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Abstract

The monitoring of the quality of life and the subject’s well-being represent an open
challenge in the healthcare scenario. The emergence of solving this task in the new era
of Artificial Intelligence leads to the application of methods in the machine learning
field.

The objectives and the contributions of this thesis reflect the research activities per-
formed on the topics of (i) human motion analysis: the automatic monitoring and
assessment of human movement during physical rehabilitation and (ii) affective com-
puting: the inferring of the affective state of the subject.

In the first topic, the author presents an algorithm able to extract clinically relevant
motion features from the RGB-D visual skeleton joints input and provide a related
score about subject’s performance. The proposed approach is respectively based on
rules derived by clinician suggestions and machine learning algorithm (i.e., Hidden
Semi Markov Model). The reliability of the proposed approach is tested over a dataset
collected by the author and with respect to a gold standard algorithm and with respect
to the clinical assessment. The results support the use of the proposed methodology
for quantitatively assessing motor performance during a physical rehabilitation.

In the second topic, the author proposes the application of a Multiple Instance
Learning (MIL) framework for learning emotional response in presence of continu-
ous and ambiguous labels. This is often the case with affective response to external
stimuli (e.g., multimedia interaction). The reliability of the MIL approach is inves-
tigated over a benchmark database and one dataset closer to real-world problematic
collected by the author. The obtained results point out how the applied methodology
is consistent for predicting the human affective response.
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Sommario

Il monitoraggio della qualità della vita e del benessere della persona rappresenta
una sfida aperta nello scenario sanitario. La necessità di risolvere questo task nella
nuova era dell’Intelligenza Artificiale porta all’applicazione di metodi dal campo del
machine learning.

Gli obiettivi e i contributi di questa tesi riflettono le attività di ricerca svolte (i)
nell’ambito dell’analisi del movimento: valutazione e monitoraggio automatico del
movimento umano durante la riabilitazione fisica, e (ii) nell’ambito dell’affective com-
puting: stima dello stato affettivo del soggetto.

Nel primo tema il candidato presenta un algoritmo in grado di estrarre le caratteris-
tiche di movimento clinicamente rilevanti dalle traiettorie dello skeleton acquisite da
un sensore RGB-D, e fornire un punteggio sulla prestazione del soggetto. L’approccio
proposto si basa su regole derivate da indicazioni cliniche e su un algoritmo di machine
learning (i.e., Hidden Semi-Markov Model). L’affidabilità dell’approccio proposto è
studiata su un dataset collezionato dal candidato rispetto ad un algoritmo gold stan-
dard e alla valutazione clinica. I risultati sostengono l’uso della metodologia proposta
per la valutazione quantitativa delle prestazioni motorie durante la riabilitazione fisica.

Nel secondo topic il candidato propone l’applicazione del framework di Multiple
Instance Learning per l’apprendimento della risposta emotiva in presenza di label con-
tinui ed ambigui. Questa varaibilità è spesso presente nella risposta affettiva ad uno
stimolo esterno (e.g., interazione multimediale). L’affidabilità dell’approccio di Mul-
tiple Instance Learning è indagata su un database di benchmark e un dataset più vicino
alle problematiche del mondo reale acquisito dal candidato. I risultati ottenuti eviden-
ziano come la metodologia proposta è consistente per la stima dello stato affettivo.
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Chapter 1.

Introduction

“The time is ripe for our measurement system to shift emphasis from measuring eco-
nomic production to measuring people’s well-being.”
The Stiglitz Report [1]

With the ubiquitous presence of biomedical data and its increasing importance in
a wide range of healthcare applications such as Computational Biology, Clinical In-
formatics, Rehabilitation, and Psychology, there is a growing demand for automated
and/or semi-automated analysis for accelerating basic science discoveries and facil-
itating evidence-based clinical solutions. Machine Learning (ML) offers a realm of
possibilities for discovering meaningful pattern or structures of data using optimiza-
tion and probabilistic methods. In a broad sense, there are two types of applications
in biomedical informatics where ML is commonly used: (i) the knowledge discovery
by analyzing historical data to go insights on what happened and why it happened and
(ii) the design of a decision-making application, building a predictive model and scale
it to make predictions using unseen data.

The monitoring of the quality of life and the subject’s well-being represents an
open challenge in this scenario. The World Health Organization [2] defined health
as “a state of complete physical, mental and social well-being” [3]. This statement
emphasizes the importance of emotional well-being for health and is supported by an
increasing body of epidemiological, social science, experimental research that is be-
ginning to suggest that initiatives which aim to promote physical well-being excluding
mental and social well-being may be doomed to failure. However, the monitoring and
the estimation of subjects well-being and the measure of the quality of life remain an
open question. The emergence of solving this task in the new era of Artificial Intelli-
gence (AI) leads to the design and building of new methods in computer science and
machine learning scenario. In particular, the “Prioritizing of Human Well-being in
the Age of Artificial Intelligence” is the title of the Report of IEEE Global Initiative
for Ethical Considerations in Artificial Intelligence and Autonomous Systems’ [4].
Recently, Fabrice Murtin, Senior Economist, Household Statistics and Progress Mea-
surement Division of the OECD Statistics Directorate pointed out how the changes
that are brought forward by these digital AI technologies could be monitored across
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Chapter 1. Introduction

all the various dimensions of human well-being. This represents a possibility to close
the loop: the AI technologies and ML methods can improve the well-being and the
quality of life measuring at the same time the subject’s well-being during human-
computer or human-robot interaction.

The objectives and the contributions of this thesis reflect the research activities per-
formed on the following two main topics:

• Design and implementation of an algorithm for monitoring the physical well-
being of subjects: automatic evaluation and assessment of human movement
during physical rehabilitation.

• Design and implementation of an algorithm for monitoring the emotional
well-being of subjects: inferring the affective state of the user during multi-
media interaction.

There is much to be learned through the discovery of new ML methodologies able to
solve this two problems and at the same time promising a suitable design, implementa-
tion, interpretation, and validation of these methods from a computer scientist, medical
and humanistic perspective. Hence, this thesis is titled Applied Machine Learning for
Health Informatics: Human Motion Analysis and Affective Computing Application.
The remainder of this chapter is organized as follows:

• Section 1.1 provides a broad background and motivation for this thesis topic,
author motivates the research study and highlights its significances from the per-
spectives of Health Informatics (HI), Artificial Intelligence (AI), and Human-
Computer Interaction (HCI).

• Section 1.2 presents the thesis statement, where the problem is formally defined
from a machine-learning point of view with a list of specific research questions
answered in this thesis.

• Section 1.3 resumes the index of the thesis.

• Section 1.4 presents the thesis outcomes in terms of scientific publications.

1.1. Background and Motivation

Health Informatics is concerned with the use of computational intelligence for the
management of processes relevant for human health and well-being, ranging from the
collective to the individual. In healthcare, machine learning could help providing more
accurate diagnoses and more effective healthcare services, through advanced analysis
that improves decision-making’, according to a report on AI by The Royal Society
[5]. Recently, Deep Learning and other advanced machine learning technologies have

2



1.1. Background and Motivation

revolutionized in computer vision, speech recognition, and natural language process-
ing and brought promising results in many other areas. Despite this, applying these AI
revolutions to human health and wellness problems remains some challenges [6]. For
instance, the following five methodological and technical challenges should be faced:

1. Representation of subjective knowledge: much of knowledge in well-being
science is subjective. For instance, the subjects’ personality and the subjects’
mood should be represented with concrete and consistent mathematical struc-
tures in order to be embedded in a ML model.

2. Understand things that humans do not: right now machine learning research
is interested in getting computers to be able to understand data that humans do:
images, text, sounds, and so on. However, the focus in novel advanced machine
learning techniques such as deep learning is to understand things that humans
do not.

3. Data analysis issues: biomedical data analysis deals with different challenges
such as large volumes of data, high dimensions, imbalanced classes, heteroge-
neous sources, noisy data, incompleteness, rich contexts, weakly structured or
unstructured data, noisy and ambiguous labeling. Optimization and ML algo-
rithms are developed to face these type of problems. It is also of much inter-
est to study and revisit traditional machine-learning topics such as clustering,
classification, regression, and dimension reduction and turn them into powerful
customized approaches in order to solve these challenges.

4. Models, Reasoning, and Inference, Data interpretation: the reasoning about
data through representations should be understandable to the human being. For
instance, the goal of ML is not only to increase accuracy rate of predictions but
also understand the causality with reliable models, reasoning, and inference.
The sheer volume and complexity of the data that is possible to acquire nowa-
days in biomedical informatics present major barriers toward their translation
into effective clinical meaning and actions.

5. User-centered design system: it is important to understand how the AI revo-
lution affects subjects’ emotions and their quality of life and how to design a
human-centered system.

1.1.1. The Challenge of Evaluating Human Movement

Global population is aging rapidly and life expectancy is constantly growing. Accord-
ing to the Global Health Observatory data, 71.4 years was the average life expectancy
at birth of the global population in 2015. In this scenario living longer does not nec-
essarily mean living healthier, more active and independent. Active and healthy ag-
ing is thus one of the most important societal challenges shared by all governments,
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researchers and industries of different areas [2] to achieve the health Sustainable De-
velopment Goals [7]. In this scenario, it is not surprising that eHealth and digital
health are among the fastest-growing areas in the Consumer Electronics (CE) and In-
formation Technology (IT) markets. Increased acceptability and usability, ubiquitous
access to data, real-time clinical outcomes, remote patient-to-physician experiences in
telemedicine and telerehabilitation are only some of the (r)evolutions coming in the
latest years. In stark contrast to such possibilities, the technology itself is certainly
easily accessible and cost-effective. In this scenario, telerehabilitation is a solution for
delivering services at home, supporting patients and clinicians by minimizing the bar-
riers of distance, time and cost. Although telerehabilitation platforms based on vision
and wearable sensors are widely spread [8, 9, 10], the way to ensure a continuous mon-
itoring of body motion and an accurate evaluation of rehabilitation therapy remains a
challenge. The primary challenge is to design and realize an Information and Com-
munication Technology (ICT) rehabilitation tool at home on the basis of acceptability,
low cost and connectivity principles. Many recent works reported in the scientific lit-
erature focused on the design of such systems by using CE devices and, sometimes,
AI techniques. Preventive healthcare systems have been proposed by using wireless
sensor networks [11] or consumer home networks [12]. Accordingly, some studies
address the issue of human activity recognition in a domestic scenario focusing on
the automatic visual detection and recognition of human behavior [13, 14], including
abnormal and dangerous activity detection [15], normal motion patterns [16], daily
[17, 18, 19] and sport activities [20, 21, 22, 23]. On the same time different eHealth
software platforms have been proposed, as in [24] where authors aim to monitor pa-
tients physiological data through a Smart TV and an Open Services Gateway initiative
(OSGi) architecture and as in [25] where a wireless blood pressure measurement de-
vice is designed and works in cooperation with a web-based platform. One of the
most promising aspects of among all the eHealth applications is the telerehabilitation.
The primary driver behind telerehabilitation is the need to eliminate the inequality of
access to rehabilitation services. In addition to CE and ICT companies, many other
stakeholders are involved in telerehabilitation systems, including patients, physicians,
engineers, and, obviously, academic researchers. A recent trend in the design of such
multidisciplinary systems is the so-called “collaborative design” paradigm, a process
involving all these actors [26]. Patient-centered approaches may help to meet pa-
tients’ needs increasing acceptability and usability, while physicians are involved in
the definition of inputs and outputs of the ICT platform (e.g. targets, assessment,
scoring). From an engineering perspective, a telerehabilitation system is based on a
signal processing stage (automated segmentation of images [27] or biosignal analy-
sis), identification [28] and assessment of movements (employing machine learning
and/or action similarity algorithms). However one of the limits in the current scenario
is the (almost) complete lack of involvement of physicians in the algorithmic core of
the system. While on one side this can seem a normal situation, on the other it drasti-
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cally decreases the usefulness and interpretability of the outcomes of the entire system
thus limiting the advantages of the “collaborative design” paradigm (data interpreta-
tion issue). The telerehabilitation tool should provide a functional monitoring of the
motion during exercise execution, such as a physiotherapist does during the ambula-
tory training. The system should at the same time understand the causality of motion
data with reliable models, reasoning, and inference providing a suitable feedback for
supporting both clinicians and patients during the rehabilitation process. Accordingly,
the data analysis procedure should deal with different problems such as (data analysis
issues):

• noise: sensor data is subject to several sources of errors such as hardware noise,
interference, and noise from external sources and environment, inaccuracies,
and imprecision. That means the low-cost motion tracking system should be
validated in the rehabilitation scenario.

• high dimensional data: often the human motion tracking data has high dimen-
sions. Hence, a suitable features extraction stage or dimensionality reduction
and features selection techniques should be exploited in this context. In addi-
tion, also some ML algorithms (i.e., Support Vector Machines, Sparse Support
Vector Machine) are designed to implicitly handle high dimensional data.

• incompleteness and missing data: the algorithm should manage situations of oc-
clusion during the acquisition stage. For instance, the visual sensors are widely
used for human motion tracking. However, the rehabilitation exercise moni-
toring involves considering dynamic movements with a wide range of motion
and issues related to the joints tracking such as joints occlusion due to postures
adverse to the vision sensor.

The accuracy and precision of the motion evaluation algorithm in a telerehabilita-
tion system should be comparable with respect to the clinician analysis. The algorithm
should identify which body segments are making a mistake and monitor simultane-
ously multiple motion features with high accuracy, otherwise captured by the human
eye with difficulty (Understand things that humans do not).

1.1.2. The Challenge of Inferring Human Emotion

Emotion is a psycho-physiological response triggered by conscious and/or uncon-
scious stimuli that cannot be explained by scientific principles such as rational thought,
logical arguments, testable hypotheses, and repeatable experiments. Emotions play a
crucial role in human communication and can be expressed by multidimensional cues
such as vocabulary, the intonation of voice, facial expressions and gestures.

The term affect refers to emotion and related phenomena such as:
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• Emotions (e.g., angry, sad, joyful, fearful)

• Moods (e.g., cheerful, gloomy, irritable, listless, depressed, buoyant)

• Interpersonal stances (e.g., distant, cold, warm, supportive)

• Preferences/Attitudes/Sentiment (e.g., liking, loving, hating)

• Personality (e.g., nervous, anxious, reckless, morose)

• Culture (e.g., Individualistic vs. Collectivist; engineering vs. social sciences)

The relation between emotion and computer science lays hold of various of com-
puter science such as HCI, AI, and HI.

Most of the current HCI systems are unable to identify human emotional states and
use this information in the decision-making process. The importance of affect for HCI
can be explained by denoting its effects on three cognitive processes:

• Attention: affective processes have a way of being completely absorbing and to
capture attention. Basically, they direct and focus our attention on those objects
and situations that have been appraised as important to human’s needs and goals
[29].

• Memory: affect has also an implication for learning and memory [30, 31].
Events with an affective load are generally remembered better than events with-
out such a load, with negative events being dominant over positive events [32].

• Decision making: affective processes also have their influence on our flexi-
bility and efficiency of thinking and problem-solving [33]. It has also been
demonstrated that affect can (heavily) influence judgment and decision making
[34, 35].

Then, the main goal of HCI research is to create interfaces that are both efficient
and effective as well as enjoyable and satisfying [36].

In 1935, Flanders Dunbar noted that the “Scientific study of emotion and of the
bodily changes that accompany diverse emotional experience marks a new era in
medicine” [37]. Then the emotions are now being given a position in health informat-
ics and for application such as the support/assistance of independent living, chronic
disease management, facilitation of social support, and to decrease the barriers of dis-
tance, time and cost. Many physiological processes that are profound significance for
health can be influenced by way of emotions [38, 39, 40]. Accordingly, emotions play
an important role in chronic disease, cancer, and rehabilitation process. There is a
strict connection between emotion and stress. In particular, stress is a physiological
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response to a mental effort, emotional or physical. It can be defined as the reaction of a
person to environmental influences or physical demand. Stress condition can affect the
physical and emotional wellbeing leading symptoms such as headaches, stomachaches
and sleeplessness, and insomnia. In recent years the impact of stress on society has
increased. A study conducted by the American Institute of Stress [41] disclosed how
in 2015, the 48% of people believe that their stress condition has increased over the
last five years, and 77% of people regularly experience physical symptoms caused
by stress with a negative impact on personal and professional life. Accordingly, the
influence of stress and its consequences on society also affects the economic aspect;
causing a loss of productivity, increasing health care costs and social welfare costs
[42]. Hence, emotions, mood, and stress can affect not only temperament, personal-
ity, disposition, and motivation but also the person’s physical well-being, judgment,
and perception. Since emotions are complex and move in various directions the first
step towards emotion analysis is the identification and categorization of different emo-
tions [43]. Modeling emotional feelings and considering their behavioral implications
are useful in preventing emotions from having a negative effect on the workplace.
Accordingly, the decision-making process should discard emotion whenever possible:
both positive and negative emotions can distort the validity of a decision.

Almost half a century ago, the American psychologist Ulric Neisser stated [44]
that “Human thinking begins in an intimate association with emotions and feelings
which is never entirely lost”. From the Publication of Picard’s book [45], AI starts
to place the emotion into account for understanding human cognition. The term af-
fective computing was originally defined in [45] as computing that relates to, arises
from, or influences emotions. Hence, affective computing assumes that there is a ben-
efit to give computers “emotional intelligence”. This presents unique challenges and
several opportunities for signal processing and machine learning researchers to solve
the complex task of detecting emotional cues occurring during HCI and subsequently
synthesizing emotional response. Affective computing is an interdisciplinary field of
research that covers but is not limited to the topics involving: sensing and analysis (i.e.,
recognition of human emotion), psychology and behavior analysis, behavior genera-
tion and user interaction. In particular some research topics about affective computing
research include [46]:

Emotion Recognition in:

• Speech:

– Emotion in natural speech

– Depression detection

• Text

– Opinions in facebook, twitter, instagram; blogs

– Emoticons
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• Face

– Understanding impact of aging

– Recognizing expressions with thermal, RGB-D image

• Physiology

– Detecting stress from skin conductance

– Inferring emotional response during multimedia interaction

Synthesis

• Emotional speech

• Emotional facial expressions

Modeling

• Modeling emotional influences on decision making

• Modeling factors that elicit emotions

Applications

• Health: Detection and shaping

• Education: Detection and shaping

• Behavioral science

• Games/Entertainment computing

– Responses to victory and defeat

– Affective music player

– Boredom Detection

• Automotive

The recognition of emotion and the estimation of stress level disclose several chal-
lenges. In particular, the data analysis procedure should be robust to:

• high dimension data. For instance, data acquired from Electroencephalogram
and EMG lead to high-dimensional data sets with much more features than data
items. Also here, features selection, dimensionality reduction, and suitable ML
algorithm should deal with this issue.
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• imbalanced class. Often the data acquisition procedure in the emotion/stress
recognition task leads to an unbalanced class, where the samples are not uni-
formly distributed over all labels. In this case, it is often preferable to maximize
other metrics such as macro/micro F1 score instead of accuracy. Moreover, data
level approach focuses on increasing the frequency of the minority class or de-
creasing the frequency of the majority class (resampling techniques). While the
classification level approach aims to modify existing classification method to
make them appropriate for imbalanced data sets (e.g., ensemble classifiers).

• heterogeneous sources. Most of the affective computing studies monitor the
user with several sensors or sensor channels, which can be considered as such
co-occurring sets. The model prediction should combine several sensors and
at the same time learns the importance of individual sensors. For instance, a
technique such as Multiple View Learning (MVL) could be used for combining
different sources and learning a joint model over all sensor data.

• ambiguous label. The ground truth label cannot always be reliable, reflecting
ambiguous or summative global emotional responses. Accordingly, the emotion
is time-varying and cannot consistent with all the observation sequence.

• noise: sensors for physiological data acquisition is subject to several interfer-
ences including also artifact noise. A preliminary consistent pre-processing
stage is required to remove outliers.

Obviously, the emotional response is subjective (Representation of subjective
knowledge). The ML algorithm should model the emotional response of a single
user and at the same time generalize across different users. Hence, the implemented
ML model should provide a robust performance for a single user ( user-specific model)
and also across users (user-independent model). Often emotions and thoughts are best
kept hidden than displayed in front of people. There are many different reasons that
human may endeavor to hide or disguise, but what they have in common is that they
are all fear-induced. Hence, it is difficult to understand and detect the emotion and the
mood state of a subject. In this context, affective computing and machine learning aim
to discover also what is hidden by the human being (Understand things that humans
do not).

1.1.3. The human machine closed-loop model

Figure 1.1 and 1.2 show respectively the human-machine closed-loop model for tel-
erehabilitation and affective computing scenario. These closed loop models take the
human/user/subject into the loop and include sensors, processing, modeling, and actu-
ators. Closed loop models can be concisely defined as a control system with an active
feedback loop, allowing the control unit to dynamically compensate for changes in
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the system. Rehabilitation and affective computing are examples of this closed loop
model.

Motion 
capture 

Data Processing 

Feedback 
Evaluation 

Save Data 

Feedback 
Evaluation 

Medical staff 

Feedback
Evaluation

Feedback
Evaluation

Save Data Medical staff

Features  
saving 

Figure 1.1.: The telerehabilitation framework

In telerehabilitation scenario, the data processing aims to monitor and to assess the
human movement. Hence, a properly feedback is sent to patients and clinicians in
order to improve the execution performance and track the patients’ progress over the
time.

(Bio)Feedback	

Event	 context	 Ini4al	behavior	

Revised	behavior	

Affec4ve	
response	

Data	Analysis	Learning		
intelligence	

Hypothesis	

Feedback		
commands	

Biosensors	

Figure 1.2.: The affective computing model

In the affective computing scenario, the vast majority of research has not applied
closed-loop models and focus the attention only on the data analysis and the design of
machine learning model able to estimate the affective state of the user. Examples of af-
fective closed loops are for instance a computer/robot/avatar that adapts its interaction
dialogue to the level of frustration of its user, or a recommender multimedia system
that chooses the music/video to be played so as to guide the user to a better mood, or
a teacher that adapts its interactive lesson to the level of interest of the audience.
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1.2. Thesis: Problems statement

Thesis statement: With computational techniques, including advanced machine learn-
ing algorithms, the main objective is to design and develop an algorithm for monitor-
ing the physical and emotional well-being of a subject.

1.2.1. Problem 1: Quantitative Assessment of Human
Motion

Problem 1 is addressed to monitor the physical well-being of the subject: design and
develop algorithms for real-time assessing exercise performance during physical re-
habilitation stage.

The research questions regarding the machine learning algorithm for the movement
assessment stage are summarized below:

1. How can ML model be applied for assessing the human movement with respect
to a reference example or a set of rules?

2. How can the algorithm provide a suitable feedback for supporting both clini-
cians and patients during rehabilitation process?

Questions-related to the evaluation scheme include:

1. How can an objective measurement be designed to validate the proposed algo-
rithm?

2. Does the proposed ML algorithm outperform standard algorithm widely used in
literature?

3. How far/close is the proposed algorithm from clinician evaluation of exercise
performance?

1.2.2. Problem 2: Emotion Inference from Physiological
predictors

Problem 2 is addressed to monitor the emotional well-being inferring the affective
state and the level of stress of the subjects.

The research questions regarding the machine learning algorithm for the emotion
recognition task are summarized below:

1. How can ML model be applied to infer the affective state of the user and model
the variability in physiological response over the course of multimedia interac-
tion?
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2. How can ML model be applied to handle the ambiguity and the change over the
time of the emotional response?

Questions-related to the evaluation scheme include:

1. Does ML method outperform standard supervised algorithm based on video-
level features?

2. Is ML method reliable for the emotion recognition task towards the real world
usage?

1.3. Thesis overview

This thesis aims to answer the question reported above designing and developing ma-
chine learning algorithms for the monitoring of physical (Quantitative Assessment
of Human Motion) and emotional well-being (Emotion Inference from Physiological
predictors).

Figure 1.3 together with the following list show the organization and an overview
of the rest of the thesis.

Chapter	1	 Chapter	2	 Chapter	3-4	 Chapter	5	 Chapter	6	

Conclusions	
	&	

Future		
Works	

Quan3ta3ve		
Assessment		
of	Human		
Mo3on	
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Machine	
Learning		
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Machine	
Learning		
for	the	Inference	
of	Human	
Emo3on	

State	of	Art	 Materials	
&	Methods	

Material		
				&	
Methods	

Material		
				&	
Methods	

Results	

Performance	
measure	over	
real	dataset	
	

Performance	
measure	over	
real	dataset	

C

Chapter	7	

Discussions	

Figure 1.3.: The organization of the rest of the thesis
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• Chapter 2 reviews related literature in two research fields: Human motion as-
sessment and Emotion recognition using Physiological signals. The author out-
lines the strengths and the drawbacks of the existing achievements, focusing on
what problem questions they answer and what they do not.

• Chapter 3-4 describes the proposed materials and methods. In particular, the
author presents the proposed ML algorithms for the data processing/analysis
stage.

• Chapter 5 firstly presents the Experimental Protocol including the adopted
dataset, the experimental setup, and measure. Then, the author provides the
experimental results for evaluating the performance of the proposed methods.

• Chapter 6 discusses the obtained results and provides further statistical analy-
ses.

• Chapter 7 presents the conclusions and future works.

1.4. Thesis outcomes

The detailed descriptions of the thesis outcomes are available in the follow publica-
tions. The contribution of the candidate are reported below each paper.

1.4.1. Problem 1: Quantitative Assessment of Human
Motion

• Journal

– M. Capecci, L. Ciabattoni, F. Ferracuti, A.Monteriù, L. Romeo and F.
Verdini (in press), Collaborative design of a telerehabilitation system en-
abling virtual second opinion based on fuzzy logic, IET Computer Vision.
doi 10.1049/iet-cvi.2017.0114
L. R. developed the study concept, L.R. performed the kinematic data col-
lection, L.R. implemented the methodology and the web-based platform,
L.R. drafted the manuscript providing critical revisions and approved the
final version of the manuscript for submission.

– M. Capecci, M. G. Ceravolo, F. Ferracuti, M. Grugnetti, S. Iarlori, S.
Longhi, L. Romeo and F. Verdini (in press), An instrumental approach
for monitoring physical exercises in a visual markerless scenario: a proof
of concept, Journal of Biomechanics.
doi 10.1016/j.jbiomech.2018.01.008
L. R. developed the study concept, L.R. performed the kinematic data col-
lection, L.R. implemented the methodology, L.R. planned and performed
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the data analysis, L.R. drafted the manuscript providing critical revisions
and approved the final version of the manuscript for submission.

– M. Capecci, M. G. Ceravolo, F. Ferracuti, S. Iarlori, V. Kyrki, A. Monteriù
L. Romeo and F. Verdini, A Hidden Semi-Markov Model based Approach
for Rehabilitation Exercise Assessment, Journal of Biomedical Informat-
ics. Volume 78, 2018, Pages 1-11.
L. R. developed the study concept, L.R. performed the kinematic data col-
lection, L.R. implemented the methodology, L.R. planned and performed
the data analysis, L.R. drafted the manuscript providing critical revisions
and approved the final version of the manuscript for submission.

• Conference Proceeding

– L. Ciabattoni, A. De Cesare, G. Foresi, A. Monteriù, D. Proietti Pagnotta,
L. Romeo and L. Spalazzi (accepted), Complex Activity Recognition Sys-
tem Based on Cascade Classifiers and Wearable Device Data, IEEE Inter-
national Conference on Consumer Electronics (ICCE 2018).
L.R. planned and performed the data analysis, L.R. provided critical revi-
sions and approved the final version of the manuscript for submission.

– L. Ciabattoni, F. Ferracuti, G. Lazzaro, L. Romeo and F. Verdini, Seri-
ous gaming approach for physical activity monitoring: A visual feedback
based on quantitative evaluation, IEEE 6th International Conference on
Consumer Electronics-Berlin (ICCE-Berlin 2016).
L. R. developed the study concept, L.R. supported the implementation of
the methodology, L.R. drafted the manuscript providing critical revisions
and approved the final version of the manuscript for submission.

– M. Capecci, M. G. Ceravolo, F. Ferracuti, S. Iarlori, S. Longhi, L. Romeo,
N. Russi Severino and F. Verdini, Accuracy evaluation of the Kinect v2
sensor during dynamic movements in a rehabilitation scenario, 38th An-
nual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC 2016)
L. R. developed the study concept, L.R. performed the kinematic data col-
lection, L.R. planned and performed the data analysis, L.R. drafted the
manuscript providing critical revisions and approved the final version of
the manuscript for submission.

– L. Ciabattoni, F. Ferracuti, S. Iarlori, S. Longhi and L. Romeo, A novel
computer vision based e-rehabilitation system: From gaming to therapy
support, IEEE International Conference on Consumer Electronics (ICCE
2016).
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L. R. developed the study concept, L.R. performed the kinematic data col-
lection, L.R. implemented the methodology and the web-based platform,
L.R. drafted the manuscript providing critical revisions and approved the
final version of the manuscript for submission.

– M. Capecci, M. G. Ceravolo, F. Ferracuti, S. Iarlori, V. Kyrki, S. Longhi,
L. Romeo and F. Verdini, Physical rehabilitation exercises assessment
based on hidden semi-markov model by kinect v2, International Confer-
ence on Biomedical and Health Informatics (BHI 2016).
L. R. developed the study concept, L.R. performed the kinematic data col-
lection, L.R. implemented the methodology, L.R. planned and performed
the data analysis, L.R. drafted the manuscript providing critical revisions
and approved the final version of the manuscript for submission.

– M. Capecci, M. G. Ceravolo, F. D’Orazio, F. Ferracuti, S. Iarlori, G. Laz-
zaro, S. Longhi, L. Romeo M. Grugnetti, S. Iarlori, S. Longhi, L. Romeo
and F. Verdini, A tool for home-based rehabilitation allowing for clini-
cal evaluation in a visual markerless scenario, 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC 2015).
L. R. developed the study concept, L.R. performed the kinematic data col-
lection, L.R. implemented the methodology, L.R. planned and performed
the data analysis, L.R. drafted the manuscript providing critical. revisions
and approved the final version of the manuscript for submission.

1.4.2. Problem 2: Emotion Inference from Physiological
predictors

• Conference Proceeding

– L. Ciabattoni, E. Frontoni, D. Liciotti, M. Paolanti and L. Romeo (ac-
cepted), A Sensor Fusion Approach for Measuring Emotional Customer
Experience in an Intelligent Retail Environment, IEEE 7th International
Conference on Consumer Electronics-Berlin (ICCE-Berlin 2017).
L. R. developed the study concept, L.R. implemented the methodology,
L.R. drafted the manuscript providing critical revisions and approved the
final version of the manuscript for submission.

– L. Ciabattoni, F. Ferracuti, S. Longhi, L. Pepa, L. Romeo and F. Verdini,
Real-time mental stress detection based on smartwatch, IEEE Interna-
tional Conference on Consumer Electronics (ICCE 2017).
L. R. developed the study concept, L.R. implemented the methodology,
L.R. provided critical revisions and approved the final version of the manuscript
for submission.
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– L. Ciabattoni, F. Ferracuti, S. Longhi, L. Pepa, L. Romeo and F. Verdini,
Multimedia experience enhancement through affective computing, IEEE
International Conference on Consumer Electronics (ICCE 2017).
L. R. developed the study concept, L.R. implemented the methodology,
L.R. provided critical revisions and approved the final version of the manuscript
for submission.

16



Chapter 2.

State of the art

The state of art related to human movement analysis and the methodology for quan-
titatively assess human movement is summarized in Section 2.1. While the literature
reviews of affective computing and the emotion recognition using physiological sig-
nals are described in Section 2.2. In Section 2.3 author reports some study within the
intersection of physical rehabilitation and affective computing focusing in the possible
emotional effects on movement execution in patient with chronic pain.

2.1. State of art: Quantitative Assessment of
Human Movement

The vision sensors employed for human movement assessment are shown in Section
2.1.1. The pre-processing and features extraction stage related to this type of data
are described in Section 2.1.2. Then, the existing motion assessment algorithms are
resumed in Section 2.1.3, divided in rule-based (see Section 2.1.4) and template-based
method (see Section 2.1.5). The discussions (see Section 2.1.6) are provided in order
to highlight the drawback of the method presented in literature. Finally, the author’s
contribution is clarified and described in Section 2.1.7.

2.1.1. Sensors

In the last years, many research projects focused on developing affordable, accept-
able and reliable telerehabilitation applications, wearable and vision sensors based
[47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 8, 57, 58]. For a complete review of the
wearable-based system for movement assessment, the reader can refer to [9, 10]. Gen-
erally, complex and intrusive technologies, able to accurately monitor human motion
as electromyography [59], optoelectronic motion analysis or wearable inertial sys-
tems cannot be routinely adopted in a physiotherapy ambulatory or at home, because
their costs and low acceptability and usability, as defined by the Unified Theory of
Acceptance and Use of Technology criteria (UTAUT [60]). On the other hand, more
than one wearable sensor (i.e., accelerometer) is required to accurately describe mo-
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tion and posture [10, 61] and to estimate related parameters. This situation disagrees
with the acceptance requirement (UTAUT [60]). Therefore, vision-based systems are
preferable for monitoring the whole body motion during the execution of a functional
movement in a delimited environment.

Vision Sensors

For a complete review of the vision-based systems for movement assessment, the
reader can refer to the papers [8, 62]. The visual based tracking systems can be
divided in marker-based and marker-free. Although the former allows an accurate
tracking of the motion, the latter are no obtrusive and they overcome the mutual oc-
clusion problem allowing to perform the motion analysis in a three-dimensional space.
The Red-Green-Blue Depth (RGB-D) camera overcomes limitations of the traditional
RGB camera. In particular, the value of each pixel in a depth image indicates the cal-
ibrated distance between camera and scene. The depth information is used to address
the following issues:

• Reconstruction of the 3D structure of the scene;

• Human body pose estimation and tracking, object recognition and tracking;

• Implementation of Natural User Interface (NUI);

• Solving ambiguities (good invariance against color, texture and illumination
changes);

• Image synthesis

Three main sensing RGB-D technologies are applied in computer vision research:

• stereocamera;

• time of flight cameras (ToF);

• structured light sensors

Figure 2.1 shows three examples of stereocamera, ToF, and structured light sensors.

(a) (b) (c)

Figure 2.1.: Bumblebee 2 Sony stereo vision camera (a), Microsoft Kinect (Prime-
Sense) (b), Microsoft Kinect v2 (c)
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Table 2.1 shows the comparison between the three sensing technologies in terms of
resolution, speed, range, depth resolution, the field of view, holes in the depth map,
price and invariance against illumination.

Table 2.1.: Comparison among depth sensors technologies
Sensor Type Stereo camera ToF Structured Light

Resolution 640 x 480 or more 64 x 48 to 512 x 424 640 x 480

Speed Slow Fast Fast

Range Only limited by baseline 5 m to 10 m 0.8-3.5 m
(indoors or outdoors) (typically indoors)

Depth resolution Depends on Less than 5 mm Less than 1 cm
camera baseline
and resolution

Field of view Depends on camera lenses Approx. 43◦(v), 69◦(h) Approx. 43◦(v), 57◦(h)

Holes in depth map Yes No Yes

Price Quite cheap Expensive Cheap

Invariance Yes No No
against
illumination

Microsoft Kinect is a cheap, unobtrusive and easy to set up technology that could be
usefully applied to monitor subjects during rehabilitation programs. Microsoft Kinect
for Windows SDK includes a skeletal tracking where the 20 virtual anatomical joint
trajectories are extracted from depth map with a per-pixel semantic segmentation ap-
proach based on random decision forest algorithm [63]. In 2014, the second version
of Microsoft Kinect (Kinect v2) was released [64]. It employs a novel time-of-flight
technology, compared with the previous version that falls within the category of Struc-
tured Light camera. For further detail in the depth-sensing technology implemented
in the new generation of Kinect v2, the reader can refer to [64]. Compared with the
previous version, Kinect v2 provides a superior depth map resolution (512⇥ 424 vs
320⇥240), allowing to recognize thin objects and solving some ambiguity problems.
The increase in resolution allows identifying 25 distinct virtual body joints (see Fig.
3.3.a).

In the telerehabilitation scenario, Microsoft Kinect is used at home as unobtrusive
and low-cost assistive technology for human action recognition [65, 22, 66], fall de-
tection [67], gait measurement [68] and for supporting patients and physiotherapists in
the rehabilitation cycle [49, 50, 69]. It has been integrated into a telerehabilitation sys-
tem to provide physiotherapy program for upper [51, 52] and lower limbs [53, 70] in
subjects with neurological or orthopedic disorders [54, 55] and for cognitive training
[56].
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2.1.2. Pre-processing and features extraction stage

The feature stage adopted in literature for human assessment aims to extract relevant
features from the acquired motion trajectories. Nevertheless, a pre-processing filtering
stage is mandatory to remove noise and outliers. This can happen when a subject
moves out of the sensors range and/or Kinect data are inferred. There are cases when
the Skeleton Tracking system does not have enough information in a captured frame
to determine a specific joint position. In most cases, the system is still able to infer the
joint position (resulting in “inferred state”). However, two types of noise are present
in joint positions. One is the relatively small white noise caused by imprecision; the
other is temporary spikes caused by inaccuracy, which happens when the joint has an
inferred tracking state [71]. Some solutions can be adopted in this context to filter the
motion signals from noise:

1. Smoothing filters: Auto-Regressive Moving Average (ARMA) filters, which
represent a general class of filters. Specific smoothing filters for noise removal
include Moving Average, Double Moving Average, Exponential Filter, Double
Exponential Filter, and Savitzky-Golay filters.

2. Using joint tracking state in filtering: joints that are inferred are more likely to
have temporary spike noises due to being less accurate. Also, the random noise
levels are usually higher for inferred joints. The tracking state can be treated as
the confidence level of the skeleton tracking system regarding the joint position
[71]. Though the inferred joint positions are a very refined estimate of joint
position, they may become inaccurate in some cases, depending on a person’s
pose. Therefore, one should expect that inferred joints have higher noise values,
along with a possibility of a bias. The information of tracking state along with
the motion tracking trajectories can be used to design an adaptive filtering stage.

3. Using the combination of more sources: the skeleton tracking algorithm does
not take advantage of the sound source angle when the subject being tracked
is speaking. In [72] and Extended Kalman Filter is designed to incorporate the
information contained in the sound source angle for smooth out the jitter.

4. Using body kinematics to correct the filter output data: the anatomy and kine-
matics of a person provide valuable information that can be used to enhance the
Skeleton Tracking joint accuracy. For example, some joints move or bend only
in a certain direction, or some joints, such as hands, can move faster than other
joints. This information represents useful constraints for bounding the motion
data into the acceptable region.
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2.1.3. Motion Assessment

The motion analysis in a telerehabilitation system, generally, is based on automated
segmentation [27], identification [28] and assessment of movements employing ma-
chine learning or action similarity algorithms. In literature, human motion assessment
approaches can be divided into two main categories [73]: rule and template based.
In the rule based approach, experts (e.g., medical staff) identify some motion key de-
scriptors, a set of rules (e.g., angles, joints position, relative distance, velocity), which
define the “motion sample”. The rule-based approach does not require the recording of
exemplars and the dynamic building of ML models. In the template based approach,
the sequence of gesture motion is a priori recorded and then used as an exemplar to
be compared with the observations [73]. This comparison can be directly performed,
via action similarity approaches (e.g., Dynamic Time Warping (DTW) [74, 55]), or
using a machine learning model (e.g., Artificial Neural Networks (ANN) [75], Hidden
Markov Model (HMM) [76]).

2.1.4. Rule-based methods

In [73], each exercise is described by rules to assess periodic movements and static
poses. They define three types of rules for (i) dynamic movement, (ii) static poses
and (iii) movement invariance. The rules are encoded using XML for its readability
and extensibility. Afterwards, the dynamic rules are assessed in real-time by a fi-
nite state machine, while the static and invariance rules are evaluated comparing each
frame supplied by the motion sensing device. In [77] and [78], the rules are defined
in terms of the distance traversed of a set of joints for postural control and trunk flex-
ion angle, and in terms of the trunk lean angle for gait retraining. Accordingly, in
[79] the outcome measures of gait speed, step length and time, stride length and time
and peak foot swing velocity were derived by Microsoft Kinect using supervised au-
tomated analysis. The validation of these features was performed with respect to a
marker-based three-dimensional motion analysis. The method proposed in [80] inte-
grates the Kinect with the inertial sensors by Kalman filtering. In particular, the knee
angle and the ankle angle are used to assess the quality of sit-to-stand and squat, and
the shoulder angle is used to assess the shoulder abduction/adduction quality. A rule-
based intelligent control methodology is proposed in [81] to imitate the faculties of
an experienced physiotherapist for a knee rehabilitation robot manipulator. The robot
manipulator works based on impedance control and operates in two stages: teaching
and therapy. If the patient resists against the motion the intelligent controller forces
the knee to move up to the threshold limit defined in the database. In [82], the sit-
to-stand exercise is evaluated by two metrics: (i) the minimum hip angle, in which a
younger healthier person would typically have a larger value than an elderly, (ii) the
smoothness of the head movement, which is computed as the area of the triangle that
is determined by the second highest peak, the valley and lines that are parallel to the
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axes on the head-speed-versus-time plot. In [83], the authors present an interactive
physical therapy system for remote quantitative assessment of balance during the pos-
ture, measuring biomechanical features (i.e., joints angles and trunk sway) extracted
by the Microsoft Kinect Skeletal Tracking system. The trunk sway measures and
the joint alignment encapsulate the rules for motion assessment, while the minimum
threshold is set empirically. More complex rules have been developed for the pur-
pose of recognizing hand [84] and body gestures [85]. In [84], authors define a hand
gesture by a sequence of monotonic hand segments. A monotonic segment refers to
a sequence of hand configurations in which the angles of the finger joints are either
non-increasing or non-decreasing. While in [85], a Gesture Description Language is
proposed, in which a gesture is determined by a set of keyframe reporting the joint
position of the Kinect skeletal tracking. Each rule is expressed in terms of one or
more keyframes except the final rule, which defines the gesture in terms of a sequence
of basic rules. A monitoring approach for home-based rehabilitation is proposed in
[86] where a score is defined through the translation of medical requirements into
quantitative rules, obtained by the physiotherapist performance. Accordingly, in [87],
the assessment stage provides real-time scores related to the clinical targets of single
rehabilitation exercises. The rules are designed via a fuzzy logic engine, according to
the physiotherapist priority.

2.1.5. Template-based methods

Machine learning and time warping methods are widely used to identify [88, 89, 90,
91] and assess the human movement [74, 55, 92, 93, 94, 95, 96, 97].

Action similarity methods

DTW is used to align movements and to evaluate the action similarity between patient
and exemplar (e.g. physiotherapist) [74, 55]. The DTW algorithm and fuzzy logic
are employed in [55] to design a Kinect-based platform for rehabilitation exercises
at home. The exercise, performed by the physiotherapist, is recorded as a reference
sample for comparing the exercise performance of the patient. They use DTW al-
gorithm to compare two sequences of different durations (i.e., motion trajectories of
patient and physiotherapist) to determine the similarity between the standard and the
patient exercises. In [74], authors propose an action tutor system which enables the
user to interactively retrieve a learning exemplar of the target action movement and
to immediately acquire motion instructions while learning it in front of the Microsoft
Kinect. Basically, their system is composed of two stages: in the retrieval stage, non-
linear time warping algorithms are designed to retrieve video segments similar to the
query movement roughly performed by the user. Subsequently, in the learning stage,
the user learns according to the selected video exemplar, and the motion assessment
is performed by the joint difference and dynamic time warping algorithm. The action
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similarity measurement proposed is based on cross-correlation, approximate string
matching, DTW and a modified version of DTW that violates the boundary condition.
In [92], a quantitative upper-limb evaluation for post-stroke rehabilitation is realized
using a wearable inertial measurement unit. The proposed algorithm based on DTW
is able to differentiate the level of limb function impairment, following Brunnstrom
stage classification.

Machine learning methods

In [94], a non-invasive home monitoring system which extracts and analyzes the hu-
man motion and provides clinical feedback is presented. A quantitative evaluation of
musculoskeletal disorders symptoms is performed, computing the detailed spatiotem-
poral objective measurements by a Temporal Alignment and a Spatial Summariza-
tion (TASS) in order to decouple the complex spatiotemporal information of multiple
Skeletal Action Units (e.g., multiple repetitions of sit-to-stand movement) and to give
a quantitative evaluation of musculoskeletal disorders. TASS is based on DTW and
geodesic distance and the optimal alignment path indicates how two-time series match
each other temporally. In [93], a graph-based method has been implemented to align
two dynamic skeleton sequences acquired by Microsoft Kinect and to recognize tasks.
In addition, an objective evaluation of the action performance has been realized by
minimizing an energy function that jointly measures space and time domain differ-
ences. This measure has been used for recognizing actions, and for separating ac-
ceptable or unacceptable action performances. Authors of [95] analyze RGB images
sequence to identify gait features, able to distinguish between normal and patholog-
ical patterns. In particular, they test different gait variables to compare performance
results obtained by different machine learning approaches (i.e., K-nearest neighbors,
Support Vector Machine (SVM) and Bayesian Classifier). Microsoft Kinect v2 Skele-
tal Tracking is used in [96] to evaluate motion impairments. The movement analysis
is performed by comparing the test participants with an SVM model, generated from
tracking movements of healthy people. Firstly, the algorithm recognizes motions,
evaluating different machine learning methods (i.e., SVM, Random Forests, ANN,
Gaussian Restricted Boltzmann Machines, Adaptive Boosting, LPBoost, RSUBoost,
Total Boost, Bagging). Then, the analysis of mobility is implemented using multiple
SVMs. SVM is also used in [97] to analyze the data acquired by a set of wearable
accelerometers, in order to recognize different upper body motor tasks and predict the
exercise intensity. In particular, the system uses a hierarchical algorithm, consisting of
two layers of SVMs to first recognize the type of exercise being performed, followed
by recognition of exercise intensity. The first layer uses a single SVM to recognize
the type of the performed exercise. Based on the recognized type a corresponding
intensity prediction SVM is selected on the second layer, specializing in intensity pre-
diction for the recognized type of exercise.
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2.1.6. Discussions

The main advantage of the template with respect to the rule based approach is the
automatic assessment process that could be easily generalized to different types of ex-
ercise by acquiring reference sequences. On the other hand, the rule based method is
less computationally expensive and provides a motion assessment with specific func-
tional feedback (e.g., “Is the primary objective of the exercise reached?”), particularly
useful in the rehabilitation context. In addition, the medical staff defines the rules of
each movement according to the motor-functional scope and postural constraints of
the exercise. These rules satisfy the invariance property of the movement and no nor-
malization or scaling is needed. Nevertheless, drawbacks of the rule based approach
are the lack of generalization and reusability for different exercises that lead to a large
rule data set, requested for each motor task, difficult to synthesize within a telereha-
bilitation framework. However, the way to ensure a continuous monitoring of body
motion and an accurate evaluation of rehabilitation therapy remains a challenge. Table
2.2 summarized the advantages and disadvantages of both methods.

Table 2.2.: Summary table of advantages and disadvantages of rule and template based
methods

Features Rule based Template based

Computational
effort

• It does not require the
effort of model building
and validation. However,
when the complexity of
the movement increases, it
may be complex to pre-
cisely map the rule and to
obtain an accurate move-
ment assessment.

• The computational effort
for ML methods mainly
depend on the complex-
ity of the model building
(training stage).

• The computational effi-
ciency for action similar-
ity techniques depends of
the number of time series
samples.

Data interpreta-
tion

• It can provide realtime
feedback for both patient
and clinician with much
more salient and specific
information regarding ex-
actly how the motion de-
viates from the predefined
gesture.

• Not all machine learning
algorithm can provide in-
terpretable score about the
gesture correctness.

• Action similarity tech-
nique can lead to a better
outcome interpretation.

24



2.1. State of art: Quantitative Assessment of Human Movement

Features Rule based Template based

Calibration
phase

• Since the rules can reflect the
invariance of the gesture and
it is independent from the
subject who performs it no
features scaling is needed.

• Features extraction stage is
needed for compute features
which are invariant among
different subjects.

Automatism • Physiotherapists and clini-
cians should carefully de-
fine the rules for each ges-
ture expressing it in an im-
plementable form. This
would incur additional finan-
cial cost and effort, but pre-
vent the definition of mo-
tion exemplar for defining
the ground truth gesture. In
addition it is also heavier the
generalization of the set of
rules for a different set of ex-
ercise.

• Physiotherapists and clini-
cians should define only the
salient features. The ML
model and/or the activity
similarity techniques can be
suitably generalized to dif-
ferent set of exercises.

Scalability • The rules are often hard-
coded into each application,
making it hard to extend or
modify an existing applica-
tion. In the rehabilitation
scenario, this drawback can
be problematic because the
exercises prescribed for dif-
ferent patients may have to
be customized to meet the
specific needs of each pa-
tient.

• The scalability and the cus-
tomization of the algorithm
for each different pathol-
ogy need the design and
the building of different ML
models for each different pa-
tient condition. The model
should be trained in differ-
ent conditions (e.g., age, sex,
pathological condition).

• The activity similarity tech-
niques need an additional
mapping function to cus-
tomize the obtained similar-
ity measure across different
conditions.
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Features Rule based Template based

Robustness • The influence of motion
sensing error for the algo-
rithm outcome depends on
the definition and the tol-
erance of the set of rules
against outliers.

• Adversarial machine learn-
ing [98] and/or robust ma-
chine learning method [99]
should be taken into account
to improve the performance
of the movement assessment
algorithm.

• The outlier detection [100]
methods should be employed
during the pre-processing
stage for the activity similar-
ity approaches. In addition,
also different similarity mea-
sures, more robust against
outliers should be used.

2.1.7. Main Contribution

The novelty, introduced in the proposed approach, lies in combining aspects of the
rule and template based methods, in order to overcome their drawbacks. According
to a rule based approach, the proposed algorithm is able to provide quantitative scores
related to kinematic features defined by clinicians. These features are evaluated by
a Hidden Semi-Markov Model (HSMM) in order to perform the assessment stage.
As for the template based method, the proposed approach can be easily generalized
and reused for a different set of rehabilitation exercises, once the salient features of
the motor task to be assessed have been selected. Note that the features are exercise-
specific and need to be defined according to the exercise scopes. In particular, the
physical exercises are modeled as a temporal sequence of postures, each depending
only on the previous one so that they were formed by the continuous evolution of
spatial configurations of the body posture [101]. This agrees with the Markov property
and an HSMM can be exploited to model the physical mechanism and time constraints,
related to each exercise.
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2.2. State of art: Emotion Inference using
Physiological predictors

The remainder of this section is organized as follows: the affective computing ap-
plications are shown in Section 2.2.1 with the emotional model adopted in literature
and depicted in Section 2.2.2. The stimuli selection to elicit different emotions and
the way to measure the affective state are described respectively in Section 2.2.3 and
Section 2.2.4. Then, the emotion assessment task is presented in Section 2.2.5 focus-
ing mainly with the analysis of physiological signals (see Section 2.2.6). In particu-
lar, more details about the affective signal processing are provided in Section 2.2.7.
The major contributions in terms of machine learning method for solving the emotion
recognition task are provided in Section 2.2.8, while author focus in the continuous
recognition approaches in Section 2.2.9. The author discusses the challenge he aims
to solve (see Section 2.2.11). Finally, the main contribution is described in Section
2.2.12.

2.2.1. Affective Computing applications

The ability of computers to understand, discern human emotions, and perform the
appropriate actions is one of the key focus areas of research in Human-Computer
Interaction (HCI). Hence, empowering computers and robots to understand human
emotions would make HCI more meaningful and easier. Affective computing devices
are being used in various domains such as education, healthcare, home automation,
gaming, automotive and more. For instance, during online learning, the receptiveness
of the student will be greatly increased if the computer knows the students’ emotional
state and provides the appropriate learning. A psychologist can diagnose the disease
easily with the knowledge of the patient emotional state. Applications can be extended
to missions involving very aged people, newborn, patients with autism etc., who will
not be able to express their emotions explicitly. Picard describes three types of affec-
tive computing applications: 1) systems that detect emotions of the user, 2) systems
that express what a human would perceive as an emotion (e.g., an avatar, robot), and
3) systems that actually “feel” an emotion. Detection, expression, and perception are
crucial when designing technologies with affective capabilities [45].

Affective Computing in Healthcare

Previous research showed that in individuals affected by different pathologies (e.g.,
Asperger Syndrome (AS), High Functioning Autism (HFA)) the emotional responses
are less differentiated, less positive and more negative than individuals without these
disorders [102]. Individuals with AS or HFA experienced significant difficulties in the
assessment and classification of their own emotions [103]. These behavioral traits can
affect their relationships with other people [104]. Mobile applications like SymTrend
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(SymTrend Inc., Cambridge, MA, USA) and Autism Track (HandHold Adaptive LLC,
n.d.) have been developed, which allow patients with disabilities to enter behavioral
data manually and to track changes over the time. These apps make more aware pa-
tients of their symptoms, give accurate advice and reminders. This allows patients
and their therapist to have a picture of behavioral patterns, moods, and triggers that
occur with any emotional outbursts. Post-traumatic stress disorder (PTSD), as defined
by the American Psychiatric Association (APA), is the development of characteristic
symptoms following exposure to actual or threatened death, serious injury, or sexual
violence in one or more of the following ways: directly experiencing the traumatic
event, repeated or extreme exposure to aversive details of the event/s, witnessing the
event/s as it happens to another person; or learning the event occurred to a family
member or close friend [105]. PTSD disables a person from carrying out daily activi-
ties and torments him/her with memories of stressful events [106]. Exposure therapy
and stress inoculation are well-known techniques for treating individuals with PTSD
[107]. Recently, researchers have included virtual reality in these therapies [108]. An
example is StartleMart, a virtual reality-based gaming environment with stress de-
tection capabilities that integrates cognitive behavioral approaches with physiological
signals to treat veteran soldiers with PTSD [109]. This game simulates three highly
stressful scenarios and the skin conductance is used to measure the body response
to anxiety. A study conducted using StartleMart successfully correlated stressors on
screen with peaks in skin conductance data, leading researchers to believe that these
kinds of systems can help with the diagnosis and treatment of PTSD [109].

Affective Computing in Education

Nowadays, technology becomes a fundamental part of schools (e.g. smart boards,
interactive presentations, etc.) in order to engage students and to provide a better
education (teaching). Bringing affective computing into the classroom may enable
students to get a personalized learning experience. However, have an individualized
curriculum for each student is very time consuming and requires a depth understand-
ing of what each student likes, dislikes, and his preferred learning method. Research
shows that students who receive support from teachers and peers tend to feel more
comfortable in school, enjoy school more, and participate more actively in classroom
activities [110]. A visualization tool named EngageMe has been developed to support
teachers in understanding how they are communicating with their students and how
their pedagogical strategies can be improved to meet individual needs [111]. This sys-
tem collects skin conductance data from students and graphs display the arousal level
of each student to help the teacher reflect on his/her classes. To distinguish between
the sources of these moments of arousal, a video feed is provided to the teacher, so
he/she can determine if the arousals are due to classroom engagement or some other
factor.
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Affective Computing in Automotive

Affective computing can also be employed in the automotive area. Physiological sig-
nals are a useful metric for providing feedback about a driver state because they can be
collected continuously and without interfering with the driver task performance. This
information could then be used automatically by adaptive systems in various ways to
help the driver better cope with stress. Some examples of this might include automatic
management of noncritical in-vehicle information systems such as radios, cell phones,
and onboard navigation aids. During high-stress situations, cell phone calls could be
diverted to voice mail and navigation systems could be programmed to present the
driver with only the most critical information or change to a quieter route to help re-
duce driver workload. In addition, the music selection agent might lower the volume
or offer a greater selection of relaxing tunes to help the driver cope with their feelings
of stress. Conversely, in low-stress situations, the car might recognize that more driver
distractions could be tolerated and provide the driver with more entertainment options
[112]. Moreover, Nass et al. [113] examine whether characteristics of a car voice
can affect driver performance and affect. In an experimental study, participants had
emotion induced by watching one of two sets of 5-minutes video clips. Participants
then spent 20 minutes in a driving simulator where a voice in the car spoke 36 ques-
tions and comments in either an energetic or subdued voice. Participants interact with
the car voice and when user emotion matched car voice emotion (happy/energetic and
upset/subdued), drivers had fewer accidents, attended more to the road (actual and
perceived), and spoke more to the car.

Recommender Systems

Inferring the affective state of the user during multimedia interaction is an important
feature for producing, retrieving, transmitting, delivering and finally visualizing the
right media material fulfilling the user expectations. Implicit tagging of videos using
affective information can improve the performance of recommendation and retrieval
system [114, 115, 116, 117, 118, 119] offering multimedia access not only based on
semantic but also affective aspects of the interaction. Tkalc̆ic̆ et al. [120] presented a
methodology for the implicit acquisition of affective labels for images. It is based on
an emotion detection technique that takes as input the video sequences of the users’
facial expressions. They extracted Gabor low-level features from the video frames
and employed a kNN machine learning technique to generate affective labels in the
valence-arousal-dominance space. They performed a comparative study of the per-
formance of a Content-Based Recommender (CBR) system for images that uses three
types of metadata to model the users and the items: (i) generic metadata, (ii) explicitly
acquired affective labels and (iii) implicitly acquired affective labels with the proposed
methodology. The results showed that the CBR performs best when explicit labels are
used. However, implicitly acquired labels yield a significantly better performance of
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the CBR than generic metadata while being an unobtrusive feedback tool bringing
additional value to the former system.

Other Applications

Another field which can benefit from affective computing is Ambient Intelligence
(AmI). AmI carries out a futuristic vision of living environments which are sensitive
and responsive to the presence of people and, by taking care of their desires, intelli-
gently respond to their actions improving their comfort and well-being. The Emotion-
aware AmI (AmE) enhances the conventional idea of an intelligent environment by
exploiting theories from psychology and social sciences for suitably analyzing the
human emotional status and achieving a higher user satisfaction [121].

Other applications of affective computing include job interview performance, which
is not only based on an individual knowledge but how well he can communicate that
knowledge to the interviewer. Together with good verbal communication skills, the
ability to control emotions is essential. MACH (My Automated Conversation coacH)
developed at the MIT Media Lab, is a virtual agent that can read facial expressions
as well as speech and language intonations. Verbal and non-verbal feedback is given
to the users allowing them to improve their communication skills and control anxi-
ety [122]. Moreover, due to the rise in security threats and controversies related to
interrogation techniques, affective systems can unobtrusively detect specific emotions
like anger, frustration, or deception in real time. Facial expressions recognition is cur-
rently as the primary measure to track emotional cues. Over the years, researchers
have worked on developing an universal coding system for standard facial expres-
sions, such as the Facial Action Coding System (FACS) [123]. Similarly, researchers
developed the automated facial recognition system (AFERS) [124]. This system uses
video streams and support vector machines (SVMs) to detect facial expressions, and
the results can be viewed in real time. AFERS generates a graphical representation
of the expressions over a period of time that helps investigators identify patterns of
deception. Improvements of AFERS system also has the potential of being used in
large gatherings like airports, games, or concerts to detect suspicious behavior in real
time.

Innovations in computer game interfaces continue to enhance the experience of
players. There have been technical advances that have driven game innovation over
the past few decades, including advances in computer graphics, system performance,
and human-computer interfaces. Recently, researchers have been interested in how
the affective state of a game player can be brought into computer and video game ex-
periences. Affective games, those that adapt or incorporate a player’s emotional state
tailoring the game responses, have shown promise in creating exciting and engaging
user experiences. An example is the affective game engine developed by Negini et
al. [125]. It adapts the player character and the non-player characters abilities and
the environment via an affect-detecting middle-ware engine (AME) that translates
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physiological inputs (GSR, HR) to game input. Their results suggested that adapt-
ing the game can increase player arousal and can automate balancing the difficulty of
the game with the affective state of the player. In the study performed in [126] au-
thors aim to understand engagement on the basis of the body movements of the player
during a computer game. Preliminary results from two case-studies suggest that an
increase in body movement imposed, or allowed, results in an increase in the player’s
engagement level. The relationship between body movement and game engagement
is also investigated in [127].

2.2.2. Emotion model

In discrete emotion theory, all humans are thought to have an innate set of basic emo-
tions that can be described as “discrete” because they are believed to be distinguishable
by an individual’s facial expression and biological processes [128]. The most famous
discrete model was proposed by Paul Ekman and his colleagues in the cross-cultural
study of 1992 [129]. They conclude that the six basic emotions are anger, disgust,
fear, happiness, sadness, and surprise (see Figure 2.2 [129]).

Figure 2.2.: Discrete model of Ekman

Ekman explains that there are particular characteristics attached to each of these
emotions, allowing them to be varied and expressed in varying degrees. Each emotion
acts as a discrete category rather than an individual emotional state (see also the Atlas
of emotion [43]). Another discrete categorizations model of emotions proposed by
Parrot is based on tree structure [130]. On the other hand, Russel summarized the
cognitive structure of affect in a continuous model (see figure 2.3 [131]), where eight
variables fall on a circle in a two-dimensional space in a manner analogous to points
on a compass [131]. The horizontal (east-west) dimension in this spatial metaphor is
the pleasure-displeasure dimension (i.e., valence dimension), and the vertical (north-
south) dimension is arousal-sleep (i.e., arousal dimension).
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Figure 2.3.: Continuous model of Russell

The difference between the two orthogonal terms arousal and valence is pretty sim-
ple. Valence means the intrinsic attractiveness/goodness (i.e., positive valence) or
averseness/badness (i.e., negative valence) of an event, object, or situation is posi-
tive or negative affectivity, whereas arousal measures how calming or exciting the
information is. Russel’s scale is widely used in research on affect, to quantitatively
describe and assess emotions. While arousal and valence explain most of the variation
in emotional states, the extension of the Russel model includes the dimension of the
dominance [131]. Dominance ranges from a helpless and weak feeling (without con-
trol) to an empowered feeling (in control of everything). Plutchik [132] proposed a
different hybrid model. In particular, he constructed a wheel-like diagram of emotions
visualizing eight basic emotions: joy, trust, fear, surprise, sadness, disgust, anger, and
anticipation. The wheel combines the ideas of circles representing emotions and a
color wheel, where similar emotion (e.g. ecstasy and admiration) in the wheel are
adjacent (see Figure 2.4 [132]). Emotions are also classified in this wheel according
to a variety of intensities (e.g., ecstasy, joy and serenity).

Figure 2.4.: Plutchik’s wheel of emotions

32



2.2. State of art: Emotion Inference using Physiological predictors

2.2.3. Stimuli selection to elicit different emotions

In literature, several methods are used to elicit different realistic emotions. When
the emotion is negative (i.e., negative valence), these methods should deal with ethic
issues. Accordingly, the procedure for stimuli selection could lead to a strong com-
putational effort [133]. Obviously, the elicited emotions have a very low intensity
and the stimuli selection is performed in the laboratory, which is a completely differ-
ent scenario with respect to real-life. The main stimuli used in this context are (please
note that author chooses to show the main relevant database in the emotion recognition
scenario):

• visual stimuli

Pictures:

– it is widely used the International Affective Picture System (IAPS) [134]
with a dataset of more than 800 pictures.

– the emotional database in [135]: they used the IAPS dataset and they
acquired electroencephalogram (EEG), peripheral physiological signals,
functional near infra-red spectroscopy (fNIRS) and facial video from 5
participants.

Video:

– Emotion elicitation using films [136]: they selected a subset of 16 films
which successfully elicited amusement, anger, contentment. disgust, sad-
ness, surprise, a relatively neutral state, and, to a lesser extent, fear.

– MAHNOB HCI [137] database: it consists of two experiments. The re-
sponse including, EEG, physiological signals, eye gaze, audio and facial
expressions of 30 people were recorded. The first experiment was watch-
ing 20 emotional videos extracted from movies and online repositories
while the second was tag agreement experiment in which images and a
short video with human actions were shown to the participants first with-
out a tag and then with a displayed tag. The tag was correct or incorrect
and the participants’ agreement with the displayed tag was assessed.

– DEAP dataset [138] database: multimodal dataset with EEG and periph-
eral physiological signals of 32 participants recorded by 32 participants
while watching a 40 one-minute long excerpts music videos. In this study,
an extensive analysis of the participants’ ratings is investigated.

• auditory stimuli:

– Emotion recognition based on physiological changes in music listening
[139]
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– International Affective Digitized Sounds (IADS) database [140]: collec-
tion of sounds able to elicit emotions.

• logical/mathematical operations and human-machine interaction:

– Affective communication for implicit human-machine interaction [141]

– Psychophysiological signals associated with affective states as related ti
HCI [142]: Forty-three healthy students were exposed to computer-mediated
stimuli, while wearable non-invasive sensors were applied in order to col-
lect the physiological data. The stimuli were designed to elicit three dis-
tinct affective states: relaxation, engagement, and stress.

– Emotion recognition from physiological signals using wireless sensors for
presence technologies [143]

– Emotion representation and physiology assignments in digital systems
[144]

– Bimodal emotion recognition using speech and physiological changes [145]

• combination of more methods (i.e., audio+pictures+human machine interac-
tion)

Readers can found an extensive review of affective audiovisual database in [146,
147].

2.2.4. How to measure emotions?

The validity of self-reports of emotion is too often seen as an all-or-none phenomenon.
Robinson and Clore [148] stated that the degree to which self-reports are valid varies
by the type of self-report. Often, self-report of current emotional experiences are
likely to be more consistent when the self-reports of emotion is made somewhat dis-
tant in time from the relevant experience [148]. An interesting review in [149] ex-
amined whether emotional states are associated with specific and invariant patterns
of experience, physiology, and behavior. They suggested that measures of emotional
responding appear to be structured along valence and/or arousal dimensions rather
than discrete emotions (e.g., sadness, fear, anger). On the other hand, a physiological
measure like GSR appears sensitive to arousal while facial EMG is sensitive to va-
lence. In addition, these measures are not strongly related to one another. Practically
speaking, then, there is no “gold standard” measure of emotional responding. For the-
ories of emotion, this means that there is no “thing” that defines emotion, but rather
that emotions are constituted by multiple, situationally and individually variable pro-
cesses [149]. Mehrabian and Russell [150] proposed the Semantic Differential Scale
for assessing the 3-dimensional structure of objects, events, and situations. It con-
sists of a set of 18 bipolar adjective pairs that are each rated along a 9-point scale
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(see [150] and [151]). However, one of the most used test for measuring emotion is
the Self-Assessment Manikin (SAM) introduced in [151]. In particular, the SAM is a
non-verbal pictorial assessment technique that directly measures the pleasure, arousal,
and dominance associated with a person’s affective reaction to a wide variety of stim-
uli (see Figure 2.5).

Figure 2.5.: The Self-Assessment Manikin (SAM) used to rate the affective dimen-
sions in terms of valence (top panel), arousal (middle panel) and domi-
nance (bottom panel)

The difference in judgments of dominance suggests that SAM might be more ac-
curate in tracking the subject’s feeling with respect to the Semantic Differential Scale
[151]. Hence, several works [138, 152, 153] implemented the self-assessment method
based on SAM to provide ground truth data (i.e., labels) for emotional states.
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2.2.5. Emotion Assessment

Emotion assessment is often carried out through analysis of body expressions [154,
155, 156, 157, 158, 159] and/or physiological signals [160]. Other analyses include
text [161, 162, 163, 164, 165, 166, 167], speech [168, 169, 170, 171, 172, 173] and
body movements [174, 175, 176, 177]. Emotion recognition using facial expressions
has many advantages and this reflects the effort of the researchers in this field. How-
ever, the facial expressions can be consciously controlled. For instance, a sad person
can show a happy face to mask his emotions, which shows that facial expressions are
not always linked with inner emotions. On the other hand, emotion recognition using
text is applied to words or sentences in a particular language. Accordingly, it is widely
known that people with different cultures talk with different tones. A person from a
certain culture or area, talking in a normal tone might sound angry to someone from
another culture. On the other hand, talking in a low and slow tone might be viewed
as a sad emotion in one culture but polite and normal in another. This is a major
drawback when it comes to developing a universal method for recognizing emotions
using text and speech. However, to overcome this problem, researchers are moving
towards the detection of emotions in multi-language text [167]. Emotion recogni-
tion through body movements and gestures is the least popular due to the difficulty to
track the movement of the whole body with a simple camera. The unobtrusiveness of
the device and the lower accuracy of the sensor should be taken into account in the
real-world scenario. For this reason, the emotion assessment is carried out through
analysis of peripheral responses without considering other signals such as electroen-
cephalogram (EEG). Indeed the acquisition of EEG involves high cost and obtrusive
equipment which influence the accuracy of data acquisition.

2.2.6. Physiological signals

The analysis of the physiological measurements is known to include emotional infor-
mation as a response from the Central Nervous System (CNS) and the Peripheral Ner-
vous System (PNS). Generally, physiological analysis has received less attention with
respect to facial expression in the emotion assessment task, due to the complexity of
the task and the obtrusiveness of the sensors used to acquire physiological measure-
ments (i.e., electroencephalogram, electrocardiogram, galvanic skin response, skin
temperature, electromyogram). However, since the physiological changes are con-
trolled by the ANS providing information about the subjects’ internal emotion and
cannot be controlled consciously. The state of the art in this field includes affective
signal processing and machine learning algorithm [160, 178, 179] for dimensionality
reduction, features selection, and classification of different target emotions.

Although several studies focus the attention in recognize human emotion using
physiological signals, the relation is not biunique. Table 2.3 resumes the outcomes of
fifteen studies reported in [180] summarizing how physiological signals such as Gal-
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vanic Skin Response (GSR), Heart Rate (HR), Skin Temperature (ST), Blood Pressure
diastolic, Blood Pressure systolic and respiration are correlated with respect to the dis-
crete emotion proposed by Ekman [129]. Numbers in parenthesis indicate how many
studies support or oppose the named hypothesis (2-2-1 means 2 studies support the
hypothesis, 2 do neither support nor oppose it, 1 oppose it).

Table 2.3.: Physiological features correlation:
Fear Anger Sadness Happiness Disgust Surprise

GSR
Increase
(5-1-0)

Increase
(1-1-0)

Decrease
(1-0-0)

Decrease
(1-0-0)

Increase
(1-0-0)

n/a

HR
Increase
(11-0-0)

Increase
(8-0-2)

Increase
(5-1-2)

Increase
(3-1-1)

Increase
(2-2-0)

Increase
(1-0-0)

ST
Decrease
(2-2-0)

Increase
(2-1-0)

n.s.
(2-0-0)

Increase
(1-1-0)

Decrease
(1-1-0)

n.s.
(1-0-0)

BP diastolic
Increase
(2-1-1)

Increase
(9-0-1)

Increase
(2-1-1)

Increase
(4-1-1)

Increase
(1-0-0)

n/a

BP systolic
Increase
(4-0-0)

Increase
(5-0-1)

Increase
(3-0-1)

Increase
(4-0-2)

Increase
(1-0-0)

n/a

Respiration
Increase
(3-0-0)

n/a
n.s.
(1-0-0)

n/a n/a n/a

Dark green: strong evidence
Light green: some evidence
Yellow: no clear assumption can be made due to contradictory results or too few studies
Red: not sufficient evidence for either hypothesis (n/a - no studies available that provide
sufficient evidence)

Emotion like fear discloses the strongest evidence that is correlated with respect to
SC, HR, Blood pressure systolic and respiration. While surprise shows the lowest ev-
idence that is correlated with SC, Blood pressure and respiration. Table 2.4 shows the
physiological features correlation based with respect to the x-axis of the continuous
model of Russell [131] (i.e., valence). The continuous scale was discretized in nega-
tive and positive valence. The table is based on the study performed in [180] on the
reviews of 26 papers. Strong evidences were found that negative valence is correlated
with respect to GSR, BP systolic and respiration. Table 2.5 shows the physiological
features correlation with respect to arousal (i.e., the y-axis of the continuous model of
Russell [131]) for the study reported in [180]. GSR, HR, BP systolic and Respiration
shows the strongest evidence to be correlated with respect to the high arousal level.
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Table 2.4.: Physiological features correlation (valence):
Negative Valence Positive Valence

GSR
Increase
(8-2-0)

Decrease
(1-0-0)

HR
Increase
(26-3-4)

Increase
(3-1-1)

ST
Decrease
(7-4-0)

Increase
(1-1-0)

BP diastolic
Increase
(14-2-3)

Increase
(4-1-1)

BP systolic
Increase
(13-0-0)

Increase
(4-0-2)

Respiration
Increase
(4-0-0)

n/a

Dark green: strong evidence
Light green: some evidence
Yellow: no clear assumption can be made due to
contradictory results or too few studies
Red: not sufficient evidence for either hypothesis
(n/a - no studies available that provide
sufficient evidence)

Table 2.5.: Physiological features correlation (arousal):
High arousal Medium arousal Low arousal

GSR
Increase
(5-1-0)

Increase
(2-1-1)

Decrease
(1-0-0)

HR
Increase
(11-0-0)

Increase
(13-3-3)

Increase
(5-1-2)

ST
Decrease
(2-2-0)

Increase
(3-3-1)

Not significant
(2-0-0)

BP diastolic
Increase
(2-1-1)

Increase
(14-1-2)

Increase
(2-1-1)

BP systolic
Increase
(4-0-0)

Increase
(10-0-3)

Increase
(3-0-1)

Respiration
Increase
(3-0-0)

n/a
Not significant
(1-0-0)

Dark green: strong evidence
Light green: some evidence
Yellow: no clear assumption can be made due to
contradictory results or too few studies
Red: not sufficient evidence for either hypothesis
(n/a - no studies available that provide
sufficient evidence)
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2.2.7. Affective Signal Processing

Obviously, data processing depends on several factors such as the sample rate of the
signal and also the nature of the acquired signal. A deep review through the methods of
signal processing and data analysis for emotion recognition is described in [179, 181],
while other papers pointed out the most significant features used as predictors in the
ML prediction algorithm [160, 182, 183, 184]. The affective processing stage can
involve the following steps:

1. Pre-processing

• Resampling: The idea behind resampling is the process of picking another
sample in order to increase the sampling rate of the discrete signal to ob-
tain a new discrete representation of the underlying continuous signal.

• Artifact removal: Biosignals such as ECG, GSR and ST can also be inac-
curate due to movement artifacts and also differences in bodily position.
Techniques for detecting [100] and removing outliers [99] should be taken
into account.

• Filtering: filtering stage should be tailored to the specification of biomed-
ical sensors and data acquisition procedure.

2. Synchronization & Segmentation: biosignals are synchronized and segmented
based on events or stimuli.

3. Features extraction stage: features need to be extracted from the signals. The
affective signals are processed in the time (e.g., statistical moments), frequency
(e.g., Fourier), time-frequency (e.g. wavelets), or power domain (e.g., peri-
odogram and autoregression). Often some features are computed also with re-
spect to the baseline situation (e.g., a situation without stimuli).

4. Normalization: humans are known for their rich variety in all aspects. This
difference lies also in the biosignals. Then, the developing of the classification
stage required the normalization of the signals. Finding an appropriate normal-
ization method is both important and difficult because it depends on factors that
can easily change on a daily basis. Physiological signals can be normalized,
baseline corrections (applied when comparing or generalizing multiple mea-
surements from one individual across a variety of task), and range correction
(reduce the inter-individual variance by a transformation that sets each signal
value to a proportion of the intra-individual range). However, often the normal-
ization of physiological features before learning the ML model is performed by
the z-score approach.

5. Dimensionality reduction / Features selection: a crucial issue in machine learn-
ing problem for classification and regression is the identification of a represen-
tative set of features from which to design a classification/regression model for
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a particular application. Dimensionality reduction techniques can be used to re-
duce the dimensionality of the features space. Supervised techniques utilize the
class information in order to define the maximum separation criteria (e.g., Lin-
ear Discriminant Analysis), while unsupervised algorithm only considers the
global structure of the data (e.g., Principal Component Analysis). Despite di-
mensionality reduction algorithms, features selection allow maintaining the in-
terpretation of the features. Features Selection methods can be divided into two
different categories: (i) filter and (ii) wrapper approaches. The former works
independently on a classifier involved in pattern recognition, using different cri-
teria to judge a feature set or to judge the performance of the classifier. While the
latter consists in taking the estimated performance of a classifier as the proper
feature selection criterion. Both approaches present advantages and drawbacks.
Wrappers often reach better accuracy results of the learning algorithm, while
filters are computationally less expensive and can be easily generalized without
the need to re-implement the features selection stage when switching from one
learning algorithm to another. In several applications, the advantages of filters
overcome their disadvantages, and they can reach the same learning algorithm
accuracy as wrappers.

6. Classification stage Supervised and unsupervised classification algorithm could
be used to learn the emotional response, modeling the biosignal features. Ma-
chine learning methods include parametric and nonparametric techniques, as
well as discriminative and generative models.

2.2.8. Works in literature

Table 2.6 summarized the most representative machine learning studies in the last 15
years employing peripheral physiological signals for recognizing different emotions
state [185] and stress levels [186, 187, 188].

Table 2.6.: Works of literature: Emotion recognition using physiological signals, n is
the number of subjects involved in the experiment

Ref Year Signals n FS/DR Classifiers Target ACC %

[189] 2004 ECG, GSR, ST 50 SVM 3, 4 emotions 78, 62

[190] 2004 ECG, GSR, ST 50 NN 6 emotions 84

[191] 2007 ECG, GSR 40 Reg. Model 5 emotions 63-64

[192] 2008 ECG, GSR 72 Anova SVM, NN 2 fun levels 70

[193] 2008 ECG, GSR 1 LDA K-NN, SVM 4 emotions 67, 83

[194] 2009 ECG, GSR, ST 6 NN 4 emotions 88
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Ref Year Signals n FS/DR Classifiers Target ACC %

[195] 2010 ECG, GSR, ST 34 K-NN, NN 3 emotions 65, 83

[183] 2011 ECG, GSR 19 SBS LDA 2 boredom state 94

[196, 197] 2011 ECG, GSR 80 Fuzzy 2 stress levels 99

[198] 2011 ECG 42 LDA 2 stress levels 90

[199] 2011 GSR 9 SVM 2 stress levels 78, 73

[200] 2012 ECG 44 LDA 2 valence ratings 89

[138] 2012 ECG, GSR, ST 32 Fisher NB 2 valence, arousal 57, 63
RESP, EMG ratings

[201] 2013 ECG 40 k-NN 2 stress levels 94

[202] 2013 GSR, Accel, PHO 18 SVMs 2 stress levels 75

[203] 2014 ECG 39 HMM 5 stress levels 96

[204] 2014 HR, GSR, OXY 101 LSD RF 5 emotions 74

[205] 2014 HRV 8 SVM 2 mood states 96

[206] 2015 HRV 27 Friedman QDA 2 valence, arousal 85, 84
ratings

[207] 2016 ECG 21, 5 RF 2 stress levels 92

[208] 2016 HRV 22 Fuzzy 3 stress levels 75, 80
ARTMAP

[209] 2017 RR, GSR, ST 10 K-NN 2 stress levels 84
[209] 2017 RR, GSR, ST 10 DT 4 emotions 90

2.2.9. Continuous recognition approaches

The continuous recognition approaches require to label data continuously in real time
by different annotators. The annotators could use a sliding controller to annotate both
emotional dimensions separately. In order to solve the continuous recognition task,
several sequential learning approaches have been applied in literature [210, 211, 212].
The Long Short-Term Memory Recurrent Neural Networks was applied in [210] for
adequate prediction of emotion in a three-dimensional space modeling long-range de-
pendencies and capturing emotional history. Accordingly, the temporal evolution of
emotion is also evaluated for discrete labels employing Conditional Random Fields.
The approach presented in [211] fuses facial expression, shoulder gesture, and audio
cues for dimensional and continuous prediction of emotions in valence and arousal
space. The bidirectional Long Short-Term Memory neural networks (BLSTM-NNs)
and Support Vector Machine regression were applied to solve this task. The BLSTM-
NNs approach outperforms SVR due to their ability to learn past and future emotion
response. An Output-Associative Relevance Vector Machine regression framework
that augments the traditional RVM regression learning non-linear input and output
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dependencies is developed in [212]. Their methodology is consistent to model tem-
poral and spatial dependencies. Dimensional models are considered important in the
emotion recognition task as a single label may not reflect the complexity of the affec-
tive state conveyed by a facial expression, body gesture or posture [211]. However, the
continuous recognition approaches may not be always suitable in the real-life scenario
due to lack of difficulty in collection continuous labels

2.2.10. Multiple Instance Learning

Current MIL methods have proved to be useful in a variety of domains, ranging from
bioinformatics [213], medical image analysis [214], text processing [215], educational
scenarios [216] and object recognition and tracking studies [217]. In the affective im-
age analysis, the MIL was proposed for modeling the spatial ambiguity of the emotion
[218]. They firstly extracted blocks of an image at multiple scales using different im-
age segmentation methods and represent each block using the bag-of-visual-words
method. Then, MIL was used to predict the dominant emotion of the image. The au-
thors in [219] applied MIL to the problem of automatic pain recognition from video.
They represented each video as a bag containing multiple time-segments which are
modeled using MIL. Their work encapsulates the temporal dynamics by representing
the data not as individual frames but as segments. Accordingly, in [220] the MIL
was used for the music emotion recognition in order to automatically recognizing the
affective content of a piece of music. They captured the music emotion dynamics us-
ing a multi-instance structure based on song-segment-sentence. Recently, MIL was
employed for behavioral coding [221] during problem-solving discussions. In partic-
ular, they treated each discussion as a collection of short-term behavioral expressions
which are manifested in the acoustic, lexical, and visual channels. Their framework
allows revealing the local/global nature of behaviors, estimating the level of ambiguity
presented via a particular channel.

Compared to the works reported above, the MIL based application aims to pre-
dict the valence/arousal state modeling both the dynamic and the ambiguity of the
emotion over time. Additionally, differently from the continuous emotion recognition
approaches ([210, 211, 212] and reference therein), it provides a solution for learning
in presence of a weakly supervised setting. This is often the case of real-life appli-
cations where the sparsity of the label and the lower accuracy of the signal should be
considered.

MIL background
In the MIL paradigm, the learner receives a set of bags along with the corresponding

label. Each bag contains multiple instances. Within this paradigm, the data is assumed
to have some ambiguity in how the labels are assigned. A bag is labeled negative if
all of its instances are negative, while a bag is labeled positive if there is at least one
positive instance (see Fig. 2.6).
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Posi%ve	Bags	

Nega%ve	Bags	
No	symptoms	

Figure 2.6.: The intuitive idea behind MIL

The MIL task is to predict the label of bags or the label of instances (see Fig. 2.7).

-	Predict	label	of	bags	

-	Predict	label	of	instances	

nega2ve	 posi2ve	 nega2ve	 ?	

nega2ve	 posi2ve	 nega2ve	

?	
?	

?	

?	

?	

Figure 2.7.: The MIL task

The MIL problem was originally formalized for drug activity prediction by [213],
in which authors developed a multiple instance algorithm for learning Axis-Parallel
Rectangles (APRs). Afterwards, in [222] authors introduced the Diverse Density
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framework for solving person identification problem. The combination of EM with
the Diverse Density algorithm [223] allowed improving the computation time and the
robustness against the number of irrelevant features. Accordingly, also several adap-
tations of Support Vector Machine (SVM) were proposed for MIL. In the Normalized
Set Kernel configuration of [224] a traditional SVM is trained with bags represented
as the sum of all its instances, normalized by its 1 or 2-norm, while in the Statis-
tical Kernel set [224] every bag is transformed into a feature vector representation
(i.e., the maximum and minimum value across all instances in the bag). Others SVM
approaches called respectively maximum pattern margin and maximum bag margin,
follow the heuristic approximation performed by [215]. The maximum pattern margin
formulation (mi-SVM) aims to relabel the instances in positive bags using the learned
decision hyperplane. In particular, if a positive bag contains no instances labeled as
positive, the instance that gives the maximum value of the decision function for that
bag is relabeled as positive. While in the maximum bag margin formulation (MI-
SVM), for every positive bag, the learned decision function is used to select the bag
instance that gives the maximum value. A different approach based on balancing and
transductive constraints was presented in [225]. Unlike other SVM-based MIL meth-
ods, their algorithm is particularly effective when the positive bags are sparse (i.e.,
contain few positive instances). In the following subsections, the application of MIL
for the emotion recognition task is proposed during a multimedia interaction, using
the physiological features.

2.2.11. Discussions

The problem of emotion recognition from physiological signals during multimedia
interaction has been the subject of several papers, see [138, 152, 226, 139, 227,
228, 229, 230] and references therein. User factors have been partially neglected,
due to the inherent difficulty in dealing with individual differences and in measur-
ing (unobtrusively) individual characteristics. In the context of real usage, the mod-
ern, low cost and unobtrusive wearable technologies (i.e., smartwatch) open a new
realm of possibilities to estimate the emotional state in different scenarios. During
recent years, several databases of physiological measurements in affective comput-
ing tasks have been collected and released [231, 138, 232], providing high-quality
data for learning and benchmarking state inference models. In this context, very
good results were obtained in highly controlled experiment setups where the stim-
uli evoke strong emotional responses [139, 160, 178, 153]. Accordingly, in the less
controlled setups, the ground truth emotion labels come directly from user evalua-
tions and not always the computed results are comparable with those obtained in
[138, 152, 183, 233, 234, 229, 230, 189, 227, 235, 228]. Traditional approaches
[138, 139, 229, 230, 236] have considered each video as a single instance and have
employed ML model based on video-level features, assuming that the affective state
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is consistent over the entire video [237]. However, since the emotion elicited by mul-
timedia interaction is time-varying [238, 239] this assumption may be violated. Ac-
cordingly, not all observation windows have the same predictive power: it is possible
to identify time interval which leads to better prediction of the presence of the judged
emotion. This means that a specific physiological response can occur locally. In
other words, if the user reports a positive/negative valence for the entire video, it does
not imply that all the multimodal stimuli are perceived as positive or negative-specific
physiological responses can occur locally. This ambiguity of the label reflects how the
ground truth cannot always be continuous and reliable, reflective a summative global
response. Especially in the real-life application the continuous labeling of emotion
is critical: the labeling of the data is sparse and possibly describing only the more
important emotional events.

2.2.12. Main Contribution

The main contribution of the proposed approach is the introduction and the application
of a framework from the machine learning literature called Multiple Instance Learning
(MIL) [213]. This choice offers a viable and natural solution for learning in a weakly
supervised setting, taking into account the variability and the ambiguity of emotional
response. The work contributes to the affective computing field as follows:

• it introduces the MIL framework for capturing the dynamic nature of emotion
[240, 241]. The current approach seeks to discover the most prominent emo-
tional events rather than the continuous affective changes that occur.

• it proposes an application of three MIL-based methods for the emotion recogni-
tion task and demonstrates significantly improved prediction performance over
the best standard supervised machine learning approaches.

• it measures and demonstrates the reliability of the proposed approach towards
the real world usage, where the unobtrusiveness of the device and the lower
accuracy of the sensor should be taken into account.

The key findings, as well as the presented methodology, is general: it can be applied
for a different set of observable cues (e.g. physiological signals, facial expressions,
body gestures and movement, speech). However, in this work, we chose to focus on
physiological signal since they cannot be easily faked or suppressed, and can provide
direct information about the user’s affective state [240].
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2.3. The emotional effects on movement
execution

In recent years there was an increasing demand to develop telerehabilitation system in
non-clinical settings such as the home or workplace. These systems offer an oppor-
tunity for an individualized rehabilitation program and is based on regular monitor-
ing of the patient’s progresses respect to the treatment aim and subject’s expectation
[242, 243]. However, in such systems, the possible emotional effects on movement
execution have been largely neglected. In the rehabilitation scenario, the pain-related
emotions can influence the human movement and they represent a major barrier to
effective self-rehabilitation in chronic pain [244]. Chronic pain is defined as pain
that persists despite the resolution of injury or pathology or with no identified lesion
or pathology [245]. The emotional response could generate anxiety that can cause
marked reluctance to undertake therapies which are perceived as potentially exacer-
bating pain to the extent of avoiding them [244, 246, 247]. In [248] authors developed
a Support Vector Machine framework combining as predictors a fusion of body mo-
tion and muscle activity descriptors to discriminate three levels of pain. The salient
features were identified by a backward features selection approach. An understanding
of how chronic pain and chronic pain related emotions are expressed is investigated in
[244]. In addition, they provided a multimodal fully labeled dataset (EmoPain) for the
chronic lower back pain. The dataset contains naturalistic pain-related affective ex-
pressions (facial and vocal) and behaviors (movement and muscle activity) of people
suffering from chronic lower back pain while carrying out physical activity. Finally,
they provided preliminary experimentations to investigate the possibility of automati-
cally recognizing the facial expression of pain and pain-related body movement. The
former is identified solving a classification task by Support Vector Machine, while
the latter is analyzed building a regression model through the random decision for-
est. Their performance evaluation has been carried out using the leave one subject out
procedure.
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3.1. Quantitative Assessment of Human
Movement

The validation of the adopted sensor is provided in Section 3.1.1. While the population
enrolled as well as the description of the collected dataset is reported respectively in
Section 3.1.2 and Section 3.1.3.

3.1.1. Validation of the adopted sensor

In the literature, the accuracy of Kinect v1 sensor is extensively investigated whereas
the accuracy of Kinect v2 sensor is currently of utmost concern. The accuracy of Mi-
crosoft Kinect v1 was analyzed in the context of movement analysis with respect to
movement artefact [249] or to gold standard systems (i.e. stereo) during different mo-
tor tasks such as gait analysis [250, 251, 252, 78], static [253, 254, 255] and dynamic
postures [256, 257, 50, 258, 259].

The rehabilitation exercise monitoring involves considering dynamic movements
with a wide range of motion and issues related to the joints tracking such as joints
occlusion due to postures adverse to the vision sensor. For this reason, the accu-
racy analysis of Kinect v2 is provided in terms of joint positions and angles during
dynamic postures used in low-back pain rehabilitation [260]. In particular, the joint
positions and angles represent clinical features, chosen by medical staff, used to eval-
uate the subject’s movements in a telerehabilitation scenario. These features represent
the motion descriptor adopted by clinicians to assess the performance of patients dur-
ing the execution of each exercise. In this context, several vision-based approaches
for telerehabilitation employ a features extraction stage in order to extract clinical
features, which are able to quantify the quality of different physical exercises exe-
cution [86, 261, 262, 87]. The accuracy of Kinect v2 is investigated with respect to
the gold standard represented by a stereophotogrammetric system characterized by 6
infrared cameras (i.e. Elite motion capture system BTSEngineering). The results pro-
vide salient information for evaluating the reliability of Kinect v2 sensor for dynamic
postures.
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Population

Twelve healthy non-athletes young subjects (mean ± std : 27.6 ± 2.5) who did not
report neurological or musculoskeletal problems, no recent trauma, and who did not
perform competitive sports were recruited for the experiment. The study protocol was
conformed to the Helsinki protocol for clinical trials and was approved by the local
ethics committee. All subjects signed the informed consent before taking part in the
study.

Exercise description and features extraction

The exercises are selected by clinicians and they are widely used for low back pain
physiotherapy. Two exercises involve the upper body and are respectively the lifting
of arms (see Fig. 3.1.a), and the lateral tilt of the trunk (see Fig. 3.1.b). An exercise
involves lower body: the squatting (see Fig. 3.1.c). Subjects were asked to repeat
each exercise 6 times consecutively. Each exercise was performed with the subject
in front of Kinect v2, starting by the upright position. Before starting the exercises,
each subject has to perform a specific movement (i.e. lifting both the arms) in order
to synchronize Kinect v2 with the stereophotogrammetric system.

Figure 3.1.: Physical exercises widely used for low back pain physiotherapy involving
upper body (a-b) and lower body (c)

The Kinect v2 accuracy is measured through salient features considered clinically
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relevant descriptors of subject’s performance. For each exercise, these clinical fea-
tures are classified as dynamic features (DF) and static features (SF) (see Fig.3.2). DF
describe the kinematic goals that subjects have to reach (i.e. lifting of arms or arm lat-
eral tilting), while the SF represent the multi-joint posture the subject has to maintain
during the execution.

Figure 3.2.: Clinical features extracted for the three exercises

The kinematic protocol, adopted for the stereophotogrammetric system, is shown
in Figure 3.3.b and was defined to be closely related to the Kinect joints skeleton (i.e.,
Fig. 3.3.a).
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(a)

(b)

Figure 3.3.: The 25 joint positions provided by Kinect v2 (a). Marker locations of the
stereophotogrammetric system (b).

Table 3.1 shows the extracted features for each exercise, computed with the relative
landmark joints, measured with Kinect v2 and stereophotogrammetric system. The
torso oscillation x, computed in Exercise 2, is normalized to zero mean. Maximum
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and minimum of x represent the oscillation in right and left side, respectively.

Table 3.1.: Clinical features evaluated

Exercises Features type Clinical Features Kinect v2 Elite Marker
Skeleton Joint

1) Lifting of the arms DF Underarm Angles (aR/L)
Spine Shoulder
Elbow Right
Elbow Left

C7
Gd
Gs

SF
Euclidean Distance
between
Elbows (delbows)

Elbow Right
Elbow Left

Gd
Gs

2) Lateral tilt of the trunk DF Torso Oscillation (x) Spine Shoulder C7

SF
Euclidean Distance
between
Elbows (delbows)

Elbow Right
Elbow Left

Gd
Gs

3) Squatting DF Knee Angles (qR/L)

Hip Right
Knee Right
Hip Left
Knee Left

ASISd
mean(EMd,HFd)
ASISs
mean(EMs,HFs)

SF
Euclidean Distance
between
Ankles (delbows)

Ankle Right
Ankle Left

mean(MLd,MMd)
mean(MLs,MMs)

Data processing and analysis

The 25 skeleton joint positions of Kinect v2 are recorded at 30 fps. The counterpart
joint locations identified by the stereophotogrammetric system are recorded at 50 fps.
Calibration error of the motion capture system was calculated before each experimen-
tal session. Among sessions, the mean error of the stereophotogrammetric system
was 1.57±1.1 mm. A cubic spline-interpolation is implemented for solving occluded
marker problem. Both stereophotogrammetric and Kinect v2 data are filtered with a
low-pass Butterworth filter with cut-off frequency f = 5 Hz in order to filter tempo-
rary spikes as artifacts and noise. The stereophotogrammetric data are downsampled
at 30 fps. Spatial accuracy is defined by the differences between the features calcu-
lated with Kinect v2 and the stereophotogrammetric system respectively. For the DF
the absolute error is computed for each maximum and minimum peak, while for the
SF the difference is computed in terms of offset and Root Mean Square Error (RMSE)
after removing the spatial offset. Moreover, for each exercise, the temporal accuracy
is evaluated comparing the time-difference between each maximum-peak of DF.

51



Chapter 3. Materials

Sensor Validation Results

Accuracy results are provided comparing the clinical features, extracted by Kinect v2,
and the same features obtained by the stereophotogrammetric system considered as the
reference value. Then, the spatial and temporal accuracy of Kinect v2 is investigated.

Spatial Accuracy
Figure 3.4 shows the distance comparison between the DF of Exercise 1 (aR) cal-

culated for both the systems together with the peak Absolute Error (AE) and peak
Relative Error (RE). Features computed by Kinect v2 follow the trend of the ground
truth signal; in particular, Kinect v2 overestimates the maximum peak while for the
minimum the two values are comparable. Figure 3.5 shows the comparison between
the SF of Exercise 1 (delbows). Although there is a systematic offset, removed in the
figure below, it can be noticed a similar trend of this feature for both the systems.
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Figure 3.4.: Comparison between right underarm angle (DF Exercise 1: aR) computed
by Kinect v2 and stereophotogrammetric system
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Figure 3.5.: Comparison between elbows distance (SF Exercise 1: delbows) computed
by Kinect v2 and stereophotogrammetric system
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Table 3.2 shows the spatial accuracy for each DF in terms of peak AE and RE In
the Exercise 1 the maximum error is measured for the maximum right underarm angle
(Max(aR)) during the lifting of the arms: RE=12.1%, AE=18±9.5. For Exercise 2 the
error during the maximum (Max(x), tilting in the right side) and minimum (Min(x),
tilting in the left side) oscillation is comparable: respectively RE=12%, AE = 5.7±2.2
and RE=12.7%, AE=6± 2.5. The maximum error for Exercise 3 is measured during
knee flexion for both legs (Min(qR), Min(qL)): respectively RE=24.3%, AE=24±
10.4 and RE=26.3%, AE=26±8.1.

Table 3.2.: Spatial accuracy comparison of the DF

Exercises DF AE RE (%)
(µ ±s)

1) Lifting of the arms (deg)
Max(aR) 18±9.5 12.1
Max(aL) 13.1±9.4 8.7
Min(aR) 11.4±6.4 7.5
Min(aL) 8.1±5.3 5.3

2) Lateral tilt of the trunk (cm)
Max(x) 5.7±2.2 12
Min(x) 6±2.5 12.7

3) Squatting (deg)
Max(qR) 9.5±5.9 9.7
Max(qL) 8.2±2.7 8.4
Min(qR) 24±10.4 24.3
Min(qL) 26±8.1 26.3

Table 3.3 shows the spatial accuracy computed for each SF in terms of offset and
RMSE. In the Exercise 1 and 2 the offset associated with the distance between elbows
(delbows) is about the ⇡ 8 cm, while the RMSE is respectively 2.7 cm for the Exercise
1 and 4.7 cm for the Exercise 2. In the Exercise 3, the offset, related to the distance
between ankles, is 3 cm, while the RMSE is 2.4 cm.

Table 3.3.: Spatial accuracy comparison of the SF

Exercises SF Offset RMSE

1) Lifting of the arms (cm) (cm)
delbows 8.3 2.7

2) Lateral tilt of the trunk (cm) (cm)
delbows 7,8 4.7

3) Squatting (cm) (cm)
dankles 3 2.4
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Temporal accuracy
Temporal accuracy is evaluated in terms of number of frame difference. Then the

temporal distance between two maximum local peaks of DF is considered. Table 3.4
shows the time-peak distance between the two systems. In this case a positive number
of frame difference indicates an overestimation of the Kinect measure related to the
time between repetitions (two consecutive peaks).

Table 3.4.: Temporal accuracy comparison of the DF

Exercises DF AE
(µ ±s)

1) Lifting of the arms (# f rames)
time-peak distance (right) 1.4±3.4
time-peak distance (left) 1±3.4

2) Lateral tilt of the trunk (# f rames)
time-peak distance 1±5.5

3) Squatting (# f rames)
time-peak distance (right) 0.5±1.1
time-peak distance (left) 0.5±2.1

Results of temporal accuracy show as Kinect v2 could accurately measure timing
characteristic of physical exercises confirming the results in [250, 254]. Regarding the
spatial accuracy, the Kinect v2 sensor is able to reproduce salient D.F. in a compara-
ble manner with those obtained from the stereophotogrammetric system. The novel
Microsoft Kinect sensor seems to ensure a better accuracy in the motor task involv-
ing upper limbs (i.e., Exercise 1: maximum R.E.=12.1% and Exercise 2: maximum
R.E.=12.7%) with respect to task involving lower body (i.e., Exercise 3: maximum
R.E.=26.3%). Therefore, a relevant systematic error appears in the Exercise 3 during
the minimum knee angle (maximum knee flexion), while the Exercise 1 and 2 show
more error variability. This is probably due to wider translational and angular excur-
sion during the Exercise 1 and 2, with a larger measurement volume respect to that
involved in the Exercise 3. In particular, during the maximum knee flexion in the Ex-
ercise 3 some salient joints used to compute the clinical features seem to be estimated
by Kinect v2 with a systematic bias respect to the gold standard system. A possible
systematic error could be not very significant for the continuous and overall temporal
evaluation of the patient. Moreover, results in Exercise 2 suggest how the magnitude
error is comparable during right and left oscillation (i.e., R.E.=12% and R.E.=12.7%,
respectively) highlighting a vertical symmetry. Accuracy-related to S.F. discloses as
Kinect v2 follows the trend of the related features, measured by the stereophotogram-
metric system. In particular, the offset related to the distance between elbows extracted
in Exercise 1 is maintained also during Exercise 2 (i.e., ⇡ 8 cm), where the elbows
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have to be held in the same position. While for Exercise 3 the offset related to the
distance between ankles is smaller (i.e., 3 cm).

3.1.2. Population

The experiment was conducted at the Neurorehabilitation Clinic of the University
Hospital of Ancona (Italy), where subjects were recruited to perform selected exer-
cises in front of the Microsoft Kinect v2 sensor. From May 1st through 30th 2016,
clinicians enrolled, in the study, 22 Healthy Subjects (HS), free from disabling mus-
culoskeletal or neurological problems, back pain, and recent trauma. Moreover, 19
patients suffering from chronic disabilities due to Neurological or musculoskeletal
Disorders (ND) were enrolled among those consecutively referred to the Neurore-
habilitation facility. They matched the following inclusion criteria: subjects suffering
from low back pain and axial (trunk or gait and balance) disabilities, without severe de-
mentia, walking with some limitations or under supervision (Walking Handicap Scale
Category ≥ 3 (=limited household walker)  5 (=Least-limited community walker)),
and not suffering from an acute phase of pain or recent trauma. The flow of the en-
rolled subjects through the study is reported in Figure 3.6. The study was carried out
in conformity with the Helsinki protocol [263] for clinical trials and was approved
by the local ethics committee of the University Hospital. All subjects performed the
experimental exercise protocol after signing the informed consent.

3.1.3. Exercises

The clinicians selected the following five exercises as a case study [264]. Exercises #1-
#4 involve the upper body segments, and include: lifting the arms (Figure 3.7a), tilting
the trunk sideways with extended arms (Figure 3.7b), rotating the trunk (Figure 3.7c),
rotating the pelvis rotations in the transverse plane (Figure 3.7d). The Exercise #5,
the squat (Figure 3.7e), mainly involves lower body segments. The exercise selection
was made for both clinical and technical reasons. Firstly, they are very basic motor
tasks aimed at improving axial function, acting on proximal limb joints’ range of
motion, and trunk flexibility [264]. They are part of any motor training in the warm-up
phase and can be performed even by elderly subjects with mild to moderate disability
[264, 265]. Secondly, the selected set of exercises aimed at testing the system on
different body segments (arms, trunk, and lower limb) and on the three axial spatial
plans assessing. Subjects were asked to repeat each exercise six times, in order both
to mimic a real training and obtain an average motor behavior, useful for a reliable
assessment.
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Figure 3.6.: Diagram showing the flow of participants in the study.
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3.2. Emotion Inference using Physiological
predictors

The benchmark dataset and the collected dataset are described in Section 3.2.1.

3.2.1. Datasets

In order to evaluate the reliability of the proposed methodology, two experiments
within the multimedia scenario were performed. The first experiment used high-
quality data from the DEAP dataset [138]. Their database includes the possibility to
classify 3-D emotion dimensions induced by music video showed to different users.
The author aimed at studying how the proposed MIL-based affective state classifi-
cation methods act when the physiological signal is gathered by accurate sensors in
a controlled environment. In this setting, the user is monitored with an accurate set
of sensors and the labeling of the perceived emotion has been based on participants’
self-reports. The second experiment aimed to investigate the reliability of the method
in the real world usage. Data were collected by an unobtrusive smart watch sensor
in a less-controlled environment, where the authors in collaboration with psycholo-
gists designed the data collection and the labeling procedure. The so-called Consumer
dataset aims to provide the kind of data available in the real-world applications, such
as the multimedia recommendation system.

DEAP Dataset

In the DEAP Experiment [138], 32 healthy participants watched 40 music videos.
The video selection was performed by a semi-automated method, with the main goal
of minimizing bias. From the initial candidate of 120 stimuli (60 videos collected from
a database and 60 manually collected in order to maximize the clearness of emotional
reaction for each of the quadrants), the final 40 test music videos were chosen by
using a web-based subjective emotion assessment interface. Each of the 40 resulting
videos lasted 1 min. The experiment was performed in two laboratory rooms with
controlled illumination. Firstly a 2 minute of baseline stage was recorded, during
which a fixation cross was displayed to the participant, who was asked to relax during
this period. Then, the 40 videos were presented in 40 trials, each consisting of the
following steps:

1. The trial number was displayed to inform the participant of their progress for 2
second.

2. Baseline recordings of 5 seconds (fixation cross).

3. Music video of 1 minutes.

57



Chapter 3. Materials

After each video, participants were asked to self-report their emotional experience
in four dimensions: valence, arousal, dominance and liking. The ratings for valence,
arousal, and dominance could range from 1 to 9 and were collected through the Self-
Assessment Manikins (SAM)[151]. For the liking scale, thumbs down/thumbs up
symbols were used. Full-scalp EEG and thirteen peripheral physiological signals
including Galvanic Skin Response (GSR), respiration amplitude, Skin Temperature
(ST), Blood Volume Pressure by plethysmograph (BVP), electromyograms of Zy-
gomaticus and Trapezius muscles, and electrooculogram (EOG) were recorded at a
sampling rate of 512 Hz.

Consumer Dataset

Twenty-nine volunteers with no cognitive diseases and no stress conditions (14 fe-
males and 15 males, 20-30 age-range) were recruited at the Department of Informa-
tion Engineering (Polytechnic University of Marche, Ancona Italy). None of them had
a history of neurological disorders. Before the experiment, all participants provided
written informed consent. They were asked to watch 6 movie clips (each lasting 4
minutes) and self-reported through the SAM their emotional experience to each video
in two dimensions: valence and arousal. Figure 3.8 shows the flow chart of the ex-
periment setting: tools and instruments displacement, data gathering and storage. The
experiment was composed of two different stages performed in different days. Both
stages started with a resting stage (baseline stage), where subjects were asked to relax
for 10 minutes lying on a couch without sleep. Then, during the first stage, three movie
clips were presented to each participant. These videos were chosen for the purpose
of eliciting positive valence (i.e., happiness, satisfaction). The movie clips proposed
in the second stage were instead selected with the goal to elicit negative valence (i.e.,
sadness, fear). At the end of each movie clips, subjects self-reported his/her valence
and arousal level into 9 points SAM scale [151], in a similar way of what was done in
[138, 152].

The physiological signals were collected from the smartwatch sensors (Microsoft
Band 2 [266]) worn on participants’ wrist. A mobile application was implemented to
gather the physiological measurement from smartwatch to mobile phone via Bluetooth
connection recording data in a .csv file. The data collection was properly synchronized
to the movie clips. Three physiological signals were recorded: the Inter-Beat Interval
(IBI) of Heart Rate (HR), the Galvanic Skin Response (GSR) sampled at the frequency
of 5 Hz and the Skin Temperature (ST) sampled at the frequency of 0.03 Hz.
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Figure 3.8.: A flow description of the Consumer dataset experiment
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Method: Computational models

4.1. Quantitative Assessment of Human
Movement

For each selected exercises previously described in Section 3.1.3, the clinical assess-
ment is provided (see Section 4.1.1) in order to have a ground truth. Features ex-
traction and segmentation procedure are explained respectively in Section 4.1.2 and
Section 4.1.3. Finally, the proposed machine learning method for exercise assessment
is described in Section 4.1.4. The presented approach was published in [267].

4.1.1. Clinical Assessment

Two expert clinicians, separately, scrutinized the recorded videos and filled the 10-
item Likert questionnaire employed also in [268] and detailed in Appendix A. The
questionnaire has been purposely designed to assess the performance of the subject
during the exercise. The first three items investigate the accuracy of the exercise tar-
gets (i.e., extension of the upper limbs, trunk rotation with upper limbs elevated to
90◦, squatting, etc.), while the last seven items evaluate the posture maintained by 7
body segments (head/neck, trunk, arms, pelvis, and legs) during the exercise.

4.1.2. Feature Extraction

The following stage, realized in straight collaboration with clinicians, aims to map
the exercise objectives, namely motor functional targets and postural constraints, into
kinematic parameters extracted by the 3D joint trajectories. The required features can
be divided into Target Features (TFs), Target Velocity Features (TVFs) and Postural
Features (PFs). TFs refer to targets to achieve in terms of angles and distances (e.g.,
maximum knee angle flexion during squatting), TVFs describe the targets in terms of
movement speed, while PFs are constraints, angles or distances between anatomical
landmarks, that have to be maintained during the exercise (e.g., complete elbow ex-
tension during “lifting of the arms” exercise). The accuracy of Kinect v2 in tracking a
subset of these features has been reported in Section 2.1.2.
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Figure 4.1 shows the extracted features across different body planes (frontal/horizontal)
and sides (left/right), as reported also in Table 4.1.

Considering a moderate repetition speed, a pre-processing stage is designed to filter
data from artifacts and noise. A second order, zero-phase, low-pass Butterworth filter,
with cut-off frequency fc = 1 Hz, is applied for each tracked joint to avoid tempo-
rary spikes. For completeness, a brief description of each exercise features has been
reported below.

Figure 4.1.: Features extracted for each exercise.

a. Exercise #1: right and left armpit angles in sagittal plane (al/r) represent the
target movements. Elbow extension angles (gl/r) is the constraint to be consid-
ered.

b. Exercise #2: right and left angles between shoulders and hip (bl/r) in frontal
plane (x,y) are defined as target features, while elbow extension (gl/r) is the
constraint.

c. Exercise #3: target movement is the horizontal distance between elbows (dx),
normalized respect to maximum variation. Elbow extension (gl/r) is the con-
straint.

d. Exercise #4: motion is given by spine base trajectories, normalized to zero
mean, in transverse plane (x,z), to ensure subject position independence from
sensor. This exercise does not contain a PF.

e. Exercise #5: right and left knee angles in sagittal plane (ql/r) are target features.
The depth coordinate of the shoulders (zl/r) describes constraints, normalized
to zero mean.
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Table 4.1.: Extracted body features.

Features Ex #1 Ex #2 Ex #3 Ex #4 Ex #5
Extracted

Side Left/ Left/ Horizontal Frontal/ Left/
Right Right Horizontal Right

Target al/r bl/r dx x,z ql/r

Features (TFs)

Target ˙
al/r

˙
bl/r Vdx Vx,Vz ˙

ql/r

Features
Velocity (TVFs)

Postural gl/r gl/r gl/r \ zl/r

Features (PFs)

4.1.3. Segmentation

Features segmentation aims to locate starting and ending points of each specific move-
ment [91]. The movement is considered as a single repetition performed by the sub-
ject. Then, Zero Velocity Crossings (ZVC) [269] is applied to segment each repetition
of TF. Among these stationary points, only local minima under specific amplitude
and temporal threshold are selected in order to avoid spurious peaks. The amplitude
threshold is empirically set as the mean value of the considered feature, while the
temporal threshold tth is selected using the recorded samples m and the number of
repetitions performed by the subjects (i.e., R = 6) as:

tth =
m
2R

. (4.1)

The temporal threshold avoids underestimating each segment. Note that the station-
ary points, obtained by ZVC, are used to segment also TVF and PF. One of the six
segmented candidates of TF, TVF and PF are depicted in Figure 4.2 for each Exercise.

4.1.4. Exercise Assessment: HSMM based approach

A HSMM based method is proposed for rehabilitation assessment [262]. Figure 4.3
shows a flow-chart of the proposed algorithm. The training of the Hidden Semi-
Markov model is realized using only the features of the Healthy Subject group HS
(n = 7), who achieved the highest Clinical Score (CS) and the best match between
clinician opinions. This group represents the 70% of subjects with a CS higher than
80/100. During the test stage, the assessment score was measured through the log-
likelihood. Total and local scores were computed considering the multivariate and
univariate observation features vector, respectively.
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Figure 4.2.: Segmentation examples of TF, TVF and PF for each exercise.
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HSMM background

HSMM is defined by a discrete-time finite-state homogeneous Markov chain observed
through a limited number of transition densities, denoted by the chain states, due to
the non-zero probability of self-transition. The state duration of an HMM is implicitly
a geometric distribution and one observation per state is assumed [270]. Originating
from the popular Hidden Markov Model (HMM) [271], an HSMM is defined expand-
ing the underlying stochastic process to be a semi-Markov chain, where the duration
of each state is modeled as a distribution. The following parameters characterize an
HSMM: the number of states (ns) in the chain, the duration in the state, limited by
the maximum period (s ), the initial state and observation symbol of the probabil-
ity distribution, and the state transition. The HSMM is used to encapsulate position
and velocity information with the parameterization on the involvement of time and
space constraint. To calculate the predicted probabilities for the HSMM, the Forward-
Backward (FB) algorithm elaborated in [272] is applied. This approach defines the FB
variables using the notion of a state together with its remaining sojourn (or residual
life) time, the state duration distributions can be taken into account in the Viterbi algo-
rithm where it can be estimated efficiently [273]. Viterbi algorithms are dynamic pro-
gramming algorithms for the maximum likelihood estimate (MLE) of state sequence
of HSMMs [270].

HSMM based assessment

The seven best subjects who reach the highest CS are used to train the HSMM and the
segmented TF, TVF and PF represent the observation features vector. During the test
stage, the Forward-Backward (FB) and Viterbi algorithms, are applied to compute the
filtered, predicted and smoothed probabilities [272, 273]. The HSMM provides a total
score, which is computed considering the likelihood function of the multivariate ob-
servation sequence as defined in [272], composed by the n-dimensional feature space
(i.e., TF, TVF and/or PF):
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tion for each segmented signal is defined by:
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where k is the number of the considered repetitions. Then, the normalized log-likelihood
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functions are computed for each repetition (i.e., k = 1, . . . ,6):

logLnormk =
log

�
Pk
�
oT

1
��

T
(4.4)

and the total log-likelihood function logL =
Â6

k=1 logLnormk
6 is the arithmetic mean of the

normalized log-likelihood functions logLnormk .
The total score for each i− th subject is computed normalizing the logL within the

minimum and maximum CS:

scorei = (CSmax −CSmin)⇥
(logLi − logLmin)

logLmax − logLmin
+CSmin (4.5)

where CSmax and CSmin are the maximum and the minimum clinical scores, respec-
tively, while logLmax and logLmin are the maximum and minimum of the total log-
likelihood. In addition, the local scores are extracted from the HSMM, considering
the log-likelihood functions of the univariate observation sequences:

log
�
PkT F

�
oT

1
��

=−
✓ T

Â
t=1

log(rt,kT F )

◆

log
�
PkTV F

�
oT

1
��

=−
✓ T

Â
t=1

log(rt,kTV F )

◆

log
�
PkPF

�
oT

1
��

=−
✓ T

Â
t=1

log(rt,kPF )

◆

(4.6)

Then, the local scores (i.e., scorei
T F , scorei

TV F , scorei
PF ) are computed by Eqs. (4.4)

and (4.5).
Fig. 4.4 shows the distributions of the Gaussian states for the training subjects of

the first exercise.

Figure 4.4.: HSMM: distributions of the Gaussian states
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4.2. Emotion Inference using Physiological
predictors

The features extraction procedure is reported in Section 4.2.1, while the MIL ap-
proaches applied for emotion prediction are described in Section 4.2.2.

4.2.1. Features Extraction

The features were extracted as similar as possible for both datasets.

DEAP Dataset

All the acquired physiological measurement were downsampled to 128 Hz and then
segmented into 60 seconds trials. The 5 seconds pre-trial baseline was removed and
thus not considered for further analyses. The features extraction stage was performed
with the Matlab Toolbox for Emotional feAture extraction from Physiological signals
(TEAP) [274]. Table 4.2 shows the physiological signals and the resulting 46 features
used for the data analysis. Notice that due to the presence of several outliers, the Skin
Temperature was not considered in the analysis (see also [274]).

Table 4.2.: Features extracted from physiological signals: DEAP dataset

Signal Extracted Features

GSR 1) peak amplitude; 2) rising time; 3) number of peaks; 4) average;
5) standard deviation; 6) 1st quartile; 7) 3rd quartile.

Blood vol-
ume pres-
sure

8) average; 9) standard deviation of Inter-beat interval (IBI); 10)
average of IBI; 11-15) multi-scale-entropy of IBI [139]; 16) spectral
power in 0−0.1 Hz band; 17) spectral power in 0.1−0.2 Hz band;
18) spectral power in 0.2−0.3 Hz band; 19) spectral power in 0.3−
0.4 Hz band; 20) energy ratio between the frequency bands 0−0.08
Hz and 0.15−0.5 Hz; 21) spectral power of IBI in 0.01−0.08 Hz
band (LF); 22) spectral power of IBI in 0.08−0.15 Hz band (MF);
23) spectral power of IBI in 0.15− 0.5 Hz band (HF); 24) energy
ratio of IBI between MF and LF+HF.

Respiration
pattern

25) average; 26) standard deviation; 27) kurtosis; 28) skewness;
29-35) 7 spectral power in the bands from 0 to 2.5 Hz; 36) main
frequency.

EMG (2-
channels)

37-42) average; 38-43) standard deviation; 39-44) kurtosis; 40-45)
skewness; 41-46) spectral power over 20Hz.

Consumer Dataset

The zero-order hold interpolation was applied to resample all physiological signals
(i.e., GSR, IBI and ST) at 5Hz. The GSR samples which overcame an empirical
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threshold set to 300µS were considered as outliers and deleted using the spline inter-
polation. All the data were then smoothed using a 5-samples moving average filter.
Since the accuracy of the smartwatch data is not comparable with respect to signals
gathered from gold standard sensors (see [138]), the extracted features corresponded
to a subset of those computed by the major reference works published in the affec-
tive computing literature [138, 274, 182, 160] (see Table 4.3). Seven features of IBI
(22−28) were computed with respect to values recorded during the baseline stage.

Table 4.3.: Features extracted from physiological signals: Consumer dataset

Signal Extracted Features

GSR 1) average; 2) standard deviation; 3) average of the derivative; 4)
root mean square of the derivative.

IBI 5) standard deviation; 6) standard deviation of the first difference;
7) root mean square of the first differences; 8) number of the ab-
solute values of the first differences samples greater than 50ms
(NN50); 9) number of the first differences samples greater than
50ms (dNN50); 10) number of the first differences samples lower
than 50ms (aNN50); 11) number of the absolute values of the first
differences samples greater than 50ms normalized over the num-
ber of samples; 12) average of the absolute values of the first
differences; 13) average of the absolute values of the first differ-
ences of the normalized signal; 14) average of the absolute val-
ues of the second differences; 15) the means of the absolute val-
ues of the second differences of the normalized signals; 16) spec-
tral power in 0.04 − 0.15 Hz band (LF); 17) spectral power in
0.15 − 0.4 Hz band (HF); 18) energy ratio between LF and HF;
19) energy ratio between LF and LF+HF; 20) energy ratio be-
tween HF and LF+HF; 21) spectral power in 0.04− 0.4 Hz band
(LF+HF); 22) Poincare plot feature SD12; 23) Poincare plot fea-
ture SD22; 24) Poincare plot feature SD12/SD22; 25) average
(IBImean); 26) NN50−NN50baseline; 27) dNN50− dNN50baseline;
28) aNN50− aNN50baseline; 29) IBImean − IBImean

baseline; 30) standard
deviation of the IBI with the mean value calculated from the base-
line IBI; 31) SD12/SD12

baseline; 32) SD22/SD22
baseline;

Skin
Tempera-
ture

33) average; 34) maximum

4.2.2. Emotion Inference: MIL approaches

In order to formalize the MIL approach and describe the proposed methodology the
author uses the following notation:

• B+
1 , . . . ,B

+
p and B−

1 , . . . ,B
−
n are the set of positive and negative training bags,

respectively. B is the set of all such bags.

• x+i j and x−i j are the set of instances in the i-th positive and negative training bag,
respectively.

• L is the number of instances for each bag.
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The original self-reports of both valence and arousal were binarized by thresholding
at level 5 (midpoint). Hence, the author defined as ”low”, values below 5 and as ”high”
values above 5, separately for the valence and arousal dimensions. Data processing
was implemented to extract salient features for each physiological signal accordingly
to the ML model computed. For the standard supervised learning approach each music
video/movie clip was considered as a single instance represented by a row-vector of d-
features (video-level features). For the MIL models the author evaluated two settings:

• L = 3 (i.e., 3 instances x video): each video was segmented in 3 windows over-
lapped by ns/4;

• L = 5 (i.e., 5 instances x video): each video was segmented in 5 windows over-
lapped by ns/6.

where ns is the number of recorded samples for each video.

Different MIL approaches were applied. Firstly the EM Diverse Density combined
with support vector machine is presented in Section 4.2.2 . Afterwards, the mi-SVM
and the MI-SVM approaches are described in Section 4.2.2 and Section 4.2.2 as an
evolution of classical single instance learning or normalized set of kernel methods
described in Section 4.2.2 .

EMDD-SVM

The key idea behind EMDD is the Diverse Density concept and EM algorithm. Di-
verse Density (DD) is a measure of the intersection of the positive bags minus the
union of the negative bags. Then, by maximizing DD, we can look for both the inter-
section point (the desired concept) and the set of feature weights. Indeed, the DD at
a point h in the feature space is a probabilistic measure of both how far the negative
instances are from h and how many different positive bags have an instance near c.
Formalizing this sentence, the DD of a particular concept h is defined as follows:

DD(h)⌘ P(h|B). (4.7)

The application of Bayes Rule leads to find the maximum likelihood estimation:

ĥ = argmax
h2H

[P(h|B)] = argmax
h2H


P(B|h)P(h)

P(B)

�
(4.8)

where H is the hypothesis space. Then assuming independence of the bag instances,
uniform prior of the instances and reapplying Bayes rule, leads to:
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ĥ = argmax
h2H

 p

’
i=1

P(B+
i |h)

n

’
i=1

P(B−
i |h)

�

= argmax
h2h

 p

’
i=1

P(h|B+
i )

n

’
i=1

P(h|B−
i )

�
. (4.9)

The posterior probability is estimated using the noisy-or approximation [275]:

P(h|B+
i ) = P(h|x+i1, . . . ,x

+
iL) =

= 1−
L

’
j=1

(1−P(h|x+i j)) (4.10)

P(h|B−
i ) = P(h|x+i1, . . . ,x

−
iL) =

=
L

’
j=1

(1−P(h|x−i j)) (4.11)

where

P(h|x+i j) = exp(−kx+i j −hk2) (4.12)

P(h|x−i j) = exp(−kx−i j −hk2). (4.13)

While learning concept points in the instance space we can also find the best scal-
ing for each k feature that maximizes DD. Then, the Euclidean distance kxi j − hk2

becomes the weighted distance Âk s2
kkx(k)i j −h(k)k2. Then, the optimization of DD re-

turns both a location c and a scaling vector s which belong to the hypothesis space
H.

The intuition behind EMDD [223] algorithm is to start with some initial guesses
of target point h by trying points on the positive bag. Afterwards, in the E-step, the
hypothesis h is used to pick one instance from each bag which is most likely to be
the one responsible for the label given to the bag. In the second step (M-step), the
two-step gradient ascent search [275] of the standard DD algorithm was implemented
to find a new h0 that maximize DD(h). Since the goal is to classify the video (bag)
in the context of affective interaction, the author proposes an adaptation of EMDD
algorithm. The final optimal-scaled concept point h is the maximum (in terms of
DD) of each scaled concept point computed from each starting instance picked in 10
different positive bags (initial guess). Then, once the scaled concept has been learned,
features based on this concept are used to train a linear SVM model. Nearest concept
features define the features mapping for each bag as being the minimum distance of
any of the instances in that bag to the scaled concepts as follows.
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f(B+
i ) = min

1 jp
(Â

k
s2

kkx+ (k)
i j − ĥ(k)k2) (4.14)

f(B−
i ) = min

1 jn
(Â

k
s2

kkx− (k)
i j − ĥ(k)k2). (4.15)

The pseudo-code for the proposed EMDD-SVM algorithm is reported in Appendix
B (Algorithm 1).

SVM, SIL and NSK

The SVM aims to choose the decision boundary in order to maximize the margin,
which is defined to be the smallest distance between the decision boundary and any of
the samples. The Single Instance Learning (SIL) is the starting point of SVM approach
for MIL: the bag’s label is assigned for all instances inside the bag. The optimization
problem in SIL is defined as follows:

min
www,b,x

1
2
kwwwk2 +C

✓ p

Â
i=1

L

Â
j=1

x

+
i j +

n

Â
i=1

L

Â
j=1

x

−
i j

◆

s.t.

(wwwT x+i j +b)≥ 1−x

+
i j

(wwwT x−i j +b) 1−x

−
i j

x

−
i j ,x

+
i j ≥ 0

(4.16)

where C represents the Box constraint.
The procedure for solving Eq.4.16 is to construct a Lagrange function from the ob-

jective function and the corresponding constraints, by introducing a dual set of vari-
ables. The key observation is that the Lagrangian solution leads to the dual represen-
tation of the maximum margin problem

The optimization of the dual representation subject to a set of inequality constraints
takes the form of a quadratic programming problem where the computational com-
plexity in the dual problem depends of the number of instances and bags. If âi j is
the solution of the dual problem of Eq. 4.16, the prediction of new data points can be
computed in terms of the parameters and the kernel function as follows:

scorei j =
p+n

Â
i=1

L

Â
j=1

âi jyi jK(x testi j,xi j)+b (4.17)

Note that any instances for which âi j = 0 will not contribute to the prediction (see
Eq 4.17), while the remaining data points constitute the support vectors.

Instead, in the Normalized Set Kernel (NSK) [224] a bag is represented as the sum
of all its instances, normalized by its 1 or 2-norm. The resulting representation is used
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in training a standard SVM with the following optimization problem:

min
www,b,x
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(4.18)

mi-SVM

The maximum pattern margin optimization problem for MIL (mi-SVM, [215]) is de-
fined as follows:

min
yi j

min
www,b,x
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kwwwk2 +C

✓ p
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i=1

L
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x
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yi j(wwwT x+i j +b)≥ 1−x
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i j

(wwwT x−i j +b) 1−x

−
i j

x

−
i j ,x

+
i j ≥ 0

(4.19)

where the variable yi j are binary variable associated to the instances in the posi-
tive bags, and are bound to satisfy the constrained that yi j = 1 for at least one j 2
{1, . . . ,L}.

Notice that the mi-SVM optimization problem (4.19) is a mixed integer program-
ming problem that can only be tackled with heuristic methods. In particular we used
the optimization heuristic proposed in [215]. The mi-SVM starts by training a SIL-
SVM described above. This is followed by a relabeling of the instances in the positive
bags using the SIL decision hyperplane. Hence, if a positive bag contains no instances
labeled as positive, the instance that gives the maximum margin of the decision hyper-
plane is relabeled as positive. This relabeling procedure is repeated, retraining a new
SVM model until no labels are changed. The pseudocode is reported in Appendix B
(Algorithm 2).

MI-SVM

The maximum bag margin formulation (MI-SVM) is an alternative way of applying
the maximum margin approach to the MIL scenario. Since the goal is to have at least
one instance in a positive bag to be positive, the aim is to obtain at least one instance in
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a positive bag to have a large positive margin. Hence, the maximum over all instance
in each positive bag must be bigger than one:

min
www,b,x

1
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kwwwk2 +C

✓ p

Â
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(4.20)

The second constraint in this optimization problem is not convex. By introducing
an extra variable s(i) for each bag, is possible to convert the above formulation into
a mixed integer program. Then, in the bag-centered formulation only one pattern per
positive bag will determine the margin of the bag. These patterns can be identified
as the witness of the entire bag. Hence, the MI-SVM formulation can be resumed by
[215]:

min
s

min
www,b,x
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kwwwk2 +C
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(4.21)

Since, as in the mi-SVM, the mixed integer program is difficult to solve for the
global optimum, the heuristic algorithm proposed in [215] was employed. The initial-
ization was performed considering the NSK formulation for each positive bag. The
witness instance for each positive bag is selected as the instance with the maximum
value with respect to the learned decision function. Then, the SVM is retrained with
the new dataset, and the procedure is repeated until convergence when the value of
si stops changing. Note that MI-SVM approach effectively ignores the negative in-
stances in positive bags, and only one instance in the positive bags contributes to the
optimization of the hyperplane. On the other hand, in mi-SVM the negative instances
in the positive bags, as well as multiple positive instances from one bag can be support
vectors. The reader can refer to the pseudocode in Appendix B (Algorithm 3).
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Results

5.1. Quantitative Assessment of Human Motion

The proposed computational model is evaluated following the data analysis procedure
explained in Section 5.1.1. The author provides the results of the proposed HSMM
based approach in Section 5.1.2.

5.1.1. Data Analysis

Data analysis was performed in order to:

• provide an inter-rater correlation (r) between the clinical scores assigned through
the two compiled questionnaires, computed through Z test. The CS, used for
data analysis, was the arithmetic mean of the scores assigned by clinicians, nor-
malized to a 0 - 100 scale;

• measure the Pearson correlation between the proposed method and CS;

• compare the presented method with a DTW algorithm, as proposed in [92, 55].
The scores, computed by both approaches, were correlated with CS;

• test the predictive power of the model, comparing the Root Mean Square Error
(RMSE), the Mean Absolute Error (MAE) and the Mean Absolute Percentage
Error (MAPE) with respect to CS for each exercise;

• apply the one-way ANOVA. The correlation and ANOVA analysis only in-
cluded subjects with complete data and statistical significance was set at the
.01 level. Moreover, the ROC analysis was performed;

• compare the computation time of the two methods (i.e., HSMM and DTW) for
Exercise #1 in order to assess their computation efficiency.
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5.1.2. HSMM Results

Thirty-four subjects (17 female; age range: 22 – 76 years) were analysed in the study:
twenty HS (11 female; age range: 22 – 50 years) and fourteen (6 female; age range: 30
– 76 years) people suffering from chronic disabilities due to Neurological or muscu-
loskeletal Disabilities. Among ND, six subjects suffered from advanced Parkinson’s
disease, four from post-stroke hemiparesis and the other from spondylosis. The inter-
rater correlation (r), for the CS questionnaire, was as follows: r = .88 (Z = 17.7;
p < .01; [.84− .91]) when assessing the total subjects performing all the five exer-
cises, r = .77 (Z = 10.1; p < .01; [.68− .84]) when assessing the HS group, r = .90
(Z = 12.1; p < .01; [.85− .94]) when assessing the ND group.

The hyper-parameters of HSMM were configured maximizing the correlation of
HSMM score with respect to CS in the validation set. The considered hyper-parameters
are respectively: (1) the Subset of Best Subject |SBS| among the 7 best-performing
subjects (bs) identified by CS, (2) the number of hidden states (ns), and the maximum
period (s ). The training set is composed by the best training subsets (SBS ✓ bs), while
the validation set is represented by the 30% of the 34−bs subjects, the remaining 70%
is used for the test set. Then, the HSMM is trained using C|SBS|

n=7 combinations with a
different subset of best subjects, to obtain the best correlation with CS in the valida-
tion set. Table 5.1 shows the Pearson correlation (r) between scorei

HSMM and CS for
the test set, considering the best parameters obtained during validation stage.

Table 5.1.: Correlation results obtained between scoreHSMM and CS for the test set
with the optimal hyper-parameters.

Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5
r .83 .81 .57 .49 .37
p < .01 < .01 < .01 < .01 < .05

SBS 2,4 1,2,4 3,4 1,2,6,7 3,4
ns, s 6,5 6,20 7,20 6,10 9,30

The separate analysis per single exercise showed that the correlation between HSMM
scores and CS was high and significant for Exercises #1 and #2. HSMM achieved a
moderate and significant correlation for Exercise #3 and #4, while a medium-low and
significant correlation was obtained for Exercise #5.

Comparison to DTW

The DTW approach finds an optimal alignment between two time-series, warped in a
nonlinear fashion to match each other [276]. This allows evaluating a distance mea-
surement between two features, minimizing the effect of speed variation and time dis-
tortion. For instance, in this context, the performance of the subject can be compared
to that of a physiotherapist, even though the two sequences have a different duration
(see Figure 5.1).
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Figure 5.1.: DTW: original signals and warped signals for TF (a) TVF (b) and PF (c)

A common DTW variant, that uses global constraint conditions on the admissible
warping paths, is here adopted. Such constraints speed up the DTW computation and
prevent pathological alignments by controlling the route of a warping path. Then,
a warping path relative to a region R entirely runs within the same region. In this
context, the well-known Sakoe-Chiba global constraint region is used [276], and the
horizontal and vertical width of the main diagonal (w) is fixed.

Although the features considered as input to DTW are different with respect to those
used in [55] and [92], the approach is the same. Reference time series of a single
exercise is composed of features, segmented for each repetition, according to ZVC
algorithm. The total DTW distance (dist) is the arithmetic mean of the DTW distance
computed for TF, TVF and PF averaged over all repetitions. The total score for each
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i-th subject is computed normalizing the disti within the minimum and maximum CS:

scorei
DTW = (CSmin −CSmax)⇥

(disti −distmin)

distmax −distmin
+CSmax (5.1)

where disti is the arithmetic mean of the relative distances disti
T F , disti

TV F and disti
PF .

Moreover, the local scores (i.e., scorei
DTWT F

, scorei
DTWTV F

and scorei
DTWPF

) are com-
puted by the Eq. (5.1) associated to TF, TVF and PF for each i-th subject.

In order to compare the performances between the proposed methodology and the
DTW approach ([55], [92]), the same validation phase is performed to find the best
DTW hyper-parameters (i.e., SBS and (w)). The correlation and related p-values
with respect to CS are shown in Table 5.2, considering all test subjects, ND and HS,
respectively.

The correlation coefficient r, obtained for each group, shows that the HSMM based
approach outperforms the DTW algorithm for all the proposed exercises except for
the Exercise #4. In particular, for the first three exercises, involving upper body move-
ment (i.e., shoulders and arms rotation in the sagittal and transverse plane), HSMM
showed a higher correlation with CS respect to DTW, while in Exercise #5 the medium
correlation found with HSMM is higher than that obtained by DTW and statistically
significant. Moreover, considering only the ND group, the presented approach shows
a higher correlation with the clinical assessment respect to DTW for all the exercises,
while for HS the correlation is low and not statistically significant for both methods.

The correlation between HSMM and DTW results high and significant for Exercises
#1, #2 and #4, moderate and significant for Exercise #3, and low and not significant
for Exercise #5. Furthermore, the outcomes of both approaches for ND are strongly
correlated for Exercises from #1 to #4 and medium correlated for Exercise #5, while
for HS they show a moderate correlation for all the exercises except for the Exercise
#2 and #3.

The predictive power of the model is shown in Table 5.3. For Exercises #1 and #2,
the comparison of errors confirms that HSMM is more accurate than DTW, while for
Exercise #4, DTW provides better results particularly supported by the MAPE value
which is considerably lower. In Exercises #3 and #5 the RMSE values of HSMM are
lower than DTW but not for the MAPE values which result higher.

In addition to the total score, authors provide local scores for the involved features
that allow the clinician to localize the error in the exercise movement execution. Figure
5.2 shows the local scores, computed by Eq.(4.6), for the physiotherapist (Subject 2)
and for a patient (Subject 22) for Exercise #1, by HSMM and DTW. Scores for the
healthy subject obtained with HSMM vary from a value of 70 to almost 100, while
for the patient they range from 30 to 70. The scoreT F shows as the patient does not
follow the target feature related to the left underarm angle in the sagittal plane (i.e.,
al , as described in Section 4.1.2, Exercise #1) while the right underarm angle (i.e., ar)
shows an higher score (close to 60). The local scoreT F assigned to the patient is lower
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Table 5.2.: Correlation results: HSMM vs CS, DTW vs CS and HSMM vs DTW.

Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5
A

ll
Te

st
Su

bj
ec

ts

H
SM

M

r .83 .81 .57 .49 .37
p < .1 < .01 < .01 < .01 < .05
Z 6.6 4.4 3.3 2.9 2.2

C.I.(95%) .69-.91 .53-.84 .24-.74 .17-.71 .04-.63
SBS 2,4 1,2,4 3,4 1,2,6,7 3,4
ns, s 6,5 6,20 7,20 6,10 9,30

D
T

W

r .70 .68 .52 .62 .27
p < .01 < .01 < .01 < .01 n.s.
Z 4.6 4.4 3.4 4.0 1.5

C.I.(95%) .47-.84 .43-.83 .25-.74 .35-.80 -.07-.56
SBS 3,4 3 6 3 3,5,6

w 5 15 30 10 15

H
SM

M
vs D
T

W

r .78 .91 .66 .71 .30
p < .01 < .01 < .01 < .01 n.s.
Z 5.8 8.1 4.3 4.6 1.7

C.I.(95%) .60-.89 .82-.96 .41-.92 .48-.85 -.04-.58

N
D

H
SM

M

r .91 .60 .56 .68 .50
p < .01 < .05 < .05 < .01 n.s.
Z 5.10 2.31 2.09 2.59 1.82

C.I.(95%) .74-.97 .11-.86 .04-.84 .20-.89 -.42-.82

D
T

W

r .85 .59 .51 .67 .39
p < .01 < .05 n.s. < .01 n.s.
Z 4.12 2.27 1.85 2.54 1.36

C.I.(95%) .57-.95 .09-.86 -.03-.82 .18-.89 -.18-.76

H
SM

M
vs D
T

W

r .83 .96 .77 .88 .54
p < .01 < .01 < .01 < .01 < .05
Z 3.96 6.3 3.39 4.41 2.46

C.I.(95%) .54-.95 .86-.99 .41-.92 .65-.97 .12-.79

H
S

H
SM

M

r .31 -.18 −.10 −.28 .16
p n.s. n.s. n.s. n.s. n.s.
Z 1.27 -.69 -.03 -1.19 .64

C.I.(95%) -.17-.67 -.61-.33 -.45-.44 -.64-.19 -.31-.56

D
T

W

r .14 .25 .01 .08 -.09
p n.s. n.s. n.s. n.s. n.s.
Z .58 .95 .04 .32 -.38

C.I.(95%) -.33-.56 -.27-.65 -.43-.45 -.38-.5 -.51-.37

H
SM

M
vs D
T

W

r .59 .25 -.07 .67 .54
p < .01 n.s. n.s. n.s. < .05
Z 2.74 .95 -.3 1.86 2.46

C.I.(95%) .19-.83 -.27-.65 -.5-.38 -.03-.73 .12-.79

than the score assigned to the physiotherapist. Accordingly, the patient does not fully
achieve a correct speed of movement (i.e scoreTV F ). Moreover, scorePF , related to
postural features, discloses as the patient does not respect almost all constraints (i.e.,
elbow stretched during the exercises: gl/r). The local scores, obtained by DTW, show
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Table 5.3.: RMSE, MAE and MAPE values related to HSMM and DTW scores with
respect to CS for all test subjects.

Ex. #1 Ex. #2 Ex. #3 Ex. #4 Ex. #5
HSMM
RMSE 8.00 13.45 15.32 21.21 22.64
MAE 6.01 10.17 12.35 17.35 18.15

MAPE (%) 3.8 1.87 17.6 50.7 46.8
DTW
RMSE 11.28 19.02 16.21 14.6 23.57
MAE 7.68 12.03 10.87 11.22 18.54

MAPE (%) 5.7 23.1 10.5 2.77 11.05

a similar trend compared to those obtained by HSMM except that for scoreDTWT F

related to the right underarm angle that was lower, and for the scoreDTWPF related to
right elbow angle that was higher. In addition, DTW underestimates the score related
to TVF. On the basis of these discrepancies, clinicians decided to evaluate again the
video and the new clinic evaluation agrees with results obtained by HSMM, revealing
that the patient did not reach the primary target of the exercise (especially for the left
underarm angle), and he/she did not respect the postural constraints.

Discrimination between healthy and disabled people

In order to test the ability of the proposed approach of discriminating between healthy
and disabled people, the results, obtained by the three different assessment methods
applying the descriptive statistic analysis, are shown in Table 5.4 and Figure 5.3.

Table 5.4.: Descriptive statistics of the scores obtained through the three different as-
sessment methods.

CS HSMM DTW

N
D

Mean ±SD 68.5 (±23.3) 68.2 (±20.7) 77.2 (±19.9)

Med(IQR) 72.5 (15) 71.2 (35.8) 84.5 (21.4)

min-max 0−100 26−97 26−99.5

H
S

Mean ±SD 87.5 (±15.3) 81.0 (±14) 89.6 (±9.5)

Med(IQR) 91 (15) 80.8 (25.9) 92.2 (9.8)

min-max 0−100 41.6−100 48.1−100

DTW algorithm tends to overestimate the clinical assessment for both ND and HS,
while the HSMM approach is more efficient for ND respect to HS, for which it under-
estimates the scores.

The quantitative inter-group comparison, by one-way ANOVA, highlighted that the
three methods, CS ( F(2,33) = 40.5, p < .01), HSMM (F(2,33) = 22.7, p < .01)
and DTW (F(2,33) = 28.2, p < .01) were able to discriminate between patients and
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5.1. Quantitative Assessment of Human Motion

(a) (b)

(c) (d)

Figure 5.2.: Local and global scores computed by HSMM (blue bar) and DTW (red
bar) during Exercise #1: physiotherapist (a-b) vs patient (c-d). A screen-
shot of the depth image recorded by Kinect v2 is also shown.

healthy subjects.
Figure 5.4 shows the Receiving Operating Characteristic (ROC) curve of HSMM,

DTW and CS for discriminating the two groups (i.e., HS and ND). The Area Under
Curve (AUC) of CS is greater (AUC=0.755) than DTW (AUC=0.714) and HSMM
(AUC=0.681), respectively.

Computation time

Table 5.5 shows the computation time, expressed in seconds (s), for training and val-
idation stage of Exercise #1 averaging over all combinations of |SBS|. Both meth-

81



Chapter 5. Results

Figure 5.3.: Box plot about intergroup comparison.
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Figure 5.4.: AUC for the three assessment methodologies.

ods (i.e., HSMM and DTW) are reasonably fast and would be practically feasible for
motion assessment. HSMM seems to outperform DTW in terms of computation ef-
ficiency for each training set size. Accordingly, the gap between HSMM and DTW
increases with the number of best subjects considered for the training as in Figure 5.5.

Table 5.5.: Computational time (s) for training and validation.

|SBS|
1 2 3 4 5 6 7

HSMM 110.96 145.42 199.82 215.59 267.16 329.85 388.46
DTW 118.36 172 235.69 273.28 335.30 441.27 511.41

All the experiments were performed using Matlab 2016b on the computer with 16
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Figure 5.5.: Computation time for training and validation related to the Exercise #1.

83



Chapter 5. Results

5.2. Emotion Inference from Physiological
predictors

The proposed MIL framework is evaluated following the data analysis procedure ex-
plained in Section 5.2.1. The author provides the results of the proposed MIL based
approaches in Section 5.2.2.

5.2.1. Data analysis

The extracted features were modeled by the MIL algorithms described in Section 4.2.2
in order to predict low/high levels of both valence and arousal. The assessment of the
MIL model was performed according to the following measures:

• accuracy: the percentage of correct predictions;

• confusion matrix: square matrix that shows the type of errors in a supervised
binary paradigm;

• macro-F1 score (macro-F1): the harmonic mean of precision and recall aver-
aged over all output categories;

• Receiver Operating Characteristic: is designed by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various threshold settings. It
illustrates the performance of a binary classifier as its discrimination threshold
is varied.

The MIL approach was tested on the DEAP dataset building an user-specific model
with a Leave-One-Video-Out (LOVO) procedure. This is the same testing performed
in [138]. Accordingly, in the Consumer dataset the small amount of video samples
for each subject did not allow to perform the same analysis. Hence, a 10-fold Cross
Validation (10-CV) over video procedure was computed.

The Naive Bayes (NB), the Support Vector Machine (SVM) and the Random For-
est (RF) classifiers are standard supervised ML algorithm used as comparison. The
NB was employed in [138], while the RF achieved the best performance among other
tested supervised classifiers such as Decision Tree and K-Nearest Neighbors. Ad-
ditionally, from the machine learning point of view, the applied MIL methods are a
theoretical extension of SVM.

5.2.2. MIL Results

The linear Kernel is employed in the SVM, EMDD-SVM, mi-SVM, and MI-SVM.
The optimization of hyperparameter (i.e., Box Constraint) was performed implement-
ing a grid-search and optimizing the macro-F1 score (F1) in the validation set. The
Box Constraint was picked inside the subset {0.1,0.5,1,5,25,100}.
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5.2. Emotion Inference from Physiological predictors

Experiment 1: DEAP Dataset

Table 5.6 shows the average accuracies and macro-F1 scores of user-specific setup
(LOVO) over participants for the standard machine learning algorithm and the MIL
methods for each task (i.e., arousal, valence and dominance) and settings (i.e., L = 3
and L = 5). Concerning the estimation of the two arousal level the mi-SVM method
with L = 3 shows the highest macro-F1 (macro-F1=0.546, ACC=0.611), while the
EMDD-SVM approach has the lowest macro-F1 (macro-F1=0.463, ACC=0.559). The
MI-SVM method with L = 5 has the best outcome (macro-F1=0.612, ACC=0.636) for
recognizing the valence level, while the EMDD-SVM approach has the worst perfor-
mance (macro-F1=0.526, ACC=0.566). The prediction of dominance receives rela-
tively low macro-F1 for both baseline and MIL approaches.

To test for significance, an independent one-sample t-test was performed comparing
the macro-F1 distribution over participants with respect to chance level (.5) (see Table
5.6). For the valence task, the macro-F1 is significantly higher (p < .05) than chance
level (.5) for both standard and MIL methods. The macro-F1 obtained from EMDD-
SVM with L = 5 did not reach significance. On the other hand, for the estimation
of arousal level only the macro-F1 of mi-SVM approach with L = 3 is significantly
higher (p < .05) than chance level (.5). Neither of the methods showed macro-F1
above chance for the prediction of dominance level.

Since all the MIL methods are based on SVM approach, we chose to compare
the macro-F1 score, the confusion matrix and the Receiver Operating Characteristic
(ROC) of the best MIL approach with those obtained from standard SVM for both the
arousal and valence tasks. Since no significant results were found in the classification
of dominance, no further analysis was performed for this task.

Figure 5.6 shows the macro-F1 scores of mi-SVM with 3 windows per video and
the standard SVM approach for each participant for the arousal task. When compared
to standard SVM, the mi-SVM with L = 3 shows higher macro-F1 scores in 18 out of
32 participants (i.e., participant 2, 5-12, 16, 18-19, 22-24, 28-30).

Table 5.7 shows the confusion matrices of the mi-SVM and the standard SVM ap-
proach over all participants for the arousal task. Notice that the true high rate in
mi-SVM (0.71) is higher than SVM (0.64), while the false high rate in SVM (0.48) is
lower than mi-SVM (0.53).

The ROC for mi-SVM and SVM is depicted in Figure 5.7. The Area Under Curve
(AUC) of mi-SVM (AUC=0.638) is comparable with this obtained by SVM standard
method (AUC=0.636).

For what concerns the estimation of the valence level, the performance of MI-SVM
with L = 5 is higher than SVM method for 22/32 participants (i.e., participant 2, 3, 4,
8-11,13-17, 19-23, 25, 27, 29-31) (see Figure 5.8).

Table 5.8 shows the confusion matrices of the MI-SVM and the standard SVM
approach over all participants for the valence task. The MI-SVM discloses an higher
true negative and true positive rate (0.58 and 0.68) than SVM (0.51 and 0.64).
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Table 5.6.: Average accuracies (ACC) and macro-F1 (F1) of user-specific setup
(LOVO) over participants for the MIL algorithms. For comparison, stan-
dard results are given for classification based on NB and SVM. Stars indi-
cate whether the macro-F1 distribution over subjects is significantly higher
than chance level (i.e., macro-F1=0.5) according to an independent one-
sample t-test (⇤⇤= p < .01,⇤= p < .05)

Arousal Valence Dominance

Algorithm ACC F1 ACC F1 ACC F1

Standard
ML
NB 0.572 0.514 0.595 0.577⇤⇤ 0.566 0.506
SVM 0.591 0.539 0.581 0.557⇤⇤ 0.599 0.530
RF 0.586 0.498 0.599 0.566⇤⇤

MIL

3 windows
mi-SVM 0.611 0.546⇤ 0.622 0.595⇤⇤ 0.603 0.528
MI-SVM 0.594 0.533 0.577 0.556⇤ 0.573 0.508
EMDD-
SVM

0.559 0.463 0.587 0.544⇤ 0.580 0.485

5 windows
mi-SVM 0.583 0.512 0.621 0.593⇤⇤ 0.593 0.522
MI-SVM 0.585 0.530 0.636 0.612⇤⇤ 0.578 0.518
EMDD-
SVM

0.589 0.501 0.566 0.526 0.552 0.455
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Figure 5.6.: The macro-F1 score of the mi-SVM with L = 3 and the standard SVM
approach for each participant for the arousal task
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Table 5.7.: Confusion matrices (rows are the true classes) of the mi-SVM with L = 3
and the standard SVM approach over all participants for the arousal task

mi-SVM

low high
low 0.47 0.53
high 0.29 0.71

SVM

low high
low 0.52 0.48
high 0.36 0.64
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Figure 5.7.: ROC curve of the mi-SVM with L = 3 and the standard SVM approach
over all participants for the arousal task

Table 5.8.: Confusion matrices (rows are the true classes) of the MI-SVM with L = 5
and the standard SVM approach over all participants for the valence task

MI-SVM

neg pos
neg 0.58 0.42
pos 0.32 0.68

SVM

neg pos
neg 0.51 0.49
pos 0.36 0.64

Figure 5.9 shows the ROC for MI-SVM and the standard SVM method. The AUC
of MI-SVM (AUC=0.660) is higher than the SVM method (AUC=0.590).
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Figure 5.8.: The macro-F1 score of the MI-SVM with L = 5 and the standard SVM
approach for each participant for the valence task
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Figure 5.9.: ROC curve of the MI-SVM with L = 5 and the standard SVM approach
over all participants for the valence task

Experiment 2: Consumer Dataset

Table 5.9 shows the average accuracies and macro-F1 scores of user-specific setup
(10-CV) for the MIL algorithm and the standard methods for the two dimensions
emotional state: arousal and valence. For the classification of arousal level the
EMDD-SVM approach with L = 5 reveals the highest macro-F1 (macro-F1=0.656,
ACC=0.733), while the NB classifier and the EMDD-SVM model with L = 3 has the
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lowest macro-F1 (respectively, macro-F1=0.429, ACC=0.456 and macro-F1=0.428,
ACC=0.629). The mi-SVM method with L = 3 shows the best performance (macro-
F1=0.788, ACC=0.789) for the valence classification, while the EMDD-SVM ap-
proach with L = 5 has the worst outcome (macro-F1=0.530, ACC=0.537).

Table 5.9.: Average accuracies (ACC) and macro-F1 (F1) of user-specific setup (10-
CV) over 10-fold for the MIL algorithms. For comparison, standard re-
sults are given for classification based on NB and SVM. Stars indicate
whether the macro-F1 distribution over the 10-fold is significantly higher
than chance level (i.e., macro-F1=0.5) according to an independent one-
sample t-test (⇤⇤= p < .01,⇤= p < .05)

Arousal Valence

Algorithm ACC F1 ACC F1

Standard
ML
NB 0.456 0.429 0.588 0.577
SVM 0.629 0.497 0.651 0.646⇤
RF 0.655 0.598 0.771 0.775⇤

MIL

3 windows
mi-SVM 0.644 0.569 0.789 0.788⇤⇤
MI-SVM 0.690 0.528 0.745 0.742⇤⇤
EMDD-
SVM

0.629 0.428 0.717 0.713⇤⇤

5 windows
mi-SVM 0.647 0.535 0.704 0.691⇤
MI-SVM 0.677 0.586 0.688 0.681⇤⇤
EMDD-
SVM

0.733 0.656⇤ 0.537 0.530

For what concerns the classification of valence level, all the MIL models except the
EMDD-SVM with L = 5 show a macro-F1 significantly higher (p < .05) than chance
level (.5), while for the standard methods (i.e., NB and SVM), only the macro-F1 of
the standard SVM overcomes significantly (p < .05) the chance level (.5). On the
other hand, for the estimation of arousal, only the EMDD-SVM with L = 5 reveals a
macro-F1 significantly higher (p < .05) than chance level (.5).

Figure 5.10 shows the macro-F1 scores of each fold for both the EMDD-SVM with
L = 5 and the standard SVM method. The classification of arousal level is identical
for both methods for in fold 1 and fold 2, while the EMDD-SVM is superior than
SVM for 7 out of 10 folds (i.e., 3-6 and 8-10).

Table 5.10 shows the confusion matrices of the EMDD-SVM with L = 5 and the
standard SVM approach over all folds for the arousal task. Both the true low and true
high rate in EMDD-SVM (0.43 and 0.87) is higher than SVM (0.2 and 0.83).

The ROC for EMDD-SVM with L = 5 and SVM is depicted in Figure 5.11. The
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Figure 5.10.: The macro-F1 score of the EMDD-SVM with L = 5 and the standard
SVM approach for each participant for the arousal task

Table 5.10.: Confusion matrices (rows are the true classes) of the EMDD-SVM with
L= 5 and the standard SVM approach over all participants for the arousal
task

EMDD-SVM

low high
low 0.43 0.57
high 0.13 0.87

SVM

low high
low 0.2 0.8
high 0.17 0.83

Area Under Curve (AUC) of EMDD-SVM (AUC=0.610) is higher than the SVM
(AUC=0.540).

For the valence task, compared to standard SVM the mi-SVM with L = 3 yields an
higher macro-F1 in 8 out of 10 folds (i.e., fold 2-4 and 6-10) (see Figure 5.12).

Table 5.11 shows the confusion matrices of the mi-SVM and the standard SVM
approach over all participants for the valence task. The mi-SVM shows an higher true
negative and true positive rate (0.84 and 0.75) than SVM (0.59 and 0.71).

Figure 5.13 shows the ROC curves for mi-SVM and the standard SVM method.
The AUC of mi-SVM (AUC=0.829) is higher than the SVM method (AUC=0.729).
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Figure 5.11.: ROC curve of the EMDD-SVM with L = 5 and the standard SVM ap-
proach over all participants for the arousal task
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Figure 5.12.: The macro-F1 score of the mi-SVM with 3 windows x video and the
standard SVM approach for each participant for the valence task
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Table 5.11.: Confusion matrices (rows are the true classes) of the mi-SVM with L = 3
and the standard SVM approach over all participants for the valence task

mi-SVM

neg pos
neg 0.84 0.16
pos 0.25 0.75

SVM

neg pos
neg 0.59 0.41
pos 0.29 0.71
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Figure 5.13.: ROC curve of the mi-SVM with L = 3 and the standard SVM approach
over all participants for the valence task
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Discussions

In this Section the author discusses and answers the research questions provided in
Section 1.2.

6.1. Quantitative Assessment of Human Motion

The aim of this study was to provide an effective assessment tool to monitor and
evaluate the correctness of rehabilitation exercises.

How can ML model be applied for assessing the human movement with respect
to a reference example or a set of rules?

For this purpose, the proposed HSMM based approach allowed to combine different
aspects of template and rule based methods, trying to overcome some of their limits.
The goal is to obtain an approach clinically supported, reusable for a different set of
exercises and computationally faster. As a rule based approach, the proposed algo-
rithm is able to provide a quantitative score on the base of the main features defined
by clinicians. At the same time, these features are evaluated with respect to an exem-
plar of the motion sequence, as a template based method. In particular, the exemplar
is modeled by a probabilistic algorithm HSMM determined by the clinical judgment
during the validation stage.

How can the algorithm provide a suitable feedback for supporting both clini-
cians and patients during rehabilitation process?

The features used for training the HSMM are based on modalities and purpose of
the single exercise as indicated by expert clinicians. Hence, the proposed method
can be considered as an interactive pattern recognition application that provides two
main novelties: (1) it takes into account clinicians’ indications (features) and (2) the
amount of data to be analyzed, related only to those selected features, are lower than
in algorithms of pattern recognition. These aspects make the data processing faster
and clinically significant.

How can an objective measurement be designed to validate the proposed algo-
rithm?

The reliability of the proposed approach is studied by evaluating its correlation with
both clinical assessment and Dynamic Time Warping (DTW) algorithm, while healthy
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and neurological disabled people performed a case study of five exercises included in
a low-back pain physiotherapy program.

How far/close is the proposed algorithm from clinician evaluation of exercise
performance?

The overall correlation obtained between HSMM and CS, proves that the presented
approach is accurate for assessing human movement for different type of exercises. In
particular, the medium-high correlation and the related low error values (i.e., RMS,
MAE and MAPE) of those exercises (i.e., Exercises #1, #2) involving upper body,
prove that this method could be extended to exercises for which the tracking sensor
ensures better performances within its limits. This agrees with the well-known limits
of Kinect system [260, 253, 254, 83] that lie in occlusion or overlaps of the joints,
lower limb or no frontal plane tracking as it is possible to see in Exercises #3, #4,
#5, where low correlation and higher error values have been obtained. Even if the
selected features are the most significant movement descriptors, they can be affected
by the subject position, presence of occlusions and environment conditions. In fact,
among 41 enrolled subjects in the study, 2 subjects were completely lost for issues
due to the Kinect sensor as reported in Figure 3.6. In detail, the results suggest that
the skeleton tracking accuracy is higher for upper body compared to the lower one
according to [253] and the accuracy validation study performed by author reported in
Section 2.1.2.

How much better is the proposed algorithm with respect to standard algorithm
widely used in literature?

In order to provide an index of the usability of the proposed HSMM approach on
different types of exercise, the overall correlation (i.e., considering all the exercises
scores), between the CS and HSMM scores, has been calculated r = .60, (p < .01).
While, between CS and DTW, the overall correlation, r = .56 (p < .01), is lower.

For the ND group, the overall correlation of the HSMM score is higher (i.e., r = .64,
p < .01) than DTW score (i.e., r = 0.61, p < .01). While for the HS is lower but sig-
nificant (i.e., r = .28, p = .01) and for DTW is not significant (i.e., r = .12). Finally,
between HSMM and DTW scores, the overall correlation is r = .67 (p < .01). The
comparison between HSMM and DTW scores unveils a moderate significant correla-
tion for HS (i.e., r = .45, p =< .01) and a high significant correlation for ND (i.e.,
r = .7, p =< .01). The results of the paper support that HSMM approach outper-
forms DTW, considered as one of the gold standard method for movement assessment
[277, 74, 55]. A possible reason could be that the proposed approach avoids the prob-
lem of choosing a particular reference trajectory, modeling also temporally varying
variance from the mean feature trajectory and reducing overfitting. Accordingly, the
algorithm is able to quantitatively evaluate local erroneous movements. In particular,
the local scores can be used to discriminate the accuracy of the gesture, providing
specific feedback, useful both for clinicians and patients (see Figure 5.2).

Future direction may be addressed to go beyond the localization of the error (i.e.,
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6.1. Quantitative Assessment of Human Motion

go beyond what the human/clinician sees) and provides an analysis of the local scores.
This lead to extract the most salient feature for the assessment of movement for each
different exercises. This analysis aims to:

• identify how the single feature and the related score contribute to the final out-
come score.

• identify which feature was more discriminative between groups.

The canonical correlation analysis was able to weight the local score and then the
extracted features well characterizing the total score. However, since author found
the single scores are less powerful at discriminating between normal and pathological
movement patterns, it is recommended that the sum of different local scores should
be considered in order to make the proposed movement assessment a generalizable
approach.

The comparison between groups shows how the method is able to better evaluate the
performance of people affected by motor disabilities, while the correlation decreases
remarkably when healthy subjects are considered. Moreover, HSMM provides results
more correlated to CS than those obtained by DTW, for the ND group, highlighting the
intrinsic variability connected to the patient as it is possible observing through SD and
IQR results (see Table 5.4 and Figure 5.3). On the other hand, small errors, made by
healthy subjects during the motion sequence, are more difficult to capture. Anyway,
also the clinical judgments of the HS performance are less accurate and reproducible,
because of difficulties to distinguish between small differences and possible anticipa-
tion biases.

6.1.1. Limits of the approach

The study presents some limits due to different aspects: first of all, the small sample
size and the disease heterogeneity in the group of disabled people may limit the gen-
eralization power of the study. The trial is an explorative study, aimed at assessing the
feasibility and reliability of the approach. All disabled subjects suffered from axial
disorders, due to different pathologies, and the method resulted reliable in detecting
posture difficulties during movement with respect to clinical judgment. The study is
not powered to assess selective reliability for different nosographic conditions (dis-
eases).

Secondarily the clinical judgment is provided through a questionnaire that never
underwent a psychometric validation. For this reason, the author provided an inter-
rater reliability of the questionnaire and analyzed its capacity to distinguish between
healthy and disabled people. To the best of author’s knowledge, in the literature, there
is no questionnaire assessing the correctness of motor gesture during a training. This
process is normally carried out by physiotherapists in real time during the training,
looking at the patient performing movements. Normally, physiotherapists base the
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judgment on their own experience following the exercise scope (as in a rule based
manner).

In addition, the results provide large CI (95%) values, connected to RMSE, MAPE
and MAE higher value, particularly for Exercises related to lower limb (see Exercises
#4 and #5) or with overlaps of the joints (Exercise #3). This reduces the reliability of
the assessment performed by data acquired through the Kinect v2, due to the intrinsic
Microsoft Kinect Skeletal Tracking system limits, as above mentioned.

The system reliability has been tested on five exercises widely used to treat neuro-
logical and musculoskeletal diseases [265, 264]. The method followed in this study
can be usefully applied for many other exercises (e.g., the University of Idaho-Physical
Rehabilitation Movement Data [278] and the K3Da dataset [279]) adopted in the re-
habilitation context: the procedure used to design the algorithm and to identify the
outcome measures is the key rule to generalize the approach. Finally, the proposed
approach, as for template based method, can be easily generalized and reused for a
different set of rehabilitation exercises, once the salient features of the motor task to
be assessed have been selected. Note that the features are exercise-specific and need
to be defined according to the exercise scopes.

6.2. Emotion Inference from Physiological
predictors

How can ML model be applied to infer the affective state of the user and model
the variability in physiological response over the course of multimedia interac-
tion? How can ML model be applied to handle the ambiguity and the change
over the time of the emotional response?

The MIL approach assumes that the emotional response is ambiguous and sum-
mative over the entire multimedia interaction. This means that not all observation
windows have the same predictive power. Then, author aims to find the time inter-
val which leads to better prediction of the presence of the self-reported emotion. The
computed results of two experimental databases (i.e., DEAP and Consumer database)
and described in Table 5.6 and 5.9 confirm that a multi-instance based approach is
appropriate for analyzing the physiological response in order to recognize human
emotion. MIL methods provide the highest accuracy and macro-F1 score for the
valence task, respectively for the DEAP (average overall methods ± standard devi-
ation: ACC = 0.602 ± 0.029 and macro-F1=0.571 ± 0.034) and Consumer dataset
(ACC = 0.697±0.086 and macro-F1=0.691±0.088). The performed statistical anal-
ysis confirms the reliability of the proposed methodology for the estimation of posi-
tive and negative valence level: all MIL methods, except the EMDD-SVM with L = 5
shows a macro-F1 significantly higher (p < .05) than chance level (.5) The arousal
task shows a relatively lower accuracy and macro-F1 score, according also to the re-
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sults obtained by Koelstra et al. [138]. While in the Consumer dataset the unbalancing
of class (16% low arousal vs 84% high arousal) can lead to a prediction bias and a
classification of the majority class (see Table 5.10), in the DEAP scenario the predic-
tive power of the features decreases and MIL methods sometimes fails to recognize
the correct arousal state (see Figure 5.6). However, the mi-SVM and EMDD-SVM are
able to predict respectively in the DEAP and Consumer dataset the arousal state with
performance greater (p< .05) than chance level (.5). The estimation of the dominance
in the DEAP context does not receive satisfactory results for both MIL and standard
approaches. A deeper features extraction involving other more intrusive physiologi-
cal signals (e.g., EEG, EMG) and video-content features extracted by the Multimedia
Content Analysis (MCA, [280]) may be needed to solve this task.

Does ML method outperform standard supervised algorithm based on video-
level features?

For what concern the valence task author has compared the best MIL approach with
the related standard ML algorithm (i.e., SVM). For the DEAP dataset, the MI-SVM is
superior than SVM method in terms of macro-F1 score for 22/32 participants, macro-
F1 score (0.612 vs 0.557), accuracy (0.636 vs 0.581), AUC (0.660 vs 0.590), standard
Precision (0.62 vs 0.57) and Recall (0.68vs0.64) (see Table 5.8). Accordingly, for
the Consumer dataset, the mi-SVM shows greater performance than SVM (macro-F1
score higher in 8/10 fold, macro-F1 score: 0.788 vs 0.646, accuracy: 0.789 vs 0.651,
AUC: 0.829 vs 0.729, standard Precision (0.82 vs 0.63) and Recall (0.75 vs 0.71) (see
Figure 5.11).

For what concern the arousal task, the standard SVM method is not significantly
higher than chance level in the DEAP (p = .076) and Consumer dataset (p = 0.957).
However, MIL methods such as mi-SVM with 3 windows x video and EMDD-SVM
with 5 windows x video show a significant macro-F1 distribution higher (p < .05)
than chance level (.5) respectively for DEAP and Consumer dataset. In the DEAP
dataset, the macro-F1 score of mi-SVM (0.546) is higher than SVM (0.539) for 18/32
participants, as well as the accuracy (0.611 vs 0.591). Accordingly, the AUC (0.638
vs 0.636) and the standard Precision (0.57 vs 0.57) of the two approaches are compa-
rable, while the Recall of mi-SVM is higher (0.71 vs 0.64) (see Table 5.7). For the
Consumer dataset, the EMDD-SVM is superior to standard SVM in terms of macro-
F1 score for each participant (i.e., 7/10 folds), macro-F1 score (0.656 vs 0.497),
accuracy (0.733 vs 0.629), AUC (0.610 vs 0.540), standard Precision (0.60 vs 0.51)
and Recall (0.87 vs 0.83) (see Table 5.10).

Summarizing these outcomes, the proposed methodology based on EMDD-SVM,
mi-SVM and MI-SVM approaches are reliable and accurate to estimate the binary
valence state through the analysis of physiological signals. Furthermore, the arousal
task is more difficult to solve and in this context, only some MIL methods (i.e., mi-
SVM and EMDD-SVM) can solve it with an acceptable performance, still superior to
standard supervised classifiers.
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Is ML method reliable for the emotion recognition task towards the real world
usage?

The obtained results from the Consumer dataset encourage the use of the proposed
methodology towards the real world usage. Data were acquired by a commercial
smartwatch and the experiment was performed in a less controlled environment (com-
pared to that realized in Koelstra et al. [138]). In spite of the lower accuracy of the
sensor and the less robustness of the labeling procedure, the proposed methodology is
able to reliably predict the valence state and at the same time provides a reasonable
estimation for the arousal state.

6.2.1. Label Assignment

The label assignment in the affective computing scenario is time-consuming and in-
volves a relevant effort (see Section 2.2.4). Accordingly, a continuous labeling is
needed in order to map the variability of the emotion during the multimedia interac-
tion. The proposed application of Multiple Instance Learning for emotion recognition
allows to overcome this drawback. In particular, the proposed MIL approach is able to
model time interval which leads to better prediction of the presence of the self-reported
emotion, without the needing of continuous labeling the subjective physiological re-
sponse (as required by the sequential learning approaches). This allow to save time
and effort in the label assignment procedure. Therefore, as future direction, the au-
thor aims to investigate the robustness of the presented MIL approach with respect
to sequential supervised learning paradigm where the goal is to predict a new label
sequence of emotion.

6.2.2. Relation to Number of Instances x Video

The MIL method is influenced by the size of the time interval: it is possible to model
time interval which leads to better prediction of the presence of the self-reported emo-
tion, capturing the subjective physiological response. For instance, for what concern
the arousal task in the DEAP dataset, the mi-SVM with 3 and 5 windows x video
shows different results: only the method with L = 3 provides a macro-F1 score sig-
nificantly higher than chance level. In the Consumer dataset different results are pro-
vided by the two configurations of EMDD-SVM for the arousal task. In this case,
the method with L = 5 provides a macro-F1 score significantly higher than chance
level while the L = 3 setting provides a lower and not significant macro-F1. Finally,
the choice of the number of instances for each video can change for each subject and
depend on several factors such as the type and the duration of stimuli and when the
physiological response occurs. In the future, the author would like to select the cor-
rect number of instances maximizing information theory metrics such as entropy and
mutual information.
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Conclusions

The main contribution of this thesis is the application of different machine learning
algorithms for monitoring the physical and emotional well-being of a subject. Two
problems were formulated and answered:

1. quantitative assessment of human motion: real-time evaluation of the exercise
performance during physical rehabilitation stage;

2. emotion inference from physiological predictors: inferring the affective state of
the user during multimedia interaction.

The HSMM based approach is proposed for an accurate rehabilitation exercise as-
sessment, close to the clinical evaluation. The HSMM algorithm resulted in a viable
solution to provide an effective and reliable quantitative feedback to physiotherapists
and patients. Sensor characteristics limit the performance of the approach in exercises
with movements on the deep spatial plane (i.e., Exercise #4) or with joints overlapping
in the sensor’s view (i.e., Exercise #3) or related to the low limb (i.e., Exercise #5).
From a clinical point of view, the introduction of a detailed posture control beyond
the assessment of the gesture goal achievement is a novelty, useful especially in the
rehabilitation of the axial control and of the low-back pain.

Additionally, the proposed HSMM method

• outperforms DTW based methods presented in [55] and [92], demonstrating its
applicability in movement assessment;

• allows to provide a score in few seconds that can be useful for telerehabilitation;

• is able to distinguish between patients and healthy subjects;

• allow the clinician to localize the error in the exercise movement execution;

• can be generalized to different types of exercises.

To achieve a practical impact, the proposed algorithm could be embedded in a re-
habilitation framework, for a remote assessment, composed by a TV, a computer, and
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a network connection. The score could then be used to provide immediate and highly
specific feedback to patients and medical centers in a cloud network.

The MIL model-based approaches are proposed to improve the prediction of emo-
tional state during multimedia interaction using the physiological signals as inputs. In
particular, typical approaches do not consider that emotions events are often momen-
tarily within a given time-window rather than pervasive though it. The proposed MIL
approach aims to improve classification by taking into account this specific aspect.
This is very critical in real life applications where labeling of data is sparse and possi-
bly describing only the more important event rather than the typical continuous subtle
affective changes that occurs. Two databases of physiological signals were considered
to test the MIL model: the former is the DEAP database, a gold standard database
collected in [138], while the latter is a dataset collected by the author closer to real-
world condition and problematic. The obtained results point out the reliability of the
proposed methodology in the gold standard scenario and in the real-world usage. Fu-
ture works could be addressed to consider also an user-independent MIL models able
to generalize across different users. Since it is difficult to obtain remarkable results
with an user-independent approach additional features are needed. A viable solution
may be found combining physiological features with audio-video features in a multi-
view learning scenario. Then, the combination of Multi-Instance and Multi Kernel
techniques could at the same time: (i) localize the physiological response identifying
the time segment which leads to better prediction of the presence of the judged emo-
tion and (ii) automatically weight the importance of each different feature, in order to
improve the algorithm performance.

Future works may be addressed to localize the time interval of the video stimuli
in which the physiological pattern of interest is more strongly displayed. This leads
to not only model and discriminate the self-reported emotion but also to provide its
localization. Additionally, we aim to evaluate the proposed methodology on differ-
ent affective recognition topics. For instance, the automatic pain detection from a
patients’face expression represents one such application, and the UNBC-McMaster
Shoulder Pain Expression Archive Database [281] can be evaluated. Another inter-
esting future direction is to extend the methodology into multi-instance multi-label
formulation [282] where the emotional response is described by multiple instances
and associated with multiple class labels. Accordingly, the MIL approach could be
extended to map the dimensional perspectives of the emotion. The natural extension
is to formulate the problem as a multiple instance regression task [283, 284, 285].

Finally, as future works, the emotional effects on movement execution in a pa-
tient with chronic pain could be investigated. Then, the two proposed approaches for
motion evaluation and emotion recognition could be combined in order to provide a
biomechanical score and an evaluation of pain-related affective emotions, following
the procedure reported in Section 2.3. This could be relevant for the segmentation of
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the movement too, as people may hesitate to perform the movement due to fear of
injury or lack of confidence in movement capabilities.
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Appendix A.

Questionnaire: Exercise accuracy
assessment

Please, observing the entire exercise (all repetitions), answer the questions signing one
of the following chance:

1=Never 2=Rarely 3=Sometimes 4=Often 5=Always

1. Is the primary goal of the exercise reached (i.e., the extension of the upper limbs, trunk rotation
with upper limbs elevated to 90◦, squatting, etc.)?

2. Is the exercise repeatable?

3. Is the amplitude of the movement complete?

4. Is the posture of the head correct?

5. Is the posture of the right arm correct?

6. Is the posture of the left arm correct?

7. Is the posture of the trunk correct?

8. Is the posture of the pelvis correct?

9. Is the posture of the right leg correct?

10. Is the posture of the left leg correct?





Appendix B.

Pseudocode MIL methods

Algorithm 1 EMDD-SVM

1: Main(Bag)
2: let k = 10 global // number of different starting Bags

3: let C = [0.1,0.5,1,5,25,100] global; // SVM Box Constraint

4: define num inst as number of instances for each bag
5: [B,B test]=CV partition(Bag,n f old1)
6: for i = 1, i++, while i < n f old1
7: [Model,h]=Training(B,y)
8: [acc(i),F1(i),CM{i}]=Test(B test,y test,Model,h)
9: end

10:

11: [Model,h]=Training(B,y,k)
12: pick k random positive bags B1, . . . ,Bk from B
13: for q = 1, q++, while q < k ⇤num inst
14: [c(q), s(q), DD(q)]=EMDD(BagTrainIn,k) // EMDD [223]

15: loc DD max = argmaxq(DD(q))
16: h = [c(loc max),s(loc max)]
17: compute f(B−) and f(B+)

18: (B in,B val)=CV partition(B,n f old2) // Validation stage

19: for r = 1, r++, while r < n f old2
20: compute P(h|B in−) and P(h|B in+)
21: compute f(B in−) and f(B in+)
22: for s = 1, s++, while s < length(C)

23: Model val = fitcsvm(f(B in−),f(B in+),C(s))
24: F1 val(r,s)=Test(B val, y val, Model val)
25: F1 val avg=meanr(F1 val)
26: loc C max = argmaxs(F1 val avg)
27: C max =C(loc C max)
28: Model = fitcsvm(f(B−),f(B+),C max)



Appendix B. Pseudocode MIL methods

Algorithm 1 EMDD-SVM

1: [acc,F1,CM]=Test(B test,y test,Model,h)
2: compute P(h|B test)
3: compute f(B test)
4: compute scorei = wwwT

f(B testi)+b for each f(B testi)
5: if scorei > 0
6: pred y testi = 1
7: else
8: pred y testi = −1
9: compute acc, F1, CM

10:

11: [c(q),s(q),DD(q)] = EMDD(B,k)
12: let h = [c,s] // initial hypothesis

13: set nldd0 = •
14: set nldd1 = NLDD(h,B)
15: repeat
16: compute p⇤i = argmax j(P(h|Bi j) for each Bi j // E step

17: h0 = argmaxh


’l

i=1 P(c|p⇤+i )’m
i=1 P(c|p⇤−i )

�
// M step

18: nldd0 = nldd1

19: nldd1 = NLDD(h0,B)
20: h = h0

21: while nldd1 < nldd0
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Algorithm 2 mi-SVM

1: Main(Bag)
2: let C = [0.1,0.5,1,5,25,100] global; // SVM Box Constraint

3: let th = [−2,−1.999, . . . ,2] global; // SVM score threshold

4: [B,B test]=CV partition(Bag,n f old1)
5: for i = 1, i++, while i < n f old1
6: [Model, th max]=Training(B,y)
7: [acc(i),F1(i),CM{i}]=Test(B test,y test,Model, th max)
8: end
9:

10: [Model, th max=Training(B,y)
11: (B in,B val)=CV partition(B,n f old2) // Validation stage

12: for r = 1, r++, while r < n f old2
13: for s = 1, s++, while s < length(C)

14: Model val = mi-SVM(B in,y in,C(s)); // mi-SVM [215]

15: for t = 1, t++, while t < length(threshold)
16: F1 val(r,s, t)=Test(B val,y val,Model val, th(t))
17: F1 val avg=meanr(F1 val(r,s, t))
18: [loc C max, loc th max] = argmaxs,t(F1 val avg)
19: C max =C(loc C max)
20: th max = th(loc th max)
21: Model = mi-SVM(B,y,C max); // mi-SVM [215]

22:

23: [acc,F1,CM]=Test(B test,y test,Model, th)
24: compute scorei j for each x testi j

25: scorei = max j(scorei j)

26: if scorei > th
27: pred y testi = 1
28: else
29: pred y testi = −1
30: compute acc, F1, CM
31:

32: Model = mi-SVM(B,y,C max)
33: repeat
34: Model=SVM(B,y,C max);
35: compute Model scorei j for each Bi j

36: for each B+

37: if (Â j(1+ yi j)/2 == 0)
38: compute j⇤ = argmax j(scorei j)

39: set y j⇤ = 1
40: while imputed labels have changed
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Algorithm 3 MI-SVM

1: Main(Bag)
2: let C = [0.1,0.5,1,5,25,100] global; // SVM Box Constraint

3: let th = [−2,−1.999, . . . ,2] global; // SVM score threshold

4: [B,B test]=CV partition(Bag,n f old1)
5: for i = 1, i++, while i < n f old1
6: [Model, th max=Training(B,y)
7: [acc(i),F1(i),CM{i}]=Test(B test,y test,Model, th max)
8: end
9:

10: [Model, th max=Training(B,y)
11: (B in,B val)=CV partition(B,n f old2) // Validation stage

12: for r = 1, r++, while r < n f old2
13: for s = 1, s++, while s < length(C)

14: Model val = MI-SVM(B in,y in,C(s)); // MI-SVM [215]

15: for t = 1, t++, while t < length(threshold)
16: F1 val(r,s, t)=Test(B val,y val,Model val, th(t))
17: F1 val avg=mean(F1 val(r,s, t))
18: [loc C max, loc th max] = argmaxs,t(F1 val avg)
19: C max =C(loc C max)
20: th max = th(loc th max)
21: Model = MI-SVM(B,y,C max); // MI-SVM [215]

22:

23: [acc,F1,CM]=Test(B test,y test,Model, th)
24: compute scorei j for each B testi j

25: scorei = max j(scorei j)

26: if scorei > th
27: pred y testi = 1
28: else
29: pred y testi = −1
30: compute acc, F1, CM
31:

32: Model = MI-SVM(B,y,C max)

33: set B+
i =

Â j x+i j

|B+
i |

34: repeat
35: B new=[x−i j ;B+

i ];
36: Model=SVM(B new,y,C max);
37: compute Model scorei j for each x+i j
38: compute s(i) = argmax j(scorei j) for each B+

i
39: set B+

i = xis(i)

40: while selector variables have changed
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