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Abstract

The capability of automatically detecting people and understanding their be-
haviours is an important functionality of intelligent video systems. The interest
in behaviour understanding has effectively increased in recent years, motivated
by a societal needs.

This thesis is focused on the development of algorithms and solutions for
different environments exploiting top-view RGB-D data. In particular, the
addressed topics refer to Human Behaviour Understanding (HBU) in different
research areas.

The first goal is to implement people detection algorithms in order to moni-
tor the people activities. To this aim, a thorough study of the state of the art
has been conducted to identify the advantages and weakness. An initial ap-
proach, proposed in this thesis, is based on Computer Vision (CV) techniques,
it regards the extraction the head of each person using depth data. Another
approach is based on deep learning and is proposed to simplify the heads de-
tection implementation in chaotic environments and in the presence of people
with different heights. These solutions are validated with a specific dataset.

The second goal is to extract several feature from subject and to identify
possible interactions that they have with the surrounding environment.

Finally, in order to demonstrate the actual contribution of algorithms for
understanding the human behaviour in different environments, several use cases
have been realized and tested.
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Chapter 1.

Introduction

This Thesis addresses the subject of HBU using top-view RGB-D data. The
objective of the Thesis is described in this Chapter, together with the definition
of the research problem, the main contributions, and the Thesis organization.

1.1. Research problem
In recent years, a lot of researchers have focused the attention on automatic
analysis of human behaviour because of its important potential applications and
its intrinsic scientific challenges. In several technological fields the awareness is
emerging that a system can provide better and more suitable services to people
only if it can understand much more about users’ preferences, personality, social
relationships etc., as well as about what people are doing, the activities they
have been concerned in the past, their life-styles and routines, etc.

CV and deep learning techniques are currently the most interesting solutions
to analyse the human behaviour. In particular, if these are used in combination
with RGB-D data that provide high availability, reliability and affordability.

Detection and tracking algorithms allow to generate motion descriptions of
subjects which are used to identify actions or interactions. Consequently, it is
possible to associate to a certain sequence of actions a particular behaviour.
In this view, investigating technological solutions aimed at improving the en-
vironments and adapting them to the specific user requirements, can be very
useful.

The problem remains largely open due to several serious challenges, such
as occlusions, change of appearance, complex and dynamic background. To
counter these challenges, several studies adopt the top-view configuration be-
cause it eases the task and makes simple to extract different trajectory features.
This setup also introduces robustness, due to the lack of occlusions among in-
dividuals.

Different domains are analysed in this Thesis, such as those of video surveil-
lance, Intelligent Retail Environments (IRE) and Activities of Daily Living
(ADLs).
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Chapter 1. Introduction

1.2. Objectives and contributions
The objective of this Thesis is to understand the human behaviour in different
real scenarios using CV techniques applied on RGB-D data in top-view con-
figuration. To this aim, a thorough study of the literature will be presented,
identifying advantages, challenges and issues related to the use of this partic-
ular configuration. Furthermore, in order to support this research, several use
cases will be presented. In particular, one of these was conducted during the
five months of Ph.D. visiting period at Lincoln Centre for Autonomous Systems
(LCAS) in the School of Computer Science at the University of Lincoln (UK).

1.3. Structure of the Thesis
The Thesis is organized in five Chapters, which describe and detail the different
approaches and applications for human behaviour understanding using top-
view RGB-D data. The Thesis has the following structure.

Chapter 2 reviews the state-of-the-art about the two main topics addressed:
human behaviour analysis and RGB-D data from top-view.

In Chapter 3 are proposed some algorithms for people detection using RGB-D
data in top-view configuration.

Chapter 4 describes different use cases, in particular are analysed applications
on: video surveillance and analytics, intelligent retail environment, and ADLs.

Finally, conclusions and discussion are drawn in Chapter 5 where, after clar-
ifying the contribution of this work, some future research directions are identi-
fied. Furthermore, this Chapter besides arguing over the possibilities that the
proposed applications opens up in different topics, summaries also the chal-
lenges, the open issues and the limitations that require further investigations.

2



Chapter 2.

State of art

The aim of this Chapter is to review and discuss the most relevant works
on HBU using RGB-D data from top-view. An overview of techniques and
solutions is provided, then, the discussion is focused on main scenarios and
challenges.

2.1. Human behaviour understanding

Understanding human behaviours is a challenging problem in CV that has
recently seen important advances. HBU combines image and signal processing,
feature extraction, machine learning and 3D geometry. Application scenarios
range from surveillance to indexing and retrieval, from patient care to industrial
safety and sports analysis.

The capabilities of automatically detecting and tracking people, and of un-
derstanding their behaviours are the crucial key functionalities of intelligent
video systems. The interest in HBU has quickly increased in recent years, mo-
tivated by a societal needs [13] that include security, natural interfaces, gaming,
affective computing, and assisted living.

An initial approach can be the detecting and tracking of the subjects of
interest, which in this case are the people. This way it is possible to generate
motion descriptors which are used to identify actions or interactions.

Recognising particular behaviours requires the definition of a set of templates
that represent different classes of behaviours. Nevertheless, in many scenarios
not all behaviours can be characterised by a predefined number of classes nor
can be known a priori. Alternatively, it is used the concept of anomaly, namely
a deviation from the learned behaviours.

In the literature the use of terminology on HBU is ambiguous. In following
paragraph a consistent definition of the terms used in HBU is proposed.

3



Chapter 2. State of art

2.1.1. Taxonomy
The works of Moeslund et al. [82] and Borges et al. [17] have been used to
create a taxonomy on HBU. Human activities can be categorized into four
main groups, namely gesture, action, activity, and behaviour (figure 2.1).

• Gestures are movements of body parts that can be used to control and
to manipulate, or to communicate. These are the atomic components
describing the motion of a person.

• Actions can be seen as temporal concatenations of gestures. Actions
represent voluntary body movements of an arbitrary complexity. An
action implies a detailed sequence of elementary movements.

• Activities are a set of multiple actions that can be classified in order to
understand human behaviours.

• Behaviours are the responses of subjects to internal, external, conscious,
or unconscious stimuli. A series of activities may be related to a particular
behaviour.

Activity

Action

Gesture

Behaviour

DoS
Time

Frame

Figure 2.1.: HBU tasks - Classification.

Table 2.1 summarises the different Degrees of Semantics (DoS) considered by
the taxonomy, along with some examples. Not only time frame and semantic
degree grow at higher levels of this hierarchy, but also complexity and compu-
tational cost lead to heavy and slow recognition systems, as each level requires
most of the previous level tasks to be done too.

2.2. RGB-D data from top-view
Detecting and tracking people is an important and fundamental component
for many interactive and intelligent systems. The problem remains largely
open due to several serious challenges, such as occlusion, change of appearance,
complex and dynamic background [70].
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2.2. RGB-D data from top-view

Table 2.1.: Classification of tasks according to the DoS involved
DoS Time lapse
Gesture frames, seconds
Action seconds, minutes
Activity minutes, hours
Behaviour hours, days

Popular sensors for this task are RGB-D cameras because of their availability,
reliability and affordability. Studies have demonstrated the great value (both
in accuracy and efficiency) of depth camera in coping with severe occlusions
among humans and complex background. The appearance of devices, such as
Microsoft’s Kinect1 and Asus’s Xtion Pro Live2 Sensors motivates a revolu-
tion in CV and vision related research. The combination of high-resolution
depth and visual information opens up new challenges and opportunities for
activity recognition and people tracking for many application fields. Reliable
depth maps can provide valuable additional information to significantly im-
prove tracking and detection results.

The task of detecting and tracking people in such image and sequences has
proven very challenging although sustained research over many years has cre-
ated a range of smart methods. Techniques involve extracting spatially global
features and using statistical learning with local features and boosting, such
as EOH [28], Histogram of Oriented Gradients (HOG) [22] and edgelet [117].
Other challenges such as high variation in human poses, self-occlusions and
cross-occlusions make the problem even more complicated.

To counter these challenges, several research papers adopt the top-view con-
figuration because it eases the task and makes simple to extract different tra-
jectory features. This setup also introduces robustness, due to the lack of
occlusions among individuals. Figure 2.2 depicts a people counting system
from top-view configuration with an RGB-D camera.

The objective of this section is to provide a comprehensive overview of re-
cent developments of people detection and tracking with RGB-D technologies
from the top-view perspective, mainly published in the CV and machine intel-
ligence communities. The criteria for topic selection arises from our previous
experience with approaches with RGB-D cameras installed in a top-view con-
figuration.

More specifically, this section includes person tracking and recognition, hu-
man activity analysis, hand gesture recognition, and fall detection in different
fields. The broad diversity of topics clearly shows the potential impact of top-

1https://developer.microsoft.com/en-us/windows/kinect/develop
2https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE/
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(a) (b)

(c) (d)

Figure 2.2.: People counting system from top-view configuration with RGB-D
camera.

view configuration in CV. I also summarize main paths that most approaches
follow and point out their contributions. I categorize and compare the reviewed
approaches from multiple perspectives, including information modality, repre-
sentation coding, structure and transition, and feature engineering methodol-
ogy, and analyse the pros and cons of each category.

2.3. Algorithms and approaches

Many vision techniques and algorithms for person detection and tracking have
been proposed during the last years and these greatly restrict the generality
of the approach in real-world settings. In this section, a survey of current
methods, covering both early and recent literature related to algorithms and
techniques applied for tracking and detecting humans from top view RGB-D
data is presented. In particular, the approaches related to segmentation using
background subtraction and statistical algorithms are reviewed.

Kouno et al. in [54] describe an image-based person identification task fo-
cusing on an image from an overhead camera. The process is based on the
background subtraction approach. They apply four features to the identifica-
tion method, i.e. estimated body height, estimated body dimensions, estimated
body size and depth histogram.

In [119], the authors propose a system for passengers counting in buses based

6



2.3. Algorithms and approaches

on stereovision. The processing chain corresponding to this counting system
involves different steps dedicated to the detection, segmentation, tracking and
counting. In fact, they have segmented the height maps for highlighting the
passengers’ heads at different levels (i.e. adults, teenagers, children). The result
is binary images that contain information related to the heads, called “kernels”.
The extraction part attributes a number of parameters to the kernel such as,
size of the kernel, shape, average grey level, average height level. Then, with the
kernel information, a tracking procedure is applied to analyse the trajectories
of the kernels.

The top-view camera setting is also adopted in [68]. In this paper, each depth
image in a sequence is segmented into K layers as the Computer Tomography
(CT) slides where the depth spacing between two adjacent layers is set to be a
fixed value, distance and the number K is an a priori chosen parameter. After
that, the region of each slide can be found based on the classic contour finding
algorithm. Dynamic time warping algorithm is also applied to address the
different sequence length problem. Finally, a Support Vector Machines (SVM)
classifier is trained to classify the activities.

In another work the authors with methods of low-level segmentation and
tracking develop a system that maps the customers in the store, detects the
interactions with products on the shelves and the movement of groups of people
within the store [67].

Another segmentation approach is the one proposed in [103]. In this pa-
per, a pipeline verifies that only a single, authorized subject, can enter inside a
secured area. Verification scenarios are carried out by using a set of RGB-D im-
ages. They used an adaptive Gaussian mixture-based background/foreground
segmentation method to exclude parts from the sample image that have the
same texture as the background image.

Microsoft Kinect depth sensor is employed in [34] in an “on-ceiling” configu-
ration based on the analysis of depth frames. Elements acquired in the depth
scene are recognized by a segmentation algorithm, which analyses the raw depth
data directly provided by the sensor. The system extracts the elements, and
implements a solution to classify all the blobs in the scene. Anthropomet-
ric relationships and features are used to recognize human subjects among the
blobs. Once a person is detected, he is followed by a tracking algorithm between
different frames.

Dittrich et al. [27] present an approach for low-level body part segmenta-
tion based on RGB-D data. The RGB-D sensor is installed at the ceiling and
observed a shared workspace for human-robot collaboration in the industrial
domain. The object classes are the distinct human body parts: Head, Upper
Body, Upper and Lower Arm, Hand, Legs and the background rejection. For
the generation of data for the classifier training, they use a synthetic represen-

7
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tation of the human body in a virtual environment, where synthetic sensors
generate depth data. The features used for the description of the object class
samples are based on the depth information only, and have been extracted by
a centred pixel patch with constant size. As an innovation an optimized train-
ing strategy allows a reduced number of training samples while preserving the
classification performance.

Further segmentation approach is [46]. Hernandez et al. have described a
system that operates in troublesome scenarios where illumination conditions
can suffer sudden changes. They have been focused on the people counting
problem with Re-Identification (Re-id) and trajectory analysis.

A variant of classical segmentation is the one proposed by Tseng in [110]. In
this paper, they present a real-time indoor surveillance system which installs
multiple depth cameras from vertical top-view to track humans. The system
with a framework tries to solve the traditional challenge of surveillance through
tracking of multiple people, such as severe occlusion, similar appearance, illu-
mination changes, and outline deformation. To cover the entire space of indoor
surveillance scene, the image stitching based on the cameras’ spatial relation
is also used. The background subtraction of the stitched top-view image has
been performed to extract the foreground objects in the cluttered environ-
ment. The detection scheme involves different phases such as the graph-based
segmentation, the head hemiellipsoid model, and the geodesic distance map.
Furthermore, the shape feature based on diffusion distance has been designed
to verify the human tracking hypotheses within particle filter.

In [76], the processing of the combined depth image in multiple steps to iden-
tify the location, orientation, and people formations is executed. The algorithm
adopted in this case finds the highest point of all detected people identified in
the previous step, and shifted the depth values of all remaining outlines of
people by the difference in height.

An improvement of the classical segmentation techniques is the algorithm
proposed by Kepski et al. [51]. The first step of the algorithm is nearest neigh-
bor interpolation to fill the holes in the depth map and to get the map with
meaningful values for all pixels. Then, the median filter with a 5 × 5 window
on the depth array is executed to make the data smooth. The algorithm also
extracts the floor and removes their corresponding pixels from the depth map.
Given the extracted person in the last depth frame, the region growing is per-
formed to delineate the person in the current frame. To confirm the presence
of the tracked subject as well as to give head location a SVM based person
finder is used. On the basis of the person’s centroid the pan-tilt head rotates
the camera to keep the head in the central part of the depth map. Finally,
a cascade classifier consisting of lying pose detector and dynamic transition
detector is carried out.

8



2.3. Algorithms and approaches

An additional paper that describes a method for people counting in public
transportation with a segmentation approach is [75]. Kinect sensor mounted
vertically has been employed to acquire an images database of 1 − 5 persons,
with and without body poses of holding a handrail. However, in this case the
image is processed in blocks in order to find potential local maxima, which are
subsequently verified to find head candidates. Finally, non-head objects have
been filtered out, based on the ratio of pixels with similar and near-zero value,
in the neighbourhood of the maxima.

In [116], the depth images acquired from Kinect camera have been anal-
ysed for detecting moving objects using the background subtraction technique.
The heads of person are identified by object segmentation in the U-disparity
representation.

The approach in [9] investigates a real time people tracking system able to
work even under severe low-lighting conditions. The system relies on a novel
active sensor that provides brightness and depth images based on a Time of
Flight (TOF) technology. This is performed by means of a simple background
subtraction procedure based on a pixelwise parametric statistical model. The
tracking algorithm is efficient, being based on geometrical constraints and in-
variants. Experiments are performed under changing lighting conditions and
involving multiple people closely interacting with each other.

The same technique is the one applied in [120]. In this paper, the method
is composed by two behaviour estimators. The first one is based on height
of hand with depth information the second instead on SVM with depth and
Pixel State Analysis (PSA) based features and these estimators are used by
cascading them.

A method to detect human body parts in depth images based on an active
learning strategy is proposed in [12]. The approach is evaluated on two different
scenarios: the detection of human heads of people lying in a bed and the
detection of human heads from a ceiling camera. The proposal is to reduce both
the training processing time and the image labelling efforts, combining an online
decision tree learning procedure that is able to train the model incrementally
and a data sampling strategy that selects relevant samples for labelling The
data are grouped into clusters using as features the depth pixel values, with an
algorithm such as k-means.

Tian et al., in [109] have adopted the median filtering to noise removal,
because it could well filter the depth image noise obtained by Kinect, and at
the same time could protect edge information well. A human detection method
using HOG features, that are local descriptors, of head and shoulder based on
depth map and detecting moving objects in particular scene is used. SVM
classifier has isolated regions of interest (features of head and shoulder) to
achieve real-time detection of objects (pedestrian).

9



Chapter 2. State of art

A method for human detection and tracking in depth images captured by a
top-view camera system is presented in [97]. They have introduced feature de-
scriptor to train a head-shoulder detector using a discriminative class scheme.
A separate processing step has ensured that only a minimal but sufficient num-
ber of head-shoulder candidates is evaluated. A final tracking step reliably
propagated detections in time and provides stable tracking results. The qual-
ity of the method has allowed to recognise many challenging situations with
humans tailgating and piggybacking.

An interesting binary segmentation approach is the one proposed by Wu et
al. [117] that have used a Gaussian Mixture Models (GMM) algorithm and re-
duced depth-sensing noise from the camera and background subtraction. More-
over, the authors have smoothed the foreground depth map using a 5 by 5
median filter. The real-time segmentation of a tracked person and their body
parts has been the first phase of the EagleSense tracking pipeline.

In [45] authors described and evaluated a vision-based technique for tracking
many people with a network of stereo camera sensors. They have modelled
the stereo depth estimation error as Gaussian and track the features using
a Kalman filter. The feature tracking component starts by identifying good
features to track using the Harris corner detector. It has tracked the left and
right image features independently in the time domain using Lucas-Kanade-
Tomasi feature tracking. The approach has been evaluated using the MOTA-
MOTP multi-target tracking performance metrics on real data sets with up
to 6 people and on challenging simulations of crowds of up to 25 people with
uniform appearance. This technique uses a separate particle filter to track
each person and thus a data association step is required to assign 3D feature
measurements to individual trackers.

Migniot in papers [80] and [79] has addressed the problem of the tracking of
3D human body pose from depth image sequences given by a Xtion Pro-Live
camera. Human body poses have been estimated through model fitting using
dense correspondences between depth data and an articulated human model.
Two trackers using particle filter have been presented.

A CV algorithm adopted by many researchers in case of RGB-D cameras
placed in top-view configuration is Water filling.

Zhang et al. [122] have built a system with vertical Kinect sensor for peo-
ple counting, where the depth information is used to remove the effect of the
appearance variation. Since the head is closer to the Kinect sensor than other
parts of the body, people counting task found the suitable local minimum
regions. The unsupervised water filling method finds these regions with the
property of robustness, locality and scale-invariance.

Even in [1] and in [21], the authors have presented a water filling people
counting algorithm using depth images acquired from a Kinect camera that

10



2.4. Challenges and opportunities in the research fields

is installed vertically, i.e., pointing toward the floor. The algorithm in [1] is
referred to as Field seeding algorithm. The people head blobs are detected
from the binary images generated with regard to the threshold values derived
from the local minimum values. In [21] the approach called as people tracking
increases the performance of the people counting system.

2.4. Challenges and opportunities in the research
fields

In this section, the main motivating factors for the installation of RGB-D cam-
eras in top-view configuration are presented. I will discuss the reliable and
occlusion free counting of people that is crucial to many applications.

Most of previous works can only count moving people from a single camera,
which can fail in crowded environment where occlusions are very frequent.
This Thesis focuses the attention on the works with RGB-D data in top-view
configuration in three particular fields of research:

• Video surveillance;

• Intelligent retail environment;

• Activities of daily living;

Applications here described cover several fields such as the ones listed below.
Datasets collected with RGB-D camera in top-view configuration are reported
in 2.4.1.

Video surveillance
Applications developed in this field are related to safety and security in crowded
environments, people flow analysis and access control as well as counting. Ac-
tual tracking accuracy of top-view cameras over-performs all other point of
view in crowded environments with accuracies up to 99%. When there are spe-
cial security applications or the system is working in usually crowded scenarios
the proposed architecture and point of view are the only suitable.

In [15], authors focus their approach on the development of an embedded
smart camera network dedicated to track and count people in public spaces.
In the network, each node is capable of sensing, tracking and counting people
while communicating with the adjacent nodes of the network. Each node uses
a 3D-sensing camera positioned in a downward-view. This system has per-
formed background modelling during the calibration process, using a fast and
lightweight segmentation algorithm.
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A vision based method for counting the number of people which cross a vir-
tual line is presented in [25]. The method analyses the video stream acquired
by a camera mounted in a zenithal position with respect to the counting line,
allowing to determine the number of people that cross the virtual line, and
providing the crossing direction for each person. This approach was designed
to achieve high accuracy and computational efficiency. An extensive evaluation
of the method has been carried out taking into account the factors that may
impact on the counting performance and, in particular, the acquisition tech-
nology (traditional RGB camera and depth sensor), the installation scenario
(indoor and outdoor), the density of the people flow (isolated people and groups
of persons), the acquisition frame rate, and the image resolution. They also
analysed the combination of the outputs obtained from the RGB and depth
sensors as a way to improve the counting performance.

Another work for people counting discussed in [31]. An algorithm by mul-
timodal joint information processing for crowd counting is developed. In this
method, the authors have used colour and depth information along with an
ordinary depth camera (e.g. Microsoft Kinect). First, they have detected each
head of the passing or still person in the surveillance region using an adaptive
modulation approach when the depth scenes vary. Then, they have tracked
and counted each head detected in the colour data.

An image-based person identification task is performed by Kouno et al. [54].
They have adopted an overhead camera, because of the restriction reduction
of the installation location of a camera and the problem solution of occluded
images.

The approach in [9] is a real time people tracking system able to work even
under severe low-lighting conditions. The system is based on a novel active
sensor that provides brightness and depth images based on a TOF technology.
Human detection and tracking is also the main goal in [97].

In order to guarantee security in critical infrastructure a pipeline is presented
in [103]. It verifies that only a single, authorized subject can enter a secured
area. Verification scenarios are carried out by using a set of RGB-D images.
Features, invariant to rotation and pose, are used and classified by different
metrics to be applied in real-time.

Even, in security field, Tian et al. [109] have proposed a human detection
method using HOG features of head and shoulder based on depth map and
detecting moving objects.

Another people counting application is the technique that uses the mixture of
colour and depth images from top-view camera [122]. The U-disparity as depth
image projection is introduced in order to increase the accuracy of counting
number [116].

The combination of the people counting problem with Re-id and trajectory
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analysis is faced in [46]. They have extracted useful information using depth
cameras. The Re-id task is studied by [71]. Authors have introduced a study on
the use of different features exclusively obtained from depth images captured
with top-view RGB-D cameras. Top-View Person Re-Identification (TVPR) is
the dataset for person Re-id with an RGB-D camera in a top-view configuration.
The registrations are made in an indoor scenario, where people pass under the
camera installed on the ceiling [66].

Intelligent retail environment
Another important research field is represented by the detection of the inter-
action between people and environment. More precisely, in the following I will
discuss the IRE and intelligent shelf, such as Shopper Analytics systems. [61].
The author of this work presented a low cost integrated system consisted of a
RGB-D camera and a software able to monitor shoppers. The camera installed
above the shelf detects the presence of people and uniquely identifies them.
Through the depth frames, the system detects the interactions of the shoppers
with the products on the shelf, and determines if a product is picked up or if
the product is taken and then put back, and, finally, if there is not contact
with the products.

The same authors, in [63] have described the monitoring of consumer be-
haviours. The autonomous and low cost system employed is based on a soft-
ware infrastructure connected to a video sensor network, with a set of CV
algorithms, embedded in the distributed RGB-D cameras.

GroupTogether is another system that explores cross-device interactions us-
ing two sociological constructs [76]. It supports fluid, minimally disruptive
techniques for co-located collaboration by leveraging the proximity of people
as well as the proximity of devices.

Migniot et al. have explored the problem of people tracking with a robust
and reliable markerless camera tracking system for outdoor augmented reality
using only a mobile handheld camera. The method was particularly efficient for
partially known 3D scenes where only an incomplete 3D model of the outdoor
environment was available [79].

Activities of daily living
ADLs recognition is another research field that may widely benefit from RGB-D
data top view configuration. In this field the application range goes from high
reliability fall detection to occlusion free HBU at home for elders in Ambient
Assisted Living (AAL) environments. All these applications have relevant out-
comes form the current research with the ability to identify users while perform-
ing tracking, interaction analysis, or HBU. Furthermore, all these application
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scenarios, can gather data using low cost sensors and processing units.

An example is the system for real-time human tracking and predefined human
gestures detection that uses depth data acquired from Kinect sensor installed
right above the detection region described in [8]. The tracking part is based on
fitting an articulated human body model to obtained data using particle filter
framework and specifically defined constraints which originate in physiological
properties of the human body. The gesture recognition part has used the timed
automaton conforming to the human body poses and regarding tolerances of
the joints positions and time constraints.

In [12], a method to detect human body parts in depth images that is based
on an active learning strategy is presented. The goal is to build an accurate
classifier using a reduced number of labelled samples in order to minimize the
training computational cost as well as the image labelling cost. The authors
have validated the approach on two different scenarios: the detection of human
heads of people lying in a bed and the detection of human heads from a ceiling
camera.

The work proposed in [68] describes a feature for activity recognition from
vertical top-view depth image sequences. The approach performance were ver-
ified on Top-View 3D Daily Activity Dataset.

For advanced analysis of human behaviours, the authors of [62] have devel-
oped a highly-integrated system. The video framework exploits vertical RGB-D
sensors for people tracking, interaction analysis, and users activities detection
in domestic scenarios. The depth information has been used to remove the
effect of the appearance variation and to evaluate users activities inside the
home and in front of the fixtures. In addition, group interactions have been
monitored and analysed. The audio framework has recognised voice commands
by continuously monitoring the acoustic home environment.

As previously stated, another important issue to monitor and evaluate during
the people tracking is the fall detection, as reported for example in [65, 51, 52,
34]. The solutions implemented in these papers with RGB-D camera in a top-
view configuration are suitable and affordable for this aim.

An automated RGB-D video analysis system that recognises human ADLs
activities, related to classical daily actions is described in [64]. The main goal
is to predict the probability of an analysed subject action. Thus, abnormal be-
haviours can be detected. The activity detection and recognition is performed
using an affordable RGB-D camera. Action sequence recognition is then han-
dled using a discriminative Hidden Markov Model (HMM).
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2.4.1. Datasets
The most relevant available datasets with RGB-D data installed in a top-view
configuration are listed below.

TST Fall detection dataset v13[34]

It stores depth frames collected using Microsoft Kinect v1 in top-view configu-
ration. Four volunteers, aged between 26−27 years and height in 1.62−1.78m,
have been recruited for a total number of 20 tests. The dataset is separated in
two main groups: Group A (test 1-10): two or more people walk in the moni-
tored area; Group B (test 11-20): a person performs some falls in the covered
area (figure 2.3).

Figure 2.3.: ST Fall detection dataset v1. Image taken from [34]

TST Intake Monitoring dataset v14[33]

It is composed of food intake movements, recorded with Kinect V1, simulated
by 35 volunteers for a total of 48 tests. The device is located on the ceiling at a
3m distance from the floor. The people involved in the tests are aged between
22 and 39 years, with different height and build (figure 2.4).

Figure 2.4.: TST Intake Monitoring dataset v1. Image taken from [33]

3http://www.tlc.dii.univpm.it/blog/databases4kinect#IDFall1
4http://www.tlc.dii.univpm.it/blog/databases4kinect#IDFood
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UR Fall Detection Dataset5[52]

It contains 70 (30 falls + 40 activities of daily living) sequences. Fall events
are recorded with 2 Microsoft Kinect cameras (parallel to the floor and ceiling
mounted) and corresponding accelerometric data (figure 2.5).

Figure 2.5.: UR Fall Detection Dataset. Image taken from [52]

Depthvisdoor6[46]

It is a database of images captured by a single and stationary Kinect camera
covering, from a top view, the entrance of a classroom at the University of
Las Palmas de Gran Canaria. Two sessions have been recorded per day in 3
different days, with a one week gap every two recording sessions. For each of
the 6 recordings, the Kinect sensor is located roughly at a similar location,
approximately 2.7m height, looking at the scenario floor (figure 2.6). The
illumination conditions change from one day to another and even within the
same day due to the two hours of difference between the start and the end of
the class, and the sensor makes use of its auto adjustment. The database has
been used to develop, test, and evaluate people counting, description and Re-id
algorithms.

5http://fenix.univ.rzeszow.pl/˜mkepski/ds/uf.html
6http://berlioz.dis.ulpgc.es/roc-siani/descargas-en/depthvisdoor-database-1
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Figure 2.6.: Depthvisdoor Dataset.

TVHeads Dataset7

The Top-View Heads (TVHeads) dataset contains depth images of people from
top-view configuration. In particular, the purpose of this dataset is to localize
the heads of people who are present below the camera. It contains a total of
1815 depth images (16 bit) with a dimension of 320 × 240 pixels. Furthermore,
after an image preprocessing phase, the depth images are also converted, with
an appropriate scaling, in order to obtain an images (8 bit) where the heads
silhouette is highlighted by improving image contrast and brightness. The
ground truth was manually labelled by 6 human annotators. Figure 2.7 shows
an example of a dataset instance that includes the three images described above.

(a) 16 bit Depth image. (b) 8 bit Depth image. (c) Ground truth.

Figure 2.7.: TVHeads Dataset.

CBSR8

The dataset includes a total of 3884 images with 6094 heads. It contains depth
images after background subtraction and in the groundtruth the heads are
manually painted as red colour.

7http://vrai.dii.univpm.it/tvheads-dataset
8http://www.cbsr.ia.ac.cn/users/xczhang/HeadData-CBSR.zip
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(a) (b)

Figure 2.8.: CBSR Dataset.

TVPR Dataset9[66]

The 100 people of TVPR were recorded in 23 registration session. The record-
ing time for the session and the number of persons of that session are reported
in the following table. Each of the 23 folders contains the video of one reg-
istration session. Acquisitions have been performed in 8 days and the total
recording time is about 2000 seconds. Registrations are made in an indoor
scenario, where people pass under the camera installed on the ceiling. More
details will be provided in the following Chapter.

9http://vrai.dii.univpm.it/re-id-dataset
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Chapter 3.

RGB-D data for top-view HBU:
algorithms

This Chapter describes several solutions and main contributions for people
detection using RGB-D data from top-view configuration. The algorithms are
based on CV techniques and these will be used in the Chapter 4 for every use
case. The problem of people detection has been simplified in order to find only
the head of each subject. From top-view configuration, the head is the part
of body that hardly has contact with objects and people. This facilitates the
tracking procedure.

In section 3.2 are illustrated two important image processing algorithms,
while in section 3.3 different semantic segmentation approaches based on deep
learning techniques are presented. The most important metrics used for seg-
mentation problems are reported in section 3.1.

3.1. Adopted metrics

Typically, to measure the segmentation accuracy and performance, different
types of metrics are used. In particular, in this section, a two stages process is
adopted: the first metrics measure how much the system is able to separate the
heads from the background, whereas the second metric measures the ability of
the system to correctly classify the heads.

One of the first metrics is the Jaccard index, also known as Intersection over
Union (IoU), measures similarity between finite sample sets, and defined as the
size of the intersection divided by the size of the union of the sample sets:

IoU = truepos

truepos + falsepos + falseneg
(3.1)

Another metric is the Sørensen–Dice index [26], also called the overlap index,
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is the most used metric in semantic segmentation, and is computed as:

Dice = 2 · truepos

2 · truepos + falsepos + falseneg
(3.2)

where the positive class is the heads and the negative is all the rest.
The second set of metrics is composed by the average accuracy, precision,

recall, and f1 score averaged across all the test images. These metrics are
evaluated just on the heads pixels. The metrics are thus computed as:

accuracy = truepos + trueneg

truepos + trueneg + falsepos + falseneg
(3.3)

precision = truepos

truepos + falsepos
(3.4)

recall = truepos

truepos + falseneg
(3.5)

f1 score = 2 × precision × recall

precision + recall
(3.6)

3.2. Image processing approaches
In this section are reported two innovative algorithms based on image process-
ing techniques using RGB-D data in top-view configuration.

3.2.1. Multi level segmentation

Multi level segmentation algorithm is explained in detail in the pseudo-code Al-
gorithm 1. The MultiLevelSegm function has in input the foreground image
(f(x, y)). First of all, FindPointMax function calculates the highest point of
whole image (max) and its coordinates (pointmax). In line 3, the level counter
assumes the threshold value, that is a fixed value corresponding to average
height of a human head (we adopted the value 10cm). So, the number of
segmentations is strictly related to the height of the tallest person.

The output condition of the while loop is verified when the segmentation level
becomes negative (above the floor). In line 5 there is a segmentation function
that yields in output a binary image with blobs representative of moving objects
that are above the segmentation level (max − level). This binary image is the
input of FindContours, an OpenCV function that returns a vector of points
for each blob. Then, the FilterContours function deletes noise (blobs with
a little dimension and/or a bad shape).

The for loop from line 8 to line 14 inserts in the vector points the highest
point/depth value (FindPointMax function) of each blob identified by means
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of the FilterMask function. Finally, MultiLevelSegm function returns a
vector with all maximum local points. The length of this vector indicates the
number of people that are in the image.

Algorithm 1 Multi level segmentation algorithm
1: function multiLevelSegm(f(x, y))
2: (max, pointmax) = findPointMax(f(x, y))
3: level = threshold
4: while (max − level) > 0 do
5: flevel(x, y) = f(x, y) > (max − level)
6: contours = findContours(flevel(x, y))
7: filterContours(contours)
8: for each contour i ∈ contours do
9: fmask(x, y) = filterMask(flevel(x, y), i)

10: vmax, pmax = findPointMax(fmask(x, y))
11: if pmax ∉ points then
12: points.pushBack(pmax)
13: end if
14: end for
15: level = level + threshold
16: end while
17: return points
18: end function

The multi level Segmentation algorithm overcomes the limitations of the bi-
nary segmentation method proposed in [61] in case of collisions among people.
In fact, using a single-level segmentation, in case of a collision, two people
become a single blob (person), without distinguishing between head and shoul-
ders of the person. By using this approach, when a collision occurs, even if
two people are identified with a single blob, the head of each person is anyway
detected, becoming the discriminant element. Figure 3.1 highlights the head
of each person obtained by the multi level segmentation algorithm: different
colours highlight the head of a person detected by the camera. In case of col-
lisions (Figures 3.1a and 3.1b), the yellow blob contains two people and both
heads are detected.

3.2.2. Water-Filling
A further algorithm for people detection, using an RGB-D sensor in vertical
position, is proposed by Zhang et al. in [122] and it is called “Water Filling”.
In this paragraph an improvement of this algorithm is suggested.

It finds, in a depth image, the local minimum regions simulating the rain and
the flooding of ground. According to an uniform distribution, it simulates the
rain with some raindrop. The algorithm moves the raindrops towards the local
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(a) RGB image. (b) Segmented image.

Figure 3.1.: Multi level segmentation algorithm. Head recognition (3.1b): dif-
ferent colours of the blob highlight the head of the people detected
in the scene (3.1a).

minimum points, but if a point is wet, it wets the point of the higher level.
Then, puddles are formed because the water flows to some local minimum
regions. It computes the contour lines considering the distance from the local
minimum as a function of the total raindrops.

It is possible to consider the depth image as a function f(x, y) that can be
non-derivable or even discontinuous, due to the noise of depth sensor. Finding
people in depth image equals to finding local minimum regions in f . Math-
ematically, the problem can be defined as finding the region A and N that
satisfy the following constraint:

EA(f(x, y)) + η ≤ EN\A(f(x, y)) (3.7)

where A ∈ N , A is the local region and N is its neighbourhood, both can be
of arbitrary shape, E(·) is an operation to pool the depth information in the
region to a real value that reflects the total depth information in the region.
η is a pre-defined threshold to ensure that depth in A should lower than N\A

with a margin.
In order to solve effectively the problem and be robust to noise, can be

mathematically defined an additional measure function g(x, y) as:

Definition 1. g(x, y) is a measure function of f(x, y) if and only if ∃ ϵ >

0, ∀ (x1, y1), (x2, y2), s.t.
(x1 − x2)2 + (y1 − y2)2

 < ϵ, if f(x1, y1) ≤ f(x2, y2)

f(x1, y1) + g(x1, y1) ≤ f(x2, y2) + g(x2, y2) (3.8)

g(x1, y1) ≥ g(x2, y2)

g(x1, y1) ≥ 0, g(x2, y2) ≥ 0

The form of g(x, y) can be trivial, for example a zero function. The use of
g(x, y) it allows to infer the f(x, y).
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In this context, it is not important to get a general solution of g(x, y), but
proper non-trivial form it is acceptable.

The form of function f(x, y) can be seen as a land with humps and hollows.
The raindrop in the hump will flow directly to the neighbourhood hollow under
force of gravity. Little by little, the hollow region will gather a lot of raindrops.
The function g(x, y) reflects the quantity of raindrop at point (x, y). After the
rain stops, the regions with a lot of rain drop can be classified as a hollow.

The algorithm 2 is an improved version of original proposed in [122]. In
particular, the drops are chosen according to the segmentation of foreground
image (line 4). This procedure improves the execution time of the algorithm.

Algorithm 2 Water Filling algorithm
1: function WaterFilling(f(x, y), T, K)
2: g(x, y) = 0
3: M, N = size(f(x, y))
4: fg(x, y) = (bg(x, y) − f(x, y)) > T
5: for k = 1 : K do
6: x = rand(1, M), y = rand(1, N) with (x, y) ∈ fg(x, y)
7: while True do
8: d(xn, yn) = f(xn, yn) + g(xn, yn) − (f(x, y) + g(x, y)) where

(xn, yn) is the neighbourhood of (x, y).
9: (x∗, y∗) = arg min d(xn, yn)

10: if d(x∗, y∗) < 0 then
11: x = x∗, y = y∗

12: else
13: g(x, y) = g(x, y) + 1
14: break
15: end if
16: end while
17: end for
18: return g(x, y) > T
19: end function

The total number of raindrops is K = tMN , where t is usually set to be 100.
At every loop (line 5), (x, y) is randomly generated through a discrete uniform
distribution (line 6). If there is a point (x∗, y∗) in the neighbourhood of (x, y)
that satisfies Equation 3.8 then the raindrop in (x, y) flows towards to (x∗, y∗)
and restart the loop until a local minimum is reached. When this is reached,
the measure function g(·) is increased (line 13). After all the K raindrops find
their stable place, measure function g(x, y) is calculated and, by applying a
threshold T , it is possible to extract the heads of people that pass under the
RGB-D sensor (line 18).
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(a) (b) (c)

Figure 3.2.: The main characteristics water filling algorithm. A, B, C corre-
spond to three people respectively and D is a noise region (fig-
ure 3.2a). Region A has smaller scale compared with B and C,
and the absolute height of A is larger than noise region D. After
the water filling process (figure 3.2b), the measure function g(x, y)
which reflects the property of f(x, y) is obtained (figure 3.2c). Fi-
nally the people are detected by a threshold operation on measure
function g(x, y). Images taken from [122]

3.2.3. Results and performance

In order to test the performance of multi level segmentation and water filling
algorithms, a restricted part of CBSR Dataset is used. Table 3.1 shows the
results of algorithms in term of precision, recall and, f1-score.

The algorithms reach high values of performances, but often fail when the
heads are along the edge of image. Multi level segmentation algorithm looks
more accurate than water filling algorithm.

Table 3.1.: Image processing algorithms performances.
Algorithm Precision Recall F1-Score
Multi level segmentation 0.9390 0.9872 0.9625
Water filling 0.9365 0.7564 0.8369

3.3. Semantic segmentation with deep learning
approaches

Nowadays, one of the key problems in the field of CV is the semantic segmen-
tation that is applied to 2D images, video, and even 3D data. Looking at the
big picture, semantic segmentation is one of the high-level task that paves the
way towards complete scene understanding.

Scene understanding started with the goal of building machines that can see
like humans to infer general principles and current situations from imagery,
but it has become much broader than that. Applications such as image search
engines, autonomous driving, computational photography, vision for graphics,
human machine interaction, were unanticipated and other applications keep
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arising as scene understanding technology develops [32]. As a core problem of
high level CV, while it has enjoyed some great success in the past 50 years, a
lot more is required to reach a complete understanding of visual scenes.

In the past, such a problem has been addressed using different traditional
CV and machine learning techniques. Despite the popularity of those kind of
methods, the deep learning marked a significant change so that many CV prob-
lems are being tackled using deep architectures, usually convolutional neural
networks, which are surpassing other approaches by a large margin in terms of
accuracy and sometimes even efficiency.

This section presents a particular case study describing five approaches from
literature based on Convolutional Neural Network (CNN) architectures and
implementation methods for semantic segmentation. Furthermore, a novel ap-
proach with better performances is presented.

3.3.1. U-Net

U-Net architecture proposed in [99] is shown in figure 3.3. It is composed of
two main parts:

• contracting path (left side);

• expansive path (right side).

The first path follows the typical architecture of a convolutional network. It
consists of the repeated application of two 3 × 3 convolutions (unpadded con-
volutions), each followed by a Rectified Linear Unit (ReLU) and a 2 × 2 max
pooling operation with stride 2 for downsampling. At each downsampling step,
the number of feature channels is doubled. Every step in the expansive path
consists of an upsampling of the feature map followed by a 2 × 2 convolution
(“up-convolution”) that halves the number of feature channels, a concatenation
with the correspondingly cropped feature map from the contracting path, and
two 3 × 3 convolutions, each followed by a ReLU. At the final layer a 1 × 1
convolution is used to map each 32-component feature vector to the desired
number of classes.

Similarly, the authors of [98] revisited the classic U-Net by removing two lev-
els of max polling and changing the ReLU activation function with a LeakyReLU
(figure 3.4).

Another U-Net architecture is proposed in this Thesis. The structure re-
mains largely the same, but some changes are made at the end of each layer.
In particular a batch normalisation is added after the first ReLU activation
function and after each max polling and upsampling functions (figure 3.5).
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Figure 3.3.: U-Net architecture.

Figure 3.4.: U-Net2 architecture.

Figure 3.5.: U-Net3 architecture.
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3.3.2. SegNet

SegNet, presented by Vijay et al. in [3], is shown in Figure 3.6. The archi-
tecture consists of a sequence of non-linear processing layers (encoders) and a
corresponding set of decoders followed by a pixelwise classifier. Typically, each
encoder consists of one or more convolutional layers with batch normalisation
and a ReLU non-linearity, followed by non-overlapping max pooling and sub-
sampling. The sparse encoding, due to the pooling process, is upsampled in
the decoder using the max pooling indices in the encoding sequence. One key
ingredient of the SegNet is the use of max pooling indices in the decoders to
perform upsampling of low resolution feature maps. This has the important
advantages of retaining high frequency details in the segmented images and also
reducing the total number of trainable parameters in the decoders. The entire
architecture can be trained end-to-end using stochastic gradient descent. The
raw SegNet predictions tend to be smooth even without a Conditional Random
Fields (CRF) based post-processing.

Figure 3.6.: SegNet.

3.3.3. ResNet

He et al. in [44] observed that deepening traditional feedforward networks
often results in an increased training loss. In theory, however, the training
loss of a shallow network should be an upper bound on the training loss of a
corresponding deep network. This is due to the fact that increasing the depth
by adding layers strictly increases the expressive power of the model. A deep
network can express all functions that the original shallow network can express
by using identity mappings for the added layers. Hence a deep network should
perform at least as well as the shallower model on the training data.

The violation of this principle implied that current training algorithms have
difficulties in optimizing very deep traditional feedforward networks. He et
al. proposed residual networks that exhibit significantly improved training
characteristics, allowing network depths that were previously unattainable. A
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xn−1 F (xn−1;Wn ) + xn

Figure 3.7.: Residual Unit.

ResNet is composed of a sequence of residual units shown in Figure 3.7. The
output xn of the n − th RU in a ResNet is computed as:

xn = xn−1 + F (xn−1; Wn) (3.9)

where F (xn−1; Wn) is the residual, which is parametrized by Wn. In this way,
instead of computing the output xn directly, F only computes a residual that
is added to the input xn−1. This design can be referred as skip connection,
since there is a connection from the input xn−1 to the output xn that skips
the actual computation F . It has been empirically observed that ResNets have
superior training properties over traditional feedforward networks. This can be
explained by an improved gradient flow within the network.

3.3.4. FractalNet

Fractal network is introduced by Larsson et al. in [59]. Let C denotes the index
of a truncated fractal fC(·) (i.e., a few stacked layers) and the base case of a
truncated fractal is a single convolution:

f1(z) = conv(z)

According to the expansion rule:

z′ = conv(z)

fC+1(z) = conv(conv(z′) ⊕ fC(z′))

can be defined recursively the successive fractals, where ⊕ is a join operation
and conv(·) is a convolution operator. Two blobs are merged by the join opera-
tion ⊕. As these two blobs contain features from different visual levels, joining
them can enhance the discrimination capability of our network. Generally, this
operation can be summation, maximization and concatenation.

In order to enlarge the receptive field and enclose more contextual informa-
tion, downsampling and upsampling operations are added in the above expan-
sion rule. In particular, a max pooling with a stride of 2 and a deconvolution
also with a stride of 2 are added. After the downsampling operation, the re-
ceptive field of a fractal becomes broader. When combining different receptive
fields through the join operation, the network can harness multi-scale visual

28



3.3. Semantic segmentation with deep learning approaches

cues and promote itself in discriminating.
The Fractal Net used in this section is depicted in figure 3.8.

Figure 3.8.: FractalNet.

3.3.5. Results and performance
This paragraph presents the results from several CNN architectures. Graphs
and tables show the cost and performance during training and validation for
heads detection task on TVHeads dataset. Each CNN implementation is trained
with two types of depth images:

• 16-bit: original images acquired by depth sensor;

• 8-bit: scaled images in order to highlight the heads silhouette, improving
the images contrast and brightness.

The general procedure for training neural network based models is to take the
dataset and split it into three parts: training, validation, and test. In this case,
train, test and validation are chosen respectively to learn model parameters.
Once this is complete, the best model is also evaluated over the never before
seen test set.

In following experiments, 70%, 10% and 20% of dataset are chosen respec-
tively for train, test, and validation. Furthermore, different combinations of
hyperparameters are tested, but a learning rate equal to 0.001 and an Adam
optimization algorithm have been used.

Quantitative Evaluation

Semantic segmentation performances are divided into two different tables. Ta-
bles 3.2 shows Jaccard and Dice indices for training and for validation respec-
tively. While, Table 3.3 reported the results in term of accuracy, precision,
recall and f1-score. Both tables refer to a learning process conducted during
200 epochs.

29



Chapter 3. RGB-D data for top-view HBU: algorithms

Table 3.2.: Jaccard and Dice indices of different CNN architectures.

Net Bit Jaccard Jaccard Dice Dice
Train Validation Train Validation

Fractal [59] 8 0.960464 0.948000 0.979833 0.973306
16 0.961636 0.947762 0.980443 0.973180

U-Net [99] 8 0.896804 0.869399 0.945595 0.930138
16 0.894410 0.869487 0.944262 0.930188

U-Net2 [98] 8 0.923823 0.939086 0.960403 0.968586
16 0.923537 0.938208 0.960249 0.968119

U-Net3 8 0.962520 0.931355 0.980902 0.964458
16 0.961540 0.929924 0.980393 0.963690

SegNet [3] 8 0.884182 0.823731 0.938531 0.903347
16 0.884162 0.827745 0.938520 0.905756

ResNet [44] 8 0.932160 0.856337 0.964889 0.922609
16 0.933436 0.848240 0.965572 0.917889

In Table 3.2, the best CNN architecture is the U-Net3 8-bit version. Indeed,
Jaccard index reaches a value equal to 0.962520. The second best is Fractal Net
16-bit version also obtaining higher values as regards validation performances.
For each network is highlighted in red colour the best bit version model.

Table 3.3.: Semantic segmentation results of different ConvNet architectures.
Net Bit Accuracy Precision Recall F1-Score

Fractal [59] 8 0.994414 0.991400 0.993120 0.992235
16 0.994437 0.992667 0.993297 0.992970

U-Net [99] 8 0.992662 0.946475 0.950483 0.948408
16 0.992569 0.945083 0.948957 0.946938

U-Net2 [98] 8 0.993156 0.970013 0.969206 0.969568
16 0.993165 0.967884 0.970557 0.969123

U-Net3 8 0.994572 0.990451 0.990387 0.990419
16 0.994559 0.989382 0.989411 0.989396

SegNet [3] 8 0.992683 0.946304 0.953136 0.949625
16 0.992699 0.946237 0.953342 0.949658

ResNet [44] 8 0.993789 0.968399 0.968374 0.968359
16 0.993819 0.968765 0.969256 0.968992

As in the previous case, also in the Table 3.3 the best CNN architecture, in
terms of accuracy, is U-Net3 8-bit version. While, Fractal Net 16-bit version
exceeds slightly in precision, recall and f1-score metrics.

In Figure 3.9 is shown for each CNN the trend of Jaccard index during the
fit procedure. It is easy to see how the Fractal Net and the ResNet reach high
values immediately after a few epochs. Instead, the U-Net3 increases its value
more slowly. The classic U-Net is always below all other networks.
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Figure 3.9.: Jaccard index trends.

In a similar way, in Table 3.10, for each network is shown the Jaccard index
trend also during the validation period.

Qualitative Evaluation

Table 3.4 presents qualitative semantic segmentation results. The table shows
the predicted images for each architecture. The best results are obtained by
using the U-Net3 (8 and 16 bit). While, typical U-Nets and SegNet provide
shapes of heads more smooth and rounded.
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Table 3.4.: Qualitative result of prediction.
8-bit 16-bit Label

FractalNet [59]

U-Net [99]

U-Net2 [98]

U-Net3

SegNet [3]

ResNet [44]
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(a) Fractal Net 8-bit.
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(b) Fractal Net 16-bit.
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(c) U-Net 8-bit.
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(d) U-Net 16-bit.
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(e) U-Net2 8-bit.
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(f) U-Net2 16-bit.
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(g) U-Net3 8-bit.
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(h) U-Net3 16-bit.
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(i) SegNet 8-bit.
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(j) SegNet 16-bit.
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(k) ResNet 8-bit.
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(l) ResNet 16-bit.

Figure 3.10.: Jaccard index results.
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Chapter 4.

RGB-D data for top-view HBU: use
cases and results

In this Chapter some cases about HBU of use are presented. The main topics
of investigation have been the following: video surveillance, described through
several applications in Re-id field; intelligent retail environment, where a novel
shopper analytics system is presented; activities of daily living through the case
study of an ad-hoc application for environmental monitoring.

4.1. Video surveillance
Re-id represents a valuable task in video surveillance scenarios, where long-
term activities have to be modelled within a large and structured environment
(e.g., airport, metro station).

In this context, a robust modelling of the entire body appearance of the in-
dividual is essential, because other classical biometric cues (face, gait) may not
be available, due to sensors’ scarce resolution or low frame-rate. Usually, it is
assumed that individuals wear the same clothes between the different sightings.
The model has to be invariant to pose, viewpoint, illumination changes, and
occlusions: these challenges call for specific human-based solutions. For these
reasons, in the next subsection a person Re-id approach using top-view RGB-D
data is presented.

4.1.1. Re-identification
In the last decades, video analytics has rapidly evolved as autonomous under-
standing of events occurring in a scene monitored by multiple video cameras.
One of the fundamental problems in video surveillance is the person Re-id,
which is the process to determine if different instances or images of the same
person, recorded in different moments, belong to the same subject. In every
day life, this is done by humans without much effort. Our brains are trained to
localise and detect people and later to properly re-identify them. In the recent
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years, this problem has gained a rapid increase in attention in both academic
research communities and industrial laboratories.

Person Re-id has many important applications in video surveillance, because
it saves human efforts on exhaustively searching for a person from large amounts
of video sequences. Identification cameras are widely employed in most of
public places like malls, office buildings, airports, stations, and museums. These
cameras generally provide enhanced coverage and overlay large geospatial areas
because they have non-overlapping fields-of-views. Huge amounts of video data,
monitored in real time by law enforcement officers or used after the event for
forensic purposes, are provided by these networks. An automated analysis
of these data improves significantly the quality of monitoring, in addition to
process the data faster [111].

The behaviour characterization of people in a scene and their long term
activity can be possible using video analysis, which is required for high-level
surveillance tasks in order to alert the security personnel.

Over the past years, in the field of object recognition a significant amount
of research has been performed by comparing video sequences. Colour-based
features of video sequences are usually described with the use of a set of key
frames that characterize well a video sequence. The HSV colour histogram and
the RGB colour histogram are robust against the perspective and the variability
of resolution [39]. The clothing colour histograms taken over the head, trousers,
and shirt regions, together with the approximated height of the person, have
been used as discriminative features.

Recently, the person Re-id problem has received a considerable attention,
and various reviews and surveys are available, pointing out different aspects
of this topic [78]. Research works on person Re-id can be divided into two
categories: feature-based and learning-based [114].

The use of anthropometric measures for Re-id was proposed for the first
time in [73]. In this case, height was estimated from RGB cameras as a cue for
associating tracks of individuals coming from non-overlapping views.

In [36], the authors proposed the use of local motion features to re-identify
people across camera views. They obtained correspondence between body parts
of different persons through space-time segmentation. On this body parts,
colour and edge histograms are extracted. In this approach, person Re-id is
performed by matching the body parts based on the features and correspon-
dence.

Shape and appearance context, which computes the co-occurrence of shape
words and visual words for person Re-id is proposed in [115]. Human body is
partitioned into L parts with the shape context and a learned shape dictionary.
Then, these parts are further segmented into M subregions by a spatial kernel.
The histogram of visual words is extracted on each subregion. Consequently,
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for the person Re-id the L × M histograms are used as visual features.
In [7] the appearance of a pedestrian is represented by combining three kinds

of features (sampled according to the symmetry and asymmetry axes obtained
from silhouette segmentation): the weighted colour histograms, the maximally
stable colour regions, and recurrent highly structured patches.

Another method to face the problem of person Re-id is learning discriminant
models on low-level visual features. Adaboost is used to select an optimal
ensemble of localized features for pedestrian recognition in [39]. The partial
least squares methods is used to perform person Re-id in [101]. Instead, Prosser
et al. [93] have used ranking SVM to learn the ranking model.

In last years, it is well-known the metric learning for person Re-id. A prob-
abilistic relative distance comparison model has been proposed in [124]. It
maximizes the probability that the distance between a pair of true match is
smaller than the distance that between an incorrect match pair.

In [89], the authors investigate whether the Re-id accuracy of clothing ap-
pearance descriptors can be improved by fusing them with anthropometric
measures extracted from depth data, using RGB-D sensors, in unconstrained
settings. They also propose a dissimilarity-based framework for building and
fusing the multimodal descriptors of pedestrian images for Re-id tasks, as an
alternative to the widely used score-level fusion.

Several datasets used to test Re-id models are available: VIPeR1, iLIDS,2

ETHZ3 and the more recent CAVIAR4REID4. These datasets cover many
aspects of the person Re-id problem, such as shape deformation, occlusions,
illumination changes, very low resolution images, image blurring, etc. [38]. An-
other Re-id dataset is proposed in [5]; this is composed by 79 people and four
groups. Data are gathered using RGB-D technology, but are not suitable for
my purposes as mentioned above in Table 4.1.

Recent literature about Re-id approaches is mostly focused on appearance-
based models. Researchers have paid attention on interest points, structural
information, and colour as principal appearance cues [23]. The introduction of
RGB-D cameras provides affordable and additional rough depth information
coupled with visual images, offering sufficient accuracy and resolution for indoor
applications. Due to this fact, this camera has already been successfully applied
in the retail field to uniquely identify customers and to analyse behaviours and
interactions of shoppers [61].

In the next few paragraphs, a dataset of person Re-id that uses an RGB-D
camera in a top-view configuration (TVPR dataset) is presented. An Asus
Xtion Pro Live RGB-D camera has been used because it allows to acquire

1https://vision.soe.ucsc.edu
2http://www.eecs.qmul.ac.uk
3https://data.vision.ee.ethz.ch/cvl/aess/dataset
4http://www.lorisbazzani.info/datasets
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Table 4.1.: Main motivations and possible applications of TVPR.
Research Challenges Applications Related

works

Reliable and occlusion
free people counting

Safety and security in crowded environ-
ments; people flow analysis; access control
and counting

[122, 116,
54, 112, 16]

Interaction detection be-
tween people and envi-
ronment

Intelligent retail environment shelf: Shop-
per Analytics; Ambient Assisted Living
(AAL)

[61, 29, 79]

Fall detection, HBU High reliability fall detection; occlusion free;
HBU at home and AAL

[65, 52]

colour and depth information in an affordable and fast way. The camera is
installed on the ceiling above the area to be analysed.

For Re-id evaluation, data of 100 people are collected, acquired across in-
tervals of days and in different times. Each person walked with an average
gait within the recording area in one direction, stopping for few seconds just
below the camera, then it turned around and repeated the same route in the
opposite direction, always stopping under the camera for a while. This choice
is due to its greater suitability compared with a front view configuration, usu-
ally adopted for gesture recognition or even for video gaming. The top-view
configuration reduces the problem of occlusions [65] and has the advantage of
being privacy preserving, because the face is not recorded by the camera. Main
motivations of our top-view dataset and some related applications/works are
described in Table 4.1.

The process of extraction of a high number of significant features derived from
both depth and colour information is presented. Among all possible features, we
selected the nine features described in following sections as the most interesting
ones. After analysing the effectiveness of each feature, selected 9 significant
features for the Re-id process are collected. The set of features extracted by
the colour and depth images is used to perform in future works the Re-id
process.

Setup and acquisition

The 100 people were acquired in several days. The camera is installed on the
ceiling of a laboratory at 4 m above the floor and covers an area of 14.66 m2

(4.43 m × 3.31 m). The camera is positioned above the surface which has to
be analysed (Figure 4.1).

The first step is the processing of the data acquired from the RGB-D cam-
era. The camera captures depth and colour images, both with dimensions of
640 × 480 pixels, at a rate up to approximately 30 fps and illuminates the

38



4.1. Video surveillance
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Figure 4.1.: System architecture.

scene/objects with structured light based on infrared patterns.
Seven out of the nine features selected are the anthropometric features ex-

tracted from the depth image:

• distance between floor and head, d1;

• distance between floor and shoulders, d2;

• area of head surface, d3;

• head circumference, d4;

• shoulders circumference, d5;

• shoulders breadth, d6;

• thoracic anteroposterior depth, d7.

The remaining two colour-based features are acquired by the colour image. I
also define TVH, TVD and TVDH.

• TVH is the colour descriptor:

TV H = {Hp
h, Hp

o } (4.1)

• TVD is the depth descriptor:

TV D = {dp
1, dp

2, dp
3, dp

4, dp
5, dp

6, dp
7} (4.2)

• Finally, TVDH is the signature of a person defined as:

TV DH = {dp
1, dp

2, dp
3, dp

4, dp
5, dp

6, dp
7, Hp

h, Hp
o } (4.3)
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Figure 4.2.: Anthropometric and colour-based features.

Colour is an important visual attribute for both CV and human perception.
It is one of the most widely used visual feature in image/video retrieval. To
extract this two features we used HSV histograms. Local histograms have
proven to be largely adopted and very effective. The signature of a person is also
composed by two colour histograms computed for head/hairs and outerwear:
Hp

h, Hp
o in 4.3, such as in [4], with n = 10 bin quantization, for both H channel

and S channel.
Figure 4.2 depicts the set features considered: anthropometric and the colour

based ones.

Results evaluation

The 100 people of dataset were acquired in 23 registration session. Each of
the 23 folders contains the video of one registration sessions. The recording
time [s] for the session and the number of persons of that session are reported
in Table 4.2. Acquisitions have been performed in 8 days and the total recording
time is about 2000 seconds.

Registrations are made in an indoor scenario, where people pass under the
camera installed on the ceiling. Another big issue is environmental illumination.
In each recording session, the illumination condition is not constant, because
it varies in function of the different hours of the day and it also depends on
natural illumination due to weather conditions. The video acquisitions, in our
scenario, are depicted in Figure 4.3, which are examples of person registration
respectively with sunlight and artificial light. Each person during a registration
session walked with an average gait within the recording area in one direction,
then it turned back and repeated the same route in the opposite direction. This
methodology is used for a better split of TVPR in training set (the first passage
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Table 4.2.: Time [s] of registration for each session and the number of people
of that session.

Session Time [s] # people Session Time [s] # people

g001 68.765 4 g013 102.283 6
g002 53.253 3 g014 92.028 5
g003 50.968 2 g015 126.446 6
g004 59.551 3 g016 86.197 4
g005 75.571 4 g017 95.817 5
g006 128.827 7 g018 57.903 3
g007 125.044 6 g019 82.908 5
g008 75.972 3 g020 87.228 4
g009 94.336 4 g021 42.624 2
g010 116.861 6 g022 68.394 3
g011 101.614 5 g023 56.966 3
g012 155.338 7

Total 2004.894 100

of the person under the camera) and testing set (when the person passed again
under the camera).

The recruited people are aged between 19−36 years: 43 females and 57 male;
86 with dark hair, 12 with light hair and 2 are hairless. Furthermore, of these
people 55 have short hair, 43 have long hair. The subjects were recorded in
their everyday clothing like T-shirts/sweatshirts/shirts, loose-fitting trousers,
coats, scarves and hats. In particular, 18 subjects wore coats and 7 subjects
wore scarves. All videos have fixed dimensions and a frame rate of about 30 fps.
Videos are saved in native .oni files, but can be converted in any other format.
Colour stream is available in a non compressed format.

Figure 4.4 reports the histograms of each extracted anthropometric feature.
Due to the dissimilarity of the analysed subjects a Gaussian curve is obtained
from the data.

Performance validation

The Cumulative Matching Characteristic (CMC) curve represents the expec-
tation of finding the correct match in the top n matches. It is equivalent
of the Receiver Operating Characteristic (ROC) curve in detection problems.
This performance metric evaluates recognition problems, by some assumptions
about the distribution of appearances in a camera network. It is considered the
primary measure of identification performance among biometric researchers.

As well-established in recognition and in Re-id tasks, for each testing item
we ranked the training gallery elements using standard distance metrics. We
examined the effects of 3 distance measures as the matching distance metrics:
the L1 City block, the Euclidean Distance and the Cosine Distance.

To evaluate the dataset, performance results are reported in terms of recog-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3.: Snapshots of a registration session of the recorded data, in an in-
door scenario, with artificial light. People had to pass under the
camera installed on the ceiling. The sequence 4.3a-4.3e, 4.3b-4.3f
corresponds to the sequence 4.3d-4.3h, 4.3c-4.3g respectively train-
ing and testing set of the classes 8-9 for the registration session
g003.

nition rate, using the CMC curves, illustrated in Figure 4.5. In particular,
the horizontal axis is the rank of the matching score, the vertical axis is the
probability of correct identification.

Considering the dataset, a comparison among TVH and TVD in terms of
CMC curves are depicted, to compare the ranks returned by using these differ-
ent descriptors.

Figure 4.5a provides the CMC obtained for TVH. Figure 4.5b represents the
CMC obtained for TVD. We compare these results with the average obtained
by TVH and TVD. The average CMC is displayed in Figure 4.5c.

It is observed that the best performance is achieved by the combination of
descriptors. In Figure 4.5d, it can be seen that the combination of descriptors
improve the results obtained by each of the descriptor separately. This result is
due to the depth contribution that can be more informative. In fact, the depth
outperform the colour, giving the best performance for rank values higher than
15 (Figure 4.5b). Its better performance suggests the importance and potential
of this descriptor.
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Figure 4.4.: Statistics histogram for each feature (4.4a d1 distance between floor
and head; 4.4b d2 distance between floor and shoulders; 4.4c d3
area of head surface; 4.4d d4 Head circumference, 4.4e d5 shoulders
circumference, 4.4f d6 shoulders breadth; 4.4g d7 thoracic antero-
posterior depth). The resultant Gaussian curve (in red) is due to
the dissimilarity of the analysed subjects.
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Figure 4.5.: The CMC curves obtained on TVPR Dataset.
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4.2. Intelligent retail environment
In the field of IRE, numerous studies to investigate how shoppers behave inside
a store and how businesses can change strategies to improve sales are emerging.

In order to analyse the buyer activity and to solve general aspects of these
problems, techniques of artificial intelligence are used and, in particular, vision
and image processing. In the next subsection an intelligent video system to
monitoring the activity of customers is proposed.

4.2.1. Shopper behaviour analysis
In literature, there are several researches that study the behaviour of consumers
in retail environments, for example, [55] and [94] and references therein. In
particular, Puccinelli et al. [94] identified seven topic areas of consumer behav-
ior research in retail environments: (1 ) goals, schema and information process-
ing, (2 ) memory, (3 ) involvement, (4 ) attitudes, (5 ) affect, (6 ) atmospherics
and (7 ) consumer attributions and choices. For each topic, they highlighted
the most important issues necessary to be further investigated.

A common characteristic of all these studies is to do not use automated
approaches for data acquisition and information retrieval. They mainly focus
on consumer research and retailing from the social, psychological and marketing
point of views. On the contrary, the potential of computing to improve all
aspects of retail is firstly studied in deep in [58]. In particular, CV systems
appear very useful in retail environments (as well as in other application fields),
mainly for the huge amount of data and the possibility of an automatic data
collection. Obviously, an increasing number of these applications [113], [81]
have been and are possible thanks to the strengthening of information systems,
the development of more stable and efficient vision algorithms and also the
higher speed and the lower price of current hardware.

Focusing on CV approaches of consumer attributions and choices, Chandon
et al. [18] and Strandvall [105] both used eye tracking methods for measuring
the value of point-of-purchase. Määttä et al. [72] classified shopper motion into
four behaviour classes, distinction if their movement is neutral or repetitive.
Haritaoglu [42] examined the use of CV systems to estimate shoppers’ attention
to billboard or product promotions, counting the number of people and the time
spent observing the display. Another approach for video-based extraction of
customer movements at the point of sale is described in [57]: their human
behaviour analysis is based on the measurement of the customer trajectories
inside the store and on the time spent by each person in each zone of the store.
Senior et al. [102] proposed a video analytics system for retail that counts the
number of customers entering a store and monitors where they go within the
store.
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According to [82], newer video surveillance applications, not necessarily re-
lated to security issues, were developed for shopping, not only to identify
anomalous activities, but also to identify people and to analyse consumer be-
haviour.

At the same time, other pervasive computing approaches were adopted to
solve problems in retail environments. ConvenienceProbe [121] examines tra-
jectory data offered by mobile phone users to identify retail trade areas. These
data are critical information for planning outdoor advertisement, finding com-
peting stores and determining the optimal store location. Another system
developed for the retail store is “SmartStore” [48], which analyses the cus-
tomer interest immediately, gathers the sensing data from large-scale area and
attaches massive tiny sensors to shopping items.

This work focuses on the implementation of a software infrastructure coupled
with a hardware technology to build a pervasive computing intelligent system
for detecting and analysing the human behaviour in real retail stores.

By means of video cameras and CV algorithms, the pervasive system detects
human motion and then describes human behaviour by quantitative parame-
ters. More in detail, the main objective is to analyse the interactions between
customers and products on the shelves. Therefore, the system detects and mon-
itors people when they are in front of a shelf, using a distributed video sensor
network. This allows us to better detail the activities of consumers when they
stop in a zone of the store, e.g., the objects of the shelf that are touched by
each person.

The installation of the system in several parts of the store provides large
volumes of multidimensional data on which to perform statistics and deduce
insights. The analysis of these data offers a unique possibility to better un-
derstand several crucial aspects of a retail ambient, e.g., the appealing of a
product, a good positioning of different products on a shelf, the human traffic
in front of each shelf.

Just because the sensor installation should be repeated in several zones of
the shop to collect a significant large amount of data, we developed a system
that can be easily scaled, from a single shelf installation to a large widespread
grid of sensors.

The system is able to detect all the objects on the shelf that interact with the
customer using only one RGB-D sensor for each shelf, while in [55] the activity
recognition needs an RFID sensor mounted on each object to be performed.

In [63] has been developed a software infrastructure that is able to automat-
ically detect, measure and store crucial information for a retail ambient. In
particular, the pervasive system does not need to interact with customers to
retrieve the desired information, as for the cases of the interactive display [106]
or the mobile phone [41], where direct customer interactions with the systems
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are used to exchange information between shoppers and the retail ambient.
The information are collected automatically through the CV algorithms that
will be presented in 4.2.1.

Summarizing, this subsection presents a smart and low-cost embedded sensor
network for IRE able to identify customers and to analyse their behaviour and
shelf interactions. Major characteristics of this system are the general and easily
scalable architecture really focused on the retail environment application and
the very precise and reliable CV algorithms, which are able to run efficiently
in low cost hardware and to collect automatically several relevant information.

IRE architecture and application requirements

The hierarchical architecture of the proposed pervasive retail environment is
shown in Figure 4.6 along with the information provided at each abstraction
layer. Sensor nodes, able to measure autonomously a part of the environment,
are logically connected to the concept of shelf, multiple shelves are part of
a store and, finally, several stores are part of a retailer chain. The general
idea is based on several aggregation layers that provide to the system different
information, from raw data to high level data analytics and insights.

At the single camera node level only raw data are available; a first data
processing to provide interaction maps occurs at the shelf level. Multi camera
analysis is also functional to perform flow comparisons in different areas of the
store. At the top level general insights, store comparisons, store optimizations
and re-design can be performed by retailers.

The functional requirements of the system, concerning what the system is
able to do, its expected behaviour and which are its input/output functions,
are:

1. counting the number visitors;

2. storing the path of each person detected by the camera during the visit;

3. storing all type of interactions with the shelf:

a) who performed the action;

b) which product (SKU) was touched;

4. sending and saving data in a remote database available for statistical
analysis;

5. from any remote location, controlling RGB-D camera parameters:

a) video streaming visualization;

b) redefinition of shelf area;

c) software upgrade;
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6. restoring data from a backup.
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Figure 4.6.: The hierarchical architecture and the information provided at each
abstraction layer of an intelligent retail environment.

Computer vision algorithms

The whole system can be seen as a big sensor network where each node is a
micro system that analyses the consumer behaviour in front of a specific shelf
of a store. Each node consists of an embedded system that includes an RGB-D
sensor, ceiling mounted and looking to the scene from the top, and a software
component to send the calculated information to the cloud. Adding a new
node/shelf does not require structural modifications of the entire system, so
that it is possible to install several RGB-D sensors in every store.

Image processing algorithms previously presented was used for this system
in order to recognize people monitoring and user-shelf interactions.

Detection of user-shelf interactions

The algorithm for user-shelf interactions is presented in this paragraph. A shelf
zone is defined as the part of the store interested by an interaction between
the hand of the shopper and a product in the shelf. As described in [30], it
is defined by the user during the installation phase and it is characterized by
the following tree parameters, written in a configuration file: the maximum
distances of the left (xdl), right (xdr) and frontal (yd) shelf sides from the
image borders (see Figure 4.7). This setting is valid for most of the shelves of
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a store, but it is possible to define other areas of interest (e.g., in the case of a
circular island when a cylinder-shaped configuration is needed).

Figure 4.7.: Shelf zone definition using the three parameters (xdl, xdr, yd).

The image processing algorithms such as multi level segmentation and water
filling, allowed to detect the head and the body contours of each person. The
contour of the head is used to track the movements of a person within the
scene, while the contour of entire body is used to identify interactions with the
shelf.

The three vertical planes built at the distances xdl, xdr, yd from the image
border and defining the shelf zone are used to detect interactions. When the
contour of entire body intersects at least one of the three planes we establish
that a contact occurs and so determine the 3D coordinates of the contact point.

The contact detection algorithm is explained in detail in the pseudo-code
Algorithm 3. The FindInteractions function has in input the depth image
of the sensor and the contour vector. Each point of each contour is analysed
(from line 2 to line 4) to find contact points with shelfzone. If a contact
occurs the pushBack method inserts in the vector vec the 3D contact point,
where the third dimension corresponds to the depth value. Finally, the function
returns vector vec with all the contact points.

Algorithm 3 Contact detection algorithm
1: function findInteractions(d(x, y), peopleV ec)
2: for each contour i ∈ peopleV ec do
3: for each point p ∈ i.getContours( ) do
4: if d(p.x, p.y) ∈ shelfzone then
5: vec.pushBack(d(p.x, p.y))
6: end if
7: end for
8: end for
9: return vec

10: end function
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Efficiency and reliability of algorithms

The two main requirements/capabilities that the software has to satisfy are: i)
to monitor people; ii) to understand the occurrence of an interaction between
a shopper and a shelf.

To compare results we considered the sensitivity or true positive rate TPR =
TP/P , where TP is the number of true positives, calculated by counting the
real number of people “passing by” the camera and P = (TP +FN), where FN

is the number of false negatives, corresponding to the “passing by” people that
the camera has not detected. The same evaluation method has been applied
for establishing the correctness of the user-shelf interaction.

Table 4.3 shows the results of our performance analysis on 4 out of the 7
stores where the system was installed. We have checked the passages and the
interactions of consumers measured by the system with the ground truth. More
in detail, Table 4.3 corresponds to the confusion matrices of the people detec-
tion and contact detection algorithms. Since the system is built to detect only
positive events (detection of people), values for true negative events can not
provide. Also the number of negative events is unknown. For these reasons,
typical confusion matrix parameters (e.g., specificity) are not listed. The sensi-
tivity obtained was 99.02% and 80.52% for the people detection and the hand
detection algorithm, respectively.

Table 4.3.: People detection confusion and user-shelf interaction matrices.
TP FN FP Total TPR

People detection 1110 29 11 1150 0,9902
User-shelf interaction 1050 233 254 1537 0,8052

User-shelf interaction recognition with deep CNNs

Deep CNNs are made up of different types of layers such as convolutional, pool-
ing, fully connected layers. All of these may have additional hyperparameters
such as filter size, padding, stride for the convolutional layers and the number
of neurons for the fully connected layers. Note that parameters of the network
architecture and training procedure are called hyperparameters to distinguish
them from the weights and biases learned by the network during training, which
are collectively called parameters. The amount of layer types along with their
additional hyperparameters and their effect on training speed and quality make
it difficult to choose an architecture.

The idea is to classify using CNN approach the type of interaction the cus-
tomer has in front of a shelf. By using the previous algorithm 3 are possible
to capture the moment when a part of the body comes into contact with the
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shelf.
In order to solve this challenge, a specific dataset (User-Shelf Interactions

Dataset) is built. In particular, colour images of user-shelf interactions from 4
different cameras have been acquired. The goal is to combine each image with
one of the following classes:

• Positive: the hand has already done the interaction and contains a prod-
uct or the customer is putting the product back on the shelf.

• Neutral: the hand is approaching to the shelf in order to grab a product.

• Negative: this class contains the accidental interactions of customers with
the shelf.

This distinction can be easily seen in the Figures 4.8 that includes the three
types of images described above.

(a) Positive. (b) Neutral (c) Negative

Figure 4.8.

The collected dataset contains a total of 2745 colour images with a dimension
of 80 × 80 pixels. The ground truth was manually labelled by four human
annotators.

The purpose of this work is to train 4 different types of CNNs. Below, a
small description of each network is reported.

CNNs

In a CNN, each neuron is only connected with a few local neurons in the previ-
ous layer, and the weight is shared for every neuron in that layer. Convolutional
neural networks are effective for image classification problems because the con-
volution operation produces information on spatially correlated features of the
image.

In order to solve the user-shelf interaction classification problem, two archi-
tectures are designed, trained and compared in this work. The baseline of the
first two models are a classic CNN architecture, whose core structure is essen-
tially the same as that of the LeNet architectures introduced in the late 1980s
by LeCun et al. [60].
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The first is composed by two convolutional layers, and each of them is gener-
ated by convolving through a 32 and 63 filters, respectively, and a 3 × 3 kernel.
After each convolution, a ReLU activation function is used. Subsequently, there
is a max pulling layer with a 2 × 2 size. After convolution, these features can
be more readily learned by a fully connected neural network. Following, there
are two fully connected layers with 128 and 3 nodes, respectively.

Figure 4.9.: CNN Architecture.

The second CNN architecture is slightly different from the first one. The
main block, composed by two convolution and a max pooling layer, is dupli-
cated.

Figure 4.10.: CNN2 Architecture.

AlexNet

AlexNet [56] is the first work that popularized ConvNets in CV. It features
convolutional layer stacked on top of each over. AlexNet consists of a total
of 8 layers, which are 5 convolutional layers and 3 fully-connected layers (final
layer outputs the class labels). Batch-normalisation is applied after the first
two convolutional layers. Dropout is applied after each layer during the last
two fully connected layers.

CaffeNet

CaffeNet [49] is a modification of AlexNet [56] without relighting data aug-
mentation and where the order of pooling and normalisation layers is switched.
CaffeNet is made up of five convolutional layers, three fully connected layers
and a softmax output layer. It uses ReLUs as activation functions and employs
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Figure 4.11.: AlexNet Architecture.

dropout in the first two fully connected layers. Additionally, pooling layers are
used after the first, second and fifth convolutional layers; furthermore, Local
Response Normalization (LRN) layers are used after the first two pooling lay-
ers. CaffeNet has the common architecture of convolutional layers followed
by fully connected layers. The output softmax function interprets the data as
a probability distribution and the result is, therefore, in the range of 0 to 1,
summing up to a total of 1.

Classification Evaluation

For the evaluation of different trained networks on various test sets, an evalu-
ation algorithm is implemented using Keras5 Python library. It is able to load
a model, load ground truth data, classify the test set and compare the results
with accuracy, recall, precision and, f1-score.

Table 4.4.: User-shelf interaction results on train and validation sets.

Net Accuracy Accuracy Loss Loss
Train Validation Train Validation

CNN 0.716238 0.809045 0.674015 0.541859
CNN2 0.846936 0.909548 0.391440 0.290128
AlexNet [56] 0.737039 0.809045 0.616384 0.536162
CaffeNet [49] 0.885805 0.919598 0.483898 0.474933

Table 4.5.: User-shelf interaction results on test set.
Net Precision Recall F1-Score

CNN 0.780691 0.622234 0.691118
CNN2 0.873640 0.816821 0.843801
AlexNet [56] 0.771158 0.687371 0.726130
CaffeNet [49] 0.899060 0.873149 0.885705

5https://keras.io/
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Data augmentation is a method applicable to shallow and deep representa-
tions, but that has been but that, so far, mostly applied to the latter [56].
By augmentation, an image I is perturbed by transformations that leave the
underlying class unchanged (e.g. cropping and flipping) in order to generate
additional examples of the class. The augmented samples can either be taken
as-is or combined to form a single feature, e.g. using sum/max-pooling or
stacking. The augmentation method has been applied at the training and test
time.

The advantages of using several architecture can also be observed from the
following two Figures 4.12. As the number of training iterations increased, the
validation accuracy of the architectures quickly and smoothly ramped up to
0.7 after 40 iterations. On the other hand, the loss value of the convolutional
neural network was lower, which indicated that the gradient descent function
inside the nets had a better performance in converging to the local minimum
point.

The loss value is calculated by a cost function, which essentially defines how
far the model is from the desired output. The gradient descent is attempting
to converge on a result that minimizes the cost function by slowly changing the
weights.

Table 4.4 shows the performance results of the user-shelf interaction detection
based on the training set.

In order to assess the predictive performance of a classification algorithm, it
must be evaluated on a test set, i.e. a separate data set containing examples
that have neither been used for training the algorithm, nor for choosing hyper-
parameters, nor for determining when to stop training. After training the four
models with different regularisation methods, the networks were finally evalu-
ated on the official test set, obtaining the classification indicators displayed in
Table 4.5.
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Figure 4.12.: Accuracy results.

The curves in Figure 4.12 allow a first qualitative analysis, in particular, both
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models exhibited strong overfitting. The best value of accuracy on validation
set is obtained with CaffeNet model and it corresponds to 91.9%.

Results

The main indicators adopted to evaluate shopper behaviour and preferences
are:

• Number Nv of visitors, that is people crossing camera field of view;

• Number Vz of visitors in each category;

• Number Vs of visitors people interacting with the shelf, where Vs ⊂ Nv;

• Number Ns of stopped visitors, that is the number of people who stops
in front of the selected category’s shelf (min 5 secs) Vs ⊂ Ns;

• Conversion rate CR = Vs/Ns ∈ [0, 1] is the relationship between the
number of stopped visitors and the number of visitors interacting with
selected shelf products;

• Number Is of interactions for each person, with Is = I/Vs, where I is the
number of the interactions;

• Average visit time barT =
∑Nv

i=1 ∆ti/Nv , where the visit time ∆ti is the
permanence of each person in the camera view;

• Number P of products touched;

• Number Ppos of positive interactions, shopper touches the product and
“buys” it (takes it from the shelf without returning);

• Number Pneu of neutral touching, shopper just touches the product with-
out holding it.

• Number Pneg of negative interactions, shopper touches the product, holds
it for a while and returns it to the shelf.

• Duration of interactions TI =
∑I

i=1 δti, where δti = ti,end − ti,init is the
difference between final and initial instant of interaction i;

• Average interaction time T̄I = TI/I.

Table 4.6 summarizes the results obtained by monitoring 7 stores using a
total of 15 cameras and for a working period equivalent to 45 months by a
single camera. The values in the table refer to the most significant indicators
previously introduced. They reveal that the average visit time in front of the
shelf is 6.21s, while the average interaction time is 1.23s. Moreover, the number
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Figure 4.13.: Visit time histogram related to the overall studied period (4.13a).
Visit time histogram related to three different time slots: i) 6.00
to 8.00 (green line). ii) 11.00 - 13.00 (red line) iii) 16.00 - 18.00
(blue line) (4.13b).
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Table 4.6.: Values of indicators in real experiments stores.
Indicator Nv Vs Is T̄ P T̄I

Value 87885 17762 1.45 6.21s 25710 1.23s

of interactions for each person is higher than the number of products touched,
corresponding to 1.45 interactions for each person.

For example Figure 4.13a shows the histogram of the visit time ∆ti related
to the overall testing period. Each bin corresponds to an elapsed time of 1s.
The plot shows that there are several counts (47% of the total) with a visit time
smaller than 3s, which can be easily interpreted as not-interacting people. The
mean visit time higher than 3s is equal to 6.46s. This value, when compared
to similar results related to other shelves, can describe the appealing of the
shelf to shoppers. Namely, the larger is the mean value higher is the shelf
attractiveness. At the same time, the total number of counts indicates if the
shelf is located or not in a populated place of the shop.

Since the system detects the precise date/time when each shopper appears
in the camera field of view, it is possible to make the same histogram of Fig-
ure 4.13a for different time slots. Figure 4.13b shows an example of this for
three different time slots: i) from 6.00 to 8.00; ii) 11.00 - 13.00; iii) 16.00 -
18.00. During the first slot, the shop is closed, hence the data refer only to
shop operators. From the remaining slots we can evince that the morning time
slot is more populated than the afternoon one. Such information can be very
useful to better organize, for example, the staff of the shop according to the
time slot with the maximum flux of buyers.

Going into the detail of the products hosted by the shelf, the system is able
to storage all the interactions between the shopper and the shelf. Together
with this, the system is able to discriminate among three different types of
interaction with CNN approaches: neutral if the hand exceeds the threshold
without taking anything; emphpositive when the object is picked up; negative
when the object is put back after a pickup.

As expected the most interacted zone of the shelf is the central one, but
looking at the width distribution of the interactions (Figure 4.14a, top panel)
it is possible to discriminate at least another peak around shelf width equal to
800mm, that probably corresponds to an appealing product.

Figures 4.14 show maps of the contact points, identified by coloured zones,
generated during the processing. In particular, Figure 4.14a, Figure 4.14b and
Figure 4.14c show respectively, positive, negative and neutral interactions.

Furthermore, Figures 4.14 represent some example of a planogram, that is
a detailed visual map that establishes the position of the products in a shelf.
So to obtain the contact map, the system automatically compares the coordi-
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Figure 4.14.: Maps of interactions produced by the software in a test conducted
by our research in a real environment. 2D plots showing the shelf
along its width (x axis) and height (y axis) in millimetres.
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nates of contact points with ancillary information provided by the planogram
management software.

In this work, a pervasive, intelligent vision system for retail applications is
developed. It consists in a software infrastructure coupled with a low cost
hardware that: i) receives images from an RGB-D camera; ii) elaborates the
images with CV algorithms; iii) extracts information and collects them into
a database for statistical analysis and for being used by a decision support
system.

The implemented CV algorithms: i) detect the people in the camera field
of view; ii) measure the visit time of each person; iii) detect occurrences of
interactions between shoppers and products on the shelf.

The system has been installed in real retail stores. The long life and real
environment tests show the effectiveness of the described system and, in general,
the feasibility of the proposed architecture and approach.

The efficiency of the system is defined by its capability in detecting people
and shelf interactions. Results show that the people detection algorithm has a
very high sensitivity, while the hand detection algorithm shows a good accuracy
slightly above 90%.

The collected information can be used for several useful statistical studies,
since they enhance, e.g., the knowledge of shopper-shelf interactions and the
product appeal.

The system can be used as part of a sensor network focused on retail reality
mining, with the purpose of better understanding customer interactions in retail
environments.
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4.3. Activities of daily living
The ADLs are a series of basic activities performed by individuals on a daily
basis necessary for independent living at home or in the community. ADLs in-
clude eating, taking medications, getting into and out of bed, bathing, groom-
ing/hygiene, dressing, socializing, cooking, cleaning and walking.

Automated recognition of ADLs is also interesting for the scientific commu-
nity because of its potential applications in retail and security. Furthermore,
monitoring human ADLs is important in order to identify possible health dis-
eases and apply corrective strategies in AAL. ADLs analysis can provide very
useful information for elder care and long-term care services.

In the next subsections are presented two approaches for activity recognition.

4.3.1. Activity recognition
As introduced, the ADLs analysis can provide useful information for elder care
and long-term care services. This aspect can be observed in the recent appear-
ance of smart environments, such as smart homes. Thanks to these advanced
technologies, the assistance, monitoring and housekeeping of chronically ill pa-
tients or people with special needs or elderly has been enabled in their own
home environments, in order to foster their autonomy in daily life by providing
the required services when and where needed.

By using such systems, costs can be reduced considerably, while alleviating
some of the pressure on healthcare systems. However, many issues related to
this technology are raised such as activity recognition, assistance, monitoring.

For instance, dementia diseases of the elderly have a strong impact on ADLs.
In fact, the ageing diseases result in a loss of autonomy. Medical researches [24]
have shown that early signs of diseases, such as Alzheimer, can be identified up
to ten years before the current diagnostics. Therefore the analysis of possible
lack of autonomy in the ADLs is essential to establish the diagnostics and give
all the help the patient may need to deal with the disease.

Being able to automatically infer the activity that a person is performing
is essential for many disabilities in older adults, which have been associated
with functional status based on ADLs in individuals with stroke, Parkinson’s
disease, traumatic brain injury, and multiple sclerosis.

The way to determine the autonomy of patient is to analyse his ability to
execute the ADLs in his own environment. However, it can be complicated for
a doctor to come and watch the patient doing these ADLs, as this would be a
very time consuming task. An alternative would be to record the patient doing
ADLs with a camera.

Previous papers on activity classification have focused on using 2D video [85]
[40] or RFID sensors placed on objects and humans [118]. The use of 2D videos

60



4.3. Activities of daily living

leads to low accuracy even when there is no clutter [69]. Moreover, RGB-D
cameras are commonly used for the recognition of human actions [65]. Instead,
the use of RFID tags is generally too intrusive because it requires RFID tags
on the people.

Recognizing ADLs is a potential field where CV can really help, for example,
elderly people to improve the quality of their lives [90]. Several research works
and several models are proposed to recognize activities with intrusive and non-
intrusive approaches. Activity recognition using intrusive approaches requires
the use of specific equipment such as cameras.

Previous works on detection of human activities have been developed from
still images as well as videos [74] [100] [47]. Many papers have shown that
modelling the mutual context between human poses and objects is useful for
activity detection [92] [53].

The recent availability of affordable RGB-D cameras, together with depth in-
formation, has enabled significant improvement in scene modelling, estimation
of human poses and obtaining good action recognition performance [50] [61]
[107]. This topic is very challenging and important because understanding and
tracking human behaviour through videos has several useful applications. In
[84] Nait-Charif et al. developed a computer-vision based system to recognize
abnormal ADLs in a home environment. The system tracked human activity
and summarized frequently active regions to learn a model of normal activity
and the system could then detect falling as an abnormal activity.

Activity recognition with non-intrusive systems is a complex task, and it is
based on a deep analysis of the data gathered from the environment. The sen-
sors in the environment record the events about the state and any changes that
happen within it. Each sequence of events is associated to a particular activ-
ity. The same person can perform an activity in several ways. This variation
in the behaviour of a person leads to the generation of a set of patterns that
characterize this person.

In this light, the variability in the person’s behaviour and activity, detect-
ing interesting patterns among many others, is a task of great importance for
understanding the general behaviour of the person [2]. In fact, by discover-
ing frequent patterns, the underlying temporal constraints, association rules,
progress and changes over time, it is possible to characterize the behaviour of
persons and objects and automate tasks such as activity monitoring, assistance
and service adaptation [96].

Currently, there are many mathematical models for activity recognition, such
as HMMs [95], Bayesian Networks [87], Kalman Filters [11] and Neural Net-
works [11]. Deep learning approaches on RGB video streams for activity recog-
nition have also been introduced. This creates a system that improves and
learns itself by updating the activity models incrementally over time [43].

61



Chapter 4. RGB-D data for top-view HBU: use cases and results

Traditionally, most activity recognition work has focused on representing and
learning the sequential and temporal characteristics in activity sequences. This
has led to the widespread use of the HMM. In fact, in [108] HMM is employed
with depth images to effectively recognize human activities. An HMM [95] is a
finite set of states; each state is linked with a probability distribution. Transi-
tions among these states are governed by a set of probabilities called transition
probabilities. In a particular state a possible outcome or observation can be
generated, according to the associated observation probability distribution. It
is only the outcome, not the state that is visible to an external observer and
therefore states are “hidden” to the outside, hence the name HMM.

In earlier exploratory studies the HMM has shown good results thanks to
their suitability to model sequential data, which is the case for monitoring
human activities. Indeed, acceleration data are measured over time during
physical human activities of a person and are therefore sequential over time.

In [19] an approach to activity recognition for indoor environments based on
incremental modelling of long-term spatial and temporal context is presented.
Even in [20] the authors introduced a simple way to apply qualitative trajectory
calculus to model 3D movements of the tracked human body using HMMs.
HMMs combined with GMM to model the combination of continuous joint
positions over time for activity recognition was introduced in [91].

True daily activities take place in uncontrolled and cluttered households and
offices and they do not happen in structured environments (e.g., with closely
controlled background). For this reason their detection becomes a much more
difficult task. In addition, each person has their own habits in carrying out
tasks, and these variations in style and speed create additional difficulties in
trying to recognise and to detect activities.

In this work, interest is focused on reliably detecting daily activities that a
person performs in the kitchen. In this context, this work proposes an auto-
mated RGB-D video analysis system that recognises human ADLs activities,
related to classical actions such as making a coffee. The main goal is to classify
and predict the probability of an analysed subject action. Activity detection
and recognition are performed using an inexpensive RGB-D camera. Human
activities, despite their unstructured nature, tend to have a natural hierarchical
structure; for instance, generally making a coffee involves a three-step process
of turning on the coffee machine, putting sugar in the cup and opening the
fridge for milk. Action sequence recognition is then handled using a discrimi-
native HMM. A dataset with RGB-D images and 3D position of each person for
training as well as evaluating the HMM has been developed and made publicly
available.

Several contributions are made by this work. First of all, the model is generic,
so it can be applied to any sequential datasets or sensor types. Second, the
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model deals with the problem of scalability by taking into account the sequences
recorded independently of the environment. Finally, the approach is validated
using real data gathered from a real smart kitchen which helps to make our
results more confident and the experiments repeatable.

The innovative aspects of this work are in proposing an adequate HMM
structure and also the use of head and hands 3D positions to estimate the
probability that a certain action will be performed, which has never been done
before in ADLs recognition in indoor environments.

In this work, a method for ADLs recognition is proposed. In particular, it
focused on using the HMM to facilitate the detection of anomalous sequences
in a classical action sequence such as making a coffee.

Design of HMM structure

Let:
X = {x1, x2, . . . , xn}

be a discrete finite activity space and

O = {o1, o2, . . . , om}

the observation space of a HMM [95]. Let T be the transition matrix of this
HMM, with Tx,y representing the probability of transitioning from activity
x ∈ X to activity y ∈ X, and px(o) be the emission probability of observation
o ∈ O in activity x ∈ X.

The probability that HMM trajectory follows the activity sequence s given
the sequence of n observations is denoted as:

P (X1:n ∈ seqn(s)|o1:n)

where seqn(s) is a set of all length n trajectories whose duration free sequence
equals to s.

Finding the most probable activity sequence can be seen as a search problem
that requires evaluation of probabilities of activity sequences. The Viterbi
algorithm based on dynamic programming can be used to efficiently find the
most probable trajectory. In fact, it makes use of the Markov property of an
HMM (that the next state transition and symbol emission depend only upon
the current state) to determine, in linear time with respect to the length of the
emission sequence, the most likely path through the states of a model which
might have generated a given sequence.
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Figure 4.15.: Block diagram of the recognition process.

Head and hands detection algorithms

The main goal of this work is to classify different activities that people carry
out during their daily life using an RGB-D camera in a top-view configuration.
The idea is to extract from depth information the 3D position of the person for
each frame. In particular, using the multi level segmentation algorithm in [61],
the head and the hands of each person are tracked when these are visible.
In fact, this algorithm intends to overcome the limitations of the single-level
segmentation in the case of collisions among people in the same scene.

In a similar way, to find the hands 3D position, this algorithm is applied
again to each person blob leaving out the upper part of person profile (head
and shoulders) previously found.

ADLs model

In this paragraph, an ADLs model is described. It takes into account both
the complexity of data and the lack of a large amount of training data for
learning purposes. The problem of recognition of daily activities in the image
to its simplest core, can be notice as an equivalence between an activity and
a hidden state of an HMM. This could be obtained with the design of a fully
connected HMM and training the inherent state-transition probabilities from
the labelled data. Regarding these ADLs as very heterogeneous and complex,
the suggested equivalence between an activity and a hidden state cannot hold.

Information provided by head and hands detection algorithms can be used
as input for a set of HMMs. Each of these recognise different actions sequence.
After training the model, an action sequence s = {s1, s2, . . . , sn} is considered
and its probability λ is calculated for observation sequence P (s|λ). Then the
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(a) (b)

(c) (d)

Figure 4.16.: Snapshots of RADiAL session registration.

action is classified as the one which has the largest posterior probability.
Figure 4.15 depicts the general scheme of the recognition process. In particu-

lar, the three different HMMs are used, which have respectively as observations,
the 3D points of::

• the head (HMM1);

• the hands (HMM2);

• both head and hands together (HMM3).

Table 4.7 indicates the number of vertical and horizontal layers used in the
quantization step for each HMM and the total number of observations, after
the resampling process.

The set of actions includes:

• making a coffee;

• taking the kettle;

• making tea or taking sugar;

• opening the fridge;

• other activities performed in a kitchen environment.
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Figure 4.17.: Reconstructed layout of the kitchenette where RGB-D camera is
installed.

Finally, the classification module provides the action xj that maximizes
PHMMi

. It is the HMM trajectory probability that follows the activity se-
quence s given the sequence of n observations, i.e.:

xj = arg max
i

PHMMi(X1:n ∈ seqn(s)|o1:n) (4.4)

Setup and acquisition

To evaluate the usefulness of approach for activity recognition, a new dataset
is built. This dataset contains common daily activities such as making coffee,
making tea, opening the fridge and using the kettle. The data were collected
over a period of 5 days.

The dataset also consists of random activities of each individual that can
be performed in a kitchen environment, which are not similar to any other
activity done before. The RGB-D camera was installed on the ceiling of L-CAS
laboratory at approximately 4m above the floor. The camera was positioned
above the surface which has to be analysed (Figure 4.17).

Table 4.7.: Number of observations for each HMMs (v: vertical layer, h: hori-
zontal layer).

3D Points # layers # observations

head v : 8, h : 8 512
hands v : 8, h : 8 512

head & hands v : 8, h : 8; v : 8, h : 8 262144
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RADiAL Dataset

The RADiAL dataset6 was collected in an open-plan office of the Lincoln Centre
for Autonomous Systems (L-CAS). The office consists of a kitchenette, resting
area, lounge and 20 working places that are occupied by students and post-
doctoral researchers. A ceiling RGB-D camera was installed (Figure 4.17) that
took a snapshot (with dimensions of 320×240 pixels, Figure 4.16) of the kitch-
enette area every second for 5 days, and activities of one of the researchers over
time were hand-annotated. Furthermore, the RADiAL dataset contains the
3D positions of the head and hands for each person with a minute-by-minute
timeline of 5 different activities performed at the kitchen over the course of
days. RADiAL contains 100 trials. Each trial includes the actions related to
one person.

Results

The experimental results obtained using our approach are presented. An archi-
tecture to implement HMMs ADLs recognition is proposed. The architecture
uses the 3D points extracted from the head and hands to classify different
sequences of actions corresponding to some ADLs.

The standard algorithm for HMM training is the forward-backward, or Baum-
Welch algorithm [6]. Baum-Welch is an iterative algorithm that uses an itera-
tive expectation/maximization process to find an HMM which is a local maxi-
mum in its likelihood to have generated a set of training’ observation sequences.
This step is needed because the state paths are hidden, and the equations can-
not be solved analytically.

In this study, the Baum–Welch algorithm was employed to estimate a transi-
tion probability matrix and an observation emission matrix so that the model
best fits the training dataset.

Since the discrete observation density is used in implementing HMMs, a
Vector Quantization and clustering step is required to map the continuous
observation in order to convert continuous data to discrete data.

A total of five models of activities were built using the method described in
Subsection 4.3.1. The models were used to recognize activities in the RADiAL
dataset. The five models correspond respectively to the activities “Other”
(this action contains all the other activities performed in a kitchen environ-
ment), “Coffee” (making a coffee), “Kettle” (taking the kettle), “tea/sugar”
(making tea or taking sugar), and “fridge” (opening the fridge). The results
were obtained using two different validation techniques.

Below, the results are given at first for the head only (HMM1), then the
hands (HMM2) and finally, the combination of both (HMM3). The main

6http://vrai.dii.univpm.it/radial-dataset
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Table 4.8.: Classification Results Cross Validation HMM1

precision recall f1-score

other 0.73 0.57 0.64
coffee 0.67 0.80 0.73
kettle 0.60 0.70 0.65

tea/sugar 0.66 0.70 0.68
fridge 0.74 0.61 0.67

avg / total 0.68 0.68 0.68

goal is to gradually improve the activities recognition.
In the case we applied a k-fold cross-validation approach (with k = 5) to test

our HMM1. The resulting confusion matrix is shown in Figure 4.18a. In the
confusion matrix most of the actions are detected with high accuracy. Table 4.8
summarises the activity recognition results demonstrating the effectiveness and
suitability of approach.

The confusion matrix for HMM2 is depicted in Figure 4.18b. The activ-
ity recognition results, as reported in Table 4.9, prove the effectiveness and
suitability in terms of precision, recall and f1-score.

Table 4.9.: Classification Results Cross Validation HMM2

precision recall f1-score

other 0.89 0.70 0.79
coffee 0.69 0.83 0.75
kettle 0.47 0.58 0.52

tea/sugar 0.64 0.68 0.66
fridge 0.74 0.65 0.69

avg / total 0.73 0.71 0.71

The confusion matrix of HMM3 for both the head and hands is shown in
Figure 4.18c. The results in Table 4.10 indicate an increase in the metrics for
evaluating the performance of our approach.

Table 4.10.: Classification Results Cross Validation HMM3

precision recall f1-score

other 0.93 0.76 0.84
coffee 0.76 0.87 0.81
kettle 0.58 0.70 0.63

tea/sugar 0.70 0.75 0.72
fridge 0.78 0.71 0.74

avg / total 0.78 0.77 0.77
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Figure 4.18.: k-fold cross-validation confusion matrices.
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4.3.2. Ambient assisted living
Recently the society, particularly in the industrialized countries, is moving to-
wards a significant demographic change known as the so-called ageing society.
This is due to the increase in life expectancy, which causes the ageing of pop-
ulation. For maintaining the expenses for the health care within the limits of
economic possibility, it is necessary to find cost-effective and innovative solu-
tions [104, 35].

Currently, according to the World Health Organization [88], elderly people
(i.e. people of 60 years of age and older) in the world is about 650 million and by
2050 will reach the 2 billion. At the same time, even European population will
keep on growing older. In fact, in 2008 the population over the age of 65 was
over 17%, and in 2060 it will rise to 30%. As regards the population over the
age of 85, instead, the rate will rise from 4% to 12% [37]. Furthermore, Eurosat
estimates that from this year inwards, deaths will exceed births. Then, in this
situation the social behaviour, the lifestyle and the identity of senior people
will strongly change. It is important, therefore, to implement smart solutions
for elderly care because they should remain independent and able to work for a
longer time. This can be achieved thanks to the technology. Falls, in fact, are
the main cause of injury death among people 65 years and over and they are a
significant obstacle to independent living of the seniors [77]. They are the cause
of hospital admissions for loss of independence and traumatic injuries. Among
hospitalized patients about 70% of accidents are due to falls. For ensuring
user-friendly assistive devices have been devoted many efforts [83]. Generally
falls occur in home environment and most of them often happens during the
night time [123]. Frequently, at the time of falling, the subjects are getting up
from bed or chair to go to the bathroom.

Lately, AAL has attracted a growing attention in scientific community since it
involves emerging and innovative technological solutions, providing embedded
system in the home environment, that will increase the quality of life and
will reduce costs for independent living. In the AAL field, the automatic fall
detection is an important issue, because falls affect the elderly people living
alone. The aim of AAL is to increase the self-confidence and the autonomy of
elderly or ill person for enhancing their security [104].

Currently the most frequently used techniques for fall detection are focused
on wearable sensors, such as gyroscopes and accelerometers [86]. However,
this devices often generate false alarms, because some ADLs are manifested
with fast moving down, that can be classified as a fall from a detector based
only on inertial sensor [14]. For this reason, in literature, a lot of research
investigates the fall detection using various sensors, for example the survey of
Mubashir et al. [83]. Other used methods are based on vision systems, however,
a lot of ethical issues about the respect of privacy and intimacy, especially
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in bathroom and in bedroom, are introduced by the continuous monitoring
through a vision systems. Moreover, these devices do not work in poor light or
night-light conditions, which are among the most frequent situations in which
falls happen.

In this context, this work proposes an automated RGB-D video analysis
system that recognizes dweller activities that are crucial for assistance purposes,
with a particular focus on the detection of falls. The study is based on people
detection and tracking algorithms, for mapping the users and for the detection
of important events such as falls or sit in a chair. The system allows to extract
and collect a lot of statistical data that, properly processed, provide knowledge
about the dwellers.

The knowledge can be an aid for customizing the home according to their
needs and to adapt the design of the home to their habits. In order to provide
such a knowledge, the movements of the dwellers are recorded on line using
a database. This way, the physical activity of the subject can be supervised
anytime. Furthermore, the RGB-D camera is able to extract the depth images
even in dark rooms, respecting the subjects’ privacy.

Experimental tests conducted in different domestic scenarios proved the ef-
fectiveness of the proposed solution, that is fast, accurate, and able to provide
a fall map in-home fall risk assessment.

Physical architecture

The physical architecture of system includes a RGB-D sensor installed in a
top-view configuration, as illustrated in Figure 4.19. It is controlled by an
embedded system that manages the sensor acquisition and that processes the
depth stream extracting measures of the people on the camera view. The sensor
is installed 3 ÷ 4 m above the floor, by covering an area of 8.25 ÷ 14.70 m2.

Software architecture

Figure 4.20 shows the software architecture of system.
As a first step, the RGB-D sensor acquire the depth stream. After this,

GMM algorithm is applied. This way a background model is obtained and the
background subtraction procedure can be used. Than, multi level segmentation
or water filling algorithms are used in order to find the heads of subjects. These
segmentation algorithms provide also a set of features including:

• the height of each person, hheight;

• the size of each head, Ahead;

• the head-shoulders distance, dh/s.
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Figure 4.19.: Representation of the home environment in which the system is
installed.

Furthermore, people detection algorithm determines if a set of pixel repre-
sents a person or an object by using the features extracted by the segmentation
procedure.

A tracking algorithm is used to maintain the same ID for as long as the
person remains in the field of view.

The feature extracted, over the time, of the height of each person, are used for
classify the the posture of the person. In particular, three types are analysed:

• when a person is standing up;

• when a person is sitting;

• and when a person is falling.

The last scenario is the most important to be considered for the elderly safety
and, therefore, I take into account, the robustness of this measurement and I
provide also an output signal that emits an alarm.

The information provided by the last procedures is recorded in a database,
where is an Analytical Processing System, i.e. a separate process that accesses
the data published on the database and extracts statistics and knowledge about
the inhabits.

Results

This paragraph discusses the results of the proposed technique for fall detection
problem, based on the processing of the depth information provided by the
RGB-D sensor in top-view configuration.
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Figure 4.20.: The main steps of algorithms.

The system has been tested quite extensively in laboratory. One major
concern is that a fall simulated in laboratory may be significantly different
from an actual fall. This could have a large impact on the velocity based
algorithm. For example, if actual falls have a shorter duration or lower velocity
than those recorded in laboratory, the number of frames and threshold velocity
would have to be adjusted. As a first evaluation of the fall detection system, a
basic case is considered (Figure 4.21): a single person walks in the scene, and
falls to the ground, without interacting with objects (i.e., the person does not
intercept any object when walking or falling down).

Figure 4.21.: Fall simulation during test phase in laboratory.
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Figures 4.22a and 4.22b show the image processing procedure during a fall
simulation. These data are used to detect the fall of a person. Instead of using
the floor plane equation provided by the max distance of depth image (this is
not always detected, particularly on stairs), the following equation is used to
calculate the floor plane.

Ax + By + Cz + D = 0 (4.5)

where,
A = 0,

B = cos η,

C = sin η,

D = 3.

A, B, and C are simply the vector normal to the floor and D shifts the floor
plane 3 meters below the RGB-D sensor. The distance from the floor plane
can then be calculated using:

d = Ax + By + Cz + D√
A2 + B2 + C2

(4.6)

For frame i and i + 1 the velocity for a particular joint normal to the floor is
then:

vi = di+1 − di

ti+1 − ti
(4.7)

Where t is the timestamp in milliseconds.
Since the 3D head point trajectory has been tracking, the head motion can be

analysed by the physics mechanics principle. As recommended by the author
of [10], during the falling phase, the joint motion can be seen as a free fall body.
The free fall body is described as aa equation:

h(t) = h0 + 1
2a(t − t0)2 (4.8)

where h(t) is the height at the time t, h0 represents the height at the begin-
ning of fall, a is the acceleration, t is the current time, and t0 is the starting
time. This formula can be used to simulate the point fall motion to generate
fall patterns. Figure 4.22 shows a fall head trajectory of a person. This curve
fits well with previous function. The difference can be considered as Gaussian
white noises. In order to improve the robustness, Gaussian white noises are
added into the free fall body curve. Based on the free fall body simulation, a
large fall and non-fall patterns dataset can be built up.

In order to confirm the fall detection, the recover motion analysis after the
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Figure 4.22.: Position 4.22a and velocity 4.22b over time for standing up and
falling.

fall motion is required. There are two recover metrics:

1. the heights of shoulders and head are higher than a recover threshold
value T 1

recover for a certain time;

2. the height of the head is higher than a high recover threshold value
T 2

recover for a certain time.

If one of these two metrics is satisfied, it means that the person is recovered.
In order to verify the system capabilities in term of frame rate and accuracy,

the system was tested in a simulated environment, considering a bathroom, a
kitchen and an hallway instrumented with the installed sensors. The image
acquisition and processing allows a processing rate of about 25 frames per
second, meeting the system requirements.

The same considerations are also valid to understand if the person is sitting.

Movements map

The system can shows in real time a heat map of the movements of the people
inside the field of view of RGB-D sensor (figure 4.23). The heat map is a
graphical representation of data where the values contained in the matrix are
represented as colours. This map is a valid instrument for the real time visual
monitoring. Moreover, it is possible to establish, with high confidence, the
percentage of time spent in a certain area and detect prolonged stay in the fall
position.
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Figure 4.23.: Example of “Movements Map” generated by the software.
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Chapter 5.

Conclusions and future works

In this Thesis, different algorithms and applications based on RGB-D data in
top-view configuration for HBU have been proposed. In particular, the im-
plemented algorithms can be used for people detection and tracking and, for
human interactions understanding. This Chapter starts presenting a discussion
summarizing the main results achieved in the Thesis. Then, the main contri-
bution is highlighted. Finally, the open issues and future research directions
are presented.

5.1. Discussion
After the introduction, a review of the literature on the two main topics ad-
dressed in this Thesis, i.e. HBU and RGB-D data form top-view has been pro-
vided. Chapter 2 included also an overview of main public available datasets.

Two approaches for people detection are proposed in Chapter 3. In particu-
lar, the objective of these approaches is to find the heads of people present in
the depth image.

Image processing techniques, such as water filling and multi level segmen-
tation, provide the shape of heads by evaluating depth data local minima. In
this way, the number of false positives increases when the subjects gesticulate
with their hands. In fact, these could be confused for heads. The introduction
of particular constraints on the shape could reduce this number, but the risk
is that the algorithm may become too specific for each setup.

Approaches based on semantic segmentation techniques allow a neural net-
work to distinguish a particular class, which in this case corresponds to the
class “head”. Five different types of CNNs were tested and achieved signifi-
cantly better results than image processing approaches.

In Chapter 4 are presented some applications for different use cases. Previous
algorithms for people detection have been used to monitor their movements
within a particular area. In fact, three macro-research fields were analysed.

In the context of video surveillance, it was necessary to extract different
characteristics of the subject in order to re-identify the latter when it reappears
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Chapter 5. Conclusions and future works

a second time. A dedicated dataset has been built to solve this problem and
anthropometric and colour based features have been extracted. CMC curves
evidence the robustness and good ability of descriptors to recognize the various
subjects.

Another application addressed has been developed in an IRE. Several RGB-D
sensors have been installed in a real store in order to monitor the behaviour of
consumers in front of different shelves. Moreover, through depth data, the sys-
tem detects all type of interaction that the costumers has with the shelf. Four
different CNNs have been developed to understand the type of interaction, i.e.
whether or not the customer has taken a product from the shelf. This system
is useful because it is able to extract a series of indicators that describe the
performance of store up to the single shelf in real time.

The last application scenario, where top-view RGB-D data for people detec-
tion algorithms has been used, was home environments. Two different types of
problems have been addressed: ADLs and fall detection. The first was HMM
approached. 3D points of head and hands were used as input of model (ob-
servation) in order to predict the activity of the user (state). The model was
validated with a dataset and five types distinct of activity were considered.
Instead, fall detection problem was solved by monitoring the person’s height
value.

5.2. Thesis contributions
The main contributions of this Thesis can be summarized as follows:

• design and implementation of two novel algorithms for people detection
from top-view configuration with RGB-D data using image processing
approaches. In particular, a performance improvement of water filling al-
gorithm is proposed in terms of computational complexity. Furthermore,
a new algorithm, called multi level segmentation, has been developed. It
carries out several segmentations on different levels of height in order to
find all the heads of people.

This work has been published in [61, 65, 63];

• development of semantic segmentation CNNs for heads detection, in par-
ticular, U-Net, SegNet, FractalNet, and ResNet are used in this work. By
introducing changes on different layers of these nets, the performances are
significantly improved;

• proposal and validation of new descriptors for Re-id task in top-view
configuration. Descriptors are composed of anthropometric and colour-
based features.

78



5.3. Open issues and future works

This work has been published in [66];

• design and implementation of several CNNs for user-shelf interaction
recognition. Through a manually annotated dataset made up of images
representing interactions between user and shelf, four different types of
CNNs have been trained.

• creation of four public available datasets:

– TVPR Dataset

– TVHeads Dataset

– RADiAL Dataset

– User-Shelf Interactions Dataset

Some of these datasets have been published in [66, 64];

In this Thesis, the potential of top-view configuration for detection and track-
ing applications in several sub-domains has been demonstrate, to outline key
limitations and to indicate areas of technology where solutions for remain-
ing challenges may be found. The success of RGB-D cameras can be closely
linked to their affordability and to the additional depth information coupled
with visual images that this approach provides. These cameras have already
been successfully applied in the several field to identify people and to analyse
behaviours and interactions. The choice of the RGB-D camera in a top view
configuration is due to its greater suitability compared with a front view config-
uration, usually adopted for gesture recognition or even for video gaming. The
top-view configuration reduces the problem of occlusions and has the advan-
tage of being more privacy preserving, because a person’s face is not recorded
by the camera. Starting from this, further investigation could be devoted to
explore approaches more accurate and effective such as Convolutional Neural
Networks or U-Net [99].

5.3. Open issues and future works

This section analyses the open issues in the proposed algorithms and applica-
tions, identifying some future research directions.

Novel algorithms for head detection are based on deep learning approach.
The CNNs used in this Thesis are the best techniques of semantic segmentation.
Indeed, this approach is better than traditional image processing techniques
because it is not based on geometric or colour constraints, but rather allows to
identify the heads of individuals based on previous learning.
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Further investigation on Re-id task and video surveillance field, will be de-
voted to the study of more sophisticated features. The CMC curves have sug-
gested that for the different distance metric approaches the depth descriptor
has strong discriminative power. The integration of more features in the model
seems to improve the identity discrimination. This aspect is of great impor-
tance, in order to perform a classification model. Future works would include
the use of other types of RGB-D sensors, such as time of flight (TOF) ones.
The system can additionally be integrated as a source of high semantic level
information in a networked ambient intelligence scenario, to provide cues for
different problems, such as detecting abnormal speed and dimension outliers,
that can alert of a possible uncontrolled circumstance.

Future projects about IRE are directed towards a detailed study of person
Re-id using top-view RGB-D data from several cameras, a task necessary to
assign a single and robust identifier to each buyer. Among several other in-
formation (i.e. audio recognition system, carts tracking), this will allow us to
better describe the client behaviour inside the shop and not only in front of a
single shelf.

Future efforts in the field of assistive technology are expected on the inte-
gration of video and audio systems. In this way, the identification of abnormal
events, such as the strange activity of the user, an intrusion or a object break-
age, can can be detected using audio microphones. Further investigation will
be devoted to extend HMM approach to select human joints that provide the
most informative spatio-temporal relations for ADLs classification. The long
term goal in this field is to develop a mobile robot that searches for the best
location to observe and successfully recognise ADLs in domestic environments.
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Appendix

A.1. Semantic segmentation results
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Figure A.1.: Fractal results.
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Figure A.2.: U-Net results.
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Figure A.3.: U-Net2 results.
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Figure A.4.: U-Net3 results.
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Figure A.5.: SegNet results.
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Figure A.6.: ResNet results.

87



Appendix A. Appendix

A.2. User-shelf interaction results
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Figure A.7.: Accuracy and loss results.
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Figure A.8.: Precision results.
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Figure A.9.: Recall results.
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(c) AlexNet.
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Figure A.10.: F1-Score results.
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