile test. So:

f = 1
1 +R0

R0

R90
; g = 1

1 +R0
; h = R0

1 +R0
;

l = 3
2; m = 3

2; n =
(

1
2 +R45

)
R0

R90
.

(2.13)

Due to its quadratic order, the Hill48 anisotropy function can predict only
two or four ears in the deep drown cup test. However, albeit the Hill48 is one
of the simplest and most user friendly anisotropic criteria, it has some relevant
drawbacks. In fact, and R-value-based and stress-based Hill48 versions are
not accurate to respectively predict anisotropy of flow stress and the Lankford
parameter R.

2.3.2 YLD2000-2D material model

The YLD2000-2D yielding criterion [20] describes the anisotropic behaviour of
material by means of the application of linear transformations on two isotropic
functions of deviatoric stress tensor s. Thus the yield criterion is defined as
follows:

ϕ = ϕ′ + ϕ′′ = 2σ̄a (2.14)

where the two functions can be expressed as:

ϕ′ = |X ′
1 −X ′

2|a (2.15)
ϕ′′ = |2X ′′

2 +X ′′
1 |a + |2X ′′

1 +X ′′
2 |a (2.16)

the exponent a depends from the crystal structure of material, and regulates
the curvature of yield surface vertices. In fact, convexity is ensured when
a ≥ 1. Usually the a value is equal to 6 in case of BCC materials or 8 for FCC
materials, as explained by Logan and Hosford in [21]. σ̄ indicates the equivalent
stress. Observing the two functions, the X ′

j and X ′′
j (with j = 1, 2) represent

respectively the principal values of X ′ and X ′′ tensors. Indicating with x the
RD and y the TD directions, such tensors are defined as linear transformation
of stress deviator: ⎧⎪⎨⎪⎩

X ′
xx

X ′
yy

X ′
xy

⎫⎪⎬⎪⎭ =

⎡⎢⎣C ′
11 C ′

12 0
C ′

21 C ′
22 0

0 0 C ′
33

⎤⎥⎦
⎧⎪⎨⎪⎩
sxx
syy
sxy

⎫⎪⎬⎪⎭ (2.17)
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and ⎧⎪⎨⎪⎩
X ′′
xx

X ′′
yy

X ′′
xy

⎫⎪⎬⎪⎭ =

⎡⎢⎣C ′′
11 C ′′

12 0
C ′′

21 C ′′
22 0

0 0 C ′′
33

⎤⎥⎦
⎧⎪⎨⎪⎩
sxx
syy
sxy

⎫⎪⎬⎪⎭ (2.18)

Moreover, for simplicity these equations can be applied to the Cauchy stress
tensor σ through T :

X ′ = C′s = C′Tσ = L′σ (2.19)
X ′′ = C′′s = C′′Tσ = L′′σ (2.20)

with

T =

⎡⎢⎢⎢⎣
2
3 −1

3 0

−1
3

2
3 0

0 0 1

⎤⎥⎥⎥⎦ (2.21)

The two tensors L′ and L′′ are function of eight independent coefficients αi:

L′ = 1
3

⎡⎢⎣2α1 −2α1 0
2α2 2α2 0
0 0 3α7

⎤⎥⎦ (2.22)

L′′ = 1
9

⎡⎢⎣8α5 − 2α3 − 2α6 + 2α4 −4α6 − 4α4 − 4α5 + α3 0
−4α3 − 4α5 − 4α4 + α6 8α4 − 2α6 − 2α3 + 2α5 0

0 0 9α8

⎤⎥⎦ (2.23)

It is worth noting that when all αi coefficients are equal to 1 and the exponent
a = 2 the function reduces to the isotropic von Mises case. Calibration of these
anisotropy coefficients requires eight input data from both flow stresses and
R-value Lankford parameters. These inputs are retrieved experimentally from
uniaxial tensile test at three directions with respect to the rolling direction (RD)
(0◦, 45◦, 90◦) and from balanced biaxial stress state, which can be achieved
through hydraulic bulge test or biaxial tensile test on cruciform specimens.
However, if the R-value from equi-biaxial condition is not available, it can be
predicted with another yield function, as YLD96 for example, or assuming that
L′′

12 = L′′
21.

The YLD2000-2D demonstrates to be a very robust yield criterion in several
application, resulting, also, successfully implemented for Finite Element Analysis
[22, 23, 24] and inverse methods [25, 26].
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Chapter 3

The Direct Method for the
integration of elasto-plastic
constitutive equations

3.1 Introduction

The computation of the stress field from the strain history is a well-known
problem in elasto-plasticity. The stress depends in a non-linear way on the
strain history and, in general, does not exist a closed form solution to obtain
the stress from the strain. The problem is tackled using numerical algorithms,
which often express the rate of stress and the hardening variables depending
on the rate of strains. So, in mathematical terms, it represents an initial value
problem that is generally structured as follows:

ẏ(t) = f [y(t)] ; t ∈ [0, T ] (3.1)
y(0) = yn ; (3.2)

where f is a smooth function and t is time. The aim is to find:

yn+1(t+ ∆t) = yn + ∆y . (3.3)

Numerically, the exact value of yn+1 is approximated as:

yn+1 = yn + f(yn+h) ∆t (3.4)
yn+h = h yn+1 + (1 − h)yn (3.5)

with h ∈ [0, 1] represents a scalar parameter. Eq. 3.5 is also called generalized
midpoint rule, and, depending on the value of h, several numerical integration
algorithms can be generated. Among them, when h = 0 the equation displays

11



Chapter 3 The Direct Method for stress integration

the well known Euler Forward method (explicit), while h = 1 indicates the
Euler Backward scheme (implicit) [8, 9].

Generally, in the context of inverse characterization problems, implicit inte-
gration algorithms are predominantly implemented due to their unconditional
stability. These algorithms usually employ the Newton-Raphson method to
integrate the constitutive relations, which requires a certain amount of iterations
to reach the convergence. This aspect, in fact, is particularly relevant in the
case of non-linear VFM identification method, that is intrinsically an iterative
procedure. For this reason, a new computational algorithm (Direct Method)
capable of integrate directly the plasticity constitutive equation is introduced.

In this Chapter, therefore, the first Section is dedicated to an essential overview
on the widely diffused algorithms for the integration of elasto-plastic constitutive
equations, reporting the basic difference between explicit and implicit strategies
[27]. The dissertation continues focusing on some traditional implicit algorithms,
like the Cutting Plane algorithm [28] and the Potential Residuals [29, 30, 22],
implemented in such applications like FEA and inverse methods.

The second Section, instead, is addressed to formalise and discuss a new
method for stress integration in inverse identification applications, called Direct
Method. Here, the algorithm performances in terms of accuracy of stress
calculation for the two anisotropic plasticity material described in Section 2.3 are
discussed, making a comparison with FEA data. Secondly, also computational
time are evaluated through a benchmark in two programming languages.

3.2 Explicit and implicit schemes for elasto-plastic
constitutive equations

As already observed, the Consistency Condition, which states that the loaded
material point must relies inside the yield function domain, can be written as
follows according to the chain rule:

dϕ(σ, ξi) = ∂ϕ

∂σ
dσ + ∂ϕ

∂ξi
dξi = 0 ; (3.6)

Since the aim is to determine the plastic multiplier dλ, let introduce the stress
increment as function of elastic strain increment dεe:

dσ = Ce dεe = Ce(dε − dεp) , (3.7)

where Ce indicates the Elastic stiffness matrix. The incremental plastic strain
can be, moreover, expressed as:

dεp = dλ
∂ϕ

∂σ
; (3.8)
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in this way Eq. 3.7 can be rewritten as:

dσ = Ce

(
dε − dλ

∂ϕ

∂σ

)
(3.9)

Consequently, by substituting Eq. 3.9 into Eq. 3.6, the plastic multiplier is
determined as:

dλ =

∂ϕ

∂σ
Ce dε

∂ϕ

∂σ
Ce

∂ϕ

∂σ
− ∂ϕ

∂ξi

(3.10)

Then, the internal plastic variables increment dξi is introduced as follows:

dξi = dλh(σ, ξi) (3.11)

where h(σ, ξi) can be defined as the plastic moduli.
So, once the plastic multiplier dλ is determined, according with this theoretical

framework the updated state variables at time step n + ∆n can be easily
calculated as:

σ(n+ ∆n) = σ(n) + dσ (3.12a)

εp(n+ ∆n) = εp(n) + dεp (3.12b)

ξi(n+ ∆n) = ξi(n) + dξi (3.12c)

Such integration scheme is indicated as first-order Euler Forward explicit,
and is relatively easy to implement. Nonetheless, its main disadvantage is
related to its explicit nature, since it is conditionally stable [31]. In fact, the
forward process do not ensure that The Consistency Condition is satisfied for
the submitted strain increment at time t+ ∆t, leading the solution to "drift"
away from the yield locus.

In implicit problems one of the first algorithm which permits to calculate
the stress field from the strain increment is the Radial Return, whose first
formulation was proposed by Wilkins [32]. However, the Radial Return belong
to a wider class known as Elastic Predictor-Plastic Corrector algorithms.

Basically, the stress calculation in plastic regime is made considering two
phases. In the first phase, the whole strain increment is applied as elastic strain,
and the calculated corresponding stress state is defined Elastic Predictor. So,
the Elastic Predictor represents a trial stress state, that is corrected applying
a certain amount of plastic strain (Plastic Corrector) in order to "relax" the
Elastic Predictor onto a suitably updated yield surface. This approach, in fact,
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makes that the material point must lie on the yielding surface according to the
Consistency Condition, and, so, represents a Backward Euler method.

Usually, these approaches involve the Newton-Raphson method to reach
convergence at the loading step. The Euler Backward overtakes the forward
integration problems since it is intrinsically stable. For the sake of clarity and
to complete this essential overview, here two implicit stress integration schemes
are reported: the so called Cutting Plane and Multi-stage return mapping
algorithms.

3.2.1 Cutting Plane algorithm

In literature several implicit algorithms facing the integration of elasto-plastic
constitutive equations can be found. For instance, [28] reports the so called
Cutting-Plane algorithm, which follows the Elastic Predictor-Plastic Corrector
approach. The peculiarity is that the yield surface is linearised during the
relaxation phase, making a series of straight lines ("cuts") with the plane ϕ = 0.

dε = dεe + dεp (3.13a)

dσ = Ce(dε − dεp) (3.13b)

dεp = dλ
∂ϕ

∂σ
(3.13c)

dξi = dλh(σ, ξi) (3.13d)

Now, let introduce a specified strain rate d(t), this set of constitutive equations
can be split up into the elastic and plastic parts:

Elastic P lastic

dε = d(t); dε = dεe + dεp = 0; (3.14)
dσ = Cedε; dσ = −Cedεp; (3.15)

dεp = 0; dεp = dλ
∂ϕ

∂σ
; (3.16)

dξi = 0; dξi = dλh(σ, ξi) . (3.17)

In such configuration the response of material is governed by the elastic part,
while the inelastic response in "frozen". The material behaviour described
by such equations, in fact, represents the actual response when the strain
increment is obviously purely elastic, and also reproduces the Elastic Predictor
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3.2 Explicit and implicit schemes for elasto-plastic constitutive equations

condition, which is the starting point for the integrations of plasticity constitutive
equations. In this latter case, according to the Radial Return mapping scheme,
the relaxation equations for the stresses and plastic internal variables can be
expressed respectively as:

dσ = −dλCe
∂ϕ

∂σ
; dξi = dλh(σ, ξi); (3.18)

Eq. 3.18 define the Plastic Corrector, which permits to relax the elastically
predicted stresses onto a suitably updated yield surface. Since associative flow
rule is assumed, the return path is normal to the yield surface, tracking the
steepest descent corresponding to the yield function ϕ. For basic material
models as von Mises yield surface and isotropic hardening, the return path is
easy to determine, otherwise iterative numerical algorithms are usually involved.
At every iteration j, The Cutting Plane algorithm considers that the yield
surface is linearised around the current values of state variables σ(j)(n+ 1) and
ξ

(j)
i (n+ 1), so:

ϕ(j+1) = ϕ(j) + ∂ϕ(j)

∂σ(j)(n+ 1)
∆σ(j) + ∂ϕ(j)

∂ξ
(j)
i (n+ 1)

∆ξ(j)
i ≈ 0 (3.19)

on the other hand, the relaxation equations can be discretied as follows:

∆σ(j) = −∆λCe
∂ϕ(j)

∂σ(j)(n+ 1)
;

∆ξ(j)
i = ∆λh[σ(j)(n+ 1), ξ(j)

i (n+ 1)].
(3.20)

∆λ indicates an incremental plastic parameter, which can be determined com-
bining Eq. 3.19 and Eq. 3.20:

∆λ = ϕ(j)

∂ϕ(j)

∂σ(j)(n+ 1)
Ce

∂ϕ(j)

∂σ(j)(n+ 1)
− ∂ϕ(j)

∂ξ
(j)
i (n+ 1)

h[σ(j)(n+ 1), ξ(j)
i (n+ 1)]

(3.21)
Then, once ∆λ is calculated and substituted into Eq. 3.20, the updated stress
variables are obtained from:

σ(j+1)(n+ 1) = σ(j)(n+ 1) + ∆σ(j)

ξ
(j+1)
i (n+ 1) = ξ

(j)
i (n+ 1) + ∆ξ(j)

i .
(3.22)
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Starting from the initial conditions given by the Elastic Predictor, the al-
gorithm iteratively updates the state variables until the Plastic Consistency
condition is restored. Figure 3.1 depicts the numerical implementation of the
Cutting Plane algorithm. At each iteration steps, the updated stress are calcu-
lated from the projection of the previous iteration σ(j)(n+ 1) onto a straight
"cut" resulting from the linearization of the yield function at σ(j)(n+ 1).

𝜙𝑛  

𝜙𝑛+1 = 0 

Elastic 
Predictor𝝈𝑛+1

(1)
 

𝝈𝑛+1
(2)

 

𝝈𝑛+1  

𝝈𝑛  

  cuts   

𝝈𝑛+1
𝑇 = 𝝈𝑛+1

(0)
 

Figure 3.1: Return path according to the Cutting Plane algorithm.

In conclusion, although the Cutting Plane method is usually categorized as
implicit algorithm, actually it has both implicit and explicit characteristics,
thus is also defined as semi-explicit scheme [33, 34].

3.2.2 Multi-stage return mapping algorithm
An example of fully-implicit algorithm based on Elastic Predictor-Plastic Cor-
rector approach is furnished by Yoon et al. in [29, 30, 22]. This scheme controls
the potential residual based on the incremental deformation theory, which
permits to separate rotation and deformation by the Polar Decomposition,
according to the minimum plastic work path. Moreover, it employs a multi
stage return mapping procedure, permitting, thus, to converge even for large
strain increments up to 10%. Such method is particularly suitable in case of
non-quadratic yield functions, but, compared to the Cutting Plane, requires the
calculation of both ∂σ̄/∂σ and ∂2σ̄/(∂σ ∂σ). This stress integration scheme is
also relevant since here it is exploited to validate and compare the results of
the Direct Method for the integration of elasto-plastic constitutive equations.

For the sake of clarity, let consider a generic yielding function ϕ with the
assumption of associative plastic flow and isotropic hardening. Indicating
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3.2 Explicit and implicit schemes for elasto-plastic constitutive equations

with σ̄ the effective stress, σY = σY (ε̄p) a generic work-hardening law and
ε̄p the equivalent plastic strain, these hypothesis allows to consider as main
plastic internal variable ξi the equivalent plastic strain. Thus, the Consistency
Condition, which stipulates that the resulting effective stress must rely on the
hardening curve, can be written as follows:

ϕ = σ̄(σ(n) + ∆σ) − σY (ε̄p(n) + ∆ε̄p) = 0 (3.23a)

where, analogously to the Cutting Plane algorithm:

∆σ = Ce(∆ε − ∆εp) (3.23b)

∆εp = ∆λ ∂σ̄
∂σ

(3.23c)

In the incremental deformation theory it is worth noting that the equivalent
plastic strain increment can be obtained involving an homogeneous first order
function represented by the equivalent stress σ̄(σ) = σ ∂σ̄

∂σ and the associative
flow rule:

∆ε̄p = σ : ∆εp
σ̄(σ) =

σ : ∆λ ∂σ̄∂σ

σ̄(σ) = ∆λ (3.24a)

and:
∆εp = ∆λ ∂σ̄

∂σ
= ∆ε̄p

∂σ̄

∂σ
(3.24b)

Introducing the trial stress σT = σ(n) + Ce∆ε, according to the Elastic
Predictor-Plastic Corrector scheme Eq. 3.23a can be rewritten as:

ϕ = σ̄

(
σT − ∆λCe

∂σ̄

∂σ

)
− σY [ε̄p(n) + ∆λ] = 0 (3.25)

that represent a non-linear equation to solve for ∆λ usually employing the
Newton-Raphson method. If the strain increment is too large the iterative
method cannot reach the solution convergence, hence, the basic idea under the
multi-stage return mapping algorithm is to divide the potential residual and to
solve each stage of subdivision. In this way, the Eq. 3.25 is expressed for the
subdivision k as:

ϕ(k) = σ̄(σT − ∆λ(k)Cem(k)) − σY [ε̄p(n) + ∆λ(k)] = R(k) (3.26)

where m = ∂σ̄
∂σ and R(0) = ϕ(∆λ = 0), so R(0) > R(1) > · · · > R(k) > · · · >

R(N) = 0. The subdivision is made such that ∆R = (R(k) −R(k+1)) < σY 0, i.e.
the size of each potential residual subdivision should be lower then the first
yield stress.
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𝜙𝑛  

𝜙𝑛+1 = 0 

Elastic 
Predictor

𝝈𝑛+1  

𝝈𝑛  

𝝈𝑛+1
𝑇 = 𝝈𝑛+1

(0)
 

∆𝝈 
𝒎(1)  

𝒎(2)  

𝒎(3)  𝒎(𝑁)  

Figure 3.2: Graphical representation of multi-stage return mapping method.

Figure 3.2 depicts the integration scheme of multi-stage return mapping
algorithm: after computing the trial stress σT , the direction of the first stage
m(1) is estimated from the direction of m(0) which is the corresponding normal
to the yield surface at σT . Therefore, the calculation m(1) involves a set of
non-linear equation solved with the Euler Backward method. Once the first
stage is solved, analogously the direction of m(2) is obtained from m(1), which
is the normal to the yield surface at σ(1) = σT − ∆λCem(1). The procedure
ends when the potential residual equal to zero or within a prescribed tolerance.

Considering the generic k-th stage, its solution is achieved with the following
Euler Backward scheme. Eq. 3.26 can be rearranged as:

ϕ = σ̄(σ(k)) − σY (k) −R(k) = 0 (3.27a)

where:

σ(k) = σT − ∆λ(k)Cem(k) (3.27b)

σY (k) = σY [ε̄p(n) + ∆λ(k)] = σY [ε̄p(n)] + ∆λ(k) h (3.27c)

and h is the hardening modulus of the stress-strain curve.
The Eq. 3.27 permit to define the three following functions:

g1

(
∆λ(j)

(k)

)
= ¯σ(k) − σY [ε̄p] −R(k) (3.28a)
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g2

(
∆λ(j)

(k)

)
= C−1

e (σ(k) − σT ) + ∆λ(j)
(k)m

(j)
(k) (3.28b)

g3

(
∆λ(j)

(k)

)
= h−1[σY (k) − σY (n)] − ∆λ(j)

(k)m
(j)
(k) (3.28c)

that are linearized around the current state variables at each Newton-Raphson
j-th iteration to obtain:

g1

(
∆λ(j)

(k)

)
+ m

(j)
(k)∆σ

(j)
(k) − ∆σ(j)

Y (k) = 0 (3.29)

Defining:

E
(j)
(k) = C−1

e − ∆λ
∂m

(j)
(k)

∂σ
(j)
(k)

(3.30)

the quantities ∆σ
(j)
(k) and ∆σ(j)

Y (k) are defined as:

∆σ
(j)
(k) = −

(
E

(j)
(k)

)−1[
g2

(
∆λ(j)

(k)

)
+ m

(j)
(k)δ∆λ

(j)
(k)

]
(3.31a)

∆σ(j)
Y (k) = h(j)

[
−g3

(
∆λ(j)

(k)

)
+ δ∆λ(j)

(k)

]
(3.31b)

δ∆λ(j)
(k) =

g1

(
∆λ(j)

(k)

)
− m

(j)
(k)

(
E

(j)
(k)

)−1
g2

(
∆λ(j)

(k)

)
+ g3

(
∆λ(j)

(k)

)
h(j)

m
(j)
(k)

(
E

(j)
(k)

)−1
m

(j)
(k) + h(j)

(3.31c)

when the i-th iteration is solved, the following variables are updated:

∆λ(j+1)
(k) = ∆λ(j)

(k) + δ∆λ(j)
(k) (3.32a)

σ
(j+1)
(k) = σ

(j)
(k) + ∆σ

(j)
(k) (3.32b)

σ
(j+1)
Y (k) = σ

(j)
Y (k) + ∆σ(j)

Y (k) (3.32c)

When the Consistency Condition is restored all state variables are updated.
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3.3 The Direct method for stress integration
In this Section a new computational method for stress integration of elasto-
plastic constitutive equations is formalised and deeply analysed, starting from
its first formulation reported in [35, 26]. Compared to other traditional methods
based on Newton-Raphson iterations, the proposed algorithm allows to retrieve
the stress state directly from the plastic strain increment, characteristic that
makes it particularly suitable for inverse identification methods like the non-
linear VFM. In this way, in fact, it is possible to avoid convergence problems
due to submission of too large strain increments or use Potential Residuals [30],
reducing computational time for stress reconstruction. Also, its application
is particularly indicated in case of strain maps obtained from experimental
full-field measurement with DIC techniques, thanks to its small sensitivity to
noise.

According to the notation previously introduced, the flow rule defines the
direction of the plastic flow during plasticity, and it is derived from plastic
potential ψ. Calling dεp the plastic strain rate, this can be obtained from the
plastic potential as:

dεp = dλ
∂ψ

(
σ, ξψi

)
∂σ

(3.33)

where ξψi are constitutive parameters relative to plastic potential function, dλ
is a scalar multiplier also called plastic consistency parameter. Similarly to the
yield criterion, the equation ψ = 0 represents a surface in the stress space. The
direction of plastic flow can be accordingly considered a vector normal to this
surface, as illustrated Figure 3.3. Thus, Eq. 3.33 can be used to calculate its
versor n̂p = dεp/ |dεp|, which is the direction of the plastic flow:

n̂p =
∂ψ

(
σ, ξψi

)
∂σ

/ ⏐⏐⏐⏐⏐⏐
∂ψ

(
σ, ξψi

)
∂σ

⏐⏐⏐⏐⏐⏐ (3.34)

Two important observations can be taken:

• The normal does not depend on the scalar multiplier dλ;

• In case of convex surfaces, every normal correspond to a unique stress
state.

Therefore, if the constitutive parameters are known, the stress state in a
material point can be directly derived from the direction of the plastic strain:
this consideration is the basis for the proposed stress computation algorithm.
The approach is general and can be applied to every plasticity model that
involves a convex surface for the plastic potential. Here, we limit the study to
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σ

ψ
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, ξ
ψ
i
)

n̂p

n̂T

σ

Figure 3.3: Yield surface representation in the π-plane.

associated flow rule, in this case, the plastic potential is the same as the yield
criterion, i.e. ψ = ϕ.

Under this condition, using the yield criterion previously defined as ϕ (σ, ξi) =
σ̄ (σ, ξi) − σY = 0, Eq. 3.34 becomes:

n̂p = ∂σ̄ (σ, ξi)
∂σ

/ ⏐⏐⏐⏐∂σ̄ (σ, ξi)
∂σ

⏐⏐⏐⏐ (3.35)

The stress tensor σ can be represented in the stress space as vector, so, if
the equivalent stress function is linear with respect to a scalar parameter:

σ̄ (ασ, ξi) = α σ̄ (σ, ξi) , (3.36)

it may be convenient to express the stress in terms of its versor n̂T and its
absolute value:

σ = |σ| n̂T (3.37)

and define the normalized equivalent stress as:

σ̂ = σ̄ (n̂T , ξi) (3.38)

Now, Eq. 3.35 can be rewritten in terms of n̂T as

n̂p = ∂σ̄ (n̂T , ξi)
∂σ

/ ⏐⏐⏐⏐∂σ̄ (n̂T , ξi)
∂σ

⏐⏐⏐⏐ = G (n̂T , ξi) (3.39)
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that can be view as a function G, which associate the stress direction to the
plastic flow direction. If such function is invertible, it is possible to obtain the
stress versor from the plastic flow direction:

n̂T = G−1 (n̂p, ξi) (3.40)

The norm of stress tensor can be retrieved coupling the definition of equivalent
stress with Eq. 3.38, viz:

|σ| = σY σ̂
−1 ; (3.41)

finally, using Eq. 3.37, Eq. 3.41 and Eq. 3.40, the Cauchy stress tensor can be
derived directly from the direction of the plastic flow as:

σ = σY σ̂
−1G−1 (n̂p, ξi) (3.42)

If hardening is considered, the yield stress σY and the constitutive parameters
ξi are modified during the plastic deformation. So, in case of isotropic hardening,
σY is modified while the yield surface expands with deformation. Usually the
hardening law has this form:

σY = σY
(
ε̄p, ξ

H
i

)
(3.43)

where ξHi are hardening law material parameters and ε̄p is a scalar value that
represent the equivalent cumulated plastic strain. Therefore, during plastic
deformation the Cauchy stress is a function of the stress direction, the total
equivalent plastic strain and the constitutive parameters, i.e. σ(n̂p, ε̄p, ξi, ξHi ).

The equivalent plastic strain is defined so that the plastic work can be
expressed in terms of the equivalent stress:∫ ε̄p(t)

ε̄p(0)
σY dε̄p =

∫ εp(t)

εp(0)
σ : dεp (3.44)

where εp is the plastic strain tensor. The infinitesimal increment of plastic
strain dε̄p can be derived from Eq. 3.44 and expressed in terms of the stress
and plastic flow versor. It follows:

dε̄p = n̂T : n̂p |dεp| σ̂−1 (3.45)

This approach allows to derive directly the stress from the plastic flow and
can be used in all those problem where the deformation is known a priori. The
main drawbacks of such technique are:

• the plastic flow direction is evaluated from the plastic strain rate. In a
fully developed plasticity flow, the plastic strain can be approximated
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with the total one, however, such approximation can lead to errors at the
early stages of plastic deformation, showing a dependence from plastic
strain amplitude;

• the inverse function G−1 is not always available in closed-form. Therefore,
numerical methods are required to its evaluation.

All those aspects will be studied deeply in the following sub sections. The
present method is formalised for the full-scale with 6 components of stress,
however, here is studied only in 2D problems.

3.3.1 Numerical implementation
The stress computation algorithm is summarized in the flow diagram of Fig-
ure 3.4. Let consider that all information about stress and strain state are
known for time step n and the final goal is to compute them for the subsequent
step n+ 1. Analogously to traditional integration schemes, the starting point
for implementation of direct method consists on discrimination of the strain
increment in elastic or plastic.Initially, a trial stress σT state is computed
assuming that strain increment is purely elastic; this stress is also called elastic
predictor, and it is calculated for each material point. Then, the active yielding
condition asses if the increment exceeds or not the elastic regime, exploiting
the definition given by Consistency Condition. If not, the elastic predictor
hypothesis is verified, thus these stresses and equivalent plastic strain relative
to time n + 1 are stored. Otherwise, when the difference σ̄(σT ) − σY (n) is
positive, plasticity occurs.

Here, the direct method take action. Accordingly to theoretical framework
introduced in the previous section, the plastic flow direction can be determined
from the plastic strain rate. However, if strain increment is relatively large,
the elastic part can be neglected and total strain increment can be supposed
equal to the plastic one, making also computation more efficient. The procedure
core relies on the Associative Flow Rule, which permits to define a relationship
between the two direction of plastic strain rate and stress through the function
G and its inverse G−1. Thereby, equivalent plastic strain rate can be calculated
with Eq. 3.45, and total ε̄p(n+ 1). Updated stress is finally obtained directly
from the plastic increment independently from stress state of previous time step.
This because, at certain equivalent plastic strain, for each plastic increment
will correspond only one equivalent stress given by the yield function and only
one stress tensor direction. Also, the aforementioned independence represent
a convenient characteristic in case of experimental strain data, where missing
measurement points at some time steps can affect the success of stress integration
in the consecutive steps.

In the following part, all these aspects will be discussed in detail.
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Elastic predictor:

σT = σ(n) +Cel∆εtot

Active yielding condition:

σ̄(σT )− σY (n) > 0

Plastic flow direction:

n̂p =
∆εp
|∆εp|

≈ ∆εtot
|∆εtot|

Stress vector direction:

n̂T = G−1 (n̂p, ξ)

∆ε̄p calculation:

∆ε̄p = n̂T : n̂p |∆εp| σ̂−1

ε̄p(n+ 1) = ε̄p(n) + ∆ε̄p

Stress derivation:

σ(n+1) = σY σ̂
−1G−1 (n̂p, ξi)

Update state variables:

σ(n+ 1) = σT

ε̄p(n+ 1) = ε̄p(n)

YES NO

Figure 3.4: Flow diagram for implementation of direct stress integration method.

Plastic flow derivation

The plastic flow direction is defined as the direction the plastic strain rate:

n̂p = ∆ε(n)
p /

⏐⏐⏐∆ε(n)
p

⏐⏐⏐ (3.46)

where ∆εp is the plastic strain tensor. In case of discrete increments, the plastic
strain rate at time t can be evaluated as:

∆εp = ∂εp
∂t

≈ εp
(t) − εp

(t−1)

∆t = ∆εp
(t)

∆t (3.47)

Also, the strain rate at time t can be computed also using the steps before
and after. For instance using a convolution derivation as the one proposed by
Gorry [36]. In this case, if we consider m steps before and after the step t, the
strain rate becomes:

∆εp = ∂εp
∂t

≈

m∑
j=−m

hjεp
(t+m)

∆t (3.48)
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where hj are convolution weights that depends on the number of points and
the grade of the polynomial used to compute the derivation. This technique
allow also to have an efficient temporal smoothing in case of noisy data, as in
case of experimental strain data.

Since the plastic deformation is isochoric in pressure-independent plasticity
and, at large strains, the elastic part is small compared to the plastic one, the
plastic strain tensor εp

(t) can be approximately reduced to the deviatoric part
of the total strain tensor ε(t):

εp ≈ ε − 1
3 tr (ε) I . (3.49)

Stress computation

Here practical examples of direct integration scheme are introduced for two
anisotropic plasticity material models: the Hill48 and The YLD2000-2d, in the
case of plane stress conditions. For the sake of clarity, the stress and strain
tensor are reduced to vectors using the Voigt notations:

σ −→ σ = (σ11, σ22, τ12)
ε −→ ε = (ε11, ε22, γ12)
n̂T −→ n̂T =

(
n̂T11, n̂

T
22, n̂

T
12

)
n̂p −→ n̂p = (n̂p11, n̂

p
22, n̂

p
12)

(3.50)

where γij = 2 εij . The versors n̂T and n̂p are derived accordingly by normalizing
the corresponding stress or strain vector.

Implementation of Hill48 In plane stress condition, the Hill48 criterion can
be written as [18]:

σ̄ (σ) =
[
(g + h)σ2

11 + (f + h)σ2
22 − 2h σ11σ22 + 2n σ2

12
] 1

2 (3.51)

where ξ = {g, f, h, n} are four anisotropic constants of that can be derived from
the Lankford parameter R, measured in three different orientations [19, 37, 12].
The normalized equivalent stress of Eq. 3.38 is, in this case, written as:

σ̂ =
[
(g + h) n̂T11

2 + (f + h) n̂T22
2 − 2h n̂T11n̂

T
22 + n n̂T12

2] 1
2 (3.52)

Gradient of function describing a surface represents the normal vector to the
surface, so the direction of the plastic flow is derived from Eq. 3.51:

∂σ̄ (n̂T , ξi)
∂σ

= σ̂−1

⎡⎢⎣(h+ g) −h 0
−h (f + h) 0
0 0 2n

⎤⎥⎦
⎧⎪⎨⎪⎩
n̂T11
n̂T22
n̂T12

⎫⎪⎬⎪⎭ (3.53)
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The plastic flow direction is a linear transformation of the stress normal.
Thus, the inverse function G−1 can be easily obtained as the inverse of the
transformation matrix of Eq. 3.53:

n̂σ = An̂p
|An̂p|

with A =

⎡⎢⎣f + h h 0
h h+ g 0
0 0 gf+gh+hf

2n

⎤⎥⎦ (3.54)

and the stress can be directly derived with no iteration using Eq. 3.42. Therefore,
for Hill48, it stands:

σ = σY σ̂
−1 An̂p

|An̂p|
(3.55)

Implementation of YLD2000-2D As reported in Section 2.3.2, the equivalent
stress according to YLD2000-2D criterion is:

σ (σ) =
[

1
2

(
|X ′

1 −X ′
2|a + |2X ′′

2 +X ′′
1 |a + |2X ′′

1 +X ′′
2 |a

)] 1
a

(3.56)

where X ′
1, X

′
2 and X ′′

1 , X
′′
2 are the principal values of the X′ and X′′ tensors

obtained from the Cauchy stress σ using two linear transformation, according
to L′ and L′′, respectively.

In this case, the derivative of Eq. 3.56 to obtain the direction of the plastic
flow is not straightforward. It can be derived using the chain rule on the different
stress transformations. All the steps are detailed in the Appendix of [22] and
will not be repeated here. Compared to the Hill48 case, for Yld2000-2D, to the
best authors’ knowledge, does not exist a direct formula for the inverse function
G−1. Therefore, a numeric algorithm is used using the concept of scattered
data interpolant [38].

First, M samples of stress vector norms are selected from the whole yielding
function domain. Then, the corresponding plastic flow directions are computed
according to normality of plastic flow with respect to the yield surface:

n̂(j)
p =

∂σ̄
(

n̂(j)
T , ξi

)
∂σ

/ ⏐⏐⏐⏐⏐⏐
∂σ̄

(
n̂(j)
T , ξi

)
∂σ

⏐⏐⏐⏐⏐⏐ for j = 1, . . . ,M . (3.57)

Then an interpolation function Θ is used to create a scattered data interpolant
I, using np as domain and nT as corresponding target.

I = Θ
(

n̂(j)
p , n̂(j)

T

)
(3.58)
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In other words, I plays the same role of function G−1, so such interpolant
can be used to evaluate the stress normal from each value of the plastic flow
direction.

n̂T = I (n̂p) ∀ n̂p (3.59)

This kind of interpolant operators, are implemented in Matlab R⃝, but
can be developed also in other programming languages. Such procedure is
computationally very efficient as will be demonstrated later on.

3.3.2 Validation on numerical data

The goodness of the proposed algorithm for stress reconstruction is evaluated
performing a comparison with data obtained from a Finite Element Analysis.
Thus, a numerical model reproducing a simple tensile test on notched specimen
(Figure 3.5), able to provide heterogeneous strain fields and evolving yield locus
[2, 39], was realised using the commercial code ABAQUS-Standard R⃝, assuming
plane stress state condition.

Concerning the specimen’s material, its hardening behaviour was described
by the well-known Swift’s law:

σ̄ = KH(ε0 + ε̄p)nH , (3.60)

where σ̄ indicates the equivalent stress and p the equivalent plastic strain.
In this case, the input material parameters ξHi = {kH , ε0, nH} for the hard-
ening rule were chosen arbitrary hypothesising a general austenitic stainless
steel. Moreover, anisotropic plasticity behaviour, typical of metal sheets widely
employed in forming applications, was included using the two material models re-
ported in the previous section, Hill48 and YLD2000-2D, the latter implemented
with an user subroutine UMAT following the approach described Section 3.2.2;
also two different material orientations were considered at 0◦ and 30◦ with
respect to the direction of tensile load application. All numerical model’s
characteristics and material properties entries are listed in Table 3.1.
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Figure 3.5: Specimen geometry.
Dimensions are in
mm.

Element type CPS4R
Elements number 4200
Nodes number 4361

Elastic constants
E 200 GPa
ν 0.3

Swift’s law parameters
KH 1000 MPa
ϵ0 0.05
nH 0.5

Anisotropy parameters
Hill48 YLD2000-2d
R0 2.2 α1 1.11
R45 1.5 α2 1.35
R90 1.8 α3 1.21

α4 1.11
α5 1.07
α6 0.96
α7 1.21
α8 1.15
a 8

Table 3.1: FE model characteristics and
constitutive parameters used.

Boundary conditions replicating a tensile test in displacement control were
set fixing the nodes on the lower side of the specimen and applying to the
upper side ones a vertical displacement of 45 mm increasing linearly; hence,
total displacement was split in two consecutive steps of 1 mm and 44 mm mm,
subdivided each one in 30 equispaced time increments, in order to better assess
the response of the algorithm at different strain increments and also observe its
stress reconstruction ability during the transition between elastic and plastic
regimes. Thereby, FEA variables outputs like strains, stresses and equivalent
plastic strain were extrapolated at each loading increment respectively for all
elements’ integration points and nodes.

Evaluation at Integration Points

The described FE model was built adopting CPS4R element, characterized by 4
nodes, bilinear shape function and reduced integration method with hourglass
control, which provides one integration point for each element. It is worth
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noting that stress computation is more accurate at integration points due to
numerical calculation of Stiffness Matrix exactly there. So, a first appraisal of
the proposed algorithm performances was conducted comparing, at the same
Gauss point, stresses reconstructed analytically from FEA strain data with
the ones obtained from ABAQUS R⃝ simulation, as depicted in Figure 3.6a,
where material orientation was at 0◦ with respect to tensile load direction and
anisotropic behaviour described by Hill48 model. Considering element A in
proximity of left notch, stresses derived from direct method match with FEA
results, both in elastic and fully developed plastic regimes. At time step 3, where
first yielding is just reached and exceeded, σxx and σyy exhibit a difference: in
fact, at this strain increment the elastic part is not negligible and the assumption
dεp ≈ dεtot leads to an error determining the plastic flow direction according
to Eq. 3.46. However, the direct integration scheme is able to correct this error
in the subsequent stage, since the stress derivation in plastic regime is achieved
without considering the previous stress state.

Also a comparative of equivalent plastic strain calculation was executed;
considering again the same Gauss point, the procedure described in 3.3.1 match
with the results coming from Finite Element Analysis (Figure 3.6b).
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Figure 3.6: Comparison between reconstructed stresses, equivalent plastic strain
and resulting data from FEA at integration point A.

Now, let’s take into account the integration point relative to element B in
Figure 3.5 where, during traction, the material underwent to unloading due
to strain localization in the area between two notches. The direct integration
algorithm is not able to reconstruct stresses properly in two critical instants
(Figure 3.7a): the first, corresponding to time step 11, whose differences are
related again to early stage of plastic deformation; the latter at time step 56,
where unloading phase started, protracting until last time step. In fact, although
material point is fully developed plasticity regime, here the strain increment is
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too small and elastic component is comparable to the plastic one. Therefore,
error in stress calculation increases in the subsequent step, since unloading
represents an elastic loading and, thus, is added to the previous stress state
according to Figure 3.4. This mismatching can be solved modifying the Active
Yielding Condition defining an appropriate residual value threshold Rth, viz:

σ̄(σT ) − σY (n) > Rth ; (3.61)

stress reconstruction results employing an Rth = 0.05 are displayed in Fig-
ure 3.7b.

The introduction of residual threshold Rth does not lead to significant differ-
ences in accumulated equivalent plastic strain calculation (Figure 3.7c), albeit
there is a slight gap between FEA data and results from direct integration
scheme for the last time increments.
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Figure 3.7: Comparison between reconstructed stresses, equivalent plastic strain
and resulting data from FEA at integration point B.
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Global Error

Results of the introduced direct method for stress integration are also evaluated
in terms of global error, taking into account the whole strain maps obtained
from the FEA. Extending this analysis to the numerical simulation of notched
specimen described by Hill48 introduced previously, Figure 3.8 compares the
Cauchy stress tensor components with the ones computed using the proposed
method, showing a good agreement between the two data sets. Highest dif-
ferences are observed in proximity of notches’ corners, where material just
undergoes to plastic deformation and σyy exhibits a maximum error around
20 MPa. The picture also shows a difference of few MPa highlighting mesh
texture effect that is linked to averaging smoothing performed by FEA software
during stress maps generation.
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Figure 3.8: Cauchy stress comparison for notched specimen with material orien-
tation at 0◦, modelled using Hill48.

The same response is found considering the YLD2000-2D material model, as
reported in Figure 3.9, which display the stress reconstruction and comparison
for a notched specimen having material orientation at 30◦ with respect to load
direction.

Evaluation of Internal Work gives a better insight on global impact of ob-
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Figure 3.9: Cauchy stress comparison for notched specimen with material orien-
tation at 30◦, modelled using YLD2000-2D.
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served differences in stress computation, and, also, considering that inverse
identification methods as VFM are founded on the Virtual Work Principle, it is
an helpful check to assess applicability of the proposed algorithm. So, defining
the Internal Work as:

Wi =
∫
V

σ : εtot dV , (3.62)

Figure 3.10 reports its calculation along all the 60 steps of simulation for the
notched specimen modelled with Hill48 and material orientation at 0◦, comparing
data from FEA with the ones analytically retrieved using the proposed method.
A perfect correspondence is found until time step 54, then there is a mismatching
between the two data sets due to unloading. Thus, different values of Rth are
set starting from the first yield stress σY0 = k0ε

nH
0 in order to assess the optimal

residual threshold limit. Indeed, the best match is founded for Rth = σY0/2.
Moreover, taking into account the YLD2000-2D material model, Figure 3.11

displays the Internal Work evaluation for notched specimen oriented at 30◦,
exhibiting a perfect conformity between numerical and analytical data, although
unloading is not present with the applied displacement of 45 mm.
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Figure 3.10: Interal Work evaluation and comparison using Hill48 model at

different Rth values.

Influence of strain increment size

Another important feature consists on the ability by stress integration method to
reconstruct the stress state independently from amplitude and number of strain
increments. Thus, the Cauchy stress tensor is calculated involving separately
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Figure 3.11: Interal Work evaluation and comparison using YLD2000-2D model.

1 and 10 strain increments, and then verify the dissimilarity with the FEA
results as illustrated in Figure 3.12 and Figure 3.13 respectively for Hill48
and YLD2000-2D. For both material models the proposed algorithm is able
to reconstruct properly the stress fields even with only one strain increment,
although employing more steps reduces error compared to numerical simulation
outcomes, especially looking at the area between notches where highest values
of plastic deformation are reached. In fact, since the stress computation relies
on plastic flow direction, when only 1 step of strain increment is considered the
elastic deformation weights more in the determination of plastic flow direction.
On the other hand, using more strain increments to get the same deformation
level splits better the elastic increment from the plastic one, limiting the observed
error only in increment where material actively yields but the elastic deformation
is not negligible.

Influence of noise

Stress integration often involves strain data obtained experimentally with
full-field measurements as, for instance, DIC technique, which are intrinsically
affected by experimental noise uncertainty. This issue is not particularly relevant
in large deformations when plasticity material parameters are retrieved using the
non-linear VFM , but it can have effects determining the plastic flow direction.
So, the proposed algorithm response is tested submitting noisy strain maps
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Figure 3.12: Stress integration at different strain increments, using Hill48 mate-
rial model.
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Figure 3.13: Stress integration at different strain increments, using YLD2000-2D
material model.
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defined according to:

εN = εFEA + kNΥ (µG, σG) , (3.63)

where εFEA indicates the FEA strain data, Υ (µG, σG) is a randomly generated
array described by a normal distribution with mean µG = 0 and standard
deviation σG = 1, kN is a factor relative to noise level. In this case, two levels
are considered giving respectively a standard deviation of 10−4 and 10−3, the
latter representing usually the noise disturb affecting strain DIC measurement.
All results are reported in Figure 3.14 and Figure 3.9 for both anisotropic
plasticity models previously described. Looking to the plastic zone of the
notched specimen, the stress reconstruction algorithm shows a good response
to noisy data. Obviously noise has stronger impact on specimen zones where
material is closer to elastic regime, and its main drawback concerning the error
determining plastic flow direction leads differences over 100 MPa in case of
higher level of noise (10−3).
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Figure 3.14: Stress integration from strain field affected by noise, using Hill48
material model.
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Figure 3.15: Stress integration from strain field affected by noise, using
YLD2000-2D material model.

Benchmark

Computational time represent a crucial feature for the utilization of algorithms
in industrial applications. Thus, a time benchmark was realised comparing
the proposed direct stress integration method with the robust Euler Backward
with multi-stage return mapping scheme reported in [29, 30, 22]. The machine
employed for the analysis was equipped with an Intel R⃝ CoreTM i7-7700HQ CPU
@ 2.80 GHz 2.80 GHz, 16 MB RAM, and all benchmark routines are tested on
single core without parallelization.

Stress integration algorithms’ performances were evaluated with the high-level
programming language Matlab R⃝ for both Hill48 and YLD2000-2D material
models. Basically, stress state is calculated from arrays with different size having
the same strain increment, that in this case is correspondent to 0.3% equivalent
plastic strain. Figure 3.16 displays the results in a double-logarithmic diagram,
showing a significant computational time reduction using the direct method
compared to the Euler Backward scheme due to absence of Newton-Raphson
iterations to solve the non-linear problem. Concerning material models, also,
YLD2000-2D is more time consuming on the proposed direct method compared
to Hill48 due to numerical interpolation algorithms.

Furthermore, the same integration methods comparison was extended to a
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Figure 3.16: Computational time evaluation using Matlab R⃝.

low-level programming language, the Fortran95, this time involving only the
Hill48 constitutive material model (Figure 3.17). Two strain increments are
considered for computational time evaluation, the first at ε̄p = 1% and the
latter at ε̄p = 15%. Since the Euler Backward method implemented divides the
residual of consistency condition equation in sub-step to ensure convergence,
large strain increments requires more stages and, thus, more computational
time. Direct stress integration algorithm, instead, is not sensitive to strain
increment size, confirming its rapidness.
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Chapter 4

The Virtual Fields Method for large
strain problems

4.1 Introduction

Problems in mechanics of deformable solids are founded on the connection
between displacements, strains and stresses, each of them defined for all material
points. These quantities, indeed, are regulated by the well-known equations of
continuum mechanics, distinguished in equilibrium, kinematics and constitutive
equations. In this framework, the problem is defined as direct when parameters
that govern a certain constitutive law are known; otherwise, when the final
main objective is to retrieve material properties such problems are called
inverse [4]. Several inverse procedures for material identification from full-field
measurement data can be found in literature. One on the most widespread is
the Finite Element Model Update (FEMU) method [40, 41, 42, 39, 43], that
performs iteratively numerical simulations of test in order to find the constitutive
parameters that match the actual material data; other examples are also given
by the Constitutive Equation Gap Method [44] in case of elastic properties, and
the Equilibrium Gap Method, used in [45] to identify damage fields parameters.
Among them, the Virtual Fields Method (VFM) [46, 47, 48] has the prominent
role in the presented research activity.

Conceptually VFM is based on the Principle of Virtual Work applied on
appropriate virtual fields. This method provides, in fact, several benefits
compared to other inverse techniques as FEMU, especially concerning the
computational time for the identification process. Also, the procedure does
not rely on the numerical modeling assumptions, i.e. mesh size dependence for
example, and the only requirement prescribes to employ kinematically admissible
virtual displacement fields. The theoretical framework of VFM dealing with
typical non-linear problems as large deformations is described in the following
sections according to [49, 48, 35].
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4.2 The Principle of Virtual Work for finite strains
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Figure 4.1: Kinematic of material body finite strains, reference and current
placement, rota- tion of the material axes and corresponding stress
and strain tensors.

In the Euclidean space, finite deformation theory imposes the distinction
between the reference placement B0 of material body and its current placement
Bt at time t due to application of surface loads t and body forces b. Considering
a single material point P (Figure 4.1), its position in the reference configuration
is indicated by vector x0, while its placement in the current configuration is
denoted by position vector x. So, it is possible to map the position of material
particle defining the displacement vector as:

u(x0, t) = x − x0 (4.1)

in this way it is possible to define the deformation gradient F with respect to
reference configuration:

F = ∇u(x0, t) + I . (4.2)

Moreover, polar decomposition allows to separate the pure deformation from the
rotational part, introducing the rotational tensor R, the Right Cauchy-Green
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tensor U and Left Cauchy-Green tensor V:

F = RU = VR . (4.3)

The Principle of Virtual Work, thus, represents the integral form of mechanical
equilibrium and, given an arbitrary kinematically admissible vector field δu∗, it
can be written as:

∫
Bt

T : δD∗dV +
∫

Bt

ρa · δu∗dV =
∫
∂Bt

t · δu∗dA+
∫

Bt

b · δu∗dV (4.4)

where T indicates the Cauchy stress tensor, a the acceleration vector and δD∗

the virtual stretch tensor, viz.:

δD∗ = 1
2(∇δu∗ + ∇T δu∗) . (4.5)

However, it is also common to express the Principle of Virtual Work at large
strains in terms of Virtual Power, defining the δu∗ as virtual velocity field and,
consequently, δD∗ as virtual stretch rate tensor.

In such problems it is often convenient to write Eq. 4.4 with respect to reference
configuration B0 using the Lagrangean description. Therefore, assuming absence
of body forces and acceleration, the Principle of Virtual Work can be rewritten
in the following equivalent form:∫

B0
1TPK : δF∗dV =

∫
∂B0

(1TPKn̂0) · δu∗dA . (4.6)

1TPK is the First Piola-Kirchhoff stress tensor, and can be calculated from the
Cauchy stress tensor according to:

1TPK = det(F)TF−T . (4.7)

It it worth noting that in case of anisotropy material orientation must also
be included. In particular, if deformation can be considered by employing
the logarithmic Hencky strain tensor ε = ln(U), its definition on the material
reference system can be obtained from:

ε|mat = R|Tmat(RTε R)R|mat , (4.8)

where R|mat represents the material rotational tensor; onsequently, the Cauchy
stress tensor, that is calculated in the material reference frame, must be referred
to the global coordinate system:

T = R|mat(RT|matRT )R|Tmat . (4.9)
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4.3 The non-linear Virtual Fields Method
The final purpose of the VFM technique is to identify constitutive material
parameters starting from heterogeneous displacement fields and loading condi-
tions that are measured during the test. According to the plasticity framework
previously introduced, a general plasticity model can be governed by a set
of material parameters ξi, which represents, indeed, the unknowns of inverse
problem. So, the following cost function can be introduced:

ψ(ξi, δu∗, t) =
⏐⏐⏐⏐∫

B0
1TPK : δF∗dV −

∫
∂B0

(1TPKn̂0) · δu∗dA

⏐⏐⏐⏐ (4.10)

that is equal to zero for the exact material parameters, any admissible virtual
fields and any time t, in accordance with the Principle of Virtual Work. Obvi-
ously, this equation is valid for all Nvf kinematically admissible virtual fields
and all Nt time step of test. Thus, the following cost function Ψ(ξi) can be
built:

Ψ(ξi) =
Nvf∑
i=1

Nt∑
j=1

ψ(ξi, δu∗
i , tj) . (4.11)

The non-linear VFM theory states that identification can be performed min-
imising the cost function with respect to parameters ξi in order to ensure the
equilibrium law in its weak form.

In case of anisotropic plasticity, it is common to employ several samples
obtained at different texture orientations with respect to rolling direction (RD),
in order to gather as much informations as possible from the testing procedure.
The same principle can be exploited by the VFM, so that it is possible to build
a total cost function composed by the sum of every VFM error functions from
each specimen material orientation Nmat; it follows:

Ψ(ξi) =
Nmat∑
k=1

Ψ(ξi)k . (4.12)

Thereby, it is possible to consider different material orientations and also include
more type of test to improve identification. The approach reported in Eq. 4.12
makes it so that every virtual field and specimen material orientation weights
equally in the error function, condition that represent an hot-topic in the VFM
research community. The influence of chosen virtual fields for the identification
is still discussed [50], representing, also, one of the main propose of this research
dissertation.
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Chapter 5

Development and validation of new
testing protocols

5.1 Introduction
The increasing interest toward advanced inverse characterization methods re-
quires new experimental procedures able to collect a large amount of data
containing crucial information about material heterogeneity and anisotropy. An
example, in fact, is given by some VFM applications [46], which permits to
deal with complex material behaviour and geometries thanks to the employ-
ment of full-field measurements. Among full-field optical techniques, DIC is
largely widespread and probably the fastest-growing method among the last two
decades. Basically the DIC measurement tracks displacement of an opportunely
generated random speckle pattern on the surface of a body under certain loading
conditions: if the displacement is in-plane, a single camera (2D-DIC) is sufficient;
else, more cameras must be involved in the procedure in order to measure object
displacement in the 3D space according to stereo-photogrammetry principles
[51]. In this chapter new experimental approaches are discussed, aimed at
establishing proper testing protocols to furnish the experimental data required
for the inverse procedure.

The first issue investigated concerns the evaluation of volume displacement
from surface DIC measurement, and represents a side project of this research
activity mainly focused on the study of sheet metal behaviour. In fact, although
stereo-DIC is a powerful and accurate tool to measure shape changes and
surface displacement fields, with this technique it is not possible to gather
information in the bulk of material, limiting the analysis only to plane-stress
and plane-strain conditions. These simplifications are not properly correct in
case of necking phenomenon due to plastic deformation, or for the calibration
of ductile damage models [52, 53]. The volume deformation of solids can
be measured experimentally using Digital Volume Correlation (DVC) [54, 55],
which presents some limitations: it needs expensive and complex equipments like
x-ray tomography, the analysed material must have a random internal pattern
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like foams or composites, and the correlation algorithm is computationally time
consuming. Also magnetic resonance elastography and magnetic resonance
images are involved in volume deformation measurement, albeit their use is
limited to biological tissue and for most of materials with engineering application
(metals, polymers, etc.) these techniques cannot be employed.

So, starting from the work of Rossi and Pierron [56], a method involving Bézier
curves able to reconstruct volume deformation from surface DIC measurement
is applied to experimental data coming from a tensile test on round-section
specimen.

The second studied experimental approach concerns the development of new
test for characterization of sheet metals through-thickness behaviour. In fact,
sheet metals often exhibit preferential orientations in their texture due to rolling
production process, that plays, also, a really important role in subsequent metal
forming applications. Although only the planar components in the RD-TD plane
of anisotropy are usually considered in constitutive modelling due to assumption
of plane stress condition, the through-thickness shear behaviour can be relevant
in the prediction of failure modes and plastic instabilities. Several 3D anisotropic
plasticity models were developed among the years [12, 57, 58, 10], and their
calibration is getting increasing interest from the research community, working
on methodology and design of appropriate specimens. For example, in [35] a
general procedure to retrieve material parameters for the 3D Hill48 model using
the VFM on numerical data is described; [59] deal with geometry optimization
of cruciform specimen for biaxial-stress state; also, Denys et al. [60] reported
an application of stereo-DIC for the identification of 3D Hill48 yield surface
through FEMU technique, where a double perforated specimen with a 10 mm
thickness is introduced. However, when these 3D material models are employed
on metal sheets, it is often a common procedure to assume the through-thickness
parameters are equal to the isotropic case, and then to calibrate the others.

So, in the second section, the VFM method is used to assess feasibility of a
new experimental protocol for testing through-thickness anisotropic behaviour
of sheet metal. The idea took place extending the Unnotched Iosipescu test
[61, 47] to large strains, using 2D-DIC for the thickness surface displacement
measurement. After a first numerical study that was made by assuming plane
stress condition, simulated experiments [62, 63] are employed to verify metrology
and identification performances via VFM on thin sheet metal specimen.

Finally, the last section is dedicated to one of the former research activities of
the author, which concerns the shape optimization of specimen for elasto-plastic
material characterization. The study took place from the work of Badaloni
[64], where a numerical simulator of experiments involving DIC is built to
assess the impact of specimen geometry for the calibration of isotropic plasticity
material model via VFM. This, in fact, can become an useful instrument to
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improve the DIC testing set-up as both diagnostic and improving tool. Since the
protocol was limited only to numerical results, here an experimental validation
is provided to investigate the goodness of this numerical simulator.

5.2 Evaluation of volume displacement from
surface DIC measurement

In this section it is reported the application of a new algorithm for volume
displacement field reconstruction from surface measurements for a solid that
undergoes to large deformation. Basically, the method, called Internal Mesh
Generation (IMG), is founded on the production of internal nodal points. Their
position in the 3D space changes according to surface informations, and in the
proposed formulation it can be applied only to basic geometries as cylinder or
parallelepiped.

Let’s consider a cylindrical shape specimen, at the initial condition the
measurement points are distributed on a regular cylindrical grid on the 360◦

external surface (Figure 5.1). Placing the coordinate system so that z-axis
coincides with cylinder axis, the cylindrical mesh identifies in the x-y plane k
circumferences, each one composed by n points. So, for each circumference, two
opposite points NA and NB are taken, such that m = n/2 pairs of (N(i)

A ,N(i)
B )

with i = [1, . . . ,m] are defined.
In order to generate the internal mesh, the method exploits quadratic Bézier

curves defined starting from three points, which are N(i)
A , N(i)

B and a point
P inside the volume. The resulting curve B(a) is described by the following
equation:

B(a) = (1 − a)2NA + 2(1 − a)aP + a2NB (5.1)

where a is a parameter that varies from 0 to 1, so that B(0) = N(i)
A and

B(1) = N(i)
B . An important property of quadratic Bézier curves is that the

curve is tangent to segment N(i)
A P(i) at the starting point B(0) and to segment

N(i)
B P(i) at the end point B(1) .
The internal point P(i) is defined as the intersection between the straight line

connecting points N(i)
A and N(i)

B and intersecting cylinder axis. In the initial
configuration, since N(i)

A is opposite to N(i)
B , coordinates of point P(i) are:

P(i) = N(i)
A + N(i)

B

2 (5.2)

and the resulting Bézier curve is a straight line from N(i)
A to N(i)

B .
In deformed configuration, instead, each cylinder section can change is aspect

47



Chapter 5 Development and validation of new testing protocols

ratio, and two important considerations must be taken:

• The cylinder axis is not so straightforward to determine; for example,
in this dissertation the algorithm described in [65] is used in order to
determine the axis of cylindrical body from point clouds.

• two different points P(i)
A and P(i)

B are obtained depending on the surface
perpendicular vectors in N(i)

A and N(i)
B (Figure 5.1).

If n̂(i)
A and n̂(i)

B are the normals to specimen surface in N(i)
A and N(i)

B respec-
tively, according to geometrical considerations, it follows:

P(i)
A = N(i)

A −

⏐⏐⏐N(i)
A − N(i)

B

⏐⏐⏐2

2
(

N(i)
A − N(i)

B

)
· n̂(i)

A

n̂(i)
A (5.3)

P(i)
B = N(i)

B −

⏐⏐⏐N(i)
B − N(i)

A

⏐⏐⏐2

2
(

N(i)
B − N(i)

A

)
· n̂(i)

B

n̂(i)
B (5.4)

where · is the scalar product. Point P(i) is finally computed as:

P(i) = P(i)
A + P(i)

B

2 (5.5)

It may be noted that, if the deformation of the two surfaces was symmetrical,
as theoretically occurs in necking of isotropic materials, P(i)

A , P(i)
B and P(i) would

be coincident. However, this is not usually true because of the measurement
errors and the possible anisotropic behaviour of the material.

For each load step, a different Bézier curve is generated for each pair of points
in the two faces. According to Bézier curve theory, parameter a identifies a
specific point of curve B(a). We assume that a given point is identified by the
same value of a during deformation, i.e. its position can be tracked at different
steps of the test using the same a in the corresponding curve. This assumption
was found to be reasonable following the reconstruction validation presented
later on using numerical models. Similar approaches, indeed, can be found in
the literature in [66, 67] for necking and strain localization.

Choosing a suitable number of internal points, a 3D mesh can be assembled
where the position of each node is known for every step of the test. If X0 is
a point in the initial configuration and X1 is the corresponding point in the
deformed configuration, the displacement vector u is:

u = X1 − X0 (5.6)

The displacement and strain fields inside the body can be retrieved using 3D
shape function similarly to FEM analysis.
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Figure 5.1: Application of the IGM method for cylindrical geometry.
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5.2.1 Numerical validation

The proposed reconstruction algorithm is based on pure geometrical information
(i.e. surface displacement and local curvature). In order to evaluate its accuracy
when applied to real experiments, the method was first validated using 3D
numerical simulation, for which the whole volume deformation history is known.
In particular, the test cases simulate the necking evolution in specimens under
severe plastic deformation.

Numerical model of cylindrical specimen with an initial radius of 25 mm was
built up using the commercial FE software Abaqus/Standard, adopting 8-nodes
brick elements and a constitutive law that describes the behaviour of a metal
with high ductility and anisotropy. The Hill48 yielding function [18] was used
to describe the yield locus and the Swift power law adopted to describe the
stress-strain hardening curve.

Mesh:
Elements 26564
Nodes 29216
Element type C3D8R

Constitutive law:
Yielding Hill48

R0 = 1.8, R45 = 1.5, R90 = 2.2
Hardening Swift law

σ̄ = 700 + 1200 ε̄

Table 5.1: Mesh details and material parameters used in the finite element
model.

Mesh information and the input constitutive parameters are listed in Ta-
ble 5.1, while the FE model in initial and deformed configuration is illustrated
in Figure 5.2. Severe necking occurs at the centre of specimen, and maximum
strain is obtained in the bulk so that it cannot be directly evaluated by surface
measurements. Moreover, effect of anisotropic material behaviour is particu-
larly evident since deformation is not axisymmetric and the necking section is
elliptical.

The IMG method was used to calculate the internal displacement and strain
fields that were compared to their numerical counterparts obtained from the
FEM analysis. Therefore, only the volume where necking occurs was recon-
structed, that is composed by 9 lines of nodes along the axial direction while 24
nodes along the circumference.

Results of IMG method application are illustrated in Figure 5.3 for three
section planes. Plane z-x represents a longitudinal section of the specimen across
the major axis of the neck, plane z-y a longitudinal section across the minor
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Figure 5.2: FE models used in numerical validation. The central cross section
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Figure 5.3: Comparison of reconstructed internal points with the FEA reference
data for the cylindrical specimen.

51



Chapter 5 Development and validation of new testing protocols

axis of the neck and plane x-y a cross section in the central part of the neck.
The internal nodes were derived following the procedure previously described,
using 26 internal points for each Bézier curve. In this case, there is not direct
correspondence between internal FE nodes and the reconstructed points. As
depicted in Figure 5.3, the IMG method for cylindrical specimens produces a
distribution of points in the section perpendicular to the axis (see Plane x-y)
that is not compatible with a suitable FEA mesh, because the elements in the
central zone would have a distorted aspect ratio. The FEA model was therefore
built up using an optimal regular mesh, see Figs. 5.2 and 5.3.

To allow a quantitative comparison, the displacement field of the FE nodes
was remapped according to the position of reconstructed points, using the
scatteredInterpolant interpolation function implemented in Matlab R⃝. If XFEA

are the coordinates of the FEA nodes in the VOI, X0 the coordinates of the
IMG points in the initial configuration, uFEA the displacement field from FEA
and I the interpolation function, it follows:

uI = I (uFEA,XFEA,X0) (5.7)

and
XRef = X0 + uI (5.8)

where XRef are the points used to make the comparison of Figure 5.3.
A fairly good agreement was found, with an average positioning error of 0.09

mm (±0.08 standard deviation).
The accuracy in terms of strain evaluation is reported in Figure 5.4, where

the first plot shows the two sets of data in the central section of the specimen
for two paths along major and minor axes of the elliptical section, respectively.
A reasonably good agreement was found. In particular, it is worth noting that
the increase of strain in the central point with compared to the surface is +10%
for the major axis and +25% for the minor axis.

The second plot of Figure 5.4 shows the maximum principal strain evaluated
along three paths in the axial direction. In particular, the labels “x-side” and
“y-side” refer to paths on the external surface of the specimen, while the label
“Inner part” refers to the strain evaluated along the central axis of the specimen.
Again, a good agreement is obtained using the reconstruction algorithm. The
graph clearly shows how, in the necking zone, the state of deformation in the
inside of the specimen is largely different from what is observed over the surface
and, if the material is anisotropic, a large difference also occurs at different
angular positions along the specimen circumference.

Results from the numerical validation demonstrate that the reconstruction
algorithm is able to describe with a reasonable accuracy the internal displacement
and strain field in the necking zone, although purely based on geometrical surface
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Figure 5.4: Comparison of the strain field evaluated in the necking zone of
specimen with the reconstruction method. Two paths in the central
section and a path in the axial direction are depicted.
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data. The validation was carried out by considering non trivial case studies
including severe necking and anisotropic materials. In order to check if the level
of accuracy is sufficient to use the IMG method for material characterization,
the reconstructed strain field should be used to identify the material properties
through an inverse method like the VFM or FEMU.

In the following section, the results of the IMG method applied to real
experiments are reported and discussed.

5.2.2 Application on experimental data

The presented procedure of displacement and strain 3D fields reconstruction
is, thus, extended to experimental data. Cylindrical specimen, was tested
with the special 360◦ DIC arrangement represented in Figure 5.5. A single
camera (Nikon7100, 4000×6000 pixel resolution, equipped with a Nikkor 60mm
Micro lens, used at f/16) was mounted on a slewing ring in order to capture
multiple pictures of the specimen at different angles. The specimen was a
cylindrical sample of Grade X100 steel with an initial diameter of 8 mm. So,
the camera, moving on the sledge, capture pictures every α ∼= 26◦ providing
14 images for the whole revolution. Considering two consecutive images, the
angle is opportunely imposed to obtain a sufficient overlapping between the
two measurement ROI. In this way, applying an fixed cylindrical calibration
target on the base of specimen, the stereo-DIC measurement is done on the
360◦ surface. More details of this experimental technique including the related
error analysis are reported in [68].

Figure 5.5: Experimental set-up with 360◦ DIC acquisition equipment.

54



5.2 Evaluation of volume displacement from surface DIC measurement

In this case, to accurately reconstruct the surface displacement field, the
commercial software MatchID (www.matchidmbc.be) was used to perform large
deformation DIC measurement. Results in term of vertical displacement are
depicted in Figure 5.6.

Figure 5.6: Vertical displacement obtained from 360◦-DIC measurement.

As result of the stereo-DIC analysis, a set of measurement points with
coordinates XDIC and the corresponding 3D displacement field uDIC were
obtained. These data were not directly used for the IMG method but they
were first regularized using, again, the scatteredInterpolant [38] Matlab R⃝

interpolation function.
Volume reconstruction procedure can be distinguished in the following steps:

1. A regular grid of points with coordinates XS0 was defined over the
specimen surface in the undeformed configuration. The displacement field
uDIC obtained from DIC was mapped over the regular grid using the
interpolation function I:

uS0 = I (uDIC ,XDIC ,XS0) (5.9)

where uS0 is the resulting displacement field. The coordinates XS1 of the
grid points after deformation are obtained as:

XS1 = XS0 + uS0 (5.10)

2. The reconstruction algorithm previously introduced was used to obtain
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the internal points XV 0 and XV 1 starting from the corresponding surface
points. The volume displacement field uV 0 was then derived as:

uV 0 = XV 1 − XV 0 (5.11)

3. As a final step, the volume displacement uV 0 was projected over a 3D
mesh of the specimen obtained using the mesh generator of Abaqus.
The displacement uN of each node was obtained from the reconstructed
displacement field using the interpolation function:

uN = I (uV 0,XV 0,XN ) (5.12)

where XN are the coordinates of the nodes. The FEA software was then
used as post-processing tool to display the 3D displacement and strain
fields. It must be underlined that no computation was performed, and
displayed results are relative to IMG method.

Therefore, the number of points corresponding to the different steps are listed
in Table 5.2. A very dense point cloud was obtained from the 360◦ measurement.
Such points were used to reconstruct a regular grid of 28×29 points, in the θ
and z directions, respectively. Then 8932 points were generated with the IMG
method and they were used to retrieve the deformation of the 8410 nodes of
the solid mesh.

Number of points
stereo-DIC regular grid IMG method solid mesh
629104 812 (28×29) 8932 8410

Table 5.2: Number of points used in the various steps of the reconstruction
process.

The reconstructed undeformed and deformed shapes of the cylindrical spec-
imen are illustrated in Figure 5.7. In this case, the VOI is a central zone of
13.5 mm in length. At the considered deformed stage, a 17.47 mm longitudinal
length was reached and a well developed localized necking was clearly visible in
the central portion of the specimen.

Because of the material anisotropy, the shape of the neck is not symmetrical.
The strain localization inside the sample is shown in Figure 5.8 where the strain
field over two of its cross sections is reported. As expected, the deformation
contour pattern is not axi-symmetrical and the maximum strain is obtained in
the centre of the specimen. The principal maximum strain along different radial
paths is plotted in Figure 5.9. In particular, three paths are shown, one along
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Figure 5.7: Three-dimensional reconstruction of the deformation of the cylindri-
cal specimen and pictures of the specimen.

the major axis of the neck section, one along the minor axis and one at 45◦

with respect to the major axis. Depending on the considered angular position,
the strain increase in the centre compared to the surface ranges from +15% to
almost +50%.
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Figure 5.8: Strain distribution across two orthogonal cross sections of the speci-
men showing the strain concentration at its centre.

In conclusion, the IMG method is a suitable instrument to investigate strain
localization phenomenon such as necking, and also can be potentially applied in
a large number of case-study of engineering interest. However, in order to obtain
acceptable results, some important remarks must be taken into account. First,
raw displacement data from the full-field measurement cannot be used directly,
and preprocessing tools like smoothing and remapping of data into regular grid
are necessary. Employment of interpolation functions, indeed, requires a dense
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Figure 5.9: Plots of the principal strain along three different radial paths in the
central section of the specimen.

distribution of measurement points to reduce interpolation error when regular
grid is generated. Moreover, the method is mesh-dependent, so an opportune
and regular mesh size should be chosen.

Regarding further implementations, the final scope for this proposed protocol
is represented by its application to material properties characterization, so a deep
study on reconstruction error on material identification should be performed
using, for instance, simulated experiments.

5.3 Experimental test for sheet metals
through-thickness behaviour characterization

Iosipescu test [69, 70] is nowadays a common standard for studying the shear
properties of composite materials in the field of linear elastic anistropy, and in
literature several applications [71, 70] are reported. Basically, this kind of test
involves a V-notched specimen with appropriate fillets that is hold on one side
by a fixed jaw while the other is clamped by a second jaw that can move only
vertically, permitting to generate a bending and shear load on specimen. Also,
a second version was proposed by Pierron et al. [72, 61], where the two notches
are removed from the specimen.

Starting from these principles, this kind of shear test is redesigned considering,
first, the subsequent design requirements:
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5.3 Test for sheet metals through-thickness behaviour characterization

• Experimental apparatus must contain thin metal sheet specimen;

• Large deformation regime must be reached, taking care of clamping system
effects on strain localization due to bending moment;

• Measurement area must guarantee enough field of view for the full-field
technique (in this case 2D-DIC).

Thus, the first step is to determine the dimension of the specimens to be used. In
order to respect the latter requirement keeping the dimensional characteristics
of sheet metal, a thickness of 2 mm is chosen, while length is setted to 44 mm;
moreover, specimen width is a crucial feature for plane stress or plane strain
condition, and in the present study it is imposed to 5 mm assuming plane stress
state.

Once specimen dimensions are defined, the relative clamping system is planned
employing two twin jaws of 20 mm length opportunely equipped with fillets to
avoid excessive indentation due to bending. So, the opening area between the
two clamps was setted imposing a maximum bending angle of 30◦ and 2 mm of
maximum vertical displacement for the moving jaw.

5.3.1 FE analysis on numerical 2D model
FEA approach [73] is a powerful tool to assess system feasibility, so, a numerical
model reproducing the testing apparatus was realised in ABAQUS-Standard R⃝

environment. In Figure 5.10 all geometrical specifications of testing apparatus
introduced in the model are displayed; the fixed clamp was assumed to be
composed by two rigid body parts: the lower one, provided with fillet on
right side to drive specimen deformation, and the upper one that prevents
sheet metal to rotate operating as an holder. The right-side clamp, that is
capable of translating vertically, was modelled with only one rigid body having
analogous dimensions of the left-side jaw. It is worth noting that fillet radius
and length can have an important role in the stress field and also to avoid
convergence problems in the simulation due to excessive element distortion, so
these two geometrical parameters were tried iteratively, finding adequate results
for configuration with radius equal to 2 mm and length of 1 mm.

Sheet metal specimen with the previously reported dimensions was modelled
including a geometric partition in the middle area that is subjected to DIC
measurement, aimed to increase number of elements. In this way, the model
contains 3200 elements with approximatively 0.1 × 0.05 mm size in the middle
partition, and 1440 ones having 0.1×0.5 mm dimensions for the rest of specimen.
Moreover, the measurement zone was modelled using full-integration 4-nodes
bilinear element type CPS4 in order to avoid the shear-locking issue due to
the combination of bending and shear load, while the rest of the adopted

59



Chapter 5 Development and validation of new testing protocols

4
4

2

2

2
0

1

R
 2

2
0

1
8

8

2
.5

4
R

D

N
D

Figure 5.10: Experimental apparatus and specimen specifications for metal sheet
through-thickness testing used in FEA. Dimensions are in mm.
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specimen reduced integration 4-nodes bilinear elements type CPS4R to reduce
computational timing.

Concerning the material, isotropic hardening was considered and described
by the well-known Swift Law (Eq. 3.60) and anisotropic behaviour employing
the traditional Hill48 material model. Let’s indicate the rolling direction RD
correspondent with x axis, the transverse direction TD with y axis and normal
direction ND with z axis, material orientation of 0◦ with respect to RD was
assigned to specimen model considering thickness-face on xz plane. In Table 5.3
all material parameters inserted are reported, and they were taken from a
general austenitic stainless-steel.

Elastic constants
E 200 GPa
ν 0.3

Swift’s law parameters
KH 1000 MPa
ε0 0.02
nH 0.5

Lankford parameter
R0 2.2
R45 1.5
R90 1.8
Anisotropy coefficents for Hill48
f 0.3819 l 2.5000
g 0.3125 m 2.5000
h 0.6875 n 1.3889

Table 5.3: FE model constitutive parameters.

Boundary conditions were set as follows: all the parts of left jaw were fixed
with an encastre while right jaw is capable of moving only vertically with an
imposed displacement of 2 mm downward; moreover, the left side border of
sheet metal is locked with hinge constraint. Also, the assignment of contact
condition between specimen boundary and clamping system is a relevant step
for a successful simulation; in this case, frictional contact was selected by
considering the static friction coefficient µs = 0.16, a typical value for steel-steel
contact with lubricated surfaces.

Numerical analysis results are displayed in Figure 5.11 in terms of stresses
and equivalent plastic strain for the last step of simulation for the opening
zone to be submitted to VFM analysis. In particular, Figure 5.11d gives us a
qualitative and quantitative insight of plastic strain field obtained, reaching in
the middle of observed area values between 0.16 and 0.22. However, a local
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concentration of strain is present in correspondence of fillets due to bending
moment, and equivalent plastic strain achieves its maximum value around 0.24.
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Figure 5.11: Results of FEA simulation, calculated with respect to global refer-
ence system.

5.3.2 Synthetic images generation and DIC measurement

The experimental procedure was studied by means of simulated experiments to
reproduce the whole measurement chain, as reported in [62] for the Unnotched
Iosipescu test. In fact, exactness and robustness of the identification process
through VFM are deeply influenced by the accuracy of displacement field
measurement on the specimen’s surface obtained by the full-field technique. As
widely reported in literature [74, 75, 76], factors such spatial resolution, noise
intensity and quality of the speckle pattern, strongly affect identification results,
acting as error sources. This approach can be also used for other purposes
as diagnostic tool for DIC arrangement optimization [64], and a practical
applications can be found in [77] in case of polymeric foams, or in Section 5.4
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inherent to metal isotropic plasticity.
So, FE analysis represents the starting point for the generation of synthetic

images. The reference image, which captures the unloaded specimen in the initial
step of the test, is created starting from nodal coordinates of FE model, camera
sensor dimensions in pixel and a general speckle pattern; afterwards, deformed
images are built deforming the reference image according to displacement vector
at each pixel location. In other words, when the reference image is created, the
belonging relation between each pixel and FE model elements is known, and the
new position of a certain pixel can be calculated from nodal displacement field
using the element shape functions. Moreover, details about the convolution
procedure implemented for image deformation are reported in [78].

Hence, synthetic images coming from the numerical through-thickness test
analysis were generated to reproduce an experimental apparatus equipped with
one CMOS camera with 1024 × 1280 image resolution and 8-bit sensor and
50 mm lens mount. Particular attention was given to choose a reasonable
speckle-pattern for the thin specimen thickness. With this intent, the reference
speckle-pattern was taken from a real test image on 8 mm specimen (in particular
the one described in 5.2.2), whose pattern has the peculiarity to be painted
with airbrush technique, able to provide fine and small black paint dots. In
this way, cutting an area of interest that has almost the same dimensions of
simulated specimen. In Figure 5.12 an example of resulting synthetic reference
and deformed images is represented. Obviously, with this simulating picture
technique, deformed images can only display pixels that are contained in the
initial picture. So, if some external nodes enter in the camera field of view due
to large deformation, the corresponding pixels cannot be included.
Since in numerical simulation the total displacement was divided in 30 steps,
one synthetic image was created for each step of FEA and, then, submitted to
2D-DIC measurement.

Some considerations must be taken regarding the chosen field of view for the
simulated test. Approximatively, images capture an area of 3.36 mm width
and 4.2 mm height, that, according to well-known pinhole theory [79], implies
a distance between camera and specimen surface of around 32 mm using the
aforementioned lens mount size. In these conditions 2D-DIC is extremely
influenced by out of plane movement, and telecentric lens or stereo-DIC set-up
are recommended to avoid this kind of experimental uncertainties. However,
the aim of this study is to assess the identification goodness of the proposed
experimental protocol, taking into account to guarantee an appropriate image
resolution.

The 2D-DIC measurement was performed using the commercial software
MatchID. Here, subset size was setted to 49 pixels in order to avoid correlation
problems due to bigger black paint dots, while the stepsize on 3 pixel. Also,
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Reference image Deformed image

Figure 5.12: Synthetic reference and deformed images.

quadratic shape function was employed to permit full bending of subset, and
ANSSD correlation criterion with bicubic spine interpolation were used for the
analysis. Then, measured displacement maps were submitted to strain com-
putation through an external routine, and results are depicted in Figure 5.13
compared to strain fields calculated from displacement FEA data. Since these
synthetic images are not affected by noise, no temporal and spatial smoothing
was performed for all data sets. Measuring displacement data in proximity of
borders is a relevant issue for full-field techniques as DIC due to mismatching
problems when the subset includes pixels outside the specimen speckle pattern;
indeed, usually the AOI is taken avoiding region close to borders. The adopted
DIC software, however, contains an internal algorithm for missing data compen-
sation, and permits to extend the correlation to the whole specimen thickness.
Nevertheless, there are problems in resulted computed strain exactly close to
upper and lower edges, which depend on subset size. These strain errors can
strongly contaminate identification results. A practical way to reduce them
without compromising the equilibrium, is to correct strain fields by substituting
each noisy measurement point with the closer correct one. Clearly, this strategy
is admissible only when few datapoints must be corrected.

5.3.3 Application of non-linear VFM
According to the Hill48 criterion introduced in 2.3.1, the through-thickness
shear behaviour is regulated by material parameter m, which also represents
the final objective of the identification procedure. Thus, the non-linear VFM
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Figure 5.13: Strain fields comparison between FEA data and results from DIC
measurement (raw and corrected), with subset size of 49, respect
to local reference frame. Last set of images represent corrected
strain fields submitted to VFM identification.
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must be arranged considering that:

• Only the opening area between the two clamps is considered for strain
calculation;

• Practically, only the vertical component of loading force is known;

• According to elastic Iosipescu VFM applications in literature, the virtual
displacement field must be continuous.

The non-linear VFM allows to insert more virtual fields in the cost function
(Eq. 4.11) in order to help its minimization, especially in case of anisotropic
material properties. Usually, the virtual fields are chosen in order to minimize
noise sensitivity. Among the years manual or automatically generated optimized
virtual fields [80, 81] were used; here, four different virtual fields were manually
inserted following the considerations reported in [47].

x1

x2

h

l

Figure 5.14: Sheet metal through-thickness test schematic view.

Under the preceding assumptions, let’s consider the notation reported in
Figure 5.14. The first virtual field is taken to reproduce the typical uniform
shear deformation:{

δu
∗(1)
1 = 0

δu
∗(1)
2 = −x1

l

δF ∗(1) =
[

0 0
− 1
l 0

]
(5.13)

66



5.3 Test for sheet metals through-thickness behaviour characterization

in this way, indeed, external virtual work W ∗(1)
e is directly dependent to vertical

force Fv:

W ∗(1)
e = Fv

w
, (5.14)

where w indicates the width of sheet metal specimen. It is worth noting that is
case of elastic Unnotched Iosipescu test the first virtual field permits to retrieve
directly elastic shear modulus G.

The second virtual field, instead, can be select considering a bending strain
fields without any transverse virtual shear component. Making again a com-
parison with elastic Iosipescu test, this virtual field is employed to gather the
elastic modulus E and Poisson ratio ν. Viz:

{
δu

∗(2)
1 = x1(l − x1)x2

δu
∗(2)
2 = 1

3x
3
1 − 1

2 lx
2
1

δF ∗(2) =
[
x2(l − 2x1) x1(l − x1)
x2

1 − lx1 0

]
(5.15)

also for second virtual fields the external virtual work depends from vertical
component of the force:

W ∗(2)
e = Fvl

3

6w (5.16)

Remaining virtual fields are introduced trying to enhance identification results,
and they are opportunely built to give the external virtual work equal to zero.
So, third virtual field δu∗(3) is defined as:

{
δu

∗(3)
1 = 0

δu
∗(3)
2 = x1(l − x1)x2

δF ∗(3) =
[

0 0
x2(l − 2x1) x1(l − 2x1)

]
, (5.17)

while the forth virtual fields δu∗(4):

{
δu

∗(4)
1 = 0

δu
∗(4)
2 = x1(l − x1)x3

2
δF ∗(4) =

[
0 0

x3
2(l − 2x1) 3x1(l − 2x1)x2

2

]
. (5.18)

Input data for non-linear VFM where submitted in the following order:

• Displacement and strain fields coming from FEA simulation. In this way,
it is possible to give an insight on effects of strain and stress calculation
method and, also, optimization algorithm capabilities;

• FEA displacement and strain fields with artificial noise addiction. This
analysis, instead, permits to evaluate noise impact on parameter identi-
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fication. In particular two level of noise are considered as discussed in
3.3.2;

• DIC measured displacement fields and derived strains both raw and
corrected data.

The minimization of the cost function in Eq. 4.6 in this case was performed
using the Matlab R⃝ function fmincon, which is an optimization tool to find
the minimum of a constrained non-linear multivariable problem. More details
can be found in [82]. Moreover, stress state calculation was executed adopting
the Direct Method widely described in 3.3. Hence, VFM identification results
are reported in Table 5.4, where the starting point for optimization algorithm
was chosen assuming isotropic plastic behaviour of material (i.e. m = 1.5).

Identified parameter
(reference m = 2.5)

FEA 2.566
FEA noise 10−4 2.528
FEA noise 10−3 2.297
DIC raw 5.093
DIC corrected 2.471

Table 5.4: Identification results via non-linear VFM for sheet metal through-
thickness test.

Some interesting conclusions can be deduced. First a correct measurement of
strain fields close to the specimen edge can dramatically influence identification
results, and their correction - when it is possible - can help the VFM procedure.
Also, adding a noise of 10−4, the typical range that affects elastic deformation,
does not pollute identification, confirming the effectiveness of Direct stress
integration Method to deal with noise.

5.3.4 Assessment of specimen width

The plane stress state assumption was mainly addressed to generate a stress
state containing the optimal information for the VFM identification. In fact,
this condition guarantees that the stress fields is constant through the thickness,
and the informations gathered on the specimen surface are the same in the
bulk of material. However, such assumption must be verified and validated,
since the specimen dimensions suggest that the generated stress state is closer
to the plane strain condition. Therefore, a 3D numerical model reproducing
the developed test was built in order to compare the generated stress field
at different levels of specimen width. In particular, the analysis is conducted
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considering three layers of the specimen as depicted in Figure 5.15: the external
surface, that represent the reference stress field since its corresponding strain
fields are directly measured by the full-field technique, and two inner layer at
25% and 50% of the width. Moreover, this analysis is extended to three values
of specimen width: 5 mm, 2 mm and 1 mm.

External nodes

Nodes at 25% w

Nodes at 50% w

Figure 5.15: Schematic view of the selected nodes at three different levels of
specimen width.

The full scale numerical model represents the extension of the 2D model
previously described to the 3D through an extrusion of the four parts composing
the testing set-up. So, considering the thickness plane, the same element
dimensions are used, while the edges along the width direction are divided in
order to have the ratio between the element size and specimen width Φw = 0.04.
Accordingly, the element size gradient, and also the number of divisions, are
constant even changing the width of specimen. Thereby, the sheet metal
sample is composed by 94000 8-nodes brick elements, taking care to use the
full-integration type (C3D8) in the central zone of the specimen, where the
deformation localizes.

Figure 5.16 displays the numerical results obtained for the 5 mm width
specimen in terms of in-plane stresses generated on the external layer and
their difference in MPa with the two internal layers respectively. It is worth
noting that such width does not provide a pure plane stress state: the highest
differences are located in the corners zones, where the bending moment and
also the indentation effect due to the clamps are predominant. Here, the σxz
reaches differences of almost 80 MPa, while the dissimilarities decrease in the
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middle area of the measurement zone.
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Figure 5.16: Stress fields generated on the external layer of 3D specimen having
5 mm width. The two last sets of images depict the differences
with internal layers at 25% and 50% of width.

Reducing the specimen width leads the results closer to the plain stress
condition. In fact, albeit the maximum difference is again around 80 MPa for
σxz, the area with the highest error is less diffused (Figure 5.17). Also here,
the region in the middle of the selected measurement area displays a maximum
difference around ∼ 15 MPa, suggesting its employment for the identification
via VFM as a compromise solution.

The specimen configuration with 1 mm width (Figure 5.18) gets results
even more closer to the stress fields obtained for the 2D plane stress analysis
reported in Figure 5.11. The differences of σxx and σzz between the outer
layer and the two inner ones are the lowest, nevertheless the variance of σxz
are comparable to the 2 mm width configuration. However, the 1 mm wide
specimen represent a limit configuration since it can be critically affected by
experimental uncertainties as out-of-plane motions when relatively high strains
are achieved in a real test.

In conclusion, the proposed experimental protocol can represent an interesting
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Figure 5.17: Stress fields generated on the external layer of 3D specimen having
2 mm width. The two last sets of images depict the differences
with internal layers at 25% and 50% of width.
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Figure 5.18: Stress fields generated on the external layer of 3D specimen having
1 mm width. The two last sets of images depict the differences
with internal layers at 25% and 50% of width.
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tool to study the through-thickness anisotropic behaviour of sheet metal using
a 2D-DIC measurement system, permitting to identify the relative constitutive
parameter for the traditional Hill48 model using the VFM inverse technique.
However, this is a preliminary study regarding fundamentally the metrology
point of view and the assessment of specimen width in order to generate the
plane stress state recommended for the VFM identification; in fact, a width of
5 mm produces a stress state closer to the plain strain state condition, which
suggests to couple the proposed testing protocol with inverse methods as the
FEMU. Moreover, it would be really interesting to employ the proposed test in
calibration of complex anisotropic plasticity material models as YLD2004-18p
[57, 58].

5.4 Validation of numerical simulator to optimize
experimental set-up for elasto-plastic material
characterization

In Section 5.3 it is described an application of simulated experiments of 2D-DIC
arrangement to evaluate metrology aspects and effectiveness of a new testing
protocol; nevertheless, this numerical technique can represent a valid diagnostic
instrument to study sought experimental set-up. An interesting version is pro-
vided to optimize the geometry of specimen that will be used for characterizing
hardening behaviour of isotropic metal sheet at large strains. In literature there
are several examples regarding the application of numerical procedure to speci-
men shape optimization, as, for instance, in [39] to calibrate the YLD2000-2D
or [83] concerning the more complex YLD2004-18p. However, albeit only the
simple case of isotropic von Mises material was analysed, the peculiarity of
this numerical simulator is represented by the replication of the whole 2D-DIC
measurement chain, including the main experimental uncertainties. The aim of
this section, thus, is to provide an experimental validation to the optimization
protocol described in the following.

Summarizing the procedure reported in [84], the optimization process is
organised in two subsequent phases, as outlined in Figure 5.19: the simulated
experiment, that produces synthetic images required in the second phase: the
identification procedure. Main input is the geometry of specimen, whose features
are the objects of optimization. So, the generated geometry is submitted to
Finite Element analysis; since isotropic material was taken into consideration,
its behaviour is determined only by a reference hardening curve, expressed, in
this case, by the Swift’s law. Generation of synthetic images follows the same
steps described in Subsection 5.3.2 both for the reference and deformed ones. In
addition, here experimental uncertainties are introduced to consider noise, rigid
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FE model Synthetic images

    FEA Input:
 Specimen geometry;
 Material properties 

(hardening law parameters).

    Simulated experiment Input:
 Camera specifications;
 Image dimensions;
 Reference speckle pattern;
 Experimental uncertainties (noise, rigid body 

motions, illumination).
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Figure 5.19: Optimization process flowchart.
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body motions and illumination variations. Hence, the set of created images
undergoes to 2D-DIC analysis and identification is achieved by the non-linear
VFM. Finally, the goodness of identification results is assessed with an error
function based on the Root Mean Square Error between the reference and
identified stress-strain curve, viz.:

RMSE =

√
1
ε̄limp

∫ ε̄lim
p

0
(σ̄ref − σ̄V FM )2

, (5.19)

where ε̄limp indicates the considered maximum equivalent plastic strain.

5.4.1 Simulated experiment and results

In this study the shape of specimen is characterized by the presence of two
notches, whose geometry is regulated by 7 independent variables (h, xL, xR, yL,
yR, θL, θR), as displayed in Figure 5.20. In particular, the DOI was composed
by 50 different configurations, where adopted values of design variables are
opportunely chosen and combined to avoid repetitions:

h −→ {5, 10, 20} [mm];
θL −→ {−45,−30, 0, 45} [◦];
θR −→ {−45, 0, 30, 45} [◦];
xL −→ {1, 2.5, 5, 6, 12.5} [mm];
yL −→ {0, 5, 10, 15, 20, 25} [mm];
xR −→ {1, 2.5, 5, 6, 12.5} [mm];
yR −→ {−25,−20,−15,−10,−5, 0} [mm].

Specimen thickness is constant and equal to 2 mm.
A Young’s Modulus E = 200 GPa and Poisson’s Ratio ν = 0.3 are input

in the FE model for the elastic properties, while the used parameters for the
Swift’s law are K = 1000 MPa, ε0 = 0.02 and the exponent N = 0.5.

The numerical images are generated to reproduce an experimental set-up
equipped with a CMOS camera having 1280 × 1024 resolution with 8-bit sensor,
mounting a lens of 50 mm. The camera is supposed to be mounted with
a distance z = 557 mm with respect to the specimen surface. Moreover,
experimental uncertainties are included in the simulated images, assuming that:

• Noise is distributed following an Extreme Value distribution, where the
Extreme value parameters are function of image grey levels;

• Out-of-plane motions are regulated by two angles ϑ = 0.0026 rad, γ =
0.0026 rad and the distance δz = 0.058 mm,while the in plane motions by
cx = −2.50 pixel and cy = −21.40 pixel.
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Figure 5.20: Specimen geometry and design variables. Dimensions are expressed
in mm.

• Regarding lighting conditions, light spot illumination is introduced in
order to simulate a not uniform floodlighting on specimen measurement
ROI.

A complete discussion about these selected parameters for experimental uncer-
tainties is given in [63].

Displacement and strain fields for VFM identification are measured using the
DIC software MatchID, performing the analysis with a subset size of 23 pixels
and step size of 3 pixels, involving the ZNSSD correlation algorithm. Hence,
strain fields are derived setting a strain windows of 3 points, avoiding, in this
way, strong filtering effects by the software.

According with [35, 85], the non-linear VFM (Chapter 4) cost function is
minimized employing three different virtual fields:

{
δu

∗(1)
1 = 0

δu
∗(1)
2 = −y

l

{
δu

∗(2)
1 = x

w
(y−|l|)

l

δu
∗(2)
2 = 0

⎧⎨⎩δu
∗(3)
1 = sin

(
π xw

)
cos

(
π yh

)
δu

∗(3)
2 = sin

(
π xw

)
cos

(
π yh

)
,

(5.20)
where, considering the coordinate system placed with the origin at the centre
of specimen, l is the semi-length of measurement area and w is the semi-width
of middle section. In particular, further details on these virtual fields will be
given in the following chapter.

Since the aim of this study is primarily to evaluate the simulation procedure
response and its capability to distinguish an adequate geometry considering
experimental error sources, analysis was executed using first directly the strain
field resulting from FEA, then three different sets of numerical images: the
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former is composed by pure synthetic images, the second one involves noise in
picture generation, the third set has all the other experimental uncertainties.
Overall results are depicted in Figure 5.21, imposing ε̄lim = 0.6.

Figure 5.21: Resulting identification error for all 50 configurations with datasets
coming from FEA and simulated experiments.

The analysis performed on FEM data shows results close to the ideal material
behaviour, reaching, for the best geometry (configuration 39), a RMSE of 0.21%.
When the DIC process is simulated, the RMSE increases as expected. Using
pure images, the resulting best geometry is the same as the obtained one from
FEA data, with an error increase around 2%. Concerning the second set of
numerical images, adding noise deteriorates the pictures and, consequently,
the identification. Nonetheless, the best geometry is still in agreement with
the previous results, although its RMSE 12% higher. Including all the ex-
perimental error sources strongly affects the identification procedure. In fact,
the best geometry changes compared to the previous cases; the RMSE value
for configuration 39 arises un to 25%, while shows the lowest error is reached
by configuration 14. The predicted σ − ε curves from the best configurations
are reported in Figure 5.22: the addition of all the reproduced experimental
uncertainties deteriorates more the identification results compared to the pure
numerical images and the synthetic images with noise.

5.4.2 Experimental validation

The validation of presented simulator capabilities in a real experiment has to
face, first, two important observations: which geometries must be tested and
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Figure 5.22: Comparison of predicted stress-strain curves from geometries hav-
ing the best identification performances.

what kind of material to use. Answers to the former consideration can easily
be found in the optimization results, taking into account specimen shapes that
have respectively the best and the worse RMSE scores. The latter one, instead,
responds to requirements of reaching an adequate plastic strain and also having
an isotropic behaviour whose hardening can be described by Swift law (in other
words, no Lüders bands phenomenon). So, three different configurations were
selected:

• Geometry 6, which represents one of configurations with the worst RMSE
score for all stages of reproduced uncertainties;

• Geometry 39, that is indicated by the simulator as the best configuration
in case of FEA, pure numerical images and synthetic images with noise;

• Geometry 14, which provides the best identification results in case of
numerical images generated with all the introduced experimental error
sources.

In Figure 5.24 these specimens geometries are depicted in detail; for sake of
clarity let’s indicate them respectively with A, B, C. Further considerations
can be taken observing equivalent plastic strain distribution from the FEA
analysis reported in Figure 5.23: Geometry A provides a limited plastic strain
area compared to the other two specimens, which reasonably explains the worst
performance score. In fact, the considered experimental uncertainties relative to
DIC measurements affect strains producing usually variations of 10−4 ∼ 10−3 ε.
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Geometry A Geometry B Geometry C
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Figure 5.23: Equivalent plastic strain distribution for the three geometries.

Consequently, in large strain plasticity domain, they do not have crucial effects
on identification. In other words, the larger the plasticized area (employed for
non-linear VFM), the better the results achieved (Geometry C).

Since statistical relevance must be achieved to give a proper response, 9
specimens for each configuration were cut from a 2 mm thick sheet metal of
X5CrNi18-10 (AISI304) austenitic stainless steel. This material, in fact, permits
to reach elongation to break around 70%, characteristics that fits with the
numerical simulator setting of equivalent plastic strain limit ε̄limp imposed to
60%.

Albeit this version of simulator relies on isotropic plasticity, AISI304 sheets
metal often exhibit mild anisotropy due to rolling process. Thus, a preliminary
study was conducted on standard tensile specimens to have an insight on
anisotropic behaviour of material impacts on validation. Samples at 0◦, 45◦,
90◦ with respect to RD were obtained from the same sheet metal and tested on
tensile bench equipped with a stereo-DIC measurement system composed by two
AVT Stingray F201-B cameras with 1624 × 1234 pixel 8-bit sensor, mounting
50 mm/f1.4 Cinegon C-mount lens. Displacement and strain measurement were
processed with the DIC correlation software MatchID Stereo, using a subset
of 35 pixels and 7 pixels of step-size, ZNSSD criterion, affine shape function
and bicubic spline interpolation. Acquired experimental data were processed to
calculate Lankford coefficients R [19], also, identification of Swift law parameters
was realised by non-linear VFM. In fact, the necking phenomenon occurs when
only the 40% of plastic deformation is reached, so, employing the VFM allows
to include post-necking strain field data, including plastic strains up to 60%.
All results are summarised in Table 5.5.

The calculation of R-value is performed considering the in-in plane stress in
the horizontal direction εw and the through-the-thickness strain εt, as reported
in Figure 5.25b for a maximum strain in the loading direction of 40%. Material
does not show a strong normal anisotropy but only a slight value of planar
anisotropy, confirming its employment for the proposed validation.
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Geometry A Geometry B Geometry C

Figure 5.24: Details of notched specimens used for the experimental validation.
Geometries A, B, C, correspond to configuration 6, 39, 14 respec-
tively; dimensions are in mm. Also, examples of samples in real
test are reported below.

Material σY /MPa R
Orientation (ε = 0.2%)

0◦ 287 0.9460
45◦ 295.1 1.0639
90◦ 300.2 0.9187

Normal Anisotropy R̄ = 0.9981
Planar Anisotropy δR = −0.1315

Swift Law parameters at 0◦:
K /MPa ε0 n

1788 0.095 0.78

Table 5.5: Lankford parameters evaluation and Swift hardening law characteri-
zation for AISI304.
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Figure 5.25: Results from uniaxial tensile test campaign on standard uniaxial
specimen. Figure (b) reports the R-value calculation for the 0◦

direction.

The selected outcoming geometries of notched specimens were tested em-
ploying an experimental arrangement congruous to the hypothesised one in
the optimization process. So, two AVT CMOS Pixelink B371F cameras with
1280 × 1024 resolution and 8-bit sensor with 50 mm C-mount lens were used
for stereo-DIC measurement; stereo vision acquisition is, indeed, a different
condition from the simulated 2D set-up, however, represents a more accurate in-
strument for this kind of validation. Also here, images correlation was executed
by MatchID Stereo software, imposing a subset size of 23 pixels and 3 pixels of
step size as in the simulating procedure, using a ZNSSD to deal with changing
illumination conditions, affine shape function and bicubic spline interpolation
function.

First, evaluation of noise and displacement resolution was performed on
static images for all 27 specimens. Noise as standard deviation of pixels grey
levels values reached a maximum score of 0.47%, while the maximum resolution
displacement measured was 0.00068 mm for horizontal direction and 0.00066
mm for vertical one.

Hence, the identification procedure via non-linear VFM was executed following
the same path described in simulated experiment protocol. Also here the
retrieved characterization results are reported in terms of RMSE error according
to Eq. 5.19, where reference stress-strain curve is calculated using the parameters
obtained from uniaxial dogbone.

As displayed in Figure 5.26, RMSE score for each geometry depends on the
maximum equivalent plastic strain achieved. For this reason, three different
limits of ε̄p were considered for the analysis, based on the correspondent value
where necking regime takes place. In fact, from the experimental activity on
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standard uniaxial tensile specimen, the material exhibits necking initialization
at approximately ε̄p = 40%, while the post-necking data allow to extend
the identification to 60% of equivalent plastic strain; furthermore, the special
conformation of introduced notched specimen is able to increase equivalent
plastic strain, reaching nearly the 100%. It is worth noting that reference
hardening law parameters were not obtained from strain data up to the higher
limit of ε̄p = 100%, so the corresponding missing values of stress-strain curve
where extrapolated mathematically.

Observing the RMSE results at the lower strain limit (Figure 5.26a), the
geometries do not display significant differences; when ε̄p increases (Figure 5.26b
and Figure 5.26c), Geometry A presents higher values of errors, confirming
the response of numerical simulator. On the other hand, the designated best
configuration (Geometry C) shows to have almost the same trend at the three
different levels of maximum equivalent plastic strain. An interesting percep-
tion of simulator outcomes is given plotting all identified hardening curves for
each set of specimens. At least there is one specimen for each shape almost
reaching the reference trend; however, Geometry A provides higher variance of
results (Figure 5.26d) compared to Geometry B (Figure 5.26e) and Geometry C
(Figure 5.26f), that, instead, appears to be the most robust one producing the
most repeatable identification results. These data can be also summarised in
statistical terms computing the mean and standard deviation of the displayed
stress-strain curves, as reported in Figure 5.27. Comparing the average hard-
ening curves there is not a perfect matching with the reference one, however,
Geometry C seems to have roughly its same trend.

Thus, the described experimental activity validates the results provided from
the numerical simulator, giving, also, an important insight on the fundamental
role played by experimental uncertainties on reliability of identification outcomes.
In fact, when a full-field measurement is employed, geometrical features have
not only a determinant impact on the strain field and, consequently, on gathered
material information, but also can affect and reduce impacts of error sources.

Some remarks must be pointed out. According to numerical results, specimens
with better performance are characterized by a diffused plastic strain area, while
localized strain concentrations only in proximity of notches produce worse
identification, according also to [86, 83]. Nevertheless, even these optimal
geometries do not produce a ample strain field compared to common double
notched specimen in Figure 3.5. The DOI previously explained, indeed, does
not help to find a sort of absolute optimal configuration, but in this case
represents a reasonable strategy to have a proper control on simulator results.
Therefore, the presented simulating protocol can be improved using more
advanced optimization methods as, for instance, Simplex Algorithm or Genetic
Algorithms. In future, moreover, this approach can be extended to other
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(b) RMSE at ε̄p = 60%.
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Figure 5.26: Overview of experimental activity results. RMSE scores for all spec-
imens are reported at different equivalent plastic strain thresholds.
Also, all hardening curves calculated from identified parameters
are displayed for the three geometries, highlighting in red the mean
value curve and in blue the reference one.
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specimen’ shapes and to more complex constitutive models, as in case of
anisotropic plasticity.
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Figure 5.27: Statistical comparison in terms of average stress-strain curve and
standard deviation trends for the three geometries considered.
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Chapter 6

Identification of anisotropic
plasticity models: the YLD2000-2D

6.1 Introduction
In this Chapter the whole theoretical framework described previously is con-
nected with the aim to characterize an advanced consitutive model for anisotropic
plasticity: the YLD2000-2D. The Direct Method is employed to reconstruct the
stress state required for the internal Virtual Work calculation in the non-linear
VFM, in order to verify the accuracy. The results are compared with the stan-
dard calibration procedure involving material experimental data from uniaxial
and equi-biaxial stress states.

As reported in Section 2.3.2, the YLD2000-2D [20, 22] yield criterion is
founded on the description of anisotropic behaviour through the application of
two linear transformations on the Cauchy stress tensor. In particular, these
linear transformations are described by the two matrices L′ and L′′, which are
function of 8 linearly independent parameters αi.

The aforementioned material model is valid under the plane stress assumption
that is usually acceptable in sheet metal forming problems. Performing uniaxial
tension test along the RD and TD, and balanced biaxial stress state provides
three flow stresses σ0, σ90, σB and three R-values R0, R90, RB, allowing to
calibrate parameters from α1 to α6. Moreover, the flow stress and R-value
obtained from uniaxial tensile test at 45◦ with respect to TD supply the
remaining coefficients α7 and α8. Details about mathematical procedure for
their calculation are reported in the Appendix of [20].

Identification via VFM, instead, is realised by opportunely shaped notched
specimens that produces an heterogeneous stress state under the plane stress
assumption [39, 47]. The heterogeneous strain field can be measured with
full-field techniques. This geometry is particularly convenient because permits
to have a large area of the specimen under plastic deformation. In other
approaches, like the Σ-shaped specimen proposed by [87], the strain localizes
around fillets leaving most of the measurement zone under low and sometimes
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elastic deformations. In Figure 6.1 its geometrical dimensions are displayed.
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Figure 6.1: Specimen geometry for VFM identification (units: mm).

The application of non-linear VFM needs the definition of proper Virtual
Fields (VF) respecting the boundary conditions imposed by the problem (i.e.
kinematically admissible Virtual Fields). As already mentioned in Section 4.3,
the optimal choice of VFs for elasto-plasticity identification is still an open
question. Very recently, an automatic procedure to select virtual fields was
introduced in [50], based on the stress sensitivity to each constitutive parameter.
However, in this research, manually defined VFs are used in the VFM cost
function. This kind of VFs are also called stiffness-based since they depend only
from stiffness matrix, and in literature several application of this approach can
be found in elasto-plastic problems for both monotonic loads [35, 26, 85] and
cyclic plasticity [88, 89] for example.

180 180

h

w
x

y

Figure 6.2: Schematic of the reference frame used in the VF definition.

Placing the x-y reference frame in the AOI submitted to VFM procedure as
depicted in Figure 6.2 and defining with h and w respectively its semi-height and
semi-width, three VFs are introduced. The first used Virtual Field is reported
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in the following equation:⎧⎨⎩δu
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As introduced previously in Chapter 5, this Virtual Field makes that external
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Observing the second VF, it takes into account the horizontal stress component,
producing a displacement field δu∗(2)

x . It has a trend similar to the one observed
from FEA simulations or experiments on double notched specimens. At the
upper (y = h) and lower (y = −h) bounding frontiers it can be easily verified
that:

δu∗(2)
x = δu∗(2)

y = δu∗(3)
x = δu∗(3)

y = 0 , (6.4)

hence the external Virtual Work is null.
Basically, the first Virtual Field takes into account the anisotropy of the yield

stress at different directions, while the second and third Virtual Fields is more
sensitive to the R-value anisotropy.

The investigation is carried out on two different Advanced High-Strength Steels
(AHSS), largely employed in automotive industrial applications, the BH-340
and TRIP-780. In the following the two identification approaches adopted are
described, discussing and comparing their results. Then, final considerations
are reported in the Conclusions Chapter.
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6.2 Calibration of BH-340 steel
Bake Hardening (BH) [90] indicates a category of ferritic steels submitted to
controlled ageing process which regulates the presence of carbon and/or nitrogen
in solid solution. This gives to the material a strengthening effect achieving also
a good drawability. In the automotive industry is usually employed in visible
(for instance: door, hood, tailgate, roof [91]) and structural (i.e. cross member,
underbody, reinforcement, lining) parts.

6.2.1 Standard calibration procedure
The used uniaxial tensile machine is depicted in Figure 6.3. Standard uniaxial
flats specimens at 7 different directions with respect to RD were obtained from
the same BH-340 sheet metal having thickness of 0.7 mm. Displacement and
strain fields on the specimen surface are retrieved using a stereo-DIC set-up
composed by two 2448 × 2048 CCD cameras, synchronized with the 500 kN
loading cell to couple each frame with measured force. VIC-3D software (www.
correlatedsolutions.com) is employed for the correlation analysis, setting
a subset size of 21 pixels and a step size of 3 pixels, while strain derivation
is calculated imposing a filtersize of 15 points. More details about the DIC
settings are reported in Table 6.2

Results of this experimental activity are reported in Figure 6.4 in terms
of engineering and true σ − ε curves, and in Table 6.1 for the corresponding
Lankford coefficient R.

Specimen

Stereo-DIC
system

500 kN
loading cell

Figure 6.3: Uniaxial test experimental
setup.

Material σY
R

Orientation MPa

0◦ 225 1.52
15◦ 223 1.3
30◦ 227 1
45◦ 245 0.9
60◦ 241 1.08
75◦ 238 1.48
90◦ 226 1.67

Swift Law parameters (0◦):
K /MPa ε0 n

618.5 0.0022 0.204

Table 6.1: Summary of uniaxial test
results for BH-340.

Observing the obtained R-values, material exhibits an isotropic behaviour
at 30◦ and 60◦, while shows its maximum anisotropy along the RD and TD
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6.2 Calibration of BH-340 steel

orientations. Concerning the stress-strain curves (Figure 6.4b), RD and TD
have almost similar values, otherwise test at 45◦ has a slightly higher hardening
curve (∼ 20 MPa).
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(a) Engineering curve.
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Figure 6.4: BH-340 uniaxial tensile test results on standard specimens obtained
at seven different directions with respect to RD. For the sake of clar-
ity, the True σ-ε curves are reported only for the three orientations
that are directly involved in the identification.

Specimen Uniaxial Blank Bulge
DIC technique 3D correlation 3D correlation
Pre-filtering Gaussian-Kernel 5 Gaussian-Kernel 5
Subset (pixel) 21 43
Stepsize (pixel) 3 7
Correlation criterion ZNSSD ZNSSD
Shape function Affine Affine
Interpolation function Bicubic spline Bicubic spline
Strain computation Gradient Gradient
mm to pixel conversion 1 mm=0.0543 pixel 1 mm=0.1217 pixel
Performance analysis

Spatial resolution 1.1403 mm (21 pixel) 5.2331 mm (43 pixel)
Resolution (pixel) 0.0193 0.0479

Table 6.2: Settings used for the DIC measurements on BH-340 uniaxial and
bulge tests, and performance analysis.

The remaining information required to calibrate the yield function model
regards the material behaviour at equi-biaxial stress state condition, which, in
this case, are obtained through the hydraulic bulge test. When the bulge is
formed through the application of a pressure on the blank sheet, a membrane
stress state of a thin-walled spherical vessel can be assumed in proximity of the
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Chapter 6 Identification of anisotropic plasticity models: the YLD2000-2D

dome apex, permitting the calculation of stress-strain curve in the condition of
equi-biaxial stress state [92, 93].

In particular, the achievement of biaxial stress-strain curve requires the
measurement of three quantities: the forming pressure of fluid, the bulge
curvature, and the through-thickness strain. Full-field measurement with stereo-
DIC allows to obtain the latter two inputs, since it returns both shape and
displacement fields; the in-plane strains can be derived from displacements fields,
and, then, the through-thickness strain component can be obtained thanks to
the hypothesis of volume conservation, valid during plastic deformation. The
used, stereo-DIC system is illustrated in Figure 6.5. The DIC settings are: a
subset of 35 pixels on a step size of 5 pixels and strain filtering of 15 in VIC-3D.
Further DIC measurement settings are listed in Table 6.2 The results of bulge
test experimental campaign are reported in Figure 6.6 and Figure 6.7, according
to calculations contained in the ISO 16808:2014 standard [94].

Stereo-DIC
system

Specimen

Polarized
light

Figure 6.5: Bulge test experi-
mental setup.

Max. Drawing Force: 1000 kN
Max. Drawing velocity: 220 mm/min.
Blank Holding Force: 1000 kN

Blank specifications:
Length and height: 300 mm
Bulge diameter: 200 mm

Table 6.3: Bulge test equipment specifica-
tions.

DIC correlation also furnishes the input data for the biaxial R-value with
the adequate strain measurement accuracy. Considering a circular area having
radius r = 10 mm centred in the dome apex, plastic strain along the RD and
TD can be evaluated with the following formula:

εdirp = εdir − 1 − ν

E
σB (6.5)

where σB represents the equi-biaxial stress, E and ν the elastic constants.
Biaxial R-value RB is, thus, retrieved by means of linear fitting as depicted in
Figure 6.7b.

The experimental data coming from uniaxial tensile tests at three orientations
(0◦, 45◦, 90◦ with respect to RD) and equi-biaxial stress-strain curve coming
from the bulge test need one last processing step before they can be used for
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Figure 6.6: Hydraulic bulge test pressure until fracture and principal strains
measured on the specimen surface with DIC for BH-340.
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Figure 6.7: True stress and strain curve for equi-biaxial stress state for BH-340.
Besides, plastic strains along the RD and TD are reported for the
calculation of biaxial R-value.
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Chapter 6 Identification of anisotropic plasticity models: the YLD2000-2D

the identification of YLD2000-2D. Although stresses and r-values at yielding
point permit to calibrate the model, in fact, they cannot give a proper insight
on material behaviour at large deformation. Thus, according to the approach
of Barlat in [95, 96, 20, 57], flow stresses corresponding to a certain amount
of Plastic Work must to be selected. The yield surface has to be expressed
with respect to the strain hardening rate from one of the tests required for the
calibration. Practically, it is convenient to employ the biaxial stress-strain curve,
since, in the case of the bulge test, this reaches larger deformations compared
with the uniaxial tests.

The flow stress trend can be displayed as function of Pastic Work Wp, as
illustrated in Figure 6.8. After Plastic Work Wp = 59 kJ, the three uniaxial tests
assume a constant trend, i.e. the yield function is stable. This consideration is
better explained reporting the flow stresses in the plane of principal stresses
(i.e. π-plane), normalised with respect to σB . Increasing the amount of Plastic
Work, indeed, the yield function will tend to cover different points, until the
relative yielding surface assumes a stable shape.

Thereby, the value of Plastic Work, considered for yield function calibration,
is Wp = 59 kJ. The resulting flow stresses relative to all tests performed are
presented in Table 6.4.

Dir. 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Biax.

σ
σB

0.9219 0.9180 0.9508 0.9558 0.9567 0.9288 0.9154 1
R 1.52 1.30 1.00 0.89 1.06 1.48 1.67 0.98

Table 6.4: Input data for YLD2000-2D calibration on BH-340 steel.

Finally, results of YLD2000-2D calibration for BH-340 steel are depicted in
Figure 6.10, reporting the eight αi coefficients and the predicted yield surface.
Since ferritic steels are characterized by a BCC crystal structure, the a exponent
is commonly assumed as 6 for Bake Hardening steel [21].

6.2.2 VFM identification procedure
Notched specimens with the same geometry specifications illustrated in Figure 6.1
were cut from the same blank sheet of BH-340 at three different material
orientations: 0◦, 45◦ and 90◦ with respect to RD. In [26] there is reported
a numerical and experimental study showing that the use of such specimens
obtained at these directions can cover a portion of the yield surface which
excludes the pure shear and balanced-biaxial stress state.

The full-field measurement is performed employing the same stereo-DIC
system described previously. Image correlation is achieved via VIC-3D software,
setting a subset window of 32 pixels and a step size of 3 pixels between two
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Figure 6.8: Flow stress normalised by the equi-biaxial stress σB as function of
Plastic Work Wp for BH-340.
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Chapter 6 Identification of anisotropic plasticity models: the YLD2000-2D

YLD2000-2D
coefficients:
α1 1.0780
α2 1.1629
α3 0.9646
α4 1.0212
α5 1.0292
α6 0.9346
α7 1.0234
α8 1.1336
a 6
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Figure 6.10: Anisotropy coefficients and predicted tricomponent yield surface
for BH-340 steel.

measurement points. In particular, incremental correlation strategy was adopted,
which means that each image is correlated with the previous one and the
measured incremental displacement is added to the one from previous step.
Further metrology specifications on this experimental campaign are summarised
in Table 6.5.

Figure 6.11 illustrates an example of strain fields obtained from the experi-
ments, used later for the VFM identification. The VFM was restricted to this
smaller zone for two reasons: first, it remains planar up to large strains whereas
the external parts of the specimen tend to wrinkle when load increases; second,
the plastic flow localizes within this zone reaching the highest deformations,
while the external parts mainly remains in the elastic regime. Thereby, 158×389
measurement points are considered in the identification procedure for each time
step.

Accuracy of measured displacement field plays a crucial role in the VFM iden-
tification, leading the accuracy of retrieved material parameters. In Section 5.3,
for instance, there are described the effects of boundary area in the identification
results, but also noisy strain data can represent a considerable issue, as reported
in [97] in elasticity or [35, 26] for anisotropic plasticity. For this reason, spatial
smoothing is applied by means of least-square smoothing based on convolution
method proposed by Gorry [36]. In such case, 9 measurement points are used
to perform convolution, and Figure 6.12 depicts an example of the same strain
field before and after smoothing.
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Figure 6.11: Example of measured strain fields on BH-340 specimens’ surfaces
at different material orientations.
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Figure 6.12: Effects of smoothing application on strain fields for BH-340 speci-
men oriented at 90◦ with respect to RD. The reference frame is
local.
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DIC technique 3D correlation
Pre-filtering Gaussian-Kernel 5
Subset (pixel) 31
Stepsize (pixel) 3
Correlation criterion ZNSSD
Shape function Affine
Interpolation function Bicubic spline
Strain computation Gradient
Performance analysis

Spatial resolution 1.1142 mm (31 pixel)
Resolution (pixel) 0.0607

Table 6.5: Settings used for the DIC measurements and performance analysis
on BH-340 notched specimens.

Non-linear VFM is applied to retrieve only the YLD2000-2D coefficients
αi, while Swift hardening law parameters are assumed equal to the reference
ones from uniaxial test at 0◦. Furthermore, such yielding function requires
the definition of the exponent a. Since this exponent is strictly related to the
material crystal structure, here it is excluded from the inverse identification
and imposed equal to a = 6.

The introduced two strain data sets are submitted to identification, considering
30 time steps. Minimization of the cost function Ψ is performed using Matlab R⃝

Optitool function fmincon. The whole identification process takes an average
time of 5h 40min employing parallelization on 6 cores. Rossi et al. in [26]
demonstrate that minimization initial guess does not have significantly impact
on identification outcomes, so, initially all material parameters were setted equal
to 1. The overall results of identification are illustrated in Table 6.6, where cost
function score Ψ obtained at the end of minimization represents a quantitative
indicator of identification quality [98].

6.2.3 Comparison of identification results

Comparison of calibration results for the BH-340 steel can be outlined drawing
predicted yield surfaces whose coefficients are achieved via standard and VFM
procedures. Considering the plane of stresses σxx and σyy in Figure 6.13,
the corresponding yield surfaces are reported in the case of shear component
σxy = 0. It should be noted that material parameters are retrieved from different
reference flow stresses. In fact, the normalised flow stress with respect to equi-
biaxial stress state are involved for the standard characterization, while VFM
identification employs the flow stress data coming from the Swift hardening law
calibrated on the 0◦ oriented specimen; therefore, since comparison between
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6.2 Calibration of BH-340 steel

Raw data Smooth. data
α1 1.0602 1.0577
α2 0.9435 0.9588
α3 0.8281 0.8301
α4 0.8920 0.9069
α5 0.9144 0.9220
α6 0.8488 0.8582
α7 0.8985 0.9176
α8 0.9831 1.0159
a 6

Cost Function score:
Ψ 654.95 532.43

Table 6.6: Identified YLD2000-2D coefficients with non-linear VFM for BH-340.

yield surfaces is possible only if they refer to the same hardening curve, yield
surfaces are calculated considering the 90◦ direction as reference for each sets
of identified coefficients αi.

Parameters obtained from VFM on both raw and smoothed strain data do
not produces significant differences. Nevertheless, they are not capable cover
perfectly the equi-biaxial stress state point and uniaxial stress at 0◦ predicted
by the reference yield surface from standard procedure.
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1.5

Standard proc.

VFM raw

VFM smooth.

Figure 6.13: Comparison of predicted yield surfaces obtained employing the
standard procedure, the VFM on raw and spatially smoothed strain
data for BH-340. The yield surfaces are normalised by the TD.

Another effective way to assess the goodness of identification results can be
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Chapter 6 Identification of anisotropic plasticity models: the YLD2000-2D

made evaluating the predicted flow stresses and R-value at different material
orientations (Figure 6.14).

YLD2000-2D calibrated with the standard procedure offers the same tensile
properties at 0◦, 45◦ and 90◦. Otherwise, coefficients derived from VFM are
not able to predict flow stresses at 0◦, showing a maximum gap of 0.04 points.
Smoothing strain data decreases this bias for angle parallel to RD, although
the difference at 45◦ increases and the model with these material parameters is
still not capable of perfectly reproducing the experimental trend. However the
differences are quite small, with a maximum bias of 4% for the VFM parameters
from raw strain data at 0◦.

Also observing the R-value trend there is a perfect accordance between
the predicted results by YLD2000-2D characterized from uniaxial and biaxial
experimental data; on the other hand, VFM derived parameters are capable of
capturing the experimental R-value trend, showing a difference of 0.12 points
at 0◦ and 0.19 at 90◦, which reduces to 0.06 using smoothed strain fields data.
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Figure 6.14: Comparison of anistropy of uniaxial yield stress with respect to
the TD flow stress (a) and of R-value (b) for BH-340, measured
experimentally and predicted with YLD2000-2D. Characterization
is achieved using the standard procedure and also VFM on the two
strain data sets. All the values are normalised by the TD

Another comparison can be performed looking at the predicted flow stress
from the equi-biaxial stress state. As reported in Table 6.7, the coefficients
identified by means of VFM technique are able to predict the equi-biaxial flow
stress with a reasonably difference of 1.3% in case of raw strain data and 0.9%
for smoothed data. This represents an interesting results, since the adopted
notched specimens do not feed the VFM with direct data from the balanced
biaxial stress state.

Some further considerations can be pointed out. As already discussed in
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6.3 Calibration of TRIP-780 steel

Standard VFM raw VFM smooth.
1.0924 1.0783 1.0820

Table 6.7: Comparison of predicted flow stress at the equi-biaxial stress state
for BH-340.

Chapter 5, the identification of material parameters relies on the accuracy of
measurement. So, looking also at the error function scores listed in Table 6.6,
DIC measurement can be improved, especially in proximity of notches’ edges.
Moreover, the VFM uses an heterogeneous strain (and consequently stress) field
to identify the material parameters, while the standard calibration basically fits
the exact data from four different test. So, such observed differences may be
ascribed to this. Reasonably, sensitivity based virtual fields can give a better
insight on the influence of heterogeneous stress field in the identification, and
may help to improve results.

6.3 Calibration of TRIP-780 steel
The second material employed for this experimental investigation is TRIP-780.
Microstructure of Transformation-Induced Plasticity steels is characterised by
retained austenite (min. 5%) embedded in a ferrite primary matrix. In addition,
hard phases of bainite and martensite are present in varying percentage of
volume. The dispersion of hard second phase in ferrite contributes to have an
high work hardening during deformation, however, the peculiarity of TRIP is
represented by progressive transformation of retained austenite in martensite at
higher deformation, producing a further work hardening effect. Therefore, TRIP
offers a considerable combination of strength and ductility, becoming a diffused
material for structural and safety parts having complex shape. In automotive
industry, typical examples of application are cross members, longitudinal beams,
B-pillar and bumper reinforcements, sills.

6.3.1 Standard calibration procedure

Characterization of YLD2000-2D yield function for TRIP-780 follows the pro-
cedural path described in Section 6.2.1. Uniaxial tensile test campaign was
conducted using also the same experimental arrangements previously specified.
Therefore, flat standard tensile specimens were obtained at 7 different material
orientations with respect to RD from the same sheet metal having 1.4 mm
thickness. Displacement and strain measurement is achieved, in this case, with
the correlation software MatchID, whose settings are reported in Table 6.11.

Observing outcoming stress-strain curves (Figure 6.15), TRIP-780 exhibits
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Chapter 6 Identification of anisotropic plasticity models: the YLD2000-2D

Specimen Uniaxial Blank Bulge
DIC technique 3D correlation 3D correlation
Pre-filtering Gaussian-Kernel 5 Gaussian-Kernel 5
Subset (pixel) 25 43
Stepsize (pixel) 5 7
Correlation criterion ZNSSD ZNSSD
Shape function Affine Affine
Interpolation function Bicubic spline Bicubic spline
Strain computation Gradient Gradient
mm to pixel conversion 1 mm=0.0396 pixel 1 mm=0.1217 pixel
Performance analysis

Spatial resolution 0.990 mm (25 pixel) 5.2331 mm (43 pixel)
Resolution (pixel) 0.0193 0.0737

Table 6.8: Settings used for the DIC measurements on TRIP-780 uniaxial and
bulge tests, and performance analysis.

anisotropy behaviour, disclosed, in particular, by a difference of ∼ 50 MPa
between 0◦ and 90◦, and ∼ 20 MPa between 0◦ and 45◦ directions respec-
tively. Moreover, mild anisotropy is founded analysing the R-value obtained in
Table 6.9.
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Figure 6.15: TRIP-780 uniaxial tensile test results on standard specimens ob-
tained at seven different directions with respect to RD.

Analogously to BH-340, the equi-biaxial stress state for TRIP-780 is achieved
by means of bulge test equipped with optical stereo-DIC measuring system.
Unfortunately, a technical problem occurred during the test that was stopped
prematurely before specimen fracture. However, the acquired experimental data
are sufficient to calibrate the material model, since both true plastic strains and
true equi-biaxial stresses exceed uniaxial data, providing an adequate Plastic
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6.3 Calibration of TRIP-780 steel

Dir. 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

σY /MPa 451.2 450.8 509.2 470.2 510.3 545.6 503
R 0.896 0.874 0.883 0.925 0.943 1.059 1.062

Swift Law parameters (at 0◦ dir.):
K /MPa ε0 n

1343 0.00287 0.229

Table 6.9: Summary of uniaxial test results for TRIP-780.

Work range.
It is worth noting that calculation of R-value from biaxial stress state usually

requires to exclude plastic strains up to 3% due to uncertainties errors on
determination of curvature in the early stages of dome forming. Nevertheless,
the outcoming RB value computed in Figure 6.16d does not vary significantly
even if plastic strains until 5% are discarded, since the majority of points are
located between 10 ÷ 16% of εp.

Normalised flow stresses with respect to equi-biaxial stress at the same amount
of Plastic Works (Figure 6.17 give also here an idea about how yield surface
behaves at large strain, helping to evaluate the amount of Plastic Work whose
flow stresses will be used for the calibration. Moreover, displaying flow stresses
in the π-plane give an insight about the overall material nature, which for the
considered TRIP-780 clearly results mildly anisotropic.

Therefore, all input data for the characterization of TRIP-780 for YLD2000-
2D material model, are summarised in Table 6.10 for the selected Wp = 76 kJ.
Therefore, calibration results are reported in Figure 6.19, assuming that the
material exponent of yield surface is a = 6, due to BCC structure of TRIP
ferrite primary matrix.

Dir. 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ Biax.

σ/σB 0.938 0.936 0.970 0.955 0.960 0.999 0.983 1
R 0.896 0.874 0.883 0.925 0.943 1.059 1.062 1.165

Table 6.10: Input data for YLD2000-2D calibration on TRIP-780 steel.

6.3.2 VFM identification procedure

Extending the aforementioned experimental activity on TRIP-780 notched
specimen for non-linear VFM identification, also in this case three orientations
of material texture are considered from the same blank sheet metal with 1.4
mm thickness. Digital image correlation is realised with the MatchID software,
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Figure 6.16: Bulge test results and resulting equi-biaxial stress-strain curve and
R-value coefficient for TRIP-780.
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Figure 6.17: Flow stress normalised by the equi-biaxial stress σB as function of
Plastic Work Wp for TRIP-780.
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YLD2000-2D
coefficients:
α1 1.0203
α2 1.0310
α3 1.0610
α4 1.0209
α5 1.0301
α6 0.8157
α7 1.0273
α8 1.1346
a 6
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Figure 6.19: Anisotropy coefficients and predicted tricomponent yield surface
for TRIP-780 steel.

whose analysis settings and measured resolution are indicated in Table 6.11.
A subset of 31 pixels is chosen to guarantee a proper recognition of speckle
pattern along the loading path, while the step size is selected to 5 pixels, such
that an AOI of 115 × 271 measurement points for each time step is obtained.

DIC technique 3D correlation
Pre-filtering Gaussian-Kernel 5
Subset (pixel) 31
Stepsize (pixel) 5
Correlation criterion ZNSSD
Shape function Affine
Interpolation function Bicubic spline
Strain computation Gradient
Performance analysis

Spatial resolution 1.0912 mm (31 pixel)
Resolution (pixel) 0.0672

Table 6.11: Settings used for the DIC measurements and performance analysis
on TRIP-780 notched specimens.

Strain fields (Figure 6.20) are derived from displacements according to Hencky
definition. Also for TRIP steel raw data are submitted to spatial smoothing
over 9 measurement points (Figure 6.21), in order to have two strain data fields
to employ for VFM and to compare.
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Figure 6.20: Example of measured strain fields on TRIP-780 specimens’ surfaces
at different material orientations. The reference frame is local.
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Figure 6.21: Effects of smoothing application on strain fields for TRIP-780
specimen oriented at 90◦ with respect to RD.
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Minimization of VFM cost function is focused on the eight αi coefficients of
YLD2000-2D yield function, get involving 30 time step along the loading path.
Also here, initial guess material parameters are taken equal to 1. After 2 h 50
min of computational time, the outcoming of non-linear VFM procedure are
listed in Table 6.12.

Raw data Smooth. data
α1 1.0102 1.0212
α2 1.0127 1.0222
α3 0.9794 0.9555
α4 0.9803 0.9868
α5 1.0148 1.0220
α6 0.9869 0.9739
α7 1.0355 1.0437
α8 1.0886 1.1222
a 6

Cost Function score:
Φ 2193 2270

Table 6.12: Identified YLD2000-2D coefficients with non-linear VFM for TRIP-
780.

6.3.3 Comparison of identification results
From the comparison of predicted yield surfaces at σxy null (Figure 6.22),
the ones calculated from VFM identified parameters before and after spatial
smoothing predict the same yield stress at RD and TD, while differs at equi-
biaxial stress state. At equi-biaxial point, the Yield surface from VFM applied
on smoothed data seems to be in accordance with the reference one from
standard procedure, nonetheless there is no conformity between them for 0◦

direction. Anyway, the main discrepancy can be observed for the plane strain
stress state.

Nevertheless, observing flow stress prediction capabilities (Figure 6.23a),
there is still a lack to cover experimental flow stresses at 0◦ and 45◦ with
respect to RD. It can be noted that also the YLD2000-2D calibrated with the
standard procedure has some difficulties to reach 30◦ and 75◦ orientations; in
such cases the YLD2004 material model is more suitable compared to YLD2000
[57, 99, 100].

R-value prediction is capable of reproducing the same trend of the reference
curve, and there is a difference with experimental values of 0.07, 0.130 and 0.137
at 0◦, 45◦ and 90◦ respectively.

Albeit the TRIP-780 is a mild anisotropic material, also here the comparison
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Figure 6.22: Comparison of predicted yield surfaces obtained employing the
standard procedure, the VFM on raw and spatially smoothed strain
data for TRIP-780. The yield surfaces are normalised by the TD.
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Figure 6.23: Comparison of anistropy of uniaxial yield stress with respect to
the TD flow stress (a) and of R-value (b) for TRIP-780, measured
experimentally and predicted with YLD2000-2D. Characterization
is achieved using the standard procedure and also VFM on the two
strain data sets. All reported values are normalised by the TD.
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of predicted equi-biaxial point offers differences of 1.13% in case of raw strain
data employed in the VFM and 0.05% for smoothed strain fields (Table 6.13).

Standard VFM raw VFM smooth.
1.0177 1.0037 1.0182

Table 6.13: Comparison of predicted flow stress at the equi-biaxial stress state
for TRIP-780.
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Chapter 7

Conclusions and future
developments

The present thesis relates on the characterization of sheet metal anisotropic
plasticity models using the VFM as inverse methodology for identification
of material mechanical properties. Such calibration method, when coupled
with a full-field measurement technique, offers several advantages compared
to other standard procedures. Basically, it permits to gather a lot more of
informations about material state from a single test employing specimens capable
of generating complex stress states. This can reduce, for instance, the number of
required stress to calibrate a complex material model. Moreover, it is inherently
faster compared to other inverse identification methods like the Finite Element
Model Updating (FEMU), where material parameters identification is achieved
by performing iteratively a Finite Element Analysis of the test until numerical
results match the experimental data.

However, the non-linear VFM applied procedure on anisotropic plasticity
still has some open issues. Since the identification of material properties is
achieved by solving a non-linear problem with the minimization of cost function,
stress integration algorithm plays a crucial role in both goodness of results
and computational time to reach the identification. Secondly, it is strictly
dependent from the accuracy of experimental strain data. Missing or wrong data
points on the specimen edge and other experimental uncertainties, for example,
decisively contributes to the success of model characterization. Furthermore,
the identification of complex anisotropic plasticity models is not studied into
detail, and those aspects that concern the selection of Virtual Fields, the type
and number of tests to employ, and sensitivity to material behaviour represent
a challenging research topic.

The aim of this research activity, thus, is to contribute to the investigation of
such problems, deeply analysing the benefits and the drawbacks of non-linear
VFM application to characterize anisotropic plasticity behaviour of metals.

VFM, and inverse identification techniques in general, represent a powerful
tool thanks to their ability to employ a large amount of material data. Con-
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sequently, they offers new suggestion and ideas for experimental procedures
development. So, this research activity was also extended in parallel to study
new experimental protocols.

In the following, the previous chapters are summarised and discussed.

7.1 The Direct Method for integration of
elasto-plastic constitutive equations

The computation of the stress field from the strain history is a well-known
problem in elasto-plasticity. The stress depends on a non-linear way on the
strain history and, in general, a closed form solution to obtain stress from strain
does not exist. The problem is tackled by using numerical algorithms that
are basically founded on the determination of incremental stress ∆σ from the
incremental strain ∆ε using Newton-Raphson iterative schemes. However, their
implementation in a wider inverse identification framework is computationally
heavy, and their use on experimental data has to face different issues. For
instance, submitting too large strain increments can not ensure convergence,
requesting then to increase the number of iterations or to decrease the size of
strain increments; furthermore, in case of DIC strain measurement data, the
Elastic Predictor–Plastic Corrector Methods are strongly sensitive to noise,
which has the typical order of magnitude of elastic strain increments.

For this reasons, a new computational algorithm for stress reconstruction
from strain data is formalised. This computational method is defined Direct,
since it permits to retrieve the stress state directly from plastic strain increment
exploiting the mutual relation between Plastic Flow Rule and yield surface.

Validation is carried out employing two anisotropic plasticity models, the
traditional Hill48 and the advanced YLD2000, both in plane stress condition.
Accuracy assessment is made comparing stress and equivalent plastic strain
calculated via Direct Method with Finite Element Analysis numerical data,
showing proper and accurate results in large strain plasticity. The study about
the influence of strain increments exhibits how the proposed algorithm is able
to reconstruct the stress state independently from the number of measurement
steps during the loading path. This characteristic makes the Direct Method
particularly attractive since it can achieve convergence even with a single large
plastic increment. In the experimental activity some intrinsic uncertainties
affect the strain measurement and cannot be totally eliminated. Therefore, the
Direct Method is tested by reproducing numerically noisy strain maps. Also, in
this case, the algorithm shows a robust stress integration, especially in case of
noise in the range of elastic strain (i.e. 10−4 ε).

Nevertheless, the main drawback of the proposed integration scheme concerns
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stress calculation when the strain increment is too small. In such case, in
fact, the elastic part is not negligible compared to the plastic one, thus the
assumption that total strain increment is equal to the plastic strain increment
can lead to errors. This condition occurs at early stages of plastic deformation
or when increment reduces its size due to incipient unloading phase.

The computational time benchmarking represents, also, another important
characteristic. In this case the comparison involves two programming languages
that are widely diffused in industrial and academic fields, the high level language
Matlab R⃝ and the lower Fortran95. For both, implementation of Direct
Method algorithm considerably reduces computational time, showing a clear
independence from strain increment size.

Under the presented results, in this thesis work all stress calculations in the
VFM inverse method involve the Direct integration scheme.

7.2 Development and validation of new
experimental protocols

Chapter 5 reports a quite wide research activity, which main goal is repre-
sented by the design and the evaluation of new testing protocols for material
inverse identification. Moreover, all experimental procedures have the common
employment of Digital Image Correlation as full-field measurement technique.

Nowadays DIC is widely used in many experimental applications, and it
is capable of accurately measuring shape changes in both 2D and 3D cases.
However, it can only trace and measure displacements fields on the surface
of the sample during the test, while the informations in the bulk of material
are inaccessible. For this reason the Internal Mesh Generation Method (IMG)
is proposed. Basically, the method creates nodal points regularly distributed
involving an interpolation method based on Bézier curves. When large defor-
mation occurs, the position of such nodal points changes, according to surface
displacement field. In this way, in fact, it is possible to evaluate the strain
localization that occurs in metal specimens subjected to plastic deformation,
hence allowing to get a better insight of phenomena like necking initiation and
fracture propagation.

Here, the IMG method is applied on a standard cylindrical specimen, ap-
proaching the analysis first on numerical data, then on a real experiment. The
former investigation was conducted on a numerical model whose anisotropic
behaviour of material is described by the Hill48 model, finding a good agreement
in terms of positioning prediction, with an average error of 0.09 mm.

Hence, the IMG method is a applied in a real test. For this propose, a
special 360◦ DIC set-up is used. Speaking strictly, this DIC set-up is able to
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measure the 3D displacement field in the 3D space moving a single camera
in a circular sledge. In particular, considering two consecutive images, the
stereo-DIC correlation can be performed on their overlapping ROI thanks to an
opportune calibration pattern placed on the bottom of specimen.

The method confirms its feasibility on such application. However, some
remarks must be pointed out. It is necessary to pre-process displacement data
at first, involving interpolation, to ensure a regularly distributed grid of data.
So, the measurement must contain a dense distribution of points. Moreover,
the IMG method is intrinsically mesh dependent.

The research activity was also implicated in the design of new experimental
test for sheet metals through-thickness behaviour that can be employed in
identification methods such as the VFM and FEMU. In particular, here, the
VFM is used as a diagnostic instrument to assess the feasibility of new testing
procedure. Basically, the idea was to extend the Unnotched Iosipescu test
to large deformations, considering that the apparatus must contain samples
obtained from a thin metal sheet and it must guarantee an adequate field of
view for the optical measurement.

So, as first step, a numerical model reproducing the whole testing system was
built to determine these aspects: specimen and grips geometrical specifications,
the generated stress and strain fields. Moreover, metal sheet anisotropy was
described by Hill48 material model.

The considered specimen thickness (2 mm), makes the DIC technique partic-
ularly challenging since the full-field measurement must correctly capture the
generated strain field. Thus, simulated experiments are employed to observe
the effectiveness of DIC results. So, synthetic images are generated starting
from a real speckle pattern which size is comparable to the specimen thickness,
involving the displacement fields obtained from FEA to deform the reference
image.

DIC measurement is applied on this set of synthetic images, and the out-
coming strain maps display measurement problems in proximity of borders.
So, a practical way to deal with this mismatching, without compromising the
equilibrium, is to substitute wrong measurement points with the closer correct
ones.

Therefore non-linear VFM is used to identify the Hill48 parameter that
regulates the through-thickness shear behaviour. Comparing identification
results with the reference one that is inserted in the FEA simulation, the
following conclusions can be pointed out: an exact measurement of strain fields
on specimen edge can strongly distort the identification results, however, their
correction (when it is possible) can effectively help to improve identification
outcomes.

Also, the investigation is extended to evaluate the stress state at different
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values of specimen’s width by means of numerical simulations on 3D model.
In fact, the initial width of 5 mm makes the stress state closer to the plane
strain condition, which makes the proposed experimental protocol more suitable
to the FEMU identification. However, reducing the width to 2 mm (as the
specimen’s thickness) makes the stress state closer to the plane stress, and, thus,
to be employed with the non-linear VFM. As future development, the proposed
experimental protocol must be verified in a real test in order to have a final
response on its feasibility.

The final section of Chapter 5 is dedicated to the experimental validation
of a former study. Here, a numerical simulator based on non-linear VFM is
built to optimize the geometry of specimens involved in the identification of
hardening behaviour through VFM. The peculiarity of this numerical procedure
lies within the fact that 2D DIC measurement chain is numerically reproduced
in the simulated experiment, including experimental uncertainties as noise,
out-of-plane movements and variable lighting conditions. Also here, the VFM
is employed as diagnostic tool, with the aim to improve the DIC experimental
set-up; specifically, all inserted specimen’s geometries are classified according to
their identified hardening curve.

Three geometries with antipodal identification scores are selected from this
first numerical study. Then, an experimental campaign is performed to validate
predictions of the aforementioned optimization protocol. In order to have a
statistical significance, 9 specimens for each geometry are obtained from the
same blank of AISI304 steel. Hence, the strain fields measured with DIC are
submitted to VFM, and their identification performances are evaluated in terms
of RMSE error, which is compared to the reference hardening curve calibrated
from uniaxial tensile specimen. Observing the results, all three geometries
display a good accuracy until 2% of equivalent plastic strain. However, when
equivalent plastic strain increases, the geometry with the worst score from the
numerical analysis displays an higher error and larger standard deviation of
results; on the other hand, the best designed configuration demonstrates to
have the most robust results, confirming the simulator outcoming predictions.

This successful experimental validation opens the door to the application of
this numerical protocol to several problems. First, this geometrical optimization
procedure can be improved by implementing more sophisticated optimization
algorithms, such as Genetic Algorithms or the Simplex Method. Moreover, since
in this study the isotropic behaviour of material is assumed, a natural further
development is represented by considering anisotropic plasticity models.
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7.3 Identification of anisotropic plasticity models:
the YLD2000-2D

The aim of Chapter 6 is to provide a detailed experimental activity to investigate
capabilities of VFM to identify the constitutive parameters of an advanced linear
transformation-based anisotropy yield function: the YLD2000-2D. In particular,
the non-linear VFM procedure is compared to the standard calibration protocol,
which is used as touchstone for the prediction of material behaviour. The study
is carried out on two AHSS steels, the BH340 and TRIP 780, largely employed
in automotive industry for body and structural parts making.

According to the standard procedure, the calibration of the eight αi material
parameters requires the employment of equi-biaxial stress state. In this case,
the latter is achieved by means of hydraulic bulge test.

On the other side, the VFM is performed involving the strain fields obtained
from tensile test on double notched specimens cut at three different material
orientations. Moreover, three Virtual Fields are manually introduced for the
identification, following the common stiffness-based selection of Virtual Fields.

The VFM, fed by heterogeneous strain fields from notched specimens at
three different directions, is able to calibrate the YLD2000-2D model. However,
there are some differences in the prediction of flow stress tensile properties,
whose maximum deviations are relatively small (4% for the BH-340 and 2.6%
for TRIP-780 considering the 0◦). Such notched specimens do not provide
data from the equi-biaxial stress state; albeit both tested materials do not
have a strong anisotropy, identified parameters by means of VFM predict an
equi-biaxial yield stress that is similar to the one obtained from the standard
calibration procedure.

Also, the parameters calibrated with VFM are capable to reproduce the
R-value experimentally measured trend, however, a maximum difference of 7%
and 12% is found for BH340 and TRIP780 respectively. Spatial smoothing can
help to improve the accuracy of results, however, more efforts must be devoted
to improve the strain measurement, especially along the notches’ edges, where
strain magnitude is higher. Secondly, the VFM uses an heterogeneous strain field
to identify the material parameters, whose impacts on each parameter is not still
investigated. This actually motivates more the implementation of automatically
generated Virtual Fields based on the parameters’ stress sensitivity [50].

Finally, a further consideration must be pointed out. The VFM represents
an incredibly powerful tool, that is also very attractive for industrial applica-
tions, since it permits to reduce the number of tests required to characterize
even complex material models. Nonetheless, the reduction of tests limits its
potentiality. So, as future development, the non-linear VFM cost function can
be improved by including additional experimental data as, for instance, plane
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strain state, pure shear, and even the equi-biaxial stress state from bulge test.
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