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Abstract 

  
 
 
Energy production is one of the main important causes of greenhouse gases 

emission and it can be a huge problem considering the continuous worldwide 
increase in energy demand. Aware of the importance of finding new ways of clean 
energy production and of the necessity to limit the dependency on fossil fuels, 
European policy currently promotes renewable energy sources. Among the 
different types, solid biofuels - in the form of pellet, woodchip, briquettes and 
others – are some of the most promising alternative.  

The fast growth of the biofuels market highlights the problem of product 
quality, which has strong repercussions for technical, environmental, and 
economic aspects. Moreover, the variability of the material characteristics leads to 
the need to check its quality in order to ensure a good product and make it 
competitive with the other fuels. In this context, infrared spectroscopy aims to be 
a new method of quality control. Considering the economic returns of the sector, 
conventional laboratory analyses are simply too costly. Furthermore, they are 
long, complex and require skilled operator, not matching the real necessities of 
the market that needs to have the results as fast as possible.  

This Ph.D. project focused on developing an alternative low cost method of 
biomass quality control based on infrared spectroscopy. Indeed, the first part of 
the thesis includes four studies of application of infrared spectroscopy to 
investigate the qualitative parameters of biofuels. In particular, the first and 
second studies concern the discrimination between hardwood and softwood 
samples and the subsequent prediction of hardwood/softwood content in blend 
samples. The third and fourth studies are related to the discrimination between 
virgin wood and residues from wood processing industries, i.e. bark and treated 
wood.  

The second part of the project shows examples of application of near 
infrared spectroscopy for the prediction of the quantitative parameters of 
biofuels, in particular ash content, gross calorific value and moisture content. The 
studies were performed using both a laboratory spectrophotometer and an on-
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line instrument customized for laboratory analysis. A deepening was carried out 
on the influence of scattering effect for the ash content prediction.  

The results are preliminary, but really promising. The outcomes of this Ph.D. 
project confirm the possibility to use infrared spectroscopy, coupled with 
chemometrics, as a screening tool for getting information about the main 
parameters of biomass, ensuring a more effective and extensive monitoring of the 
quality control, especially in the crucial steps of the bioenergy chain. 
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1. Introduction  

 

 

 

1.1 Background and aim 

Currently, biomass is the third largest primary energy resource in the world 
after coal and oil (Purohit, Tripathi et al. 2006) and can include different types of 
material: plant forest, residues from agricultural and forest production and organic 
waste from industry, humans and animals. Biomass contributed approximately 
5.7% to the European Union’s energy consumption in 2008 (European Union 
2009), predominately through heat and power applications. Considering the 
concern about greenhouse gas emissions, the increasing energy demand, the 
decreasing availability of fossil fuels and the variability of their price, European 
public policy promotes the energy production from renewable resources. One of 
the targets is that 20% for the share of energy consumption has to come from 
renewable sources by 2020 (EU Directive 2009/28/CE).  

Solid biofuels as pellets, woodchips, briquettes and others can contribute 
significantly to this aim with a growing market in the last years (Proskurina, 
Heinimö et al. 2015, Eurostat Accessed: March 2015). Considering their 
increasing utilization, European standards for solid biofuels (EN ISO 17225-
series) are continuously under development by CEN technical committee 335 in 
order to ensure the biomass quality. The biofuels quality control is an important 
tool to trace type and provenance of feedstock and its physical and chemical 
characteristics, which affect the efficiency of energy conversion systems and the 
related emissions (Toscano, Duca et al. 2014, Gehrig, Pelz et al. 2015). The 
chemical composition of biofuels drives the choice of conversion technology and 
process control in the selected energy conversion pathway (Fagan, Everard et al. 
2011).  

According to EN ISO 17225-series standards, a biomass is classified in a 
class of quality rather than in another one, according to a number of chemical-
physical characteristics and quality features (i.e. origin and source) that have to 
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meet specified limits. Some quality parameters, such as type of wood 
(hardwood/softwood), presence of bark or residues from wood processing 
industry, are difficult to be achieved by conventional analysis or microscopy 
techniques because time- and money-consuming. As consequence, such methods 
don’t match the real needs of bioenergy operators that often have to take 
decisions in a short time. This is especially true for densified biomass such as 
pellets. For these kind of biofuels, traceability is particularly complex since wood 
is milled, loosing original structure, and different materials can participate to their 
blend in a concealed way, causing unpleasant effects in terms of combustion 
efficiency and related emissions.  

A valid help comes by infrared spectroscopy, a rapid, cheap and non-
destructive technique that can represent an efficient alternative to the long and 
expensive standard methods. Thanks to this, both qualitative (origin and source) 
and quantitative (chemical-physical parameters) features of the raw material might 
be defined simultaneously with a single and fast measurement. It is a relatively 
new technique, widely used due to its potential to predict a broad variety of 
attributes in several sectors, e.g. food, pharmaceutical and agricultural industries. 

Only a limited number of studies has also investigated the application of 
infrared (IR) spectroscopy to the field of biomass control. Some of the most 
relevant are reported in this chapter and in the following ones of this Ph.D. thesis. 
Fagan et al. (Fagan, Everard et al. 2011) examined the possibility to employ near 
infrared (NIR) spectroscopy and chemometrics to predict moisture, ash, carbon 
contents and calorific value of two dedicated bioenergy crops (Miscanthus and 
short rotation coppice willow) showing that moisture and calorific value 
prediction models had excellent accuracy, while carbon and ash models were fair 
and poor, respectively. Gillespie et al. (Gillespie, Everard et al. 2015) also predicted 
the parameters of moisture, ash, carbon contents and calorific value of different 
pellet with hyperspectral imaging instrument. Moisture and gross calorific value 
prediction models had good and excellent accuracy, respectively, while the ash 
and carbon models were deemed good and fair, respectively. Everard et al. 
(Everard, McDonnell et al. 2012) determined the accuracy of visible and NIR 
spectroscopy to predict gross calorific value of dedicated bioenergy crops.  

Huang et al. (Huang, Han et al. 2009) have looked at the use of NIR as an 
alternative method to predict the carbon, hydrogen, and nitrogen contents and 
the calorific value of straw. Liu et al. (Liu, Ye et al. 2010) developed a predictive 
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model using Fourier transform near infrared (FT-NIR) spectroscopy coupled 
with multivariate analysis. The aim is the chemical prediction of glucan, xylan, 
galactan, arabinan, mannan, lignin, and ash concentration in two types of biomass 
feedstocks (corn stover and switchgrass). 

Some studies were referred also to the real time prediction of biomass 
parameters during conversion processes. Lestander et al. (Lestander, Johnsson et 
al. 2009) investigated the usefulness of online NIR spectroscopy in a pelletizing 
process for predicting moisture content, sawdust blends and energy consumption 
of the pellet press. Lestander et al. (Lestander, Finell et al. 2012) tested NIR 
spectroscopy also in a newly-constructed pellet plant. The factors analysed were 
species composition and moisture content of the dried wood particles before 
pelletizing.   

Infrared spectroscopy and chemometrics have been also used to get 
qualitative information about wood, but the number of studies is limited and only 
few papers can be found for the solid biofuels sector. While several authors 
investigated the possibility to discriminate between hardwood and softwood 
samples (Lestander, Johnsson et al. 2009, Chen, Ferrari et al. 2010, Russ and 
Fiserova 2011, Lestander, Finell et al. 2012, Yang, Lu et al. 2012), no study has 
been carried out on bark determination in wood samples in the biomass sector or 
to detect residues from wood processing industry in wood powder for pelletizing 
process.  

Summarizing, literature research shows that IR spectroscopy was already 
used to investigate some aspects of biomass quality control, but the number of 
studies is limited in comparison to other research fields. Some aspects have been 
already developed, but many others still have to be taken into account. In 
particular, the assessment of the biomass quality should focus on qualitative 
information concerning the origin and source of the material and the main 
quantitative parameters (e.g. ash content). The overall aim of this Ph.D. research 
activity was to assess the biomass quality using IR spectroscopy coupled with 
chemometrics. The study has been especially focused on the possibilities and the 
limitations in applying IR spectroscopy for detailed biomass control.  

1.2  Outline of the thesis 

The thesis is mainly based on six articles either published or under review 
for publication by peer-reviewed journals and one manuscript under finalization. 
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The main focus is the development of an innovative analytical methodology based 
on infrared spectroscopy and chemometrics to characterize solid biofuels from a 
chemical-physical and qualitative point of view. 

A brief description of the outline of this thesis follows.  

First of all an overview of the state-of-art of the biomass sector is presented 
(Chapter 2). In particular, the current system of quality control, its problems and 
bottle-necks are described.     

In Chapter 3, infrared spectroscopy is presented as a possible solution to the 
problems explained in the previous chapter. The fundamentals of medium 
infrared (MIR) and near infrared (NIR) spectroscopy technique are provided. 
Furthermore, the chapter describes how information from spectral data can be 
got using multivariate data analysis and chemometrics. The main multivariate 
analysis techniques used in this thesis will be described shortly.  

Chapters 4 and 5 illustrate the experimental results of applying infrared 
spectroscopy in the biomass sector. The main quality key-parameters of solid 
biofuels, such as calorific value, ash content and moisture content, and the origin 
and source of the material, as defined by the standards EN ISO 17225-series, have 
been considered.  

Finally, Chapter 6 contains a summary of the reached results and 
perspectives and ideas for future research.  

The main manuscripts written during the three-years Ph.D. are appended at 
the end of this book. Paper VII is not included since it has not been submitted at 
present time. 
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2. Biomass quality  

 

 

 

2.1  Biomass: general remarks  

Biomass covers organic, non-fossil material of biological origin, which can 
be converted to fuel – or more precisely biofuel considering the origin of the 
material – for heat and electrical generation and therefore is considered a potential 
renewable energy source (EN ISO 17225-1:2014). As consequence it can include 
products, by-products and residues from agriculture, forestry and relative 
industries, as well as the non-fossil, biodegradable parts of industry and municipal 
solid waste, planted biomass and aquatic biomass (Long, Li et al. 2013). Biomass 
can be divided into several categories according either to their traded forms or 
their origin and source. The latter divides biomass into woody biomass, 
herbaceous biomass, fruit biomass, aquatic biomass and blends and mixtures (EN 
ISO 17225-1:2014). Table 2-1 gives a categorization of biomass resources 
according to their origin and source. 

The components of lignocellulosic biomass are mainly three polymers: 
cellulose, hemicellulose and lignin. Cellulose and hemicellulose are 
polysaccharides. In detail, cellulose (C6H10O5)n is composed of hundreds of linked 
glucose molecules. The cellulose chains are connected together by hydrogen and 
van der Waals bonds causing the cellulose to be packed into microfibrils. 
Microfibrils are covered by hemicellulose and lignin. The cellulose consists in 
crystalline and amorphous cellulose, characterized by a well-ordered structure and 
a randomly ordered structure, respectively (Xu, Yu et al. 2013, Bajpai 2016). 
Hemicellulose contains a much more complicated structure and linkages than 
cellulose, consisting of more than one type of monosaccharide unit. Depending 
on the variety of biomass, hemicellulose may contain xyloglucan, xylan, 
glucomannans, galactoglucomannans, etc. (Xu, Yu et al. 2013, Bajpai 2016). 
Lignin has a very complicated and large molecular structure, too. It is made of 
phenolic polymers that consist of three types of phenylpropane units: p-coumaryl 
alcohol, coniferyl alcohol, and sinapyl alcohol (Xu, Yu et al. 2013, Bajpai 2016).   
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Table 2-1: categorization of origin-based solid biofuels. Table adapted from (EN ISO 17225-1:2014).  

Categories   Materials  

Woody biomass Forest, plantation and other virgin wood 
By-products and residues from wood processing 
industry 
Used wood 
Blends and mixtures 

Herbaceous biomass Herbaceous biomass from agriculture and horticulture  
By-products and residues from food and herbaceous 
processing industry 
Blends and mixtures 

Fruit biomass  Orchard and horticulture fruit 
By-products and residues from food and fruit 
processing industry 
Blends and mixtures 

Aquatic biomass Algae 
Water hyacinth 
Lake and sea weed 
Reeds 
Blends and mixtures 

Blends and mixtures Blends 
Mixtures 

 

The amount and composition of these constituents in the feedstock can vary 
greatly due to the complex and heterogeneous nature of the biomass and this 
influences the choice of the optimum energy conversion technology for each type 
of material (McKendry 2002, Sluiter, Ruiz et al. 2010). Indeed, the inherent 
variability of the lignocellulosic biomass deals to the problem of verifying the 
properties before its use.   

Among the different types of lignocellulosic feedstock, this thesis will focus 
mainly on pellet and woody biomass because of their widespread use as biofuels, 
the limited weather-related dependencies and several advantages compared to the 
other biomasses.  

Woody biomass is present more or less everywhere, is available in many 
forms (dedicated and residual biomass) and can be easily stored (Spinelli, Nati et 
al. 2011, González, Riba et al. 2015). In particular, woodchip is really appreciated 
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because it consists of homogeneous particles with a specific size and it guarantees 
benefits in terms of increased load density and handling quality (Manzone 2016). 
In different European countries, and in Italy as well, the number of power plants 
fuelled with woodchip is increasing and accordingly also the demand for wood 
fuels (Toscano, Duca et al. 2016).  

Pellet is one of the most competitive among the different biofuels, because 
it presents a higher energy density, a reduced transportation and storage cost and 
it is durable. Different materials can participate to its blend making it adaptable 
to different location and feedstock (Obernberger and Thek 2010, Mola-Yudego, 
Selkimäki et al. 2014). The pelletizing process creates a product with regular 
cylindrical shape and low moisture content, making possible its use not only in 
heat and power plants, but also for automatic feeding in small-scale applications 
(Selkimäki, Mola-Yudego et al. 2010). Moreover, pellet ensures a clean burning 
and a reduction in ashes and emissions. For all these reasons, pellet is becoming 
more and more used in different countries, especially in Europe, where the market 
is increasing rapidly. Italy is the third largest European producer (0.77 million 
tonnes), but the domestic supply side doesn’t cover the demand: its consumption 
in 2009 was 1.1 million tonnes (Sikkema, Steiner et al. 2011). 

2.2 Current biomass quality control system       

The identification and characterization of the chemical-physical composition 
of a solid fuel is the most important step during the investigation and application 
of such fuel. This composition is a unique code that characterizes and determines 
the properties, quality, application perspectives and environmental problems 
related to any fuels (Vassilev, Baxter et al. 2010).  

In fact, it is known that there is an inherent variability in the properties of 
lignocellulosic material that is influenced by many factors (Dare, Gifford et al. 
2001, Hames, Thomas et al. 2003) and this leads to the need to employ standards 
in order to check the quality of the product. Moreover, considering the increase 
in biomass demand, the quality could experience a decrease and need to be 
analysed (Toscano, Duca et al. 2016). Pellet is an example of that. As a results of 
the rapid growth of pellet market, different raw materials can be used to make up 
the product apart from woody biomass, making its traceability particularly 
complex. While, in the past, pellets were mainly made up by pure wood (sawdust, 
chips or shavings), nowadays - especially in some countries - the supply of pure 



Biomass quality   
 

10 
 

wood is no more sufficient and other raw materials were used (Toscano, Riva et 
al. 2013), causing unpleasant effects and influencing the combustion behaviour 
and the related emissions. As consequence, it is very important to analyse its 
quality, as it has strong implications for environmental, technical and economic 
aspects (Toscano, Riva et al. 2013).  

 Biofuel quality control might then be an important tool to trace 
composition, provenance, chemical-physical characteristics of the raw materials, 
which in turn affect the efficiency in energy conversion systems and the related 
emissions.   

CEN/TC 335 has established a number of standards (EN ISO 17225 series) 
relating to different solid biofuels, to ensure their quality (Figure 2-1). EN ISO 
17225 under the general title “Solid biofuels – Fuel specifications and classes” 
consists of the following parts: 

- Part 1: General requirements (EN ISO 17225-1); 

- Part 2: Graded wood pellets (EN ISO 17225-2); 

- Part 3: Graded wood briquettes (EN ISO 17225-3); 

- Part 4: Graded wood chips (EN ISO 17225-4); 

- Part 5: Graded firewood (EN ISO 17225-5); 

- Part 6: Graded non-woody pellets (EN ISO 17225-6); 

- Part 7: Graded non-woody briquettes (EN ISO 17225-7).  

 

Figure 2-1: standards EN ISO 17225 series relating to different solid biofuels. 

The standards divide the biomass in different quality classes – for example 
A1, A2 and B for woody pellet – indicating specific limits of chemical-physical 
parameters and defining attributes like the origin and source of the material. 
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Setting out ranges for several chemical-physical parameters that are relevant to 
assess biomass quality, the standards indicate also the procedures to determine 
them. These features are normally achieved by conventional laboratory analysis.   

In order to ensure the accuracy of the analysis performed and of the returned 
results, a sampling procedure is required. Hence, a good quality control is 
straightly linked to a sampling process, especially when considering large bulk of 
biomass (e.g. plant biomass pile, biomass shipload, feedstock supply in 
pelletizing/power plant). Standard EN ISO 18135:2017 – Sampling of solid 
biofuels (EN ISO 18135:2017) – describes the procedure for performing 
sampling plans and taking samples representative of the whole lot of interest to 
be delivered to laboratories for quality control. First of all, it is necessary to collect 
a number of sub-samples depending on the mass of the lot and the heterogeneity 
of the material. Obviously, a higher number of sub-samples is needed with 
increasing mass of the lot and degree of heterogeneity. The sub-sample extraction 
must be carried out with suitable instruments, able to take one sub-sample at a 
time with specific volumes. The standard defines also the points where to collect 
the sub-samples and these are often hard to be reached by the operators, such as 
in big biomass pile. The sub-samples are then collected together to form a sample 
which is immediately closed in a sealed container in order not to alter the 
characteristics to be analysed.  

Once arrived at the lab, the biomass sample needs to follow a specific 
workflow in order to define the right quality class. A summary of the crucial steps 
to be performed is presented in Figure 2-2.  

 

Figure 2-2: workflow of laboratory analyses for the control of biomass quality. Physical analyses are performed on the 

biomass sample as received at the lab and chemical analyses on the stabilized and ground material. 



Biomass quality   
 

12 
 

First of all, according to UNI EN 14780:2011 standard, part of the material 
is stabilized at 45 °C for 24 h then ground down to 1 mm of particle size. It is 
important that the representativeness of the sample, as arrived at the lab, shall not 
be changed during the sample reduction phase. The sample preparation phase is 
necessary before the samples are tested for chemical analyses, instead physical 
analyses are performed on the sample as arrived at the lab without any previous 
preparation. Some of the main physical analyses consist of particle size, moisture 
content, bulk density and durability. The moisture content (Mc) is the most 
important physical characteristic of wood fuels, it depends on different factors 
(Spinelli, Ivorra et al. 2011) and it influences the net calorific value.  

Regarding chemical analyses, the most relevant parameters taken into 
consideration in the biofuel sector are ash content (Ac) and gross calorific value 
(GCV). The ash content is one of the most important parameter. It influences 
combustion efficiency and may cause cleaning and combustion problems, such as 
slagging in furnaces, fouling of heat exchanger surfaces (Kortelainen, Jokiniemi 
et al. 2015), corrosion in the combustion device (Werkelin, Skrifvars et al. 2010) 
and fly ash emissions (Narodoslawsky and Obernberger 1996). The calorific value 
is a property of a fuel, which determines the energy value of it, and it is relatively 
constant for wood fuels in their dry status (Erol, Haykiri-Acma et al. 2010). It is 
an essential parameter for the planning and control of power plants using biomass 
fuel (Posom, Shrestha et al. 2016). It is important for setting the price of the 
product and its value is influenced by the moisture content.  

The analytical methodologies adopted for the determination of GCV, Ac and 
Mc refer to the standards EN ISO 14918:2010, EN ISO 18122:2015 and EN ISO 
18134-2:2015, respectively. In particular, Mc is calculated from the loss in mass 
of the sample after it was dried at temperature of 105 ± 2 °C in air atmosphere 
until constant mass is achieved. The Ac is determined incinerating the sample to 
a controlled temperature of 550 ± 10 °C using a muffle furnace and calculating 
the mass of the residue remaining after the sample was heated. The gross calorific 
value is determined in a dynamic mode at 25°C using a bomb calorimeter. 

Summarizing, according to EN ISO 17225, the assignment of the quality 
class of a biomass is based on the origin and source (qualitative information) and 
the chemical-physical characteristics (quantitative information) of the material. 
However, this current system of quality control presents some limits.  
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As already described, the chemical-physical parameters are determined with 
laboratory analysis and considering the procedures defined by the technical 
standards, but the process turns out to be tedious, long, expensive and requires 
specialized experts. As a result, these complex analyses are normally not in line 
with the real necessities of the sector operators involved in the quality control that 
need to have results as quick as possible in order to make their decision and ensure 
the biomass quality.    

Getting information about the origin and source of the material is particular 
relevant, such as type of wood (hardwood/softwood) and presence of bark or by-
products of wood processing industry (§ Table 2-1). This applies especially to the 
pellet sector, where the wood is unstructured and milled and different raw 
material could be used in the pelletizing process, causing problems with 
traceability and quality trend of the product. These attributes could be determined 
with laboratory analyses (e.g. microscopy techniques and chemical analysis) but, 
besides the same disadvantages already listed for the assessment of chemical-
physical parameters, no standardized method exists for these features.   

Furthermore, the structural and chemical complexity and the heterogeneous 
nature of the lignocellulosic material lead to the necessity of performing a correct 
sampling in order to have a proper quality characterization. As already mentioned, 
the standard EN ISO 18135:2017 – Sampling (EN ISO 18135:2017) – shows the 
procedure to perform a correct sampling plan and to obtain a sample 
representative of the whole lot of interest. The principle is based on the fact that 
every particle in the lot or sub-lot should have the same probability to be included 
in the sample. This procedure is normally quite long and hardworking and the 
quality parameters of interest, e.g. calorific value, moisture and ash contents, are 
determined using only some grams of material compared to the tons of biomass 
transported by ship or trucks or in input in a biomass plant. Moreover, it is 
important to point out that sampling procedure, which is the fundamental step to 
obtain valuable analytical results, requires specialized operators. In fact the 
employment of non-specialized staff might result in probable errors of the 
procedure. As a consequence the operators of the biofuel chain (power plants, 
producers or distributors) have two possibilities: i) to train their own personnel, 
ii) to assign the sampling at an external laboratory, with an increase in analytical 
costs. In any case, both solutions are expensive and long.   
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2.3 Toward a new system of biomass 

control  

In summary, the current system of biomass quality control is based on 
specific ranges of chemical-physical parameters and qualitative attributes (origin 
and source) of the material defined by the international technical standards EN 
ISO 17225. However, this system presents some limits:  

- there are no good standardized procedures set by the standards to 
determine information about the origin and source of the material with 
laboratory analyses; 

- laboratory analyses that are used to define the chemical-physical 
parameters required by the technical standards are long and expensive;  

- biomass exhibits an inherent variability, so it is difficult to perform a 
correct sampling and be representative of the total biomass.  

As a consequence, a technique that is rapid, economic and simple is 
necessary. A good candidate could be the infrared spectroscopy which is already 
widely used for quantitative and qualitative purposes in different fields, such as 
the agricultural, food, pharmaceutical and industrial sectors. The methodology is 
shortly described in the following chapter (§ Chapter 3). IR spectroscopy is a 
suitable technique to overcome the biomass sampling and the related problems 
with its representativeness. In fact, it could be applied directly in the production 
line providing continuous measurements and giving back the quality trend of the 
product and the possible critical points, in real time. Beside on-line/in-line 
measurements, infrared technique could be used also off-line or at-line. The 
former includes sampling and a sample transfer to the lab that will return results 
after the infrared analysis, reducing in this way time and cost compared to the 
conventional analysis, but losing real-time knowledge about the process. The at-
line measurements also require a sampling, but the sample is analysed close to the 
process reducing the time delay of lab analysis. To take into account that even if 
these techniques are still based in sampling, the problem of the representativeness 
is overpassed since multiple samples can be analysed thanks to the low cost and 
the high speed of the infrared analysis. 

In general it can be concluded that IR spectroscopy technique offers 
different benefits. First of all, contrary to the regular analysis, it is fast, can help 
to achieve cost-savings and does not require skilled operators, once the method 
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has been developed. And more importantly, it could be considered the first 
methodology able to provide rapid responses about biomass traceability (origin 
and source). All these features allow to overpass the limits of the current system 
of quality control. 

A schematic representation of the two different approaches in solid biofuels 
analysis is reported in Figure 2-3: the current system of biomass quality control 
based on conventional analysis and the infrared system.  

Paper I, Paper II, Paper III, Paper V and Paper VI aim at collecting 
information about the origin and source of the biomass. Instead, Paper IV aims 
at predicting two quantitative characteristics of woodchip samples: gross calorific 
value and ash content. In particular, Paper VII focuses on the prediction of ash 
content and investigates if scattering effects the prediction of such parameter. A 
preliminary study was also carried out in order to predict the quantitative 
characteristics of the lignocellulosic material directly in the production line using 
an on-line spectrophotometer (§ Chapter 5.3). More precisely the parameters 
considered are moisture content on woodchip, ash content and gross calorific 
value on pellet samples.  

Going into detail, the purpose of Paper I is the discrimination between 
softwood and hardwood samples. Once achieved this objective, Paper II aims at 
predicting hardwood and softwood contents in blend samples. Paper III and 
Paper V and VI investigate other issues related to the origin and source of the 
biomass: the discrimination between bark and wood samples and between treated 
and virgin wood, respectively.   
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Figure 2-3: different approaches of solid biofuels control: the current system of quality control based on conventional 
analysis (a) and the infrared system (b). 
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3. Infrared spectroscopy 

and chemometrics     

 

 

 

3.1  Fundamentals of infrared spectroscopy  

Spectroscopy is an analytical technique that studies the interaction between 
matter and different frequency components of the electromagnetic spectrum. 
Infrared spectroscopy is the spectroscopy that deals with the infrared region of 
the electromagnetic spectrum. In detail, the infrared region is typically divided 
into the NIR – near infrared (12,500-4,000 cm-1), the MIR – medium infrared 
(4,000-400 cm-1) and the FAR – far infrared region (400-100 cm-1) (Figure 3-1) 
(Pavia, Lampman et al. 2001). This thesis will focus on the NIR and MIR regions 
because of their utility and application in the sector.  

In the NIR region absorption bands correspond mainly to overtones and 
combinations of the fundamental vibrations of molecules observed in the MIR 
region (Blanco and Villarroya 2002, Siesler 2007). 

When infrared radiation strikes a sample, the molecules can absorb energy 
from the electromagnetic radiation and convert it into energy of molecular 
vibration. The vibrational energy refers to an oscillation of atoms through their 
molecular bonding. Chemical bonds of the molecule vibrate at different energy 
levels depending on the molecular structure, chemical composition or physical 
properties of the surface measured. There are two types of vibrational mode, 
consisting in an elongation of the chemical bonds (stretching) and/or in a 
deformation of the angle of the chemical bonds (bending).  

The absorbance of light by the molecular vibrations is linked with a change 
in the polarity of the bonds (dipole moment). In fact, the transfer of energy occurs 
only if the electric dipole of the vibrating bond changes at the same frequency of 
the incoming radiation (Siesler 2007).  
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Figure 3-1: the electromagnetic spectrum. Illustration adapted from (Department of Chemistry and Biochemistry 
2002). 

The key-point of the spectroscopic measurements lies in the association 
between the frequency of the radiant energy and the frequencies of molecular 
motions. Since only certain light frequencies or wavelengths can be absorbed by 
a specific molecular vibration, spectroscopy can be used to get qualitative 
information about the material analysed. Quantitative information could be also 
acquired using infrared spectroscopy based on the amount of light absorbed at 
each wavelength.   

To better understand the vibration model, a chemical bond could be viewed 
as a spring with a given force constant (k) connecting two vibrating masses (m). 
According to Hook’s law, the wavenumber of the fundamental absorption band 

( ), i.e. the frequency of vibration, is described as (Pasquini 2003, Siesler 2007, 
Jha 2016):  
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=  12   

where k is the force constant of the chemical bond and  is the reduced mass 
of the atoms involved in the bond, given by the following equation (Pasquini 
2003, Siesler 2007, Jha 2016):  

= +  

in which m1 and m2 are the masses of the two bonded atoms.  

In the harmonic oscillator, energy is continuous and the system undergoes 
cyclic conversion from potential energy to kinetic energy. In reality, the molecules 
do not follow the rules of the classical mechanics, instead those of quantum 
mechanics. That means that the transition between two energy states occurs with 
the absorption or emission of a ‘quantum’ of energy, i.e. a discrete packet of 
energy. Hence, the absorption or emission of energy by the system causes a 
transition between two energy levels – E1 and E2 – and the energy difference 

(∆ ) between two vibrational states is equal to ∆ = ℎ ∗  where h is the Planck’s 

constant and  is the frequency (Pasquini 2003, Siesler 2007, Jha 2016). Since 
vibrational energies are quantized, the vibration frequencies are calculated as 
following (Pasquini 2003, Siesler 2007, Jha 2016): 

∆ = ℎ + 12  

in which  is the frequency, n is the vibrational level and h is the Planck’s 
constant (Figure 3-2) (Department of Chemistry and Biochemistry 2002). To 
summarize, the molecular vibration can be described by a harmonic oscillator, in 
which the energy levels (n) are equidistant and transitions are only allowed 
between neighbouring energy levels with ∆n = ±1.   
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Figure 3-2: energy curve for a vibrating dipole molecule, classic mechanics (left) and energy constrained to quantum 

mechanics (right). Illustration adapted from (Department of Chemistry and Biochemistry 2002). 

The quantum-mechanical treatment of a harmonic oscillator explains the 
infrared absorption bands caused by the fundamental vibration, but do not 
explain the overtone bands in the NIR region. The bonded atoms are compared 
to two masses linked by a spring, but in reality it is also necessary to consider the 
dissociation energy of the bonds. The distortion of the equilibrium of internuclear 
distance, caused by the strongly extension or compression beyond a certain point 
of the vibrating bond, leads to bond dissociation. Moreover, when two atoms 
approach, the repulsion between the two nuclei occurs and the potential energy 
increases more quickly than that estimated by the harmonic oscillator (Jha 2016). 
The harmonic oscillator becomes an anharmonic oscillator (Figure 3-3) 
(Department of Chemistry and Biochemistry 2002). 

 

Figure 3-3: energy curve of an anharmonic oscillator. Illustration adapted from (Department of Chemistry and 
Biochemistry 2002). 
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In the case of NIR spectroscopy the position of an overtone is multiple of 
that of the fundamental vibration, as consequence n > 1. For this reason, the 
position of the overtones can be found as described in the formula: 

= 1 − ℵ  

in which  is the wavenumber of the overtone corresponding to the 

vibrational quantum number (n),  is the frequency of vibration and ℵ is the 
anharmonicity constant (Eskildsen 2016).  

3.2  Spectrophotometers  

Spectrophotometers are the instruments used to collect spectra, normally 
visualized in a graph of infrared light absorbance on the vertical axis and 
wavelength on the horizontal axis. The components of the instrumentation 
include a radiation source, a dispersing element (or wavelength selector), a 
detector and a data processing unit. The dispersing element is used to define the 
wavelength selection, the way in which light is spectrally modulated or selected. 
Different technologies are available, making it a crucial component in the choice 
of the infrared system (Blanco and Villarroya 2002, Xu, Yu et al. 2013). Mainly all 
the instruments are grouped into dispersive and interferometric. 

In Paper I and in Paper II, Nicolet iS 10 (Thermo Fisher Scientific Inc, 
USA) equipped with an attenuated total reflectance accessory (mod. Smart iTR, 
Thermo) was used for obtaining MIR measurements. In Paper III, in Paper IV 
and in Paper VII, Antaris II (Thermo Fisher Scientific Inc, USA) was used for 
obtaining NIR measurements. In Paper V and Paper VI, Nicolet iS 10 (Thermo 
Fisher Scientific Inc, USA) equipped with a diffuse reflectance accessory (mod. 
Smart Near-IR upDRIFT, Thermo) was used for obtaining NIR measurements.  

All the spectrophotometers are based on the use of the interferometer as 
wavelength selector system and on Fourier transform (FT) principle. The 
Michelson interferometer consists of two mutually perpendicular plane mirrors, 
one of which moves along its axis at a common velocity, and a beamsplitter 
(Figure 3-4 a) (McCarthy and Kemeny 2007). The energy of the source is 
collimated and directed into the beamsplitter, generating two equal beams. One 
beam is reflected towards the fixed mirror and the other beam toward the moving 
mirror. Light is reflected from the two mirrors back to the beamsplitter and part 
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of the light passes into the sample and the detector records the signal. However, 
there is a difference in the optical path length of the two beams (retardation) 
because of the continuous change caused by the motion of the moving mirror. 
The result is an interferogram where the absorbance values are recorded in the 
time-domain since the signal is recorded by the detector for various values of the 
retardation. The application of Fourier transform principle allows the 
transformation of the interferogram into the familiar frequency-domain spectrum 
(normal spectrum) (Pavia, Lampman et al. 2001). 

The interferometer is an efficient method to enable measurements of all 
infrared frequencies simultaneously, rather than individually. They include the 
best characteristics in terms of wavelength precision and accuracy, high signal-to-
noise ratio and scan speed (Pavia, Lampman et al. 2001, Pasquini 2003), essential 
also for in-line applications. 

A part from interferometric, the other common technology used to produce 
IR spectra is the dispersive optics-based instrument. These instruments are based 
on diffraction gratings and thanks to recent evolution in sensors production 
technology, they allow a higher scan speed than the past. That is because it is now 
possible to construct linear arrays of PbS and InGaAs sensors containing up to 
256 independent elements. The procedure is simple: the incoming radiation is 
dispersed by a diffraction grating that separates the wavelengths of light and 
directs each wavelength individually through an array of detector elements (Figure 
3-4 b). The pros of this technology is the high scan speed, in fact thanks to the 
detector array it is possible to scan an entire spectrum in a few milliseconds, and 
the absence of moving parts, allowing the installation for in-line applications 
(Pasquini 2003, Jha 2016).  

In this thesis an on-line NIR spectrophotometer loaned by Büchi (NIR-
Online; Büchi Labortechnik AG, Flawil, Switzerland), based on diode-array 
technology, was used for collecting NIR spectra in order to investigate the 
possibility to predict the biomass quality parameters directly in the production 
line (§ Chapter 5.3). 
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Figure 3-4: a) Michelson interferometer (McCarthy and Kemeny 2007); b) dispersive optic-based spectrophotometer. 

A, incoming radiation; B, concave grating; C, dispersed radiation, and D array of detectors (Pasquini 2003). 

 

3.3  Chemometrics  

Spectroscopy measurements are very easy and rapid to perform and allow 
you to get thousands of data points in few seconds, but the spectra obtained are 
quite difficult to interpret, even if they are very rich in inherent information. 
Especially the overtone and combination bands of the NIR region are weak, very 
broad and overlap heavily, leading to spectra really complex to interpret and with 
spectral differences between samples very minimal and difficult to find by naked 
eye (Blanco and Villarroya 2002, Lavine 2003, Hindle 2007).   

The interpretation of the spectral information is possible using chemometric 
techniques. Chemometrics is the science of extracting information from chemical 
systems by using several mathematical and statistical methods based on 
multivariate data analysis (MVA).  

First of all, one must consider the fact that the absorption signal is not only 
affected by the chemical properties of the sample, but also by the physical 
properties. In fact, a typical physical phenomenon during spectra acquisition 
consists in the deviation of light from a straight trajectory by one or more paths 
with no absorption. This is called scattering and it is viewed in infrared 
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spectroscopy as offset and slope differences. When physical properties are not of 
interest, it is necessary to remove this baseline shift using pre-processing methods 
on the spectral data prior to data analysis. A description of the most important 
pre-processing methods is carried out by Rinnan et al. (Rinnan, Berg et al. 2009). 
Pre-processing techniques can be divided in two categories: scatter correction 
methods and spectral derivatives.  

The first group includes Multiplicative Scatter Correction (MSC) and 
Standard Normal Variate (SNV). The MSC correction is achieved by regressing a 
measured spectrum against a reference spectrum and then correcting the 
measured spectrum using the correction coefficients (slope and intercept) of this 
reference spectrum. In most applications, the average spectrum of the calibration 
set is used as the reference spectrum. Practically, the MSC technique consists in: 

x =  x −
 

in which xcorr is the spectrum corrected with MSC, xorg is the measured 
spectrum, b is an additive correction factor (intercept) and a is a multiplicative 
correction factor (slope). a and b are found by the regression of xorg onto xref, 
where the latter is the reference spectrum. 

SNV is a weighted normalization, i.e. not all points contribute to the 
normalization equally. In SNV correction, the average value of the spectrum is 
subtracted from the absorbance for every data point and the result is divided by 
the standard deviation. Hence, the entire sample is normalized by the standard 
deviation. Different vector-norms could be used for the scatter-correction 
computation, but surely standard deviation is the most applied.  

SNV uses the same signal-correction concept as MSC, but a reference signal 
is not required, so each observation is computed on its own, isolated from the 
rest of the dataset. In any case, MSC and SNV are the same for most practical 
applications and the results are similar (Lavine 2003, Rinnan, Berg et al. 2009).   

The basic idea behind MSC has been extended into more elaborate 
augmentations, one of the most common is the Extended Multiplicative Signal 
Correction (EMSC). This pre-processing method is used for eliminating 
uncontrollable path length or scattering effects and is particular useful in 
minimizing wavelength-dependent light scattering variation (Martens and Stark 
1991).  
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This extension includes both second-order polynomial fitting to the 
reference spectrum (MSC normally uses the first-order polynomial fitting, i.e. the 
linear regression), fitting of a baseline on the wavelength axis, and the inclusion 
of a priori knowledge from the spectra of interest or spectral interferents (Rinnan, 
Berg et al. 2009). This last extension is not always possible since, in many practical 
cases, reference spectra for wanted or unwanted constituents are not available. 
Wavelength-axis dependency considers most often a second-order polynomial 
fitting on the wavelength axis to the spectra.  

As a consequence, the basic equation of MSC can be expanded to include 
any other appropriate corrections, not only the intercept and slope already 
considered by MSC, but also the correction factors according to ith order of the 
reference and the ith order wavelength-axis dependency. It is thus clear that EMSC 
is nothing else that an expansion of the original form of MSC.   

EMSC is particularly used because of its flexibility in performing a more 
selective correction for various types of scattering and other unwanted variations. 
Moreover, it is a reliable pre-treatment in the field of IR spectroscopy for the 
correction of additive baseline effects, multiplicative scaling effects, and 
interference effects (Afseth and Kohler 2012).  

The spectral differentiation has the capability to remove both additive and 
slope effects in the spectra. The first derivative removes only the baseline; the 
second derivative removes both baseline and linear trend. During the 
differentiation, a smoothing of the spectra is performed in order to decrease the 
detrimental effect on the signal-to-noise ratio that conventional finite-difference 
derivatives would have (Rinnan, Berg et al. 2009). In this thesis, Savitzky-Golay 
polynomial derivative filter (Savitzky and Golay 1964) was used.  

After performing the right pre-treatments, MVA methods are applied in 
order to extract the desired chemical information from absorbance, 
transmittance, or reflectance data. There are several MVA methods which have 
been extensively described in the literature and have been classified according to 
their purpose and the algorithms or computational procedures that they use.  

The main categories of analysis techniques are: 

- exploratory analysis: Principal Component Analysis (PCA) is the main 
widespread unsupervised approach. It simply “looks” at the data to 
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explore the overall statistical variance with the goal of clustering the 
samples, according to the spectral differences, and detecting outliers; 

- classification and discrimination: allow to discriminate between groups and 
classify samples in different class memberships. It can be applied when 
some prior information about the samples is available. Partial Least 
Square Discriminant Analysis (PLS-DA) and Soft Independent Modelling 
of Class Analogy (SIMCA) are two of the most used techniques in 
different fields; 

- regression: allows the prediction of the characteristics and properties of 
unknown samples comparing blocks of data. The most used technique is 
Partial Least Square regression (PLS). 

A brief description of the chemometric techniques included in this Ph.D. 
thesis is provided in the following sections.   

3.3.1 Principal Component Analysis (PCA) 

Spectral data are collected in a matrix (X) with size N x K, where N are rows 
(observations) and K are columns (spectral variables). In spectroscopy, it is 
normally to work with huge datasets, considering a number from several hundreds 
to thousands of variables. PCA, invented by Karl Pearson in 1901 (Pearson 1901) 
and developed and named by Harold Hotelling in 1933 (Hotelling 1933), is an 
exploratory analysis that allows the reduction of the dimensionality of the dataset 
(X) by transforming the original variables (K) into a set of new uncorrelated 
variables called principal components (PCs). Each of these new variables retains 
a part of the original variance (i.e. information) and they are ordered on the base 
of the amount of explained variance. 

Basically, it uses orthogonal transformations to search for the direction of 
maximum variability and it projects the variable with the greatest variance, i.e. the 
first principal component (PC1), on the first axis. The variable with the next 
highest degree of variance in the dataset is the second principal component (PC2) 
and is set orthogonal to PC1. The third PC (PC3) is the best rank after the first 
two principal components and has the constrain to be orthogonal to the first two 
PCs. The procedure continues till all the systematic variation in the X matrix is 
explained. Normally, the relevant information for the system is gathered in a 
reduced number of variables making the data easier to explore and visualize. 
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The outcomes of the PCA decomposition are the scores matrix (T), the 
loading matrix (P) and the residuals matrix (E). The decomposition by PCA is 
described by the following equation: 

= +  

where T and P represent the structure part of spectral information and E the 
noise part.  

The intrinsic information contained in the X-matrix can visually summarized 
by plotting the scores matrix. The resulting graph (scores plot) allows to visualize 
one principal component versus another one (e.g. PC1 versus PC2 or PC1 versus 
PC3). This is a very informative plot used for looking at similarities or 
dissimilarities among the samples and for the detection of clustering or outlier 
samples. Samples with similar characteristics have similar scores values and are 
close to each other, while samples that lie in the opposite part of the plot have 
very different characteristics and, accordingly, different scores values.  

The loading matrix is represented by using a two dimensional-plot in which 
each loading vector (or at least the most relevant) is plotted against the wavelength 
number. This plot is used for interpretation purposes since it describes the way in 
which the original variables are linearly combined with the new variables (PCs). 
The loading plot explains why samples are grouped in a certain way in the scores 
plot and which variables are responsible for such separation.  

A schematic representation of PCA structure is reported in Figure 3-5. 

 

Figure 3-5: schematic representation of PCA model. T and P represent the scores and loading matrices, E is the 

residual matrix. X is the spectral matrix with the size N x K (samples x spectral variables). n is the number of Principal 

Components chosen to build the model. Adapted from (Bro and Smilde 2014).    
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3.3.2 Partial Least Square regression (PLS)  

Partial Least Square regression (PLS) is a multivariate technique applied in 
spectroscopy for quantitative analysis (Wold, Sjöström et al. 2001). It finds the 
relationship between a Y-value – the parameter to be quantified – and the spectral 
data matrix (X), maximizing the covariation between X and Y scores. In short, 
PLS finds components in such a way that the score values in X and in Y have 
maximum covariance. The model is then built only using the Y-related variance 
in X. 

As for PCA, PLS finds a new smaller set of variables, called latent variables 
(LVs), that are linear combinations of the spectral data and relevant for the 
determination of the parameters of interest.  

PLS decomposition could be written with the following equations: 

= +  

= +  

where X is the spectral data matrix (matrix of predictors) and Y is the 
parameter to be quantified (vector of response), T and U are the X scores and the 
Y scores matrices, respectively, P and Q are the X and Y loading matrices, 
respectively, and E and F represent the residuals. 

After building a PLS model (calibration phase), it must be validated in order 
to evaluate its prediction performance (validation phase). The validation 
computations can be made on a separate set of data (test set) or on the calibration 
data themselves simulating a prediction testing. The former procedure is called 
external validation and the latter cross-validation. It is based on deleting a sample 
or groups of samples (g), building a model with the remaining N – g samples, 
estimating the coefficients of the equation and predicting the deleted sample/s. 
In order to estimate the uncertainty of the model RMSE (Root Mean Square 
Error) is calculated. It is the square root of the average sum of squares of the 
differences between measured values and the model estimated values for the 
calibration samples. The validation phase allows the computation of RMSECV 
(Root Mean Square Error of Cross-Validation) if using cross-validation and 
RMSEP (Root Mean Square Error of Prediction) if using external validation. It is 
the most important error measure to estimate the performance of the regression 
model and is nothing else than the average error that it can be get during 
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prediction, i.e. the average error in the Y-vector in absolute value, so in the original 
scale of the Y-value.  

Apart from quantitative analysis (Y-value contains quantitative information), 
PLS might be used also for classification purposes (Y-value contains qualitative 
information and is categorical). This multivariate method is called PLS 
Discriminant Analysis (PLS-DA) (Wold, Sjöström et al. 2001, Barker and Rayens 
2003). It is one of the most well-known supervised statistical technique employed 
in chemometrics. This methodology is used for building classifiers and for 
predicting the belonging class of unknown samples, i.e. to predict a categorical 
variable. It can be applied when some a priori information about the sample is 
available and it assesses the relationship between a Y-value and the spectral data. 
As the Y-vector is a dummy vector, indicating if the sample belongs to a class or 
not (i.e. 1 for class A, and 0 for class B), the Y-predicted will have values in the 
range from 0 to 1, and a sample is included in a classification class rather than in 
another one on the basis of a defined classification rule.  

The Receiver Operator Characteristic (ROC) curve is one of the most widely 
used statistical tool that assesses the ability of a binary classification model, 
defying a threshold limit on a Y-variable and classifying everything above that 
limit as admitted in a class and everything below as not admitted. Starting from a 
confusion matrix (Table 3-1), ROC curve is nothing else than the plot of True-
Positive Rate (TPR) versus False-Positive Rate (FPR) for every possible 
classification threshold. By looking at the ROC curve, the optimal threshold value 
(and optimal classification model) can be defined (Ballabio and Todeschini 2009).  

Table 3-1: confusion matrix for binary classification.  

  Assigned  
class 

   P N 
True 
class 

P TP FN 
N FP TN 

The accuracy of the classification model is determined with sensitivity and 
specificity values. Sensitivity or True-Positive Rate (TPR) is a statistical measure 
of how well the classification model is able to recognize a sample belonging to a 
given class. Specificity or True-Negative Rate (TNR) measures the ability of the 
model to reject all the samples not belonging to that given class. The 
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misclassification rate is also taken into account for evaluating the model 
performance since it is the ratio of false positives and false negatives to the total 
number of samples.  

3.3.3 Soft Independent Modelling of Class Analogy (SIMCA) 

Soft Independent Modelling of Class Analogy (SIMCA) is a supervised 
method of data classification, introduced by Wold and Sjöström in 1977 (Wold 
and SjÖStrÖM 1977). SIMCA performs a PCA for each class and builds a 
multidimensional space around them using the principal components calculated. 
Then the classification of unknown samples is made evaluating the distance 
between sample and models; if lower than the critical distance calculated for a 
specific class at suitable significance levels, then the sample belongs to that class. 
As class modelling technique SIMCA can also associate samples to more than one 
class or with no class. 

3.3.4 Variable selection methods 

It is well known that variables selection methods could enhance the model 
performance in comparison to that of the full-spectrum and give better 
predictions (Andersen and Bro 2010). Moreover, removing many irrelevant, noisy 
or unreliable variables the model complexity decreases, resulting in a model that 
is easier to understand. This not always leads to get better predictions, but it helps 
in understanding which variables contribute positively to the model (Andersen 
and Bro 2010). Variables selection is really relevant also for industrial on-line or 
at-line purposes. In this kind of applications, time and money are important key-
points and often using a high-resolution instrument scanning a whole spectrum 
is too costly and takes too much time considering the industrial needs (Andersen 
and Bro 2010).   

There are different variables selection methods, but the procedure is always 
the same. It consists in developing the model, selecting the optimal number of 
LVs and in re-calculating the model on the wavelengths selected on the basis of 
the variables selection method. 

In Paper IV, different variables selection methods were applied in order to 
improve the PLS models for the prediction of ash content and gross calorific 
value and in Paper VI to enhance the classification performance between treated 
and virgin wood samples. In particular the methods used are: regression vector 
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(B), Variables Important in Projections (VIP) (Wold, Sjöström et al. 2001, Chong 
and Jun 2005), Selectivity Ratio (SR) (Rajalahti, Arneberg et al. 2009), interval 
Partial Least-Squares (iPLS) (Norgaard, Saudland et al. 2000) and recursive 
weighted Partial Least Squares (rPLS) (Rinnan, Andersson et al. 2014). In these 
studies, the best results were obtained using rPLS method.     

rPLS is related to Jack-knifing, but instead of eliminating variables after each 
iteration, the method iteratively uses the regression coefficients to magnify 
important variables and thus relatively down-weight less important ones. The key-
point of this procedure is that the regression vector reflects the importance of the 
variables. Basically, the fundamental is that the regression coefficients are 
recursively used as weights on the original data matrix. The procedure consists in 
a process of repeated PLS models and the calculated regression coefficients (b 
vector) are used as cumulative weights on X:  

= ×  

where XR-1 is the previous updated weighted X, b is the regression coefficient 
from the last model (on XR-1) and XR is the “new X” to be used in the subsequent 
PLS model.  

Reweighting each time the X matrix leads to gradually changing the X space, 
but the target vector Y remains unchanged. After the first weighting, some 
variables have been amplified and others are attenuated. In the second model 
based on weighted data, the amplified variables will contribute more, and the 
attenuated will contribute less and so on. At the end, the model will converge to 
a limited number of variables, but it will exhibit optimal prediction performance 
before, normally including co-linear neighbour variables. 

A schematic representation of the rPLS procedure is reported in Figure 3-6. 
In rPLS, regression coefficients are represented as a diagonal matrix only for 
mathematical purposes. 
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Figure 3-6: schematization of rPLS procedure. XR-1 is the previous updated weighted X, b is the regression coefficient 

from the last model and XR is the “new X” to be used in the subsequent PLS model. 

 

The graphical output of rPLS method is reported in Figure 3-7. The red 
spectrum is the average NIR spectrum, the red dotted line shows the optimal 
rPLS model based on the RMSECV values reported all the way to the right in the 
figure (this means that the threshold is not chosen but calculated on the basis of 
the regression/prediction error). The corresponding number of iterations needed 
can be read from the axis on the left (“Iteration number”). The weights are log10 
transformed to enhance the view and the colour coding is reported on the left 
bar. The dark blue (value = 1) means that the variable has a large weight and thus 
important, instead the light grey (value = 1e-35) means that it is not.   
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Figure 3-7: graphical output of rPLS method (Rinnan, Andersson et al. 2014). 
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4. Infrared spectroscopy for 

qualitative analysis of 

biomass  

 

 

 

Getting qualitative information about the biomass is particular relevant for a 
number of reasons, and not only because it is required by the technical standards. 
Just a few examples, it allows to trace composition and provenance of the raw 
material, to ensure the absence of unpleasant materials (e.g. bark), to verify the 
compliance of producers’ declarations and to assure sustainability issues. This is 
important especially for pellet, because the material is unstructured and milled, 
making impossible the determination of its origin and source by naked-eye. No 
expert wood technologist could be able to identify the presence of bark or other 
unpleasant materials mixed in the wood powder. 

The great potential of infrared spectroscopy has been widely recognized both 
for qualitative and quantitative analysis of different organic materials, not only in 
the biofuel sector (Xu, Yu et al. 2013, Chadwick, McDonnell et al. 2014), but 
especially in other fields such as agricultural, food, industrial, textile, 
pharmaceutical, petrochemical, etc. (Tsuchikawa and Kobori 2015). The 
technique was already used to assess the qualitative parameters of the biomass. 
According to Tsuchikawa et al. (Tsuchikawa and Kobori 2015), different authors 
studied the utility of NIR spectra for the classification of the wood materials. 

In this chapter, the main aim is to examine the possibility to use mid and 
near infrared spectroscopy as a tool to improve the biomass quality control. The 
following studies will investigate the potential to use such technique to verify the 
compliance of producers’ declarations about wood origin and source, as defined 
and requested by solid biofuel quality assurance standards. In detail, it was used 
a) to discriminate between hardwood and softwood samples; b) to predict 
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hardwood/softwood content in blends samples; c) to discriminate between bark 
and wood samples and d) to discriminate between treated and untreated wood. 

4.1 Discrimination between hardwood and 

softwood samples (Paper I) 

This section is mainly based on the paper “Soft Independent Modelling of 
Class Analogy applied to infrared spectroscopy for rapid discrimination between 
hardwood and softwood” accepted for publication in the peer-reviewed journal 
Energy. Part of the section is also based on the results presented with the poster 
“Spettroscopia nel vicino infrarosso e analisi multivariata dei dati come supporto 
per la determinazione della qualità del pellet” (“Near infrared spectroscopy and 
multivariate data analysis as a support for pellet quality determination”) during 
the conference “7° Simposio italiano di Spettroscopia NIR” (“7° Italian 
Symposium of NIR Spectroscopy”, Milan 13th-14th October 2016).  

The main aim of the study is the discrimination between softwoods, 
hardwoods and the related blends by means of FT-IR and SIMCA computation. 
According to Clause 6 of EN ISO 17225-1 (EN ISO 17225-1:2014), solid biofuels 
classification is based on the origin (woody, herbaceous, fruit, aquatic, blends and 
mixtures) and source (virgin biomass, by-product, industry residues) of the 
material. As consequence, hardwood and softwood material employed for biofuel 
production should be declared by the producers and, in order to check the 
presence of non-conformity products, a rapid and cheap tool to get information 
about its origin and source is necessary, especially in unstructured, milled or 
densified wood.  

For this study, a total of 110 samples have been collected. In detail, the 
dataset consists of 75 hardwoods of nine different species and 35 softwoods of 
three species. The selection of the wood species was based considering the most 
common species in the energy pellet sector and choosing only whole pieces of 
wood, like beams or boards, and debarked tree log disks wood slices. The samples 
collection phase was particularly important because the successive multivariate 
elaboration was based on the information acquired in this stage. For this reason, 
only samples with known origin and non-chemically treated have been selected. 
All the collected samples were ground, sieved under 0.25 mm particle size and 
analysed in medium infrared using a FT-IR spectrophotometer. A schematic 
representation of the workflow is reported in Figure 4-1.  
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Figure 4-1: workflow of samples preparation: samples collection, grinding, sieving and infrared analysis. 

The total dataset of samples was split into training set (82 samples) and test 
set (28 samples). The test set was chosen randomly in order to have more realistic 
previsions.  

Besides samples, 4 blends were also analysed in the same way as samples to 
evaluate the discrimination performance of the developed models. The blends 
were prepared at 50% hardwood and 50% softwood (w/w %) selecting only the 
most common species of the European pellet market, i.e. beech and sessile oak 
for hardwood and fir and pine for softwood. In order to increase the 
representativeness, average samples of each common species were prepared by 
mixing 10 samples of the same species and using them for the blends preparation.  

First of all an exploratory study (PCA) was carried out on the training set. 
PCA model was computed considering the fingerprint region from 1850 cm-1 up to 
650 cm-1 and pre-treating the data with SNV and 1st derivative (second polynomial 
order, 13 smoothing points with Savitzky-Golay (Savitzky and Golay 1964)). The 
three replicates of each sample were averaged since no replicate outlier was found. 
An error ellipse was calculated at specific levels of significance (95%, 99% and 
99.9% confidence level) both for hardwood and softwood groups. Finally, to test 
the ability of the PCA model in discriminating between hardwood and softwood, 
blends and test set samples were projected on PCs space, using the loadings 
calculated in PCA.  

As it is shown in Figure 4-2, the separation between hardwood and softwood 
groups is mainly linked to PC1: softwoods have negative PC1 scores whereas 
hardwoods have positive PC1 scores. The higher scattering of hardwood samples 
in the plot is linked to the higher variability within this group. The score plot also 
displays that only one training set sample of hardwood and one test set sample of 
softwood come out from the 99.9% ellipsoid and that the projections of the 4 
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blends are well positioned in the middle between the two groups. All these factors 
suggest that the computation of SIMCA model is possible.  

 

Figure 4-2: score plot of the two first PCs. Hardwood samples are marked in green, softwood in red and blends in 

blue. x: training set; ○: test set; ●: blend 50:50 (w/w %); solid line (-): 95%; dash line(- - -): 99%; dot line (•••): 99.9%. 

The loading plot highlights which variables, and related compounds, mostly 
contribute at separating the hardwood and softwood samples (Figure 4-3). In 
Table 4-1 the most relevant wavenumbers associated to the differences between 
the two classes have been reported. A shift of wavenumbers can be noticed in 
Figure 4-3 with respect to Table 4-1 because of the use of first derivative as pre-
treatment. Also other authors found that a similar band shift (i.e. between the 
position of the peak in the raw spectrum and in the derivative spectrum) in 
multivariate model development can be observed around the original peak 
position (Fagan, Everard et al. 2011, Zhou, Jiang et al. 2015, Zhou, Jiang et al. 
2015). The interpretation of derivative spectra is in general more complex than 
raw spectra, in fact a peak of maximum absorbance on the original spectra 
corresponds to zero in the 1st derivative and to a trough in the 2nd derivative 
(Fagan, Everard et al. 2011). As consequence, in this study, zero points 
corresponding to derivative of the peak were selected in order to identify the 
compounds more influent for the PLS model.   
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The results are in line with literature reporting that the chemical differences 
between hardwood and softwood are related to lignin, hemicellulose and 
extractive compounds (Evans 1991, Faix 1991, Popescu, Singurel et al. 2009, 
Emandi, Ileana Vasiliu et al. 2011, Santoni, Callone et al. 2015). Lignin has 
different composition in softwood and in hardwood. In more detail, the softwood 
lignin is a polymer consisting mostly of guaiacyl units with only a small amount 
of p-hydroxyphenyl and syringyl units. The hardwood lignin is composed of 
syringyl and guaiacyl units with a small amount of p-hydroxyphenyl units (Santoni, 
Callone et al. 2015). Hemicelluloses are mainly composed by 80-90% of 4-O-
methylglucoronoxylan in hardwoods (Sjöström 1993, Tumuluru, Sokhansanj et 
al. 2011), while 60-70% glucomannans and 15-30% arabinogalactan are the main 
constituents in softwoods (Grønli, Várhegyi et al. 2002, Lundqvist, Jacobs et al. 
2003, Tumuluru, Sokhansanj et al. 2011). 

 

Figure 4-3: loading plot of PC1. The dotted lines refer to the spectral differences also reported in Table 4-1, the red 

dots refer to the wavenumbers searched in literature references for compounds assignment.  
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Table 4-1: main IR absorption bands associated for the discrimination between hardwood and softwood samples.  

Measured 

wavenumber 

(cm-1) 

Bibliography 

wavenumber 

(cm-1) 

Assignment Compound 

1033 / 1053  - 1044 

- 1045 

- 1040 

- arabinoxylans  (Iroba and Tabil 2015) 

- C-OH bending (Iroba and Tabil 2015) 

- (s) C-C and (s) C-O (Popescu, Singurel et al. 2009) 

- H 

- C, H 

- all 
 

1116 / 1132  - 1122  - (b) C–H in plane in the syringyl monomer (Pandey 
and Pitman 2003) 

- L 
 

1216 / 1255 - 1240 

- 1233 

- 1226 

- 1234, 1233, 
1226-1234  
 

- (s) C−O in the O=C−O group in xylose 
(Simonović, Stevanic et al. 2011) 

- syringyl nuclei of plane at positions 2, 5, and 6 in 
guaiacyl units (Zhou, Jiang et al. 2015) 

- syringil ring vibration; (s) C−O of lignin and xylan 
(Santoni, Callone et al. 2015) 

- syringyl ring breathing with (s) C-O, (s) C-C 
stretching, (b) OH in plane  (Evans 1991, Popescu, 
Singurel et al. 2009) (REYES, TEIXEIRA 
MENDONÇA et al. 2013) (Emandi, Ileana Vasiliu 
et al. 2011) 

- H 

- L 

- L, H 

- L, C 
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1507  - 1506–1513 

- 1505 

- 1510 

- 1510  

- 1515-1505 

- 1510-1501  

- (s) asymmetric vibration for aryl ring (Lupoi, Singh 
et al. 2015) 

- (s) guaiacyl and syringil (hardwood) (Esteves, Velez 
Marques et al. 2013) 

- (s) guaiacyl (softwood) (Esteves, Velez Marques et 
al. 2013) 

- specific band of aromatic skeletal 
vibrations(Popescu, Singurel et al. 2009) 
(Schwanninger, Rodrigues et al. 2004, Emandi, 
Ileana Vasiliu et al. 2011) 

L 

1585 -1598 - 1595 

- 1596−1600 

- 1594 

- lignin absorption band (Bjarnestad and Dahlman 
2002) 

- (s) symmetric vibration for aryl ring (Lupoi, Singh et 
al. 2015) 

- (s) C=C of the aromatic ring (syringyl), (s) C=O, 
and (b) C−H (Popescu, Singurel et al. 2009) 

L 

(s): stretching; (b): bending; L: lignin; H: hemicellulose; C: cellulose; E: extractives. 
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SIMCA computation is based on independent principal component analyses 
(PCA) carried out for each group in the training set to build the class models for 
hardwoods (n=60) and softwoods (n=22). A total of 10 PCs have been chosen 
for each class for a total explained variance of 96% and 94% for softwood and 
hardwood models, respectively. Considering a distance between the two models 
of 132.9, the separation between the two classes is significant and the model could 
be used for identification purposes. It should be taken into account that 3 is the 
limit to consider two classes significantly separated.  

The discrimination power plot was investigated to identify the most relevant 
wavenumbers responsible in the separation between hardwood and softwood 
samples: higher the value, more influential the wavenumber is. The results 
confirm the interpretation of PCA loading. In fact, the wood compounds 
involved in separating the two classes are lignin (1116, 1132, 1216, 1255 and 1598 
cm-1) and hemicellulose (1216 and 1255 cm-1), i.e. the biomass compounds that 
show different composition between hardwood and softwood.  

In order to check the performance of the classification model, test set and 
blends samples were used for the external validation at 0.1% of significance level. 
The Si (sample-to-model distance) vs Hi (distance to the model center, leverage) 
plots (Figure 4-4) confirm the good performance of the developed models; 100% 
and 93% of correct classification for softwood and hardwood respectively. In fact, 
all the softwood samples were correctly identified and only one hardwood sample 
does not belong to its class because associated with a leverage value higher than 
the limit. As expected, the four blend samples were not classified in any class, 
suggesting the suitability of the model to discriminate between pure and blend 
samples. To take into account that only 50/50 (w/w %) blends of hardwood and 
softwood have been used in order to test the performance of the model with not 
pure samples. A further investigation might be to verify if the method would 
perform well on blends where one component is present at less than 50%. 



Infrared spectroscopy for qualitative analysis of biomass   
 

42 
 

 

Figure 4-4: Si vs Hi plot for softwood (a) and hardwood (b) classes. 

The results of the study showed that FT-IR coupled with SIMCA 
computation is an efficient tool for the discrimination of hardwoods, softwoods 
and their blends. This identification is particularly important since it allows to 
answer about the origin and source of the material, as requested by the technical 
standards EN ISO 17225, and could represent a decision-making tool for the 
different stakeholders. The operators involved in the pellet chain quality control 
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could for sure benefit of such a method since it makes possible to recognize raw 
materials different from those declared and mixed during the pelletizing process.  

Hardwood and softwood samples were also analysed using a FT-NIR 
spectrophotometer in order to verify the feasibility to use the near range of the 
infrared region (instead of the medium range) to get information about the origin 
and source of the material. In fact, in comparison to MIR spectroscopy, NIR 
spectroscopy has found many applications in industrial processes because of the 
higher energy level (in comparison to the fundamental vibrations of MIR), the 
higher sensitivity, the deeper penetration into organic samples and, most 
important, it is simpler to use, robust and accessible in terms of cost (Burns and 
Ciurczak 2008). The same workflow already described in this Chapter was 
followed for the samples preparation. A total of 4 species and 80 samples (20 
samples for each species) were collected: fir and pine for softwood and beech and 
maple for hardwood. Maple species replaced the sessile oak mainly for two 
reasons. First of all to verify the possibility to discern this species from the others 
and secondly because most of the pellet on the European market is imported 
from United Stated and from Canada (Magelli, Boucher et al. 2009, Sun and 
Niquidet 2017, Eurostat Accessed: September 2017), where maple is a widespread 
species.  

The spectra were pre-treated using second order derivatives (second 
polynomial order, 13 smoothing points with Savitzky-Golay (Savitzky and Golay 
1964)) and the three replicates were averaged since no replicates outlier were 
found. Because of the low signal-to-noise-ratio, the last part of the spectrum 
(from 10,000 to 6,910 cm-1) was removed and the PCA was computed on the 
spectral range between 6,910 and 4,000 cm-1. Figure 4-5 shows the scores plot of 
PC1 versus PC3. PC1 and PC3 explained 58% and 3% of the total initial 
variability, respectively. The separation between the two classes is along PC1, 
whereas along PC3 it is possible to observe a separation between the different 
wood species – fir/pine and beech/maple.  

The first loading was investigated to identify the main wavelengths 
responsible for the separation between softwood and hardwood samples (Figure 
4-6). The wood compounds responsible for such separation are mainly 
hemicellulose (5809, 5242, 4640, 4490, 4440 and 4289 cm-1) and lignin (5978 and 
4440 cm-1), confirming the results of the FT-IR analysis.  
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The study suggests the possibility to use both MIR and NIR spectroscopy 
technique for the discrimination between hardwood and softwood. In fact, as the 
separation between the two classes is so clear, a classification model could be 
developed using FT-NIR spectra and surely, it would perform well. Furthermore, 
the study has demonstrated that more detailed information at the qualitative level 
about wood species can be obtained. In summary, infrared spectroscopy 
represents a first step in intensive monitoring of the product, addressing the 
quality assurance requirements (EN ISO 17225).   

 

 

Figure 4-5: score plot of PC1 versus PC3.   
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Figure 4-6: loading plot of PC1 (L: lignin; H: hemicellulose; C: cellulose). 

 

4.2 Prediction of softwood/hardwood 

contents in blends (Paper II) 

This section is mainly based on the paper “Prediction of Hardwood and 
Softwood Contents in Blends of Wood Powders Using Mid-Infrared 
Spectroscopy” accepted for publication in the peer-reviewed journal Energy & 

Fuels.   

The good ability of the PCA model of Paper I in separating hardwood and 
softwood samples and the location of the four blends right in the middle of the 
score plot, showing the right proportionality of hardwood/softwood content (§ 
Figure 4-2, Chapter 4.1), suggests the suitability of the method in identifying the 
blends percentage. As consequence, the purpose of the presented study is the 
prediction of hardwood and softwood contents in blend samples by using FT-IR 
analysis coupled with PLS computation.  
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Fir (softwood), pine (softwood), sessile oak (hardwood) and beech 
(hardwood) samples, some of the most common European species in the energy 
pellet sector, have been selected and collected. Subsequently, 29 hardwoods and 
32 softwoods have been used for the preparation of 28 blends at different 
concentration levels. The blending degrees were between 5 and 95 w/w % of 
hardwood/softwood content, in particular the following concentrations were 
used 5, 15, 25, 50, 75, 85, 95 w/w %. The workflow followed for the preparation 
of the samples and of the blends is the same as described in Paper I (§ Chapter 
4.1). All the samples were analysed in medium infrared using a FT-IR 
spectrophotometer.  

First of all PCA was computed on the pre-treated spectral dataset in order 
to explore the overall statistical variance, search for clustering among the samples 
and recognize blends at different levels of concentration. The fingerprint region from 
1850 cm-1 up to 650 cm-1 was selected and all the spectra were subjected to 
different pre-treatments. SNV and 1st derivative (second polynomial order, 13 
smoothing points with Savitzky-Golay (Savitzky and Golay 1964)) results to be 
the best pre-treatment. The three replicates of each sample were averaged since 
no replicate outlier was found. 

The PCA results confirm those of Paper I (§ Chapter 4.1). In fact, the score 
plot (Figure 4-7) shows that softwoods have negative PC1 scores, whereas 
hardwoods have positive PC1 scores. Moreover, along PC2 samples are separated 
according to the species: pine and sessile oak have mainly positive PC2 scores and 
beech and fir have negative PC2 scores. The identification is based on the 
chemical differences between hardwood and softwood with regards to lignin, 
hemicellulose and extractives fractions.  
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Figure 4-7: PCA score plot of hardwood, softwood and blends samples at different levels of concentration. Species_av: 

average samples, mean of the 10 pooled samples for each species; %_Hard: percentage of hardwood in blend; □: pine samples; 

∆: fir samples; ◊: sessile oak samples; ∇: beech samples.     

The linear trend of 50/50 (w/w %) blends of hardwood and softwood 
highlighted in Paper I is now much more evident, confirming that building a 
regression model with the purpose of estimating the amount of hardwood and 
softwood contents in blends is possible. The best PLS model for the prediction 
of hardwood and softwood contents was developed on the fingerprint region from 
1,850 cm-1 up to 650 cm-1 using SNV and first derivative (Savitzky-Golay method, 
13 smoothing points) as pre-treatments. As no replicate outlier was found, the 
three replicates of each sample were averaged.  

The prediction model was developed considering 10 LVs and was validated 
using Leave-One-out Cross validation. The reference parameter is the 
softwood/hardwood content in blend samples. The accuracy was evaluated using 
the figures of merit, in particular coefficient of determination (Q2 when it is 
calculated on predicted or cross-validated values and R2 when it is calculated on 
calibration values) and RMSECV. The coefficient of determination (Q2) measures 
how well the predicted values agree with the reference data: values between 0.50 
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and 0.65 allow the discrimination between high and low concentrations, between 
0.66 and 0.81 indicate approximate quantitative predictions, between 0.82 and 
0.90 reveal good predictions and models with Q2 above 0.91 are considered to be 
excellent (Williams 2001, Fagan, Everard et al. 2011). The ratio of standard error 
of prediction to standard deviation (RPD) and range to error ratio (RER) were 
also calculated to assess the prediction accuracy of the model. The former is 
calculated by dividing the standard deviation of the response parameter by the 
RMSECV, while the latter as the ratio between the range of the response 
parameter and the RMSECV. According to Williams (Williams 2001), for 
screening application RPD value should be greater than 3, while RPD values 
greater than 5 can be used for quality control. RER values of less than 6 indicate 
a poor model not recommended in any application; while values between 7 and 
20 classify the model as fair and may be used in screening applications; values 
greater than 20 indicate good predictions suggesting that the model could be 
suitable in any quality control application (Williams 2001, Fagan, Everard et al. 
2007, Fagan, Everard et al. 2011). The developed model has RMSE, 0.22%, 
RMSECV, 3.78%; R2, 1.00, Q2, 0.99; RER, 26.4 and RPD, 9.5. All values indicate 
that the statistical method results to be excellent and the model could be used in 
any quality control application.  

The first three loadings were analysed in order to identify the compounds 
associated to the most important wavenumbers linked to blend percentage 
prediction (Figure 4-8). Once again, lignin and hemicellulose are the most relevant 
components affecting the discrimination model because of their different 
composition in hardwood and softwood (§ Chapter 4.1). In detail, the main wood 
compounds that contribute to PLS prediction model are hemicellulose (1188, 
1244, 1454 cm-1), lignin (1068, 1143, 1244, 1270, 1420, 1512 cm-1), cellulose (1420 
cm-1) and extractives (1697 cm-1).    
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Figure 4-8: first three loading for the prediction of hardwood and softwood contents in blends samples (L: lignin; H: 
hemicellulose; C: cellulose; E: extractives). 

The number of LVs was chosen considering the lower RMSECV value, but 
this can implicate an overfitting of the model and the difference between RMSE 
and RMSECV values could represent an evidence of it. This means that the model 
undergoes to minor fluctuations in the training data and it fits perfectly with the 
data of this study, but the performance would decrease trying to predict an 
unknown sample (it is like a tailored suit on a man!). The loading plot, the 
regression coefficient plot and the permutation test results were taken into 
consideration in order to choose the right number of LVs, trying to avoid 
overfitting and to model noise. It results that the spectral information contained 
in the data matrix could be explained considering only 4 LVs (Figure 4-9). RMSE 
increased from 0.22% to 3.04% and RMSECV from 3.78% to 4.26%, instead Q2 
remained unchanged (0.99), RER value is 23.5 and RPD 8.5. Even if the 
performance of the model could seem worst, the predictions result better.  
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Figure 4-9: PLS regression model for the prediction of hardwood and softwood contents in blends samples. 

The results of this study demonstrate the feasibility of IR spectroscopy 
analytical tool for the prediction of hardwood and softwood contents in blends. 
Moreover, the PCA results suggest that a discrimination model for the four 
species considered in the study (fir, pine, sessile oak and beech) would perform 
well. The prediction of hardwood/softwood content in blends will open up 
different scenarios for the sector stakeholders. First of all, the method could be 
useful at the production level in providing information about biofuel traceability, 
process tuning and quality control. Furthermore, it should engage attention of the 
producers and distributors of the biofuels and the operators involved in the 
quality control of the market. In fact, such a tool would permit to check for non-
conformity and verify the compliance to product labels, especially pellet.  
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4.3 Discrimination between bark and wood 

(Paper III) 

This section is based on the paper “The Use of Near-Infrared (NIR) 
Spectroscopy and Principal Component Analysis (PCA) To Discriminate Bark 
and Wood of the Most Common Species of the Pellet Sector” accepted for 
publication in the peer-reviewed journal Energy & Fuels.  

The presence of bark affects the biomass quality, influencing mainly the ash 
content, and the standards EN ISO 17225 classify on the basis of this parameter, 
too. The determination of the bark presence using infrared spectroscopy would 
allow biomass producers and suppliers to guarantee that the products fulfil the 
requirements for the biomass quality, especially on milled or densified biomass 
for which is hard to determine. Furthermore, there are no good standardized 
methods to identify and determine the presence of bark (Harkin and Rowe 1971) 
and, at present, it is only declared by the producers with few practical possibilities 
to verify these claims.  

Some of the most common European species in the energy pellet sector, i.e. 
fir, pine and beech, have been considered and selected for this study. Whole pieces 
of wood as tree log disks wood slices, beams or boards taken from different 
sawmills have been collected to obtain the wood samples dataset (n = 60). After 
24 hours stabilization at 45 °C, the material reached the same moisture content 
of 6-7% and bark samples (n = 32) can be obtained by manually debarking wood 
slices (Figure 4-10). All the samples were first chopped into smaller pieces, and 
subsequently ground to below 1 mm of particle size by means of a cutting mill. 

Successively, the same quantity of material of 10 pooled samples of bark and 
wood for each species has been used to prepare six average samples, i.e. wood 
and bark of beech, pine and fir. All the blends are composed by mixing the bark 
and wood average samples of the same species, obtaining a total of 30 blends at 
different bark concentration levels. The blending degrees were between 2 and 20 
w/w % of bark in 2 w/w % increments. FT-NIR spectrophotometer was used to 
collect the near infrared spectra of all the samples and blends.  
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Figure 4-10: operation of manually debarking of tree log disks wood slices.  

The pre-treatment of spectra has consisted in performing the second order 
derivative to enhance spectral differences and remove both additive and slope 
effects in the spectra (Rinnan, Berg et al. 2009). Savitzky-Golay (Savitzky and 
Golay 1964) algorithm with 13 smoothing points and second order polynomial 
was used to smooth the derivative spectra. Successively, since no replicate outlier 
was found and in order to reduce the spectra variation, an average of the two 
single measurements on the same sample has been calculated. Moreover, as the 
most significant information is contained between 7,500 and 4,000 cm-1, only this 
part of the spectra was considered for interpretation and exploratory purposes. 

Figure 4-11 and Figure 4-12 are used as support for interpreting the FT-NIR 
measurements and their links to the related wood compounds. In detail, the most 
important differences in the curves of Figure 4-11 explained the dissimilarities in 
chemical composition between bark and wood. In bark, lignin concentration is 
higher than in wood (Harkin and Rowe 1971), as well as the concentration of 
inorganic material (Harkin and Rowe 1971, Miranda, Gominho et al. 2012). Also 
extractives are both much more abundant and more variable in bark than they are 
in wood, with many types being present only in the bark (Harkin and Rowe 1971, 
Miranda, Gominho et al. 2012). Moreover, bark has substantially less 
polysaccharides than wood (Harkin and Rowe 1971).  

Referring to Figure 4-11, the peak 1 (7012 cm-1), related to the amorphous 
region in cellulose, shows some small differences between bark and wood 
(Sandak, Sandak et al. 2010). Minimal differences are reported in the range 
between 2 (6291 cm-1) and 6 (5469 cm-1). No differences are noticed in the region 
of cellulose between 6800 cm-1 and 6350 cm-1, demonstrating that this area is 
minimally affected by the variations between bark and wood. Minute differences 
are observed in the peak 7 (5219 cm-1). This band is the characteristic band of 
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water, related to the combination of O-H stretching and O-H deformation 
vibration (Sandak, Sandak et al. 2010), proving that the moisture content between 
bark and wood samples is similar and did not affect the discrimination. The range 
from 10 (4890 cm-1) to 11 (4620 cm-1) also shows some differences. These bands 
are normally assigned to O-H stretching + C-H deformation in cellulose (Sandak, 
Sandak et al. 2010).  

Finally, evident differences are noticed in the peaks 13 (4405 cm-1) and 16 
(4281 cm-1). These bands are assigned to semi-crystalline and/or crystalline 
regions in cellulose, in particular to C-H stretching + C-H deformation and C-H2 
stretching + C-H2 deformation, respectively (Sandak, Sandak et al. 2010, 
Schwanninger, Rodrigues et al. 2011). Peaks related to cellulose – 14 (4358 cm-1), 
17 (4252 cm-1) and 19 (4158 cm-1) – and holocellulose – 9 (4964 cm-1), 12 (4493 
cm-1) and 18 (4196 cm-1) – are confirming the differences between bark and wood 
and indicate that the amount of polysaccharides is higher in wood than in bark. 

The spectral differences between hardwoods and softwoods (Figure 4-12) 
are linked to hemicellulose and lignin components, in line with literature (Evans 
1991, Faix 1991, Popescu, Singurel et al. 2009, Emandi, Ileana Vasiliu et al. 2011, 
Santoni, Callone et al. 2015) and with the results of Paper I and Paper II (§ 
Chapters 4.1 and 4.2). 



Infrared spectroscopy for qualitative analysis of biomass   
 

54 
 

 

Figure 4-11: spectra pre-treated with second derivatives of bark samples (red line) and wood samples (black line). Dotted lines marked with numbers refer to the main spectral differences, 

in detail green line: hemicellulose; black line: cellulose; orange line: lignin, blue line: water.  
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Figure 4-12: spectra pre-treated with second derivatives of hardwood samples (red line) and softwood samples (black line). Dotted lines marked with numbers refer to the main spectral 

differences, in detail green line: hemicellulose; black line: cellulose; orange line: lignin, blue line: extractive.
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PCA computation was performed on the pre-treated data matrix of samples 
and on mean centered data in order to explore the information about biomass 
origin and source from spectral data. Figure 4-13 shows the PCA score plot of 
the two first PCs. The wood and bark samples were well separated along PC1: 
bark samples have negative PC1 scores whereas wood samples have positive PC1 
scores. In addition, it is possible to observe a separation between hardwood and 
softwood along PC2, both for wood and bark. Because of the high heterogeneity 
of bark samples, this separation is more evident for wood samples than for bark 
samples (Harkin and Rowe 1971). In this regard it is possible to see that a beech 
bark sample falls into the softwood bark grouping, confirming the high variability 
of the bark, especially that of beech.  

A confidence ellipse was calculated at a specific level of significance (99% 
confidence level) both for bark, hardwood and softwood groups. As only a 
sample of fir, a sample of pine and a sample of beech appear outside the 99% 
confidence limits (ellipsoids), PCA could be considered a powerful tool not only 
for differentiating between bark and wood samples, but also between hardwoods 
and softwoods.  

 

Figure 4-13: score plot of the two first PCs.       
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The first loading was investigated to figure out which variables – and the 
related compounds (lignin, L; cellulose, C; hemicellulose, H; extractives, E) – are 
associated to the discrimination between bark and wood, whereas the second 
loading was used to investigate the variables responsible for the discrimination 
between hardwood and softwood samples. The interpretation of the loadings 
might be explained with support of Figure 4-11 and Figure 4-12, where the 
characteristic spectral bands have been already detected.  

Referring to Figure 4-14.a, it results that bands 1 (7012 cm-1), 2 (6291 cm-1), 
3 (5982 cm-1), 5 (5593 cm-1), 6 (5469 cm-1), 7 (5219 cm-1) and 8 (5122 cm-1) have a 
minimal impact on the discrimination between bark and wood samples. Instead 
bands 4 (5805 cm-1; H, L), 9 (4964 cm-1; C, H), 12 (4493 cm-1; C, H), 14 (4358 cm-

1; C), 13 (4405 cm-1; C), 15 (4331 cm-1; C, H), 16 (4281 cm-1; C), 17 (4252 cm-1; C), 
18 (4196 cm-1; C, H) and 19 (4158 cm-1; C), show high peaks in the loading plot, 
meaning that these bands are important for the discrimination of the two clusters. 
Also the range between 10 (4890  cm-1) and 11 (4620 cm-1) seems to be important, 
especially the two bands at 4651cm-1 and 4636 cm-1.  

Referring to Figure 4-14.b, bands 1 (5982 cm-1; L), 3 (5805 cm-1; H, L), 4 
(5230 cm-1;  H), 7 (4682 cm-1; L, E, H), 8 (4632 cm-1; L), 10 (4358 cm-1; C), 9 (4405 
cm-1; C) and 12 (4243 cm-1;  L) are associated with high peaks, meaning that these 
peaks are discriminative for the difference between the two clusters, while bands 
2 (5893 cm-1), 5 (4964 cm-1), 6 (4813 cm-1), 11 (4285 cm-1), 13 (4189 cm-1) and 14 
(4158 cm-1) have minimal impact. The results are in line with those obtained in 
Paper I and in Paper II (§ Chapters 4.1 and 4.2). 



Infrared spectroscopy for qualitative analysis of biomass   
 

58 
 

 

Figure 4-14: first loading, with the important wavenumbers for the discrimination between wood and bark marked with dotted lines (a). Second loading, with the important wavenumbers 

for the discrimination between hardwood and softwood marked with dotted lines (b). 
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In order to inspect the performance of the PCA model, the calculated 
loadings were used to project the spectra of blends between wood and bark (ten 
level of concentrations from 2 to 20 w/w %) in the PCA score plot (Figure 4-15). 
The different blends are positioned mainly between wood and bark clusters along 
the lines of connection of the average species samples showing a linear trend. It 
is also evident that blends with high bark concentration are well separated both 
from wood and bark groupings in agreement with their known percentage 
composition. Oppositely, those with low bark concentration fall in the wood 
grouping.   

 

 

Figure 4-15: projection of blends between wood and bark at different levels of concentration in the PCA score plot.     

EN ISO 17225-2 (EN ISO 17225-2:2014) is the quality standard for graded 
wood pellets and divides the product in three quality classes (A1, A2 and B) 
according to different attributes and chemical-physical parameters. The most 
important discriminant parameter is the ash content. The limit between A1 and 
A2 quality classes is 0.7% of ash content. According to literature, debarked wood 
has at around 0.3% of ash content (Filbakk, Jirjis et al. 2011, Tooyserkani, 
Sokhansanj et al. 2013, Simon, Brostaux et al. 2014, Yildiz, Ronsse et al. 2015), 
while bark contains around 2% (Lehtikangas 2001, Filbakk, Jirjis et al. 2011, 
Tooyserkani, Sokhansanj et al. 2013, Feng, Yuan et al. 2014, Feng, Yuan et al. 
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2016), meaning that a bark content up to 20% could be added without changing 
the quality classification (A1).  

It is therefore clear the great potential of the developed model. Since it is 
able to recognize 20% bark content in blend samples at 99% confidence interval, 
it allows checking the pellet quality and recognizing possible blends, avoiding 
problems in terms of ash quantity and emissions. Such a tool could be used by 
the sector operators that want to check the product compliance or be applied 
directly in the production line. In addition, building a regression model (PLS) with 
the purpose of estimating the amount of bark in wood samples seems highly 
likely, given the linear trend in the blends along the axis of pure wood to pure 
bark. Lastly, the evident separation between the different classes in the PCA score 
plot suggests that the development of a discrimination model could be a further 
perspective.  

4.4 Discrimination between treated and 

virgin wood (Paper V and Paper VI) 

This chapter presents the results of near infrared measurements and 
multivariate statistical modelling for the discrimination between virgin wood and 
residues from wood processing industry (hereafter referred as treated wood). The 
purpose is to verify if wood-based material is significantly different from virgin 
wood and, if it is, to develop a model for unknown samples classification. This is 
particular relevant because in accordance to EN ISO 17225-2 (EN ISO 17225-
2:2014), pellet B could be made up by by-products and residues from wood 
processing industry, but the use of these types of material for pellet production is 
not allowed in some EU countries. For instance, Italian national legislation (D.lgs. 
n. 152/2006) considers these residues as waste. As consequence, the development 
of a rapid and cheap tool based on near infrared analysis is essential for the quality 
control of the product. This section is based on the results presented during the 
18th International Conference on Near Infrared Spectroscopy in Copenhagen 
(Paper V) and the submitted paper “Near infrared spectroscopy for the 
discrimination between different residues of the wood processing industry in the 
pellet sector” (Paper VI). 

A set of 106 wood samples including virgin wood and four different types 
of residues from wood processing industry - glue-laminated wood, plywood, 
oriented strand board (OSB) and chipboard - have been used in this study (Figure 
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4-16). Beams, boards and whole pieces of wood as tree log disks wood slices were 
collected in different sawmills and they could be considered representative of the 
national scene, since most of the wood-based materials are in any case imported 
from abroad. Only fir, pine and beech – three of the most important species of 
the pellet sector – were included in the virgin wood dataset.  

 

Figure 4-16: wood samples considered in this study; virgin wood and four different types of residues from wood 

processing industry - glue-laminated wood, plywood, oriented strand board (OSB) and chipboard. 

First of all, the wood slices were conditioned for 24 h at 45 °C in order to 
limit the moisture content variability among the samples. Later, all the samples 
underwent to a reduction in smaller pieces and grinding below 1 mm of particle 
size by means of a cutting mill. At the end, they were analysed by near infrared 
spectroscopy.  

Two types of glues, i.e. vinyl and polyurethane glue, have been also collected 
and analysed after drying and polymerization process. To take into consideration 
that the resin-binders normally used in the wood processing industry are phenol-
formaldehyde, urea-formaldehyde, melamine-formaldehyde, and isocyanate 
(Stark, Cai et al. 2010) and the consolidation of the system wood particles-
adhesives is normally due to heat and/or pressure process (Stark, Cai et al. 2010), 
changing the structure of the final product. In any case, considering the difficulties 
in finding the regular industrial glues and in reproducing the bonding conditions, 
the two glues were analysed only for interpretation purposes.  

All the spectra were pre-processed using the second order derivative 
(Savitzky-Golay (Savitzky and Golay 1964) with 21 smoothing points and 2nd 
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order polynomial) to minimize the effect of baseline shifts and noise. 
Subsequently, PCA computation was performed in order to search for clusters in 
the samples and assess the possibility to develop a successive classification model 
(i.e. PLS-DA). Looking at the PCA score plot (Figure 4-17), some clustering (or 
separation trends) are clear. Chipboard, OSB and plywood samples are well 
grouped and separated from virgin wood, but OSB is also scattered in the score 
plot. In fact, the great variability of applications for which it could be used made 
this material really heterogeneous. The key-element is the type of glue, different 
on the basis of the applications (internal or structural). Moreover, the location of 
OSB in the plot is also influenced by the presence of hardwood and/or softwood 
strands making up the material.         

Glue-laminated wood is not so well separated from virgin wood, but both 
groups are well located along PC1 in accordance to hardwood or softwood 
composition: hardwoods have negative PC1 scores whereas softwoods have 
positive PC1 scores. 

 

Figure 4-17: score plot of the two first PCs. 
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The compounds responsible for the separation between treated and virgin 
wood samples were detected by investigating the loading plot (Figure 4-18) and 
the spectral differences in the FT-NIR measurements. It results that the 
discrimination between the two clusters is mainly due to the N- bonds, present 
only in the glued-wood, and to the amount of C-H bonds of the material, as the 
compounds of wood (i.e. lignin, cellulose and hemicellulose) have a higher 
number of these bonds in comparison to the treated wood (Dessipri, Minopoulou 
et al. 2003, Minopoulou, Dessipri et al. 2003, Tomlinson, Ghita et al. 2006). 
Among all the wavenumbers detected, the most relevant were at 4440 cm-1 related 
to the CH2 combination of methylol group (Dessipri, Minopoulou et al. 2003, 
Minopoulou, Dessipri et al. 2003), 5242 cm-1 assigned to 1st overtone of -CN 
functional group (Tomlinson, Ghita et al. 2006), 5311 cm-1 related to C–H 
overtone of aldehyde groups (Dwivedi and Rai 2009) and 5805 cm-1 assigned to 
1st overtone C–H stretching of methyl and methylene structures of glue 
(Minopoulou, Dessipri et al. 2003, Tomlinson, Ghita et al. 2006, Dwivedi and Rai 
2009).   

Bands at 5331 (Yan, Villarreal et al. 2013), 4910 (Popescu and Popescu 2013), 
4505 (Pecoraro, Pizzo et al. 2015), 4382 (Schwanninger, Rodrigues et al. 2011), 
4359 (Schwanninger, Rodrigues et al. 2011) and 4324 (Pecoraro, Pizzo et al. 2015) 
cm-1 are mostly linked to C– bonds, more abundant in the compounds of wood 
than they are in the treated wood. A more accurate description of the detected 
wavenumbers responsible for treated/virgin wood separation is reported in 
Paper V appended to this thesis.     

The most relevant wavelengths assigned to glue compounds were compared 
with the spectra of vinyl and polyurethane glue. Figure 4-19 reports the mean 
spectrum of virgin wood samples and the spectrum of vinyl and polyurethane 
glue and confirms the interpretation performed. Indeed, almost all the 
wavelengths assigned to glue correspond to peaks in the vinyl and polyurethane 
spectra. Some differences can be noticed; in fact some wavelengths assigned to 
wood correspond also to peaks in the two glue spectra. This is due to the different 
types of glue and bonding conditions in comparison to those normally used in 
the wood processing industry.  
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Figure 4-18: first two PCA loadings. Important wavenumbers for the discrimination between treated and untreated 

wood samples are marked with red (wavelengths assigned to glue) and black (wavelengths assigned to wood) dotted lines. 

 

Figure 4-19: plot of the mean spectrum of virgin wood samples and of vinyl and polyurethane glue spectra. The black 

(wood) and red (glue) dotted lines show the most relevant wavenumbers.  
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Since the separation among the different groups is rather clear in the PCA 
score plot, a PLS-DA (Wold, Sjöström et al. 2001, Barker and Rayens 2003) model 
was applied for classification purposes. The data were pre-processed with the 
same pre-treatment already applied for PCA computation. The PLS-DA 
calibration model (n = 74 samples) was cross-validated using venetian blind-cross 
validation (5 segments) and an external test set (n = 32 samples) was used to 
validate the model. The training and test sets were chosen using the Kennard-
Stone algorithm (Kennard and Stone 1969) and the metric used to compute the 
distance between points was the Euclidean. The classification model was 
developed using 5 LVs and present a high correlation (Q2 = 1.00) and a low total 
misclassification rate of 10.4%. Furthermore, the values of 95% of sensitivity and 
80% of specificity for training set and 95% of sensitivity and 86% of specificity 
for test set demonstrate the good classification accuracy of the model. The 
confusion matrix and a summary of the quality statistical parameters of the PLS 
DA model are given in Table 4-2. It should be noted that the confusion matrix 
reports the average samples (not the replicates), hence ‘Class 0/1’ indicates the 
number of samples, whose replicates were partly classified in class 1 and in class 
0. 

Table 4-2: confusion matrix and summary of the quality statistical parameters of the PLS DA model. 

 Cross-Validation Prediction 

 Class 
1 

Class 
0/1 

Class 
0 

Class 
1 

Class 
0/1 

Class 
0 

Class 1 42 5 0 17 3 0 

Class 0 3 5 19 0 4 8 

Misclassification rate  10.4% 8.3% 

Sensitivity 95% 95% 

Specificity  80% 86% 

LVs 5 5 

As showed in the PLS-DA score plot (Figure 4-20), the separation between 
treated and virgin wood is not so evident, as the separation between softwood 
and hardwood samples, located in the positive and negative values of LV2, 
respectively. The low percentage of glue in the glue-laminated wood brings to set 
these samples really close to the virgin wood, reducing the separation between the 
two groups. In order to increase the performance of the model, it could be 
worthwhile to consider virgin wood and glue laminated wood samples in a model 
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(MOD 2) and virgin wood and all the other treated wood samples in another one 
(MOD 1).  

 

Figure 4-20: PLS-DA score plot of the two first LVs colored in accordance to treated and virgin wood. The two 

circles mark the area where glue-laminated samples are located. 

MOD 1 was built with 56 samples (training set) and was tested using 24 
samples (test set), while MOD 2 accounts 46 samples in the training set and 19 
samples in the test set. The training and test sets were chosen using the Kennard-
Stone algorithm (Kennard and Stone 1969).  

As clear in Figure 4-21.a, MOD 1 is able to discriminate between treated and 
virgin wood samples and between hardwoods and softwoods, in particular the 
former have negative LV2 values and the latter positive LV2 values. Also the PLS-
DA score plot of MOD 2 shows a good separation between hardwood and 
softwood samples: positive values of LV1 are related to softwood samples and 
LV1 negative values to hardwood samples (Figure 4-21.b). Instead, the treated 
and virgin wood samples are not so well separated, anyway a separation trend 
between the two classes is present and it is much more evident for softwoods 
than hardwoods. The greater dispersion of hardwood scores is probably due to 
the higher variability of hardwood in comparison to softwood, as already 
highlighted by the authors in Paper I (Chapter 4.1).  



Infrared spectroscopy for qualitative analysis of biomass   
 

67 
 

 

Figure 4-21: PLS-DA score plot of the model MOD 1 (a) and of the model MOD 2 (b). (●) Treated and untreated 

calibration samples. (▲)Treated and untreated validation samples.  
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Table 4-3 reports the confusion matrices and the summary of the quality 
statistical parameters of the two PLS DA models, in particular the number of 
latent variables used to develop the classification models, the sensitivity and 
specificity values and the misclassification rate. These values demonstrate that 
NIR spectroscopy has the potential to be a useful tool for the identification of 
treated wood. MOD 1 has high rate of sensitivity and specificity values, in 
particular it is able to correctly classify 100% for training set and 93% of the 
samples for the test set (sensitivity), and does not give many incorrect 
classifications for 100% for training set and 97% for test set samples (specificity). 
In addition, the few number of misclassification points out that the developed 
model could be used for classification purposes. MOD 2 presents worst 
classification performance than MOD 1. The low value of sensitivity in MOD 2 
is probably due to the low percentage of glue present in glue-laminated wood 
samples and to the fact that the model separates mainly between hardwood and 
softwood samples rather than virgin and treated wood. Even so, the model can 
be used for screening classifications.  

Trying to increase the accuracy of the model MOD 2, the dataset was split 
again on the basis of hardwood and softwood samples. A total of 38 and 26 
samples were used for the development of the PLS-DA models for softwood and 
hardwood, respectively. Considering the reduced number of samples, both 
models were validated using venetian blind-cross validation (5 segments). 

As shown in the two PLS-DA score plots (Figure 4-22), the separation trend 
is now better highlighted and related to treated/untreated samples. The 
classification models were developed using 4 LVs and have given back good 
results. The misclassification rate for softwood model is 4.4% and for hardwood 
model 0%. The sensitivity and specificity values are 93% and 97% for softwood 
model and 100% and 100% for hardwood model, respectively. The better 
classification accuracy of hardwood than softwood model could be due to the fact 
that, by removing hardwood and softwood information, the separation between 
treated / virgin wood is much more evident in hardwood than in softwood.  
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Table 4-3: confusion matrices and summary of the quality statistical parameters of PLS DA models (MOD 1 and MOD 2). 

 MOD1 MOD2 
 Cross-Validation Prediction Cross-Validation Prediction 
 Class 

1 
Class 
0/1 

Class 
0 

Class 
1 

Class 
0/1 

Class 
0 

Class 
1 

Class 
0/1 

Class 
0 

Class 
1 

Class 
0/1 

Class 
0 

Class 1 29 0 0 13 0 1 9 6 2 7 1 1 

Class 0 0 0 27 0 1 9 0 1 28 1 2 7 
Misclassification 
rate  

0.0% 5.6% 11.6% 17.9% 

Sensitivity 100% 93% 73% 98% 

Specificity  100% 97% 98% 80% 

LVs 4 4 5 5 
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Figure 4-22: PLS-DA score plot of virgin and glue-laminated softwood samples (a). PLS-DA score plot of virgin 

and glue-laminated hardwood samples (b). 
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Different variables selection methods – regression vector, SR, VIP, iPLS and 
rPLS – were tested in order to simplify the models by reducing the number of 
variables and/or have better classifications. Considering MOD 1, the same 
classification performance of the total model was obtained using VIP, rPLS and 
forward iPLS method with number of intervals 50. In detail, rPLS and iPLS need 
less components for the development of the model (3 LVs instead of 4 LVs), 
while VIP requires more model parameters (5 LVs instead of 4LVs). The 
classification parameters of the fore mentioned models were calculated also for 
the test set. In this case, VIP method allows to get better results in classification 
– 94% sensitivity, 97% specificity and 5% misclassification rate – than rPLS and 
forward iPLS (sensitivity = 91%, specificity = 80% and misclassification rate = 
14%). This indicates that iPLS and rPLS models simplify the model by reducing 
the number of wavelengths and of LVs, but they did not reduce the uncertainty.    

A slight improvement of the classification ability of model MOD 2 can be 
observed using rPLS method. Indeed, the sensitivity value increased from 73% to 
90%, the specificity value increased from 98% to 100% and the misclassification 
rate decreased from 11.6% to 3.6%. Moreover, a less number of LVs was used 
for modelling (from 5 LVs to 3 LVs). The rPLS classification parameters were 
calculated also for the test set and good results were achieved; sensitivity = 89%, 
specificity = 90% and misclassification rate = 11%. 

The results presented suggest a profitable use of near infrared analysis 
coupled with multivariate data analysis for the classification of virgin wood and 
different types of residues from wood processing industry. The variables selection 
methods applied have returned an improvement of the classification performance 
of the two models when compared to the full-spectrum PLS-DA model.  

The study demonstrated its potential especially if a ‘classification tree’ 
approach was followed. Indeed, the models shown in this study were obtained by 
splitting the dataset in accordance to the results of the previous partition. This 
procedure allowed to obtain models with a lower samples variability, but simpler 
and stronger in their classification. The results are still preliminary and the method 
might be improved increasing the number of samples, especially for the virgin 
and glue-laminated softwood/hardwood models. In any case NIR technique runs 
for being the first methodology able to provide information about the origin and 
source of the pellet, in particular about the presence of treated material in virgin 
wood pellet.    
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5. Infrared spectroscopy for 

quantitative analysis of 

biomass  

 

 

 

The multiplicity of biofuels and their inherent and wide variability of the 
characteristics highlight the need to characterize their chemical and physical 
parameters. This knowledge is instrumental for finding the best valorisation of 
the product and for the development of a related market. The possibility to 
perform a rapid analysis of such characteristics is therefore fundamental and the 
results can support the correct energy exploitation of the material. Moreover, the 
industrial use of biofuels asks for rapid characterization methods appropriate for 
on-line applications.  

As consequence, the overall aim of this chapter is to evaluate the potential 
of NIR spectroscopy technique to be applied as a tool to improve the quality 
control and have information about the main chemical and physical characteristics 
of the biomass.   

5.1  Prediction of gross calorific value and 

ash content of woodchip samples (Paper IV) 

Among the chemical-physical parameters set by the international standards 
EN ISO 17225, gross calorific value and ash content are two important key-
elements for the determination of the biomass quality. In particular, ash content 
influences the combustion efficiency and could cause technological and 
environmental problems. Slagging in furnaces, fouling of heat exchanger surfaces 
(Kortelainen, Jokiniemi et al. 2015), bed agglomeration, corrosion in the 
combustion device (Werkelin, Skrifvars et al. 2010) and fly ash emissions 
(Narodoslawsky and Obernberger 1996) are only few examples. Moreover, it is 
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really important for the discrimination among the different quality classes. 
Calorific value is an essential parameter in the specification of biomass quality to 
set the price of the product and is influenced by its chemical composition. It is 
also fundamental for the planning and control of power plants using biomass 
fuels (Posom, Shrestha et al. 2016). This chapter is based on the paper “Prediction 
of gross calorific value and ash content of woodchip samples by means of FT-
NIR spectroscopy” accepted for publication in the peer-reviewed journal Fuel 

Processing Technology. 

Several works have been already performed with the aim to develop models 
for the prediction of different parameters on specific kind of biomass or wood 
species, but the real strength point of this study was the samples collection 
approach. In fact, 125 woodchip samples were taken directly from the market. In 
detail, samples were collected from several power plants during long-term 
monitoring plan and from different parts of Italy, making them representative of 
the national scene and allowing the development of more robust and reliable 
prediction models.   

All the samples were first stabilized at 45 °C for 24 h, ground down to 1 mm 
of particle size by means of a cutting mill and finally both the conventional and 
near infrared analyses were performed. GCV and Ac were determined in 
accordance to the analytical methodologies reported in the standards EN ISO 
14918:2010 and EN ISO 18122:2015, respectively. The two parameters were 
calculated both air dried (GCVad and Acad) and on a dry basis (GCVdb and Acdb) 
by multiplying the air dried parameter by the dry matter content in percentage.   

Different regression models were developed applying several pre-treatments 
including SNV, first and second derivative (Savitzky-Golay algorithm (Savitzky 
and Golay 1964) with 13 or 21 smoothing points and 2nd order polynomial). The 
models were validated using venetian blind-cross validation (5 segments). 
Considering the higher number of samples, PLS model for the prediction of Ac 
was also validated using an external test set. With the aim to maintain the 
representativeness of the training set, the test set was chosen ad-hoc. It was not 
possible to do the same for GCV prediction model because of the reduced 
number of samples. 

Regarding Ac, good results were obtained considering both the parameter 
air dried and on a dry basis. Because of the high correlation between Acad and 
Acdb (r= 0.999) and the absence of differences observed between the prediction 
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results of the two models, further elaborations were carried out only on Acad, 
which is logical, as this is how the NIR instrument has seen the sample. The 
strongest model for the prediction of Acad was developed using no spectral pre-
treatment, but applying only mean-centering. As no replicate outlier was found, 
each sample was averaged across the replicates. The reference values were also 
averaged. The 5 LVs PLS model has R2 = 0.81, Q2 = 0.77, RMSE = 0.42%, 
RMSECV = 0.47%, RPD = 2.1 and RER = 8.0, indicating the potential use of 
the model for screening applications (Figure 5-1 a).  

Due to the low correlation between GCVad and GCVdb (r= 0.631), the 
prediction results of GCVad were better than those on a dry basis and further 
elaborations have taken into account only the GCVad. The best model for the 
prediction of GCVad was developed using first derivative (Savitzky-Golay with 
second-order polynomial and 21-points window) and calculating the average of 
the two replicates for each sample. The reference values were also averaged. A 
total of 5 LVs have been considered for building the model and the R2 = 0.89, Q2 
= 0.81, RMSE = 217 J/g, RMSECV = 289 J/g, RPD = 2.5 and RER = 13.3 
(Figure 5-1 b) indicate a good model that would be helpful as a screening tool for 
quality control application.  

 

Figure 5-1: regression plots of observed versus fitted response of (a) ash content air dried and (b) gross calorific value air 

dried.  
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With the aim to enhance the performance of the prediction models in 
comparison to that of the full-spectrum models, different variables selection 
methods were applied, in detail: regression vector (B), Variables Important in 
Projections (VIP) (Wold, Sjöström et al. 2001, Chong and Jun 2005), Selectivity 
Ratio (SR) (Rajalahti, Arneberg et al. 2009), interval Partial Least-Squares (iPLS) 
(Norgaard, Saudland et al. 2000) and recursive weighted Partial Least Squares 
(rPLS) (Rinnan, Andersson et al. 2014). The results of the two best variables 
selection methods were reported in Table 5-1 and they referred both on the full 
FT-NIR spectral range (10,000-4,000 cm-1) and on a selected wavelength range 
(7,500-4,000 cm-1) containing the most significant information. 

rPLS results to be the best variables selection method and, especially for 
gross calorific value, there is a significant improvement on the prediction 
performance. The GCVad model was developed using 7 LVs and considering the 
spectral range from 7,500 to 4,000 cm-1. The RMSECV value decreased from 289 
J/g to 234 J/g and Q2 increased from 0.81 to 0.87. Regarding Acad prediction, the 
rPLS model (5 LVs) was developed using the full spectrum since some structured 
information is contained also after 7,500 cm-1. RMSECV value decreased from 
0.47% to 0.44% and Q2 increased from 0.77 to 0.80. As a consequence, both 
models could be used in screening applications for the biomass quality control. 
Considering root mean square error of prediction (RMSEP), rPLS model results 
to be similar to the PLS model and the B model on the spectral range from 7,500 
to 4,000 cm-1. This indicates that the rPLS does not reduce the uncertainty as 
such, but it reduces model complexity, thus making it easier to interpret.    

 



Infrared spectroscopy for quantitative analysis of biomass   
 

76 
 

Table 5-1: summary of variables selection results for Acad (%) and GCVad (J/g) prediction models. The best models are highlighted in bold.   

P* Model 
Spectral 
range 

Optimal 
LVs 

Calibration Cross validation Prediction 

  Type n°I*   RMSE R2 RMSECV Q2 RMSEP Q2 
Ac PLS - 10000-4000 5 0.42 0.81 0.47 0.77 0.49 0.78 
  B - 10000-4000 5 0.43 0.80 0.50 0.74 0.50 0.75 
  rPLS (5LV) - 10000-4000 5 0.40 0.83 0.44 0.80 0.48 0.77 

  PLS  - 7500-4000 4 0.44 0.80 0.47 0.77 0.47 0.80 
  B (5LV) - 7500-4000 4 0.42 0.82 0.45 0.78 0.47 0.79 
  rPLS (5LV) - 7500-4000 5 0.40 0.83 0.44 0.80 0.49 0.77 
GCV  PLS - 10000-4000 5 217 0.89 289 0.81 - - 
  iPLS for 

(10LV) 
50 10000-4000 6 227 0.88 258 0.85 - - 

  rPLS (7LV) - 10000-4000 6 204 0.90 247 0.86 - - 
  PLS - 7500-4000 5 221 0.89 286 0.82 - - 
  iPLS for 

(10LV) 
29 7500-4000 5 207 0.90 237 0.87 - - 

  rPLS (7LV) - 7500-4000 6 195 0.91 235 0.87 - - 
* P = Parameter; n°I = number of interval.   
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The variables selected by rPLS for GCVad and for Acad models (Figure 5-2 b 
and Figure 5-3 b) and the regression vector plots of the total models (Figure 5-2 
a and Figure 5-3 a) have been used to detect the most relevant variables, and 
associated compounds, responsible for the prediction of the two studied 
parameters. 

The prediction of GCV is mainly linked to C-H bonds containing more 
energy than C-C bonds and O-H bonds (Lestander and Rhen 2005). Since it is 
well known that GCV and moisture content are negatively correlated, O-H bonds 
of H2O are also important (Gillespie, Everard et al. 2015). Confirming the 
literature results, the wavelengths selected by rPLS (Figure 5-2 b) were mainly 
linked to C-H bonds (e.g. wavelength range 4497-4489 cm-1 and 4921-4902 cm-1) 
(Schwanninger, Rodrigues et al. 2011, Popescu and Popescu 2013), a part from 
the range 5134-5168 cm-1 related to O-H stretching and O-H deformation 
vibration of water (Schwanninger, Rodrigues et al. 2011) and bands 7101-7104 
cm-1 related to the 1st overtone of O-H stretching (Schwanninger, Rodrigues et al. 
2011). At the end, it should be noted that not all the wavelengths already detected 
in the regression vector plot (Figure 5-2 a) seem to be significant for the GCV 
prediction. This means that rPLS not only performs clearly better than the global 
PLS model, but it is also useful in simplifying it, thus obtaining a model that is 
easier to understand/interpret.  

Regarding Ac, the detection of the most relevant wavelengths – and related 
compounds – responsible for the prediction is more complex than for GCV 
model. Being the non-combustible portion of a biomass product (Bruun, Jensen 
et al. 2010), ash is difficult to predict since the inorganic constituent does not 
absorb in the near infrared region. Even if, inorganic compound can produce an 
infrared spectrum, the infrared bands for inorganic materials are broader, fewer 
in number and appear at lower wavenumbers than those observed for organic 
materials (Stuart 2005). According to Lestander and Rhen (Lestander and Rhen 
2005), much of the inference relating to the prediction of Ac occurs in the carbon 
bonds. In any case, the prediction of Ac is an indirect prediction since it is based 
primarily on the presence of C-H and O-H bonds containing compounds 
(Gillespie, Everard et al. 2015).  
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Figure 5-2: (a) PLS regression coefficient plot for GCVad prediction with important wavenumbers indicated by dotted vertical lines. (b) Variables selected by rPLS for GCVad prediction. 

The dotted vertical lines indicate the wavenumbers detected as important in the PLS regression coefficient plot. 
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Figure 5-3: (a) PLS regression coefficient plot for Acad prediction with important wavenumbers indicated by dotted vertical lines. (b) Variables selected by rPLS for Acad prediction. The 

dotted vertical lines indicate the wavenumbers detected as important in the PLS regression coefficient plot. 
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Looking at Figure 5-3 b, peaks at 6858, 5793 and 4987 cm-1 are related to O-
H bonds, in particular peak at 6858 cm-1 is assigned to 1st OT O-H stretching, 
5793 cm-1 to 1st OT C-H of lignin (Schwanninger, Rodrigues et al. 2011) and 4987 
cm-1 to O-H combination. The range 5188-5191 cm-1 is characteristic for the 
combination band of O-H stretching and O-H deformation vibration of water 
(Schwanninger, Rodrigues et al. 2011). Differently from the regression vector 
(Figure 5-3 a), rPLS model has selected some new variables in the first part of the 
spectra, in particular in the region between 7617 and 7563 cm-1 corresponding to 
1st OT of C-H combinations.     

The results of this study have demonstrated that FT-NIR technique coupled 
with PLS is a suitable tool for the prediction of GCV and Ac of woodchip samples 
and the models are exploitable in screening applications. In any case, it should be 
considered that the great utility of NIR method is based on the fast execution, 
reduced costs and simplicity of the analysis, but it does not replace the laboratory 
methods. In fact, such a tool could be used in evaluation-screening processes 
providing an indication of the biofuels quality and allowing a more accurate 
analysis of the biomass, not complying with the qualitative standards by using 
conventional analysis. 

Moreover, the results showed the potential to develop a robust FT-NIR 
predictive model to be applied for industrial on-line applications. In this way, all 
the incoming feedstock in a power plant could be checked, providing a real-time 
quality trend of the product and overcoming sampling problems. 

5.2 Influence of the scattering effects for the 

prediction of ash content (Paper VII)   

Scattering consists in a deviation of light from a straight trajectory in one or 
more paths with no absorption. It is well known that this phenomenon distorts 
the data and when there is no interest in the physical artefacts of the spectra, but 
in the chemical information inherent in the data (far more frequent case), pre-
processing must be applied. Multiplicative Scatter Correction (MSC) (Martens, 
Jensen et al. 1983), and its extended form Extended Multiplicative Signal 
Correction (EMSC) (Martens and Stark 1991), are well known pre-processing 
techniques capable in separating the physical light scatter from the chemical light 
absorption.  
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Trying to figure out whether it is the scattering effects, the chemical features 
or a mixture that really holds the information for the ash prediction, a more in-
depth analysis was carried out on the woodchip dataset of Paper IV. The aim of 
the study was to investigate if the MSC/EMSC correction factors – and as a 
consequence the scattering effect – play an important role in the prediction of the 
ash content; a fundamental parameter for the biofuel sector. This chapter is based 
on a manuscript under finalization (Paper VII).  

Two spectroscopic datasets have been taken into account: woodchips for the 
energy sector and pellet samples for the feed sector. The feed dataset was used as 
a test to demonstrate if it is really scattering that is important for modelling ash 
and if similar results could be obtained working on different matrices. The two 
datasets are different in typology of data and terms of samples and variables. The 
woodchip dataset consists of 109 samples analysed by Antaris II (Thermo Fisher 
Scientific Inc, USA) in duplicate in the spectral range from 10,000 to 4,000 cm-1. 
The feed samples were measured by an InfraXact (Foss A/S, Denmark) 
instrument in the reflectance mode. The dataset consists of 229 samples acquired 
in the spectral range from 1,100 up to 1,848 nm. 

The reference data is the ash content (%), a fundamental feature for both 
sectors. For energy sector ash content is one of the most important parameter, 
since inorganic matter influences the combustion efficiency in the furnace and is 
responsible of ash-forming elements, with resulting technological and 
environmental problems during biomass processing (Vassilev, Vassileva et al. 
2017). In the feed sector, ash or mineral content gives indications of the energy 
content of dairy feed (Weiss 2017) and on the quality of the product and its 
nutritional parameters.   

In order to assess which is the useful information for ash content prediction, 
NIR data were pre-processed by using MSC. Both original and pre-treated near 
infrared spectra were modelled by a PLS model (Wold, Sjöström et al. 2001). A 
five-segmented venetian blind cross-validation was used to validate the datasets.  

A third PLS model (hereafter shortened to CORR-PLS) was developed by 
using the correction factors of MSC/EMSC and the scores of PCA. The 
procedure is briefly described: 1) the near infrared data were pre-processed using 
MSC or EMSC. The correction factors includes 0th-2nd order reference correction 
and none, up to 4th order wavelength correction. The former refers to the order 
of the regression step, where normally MSC uses linear regression (1st order 
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reference correction) and the latter is the polynomial degree of the wavelength 
correction of EMSC. 2) A 20 components PCA model was developed on the 
mean-centered pre-processed full dataset. In order to ‘standardize’ the PCA 
solution and with the aim to reduce the errors due to the rotational uncertainty of 
the PCA, the PCA model on the whole dataset was used to rotate the PCA sub-
models for the different segmentations (five cross-validation segments). In detail, 
Procrustes rotation (Hurley and Cattell 1962) was used to rotate the scores and 
loadings towards the global model. It should be noted that the reference spectrum 
for the MSC/EMSC is based on each segment, and not on the whole dataset. 3) 
The correction factors (i.e. the slope and intercept of MSC/EMSC) and the first 
20 PCA scores were combined obtaining a new data matrix where the rows are 
the samples and the columns (variables) are the merged correction factors and 
PCA scores. All variables were 2nd-norm normalized in order to equalize the 
influence of each of the factors/ scores on the PLS model. 4) A PLS model was 
developed based on these normalized variables and the mean-centered ash 
content. 5) The left-out samples are predicted using the model from 4). Please 
note that the reference spectrum for the MSC/EMSC correction is based on the 
samples that are part of the PLS model from 4). This is also the case for the mean-
centering of the spectral data, as well as the PCA. 

The CORR-PLS models developed on the woodchip dataset provided better 
results than those obtained with PLS models on the raw spectra and on MSC pre-
treated spectra. In particular, using 1st order reference correction and no 
correction for the wavelength, the CORR-PLS gave a Q2 = 0.80 and RMSECV = 
0.44% and only 3 LVs were necessary in the development of the model. Instead, 
PLS on raw data required the estimation of more model parameters (6 LVs) and 
returned Q2= 0.79 and RMSECV = 0.45%, PLS model on MSC data needs 5 LVs 
and gave a Q2= 0.78 and RMSECV = 0.46%. Figure 5-4 shows the RMSECV of 
the best CORR-PLS model compared with PLS model on raw data and MSC-
model. It is interesting to note that the PLS model on the raw data performs 
similar to the one on the MSC corrected data. This strongly indicates that it is not 
necessary to perform pre-processing in order to get a good PLS model.     
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Figure 5-4: RMSECV of the PLS model on raw data, on MSC pre-treated data and CORR-PLS model for the 

woodchip dataset (ref: reference correction order, wave: correction order for wavelength).  

 

Regarding the feed dataset, the prediction model on raw data was developed 
using 11 LVs and had Q2 = 0.73 and RMSECV = 1.76%, while the MSC-model 
was developed using 10 LVs and returned Q2 = 0.77 and RMSECV = 1.64%. 
Considering the lower number of LVs (3 LVs) and the good results (Q2 = 0.78 
and RMSECV = 1.61%), CORR-PLS model with 1st order reference correction 
and 1st order correction for the wavelength is considered the optimal prediction 
model, see Figure 5-5. The lowest RMSECV of the CORR-PLS model was the 
one using 1st order reference correction and 3rd order correction for the 
wavelength, with a Q2 = 0.78 and RMSECV of 1.60% (4 LVs). However, due to 
the increased complexity of the model, and the small improvement, it was decided 
that the slightly worse CORR-PLS (with 1st order reference and 1st order 
correction for the wavelength) was the optimal. 
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Figure 5-5: RMSECV of the PLS model on raw data, on MSC pre-treated data and CORR-PLS model for the 

feed dataset (ref: reference correction order, wave: correction order for wavelength). 

As already mentioned, ash is not very active in the near infrared spectrum 
because of the low absorption of the molecules in this electromagnetic region 
and, by association, the prediction of this parameter using NIR spectroscopy is 
not easy. Furthermore, ash is not a well-defined attribute, and as such it is difficult 
to assess what wavelengths would be most appropriate for the PLS model. 

The regression coefficient plots of the CORR-PLS models were investigated 
in order to figure out if the models are focusing on the same chemical information 
of the PLS models developed on the raw data or MSC pre-treated data, or rather 
are looking at different areas in the NIR spectra. The ultimate goal is to verify if 
scattering effects hold useful information for the ash content prediction. 

Looking at Figure 5-6 it is interesting to note that the regression vectors of 
all the models – PLS on raw data, on MSC data and CORR-PLS – mainly look at 
the same variation in NIR. Going into detail, some small differences can be 
observed in the woodchip model. The CORR-PLS does not use the peak at 5199 
cm-1, but rather the peak at 6858 cm-1. This latter is less influential in the PLS 
model on raw data and MSC data than in CORR-PLS model. In addition, another 
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difference can be noticed at 4748 cm-1, CORR-PLS model presents a shift and the 
peak falls at 4648 cm-1. The regression vectors of the three feed models also look 
similar, except for differences mostly linked to the amplitude of the peaks rather 
than to the position.  

 

Figure 5-6: regression vectors of the CORR-PLS model (blue line), MSC-PLS model (red line) and PLS model on 

raw data (yellow line) of woodchip samples (a) and feed samples (b). The important wavenumbers for the prediction of ash 

content are marked in the plot with dotted lines. 

Figure 5-7 shows the contribution of slope, intercept and PCA scores in the 
CORR-PLS model and confirms that the scattering properties are important, and 
furthermore indicates that it is not only the major variation in X that is essential 
in the prediction.  
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Summarizing, the use of the MSC/EMSC correction factors for the 
prediction of ash content turns out to be fundamental and allows to obtain a 
simpler model. Less components are needed in the CORR-PLS model when 
compared to the regular PLS models getting even a slight improvement of the 
performance. Hence, it is clear from the results that scattering properties are 
responsible for the prediction ability of this parameter TOGETHER with 
chemical information.  

 

Figure 5-7: CORR-PLS regression vectors of woodchip (a) and feed (b) models showing the contribution of 
MSC/EMSC correction factors and first 20 PCA scores. 
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5.3 Laboratory customized on-line 

measurements for the prediction of the key-

parameters of biomass 

In order to perform a more effective monitoring of the biomass, NIR 
spectroscopy can be applied also on-line. The key parameters of biomass quality, 
such as moisture content, ash content and gross calorific value could be easily 
predicted directly in the production line.  

In different fields, on-line NIR spectrophotometers are already used in the 
production line, providing continuous measurements and giving back the quality 
trend of the product and the possible critical points, in real time. In the biofuel 
sector, the great advantage of this technique is the implementation of the 
automatic process of control on a great mass of biomass, e.g. all the incoming 
feedstock in a power plan, allowing a total quality control. This approach avoids 
the sampling procedure and the related problems with the product 
representativeness. Moreover, on-line control could improve the process 
efficiency and help in saving money; in fact the material not-conforming to the 
quality standards of the power plant would be not accepted as biofuels.  

Considering the good results achieved using different laboratory 
spectrophotometers, in this study an on-line instrument customized for 
laboratory analysis was employed to test the performance of NIR spectroscopy, 
simulating the production line. In particular, on-line NIR technique was applied 
in order to predict GCV and Ac of wood samples, both in ground and in pellet 
form. Woodchip samples were also analysed as received with the aim to predict 
Mc of the material without any process. Moreover three mini-tasks were carried 
out in order to verify the ability of the technique to detect for differences in the 
origin and source of the material, in particular i) herbaceous/woody biomass, ii) 
hardwood/softwood, iii) virgin/treated wood. The results of this Chapter are not 
be submitted as a paper at the present. 

 

5.3.1 Materials and methods 

Different samples have been collected in order to get information about the 
origin and source of the material, and in particular:  
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- mini-task herbaceous/woody biomass (MT1): 15 samples of herbaceous 
biomass (maize, sorghum and straw) and 5 samples of woodchip, 

- mini-task hardwood/softwood (MT2): 10 samples of fir, 10 samples of 
pine and 8 samples of beech, 

- mini-task virgin/treated wood (MT3): 28 virgin wood samples (the same 
used also for the mini-task hardwood/softwood) and 10 treated wood 
samples (4 chipboard samples and 6 samples between OSB and plywood).    

For the prediction of the chemical-physical parameters, different types of 
material were also collected and analysed by NIR spectroscopy. In particular 58 
woodchip samples as received were used for the development of the Mc 
prediction model and 38 wood pellet samples, as received and after grinding, for 
the prediction of GCV and Ac. The ground material simulates the dried particles 
immediately before pelletizing process. 

A part from pellet and woodchip, directly analysed in their original form, all 
the other samples were ground to below 1 mm of particle size by means of a 
cutting mill (mod. SM 2000, RETSCH). 

The analytical methodologies adopted for the determination of GCV and Ac 
refer to the standards EN ISO 14918:2010 and EN ISO 18122:2015, respectively. 
Both parameters were considered on a dry basis, since it is the result actually 
required by the standard. The moisture content of the material as received was 
performed by using the analytical methodology according to EN ISO 18134-
2:2015. All the mentioned methodologies were already described in Chapter 2.2.  

This task was carried out using an on-line NIR spectrophotometer loaned by 
Büchi (NIR-Online; Büchi Labortechnik AG, Flawil, Switzerland). The 
instrument has a tungsten halogen dual lamp, is based on diode-array technology 
and collects spectral data from material placed in a rotating module located below 
the spectrometer (X-Rot module; Büchi Labortechnik AG, Flawil, Switzerland), 
simulating a conveyor belt in a pellet or power plant. The instrument was set to 
acquire the spectra at a wavelength range from 400 to 1,700 nm (i.e. also part of 
the visible wavelength range was included), 32 scans per sample and a spectral 
resolution of 5 cm-1. In order to exclude the signal not associated to differences 
among samples but to the environment, a blank spectrum was acquired at the 
beginning of each analysis session. Spectra were recorded at room temperature 
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(18-20°C) and in duplicate for each sample. The acquisition window is 4 cm 
diameter. 

Chemometric techniques and multivariate data analysis were used in order 
to extract information from spectral data about the origin and source of the 
material (PCA) and to develop models for the prediction of Mc, GCV and Ac 
(PLS). As a first step, the raw spectra acquired were pre-treated and the “optimal” 
pre-treatment was chosen for each PLS or PCA models developed. In particular 
SNV and first and second derivative (Savitzky-Golay method (Savitzky and Golay 
1964) with different segment size and second polynomial order) were tested. 
Successively, PLS models were developed for the prediction of GCV, Ac and Mc, 
while PCA was computed in order to search for spectral differences between the 
different types of biomass analysed (herbaceous/woody material, 
hardwood/softwood, treated/untreated wood).  

5.3.2 PCA results  

PCA computations were performed on the spectral dataset pre-treated using 
second derivative (Savitzky-Golay method (Savitzky and Golay 1964) with 13 
smoothing points and second polynomial order). To take into consideration that 
the visible part of the electromagnetic spectrum (400-780 nm) was removed from 
the MT2 PCA computation since it does not contain relevant information for the 
discrimination between hardwood and softwood samples.    

Figure 5-8 shows the PCA scores plots of MT1 (a), MT2 (b) and MT3 (c). 
As it can be noticed from Figure 5-8.a, there is a separation between herbaceous 
and woody biomass along PC2: woodchip samples have negative PC2 scores 
whereas herbaceous biomass has positive PC2 scores. Moreover, there is a 
separation between straw and maize – positive PC1 scores – and sorghum – 
negative PC1 scores. This is due to the fact that sorghum samples are easily 
detected by the visible part of the electromagnetic spectrum (400-780 nm) since 
the ground material presents red particles deriving from its culm.  

Figure 5-8.b shows the separation between hardwood and softwood 
samples. In particular, there is a separation along PC2: softwood samples have 
positive PC2 scores, whereas hardwood samples have negative PC2 scores. It is 
also possible to observe a separation between fir and pine samples along PC1. 
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At the end, Figure 5-8.c reports the PCA scores plot of treated and virgin 
wood samples. A clear separation between chipboard and the rest of samples 
could be observed, while OSB and plywood samples are close to the virgin wood. 
This is probably related to the lower quantity of glue used for these types of wood-
composite materials.  

 

Figure 5-8: PCA scores plots of (a) herbaceous/woody biomass (MT1), (b) hardwood/softwood (MT2), (c) 
treated/virgin wood (MT3).   

 

5.3.3 PLS results  

A general descriptive statistic of the three parameters of interest is reported 
in Table 5-2. The results were obtained from the computation of all the samples 
both for Mc (58 samples) and Ac and GCV (38 samples) parameters. The 
woodchip samples show a huge variability in moisture content, ranging from 2.5% 
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to 56.1%. Pellet samples present a smaller variability in Ac and GCV range and, 
by association, a lower standard deviation. 

Table 5-2: general descriptive statistic of woodchip and pellet samples (ar: as arrived, db: dry basis). 

  Mc (% ar) GCV (MJ/kg db) Ac (% db) 

Mean 31.3 20.1 1.25 
Standard deviation  15.9 0.4 1.12 

Min  2.5 19.4 0.34 
Max 56.1 20.8 5.16 

Range  53.6 1.4 4.82 

 

Table 5-3 reports the PLS results of the different pre-treatments carried out 
on the spectral dataset of woodchip samples for the prediction of Mc. PLS models 
were all validated using venetian blind-cross validation (5 segments). The best 
prediction model was developed using 7 LVs and first derivative (21 smoothing 
points with Savitzky-Golay method (Savitzky and Golay 1964), 2nd polynomial 
order) as pre-treatment. The high value of Q2 (0.99) and the RMSECV (1.49%), 
RPD (10.7) and RER (36.0) values indicate the good prediction accuracy and the 
model could be used in any quality control application.  

Table 5-3: summary of the PLS regression models developed for the prediction of moisture content (21der1: first 

derivative with 21 number of smoothing points; 21der2: second derivative with 21 number of smoothing points). 

Pre-
treatment 

LVs 
RMSE 

(%) 
R2 

RMSECV 
(%) 

Q2 RPD RER 

No pre-
treatment 

6 1.65 0.99 2.01 0.98 7.9 26.7 

SNV 5 2.38 0.98 2.79 0.97 5.7 19.2 
21der2 5 1.34 0.99 1.56 0.99 10.2 34.4 
21der1 7 1.31 0.99 1.49 0.99 10.7 36.0 

 

PLS models were developed also for the prediction of GCV and Ac of 38 
wood samples, analysed ground or directly in the pellet form. Considering the 
limited number of samples, the models were validated using Leave-One-out Cross 
validation. 
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The results of Ac and GCV predictions are shown in Table 5-4 and  

Table 5-5, respectively. In general, the best results for the Ac prediction were 
obtained analysing the material in its pellet form. The best prediction model was 
developed using SNV as pre-treatment and 6 LVs. Returning Q2 = 0.81, 
RMSECV = 0.49% RPD = 2.3 and RER = 9.8, it indicates the feasibility to use 
the model for screening quality applications. The prediction of Ac directly in its 
pellet form has the great advantage to analyse the sample without any operations 
(e.g. stabilization or grinding) and, as a result, the technique could be applied 
directly in line after the pelletizing process.   

In order to figure out if the visible part of the spectrum (400-780 nm) carried 
out important information for the Ac prediction, the same model was developed 
also removing this part of the spectrum. A total of 4 LVs were used for the 
development of the model, Q2 value increased from 0.81 to 0.87, while RMSECV 
decreased from 0.49% to 0.39%, demonstrating that the wavelengths from 400 
up to 780 nm contain non-relevant variation for the prediction of this parameter.   

Table 5-4: summary of the PLS regression models developed for the prediction of ash content (21der1: first derivative 

with 21 number of smoothing points; 21der2: second derivative with 21 number of smoothing points). 

Pellet 

Pre-treatment LVs 
RMSE 

(%) 
R2 

RMSECV 
(%) 

Q2 RPD RER 

No pre-
treatment 

6 0.43 0.85 0.56 0.75 2.0 8.6 

SNV 6 0.32 0.91 0.49 0.81 2.3 9.8 

21der1 7 0.31 0.92 0.51 0.79 2.2 9.5 
21der2 1 0.69 0.61 0.77 0.52 1.5 6.3 

Ground material 

No pre-
treatment 

8 0.35 0.90 0.61 0.71 1.8 7.9 

SNV 6 0.45 0.84 0.65 0.67 1.7 7.4 
21der1 5 0.51 0.79 0.65 0.67 1.7 7.4 
21der2 1 0.79 0.50 0.87 0.39 1.3 5.5 

Considering GCV, two outliers were found and have been deleted from the 
dataset before PLS computation. The best prediction model was developed using 
second derivatives (21 smoothing points with Savitzky-Golay method (Savitzky 
and Golay 1964), 2nd polynomial order) as pre-treatment directly on the material 
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in its pellet form. The model uses 5 LVs and the Q2 (0.77), RMSECV (0.17 
MJ/kg), RPD (2.4) and RER (8.2) values indicate the potential use of the model 
for screening applications.  

As for Ac, also GCV predictive model was developed removing the visible 
part of the spectrum (400-780 nm) and using the same pre-treatment of the full-
spectrum model. For the prediction model directly on the pellet samples, 4 LVs 
were used and Q2 value increased from 0.77 to 0.83, while RMSECV decreased 
from 0.17 MJ/kg to 0.15 MJ/kg. Instead, for the prediction model on the ground 
material, 4 LVs were used and Q2 value increased from 0.71 to 0.77, while 
RMSECV decreased from 0.19 MJ/kg to 0.17 MJ/kg. Also in this case, the visible 
part of the spectrum is irrelevant for the prediction of the parameter.       

Table 5-5: summary of the PLS regression models developed for the prediction of gross calorific value (21der1: first 
derivative with 21 number of smoothing points; 21der2: second derivative with 21 number of smoothing points). 

Pellet 

Pre-treatment LVs 
RMSE 

(MJ/kg) 
R2 

RMSECV 
(MJ/kg) 

Q2 RPD RER 

No pre-
treatment 

6 0.14 0.84 0.20 0.71 2.0 7.0 

SNV 5 0.19 0.73 0.24 0.56 1.7 5.8 

21der1 4 0.14 0.84 0.18 0.74 2.2 7.8 
21der2 4 0.12 0.89 0.17 0.77 2.4 8.2 

Ground material 

No pre-
treatment 

4 0.20 0.69 0.24 0.58 1.7 5.8 

SNV 3 0.22 0.62 0.25 0.5 1.6 5.6 
21der1 3 0.19 0.72 0.23 0.61 1.7 6.1 
21der2 2 0.15 0.81 0.19 0.71 2.1 7.4 

 

The preliminary results obtained are really encouraging, suggesting that the 
development of a technique based on chemometrics and NIR spectroscopy for 
providing early evidence of non-conformity and for predicting the main 
quantitative parameters of the biomass would be possible.  
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6. Conclusions and 

perspectives  

 

 

 

The work presented in this Ph.D. thesis aims at answering the requests of 
the technical standards EN ISO 17225. According to these standards, the biomass 
quality is determined not only by chemical-physical parameters, but also by 
qualitative attributes. Unfortunately, information on biofuels is difficult to be 
achieved by conventional analysis or microscopy techniques because they are 
expensive, time-consuming and require specialized operators. Especially the 
quality of densified products, such as pellet, is hard to be assessed since they are 
made up with ground feedstock, becoming impossible to identify the typology of 
the original raw materials by naked eye. A suitable alternative comes by infrared 
spectroscopy which is already widely used for quantitative and qualitative 
purposes in several fields.  

Different examples of infrared spectroscopy applications in the field of 
biofuels characterization are presented in this Ph.D. thesis. In particular, the 
infrared technique was used to identify the origin and source of the material. 
Going into detail, a SIMCA discrimination model was developed using FT-IR 
spectroscopy to provide first indications about the hardwood/softwood 
composition of the biomass. The results are really encouraging and the model is 
able in recognizing 93% of hardwood samples, 100% of softwood samples and 
100% of the tested blends (Paper I). In addition, FT-IR analysis coupled with 
PLS regression turned out to be a very efficient tool in predicting hardwood and 
softwood contents in blend samples with a standard error of few points (3.8%) 
(Paper II).  

A NIR model for the discrimination between hardwood and softwood and 
between bark and wood is already efficient and able in discerning three of the 
most important species in the pellet sector (fir, pine and beech) (Paper III). Such 
a tool could be fundamental for the pellet quality control, since the model 
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developed is able to recognize 20% bark content in blend samples at a 99% 
confidence interval. Moreover, new perspectives could be imagined. The linear 
trend in the blends along the axis of pure wood to pure bark suggests that building 
a regression model with the purpose of estimating the amount of bark in wood 
samples is fairly straightforward. In addition, the good separation between the 
different classes in the PCA score plot suggests that the development of a 
discrimination model (PLS-DA or SIMCA) is also possible. 

A further step in retrieving information about the origin and source of the 
material was obtained building a classification model for the detection of wood-
based composite materials (i.e. glue-laminated wood, plywood, oriented strand 
board and chipboard) in the pellet sector using NIR spectroscopy. Considering 
the first exploratory study results, two PLS-DA models were developed: the 
former considering glue-laminated/virgin wood and the latter all the other treated 
wood samples/virgin wood. In particular, the first model shows 100% correct 
classification and the second model only 3.6% misclassification rate confirming 
the profitable use of NIR spectroscopy in getting information about the origin 
and source of the biomass (Paper V and Paper VI). 

Regarding quantitative information, regression models for the determination 
of gross calorific value and ash content of woodchip samples have been 
developed and variables selection techniques have been used to improve the 
prediction performance. Comparing to the different variables selection methods 
applied, rPLS results to be the best one. In particular GCV was predicted with a 
RMSECV of 234 J/g (Q2 = 0.87) and Ac with a RMSECV of 0.44% (Q2 = 0.80), 
making the model exploitable in screening applications. The results demonstrated 
that FT-NIR is a suitable tool both for the prediction of GCV and Ac of 
woodchip samples and showed the potential to develop a robust predictive model 
for industrial on-line applications (Paper IV). In-depth analysis was carried out 
for the prediction of ash content and the results have demonstrated that 
scattering, together with chemical information, effects the prediction of such 
parameter. Working with a PLS model based on the MSC/EMSC correction 
factors and PCA scores of the pre-treated dataset, it is possible to obtain a slight 
improvement of the regression model and the decrease complexity of the system 
(Paper VII).  

Furthermore, a preliminary study was carried out to investigate the possibility 
to apply NIR spectroscopy directly in the production line for the biomass quality 
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control. Models for the prediction of the main quantitative parameters of the 
biomass (ash content, calorific value and moisture content) and for the 
classification of the type of material (wood/herbaceous biomass, 
hardwood/softwood, virgin/treated wood) were developed using an on-line NIR 
spectrophotometer. The first results are encouraging and give contributions to 
the prediction of the main chemical-physical parameters and the identification of 
the origin and source of the biomass, suggesting the  feasibility to perform a 
quality control directly in the production line.  

The outcomes of this Ph.D. thesis are really promising and highlight 
different possible benefits for the sector. Compared with conventional chemical 
analysis, infrared spectroscopy allows to check simultaneously with a single and 
fast measurement the quality parameters requested by EN ISO 17225. In addition, 
the control is not just about the chemical-physical parameters, but also the 
qualitative attributes, at the moment only declared by the producers and almost 
impossible to be monitored by traditional analysis. Since biomass presents an 
inherent variability and a structural complexity, a proper quality characterization 
is deeply linked to a correct sampling procedure, but it requires specialized 
operators as for the fore mentioned conventional analysis. Of course, experienced 
person working in the lab translates into additional costs for the industry and it 
does not fit with the economic return of the sector.  

The strong reduction in cost and time of infrared analysis promotes the 
spread of quality control. This leads in a more effective and extensive monitoring 
of the bioenergy chain; a higher number of material could be analysed solving the 
problems of manual sampling and its related representativeness, fundamental 
aspects in highly heterogeneous matrices. It follows in the feasibility to trace and 
verify more efficiently the origin (e.g. wood species) and the type of biomass (e.g. 
bark / wood). But, even more important, it enables the control of the presence 
of treated wood (e.g. residues from wood processing industry) especially in 
densified products, such as pellets and briquettes. This is particular relevant since 
in different European countries, and especially in Italy, these materials are 
considered as waste and the energy use is normally only allowed in big plants, 
authorized and dedicated for waste treatment.  

The application of the technique in hand-held portable devices or directly in 
the production line is the real strength. A huge amount of information useful for 
biofuels assessment could be collected with several advantages for the sector. 
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Indeed, the more effective quality control of the biofuel used has positive effects 
for environmental sustainability assessments and translates into the potential 
reduction in combustion emissions. Excluding non-conforming and low quality 
products (e.g. wood residues with glue, high ash content) is fundamental to ensure 
lower environmental impact levels. In fact, information about biomass quality 
allows to tune the combustion process in function of the fuel supplied. Moreover, 
the technique promotes for sure the total quality control of the product. This 
translates in the possibility to assess large bulk of biomass (e.g. plant biomass pile, 
biomass shipload, feedstock supply in pelletizing/power plant) without having 
problems of manual sampling. 

It is therefore clear that the development of a tool based on IR spectroscopy 
will open up new opportunities for the biofuel sector, supporting its monitoring 
at different levels of the supply chain (production, distribution and end-use) and 
providing an indication of the product quality useful in evaluation-screening 
process. To be taken into consideration that infrared spectroscopy will not 
completely replace conventional analysis, but will allow a more extensive biomass 
control identifying the critical points in the bioenergy chain and will help to 
achieve cost-savings. As consequence, all the stakeholders - solid biofuel 
producers, traders but also customers - can have benefits in the use of this new 
system of quality control.   

Further steps in the development of a procedure based on chemometrics and 
infrared spectroscopy for the quality control could be done. In particular, the 
prediction performance of the most important chemical-physical parameters 
characterizing the biofuel quality class could be improved. Moreover, additional 
studies should be carried out with the purpose to discriminate the qualitative 
attributes of different types of biomass, e.g. woody/herbaceous biomass, 
determination of bark content in wood samples. As last, the results of the Ph.D. 
activities suggest that the development of a sector-specific technical standard that 
works on infrared spectroscopy is fairly straightforward and the future activities 
plan will go for sure in this direction. 
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