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1. Introduction  

1.1 Epidemiology of pancreatic cancers 

Cancer is one of the major global public health problems, nevertheless the huge 

scientific research efforts have achieved, in the last decades, important results in 

terms of prevention, therapy and reduction of mortality rates. The deadliest cancers 

are considered those with 5-years relative survival rates below 50% and, according to 

Recalcitrant Cancer Research Act, pancreatic cancer, with 6% of survival, has the 

lowest percentage followed by lung (16,6%), liver (18%), esophagus (19%), stomach 

(29%), brain (35%), ovary (44%), and multiple myeloma (45%) [1]. While stomach, lung 

and breast cancer have shown falls in mortality since the late 1980s, pancreatic cancer 

mortality has the opposite trends in EU, with a steady rise in women of 3,9% and a 

stable mortality rate in men in 2016 [2]. Every year worldwide pancreatic cancer 

deaths are 200000 and it is predicted to be the second cause of cancer death in USA by 

2030 [1]. Notably, African-Americans have a 30-50% higher incidence than other ethnic 

groups in the United States. Indigenous populations seem to be 30% more affected 

than other populations living in Oceania whereas the lowest rates are recorded in 

India, Africa and Southeast Asia. In this geographical variation, the quality of clinical 

diagnoses and the differential access to health care have to be taken into account 

because these evaluations could be altered by under diagnosis [3]. 

1.2 Risk factors 

Pancreatic cancer incidence rate could be attenuated modifying some aspects of the 

life style. Among preventable factors, tobacco smoking is the most common agent, and 

it increases threefold the risk of developing pancreatic cancer [4]. It has been 

estimated that 25% of pancreatic cancers are attributable to cigarette smoking. 

Interestingly, the sequencing of pancreatic cancer genome has revealed that smoker 

patients have more somatic mutations than never-smoker patients. Other life habits 

connected with the frequency of this disease are low physical activity and some dietary 

factors like high consumption of saturated fats, red and processed meat and low intake 

of vegetables and fruits. Moreover, it has been observed that heavy alcohol 

consumption is correlated with the tumour incidence, while moderate alcohol intake 

does not induce an increased risk [4]. Additionally, some pathological states can 
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contribute to the neoplasm onset. Obesity is positively associated with pancreatic 

cancer, specifically, high body-mass index and centralized fat distribution may increase 

the risk [5]. Diabetes mellitus is not only a consequence of early-stage pancreatic 

cancer but it is also a risk factor. Diabetic patients have a 30% possibility of developing 

a tumour for more than 20 years after diagnosis [6].  

Some hereditary conditions can also increase the risk of developing the disease. 

Several studies have demonstrated that 10% of patients have a family history of ductal 

adenocarcinoma of the pancreas, but the majority of the genetic basis remains 

unknown. Some germline genetic syndromes have been associated with an increased 

risk of developing this neoplasia. Inherited mutations in onco-suppressor genes BRCA2 

and BRCA1 are associated with elevated risk of breast and ovarian cancer. While 

BRCA2 mutations account for familial pancreatic cancer, the role of mutated BRCA1 

remains uncertain. Germline mutations in the p16/CDKN2A causes familial atypical 

multiple mole melanoma syndrome with a high lifetime risk of melanoma, as well as an 

increased risk of pancreatic cancer. Patients with Peutz-Jeghers syndrome, caused by 

germline mutations in STK11, have been shown to have an 11-32% lifetime risk of 

pancreatic cancer in addition to hamartomatous polyps in the gastrointestinal tract. 

Hereditary pancreatitis is a rare form of pancreatitis caused by mutations in PRSS1 and 

SPINK1. Patients with these alterations have a 30-40% possibility of developing cancer. 

Individuals with Lynch Syndrome, a disease caused by germline mutations in genes 

encoding DNA mismatch repair proteins, are characterized by early onset colon cancer 

and have an elevated risk of vary cancer types, among which is pancreatic cancer [4, 

7]. 

1.3 Pancreatic tumours and PDAC pathogenesis 

Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive 

malignancy arising from the pancreas. Less frequent pancreatic neoplasms are 

neuroendocrine tumours, solid-pseudopapillary neoplasms, pancreatoblastomas, 

acinar carcinomas and colloid carcinomas. 

Pancreatic neuroendocrine tumours (PanNETs) are the second most common 

neoplasm, representing 1-5% of all pancreatic tumours, with a mortality rate of 60%. 

They could arise as part of hereditary syndromes: multiple endocrine neoplasia type 1 
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(MEN-1), von Hippel-Lindau syndrome (VHL) and tuberous sclerosis complex (TSC). 

PanNETs are classified into functioning tumours which give early symptoms caused by 

excessive hormone production and non-functioning tumours that manifest only when 

they are large [8]. Solid-pseudopapillary neoplasms represent 1-2% of primary 

pancreatic tumours. This type appears as a heterogeneous low-grade malignant 

tumour with solid components and cysts and it is frequent in young women. 

Pancreatoblastoma accounts for 0,2% of all pancreatic neoplasms and it mostly occurs 

in children. At presentation, it is a large mass with aggressive behaviour and 

metastasis. Pancreatic ductal adenocarcinoma occurs in 90% of cases and has a 

remarkably poor prognosis. PDAC incidence is 50% higher in men than in women and 

old age is also a significant factor with most cases occurring in patients between 60 

and 80 years. Pancreatic adenocarinomas are located in the head of the pancreas in 

60-70% of patients, 10–20% in the body, and 5–10% in the tail. Principal marks, that 

appear too late in the disease course, are abdominal pain, weight loss and jaundice [9]. 

These tumours are solid and firm, derived from neoplastic cells which infiltrated into 

tissues forming glands and spread far from the primary tumour. Invasive cancer 

colonizes nerves, perineural and lymphatic spaces until it spreads to the liver. One of 

its important histologic traits is the intense desmoplastic reaction, which impedes 

biopsy to reach neoplastic glands and constitutes an obstruction for chemotherapeutic 

agents [3, 4]. Lack of early symptoms, absence of sensitive and specific biomarkers and 

the challenging identification of early-stage tumours are the principal reasons of a late 

diagnosis. Moreover, PDAC is characterized by high aggressiveness that leads to 

exclude surgical resection in most patients due to vascular invasion and early spread of 

metastasis. Traditional treatments like chemotherapy and radiotherapy are not 

effective since pancreatic tumour cells have resistance to the majority of anti-cancer 

agents [3]. 

Pancreatic ductal adenocarcinoma originated from non-invasive lesions. In 82% of 

pancreas with cancer, intraductal non-invasive proliferations called pancreatic 

intraepithelial neoplasia (PanIN) are observed. Timely detection of these precursor 

lesions may be crucial for an early diagnosis but so far their detection is challenging 

due to the lack of symptoms, specific biomarkers and mainly because of their 

microscopic size, which makes them not easily detectable by Magnetic Resonance 
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Imagery (MRI) or by Computed Tomography (CT). PanINs are classified into three 

grades depending on the cytological atypia. Low grade PanINs are found in 16-80% of 

normal pancreas without neoplasia while high grade PanINs are related to 

adenocarcinoma [10]. Less frequently, pancreatic cancer derives from macroscopic 

cystic precursors: intra-ductal papillary mucinous neoplasm (IPMN) and mucinous 

cystic neoplasm (MCN). IPMNs involve the larger pancreatic ducts, are larger than 1 cm 

in size and approximately a third of them are associated to a higher risk of developing 

invasive adenocarcinoma. MCNs occur particularly in women, arise in the body and the 

tail of pancreas, and do not involve the ductal system [7]. 

1.4 Genetic mutations 

Cancer is a genetic disease caused not only by inherited mutations but also by somatic 

mutations involving tumour suppressor genes and oncogenes. The sequencing of 

infiltrating pancreatic ductal adenocarcinoma revealed that there are four major driver 

genes, KRAS, p16/CDKN2A, TP53 and SMAD4, somatically mutated in more than 50% 

of the cases. Precursor lesion analyses have sketched out the timing of the genetic 

alterations in pancreatic tumourigenesis. KRAS and CDKN2A mutations occur in low-

grade PanINs, suggesting that they are the earliest alterations in pancreatic 

tumourigenesis. KRAS is an oncogene that encodes a small GTPase protein involved in 

the activation of MAP Kinase and/or the PI3K pathways that increase mitogenic 

activity. Its mutational activation results in the downstream activation of effector 

proteins that sustain proliferation, cell migration and metastasis. CDKN2A is a tumour 

suppressor gene inactivated in 95% of PDAC. Its mutation is associated to unlimited 

cell growth caused by the loss of function of its protein product, p16, an important cell 

cycle regulator. TP53 and SMAD4 mutations take place at an advanced stage of the 

carcinoma, suggesting that they are late events. The tumour suppressor TP53 codes for 

p53 protein, which responds to several cellular stresses inducing growth arrest and cell 

death. Loss of p53 function is observed in 75% of pancreatic cancers. The protein 

product of SMAD4 gene, Smad4, plays an important role in the TGFβ pathway and in 

transcription of cell cycle inhibitory factors like p21. Thereby, SMAD4 inactivation, in 

about 50% of cases, is linked to poor prognosis and metastatic disease [4, 7].  
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1.5 Microenviroment 

Pancreatic ductal adenocarcinoma is different from other solid cancers because of the 

desmoplastic reaction, an abundant and dense collagenous stroma, which envelops 

malignant cells.  This stroma contains extracellular matrix (ECM) proteins, such as 

collagens, fibronectin and laminin, non-collagenous proteins (glycoproteins, 

proteoglycans and glycosaminoglycans), as well as growth factors, osteopontin, 

periostin and serine protein acidic and rich in cysteine that may mediate the 

interaction of cancer cells and ECM [3]. Cellular component of desmoplasia consists of 

cancer-associated fibroblasts (CAFs), which produce the collagenous matrix and 

immune cells that could regulate the cancer growth. For these reasons, there has been 

growing interest in the role of desmoplasia in malignant and aggressive behaviour of 

pancreatic cancer and its resistance to treatment. Pancreatic stellate cells (PaSCs) are 

the principal cellular source of CAFs in pancreatic cancer. They are present in the 

exocrine pancreas in a normal quiescent state but are transformed in an activated 

state during the pathogenesis. Activated PaSCs have high proliferation rate and start to 

produce ECM proteins and the other components of desmoplasia. Several studies have 

demonstrated that this activated state is maintained not only by autocrine but also 

paracrine mechanisms with inflammatory and cancer cells. This relationship results in 

an increased tumour growth and metastasis development [11]. Interaction of 

pancreatic stellate cells with cancer cells and other stromal cancer cells promotes 

cancer progression. They are probably implicated in the formation of new blood 

vessels (angiogenesis) through the production of the proangiogenic factors: vascular 

endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and 

hepatocyte growth factor (HGF). These factors are found to be up-regulated in tumour 

tissue and are associated with poor prognosis [12]. Furthermore PaCSs promote stem-

cell like phenotype conferring chemo-resistance upon pancreatic cancer cells [13]. 

These cells are also able to travel from the primary tumour, surviving in the circulation, 

and seed metastatic niches to distant organs [14]. The desmoplastic stroma is 

composed also by different type of inflammatory cells: macrophages, T cells and 

neutrophilic granulocytes, that contribute mostly to the tumour progression. For 

example, CD4+ regulatory T cells have the decisive role in keeping away the host 

immune system, and M2 macrophages synthesize cytokines and chemokines involved 
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in tumour angiogenesis and metastasis. Factors implicated in the antitumour immunity 

suppression, for example PD-L1, are clinically important because they could be targets 

for new immunotherapeutic approaches [3, 15]. 

Metastasis formation needs a supportive environment that is established prior to the 

arrival of carcinoma cells, the so-called pre-metastatic niche. This environment is the 

result of numerous signalling factors from primary tumour to distant tissue that lead to 

the formation of metastasis [16]. Exosomes, nanovesicles secreted from cells by 

exocytosis, play an important role in this process. It has been demonstrated that pre-

mestatic niches in the liver of naive mice are caused by PDAC-derived exosomes 

formation. Exosome uptake by hepatic cells induced TGFβ secretion and production of 

fibrotic microenvironment by hepatic stellate cells. In particular, it seems that the 

exosomal macrophage migration inhibitory factor (MIF) prepares the liver for 

metastasis since it was found highly expressed in exosomes derived from patients with 

late-stage cancer [17]. The role of exosomes in cancer is described in detail in the 

chapter 3. 

1.6 Biomarkers 

The importance of finding reliable biomarkers arises from the difficulty to detect the 

early stage of PDAC but also for evaluation of treatments or post-resection follow-up. 

Liquid biopsy is an alternative to surgical biopsies that allows detection of circulating 

tumour cells and so cancer at an early stage. It is a promising approach for the 

evaluation of new cancer markers in a non-invasive and easy way, generally through 

blood samples, instead of tumour tissue samples that are often difficult and time-

consuming to obtain and to analyse. Moreover, liquid biopsy can be repeated several 

times during the therapy period without pain and risk for the patients, allowing the 

monitoring of tumour relapses or the occurrence of resistance mutations [18]. Among 

serum markers, carbohydrate antigen 19-9 (CA19-9) is the most widely studied. 

However, CA19-9 lacks sensitivity and specificity since the protein levels are often 

normal in the early stages of the disease or falsely high in individuals with other 

pathological conditions. These factors make it an inaccurate marker but it is 

nonetheless used to control disease progression, recurrence after surgery detection 

and therapy response. Carcinoembryonic antigen (CEA) could also be a diagnostic tool 
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but with low reliability [19]. Instead, it has been reported that CA19-9 and CEA 

combination or CA19-9, CA125 and laminin γC (LAMC2), increase specificity compared 

with the markers alone [7]. Another marker that could be detected non-invasively in 

the circulation is tumour DNA that can be extracted from circulating tumour cells 

(CTCs), intact and viable cells that are distinguished and isolated from the normal 

blood cells. Disadvantage of circulating tumour cells is that they are present only in 

some patients with advanced neoplasia. On the contrary, circulating tumour DNA 

(ctDNA), not associated with cells, has been found in blood samples in patients with 

localized disease. Using digital polymerase chain reaction–based technologies (dPCR) it 

is possible to evaluate somatic mutations of circulating DNA [18]. In a recent study, 

mutated KRAS has been detected from ctDNA of 43% of the patients at the time of 

diagnosis, indicating that this approach is a highly specific tool for early diagnosis [20].  

Body fluids are also enriched in exosomes, extra-cellular vesicles participating in 

intercellular communication. They are a rich source of information since they are 

constituted by specific microRNAs, proteins, lipids and other nucleic acids, and thus are 

generating a big interest as tumour biomarkers. In particular, they bring on their 

external surface specific proteins that allow distinguishing exosomes derived from 

different subpopulations of pancreatic cancer cells. It is well known that tumour-

derived exosomes express the same markers of cancer-initiated cells, which are 

implicated in metastasis formation, drug resistance and cancer recurrence. A recent 

work has demonstrated that circulating exosomes, from pancreatic cancer patients 

and genetically engineered mutant mice models, showed the proteoglycan glypican-1 

on the membrane. Glypican-1 positive exosomes carry the KRAS mutation, allowing 

the distinction between healthy individuals and patients with early or late pancreatic 

cancer [21].  

During my PhD, I analysed plasma samples of PDAC patients, using exosome markers, 

with the aim of finding a correlation between different kinds of exosomes and patient 

clinical data that might be informative as prognostic and diagnostic tools (chapter 3).  

MicroRNAs enclosed in these nano-vesicles are considered potential biomarkers since 

they are specifically and differently expressed depending on the disease features: 

tumour growth, drug resistance or metastasis progression. Therefore, their evaluation 

in biofluids could be informative for the early detection of pancreatic cancer. To 
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measure exosomal miRNAs accurately is tricky and great care should be paid in all the 

experimental procedures, starting from samples handling, exosome isolation and 

miRNA extraction, in order to avoid contaminations that can affect the results. In 

Occhipinti et al. (2016) I have dealt with the problem of the choice of an RNA that can 

be used as normalizer for the quantification of miRNAs expression levels in exosomes. 

To make the measures from different samples by reverse transcription quantitative 

real-time polymerase chain reaction (RT-qPCR) comparable, it is important to 

normalize selecting an endogenous control permanently expressed among all the 

samples examined. In that review, I discussed the studies where the exosomal miRNA 

profiling was assessed in human biofluids highlighting the specific RNA used as 

normalizer [22].  

Microarray analysis of gene expression profiles have revealed that hundreds of genes 

resulted to be differently expressed in pancreatic tumour tissues compared to normal 

tissues, and that therefore may serve as biomarkers. This method has allowed the 

outlining of a list of genes that are inversely related to PDAC patient survival: keratin 7, 

laminin gamma 2, stratifin, platelet phosphofructokinase, annexin A2, MAP4K4 and 

OACT2 (MBOAT2) [23]. Gene expression analysis has also permitted to find that high 

levels of PIK3R1 expression are correlated with improved survival contrary to SRC [24]. 

In another study, microarray gene-expression data from tumour and adjacent non-

tumour tissues of PDAC patients revealed that DPEP1 could be a prognostic relevant 

gene in PDAC, since its low expression is related to poor prognosis. Further validation 

on pancreatic cell lines showed that over-expression of DPEP1, suppressed tumour 

cells invasiveness increasing sensitivity to Gemcitabine [25].  

It is possible to identify new candidate biomarkers by processing expression data with 

bioinformatic tools that take account of correlation among genes. With this aim, the 

weighted gene co-expression network analysis (WGCNA) algorithm has been applied, 

as described in chapter 4. This approach has allowed the detection of key genes and 

miRNAs involved in tumourigenesis of PDAC [26, 27]. 

1.7 Treatment 

Surgery, chemotherapy, radiotherapy and palliative care are the treatment choices 

selected according to the stage of pancreatic cancer.  
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Surgical resection is the option that prolongs life in comparison to the other 

treatments with 5-year survival rates of 20%. However only 10-20% of patients have 

resectable diseases, and 80% of these cases undergo a relapse despite tumour 

resection and adjuvant therapy. Pancreatic cancers without metastases can be 

classified as resectable, borderline resectable and locally advanced, depending on the 

degree of local extension that could involve mesenteric or portal vein, gastroduodenal 

and hepatic artery or could form a tumour abutment of the superior mesenteric 

artery. Traditionally, surgery is performed by an open procedure, but at the present, 

the use of laparoscopic or robotically assisted resections is increasing. Tumour surgery 

that includes venous resection is usually a low risk procedure whereas arterial 

resection increases the mortality rate. However, frequently, recurrence of PDAC is 

reported after surgical operations, and the median survival could be similar to that of 

inoperable patients. The main causes are occult primary metastases and 

microscopically incomplete resections. For these reasons, specialized surgeons and 

pathologists, as well as an accurate selection of patients for resection, are crucial. 

Parameters to consider in selecting patients are the absence of comorbidities, such as 

cardiac disease, and age, which should be not higher than 75 years, otherwise the 

patient could be further debilitated. It is also important to consider the tendency of 

metastatic spread and tumour aggressiveness. Even though there are not validated 

biomarkers, indicators of aggressive tumour are significantly high serum levels of 

CA19-9 and SMAD4 alteration. Patients with these traits are unlikely to benefit from 

resection and therapy compared to patients with low CA19-9 levels and wild-type 

SMAD4. Surgery alone is anyway associated to poor survival so adjuvant therapy, with 

gemcitabine or 5-fluorouracil (5-FU) and leucovorin, is the standard care started 1-2 

months after resection. Several studies have demonstrated that 6 months treatments 

improved significantly survival patients compare with no adjuvant treatment after 

surgery or with chemotherapy alone [3, 4, 7]. 

For patients with metastatic and unresectable PDAC the survival rate is 5-9 months, so 

the main purposes of treatments are pain alleviation and improved survival. 

Gemcitabine is the standard treatment for elderly patients for its favourable toxicity 

profile. Agent combinations such as FOLFIRINOX (folinic acid, 5-FU, irinotecan and 

oxaliplatin) or gemcitabine with nab-paclitaxel result in a longer survival and in an 
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improved quality of life but are more toxic than gemcitabine monotherapy. For this 

reason, their use is limited only to patients in a good health status. About 50% of 

patients in good performance status receive second-line chemotherapy after disease 

progression which might be useful for their benefit. Effective second-line treatment 

could be combinations like 5-FU with oxaliplatin, FOLFIRI (5-FU, irinotecan and 

leucovirin) or gemcitabine monotherapy [28]. 

However, current standard therapies have provided scarce survival advantage 

highlighting the urgent need to identify new treatment strategies and agents. Among 

new therapeutic strategies, drugs targeting vital pathways for pancreatic cancer stem 

cells (CSCs) are promising. Such cells play a role in initiation of new tumour foci, 

disease relapse and chemotherapeutic-resistance because of their ability to self-

renew. The pathways targeted for this purpose are WNT, Notch and Hedgehog but 

until now completed trials have shown negative results and CSCs continue to confer a 

shorter survival [29]. Recent studies have focused on the anti-cancer properties of 

plant-derived compounds that can have effects not only on cell cycle regulation and 

apoptotic pathways but also on non-apoptotic pathways such as autophagy and 

programmed necrosis (necroptosis) [30, 31]. In the last part of my thesis, as described 

in chapter 5, I investigated the question whether Sulforaphane eliminates pancreatic 

cancer cells by inducing apoptosis and/or necroptosis. Sulforaphane is a plant-derived 

agent, which has shown health-promoting and anti-cancer properties [32].  
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2. Aim of the thesis 

My thesis is focused on the study of pancreatic ductal adenocarcinoma using different 

approaches: i) exosome characterization and quantification in clinical samples in order 

to evaluate if exosome levels correlate with progression of the disease; ii) 

identification of potential diagnostic and prognostic biomarkers through the 

application of the weighted gene co-expression network analysis (WGCNA) tool; iii) 

investigation on programmed cell-death pathways induced by the broccoli-derived 

isothiocyanate sulforaphane in pancreatic cancer cell lines. 

To reach the first goal, a convenient enzyme linked immunosorbent assay (ELISA) was 

developed for the detection of exosomes in plasma samples from PDAC patients. This 

study was funded by an AIRC grant and patient samples were procured by Medical 

Oncology Unit of Ospedali Riuniti Ancona. 

In the second part of my thesis, WGCNA tool was applied, for the first time, to PDAC 

microarray-based gene and microRNA expression datasets, respectively from normal 

and PDAC tissues samples and from serum samples of PDAC and healthy individuals.  

I conducted the last part of my PhD thesis in the Department of Molecular 

OncoSurgery at the University Hospital of Surgery in Heidelberg (Germany) where I 

worked as visiting PhD student supervised by Prof. Ingrid Herr.  
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3. Exosome characterization in pancreatic cancer 

patients 

3.1 Introduction 

3.1.1 Exosomes 

Intercellular communication is a vital system for multicellular organisms and it is 

exerted by several different mechanisms. In addition to direct contact between cells or 

active and passive transfer of secreted molecules, another communication system, 

which has gained a large interest, is constituted by vesicular transport. Under 

physiological and pathological conditions, cells can secrete different types of vesicles, 

depending on their cellular origin, divided mostly in two classes: microvesicles and 

exosomes that are differentiated for their biogenesis, size and composition. 

Microvesicles derive from the outward budding and fission processes of the plasma 

membrane and their size range from 200 nm to more than 1 μm in diameter. 

Exosomes are smaller than microvesicles, ranging between 30-120 nm. They originate 

from endocytic invagination of the plasma membrane and then are progressively 

released into extracellular space [33, 34]. These nanovesicles were identified for the 

first time in the 1980s when, during studies about reticulocyte maturation was 

observed a different mode of vesicles excretion. Later, in 1987, the term “exosomes” 

was proposed, indicating the endosomal origin of these vesicles and it was 

demonstrated that they contained active enzymes [35]. In 2007, description of miRNA 

and mRNA transported by exosomes led to an increasing interest in discovering their 

functions [36, 37]. Exosomes have been isolated from almost all body fluids: serum, 

plasma, breast milk, urine, malignant ascites, amniotic fluid and saliva, leading 

researchers to consider them as novel tools for early diagnosis [38-40]. Exosomal lipid 

layer protects miRNAs from endogenous RNases even in extreme conditions such as in 

faeces [41] or in a simulated gastric and pancreatic digestion [42]. These findings 

suggest that exosomal miRNAs can exert their influence to distant target cells since 

their integrity is preserved in body fluids and that genetic material may be transferred 

via exosomes in breast milk to the infants [42, 43]. 
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3.1.2 Biogenesis, secretion and uptake 

The process of exosome biogenesis begins with the endocytosis of the plasma 

membrane that takes place after the ubiquitination of membrane receptors. This 

process is followed by the formation of early endosomes and, successively, of the 

multivesicular bodies (MVBs). They generate, through internal budding, intraluminal 

vesicles (ILVs) that are eventually released in the extracellular space as exosomes. 

MVBs can also be addressed to the lysosomes for degradation or to the trans-Golgi 

network for recycling. Endosomal Sorting Complex Required for Transport (ESCRT) 

machinery intervenes in ILVs formation and exosomal content sorting. ESCRT is made 

of four main protein complexes involved in ubiquitin-dependent cargo assemblage, 

bud formation and vesicle scission [33]. Exosomal content can be determinated by 

other mechanisms ESCRT-independent involving lipids, tetraspanins or heat shock 

proteins that serve as receptor for enclosing specific cytoplasm components such as 

proteins and microRNAs. Exosomes are secreted from the sender cell through 

exocytosis. In this mechanism Rab GTPase plays the role of moving the late endosome 

towards a site of plasma membrane while SNAREs proteins promote the fusion of 

MVBs membranes with the plasma membrane. Intracellular Ca+ levels and 

extracellular/intracellular pH gradients also affect exosome release. It has been shown 

that low pH in the microenvironment leads to an increased exosome secretion and 

uptake [33, 36, 44]. Exosomes can transfer material to recipient cells in different ways. 

The receptor-mediated uptake can occur via some phospholipids and proteins on the 

exosomal membrane that act as receptors to bind the cell membrane. Endocytosis by 

phagocytosis is another way to incorporate exosomes that are actively transported by 

the cytoskeleton. Finally, the uptake can occur through membrane fusion facilitated by 

low pH [33]. 

3.1.3 Exosomes composition 

Lipids. Lipid composition of exosomes depends of cellular origin but generally consists 

of cholesterol, sphingomyelin, ceramide, phosphatidylcholine (PC), phosphatidylserine 

(PS), phosphatidylethanolamine (PE), phosphatidylinositol (PI). Some exosomal lipids, 

such as sphingomyelin, cholesterol, PS, PC and PI, are present in higher quantities 

compared to parental cells conferring an elevated membrane rigidity [45]. Exosomes 

are also composed of lipid rafts associated with proteins such as Flotillin-1 and 
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glycosylphosphatidylinositol-anchored proteins [46]. Lipids also have a functional role 

in exosomes. Lysobisphosphatidic acid (LBPA) may help the formation of the 

intraluminal vesicles in MVBs and participates in exosomes segregation [47]. 

Moreover, these vesicles contain bioactive lipids, such as prostaglandins and 

leukotrienes, which are delivered to target cells and enzymes involved in their 

metabolism suggesting that exosomes produce autonomously such lipids [48, 49].  

Proteins. Exosomes, depending on their endosomal origin, contain numerous 

membrane transport and fusion proteins: Rab, GTPase, SNAREs, annexins and flotillins. 

The exosome membrane is enriched in tetraspanins, a protein family constitute of four 

transmembrane domains. They are implicated in biological process such as signalling 

and protein trafficking, cell motility, adhesion and membrane fusion. The first 

identified in B cell-derived exosomes were CD63, CD81, CD82, CD53 and CD37 while 

CD9 was identified for the first time in exosomes secreted from dendritic cells. 

Subsequent studies have demonstrated that tetraspanins are present also in exosomes 

derived from other cells [46, 50]. Tetraspanins are involved also in selection and 

incorporation of specific material inside exosomes, for example, CD9 loads the 

metalloproteinase CD10 [51]. Other typical proteins are the heat shock proteins 

(Hsp70 and Hsp90), Alix and TSG101 which are involved in MVB biogenesis. 

tetraspanins, Alix, flotillin, TSG101, and Rab5b are the most routinely used as markers 

for exosome identification in antibody-based techniques such as western blot and 

ELISA [52]. Exosomes incorporate also proteins implicated in cell signalling pathway. It 

has been demonstrated that exosomes secreted from Drosophila and human cells bear 

on their membrane active Wnt proteins that induce the related signalling pathways in 

target cells. The study suggests also the evolutionary conserved role of exosomes in 

Wnt transportation [53]. Notch ligand Delta-like 4 (DIl4) is also included in exosomes 

implicating the inhibition of Notch signalling [54]. Tumour-derived exosomes are 

enriched of all cancer stem cells markers. For examples MART1 has been found in 

melanoma exosome, EpCAM is included in exosomes derived from epithelial cells and 

glioma exosomes contain EGFRVIII [55]. 

Nucleic acids. An important discovery, which has made possible to confirm the 

regulative role of exosomes in intercellular communication, was the demonstration 

that they enclose nucleic acids. Microarray analysis allowed Valadi and colleagues 
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(2007) to describe for the first time about 1300 genes in exosomes from mouse and 

human mast cell lines. Then they showed that mRNAs and microRNAs (miRNAs) 

contained in exosomes can be functional in target cells since in these cells new 

proteins were found [37]. After this finding, numerous other studies described the 

presence of small RNAs (mRNA and microRNA) and ribosomal 18S and 28S RNAs in 

exosomes purified from other human cells [56]. MicroRNAs are small non-coding 

RNAs, which regulate numerous developmental and physiological processes by 

targeting mRNAs, causing their degradation and downregulation of protein expression. 

miRNAs have attracted a greater interest among molecules contained in exosomes due 

to their regulatory roles in gene expression. It is well known that pre-miRNAs in the 

nucleus, after Drosha processing, are exported into the cytoplasm by Exportin-5 (Exp5) 

where they are digested by the cytoplasmic ribonuclease III-like endonucleases Dicer 

[57]. Likewise, the sorting of mature miRNAs in exosomes is specifically regulated. It 

was found that the 3’ portion of miRNA sequence presents some sorting signals. For 

example, GGAG motif is recognized by sumoylated heterogeneous nuclear 

ribonucleoproteins A2B1 (hnRPNsA2B1) which import specific miRNAs in exosomes. 

miRNAs with 3’-end uridylated are preferably distributed inside B cells derived-

exosome differently from the B cells where adelylated endogenous miRNAs are found. 

The neural sphingomyelinase 2 (nSMase2) was demonstrated to be involved in 

exosomal microRNA secretion in cancer cells. The human AGO2 protein mediates the 

interaction among mRNA and microRNA, but recently it has been found a potential 

involvement of this protein in exosomal miRNA sorting. These evidences suggest that 

miRNAs are not randomly incorporated in exosomes. Indeed, miR-451 is highly 

expressed in HMC-1 and HEK293T cell lines or in primary T lymphocytes while miR-320 

family members are widely included in exosomes from normal and tumour tissue. The 

expression level of miR-21 is lower in exosomes isolated in serum from healthy donors 

than in glioblastoma patients, and let-7 family are abundant in gastric cancer-derived 

exosomes but not in other cancer cell lines. Interestingly, exogenous miRNAs from 

viruses can also enter exosomes in order to use them as a vector towards non-infected 

cells [58].  

Several studies showed that short DNA sequences are in exosomes too. Mitochondrial 

DNA was found in exosomes from myoblasts [59] and single-strand DNA was isolated 
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in microvesicles from glioma cell line [60]. Kahlert et al.(2014) identified for the first 

time the presence of double-stranded genomic DNA in exosomes from pancreatic 

cancer cell lines and in serum patients [61]. Gradually, other studies have confirmed 

the presence of DNA in exosomes from cancer cell lines and in plasma samples from 

cancer patients, as well as from seminal fluid, blood and urine [62].  

3.1.4 Roles of exosomes in cancer  

Tumour cells have the capacity to create a microenvironment where normal cells are 

recruited in order to support tumour cells survival and propagation. Tumour-derived 

exosomes play an important role in the communication between cancer cells and 

tumour environment. The extracellular matrix (ECM) is an important component of the 

primary tumour as evidenced by several studies that suggested that stromal cells are 

stimulated by tumour-derived exosomes to secrete biological factors such as the 

oncogenic receptor EGFRvIII20, Matrix Metalloproteinase 9, Vascular Endothelial 

Growth Factor, Interleukin 8 that promote tumour metastasis. In addition, exosomes 

could induce ECM degradation with important consequences on tumour cell motility, 

adhesion and invasiveness [63]. Moreover, they support the metabolic demands of 

colonizing tumour cells through the promotion of angiogenesis. It has been found that 

endothelial derived exosomes included and transferred to other endothelial cells Dll4 

which inhibited Notch signalling stimulating the formation of capillary-like structures 

[64]. Exosomes from LAMA84 chronic myeloid leukaemia (CML) cells secreted IL-8 

mediating activation of VCAM-1 and so inducing vascular differentiation [65]. Hypoxia 

is a specific trait of tumour microenvironment and tumour-derived exosomes can 

mediate intercellular signalling in this condition too. It has been demonstrated that 

exosomes from glioblastoma multiforme (GBM) cells, which grow under hypoxic 

condition, significantly stimulated angiogenesis compared with those produced in 

normoxic envirorment [66]. Exosomes also play an important role in the development 

of cancer drug resistance, which is caused by several factors, such as: the epigenetic 

suppression of tumour suppressor proteins activated by miRNAs, the role of 

desmoplastic reaction as drugs barrier, the presence of stem-like cells that are highly 

resistant [43].  
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3.1.5 Exosome isolation and quantification techniques 

Techniques that allow exosomes isolation from different body fluids or cell culture 

supernatants are based on vesicle physical properties, such as size and density. The 

choice among these techniques usually depends on sample volume and downstream 

applications. Differential ultracentrifugation is considered the standard method for the 

isolation of these nanovesicles and it has been the most commonly used for several 

years. This method uses successive centrifugations at increased speeds in order to 

eliminate dead cells and large cell debris. Pellets consisting of smaller particles are 

gradually discarded until the final supernatant, which is centrifuged at the high speed 

of 100000 g for several hours. The resulting pellet consists of exosomes [67]. However, 

extravesicular protein complexes or lipoproteins can contaminate the exosome pellet 

because they sediment at the same speed. Density gradient ultracentrifugation 

separates particles depending on their density by using a sucrose solution at different 

concentrations. The latter method can be used as a continuation of ultracentrifugation 

protocol with the purpose of separating exosomes from non-vesicles contamination, 

obtaining a purer exosome fraction. Disadvantages of both methods are the time 

necessary for the overnight spins and the need for extensive sample handling. Because 

of low-volume and large numbers of clinical samples, ultracentrifugation is not 

appropriate for routine clinical practice [67, 68]. An alternative method consists in 

commercial kits such as ExoQuick™ (System BioScience) or Exosome Isolation Reagent 

(Life Technologies) which precipitate exosomes using water to exclude polymers. They 

are easy to use and do not require ultracentrifuging but only low speed centrifugation 

to obtain the exosome pellet. Nevertheless, exosome yields are variable and the purity 

can be affected by protein association [69].  

When exosomes are purified, their quantification can be accomplished by different 

approaches. Nanoparticle tracking analysis (NTA) examines the light scattering 

produced by particle movement under Brownian motion in liquid suspension. A 

drawback of this method is that it cannot discriminate between exosomes or small 

debris of the same size range because it does not identify the composition (proteins, 

lipids, etc.) of the particles [22]. Flow cytometry is an effective method for the 

quantitative and qualitative analysis of cells and it could be adopted for extracellular 

vesicles even though with several difficulties due to their small size and low refractive 
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index. The most used protocol for flow cytometry consists in labelling isolated 

exosomes with lipophilic dye PKH67 and antibodies, but it is not easy to calibrate the 

machine and necessitates an experienced operator [70]. Exosomes can also be bound 

to beads coupled with antibodies that guarantee a large surface and high specificity 

but the detection is dependent on the antigen availability [70]. 

Enzyme linked immunoassay (ELISA) is a commonly used method for protein detection 

and quantification. It is based on highly specific non-covalent antigen-antibody binding 

in samples containing myriads of different proteins. There are different formats of this 

assay. The key step is the antigen immobilization that can be carried out by the direct 

adsorption to the plate or through the capture antibody that has been attached to the 

plate. Then, the antigen can be detected by labelled primary antibodies (direct ELISA) 

or by labelled secondary antibodies, which specifically recognize the primary one 

(indirect ELISA). Another format is called ELISA sandwich because the antigen is bound 

between the capture antibody and the detection antibody. The antibodies can be 

labelled with an enzyme which catalyses the conversion of chromogenic substrates 

into coloured product (colorimetric ELISA), becomes fluorescent (immunofluorescence 

assay) or chemiluminescent (chemiluminescence analysis). Immunoassays seem to 

have more advantages for exosomes isolation compared to the other mentioned 

precipitation based techniques. Indeed, this method results in an elevated efficiency of 

recovered exosomes from complex matrices like body fluids and it is much more 

specific due to the antibodies that can identify one of the different proteins expressed 

on exosome surfaces. ELISA assay has been demonstrated to be a robust method for 

the detection and quantification of disease-derived exosomes in human biological 

samples and tumour models [69, 71].  

 

In this work, I have first optimized an ELISA protocol in order to isolate the exosome 

fraction from human plasma samples in order to maximise the signal of plasma 

samples and reduce the background noise. Specifically, I have evaluated the most 

suitable blocking agent, washing solution and antibody dilution buffer. 

The obtained protocol was used for the project funded by an AIRC (Associazione 

Italiana per la Ricerca sul Cancro) grant and in collaboration with the Medical Oncology 

Unit of Ospedali Riuniti Ancona. Blood samples were collected from PDAC patients 
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before and after chemotherapy treatment in order to measure, through our 

customized protocol, levels of different exosome populations by using primary 

antibodies that bind both ubiquitous (CD9, CD81, Alix) and tumour markers on the 

exosome surface. Pointedly, we measured those proteins which have been already 

found in tumour exosomes of pancreatic cancer such as CD44v6, Tspan8, EpCAM [72] 

or other pancreatic cancer initiating cells (CICs) markers: CD24, CXCR4, Integrins α6 

and β4, CD133 [73, 74] that are transferred on exosome membranes. This could allow 

the identification of a potential correlation between the levels of exosomal biomarkers 

and treatment efficacy. 
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3.2 Materials and Methods 

3.2.1 Patients 

Sixteen patients were selected for the enrolment in the study by the Medical Oncology 

Unit of Ancona. One patient, P7, was enrolled after having received radical surgery for 

PDAC with no signs of disease relapse at the time of admission into the study. The 

remaining 15 were patients with metastatic/locally advanced pancreatic cancer that 

were treated with palliative chemotherapy. Specifically, 13 patients (P1, P4, P5, P6, P8, 

P9, P10, P11, P12, P13, P14, P15, P16) had metastatic disease upon study entry 

whereas the remaining two (P2 and P3 patients) had locally advanced, and so, 

unresectable pancreatic cancer. Ten patients received as first-line chemotherapy 

Gemcitabine in combination with Nab-Paclitaxel whereas three patients received 

FOLFIRINOX. The remaining two patients received Gemcitabine palliative 

chemotherapy alone. 

Disease 

Status 
Patients Time Sampling (Months) 

metastatic  

P1  0     3     

P4 0 
  

3 
  

P5 0 
  

3 
  

P6 0 
 

2 3 6 
 

P8 0 1 2 3 6 8 

P9 0 1 
    

P10 0 1 2 3 6 
 

P11 0 1 
  

6 
 

P12 0 1 
 

3 
  

P13 0 1 
 

3 
  

P14 0 1 
 

3 
  

P15 0 1 
    

P16 0 1   3     

locally 

advanced  

P2 0     3     

P3 0 
  

3 
  

resectable 

tumour 
P7 0 1 2 3     

 

Table 1 List of enrolled patients with their disease status at the time of admission into the study and 

blood sampling time. 

  



25 

 

3.2.2 Blood samples 

Blood samples were taken before chemotherapy treatment (T0) and, when possible, 

after one, two and three months (T1, T2, T3). Only in a few cases blood samples were 

taken six (T4) and eight (T5) months after the treatment (Tab. 1). Plasma was separated 

from blood cells by centrifugation of 1100 g for 20 minutes at room temperature. 

Supernatant was then centrifuged at 10000 g at 4°C for 7 minutes and pellet with cell 

debris was then discarded. Finally, plasma samples from each patient were stored at -

80°C until use. Moreover, pooled blood samples were used in order to test several 

different ELISA conditions.  

3.2.3 Reagents 

The following primary and secondary antibodies were used for exosome 

characterization in ELISA. Mouse monoclonal antibodies anti-human CD9, CD81 and 

CD24, Caveolin-1 and Fibronectin were purchased from BD Pharmingen (Milano, Italy).  

Mouse monoclonal anti-human TSPAN8 was purchased from Sigma-Aldrich (Milano, 

Italy). Mouse monoclonal antibodies anti-human CD133, PD-L1, CXCR4, EpCAM, 

Integrin α6, Integrin β4, CD44s and CD44v6 (R&D System, Minneapolis, USA) were 

reconstituted with sterile PBS to a stock solution. Mouse monoclonal antibodies anti-

human CD151 and Alix were from Santa Cruz Biotechnology (Milano, Italy). Goat Anti-

Mouse Biotin conjugated was used as secondary antibody (Thermo Fisher, Monza, 

Italy). Streptavidin Poly-HRP (Thermo Scientific) is used to amplify the signal.  

3.2.4 ELISA assay 

Transparent Nunc MaxiSorp™ flat bottom 96 well plates (ThermoFisher), with high 

protein-binding capacity (600-650 ng IgG/cm
2
), were used for the ELISA assay 

according to the following protocol: 

1. Blocking procedure. 1 hour and 30 minutes at room temperature (RT) under 

shaking.  

As blocking agents were tested: i) 1% of Bovine Serum Albumine (BSA) protease 

and fatty acid free (Sigma Aldrich) in PBS, ii) 1% casein (Sigma Aldrich) in PBS, 

iii) Tween-20 (PanReac Applichem) 0,1% in PBS, iv) 0,2% polyvinylpyrrolidone 

(PVP) (Sigma Aldrich) in PBS, v) ethanolamine 1M in PBS (Sigma Aldrich).  
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2. Washing of the plate. Three times by using Thermo Scientific™ Wellwash™ Versa 

Microplate Washer.  

Four different washing buffers were tested: i) PBS with 0,05% of Tween-20, ii) 

PBS with 0,1% of Tween-20, iii) PBS with a double amount of NaCl (274mM), iv) 

PBS with a double amount of NaCl (274mM) plus 0.1% Tween-20 (PBST-NaCl). 

3. Sample incubation. A 100 μl plasma sample from each patient was added to the 

wells of the plate and incubated overnight at 4°C. 

4. Washing. 

5. Primary antibody incubation. 1 μg/ml of primary antibodies was incubated for 3 

hours at RT. 

6. Secondary antibody incubation. 50 ng/ml of secondary antibody biotin 

conjugate was incubated for 45 minutes at RT under shaking. 

7. Washing. 

8.  Streptavidin Poly-HRP incubation. 50 ng/ml, 45 minutes at RT under shaking. 

The antibodies and HRP were tested in five different dilution buffers: i) PBS, ii) PBS 

with 0,1% Tween-20, iii) PBS with 0,05% Tween-20, iv) PBS with 274mM NaCl and 

0,05% Tween-20, v) PBS with 274mM NaCl, 0.5% BSA and 0,05% Tween. 

9. Washing.  

10. Substrate addition. The substrate solution 1-Step™ Ultra TMB-ELISA (Thermo 

Fisher) was added for 20 minutes at RT under shaking to detect horseradish 

peroxidase (HRP) activity, yielding a blue colour. 

11.  Reactions stop. A 2M sulfuric acid stop solution was added to each well, 

changing the blue colour of TMB into yellow. 

12. Measurement. In order to measure the absorbance (Abs) at 450 nm of each 

well, Multiskan™ FC Microplate Photometer (Thermo Scientific) was used.  

3.2.5 Data elaboration  

Absorbance from each well was multiplied by 1000 in order to process data more 

easily. Absorbance values of the samples (signal) were normalized dividing them by the 

blank value of the same plate (noise) to obtain the signal/noise ratio. 
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3.3 Results 

3.3.1 Evaluation of the best washing and blocking buffers 

The term “blank” refers to those wells where, instead of plasma sample, PBS was 

added with the aim to quantify only the nonspecific signal due to the binding of the 

antibodies to the plate surface. The term “signal” refers to the absorbance measured 

in wells with the plasma samples. One of the goals of the protocol optimization phase 

is to reduce the absorbance values of the blank wells (noise or background) as much as 

possible, in order to have the highest signal/noise ratio. Washing and blocking 

procedures are crucial in ELISA assays to reach this goal. 

By using the appropriate washing buffer, it is possible to remove all the unbound 

molecules in the wells without to dissociate those antibodies specifically bound to the 

proteins. The washing is performed three times between an incubation and the next. 

The most common washing buffer is usually PBS with variable percentages of Tween-

20. I tested PBS with 0,05% or 0,1% Tween-20 and I found that 0,1% concentration was 

the most effective in reducing noise. Moreover, the addition of NaCl further helped the 

reduction of unspecific bounds (data not shown). The last washing was performed 

without Tween-20 because it has the tendency to inhibit the reaction of HRP with the 

substrate TMB. 

The blocking procedure is useful to saturate the unoccupied spaces of the wells that 

could interact non-specifically with the proteins. There are various agents that could 

be used as blockers, usually classified into two major categories: proteins and 

detergents. Among protein-based agents, BSA and casein were tested and, as non-

ionic detergent, 0,1% Tween-20 in PBS was chosen. I have also tested 

Polyvinylpyrrolidone (PVP), an idrosoluble polymer and the organic chemical 

compound Ethanolamine. The results of the representative experiment are reported in 

Table 2, which shows that the most effective blocking buffer is 1% BSA in PBS. Indeed, 

the absorbance of the blank after BSA treatment was lower (Abs=54) than other blanks 

(Tween Abs=709; casein Abs=684; PVP Abs=147; ethanolamine Abs=1003). On the 

contrary, the signals, compared to the blanks, resulted similar or in some cases lower 

than blanks with all the blocking agents (Tween Abs=739; casein Abs=709; PVP Abs=99; 

ethanolamine Abs=849) with the exception of BSA (Abs=769).  
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Blocking  Sample Absx1000 S/N 

PBS+0,1% 

Tween 

Plasma 739 
1,04 

Blanck 709 

Casein 1% 
Plasma 709 

1,04 
Blanck 684 

BSA 1% 
Plasma 769 

14,24 
Blanck 54 

PVP 0,2% 
Plasma 99 

0,67 
Blanck 147 

Ethanolamine 

1M 

Plasma 849 
0,85 

Blanck 1003 

 

Table 2 Comparison of different blocking solutions. Human anti-CD9 has been used as primary antibody. 

Absx1000: Absorbance multiplied by 1000. S/N: ratio of signal (plasma) to blank.  

 

3.3.2 Evaluation of the appropriate antibody dilution buffer 

In order to increase sensitivity and decrease nonspecific signals, I needed to test 

different dilution buffers for the antibodies. First, I compared three different buffers 

where the primary antibody CD9 was diluted at 1μg/ml: i) PBS, ii) PBS+0,05% Tween 

and iii) PBS+0,1% Tween. I obtained the highest signal/noise ratio with PBS+0,05% 

Tween (Plasma Abs=820; Blank Abs=55; S/N=14,91) (Tab. 3). Then, I checked whether 

there is an improvement by doubling the concentration of NaCl in PBS (referred as 

2NaCl-PBS), both with and without 0,5% BSA. According to the results showed in Table 

3, I decided to choose the following composition: 2NaCl-PBS + 0,05% Tween + 0,5% 

BSA (Plasma Abs=890;Blanck Abs=55; S/N=16,18). 
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Dilution buffer sample Absx1000 S/N 

PBS 
Plasma 760 

7,52 
Blank 101 

PBS+0,1% Tween 
Plasma 773 

12,88 
Blank 60 

PBS+0,05% Tween 
Plasma 820 

14,91 
Blank 55 

PBS+0,05% Tween 
Plasma 815 

15,38 
Blank 53 

2NaCl-PBS+0,05% 

Tween 

Plasma 842 
13,80 

Blank 61 

2NaCl-PBS +0,05% 

Tween+0,5% BSA 

Plasma 890 
16,18 

Blank 55 

 

Table 3 Comparison of different dilution buffers for antibodies. Human anti-CD9 has been used as 

primary antibody. Absx1000: Absorbance multiplied by 1000. S/N: ratio of signal (plasma) to blank 

 

3.3.3 Characterization of exosome tumour markers from plasma of PDAC patients 

After the optimization phase, the customized ELISA protocol was used in order to 

quantify 16 different exosomal protein markers in plasma samples from 16 PDAC 

patients. From some patients, only plasma samples before the start of chemotherapy 

treatment (T0) and three months after (T3) were collected, as reported in Table 4. 

Principal tumour exosome markers were evaluated and their absorbance values were 

multiplied by 1000 and successively normalized dividing each sample values with the 

blank value. Patients P1, P4 and P5 at the time of the admission in the study had a 

metastatic disease, whereas P2 had locally advanced tumour, probably with micro-

metastasis as suggested by the CA19-9 serum level. Three months after chemotherapy, 

these patients showed increased levels of exosomal EpCAM, Integrin β4, CXCR4 and 

CD24, with the exception of P5, who showed lower values at T3 than T1 (Tab. 4). 

However, all patients in this group had a dismal prognosis. For this reason, I assume 

that the low exosome marker levels in P5 were due to an error in performing this 

specific test. 
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   Integrin 

α6 

Integrin 

β4 
       

  CD9 CD81 EpCAM CD44v6 CD44s CXCR4 Tspan8 CD24 CD151 Caveolin 

P1 
T0 14,5 3,4 3,2 9,6 2,4 2,1 3,6 5,2 1,7 2,3 

  

T3 12 2,4 17,1 3,7 5,3 2 3,9 17,2 1,4 2,6 
  

P2 
T0 5,5 4,7 6,3 5,7 5,3 4,5 4,9 5,5 4,2 4,6 

  

T3 10,5 4,9 20,7 6,1 11,2 5,1 6,2 17,6 2,9 4,7 
  

P4 
T0 8,3 3,5 2,9 3,3 2,3 2 3,4 5,3 1,9 2,1 

  

T3 13,9 3,1 13,5 4 4,4 2 2,7 14,8 1,3 2,7 
  

P5 
T0 18,6 3 21,4 4,4 6,5 2,5 3,3 17,5 1,9 4,3 1,8 2,6 

T3 26,8 5,3 1,7 1,6 1 5,4 2,1 8 3,4 3 1,7 0,7 

 

Table 4 Principal exosome markers evaluated in plasma samples of PDAC patients (P1, P2, P4, P5). Blood samples taken at the start of chemotherapy (T0) and three months 

after the treatment (T3). Numbers refer to Abs values x 1000 normalized for the blank values.  
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Successively, in order to better analyse the effects of treatments and the disease 

progression, blood samples were also taken at the one month (T1), two (T2) and three 

(T3) months timepoints after chemotherapy. T3 is when the patients had to undergo to 

radiological evaluations. Blood samples were also taken at six (T4) and eight (T5) 

months, when possible (Tab. 5a, 5b, 5c). 

Patient P3 had locally advanced disease (T0) and, as well as P2, its plasma levels of 

EpCAM, Integrin β4, CXCR4 and CD24 increased at T3 timepoint. However, these 

markers showed a decrease at T4 that was unexpected since P3 also progressed and 

died. Patient P6 had been diagnosed with metastatic pancreatic ductal 

adenocarcinoma at the admission in the study (T0). Our test showed that only Integrin 

α6 and CXCR4 increased, whereas other markers such as EpCAM, Integrin β4, CD151 

decreased their levels. At the follow-up, the tumour showed signs of progression but, 

however, it seems that palliative chemotherapy had shown efficacy since P6 is still 

alive. Exosome markers remained unvaried for the patient P7, with the exception of 

CXCR4, which showed a slight increase. P7 is the only patient with resectable tumour 

and no signs of disease relapse. P8 patient, with metastatic disease, showed increased 

levels of different exosomal markers: EpCAM, CD44s, CD24 and CD151. At the follow-

up (T3), CD44v6 had been decreased, probably due to a beneficial effect of 

chemotherapy, but at T5 its level recurred high as at the T0. P8 had a progression even 

if its survival was longer than the other patients (Tab. 5a). 

Patients from P9 to P16 have been diagnosed with metastatic disease. Levels of 

CD44v6 and Tspan8 increased at the follow-up in P10, P12, P13, P14 and a growth of 

EpCAM and CD24 in P10, P12 and P13 was observed (Tab 5b, 5c). Patient P16 have 

showed reduced levels of EpCAM, CXCR4 and CD24 while Integrin β4, CD44v6 and 

Tspan8 increased (Tab 5c). In this group, P10 and P16 displayed a progression at three 

months and P12 at the follow-up, successively P10 and P12 died. 

Interestingly, I observed that immediately after chemotherapy (T1) some of the 

exosome markers showed a decrease of levels in plasma patients, followed by a 

growth after two or three months. In particular, exosome markers that followed this 

trend were: CD24 (P6, P7, P13, P14, P16), CD151 (P7, P10, P12, P14, P16), Integrin β4 

(P8, P12, P14, P16), CD44v6 (P6, P10, P13, P16), Caveolin-1 (P7, P10, P14, P16), PD-L1 

(P7, P10, P14, P16), Integrin α6 (P6, P14, P16) and CD133 (P13, P14, P16). Their trend 
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could be connected with the worsening of the health conditions and to the poor 

survival, indeed P6, P8, P10, P16 progressed under chemotherapy treatment and P10 

died. 
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CD9 CD81 Epcam 
Integrin 

α6 

Integrin 

β4 
CD44v6 CD44s CXCR4 Tspan8 CD24 CD151 Caveolin  PD-L1 ALIX CD133 Fibronectin 

 T0 6,2 2,8 2,5 3,9 1,8 1,6 2,5 5,1 1,4 1,8 1,5 

    P3 T3 7,3 3,6 16,3 2,5 4,8 1,7 3,4 15,3 1,4 3,2 1,2 

     T4 10,4 4,7 2,7 1,7 0,3 1,4 2,6 5,2 1,3 1,2 1,3 1,3         

P6 

T0 26,5 5,1 4,7 1,2 2,5 2,8 3,6 2,6 5,9 1,8 2,6 1,6 0,8 

T2 24,8 6,3 2,6 1,0 1,8 1,2 4,0 3,2 7,7 1,6 2,2 1,8 1,1 

T3 32,1 4,7 2,1 2,4 1,8 1,1 4,1 3,5 6,8 1,8 1,8 1,1 0,7 

T4 4,1 4,6 1,3 7,6 1,8 1,9 3,5 8,8 0,9 1,8 1,8 1,5 2,5 1,4 3,2 5,3 

P7 

T0 24,4 13,4 6,7 2,4 1,7 2,0 3,6 4,0 6,1 4,6 4,1 2,7 2,2       

T1 22,6 12,2 7,0 2,9 3,1 2,1 2,7 4,7 6,3 2,6 3,6 1,8 1,4 

T2 23,4 15,4 5,4 2,1 2,4 2,3 2,5 5,1 7,2 3,0 4,1 6,7 3,5 

T3 16,3 13,2 5,0 1,5 1,9 1,8 3,2 6,4 6,0 3,3 3,0 2,8 2,1       

P8 

T0 35,5 14,7 1,0 2,1 3,0 3,6 4,0 8,7 1,7 2,8 1,3 1,1         

T1 38,5 8,2 1,2 2,1 1,1 5,6 3,1 8,6 3,9 3,0 1,7 0,9 

T2 7,3 6,2 1,3 9,1 1,8 1,6 4,7 9,6 0,8 1,3 1,4 1,8 

T3 12,6 5,7 1,3 5,3 1,9 1,9 5,2 8,4 0,9 1,8 1,6 1,9 

T4 17,9 13,7 3,9 2,6 1,8 2,6 11,4 2,9 2,1 4,6 2,3 1,9 2,8 3,3 4,5 7,2 

T5 20,8 6,5 2,4 1,5 2,6 3,4 4,5 1,5 1,6 3,3 1,9 1,6 2,7 2,3 4,0 7,5 
 

Table 5a  
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Integrin 

α6 

Integrin 

β4                CD9 CD81 Epcam CD44v6 CD44s CXCR4 Tspan8 CD24 CD151 Caveolin  PD-L1 ALIX CD133 Fibronectin 

P9 
T0 13,9 8,9 8,3 2,8 3 2,7 7,6 3,8 3 8,3 4,1 2,9 5,7 3,3 5,4 7,8 

T1 9,1 6,3 6,3 2,4 2,3 2,4 5,6 2,6 2,2 4,2 3 3,4 4,9 2,6 3,4 4,7 

P10 

T0 11,2 9,8 2,1 7 3,4 3,1 8 9,1 1,7 2,9 3,1 3,7 2,8 2,4 3,8 14,8 

T1 12,9 10,9 1,6 7,1 3 3,1 9,1 8,6 1,5 2,7 2,8 2,8 2,4 2,6 3,9 18,5 

T2 10,1 11,3 1,8 8,4 3,5 3,1 11,3 9,3 1,6 2,9 3 4,6 2,5 2,6 3,3 13 

T3 10,8 11,4 4 3,6 3 4 11,9 3,3 3 4,1 3,8 3,2 4 3,5 4,1 9,6 

T4 21,6 9,6 4,7 2,1 3,3 3,8 6,3 2,2 3 4,5 3,5 2,7 4,6 4,4 5,4 9,9 

P11 
T0 17,9 5,8 2,8 2,3 1,8 2,2 4 2,5 2,2 3,5 2,2 2,1 2,9 2,6 3 4,7 

T1 4,7 5,5 2,7 1,5 1,5 1,6 2,6 1,8 1,6 2,2 1,7 1,5 2,2 1,6 2,3 4,3 

P12 

T0 10,3 4,4 1,2 8,7 1,9 1,5 3,3 8,1 0,9 1,5 1,5 3,9 2,2 1,2 3,1 6,3 

T1 11,1 5,3 1,3 7,5 1,9 2,8 3,7 9,8 1 1,7 1,4 2,1 2,5 1,3 2,9 7,8 

T4 4,9 2,6 2 0,9 4,3 2,6 2 1,1 2,1 2 1,6 1,4 2,3 1,4 2,8 2,5 
 

Table 5b 
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Integrin 

α6 

Integrin 

β4                CD9 CD81 Epcam CD44v6 CD44s CXCR4 Tspan8 CD24 CD151 Caveolin  PD-L1 ALIX CD133 Fibronectin 

P13 

T0 15,9 6,6 1,4 1,5 1,7 3,5 2,6 1,5 1,8 6,3 2,1 2 2,2 1,7 2,8 10,7 

T1 37,5 6,7 1,6 2 1,7 2,7 3 1,5 2,1 5 2,1 2 2,3 2,3 2,5 12,4 

T3 30 8,9 2 1,1 1,7 3,3 4,6 1,8 2,2 7,1 1,8 1,7 3,1 2,1 4,9 6,6 

P14 

T0 19,7 12,4 2 1,5 1 1,3 1,1 2,2 1 5,3 5,8 1,4 1,6 1,3 2,7 17,4 

T1 8 3,9 2,2 1,1 1 1,4 3,1 2,2 0,9 2,3 1,1 1,2 1,5 1,5 1,6 16,1 

T3 15,1 4,6 1,4 1,5 1,4 3,3 1,9 1,4 1,5 2,8 1,7 1,6 2,5 1,6 2,7 4,3 

P15 
T0 7,3 5,8 2,2 1,3 1,1 1,3 7,8 2,6 1,3 3,1 1,2 1,7 2 1,3 2 13,6 

T1 6,6 7,7 2,4 1,2 1 1,6 4,8 2,4 1 2,5 1,2 1,3 1,7 1,7 1,9 16,2 

P16 

T0 26,3 8,4 2,6 2,6 1,5 2 9,2 2,9 1,2 10,2 2,6 3,6 3,1 3,7 6,9 23,9 

T1 45,3 6 2,5 1,8 1,1 1,8 6,4 2,6 1,3 5,8 1,8 2,3 2,2 2,2 3,2 14,2 

T3 21,4 5,5 1,8 2,3 2 3,1 4 1,9 2,6 7,1 2,4 4 2,5 2,6 3,7 8,5 

 

Table 5c  

Principal exosome markers evaluated in plasma samples of PDAC patients (P3, P6-P16). Blood samples taken before chemotherapy (T0), at one month (T1), two months (T2), 

three months (T3), six months (T4) and eight months (T5) after chemotherapy. Numbers refer to Abs values x 1000 normalized for the blank values. 
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3.4. Discussion 

3.4.1 Elisa assay development and optimization 

Enzyme-linked immunosorbent assay (ELISA) is a quantitative technique, highly specific 

and sensitive, which allows the measuring of molecules of interest even using complex 

matrices such as human plasma or serum. However, it is a time-consuming procedure 

because it consists of various incubation steps, one overnight, alternated with several 

washings, and it requires an extremely high precision from the operator in order to 

have all the wells comparable and reliable. Moreover, due to the high capacity of the 

plate to bind proteins, it is easy to detect false-positive results. For these reasons, 

before starting with the actual measurements of samples from the patients enrolled in 

the study, I performed different experiments in order to detect only exosomal proteins 

and minimizing unspecific signals. 

Washing procedures are crucial in removing all the unbound proteins. It is important 

that all the wells are filled with the same volume, soaked for the same time and 

eventually quickly and simultaneously emptied. The microplate washer, used in this 

work, helped to perform this procedure in a standardized manner, which guarantees 

that the different signals among wells are not caused by different washing intensity. 

Commonly, a solution of PBS and Tween-20 is used for the washing method. I found 

that an increased concentration of NaCl into the buffers provides a better washing. 

The comparison among different buffer compositions led me to choose a composition 

of PBS with 274mN NaCl (2NaCl-PBS) with the addition of 0,1% Tween.  

The absence of standardized blocking procedures suitable for all the ELISA applications 

is well known. The two major classes of blocking agents are detergents and proteins. 

Regarding the first class, non-ionic detergents such as Tween-20 or Triton-X, are the 

most used but they are considered weak blockers that do not offer a stable barrier. 

This consideration is congruent with the results showed in Table 2, where blocking 

with Tween-20 gave comparable absorbance values between sample and PBS 

incubation. On the contrary, proteins are permanent blockers and the most widely 

used for ELISA assays as reported in literature [69, 71, 75-77]. Here I compared two 

different types, bovine serum albumin and casein. Although both determined the same 

signal intensity with plasma, somehow primary or secondary antibodies bound 

unspecifically with casein but not with BSA, as showed in Table 2. An alternative 
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compound, not belonging to the two already mentioned classes, is 

Polyvinylpyrrolidone (PVP), a water-soluble polymer that has already shown good 

blocking properties in some studies for its ability to cover hydrophobic surface and to 

detect small proteins [78-80]. Here, PVP prevented plasma proteins to bind to the well 

(Abs= 99) while the corresponding blank well resulted in a slightly increased signal 

(Abs= 147); these outcomes highlighted that PVP is not an ideal blocker for the 

experimental setup used in this study. Ethanolamine, even if used in immunoaffinity 

assays, did not appear suitable for the blocking process (plasma Abs= 849; blanck 

Abs=1003). According to the results obtained, I used BSA for the analysis with PDAC 

plasma samples. 

Finally, I needed to test different compositions of the dilution buffer for the antibodies. 

Table 3 shows that higher concentration of Tween-20 may inhibit the specific binding 

antigen/antibody. As a compromise, I chose a smaller percentage (0,05%) of Tween-20 

because using only PBS the sensitivity was reduced. Then, I tested the effect of the 

increased concentration of NaCl into the buffer (2NaCl-PBS) with or without a small 

quantity of BSA. I found that the buffer composed of 2NaCl-PBS + 0,05% Tween-20 + 

0,5% BSA guaranteed the specific signal of the antibodies and suppressed the 

background. The positive cooperation of NaCl and BSA in dilution buffers was also 

previously described [81]. 

These experiments demonstrated the importance of verifying the suitability of each 

component in an ELISA assay, especially when biological matrix are analysed, since by 

using different agents it is possible to obtain different outcomes that could completely 

alter the final interpretation. 

3.4.2 Exploring correlations between exosomal markers and clinical variables  

Pancreatic ductal adenocarcinoma is one of the most aggressive gastrointestinal 

tumours, with a five-year survival rate of 6%. It is often diagnosed at an advanced 

stage, when only chemotherapy treatment is possible, whereas only 10-20% of 

patients have resectable disease. Exosomes have been considered interesting tumour 

markers that could be quantified in a non-invasive way in human body fluids. In this 

work, I investigated the relation between the levels of exosome in plasma samples, 

measured by ELISA assay using principal exosome proteins, and the therapeutic 
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outcomes. Fifteen patients with metastatic or locally advanced pancreatic ductal 

adenocarcinoma that could be treated with palliative chemotherapy and one patient 

that had received radical surgery of the tumour were enlisted in this study. Plasma 

samples from each patient were split with other two research groups, involved in the 

same project, in order to carry out further analysis regarding circulating tumour cells 

(CTC) and exosome miRNA profiling. For this reason, the received volume of plasma 

was not enough to perform replicates of each protein marker. Moreover, PDAC 

patients were, at the time of admission in the study, in different health conditions 

(Tab. 1) that make it difficult to compare exosome plasma levels at T0. Furthermore, 

we expected that the number of enrolled patients was substantial in order to 

effectively detect correlations between exosomal markers and clinical variables.  

In our results, it emerged that at T1 some of the exosomal markers underwent a 

decrease, leading me to suppose a positive chemotherapy effect. However, after only 

two or three months, CD24, CD151, CD44v6, Caveolin-1, Integrin β4 and PD-L1 started 

to increase their levels in some patients in parallel with their health state worsening. 

These proteins could be considered candidate biomarkers in PDAC. In a recent study, it 

has been demonstrated that anti-myeloma drugs stimulated secretion of cancer 

exosomes with altered composition, leading to tumour cells survival and 

chemoresistance [82]. It could be possible that chemotherapeutic agents used in PDAC 

treatment enhanced secretion of exosomes by tumour cells, implicating an 

exacerbation of the disease status in examined patients. 

Among exosome proteins evaluated in this work, CD24, CXCR4, EpCAM, CD44v6 and 

Tspan8 may be biomarker candidates for pancreatic cancer since they exhibited a 

steady growth starting from T0 in our patients. 

CD24 is a surface marker of cancer stem cells and it has been found expressed in 

several pancreatic cancer cell lines [83]. It was recognized as a cancer marker, 

associated with poor prognosis, in ovarian carcinomas and it could have been released 

into the extracellular environment via exosomes because it was found in the cytoplasm 

inside MVBs [83, 84]  

In some patients (P2, P4, P6, P7, P13), CXCR4 showed an increase of its plasma level at 

the follow-up. CXCR4 could be a potential marker of tumour relapse or progression. It 

should be noted that the CXCR4 increase occurred also in P6 and P7 that are, 
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respectively, the patients with a prolonged survival and resectable tumour, suggesting 

that their disease could have progressed. CXCR4 is a G protein-coupled chemokine 

receptor that is upregulated in migrating cancer stem cells and its involvement has 

been suggested in angiogenesis, tumour growth and therapy resistance. It has been 

demonstrated, by immunohistochemistry or microarray analysis, that its expression is 

increased in 85% of pancreatic cancers revealing its role as prognostic biomarker [74, 

85, 86]. In another work, immunohistological staining of pancreatic tissues from PDAC 

patients have revealed that CXCR4 expression significantly correlated with lymph node 

metastasis [87]. A comprehensive study that performed a meta-analysis by pooling 

CXCR4 expression data obtained from nine different works confirmed the correlation 

of CXCR4 expression and pancreatic cancer poor prognosis [88].  

EpCAM could be also considered a biomarker since my assays have reported a steady 

increase of its levels in most cases, while in P6 and P7 resulted to be reduced. EpCAM, 

a transmembrane protein, is a known marker of cancer stem cells in pancreatic, liver, 

colorectal and breast cancers [74]. EpCAM, together with CD44v6, has been shown to 

have an increased expression in Panc1 cancer stem-like cells [89]. Recently, a 

proteomic analysis of exosomal membrane has revealed that EpCAM is one of the 

PDAC biomarker candidates, together with CD151, in liquid biopsies from patients [90]. 

Patients P2, P5, P11, P13, P15, showed an increase of CD44v6 levels at T3 timepoint 

that could confirm the previous findings that associated CD44v6 with more aggressive 

tumours and metastasis [73]. 

Tspan8 is a tetraspanin found in tumor-derived exosomes that is involved in epithelial 

cells proliferation and angiogenesis induction [91]. In this study, Tspan8 values 

resulted increased in some patients (P5, P10, P12, P13, P14, P16) that have not 

responded to the therapy.  

In conclusion, this method has provided a first approach for analysing, in plasma 

samples, changes of exosome levels comparing them with the disease status of 

patients in order to find candidate biomarkers of PDAC. However, specific correlations 

have not been highlighted and sometimes problems emerged, for example some 

values at T3, or at successive timepoints, were low even though patient conditions 

were not improved. This could be caused by different plate conditions that may alter 

ELISA results. Moreover, the upstream procedures are crucial to make tests more 
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comparable. It is very important to standardize the sampling phase since many factors, 

such as fasting or postprandial status of the patients, could influence the extracellular 

production by cells [22]. In addition, plasma extraction should be done in the shortest 

possible time after blood sampling because blood cells continue to release exosomes 

during blood storage, thus altering exosome populations [22].  

However, in order to validate the results about exosomes in plasma samples, 

additional replicates would have been necessary. 
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4 Identification of gene and miRNA biomarkers for 

pancreatic ductal adenocarcinoma by weighted gene co-

expression network analysis 

4.1 Introduction 

Microarray technology is a method that has been widely used in the last decade which 

allows researchers to investigate the simultaneously expression levels of more than 

20000 genes in a sample. Many statistical methods proposed for microarray data 

analysis have permitted to identify, among groups of samples (for examples healthy 

and disease samples), individual differentially expressed genes that may provide 

biologically and pathologically relevant information. When differentially expressed 

genes are identified it is possible to perform the functional enrichment analysis in 

order to highlight pathways and biological processes where the identify genes are 

involved. This analysis is usually carried out by web tools such as GOrilla, GSEA, DAVID 

or Ingenuity Pathway Analysis, that are based on GeneOntology terms and KEGG and 

Reactome pathway databases. However, the main problem of the interpretation of 

microarray-based expression data is that only individual genes and not the correlation 

among them are considered, causing often a wrong explanation of biological 

phenomena.  

The network analysis, on the contrary, interprets gene expression data with a global 

approach introducing the connections among genes [92]. A gene co-expression 

network is an undirected graph, constituted by nodes (genes) that, if they are highly 

co-expressed, are connected with edge (link) without orientation. This graph can 

provide several biological information: co-expressed genes can be under the control of 

the same transcription factors, involved in the same functions or can be members of 

the same protein complexes or pathways[93].  

The weighted gene co-expression networks analysis (WGCNA) is one of the primary 

methods, together with Bayesian networks, used to deduce gene networks from 

microarray-based data. WGCNA is based on the concept of a scale-free network with 

the presence of a few highly connected nodes (hubs) with many others poorly 

connected nodes. Such network is robust with respect to the random deletion of 

nodes, but is sensitive to the targeted attack on hub nodes. WGCNA assumes that all 
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genes are connected with a different weight which is quantified from the correlations 

of their co-expression. Highly co-expressed genes connected in a network, i.e. hubs 

with an extensive number of links, can be grouped into modules (highly connected 

regions of the network) which may correspond to clusters of functionally related 

genes. Detecting modules is one of the objectives of WGCNA [92, 94]. This approach 

can be applied to two groups of samples, for example healthy and diseased samples, in 

order to acquire a network for each group and identify the modules that differ 

between the groups. Within each unconserved module, the identification of the hub 

molecules could be useful to find new diagnostic/prognostic biomarkers or novel drugs 

that could target them. WGCNA has been widely employed in oncology in order to find 

cancer-risk modules in various tumours [95-97]. 

During my PhD, I applied for the first time the weighted gene co-expression analysis to 

PDAC-derived data. The results have been published in the Cellular Oncology journal 

[26, 27]. In particular, I have analysed microarray-based gene and miRNA expression 

profiles from tissues and serum samples of PDAC patients and healthy individuals. I 

have applied WGCNA to identify key genes and miRNAs potentially involved in the 

pathogenesis of PDAC and I have also validated them as prognostic biomarkers. 
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4.2 Materials and Methods 

4.2.1 Gene and miRNA expression data and pre-processing 

Datasets used in this work were downloaded from NCBI Gene Expression Omnibus 

(GEO). In particular, five microarray-based gene expression datasets composed of 

expression data from 105 normal pancreatic and 129 PDAC tissue samples: GSE15471 

[23], GSE32676 [24], GSE28735 [25], GSE41368 [98] and GSE71989 (unpublished). 

Quantile-normalized miRNA expression data were acquired from GSE59856 dataset 

which contains serum samples from 150 healthy donors and 100 PDAC patients [99]. 

This dataset was produced using the microarray platform 3D–Gene Human miRNA 

V20_1.0.0 and was based on miRNA sequences listed in a recent release (v20) of the 

miRBase database (www.mirbase.org) for probe design, which allows the expression 

assessment of 2555 miRNAs. Data analyses were performed using the R 3.1.2 statistical 

environment (www.r-project.org) and Bioconductor (version 2.14) 

(www.bioconductor.org). Raw data from each microarray dataset were pre-processed 

with the R package affy using the Robust Multichip Average (RMA) function for 

background correction and normalization with the quantiles method [100]. Since the 

microarray datasets were obtained from two different platforms, they were made 

compatible with the purpose of merge them. We first mapped the array probes to the 

respective Entrez Gene ID, a cross-platform common identifier, using the array 

annotation data hgu133plus2.db or hugene10sttranscriptcluster.db, depending on the 

platform used. Then, we summarized the expression values of given genes, measured 

by multiple probes, using the function collapseRows implemented in the R package 

WGCNA [101]. We selected the parameter “MaxMean” which chooses the probe with 

the highest mean value among samples, since this generally produces the most robust 

results [102]. We created an overlapping gene set, to limit further analyses to genes 

present in all datasets, by selecting the rowTs with the Entrez Gene ID present in both 

platforms using the WGCNA function intersect, resulting in a total of 17,536 common 

genes. Since in the Affymetrix Human Gene 1.0 ST are represented 19,878 and in 

Human Genome U133 Plus 2.0 Arrays there are 19,851 unique Entrez Gene IDs, the 

percentages of common genes included in our analyses are considered to be very high 

(88.2 and 88.3). The cross-platform batch effects were removed with the ComBat 

method, chosen among other methods, because it reaches the highest precision, 
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accuracy and overall performance. ComBat is implemented in the R package sva and 

executes another normalization step using an empirical Bayes approach [103, 104]. 

After this, all normalized microarray-based data could be merge into two global 

datasets: Normal and PDAC, that we used for the subsequent WGCNA analyses.  

In order to detect outlier samples, the standardized connectivity (Z. K) method was 

followed. The Z.K score represents the overall strength of connections between a given 

node and all of the other nodes in a network, samples with a Z. K score < −2 have to be 

considered as outliers [105].  

4.2.2 Dataset comparability analyses 

It is necessary, for the following analyses, to assess the comparability between Normal 

and PDAC datasets from pancreatic tissues and among the two datasets of healthy 

donors and PDAC serum samples. To this end, the softConnectivity function from 

package WGCNA permitted to evaluate the correlation of the expression level of each 

gene or miRNA and the correlation of the overall connectivity, across the datasets. This 

serves to assess comparability between normal and PDAC samples. If the two 

correlations are positive and the p-values significant, the two datasets are comparable. 

Higher correlation values (ranging from 0 to 1) indicate higher comparability between 

the normal and PDAC datasets. For WGCNA analysis it is required that the topology of 

the networks is scale-free, and therefore we applied the pickSoftThreshold function of 

the WGCNA which provides a Scale-free Topology Fit Index. If the index reaches values 

above 0.8 for low power (< 30) it means that the topology of the network is scale-free 

[94]. 

4.2.3 Construction of weighted gene co-expression networks and their modules 

Using standard WGCNA procedures [94], we created, both for gene and miRNA 

expression data, two weighted gene co-expression networks based on Normal and 

PDAC data, respectively. 

In each dataset we first created a matrix of adjacencies through the WGCNA function 

adjacency, then this matrix was transformed into a Topological Overlap Matrix (TOM) 

using the function TOMsimilarity. The topological overlap indicates the gene similarity 

based on co-expression relationships between two genes [94]. Each TOM was used as 

input for hierarchical clustering analysis, which has been performed with the function 
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flashClust. Finally, in the resulting dendrograms I identified network modules present 

in the Normal dataset (used here as reference dataset) with the function cutreeHybrid 

from the R package dynamicTreeCut, using a relatively large minimum module size 

(minClusterSize = 30), and a medium sensitivity (deepSplit= 2), with other parameters 

set as default. 

4.2.4 Modules preservation analyses 

The preservation levels of Normal network modules in the PDAC network were 

evaluated by the function modulePreservation from the WGCNA package. In particular, 

it performs a permutation test which assesses the preservation of the connectivity and 

density between each couple of modules, each belonging to the Normal and PDAC 

networks. This functions provided a preservation Z-score for each module. High Z-

scores (> 10) indicate that the modules are well preserved between normal and PDAC 

networks, whereas values lower than 10 are indicative for a moderate to low 

preservation [106]. The grey and gold modules are special WGCNA modules that were 

not considered.  

4.2.5 Detection of hub genes and their functional annotation 

Intra-modular highly connected genes are defined as hub genes with the highest 

Module Membership (MM) scores to the respective module [107]. The MM was 

calculated with the WGCNA function signedKME that correlates the expression profile 

of a gene with the Module Eigengene (ME) quantifying how close a gene is to a given 

module. ME is calculated by the WGCNA function moduleEigengenes. ME is a virtual 

gene which represents the gene expression profile of the entire module. We mapped 

these genes to the associated Gene Ontology (GO) terms and KEGG pathways using the 

DAVID tool (http://david.abcc.ncifcrf.gov/) [108]. For each non-preserved module I 

selected the 20 most connected hub genes. Then I performed functional enrichment 

analyses for the interpretation of the biological mechanism related to a given gene list. 

Enrichr tool (http://amp.pharm.mssm.edu/Enrichr/) [109] was used to perform 

enrichment analyses of our hub gene lists. The enrichment analyses were executed on 

predicted transcription factor binding sites using the “TRANSFAC_and_JASPAR_PWMs” 

section, on predicted miRNA binding sites using the “TargetScan_microRNA” section, 

and on chromosomal regions where these genes are located using the 
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“Chromosome_Location” tool section. Only statistically significant results are reported 

(p<0.02). 

4.2.6 Detection of hub miRNAs and their functional annotation 

The WGCNA functions moduleEigengenes and signedKME were used to identify hub 

miRNAs. Then, we selected the 20 most connected hub miRNAs for each non-

preserved module. Next, we carried out functional enrichment analyses of known 

miRNA targets in order to facilitate the interpretation of the biological functions 

related to these miRNAs. The most interesting miRNAs were used as input for the 

miRNet web tool [110] to identify the biological pathways, processes, molecular 

functions and cellular components statistically enriched for the corresponding miRNA 

target genes. In particular, this tool identifies the enriched KEGG and REACTOME 

pathways and Gene Ontology (GO) terms based on miRNA targets. Since this tool 

utilized experimentally validated miRNA targets, it guarantees a higher reliability than 

tools based on predicted miRNA targets. 

4.2.7 Survival analyses 

SurvExpress tool was used for the survival analyses [111] which allows comparisons 

and validations of candidate genes as cancer prognostic biomarkers using patient 

survival data present in other microarray datasets. This tool splits samples into high-

risk and low-risk groups through the median of the prognostic index obtained via a Cox 

regression model. Then, risk hazard ratios (HR), relative confidence intervals (CI) and p-

values are generated. Survival analyses were performed on an independent GEO 

dataset (GSE21501), containing gene expression and survival data derived from 132 

PDAC patients.  

Instead, for the validation of the identified hub miRNAs as prognostic PDAC 

biomarkers, we used the SurvMicro web tool [112] in order to perform survival 

analyses similarly to the SurvExpress tool. It was carried out on an independent PDAC 

dataset present in The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov/) 

containing miRNA expression and survival data derived from 54 PDAC patients. 
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4.3 Results 

4.3.1 Pre-processing of the Normal and PDAC dataset 

Five microarray datasets composed of raw gene expression data from normal and 

pancreatic cancer tissue samples were pre-processed and merged into two global 

datasets: Normal and PDAC. This step was necessary since WGCNA is sensitive to batch 

effects (systematic and technical differences among different datasets) and to the 

presence of outlier samples [94]. The Normal dataset included 104 samples and the 

PDAC dataset 129 tumour samples. Then, I evaluated their comparability, since high 

comparability provides better chances of finding similarities and differences between 

datasets during subsequent analyses. I showed that our datasets are comparable, with 

a correlation of gene expression of 0.97 (p<1e-200) and gene connectivity of 0.43 

(p<1e-200). The latter parameter indicates the weighted co-expression level 

correlation that means how strongly a gene is connected to all other genes in the 

network.  

Successively, I checked if the networks to be constructed had a scale-free topology, a 

requisite of metabolic and signalling networks in which some nodes (here genes) are 

more connected than others, so that some nodes are central (hub nodes) and others 

are peripheral. For this aim, we used the R function pickSoftThreshold. It was found 

that the scale-free topology fit index correctly reached values above 0.8 for a low 

power of 10 in the Normal dataset, here used as a control dataset (Fig. 1 A). This result 

is an indirect sign that the batch-effects were efficiently removed.  

The GSE59856 dataset [99] includes miRNA expression data of serum samples from 

150 healthy donors and 100 PDAC patients. This dataset evades from the batch effect 

because it is formed of the same type of microarray accomplished by the same 

operators. Regarding the presence of outliers, 6 and 5 samples were removed 

respectively from normal and PDAC datasets. 

Since it is required for WGCNA, the datasets were confirmed to be highly comparable 

by the softConnectivity function. Indeed, the overall miRNA expression correlation was 

0.85 (p<1e-200) and the overall miRNA connectivity was 0.3 (p<3.3e-51). 

Moreover, we found that the Normal network showed a scale-free topology with the 

Scale-free Topology Fit index above 0.9 for low powers of 7 (Fig. 1 B). This result also 

confirmed the no batch-effects in the original microarray datasets. 
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Figure 1 Identification of the optimum soft-threshold power by calculation of scale-free topology fit 

index. Values of the corresponding soft threshold power are shown. In panel A the optimum power 

value is 10 since it is the minimal value above the guidance line set at 0.8 in the Normal dataset of gene 

expression data. In panel B, for the Normal dataset of miRNA expression data, the optimum power value 

is 7 since it is the minimal values above the guidance line set at 0.9. 

 

4.3.2 Weighted gene and miRNA co-expression networks and their modules 

In WGCNA, a module is a group of strongly co-expressed genes that generally have 

similar biochemical and functional properties or are linked in the same pathway [113-

115].  

In the Normal gene dataset, we identified, via hierarchical clustering, 26 modules. 

Then, we evaluated how the characteristics of the identified modules in the reference 

network (Normal) are reproduced in the PDAC dataset used as test network 

(preservation level). This way, it is possible to recognize in PDAC networks the altered 

modules. The modulePreservation function from the WGCNA package permitted to 

quantify the module preservation and to identify lowly preserved modules by 

calculating a Z-scores for each module that is higher than 10 for those highly preserved 

(Tab. 6). Lowly preserved modules between datasets are the mod25 (Z-score = 9.6) and 

mod26 (Z-score = 8.4) and they may distinguish normal from pathological conditions. 

Regarding miRNA datasets, 12 modules were identified with different miRNA number 

in the normal network. Then the preservation level across the two networks was 

assessed and, as expected, some modules possessed similar characteristics in both 



49 

 

networks but others, which were not preserved, are probably related to the 

development of PDAC. According to the Z-scores calculated by modulePreservation, 

the M3 and M4 modules and Meta-mod (which includes: M12, M11, M10, M7, M6, 

M2) were found to be not preserved (Tab. 7) (Fig.2). 

 

Module Z-score 

mod1 44,7 

mod2 36 

mod3 32,9 

mod4 30,1 

mod5 28,4 

mod6 27,8 

mod7 27,5 

mod8 26,1 

mod9 25,3 

mod10 25,2 

mod11 23,5 

mod12 20,7 

mod13 19,4 

mod14 18 

mod15 17,4 

mod16 15,6 

mod17 14,9 

mod18 13,5 

mod19 12,9 

mod20 12,6 

mod21 12,1 

mod22 11,7 

mod23 11,6 

mod24 10 

mod25 9,6 

mod26 8,4 

 

Table 6 Modules identified in the Normal network by WGCNA functions and relative preservation (Z-

score). Modules with Z-score>10 are preserved modules that well maintain their characteristics in the 

PDAC network. Modules with Z-score<10 are low preserved, so they can distinguish normal and 

pathological conditions. 

  



50 

 

Module Z-score 

M1 16,1 

M8 15,3 

M9 12,4 

M5 11,5 

M11 6,5 

M12 4,7 

M3 4,3 

M10 3,7 

M2 3,5 

M4 2,0 

M6 1,2 

M7 0,5 

 

Table 7 Modules identified in the Normal network and relative preservation. Z-score>10 are the defined 

modules that well maintain their characteristics in the PDAC network. Modules with Z-score<10 are low 

preserved. 

 

Figure 2 Meta-module identification. The horizontal line represents the threshold (0,3) used for defining 

the meta-modules. The M12, M11, M10, M7, M6, M2 modules represent a meta-module (hereafter 

referred to as Meta-mod) in the PDAC network. Other is the module of miRNA not assigned to any 

module, and should not be considered for the following analyses.  
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4.3.3 Identification of hub genes and their functional annotations 

For each module, the hub genes present in both networks has been identified. Next, 

the mod25 and the mod26 modules, found to be lowly preserved, were further 

analysed since they can potentially distinguish PDAC from normal samples. In 

particular, 20 hub genes in each module (listed in Table 8) identified exclusively in the 

PDAC network might be involved in the pathogenesis. DAVID tool was used for a 

functional enrichment analysis in order to find out the biological functions associated 

with these hub genes. Enriched Gene Ontology (GO) terms with p-value<0.05 were 

listed in Table 9. Hub genes related to endoplasmic reticulum were the significantly 

over-represented genes in the mod25 module, while some GO terms in the mod26 

module are related to cellular compartment such as cytoplasm, membranes or 

mitochondria, others are related to biological processes: lipid metabolism, transferase 

activity, hydrolase activity and transmembrane transport. The Enrichr tool was used to 

perform a gene enrichment analysis to identify common elements involved in gene 

expression regulation. The transcription factors most over-represented in both 

modules and statistically significant were RBPJ and FOXO3A (Tab. 10) and, regarding 

microRNAs, miR-202 were found to be enriched in the mod25 module (p = 0.0112). Its 

predicted targets are the BCL7A and MANEL genes. The chromosomal regions 7q21 

and 3q28 were found to be enriched in genes from the mod26 module: PON2 and 

SLC25A13 (p = 0.0012) and B3GNT5 (p = 0.0115), respectively. The chromosomal 

region 20q13 was found to be enriched in genes belonging to the mod25 module: 

STAU1 and ZNF334 (p = 0.0064).  

 

Module Hub genes   

mod25 

BCL7A, C15ORF52, CAMKMT, CEP170B, 

ERLIN2, KCNMB3, LARP1, LRRC8E, MANEAL, 

POLDIP2, SEC23B, STAU1, TBC1D24, TBL2, 

TMEM51, TTC30A, TXNDC12, VWA8, ZDHHC4, ZNF334 

mod26 

B3GNT5, BPNT1, C2ORF47, CASK, CEACAM1, 

CERS6, CYCS, DNAJC15, ELOVL6, 

 FLVCR1, MCU, MFSD6, MRPS36, NAPEPLD,  

PON2, SLC25A13, TIGD2, VDAC1, ZDHHC3, ZNF823 

 

Table 8 Hub genes identified in the PDAC network limited to mod25 and mod26. 
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Module GO Term p-value 

mod25 endoplasmic reticulum 0.048 

mod26 

Mitochondrion 0,0077 

Membrane 0,013 

cellular lipid metabolic process 0,017 

transferase activity, transferring acyl groups 0,018 

transmembrane transport 0,021 

hydrolase activity 0,029 

cytoplasmic part 0,039 

 

Table 9 Functional annotation of hub genes in the mod25 and mod26 

 

Module Transcription factor p-value 

mod25 

 RBPJ 0.0024 

 BRCA1 0.0048 

 E2F6 0.0100 

 E2F1 0.0122 

 TCF4 0.0123 

 ELK4 0.0126 

 FOXA1 0.0127 

 CBFB 0.0129 

 MIB2 0.0137 

 ESR1 0.0144 

 SP1 0.0146 

 NFIC 0.0156 

 HIF1A 0.0169 

mod26 

 FOXO3A 0.0005 

 NR1I2 0.0107 

 TP63 0.0123 

 

Table 10 Enriched transcription factors binding to the promoters of hub genes 
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4.3.4 Identification of the hub miRNAs and functional enrichment analysis of their 

targets 

Hub miRNAs, which may play important roles in the PDAC pathogenesis, were 

identified from the not preserved M3 and M4 modules and Meta-mod between 

normal and PDAC networks. The top 20 hub miRNAs identified (Tab. 11) were 

submitted to the enrichment analysis for the biological and functional interpretation. 

The hub miRNA list was processed using the miRNet web tool in order to identify 

enriched KEGG and REACTOME pathways and Gene Ontology (GO) terms (Tab 12, 13 

and 14). Genes targeted by the M3 and M4 modules were found to be related to 

cancer pathways, including PDAC and, for the M3, to be enriched in genes involved in 

cell cycle regulation. Meta-mod was associated to cancer pathways, apoptosis and 

transcription regulation.  

 

Module Hub miRNAs 

M3 

miR-135a-3p, miR-204-3p, miR-423-5p, miR-575, miR-1343-5p, miR-3918,miR-4419a, 

miR-4450, miR-4459, miR-4476, miR-4497, miR-4530, miR-4638-5p, miR-4665-5p, 

miR-4673, miR-6076, miR-6768-5p, miR-6889-5p, miR-6893-5p, miR-6895-5p 

M4 

miR-302d-3p, miR-382-5p, miR-513c-5p, miR-519c-3p, miR-545-5p, miR-548y, miR-

641, miR-873-5p, miR-924, miR-942-3p, miR-1289, miR-2115-3p, miR-3115, miR-

3149, miR-3678-5p, miR-4520-2-3p, miR-4527, miR-5007-5p, miR-6866-5p, miR-

6882-5p 

Meta-

mod 

 miR-196a-3p, miR-548aq-3p, miR-552-5p, miR-890, miR-1269a, miR-1298-3p, miR-

2355-3p, miR-4502, miR-4647, miR-4682, miR-4704-5p, miR-4778-5p, miR-4780, 

miR-6509-5p, miR-6509-3p, miR-6715b-3p, miR-6740-5p, miR-6764-3p, miR-7154-

5p, miR-8070 

 

Table 11 Hub miRNAs identified in the PDAC network 
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Module Functional annotation 

M3             

(p< 0.05) 

Viral carcinogenesis, cell cycle, p53 signaling, bladder cancer, 

chronic myeloid leukemia, glioma, pancreatic cancer 

M4         

(p< 0.01) 

FoxO signaling, p53 signaling, Prostate cancer, Cell cycle, 

Pancreatic cancer, Chronic myeloid leukemia, Viral carcinogenesis, 

colorectal cancer, Proteoglycans in cancer, Glioma, Bladder cancer, 

Hepatitis B, Pathways in cancer 

Meta-

mod      

(p< 0.05) 

Glioma, chronic myeloid leukemia, ErbB signaling, FoxO signaling 

non-small cell lung cancer, Wnt signaling, Hippo signaling, 

pathways in cancer, colorectal cancer 

 

Table 12 Functional annotation of hub miRNAs: enriched KEGG pathways 

 

Module  Functional annotation 

M3             

(p< 0.05) 

Pre-NOTCH expression and processing, oncogene induced 

senescence, cell cycle, mitosis, pre-notch transcription and 

translation 

M4         

(p< 0.001) 

Gene expression, generic transcription pathway, cellular responses 

to stress,oxidative stress induced senescence, signaling by ERBB4,  

VEGFR2 mediated vascular permeability, translocation of GLUT4 to 

the plasma membrane, cellular senescence 

Meta-

mod      

(p< 0.05) 

Gene expression, activation of BH3-only proteins, intrinsic pathway 

for apoptosis, membrane trafficking, translocation of GLUT4 to the 

plasma membrane, vesicle-mediated transport, generic 

transcription pathway 

 

Table 13 Functional annotation of hub miRNAs: enriched REACTOME pathways 

 

Module 
GO biological 

process 
GO molecular function 

GO cellular 

component 

M3 None 

Purine nucleotide binding, 

purine ribonucleotide binding, 

nucleotide binding, ATP binding, 

adenyl nucleotide binding, 

adenyl ribonucleotide binding 

nucleolus 

M4 
Regulation of 

none none 
translation 

Meta-Mod None 
Zinc ion binding, chromatin binding, 

transition metal ion binding. 
none 

 

Table 14 Functional annotation of hub miRNAs: enriched (p < 0.01) Gene Ontology (GO) terms 

  



55 

 

4.3.5 Stratification of PDAC patients into high- and low- risk groups based on novel 

candidate biomarkers 

Finally, I evaluated if the lowly preserved modules between the Normal and PDAC 

datasets (mod25 and mod26) were associated with the overall survival (OS) of PDAC 

patients [97]. The single-gene and multi-gene survival analyses were performed using 

the SurvExpress tool on an independent PDAC dataset (GSE21501). I found that the top 

20 hub gene from both modules stratified patients into high- and low- risk groups (Fig. 

3). The OS of the high-risk group patients was three times shorter than OS of low-risk 

patients group (HR 3.83 [95 % CI 2.26–6.5] p=6.474e-07 for the mod25 module and HR 

3.41 [95 % CI 1.95–5.85] p=8.813e-06 for the mod26 module). The single-gene analysis 

reveals that an increased expression of the CAMKMT (HR 1.76 [95 % CI 1.07–2.89] 

p=0.02552), PON2 (HR 1.97 [95 % CI 1.19–3.27] p = 0.008798) and SLC25A13 (HR 1.65 

[95 % CI 1.01–2.7] p =0.04636) genes was associated with a poor OS. On the contrary, 

a better OS correlated with the increased expression levels of the following genes: 

TBC1D24 (HR 1.8 [95 % CI 1.1–2.95] p = 0.02005) and CASK (HR 1.81[95 % CI 1.11–2.96] 

p = 0.01742).  

For the same purpose of validation candidate miRNAs as prognostic biomarkers, single- 

and multi-miRNA survival analyses in each module (M3, M4 and Meta-mod) were 

performed with the SurvMicro tool, by using the top 20 hub miRNAs as input and an 

independent miRNA expression dataset of PDAC patients. In all modules, the miRNA 

profiles stratified PDAC patients into high- and low-risk groups (Fig. 4) and the OS 

times of the first group were two times shorter compared to the second group (HR 

2.79 [95% CI 1.46–5.33] p = 0.001939 for the M4 module, HR 2.05 [95% CI 1.08–3.89] p 

= 0.02841 for the M3 module and HR 2.44 [95% CI 1.28–4.65] p = 0.00645 for the 

Meta-mod). Moreover, the single-miRNA survival analyses were performed to 

determine miRNA expression alterations significantly associated with PDAC survival 

outcomes and we found that a better OS was related to an increased expression of 

miRNAs in Table 15, with the exception of miR-552-5p. 
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Figure 3 Kaplan-Meier survival plots for OS of (5a and 5b) the top 20 hub gene signatures and of (5c-g) 

the most significant genes. The X and Y axes respectively stand for survival time (months) and percent of 

survival people. Red curves represent high-risk group and green curves are low-risk group. 
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Figure 4 Kaplan-Meier survival plots for overall survival related to (a) the M4 and (b) M3 modules and 

the(c) Meta-mod using the top 20 hub miRNA signatures. 
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Module Hub miRNA  
Hazard Ratio (HR) 

[Confidence interval 95%] 
p-value 

M3 
miR-3918 2,31 [1,22-4,36] 0,01 

miR-575 2,02 [1,08-3,79] 0,0285 

M4 

miR-3115 2.58 [1.36–4.92]  0,0038 

miR-3149  2.54 [1.33–4.84] 0,0045 

miR-513c-5p  2.27 [1.20–4.29] 0,0114 

miR-519c-3p 2.12 [1.12–4.00] 0,0209 

miR-924 2.02 [1.08–3.79]  0,0285 

miR-548y 2.00 [1.06–3.78]  0,032 

miR-302d-5p  1.95 [1.04–3.69]  0,0387 

Meta-mod 

miR-1298-3p 2.55 [1.34–4.87]  0,0043 

miR-552-5p 2.34 [1.22–4.50] 0,0105 

miR-890 1.99 [1.05–3.75] 0,0341 

 

Table 15 Single miRNA survival analysis on an independent PDAC miRNA expression dataset  
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4.4 Discussion 

Pancreatic ductal adenocarcinoma (PDAC) urgently needs of identification of new 

diagnostic and prognostic biomarkers and therapeutic targets. Here we identified, for 

the first time, candidate genes and microRNAs biomarkers for PDAC by applying 

weighted gene co-expression network analyses on expression data derived from 

dataset based on microarrays. 

In the first part of the work we focused on gene expression data derived from five 

datasets based on microarray of PDAC and normal samples. It was found that two 

modules of co-expressed genes, differed significantly between the Normal and PDAC 

networks, so they are probably implicated in the pathogenesis. Subsequently, from 

these two modules I identify the most PDAC-related genes according to WGCNA, i.e. 

the hub genes. Functional enrichment analysis showed that they are associated to 

endoplasmatic reticulum (ER), mitochondria, membrane functions, lipid metabolism or 

transmembrane transport. Regarding genes related to endoplasmatic reticulum, the 

analyses identified ERLIN2 and TXNDC12 genes. The first has been found to be over-

expressed in pancreatic precancerous PanIN-3 cell line [116], whereas the second one 

inhibited ER stress-induced apoptosis of cancer cells [117]. Moreover, we identified 

the VDAC1 gene coding for an outer mitochondrial protein presents in a protein 

complex involved in physical contact between the ER and mitochondria: the 

mitochondria-associated membrane (MAM). Many protein involved in MAM 

regulation have been related with cancer [118], indeed VDAC1 protein has been 

recently found to be over-expressed in PDAC samples [119]. During apoptosis VDAC1 

allows the release from mitochondria of CYCS [118], another key factor identified in 

our work and previously demonstrated to be highly expressed in invasive PDAC [120]. 

Another hub gene here identified is MCU which codes for a calcium uniporter in the 

mitochondrial inner membrane. Additional hub genes calcium-related are: CASK, 

KCNMB3, PON2, SLC25A13 and ZDHHC3. Alteration of the calcium pathway plays a 

relevant role in PDAC initiation and progression via the Ca2+/calmodulin, PI3Kα/Akt 

and Raf/MEK/ERK pathways [121, 122] and higher serum calcium level in PDAC 

patients are associated with a poor prognosis [123]. Various metabolic pathways are 

altered in cancer cells in order to sustain the abnormal rapid proliferation, among 

these, lipid synthesis has been observed to be strongly increased [124]. We 
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determined as hub genes ELOVL6, coding for a fatty acid elongase, NAPEPLD that 

codes for a lipase, CERS6 and B3GNT5 involved in the ceramide synthesis pathway. 

Interestingly, among hub genes we found CEACAM1, a member of the 

carcinoembryonic antigen (CEA) gene family. Previous studies have reported that this 

gene is more highly expressed in PDAC samples or cell lines [125-127]. Moreover, its 

protein product, CEA, is currently used as a PDAC biomarker. Through miRNA 

enrichment analyses I identified miR-202 that, when expressed at low level has been 

demonstrated to induce apoptosis of PDAC cells. For this reason miR-202 has been 

proposed as therapeutic target [128]. The chromosomal regions 7q21-q22 and 20q13 

identified via chromosomal enrichment analysis may have a role in tumourigenesis 

since they are already known to be frequently altered in PDAC [129, 130]. The overall 

survival analyses found that five genes (CAMKMT, CASK, PON2, SLC25A13 and 

TBC1D24) are associated with a poor OS and they may serve as prognostic biomarker 

for this cancer. 

In the second part, we applied the WGCNA approaches in order to identify circulating 

miRNA biomarkers and targets through the analysis of microarray-based miRNA 

expression data obtained from serum of PDAC patients and healthy subjects. We 

compared networks in normal and PDAC samples and eight out of twelve network 

modules were found to be not preserved in PDAC network. The potential prognostic 

value of the miRNAs resulted as hub miRNAs were evaluated in an independent miRNA 

expression dataset. Through OS analyses we found that the miRNA expression profiles 

in all modules, and at least two hub miRNAs in each module, were able to effectively 

discriminate between two distinct prognosis groups. Hub miRNAs belonging to M4 

module mir-942 has previously been found to be over-expressed in PDAC patient 

serum compared to healthy subjects. miR-302-3p and miR-513 have been upregulated 

in serum of both PDAC and chronic pancreatitis patients in contrast to healthy donors. 

Regarding M3 module, miR-135a-3p is more highly expressed in serum patients than in 

healthy individuals [131] as well as miR-575 [132]. On the contrary, miR-4497 was 

found to be down-regulated in serum of PDAC patients compared to healthy subjects 

[133]. It has been previously described that eight hub miRNAs also found in this 

module can discriminate PDAC patients from normal subjects: miR-204-3p, miR-423-

5p, miR-575, miR-4450, miR-4476, miR-4497, miR-4530 and miR-6893-5p [99]. Among 
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the hub miRNAs in the Meta-mod, miR-196a-3p has not been investigated in PDAC 

before, but another member of miR-196a family, miR-196a-5p, has widely been 

detected to be over express in serum PDAC patients [131, 134, 135]. KEEG, REACTOME 

pathways and GO terms were identified by functional enrichment analysis of hub 

miRNA target genes. The obtained modules were enriched in PDAC-related pathways 

and were highly related to cell cycle and gene expression regulation. Finally, we found 

that many key miRNAs target the hub genes determined above with the same method. 

For example, the BPNT1, CYCS, MANEAL and SEC23B hub genes are targeted by at least 

2 key miRNAs (Tab 16). For this comparison, only experimentally validated miRNA 

target genes collected by the miRNet tool were used.  

 

Module Hub miRNAs Hub genes 

M3 

miR-3918 CYCS 

miR-4419a ZDHHC3 

miR-4459 TBC1D24 

miR-4497 BPNT1 

miR-6076 CYCS 

miR-6768-5p TMEM51 

miR-6893-5p BPNT1, CYCS 

M4 

miR-302d-3p CYCS, MANEAL, SEC23B 

miR-513c-5p CYCS 

miR-519c-3p SEC23B 

miR-873-5p POLDIP2 

miR-924 FLVCR1 

miR-1289 BPNT1 

miR-3149 MANEAL 

miR-6882-5p MFSD6 

Meta-

mod 

miR-196a-3p ELOVL6 

miR-548aq-3p C15ORF52 

miR-4780 MCU 

 

Table 16 Hub genes targeted by hub miRNAs identified by WGCNA. Only experimentally validated 

miRNA target genes collected by miRNet tool were used for this comparison.  

 

In conclusion, this work identified two modules of co-expressed genes related to 

pancreatic cancer and new candidate miRNAs as biomarkers. The reliability of our 

results is confirmed because among our candidate biomarkers we found some genes 

and miRNAs already suggested as PDAC biomarkers. The results obtained from our 
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adopted method are different from previously studies performed on single PDAC 

microarray datasets [23-25] probably because WGCNA seeks hub genes in a co-

expression network, differently to the cited works where differentially expressed 

genes were identified. Moreover, these divergences could be caused by patient 

variables, such as treatments or disease stage, even if also gender or ethnicity can 

influence cancer susceptibly or PDAC incidences [136-138]. Unfortunately, this patient 

information is lacking in the microarray datasets studied until now, so a further 

analysis and validation of the candidate PDAC biomarkers reported here is necessary. 

Also, the resulted miRNA biomarkers are needed to be validated by further studies 

which consider patients information and technical factors, such as blood storage 

condition and processing. 
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5. Evaluation of cell death pathways induced by 

sulforaphane in pancreatic cancer cell lines  

5.1. Introduction 

5.1.1 Chemoprevention by phytochemicals in pancreatic cancer 

Chemoprevention refers to the use of non-toxic natural or synthetic compounds with 

the capacity to reduce development and progression of cancer. Moderate benefits on 

the survival extension combined with the undesirable side effects of the standard 

chemotherapy options have focused recent studies on the anti-tumour effects of 

plant-derived compounds. Nowadays, nearly 25% of drugs contain active agents from 

plants and many other promising drugs can be prepared from phytochemicals. 

Polyphenols, flavonoids, alkaloids, terpenoids and organosulfurs are the principal 

bioactive agents used against cancer. These compounds act mainly on the cell cycle 

and apoptotic pathways but there is a risen interest to demonstrate their effects also 

on non-apoptotic pathways like autophagy, senescence and programmed necrosis 

[31]. 

Many epidemiological investigations, during the recent years, have highlighted positive 

correlations between vegetables, fruits and plant-derived compound consumption and 

reduced incidence of pancreatic cancer. Numerous studies suggested that bioactive 

agents inhibit growth and invasiveness of the pancreatic cancer cells in vitro and in 

xenograft models. Phytochemical protagonists of pancreatic cancer prevention and 

therapy are: curcumin, a commonly food spice isolated from the rhizome of Curcuma 

Longa, capsaicin, that is the pungent element of chilli peppers plants, green tea with 

its main catechins epigallocatechin-3-gallate (EGCG), resveratrol, detected in many 

plant species such as red grapes, peanuts, berries and pines, and isothiocynates, 

secondary metabolites derived from cruciferous vegetables belonging to Brassicacea 

family [30].  

5.1.2 Anti-cancer effects of sulforaphane 

The Brassicaceae plant family includes numerous vegetables well known as food 

products such as broccoli, cabbage, cauliflower and Brussels sprouts. These vegetables 

contain the inactive glucosinolate glucoraphanin that, when the plant is damaged upon 

cooking or chewing, is enzymatically hydrolyzed in the active isothiocyanate 
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sulforaphane [139]. Several works have demonstrated the anti-cancer properties of 

sulforaphane in human malignancies, including pancreatic cancer, and its limited 

toxicity in normal tissue. Some epidemiological studies found that frequent 

consumption of cruciferous vegetables had an about 50% risk reduction to develop 

pancreatic and prostate cancer [140, 141]. Sulforaphane is involved in different cellular 

mechanisms that prevent tumour growth. It has been demonstrated in different 

cancer cell lines that sulforaphane limits the progression of tumour development by 

causing cell cycle arrest in G2/M phase through the alteration of Cdc2 kinase activity, 

and by increasing expression of the tumour suppressor and cell cycle inhibitor protein 

p21. After sulforaphane treatment in colon and prostate cancer cells, the activation of 

the MAPK/ERK pathway has been reported and it indirectly contributes to cell death. 

Sulforaphane inhibits cancer cell proliferation by targeting several molecules involved 

in apoptotic pathways such as Bcl-2, Bax, caspase family, IAP. It has been found that 

sulforaphane induces apoptosis in cervical HeLa, hepatocellular, prostate and colon 

cancer cells. It has been reported that incubation of PC3 or HT-29 cells with 

sulforaphane reduces NF-κB nuclear translocation and results in its transcriptional 

activity inhibition [32]. NF-κB activation leads its translocation to the nucleus where 

exerts its central role in cancer cell survival and proliferation by binding to the 

promoter of many pro-inflammatory genes like inducible nitric oxide synthase (iNOS), 

cyclooxygenase-2 (COX-2), and tumour necrosis factor (TNF). Recent studies from 

Kallifatidis et al. (2009, 2011) demonstrated that sulforaphane decreases the enhanced 

NF-κB activity of apoptosis-resistant pancreatic cancer stem-like cells (CSCs) to basal 

levels and thereby sensitizes them to chemotherapy-induced apoptosis [142, 143]. 

5.1.3 Apoptosis and Necroptosis  

One of the best-examined forms of cell death is apoptosis, which is initiated by death 

receptors or mitochondria leading to the activation of two different molecular 

cascades also known as extrinsic and intrinsic pathways. Both pathways culminate in 

caspase family member activation that carries out most of the proteolytic processes 

that occur during apoptosis. Extrinsic pathway begins with the binding of extracellular 

death ligands (FasL or TNFα) to transmembrane death receptors followed by a 

complex formation which includes the Fas-associated death domain protein (FADD), 
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Receptor-Interacting Protein kinase (RIP1) and caspase-8. Activated caspase-8 halts the 

activities of RIP1 and activates caspase-3 and -7 by proteolytic process [144, 145]. In 

the intrinsic pathway, stimuli that cause cell stress or damage activate one or more 

members of the BH3-only protein family. Their activation overcomes the inhibitory 

effect of the anti-apoptotic B-cell lymphoma-2 (BCL-2) family members facilitating the 

assembly of BAK–BAX oligomers. These oligomers permit the release from 

mitochondria of cytochrome c which promotes the activation of caspase-9 resulting in 

further caspase activation events. During apoptosis, cells become rounded, retract 

from neighbouring cells, and condensation of the nucleus and DNA fragmentation 

occur. The process culminates in the formation of apoptotic bodies that are readily 

recognized and phagocytised for recycling of their contents [144]. 

More recently another form of programmed cell death named necroptosis was 

identified. It was found that apoptosis-inducing stimuli could mediate cell-death in a 

caspase-independent manner with morphological features that were similar to 

necrosis: translucent cytoplasm, cell swelling, organelle dysfunction and rupture of 

plasma membrane [146]. During the necroptosis induction process, a necrosome 

complex is formed, with Receptor-Interacting Protein kinase (RIP1), RIP3 and Mixed 

Lineage Kinase Domain-like Protein (MLKL) as core components. Precisely, RIP1 kinase 

activity determinates RIP3 phosphorylation which successively phosphorylates and 

activates MLKL. Then, phosphorylated MLKL translocates to the plasma membrane 

promoting the necrotic plasma membrane permeabilization. The induction of 

necroptosis pathway has been proposed as an alternative way to eradicate apoptosis-

resistant cancer cells [145, 147]. 

However, it is not easy to understand apoptosis and necroptosis regulation since 

components such as RIP1 and RIP3, have been found to contribute to both pathways 

[148]. RIP1 can induce cell death through the formation of the apoptotic complex RIP1-

FADD-caspase-8 or by the activation of RIP3-MLKL necroptotic pathway in response to 

TNF-stimulated condition [149]. In addition, necroptosis is negatively regulated upon 

apoptosis induction, since active caspase-8 is known to cleave RIP1 and RIP3 

proteolytically [148]. Moreover, the caspase-inhibitor ZVAD, which is routinely used to 

block apoptosis, was found to induce cell death by necroptosis in a RIP1 and RIP3-
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dependent manner in mouse fibrosarcoma cells. In particular, ZVAD promoted 

autocrine production of TNF through the AP-1 activation [150]. 

 

In this study, I have investigated the question whether broccoli-derived isothiocyanate 

sulforaphane could be involved in induction of both apoptosis and necroptosis, in 

pancreatic cancer cells. Interestingly, it has been already demonstrated that long-time 

treatment of pancreatic cancer stem-like cells CSCs with sulforaphane did not induce 

apoptosis resistance as observed with gemcitabine [151] and it would be interesting to 

evaluate which is the death pathway involved in the anti-cancer effect of sulforaphane.   
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5.2. Materials and Methods  

5.2.1 Cell culture 

The human established PDAC cell line BxPC3 were obtained from the American Type 

Culture Collection (Manassas, VA, USA). The gemcitabine-resistant subclone BxGEM 

was established in Herr’s lab by continuous gemcitabine treatment in increasing 

concentrations for more than one year as previously described [151]. The novel cell 

line of pancreatic ductal adenocarcinoma, originated from intraductal 

papillarymucinous neoplasm (IPMN), AsanPaca was kindly provided by Dr. N. Giese, 

Heidelberg [152]. The cells were cultured in DMEM medium (Sigma-Aldrich Chemie, 

Munich, Germany) supplemented with 10% FCS (Sigma-Aldrich) and 1 mM HEPES (PAA 

Laboratories Pasching, Austria). 

5.2.2 Reagents  

D,L-Sulforaphane (Sigma-Aldrich) was dissolved in EtOH to a stock concentration of 50 

mM. Caspase inhibitor Z-Val-Ala-DL-Asp(OMe)-fluoromethylketone (ZVAD) was 

obtained from Bachem (Heidelberg, Germany) and dissolved in DMSO to a stock 

concentration of 100mM. The necroptosis inhibitor Necrostatin-1s (NECR; BioVision, 

Milpitas, California, USA) was dissolved in DMSO to 40mM stock solution.  

5.2.3. Cell treatments  

Cells were grown for 24h to a 50-60% confluence and were treated for 24h with 10 μM 

D,L-Sulforaphane or 50 μM Zvad or 20 μM Necr-1s. Moreover, pre-treatment for 2h 

with 50 μM Zvad or 20 μM Necr-1s was performed and then D,L-Sulforaphane was 

added. Untreated cells and cells treated with vehicles (DMSO 1:2000; EtOH 1:5000; 

DMSO 1:2000+ EtOH 1:5000) were used as control groups. 

5.2.4 Cell viability detection by MTT assay  

BxPC3 and BxGEM were seeded at a density of 4 x 10
3
 and AsanPaca 5 x 10

3
 in 96-well 

microplates, 100 μl per well. After treatment, cell viability was measured adding 10 μl 

in each well of 12mM MTT-solution (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide; Sigma-Aldrich) followed by incubation at 37°C for 3h. 

Medium was replaced by 200 μl dimethyl sulphoxide and, after short incubation under 

shaking, the optical density of wells, was measured by FLUOstar® Omega microplate 

reader at 550 nm wavelength [153]. 
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5.2.5 Detection of apoptosis by Annexin V/PI staining and FACS analysis  

Cells were grown in 6-well plates (BxPC3 and BxGEM: 8 x 10
4
 cells per well; AsanPaca: 

1 x 10
5
). After treatment cells were detached with 500 µl/well of Accutase (Sigma-

Aldrich), in order to preserve cell surface markers, collected and resuspended in 500 µl 

Annexin Binding Buffer 1x (eBioscience, San Diego, California, USA). Then, cells were 

transferred in 96-well plate (100 µl each treatment groups) and stained with 5 µl FITC-

conjugated Annexin-V (eBioscience). After 15 minutes of incubation at room 

temperature in the dark and washing with Binding Buffer, resuspended single-cells 

were moved in FACS tubes. Two microlitres of Propidium Iodide (BD Biosciences, 

Heidelberg, Germany) were added in every tube only five minutes before 

measurements to preserve cells from its strong action. Cells were analysed with a BD 

FACS Canto flow cytometer and FlowJo software (both from BD Biosciences, 

Heidelberg, Germany). 

5.2.6 Detection of active caspase-3 by immunocytochemistry 

Cells were treated for 24h as described above, were cytospinned to glass slides and 

fixed with 4% paraformaldehyde for 10 minutes. After the blocking phase with 20% 

goat serum in PBS for 30 minutes, the expression of active fragment of caspase-3 was 

examined by binding with a specific antibody (R&D System, Minneapolis, Minnesota, 

USA) for 1h. Endogenous peroxidase activity was blocked with 0.03% hydrogen 

peroxide. The binding of primary antibody was detected using goat anti-rabbit 

biotinylated IgG (Vector Laboratories, Burlingame, California, USA) served as secondary 

antibody. The signal was amplified with the ABC kit (Vector Laboratories, Burlingame, 

California, USA), AEC Single Solution (Zytomed system, Berlin, Germany) was used as a 

chromogen and haematoxylin was used as counterstain. Washing steps were 

performed two times with PBS-Tween and one time with PBS. The omission of the 

primary antibody was used as a negative control. 

5.2.7 Cell lysis and determination of protein concentration 

After treatment, cells grown on petri dishes were lysed by adding 100-200 µl of 

membrane extraction buffer (30 mM Tris pH 7,4; 150 mM NaCl; 1 mM EDTA; 0,5 % 

Triton-X-100; 0,5% Na-Deoxycholate) supplemented with phosphatase and protease 

inhibitors for 5 minutes on ice. The cells were scraped from the plates and the volume 
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collected was transferred to 1,5 ml tubes. After centrifugation at higher speed for 15 

min at 4°C the supernatant was transferred into new tubes. For quantification of 

protein concentration Pierce BCA Protein Assay kit (Thermo Scientific) was used. BSA 

standards and BCA working agent were prepared according to the manufacturer’s 

instructions. Then, 10 µl of each BSA standard or 5 µl of proteins samples were added 

in 96-well plate followed by 200 µl/well of BCA working agent. After 30 minutes at 

37°C incubation, the absorbance at 562 nm was measured with FLUOstar® Omega 

microplate reader. Protein solutions were diluted 1:3 with Laemmli buffer 4x, boiled at 

99°C for 3 minutes and incubated on ice. Standard curve was used to calculate the 

volume to load in order to have the same amount of protein for each sample. 

5.2.8 Detection of RIP1 and MLKL by Western blot analysis  

Denatured proteins were loaded on stacking gel (4% acrylamide) and separated 

electrophoretically on a 12% polyacrylamid gel according to their molecular weight. 

PageRuler™ Prestained Protein Ladder (ThermoFisher), 5 µl, was loaded as size 

standard. The gel was fixed in a gel chamber filled with SDS-running buffer 1x pH 8.3 

(192 mM Glycine; SDS 0.1%; 25 mM Tris). Migration through stacking gel was 

performed at 80V for 20 minutes followed by separation at 160V for 1h. Separated 

proteins were then transferred on Immobilon-FL PVDF transfer membrane (Merck 

Millipore, Darmstadt, Germany), previously activated with 100% methanol. The semi-

dry transfer was performed preparing a sandwich of membrane and gel, enclosed in 

filter papers wet in transfer buffer (39 mM Glycine; 48 mM Tris, SDS 0.0375%; 

Methanol 20%) for 90 minutes at 0.06 A. After blocking with 5% BSA/TBS-T, the 

following primary antibodies were used: mouse IgG2a anti-RIP1 (BD Bioscience, 

Heidelberg, Germany), rabbit polyclonal anti-MLKL (Novus Biological) were incubated 

overnight and β-actin (Sigma-Aldrich, Munich, Germany) was incubated for 30 

minutes. After three washes with 5% BSA/TBS-T, anti-mouse and anti-rabbit-IgG, 

IRDye® 800CW or 680RD Infrared Dye (LI-COR Biosciences, Bad Homburg, Germany) 

were used as secondary antibodies for a 30 minutes incubation. The membrane 

exposure was carried out in a LI-COR Biosciences Odyssey infrared imaging system 

machine. The intensity of protein signal was determined by ImageJ software 

(https://imagej.nih.gov/ij/).  
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5.2.9 Statistical analysis  

The MTT assay was performed in eight replicates (n=8). The significance of the data 

was analyzed with a t-test corrected for multiple testing. Annexin/PI assays were 

performed in three independent experiment (n=3). For BxPC3 and BxGEM cells, the 

differences between groups were calculated with a t-test corrected for multiple testing 

by the Bonferroni-Holm method. In the AsanPaca cell line, one replicate was refused 

and the Mann-Whitney-U test was used instead of the t-test. Regarding 

immunocytochemistry, the number of positive cells was counted in 100 vision fields for 

each treatment group. The significance of the data was analysed with unpaired t-test 

by GraphPad Prism 7. The data are presented as the means ±SEM. p<0.05 was 

considered statistically significant (*) and p<0.01 was considered highly significant (**). 
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5.3. Results 

5.3.1 Sulforaphane-reduced viability involves caspases, whereas necroptosis plays a 

minor role 

To assess whether sulforaphane induces apoptosis and/or necroptosis, three PDAC 

cells lines, BxPC3, BxGEM and AsanPaCa, were treated with the bioactive agent, for 

24h, alone or in combination with specific inhibitors. In particular, the pan-caspase 

inhibitor ZVAD was used to explore whether sulforaphane can trigger necroptosis 

when the caspase activation and apoptosis are blocked. NECR was used to inhibit the 

kinase activity of RIP1, preventing the RIP1/RIP3 interaction and blocking necrosis 

[154, 155]. Whereas BxPC3 and AsanPaCa are sensitive to gemcitabine-treatment, 

BxGEM cells are not, because this drug-resistant subclone has been selected by 

continuous gemcitabine treatment and acquired apoptosis resistance [151]. Thus, it 

may be expected that defective apoptosis is compensated by necroptosis.  

Toxicity of single treatments or their combination was determined by the MTT assay 

(Fig. 5). Whereas vehicle controls ZVAD and NECR alone did not diminish viability, 

sulforaphane reduces it in BxPC3 and BxGEM cells to 40% and 38%, respectively, while 

a slight effect was observed in AsanPaCa with 23% mortality. On the contrary, the pre-

treatment with ZVAD 2h before the sulforaphane addition reduced the mortality, 

particularly in BxGEM cells. As expected, a minor effect on sulforaphane-mediated 

mortality by NECR pre-treatment was observed. 
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Figure 5 MTT assay. BxPC3, BxGEM and AsanPaca were left untreated, or were treated for 24h with 

vehicle (1: CO; 2: DMSO 1:2000; 3: EtOH 1:5000; 4: DMSO 1:2000+ EtOH 1:5000) or with SF (10 μM), 

ZVAD (50 μM), NECR (20 μM) or the pre-treatment for 2h with the inhibitors was followed by SF 

addition. The cells viability was detected after 24h. The percentage of viable cells in the CO group was 

set to 100%, data are presented as the means ±SEM.**P<0.01 

 

5.3.2 Sulforaphane-induced cell death involves caspases 

To further examine if sulforaphane induces both, apoptosis or necroptosis, cells were 

treated as described in the Materials and Methods section, and 24h later were stained 

with Annexin V and propidium iodide followed by FACS analysis. Annexin V protein 

binds to phosphatidylserine expressed on the apoptotic cells surface before the loss of 

plasma membrane integrity while propidium iodide binds DNA, but it is not 

membrane-permeable, and therefore its positivity is a necrosis or late apoptosis index 

[156]. FACS analysis showed that sulforaphane increased the percentage of early 

apoptotic cells and induced a much higher percentage of the double positive cells 

indicating late apoptosis or necrosis. Interestingly, ZVAD pre-treatment almost 

completely impeded sulforaphane-induced apoptosis, with statistically significant 

results in BxGEM. Pre-treatment with NECR had a small effect on the cell death 

induction by sulforaphane in BxPC3, whereas it prevented sulforaphane-induced 

apoptosis in BxGEM cells. A similar tendency was observed among the different 

treatment groups in AsanPaca, too, but in this case sulforaphane had a mild effect (Fig. 

6). These results show that the toxic effect of sulforaphane is completely blocked when 

caspases are inhibited by ZVAD, and the low percentages of cell-death indicate that 
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sulforaphane does not trigger necroptosis. The bioactive agent sulforaphane induces 

cell death only in a caspase-dependent manner.  
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Figure 6 Annexin V/PI assay. BxPC3, BxGEM and AsanPaca were treated for 24h as previously 

described. Q1: necrosis (Annexin
-
/PI

+
); Q2: late apoptosis/necrosis (

 
Annexin

+
/PI

+
); Q3: 

apoptosis (Annexin
+
/PI

-
); Q4: live cells (Annexin

-
/PI

-
). The percentages of apoptotic and late 

apoptotic/necrotic cells are shown as the means ±SEM. The outcomes from untreated cells 

and from all the vehicles controls (DMSO 1:2000; EtOH 1:5000; DMSO 1:2000+ EtOH 1:5000) 

were pooled and the means ±SEM is shown in the diagram as CO. *P<0.05.  

5.3.3 Sulforaphane-induced caspase-3 cleavage  

Successively, the expression level of the cleaved fragment of active caspase-3 was 

analysed by immunocytochemistry on the three cell lines, previously cytospinned to 

glass slides. Positive cells were evaluated by counting of 100 vision fields. As expected, 

the percentage of positive cells was greater upon treatment with sulforaphane and 

NECR pre-treatment compared to the control group, while ZVAD pre-treatment totally 

blocked sulforaphane-induced caspase-3 cleavage (Fig. 7). 

5.3.4 Sulforaphane reduces RIP1 and MLKL protein expression 

I focused on the protein levels of RIP1 and MLKL, two essential components of the 

necrosome complex [145], in order to confirm that necroptosis was not involved in 

sulforaphane-induced cell death. BxPC3 cells were treated as described above, 

followed by extraction of whole cell proteins 24h later and western blot analysis. 

In examining the protein level of RIP1 upon sulforaphane treatment, I observed a 

weaker band compared to control band. This last could represent the phosphorylated 

form of RIP1 [157] leading me to conclude that sulforaphane prevents RIP1 

phosphorylation and thus its activation. As expected, ZVAD pre-treatment prevents 

sulforaphane effect. As shown in a previous work, NECR treatment decreased RIP1 

phosphorylation [158] but my work shows that the combination of NECR and 

sulforaphane treatment lead to decrease of RIP1 protein expression. In the Figure 8 it 

is possible to observe that protein expression of MLKL, the functional substrate for 

RIP3 kinase [147], depends on RIP1 phosphorylation. 

These findings suggest that the broccoli-derived agent sulforaphane induces apoptosis 

at 10 µM concentration and prevents the necrosome activation.  
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Figure 7 Immunocytochemistry. BxPC3, BxGEM and AsanPaca. Twenty-four hours later the cells were 

cytospinned to glass slides and the active fragment of Caspase-3 was examined at a magnification of 

x40. Black arrows indicate the positive cells. The number of positive cells was counted in 100 vision 

fields and the means ± SEM are shown in the diagrams. ** means P<0.01 

 

 

 

Figure 8 Western Blot. BxPC3 cells were left untreated (CO), or treated as previously described. 

After 24h the protein extracts were prepared. 40 µg of protein was loaded on the gels and the 

expression of RIP1 and MLKL was detected. β-Actin served as internal loading control. The 

intensity of the signal of each protein was determined by ImageJ software (downloaded from 

the NIH website (http://rsb.info.nih.gov/ij)). 

  



77 

 

5.4. Discussion  

I evaluated the effect of the phytochemical sulforaphane on the apoptosis and 

necroptosis induction in pancreatic cancer cells.  

Sulforaphane is a promising anti-cancer substance with well documented antioxidant, 

chemopreventative, and anti-tumour properties. Previous data from Kallifatidis (2009) 

showed the apoptotic effect of sulforaphane on highly treatment-resistant tumour-

initiating cells in pancreatic carcinoma [159]. Moreover, sulforaphane had no toxic 

effects on normal cells and, importantly, did not induce drug resistance in pancreatic 

cancer cells [151] but enhanced chemotherapeutic agents effect [160-162]. Here I have 

examined whether sulforaphane-induced cell death is mediated by necroptosis in a 

situation of blocked apoptosis, and vice-versa. I used the gemcitabine-resistant 

subclone BxGEM with acquired apoptosis resistance, the parental cell clone BxPC3, and 

the novel cell line of pancreatic ductal adenocarcinoma, originated from IPMN, 

AsanPaca. The apoptosis signalling was blocked by ZVAD, and likewise necroptosis was 

blocked by the RIP1 inhibitor NECR. By examination of cell viability, I have assessed 

that ZVAD partially reversed sulforaphane-reduced viability, with significant effects in 

BxGEM cells, whereas NECR had instead no effects. These results suggest that 

sulforaphane requires caspases for induction of cell death as well as demonstrated by 

the FACS measurements. It has been shown that ZVAD was able to prevent 

sulforaphane-induced apoptosis in all cell lines, whereas in BxGEM cells, also NECR was 

able to prevent late apoptosis/necrosis. This may be due to the inability of BxGEM cells 

to switch to apoptosis in a situation of blocked necrosis, due to an acquired apoptosis 

defect in this particular cell line [151].  

In the recent years, numerous studies showed that necroptosis could be induced by 

pan-caspase inhibitors in combination with chemotherapeutic agents such as 5-FU, or 

with the smac-mimetic BV6 or with TNF or with staurosporine, in different cancer cell 

lines that are resistant to pro-apoptotic treatments [163-165]. However, data in the 

present study indicate that the combination of pan-caspase inhibitor and sulforaphane 

does not lead to necroptosis-induced cell death. The bioactive agent cannot 

completely exert its toxic effect on pancreatic cells with Zvad co-treatment. In fact, cell 

viability is rescued and the percentages of apoptotic cells are comparable to the 

control group (Fig. 5, 6). Moreover, immunohistochemistry results confirmed that 
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sulforaphane induces apoptosis (Fig. 7) and seems to have an inhibitor effect on the 

RIP1 phosphorylation with consequences on necrosome complex activation (Fig. 8). 

These results suggest that probably sulforaphane does not trigger the necroptotic 

pathway, but may help caspase-8 to exert the apoptotic cascade. However, more 

detailed analyses are required in the future studies. 
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