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Abstract

The main objective of the thesis is to investigate the optimal convergence dynamics of the main
real economic variables in a Dynamic Stochastic General Equilibrium framework with variable depre-
ciation rate of physical capital and maintenance and repair goods and services as a control variable
of the agents. We define an explicit depreciation rate function which is positively related with capital
utilization rate and negatively related with maintenance to capital ratio. Along the balanced growth
path depreciation rate exhibits a growth trend given by the steady state value of the investment-
specific technology progress. We include three types of technological progresses: the labor augmenting
technology progress, the investment-specific technology progress (IST) and the marginal efficiency
of investment technology progress (MEI). We compare the model with endogenous depreciation and
maintenance sector to our baseline DSGE model, which is built following Justiniano et al. (2011). The
estimation exercises of our maintenance model, performed on the Canadian economy, confirm the re-
sults of Justiniano et al. (2011) according to which the main driver of the business cycle fluctuations
is the shock to the marginal efficiency of investment whereas the role of the IST shock is negligible. In
response to the MEI shock our model is able to generate co-movement in all the considered real endoge-
nous variables including consumption which in Justiniano et al. (2011) behaves countercyclically. The
optimal paths result to be amplified and convergence is delayed as a consequence of increased depre-
ciation due to obsolescence, which destroys part of installed capital. We as well include in our model
a shock which affects the transformation process of the maintenance goods, named the maintenance-
specific technology progress. In long run this shock is found to have no effect in the variations of the
main real variables except of a low effect on the maintenance growth. On the contrary, it becomes the
key-driver of maintenance growth in short run.
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Introduction

This thesis investigates about the possible role that an endogenous depreciation rate of capital could
play in the propagation mechanism of the shocks to the economic business cycles. For this purpose,
we build and estimate a Dynamic Stochastic General Equilibrium model (DSGE) and explicitly define
an endogenous capital depreciation rate function. The production of maintenance goods is as well
included in our model structure.

In general, the issue about a variable depreciation rate does not find much room in the endogenous
growth models. In fact, it is largely used to be assumed that the capital stock depreciates at a
constant rate over time. In support to this hypothesis the economic literature is extensive1. On the
contrary, and specifically in the microeconomic studies2, evidences arise in favor of a variable capital
depreciation rate especially when the period of intensive technological progress is considered. It is
found that over the past two decades the depreciation rate of capital goods has accelerated, with a
persistent growth in the high-tech sectors. This happens because, as explained by Keynes (1936), when
a new investment good becomes more efficient more capital with higher qualitative characteristics is
produced, this induces a more intensive use of the already installed capital and, hence, an acceleration
in its depreciation rate. Therefore, in the era of accelerated technological improvements the aspect of
capital obsolescence is crucial. Two important issues for our research purposes stem from the Keynes’
explanation. The first one is the evidence about the volatility of capital depreciation. The second
one deals with the type of technology shock that contributes to amplify this volatility, that is, not all
the shocks are responsible for the capital depreciation acceleration. In our DSGE model we assume
three types of technology shocks already known in the related literature: the neutral labor-augmenting
technological shock, the investment-specific technological shock (IST) and the shock to the marginal
efficiency of investment (MEI). In line with Justiniano et al. (2011), we assume that the former one
affects directly the production of intermediate goods and impacts on the marginal productivity of
the production factors. The IST progress hits the production technology of new investment goods.
Finally, the MEI shock impacts on the production of new capital goods. The model structure is
decentralized, following Justiniano et al. (2011), and each sector deals with the proper optimization
problem. Households acquire new capital from the new capital goods producers in order to transform it
into installed capital and, subsequently, rent it to intermediate goods producers by choosing an optimal
utilization rate. The new capital goods are produced using the investment goods, which, in turn, are
obtained from the final output by the new investment goods producers. Both the markets are perfectly
competitive. In addition to the model built in Justiniano et al. (2011), we assume that households can
optimally choose the level of expenditures on maintenance and repair activity of installed capital. The
maintenance goods producers operate in perfect competition and transform a fraction of final good into
maintenance goods, subject to specific costs of adjustment. The maintenance goods are purchased by
households given the depreciation path of capital stock. We assume the existence in this transformation
process of a shock which we call the maintenance-specific technology shock (MST). According to our

1 See, for example, Smets and Wouters (2007), Justiniano and Primiceri (2008), Justiniano et al. (2010, 2011)
for DSGE models with constant depreciation rates. And Epstein and Denny (1980), Hulten and Wykoff (981a,b),
Nadiri and Prucha (1996), Jorgenson (1996), Oliner (1996), Huang and Diewert (2011) for the estimations of the de-
preciation rates.

2 See, for example, Tevlin and Whelan (2003), Doms et al. (2004), Geske et al. (2007) and Angelopoulou and Kalyvitis
(2012).
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estimation results, the MST progress plays a cardinal role in explaining the variations in maintenance
solely, however only in the short run. Following Albonico et al. (2014), Boucekkine and Ruiz-Tamarit
(2003), and Licandro and Puch (2000) we assume that maintenance to capital ratio and the utilization
rate of capital both shape explicitly the function of the depreciation rate. Specifically, it is positively
related with the rate of capital utilization, as has been shown in Greenwood et al. (1988), and negatively
related with the maintenance to capital ratio, according to McGrattan and Schmitz (1999).

Given our model settings and assumptions it emerges that capital depreciation rate follows a trend
which depends along the balanced growth path on the steady state level of the investment-specific
technology progress. This equilibrium driven result is in line with the hypothesis dominating the issues
about measurement of aggregated capital stock, according to which the rate of depreciation is inversely
related with the relative price of new investment.3 We perform Bayesian estimation exercises on both
the baseline model and the maintenance model using data from the Canadian economy and compute
the impulse response functions in order to compare the performances of the two models. Our baseline
model delivers qualitative optimal behavior of the real endogenous variables similar to the model of
Justiniano et al. (2011). From the comparison of the posterior estimates for the second moments and
correlations of the real variables it emerges that the maintenance model mimics the respective values
calculated on the actual data better than the baseline model. Overall, the maintenance model seems
to perform fairly well as it is shown in the identification analysis on the structural parameters and in
the multivariate convergence analysis.

Both the baseline model and the maintenance model confirm the results obtained in Justiniano et al.
(2011) according to which the main driver of the economic business cycle is the shock to the marginal
efficiency of investment. In fact, it explains more than 21% of variability in output in the baseline
model and more than 61% in the maintenance model. The effects of the investment-specific technology
shock are negligible, being responsible for 2.36% and 0.30% of output growth in the baseline and
maintenance models, respectively. These are even lower than the figures estimated for the labor
augmenting technology progress which explains 14.34% and 3.49% of output growth, respectively.
Differently from the results obtained both in Justiniano et al. (2011) and in our baseline model, it
emerges that the maintenance model is able to generate co-movement in response to the MEI shock for
all the considered real variables including consumption, which in the other two models is countercyclical.
In fact, the assumption about variable depreciation rate and the presence of nominal frictions imply,
among others, higher variations in the mark-ups of the maintenance model which, in turn, allow
consumption and labor to co-move. Both maintenance and capital depreciation rate are as well pro-
cyclical. Finally, our estimation analysis confirms the literature findings according to which capital
depreciation is more volatile than output.

The rest of the thesis is structured as follows. In chapter one we present the literature review which
is relevant for understanding our research motivations and the basis of our assumptions about the model
setting. In chapter two we describe analytically the structure of the maintenance model, compute the
optimality conditions, log-linearize the model around the steady state and expose the linear rational
expectations model which is used in our estimation analysis. The posterior estimation results are
shown in chapter three, where we as well explain our estimation methodology and the construction of
the dataset. Finally, we present a comparison between the performances of the maintenance and the
baseline models resorting to the estimated impulse response functions.

3 See, among others, Diewert and Schreyer (2006).
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Chapter 1

1 Literature Review

In this chapter the main research that have signed the route for the construction of endogenous capital
depreciation rate and for the maintenance importance in the economic activity is presented. We start
by exposing mainly the improvements in the modeling of the capital depreciation rate function. Two
works are of a great interest in this literature, the first one is Greenwood et al. (1988), which stresses
the importance of the factor hoarding assumption in reproducing the economic business cycles. The
second one, McGrattan and Schmitz (1999), highlights the possible role of maintenance activity, which
additionally may impact on the rate of capital depreciation, and can be listed as a decision policy
of the economic agents. Then, the attention is delivered to the interpretation of the depreciation
rate within the setting of vintage capital models. Insights on the economic behaviors of depreciation
and maintenance in response to neutral and investment-specific technological progresses are presented.
Finally, the recent findings with regard to the DSGE models with and without endogenously determined
capital depreciation rate are highlighted.

The chapter is structured as follows. In section 1.1 we expose the main issues about the capital de-
preciation rate, with a particular attention to its analytical definition and methodologies of estimation.
In section 1.2 are described the main models that gave importance to the utilization rate of capital in
determining the depreciation rate. In section 1.3 we sketch the first steps in the Real Business Cycle
modeling with depreciation depending both on utilization and maintenance expenditures. In section
1.4 several Vintage Capital models are presented which have analyzed the economic behavior of capital
depreciation and maintenance expenditures in response to the technological progresses. In section 1.5
we describe two Dynamic Stochastic General Equilibrium models. The first one includes endogenous
depreciation rate function. The second one is used as the baseline model for our research purposes.

1.1 Some facts on the depreciation rate of capital

Knowing how to better evaluate the depreciation rate of capital in order to obtain consistent mea-
surements of it is important for the policy makers at least for two reasons. First of all, depending on
the way the capital is evaluated, and hence, on how depreciation is computed, different taxations of
capital may arise. Tax policy, in fact, is strictly related to the concepts of depreciation and revaluation
of capital4. Second, depreciation is accounted for in the measurements of the total factor productivity
growth, which is largely employed in the evaluation of the economic performances. Tevlin and Whelan
(2003), in fact, in explaining the U.S. investment boom over the 1990s, conclude that "...an increasing

4 Doms et al. (2004), for example, provide a detailed analytical and empirical evidence of the tight linkage between
tax code and depreciation.
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depreciation rate was of first-order importance in the extraordinary behavior of equipment investment
(of the U.S.) in the 1990s...". The aggregate capital of an economy is used to be represented in the Na-
tional Accounts Systems as a fixed reproducible tangible wealth, which is associated with the private
and government equipment and structures and the durable goods owned by consumers. The mea-
surements of fixed reproducible tangible wealth depend on the obtained a priori measurements of the
capital depreciation rates. In general, as far as capital is a durable good, over time, the value of using
it differs from that of owning it. Therefore, first of all, a distinction must be made between the capital
stock and the flow of capital services. The latter ones are usually defined as those capital goods that
are purchased or rented by the firms in order to constitute the actual input in the production process.
Specifically, capital services are the flows of productive services accruing from the cumulative past
investments. The prices of these capital goods are referred to as user costs or rental prices of capital.5

The stock of capital, on the other hand, is defined as the discounted stream of future rental payments
for capital services that it is expected to yield. The price of an n years old asset, Pn

t , purchased at the
beginning of period t, can be defined, using the terminology of Diewert and Schreyer (2006), as follows

Pn
t = fn

t +

[

1 + it
1 + rt

]

fn+1
t +

[

1 + it
1 + rt

]2

fn+2
t +

[

1 + it
1 + rt

]3

fn+3
t + · · · (1.1)

with n = 0, 1, 2..., fnt denoting the rental price (or user cost) of an n years old asset at the beginning
of period t, it the expected rates of change of rental prices observed at the beginning of period t, and
1 + rt the discount factor. Thus, rnt defines the sequence of one-period nominal interest rate. The
above equation can be re-expressed as

Pn
t = fn

t +

[

1 + it
1 + rt

]

Pn+1
t

or, else

fn
t = (1 + rt)

−1
[

Pn
t (1 + rt)− Pn+1

t (1 + it)
]

= (1.2)

=

[

Pn
t − Pn+1

t

1 + it
1 + rt

]

The latter expression says that the user cost,fnt , is given by the difference between the purchase
price of the n years old asset at the beginning of the period t, Pn

t , and the value of its depreciation at
the end of period t, i.e. (1 + it)P

n+1
t = Pn+1

t+1 , which must be divided by the discount rate, (1 + rt),
as far as the loss in value due to depreciation may be accounted for only at the end of each period.

The depreciation rate, δnt , of an n years old asset at the beginning of period t is, therefore, defined
as

δnt = 1−
Pn+1
t

Pn
t

Hence, given the sequence of {δnt }, and the price of a new asset in period t, one can determine the
sequence of stock prices, {Pn

t }, as follows

Pn
t =

(

1− δ0t
) (

1− δ1t
)

...
(

1− δn−1
t

)

P 0
t (1.3)

5 A thin distinction among the two concepts, however, exists. The rental price of capital, in fact, is the actual market
price attributed to the use of the capital. The user cost, instead, is the cost that the capital-owner implicitly supports
when using the capital.
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with n = 0, 1, 2.... Therefore, the sequence of user costs {fnt } can be expressed in terms of the new
asset price at the beginning of period t, P 0

t , and the sequence of depreciation rates {δnt }, that is

fn
t = (1 + rt)

−1 (1− δ0t
)

...
(

1− δn−1
t

)

[(1 + rt)− (1 + it) (1− δnt )]P
0
t

= (1 + rt)
−1 [rt + δnt (1 + it)− it]P

n
t (1.4)

with n = 0, 1, 2....
Given the above relationships, it is evident that the sequence of depreciation rates, the patterns

of the user costs (or the rental prices) and the patterns of the asset prices are strictly correlated
among them. Therefore, the more efficient the calculation of these values, the better the valuation of
capital stocks and flows, which, in turn, are necessary for the calculations, as stated above, of the gross
domestic and national products or of the total factor productivity or, else, for the implementation of
capital taxation codes.

Diewert (1996) reports a detailed literature review about the role and the interpretation of the
capital depreciation rate in the economy over the last decades. According to him, the first traces
witnessing the need to account for losses in the value of capital stocks can be dated back to yearly
1880s, when the U.S. railroads had begun widely to spread out. Different approaches in defining and
evaluation of capital depreciation rates have been followed, starting with simple appraisals in the value
changes of the capital and ending with statistical estimations of the physical deteriorations and of the
losses in productive lives of capital. Over the yearlies 1990s the problem of evaluating the depreciation
rates has shifted towards that of "funding the future replacement of durable input" (See, for example,
Taylor (1923) and Canning (1929)). This approach, named the sinking fund approach, sets the question
about the retirement date of the capital asset and its replacement costs. However, it had been promptly
discredited over the 1930s for several reasons (See Daniels (1933) and Gilman (1939)). Thereafter, the
methodology advanced by Böhm-Bawerk (1891) has been deepened, according to which capital assets
depreciate simply following a straight line path. Specifically, calling P 0 the initial cost of an asset, this
must be allocated over the estimated n periods of the asset service life.6 The single period depreciation
rate is, thus, calculated as a constant ratio δ = 1/n and is comprised between zero and unity, with
the respective historical cost given by the sequence of n allocations (1/n)P 0,..., (1/n)P0, which, in
current values, is equivalent to (1/n)P1,..., (1/n)Pn. Akin to the straight line approach, the declining
balance method assumes that the depreciation rate follows a constant geometric rate path, δ, comprised
between zero and unity, with the corresponding sequence of the periodic current cost given by δP1,
δ (1− δ)P2, δ (1− δ)2 P3, δ (1− δ)3 P4, ..., δ (1− δ)n Pn+1. Both the methods, however, suffer from
the criticism about the a priori assumption regarding the asset service lifetime, which, indeed, is
unobservable (see, for example, Preinreich (1938), Lutz and Lutz (1951)).

Over the second half of the 1990s calculations of capital depreciation based on the market value
estimations, rather than on the historical cost estimations, have been highlighted (see Hicks (1939),
Parker (1975), Griliches (1963), Edwards and Bell (1965)). According to this methodology, the decline
in value of a durable asset can be computed by comparing the market prices of used assets with the
original prices of the assets and to account for the differences among the two values, given that a second
hand market for durable assets exists. Specifically, knowing the purchase price of a new durable asset,
P0, which is to be used for one period, and knowing the average market price in the next period of the
same asset, P1, the one period depreciation rate, δ0, is defined as

6 Note that, this approach implies knowing a priori the total assets useful lifespan.
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P 1/P 0 =
(

1− δ0
)

Generalizing for an n years old asset it delivers the expression (1.3).
If the depreciation rate is assumed to be constant over time, i.e. δn = δ0 for n = 1, 2, ..., N −

1, then equation (1.3) delivers the declining balance (or geometric) depreciation pattern. Empiri-
cal studies based on equation (1.3) have been carried out by Beidleman (1973, 1976), Hall (1971),
Hulten and Wykoff (981a,b,c, 1996), Oliner (1996), and Jorgenson (1996). Of course, this approach is
not free of criticisms (see Lachmann (1941), Baxter and Carrier (1971), and the same Hulten and Wykoff
(1996))7. The most important one concerns the drawback of this methodology in accounting for the
variations in the intensity of use of the durable assets. With regard to this, Edwards and Bell (1965)
have suggested to construct sets of assets similar from the points of view of the intensity of use
and maintenance policies and to estimate the set-related depreciation rates. This approach has been
named by Jorgenson (1996) the "analysis of variance approach". Alternatively, to override this prob-
lem, Beidleman (1973, 1976) has used utilization and maintenance as explanatory variables in order to
estimate equation (1.3). This latter approach Jorgenson (1996) has named the "hedonic approach".

Other estimation methodologies of the capital depreciation rate rely on some explicit economic
assumptions. One of these approaches, the production model or factor demand model, is based on the
estimation of the firms production function. So, for example, it is used to assume that a firm, over the
period t, produces yt units of output using a vector xt of nondurable inputs, It units of durable inputs
purchased at the beginning of period t, and the remaining services of past durable inputs. A durable
input lasts N periods and every period is adjusted for the physical loss in efficiency. Moreover, it is
usually assumed that unretired durable inputs are perfect substitutes in the production function F .
Regardless the technological progress, the production function may be expressed as follows

yt = F [xt, It + (1− δ0) It−1 + (1− δ0) (1− δ1) It−2 + · · ·+ (1− δ0) · · · (1− δN−1) It−N ] (1.5)

Once the functional form of F is defined, the stochastic processes are added, and provided that
the data on output, and nondurable and durable inputs are available, the production function (1.5) is
used to simultaneously estimate all the unknown parameters of the statistical functional form together
with all the depreciation rates considered in the function. Estimations can also be carried out using
the dual cost or profit function, or adding restrictions on the depreciation parameters, or, else, using
assumptions on short run profit maximizing or cost minimizing behaviors which incorporate addi-
tional estimating equations with prices. These kinds of estimation methods have been implemented by
Epstein and Denny (1980), Pakes and Griliches (1984), Prucha and Nadiri (1991), Nadiri and Prucha
(1996) and Doms (1996). In general, this approach manifests some drawbacks as far as aggregating a
wide range of outputs, and nondurable and durable inputs may result to be inefficient and cumbersome.
Therefore, the resulting estimated values of the depreciation rates, in general, may differ considerably
from the ones obtained using, for example, the used asset approach. However, different estimated val-
ues may be obtained also when the same methodology is implemented. In fact, the average economic
depreciation rate in the U.S. total manufacturing sector over the period 1947-1971 is about 0.125 in
the studies carried out by Epstein and Denny (1980) and Kollintzas and Choi (1985), which is slightly
higher than the one obtained by Bischoff and Kokkelenberg (1987) over 1947-1978, which amounts to

7 Wykoff (2003), for example, with regard to the used-asset prices based estimations carried out by Hulten and Wykoff
(981a,b) has argued that the related estimated depreciation rates tend to be biased upward, thus the resulted capital
stocks are biased downward.
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0.106. The estimation obtained by Nadiri and Prucha (1996) is slightly higher than the one estimated
by BEA over the period 1960-1988, which are 0.059 and 0.034, respectively. Prucha and Nadiri (1991)
estimate the capital depreciation rate for the U.S. market assuming endogenous capital utilization
in a dynamic factor demand model. According to their estimation results, capital depreciation rate
ranges between 0.028 and 0.043 over the period 1959-1980 with a pick around 1973. The resulted
average depreciation rate over the same period is about 3.8%. The depreciation rates estimated by
Hulten and Wykoff (981c)8 using the used market prices approach averaged, per year, 0.133 for equip-
ment and 0.037 for structures, whereas those of BEA were, on average, 0.141 and 0.060, respectively.
Considering specific sectors, the depreciation rate for autos estimated by Hulten and Wykoff (981c)
was about 33%, that of BEA 13%, and those of Wykoff (1970), Cagan (1971) and Ackerman (1973)
were between 17%-27%, 21%-30%, and 28%-34%, respectively. As to the machine tools the estimated
depreciation rates were 12%, 13%, and in the range of 4%-21%, respectively, for Hulten and Wykoff
(981c), BEA, and Beidleman (1976).

Another estimation approach is based on the observed rental prices of assets, assuming that a rental
market for durables exists (see, for example, Jorgenson (1996)). In general, the functional form for the
rental price, fnt , of an n years old asset observed in period t is given by equation (1.4). This kind of
expression can be used to compute the period related depreciation rates δnt , by assuming that the rental
prices of durable assets are equivalent to the opportunity costs for the utilization of those assets over
the same periods. However, as Diewert (1996) points out, the estimations of the capital depreciation
rates generated by this approach may be inaccurate, especially when prices are highly volatile over the
accounting periods. In fact, the rental prices of the assets are usually determined at the beginning
of each period, whereas the prices of the used assets at the end of each period. For this reason an
anticipated inflation rate for period t, it, is incorporated in the expression (1.4). So, computations of
the depreciation rates using this approach require a priori assumptions about the anticipated rate of
inflation, which, once again, generates uncertainty over the estimation procedure.

Finally, making use of equations (1.1)-(1.3) the one hoss shay depreciation estimation approach
can be carried out according to which an asset yields constant levels of services over its useful life of
N years, i.e. fnt /f

0
t = 1 for n = 0, 1, 2, ..., N − 1 and zero thereafter. In contrast, the linear efficiency

decline approach assumes that the sequence of relative efficiency declines with the asset’s age, that is
fnt /f

0
t = [N − n] /N for n = 0, 1, 2, ..., N − 1, and fnt /f

0
t = 0 for n = N,N + 1, N + 2, ....

Other methods for calculation of capital depreciation rates have been used in the literature. Be-
yond those listed above, the retirement approach focuses on the estimation of assets retirement, the
investment approach is based on investment models, and the polynomial benchmark approach uses the
perpetual inventory method. The most exhaustive studies about the capital depreciation rate based
on used-asset prices, i.e. those of Hulten and Wykoff (981a,b), Koumanakos and Hwang (1988), and
Coen (1975) conclude that the best fit in the manufacturing industries is provided by the geometric
pattern 9. BEA, in particular, makes use of the estimates carried out in Hulten and Wykoff (981a,b,c)
for computation of depreciation rates in the manufacturing sector. With regard to the category of com-
puters, the estimations made by Oliner (1992, 1993) are used. For automobiles the broad availability

8 The authors have found that the declining balance rates for equipment and structures were, respectively, 1.65 and
0.91.

9 Note that, under the geometric pattern assumption, the functions of efficiency and age-prices are the same, therefore
the value of capital replacement equals capital depreciation.
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of actual observations is used. Finally for nuclear fuel and missiles it uses the straight-line depreciation
pattern in order to account for replacement and retirement aspects of these categories of assets.

Given the importance of a correctly estimated economic depreciation rate in the national accounts,
over the 80s and 90s the attention of the U.S. statistical bureaus have been shifted towards the collec-
tion of as much as possible evidence about the service lives, rates of decay and economic depreciation of
the capital assets. Basing on the gathered information, both the Bureau of Labor Statistics (BLS) and
the Bureau of Economic Accounts (BEA) have revised their methodological measures of the capital
depreciation rates and the estimations of their service lives. Specifically, BEA has started to assume a
geometric depreciation path, rather than the straight-line one implemented till then. On the contrary,
BLS introduced a hyperbolic age-efficiency pattern in order to produce consistent estimations of the
U.S. productivity measures. The new improved methodologies used for the estimation of the economic
depreciation rates exploit the observability of prices of used assets in the resale markets. Such resale
prices have witnessed in favor of a geometric depreciation path, according to which capital assets are
subject to a faster depreciation in the earlier years of their economic lives than in the later ones.
According to the Systems of National Accounts depreciation rate of capital, which is usually labeled
"consumption of fixed capital", reflects the cost deriving form the use of capital, therefore, it is crucial
for the calculation of the net values of domestic and national products. Both the estimations of the
capital net stock and of depreciation are based on the perpetual inventory method, which assumes
that the net stock is given by the cumulative values of gross past investments minus the cumulative
values of past depreciations. Moreover, since 1996 BEA has started to calculate all the real expendi-
ture aggregates entering the National Income and Product Accounts (NIPA) using the Fisher chain
aggregate, that is

gt =

√

∑n
i=1 p

i
tq

i
t

∑n
i=1 p

i
tq

i
t−1

∑n
i=1 p

i
t−1q

i
t
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i=1 p

i
t−1q

i
t−1

where pit and qit are, respectively, prices and quantities of the assets and gt determines the growth
rate of the Fisher chain aggregate, which captures thus a mix of old and new quantities and prices of
the assets.

As stated above, before the early 1990s BEA used to calculate the capital depreciation rates on
the basis of the straight-line profile and of an explicitly assumed retirement pattern of the assets.
Specifically, all the depreciation rates were assumed to decline to zero at constant rates each period.
The service lives of the same asset types were assumed to be distributed about a mean service life
of an asset according to one of the Winfrey’s retirement patterns. The new improved methodology
implemented thereafter, instead, estimates the depreciation rates assuming a geometric profile. Thus,
given the properly calculated declining-balance rates10, these are divided by the value of assumed assets
service lives, in order to obtain the revised according to BEA values of depreciations. Moreover, as
far as informations about changes in the assets lifetimes are often unavailable, these are used to be
kept constant over time and periodically adjusted. Figure 1.1, taken from the BEA’s official website,
illustrates the different depreciation paths generated by a geometric estimation methodology, a straight-

10 In general, the values used for the declining-balance rates were those calculated by Hulten and Wykoff (981a,b,c).
The assumed declining-balance rate for equipment, for example, is 1.65, which according to BEA is common to many
types of assets, whereas that for structures is 0.91.
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line methodology, and a straight-line with Winfrey retirement patterns methodology for a typical type
of equipment with an average service life of 15 years.

Fig. 1.1: Typical depreciation profiles for equipment with 15-year service life

As it can be observed, over the first 10 years the geometric profile exhibits the most accelerated
path, which becomes smoother in the latest years of the asset lifetime. The two types of the straight-line
profiles, instead, are almost similar with exception of the latest periods, when the Winfrey retirement
assumptions make the asset to survive longer.

BEA defines depreciation as "the decline in value (of an asset) due to wear and tear, obsolescence,
accidental damage, and aging". This definition includes also the retirements and discards of the assets,
which imply a withdrawal of the asset from the service. Therefore, depreciation is treated as a cost
in the formation of gross domestic product or in the calculation of business income. Moreover, this
definition is in line with the System of National Accounts, which defines depreciation as "the decline,
during the course of the accounting period, in the current value of the stock of fixed assets owned and
used by a producer as a result of physical deterioration, normal obsolescence, or normal accidental
damage". BEA accounts for the obsolescence effect by incorporating the service lives of the assets
in the calculation of the geometric depreciation rate, i.e. an asset which is still productive may be
withdrawn from production due to the availability of new more productive assets. It as well uses
hedonic or other quality-adjusted price indexes which are able to capture the effects of technological
improvements. Of course, employing used-asset prices may generate distorted measures of depreciation
either because of changes in economic conditions (for example changes in tax laws or interest rates)
that affect prices or because the asset sample does not properly represent the whole asset population
(especially when the asset retirement is to be accounted for).

The new measurements of depreciation for the U.S. National Income and Product Accounts, which
are published by BEA, have been constructed by Fraumeni (1997). As stated above, these measure-
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ments make use of the revealed prices of used assets in the resale markets, which confirm geometric
path as the best proxy. However, for some assets such as computers, autos, missiles and nuclear fuel
empirical studies or technological progress have shown that a nongeometric depreciation pattern better
suits the data.

Fernald (2014), in order to build up a new quarterly growth accounting database for the U.S.
business sector, have aggregated the depreciation rates obtained in Fraumeni (1997) on the basis of
geometric pattern. The aggregation technique follows the perpetual inventory method, according to
which the stock of j-type capital in period t is given by Kj,t = (1− δj)Kj,t−1 + Ij,t−1. The firm’s
cost-minimization problem delivers the following first order condition for the user cost of the j-type

of capital Rj,t =
(

it + δj − πej,t+1

)

P I
j,t, where it is the nominal interest rate, πej,t+1 is the expected

rate of price appreciation, and P I
j,t is the purchase price of investment. According to this aggregation

procedure the annual depreciation rate for equipment averages 13% per year . Among this, the average
depreciation rate of computers and peripheral equipment is 31.5%, that of other information processing
equipment is 13.4%, and of transportation equipment is 12.8%. The average annual depreciation rate
of structures is 2.6%, among which that of manufacturing is 3.1%. As to the intellectual property
capital it results to be about 15.8%. Specifically, the depreciation of softwares is 46% per year, and
that of research and development is about 15%.

With regard to the Bureau of Labor Statistics (BLS) and its commitment in developing series
of productivity for the U.S. industrial and manufacturing sectors, it is worth to mention the paper of
Dean and Harper (2001). Spurred by the developments in the related literature, BLS have implemented
several projects to improve its methodology of productivity measurements. One of these regards the
aggregation concepts of tangible capital, which were basically distinguished between the aggregation
based on relative efficiency of capital and the one based on the capital rental prices. The latter one,
sustained by Hall (1968), explicitly accounts for the capital depreciation rates, as follows

ft = ptrt + pt+1δt −∆pt+1 (1.6)

where ft denotes the capital rental price in period t, pt is the price of new capital purchased in period
t, rt the nominal discount rate, pt+1 the price of new capital purchased in period t+ 1 and physically
equivalent to the asset purchased in period t, δt the economic depreciation rate, and ∆pt+1 is the rate
at which prices appreciate.

Similarly, Jorgenson and Griliches (1967) used the chained Tornqvist index to aggregate different
types of assets, kit, basing on the assumption that the discount rate is equivalent to the rate of return
on capital, and which, in turn, implies that the implicit rents of capital account for the "property
income", Φt, as follows

Φt =

n
∑

i=1

Kitcit =

n
∑

i=1

kit [pitrt + pitδi − (pit − pit−1)]

According to the latter expression, assets that depreciate faster exhibit a higher weight, cit, with
respect to the long-lived ones. This suggests that an investor should apply higher rents on the short-
lived assets in order to compensate their higher depreciation rate. With regard to the assets efficiency
pattern, and differently from BEA, BLS has assumed a hyperbolic functional form, and calibrated
it such that the asset’s efficiency would decline more slowly over the first periods of its service life,
and more rapidly over the later periods. The estimates for the assets service lives and for the discard
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patterns, however, were taken from the BEA datasets. So, contrary to BEA, BLS assumes a hyperbolic
age-efficiency pattern because as ultimate goal it seeks to calculate the productivity measures of the
U.S. economy, which require information about the age-related deterioration rather than the economic
one.

The paper of Oliner and Sichel (2003) stresses the importance of the depreciation rates in the
income shares of the high-tech assets. They build a neoclassical growth-accounting model, in order to
measure the growth contribution of information technology capital to the output growth in the nonfarm
business sector. In particular, they assume four types of capital stocks: computer hardware, software,
communication equipment, and all the other tangible assets. They assume that all the markets are
perfectly competitive and characterized by constant returns to scale. Labor and capital are perfectly
mobile, and there are no adjustment costs for the integration of new inputs into production process.
Given these assumptions, the income shares are equivalent to the respective output elasticities and all
sum to unity. Thus, they obtain the following optimal capital income share, j,

αj =
(R+ δj − Πj)TjpjKj

pY

where R is the nominal net rate of return on capital, δj is the specific capital depreciation rate, Πj is
the expected change in the capital value, Tj is the taxation, pjKj is the current-dollar capital stock,
and pY is the total nonfarm business income. According to the above expression capital depreciation
rates positively contribute in the determination of capital income shares. Therefore, the authors
perform estimation exercises relying mostly on the data available in BLS and BEA with regard to
capital depreciation. For components of computers and peripheral equipment, however, they rely on
Whelan (2000) methodology and estimate the depreciation rates of these assets following the geometric
decay pattern finding that the personal computers depreciate at 30% per year. Given their estimation
results the authors notice that, when considering high-tech assets such as computers, softwares and
communication equipments, the estimated paths of the respective income shares are dominated by
the "rapid trend rate of depreciation", which prevails even upon the considerable movements in the
nominal rate of return on capital.

Thus, technological progress may have important implications not only in the growth of total factor
productivity or price indexes, but also in the used asset prices, and depreciation and replacement of
capital. In fact, when newly produced assets embody quality improvements, the shadow price of the
existing assets may exhibit a decline. This decline can be attributed, among others, to a rise in the
economic depreciation, which accounts not only for the mere wear and tear of the asset but also for
its obsolescence effect. Recalling the expression for the user cost of capital (1.6) and assuming that
the nominal interest rate, rt, is given, the changes in the asset price are attributable to the economic
depreciation rate δt and the price revaluation ∆pt+1. Both of them dealt with the vintage effect of
capital. Depreciation, in fact, can be further more decomposed in obsolescence, which is the effect
on the price changing of existing assets due to the availability of new vintages with higher qualitative
characteristics, and into deterioration, which represents all the other effects of aging on price changes.
Revaluation, on the other hand traces the passage of time, which simply makes the new vintages
available. Following Wykoff (2003), the total change in the price of an asset can be expressed as
follows

∆p(s, t) = p(v, s, t)− p(v, s+ 1, t+ 1)

= [p(v, s, t)− p(v − 1, s+ 1, t)]− [p(v, s+ 1, t+ 1)− p(v − 1, s+ 1, t)] (1.7)
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where s represents the age of the asset, t is the time index, and v = t − s is the vintage index. The
first term in the brackets on the right hand side of the latter expression denotes depreciation, which
is decomposed into the deterioration effect, p(v, s, t), i.e. the price changes due to aging, and the
obsolescence effect, p(v− 1, s+1, t), i.e. the prices changes due to the availability of quality improved
new vintages. The second term in the brackets on the right hand side of the equation represents
revaluation, which is similarly decomposed into the vintage effect, p(v− 1, s+1, t), and the passage of
time effect (or "capital gain and loss", following the terminology of Wykoff (2003)), p(v, s + 1, t + 1),
which is assumed to reflect variations in the economic conditions such as declines in output, which
cause prices of the input assets to change. A functional form for the price changes as expressed in (1.7)
can be estimated making use of the regression techniques on the hedonic prices, which are designated to
account for the quality improvements in the vintages characterized by frequent technological changes11.
According to Wykoff (2003) estimation exercises msy be carried out by changing the functional form of
the estimated equations, the number of observations, and the assets characteristics,in order to obtain
different hedonic price regressions, or sequences of period by period prices that differ only in the vintage
characteristics. Subsequently, patterns of obsolescence can be obtained net of the wear and tear and
of the timing effects.

Finally, it is worth to note that, as far as quality changes (or obsolescence) tend to be positive over
time, the prices of new assets are supposed to rise, whereas those of the old assets are supposed to
decline.

1.2 The pioneer growth models with endogenous depreciation rate

The seminal steps in the real business cycle literature towards an endogenous modeling of the capital
depreciation rate can be dated back to the 80s and 90s, when it was largely started to be recognized that
the Solow-residual interpreted as the measure of the total factor productivity is no more satisfactory in
order to explain the observed macroeconomic fluctuations of the economic business cycles. Therefore,
new propagation mechanisms of the technology shocks into the real economy are developed exploiting
the assumptions about the factor hoarding both in the labor and capital sectors, see, among others,
Greenwood et al. (1988) and Burnside and Eichenbaum (1996). According to these assumptions, and
in particular with regard to the capital sector, the agents are allowed to accumulate (hoard) capital
in order to use it more intensively when the returns on capital are higher. So, agents can optimally
decide about the level of capital utilization rate, which determines the effective level of capital services
used in the economic production process. Therefore, the effective level of capital, assumed to be given
by the product between the utilization rate and the level of capital stock, is the amount of capital
which enters the production function of the final (or, in the case of DSGE models, intermediate) goods
sector. In addition to the capital accumulation process, the two papers cited above make use of the
Depreciation-in-use assumption, according to which capital deterioration depends on the intensity of
use of capital. Specifically, the more intensively the capital is used the faster it depreciates. This
implies that depreciation rate is an increasing and convex function of the utilization rate. Such a
model setting creates a new channel for the technology shock propagation, which is, indeed, the rate of

11 The first contributions in the economic literature on hedonic prices are to be ascribed to Griliches (1957, 1961, 1988,
1990).
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capital utilization. Therefore, it has been found that the utilization rate is a good candidate through
which a technology shock magnifies and propagates its effects into the real economy.

A brief exposition of the two papers cited above will help to fix the points.

The model of J. Greenwood, Z. Hercowitz, G.W. Huffman (1988)
Greenwood et al. (1988) investigate the transmission mechanism over the main aggregate economic

variables of a shock to the marginal efficiency of investments. It is worth to say that, one important
concern in the real business cycle literature is that the estimation of such kind of models does not
properly mimic the observed economic behavior. The shortcoming stems in the lack of co-movement
between the main aggregated variables, in particular between output, consumption and labor produc-
tivity. On the contrary, the model built in Greenwood et al. (1988) is able to generate pro-cyclical
optimal responses of such variables. This result is achieved by exploiting the capital hoarding and the
depreciation-in-use assumptions. Mainly, the authors hypothesize that the depreciation rate of capital
is endogenously determined by the utilization rate of capital. The latter one is treated as a control
variable. Then, when the shock is assumed to affect the future effective capital but not the already
existing capital, i.e. they do not consider shocks that affect the production function directly, their
model is able to generate co-movements between output and the other macroeconomic variables, in
particular consumption, labor effort and labor productivity. This occurs because the presence of the
utilization rate generates in the consumption optimal response path an additional term, which tends
to shift the inter-temporal substitution effect from leisure towards consumption, and thus creates pro-
cyclical movements in consumption and labor productivity. On the contrary, when the shock to the
marginal efficiency of investment is assumed to alter the already installed capital, then, according to
their model, all the propagation effects vanish.

Therefore, capital utilization rate plays a crucial role in their model. Additionally, it influences
the path of the depreciation rate function. According to the depreciation in use assumption, a more
intensive use of capital accelerates the rate at which it depreciates. Therefore, the depreciation rate is
assumed to be strictly increasing in the use of capital, that is

δu > 0, δuu > 0 and 0 ≤ δ ≤ 1

In order to solve the dynamic programming problem of their model the authors assume the following
simple functional form for the depreciation rate of capital

δ(u) =
1

ω
uω (1.8)

where ω > 1 represents the elasticity of the depreciation rate with respect to capital utilization rate.
They argue that, when a positive shock to the marginal efficiency of investment hits the economy,
the cost of capital utilization declines, while its rate of utilization rises, which, in turn, implies higher
levels in the marginal productivity of labor and employment due to the complementarity assumption
between capital and labor in the production function of their model. Therefore, there exists a positive
link between capital utilization and labor productivity. The main endogenous variables of the model,
such as output, consumption, investment, employment and labor productivity, capital stock and the
utilization rate all co-move in response to the shock on marginal efficiency of investment.
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The model of C. Burnside and M. Eichenbaum (1996)
Similarly, Burnside and Eichenbaum (1996) have argued that a model incorporated with the capital

utilization rate is able to better catch the characteristics of the post-war US aggregate time series with
respect to the standard RBC model, explaining more than 50% of the output volatility, while the
remaining is, as usual, directly attributed to the exogenous technology shock. An important result
of their estimation exercise shows that capital utilization rate is more volatile with respect to capital
stock. In addition, they have shown that the optimal response of the depreciation rate of capital is
pro-cyclical together with the other endogenous variables. So, similarly to Greenwood et al. (1988) and
following the depreciation-in-use hypothesis they assume the following functional form for the capital
depreciation rate

δt = δUφ
t (1.9)

where 0 < δ < 1, φ > 1, and Ut is the capital utilization rate.
Both the papers stress the fact that, the rate of capital depreciation is not constant over time but,

on the contrary, it is affected by the agents’ decision policies with regard to capital utilization rate.

1.3 Endogenous depreciation rate, capital utilization rate and maintenance costs

The following important step within the endogenous depreciation rate literature deals with the possible
role of the maintenance and repair activity of physical capital. The paper of McGrattan and Schmitz
(1999) entitled "Maintenance and Repair: Too big to ignore" is considered the milestone in this field12.
In fact, the authors use the series from "Capital and Repair Expenditure" survey of Canada in order
to highlight the importance of the maintenance and repair expenditures in the Canadian economy.
This survey is held by the Canadian government statistic agency and queries the private and public
sectors about the expenditures made in both the old and new capital. The old capital is defined in
the survey as "non-capital maintenance and repair expenditures". It incorporates the spendings on
the gross maintenance and repair of machinery and equipment, the non residential buildings and other
structures, as well as reparation work in general. The new investment is named "capital expenditures"
and it includes the major modifications and renovations, spendings on machinery and equipment, new
buildings, engineering that are included in fixed asset accounts in addition to work in progress and
other expenditures.

The model of E. McGrattan and J. Schmitz (1999)
As McGrattan and Schmitz (1999) have calculated, on average, expenditure on maintenance and

repair in the whole economy was about 5.7% of Canadian GDP over the period 1981-1993, while that on
education and research and development was 6.8% and 1.4%, respectively. Moreover, it accounted for
30% of spending in new physical capital, over the same period. According to Albonico et al. (2014), if
considered only the manufacturing sector of Canada, the maintenance average share in new investment
and in output amounted to 36.1% and 6% over the period 1956-2005, respectively. In general, we
have calculated that, over the period 1956-2012 , the average share in GDP of the expenditures on

12 Earlier literature, however, exists, which tries to outline a relationship between maintenance and depreciation, mainly
concentrated in the fields of vintage capital models.
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Fig. 1.2: Volatility: New Investment, Maintenance, GDP (averages, 1956-2012)
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Source: "Annual Capital and Repair Expenditures Survey", Statistics Canada. Capital and repair
expenditures on construction and machinery and equipment. Author’s elaboration.

maintenance and repair of capital is almost the same as that found in McGrattan and Schmitz (1999).
It is roughly the half (3.2%) if construction sector is excluded, i.e. only spendings in physical capital
repairs are accounted for. Similarly, spendings on maintenance and repair is on average 27.7% of
spendings on new physical capital, and the latter one is about 20% of GDP, over the period 1956-2012.

McGrattan and Schmitz (1999) have noted that new investment and maintenance are both pro-
cyclical and more volatile than output. We can observe the same evidence in Fig.1.2 which shows
the cyclical movements calculated using the Hodrick-Prescott filter 13 on the logs of the GDP at
market prices, the expenditures in maintenance and the new physical capital, over the period 1956-
2012. All the series exhibit strong positive correlations, which are 0.65% and 0.83% for that of GDP
with maintenance and new investment, respectively, and 0.61% for the one of maintenance with new
investment. Spending on new investment appears to be more volatile than spending on maintenance
and both are more volatile than output. Moreover, it can be observed that maintenance to new
investment ratio seems to exhibit no particular trends over the same period (see Fig.1.3).

Basing on the evidence from the Canadian survey about the behavior of the main macroeconomic
aggregates, McGrattan and Schmitz (1999) estimate a simple neoclassical growth model enriched with
the variable maintenance and repair services. They conjecture that this variable behaves as a substitute
with respect to the new investment and analyze the economy’s responses to an interest rate shock,
namely an increase in the capital income tax rate, which impacts on the firms’ capital intensity of
use. Given their conjecture, they find that such a shock induces a smaller decrease in capital use
than it would be in the absence of the maintenance variable. Therefore, according to their findings,
maintenance tends to absorb the impact of a shock in the real economy and to lower the rate at which
physical capital decreases . Excluding maintenance and repair from the economic analysis would lead,

13 The coefficient parameter is set to 100.
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Fig. 1.3: Maintenance to new investment ratio, HP detrended (1956-2012)
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instead, to an underestimation of the capital stock and, consequently, to an overestimation of the total
factor productivity. However, it is worth to note that, the quality of these results depends crucially
on the share value of the maintenance expenditures with respect to the investment ones and on the
degree of substitutability between the two control variables.

According to the McGrattan and Schmitz (1999) model setting, in fact, firms can choose the amount
of maintenance and repair expenditures. This decision impacts on the depreciation rate of the capital
stock. In fact, they assume that the depreciation rate is a decreasing function of maintenance per unit
of capital stock, δt = δ (Mt/Kt), which, therefore, may vary over time. It enters the law of motion of
capital in the following way

Kt+1 =

[

1− δ

(

Mt

Kt

)]

Kt + It

This specification leads, at optimum, to a positive relationship between the marginal benefit to
capital stock deriving from maintenance activity and the relative price of maintenance with respect to
investment. Specifically, if a firm increases its maintenance and repair activity, then the next period
capital stock will increase as well, however at a lower extent than with respect to a rise in investment.

Accounting for maintenance and repair activity in the economic process may help, therefore, to
better mimic the economic business cycles. This intuition by McGrattan and Schmitz (1999) has been,
in particular, undertaken by the branch of the economic research that supports the idea according to
which depreciation rate of capital can vary over time, which is definitely in contrast with the constant
capital depreciation assumption dominating the analysis in the real business cycles.

The model of O. Licandro and L.A. Puch (2000)
Thus, Licandro and Puch (2000) combine the depreciation-in-use assumption and the McGrattan and Schmitz
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(1999) results, by assuming a depreciation rate function depending both on the maintenance and uti-
lization rates, δt = δ (mt, ut). Specifically, the depreciation rate function is established to be decreasing
in maintenance, increasing in utilization, and convex. Even if they do not provide an explicit specifica-
tion for this functional form, they are able to carry out some quantitative and qualitative results of their
real business cycle model extended with maintenance costs variable. Recall that, when the aggregate
technology depends on the level of the effectively used capital and the depreciation rate is increasing
in capital utilization, then it is shown that the utilization rate is pro-cyclical, see Greenwood et al.
(1988). Moreover, it contributes to magnify and propagate the impact effects of a technology shock on
output and other endogenous variables in the real economy. A direct consequence of there model set-
ting is that the depreciation rate is pro-cyclical as well, which is in line with Burnside and Eichenbaum
(1996). In addition, when the depreciation rate is negatively related with maintenance costs, then the
behavior of the latter one depends crucially on the sign of the cross derivative of the depreciation rate
function with respect to maintenance and utilization. Licandro and Puch (2000) assume the sign of
the cross derivative to be positive, which, in this case, implies that maintenance is counter-cyclical,
arguing that the cost to renounce to profits is relatively lower in recession times, and therefore, more
resources can be allocated to maintenance and repair activity than to investment. This hypothesis is
partly complementary to the McGrattan and Schmitz (1999) intuition according to which during the
reparation times (but not necessarily the maintenance ones as well) the machines are not in process
because, for example, broken.

As to the model equations, Licandro and Puch (2000) define the new aggregate technology as
a function of the total effective level of capital, UtKt, total effective hours of work, Ntlt, neutral
technological shock, Xt, and maintenance costs, Mt, as follows

Yt = (UtKt)
1−α (NtltXt)

α −mtKt

where mt is the maintenance cost ratio given by the fraction between the aggregate maintenance
costs and capital stock. The law of motion of capital depends, among others, on the endogenous
depreciation rate

Kt+1 = [1− δ (mt, ut)]Kt + It

They carry out simple estimation exercises of their model and show that, just like the utilization
rate, maintenance ratio contributes to propagate and magnify the effects of an exogenous technology
shock in the real economy. So, according to their model analysis and in line with McGrattan and Schmitz
(1999) the capital maintenance activity is, indeed, important for the study of the economic business
cycles.

The model of O. Licandro, L.A. Puch, J.R. Ruiz-Tamarit (2001)
A more detailed analytical analysis of the equilibrium dynamics of growth models with endogenous

depreciation, capital utilization and maintenance is offered in Licandro et al. (2001). The authors
analytically establish a set of sufficient conditions for the existence and uniqueness of a local steady
state equilibrium of their model. Under such conditions a unique interior "delta golden rule" exists,
which they define as the value of capital stock consistent with the maximization of the steady state
consumption with respect to capital, depreciation and utilization. The main assumptions with respect
to the maintenance and investment activities are listed below:
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i. maintenance activity is subject to maintenance cost technology, which is defined in terms of total
depreciation and effective capital, decreasing in the first term and increasing in the second one;
average maintenance cost, m(δt, ut), is positive, quadratic, convex and linearly homogeneous on
δt > 0 and ut ∈]0, 1[; moreover, mδ(δt, ut) < 0, mu(δt, ut) > 0, mδδ(δt, ut) > 0, muu(δt, ut) > 0,
mδu(δt, ut) < 0; the explicit function is m(δt, ut) = du2t/δt.

ii. maintenance activity is a substitute for investment, following McGrattan and Schmitz (1999).

iii. adjustment costs of investment is a linearly homogeneous function increasing in gross investment
and decreasing in capital stock, Φ(It,Kt) = φ(it)Kt, where φ(it) exhibits the same properties of
m(δt, ut), and is represented bu the following explicit function φ(it) = (b/2)i2t .

Hence, they assume a negative cross derivative of the maintenance cost function with respect
to depreciation and utilization rates, which gives rise to pro-cyclical movements of maintenance, in
contrast to Licandro and Puch (2000).

According to their model, the steady state equilibrium allows for an optimal underutilization of
capital and maintenance. Next, the authors modify the delta golden rule such that the determination of
the optimal capital stock requires the simultaneous determination of all the control variables, including
maintenance. This way they find out that, a higher productivity of capital stock induces higher levels of
investment, depreciation and utilization rate with respect to the original delta golden rule, in the long
run. Moreover, the analysis of the dynamic properties of the convergence path confirms that the values
of the parameters of the maintenance cost function and of the investment adjustment technology affect
the steady state values of the main variables, however they do not impact on the speed of convergence
of the model. In general, it results to be lower than the convergence rate obtained in the neoclassical
growth models with investment adjustment costs only. As the authors argue, this is due to the presence
of the variable utilization rate, which, together with the endogenous depreciation rate, generates an
inter-temporal substitution effect between maintenance and investment and, thus, contributes to shape
the saddle path convergence trajectories.

1.4 Endogenous capital depreciation rate within the vintage capital setting

Alternatively, a way to capture the endogenous aspect of capital depreciation rate makes use of the
vintage capital growth theory. This models aim to capture the embodied aspect of the technological
progress and are characterized by the hypothesis according to which the marginal contribution to
output of new capital must be higher than the marginal contribution to output of the old one, see
Solow (1960). This phenomenon is captured by a continuum-time representation of investment and
produces an obsolescence effect on capital, as well as an optimal finite lifetime of capital stock, which
defines the scrapping rate of capital. Note that, technological progress is said to be embodied when it
contributes to increase productivity through a quality improvement of new investments. Otherwise, it
is disembodied when productivity rises due to the marginal cost reduction of new investments. The
necessity to capture in the economic growth models the embodied aspect of technological progress
derives from the observed evidence about the acceleration in the technology growth rate, especially
over the most recent decades.
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Yet, it is largely recognized that acceleration in the technological progress observed since the 1970’s,
and especially the progress in information technologies, attributes to the depreciation rate of capital
not only a time-variable characteristic, but also an economic interpretation besides the mere physical
one14. That is, the rate of depreciation is influenced both by physical deterioration of capital, such as
wear and tear, and by obsolescence, which reflects embodied technological progress. At first, there have
been the vintage capital models which tried to capture the obsolescence effect of capital, moreover,
over the last decade, the inclusion of maintenance activity in these models has been deepened15.

The model of R. Boucekkine and J.R. Ruiz-Tamarit (2003)
Boucekkine and Ruiz-Tamarit (2003) argue that expenditures in maintenance of capital should be

central to the firms decision problem, as far as it impacts on the capital depreciation rate. They
investigate the conditions under which a positive demand for maintenance activity exists, and the
complementarity between the latter one and investments in a neoclassical growth model with vintage
capital. They show that, the optimal investment decision is influenced by the amount of maintenance
services undertaken by the firms. The existence of this relationship allows them to carry out compara-
tive static analysis in the stationary equilibrium of the model. In line with Licandro et al. (2001), they
enhance their model with quadratic investment adjustment technology and maintenance costs. They
allow the firms to optimally choose, among others, the utilization and depreciation rates, and the level
of maintenance and repair expenditures by maximizing the following discounted stream of profits

πt = ptztF (Kt−1, Lt)− wtLt − qtMt − pkt It − ptΦ(It) (1.10)

subject to the following law of motion of capital

Kt = It + (1− δ(mt, ut))Kt−1 (1.11)

where zt is the neutral technological progress, and δ(mt, ut) is the depreciation function depending on
the maintenance ratio, mt =Mt/Kt−1, mt ≥ 0, and on the utilization rate, 0 ≤ ut ≤ 1, and satisfying
the following hypothesis:

• δt ≥ δ̄, ∀(ut,mt); δ(·, 0) = δ̄ and limmt→∞δ(mt, ut) = δ̄

• δ1(mt, ut) < 0 and δ11(mt, ut) > 0, ∀(mt, ut) 6= 0

• δ2(mt, ut) > 0 and δ22(mt, ut) > 0, ∀(mt, ut) 6= 0

The first hypothesis sets a lower bound condition on the value of the depreciation rate, named the
"natural rate" of depreciation, δ̄. This means that, given the level of maintenance expenditures, even
when capital is not used it still keeps on to depreciate at a constant rate due to aging. Similarly, there
exists a threshold above which maintenance improvements no more impact on the quality of capital,
and, therefore, on its depreciation rate. The second hypothesis states that the depreciation rate
function is decreasing and convex in maintenance costs, according to McGrattan and Schmitz (1999),
and Licandro et al. (2001). The latter hypothesis recalls the depreciation in use assumption, which

14 Regarding the obsolescence aspect of capital depreciation see, for example, Greenwood et al. (1997),
Tevlin and Whelan (2003), Boucekkine and De La Croix (2003), Doms et al. (2004), and Geske et al. (2007).

15 The key variable of these models, however, keeps to be the (finite) lifetime of capital, which is crucial for the
determination of all the other endogenous variables of the model.
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states that the depreciation rate function is increasing and convex with respect to capital utilization
rate.

The optimality conditions of the firm’s maximization problem with respect to maintenance and
utilization are, respectively:

qt = −δ1(mt, ut)µt, (1.12)

ztF1(utKt−1, Lt) = δ2(mt, ut)µt (1.13)

where µt is the Lagrangian multiplier. The first condition states that, at the optimum, the cost of one
additional unit of maintenance services equals the marginal benefit deriving from the reduced capital
depreciation evaluated at the shadow price of capital. The second one equates the return from the
marginal increment of the utilization rate to the marginal cost, induced by the higher depreciation,
evaluated at the shadow price of capital. The authors show analytically that, when the cross derivative
of the depreciation function with respect to utilization rate and maintenance costs is strictly positive,
then, given the above hypothesis on the depreciation function, at optimum, the two variables move
in opposite directions ( dut

dmt
< 0). This result is economically counter intuitive, since, as the authors

argue, if a firm opts to worsen depreciation by the means of one of the control instruments (either
increasing the utilization rate, or decreasing maintenance expenditures), then it will optimally choose
the remaining control variable in such a way as to decrease the depreciation rate (that is, increasing
maintenance activities or decreasing capital utilization, respectively). This intuition allows them to
impose a negativity condition on the sign of the depreciation function cross derivative, as follows:

δ12(mt, ut) ≤ 0,∀(mt, ut) (1.14)

which implies that, the marginal contribution of maintenance to the stock of capital by the means
of lower depreciation rate is higher when the utilization rate, and hence depreciation, are high. At
this point the authors explicitly define the functional form of the rate of depreciation of capital, which
satisfies all the above cited conditions:

δ(mt, ut) = au1+ǫ
t (1 +mt)

−η + δ̄ (1.15)

where the coefficients ǫ > 0 and η > 0 measure the sensitivity of depreciation to changes in capital
utilization and maintenance, respectively. Making use of the maximization conditions (1.12) and (1.13),
the utilization rate is expressed as follows

ut = −
1 + ǫ

η

δ1(mt, ut)

δ2(mt, ut)
(1 +mt)

=
1 + ǫ

η

qt
q0(wt, zt)

(1 +mt)

(1.16)

where q0(wt, zt) = ztF1(utKt−1, Lt). This expression implies that, at optimum, the utilization rate of
capital depends on the sensitivity parameters of the depreciation rate function, and on the amount
of maintenance costs net of the gains deriving from the marginal increase in capital utilization. Such
a specification satisfies the desired property of dut

dmt
≥ 0, that is, a marginal change in maintenance

activity must produce positive marginal variations in the utilization rate of capital. Then, using the
steady state relations, they define the expression for the long run maintenance ratio, as follows

τ (m) =
1 + ǫ

η
(1.17)
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with

τ (m) =
1

aη

[

r + δ̄

(qv0(w, z))1+ǫ
(1 +m)η−ǫ−1 + a

(

1 + η
m

1 +m

)]

and

v0(w, z) =
1 + ǫ

ηq0(w, z)

and distinguish between the following three cases. First, when η = ǫ then no solution exists for the
long run equilibrium of maintenance services. Second, when the depreciation function is more sensitive
to changes in maintenance than to those in the capital utilization, then the existence and uniqueness
of the stationary solution is ensured by the strict inequality τ(0) < 1+ǫ

η when 1 + ǫ ≤ η, and by the

additional condition τ(0) < 1+ǫ
η < 1+η

η , when ǫ < η < 1 + ǫ. In such a case, when the unit cost of
maintenance,q, increases the equilibrium level of maintenance rises because of the shift to the right of
the long run maintenance ratio function. But this implies that maintenance is positively related to its
unit cost, which is economically counterintuitive, as far as it does not satisfy the Law of Demand in
the maintenance sector. Finally, when η < ǫ (i.e. depreciation rate function is relatively more sensible
to the utilization rate), then a unique long run stationary equilibrium solution exists if and only if
1+η
η < 1+ǫ

η < τ(0). The authors show that, in this case, the long run maintenance ratio m(q, w, r, z)
depends negatively on the maintenance costs and on labor, and positively on the interest rate and on
technological progress.

Recall that, when maintenance ratio is calibrated in order to produce a stronger effect, with re-
spect to utilization, on the capital stock accumulation process, and hence on output, throughout the
depreciation rate function, then the model goes against the fundamental economic theory. The au-
thors, therefore, discard this solution and, on the contrary, enhance the other one explaining that,
in equilibrium, the rate of utilization and maintenance ratio must move in the same direction, which
implies dut

dmt
≥ 0. Therefore, the optimal combination of the two control variables is to increase (or to

decrease, in which case the effects on capital stock are opposite) both of them. This behavior generates
one direct positive effect on the production function deriving from a higher capital utilization, and one
indirect positive effect acting through the capital accumulation law of motion.

In general, the authors show that, both when η < ǫ and ǫ < η, in the long run equilibrium
capital utilization rate behaves always like maintenance ratio. The long run depreciation rate, however,
behaves similarly in response to changes in technological progress and maintenance costs only. It moves
in the opposite direction with respect to maintenance when the real interest rate varies. Moreover,
when η < ǫ, they find that, utilization, depreciation and maintenance all move pro-cyclically when a
positive technology shock occurs, and counter-cyclically in the case of ǫ < η. Furthermore, the long-run
equilibrium of gross investment depends on the behavior of the shadow price of capital stock, but it
is independent of the position of η with respect to ǫ. Therefore, the responses of gross investment
to changes in the level of technology or maintenance costs are qualitatively the same as those of
the two control variables and of the depreciation rate when η < ǫ. The behavior of capital stock,
however, depends crucially on the equilibrium position of the maintenance ratio. In fact, in order to
obtain a positive optimal response of capital stock to variations in the cost of maintenance services,
the maintenance ratio must satisfy an upper bound condition imposed by the positivity assumption
of investments. When this condition is satisfied and η < ǫ, then an increase in maintenance costs
decreases the level of gross investments which, in turn, reduces the capital stock. At the same time,
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capital stock rises because of its lower rate of depreciation. The indirect positive effect deriving from a
lower depreciation rate more than compensates the negative one induced by a drop in investments. This
means that, when maintenance cost changes the maintenance ratio and capital stock move in opposite
directions. Therefore, the optimal behavior of maintenance services, given by the product M = mK,
is ambiguous as well. Nevertheless, they show that, thanks to the imposed positivity condition on
the long-run investment, the behavior of maintenance ratio prevails on that of capital stock for small
enough levels of the equilibrium maintenance ratio. So, when η < ǫ, a rise in maintenance cost leads a
representative firm to optimally decrease the demands both for new capital goods (gross investment)
and for maintenance services, which suggests that maintenance and investment are complements and
both pro-cyclical.

In conclusion, given the comparative statics analysis of their economic growth model implemented
with an explicit function for capital depreciation rate and maintenance services, Boucekkine and Ruiz-Tamarit
(2003) have found that , when the elasticity of the depreciation rate function is higher with respect
to utilization rate than with respect to maintenance ratio, then the demands for maintenance services
and investment co-move, which implies that they are complements, in response to changes in labor
and maintenance costs, investment rate, and technological progress. On the contrary, they move in
the opposite directions, and hence behave as substitutes, when the depreciation rate function is more
elastic with respect to maintenance of capital then to its utilization rate. However, as noted above,
this parametrization does not satisfy one fundamental economic law, that is, the negative relationship
assumption between the demand for maintenance services and its relative price.

The model of R. Boucekkine, F. del Rio, B. Martinez (2009)
Contrary to them, Boucekkine et al. (2009) consider a two-sector vintage capital model, in which

maintenance is no more a control variable and is explained through a positive relationship with the
utilization rate of capital and the age of capital. They assume endogenous capital lifetime, which de-
pends on the maintenance costs of vintages. Both the neutral and the investment-specific technological
progresses are included in the model. The aim of their paper is to analyze the relationship standing
between the deprecation rate of capital, and in particular its components, and the two types of tech-
nological shocks16. For this purpose they assume that the total rate of capital depreciation is given by
three components. These are found implicitly from the equilibrium relationships, as far as they do not
postulate any ad hoc functional form for depreciation. The first component represents the exogenous
and constant physical depreciation rate (eω). The second one is the age-related depreciation rate (δt),
which, as they show, depends on the obsolescence rate of capital determined by the investment-specific
technological progress. Finally, the scrapping rate (ξt) represents the fraction of unprofitable capital
that is discarded. Specifically, the authors assume that capital becomes unprofitable when it no longer
compensates its maintenance costs.

The vintage characteristic of the model enters the capital production sector. This is a perfectly
competitive market, which produces capital services using new capital goods according to the following
production technology

Sz,t = Ize
λze−ω(t−z)Uz,t (1.18)

16 Other studies about the investment and depreciation reactions to the different technology shocks are found also in
Tevlin and Whelan (2003) and Saglam and Veliov (2008).
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where Iz represents the quality unadjusted investment at time z, Uz,t is the utilization rate of vintage z
at time t, and eλz is the embodied rate of investment-specific technological progress (i.e. a progress that
increases the marginal productivity of new capital goods, as in contrast to the disembodied investment-
specific technological progress which reduces the marginal costs of new investments). Hence, parameter
λ measures the quality improvements of capital goods.

The function for the unit maintenance cost of a vintage z at time t is explicitly given by

Mz,t =
[

βeχ(t−z)Uµ
z,t + η

]

e−φz (1.19)

where β, η > 0 and µ > 1. The term in the brackets represents the total maintenance cost Mz,t(Uz,t),
satisfying M ′(U) > 0, M ′′(U) > 0 and M(0) > 0, that is, maintenance is strictly increasing in the
utilization rate and strictly positive. The first term inside the brackets represents maintenance variable
costs, given by an indicator of the vintage utilization rate. The maintenance variable costs allow to
distinguish between the use-related depreciation rate, depending on variations in capital utilization,
and the scrapping rate, which instead depends on the capital lifetime. The second term is the fixed
and strictly positive maintenance cost, η, which at optimum ensures a finite lifetime of capital, given
the assumptions on the parameters χ ≥ 0, λ ≥ 0 and φ ≥ 0. The term e−φz represents the disembodied
investment-specific technological progress which, in perfect competition, is equivalent to the cost of
producing a new unit of capital in terms of consumption. It is referred to as the quality-unadjusted
relative price of investment. Then, the quality-adjusted relative price of investment is given by e−εt,
with ε = λ+ φ being the total investment-specific technological progress rate.

A representative firm maximizes the following profit function of vintage z in time t, subject to the
respective utilization rate in time t, Uz,t, new capital in time z, Iz, and the scrapping time Tt

πz,t = RtSz,t −Mz,te
−ω(t−z) (1.20)

where Rt is the rental price of capital services at time t. Re-expressing the profit function in terms of
the optimal utilization rate and imposing zero return condition on capital gives the optimal scrapping
condition of vintage z in time z + Jz, with Jz = t− z

µ− 1

µ
e−(δ+ε)JzUz+Jz,z+Jzpz+Jz = η (1.21)

which states that, the lifetime of vintage z, Jz, must equal its scrapping time at time t, Tt. The term,
pt = Rte

εt represents the quality-adjusted rental price of capital services, while the expression for the

initial utilization rate Ut,t =
(

1
µβpt

)
1

µ−1
is derived from the optimality condition for capital utilization

which is given by

Uz,t = Ut,te
−δ(t−z) (1.22)

The latter expression says that, because of aging, capital stock is used to a lesser extent, and this
decline in the utilization rate of capital is measured by δ = χ+ε

µ−1 .
Given the above expressions, the stock of quality-adjusted capital services becomes

St =

∫ t

t−Tt

Ut,tIze
λze−(ω+δ)(t−z)dz (1.23)

where Ize
λz is the quality-adjusted investment at time z. The market value of the capital stock,

instead, is given by Kt = Ste
−εt, that is
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Kt =

∫ t

t−Tt

Ut,tXze
−(ε+ω+δ)(t−z)dz (1.24)

where Xz = e−φzIz represents the expenditure in new capital at time z. It clearly emerges from
expression (1.24) that, because of the particular setting of the model, capital at market value depreciates
at a rate given by a linear combination of the total investment-specific technological progress (ε), the
constant and exogenous physical capital depreciation (ω) and the capital utilization rate (δ).

The law of motion of the stock of quality-adjusted capital services is, thus

Ṡt = eλtUt,tIt − (ω + δt + ξt)St (1.25)

where δt represents the use-related depreciation rate depending on the deflated rental price of capital

δt = δ +
1

µ− 1

dpt
dt

1

pt
(1.26)

and ξt is the scrapping rate, which is related to the decline rate of capital utilization due to aging

ξt =

(

1−
dTt

dt

)

eλ(t−Tt)Ut−Tt,tIt−Tte
−ωTt

St
(1.27)

Note that, eλtUt,t measures the productivity of the new capital goods.
The stock of quality-adjusted capital services is rented to the perfectly competitive final goods

producing sector, according to the following Cobb-Douglas production function

Yt = AeγtL1−α
t Sα

t (1.28)

with 0 < α < 1, and A > 0 being the neutral technology shock, which is assumed to grow at a positive
constant rate γ ≥ 0. The production technology in terms of labor and capital stock at market value
becomes

Yt = Ae(1−α)gtL1−α
t Kα

t (1.29)

where g = γ+αε
1−α is the constant per capita growth rate along the balanced growth path of consumption,

output, capital stock, investment expenditure and maintenance costs, given by a linear combination of
investment-specific technological progress rate (ε) and neutral-technological progress rate (γ).

Finally, the representative household maximizes the following CRRA utility function with respect
to consumption and labor

Ut =

∫

∞

0

Lte
−ρt c

1−σ
t

1− σ
dt (1.30)

where the discount parameter (ρ) and the intertemporal elasticity of substitution (σ) are both strictly
positive. The Euler equation for per capita consumption is of the following form

dct
dt

=
1

σ
(rt − ρ)ct (1.31)

Aggregate output is distributed between consumption, investment expenditures and maintenance
services, that is

Yt = Ct +Xt +Mt (1.32)

Finally, given the optimal path for capital utilization rate (1.22), the expression for the market value
capital services (1.24), and the optimal condition for the demand of capital services, αYt/Kt = pt, the
aggregate maintenance cost is re-expressed as follows
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Mt =
α

µ
Yt + η

∫ t

t−Tt

Xze
−ω(t−z)dz (1.33)

according to which, in equilibrium, maintenance services are given by a fraction of final aggregate
output and all past expenditures in new units of capital weighted by the rate of physical capital
depreciation. How much of final output will be deserved to maintenance depends (positively) on the
capital share in the production function and (negatively) on the sensibility of maintenance costs with
respect to capital utilization rate.

As stated above, the main variables of the model all grow at the same constant rate g = γ+αε
1−α ,

along the BGP. Additionally, the following conditions hold along the BGP: (i) the lifetime of vintages

is constant, J = T ; (ii) the initial utilization rate is constant (Ut,t = U0) and equal to
(

α
βµ

y
k

)1/(µ−1)
;

(iii) (1− σ)g < ρ, in order to guarantee the boundness of the utility function. The authors show that,
under these restrictions, a unique optimal solution for the lifetime of capital exists, which is necessary
to calculate the stationary levels of the model variables, including that of capital depreciation rate.
Therefore, the comparative statics analysis performed by the authors shows that the following rela-
tionships stand between the optimal lifetime of capital, the technological progresses, and the different
components of the depreciation rate:

(i) optimal capital lifetime is an increasing function of neutral technological progress, because its
positive response behavior serves to compensate the loss in profitability due to a higher interest
rate;

(ii) optimal capital lifetime is a decreasing function of investment-specific technological progress,
since, in this case, the interest rate effect is dominated by the acceleration in profitability decline,
which, finally, shortens the lifetime of capital;

(iii) optimal lifetime of capital is increasing in physical depreciation rate (ω), inter-temporal elasticity
of substitution (σ), discount rate (ρ), and maintenance cost elasticity with respect to utilization
(µ), while it is decreasing in the rate of maintenance associated with aging of the vintage (χ)
and the maintenance fixed costs (η), finally, it is not affected by the level of neutral technology
(A), the population growth rate (n), and the parameter of the maintenance function (β);

(iv) both the decline rate of capital utilization, that is the use-related depreciation, and the scrapping
rate increase when the investment-specific technological progress accelerates;

(v) an acceleration in the neural technological progress increases the scrapping rate, while it does
not impact on the use-related depreciation rate.

Recalling proposition (iv), the investment-specific technological progress affects the total depreci-
ation rate throughout two components, i.e. the scrapping rate and the use-related depreciation rate.
As the authors point out, this assertion justifies the opinion according to which economic depreciation
rate of capital tends to be underestimated by the Systems of National Accounts, which would lead
to an overestimation of the capital stock growth rate, and finally to underestimation of total factor
productivity17.

17 See, for example, Mukoyama (2008) who analytically explains how, under an endogenous capital depreciation rate,
an acceleration in the investment-specific technological progress tends to give distorted measures of capital stock.
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In order to support the implications of their model, the authors construct analytical expressions
for the economic and the age-related depreciation rates, in line with the definitions given by the US
Bureau of Economic Analysis (BEA). They conclude that, both the rates increase in response to an
acceleration in investment-specific technological progress, because of the decline in both the optimal
lifetime of capital and its utilization rate. Similar behavior transpires from the actual BEA data on
the depreciation rates of equipment and software and the corresponding decline rates of the relative
prices. Note that, according to BEA, the economic depreciation rate is estimated using used-asset
relative prices unadjusted for quality. Under perfect competition conditions, the decline rate of the
quality-unadjusted relative price of investment corresponds to the disembodied investment-specific
technological progress which, thus, affects the economic depreciation rate. Furthermore, the latter one
is influenced by obsolescence as well, which is given by both the rate of embodied investment-specific
technological progress and the age of capital. On the contrary, the construction of the age-related
depreciation rate relies on the decline rate of quality-adjusted relative price of investment. Therefore,
the age-related depreciation is affected by the total investment- specific technological progress, as well
as by age, however, in contrast to the economic depreciation rate, it does not depend on the rate of
obsolescence.

In conclusion, Boucekkine et al. (2009) tackle the issue about the way the depreciation rate is
used to be estimated. As stated above, BEA estimates the depreciation rate of capital through the
decline rate in the relative used-asset value and defines it as a combination of physical depreciation
(or age-related depreciation), obsolescence, wear and tear, and accidental damage. Until the mid ’90s
the estimation methodology had implemented the straight-line depreciation schedule, which implies
that the year-per-year depreciation rate is constant over the whole service life of the asset. Thereafter,
BEA has switched to a new regime based on the geometric depreciation rate almost for all of the asset
categories18, which exhibits an accelerated pattern, as far as the depreciation rate is higher in the early
years of the asset’s service life than in the later years. The geometric depreciation rate is determined
by the ratio between the Declining-Balance Rate of an asset and the corresponding assumed service
life. In most cases it is calculated using the estimations carried out in Hulten and Wykoff (981b).

Boucekkine et al. (2009) find out important properties with regard to the geometric depreciation
rate schedule rising up from their AK-vintage model. Specifically, they show that, when the lifetime
of the asset is large enough, than the geometric schedule is a good proxy for the corresponding de-
preciation rate pattern. On the contrary, the true depreciation rate diverges from the geometric one
as the asset lifetime gets shorter. This implies that, according to statements (i) and (iv), the neutral
technological progress is more likely to generate a geometric depreciation path with respect to the
investment-specific technological progress. Therefore, the depreciation rate path depends crucially on
the assumption according to which the lifetime of capital stock is finite. In fact, when the investment-
specific technological progress accelerates the capital lifetime decreases. But, as far as the lifetime
of capital enters the expression for the quality-unadjusted relative price of capital, according to the
following expression

P̃z,t

P̃t,t

= ηe−(ω+δ+λ)a

{

1

η
− [e(δ+ε)a − 1]

∫ T−a

0

e−(r+ω)sds−

∫ T

T−a

e−(r+ω)s[e−(δ+ε)(s−T ) − 1]ds

}

then, a shortening in the asset lifetime rises the probability to get a distorted measure of the

18 An exception represents the computer equipment and autos, and missiles and nuclear fuel rods for which a non
geometric depreciation schedule is used.
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depreciation rate estimated with the geometric approach. In fact, when the lifetime of capital is finite
then its scrapping rate, which influences the depreciation rate, depends not only on the changes in the
capital unit prices, but also on the amount of capital invested over the past periods. On the contrary,
as it can be observed from the above expression, when capital lifetime tends to infinity the geometric
approach turns out to be the best approximation, which implies that scrapping equals zero and the
economic depreciation rate equals the decline rate of the quality-unadjusted relative price of used-
assets. Moreover, note that, since the depreciation patterns for computer equipment and autos do not
follow the geometric schedule of depreciation according to BEA’s statistics, the observed acceleration
in the depreciation rate over the last decades19 may be attributed to a composition effect, given the
rising weight of computers in the capital stock.

Finally, Boucekkine et al. (2009) perform some empirical exercises using the actual series from
BEA on the US depreciation rate of non-residential private fixed equipment and software and on
the corresponding decline rate of relative prices (NIPA), over the period 1029-2003. They highlight
the evidence according to which, there has been an increase in the rate of depreciation of capital
accompanied by a rise in the decline rate of its relative prices, since the 1960s. This relationship
is further confirmed by a positive correlation between the two variables. Moreover, the decline rate
of the relative prices appears to be negatively correlated with the lifetime of non-residential private
equipment and software.

The model of R. Boucekkine, Fabbri, Gozzi (2010)
The last work that worths to be mentioned in this section returns to the complementarity and

substitutability issue between investment and maintenance. This topic still remains open to con-
troversial interpretation about the relationship among the two factors. The paper in question is of
Boucekkine et al. (2010). They build a simplified vintage AK version of Boucekkine et al. (2009), con-
sidering only one sector with a neutral technological shock, and including replacement investment. The
functional form of the depreciation rate is not given, but, instead, determined by endogenous scrapping
decisions. This is in contrast with Boucekkine and Ruiz-Tamarit (2003), who have addressed the same
issue, but with a depreciation rate function explicitly formulated. Moreover, and more importantly, in
addition to previous literature Boucekkine et al. (2010) go beyond the mere steady state equilibrium
analysis and carry out optimal short run dynamics of their vintage capital model with endogenous
capital depreciation rate and, as stated above, without any a priori postulated analytical expression
for it. The authors are able to find a closed-form solution of their model making use of the recent devel-
opments achieved in the optimal control problems with infinite dimensional systems, that characterizes
this class of models, as far as they imply the resolution of a differential-difference state equation.20

The main purpose of their paper is to investigate whether maintenance and investment co-move in
response to a neutral technological shock in short-run, given their model assumptions.

For further reading about the model development and analysis we deliver the reader to the specific
paper, and expose here its main findings. As it is usual in the vintage AK theory, detrended investment
converges to its new steady state value by oscillations. Persistence is induced by the constant optimal
lifetime of capital. The behavior of maintenance costs reflects the convergence dynamics of investment,

19 See, for example, Tevlin and Whelan (2003) for an exhaustive explanation of this point.
20 See, for further studies, Boucekkine et al. (2005), and Fabbri and Gozzi (008a,b).
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as far as its current optimal path is given by a weighted integral of investment with time range
endogenously depending on obsolescence. So, according to their model settings, when a positive neutral
technology shock hits the economy, both investment and maintenance increase, which implies that they
are pro-cyclical. Specifically, there is a rise in maintenance following an increase in the optimal lifetime
of capital due to a positive neutral technology shock. A longer lasting capital stock necessitates a higher
amount of maintenance services. Therefore, in short-run, maintenance and investment co-move, i.e.
they are complements. On the contrary, obsolescence and replacement investment respond negatively
to the shock and both converge to the new balanced growth path by oscillations thereafter. Their
downward jump is, again, attributed to the instantaneous adjustment of the optimal lifetime of capital
to its new higher value, while persistence derives from their lagged functional structure in line with
the particular model setting. Therefore, contrary to new investment, replacement investment behaves
as substitute for maintenance services.

1.5 Two dynamic stochastic general equilibrium models

In this section we explain two DSGE models which are of particular interest for our research pur-
poses. The first one, Albonico et al. (2014), investigates the optimal dynamics of the main endogenous
variables in a simplified DSGE model with a depreciation rate endogenously determined by capital
utilization rate and maintenance. The second one, Justiniano et al. (2011), is used as a benchmark
model in our analysis. It is a more exhaustive DSGE model and captures the most salient aspects of the
recent literature in this class of models, with particular regard to the roles of the different technological
progresses.

The model of Albonico, Kalyvitis, Pappa (2014)
Albonico et al. (2014) analyze a DSGE model specifying an explicit depreciation rate function in

relation with capital utilization and maintenance. They estimate the model on the Canadian aggregate
economy and on the US manufacturing sector over the period 1956-2005 and 1958-2009, respectively.
For the former analysis, data on aggregate capital expenditures and maintenance from the Canadian
"Capital and Repair Expenditures" survey are used. They carry out estimations of maintenance ex-
penditures for both the economies21 and use them to depict the correspondent depreciation rate paths.
From their analysis it emerges that both the maintenance expenditures and maintenance to capital ratio
are pro-cyclical, as suggested by McGrattan and Schmitz (1999), and the depreciation rate of capital
is highly volatile and pro-cyclical both in the Canadian aggregate economy and in the US manufac-
turing sector, which is consistent with Burnside and Eichenbaum (1996). Moreover, according to their
model estimations, the cross derivative of the depreciation rate function with respect to maintenance
and utilization is negative, which confirms the analytical conjectures of Boucekkine and Ruiz-Tamarit
(2003).

So, the model is composed of two sectors. A representative household owns the capital stock and
rent the effective amount of capital stock (UtKt) to the final good producers at a rate rt. A representa-
tive household maximizes the present value of the utility function with respect to consumption, hours

21 In the case of Canada, they find that the estimated series obtained for the maintenance expenditures are consistent
with the series collected from the empirical survey.
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worked, capital utilization, investment and maintenance subject to the aggregate budget constraint
and the capital stock accumulation law of motion, given the quadratic capital adjustment cost and the
depreciation rate functions, as follows, respectively

max
Ct,ht,Ut,It,Mt

E
∞
∑

t=0

βtηut

[

C1−σ
t

σ
− λnη

h
t
h1+θn
t

1 + θn

]

s.t. Ct + It +Mt ≤ wtht + rtUtKt
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(
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(
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Kt + ν

(
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(
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(
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)2

δ

(
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= ξ
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t + (1− ψ)e

−γ
Mt
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]θ

where σ > 0 is the risk aversion coefficient, θn > 0 the inverse of the Frisch labor supply elasticity,
λn > 0 the preference parameter, 0 < β < 1 the discount factor, b > 0 the degree of capital adjustment
cost, φ ≥ 0 the elasticity of the depreciation rate with respect to capital utilization, and γ ≥ 0 the
elasticity of the depreciation rate with respect to maintenance. The latter expression, which represents
the depreciation rate of capital, nests the McGrattan and Schmitz (1999) specification when ψ = 0,
i.e. capital utilization does not affect its depreciation rate, and the Burnside and Eichenbaum (1996)
specification when ψ = 1. When, instead, maintenance is constant, the depreciation rate function
becomes akin to those assumed in Greenwood et al. (1988) and Burnside and Eichenbaum (1996).
Moreover, when capital stock is not utilized and maintenance expenditure is high, depreciation rate
is assumed to approach zero, δ(0,∞) = 0. The assumption on the parameter γ > 0 implies that
∂δ/∂M < 0 and ∂2δ/∂M2 > 0, whereas when φ > 0, then ∂δ/∂U > 0. The sign of the cross-
derivative of the depreciation rate function, which determines the degree of substitutability between
maintenance and investment, depends on the parameter θ. In steady state its value is related to
the deep parameters γ, φ, α, and it increases when the steady state real interest rate rises and/or
the investment to capital ratio declines. Given the above postulated depreciation rate function, when
θ > 1, the sign of the depreciation function cross derivative is negative, which is the condition defended
by Boucekkine and Ruiz-Tamarit (2003). On the contrary, when θ < 1, then ∂2δ/∂U∂M > 0.

The following AR(1) processes with i.i.d. normal errors for the preference shock, ηut , labor supply
shock, ηht , and investment specific technology shock, Zt, are assumed, respectively

log(ηut /η
u) = ρulog(η

u
t−1/η

u) + εut

log(ηht /η
h) = ρhlog(η

h
t−1/η

h) + εht

log(Zt/Z) = ρZ log(Zt−1/Z) + εZt

On the production side, firms minimize the total production costs choosing hours worked, ht, and
effective capital stock, UtKt, given the Cobb-Douglas production technology, as below

min
ht,UtKt

wtht + rtUtKt

s.t. Yt = (UtKt)
1−α(Xtht)

α

where Xt is the neutral labor-augmenting technology shock, which follows the AR(1) process with an
i.i.d normal error, εxt , according to log(Xt/X) = ρxlog(Xt−1/X) + εxt .
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The model is closed by the following clearing condition in the goods market

Yt = Ct + It +Mt +Gt

with Gt being the AR(1) government spending shock, i.e. log(Gt/G) = ρglog(Gt−1/G) + εgt .
The authors carry out the first order optimal conditions of their model, the steady state relations

and the log-linearized optimality conditions around the steady state and estimate the detrended log-
linearized model using Bayesian approach22. They estimate the values of the volatilities of the shocks,
their autocorrelations, the labor share, α, Frisch elasticity, θn, relative risk aversion, σ, adjustment
costs, b, and both the elasticities of the depreciation rate function, φ, and γ. The values of the
parameters θ, ξ and ψ are calculated using the steady state relationships. While all the other structural
parameters and the steady state ratios of investment and maintenance to capital, as well as government
to output are calibrated by the authors. According to their assumptions, the steady state depreciation
rate equals the steady state new investment to capital ratio, as far as capital adjustment costs equal
zero.

According to the Albonico et al. (2014) estimation results, when there are no maintenance expen-
ditures and capital is fully utilized, capital stock depreciation rate is about 19% per year for Canada
and 16% for the US. The figures for the natural rates of depreciation (i.e. no maintenance expenditure
and no capital utilization) are much lower, around 3.7% for Canada and 1.5% for US, whereas they
amount to 4.4% and 3.6% per year, respectively, when capital stock is fully utilized and maintenance
expenditures are high. The estimated value of the labor supply elasticity is higher in the US with
respect to Canada, which implies that, due to complementarities in the production function, utiliza-
tion increases relatively more. However, the relatively lower estimated value of φ in the US suggests
that the utilization effect on depreciation is tenuous. So, given the optimal response of the US capital
utilization rate, fewer movements of capital stock are required when a shock hits the economy and,
therefore, the capital adjustment costs decline. On the other hand, the estimated γ for the US is lower
than the one for Canada. Hence, maintenance expenditures should increase relatively more in order
to compensate the negative effects of utilization on depreciation in the US than in Canada.

From the comparison of their DSGE model with capital maintenance and the standard RBC model
without capital maintenance the authors have found that the estimation results are similar for Canada,
while significantly different for the US. The posterior estimated elasticities of the depreciation function
with respect to utilization rate, φ, are significantly different when comparing the two models in both the
economies. Moreover, both tend to decline when maintenance expenditure is considered. In general,
the impulse response functions are similar, with the exception that depreciation and utilization are
relatively more volatile in the presence of maintenance expenditures.

The optimal responses to the total factor productivity shock show that all the endogenous variables
of the model co-move a part those of the hours worked, this implies that maintenance expenditures
and investment are complements. A positive investment specific technology shock busts investments
and, hence, capital, hours worked and capital utilization, because of complementarities in production.
Depreciation increases as well. Moreover, the relative price of maintenance grows up, which induces
a fall in the maintenance to capital ratio and a further increase in the depreciation rate. Thus, in
response to the investment-specific technology shock all the main endogenous variables are pro-cyclical

22 For analytical developments and the characterization of the log-linearized model setting, please, refer to the relative
paper.
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with exception of maintenance to capital ratio, which is counter-cyclical. In this case maintenance
expenditures and investment behave as substitutes. With regard to a negative labor supply shock and
a positive preference shock maintenance, depreciation, capital utilization and investment are all pro-
cyclical, suggesting that maintenance and investments are complements. Finally, the optimal paths
in response to a positive government shock of maintenance, depreciation and capital utilization are
pro-cyclical, while it is counter-cyclical for investments.

So, a great deal of this paper is that the authors, given the successful model estimation for the Cana-
dian economy compared to the actual data available from the Canadian Survey on Capital and Repair
Expenditures over the period 1956-2005, have been able to expand the same methodology approach
to the US economy, where data on maintenance of capital are available only for the manufacturing
sector since 2007. Thus, with regard to the US, the authors have spanned the estimation period over
the 1958-2009. The estimation results show that maintenance to capital ratio and depreciation rate
are pro-cyclical and highly volatile with respect to output. The same holds for maintenance to new
investment ratio, however it exhibits a lower volatility with respect to output. Finally, they find that
all the correlations relative to output trend are positive.

The model of A. Justiniano, G.E. Primiceri, A. Tambalotti (2011)
A different DSGE model setting is used in Justiniano et al. (2011). Here, the maintenance ex-

penditures are not considered and the capital depreciation rate is assumed to be constant over time.
However, it is a medium scale DSGE model augmented with the most common assumptions gained in
the related literature. We choose this model for our research purposes mainly for two reasons. The first
one, as stated just above, is that it is a well structured model, because accounts for the well established
real and nominal rigidities assumptions like the Dixit-Stiglitz indexation, Calvo (1983) pricing, factor
hoarding, and the labor supply heterogeneity. The second one is to be attributed to the nature of the
shocks the authors consider. In fact, they distinguish between three types of technology shocks: the
neutral labor-augmenting technology shock, the investment-specific technology shock (IST) and the
shock to the marginal efficiency of investment (MEI). The first two are well known in the literature.
Moreover, with regard to the second one, it is shown that, in a perfectly competitive equilibrium, the
inverse of the investment-specific technology shock equals the relative price of investment goods. So,
the IST shocks have been found to be good drivers of the business cycles fluctuations over the past
decades.23 On the contrary, some have argued that their role is negligible, instead.24 Justiniano et al.
(2011) argue that, measuring all the shocks to capital accumulation process by the relative price of
investment can produce erroneous results. In fact, as their estimation results reflect, adding the relative
price of investment among the observable variables produces almost no variations in the estimation
outputs. This suggests that not all the investment shocks are to be simply attributed to the relative
price of investment. In order to support these findings, they analytically develop an alternative model
incorporating nominal rigidities both in the consumption and investment goods producing sectors. The
presence of sticky prices and monopolistic competition in both the sectors draws a wedge between the
inverse of investment-specific technology progress and the relative price of investment, given by the
ratio between the consumption and investment real marginal costs. They show by contradiction that,

23 See, for example, Greenwood et al. (1997), Fisher (2006), Smets and Wouters (2007).
24 See Schmitt-Grohé and Uribe (2012) and Liu et al. (2009).
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in such an economy, an equilibrium where the relative price of investment equals the inverse of the
investment-specific technology shock is not feasible. The authors distinguish, therefore, between the
shock that hits the transformation of consumption in investment goods (IST), which is assumed to
reflect the relative price of investment, and the shock that influences the transformation of investment
goods into physical capital (MEI). This distinction is achieved assuming a decentralized model setting.
In fact, they suppose their economy consists of eight sectors. The agents of each sector aim to optimize
their corresponding objective problems, as it is described below.

Final good producing sector
The final goods producing sector is inhabited by a continuum of perfectly competitive firms, which,

combining a continuum of intermediate goods Yt(i), i ∈ [0, 1], produces a final good Yt, according to
the following technology

Yt =

[
∫ 1

0

Yt(i)
1

1+λp,t

]1+λp,t

where λp,t is the ARMA(1,1) price mark-up shock, i.e. the mark-up of price over intermediate firms
marginal cost, as follows

logλp,t = (1− ρp)logλp + ρplogλp,t−1 + εp,t − θpεp,t−1

with εp,t being i.i.d.N(0, σ2p). Final good Yt is then sold at a unit price Pt both to households for
consumption and to investment good producers. The zero profit condition and the profit maximization
deliver the following aggregate price index, given by the CES aggregate of intermediate goods prices,
Pt(i), and the demand function for intermediate good, respectively

Pt =

[∫ 1

0

Pt(i)
−

1
λp,t

]−λp,t

Yt(i) =

(

Pt(i)

Pt

)

−
1+λp,t
λp,t

Yt

Intermediate good producing sector
Firms operate in a monopolistic competition regime and produce the intermediate good Yt(i) using

the effective amounts of capital and labor, Kt(i) and Lt(i), respectively. The optimization problem
of the firm consists in maximizing profits with respect to effective capital and labor subject to its
production function as follows

max
Kt(i),Lt(i)

Pt(i)Yt(i)−WtLt(i)−Rk
tKt(i)

s.t. Yt(i) = A1−α
t Kt(i)

αLt(i)
1−α − AtΥ

α
1−α

t F

where Wt and Rk
t are nominal wage and rental rate of capital, respectively and At is the non stationary

exogenous labor-augmenting technology shock, with a stationary AR(1) growth rate, zt = ∆logAt, that
is

zt = (1− ρz)γz + ρzzt−1 + εz,t
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with εz,ti.i.d.N(0, σ2z ), and Υt representing the investment-specific technology progress. Intermediate
goods producing firms must support fixed costs of production, F . When these costs exceed the amount
of output a firm is able to produce, given the combination of labor Lt(i), effective capital, Kt(i) and
neutral technology, At, the total firm’s production is turned to zero, such that Yt(i) = 0.

The optimal conditions of the problem solution depict the capital to labor ratio and the marginal
costs, at optimum.25 Both are common across firms due to homogeneity in the factor markets. More-
over, given the homogeneity in the production function, marginal cost corresponds to the average
variable cost. This condition is exploited in the price optimization problem. In fact, firms in this mar-
ket sector are subject to the Calvo (1983) pricing system, according to which, every period a fraction
of firms, ξp, resets its prices according to the indexation rule

Pt(i) = Pt−1(i)π
ιp
t−1π

1−ιp

where πt =
Pt

Pt−1
and π are the gross inflation and its steady state value, respectively. In equilibrium

ξp measures the degree of price stickiness. The remaining fraction of firms, (1− ξp), is able to optimize
the present discounted value of future profits with respect to their price, P̃t(i), subject to the optimal
demand of intermediate goods, as follows

max
P̃t(i)

Et

∞
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ξsp
βsΛt+s
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π
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}

s.t. Ỹt+s(i) =

(

P̃t(i)

Pt+s
πt,t+s

)−

1+λp,t+s
λp,t+s

Yt+s

where Λt+s is the marginal utility of the nominal income of a representative household that owns a
firm, and ξp represents the index of price stickiness. The solution of the optimization problem returns
the optimal price setting condition of the intermediate goods producers and the aggregate price index
expressed in terms of a weighted aggregation of the optimally chosen price and the price set according
to the indexation rule. Both are then used in the construction of the Phillips curve.

Investment good producing sector
Given the aggregate production technology, perfectly competitive firms produce It efficiency units

of investment goods using Y I
t units of final good, and sell them to the capital producing firms at a

unit price PIt. Their profit maximization problem is, therefore

max
Y I
t

PItIt − PtY
I
t

s.t. It = ΥtY
I
t

which, at optimum, equals the relative price of investment with respect to consumption to the
inverse of investment-specific technology progress. The term Υt is the non-stationary IST shock with
the growth rate, υt = ∆ logΥt evolving according to the following stationary AR(1) process

υt = (1− ρυ)γυ + ρυυt−1 + ευ,t

where ευ,t is i.i.d.N(0, σ2υ).

25 For the non stochastic steady state relationships and the log-linearized around the steady state value model with
the detrended variables see Appendix A.
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Capital good producing sector
Firms operate in perfect competition and produce installed capital, it, using investment goods It,

purchased at the investment good producers. Installed capital is then sold to households at a unit price
Pkt in order to be transformed into effective capital. A representative firm maximizes the expected
discounted stream of profits with respect to investment good It subject to the production technology
of installed capital as follows

max
It

Et

∞
∑

s=0

βsΛt+s [Pk,t+sit+s − PI,t+sIt+s]

s.t. it+s = µt+s

[

1− S

(

It+s

It+s−1

)]

It+s

where S(·) is the adjustment cost of investments satisfying in steady state S = S′ = 0 and S′′ > 0.
The shock to the marginal efficiency of investment, µt, follows the following AR(1) process with an
i.i.d.N(0, σ2µ) error term

log µt = ρµ log µt−1 + εµ,t

The first order condition delivers the optimal capital good producing condition.26

Households
A continuum of households is supposed to be endowed with specialized labor, Lt(j), j ∈ [0, 1], and

capital. They purchase consumption goods, Ct, from the final good producers and installed capital,
it, from capital good producers. The stock of installed capital of period t− 1, K̄t, is then transformed
into effective capital in period t, Kt, through the rate of utilization, ut, chosen by the households, that
is Kt = utK̄t−1. Finally, the effective capital is rent to intermediate good producing firms at the rate
Rk

t . Hence, a representative household maximizes a separable logarithmic utility function with respect
to consumption, Ct, labor, L(j)t, government bonds Bt, installed physical capital, it, physical capital
stock, K̄t, and utilization rate subject to its budget constraint and physical capital law of motion, as
follows, respectively

max
Ct,Lt,Bt,it,K̄t,ut
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∑

s=0

βsbt+s

[

log(Ct+s − hCt+s−1)− ϕ
Lt+s(j)

1+υ

1 + υ

]

s.t. PtCt + Pktit + Tt +Bt ≤ Rt−1Bt−1Qt(j) + Πt+

+Wt(j)Lt(j) +Rk
t utK̄t−1 − Pt

a(ut)

Υt
K̄t−1

K̄t = (1− δ)K̄t−1 + it

where β is the discount factor, h the degree of habit formation, υ the Frisch elasticity, Tt lump-
sum taxes, Bt government bonds, Rt gross nominal interest rate, Qt(j) net cash flow from the state

contingent security of the jth household, Πt the per-capita profit from owning a firm, and Pt
a(ut)
Υt

the
dollar cost of capital utilization per unit of physical capital, which is scaled by the IST shock in order to

26 Note that, in a one-sector representation of the model, the zero profit condition implies that Pk,tit = PtĨt, where

Ĩt represents real investment expressed in consumption units, Ĩt =
PI,t

Pt
It, and is treated as observable in the model

estimation. The law of motion of capital, in this case, is K̄t = (1− δ)K̄t−1 + µtΥt(1− St)Ĩt, which clearly distinguishes
between the two types of shocks that affect the accumulation process of capital.
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ensure the existence of a balanced growth path. Moreover, it is assumed that, in steady state, ut = 1,

a(1) = 0 and χ = a′′(1)
a′(1) . The intertemporal preference shock, bt, follows the following AR(1) process

log bt = ρb log bt−1 + εb,t

where εb,t is i.i.d.N(0, σ2b ). Moreover, a nominal rigidity is added to the labor supply sector, that is,
every period a fraction ξw of households sets its wages according to the indexation rule

Wt(j) =Wt−1(j)
(

πt−1e
zt−1+

α
1−α

υt

)ιw
(

πeγz+
α

1−α
γυ
)

The remaining fraction (1 − ξw) of households choses the level of optimal wage by maximizing the
utility function subject to the optimal labor demand condition of employment agencies, as follows

max
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s.t. Lt+s(j) =
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Wt(j)

Wt+s
πw
t,t+s

]

−

1+λw,t+s
λw,t+s

Lt+s

where Lt represents the aggregate labor demand. The solution of the latter maximization problem by
the households designates the optimal wage setting condition and the aggregate wage index.

Employment agencies
In this sector perfectly competitive employment agencies purchase specialized labor Lt(j) from

monopolistic households at the ’price’ Wt(j) and transform it into homogeneous labor, Lt, which is
supplied by the intermediate good firms in their production process at ’price’ Wt. The agencies optimize
their profits with respect to Lt(j) given the aggregate index of labor, as follows

max
Lt(j)

WtLt −

∫ 1

0

Wt(j)Lt(j)di

s.t. Lt =

[
∫ 1

0

Lt(j)
1

1+λw,t

]1+λw,t

where λw,t is the mark-up of wage over the household’s marginal rate of substitution, corresponding
to the labor supply shock, and following the ARMA(1,1) process with εw,t ~i.i.d.N(0, σ2w)

logλw,t = (1− ρw)logλw + ρwlogλw,t−1 + εw,t − θwεw,t−1

Hence, the optimal labor demand function and the aggregate wage index are, respectively

Lt(j) =

(

Wt(j)

Wt

)

−

1+λw,t
λw,t

Lt

Wt =

[
∫ 1

0

Wt(j)
−

1
λw,t

]−λw,t
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Government
The authors assume a Ricardian fiscal policy system, that is, government releases bonds in order

to finance its budget deficit. The government budget constraint is, therefore

Gt = Tt +Bt −Rt−1Bt−1 −Qt(j)

where Gt denotes government spendings depending on the exogenous parameter gt according to the
following expression

Gt =

(

1−
1

gt

)

Yt

So, gt is the government spending shock following the AR(1) stochastic process

log gt = (1− ρg) log gt−1 + εg,t

where εg,t is i.i.d.N(0, σ2g ). The market clearing condition

Monetary policy authority
Monetary authority chooses the level of nominal interest rate according to a policy rule, which

relates the deviations of the latter one from its steady state value, Rt/R, with the deviations of
inflation, the level of GDP gap and its growth rate from their corresponding steady states, πt

π , Xt
X⋆

t
and

Xt/Xt−1

X⋆
t /X

⋆
t−1

, respectively

Rt

R
=

(

Rt−1

R

)ρR
[

(

πt

π

φπ

)(

Xt

X⋆
t

)φX

]1−ρR (
Xt/Xt−1

X⋆
t /X

⋆
t−1

)φdX

εmp,t

where εmp,t is an i.i.dN(0, σmp
2) monetary policy shock.

Given the model settings and the assumptions made, the steady state growth rate of the composite

technological progress, AtΥ
α

1−α
t , is a linear combination of the steady states of neutral technology and

investment-specific technology progresses, that is

γ⋆ = γz +
α

1− α
γυ

The authors estimate their model for the US economy over the period 1954:III-2005:III, using the
Bayesian approach and the following variables as observables

[

∆ logXt,∆ logCt,∆ log Ĩt,∆ logLt,∆ log Wt

Pt
, πt, Rt,∆ log PIt

Pt

]

So, there are eight observables and eight exogenous shocks.27 In order to investigate the role of the
investment-specific technology shock, the authors use the relative price of investment as observable,
which is defined as the ratio of the weighted chain deflators for consumption and investment. For
investment price series, PIt, they rely on the actual data for deflators of durable consumption and

27 For definitions of actual counterparts of the observable variables and the set of priors of the estimated parameters
and standard deviations, please relate to the specific paper.
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private investment provided by the National Income and Product Accounts (NIPA).28 The obtained
model estimations for correlations with respect to output and standard deviations relative to output
of all the observables, as well as almost all the other second moments capture fairly well their actual
counterpart values. However, the contemporaneous correlation between the growth rates of consump-
tion and investment is significantly different. Moreover, the first order estimated autocorrelations of
the growth rates of output, consumption and investment, as well as their corresponding volatilities are
overpredicted. Nevertheless, the model fits fairly well the real economy. The impulse response functions
of output, investment, hours, real wages, inflation and nominal interest rate to a shock in marginal
efficiency of investment all exhibit an increasing hump-shaped pattern. Consumption, instead, starts
to rise after a few periods. Moreover, the MEI shock accounts for 60, 85, 68 percent in volatility of
output, investment and hours, respectively, while only for 8% in that of consumption. So, these shocks
are found to be the "key drivers" of the business cycles fluctuations. As to IST shocks, the authors
find that, contrary to Fisher (2006), their explanatory power in the business cycles is trivial, whereas,
in line with Schmitt-Grohé and Uribe (2012), they are crucial in the long run growth.

Finally, the authors argue that, the MEI shock of the type they do consider in their model can
also reflect disturbances that affect financial markets. In fact, they assume it hits the transformation
process of investment goods into installed capital, reflecting, for example, the adjustment costs of
the investment rate. Similarly, in an agency cost model, financial frictions influence the ability of
the capital good producers to borrow from financial intermediaries in order to purchase investment
goods for the production of installed capital. In both the cases installed capital declines in response
to a negative shock affecting the capital good sector. The affinity between the two interpretations is
furthermore enhanced by the observed strong negative correlation between the estimated mode of the
MEI shock and the external finance premium, measured as the spread between returns on high-yield
bonds and AAA corporate bonds.29 To corroborate further their assertion, the authors show that the
MEI shocks contribution to the 2008-2009 recession is considerable.

1.6 Concluding remarks

There exist many various insertions in the business cycles economic literature, which have progressively
signed the evolving of these types of models both in their analytical structure as well as in the esti-
mation methodology. In line with our research objective, we have delineated the literature evolution
of modeling the real business cycle models, up to the DSGE models, with endogenously determined
depreciation rate of capital. This topic has not collected great success in the related literature up today.
In fact, the most notable DSGE models are used to be constructed with a capital depreciation rate
constant over time, which is consistent with estimation results of several papers, such as, for example,

28 The authors, moreover, check for robustness of their model estimation to a differently constructed price index, which
combines NIPA deflators for consumption durables, and private investment in residential and non-residential structures,
with the Gordon (1990) and Cummins and Violante (2002) price index series for private equipment and software. The
only significant difference between the two appears in a faster decline rate of the latter series with respect to NIPA’s
ones. Both the relative prices present a trend break around 1982:I.

29 The choice of high-yield bonds for the spread measure is justified by the fact that they are shown to be highly
predictive, especially, for investment and employment. The same two variables are estimated by the authors to be
mostly affected by the MEI shock.



Concluding remarks 36

Hulten and Wykoff (981a,b), Jorgenson (1996), Oliner (1996) and Huang and Diewert (2011). On the
contrary, thanks to the Solow residual failure in explaining the real business cycles, a growing attention
has been focused on the possible role of endogenous depreciation rate in the macroeconomic fluctua-
tions. Specifically, the sprint has been given by Greenwood et al. (1988) and Burnside and Eichenbaum
(1996), who have highlighted important transmission mechanisms of propagation of technology shocks
throughout the capital utilization rate, which was supposed to endogenously model the function of capi-
tal depreciation rate. Models that assume a constant depreciation rate, but include the capital hoarding
assumption, are only able to account for the direct effects of the utilization rate on the production
function, thus, neglecting the indirect effects generated throughout the capital accumulation process.
Later on, McGrattan and Schmitz (1999), basing on evidences from the Canadian "Capital and repair
expenditure" survey, have detected maintenance and repair activity of capital stock as an additional
important channel for the technology shocks propagation and amplification. They have calculated
that, the maintenance and repair expenditures in the whole industry averaged 5.7 percent of GDP over
the period 1961-1993, while excluding the construction sector (i.e. considering only structures and
equipment) maintenance and repair spendings were about 28 percent of spending in new investment,
over the same period. These figures suggest that ignoring activity of maintenance and repair of capital
in the modeling macroeconomic models could give deceptive representation of the economy. Basing
on this evidence and encouraged by the contrasted results carried out in Licandro and Puch (2000)
and Licandro et al. (2001), who have found that in response to a positive TFP shock maintenance
activity is countercyclical and pro-cyclical, respectively, a stream of research has addressed the topic
of the qualitative behavior of maintenance. According to Boucekkine and Ruiz-Tamarit (2003) main-
tenance is pro-cyclical in response to a TFP shock only under certain parameter restrictions in the
depreciation rate function and anyway this outcome is rejected because of the violation of the law
of demand for maintenance. However, Boucekkine et al. (2010) show that maintenance may behave
pro-cyclically in short-run. Conversely, Albonico et al. (2014) argue that the behavior of maintenance
expenditures depends on the type of technological shock under consideration. According to them it
is pro-cyclical in response to a TFP shock and countercyclical in response to the investment-specific
technological progress. On the types of technological shocks depends also the behavior of the rate of
depreciation according to Boucekkine et al. (2009), who claim that a positive investment-specific tech-
nological progress boosts both the age-related and use-related depreciations implying an acceleration
in the economic depreciation rate. On the contrary, a positive TFP shock does not impact on the
use-related depreciation, however the age-related depreciation decreases inducing the economic depre-
ciation to decline. This is in contrast with Albonico et al. (2014) who have found that the depreciation
rate is always pro-cyclical.
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Chapter 2

2 Model description

Introduction

In the present chapter is described the structure of our model. The goal of our research is to determine
whether, in a Dynamic Stochastic General Equilibrium framework, endogenously determined depre-
ciation rate of capital may impact on the equilibrium levels and convergence dynamics of the main
macroeconomic aggregates. On the basis of several empirical studies, we argue that capital deprecia-
tion rate has a growth trend. This behavior may be noticed in Fig.2.1. The ri-elaborated series are
taken from the Bureau of Economic Analysis (BEA), which publishes unadjusted for quality prices
including thus the effects of obsolescence of capital stock in the estimated series for prices. The figure
shows that in the U.S., especially after the second half of the 1960s, capital depreciation rate has grown
consistently. This surge is accompanied by a fall in the NIPA’s relative price of investment30. In fact,
the National Account Systems use to define economic depreciation rate as a decline in the asset value
and estimate it according to the methodology of used-asset prices. This means that the lower the price
of a used asset the higher the related depreciation.

Literature evidences using different estimation approaches come from Geske et al. (2007) who have
computed estimations for the depreciation rate of computers using the used asset price approach over
the period 1990-2001. According to them, on average, the value of used computers has declined by
about 45% per year, which implies an age-related depreciation of about 3% per year and depreciation
due to obsolescence of 8% on average per year. Moreover, their estimations show that, while the
age-related depreciation is almost constant over the considered period, the rate of obsolescence ranges
between 3% in 1990 and 1992 and 15% in 1999. Similarly, Tevlin and Whelan (2003), implementing
the perpetual inventory approach on the U.S. actual data for chain-weighted investment and capital
over the period 1965-1997 show that the aggregate economic depreciation rate exhibits a persistent
increasing trend, rising from 8% in 1965 to 16% in 1997, with a more substantial growth over the
latter ten years. An increase, even though less pronounced, is as well observed over the period 1965-
1988 when computing-equipment is excluded or when fixed-weighted data are used, with a persistent
increasing trend after the 1988. Given the evidences carried out by the above cited authors and basing
on what emerges from the National Accounts estimates we set our model such that, in equilibrium, the
path of the capital depreciation rate depends on the decline rate of the relative price of investment.

Our model as well includes maintenance activity following the claim of McGrattan and Schmitz
(1999) "too big to ignore". It affects, together with capital utilization, the depreciation rate path and
is treated as a control variable by the households.

30 It is shown in Boucekkine et al. (2009) that the correlation between NIPA’s relative price of investment and the
depreciation rate is positive. Similar paths and conclusions can be made for the Canadian economy as well.
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Fig. 2.1: Depreciation rate and relative price of private nonresidential equipment and software
(1929-2015)

Source: BEA estimations. Author’s elaboration.

The chapter is structured as follows. In section 2.1 we describe the setting of our model and the
optimization problems of the agents. In section 2.2 we show the non-stochastic steady states and
define the stationary equilibrium equations with the detrended endogenous variables. In section 2.3
the system of linear rational expectation equations is outlined which is obtained log-linearizing around
the steady state our detrended optimal equations. For the analytical computations of all the equations
we remainder to the appendixes.

2.1 Model structure

We implement a modified version of the Dynamic Stochastic General Equilibrium model presented in
Justiniano et al. (2011), in which the most common assumptions with respect to consumption habits,
technology and market structure are taken into account. It is a decentralized model with sector-
specific optimization problem settings. Such a decentralization scheme allows the authors to clearly
distinguish between the following three technological progresses: the neutral labor augmenting tech-
nological process, the investment specific technological process (IST), and the marginal efficiency of
investment process (MEI). The first one affects the production of intermediate goods and enters the
Cobb-Douglass production technology function. The IST shock affects the transformation process of
final goods into new investment, while the MEI shock influences the transformation of new investment
into new capital goods. An important result of their model is about the role of the IST progress in
driving the macroeconomic business cycles. Specifically, when interpreted as the inverse of the relative
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price of investment with respect to consumption31, the propagation effects of these shocks into the real
economy appear to be negligible32. Their estimation analysis, in fact, displays that the contribution
to the economic growth of the IST shock amounts to about 40% in contrast to the 60% ascribable to
the marginal efficiency of investment technological progress.

In addition to Justiniano et al. (2011) model setting, we include the sector of capital maintenance
activity. Moreover, we departure from the constant depreciation rate assumption, and allow for its
endogenous determination. For this purposes we define the rate of depreciation as a function of capital
utilization and capital maintenance, positively related with the first one and negatively with the latter
one33. When capital is used in the production process more intensively depreciation accelerates, this
is known as the depreciation-in-use assumption. However, the rate of depreciation is as well influenced
by the technological progresses.

Several important attempts have been made in the related literature to explain the behaviors of the
utilization and depreciation rates and the maintenance costs in response to technological progresses.
Boucekkine and Ruiz-Tamarit (2003) argue that, when the sensitivity of the depreciation rate function
is higher for capital utilization than for maintenance, then depreciation, maintenance and utilization
are all procyclical in response to a neutral productivity shock. On the contrary, when depreciation
function is more sensitive with respect to maintenance costs, then all of them are countercyclical.
Boucekkine et al. (2010), assuming endogenous scrapping time in a vintage AK model, show that
the scrapping of capital is positively related to neutral technological progresses, this induces mainte-
nance costs to be procyclical in short run. The use-dependent depreciation and obsolescence, however,
are both countercyclical. Boucekkine et al. (2009) incorporate the investment specific technological
progress together with the neutral technology process in a two-sector vintage capital model. According
to them, both the use-related and age-related depreciation rates are procyclical in response to the
investment specific technological process, which implies that the economic depreciation rate co-moves
with output. The effect of the neutral technological progress is null on the use-related depreciation
and negative on the age-related one, which entails, in this case, a countercyclical response of the eco-
nomic depreciation rate. Similarly, Albonico et al. (2014) highlight the procyclical behavior both of
the maintenance costs and of the capital depreciation rate in response to the total factor productivity
progress. However, maintenance is countercyclical when the investment-specific technology shock hits
the economy.

In our model, similarly to Justiniano et al. (2011), there are three possible driving forces of the
economic fluctuations, that are the marginal efficiency of investment technology progress (MEI), the
investment-specific technology progress (IST) and the labor-augmenting technology progress. The
distinction between the IST and MEI shocks for our research purposes is crucial. In fact, following
the literature and the interpretation of Justiniano et al. (2011), in equilibrium IST is given by the
inverse of the relative price of investment. As far as prices are unadjusted for quality, we interpret

31 It is shown that, in a perfectly competitive environment, the investment-specific technological progress can be proxied
by the inverse of the relative price of new investment.

32 Other several papers have come out with the same arguments, attributing the driving forces of the macroeconomic
fluctuations to other types of technological progresses, such as, the shock to the depreciation rate of capital or the
shock to the quality of capital. For details see Schmitt-Grohé and Uribe (2012), Liu et al. (2009), Furlanetto and Seneca
(2014).

33 This assumption is in line with the related literature. See, for example, Greenwood et al. (1988) and
McGrattan and Schmitz (1999).
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this shock as the disembodied investment-specific technological progress, which reduces the marginal
cost of production of one extra unit of investment. As to the MEI shock, it affects the transformation
process of investment goods into installed capital. An additional interpretation given to this shock by
Justiniano et al. (2011) is that it can represent some kind of financial disturbance which affects, for
example, the transformation of households savings into new capital. However, we abstract from the
financial sector in our model and rather consider the MEI shock as an embodied investment-specific
technological progress, which increases the quality of one extra unit produced investment, and thus
interpret it as obsolescence. Our consideration is supported by the fact that, when reducing the model
to one sector representation, both the shocks enter linearly into the law of motion of capital stock,
suggesting that they are elements of one composite total investment shock. The decentralization of
the model allows to split the composite investment shock in two components, indeed, the IST and
MEI progresses, or the disembodied and embodied specific-investment progresses, respectively. Other
innovative element of our model is that our model assumptions entail that the economic depreciation
rate exhibits a trend which is related to the disembodied IST progress and,therefore, to the relative
price of investment.

So, given our model assumptions, our aim is to analyze the equilibrium dynamics of the endoge-
nous depreciation rate of capital and of the maintenance expenditures, together with the other main
macroeconomic variables in response to the shocks considered in the model. Following Justiniano et al.
(2011), we assume that households purchase new capital from the perfectly competitive capital-good
producers, and transform it into installed physical capital, which is used in the next period produc-
tion process. The utilization rate of capital is a variable of choice of households. We assume that,
they may furthermore decide to restore the depreciated capital demanding maintenance services to the
perfectly competitive maintenance-services producers. The maintenance-services firms acquire units
of final goods and, given positive adjustment costs, transform them into efficiency units of mainte-
nance ready to "replace" the depreciated capital. Final good is produced in a perfectly competitive
environment through a combination of intermediate goods and sold to households for consumption, to
maintenance-services producers and to perfectly competitive investment-goods producers, who produce
the new investment. New investment is then purchased by the perfectly competitive capital-goods pro-
ducers, who transform it into new capital. New capital is purchased by households who transform it
into installed capital and then rent to the intermediate-goods producers as effective capital. The latter
ones, operating in a monopolistic competition, sell the intermediate goods to the final goods producers.
Households, among others, choose the amounts of government bonds holdings. Each household is a mo-
nopolistic supplier of specialized labor, that is aggregated by employment agencies into homogeneous
labor, which is then sold to intermediate good producers for their production process. Government
implements Ricardian fiscal policy and the monetary authority sets the nominal interest rate according
to the Taylor interest rate rule.

The final good sector
Perfectly competitive firms combine a continuum of intermediate goods {Yt(i)}i, i ∈ [0, 1], in order

to produce the final good Yt, given the Dixit and Stiglitz (1977) CES aggregate technology. Their
profit maximization problem is, therefore
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max
Yt,Yt(i)

PtYt −

∫ 1

0

Pt(i)Yt(i)di

s.t. Yt =

[
∫ 1

0

Yt(i)
1

1+λp,t di

]1+λp,t
(P1)

where λp,t is the price mark-up shock following an exogenous stochastic ARMA(1,1) process, which,
as stated in Justiniano et al. (2011), helps to capture the highly volatile inflation

log λp,t = (1− ρp) log λp + ρp log λp,t−1 + εp,t − θpεp,t−1 (2.1.1)

with εp,t ∼ i.i.d.N(0, σ2p).
Combining the expression resulting from the profit maximization together with the zero profit condition
it is obtained the optimal demand function for the intermediate good i, decreasing in its relative price,
as well as the analytical expression for the final good price, which is represented by a CES aggregate
of the intermediate goods prices {Pt(i)}i, as follows, respectively34

Yt(i) =

(

Pt(i)

Pt

)

−
1+λp,t
λp,t

Yt (2.1.2)

Pt =

[
∫ 1

0

Pt(i)
−

1
λp,t di

]−λp,t

(2.1.3)

Final goods are purchased by the households for consumption purposes, by the investment-goods
producers, who transform them into efficiency units of new investment, and by the maintenance-
services producers, who transform them into efficiency units of capital maintenance.

The intermediate good sector
In this sector firms are assumed to operate in a monopolistic regime as far as each one produces a

diversified intermediate good by combining the amounts of effective capital Kt(i) and effective labor
Lt(i), according to a Cobb-Douglas technology. The profit maximization problem is as follows

max
Lt(i),Kt(i)

Pt(i)Yt(i)−WtLt(i)−Rk
tKt(i)

s.t. Yt(i) = A1−α
t Kt(i)

αLt(i)
1−α − AtΥ

α
1−α

t F

(P2)

where Wt is the aggregate level of nominal wages and Rk
t is the nominal return on capital. At is a non-

stationary process representing labor-augmenting technology shock. Its growth rate, ∆ logAt = zt,
follows the following stationary AR(1) process

zt = (1− ρz)γz + ρzzt−1 + εz,t (2.1.4)

with εz,t ∼ i.i.d.N(0, σ2z ). Similarly, Υt represents a non-stationary process for the investment-specific
technology progress, which can be considered either as quality or quantity improvement. Its growth
rate, ∆ logΥt = vt, follows the following stationary AR(1) process

vt = (1− ρv)γv + ρvvt−1 + εv,t (2.1.5)

with εv,t ∼ i.i.d.N(0, σ2v ). Finally, F represents the fixed costs. Its value is chosen such that in

steady state profits are zero and it is multiplied by the composite technology factor AtΥ
α

1−α

t in order

34 For the analytical derivations of all the model equations please refer to Appendixes B, C, D, E.
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to guarantee the existence of a balanced growth path. Note that, when fixed costs are high relative
to the production capacity, which is given by the combination of capital and labor factors and neutral
technology, the intermediate goods producer i is constrained to exit the market so that its production
output, Yt(i), is null.

The first order conditions with respect to capital and labor, combined together, give the optimal
capital to labor ratio and the optimal nominal marginal cost, as follows, respectively

Kt

Lt
=
Wt

Rk
t

α

1− α
(2.1.6)

MCt =

(

Wt

At

)1−α
(

Rk
t

)α 1

αα(1− α)1−α
(2.1.7)

The production technology of the intermediate goods producers satisfies the desirable property of
duality. This property ensures that the capital to labor ratio and the marginal cost function are both
common across all the monopolistic firms. Moreover, given the optimal relative demand for capital,
obtained from the optimization problem, the average variable cost equals the nominal marginal cost.

Next, it is assumed a price optimization setting a la Calvo (1983). Namely, every period a fraction
ξp of intermediate firms resets its prices according to the following indexation rule

Pt(i) = Pt−1(i)π
ιp
t−1π

1−ιp (2.1.8)

where πt represents the gross inflation and π its steady state level. The fraction ξp, thus, represents
the natural level of price stickiness. The remaining fraction of firms, 1 − ξp, is able to optimize for
the price level P̃t(i) the present discounted value of future profits subject to the optimal intermediate
goods demand function (2.1.2), that is

max
P̃t(i)

Et

∞
∑

t=0

ξspβ
sΛt+s

Λt

[

P̃t(i)πt,t+s −MCt+s

]

Yt+s(i)

s.t. Yt+s(i) =

[

P̃t(i)

Pt+s
πt,t+s

]−

1+λp,t+s
λp,t+s

Yt+s

(P3)

where πt,t+s =
∏s

j=0 π
ιp
t+j−1π

1−ιp .where MCt represents the nominal marginal cost and is substituted
for the average variable cost due to their equivalence as stated above, while Λt is the marginal utility
of nominal income of the representative household who owns the firm. Therefore, the aggregate price
index is given by the following expression

Pt =

[

ξp
(

Pt−1π
ιp
t−1π

1−ιp
)−

1
λp,t + (1− ξp) P̃

−
1

λp,t

t

]−λp,t

(2.1.9)

The optimal price setting condition relates the optimally decided price adjusted for inflation to the
nominal marginal cost adjusted for the desired price mark-up, λp,t, as follows

Et

∞
∑

s=0

ξspβ
sΛt+s

[

P̃t(i)πt,t+s − (1 + λp,t+s)MCt+s

]

Ỹt+s(i) = 0 (2.1.10)

where P̃t is the level of the optimally chosen price common across firms and Ỹt is the demand these
firms are facing.
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The maintenance services sector
We assume that, perfectly competitive firms purchase units of final good, Y m

t , in order to transform
them into maintenance goods or services, Mt, which are then sold to households at the unit price of
maintenance Pm

t . The transformation process from Y m
t to Mt incurs some adjustment costs given

by f(Y m
t /Y m

t−1), which, in steady state, satisfy the following assumptions f = f ′ = 0 and f ′′ > 035.
An increase in the amount of final good designated for maintenance today, lowers the adjustment
maintenance costs in the next period. Firms maximize the expected discounted value of future profits
with respect to Y m

t and Mt subject to the technology that transforms efficiency units of final goods
into efficiency units of maintenance goods, as follows

max
Mt,Y

m
t

Et

∞
∑

s=0

βsΛt+s [P
m
t+sMt+s − Pt+sY

m
t+s]

s.t. Mt+s = dt+s

[

1− f

(

Y m
t+s

Y m
t+s−1

)]

Y m
t+s

(P4)

where we call dt the maintenance specific technology shock and assume it follows an AR(1) exogenous
stochastic process

log dt = ρd log dt−1 + εd,t (2.1.11)

with εd,t ∼ i.i.d.N(0, σ2d). According to the technology for the production of efficiency units of main-
tenance an increase in the amount of the current final good used for maintenance, Y m

t , decreases the
expected level of the adjustment costs of maintenance, ft+1.

Following the procedure implemented for investment in Justiniano et al. (2011), we call M̃t =
(Pm

t /Pt)Mt the real maintenance in consumption units. From the zero profit condition of the firms we
get Y m

t = (Pm
t /Pt)Mt. Therefore, according to our model settings, the fraction of final good that is

used as input in the production of maintenance goods equates real maintenance in consumption units,
i.e. Y m

t = M̃t.
Optimization with respect to the efficiency units of maintenance, Mt, defines the equilibrium level

of maintenance price as the shadow value of maintenance goods relative to the shadow value of con-
sumption, as follows

Pm
t =

Γt

Λt
(2.1.12)

The first order condition of the optimization problem with respect to Y m
t establishes the optimal

supply of maintenance services, which depends on the maintenance adjustment technology and on the
maintenance specific technology shock, as follows

ΛtPt = ΛtP
m
t dt

[

1− f

(

Y m
t

Y m
t−1

)

−
Y m
t

Y m
t−1

f ′

(

Y m
t

Y m
t−1

)]

+ βEt

{

Λt+1P
m
t+1dt+1

(

Y m
t+1

Y m
t

)2

f ′

(

Y m
t+1

Y m
t

)

}

(2.1.13)

When the maintenance adjustment costs are zero, i.e. f = f ′ = 0, the relative price of maintenance
services with respect to consumption equals the inverse of the maintenance specific technology shock,
that is Pm

t /Pt = d−1
t . Thus, a positive maintenance specific technology shock decreases the current

35 The functional form for the maintenance adjustment costs and the underlying assumptions have been set following
Christiano et al. (2005) and Justiniano et al. (2011), who resort to its flexible characteristics that we have mentioned in
the main text.
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relative price of maintenance and rises the current amount of efficiency units of maintenance. On the
contrary, as it will be shown below, the real maintenance in consumption units declines in response to
the same shock because of the inverse relationship among them.

The investment good sector
A fraction of final good Y I

t is purchased by perfectly competitive investment-goods producers in
order to transform it into investment goods It expressed in efficiency units, which are further sold to
the capital-goods producers at the unit price P I

t . These firms maximize their profit function subject to
a production technology which accounts for the investment-specific technology progress, Υt, as follows

max
It,Y

I
t

P I
t It − PtY

I
t

s.t. It = ΥtY
I
t

(P4)

The optimization analysis in this sector draws out the common result according to which the relative
price of investment equates the inverse of the investment-specific technology progress, that is

P I
t /Pt = Υ−1

t (2.1.14)

The capital good sector
Investment goods It are purchased by the perfectly competitive capital goods producers, which

transform them into installed capital ikt , that is further sold to households at the unit price P k
t . Hence,

firms maximize the expected discounted value of future profits subject to the technology for producing
new capital

max
It,i

k
t

Et

∞
∑

t=0

βsΛt+s

[

P k
t+si

k
t+s − P I

t+sIt+s

]

s.t. ikt+s = µt+s

[

1− S

(

It+s

It+s−1

)]

It+s

(P5)

where µt represents the marginal efficiency of investment shock and it follows an AR(1) exogenous
stochastic process

log µt = ρµ log µt−1 + εµ,t (2.1.15)

with εµ,t ∼ i.i.d.N(0, σ2µ).
The transformation process of the investment goods into installed capital undergoes the adjustment

costs S(·). The expected value of the investment adjustment costs decreases when the current amount
of new investment increases. In steady state the following conditions are assumed to hold: S = S′ = 0
and S′′ > 0.

The optimality condition for the demand of new investment goods is derived as follows

P I
t = P k

t µt

[

1− S

(

It
It−1

)

−
It
It−1

S′

(

It
It−1

)]

+ Et

{

βΛt+1

Λt
P k
t+1µt+1

(

It+1

It

)2

S′

(

It+1

It

)}

(2.1.16)

When there are no adjustment costs of investment, i.e. S = S′ = 0, equation (2.1.16) reduces to
qt = µ−1

t , that is, the relative price of capital with respect to investment, which defines the Tobin’s q,
is equal to the inverse of the shock to marginal efficiency of investment, µt.
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The first order condition with respect to new capital, ikt , delivers an expression for the price of new
capital as a ratio between the shadow value of installed new capital, Φt, and the households Lagrangian
multiplier

P k
t =

Φt

Λt

substituting the latter expression back into the equation (2.1.16) gives the following optimal demand
for new investment

ΛtP
I
t = Φtµt

[

1− S

(

It
It−1

)

−
It
It−1

S′

(

It
It−1

)]

+ βEt

{

Φt+1µt+1

(

It+1

It

)2

S′

(

It+1

It

)}

(2.1.17)

Recalling that the Tobin’s q is defined as the relative marginal value of installed capital with respect
to investment, that is

qt =
Φt

P I
t Λt

where the denominator represents the replacement investment cost, the price for new capital becomes

P k
t = qtPtΥ

−1
t

According to the latter expression, the relative price of new capital is given by the Tobin’s q times
the inverse of investment specific technology progress. In the absence of investment adjustment costs,
instead, the relative price of new capital with respect to consumption can be re-expressed as

P k
t

Pt
= Υ−1

t µ−1
t

Hence, a positive shock to new investment makes the relative price of new capital to decline.
The same happens with respect to the marginal efficiency of investment shock, µ, when investment
adjustment costs are excluded.

The employment agencies sector
Perfectly competitive employment agencies purchase specialized labor Lt(j) from households at

the specific wage level Wt(j), and transform it into homogeneous labor, which is then sold to the
intermediate-goods producers at the aggregate wage level, Wt. The employment agencies maximize
their profits subject to the production function of homogeneous labor, that is

max
Lt(j)

WtLt −

∫ 1

0

Wt(j)Lt(j)dj

s.t. Lt =

[∫ 1

0

Lt(j)
1

1+λw,t dj

]1+λw,t
(P6)

where λw,t represents the mark-up of the wage over the marginal rate of substitution of households,
and it follows an AR(1) exogenous stochastic process

log λw,t = (1− ρw) log λw + ρw log λw,t−1 + εw,t − θwεw,t−1 (2.1.18)

with εw,t ∼ i.i.d.N(0, σ2w).
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The optimal demand for specialized labor and the aggregate wage level for homogeneous labor
derived from the optimization problem are, respectively

Lt(j) =

[

Wt(j)

Wt

]

−

1+λw,t
λw,t

Lt (2.1.19)

Wt =

[
∫ 1

0

Wt(j)
1

λw,t dj

]λw,t

(2.1.20)

where Lt represents the aggregate level of homogeneous labor.

Households
The economy is inhabited by a continuum of infinitely living households. A representative household

maximizes the present value of the expected stream of logarithmic utility function with respect to
current consumption, Ct, holdings of government bonds, Bt, capital utilization rate, ut, physical capital
stock, K̄t, and the efficiency units of maintenance, Mt, subject to the aggregate budget constraint,
the law of motion of capital stock, the gross capital depreciation rate function and to the function
describing the expenses in the efficiency maintenance units as follows, respectively

max
Ct,Bt,K̄t,ut,Mt

Et

∞
∑

t=0

βsbt+s

[

log (Ct+s − hCt+s−1)− ϕ
Lt+s(j)

1+ν

1 + ν

]

s.t. PtCt + P k
t i

k
t + Pm

t Mt + Tt +Bt =

= Rt−1Bt−1 +Qt(j) + Πt +Wt(j)Lt(j) +Rk
t utK̄t−1 −

Pt

Υt
a(ut)K̄t−1

K̄t = (1−Υ−σ
t−1Dt)K̄t−1 + ikt

Dt = ζuη
t

(

Mt

K̄t−1

)

−σ

+Υσ
t δ̄

Mt = τΥ−1
t utK̄t−1 + AtΥ

α
1−α

t M̄

(P7)

where h is the degree of habit formation, ϕ is the share parameter of labor in the utility function, ν
is the iverse Frisch elasticity, Tt are lump-sum taxes, Rt is the gross nominal interest rate, Qt(j) is
the net cash flow of state contingent securities, which ensures that in equilibrium consumption and
the asset holdings are the same across the households, and Πt is the per-capita profit accruing from
the household’s ownership of a firm. Moreover, bt represents the intertemporal preference shock which
follows an AR(1) exogenous stochastic process according to

log bt = ρb log bt−1 + εb,t (2.1.21)

with εb,t ∼ i.i.d.N(0, σ2b ).
The rate at which capital is utilized determines the amount of effective capital which is rented by

households at rate Rk
t to the firms of the intermediate-good producing sector, i.e. Kt = utK̄t−1. The

adjustment costs of capital utilization, a(ut), following Justiniano et al. (2011), are evaluated at the
dollar cost per unit of physical capital and scaled by the investment-specific technology progress in
order to ensure the existence of the balanced growth path, that is Pta(ut)/Υt. It is assumed that, in

steady state, u = 1, a(1) = 0, and a′′(1)
a′(1) = χ.

We assume that the gross rate of capital depreciation, Dt, is endogenously determined by capital
utilization rate, ut, and by maintenance to capital ratio. Following the relevant literature, we assume
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that a more intensive use of capital leads to a faster depreciation of capital, on the contrary, a higher
amount of maintenance activity reduces it. Parameters η and σ represent the sensitivity of the de-
preciation rate with respect to the utilization rate and maintenance to capital ratio, respectively. We
assume as well the presence of a fixed cost of depreciation, δ̄, i.e. the natural rate of depreciation,
which is multiplied by the investment specific technology progress, Υσ

t , in oder to ensure the existence
of a balanced growth path. The value of δ̄ is constant over time, however, its overall impact on the
total gross depreciation rate is stronger when the IST progress occurs. Therefore, the first term on
the right-hand side of the gross capital depreciation function captures the effects of the use-related
depreciation rate, whereas the second one can be thought of as the obsolescence effect. That is, when
new investment goods are available on the market more new capital goods are potentially produced,
which makes the existent capital stock to depreciate on impact. Given our functional form of the
capital depreciation rate, and the assumptions made about its relationship with capital utilization and
maintenance, the following conditions must be satisfied: δu > 0, δuu > 0, δm < 0, and δmm > 0, which
are in line with the assumptions grounded in the related literature36. Accordingly, the parameters of
the depreciation rate function satisfy the following assumptions: η > 1, σ > 0, δ̄ > 0 and ζ > 0.
We moreover assume that the depreciation rate is more sensitive to changes in maintenance expenses
than to changes in the capital utilization rate, i.e. σ > η. This assumption is driven out from the
optimality conditions of our model and is supported by the estimation results in Albonico et al. (2014).
Finally, it has been shown that, the cross-derivative of the capital depreciation function with respect to
maintenance and utilization must be negative, i.e. δum < 0.37 Given that we treat both the utilization
rate and maintenance as control variables in our model, we adopt the following economic rational in
order to defend the latter assumption: when a representative household decides to increase the rate of
capital utilization, the rate of depreciation, given that δu > 0, will also increase, hence, at optimum, a
representative household will decide to increase the amount of maintenance too in order to reduce the
depreciation rate, as far as δm < 0, and vice versa; therefore, at optimum maintenance and utilization
must move in the same direction but, since the two have an opposite effect on the depreciation rate,
this implies that it must hold δum < 0. Finally, note that, our model reduces to the baseline model
of Justiniano et al. (2011) when both the sensibilities of the depreciation rate function with respect to
maintenance and to utilization rate, σ and η, respectively, tend to zero.

The law of motion of capital, contrary to Justiniano et al. (2011), includes the time dependent
gross depreciation rate of capital, which is adjusted by the investment specific technology progress, Υt.
For the estimations of the capital depreciation rates it is commonly used to assume, in the National
Account Systems, that the depreciation rate of capital is inversely related to the resale prices of used
assets38. When the resale price tends to zero it means that the asset has been almost fully depreciated,
vice versa when the resale price is relatively high the depreciation rate tends to zero, meaning that
the respected asset is relatively ’new’. According to our model settings, the gross capital depreciation
grows at the rate σΥt, which equates the inverse of the relative price of investment with respect to
consumption weighted by the sensibility of depreciation with respect to maintenance. Thus, a positive
IST shock decreses on impact the price of new investment and increases the current rate of depreciation,

36 See, among others, Licandro et al. (2001), and Boucekkine et al. (2009).
37 For the analytical derivation of the sign of the depreciation rate cross-derivative see Boucekkine and Ruiz-Tamarit

(2003), and for estimation highlights consult Albonico et al. (2014).
38 See, for example, the definition given for the rate of capital depreciation by the Bureau of Economic Analysis,

www.bea.gov.
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which, in turn, reduces the current stock of capital. Over the next period, however, due to 1/Υσ
t−1,

the depreciation rate declines. This triggers off an adjustment mechanism for the path of the capital
depreciation rate, which preserves from exploding values of the depreciation rate. Finally, the higher
the sensibility of depreciation to maintenance expenses, the higher the volatility of the depreciation
growth rate.

The latter function in our households optimization problem defines the expenses in maintenance.
We assume there exists a positive relationship between efficient units of maintenance, Mt, and effective
capital, Kt = utK̄t−1, imposing the positivity restriction on the marginal propensity to maintain, τ ,
i.e. τ ≥ 0. That is, when capital is used more intensively in the production process a higher amount
of maintenance is required. At the same time, more maintenance is needed when the amount of old
capital is high. For what concerns the capital utilization rate, our assumption is in line with some
macroeconomic studies, such as, for example, Licandro et al. (2001), Boucekkine et al. (2009) and
Boucekkine et al. (2010). With regard to the stock of old installed capital, K̄t−1, instead, our assump-
tion is enforced, among others, by the microeconomic evidence brought out by Bitros and Flytzanis
(2004) and by Bitros (2016). The two works, in fact, show analytically and empirically, respectively,
that maintenance expenses depend positively on the amount of scrapped capital. Effective capital is
multiplied by the IST progress in order to ensure the existence of a balanced growth path, the same

is done for the fixed costs of maintenance, M̄ , which are multiplied by AtΥ
α/(1−α)
t . We assume that

there exists a strictly positive fixed cost of maintenance, M̄ > 0, in order to guarantee existance and
uniqueness of the solution to our model. Such costs may capture, for example, those intrinsic mainte-
nance activities accomplished by the households necessary for the physical capital assets to be usable.
So, our maintenance expenditure function satisfies the following assumptions: Mu > 0, MK̄ > 0,
and M(u → 0, K̄ → 0) ∼= M̄ . When capital utilization rate tends to zero, maintenance costs will
approach their minimum level, M̄ , and the gross depreciation rate, Dt, will tend to the level of natural
depreciation rate, Υσ

t δ̄. When the stock of capital is fully utilized, i.e. ut tends to unity, then, for

τ > 0, maintenance expenses will tend to their maximum level, i.e. Mt = τΥ−1
t K̄t−1 + AtΥ

α
1−α

t M̄ , and

depreciation will be given by Dt = ζ
(

τΥ−1
t + AtΥ

α
1−α

t M̄/K̄t−1

)−σ

+ Υσ
t δ̄. When, instead, capital is fully

utilized and households decide to maintain the minimum required, i.e. τ = 0 and Mt = AtΥ
α

1−α

t M̄ ,

the depreciation rate of capital will be given by Dt = ζ
(

AtΥ
α

1−α

t M̄/K̄t−1

)−σ

+ Υσ
t δ̄. It is obvious that

(

AtΥ
α

1−α

t M̄/K̄t−1

)−σ

>
(

τΥ−1
t + AtΥ

α
1−α

t M̄/K̄t−1

)−σ

, so that in the latter case a representative household
will tackle the highest level of depreciation with respect to the previous ones.

Note that, when η → 0, σ → 0 and τ → 0 our model reduces to the original model of Justiniano et al.
(2011).

Recalling our definition of real maintenance and real investment in terms of consumption as M̃t =
(Pm

t /Pt)Mt and Ĩt = (P I
t /Pt)It, respectively, we can reduce our decentralized model to a one sector

model, as follows
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PtCt + PtĨt + PtM̃t + Tt +Bt = Rt−1Bt−1 +Qt(j) + Πt +Wt(j)Lt(j) +Rk
t utK̄t−1 −

Pt

Υt
a(ut)K̄t−1

K̄t = (1−Υ−σ
t−1Dt)K̄t−1 + µtΥt (1− St) Ĩt

Dt = ζuη
t





dtM̃t

[

1− f
(

M̃t/M̃t−1

)]

Kt−1





−σ

+Υσ
t δ̄

dtM̃t

[

1− f
(

M̃t/M̃t−1

)]

= τΥ−1
t utK̄t−1 +AtΥ

α
1−α

t M̄

In this case the law of motion of capital is subject to the composite shock µtΥt, which is used to
be considered in the related literature as the investment-specific technology shock39. In our model,
therefore, according to Justiniano et al. (2011), it is decomposed in two effects: the first one affects
the efficiency of new investment (µ), and the latter one affects the production of new investment (Υ).
Given the roles these shocks play in our decentralized economy, we interpret the IST shock, Υ, as the
disembodied investment-specific technological progress and identify it with the inverse of the relative
price of investment. For the estimation purposes the relative price of investment is treated as observable
which, thus, pins down the evolution of IST. The MEI shock, µ, is interpreted as the embodied
investment-specific technological progress, which explains the quality improvement of investment and
therefore determines the rate of obsolescence of capital stock. Both of these concepts are strictly related
with the economic depreciation rate, which accelerates when higher quality capital is available on the
market (obsolescence). On the contrary, in response to a positive IST shock depreciation will decrease
as a consequence of other stronger direct effects.

Turning back to the decentralized representation of the model, a representative household opti-
mizes the discounted stream of expected utility with respect to current consumption, which gives the
expression for the marginal utility of nominal income, as follows

ΛtPt =
bt

Ct − hCt−1
− βhEt

{

bt+1

Ct+1 − hCt

}

(2.1.22)

The first order condition with respect to the holdings of government bonds, Bt, defines the con-
sumption Euler equation, that is

Λt = βRtEt

{

Λt+1

}

(2.1.23)

or, similarly

1 = Et

[

β
Λt+1Pt+1

ΛtPt
Rt

Pt

Pt+1

]

where, the expression βΛt+1Pt+1

ΛtPt
defines the real stochastic discount factor.

The first order condition with respect to installed physical capital, K̄t, determines the optimal
demand for physical capital stock, given by

39 See, for example, Smets and Wouters (2007)
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Φt =βEt

{

Λt+1

[

Rk
t+1ut+1 −Υ−1

t+1Pt+1a(ut+1)
]

+ (1−Υ−σ
t Dt+1)Φt+1+

− σ
(

Dt+1 −Υ−σ
t+1δ̄

)

Υ−σ
t Φt+1 + τut+1Υ

−1
t+1Γt+1

}

(2.1.24)

where Φt is the shadow value of the new installed capital. The last two terms on the right-hand side of
the above equation capture the effects of the variable depreciation rate and of the maintenance activity,
respectively. The higher the expected maintenance the lower the expected depreciation rate and the
higher the current shadow price of capital. On the contrary, the higher the expected depreciation
rate the lower the current shadow price. The effect of the expected capital utilization rate, instead,
is ambiguous. In fact, it will tend to increase the current value of the capital shadow price through
higher maintenance activities but, at the same time, it will decrease the shadow price because of a
higher expected depreciation.

The first order condition with respect to the rate of capital utilization, ut, determines its optimal
equilibrium demand, as follows

ΛtR
k
t = ΛtPtΥ

−1
t a′ (ut) + ηΦtΥ

−σ
t−1u

−1
t

(

Dt −Υσ
t δ̄
)

− τΓtΥ
−1
t (2.1.25)

According to the above expression, the rental price of capital, at optimum, must equate the marginal
value of capital utilization costs plus the cost deriving from a higher capital depreciation rate due to
a marginal increase in the utilization rate evaluated at the relative shadow value of new capital net
of the marginal benefits accruing from a higher maintenance activity evaluated at the relative shadow
value of maintenance.

The first order condition with respect to maintenance, Mt, is

ΛtP
m
t = σΦtΥ

−σ
t−1

(

Mt

K̄t−1

)

−1
(

Dt −Υσ
t δ̄
)

− Γt (2.1.26)

according to which the optimal demand for maintenance to capital ratio is inversely related to the price
of maintenance and positively related to the gross capital depreciation and to the relative shadow value
of new capital. Note that, the demand for maintenance will be null when gross capital depreciation
equals the natural rate of depreciation times the IST shock, which is the minimum level at which
the depreciation rate may occur. So, at optimum, the price for maintenance must be equal to the
marginal benefit accruing from the capital depreciation rate given an increase of one unit of maintenance
evaluated at the relative shadow value of new capital minus the relative shadow value of maintenance.

Following Justiniano et al. (2011) we assume that, each household is a monopolistic supplier of a
specialized labor, Lt(j). Similarly to the price decision setting in the intermediate-goods sector, every
period, a fraction ξw of households sets their wage level according to the following indexation rule

Wt(j) =Wt−1(j)
(

πt−1e
zt−1+

α
1−α

vt
)ιw

(

πeγz+
α

1−α
γv
)1−ιw

(2.1.27)

The remaining fraction of households, 1−ξw, optimally chooses the wage level, W̃t(j), by maximizing
the following present discounted value of future earnings subject to the optimal labor demand (2.1.19)
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max
W̃t(j)

Et

∞
∑

t=0

βsξsw

[

Λt+sW̃t(j)Lt+s(j)π
w
t,t+s − bt+sϕ

Lt+s(j)
1+ν

1 + ν

]

s.t. Lt+s(j) =

[

W̃t(j)

Wt+s
πw
t,t+s

]−

1+λw,t+s
λw,t+s

Lt+s

(P8)

where πwt,t+s =
∏s

k=0

(

πt+k−1e
zt−1+

α
1−α

vt−1

)ιw (

πeγz+
α

1−α
γv
)1−ιw

.

The aggregate wage index is given by the following expression

Wt =

(

ξw

[

Wt−1(j)
(

πt−1e
zt−1+

α
1−α

vt−1

)ιw
(

πeγz+
α

1−α
γv
)1−ιw

]

−
1

λw,t

+ (1− ξw)W̃t(j)
−

1
λw,t

)−λw,t

(2.1.28)

The optimal wage setting condition is given by

Et

∞
∑

s=0

ξswβ
sΛt+sL̃t+s(j)

[

πw
t,t+sW̃t(j)− bt+sϕ (1 + λw,t+s)

L̃t+s(j)
ν

Λt+s

]

= 0 (2.1.29)

where L̃t(j) is the level of optimally supplied specialized labor.

Public Sector
According to the Ricardian fiscal policy, the public sector finances its budget deficit through short-

term bonds releases. Government expenditures are assumed to be a fraction of GDP and are given
exogenously by

Gt =

(

1−
1

gt

)

Yt (2.1.30)

where gt is an exogenous stochastic process for government spendings

log gt = (1− ρg) log g + ρg log gt−1 + εg,t (2.1.31)

with εg,t ∼ i.i.d.N(0, σ2g ).

Monetary policy authority
The monetary authority choses the level of the nominal interest rate according to the following

interest rate rule

Rt

R
=

(

Rt−1

R

)ρR
[

(πt

π

)φπ

(

Xt

X∗

t

)φX

]1−ρR [
Xt/Xt−1

X∗

t /X
∗

t−1

]φdX

εmp,t (2.1.32)

where R is the steady state value of the nominal interest rate, Xt/X
∗

t is the level of the GDP gap
and (Xt/Xt−1)(X

∗

t /X
∗

t−1) is its growth rate, and εmp,t ∼ i.i.d.N(0, σ2mp) represents a monetary policy
shock. Hence, according to this rule, the nominal interest rate responds to the deviations of inflation
from its steady state level, to the level of the GDP gap and to its growth rate.

The model is closed by the expressions for the aggregate resource constraint and for the actual
GDP, Xt, which are given by, respectively
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Ct +Υ−1
t It +Υ−1

t a(ut)K̄t−1 + M̃t =
Yt

gt
(2.1.33)

Xt =

(

1−
1

gt

)

Yt +Ct +Υ−1
t It + M̃t (2.1.34)

Following Justiniano et al. (2011), the market clearing conditions are obtained from the aggrega-
tion of the households’ and Government budget constraints combined with the zero profit conditions
in the production sectors of final good, capital-good, investment-good, maintenance services and in the
employment agencies sector. The functional form of the actual GDP, instead, is obtained by substitu-
tion of the definition for public spendings into the aggregate resource constraint, given that the actual
GDP is defined as Xt = Gt + Ct +Υ−1

t It + M̃t.

2.2 The stationary equilibrium and the non-stochastic steady state

As far as the levels of labor-augmenting technology and the investment-specific technology progresses
have a unit root, the main macroeconomic variables of the model, that are output, consumption,
investment, maintenance, capital and real wages, all fluctuate around a stochastic balanced growth
path. The steady state growth rate is a linear combination of the composite technological progress

AtΥ
α

1−α

t , that is

γ∗ = γz +
α

1− α
γv

The stationary equilibrium model is achieved de-trending the model’s variables by the composite
growth trend. The non-stochastic steady state is then computed and the linear system of rational
expectations equations is solved through a log-linear approximation of the model around the non-
stochastic steady state. The lower case variables represent the normalized stationary variables and
those with no timing subsciption are the respective steady state values. The main model variables
have been de-trended as follows

• yt =
Yt

AtΥ
α

1−α
t

• xt =
Xt

AtΥ
α

1−α
t

• ct =
Ct

AtΥ
α

1−α
t

• k̄t =
K̄t

AtΥ
α

1−α+1

t

• kt =
Kt

AtΥ
α

1−α+1

t

• it =
It

AtΥ
α

1−α+1

t

• mt =
Mt

AtΥ
α

1−α
t

• wt =
Wt

PtAtΥ
α

1−α
t

• ρt =
Rk

t
Pt

• st =
MCt
Pt

• p̃t =
P̃t
Pt

• πt =
Pt

Pt−1

• λt = ΛtPtAtΥ
α

1−α
t

• φt = ΦtAtΥ
α

1−α
+1

t
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where st is the real marginal cost and ρt is the real return on capital. Moreover, the rate of capital
depreciation is de-trended by the investment specific technological shock, that is δt = Dt/Υ

σ
t .

The stationary equilibrium model is described by the equations below.
The stationary counterparts of the production function in (P2), of the capital to labor ratio (2.1.6)

and of the nominal marginal cost (2.1.7) of a representative intermediate good producer i are, respec-
tively

yt(i) = kt(i)
αLt(i)

1−α − F (2.2.1)

kt
Lt

=
wt

ρt

α

1− α
(2.2.2)

st = w1−α
t ραt

1

αα(1− α)1−α
(2.2.3)

where equation (2.2.3) describes the de-trended real marginal cost. The stationary equations for the
intermediate firms that are able to optimize for the price level are given by

ỹt+s = (p̃tπ̃t,t+s)
−

1+λp,t+s
λp,t+s ỹt+s (2.2.4)

π̃t,t+s =

s
∏

j=0

(πt+j−1

π

)ιp
(πt+j

π

)

−1

(2.2.5)

1 =

{

ξp

[

(πt−1

π

)ιp
(πt

π

)

−1
]

−
1

λp,t

+ (1− ξp) p̃
−

1
λp,t

t

}

−λp,t

(2.2.6)

Et

∞
∑

s=0

ξspβ
sλt+s [p̃t(i)π̃t,t+s − (1 + λp,t+s) st+s] ỹt+s(i) = 0 (2.2.7)

Equation (2.2.4) is the stationary optimal demand for the intermediate good i. Equation (2.2.5) is
the index for inflation from time t to time t + s. Equation (2.2.6) is the stationary aggregate price
index and equation (2.2.7) is the stationary optimal price setting condition, corresponding to equations
(2.1.9) and (2.1.10), respectively.

In order to obtain the detrended optimal condition for maintenance goods, substitute the optimal
demand for maintenance activity (2.1.26) from the households optimization problem (P7) into the
expression for the optimal supply of maintenance (2.1.13) from the maintenance services optimization
problem (P4) so that

ΛtPt =

[

ΦtΥ
−σ
t−1σ

(

Dt −Υσ
t δ̄
)

(

Mt

K̄t−1

)

−1

− Γt

]

dt

[

1− f

(

Y m
t

Y m
t−1

)

−
Y m
t

Y m
t−1

f ′

(

Y m
t

Y m
t−1

)]

+

+ βEt

{

[

Φt+1Υ
−σ
t σ

(

Dt+1 −Υσ
t+1δ̄

)

(

Mt+1

K̄t

)

−1

− Γt+1

]

dt+1

(

Y m
t+1

Y m
t

)2

f ′

(

Y m
t+1

Y m
t

)}

De-trending the latter expression and substituting ymt with mt we get the optimal demand for
maintenance services in terms of stationary variables as follows
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λt =

[

σφt

(

mt

k̄t−1
ezt+(

α
1−α

+1)vt
)

−1
(

δt − δ̄
)

eσvt − ςt

]

×

× dt

[

1− f

(

m̃t

m̃t−1
ezt+

α
1−α

vt

)

−
m̃t

m̃t−1
ezt+

α
1−α

vtf ′

(

m̃t

m̃t−1
ezt+

α
1−α

vt

)

]

+ (2.2.8)

+ βEt

{

[

σφt+1

(

mt+1

k̄t
ezt+1+( α

1−α
+1)vt+1

)

−1
(

δt+1 − δ̄
)

eσvt+1 − ςt+1

]

dt+1e
−(zt+1+

α
1−α

vt+1)×

×

(

m̃t+1

m̃t
ezt+1+

α
1−α

vt+1

)2

f ′

(

m̃t+1

m̃t
ezt+1+

α
1−α

vt+1

)

}

The marginal utility of nominal income (2.1.22) and the consumption Euler equation (2.1.23) in
terms of de-trended variables are, respectively

λt =
ezt+

α
1−α

vtbt

ezt+
α

1−α
vtct − hct−1

− βhEt

{

bt+1

ezt+1+
α

1−α
vt+1ct+1 − hct

}

(2.2.9)

λt = βRtEt

{

λt+1

ezt+1+
α

1−α
vt+1πt+1

}

(2.2.10)

De-trending the optimal demand for capital utilization rate given in (2.1.25) we obtain the expres-
sion for the stationary optimal capital utilization rate as follows

λtρt = λta
′ (ut) + ηφt

(

δt − δ̄
)

eσvtu−1
t − τςt (2.2.11)

The stationary expression for the optimal demand for new investment (2.1.17) becomes

λt = φtµt

[

1− S

(

it
it−1

ezt+( α
1−α

+1)vt

)

+

−
it
it−1

ezt+( α
1−α

+1)vtS′

(

it
it−1

ezt+( α
1−α

+1)vt

)]

+

+ βEt

{

φt+1µt+1e
(−zt+1−( α

1−α
+1)vt+1)

(

it+1

it
ezt+1+( α

1−α
+1)vt+1

)2

×

× S′

(

it+1

it
ezt+1+( α

1−α
+1)vt+1

)}

(2.2.12)

And the stationary optimal demand for installed physical capital (2.1.24) is

φt = βEt

{

λt+1 [ρt+1ut+1 − a (ut+1)] e
−(zt+1+( α

1−α
+1)vt+1)+

+ τςt+1ut+1e
−(zt+1+( α

1−α
+1)vt+1) + φt+1 (1− δt+1e

σvt+1) e−(zt+1+( α
1−α

+1)vt+1)+

− σφt+1

(

δt+1 − δ̄
)

eσvt+1e−(zt+1+( α
1−α

+1)vt+1)

}

(2.2.13)

The stationary expressions for the definition of effective capital, for the law of motion of physical
capital, for the definition of the capital depreciation rate and for the definition of maintenance costs
are given by, respectively
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kt = utk̄t−1e
−zt−( α

1−α
+1)vt (2.2.14)

k̄t = (1− eσγvδt)e
−zt−( α

1−α
+1)vt k̄t−1 + µt

[

1− S

(

it
it−1

ezt+( α
1−α

+1)vt

)]

it (2.2.15)

δt = ζuη
t

[

mt

k̄t−1

ezt+(
α

1−α
+1)vt

]

−σ

+ δ̄ (2.2.16)

mt = τutk̄t−1e
−zt−( α

1−α
+1)vt + M̄ (2.2.17)

With regard to households that are able to renegotiate their wages, the stationary expressions of
the optimal wage setting equations are as follows

L̃t+s(j) =
[

w̃tπ̃
w
t,t+s

]−

1+λw,t+s
λw,t+s Lt+s (2.2.18)

π̃w
t,t+s =

s
∏

k=0

(

πt+k−1e
zt+k−1+

α
1−α

vt+k−1

πeγz+
α

1−α
γv

)ιw
(

πt+ke
zt+k+

α
1−α

vt+k

πeγz+
α

1−α
γv

)

−1

(2.2.19)

Et

∞
∑

s=0

ξswβ
sλt+sL̃t+s

[

π̃w
t,t+sw̃t − bt+sϕ (1 + λw,t+s)

L̃ν
t+s

λt+s

]

= 0 (2.2.20)

wt =

{

ξw

[

wt−1

(

πt−1e
zt−1+

α
1−α

vt−1

πeγz+
α

1−α
γv

)ιw
(

πte
zt+

α
1−α

vt

πeγz+
α

1−α
γv

)

−1]−
1

λw,t

+ (1− ξw) w̃
−

1
λw,t

t

}

−λw,t

(2.2.21)

Equation (2.2.18) drafts the de-trended optimal demand for specialized labor in (2.1.19). Equation
(2.2.19) describes the wage inflation that occurs from time t to time t + s. Equation (2.2.20) is the
stationary optimal wage setting condition (2.1.29) and equation (2.2.21) is the de-trended expression
for the aggregate wage index (2.1.28).

The stationary expression for the monetary policy rule (2.1.32) is

Rt

R
=

(

Rt−1

R

)ρR
[

(πt

π

)φπ

(

xt

x⋆
t

)φX

]1−ρR [
xt/xt−1

x⋆
t /x

⋆
t−1

]φdX

εmp,t (2.2.22)

Finally, the de-trended counterparts of the aggregate resource constraint in (2.1.33) and of the
definition of GDP in (2.1.34) are, respectively

ct + it + m̃t + a(ut)k̄t−1e
−zt−( α

1−α
+1)vt =

yt
gt

(2.2.23)

xt =

(

1−
1

gt

)

yt + ct + it + m̃t (2.2.24)

Next, we describe the steady state relationships that characterize our model.
Using the expression (2.2.1) and the zero profit condition of the intermediate goods producers we

get
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y

L
=

(

k

L

)α

−
F

L
(2.2.25)

The capital to labor ration (2.2.2) and the real marginal cost (2.2.3) in steady state are, respectively

k

L
=
w

ρ

α

1− α
(2.2.26)

s = w1−αρα
1

αα(1− α)1−α
(2.2.27)

Given the expression for the de-trended optimal price setting condition (2.2.7) and exploiting the
fact that in steady state p̃ = 1 and π = 1, we get a steady state relationship between the real marginal
cost and the price mark-up as follows

s =
1

1 + λp
(2.2.28)

As far as, in steady state, S = S′ = 0, from the expression (2.2.12) we get that λ = φ. It follows
that, the steady state expression of the de-trended optimal demand for maintenance (2.2.8) is given by

λ = σφeσγv
(

δ − δ̄
)

[

m̃

k̄
eγz+(

α
1−α

+1)γv
]

−1

− ς (2.2.29)

The optimal marginal utility of nominal income (2.2.9) in steady state becomes

λc =
eγz+

α
1−α

γv − βh

eγz+
α

1−α
γv − h

(2.2.30)

While the steady state quarterly real interest rate is achieved from the de-trended Euler equation
(2.2.10) as follows

R =
eγz+

α
1−α

γv

β
− 1 (2.2.31)

Assuming that, in steady state, the capital is fully utilized, i.e. u = 1, and that a(1) = 0, the
stationary optimal demand for capital utilization (2.2.11) and the stationary optimal demand for
physical capital (2.2.13), in steady state, become, respectively

ρ = a′ (1) + η
φ

λ

(

δ − δ̄
)

eσγv − τ
ς

λ
(2.2.32)

φ =
λβ (ρ− τ )

eγz+(
α

1−α
+1)γv − β (1− δeσγv ) + βσ

(

δ − δ̄
)

eσγv

[

1− τ
(

m̃
k̄
eγz+(

α
1−α

+1)γv
)

−1
] (2.2.33)

The steady state relations of the definition of capital input, (2.2.14), and of the law of motion of
capital, (2.2.15) are, respectively
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k = k̄e−γz−( α
1−α

+1)γv (2.2.34)

k̄ =
i

1− (1− δeσγv ) e−(γz+(
α

1−α
+1)γv)

(2.2.35)

Whereas, in steady state, the definitions of the capital depreciation rate (2.2.16) and of the main-
tenance costs (2.2.17) are, respectively

δ = ζ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−σ

+ δ̄ (2.2.36)

m̃ = τ k̄e−(γz+(
α

1−α
+1)γv) + M̄ (2.2.37)

Given the de-trended optimal wage setting (2.2.20) and the steady state equalities π̃w = 1 and
w̃ = 1, the following expression for the steady state labor arises

L =

(

λ

ϕ

w

1 + λw

) 1
ν

(2.2.38)

The aggregate resource constraint (2.2.23) and the definition of GDP (2.2.24) in steady state
become, respectively

c+ i+ m̃ = (1/g) y (2.2.39)

x = (1− 1/g) y + c+ i+ m̃ (2.2.40)

Combining the definition for the gross depreciation rate of capital with the definition for the real
maintenance costs in terms of consumption, both given in the maximization problem (P7), we get that,
along the balanced growth path, the following relationship holds

Mt =
τσ

η
Υ−1

t utK̄t−1

which, after being de-trended and using equation (2.2.34), in steady state becomes

m̃

k
=
τσ

η
(2.2.41)

Combining equation (2.2.41) with equation (2.2.37) we obtain the following two equalities

M̄

k
=

(

σ

η
− 1

)

τ (2.2.42)

M̄

m̃
= 1−

η

σ
(2.2.43)

which define, along the balanced growth path, the ratio of fixed maintenance costs over effective capital
and real maintenance, respectively.

Combining equation (2.2.41) with equations (2.2.29) and (2.2.34), and recalling that in steady state
λ = φ = ς, we get

δ = 2e−σγv τ

η
+ δ̄ (2.2.44)
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Combining the latter expression with the steady state depreciation rate givein in (2.2.36), we define
the following expression

ζ = 2e−σγv

(

τ

η

)1+σ

σσ (2.2.45)

Finally, we can combine the equations (2.2.35), (2.2.36) and (2.2.34) in order to obtain a steady
state relationship between the real maintenance to capital ratio and the investment to capital ratio as
follows

(

m̃

k

)σ

=
ζeσγv

1 + i
k
− eγz+(

α
1−α

+1)γv − δ̄eσγv

According to the latter expression the higher the steady state level of investment the lower the steady
state amount of maintenance undertaken by the households in order to restore the capital stock.

2.3 Linear rational expectations model

We compute the log-linear approximation of our model around the non-stochastic steady state. The
variables denoted by a hat represent the log-linear deviations from their respective steady states, that
is, given a generic variable H, Ĥt = logHt− logH. An exception of this rule is applied to the IST and
the MEI shocks as well as to the price and wage mark-up shocks, for which the log-linear deviations
from the steady state are defined as follows

λ̂p,t+s = log (1 + λp,t+s)− log (1 + λp)

λ̂w,t+s = log (1 + λw,t+s)− log (1 + λw)

ẑt+s = zt+s − γz

v̂t+s = vt+s − γv

Our model is composed of 20 endogenous variables in the sticky price-wage economy and of 19
endogenous variables, which are denoted by a ’star’, in the flexible price-wage economy with null
mark-up shocks.

[

ŷt
ˆ̄kt k̂t ĉt ît ˆ̃mt L̂t δ̂t ρ̂t ŵt

ˆ̃wt ŝt R̂t λ̂t ς̂t ût φ̂t x̂t ĝw,t π̂t

ŷ⋆t
ˆ̄k⋆t k̂⋆t ĉ⋆t î⋆t ˆ̃m⋆

t L̂⋆
t δ̂⋆t ρ̂⋆t ŵ⋆

t
ˆ̃w⋆
t ŝ⋆t R̂⋆

t λ̂⋆
t ς̂⋆t û⋆

t φ̂⋆
t x̂⋆

t ĝ⋆w,t

]

The following 20 equations describe the linear system of rational expectations equations of the
sticky price-wage economy.

ŷt =
y + F

y
αk̂t +

y + F

y
(1− α) L̂t (2.3.1)

ρ̂t = ŵt − k̂t + L̂t (2.3.2)

ŝt = (1− α) ŵt + αρ̂t (2.3.3)
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π̂t =
ιp

1 + βιp
π̂t−1 +

β

1 + βιp
Et{π̂t+1}+

(1− ξpβ) (1− ξp)

ξp (1 + βιp)
(ŝt + λp,t) (2.3.4)

λ̂t =
eγz+

α
1−α

γv

(

eγz+
α

1−α
γv − βh

)(

eγz+
α

1−α
γv − h

) ĉt−1 −
e2(γz+

α
1−α

γv) + βh2

(

eγz+
α

1−α
γv − βh

)(

eγz+
α

1−α
γv − h

) ĉt+

+
eγz+

α
1−α

γvβh
(

eγz+
α

1−α
γv − βh

)(

eγz+
α

1−α
γv − h

)Et{ĉt+1}+
eγz+

α
1−α

γvβhρz − eγz+
α

1−α
γvh

(

eγz+
α

1−α
γv − βh

)(

eγz+
α

1−α
γv − h

) ẑt+

+
eγz+

α
1−α

γvβhρv − eγz+
α

1−α
γvh

(

eγz+
α

1−α
γv − βh

)(

eγz+
α

1−α
γv − h

)

α

1− α
v̂t +

eγz+
α

1−α
γv − βhρb

eγz+
α

1−α
γv − βh

b̂t (2.3.5)

λ̂t = R̂t − ρzẑt − ρv
α

1− α
v̂t + Et{λ̂t+1 − π̂t+1} (2.3.6)

ρ̂t =

{

χ

ρ

[

ρ− B̄ + τ
(

Ā− 1
)]

−
B̄

ρ

}

ût +
σ

ρ
B̄v̂t +

B̄

ρ

(

φ̂t − λ̂t

)

−
τ

ρ

(

Ā− 1
)

(

ς̂t − λ̂t

)

+
δ

ρ
(

δ − δ̄
) B̄δ̂t (2.3.7)

φ̂t = λ̂t+1 − ρz ẑt −

[

α

1− α
+ 1 + βe−(γz+(

α
1−α

+1)γv)σC̄

]

ρv v̂t + βe−(γz+(
α

1−α
+1)γv)B̄ût+1 +

ρ

ρ− τ
D̄ρ̂t+1

− βe−(γz+(
α

1−α
+1)γv) (C̄ + eσγvσδ̄

)

δ̂t+1 +
[

1− D̄ − βe−(γz+(
α

1−α
+1)γv)τĀ

] (

φ̂t+1 − λ̂t+1

)

+ (2.3.8)

+

[

τ

ρ− τ
D̄ − βe−(γz+(

α
1−α

+1)γv)τĀ

]

(

ς̂t+1 − λ̂t+1

)

λ̂t = φ̂t + µ̂t + S′′e2(γz+(
α

1−α
+1)γv) ît−1 − (1 + β)S′′e2(γz+(

α
1−α

+1)γv) ît+

+ βS′′e2(γz+(
α

1−α
+1)γv)Et{̂it+1}+ (βρz − 1)S′′e2(γz+(

α
1−α

+1)γv)ẑt+ (2.3.9)

+ (βρv − 1)S′′e2(γz+(
α

1−α
+1)γv)

(

α

1− α
+ 1

)

v̂t

k̂t = ût +
ˆ̄kt−1 − ẑt −

(

α

1− α
+ 1

)

v̂t (2.3.10)

ˆ̄kt = (1− δeσγv) e−(γz+(
α

1−α
+1)γv)ˆ̄kt−1 − δeσγve−(γz+(

α
1−α

+1)γv)δ̂t+

+
[

1− (1− δeσγv ) e−(γz+(
α

1−α
+1)γv)

] (

µ̂t + ît
)

− (1− δeσγv) e−(γz+(
α

1−α
+1)γv)ẑt+ (2.3.11)

−

[

(1− δeσγv)

(

α

1− α
+ 1

)

+ σδeσγv

]

e−(γz+(
α

1−α
+1)γv)v̂t
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δ̂t =
ζ

ζ + δ̄
(

m̃
k̄
eγz+(

α
1−α

+1)
)σ

[

σˆ̄kt−1 − σ ˆ̃mt − σd̂t − σẑt − σ

(

α

1− α
+ 1

)

v̂t + ηût

]

(2.3.12)

ˆ̃mt = τ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1 [

ût +
ˆ̄kt−1 − ẑt −

(

α

1− α
+ 1

)

v̂t

]

− d̂t (2.3.13)

[

(1 + β) e2(γz+
α

1−α
γv)f ′′ + Ā

]

ˆ̃mt = e2(γz+
α

1−α
γv)f ′′ ˆ̃mt−1 + βe2(γz+

α
1−α

γv)f ′′ ˆ̃mt+1 + Āˆ̄kt−1 + Ā
δ

δ − δ̄
δ̂t+

+
(

1− Ā
)

d̂t +
(

1− Ā
)

(

ς̂t − λ̂t

)

+ Ā
(

φ̂t − λ̂t
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ĝw,t = ν
1 + λw

λw
ŵt + νL̂t + b̂t − λ̂t + λ̂w,t (2.3.17)
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ˆ̃wt = ξwβ ˆ̃wt+1 − ξwβπ̂t + ξwβπ̂t+1 + ξwβ (ρz − ιw) ẑt + ξwβ (ρv − ιw)
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R̂t = ρRR̂t−1 + (1− ρr) [φππ̂t + φX (x̂t − x̂∗

t )] + φdX [(x̂t − x̂t−1)− (x̂∗

t − x̂∗

t−1)] + η̂mp,t (2.3.20)

where the constants have been defined as follows
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α
1−α

+1)γv) σ

η
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α
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Ā equals the steady state expression of the depreciation rate first order condition with respect to
the maintenance to effective capital ratio, that is −δm/ke

σγv , while B̄ is the steady state first order
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condition of capital depreciation with respect to utilization rate, that is δue
σγv . The constant D̄

represents the steady state marginal product of capital net of the marginal propensity to maintain,
i.e. βe−(γz+(

α
1−α

+1)γv) (ρ− τ ). The term q̂t = φ̂t − λ̂t is the Tobin’s q. Equation (2.3.1) describes the
log-linearized production function for intermediate good producers. The capital to labor ratio given in
equation (2.3.2) sets that the marginal returns on effective capital and labor must equal, respectively,
the return on capital and the real wage. According to equation (2.3.3) the real marginal cost is
given by the sum of the return on capital and real wage weighted by the share of capital and labor
in the production function, respectively. Equation (2.3.4) is the New Keynesian Phillips curve for
prices, which depends on past and expected inflation as well as on real marginal costs and the price
mark-up shock. Equations (2.3.5) and (2.3.6) are the log-linearized households marginal utility from
income and the Euler equation for consumption, respectively. Equation (2.3.7) defines the log-linearized
optimal demand for capital utilization rate, which determines the convergence path for the rental price
of capital. Note that, differently from Justiniano et al. (2011) where the convergence path of ρ̂t is
described by the capital utilization rate only, in our model capital rental price is positively related,
among others, to the capital depreciation rate, δ̂t. This is in line with Jorgenson and Griliches (1967)
who suggest that assets that exhibit a faster depreciation should be rented at higher prices in order
to recover the costs of depreciation. The current shadow value of maintenance, ςt, impacts negatively
on ρ̂t as far as the first term in squared brackets is greater than one, as it emerges from the steady
state relations. Therefore, an increase in ς̂t tears down the level of maintenance rendering capital
stock less attractive and thus less worthy. The effects of the shadow value of consumption, λ̂t and of
the capital utilization rate are ambiguous and depend crucially on the parameters for the elasticity
of capital depreciation rate with respect to maintenance, σ, and utilization, η, and on the marginal
propensity to maintain, τ . Equation (2.3.8) describes the optimal convergence path of the demand
for new physical capital. Accordingly, when the depreciation rate is expected to rise, the current
shadow price of installed capital, φ̂t, decreases. The same occurs when expected relative shadow value

of maintenance,
(

ς̂t+1 − λ̂t+1

)

, increases. That is, agents anticipate the expected rise in the relative

cost of maintenance by increasing maintenance expenditures today which, in turn, lowers the current
shadow value of capital. The expected rate of utilization, ût+1, impacts positively on the current
shadow value of capital as far as more capital stock is expected to be used in the production process.
As to the expected shadow value of consumption, λ̂t+1, and to the expected rental price of capital,
ρ̂t+1, both impact positively on φ̂t, whereas the direct effects of the neutral technology and IST shocks

are negative. A rise in Tobin’s Q,
(

φ̂t+1 − λ̂t+1

)

, is expected to increase capital current shadow price

however, the positive relationship is not so obvious. In fact, it depends on the deep parameters of the
depreciation rate and of the maintenance expenditures functions, as well as on the steady states of the
level of depreciation and its growth rate. It may occur, for example, that when the elasticity of the
capital depreciation rate with respect to maintenance is very high (or σ → ∞), than a small change
in the amount of maintenance expenditures produces large shifts in the rate of depreciation. In such
an environment the price of the maintenance goods and services will tend to be law, which implies
relatively high price of investments and therefore discourages investment in new capital goods thus,
finally, lowering the current value of capital. Equations (2.3.9) and (2.3.10) are log-linearizations of the
optimal demand for new investment and of the definition of effective capital, respectively. Both remain
unchanged with respect to the baseline model. Equation (2.3.11) is the log-linearized law of motion
of capital. Differently from Justiniano et al. (2011), we observe here that the current depreciation
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rate of capital enters directly the equation for the convergence path of capital stock and impacts
negatively on it. Equation (2.3.12) describes the optimal convergence path of the capital depreciation
rate, which increases in the current utilization rate and past physical capital, while decreases in current
maintenance and in the maintenance-specific technological progress. Note that, a positive MST shock
increases the amount of maintenance expressed in efficiency units, whereas decreases the amount of
real maintenance in consumption units. In fact, the latter one is defined as the product between
efficiency units of maintenance and the relative price of maintenance in terms of consumption, which,
in turn, is negatively related with the maintenance-specific technology progress. Thus, a positive
MST shock decreases the relative price of maintenance, that consequently makes real maintenance to
decline. Equation (2.3.13) is the log-linearized around the steady state expression for the definition of
maintenance expenses. Accordingly, a higher intensity of utilization and a higher amount of ’old’ capital
both tend to increase real maintenance, on the contrary, the MST shock decreases it. In fact, as stated
above, by construction this shock impacts positively on maintenance expressed in efficiency units, i.e.
m̂t, so, given our definition for the maintenance technology production, it holds that, m̂t = ˆ̃mt + d̂t.
Equation (2.3.14) defines the log-linearized optimal demand for maintenance goods, which is increasing
both in the past and expected maintenance. MST shock and the shadow value of maintenance affect
it negatively, whereas an increase in depreciation requires a higher maintenance demand. Equations
(2.3.15) and (2.3.16) are the log-linearizations of the aggregate resource constraint and of the actual
GDP, respectively. Differently form the baseline model, both depend, among others, on the optimal
path of real maintenance and the impact of the optimal utilization rate of capital depends, in addition,
on the sensibility parameters of the depreciation rate function, the marginal propensity to maintain,
and the steady states of the level of depreciation and its growth rate. Equations (2.3.17)-(2.3.19), if
conveniently combined, deliver an expression for the wage Phillips curve. The term ĝw,t defines the
marginal utility of labor, while ˆ̃wt is an auxiliary variable used to define the behavior of real wages.
Finally, equation (2.3.20) describes the log-linearized optimal monetary policy rule. The latter four
expressions do not present changes with respect to the baseline model.

2.4 Concluding remarks

We have built a Dynamic Stochastic General Equilibrium model following Justiniano et al. (2011).
We take advantage from the decentralized scheme of their model in order to introduce a new sector
which produces maintenance goods and services employing a fraction of final goods. Maintenance
goods are purchased by households, who detain capital stock, and use them for the reparations of
damaged or obsolete capital due to wear and tear (usage), aging and quality innovations. The level of
maintenance expenditures is controlled by households. Capital stock is rented to the firms producing
intermediate goods. Differently from Justiniano et al. (2011), our model is characterized by a time
varying depreciation rate, which is influenced by the rate of capital utilization and by maintenance
expenditures. The optimization routine rules out a growth trend for depreciation which depends on
the investment-specific technological progress weighted by the sensibility of depreciation to changes
in maintenance. The existence in our model of a growing path of depreciation is supported by the
U.S. and Canadian actual data, especially when a period over the latest 50 years is considered, and by
empirical research carried out, for example, by Tevlin and Whelan (2003). Nonetheless, our work is the
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first one being characterized by a growing trend in the depreciation rate. The only estimation analysis
in a DSGE framework with endogenous depreciation is made in Albonico et al. (2014) however they
abstract from many salient features of the DSGE models and do not incorporate any growth trend
in their model. According to our settings, instead, the main macroeconomic variables grow following
a composite growth trend given by a linear combination of the labor-augmenting progress and of
the investment-specific technical process, whereas depreciation is driven by the latter one only. As a
consequence of our model assumptions, several optimal paths of the respective endogenous variables
are clearly directly linked to the model’s new variables and parameters characterizing the functions of
the depreciation rate and of the maintenance expenditures. It emerges that, the optimal rental price
of capital, for example, is positively influenced by depreciation, which suggests that when depreciation
accelerates the respective capital asset is more likely to be discarded sooner. The agents, therefore, are
prompted to increase the rental price of capital in order to recover the costs of increasing depreciation.
Conversely, the shadow value of maintenance influences negatively capital rental price as far as, when
the former increases maintenance decreases, which implies that less capital is repaired and that it
worths less. The optimal shadow value of capital, as it should be obvious, depends negatively on
the expected depreciation rate and positively on the shadow value of maintenance. The optimal
demand for maintenance is increasing in the old capital stock and current depreciation, that is as
well intuitive. Depreciation rate accelerates when capital is used more intensively and declines when
more maintenance is implemented. As a consequence of our model settings some steady state key
relationships differ from the relative ones in the baseline model as well. We furthermore have assumed
the presence of one more shock in our model with respect to the baseline model which impacts on the
production technology of new maintenance units in the maintenance production sector and which we
have labeled the maintenance-specific technological progress.
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Chapter 3

3 Estimations and results

Introduction

In this chapter we expose our estimation analysis and results based on the Bayesian approach. For
these purposes we use the database of the Canadian economy (CANSIM) which has available series
for maintenance expenditures in the "Capital and repair expenditures" survey. The data used in
the estimations are expressed in quarters and cover the period over 1981Q2-2015Q1. Performing the
Random Walk Metropolis Algorithm we carry out estimations for the parameters values both of our
model and of the baseline model. In order to analyze the differences between the two models and
to verify the contribution of the novelties introduced in our model we compute the impulse response
functions of the main macroeconomic variables.

The chapter is structured as follows. In section 3.1 we describe the construction of the dataset
used for the estimation exercises and the distribution forms of the priors of parameters. In section 3.2
we briefly describe the posterior results of the maintenance and the baseline models focusing on the
estimated modes of the respective parameters. In section 3.3 convergence diagnostics analysis of the
model and identification analysis of the parameters for the maintenance model are presented in order
to detect the goodness of the estimation exercises. In section 3.4 we compare the impulse response
functions of the maintenance model relative to the baseline model and analyze the optimal convergence
dynamics. In section 3.5 we present the variance decomposition analysis in order to investigate the
roles of exogenous shocks in explaining the real business cycle fluctuations. In section 3.6 we describe
the behavior of the two models by comparing some estimated moments with the statistics measured
in the actual data.

3.1 Data and Priors

Data
The estimation exercise of our research consists in the Bayesian inference of our model and of the

baseline model following the main approach adopted in Justiniano et al. (2011), in order to be able to
make comparisons of the posteriors results of the two models. We consider eight observable variables40

[

∆ logXt ∆ logCt ∆log Ĩt logLt ∆ log Wt

Pt
πt Rt ∆log

P I
t

Pt

]

40 For a detailed description of the construction of our dataset please refer to Appendix F.
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where ∆ logXt, ∆ logCt and ∆ log Ĩt are differences in logarithms of real GDP, real consumption
and real investment, respectively. The latter two are defined as ratios between the corresponding
nominal series and the series of the implicit price indexes for consumption of non durables, semi-
durables and services and are all expressed in per-capita terms. As usual, nominal consumption defines
the expenditures on non durables, semi-durables and services, while nominal investment defines the
expenditures on durables and gross private domestic investment. Per-capita real GDP is expressed in
chained 2007 dollars. The observable logLt is the logarithm of per-capita worked hours, while ∆ log Wt

Pt

is the difference in logarithms of per-capita real wages, both in the non-farm business sector. Inflation,
πt, is the quarterly difference in logarithms of consumption deflator and the nominal interest rate,
Rt, is the three-months treasury bill rate. Finally, the difference in logarithms of the relative price of

investment, ∆ log
P I
t

Pt
, is given by the ratio of the deflators for investment and consumption. The series

for the price for investment is the average of the implicit price index on durables and gross private
domestic investment. All the series are taken from the CANSIM Statistics of Canada. The dataset
covers a period going from 1981Q2 to 2015QI and is expressed on quarterly basis. Note that, differently
from Justiniano et al. (2011) we do not consider any structural break in our model for two reasons.
First of all, our dataset for the observables is starting in 1981 in order to have coherent data for all
the observable series, as far as several methodological changes have occurred in the CANSIM database
both with regard to computational approaches and to data gathering. Justiniano et al. (2011), instead,
cover a period over 1954QIII-2009QI and the structural break for the U.S. is set in 1982, which is the
year when the path of the relative price of investment changes its slope. Therefore, given the affinity
of the two economies and as it emerges by observing the actual data, it is plausible to suppose that
our dataset starts after the relevant changes in the path of the relative prices of investment have been
occurred.

Priors
We set all the priors of the parameters common for the two models following Justiniano et al.

(2011), with exception of the steady state of hours worked. All the figures are summarized in Table
3.1. All the parameters characterizing the persistences of the shock processes, including the parameters
of the moving averages in the ARMA processes, are described by a Beta distribution. The standard
errors of the innovations are described by an Inverse-gamma distribution. Prior mean of the capital
share is set to 0.30 that is a value broadly used in this literature. We set the prior means of the steady
state composite growth rate, γ⋆, and the steady state IST growth rate, γv, respectively to 0.30 and 0.60,
which correspond to the respective values after the structural break period in Justiniano et al. (2011).
Both the priors follow the Normal distribution. The prior means of the price and wage stickiness,
ξp and ξw, are both set such that only one third of the intermediate firms and of households can set
their optimal price and optimal wage, respectively. We set the prior mean of the steady state of hours
worked, logLss, to 0.30 contrary to 0.00 of Justiniano et al. (2011), while keep unchanged the value of
the prior standard deviation and the prior distribution form. Our choice is driven by the fact that the
value for the hours worked in the actual data of our dataset is on average positive. On the contrary, In
Justiniano et al. (2011) the respective average value is negative over the first sub-sample, i.e. before
the structural break, and positive thereafter. The prior mean of 2.00 for the inverse Frisch elasticity is
relatively high however broadly into the ranges found in the literature. We have five more parameters
estimated in the maintenance model for which we assume very dispersive priors. The sensitivity
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parameters of the depreciation rate function, η and σ, and the elasticity of the maintenance adjustment
costs, f ′′, are all assumed to follow a Gamma distribution. The prior means of the sensitivity with
respect to utilization, η, and with respect to maintenance, σ, are respectively 9.00 and 10.00 and the
respective prior standard deviations are set to 7.00 and 10.00. The prior support of the elasticity
of maintenance adjustment costs, f ′′, is slightly broader with respect to the one of the investment
adjustment costs, S′′, with prior mean equal to 3.00 and prior standard deviation equal to 2.00,
against 4.00 and 1.00, respectively. In fact, given our prior mean assumptions on f ′′ and S′′, we believe
that a marginal change in the respective relative inputs induces more variation in the maintenance
adjustment cost than in investment adjustment cost. The smooth parameter of the maintenance-
specific technological progress, ρd, follows a Beta distribution with prior mean 0.6 and prior standard
deviation 0.2. The standard deviation of the innovation of maintenance-specific technological progress
is described by an Inverse-gamma distribution with prior mean and prior standard deviation of 0.1
and 1, respectively. The priors set for the remaining parameters are in general in line with the related
literature. The parameters of the marginal propensity to maintain, τ , and of the depreciation rate
function, ζ, are internally determined by the steady state relations. Moreover, as far as we are interested
in the comparison of the baseline model with our model which includes endogenous depreciation rate
and maintenance activity, we set a restriction condition on the natural rate of depreciation, that is
δ̄ = 0.025 − ζ. Thus, when all the new parameters of the maintenance model tend to zero ζ tends
to zero, too, and the depreciation rate becomes constant and equal to 0.025 as it is in the baseline
model. Anyway, given the flexible structure of our model, such a restriction condition can be relaxed
and both the values of the steady state depreciation rate and of the natural rate of depreciation can be
determined entirely by the steady state driven relations and by the estimated parameters. Otherwise,
the arbitrary value of 0.025 may be set following, for example, the planned obsolescence literature. For
example, one could be interested in to assume that the capital stock at most approaches 30 years of
useful life, which would imply an average quarterly natural rate of depreciation, δ̄, of about 0.0083.
In our case, since we have assumed that δ̄ at most equals 0.025 implies that the average useful life of
capital is around 10 years when it depreciates according to the natural rate of depreciation. Finally,
we calibrate the value of the steady state government spending to GDP ratio, i.e. (1 − 1/g), in order
to match the average value of Gt/Yt in the actual data and set it to 0.25. As to the calibration of the
ratio of fixed maintenance costs to installed capital we assume an arbitrary value of 0.01. This means
that households spend in fixed maintenance on average 1% of the value of current capital stock.

In Justiniano et al. (2011), the intertemporal preference shock and the price and wage mark-up
shocks are normalized so that they enter the equations of marginal utility of nominal income and
the price and wage Phillips curves, respectively, with a unit coefficient. These normalizations, as the
authors explain, are convenient for the definition of the priors for the standard deviations of the shocks
and for the estimation purposes when the Metropolis-Hasting algorithm is implemented. Normalization
requires the definition of new exogenous variables, which are denoted by a ’star’, for the three shocks
as follows, respectively
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b̂⋆t =
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)
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As far as marginal utility of nominal income, and the price and wage Phillips curves remain un-
changed with respect to the baseline model, we implement the normalization procedure of the respective
shocks following Justiniano et al. (2011).

3.2 Posterior estimation results

We perform estimation exercises both for the baseline model and for the maintenance model using
the free software DYNARE. The Random Walk Metropolis-Hastings algorithm within the Bayesian
estimation framework is used. The posterior estimates are obtained from 2 chains of 80,000 draws
and following Justiniano et al. (2011) we discard the initial 50,000 draws and keep one every five
subsequent draws imposing the scale for the jumping distribution to 0.31 for both the models. The
estimated modes, respective estimated standard deviations and five degree acceptance ranges of the
structural parameters and standard deviations of the innovations are listed in Table 3.2. As we can
observe, overall posterior estimates confirm our model assumptions. In particular, we have assumed
that the elasticity of the depreciation rate function with respect to utilization, η, is greater than unity.
In fact, the estimated mode of η is 1.327. Additionally we assumed that this elasticity must be lower
than the elasticity of depreciation with respect to maintenance, σ, which is as well satisfied, being
the estimated mode of σ equal to 5.116. All the other estimates are, in general, within the ranges of
those found in the related literature for Canada. The estimated habit degree in consumption is 0.851
and 0.860 in the maintenance and baseline models, respectively, which is lower than 0.94 estimated
by, for example, Dorich et al. (2013)41. The estimated intertemporal elasticity of substitution, β, is
0.99 in both the models whereas it is 0.88 in Dorich et al. (2013). This suggests that, with respect to
the model of Dorich et al. (2013), in our economy consumption is more sensitive and thus responds
faster to movements in the interest rate. With respect to the baseline model, the composite steady
state growth trend, γ⋆, in the maintenance model is slightly higher, 0.318 against 0.310. Inversely, in
the maintenance model the steady state growth rate of IST progress, γv, is slightly lower, being 0.573
against the 0.578 of the baseline model. Moreover, the estimated posterior mode of capital share in
the intermediate goods production function is higher in the maintenance model than in the baseline
model, being 0.183 and 0.141, respectively. Recall that the composite growth trend in steady state is
given by γ⋆ = γz + α

1−αγ
v, hence, given the posterior mode for α, the contribution to the composite

growth rate of the IST growth is almost double in the maintenance model with respect to the baseline

41 Dorich et al. (2013) estimate a Terms-of-Trade Economic Model for Canada with the full information estimation
technique. The model is implemented by the Bank of Canada for its quarterly projection forecasts.
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Tab. 3.1: Prior distributions of structural parameters and standard deviations of the shocks

Parameter Description Prior shape Prior mean Prior Std

α Capital share N 0.30 0.05
ιp Price indexation B 0.50 0.15
ιw Wage indexation B 0.50 0.15
γ⋆ SS composite technology N 0.30 0.025
γv SS IST growth rate N 0.60 0.025
h Consumption habit B 0.50 0.10
λp SS prices mark-up N 0.15 0.05
λw SS wages mark-up N 0.15 0.05
logLss SS hours N 0.30 0.50
100(π − 1) SS quarterly inflation N 0.50 0.10
100(β−1 − 1) Discount factor G 0.25 0.10
ν Inverse Frisch elasticity G 2.00 0.75
ξp Price stickiness B 0.66 0.10
ξw Wage stickiness B 0.66 0.10
χ Utilization cost elasticity G 5.00 1.00
S′′ Investment adjustment costs G 4.00 1.00
φp Inflation Taylor rule N 1.70 0.30
φy Output Taylor rule N 0.13 0.05
φdy Output growth Taylor rule N 0.125 0.05
η Elasticity of depreciation wrt utilization G 9.00 7.00
σ Elasticity of depreciation wrt maintenance G 10.00 10.00
f ′′ Maintenance adjustment costs G 3.00 2.00
ρd Persistence maintenance cost B 0.60 0.20
ρR Persistence Taylor rule B 0.60 0.20
ρz Persistence Neutral technology B 0.40 0.20
ρg Persistence government spending B 0.60 0.20
ρv Persistence IST B 0.20 0.10
ρp Persistence price mark-up B 0.60 0.20
ρw Persistence wage mark-up B 0.60 0.20
ρb Persistence intertemporal preference B 0.60 0.20
ρµ Persistence MEI B 0.60 0.20
θp MA price mark-up B 0.50 0.20
θw MA wage mark-up B 0.50 0.20
σmp Monetary policy Std I 0.10 1.00
σz Neutral technology growth Std I 0.50 1.00
σg Government spending Std I 0.50 1.00
σv IST growth Std I 0.50 1.00
σµ MEI growth Std I 0.50 1.00
σp Price mark-up Std I 0.10 1.00
σw Wage mark-up Std I 0.10 1.00
σb Intertemporal preference Std I 0.10 1.00
σd Maintenance specific growth Std I 0.10 1.00
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Tab. 3.2: Posterior estimates of the baseline and maintenance model

Baseline model Maintenance model

Parameter Mode s.d. [5, 95] Mode s.d. [5, 95]

α 0.141 0.018 [0.11, 0.17] 0.183 0.020 [0.14, 0.23]
ιp 0.267 0.078 [0.10, 0.40] 0.280 0.096 [0.12, 0.47]
ιw 0.087 0.035 [0.04, 0.17] 0.100 0.041 [0.04, 0.19]
γ⋆ 0.310 0.024 [0.26, 0.35] 0.318 0.024 [0.27, 0.35]
γv 0.578 0.025 [0.53, 0.63] 0.573 0.025 [0.53, 0.62]
h 0.860 0.024 [0.80, 0.90] 0.851 0.025 [0.78, 0.90]
λp 0.224 0.043 [0.13, 0.30] 0.227 0.043 [0.13, 0.31]
λw 0.147 0.049 [0.05, 0.23] 0.154 0.045 [0.06, 0.24]
logLss 0.163 0.429 [-0.63, 0.99] 0.415 0.471 [-0.51, 1.22]
100(π − 1) 0.544 0.086 [0.39, 0.71] 0.529 0.085 [0.36, 0.69]
100(β−1 − 1) 0.413 0.096 [0.24, 0.62] 0.454 0.111 [0.26, 0.69]
ν 3.884 0.843 [2.50, 5.79] 3.144 0.922 [1.85, 5.16]
ξp 0.910 0.021 [0.84, 0.94] 0.823 0.058 [0.74, 0.90]
ξw 0.693 0.073 [0.55, 0.84] 0.652 0.073 [0.52, 0.84]
χ 4.819 0.976 [3.20, 7.07] 5.007 0.988 [3.32, 7.46]
S′′ 4.756 0.902 [3.40, 7.15] 4.136 0.799 [3.03, 6.30]
φp 1.689 0.239 [1.28, 2.16] 2.026 0.201 [1.55, 2.42]
φy 0.176 0.042 [0.09, 0.26] 0.112 0.061 [0.04, 0.24]
φdy 0.134 0.038 [0.06, 0.20] 0.097 0.040 [0.03, 0.19]
η 1.327 1.534 [0.01, 7.69]
σ 5.116 1.985 [3.19, 13.44]
f ′′ 1.592 1.426 [0.12, 5.61]
ρd 0.668 0.272 [0.24, 0.97]
ρR 0.869 0.018 [0.83, 0.90] 0.853 0.023 [0.82, 0.89]
ρz 0.061 0.049 [0.005, 0.17] 0.056 0.045 [0.01, 0.15]
ρg 0.982 0.005 [0.97, 0.99] 0.986 0.005 [0.98, 0.99]
ρv 0.413 0.070 [0.28, 0.54] 0.435 0.071 [0.28, 0.55]
ρp 0.950 0.040 [0.65, 0.99] 0.959 0.030 [0.86, 0.99]
ρw 0.915 0.053 [0.70, 0.97] 0.837 0.064 [0.59, 0.92]
ρb 0.183 0.087 [0.05, 0.39] 0.151 0.079 [0.04, 0.37]
ρµ 0.699 0.086 [0.54, 0.85] 0.979 0.013 [0.93, 0.99]
θp 0.930 0.051 [0.46, 0.97] 0.839 0.100 [0.62, 0.94]
θw 0.864 0.079 [0.55, 0.95] 0.733 0.105 [0.32, 0.86]
σmp 0.250 0.017 [0.22, 0.29] 0.242 0.016 [0.22, 0.28]
σz 0.860 0.058 [0.75, 0.99] 0.905 0.065 [0.79, 1.04]
σg 0.661 0.041 [0.60, 0.76] 0.627 0.039 [0.56, 0.72]
σv 0.727 0.044 [0.65, 0.84] 0.723 0.044 [0.65, 0.82]
σµ 4.762 1.058 [3.28, 7.79] 7.873 1.144 [6.22, 11.28]
σp 0.346 0.028 [0.27, 0.39] 0.319 0.031 [0.25, 0.38]
σw 0.265 0.028 [0.21, 0.31] 0.275 0.031 [0.21, 0.33]
σb 0.139 0.024 [0.09, 0.18] 0.142 0.022 [0.09, 0.18]
σd 0.247 0.098 [0.13, 0.79]

log Posterior -1141.65 -1139.74
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model. Hours worked in steady state, logLss, are 0.415 in the maintenance model and 0.163 in the
baseline model. Thus, when accounting for the maintenance activity and endogenous depreciation rate
higher amounts of factor inputs are, in general, used in the production of intermediate-goods. The
labor supply elasticities, 1/ν, in the maintenance and baseline models are, respectively, 0.318 and 0.257.
The estimations of Albonico et al. (2014), instead, are found to be higher amounting to 0.49 and 0.47,
respectively, in the models with and without maintenance activity. The estimated elasticity of the
utilization cost, χ, in the baseline model is smaller, being 4.819 against the 5.007 in the maintenance
model. Therefore, with respect to the baseline one in the maintenance model adjustment mechanism
to shocks at margin has more room of play in the sense of utilization costs and labor supply. However,
given the estimated value for the elasticity of the depreciation rate function with respect to utilization,
η, that is 1.327 (1.08 in Albonico et al. (2014)), this implies that recovery through adjustments in
utilization is counterproductive in terms of higher depreciation. On the contrary, an increase in the
utilization rate of capital raises maintenance expenditures which, in turn, downturns depreciation rate.
The estimated mode for the elasticity of depreciation rate with respect to maintenance, σ, is relatively
high amounting to 5.116 (whereas Albonico et al. (2014) have obtained an estimate of 19.19) suggesting
that a rise in maintenance expenditures of one unit induces a marginal decrease in depreciation of
about 5%. When maintenance sector is included in the model, estimated investment adjustment costs
decline.42 In fact, the estimated parameter for the adjustment cost of investment, S′′, is higher in the
baseline model amounting to 4.756 than the 4.136 in the maintenance model. This suggests that, in the
maintenance model, the direct impact of the MEI shock in the investment Euler equation is stronger
than in the baseline one. In the maintenance model the estimated adjustment cost of maintenance,
f ′′, is relatively lower (1.592) than the adjustment cost of investment, therefore it results to be more
costly to adjust maintenance to exogenous shocks than investment (that is 1/f ′′ with respect to 1/S′′).
Similarly to the model of Dorich et al. (2013) our Phillips curve for consumption prices is more forward
looking than backward looking with the respective coefficients for π̂t−1 and π̂t+1 of 0.22 and 0.78 in the
maintenance model, given the estimated values of ιp and β. The contributions to the price Phillips curve
of real marginal cost and price mark-up disturbance, given high estimated value of price stickiness,
ξp, are very low (0.03), which is as well in line with Dorich et al. (2013). The estimated value for the
wage stickiness, ξw, is slightly lower in the maintenance model with respect to baseline model being,
respectively, 0.652 and 0.693 (0.59 in Dorich et al. (2013)). The difference is more pronounced for
the parameter of price stickiness, ξp, being respectively 0.823 and 0.910 (0.75 in Dorich et al. (2013)).
This suggests that, when depreciation is endogenous and the amount of maintenance can be optimally
chosen a higher fraction of intermediate-goods producing firms and of households is able to optimally
set the price level and wage level, respectively. On the contrary, both the estimates of the price
and wage indexations, ιp and ιw, respectively, are higher in the maintenance model with respect to
the baseline ones, which are, respectively, 0.280 against 0.267 for ιp, and 0.100 against 0.087 for ιw.
Lower value for ιp has been estimated in Dorich et al. (2013) which amounts to 0.06, while ιw is 0.11.
Therefore, in particular with regard to the maintenance model, firms that do not optimize for price
and follow, instead, a general indexation rule are prompted to pay more attention to the dynamics of
past price inflation relatively to the model of Dorich et al. (2013). In fact, as far as depreciation rate
is time-varying, nominal interest rate, and hence inflation, will be influenced by its path impacting
therefore on the dynamics of the prices. The estimated smoothing parameter of the interest rate rule

42 Note that, a similar result has been achieved in Angelopoulou and Kalyvitis (2012).
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is slightly lower in the maintenance model than in the baseline one, 0.853 and 0.869, respectively, and
both are lower than the 0.9 estimated by Dorich et al. (2013). In the maintenance model the estimated
mode of the Taylor rule response to deviations of inflation, φp, is definitely higher, 2.026 against the
1.689 of the baseline model, and is broadly in line with the estimated 2.14 of Dorich et al. (2013).
Responses to deviations of output gap level, φy, and its growth rate, φdy are relatively lower, 0.112
and 0.097 with respect to 0.176 and 0.134 in the baseline model. Maintenance model estimates for
Taylor rule response to output gap level is as well broadly in line with the estimated value of 0.076
in Dorich et al. (2013). The estimated smoothing parameters of the labor augmenting technological
process, ρz, of the wage mark-up shock, ρw, of the intertemporal preference shock, ρb, and of both
the moving average parameters, θp and θw, are lower in the maintenance model with respect to the
baseline one. The estimated standard deviation of the marginal efficiency of investment technological
progress, σµ, is much larger in the maintenance model than in the baseline model, 7.873 and 4.762,
respectively. The estimated standard deviation of the maintenance specific technological progress, σd,
is 0.247.

3.3 Maintenance model behavior

In order to evaluate the behavior of the maintenance model we have performed the multivariate con-
vergence diagnostics of the Monte Carlo Markov Chains shown in Fig. 3.1. When more Metropolis
chains are run in parallel, the univariate diagnostics analysis performed by DYNARE is based on
Brooks and Gelman (1998). In general, they introduce an alternative graphical approach for detecting
the existence of convergence both in the univariate and multivariate environments. Assuming there
are simulated in parallel m ≥ 1 chains, each one of length 2n, of which the first n are discarded, vector
(φj1, φj2, ..., φjn), with j = 1, ...,m, represents the observation outputs of the simulation for a given
parameter. Each simulation starts at a different point, which is found using a simple mode-finding
algorithm, i.e. high density regions are detected first from which are then picked up the initial values
using a mixture of t-distributions located at the found modes. Their originality consists in dividing
the m chains into k sets of length b where the value of the latter one must be equaled to n/20, as the
authors suggest. So, denoting in a multivariate setting any ith simulated scalar summary φijt of the

parameter vector φ as the tth of the n iterations in chain j, and assuming φ̄.. equals some unbiased
moment estimator, then the between sequence variance B/n and the within-sequence variance W are
calculated as follows

B/n =
1

m− 1

m
∑

j=1

(
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) (
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The estimated posterior variance-covariance matrix is given by

V̂ =
n− 1

n
W +

(

1 +
1

m

)

B/n

The multivariate potential scale reduction factor (MPSRF), which measures the convergence diag-
nostic, is then calculated as follows
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R̂ = max
a

a′V̂ a

a′Wa
=
n− 1

n
+

(

m+ 1

m

)

λ

where λ represents the largest eigenvalue of the symmetric and positive definite matrix W−1B/n.
In general, according to Brooks and Gelman (1998), convergence occurs when R̂ approaches 1, which
implies that V̂ and W joint each other. When R̂ > 1 convergence may be improved by, for example,
increasing the number of simulations in order to either reduce V̂ or increase W . Additionally, conver-
gence is accomplished when both V̂ and W stabilize as the number of iterations n increases, i.e. V̂
decreases with n and W becomes, in general, less than V̂ .

In Fig. 3.1 we display the multivariate convergence diagnostics. In performing this analysis
DYNARE slightly departures from the Brooks and Gelman (1998) approach in that it is computed
using a range of log-posterior functions rather than individual parameters, which are then aggregated

Fig. 3.1: Multivariate convergence diagnostics: maintenance model

using posterior kernel into a scalar statistic. Hence, the dashed lines represent the pooled draws
from all the Monte Carlo Chains, in our case two sequences. The continuous lines represent the mean
interval range of the posterior likelihood function from the draws of individual chains. The first panel
shows the convergence diagnostic for the length interval with the highest probability density over 80%
of the quantile range of the posterior distribution. The second panel displays the convergence diagnostic
for the squared deviations in absolute values from the respective means (pooled and within-sample),
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while the latter panel depicts convergence diagnostic for the respective cubed absolute deviations. In
general, we assert that the estimation performance of our model is good as far as the multivariate
convergence criteria are satisfied43. In fact, both the pooled and within-sample mean interval ranges
stabilize over the window interval and get close to each other after about 30,000 iterations.

For further analysis we have plotted the distributions of the parameters priors and posteriors of the
maintenance model. Fig. 3.2 displays these distributions, where the dotted lines represent the prior
densities, the continuous lines represent the posterior density distributions and the vertical dashed
lines are the estimated posterior modes. As it can be observed posterior densities fit the estimated
modes for all the estimated parameters. The priors we have set are almost all informative, however, for
some parameters such as the steady state composite growth rate, the maintenance-specific technology
process and its persistence, the steady state mark-up for wages and the steady state of hours, the
steady state quarterly inflation, output gap and output Taylor rules, the wage stickiness parameter as
well as utilization cost elasticity, and finally the maintenance adjustment cost the priors and posteriors
are completely or nearly the same. The overlapping of the two density distributions is used to be
attributed to either a very accurate prior definition such that it precisely reflects the information
provided by the actual data or, conversely, to a weak identification of these parameters of which
priors can not be updated using the data information. In general, the Dynamic Stochastic General
Equilibrium models suffer from a weak identification problem of some parameters. In order to deeper
investigate the roles of our priors we have computed the identification and sensitivity analysis for
the estimated parameters which are shown in Fig. 3.3. For this purposes DYNARE implements the
procedure highlighted in Ratto and Iskrev (2011) and the related literature. Specifically, the strength
of identification, si for any parameter θi is carried out using the Fischer information matrix, IT (θ),
computed on the vector of deep parameters, that is

si =
√

θ2i / (IT (θ)−1)(i,i)

where the sensitivity components is given by

∆i =
√

θ2i × IT (θ)(i,i)

Parameters θi are evaluated at the prior mean, as shown above, and at the prior standard deviation,
σ(θi), as follows, respectively

si = σ (θi) /
√

(IT (θ)−1)(i,i)

and

∆i = σ (θi)×
√

IT (θ)(i,i)

In general, it is said that any given parameter will be locally identifiable if the Jacobian matrix
J(q) = ∂mq/∂θ

′, which maps from the vector of the deep parameters, θ to the vector of, typically, the
first two moments of the data, mT has a full column rank. For the calculation of the Jacobian matrix
DYNARE proceeds through two steps, which are summarized by the following expression

J(q) =
∂mq

∂τ ′

∂τ

∂θ′

43 The univariate convergence diagnostics computed on individual parameters, displayed in Appendix G, additionally
enhances our assertion showing that convergence has been successful for almost all the estimated parameters.
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Fig. 3.2: Priors and posteriors: maintenance model
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Fig. 3.3: Identification analysis of the parameters: maintenance model

where τ represents the vector of all the elements, which appear in the transition equation of the
state space form representation, depending on θ. Therefore, an additional necessary condition arises
for the local identifiability which requires J2 = ∂τ/∂θ′ to be of a full rank44. When J2 has a deficient
rank at θi it means that the specific parameter is not identified in that particular point of the parameter
space. When the rank of J2 is full whereas it is not that of J(q) then θi is unidentifiable given the
observation variables and the total number of observations.

So, in the upper and lower panels of Fig. 3.3 the bars represent the strength of identification and
the sensitivity components of the maintenance model parameters, respectively, computed on the basis
of the Fisher information matrix normalized by the prior standard deviations and the prior means. The
upper panel displays the identification strength of the estimated parameters. The higher the bars the
stronger the identification. So, we can observe that the parameters of the elasticity of depreciation with

44 In the DYNARE output J(q) is labeled J while J2 is labeled H .
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respect to maintenance and utilization, σ and η, respectively, are strongly identified. The standard
deviation of the maintenance-specific technology process, σd, and its persistence parameter, ρd, the
steady state of hours, Lss, the utilization cost elasticity, χ, and the maintenance adjustment cost,
f , (on the left-hand side of the upper panel) are, effectively, very weakly identified. As to the wage
stickiness, ξw, and the steady state mark-up for wages, λssw , (on the right-hand side of the upper panel)
the likelihood function in the direction of this parameters is completely flat, i.e. the identification
strength is zero. However, in the bottom panel it can be observed that all the parameters are identified
at least at the local mean as far as for all of them the sensitivity component is high. This means that
all of the parameters contribute effectively to shape the posterior log-likelihood function. Therefore,
since the identification strength for ξw and λssw is zero but their respective sensitivity components are
not, these two parameters are pairwise collinear and thus their effects on the posterior log-likelihood
compensate each other.

3.4 Maintenance model convergence dynamics

In order to investigate the dynamics of our model we have computed the impulse response functions
of both the baseline and maintenance models to all the shocks included in the two models. We have
calibrated the parameters using the estimated median values of the respective models and normalized
to one the standard deviations of the shocks. Over all the related figures the dotted lines describe the
optimal paths of the baseline model and the continuous lines those of the maintenance model.

Fig. 3.4 displays the impulse response functions of the main real variables to a positive one standard
deviation shock on the marginal efficiency of investment technology process. Both the models deliver
well hump-shaped curves. A positive shock to the MEI process increases on impact the amount of new
capital above its steady state level. As a consequence, in equilibrium the cost of new capital declines
inducing an impact reduction in the Tobin’s q, q̂t = φ̂t− λ̂t. Given the following equilibrium condition
for the real interest rate

R̂t − π̂t+1 =− q̂t +
[
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α

1−α
+1)γv)τĀ

]
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the inverse relation with the Tobin’s q induces real interest rate to increase on impact, which in
turn attracts new investment. In the baseline model the interest rate effect is strong enough to generate
a substitution effect away from consumption. Hence, agents find it optimal to postpone consumption
of final goods and to increase investment. Consequently, consumption decreases on impact of the
shock delivering an increasing path and overshoots above the steady state level after a few periods,
following the recovery of the real interest rate. The optimal level of labor increases on impact of the
shock given a higher marginal utility of labor on the supply side, and a lower price mark-up of the
intermediate goods producers, because of increased real marginal costs, on the demand side. On the
contrary, in the maintenance model current consumption increases on impact. This is explained by
a relatively stronger wealth effect combined with a weaker interest rate effect, given higher posterior
estimates both of the inverse of investment adjustment costs and of the steady state composite growth
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Fig. 3.4: Impulse response functions to one standard deviation shock to MEI

trend. Therefore the optimal level of investment increases on impact of the shock though less than in
the baseline model. The increased economy’s productive capacity delivers a slightly positive impact
response of the capital utilization rate which, in turn, rises on impact, although by a very small
amount, both effective capital and its marginal productivity. Therefore, given that real marginal costs
of the intermediate goods producers immediately rise, and that the presence of nominal rigidities do
not allow the firms to suddenly adjust for the prices, the price mark-up declines. Hence, the co-
movement of consumption and hours in the maintenance model is ensured through the labor market
equilibrium condition given the countercyclical behavior of the mark-ups. The increase in the level of
new capital rises on impact the stock of installed capital which over the next periods affects effective
capital. Thus, after a weak positive response on impact of the shock due to the impact increase in
the utilization rate, the optimal effective capital keeps on growing and reverts back to its steady state
level after several periods. Consequently, the marginal product of capital, after the immediate slightly
positive response, declines below its steady state level in order to invert its route as the effective capital
recovers slowly to equilibrium. Capital utilization rate depicts a hump-shaped path similar to the rental
rate of capital. Hence, the positive wealth effect and the relatively weaker substitution effect in the
maintenance model allows for co-movements in consumption, output, investment and hours. On the
contrary, in the baseline model the co-movement in investment, hours and output comes out at the
cost of countercyclical consumption. Moreover, the persistent increase in the capital stock creates in
the maintenance model a slightly positive impact response in maintenance and raises the next period
capital depreciation rate which further pushes up the demand for maintenance.
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Overall, endogenous depreciation and the presence of maintenance sector amplify the convergence
dynamics of the equilibrium paths in response to a positive MEI shock with respect to the baseline
model. Convergence for almost all the considered real variables is delayed in part because of a relatively
higher estimated persistence in the shock with respect to the baseline model. The optimal response
paths of effective capital, consumption, real wages and output are significantly amplified although
the estimated nominal and real frictions in the maintenance model are relatively lower. The lower
estimated level of the investment adjustment cost in the maintenance model smooths the optimal path
of investment. Similarly, a higher estimated steady state elasticity of the utilization costs delivers a
stronger response path for the utilization rate. On the contrary, given the relatively higher estimates
of the baseline model nominal rigidities, the adjustment of wages and prices towards their desired
levels is slower. So, agents necessitate to increase relatively more the hours of work with respect to the
maintenance model in order to recover to equilibrium. As to the speed of convergence, in the baseline
model output reaches its equilibrium level after something more than 20 periods. In the maintenance
model convergence is not completed before than 30 periods. Optimal investment in the maintenance
model, after a positive response on impact of about 0.20%, falls below its steady state level after 14
periods, thereafter recovery to equilibrium is very slow. In the baseline model overshooting occurs after
15 periods and recovery is slightly faster. Delayed convergence occurs in the maintenance model also
with regard to the utilization rate and to the capital rental rate. After a positive almost of the same
magnitude response on impact of the shock, overshooting for the nominal interest rate occurs over the
periods 13 and 14 in the maintenance and baseline models, respectively, with a slower convergence in
the former one. The impulse response function of inflation in the maintenance model is mildly cyclical
as a consequence of the accelerated depreciation rate and a relatively more volatile price mark-up. All
the main real variables are pro-cyclical in both the models, with exception of consumption which is
countercyclical in the baseline model. Hence, in response to a positive shock to the marginal efficiency
of investment, maintenance and investment are complements.

Fig. 3.5 displays the impulse response functions to a positive one standard deviation shock to
investment-specific technology process. The IST shock (or disembodied investment specific technology
shock) equates, in equilibrium, the inverse of the relative price of investment which thus decreases.
Following the decline in the relative price of investment the Tobin’s q rises on impact of the shock
which, combined with the direct effect of the IST shock, generates a decline in the real interest despite
a rise in the expected marginal product of capital. In the baseline model the strong interest rate effect
generates an impact decline in the real investment, which depicts an increasing path and overshoots
above its steady state value after several periods. The impact decline in real investment induces a fall
in new capital and, hence, the level of capital stock falls below its steady state level whereas the cost
of installed capital increases. Moreover, the positive investment-specific technology shock generates an
immediate decline in effective capital, which keeps on decreasing over the next several periods despite
an impact positive response of the utilization rate as far as part of installed capital is destroyed. Given
the equilibrium path of the effective capital the marginal product of capital rises on impact to the
shock as well as over the following periods and reverts its path downward as effective capital starts to
recover towards its steady state level. Similarly, capital utilization rate rises above its steady state level
on impact of the shock. Give the reduction in the economy’s productive capacity output declines on
impact. The monetary authority, in order to balance the deviations both of output from its steady state
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Fig. 3.5: Impulse response functions to one standard deviation shock to IST

level and of inflation from its target level, reduces the nominal interest rate although by a very small
amount. Given the sharp decline in output, the negative wealth effect dominates over the interest rate
effect so that agents find it optimal to reduce current consumption on impact of the shock. The price of
consumption immediately grows up which in the presence of nominal rigidities pushes downward real
wages and increases inflation. As a consequence of the wage and price stickiness both the mark-ups
increase and the intermediate goods producers find it optimal to reduce the demand for labor. Hence,
in the baseline model output, consumption, investment, hours, real wages, nominal interest rate and
effective capital all co-move in response to a positive investment-specific technology progress.

With regard to the maintenance model the interest rate effect is dominated by the substitution effect
away from consumption and maintenance. The agents, hence, find it optimal to increase investment
on impact of the shock in order to rebuild the destroyed stock of capital. However, the low magnitude
in the impact response of real investment and the decline in capital depreciation rate are not sufficient
to overhang the negative impact of the IST shock and to push up immediately the amount of capital
stock. Moreover, the higher is the elasticity of capital depreciation rate with respect to maintenance
the stronger the negative impact of the IST shock on the stock of capital. Therefore, similarly to
the baseline model, effective capital declines both on impact of the shock and over the subsequent
periods whereas its rental price increases following a hump-shaped path. The impact increase of the
capital rental price is additionally boosted by the impact rise in the Tobin’s q. As a consequence
of a higher marginal product of capital the utilization rate rises on impact following a hump-shaped
path. Depreciation rate declines on impact of the IST shock as far as its direct effect dominates the
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positive effect induced by the increase in utilization. Furthermore, the impact decline in capital stock
and its equilibrium dynamics generate a hump-shaped convergence path for the rate of depreciation.
Maintenance declines on impact below its steady state level, whereas its relative price increases, and
reverts its path over the subsequent periods as the amount of existing capital stock rises and the rate
of depreciation accelerates. Differently from the baseline model, the impact response of the nominal
interest rate is positive driven by the strong response of the monetary authority to higher variations
in inflation. Output decreases on impact as in the baseline model and overshoots its steady state
equilibrium following the sharp peak of investment. Differently from the baseline model, consumption
and hours move in the opposite directions. Indeed their optimal paths are mirrored through the optimal
labor market condition up to the countercyclical effects of the nominal rigidities. So, driven by the
negative wealth effect at optimum agents decide to recover the reduction in capital by postponing
consumption and reducing leisure and thus increasing the hours of work, as well as investment. In the
maintenance model, hence, the optimal convergence paths in response to a positive IST shock deliver
countercyclical behavior for investment and hours while consumption, depreciation, effective capital
and maintenance all co-move with output.

As Fig. 3.5 shows, the impulse response functions of all the considered real variables in the mainte-
nance model depict more hump-shaped paths than those in the baseline model. Moreover, convergence
dynamics are slightly faster despite a relatively higher estimated persistency in the maintenance model
IST shock. This qualitative behavior could be explained by the presence of the maintenance sector
which, together with endogenous depreciation rate, serves as an additional transition mechanism for
the propagation of the shocks. Moreover, differently from the convergence dynamics depicted in the
responses to MEI shock, in this case we can assert that maintenance and investment behave as substi-
tutes one to each other. Our claim supports the findings of Albonico et al. (2014) in which the response
functions of the main endogenous variables to a positive IST shock are all pro-cyclical (and positive)
with exception of maintenance to capital ratio suggesting thus that maintenance and investment are
substitutes.

In general, when the IST shock is equated to the inverse of the relative price of investment it is
interpreted as the disembodied investment-specific technology progress45. This shock aims to reduce
the unit cost of production of new investment. In the maintenance model, a positive impact of this
shock creates new investment and delivers an increasing optimal path for the capital stock which,
given the nature of the shock, is qualitatively comparable to the already existing one. Hence, in
the long-run aggregate economy there will be available on the market more capital stock which is
qualitatively equivalent and thus, in aggregate, rises the optimal lifetime of capital46. As a consequence
of the positive disembodied IST shock, the capital depreciation rate decelerates. Differently from the
disembodied investment-specific technology progress and according to the literature interpretation the
embodied progress increases the marginal productivity of new investment. Hence, we claim that the
marginal efficiency of investment technology progress which affects in our model the transformation

45 See, for example, Greenwood et al. (1997) and Boucekkine et al. (2009).
46 Boucekkine et al. (2009) have shown that the optimal capital lifetime is a decreasing function of the total investment-

specific technology progress, both embodied and disembodied, under certain restrictions on the steady state relations
of their model parameters. This, in turn, delivers a positive relation between the total IST shock and the capital
depreciation rate. In our model, instead, we distinguish between the two types of the IST progresses which allows us to
assert that there exists a positive relation between the (disembodied) IST progress and the capital optimal lifetime and
a negative relation between the latter one and the (embodied) MEI progress.
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Fig. 3.6: Impulse response functions to one standard deviation shock to MST

process of new investment into new capital can reflect the embodied investment shocks. In this case,
a positive MEI shock aims to improve the quality of the new capital available on the market. The
existing capital becomes more obsolete which thus accelerates the depreciation path.

The optimal convergence paths to a positive one standard deviation shock to the maintenance-
specific technology progress are exhibited in Fig. 3.6. This shock affects the transformation process
of the units of final good, used as input by the maintenance goods producers, into efficiency units of
maintenance and is inversely related to the relative price of maintenance. Thus, a positive MST shock
reduces the cost of producing one unit of maintenance good on the impact of the shock. Nevertheless,
real maintenance declines on impact depicting an increasing path. This occurs, on the one hand,
because of a direct negative effect of the MST shock on current real maintenance. On the other hand,
because of a sharp decline both in the price of consumption and in the price of new investment, the
strong substitution effect shifts expenditures away from maintenance. Therefore, despite a negative
wealth effect generated by an impact decline in real output households find it optimal to increase
consumption and leisure. The rise in Tobin’s q makes the real interest rate to fall below its steady
state level. Nonetheless, real investment rises on impact as far as the weak interest rate effect is
dominated by the substitution effect. Thus, both real consumption and real investment increase on
impact and follow a hump-shaped path. Increasing consumption induces households to increase leisure
thus hours worked decline on impact. Marginal utility of labor declines which, in turn, drops real
wages below their equilibrium level. The marginal product of capital declines on the impact of the
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shock due to a strong negative effect of the maintenance relative shadow value enhanced by an increase
in the effective capital. As a consequence, real marginal costs and hence inflation decrease on impact.
Given the deviation of inflation from its steady state level and the higher output gap, the monetary
authority reduces nominal interest rate. Moreover, the decline in real maintenance accelerates capital
depreciation rate which, following a hump-shaped path, destroys current and part of the future capital
stock. Moreover, there occurs a one-off event on the capital utilization rate which increases on the
impact of the shock due to a temporary positive gap between the economy’s aggregate supply and
demand. Consequently, effective capital rises above its steady state level. However, it returns to its
equilibrium level over the next period as far as the weak effect of increased real investment is contrasted
by the increasing path in the depreciation rate and is thus not able to boost up enough the amount of
capital stock.

In general, as it will be detailed in the next section, the role of the MST shock in explaining the
long run real business cycle fluctuations is completely irrelevant. In fact, in the maintenance model the
variability of all the considered real variables is mostly governed by the shock to the marginal efficiency
of investment and the role played by the IST technology progress results to be negligible.

The optimal convergence dynamics in response to the remaining shocks included in the models are
displayed in Appendix H. All the real variables perform the same qualitative behavior in response to
the labor augmenting technology progress in both the models. Therefore, all the variables, including
depreciation and real maintenance in the maintenance model, co-move with real output. In general,
the speed of convergence is slightly faster in the maintenance model with respect to the baseline model
whereas the difference becomes significant for real investment, capital rental price and utilization rate.

Similarly, all the real variables including depreciation and maintenance and with exception of the
nominal interest rate co-move with real output in response to a positive one standard deviation shock
to the monetary policy. Convergence dynamics are significantly different in the optimal responses of
investment, wages, effective capital, the marginal product of capital and the utilization rate. On the
contrary the magnitude of the impact responses are almost the same.

With regard to the positive government spending shock consumption and investment move coun-
tercyclically with respect to real output. The behavior of this variables is explained by the assumption
of a fully Recardian government policy, according to which government finances its spendings issuing
short term bonds. The capital depreciation rate decreases on impact as well, although by a very small
amount, and exhibits a well hump-shaped path due to a relatively stronger effect of a decrease in real
maintenance with respect to an increase in capital utilization. The convergence dynamics of effective
capital, real investment and real wages are significantly faster in the maintenance model as the capital
depreciation rate decelerates.

The impulse response functions to a positive one standard deviation intertemporal preference shock
are very similar between the two models. All the real variables are pro-cyclical with exception of
investment which decreases as a result of a strong substitution effect towards consumption as well as
towards maintenance in the maintenance model. In the latter one depreciation moves countercyclically
governed by the optimal equilibrium dynamics of real maintenance.

In response to a positive price mark-up shock all the real variables are pro-cyclical, including
depreciation and maintenance, with exception of inflation and nominal interest rate. An increase in
the price mark-up, in fact, rises inflation on impact which, in turn, requires a strong positive interest
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rate response from the monetary authority. A significant difference in the optimal dynamics between
the two models occurs for real consumption. As far as both investment and maintenance decline in the
maintenance model, agents are willing to renounce to consumption today more than in the baseline
model. In general, convergence is slightly faster in the baseline model despite a relatively higher
estimated price friction and almost the same estimated shock persistence.

Finally, with respect to the baseline model, the convergence dynamics in response to a positive wage
mark-up shock result to be more hump-shaped in the maintenance model. Convergence is significantly
faster for almost all the real variables. In general, a relatively lower estimated persistence parameter
and the presence of an additional adjustment mechanism accelerates the convergence dynamics in
the maintenance model. Depreciation and maintenance move in opposite directions, the former one
pro-cyclically and the latter one countercyclically. Moreover, differently from the baseline model, real
investment in the maintenance model is pro-cyclical. In fact, in the baseline model the slight increase
in real investment is explained by the substitution effect which moves away from consumption. In the
maintenance model, instead, the increased demand for maintenance followed by a rise in the stock of
capital tears both real consumption and investment down below their steady state levels.

3.5 Roles of the shocks in the real business cycles

In Tables 3.3 and 3.4 we display the percentage contributions of the shocks to the variations of the
main endogenous variables in the baseline and maintenance models, respectively. With regard to the
baseline model the marginal efficiency of investment technology progress is the one that mostly ex-
plains the variations in output and investment, 21.66% and 50.44%, respectively. Moreover, it explains
17.32% of variability in hours worked, although the government spending is the most important in
this case accounting for 25.32% of hours growth. The MEI shock appears negligible in the fluctu-
ations of consumption, which are mainly attributable to the government spending shock (55.14%),
in those of real wages and inflation which are instead driven by the shock to the mark-up of prices
(47.48% and 64.84%, respectively), as well as in the fluctuations of the nominal interest rate which
are mostly explained by the monetary policy shock amounting to 39.18%. The contribution of the
investment-specific technology progress is only relevant in explaining the dynamics of the relative price
of investment accounting for 100% of its variation whereas its impact on the remaining main variables
is even lower than the one of the labor augmenting technology progress. These findings are in line
with Justiniano et al. (2011) who have found that the MEI shock is responsible for 60%, 68%, and
85% of respectively output, hours and investment growths in the US economy and, similarly, explains
very little of variability in consumption. Moreover, our findings as well confirm their estimation results
about the negligible role of the IST shock in explaining the business cycle fluctuations. Similarly, when
maintenance and endogenous depreciation rate are considered variations in output and investment are
mostly due to the MEI shock with its contribution of 61.24% and 68.60%, respectively. Variabilities in
consumption and hours worked are as well mainly to be attributed in the maintenance model to the
MEI progress, which explains 66.82% and 27.68% of them, respectively. Furthermore, the MEI shock is
responsible for 93.04% and 94.63% of variability in maintenance growth and depreciation, respectively.
As in the baseline model, fluctuations in real wages and inflation are mainly due to the price mark-up
shock (55.86% and 64.25%, respectively) however, the impact of the MEI shock is higher amounting
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Tab. 3.3: Variance decomposition in the baseline model (percent)

TFP IST MEI Monetary Government Price Wage Intertemporal
policy mark-up mark-up preference

Output 14.34 2.36 21.66 11.07 17.86 12.46 14.30 5.95
Consumption 14.82 8.19 4.26 2.06 55.14 1.36 7.24 6.93
Investment 10.09 9.46 50.44 9.41 2.08 13.75 3.57 1.20
Hours 11.10 2.32 17.32 11.09 25.32 9.22 16.19 7.45
Wages 17.54 1.56 1.63 1.56 0.14 47.48 30.00 0.080
Inflation 2.44 0.18 0.23 0.79 0.73 64.84 30.71 0.07
Interest rate 4.89 1.72 4.89 39.18 5.31 13.97 26.82 3.22
Relative price 0 100 0 0 0 0 0 0

Note: The figures represent percentage contributions of the shocks to the endogenous variables computed at the posterior mean from the
unconditional variance decomposition at infinity horizon and sum up to 100 across the columns.

Tab. 3.4: Variance decomposition in the maintenance model (percent)

TFP IST MEI Monetary Government Price Wage Intertemporal MST
policy mark-up mark-up preference

Output 3.49 0.30 61.24 1.63 9.01 14.97 7.46 1.90 0
Consumption 3.25 1.87 66.82 0.41 19.72 3.28 3.16 1.48 0
Investment 6.88 11.49 68.60 1.27 0.04 9.34 2.28 0.11 0
Hours 4.62 6.11 27.68 2.91 20.64 19.31 14.41 4.32 0
Wages 4.52 0.72 34.10 0.15 0.06 55.86 4.57 0.02 0
Inflation 4.43 1.32 3.71 1.65 0.89 64.25 23.38 0.37 0
Interest rate 3.53 5.11 16.80 23.45 3.29 26.50 19.46 1.87 0
Relative price 0 100 0 0 0 0 0 0 0
Maintenance 1.17 2.83 93.04 0.09 0.01 2.14 0.23 0.01 0.49
Depreciation 0.97 3.14 94.63 0.06 0 1.00 0.19 0.01 0

Note: The figures represent percentage contributions of the shocks to the endogenous variables computed at the posterior mean from the
unconditional variance decomposition at infinity horizon and sum up to 100 across the columns.

to 34.10% and 3.71%, respectively, against 1.63% and 0.23% in the baseline model. The price mark-up
shock becomes the major driver of the fluctuations in the nominal interest rate as well, accounting for
26.50% of them, while the impact of the MEI shock increases to 16.80% from 4.89% in the baseline
model. Variations in the relative price of investment in the maintenance model continue to be caused
entirely by the IST shock. The estimation results of the maintenance model as well confirm that the
IST progress plays an irrelevant role in driving the business cycle fluctuations, while the contribu-
tion of the labor augmenting technology progress has diminished with respect to the baseline model.
According to our estimation results, the new shock we consider in the maintenance model, i.e. the
maintenance-specific technology progress, in long run has a null effect with respect to all the considered
variables except of a very low impact of 0.49% on the variability of maintenance. Anyway, it is the
fifth shock in order of importance in explaining the long run variability in maintenance among the all
considered shocks. On the contrary, in short run the MST shock is the key-driver of the variability of
real maintenance, explaining more than 40% of its growth in the first period after the shock. Its effect
vanishes after more than ten periods.

The above exposed results are broadly in line with the mainstream DSGE literature which considers
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the investment shocks, and in general shocks to the capital accumulation process, to be the key drivers
of the business cycle fluctuations. In particular, Fisher (2006), for example, states that the IST shock
is responsible for most of variations in output and hours. However, as highlighted in Justiniano et al.
(2011), this result is generated by the fact that he excludes the price of durable consumption from
the measure of investment deflator. Therefore, by considering only the price of equipment which is
always countercyclical the Fisher (2006) model attributes more importance to the IST progress in
explaining real business cycles. In Justiniano et al. (2011) the shock which explains the most of vari-
ability in output, investment and hours is the marginal efficiency of investment technology progress.
However, their model fails to generate co-movement in consumption and, similarly, this occurs in our
baseline model. Gertler and Karadi (2011) highlight the importance of the shock to the quality of
capital in contributing to the business cycle fluctuations. Moreover, their model is able to generate
co-movements of output, consumption, investment and hours. Nevertheless, the qualitative behavior
of the real variables in their model depends crucially on the calibration of the nominal rigidities and
of the autoregressive coefficient in the shock process to the quality of capital. Furlanetto and Seneca
(2014) compare the roles of a shock to the quality of capital, an investment-specific shock and a shock
to the capital depreciation rate in a DSGE model setting. They find that, the shocks to capital depre-
ciation are the most important drivers in the macroeconomic fluctuations. However, co-movements in
consumption, output, investment and hours are achieved only when the capital depreciation shock is
highly persistent. Therefore, in order to validate the shock high persistence, they assert that the most
plausible economic interpretation for these shocks would be provided by the disturbances that affect
the ability of the financial intermediaries to finance the investment projects. A similar interpretation
Justiniano et al. (2011) have suggested for the shock to the marginal efficiency of investment. There-
fore, the Furlanetto and Seneca (2014) shock to the depreciation rate of capital could be related to
our MEI shock, as the one hitting the transformation process of the investment goods into new capital
goods. Our model, instead, as it has been highlighted in the previous section, generates co-movements
in response to a positive MEI shock between all the real variables and especially in consumption though
the estimated autocorrelation of the MEI process is relatively higher with respect to the baseline model.

Notice that, adopting a standard neoclassical model setting enriched with a variable capital utiliza-
tion rate and the depreciation-in-use hypothesis, Greenwood et al. (1988) show through a quantitative
analysis that in response to a shock affecting the marginal efficiency of the newly produced capital
goods only, consumption is pro-cyclical. On the contrary, as they argue, when the same type of shock
hits the standard neoclassical model framework, in which capital utilization is fixed, consumption fails
to co-move due to an intertemporal substitution effect away from leisure and consumption. However,
the subsequent generation of models up to the DSGE ones, in which the hypothesis about variable
capacity utilization has become standard, often tackle the problem of countercyclical consumption
anyway. Therefore, we assert that the modifications in the transmission mechanism necessary to gen-
erate an optimal behavior in consumption in line with the observed evidence must be ascribed to the
endogenous treatment of the capital depreciation rate.
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Tab. 3.5: Standard deviations of actual and estimated series

Standard deviation Standard deviation relative to output

Data Baseline Maintenance Data Baseline Maintenance
model model model model

Median Median Median Median

Output growth 0.73 0.99 0.73
Consumption growth 0.56 0.70 0.50 0.77 0.71 0.68
Investment growth 2.27 2.33 2.50 3.10 2.35 3.44
Hours 1.98 2.43 2.24 2.70 2.45 3.08
Wage growth 0.78 0.82 0.87 1.07 0.83 1.19
Inflation 0.65 0.63 0.60 0.89 0.64 0.82
Interest rate 1.09 0.54 0.58 1.49 0.54 0.78
Relative price 0.72 0.85 0.66 0.99 0.86 0.90
Maintenance growth 0.80 1.10
Depreciation growth 3.75 5.16

Note: Empirical moments are computed using Canadian data over 1981Q2-2015Q1. The moments of the models are computed at the median
of 80,000 draws from estimated posterior distribution.

Tab. 3.6: Correlations of actual and estimated series

Autocorrelation Correlation with output growth

Data Baseline Maintenance Data Baseline Maintenance
model model model model

Median Median Median Median

Output growth 0.43 0.23 0.58
Consumption growth 0.002 0.26 0.73 0.45 0.56 0.75
Investment growth 0.52 0.65 0.77 0.61 0.42 0.74
Hours 0.95 0.92 0.95 0.04 0.11 0.08
Wage growth 0.24 0.33 0.35 0.21 0.24 0.36
Inflation 0.58 0.58 0.70 -0.20 -0.19 -0.41
Interest rate 0.98 0.88 0.92 -0.25 -0.23 -0.25
Relative price 0.30 0.41 0.42 0.21 -0.06 0.06
Maintenance growth 0.16 0.50
Depreciation growth 0.42 0.03

Note: Empirical moments are computed using Canadian data over 1981Q2-2015Q1. The moments of the models are computed at the
median of 80,000 draws from estimated posterior distribution.

3.6 Models fit

In the present section we compare some estimated statistics both for the maintenance and the baseline
models with those generated by the actual data for the variables treated as observables and expose also
the estimates for maintenance growth and the depreciation rate. In Table 3.5 are presented the poste-
rior medians of the standard deviations in absolute values as well as those relative to output growth.
In Table 3.6 we refer to the autocorrelation values and to the cross-correlations with output growth.
In general, it can be observed that the maintenance model mimics the real Canadian economy much
better with respect to the baseline model. The estimated volatility of output growth perfectly matches
the respective empirical moment in the maintenance model (0.73), which instead is overpredicted by
the baseline model (0.99). Consumption growth volatility is as well better fitted by the maintenance
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Fig. 3.7: Actual real output and estimated real maintenance expenditures growth rates for Canada,
(1981:II-2015:I)

Source: Real output growth rate from Statistics of Canada (CANSIM). Growth rate of real maintenance expenditures
from estimation results.

model though underpredicted (0.50) while again overpredicted by the baseline model (0.70). The latter
one performs slightly better with respect to volatilities of real investment (2.33), wage growth (0.82),
and inflation (0.63). On the contrary, the empirical volatilities of hours worked, nominal interest rate
and the relative investment price are better fitted by the estimates in the maintenance model which
are, respectively, 2.24, 0.58, and 0.66. The estimated relative standard deviations in the maintenance
model better fit the respective empirical ones in the cases of real investment growth (3.44), real wage
growth (1.19), inflation (0.82), nominal interest rate (0.78), and the relative price of investment (0.90).
All of the estimated relative volatilities are underpredicted by the baseline model. The maintenance
model, on the contrary, overpredicts the empirical relative volatilities of real investment, hours worked,
and wage growth. In the maintenance model the estimated autocorrelations, which are displayed in
3.6, resemble better those of the actual data for output growth, hours worked and the nominal interest
rate. In the case of investment relative price the estimated autocorrelation is fitted slightly better by
the baseline model, 0.41, being 0.42 in the maintenance model and 0.30 in the actual data. Similarly,
the baseline model matches slightly better the persistence of real wage growth, which is 0.33 against
0.35 in the maintenance model and 0.24 in the data. The empirical autocorrelation of consumption
growth, 0.002, is highly overpredicted by both the models with a much higher estimated persistence
in the maintenance model (0.73). The autocorrelation of hours worked is perfectly matched by the
maintenance model, wheres that of inflation is perfectly matched by the baseline model. The overall
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estimated contemporaneous cross-correlations with output growth are performed better in the main-
tenance model as well. In particular, a better fit occurs in the case of investment growth which is
estimated to amount to 0.74, while it is 0.61 in the data. The baseline model, on the contrary, un-
derpredicts the cross-correlation for investment which is around 0.42. The empirical cross-correlation
of hours worked (0.04) is as well better suited by the maintenance model (0.08), whereas it is highly
overpredicted by the baseline model (0.11). The latter one fits much better with respect to the mainte-
nance model the cross-correlations of real wage growth (0.24) and inflation (−0.19). On the contrary,
the maintenance model perfectly matches the empirical cross-correlation of the nominal interest rate
(−0.25). Finally, the baseline model totally fails to capture the cross-correlation of the relative price of
investment which is estimated to be negative, −0.06, although the respective one in the maintenance
model, 0.06, highly underpredicts the empirical one, 0.21. Hence, overall, the estimated moments in
the maintenance model fit the respective empirical ones much better in comparison to the baseline
model. With regard to the estimates produced for the maintenance and the depreciation growth rates
in the maintenance model no direct comparisons can be made with the respective empirical measures
because of the lack of actual data. However, it could be inferred that the maintenance model preforms
fairly well as far as it almost confirms the theoretical insights. The estimated volatility of maintenance
growth rate, 0.80, is higher, in fact, with respect to both the estimated and empirical volatilities of
real output growth, 0.73. Furthermore, as the relative literature suggests47, real maintenance growth
rate is less volatile than the growth rate of real investment (2.50). Our estimation results as well
confirm the literature insights according to which depreciation growth rate is highly volatile, which is
estimated to be around 3.7548. Moreover, the estimated persistency of capital depreciation resembles
the one estimated for the investment relative price which, as a consequence of our model assumptions,
determines the trend of the optimal depreciation path. Real maintenance growth rate is found to be
the less persistent endogenous variable in our economy with an estimated autocorrelation of about
0.16. On the contrary, the contemporaneous cross-correlation of maintenance with output is estimated
at 0.50. The contemporaneous cross-correlation between depreciation growth and output growth is
almost null (0.03). This estimation result could be attributed to the assumption of factor hoarding in
the production function. In fact, factor hoarding implies that the current capital stock part of which,
according to our model settings, is destroyed by the current depreciation, is used in the production
of the intermediate goods over the next period. This implies that the final output produced in pe-
riod t will be affected by the capital depreciation rate which occurs in period t − 1. Even though,
the estimated at the median autocorrelation function between capital depreciation growth rate and
output growth rate, (dytdδt−k), delivers relatively low figures, averaging around 0.08, 0.07, 0.05, and
0.03 for the first, second, third, and fourth order cross-correlations, respectively. On the contrary, our
estimation results confirm the existence of a high positive correlation between capital depreciation rate
and the relative price of investment which in the median is around 0.9849. Finally, given the posterior
mean values of our estimated parameters, the average quarterly depreciation rate results to be 2.95
which implies an annual average depreciation of about 11.80%. We should notice that this value does
not departure too much from the 10% assumed in Justiniano et al. (2011) which could be attributed
to the restriction we have imposed in order to be able to switch from one model to the other. We have

47 See, for example, the highlights in McGrattan and Schmitz (1999) or Fig. 1.2 in Chapter 1: Literature review.
48 See, for example, Albonico et al. (2014).
49 See, among others, Boucekkine et al. (2009).
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furthermore computed an estimation exercise of our model estimating the parameter of the steady state
depreciation rate. For this purpose we have assumed that the steady state depreciation rate follows
a normal distribution with prior mean and prior standard deviation both of 0.05. In this case the
estimation results do not change qualitatively though the annualized posterior mean of depreciation
amounts to almost 14%.

In Fig. 3.7 we plot the estimated series for the maintenance expenditures growth rate and the
actual growth rate of real GDP. As it can be observed, most of the peaks and troughs in real output
variability are fairly well captured by the movements in real maintenance.

3.7 Concluding remarks

We have estimated a DSGE model with endogenous capital depreciation rate and maintenance sector
and compared it to the baseline model for the Canadian economy. The Bayesian technique with
Metropolis-Hasting algorithm has been used for the estimation purposes. The sampling dataset is in
quarters, covers the period over 1981Q2-2015Q1 and includes as observables the growth rates of real per
capita output, consumption, investment, real wage, and relative price of investment, as well as hours
worked, inflation and nominal interest rate. We consider nine stochastic shocks in the maintenance
model and eight in the baseline model, where the maintenance-specific technology process is excluded.
The estimation results show that accounting for endogenous depreciation rate and maintenance activity
generates significant differences in the optimal response paths to the exogenous shocks and in particular
with regard to some of the key real endogenous variables. For what it concerns the shock to the marginal
efficiency of investment technology process the convergence paths towards equilibrium are amplified for
output, consumption, real wage and effective capital. Inflation exhibits a slightly cyclical path. As far
as this shock affects the quality innovations of new investment and, hence, of capital, it accelerates the
rate of depreciation through the obsolescence effect. As a result the demand for maintenance increases.
All the considered real variables, including utilization, depreciation, consumption, investment and
maintenance behave pro-cyclically. In response to a positive investment-specific technology process,
on the contrary, both depreciation and maintenance decline whereas utilization rate increases. The
behavior of depreciation is explained by the fact that this type of shock increases the average service life
of existing capital as far as it affects the marginal cost of production of one extra unit of capital, which
implies that more capital of the same quality is available. So, in the maintenance model depreciation,
maintenance, effective capital and consumption are pro-cyclical whereas utilization, investment and
hours worked are countercyclical. Moreover, the convergence of the optimal paths towards equilibrium
is accelerated with respect to the baseline model. Similarly, a slightly faster convergence occurs in
response to the labor augmenting technology process. In this case all the variables behave pro-cyclically
and the optimal convergence paths of real investment, capital rental price, utilization and inflation
diverge significantly from the baseline model. With regard to both the government spending shock and
the intertemporal preference shock maintenance and utilization are pro-cyclical whereas depreciation
is not as far as the positive effects of a higher utilization rate are dominated by the negative effects
of an increase in maintenance. The wage mark-up shock generates countercyclical responses both for
utilization and maintenance whereas depreciation co-moves with output. On the contrary, all of them
behave pro-cyclically in response to a price mark-up shock and to the monetary policy shock. Finally,
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in the maintenance model the optimal responses to a positive maintenance-specific technology shock of
real consumption, investment, effective capital, utilization and depreciation are all countercyclical due
to a strong intertemporal substitution effect away from real maintenance. It is found that in long-run
this shock explains almost nothing of the variations in the main macroeconomic real variables. However,
it becomes the main driver of the real maintenance growth in short run. In fact, the estimation results
show that most of the variations in the growth rates of our main real variables are explained by
the marginal efficiency of investment technology progress. Specifically, the MEI shock explains more
than 60% of variation in output, consumption and investment, and more than 90% of maintenance
and depreciation. Variations in hours worked are also driven by this shock which accounts for about
28%. These results are in line with Justiniano et al. (2011) except for consumption growth which,
in their model, is driven by the shock to intertemporal preference. Moreover, similarly to them, we
have found that the role of investment-specific technology progress is negligible. As stated above, the
maintenance-specific technology progress explains in long run only about 0.50% of variations in real
maintenance and plays virtually no role in all the remaining variables. In short run, instead, it explains
on average more than 25% per period of real maintenance variation over the subsequent five periods
after the shock. Overall we have found that our model performs fairly well and, with respect to the
baseline model, fits better the estimated theoretical moments of the smoothed endogenous variables in
comparison to the respective empirical moments of the actual series.
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Conclusions

In this thesis we have shown that accounting for a time-varying capital depreciation rate and including
expenditures for the maintenance of capital among the control variables a Dynamic Stochastic General
Equilibrium model is able to generate co-movement of the main real endogenous variables, especially
for what it concerns real consumption. The DSGE model in question, in fact, offers an additional
transmission mechanism for the propagation of technology shocks throughout the variable depreciation
rate which is endogenously determined by the capital utilization rate and the maintenance expenditures.
Both the (positive) direct effect of the capital utilization rate operating on the aggregated production
process by the means of the hoarding assumption and the (negative) indirect effect operating through
the capital accumulation process are thus accounted for. The novelty characterizing our model setting,
however, concerns the fact that capital depreciation rate exhibits an increasing trend path. The model’s
optimal conditions, indeed, rule out a growth rate for depreciation which depends on the investment-
specific technology progress weighted by the sensibility of depreciation to changes in maintenance.
Over the latest decades it has been observed a persistent decrease in the relative price of investment
coupled with an increasing path of the capital depreciation rate. Thus, we capture in our model such
a behavior of the depreciation rate basing on the assumption that in a perfectly competitive market
the relative price of investment is inversely related to the investment-specific technology progress. The
estimation exercises conducted on the Canadian economy show that the qualitative behaviors of capital
depreciation rate, maintenance and investment differ in response to the types of the shocks that hit
real economy. When considering the shock to marginal efficiency of investment, which is found to be
the major driver of the real business cycles explaining more than sixty percent of the long-run output
growth, real investment and maintenance behave as complements. Both of them, together with real
consumption and the rate of depreciation, co-move with real output. On the contrary, in response to
the investment-specific technology progress maintenance and investment act as substitutes. The rate of
depreciation, real consumption and maintenance are all pro-cyclical in this case. The labor-augmenting
technology shock produces co-movement in all the considered real variables, which thus suggests that
maintenance and investment are complements. Our model considers as well a shock that hits the
technology of production of maintenance goods, which generates a countercyclical behavior in real
consumption, investment and the capital depreciation rate suggesting that, in this case, maintenance
and investment act as substitutes. In general, the estimation exercises of our model confirm the hints
advanced in the related literature with regard to the qualitative behavior of the capital depreciation
rate. In particular, we have shown that there exists a positive correlation between the declining rate of
the relative price of investment and the depreciation rate of capital. Moreover, the rate of depreciation
is found to be more volatile than investment. However, our model fails to predict the strong pro-
cyclicality between depreciation and output.

The model setting implemented in this work may represent a good starting point for the kind of
research willing to capture variations in capital depreciation rate in the endogenous growth models.
As far as more and more evidence arises about the increasing trend over time of the depreciation rate,
our model structure provides useful instruments able to tackle the implied accumulation process of
capital stock with the time-dependent depreciation. Moreover, following our model key assumptions,
co-movement among the main macroeconomic real variables, such as output, labor productivity and
consumption is accomplished. Such a model structure is particularly useful, for example, in the as-
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sessment of the economic performance as far as it is used to be captured by the economy’s total factor
productivity which, in turn, accounts for the capital depreciation rate. The availability of consistent
estimates of depreciation are as well crucial for the capital taxation codes. In fact, as it is stressed in,
for example, Doms et al. (2004) biased estimates of depreciation may result in misleading tax policy
for capital income. Finally, the strategic investment decisions undertaken at the firm level are affected
by the path of the depreciation rate especially during technological booms. Tevlin and Whelan, 2003,
for example, assess that when an acceleration in the depreciation rate occurs firms need to invest more
in order to preserve a given level of capital stock. Therefore, we argue that a variable depreciation
rate must be taken in consideration by the model builders, as far as it is able to generate an additional
adjustment mechanism in the optimal behavior of the endogenous variables and thus helps to better
capture the salient features of the real economy.
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A APPENDIX: The model of Justiniano et al. (2011)

We present here the steady state relationships and the log-linearized equilibrium expressions of the
model Justiniano et al. (2011). Endogenous variables are detrended by the composite technological
progress. Variables with no time subscription represent the steady state values, while upper-hat vari-
ables are the log deviations from their respective steady state values. Among others, st is the detrended
real marginal cost, ρt is detrended return on capital.
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(

α

1− α
+ 1

)

υ̂t

ˆ̄kt = e−(γz+( α
1−α

+1)γυ)(1− δ)

[

ˆ̄kt−1 − ẑt −
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ŷt −

1

g
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B APPENDIX: Optimality conditions

In the present section of the appendix we analytically derive all the first order conditions of our model.

Final good sector
Recalling the problem setting (P1) we write down the Lagrangian in the following form

L = PtYt −

∫ 1

0

Pt(i)Yt(i)di+ Λt

{

[
∫ 1

0

Yt(i)
1

1+λp,t di

]1+λp,t

− Yt

}

(B.1)

The first order condition (FOC) with respect to Yt is, therefore

∂L

∂Yt
= Pt − Λt

Pt − Λt = 0

Pt = Λt (B.2)

where the latter expression simply equates the consumption price to its shadow value.
The FOC with respect to Yt(i), using (B.2), is as follows
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Expression (B.3) defines the optimal intermediate good demand function, which negatively relates
it to the relative price of consumption.

Starting with the zero profit condition and substituting for equation (B.3), the following passages
derive the optimal final good aggregate price, Pt,

PtYt −

∫ 1

0
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[
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(B.4)

Intermediate good sector
Recalling problem setting P2 from the main text, the Lagrangian is written as follows

L = Pt(i)Yt(i)−WtLt(i)−Rk
tKt(i) +MCt(i)

[

A1−α
t Kt(i)

αLt(i)
1−α −AtΥ

α
1−α

t F − Yt(i)
]

(B.5)
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The FOCs with respect to labor, Lt(i), and effective capital Kt(i), are, respectively
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where the Lagrangian shadow value, MCt(i), represents the nominal marginal cost, which is common
to all the intermediate sector firms, i.e. MCt(i) =MCt. This implies that capital to labor ratio is the
same among all the intermediate good producers, and it is obtained by combining (B.7) with (B.6), so
that

Kt

Lt
=
Wt

Rk
t

α

1− α
(B.8)

Then, substituting back (B.8) into either of the two FOCs for capital and labor we obtain the
following expression for nominal marginal cost, MCt,
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Next, we can show that, given the duality property of the production function, the nominal marginal
cost, MCt, equals the nominal average variable cost, AV Ct. Specifically, we substitute the relative
demand for capital (B.8) into the aggregate production function and explicit all for labor Lt(i), in
order to obtain the following expression
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Then, using the above expression together with (B.8) inside the total cost function TCt = WtLt(i) +
Rk

tKt(i) we obtain
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where the first term on the right-hand side of the equation represents the total variable cost, which
divided by Yt(i) gives the average variable cost clearly equal to the nominal marginal cost MCt, given
in equation (B.9).

Next, we are going to derive the optimality condition of the fraction 1− ξp of firms that are allowed
to choose their optimal price level in a given period. Note first that the remaining fraction ξp of firms
that cannot optimally choose their price will reset it accordingly to the following indexation rule
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Pt(i) = Pt−1(i)π
ιp
t−1π

1−ιp

where π is the level of inflation in steady state. Hence, inflation can be defined as follows

πt =
Pt(i)

Pt−1(i)
= π

ιp
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Re-expressing the above equation for the infinite sum we obtain the total inflation generated from
period t to period t+ s, πt,t+s

πt,t+s =
Pt+s(i)

Pt(i)
=

s
∏
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π
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Hence, as far as the average variable cost equals the nominal marginal cost, we can express the
present discounted value of future profits as follows
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sΛt+s

Λt

[

P̃t(i)

(

s
∏

j=0

π
ιp
t+j−1π

1−ιp

)

Yt+s(i)−Wt+sLt+s(i)−Rk
t+sKt+s(i)

]

Et

∞
∑

s=0

ξspβ
sΛt+s

Λt

[

P̃t(i)

(

s
∏

j=0

π
ιp
t+j−1π

1−ιp

)

−
Wt+sLt+s(i)−Rk

t+sKt+s(i)

Yt+s(i)

]

Yt+s(i)

Et

∞
∑

s=0

ξspβ
sΛt+s

Λt

[

P̃t(i)

(

s
∏

j=0

π
ιp
t+j−1π

1−ιp

)

− AV Ct+s

]

Yt+s(i)

Et

∞
∑

s=0

ξspβ
sΛt+s

Λt

[

P̃t(i)

(

s
∏

j=0

π
ιp
t+j−1π

1−ιp

)

−MCt+s

]

Yt+s(i)

The latter expression is, then, maximized with respect to the optimal price P̃t(i) subject to the optimal
demand for intermediate good given in problem setting (P3). Namely, we derive the FOC of the
following Lagrangian equation, as follows

L = Et

∞
∑

s=0

ξspβ
sΛt+s

Λt

[

P̃t(i)

(

s
∏

j=0

π
ιp
t+j−1π

1−ιp

)

−MCt+s

]

[

P̃t(i)

Pt+s
πt,t+s

]−

1+λp,t+s
λp,t+s

Yt+s (B.10)

∂L

∂P̃t(i)
= Et

∞
∑

s=0

ξspβ
sΛt+s

Λt

[

−
1

λp,t+s
P̃t(i)

−

1+λp,t+s
λp,t+s πt,t+s+

−MCt+s

(

−
1 + λp,t+s

λp,t+s

)

P̃t(i)
−

1+λp,t+s
λp,t+s

−1

]

(

πt,t+s

Pt+s

)

−

1+λp,t+s
λp,t+s

Yt+s

Et

∞
∑

s=0

ξspβ
sΛt+s

[

P̃t(i)πt,t+s − (1 + λp,t+s)MCt+s

]

Ỹt+s(i) = 0 (B.11)

Equation (B.11) describes the optimal price setting condition of the firms allowed to choose their price
level. Recalling the optimal price function for the intermediate good i in (B.4) and the indexation
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rule common to the firms that are not optimizing for the price, the aggregate price index is defined as
follows

Pt =

[

ξp
(

Pt−1π
ιp
t−1π

1−ιp
)−

1
λp,t + (1− ξp) P̃

−
1

λp,t

t

]−λp,t

(B.12)

Maintenance good sector
In order to calculate the optimality conditions in this sector we express the Lagrangian of the

problem setting (P4), as follows

L = Et

∞
∑

s=0

βsΛt+s

{

Pm
t+sdt+sY

m
t+s

[

1− f

(

Y m
t+s

Y m
t+s−1

)]

− Pt+sY
m
t+s

}

(B.13)

The FOC with respect to Y m
t is computed as follows

∂L

∂Y m
t

= −ΛtPt + ΛtP
m
t dt

[

1− f

(

Y m
t

Y m
t−1

)

−
Y m
t

Y m
t−1

f ′

(

Y m
t

Y m
t−1

)]

+ βEt

{

Λt+1dt+1P
m
t+1

(

Y m
t+1

Y m
t

)2

f ′

(

Y m
t+1

Y m
t

)

}

ΛtPt = ΛtP
m
t dt

[

1− f

(

Y m
t

Y m
t−1

)

−
Y m
t

Y m
t−1

f ′

(

Y m
t

Y m
t−1

)]

+ βEt

{

Λt+1dt+1P
m
t+1

(

Y m
t+1

Y m
t

)2

f ′

(

Y m
t+1

Y m
t

)

}

(B.14)

Equation (B.14) defines the optimal condition for maintenance goods supply.

Investment good sector
Firms producing investment goods are assumed to maximize with respect to the fraction of final

good, Y I
t , which is used for the production of investment goods. Their profit function, ΠI

t , is given by

ΠI
t = P I

t ΥtY
I
t − PtY

I
t

which is obtained simply substituting the technology for production of investment goods into the
revenue function in problem setting (P4). Thus, the FOC is derived as follows

∂ΠI
t

∂Y I
t

= P I
t Υt − Pt

P I
t

Pt
= Υ−1

t

where the latter expression defines the relative price of investment as the inverse of the IST progress,
Υt.

Capital good sector
Given the problem setting (P5) of the firms producing capital goods, we maximize the following

expression of the discounted stream of profits with respect to It

max
It

Et

∞
∑

s=0

βsΛt+s

[

P k
t+sµt+s

[

1− S

(

It+s

It+s−1

)]

It+s − P I
t+sIt+s

]

The following passages describe the analytical derivation of the FOC with respect to It
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Et

∞
∑

s=0

βsΛt+s

[

P k
t+sµt+s − P k

t+sµt+sS

(

It+s

It+s−1

)

− P k
t+sµt+s

It+s

It+s−1
S′

(

It+s

It+s−1

)

− P I
t+s

]

+

+ Et

∞
∑

s=0

βs+1Λt+s+1P
k
t+s+1µt+s+1

(

It+s+1

It+s

)2

S′

(

It+s+1

It+s

)

= 0

ΛtP
k
t µt

[

1− S

(

It
It−1

)

−
It
It−1

S′

(

It
It−1

)]

− ΛtP
I
t + βEt

{

Λt+1P
k
t+1µt+1

(

It+1

It

)2

S′

(

It+1

It

)

}

= 0

P I
t = P k

t µt

[

1− S

(

It
It−1

)

−
It
It−1

S′

(

It
It−1

)]

+ βEt

{Λt+1

Λt
P k
t+1µt+1

(

It+1

It

)2

S′

(

It+1

It

)

}

(B.15)

Equation (B.15) defines the optimal supply curve for capital goods.

Employment agencies sector
Recalling the problem setting (P6) the Lagrangian is written as follows

L =WtLt −

∫ 1

0

Wt(j)Lt(j)dj + Λt

{

[∫ 1

0

Lt(j)
1

1+λw,t dj

]1+λw,t

− Lt

}

(B.16)

The FOC with respect to Lt gives Wt = Λt, while, the FOC with respect to Lt(j) is calculated as
follows

∂L

∂Lt(i)
= −Wt(j) + Λt

[
∫ 1

0

Lt(j)
1

1+λw,t dj

]1+λw,t−1

Lt(j)
1

1+λw,t
−1

Wt(j) =WtLt(j)
−

λw,t
1+λw,t

{

[
∫ 1

0

Lt(j)
1

1+λw,t dj

]1+λw,t
}

λw,t
1+λw,t

Lt(j) =

[

Wt(j)

Wt

]

−

1+λw,t
λw,t

Lt (B.17)

Expression (B.17) defines the optimal demand function for heterogeneous labor, which is supplied by
the households, and is transformed by the employment agencies into homogeneous labor purchased,
thereafter, by the intermediate goods producers at the cost Wt.

Starting with the zero profit condition, which implies that Wt(j)Lt(j) = WtLt, and substituting
for equation (B.17), the following passages derive the optimal aggregate wage function, Wt,

WtLt −

∫ 1

0

Wt(j)

[

Wt(j)

Wt

]

−

1+λw,t
λw,t

Ltdj = 0

Wt −W

1+λw,t
λw,t

t

∫ 1

0

Wt(j)Wt(j)
−

1+λw,t
λw,t dj = 0

Wt =

[
∫ 1

0

Wt(j)
−

1
λw,t dj

]−λw,t

(B.18)
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Households
Given the problem setting (P7), we define the Lagrangian as follows

L = Et

∞
∑

s=0

βs

{

bt+s

[

log (Ct+s − hCt+s−1)− ϕ
Lt+s(j)

1+ν

1 + ν

]

+

+ Λt+s

[

Rt+s−1Bt+s−1 +Qt+s(j) + Πt+s +Wt+s(j)Lt+s(j) +Rk
t+sut+sK̄t+s−1+

−
Pt+s

Υt+s
a(ut+s)K̄t+s−1 − Pt+sCt+s − P k

t+si
k
t+s − Pm

t+sMt+s − Tt+s −Bt+s

]

+ (B.19)

+ Φt+s

[[

1−Υ−σ
t+s−1

(

ζuη
t+s

(

Mt+s

K̄t+s−1

)

−σ

+Υσ
t+sδ̄

)]

K̄t+s−1 + ikt+s − K̄t+s

]

+

+ Γt+s

[

τΥ−1
t+sut+sK̄t+s−1 + At+sΥ

α
1−α

t+s M̄ −Mt+s

]

}

Next, we calculate the FOC with respect to current consumption, Ct, as follows

∂L

∂Ct
=

bt
Ct − hCt−1

− ΛtPt − βhEt

{ bt+1

Ct+1 − hCt

}

ΛtPt =
bt

Ct − hCt−1
− βhEt

{ bt+1

Ct+1 − hCt

}

(B.20)

The FOC with respect to current bonds holdings, Bt, is

∂L

∂Bt
= −Λt + βRtEt

{

Λt+1

}

Λt = βRtEt

{

Λt+1

}

(B.21)

The FOC with respect to current labor, Lt(j), is

∂L

∂Lt
= −btϕLt(j)

ν + ΛtWt(j)

ΛtWt(j) = btϕLt(j)
ν (B.22)

where the latter expression equates wages in terms of the shadow price for consumption to the marginal
utility of labor.

The FOC with respect to new capital, ikt , is

∂L

∂ikt
= −ΛtP

k
t + Φt

P k
t = Φt/Λt (B.23)
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which says that, in equilibrium, the price of capital equals the relative shadow value of capital with
respect to the shadow value of consumption. Substitute equation (B.23) into the optimal condition for
capital supply (B.15) in order to obtain the following expression

ΛtP
I
t = Φtµt

[

1− S

(

It
It−1

)

−
It
It−1

S′

(

It
It−1

)]

+ βEt

{

Φt+1µt+1

(

It+1

It

)2

S′

(

It+1

It

)

}

(B.24)

The FOC with respect to maintenance, Mt, is derived as follows

∂L

∂Mt
= −ΛtP

m
t − ΦtΥ

−σ
t−1K̄t−1ζu

η
t (−σ)

(

Mt

K̄t−1

)

−σ−1
1

K̄t−1
− Γt

ΛtP
m
t = σζΦtΥ

−σ
t−1u

η
t

(

Mt

K̄t−1

)

−σ−1

− Γt

which, in terms of gross depreciation rate, is equivalent to

ΛtP
m
t = σΦtΥ

−σ
t−1

(

Mt

K̄t−1

)

−1
(

Dt −Υσ
t δ̄
)

− Γt (B.25)

So, in equilibrium, the demand for maintenance goods is negatively related to its price, Pm
t , and

positively related to the gross depreciation rate of capital. Moreover, as far as we have imposed the
conditions on the parameters σ > 0, 0 < ζ < 1, and η > 1, the former equation suggests that
maintenance demand is also positively related to the capital utilization rate, ut.

Substituting equation (B.25) into (B.14) we define the following optimal condition for maintenance
goods

ΛtPt =

[

σΦtΥ
−σ
t−1

(

Mt

K̄t−1

)

−1
(

Dt −Υσ
t δ̄
)

− Γt

]

dt

[

1− f

(

Y m
t

Y m
t−1

)

−
Y m
t

Y m
t−1

f ′

(

Y m
t

Y m
t−1

)]

+

+ βEt

{

[

σΦt+1Υ
−σ
t

(

Mt+1

K̄t

)

−1
(

Dt+1 −Υσ
t+1δ̄

)

− Γt+1

]

dt+1

(

Y m
t+1

Y m
t

)2

f ′

(

Y m
t+1

Y m
t

)

}

(B.26)

A representative household, further more, chooses the level of capital utilization rate, ut. The
optimal condition for utilization is derived as follows

∂L

∂ut
= ΛtR

k
t K̄t−1 − ΛtPtΥ

−1
t a′ (ut) K̄t−1 − ζηΦtΥ

−σ
t−1K̄t−1

(

Mt

K̄t−1

)

−σ

uη−1
t + τΓtΥ

−1
t

ΛtR
k
t = ΛtPtΥ

−1
t a′ (ut) + ζηΦtΥ

−σ
t−1

(

Mt

K̄t−1

)

−σ

uη−1
t + τΓtΥ

−1
t

Substituting back our assumed depreciation rate function, the latter expression becomes

ΛtR
k
t = ΛtPtΥ

−1
t a′ (ut) + ηΦtΥ

−σ
t−1u

−1
t

(

Dt −Υσ
t δ̄
)

+ τΓtΥ
−1
t (B.27)

Next, we derive the FOC with respect to capital stock at time t, K̄t, as follows

∂L

∂K̄t
=βΛt+1R

k
t+1ut+1 − βΛt+1Pt+1Υ

−1
t+1a (ut+1)− Φt + βΦt+1

(

1−Υ−σ
t Dt+1

)

+
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+ βτΓt+1Υ
−1
t+1ut+1 − βΦt+1Υ

−σ
t K̄tζ (−σ)u

η
t+1

(

Mt+1

K̄t

)

−σ−1(

−
Mt+1

K̄2
t

)

Rearranging and substituting for the equation of the depreciation rate in the latter term on the
right-hand side of the above equation, we obtain the following optimal expression for the demand of
capital stock

Φt =βEt

{

Λt+1

[

Rk
t+1ut+1 − Pt+1Υ

−1
t+1a (ut+1)

]

+ Φt+1

(

1−Υ−σ
t Dt+1

)

+

+ τΓt+1Υ
−1
t+1ut+1 − σΦt+1Υ

−σ
t

(

Dt+1 −Υσ
t+1δ̄

)

}

(B.28)

Finally, the fraction 1 − ξw of representative households optimally set the level of their wages by
optimizing with respect to W̃t(j) the following expression of the discounted stream of future earnings,
given in the problem setting (P8)

max
W̃t(j)

Et

∞
∑

s=0

βsξsw

{

Λt+sW̃t(j)
1−

1+λw,t
λw,t

(

πw
t,t+s

Wt+s

)

−
1+λw,t
λw,t

Lt+sπ
w
t,t+s+

− bt+s
ϕ

1 + ν
W̃t(j)

−
1+λw,t
λw,t

(1+ν)





(

πw
t,t+s

Wt+s

)

−
1+λw,t
λw,t

Lt+s





1+ν
}

The FOC is, therefore

Et

∞
∑

s=0

βsξsw

{

−
1

λw,t
Λt+sW̃t(j)

−
1+λw,t
λw,t

(

πw
t,t+s

Wt+s

)

−

1+λw,t
λw,t

Lt+sπ
w
t,t+s+

− bt+sϕ

(

−
1 + λw,t

λw,t

)

W̃t(j)
−

1+λw,t
λw,t

(1+ν)−1





(

πw
t,t+s

Wt+s

)

−
1+λw,t
λw,t

Lt+s





1+ν
}

= 0

Which, rearranging, gives the following optimal wage setting condition

Et

∞
∑

s=0

ξswβ
sΛt+sL̃t+s(j)

[

πw
t,t+sW̃t(j)− bt+sϕ (1 + λw,t+s)

L̃t+s(j)
ν

Λt+s

]

= 0 (B.29)

Given the indexation rule followed by the fraction ξw of households, who does not optimize for
wages, as

Wt(j) =Wt−1(j)
(

πt−1e
zt−1+

α
1−α

vt−1

)ιw
(

πeγz+
α

1−α
γv
)1−ιw

The aggregate wage index is straightforward

Wt =

(

ξw

[

Wt−1

(

πt−1e
zt−1+

α
1−α

vt−1

)ιw
(

πeγz+
α

1−α
γv
)1−ιw

]

−
1

λw,t

+ (1− ξw)W̃t(j)
−

1
λw,t

)−λw,t

(B.30)
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C APPENDIX: Trends

In this section of the appendix we will analytically derive the expressions of the trends of our main
endogenous variables. We will denote by g the growth rates of the respective enodgenous variables of
our model.

Intermediate good production function
Recall the aggregate production technology of the intermediate good, that is

Yt(i) = max
{

A1−α
t Kα

t L
1−α
t − AtΥ

α
1−α

t F ; 0
}

Assume a representative firm decides not to produce then, the aggregate production technology
becomes

A1−α
t Kα

t L
1−α
t − AtΥ

α
1−α

t F = 0

Differentiating the latter expression with respect to time and assuming that hours worked, Lt,
exhibit no growth over time, we obtain

(1− α)A1−α−1
t Kα

t L
1−α
t

∂At

∂t
+ αA1−α

t Kα−1
t L1−α

t
∂Kt

∂t
−Υ

α
1−α

t F
∂At

∂t
−

α

1− α
AtΥ

α
1−α

−1

t F
∂Υt

∂t
= 0

(1− α)A1−α
t Kα

t L
1−α
t gA + αA1−α

t Kα
t L

1−α
t gK − AtΥ

α
1−α

t FgA −
α

1− α
AtΥ

α
1−α

t FgΥ = 0

A1−α
t Kα

t L
1−α
t [(1− α) gA + αgK ]− AtΥ

α
1−α

t F

[

gA +
α

1− α
gΥ

]

= 0

(1− α) gA + αgK = gA +
α

1− α
gΥ

gK = gA +

(

α

1− α
+ 1

)

gΥ (C.1)

Thus, the growth rate of effective capital, gK , is given by a linear combination of the growth rates
of neutral technology progress, gA, and the investment- specific technology progress, gΥ, which, in
steady state, are given by γz and γv, respectively.

On the contrary, when Yt(i) > 0, differentiating with respect to time we obtain

∂Y (i)t
∂t

= (1− α)A1−α−1
t Kα

t L
1−α
t

∂At

∂t
+ αA1−α

t Kα−1
t L1−α

t

∂Kt

∂t
−Υ

α
1−α

t F
∂At

∂t
−

α

1− α
AtΥ

α
1−α

−1

t F
∂Υt

∂t

Yt(i)gY = A1−α
t Kα

t L
1−α
t [(1− α) gA + αgK ]− AtΥ

α
1−α

t F

[

gA +
α

1− α
gΥ

]

Using (C.1) in the above expression, it follows that

Yt(i)gY = A1−α
t Kα

t L
1−α
t

[

gA +
α

1− α
gΥ

]

−AtΥ
α

1−α

t F

[

gA +
α

1− α
gΥ

]

gY = gA +
α

1− α
gΥ (C.2)
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The growth rate of investment in efficiency units, It, can be found by exploiting the respective
production technology

It = ΥtY
I
t

∂It
∂t

= Y I
t
∂Υt

∂t
+Υt

∂Y I
t

∂t

ItgI = ΥtY
I
t gΥ +ΥtY

I
t gY

gI = gΥ + gY

gI = gK = gA +

(

α

1− α
+ 1

)

gΥ (C.3)

Given the definition of capital utilization rate, and assuming that the capital utilization rate, ut,
does not grow over time, it follows that

Kt = utK̄t−1

∂Kt

∂t
= ut

∂K̄t−1

∂t

KtgK = utK̄t−1gK̄

gK = gK̄ = gA +

(

α

1− α
+ 1

)

gΥ (C.4)

Following our assumptions with respect to the maintenance cost function we find the growth rate
of maintenance as follows

Mt = τΥ−1
t utK̄t−1 + AtΥ

α
1−α

t M̄

∂Mt

∂t
= −τΥ−2

t utK̄t−1
∂Υt

∂t
+ τΥ−1

t ut
∂K̄t−1

∂t
+Υ

α
1−α

t M̄
∂At

∂t
+

α

1− α
AtΥ

α
1−α

−1

t M̄
∂Υt

∂t

MtgM = −τΥ−1
t utK̄t−1gΥ + τΥ−1

t utK̄t−1gK̄ + AtΥ
α

1−α

t M̄gA +
α

1− α
AtΥ

α
1−α

t M̄gΥ

gM = gY = gA +
α

1− α
gΥ (C.5)

Recall the following functional form for the gross rate of depreciation, Dt,

Dt = ζuη
t

(

Mt

K̄t−1

)

−σ

+Υσ
t δ̄

By the total differentiation of the above expression we obtain

∂Dt

∂t
= −σζuη

t

(

Mt

K̄t−1

)

−σ (
1

Mt

∂Mt

∂t
−

1

K̄t−1

∂K̄t−1

∂t

)

+ σδ̄Υσ−1
t

∂Υt

∂t

Dtgδ =

[

ζuη
t

(

Mt

K̄t−1

)

−σ

+Υσ
t δ̄

]

σgγ
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gδ = σgΥ (C.6)

Therefore, given our model assumptions, equation (C.6) shows that the gross capital depreciation rate
exhibits a trend, which follows the IST shock, Υt and it moreover depends on the sensibility of the
depreciation function with respect to maintenance to capital ratio, σ.

We next find the growth rate of new investment goods, ikt , using the expression for capital accu-
mulation

K̄t =
(

1−Υ−σ
t−1Dt

)

K̄t−1 + iKt

∂K̄t

∂t
=
(

1−Υ−σ
t−1Dt

) K̄t−1

∂t
− σΥ−σ−1

t−1 DtK̄t−1
∂Υt−1

∂t
−Υ−σ

t−1K̄t−1
∂Dt

∂t
+
∂iKt
∂t

K̄tgK̄ =
(

1−Υ−σ
t−1Dt

)

K̄t−1gK̄ + σΥ−σ
t−1DtK̄t−1gΥ −Υ−σ

t−1DtK̄t−1gδ + iKt giK

K̄tgK̄ =
(

1−Υ−σ
t−1Dt

)

K̄t−1gK̄ + iKt giK

giK = gK = gK̄ = gI = gA +

(

α

1− α
+ 1

)

gΥ (C.7)

Recalling the aggregate resource constraint, we find the growth rate of consumption as follows

Ct +Υ−1
t It +Υ−1

t a(ut)K̄t−1 =
Yt

gt

where gt is a stationary government spending shock.

∂Ct

∂t
−Υ−2

t It
∂Υt

∂t
+Υ−1

t
∂It
∂t

−Υ−2
t a(ut)K̄t−1

∂Υt

∂t
+Υ−1

t a(ut)
∂K̄t−1

∂t
=

1

gt

∂Yt

∂t

CtgC −Υ−1
t ItgΥ +Υ−1

t ItgI −Υ−1
t a(ut)K̄t−1gΥ +Υ−1

t a(ut)K̄t−1gK̄ =
1

gt
YtgY

CtgC −Υ−1
t It [gΥ − gI ]−Υ−1

t a(ut)K̄t−1 [gΥ − gK̄ ] =
1

gt
YtgY

CtgC =

[

1

gt
Yt −Υ−1

t It −Υ−1
t a(ut)K̄t−1

](

gA +
α

1− α
gΥ

)

gC = gM = gY = gA +
α

1− α
gΥ (C.8)

which implies that actual GDP, Xt, grows at the same rate

gX = gC = gM = gY = gA +
α

1− α
gΥ (C.9)
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D APPENDIX: Stationary equilibria and steady states

Given the normalization conditions obtained in the previous section of the appendix, we derive here
the model equilibrium conditions in terms of stationary variables.

Intermediate good sector
Recalling the production function of the intermediate goods producers

Yt(i) = A1−α
t Kt(i)

αLt(i)
1−α − AtΥ

α
1−α

t F

we obtain its stationary expression as follows

Yt(i)
AtΥ

α
1−α

t

AtΥ
α

1−α

t

= A1−α
t

[

Kt(i)
AtΥ

α
1−α

+1

t

AtΥ
α

1−α
+1

t

]α

Lt(i)
1−α − AtΥ

α
1−α

t F

yt(i)AtΥ
α

1−α

t = AtΥ
α

1−α

t kt(i)
αLt(i)

1−α −AtΥ
α

1−α

t F

yt(i) = kt(i)
αLt(i)

1−α − F (D.1)

The steady state relation of equation (D.1) is

y = kαL1−α − F

The zero profit condition implies

y − ρk − wL = kαL1−α − F − ρk − wL = 0

(

k

L

)α
L

L
−
F

L
− ρ

k

L
− w = 0

(

k

L

)α

−
F

L
=
y

L
(D.2)

The detrended optimal relative demand for capital given in (B.8) is obtained as follows

Kt

Lt

AtΥ
α

1−α
+1

t

AtΥ
α

1−α
+1

t

=
α

1− α

Wt

Rk
t

PtAtΥ
α

1−α

t

PtAtΥ
α

1−α

t

PtΥ
−1
t

PtΥ
−1
t

kt
Lt

AtΥ
α

1−α
+1

t =
α

1− α

wt

ρt

PtAtΥ
α

1−α

t

PtΥ
−1
t

kt
Lt

=
α

1− α

wt

ρt
(D.3)

The latter expression, in steady state, becomes

k

L
=

α

1− α

w

ρ
(D.4)

Given the expression for the nominal marginal cost (B.9), call s the stationary real marginal cost,
which is found as follows
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MCt
Pt

Pt
=

(

Wt

At

PtAtΥ
α

1−α

t

PtAtΥ
α

1−α

t

)1−α
(

Rk
t
PtΥ

−1
t

PtΥ
−1
t

)α
1

αα (1− α)1−α

stPt =
1

αα (1− α)1−αw
1−α
t ραt P

1−α
t Υα

t P
α
t Υ−α

t

st =
1

αα (1− α)1−αw
1−α
t ραt (D.5)

The steady state expression of the detrended real marginal cost is as follows

s =
1

αα (1− α)1−αw
1−αρα (D.6)

We derive as follows the stationary equilibrium of the optimal price setting condition given in (B.11)

Et

∞
∑

s=0

ξspβ
sΛt+s

Pt+sAt+sΥ
α

1−α

t+s

Pt+sAt+sΥ
α

1−α

t+s

[

P̃t(i)
Pt(i)

Pt(i)
πt,t+s − (1 + λp,t+s)MCt+s

Pt+s

Pt+s

]

Ỹt+s(i)
At+sΥ

α
1−α

t+s

At+sΥ
α

1−α

t+s

= 0

Et

∞
∑

s=0

ξspβ
sλt+s

[

p̃t(i)πt,t+s
Pt(i)

Pt+s
− (1 + λp,t+s) st+s

]

ỹt+s(i) = 0

Et

∞
∑

s=0

ξspβ
sλt+s [p̃t(i)π̃t,t+s − (1 + λp,t+s) st+s] ỹt+s(i) = 0 (D.7)

where the stationary inflation, π̃t,t+s, is derived as follows

πt,t+s =
s
∏

j=0

π
ιp
t+j−1π

1−ι =
s
∏

j=0

(πt+j−1

π

)ιp
π

so,

π̃t,t+s =
s
∏

j=0

(πt+j−1

π

)ιp
π
Pt(i)

Pt+j
=

s
∏

j=0

(πt+j−1

π

)ιp
(πt+j

π

)

−1

Given that, in steady state p̃ = P̃ /P = 1, and, therefore, π̃t,t+s = 1, expression (D.7), in steady
state, becomes

ξpβλ [p̃π̃ − (1 + λp) s] ỹ = 0

1− (1 + λp) s = 0

s =
1

1 + λp
(D.8)

The aggregate price index given in (B.12), in terms of stationary variables, becomes

Pt =

[

ξp

(

Pt−1
Pt

Pt
π
ιp
t−1π

1−ιp

)

−
1

λp,t

+ (1− ξp)

(

P̃t
Pt

Pt

)

−
1

λp,t

]−λp,t
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Pt =

[

P
−

1
λp,t

t ξp

(

Pt−1

Pt
π
ιp
t−1π

1−ιp

)

−
1

λp,t

+ P
−

1
λp,t

t (1− ξp)

(

P̃t

Pt

)−
1

λp,t

]−λp,t

1 =

{

ξp

[

(πt−1

π

)ιp
(πt

π

)

−1
]

−
1

λp,t

+ (1− ξp) p̃
−

1
λp,t

t

}

−λp,t

(D.9)

which in steady state reduces to

1 =

{

ξp
[

(1)ιp (1)−1]−
1

λp,t + (1− ξp) 1
−

1
λp,t

}

−λp,t

1 = (ξp + 1− ξp)
−λp,t = 1

Households
The marginal utility for consumption given in (B.20) is detrended as follows

ΛtPtAtΥ
α

1−α

t = AtΥ
α

1−α

t

bt
Ct − hCt−1

− AtΥ
α

1−α

t βhEt

{ bt+1

Ct+1 − hCt

}

λt = AtΥ
α

1−α

t

bt

AtΥ

α
1−α
t

AtΥ
α

1−α
t

Ct − h
At−1Υ

α
1−α
t−1

At−1Υ
α

1−α
t−1

Ct−1

− AtΥ
α

1−α

t βhEt

{

bt+1

At+1Υ

α
1−α
t+1

At+1Υ
α

1−α
t+1

Ct+1 − h
AtΥ

α
1−α
t

AtΥ
α

1−α
t

Ct

}

λt =
AtΥ

α
1−α

t

At−1Υ
α

1−α

t−1

bt

AtΥ
α

1−α
t

At−1Υ
α

1−α
t−1

ct − hct−1

−
AtΥ

α
1−α

t

AtΥ
α

1−α

t

βhEt

{

bt+1

At+1Υ
α

1−α
t+1

AtΥ
α

1−α
t

ct+1 − hct

}

Now, note that, the growth rates of the two non stationary shocks, i.e. the IST shock, vt and the
labor-augmenting technology shock, zt, can be expressed as follows, respectively

vt = ∆ logΥt = logΥt − log Υt−1 = log
Υt

Υt−1

zt = ∆ logAt = logAt − logAt−1 = log
At

At−1

which implies that

Υt

Υt−1

α
1−α

= e
α

1−α
vt

At

At−1
= ezt

Therefore, the detrended marginal utility of consumption becomes

λt =
ezt+

α
1−α

vtbt

ezt+
α

1−α
vtct − hct−1

− βhEt

{

bt+1

ezt+1+
α

1−α
vt+1ct+1 − hct

}

(D.10)

Next, note that the steady state expressions of the intertemporal preference shock, bt, and of the
growth rates of the IST shock, vt, and the labor-augmenting technology shock, zt, are, respectively
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log bt = ρb log bt−1 + εb,t ⇒ b = eεb = e0 = 1,

vt = (1− ρv) γv + ρvvt−1 + εv,t ⇒ ev = eγv ,

zt = (1− ρz) γz + ρzzt−1 + εz,t ⇒ ez = eγz

Therefore, equation (D.10) in steady state becomes

λ =
eγz+

α
1−α

γv

eγz+
α

1−α
γv c− hc

− βh
1

eγz+
α

1−α
γv c− hc

λc =
eγz+

α
1−α

γv − βh

eγz+
α

1−α
γv − h

(D.11)

The stationary Euler equation (B.21) is calculated as follows

ΛtPtAtΥ
α

1−α

t = PtAtΥ
α

1−α

t βRtEt

{Pt+1At+1Υ
α

1−α

t+1

Pt+1At+1Υ
α

1−α

t+1

Λt+1

}

λt = βRtEt

{

λt+1e
−(zt+1+

α
1−α

vt+1)π−1
t+1

}

(D.12)

which in steady state becomes

β =
eγz+

α
1−α

γv

R
(D.13)

The optimal capital supply condition (B.24), given that P I
t = PtΥ

−1
t , is detrended as follows

ΛtPtΥ
−1
t AtΥ

α
1−α

t = AtΥ
α

1−α

t Φtµt
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1− S
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AtΥ
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At−1Υ
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t−1
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AtΥ
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+1

t

AtΥ
α

1−α
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t
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1−α
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t−1
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1−α
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]

+

+ AtΥ
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{
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AtΥ
α

1−α
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t

AtΥ
α
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}

λt = φtµt

[

1− S

(

it
it−1

ezt+(
α

1−α
+1)vt

)

−
it
it−1

ezt+(
α

1−α
+1)vtS′

(

it
it−1

ezt+(
α

1−α
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)

]

+

+ βEt

{

φt+1µt+1e
−(zt+1+( α

1−α
+1)vt+1)

(

it+1
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1−α
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)2

S′

(

it+1

it
ezt+1+( α

1−α
+1)vt+1

)

}

(D.14)
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Given that, in steady state S = S′ = 0, S′′ > 0, and that the MEI shock equals unity, i.e. µ = 1,
equation (D.14), in steady state, becomes

λ = φ

[

1− 0− 0

]

+ β ∗ 0

λ = φ (D.15)

Before detrending the optimal condition for maintenance goods, note that, the zero profit condition
of the maintenance goods producing sector implies that

Pm
t Mt = PtY

m
t

Y m
t =

Pm
t

Pt
Mt

where Y m
t = M̃t represents the real maintenance in consumption units. Therefore, detrending the

production technology for maintenance we obtain

Mt
AtΥ

α
1−α

t

AtΥ
α

1−α

t

= dtY
m
t
AtΥ

α
1−α

t

AtΥ
α

1−α

t
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1− f

(

Y m
t

Y m
t−1

AtΥ
α

1−α

t

AtΥ
α

1−α

t

)]

mt = dtm̃t

[

1− f

(

m̃t

m̃t−1
ezt+

α
1−α

vt

)]

(D.16)

which, recalling that in steady state f = f ′ = 0 and d = 1, gives the following identity in steady state

m = m̃

Hence, we calculate the detrended counterpart of the maintenance optimal condition, (B.26), as
follows

ΛtPt
AtΥ

α
1−α

t

AtΥ
α

1−α

t
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×
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+
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AtΥ
α

1−α

t

AtΥ
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which becomes

λt =

[

σφt

(

mt

k̄t−1

ezt+(
α

1−α
+1)vt

)
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δt − δ̄
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×
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× dt

[

1− f

(

m̃t

m̃t−1
ezt+

α
1−α
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−
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+ (D.17)

+ βEt

{
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)

}

The above expression in steady state becomes

λ = σφeσγv
(

δ − δ̄
)

[

m̃

k̄
eγz+(

α
1−α

+1)γv
]

−1

− ς (D.18)

Next, we detrend the optimal capital utilization rate condition, (B.27), that is
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Given the steady state assumptions ut = u = 1, a(1) = 0, and a′(1) > 0, the above expression
becomes

λρ = λa′ (1) + ηφ
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δ − δ̄
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eσγv − τς
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λ
(D.20)

The detrended optimal demand for capital stock, (B.28), is derived as follows
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At+1Υ
α

1−α

t+1

Υ−1
t+1ut+1+

− βσΦt+1

At+1Υ
α

1−α
+1

t+1

At+1Υ
α

1−α
+1

t+1

Υ−σ
t

(

Dt+1
Υσ

t+1

Υσ
t+1

−Υσ
t+1δ̄

)

φt = βEt

{

λt+1 [ρt+1ut+1 − a (ut+1)] e
−(zt+1+( α

1−α
+1)vt+1) + τςt+1ut+1e

−(zt+1+( α
1−α

+1)vt+1)+
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+ φt+1 (1− δt+1e
σvt+1) e−(zt+1+( α

1−α
+1)vt+1) − σφt+1

(

δt+1 − δ̄
)

eσvt+1e−(zt+1+( α
1−α

+1)vt+1)

}

(D.21)

which, using the expression (D.18), in steady state, becomes

φ
[

eγz+(
α

1−α
+1)γv − β (1− δeσγv ) + βσeσγv

(

δ − δ̄
)

]

= βλρ+

+ βτ

[

σφeσγv
(

δ − δ̄
)

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1

− λ

]

φ =
λβ (ρ− τ )

eγz+(
α

1−α
+1)γv − β (1− δeσγv ) + βσ

(

δ − δ̄
)

eσγv

[

1− τ
(

m̃
k̄
eγz+(

α
1−α

+1)γv
)

−1
] (D.22)

Recalling the optimal wage setting condition given in (B.29), we detrend it as follows

Et

∞
∑

s=0

ξswβ
sΛt+s

Pt+sAt+sΥ
α

1−α

t+s

Pt+sAt+sΥ
α

1−α

t+s

L̃t+s(j)

[

πw
t,t+sW̃t(j)

PtAtΥ
α

1−α

t

PtAtΥ
α

1−α

t

+

− bt+sϕ (1 + λw,t+s)
L̃t+s(j)

ν

Λt+s

Pt+sAt+sΥ
α

1−α

t+s

Pt+sAt+sΥ
α

1−α

t+s

]

= 0

Et

∞
∑

s=0

ξswβ
sλt+sL̃t+s(j)

[

w̃t(j)π
w
t,t+s

PtAtΥ
α

1−α

t

Pt+sAt+sΥ
α

1−α

t+s

− bt+sϕ (1 + λw,t+s)
L̃t+s(j)

ν

λt+s

]

= 0

Et

∞
∑

s=0

ξswβ
sλt+sL̃t+s(j)

[

w̃t(j)π̃
w
t,t+s − bt+sϕ (1 + λw,t+s)

L̃t+s(j)
ν

λt+s

]

= 0 (D.23)

where π̃wt,t+s is defined as follows

π̃w
t,t+s =

s
∏

k=0





(

πt+k−1e
zt+k−1+

α
1−α

vt+k−1

)ιw
(

πeγz+
α

1−α
γv
)1−ιw PtAtΥ

α
1−α

t

Pt+kAt+kΥ
α

1−α

t+k





=
s
∏

k=0

[(

πt+k−1e
zt+k−1+

α
1−α

vt+k−1

πeγz+
α

1−α
γv

)ιw
(

πt+ke
zt+k+

α
1−α

vt+k

πeγz+
α

1−α
γv

)

−1]

In steady state, expression (D.23) becomes

λL̃(j)

[

w̃(j)− ϕ (1 + λw)
L̃(j)ν

λ

]

= 0

L̃(j)ν =
λ

ϕ

w̃(j)

1 + λw
(D.24)

Recall that the optimal demand for labor is given by
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Lt+s(j) =

[

Wt(j)

Wt+s
πw
t,t+s

]

−

1+λw,t+s
λw,t+s

Lt+s

Detrending it we obtain

Lt+s(j) =





Wt(j)

Wt+s

Pt+sAt+sΥ
α

1−α

t+s

Pt+sAt+sΥ
α

1−α

t+s

PtAtΥ
α

1−α

t

PtAtΥ
α

1−α

t

πw
t,t+s





−

1+λw,t+s
λw,t+s

Lt+s

Lt+s(j) =

[

wt(j)

wt+s
π̃w
t,t+s

]

−

1+λw,t+s
λw,t+s

Lt+s (D.25)

The aggregate wage index (B.30) in the stationary equilibrium is derived as follows

Wt

PtAtΥ
α

1−α

t

=

{

ξw





Wt−1

Pt−1At−1Υ
α

1−α

t−1

Pt−1At−1Υ
α

1−α

t−1

PtAtΥ
α

1−α

t

(

πt−1e
zt−1+

α
1−α

vt−1

)ιw
(

πeγz+
α

1−α
γv
)1−ιw





−
1

λw,t

+

+ (1− ξw)

[

W̃t(j)

PtAtΥ
α

1−α

t

]

−
1

λw,t

}

−λw,t

wt =

{

ξw

[

wt−1

(

πt−1e
zt−1+

α
1−α

vt−1

πeγz+
α

1−α
γv

)ιw
(

πte
zt+

α
1−α

vt

πeγz+
α

1−α
γv

)

−1]−
1

λw,t

+ (1− ξw) w̃t(j)
−

1
λw,t

}

−λw,t

(D.26)

The definition of capital utilization, Kt = utK̄t−1, in stationary equilibrium is given by

Kt
AtΥ

α
1−α

+1

t

AtΥ
α

1−α
+1

t

= ut

At−1Υ
α

1−α
+1

t−1

At−1Υ
α

1−α
+1

t−1

K̄t−1

kt = utk̄t−1e
−(zt+( α

1−α
+1)vt) (D.27)

which in steady state becomes

k = k̄e−(γz+(
α

1−α
+1)γv) (D.28)

The definition of the capital depreciation rate is given by

Dt = ζuη
t

(

Mt

K̄t−1

)

−σ

+Υσ
t δ̄

which in the stationary equilibrium model becomes

Dt
Υσ

t

Υσ
t

= ζuη
t





Mt

K̄t−1

AtΥ
α

1−α

t

AtΥ
α

1−α

t

At−1Υ
α

1−α
+1

t−1

At−1Υ
α

1−α
+1

t−1





−σ

+Υσ
t δ̄

δt = ζuη
t

(

mt

k̄t−1

ezt+(
α

1−α
+1)vt

)

−σ

+ δ̄ (D.29)
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and in steady state, recalling that m = m̃, it is given by

δ = ζ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−σ

+ δ̄ (D.30)

The definition of maintenance costs is given by

Mt = τΥ−1
t utK̄t−1 + AtΥ

α
1−α

t M̄

In the stationary equilibrium it becomes

Mt
AtΥ

α
1−α

t

AtΥ
α

1−α

t

= τΥ−1
t utK̄t−1

At−1Υ
α

1−α
+1

t−1

At−1Υ
α

1−α
+1

t−1

+AtΥ
α

1−α

t M̄

mt = τutk̄t−1e
−(zt+( α

1−α
+1)vt) + M̄ (D.31)

while in steady state is given by

m̃ = τ k̄e−(γz+(
α

1−α
+1)γv) + M̄ (D.32)

The law of motion of capital, substituting for the technology to produce new capital goods, ikt =
µt [1− S (It/It−1)] It is given by

K̄t =
(

1−Υ−σ
t−1Dt

)

K̄t−1 + µt

[

1− S

(

It
It−1

)]

It

which is detrended as follows

K̄t
AtΥ

α
1−α

+1

t

AtΥ
α

1−α
+1

t

=

(

1−Υ−σ
t−1Dt

Υσ
t

Υσ
t

)

K̄t−1

At−1Υ
α

1−α
+1

t−1

At−1Υ
α

1−α
+1

t−1

+

+ µt



1− S





It
It−1

AtΥ
α

1−α
+1

t

AtΥ
α

1−α
+1

t

At−1Υ
α

1−α
+1

t−1

At−1Υ
α

1−α
+1

t−1







 It
AtΥ

α
1−α

+1

t

AtΥ
α

1−α
+1

t

k̄t = (1− δte
σvt) k̄t−1e

−(zt+( α
1−α

+1)vt) + µt

[

1− S

(

it
it−1

ezt+(
α

1−α
+1)vt

)]

it (D.33)

and in steady state it becomes

k̄ = (1− δeσγv ) k̄e−(γz+(
α

1−α
+1)γv) + [1− 0] i

k̄ =
i

1− (1− δeσγv ) e−(γz+(
α

1−α
+1)γv)

(D.34)

The aggregate resource constraint is defined as follows

Ct +Υ−1
t It + a (ut)Υ

−1
t K̄t−1 + M̃t = (1/gt)Yt



Appendix D xxviii

where Ĩt = Υ−1
t It = (P I

t /Pt)It, and M̃t = (Pm
t /Pt)Mt are the real investment and real maintenance

in consumption units, respectively, and K̄t−1 is multiplied by Υ−1
t in order to ensure the balanced

growth path. Detrending the above expression we obtain

Ct
AtΥ

α
1−α

t

AtΥ
α

1−α

t

+Υ−1
t It

AtΥ
α

1−α

t

AtΥ
α

1−α

t

+ a (ut)Υ
−1
t K̄t−1

At−1Υ
α

1−α
+1

t−1

At−1Υ
α

1−α
+1

t−1

+ M̃t
AtΥ

α
1−α

t

AtΥ
α

1−α

t

= (1/gt)Yt
AtΥ

α
1−α

t

AtΥ
α

1−α

t

ct + it + a (ut) k̄t−1e
−(zt+( α

1−α
+1)vt) + m̃t = (1/gt) yt (D.35)

which gives the following expression in steady state

c+ i+ m̃ = (1/g) y (D.36)

Finally, the actual GDP, Xt is given by

Xt = (1− 1/gt)Yt + Ct +Υ−1
t It + M̃t

which detrended becomes

xt = (1− 1/gt) yt + ct + it + m̃t (D.37)

and in steady state it is

x = (1− 1/g) y + c+ i+ m̃ (D.38)
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E APPENDIX: Linear rational expectations model

In the present section we log linearize our equilibrium model equations around the steady state. The
variables denoted by a hat represent the deviations form their respective steady state values. Moreover,
following Justiniano et al. (2011), we apply the following rules of the deviations from steady states of
the shocks

λ̂p,t+s = ln (1 + λp,t+s)− ln (1 + λp) λ̂w,t+s = ln (1 + λw,t+s)− ln (1 + λw)

d̂t = dt − 1 ĝt = gt − g

b̂t = bt − 1 µ̂t = µt − 1
ẑt = zt − γz v̂t = vt − γv

Moreover, the expectations of the stationary shocks are given by

lnEt {bt+1} = ρb ln bt lnEt {dt+1} = ρd ln dt
Et {zt+1} = ρzzt lnEt {µt+1} = ρµ lnµt
Et {vt+1} = ρvvt lnEt {gt+1} = ρg ln gt

Recall the detrended aggregate production function of the intermediate goods producers, (D.1),
and its steady state expression, (D.2). We log-linearize it as follows

ln [yt(i)] = ln
[

kt(i)
αLt(i)

1−α − F
]

y + ŷt = y +
1

y
αkα−1L1−α (kt − k) +

1

y
(1− α) kαL1−α−1 (Lt − L)

ŷt =
y + F

y
αk̂t +

y + F

y
(1− α) L̂t (E.1)

The optimal relative demand for capital given in (D.3), using its steady state expression, (D.4), is
log-linearized as follows

ln

[

kt
Lt

]

= ln

[

α

1− α

wt

ρt

]

ln kt − lnLt = lnwt − ln ρt + ln
α

1− α

k̂t − L̂t = ŵt − ρ̂t (E.2)

Given the optimal detrended nominal marginal costs, (D.5), and the respective steady state relation,
(D.6), the log-linearization is as follows
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ln [st] = ln

[

1

αα (1− α)1−α
w1−α

t ραt

]

ln st = ln
1

αα (1− α)1−α
+ (1− α) lnwt + α ln ρt

ŝt = (1− α)ŵt + αρ̂t (E.3)

The log-linearization of the detrended optimal price setting, given equations (D.7), and (D.8), is

ln

[

Et

∞
∑

s=0

ξspβ
sλt+s p̃t(i)π̃t,t+sỹt+s(i)

]

= ln

[

Et

∞
∑

s=0

ξspβ
sλt+s (1 + λp,t+s) st+sỹt+s(i)

]

Et

∞
∑

s=0

ξspβ
s (ln p̃t + ln π̃t,t+s) = Et

∞
∑

s=0

ξspβ
s [ln (1 + λp,t+s) + ln st+s]

1

1− ξpβ
ˆ̃pt + Et

∞
∑

s=0

ξspβ
s ˆ̃πt,t+s = Et

∞
∑

s=0

ξspβ
s
(

λ̂p,t+s + ŝt+s

)

1

1− ξpβ
ˆ̃pt = Et

∞
∑

s=0

ξspβ
s
(

−ˆ̃πt,t+s + λ̂p,t+s + ŝt+s

)

= −ˆ̃πt,t + λ̂p,t + ŝt + Et

∞
∑

s=1

ξspβ
s
(

−ˆ̃πt,t+s + λ̂p,t+s + ŝt+s

)

= 0 + λ̂p,t + ŝt + ξpβEt

∞
∑

s=0

ξspβ
s
(

−ˆ̃πt,t+s+1 + λ̂p,t+s+1 + ŝt+s+1

)

= λ̂p,t + ŝt − ξpβEt

∞
∑

s=0

ξspβ
s ˆ̃πt,t+1 + ξpβEt

∞
∑

s=0

ξspβ
s
(

−ˆ̃πt+1,t+s+1 + λ̂p,t+s+1 + ŝt+s+1

)

= λ̂p,t + ŝt −
ξpβ

1− ξpβ
ˆ̃πt,t+1 +

ξpβ

1− ξpβ
ˆ̃pt+1

Therefore,

1

1− ξpβ
ˆ̃pt = λ̂p,t + ŝt +

ξpβ

1− ξpβ

(

ˆ̃pt+1 − ˆ̃πt,t+1

)

(E.4)

The log-linear detrended aggregate price index, (D.9) is given by

1
−

1
λp,t = ξp

[

(πt−1

π

)ιp
(πt

π

)

−1
]

−
1

λp,t

+ (1− ξp) p̃
−

1
λp,t

t

ln 1 = ln

{

ξp

[

(πt−1

π

)ιp
(πt

π

)

−1
]

−
1

λp,t

+ (1− ξp) p̃
−

1
λp,t

t

}
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0 = −
1

λp,t
ξp

[

(π

π

)ιp
(π

π

)

−1
]

−
1

λp,t
−1

(ιpπ̂t−1 − π̂t)−
1

λp,t
(1− ξp) (p̃t − 1)

0 = ξp (ιpπ̂t−1 − π̂t) + (1− ξp) ˆ̃pt (E.5)

Combining equation (E.4) with (E.5), both in the current and forward one period forms, and using
the log-linearized expression for the definition of inflation, i.e. ˆ̃πt,t+s =

∑s
j=0 (ιtπ̂t+j−1 − π̂t+j), we

obtain the new Phillips curve, as follows

1

1− ξpβ

[

−
ξp

1− ξp
(ιtπ̂t−1 − π̂t)

]

= λ̂p,t + ŝt +
ξpβ

1− ξpβ

[

−
ξp

1− ξp
(ιtπ̂t − π̂t+1)

]

−
ξpβ

1− ξpβ
(ιtπ̂t − π̂t+1)

ξp + ξpβιp
(1− ξpβ) (1− ξp)

π̂t = λ̂p,t + ŝt +
ξpιp

(1− ξpβ) (1− ξp)
π̂t−1 +

ξpβ

(1− ξpβ) (1− ξp)
π̂t+1

π̂t =
(1− ξpβ) (1− ξp)

ξp (1 + βιp)

(

λ̂p,t + ŝt
)

+
ιp

1 + βιp
π̂t−1 +

β

1 + βιp
π̂t+1 (E.6)

Next, we log-linearize the detrended marginal utility of consumption given in (D.10), using its
steady state expression (D.11), as follows

lnλt = ln

[

ezt+
α

1−α
vtbt

ezt+
α

1−α
vtct − hct−1

− βhEt

{

bt+1

ezt+1+
α
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vt+1ct+1 − hct

}]

λ̂t = c
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α
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γv − βh
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ceγz+
α
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γvβh

(
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α
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α

1−α
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(
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α
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)
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1
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α
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α
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[

eγz+
α

1−α
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e2(γz+
α

1−α
γv)

eγz+
α
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γv − h

]

ẑt+

+
α

1− α
βh

eγz+
α

1−α
γv

eγz+
α

1−α
γv − h

v̂t+1 +
α

1− α

[

eγz+
α
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α
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+ eγz+
α

1−α
γv b̂t − βhb̂t+1 −

e2(γz+
α

1−α
γv)

eγz+
α

1−α
γv − h

ĉt − βh2 1

eγz+
α

1−α
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+ h
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α
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ĉt+1

}

ending up with

λ̂t =
1

(

eγz+
α

1−α
γv − βh

)(

eγz+
α

1−α
γv − h

)

{

(

eγz+
α

1−α
γv − βhρb

)(

eγz+
α

1−α
γv − h

)

b̂t+

−
(

e2(γz+
α
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γv) + βh2

)

ĉt + heγz+
α
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γv ĉt−1 + βheγz+

α
1−α

γv ĉt+1+ (E.7)

+
(

βhρze
γz+

α
1−α

γv − heγz+
α

1−α
γv
)

ẑt +
α

1− α

(

βhρve
γz+

α
1−α

γv − heγz+
α

1−α
γv
)

v̂t

}

Log-linearizing the detrended Euler equation (D.12) we obtain

lnλt = ln
[

βRtEt

{

λt+1e
−(zt+1+

α
1−α

vt+1)π−1
t+1

}]

lnλt = ln β + lnRt + lnλt+1 − zt+1 −
α

1− α
vt+1 − ln πt+1

λ̂t = R̂t + λ̂t+1 − ẑt+1 −
α

1− α
v̂t+1 − π̂t+1

λ̂t = R̂t − ρzẑt −
α

1− α
ρv v̂t + Et

{

λ̂t+1 − π̂t+1

}

(E.8)

The detrended optimal capital good supply condition, (D.14), making use of (D.15), is log-linearized
as follows

lnλt = ln

{

φtµt

[

1− S

(

it
it−1

ezt+(
α

1−α
+1)vt

)

−
it
it−1

ezt+(
α

1−α
+1)vtS′

(

it
it−1

ezt+(
α

1−α
+1)vt

)

]

+

+ βEt

{

φt+1µt+1e
−(zt+1+( α

1−α
+1)vt+1)

(

it+1

it
ezt+1+( α

1−α
+1)vt+1

)2

S′

(

it+1

it
ezt+1+( α

1−α
+1)vt+1

)

} }

λ̂t =
1

φ

{

(φt − φ) + φ (µt − 1)− φ
i

i
eγz+(

α
1−α

+1)γvS′′ e
γz+( α

1−α
+1)γv

i
(it − i)+

− βφe−(γz+(
α

1−α
+1)γv)

(

i

i
eγz+(

α
1−α

+1)γv
)2

S′′eγz+(
α

1−α
+1)γv i−1 (it − i)+

+ φ
i

i
eγz+(

α
1−α

+1)γvS′′eγz+(
α

1−α
+1)γv i−1 (it−1 − i)+

+ βφe−(γz+(
α

1−α
+1)γv)

(

i

i
eγz+(

α
1−α

+1)γv
)2

S′′eγz+(
α

1−α
+1)γv i−1 (it+1 − i)+
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− φ
i

i
eγz+(

α
1−α

+1)γvS′′eγz+(
α

1−α
+1)γv i

i
(zt − γz)+

+ βφeγz+(
α

1−α
+1)γv

(

i

i

)2

S′′eγz+(
α

1−α
+1)γv i

i
(zt+1 − γz)+

− φ
α

1− α

i

i
eγz+(

α
1−α

+1)γvS′′eγz+(
α

1−α
+1)γv i

i
(vt − γv)+

+
α

1− α
βφeγz+(

α
1−α

+1)γv
(

i

i

)2

S′′eγz+(
α

1−α
+1)γv i

i
(vt+1 − γv)

}

which finally gives

λ̂t =φ̂t + µ̂t − (1 + β) e2(γz+(
α

1−α
+1)γv)S′′ ît + e2(γz+(

α
1−α

+1)γv)S′′ ît−1+

+ βe2(γz+(
α

1−α
+1)γv)S′′Et{̂it+1} − (1− βρz) e

2(γz+( α
1−α

+1)γv)S′′ẑt+ (E.9)

−

(

α

1− α
+ 1

)

(1− βρv) e
2(γz+( α

1−α
+1)γv)S′′v̂t

We next log-linearize the detrended optimality condition for maintenance supply given in (D.17)

lnλt = ln

{[

σφt

(

mt

k̄t−1

ezt+(
α

1−α
+1)vt

)

−1
(

δt − δ̄
)

eσvt − ςt

]

dt

[

1− f

(

m̃t

m̃t−1
ezt+

α
1−α

vt

)

+

−
m̃t

m̃t−1
ezt+

α
1−α

vtf ′

(

m̃t

m̃t−1
ezt+

α
1−α

vt

)

]

+

+ βEt

{

[

σφt+1

(

mt+1

k̄t
ezt+1+( α

1−α
+1)vt+1

)

−1
(

δt+1 − δ̄
)

eσvt+1 − ςt+1

]

dt+1e
−(zt+1+

α
1−α

vt+1)×

×

(

m̃t+1

m̃t
ezt+1+

α
1−α

vt+1

)2

f ′

(

m̃t+1

m̃t
ezt+1+

α
1−α

vt+1

)

}

}

λ̂t =
1

λ

{

σφ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv
[

φ̂t − m̂t +
ˆ̄kt−1 − ẑt+

−

(

α

1− α
+ 1− σ

)

v̂t
]

+ σφ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1

δeσγv δ̂t − ςς̂t+

−

[

σφ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv − ς

]

(

m̃

m̃
eγz+(

α
1−α )γv

)2

f ′′

[

ˆ̃mt − ˆ̃mt−1 + ẑt +
α

1− α
v̂t
]

+

+ β

[

σφ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv − ς

]

e−(γz+
α

1−α
γv)×
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×

(

m̃

m̃
eγz+

α
1−α

γv

)3

f ′′

[

ˆ̃mt+1 − ˆ̃mt + ẑt+1 +
α

1− α
v̂t+1

]

+

+

[

σφ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv − ς

]

d̂t

}

making use of the log-linearized expression of (D.16), m̂t = d̂t + ˆ̃mt, we obtain the following
expression for optimal maintenance condition

λ̂t = e2(γz+
α

1−α
γv)f ′′ ˆ̃mt−1 + βe2(γz+

α
1−α

γv)f ′′ ˆ̃mt+1+

−

[

(1 + β) e2(γz+
α

1−α
γv)f ′′ + σ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv

]

ˆ̃mt+

+ σ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv
(

φ̂t +
ˆ̄kt−1

)

+ σ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1

δeσγv δ̂t+

+

[

1− σ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv

]

(

d̂t + ς̂t
)

+

−

[

(1− βρz) e
2(γz+ α

1−α
γv)f ′′ + σ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv

]

ẑt+

−

[

α

1− α
(1− βρv) e

2(γz+ α
1−α

γv)f ′′ +

(

α

1− α
+ 1− σ

)

σ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv

]

v̂t

and rearranging the terms we end up with
[

(1 + β) e2(γz+
α

1−α
γv)f ′′ + Ā

]

ˆ̃mt = e2(γz+
α

1−α
γv)f ′′ ˆ̃mt−1 + βe2(γz+

α
1−α

γv)f ′′ ˆ̃mt+1 + Āˆ̄kt−1 + Ā
δ

δ − δ̄
δ̂t+

+
(

1− Ā
)

d̂t +
(

1− Ā
)

(

ς̂t − λ̂t

)

+ Ā
(

φ̂t − λ̂t

)

−
[

(1− βρz) e
2(γz+ α

1−α
γv)f ′′ + Ā

]

ẑt+ (E.10)

−

[

α

1− α
(1− βρv) e

2(γz+ α
1−α

γv)f ′′ +

(

α

1− α
+ 1− σ

)

Ā

]

v̂t

where the constant Ā = σ
(

m̃
k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv equals the steady state expression of the
depreciation rate first order condition with respect to the maintenance to effective capital ratio, that
is −δm/ke

σγv , and q̂t = φ̂t − λ̂t is the Tobin’s q.

Next, it follows the log-linearization of the detrended optimal condition for the capital utilization
rate, (D.19), making use of (D.20). Re-express, first, both the equations as follows, respectively, making
use of (D.18) for the second one

a′ (ut) = ρt − η
φt

λt

(

δt − δ̄
)

eσvtu−1
t + τ

ςt
λt

a′(1) = ρ− η
φ

λ

(

δ − δ̄
)

eσγv + τ

[

σ
φ

λ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv − 1

]

(E.11)
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Call χ = a′′(1)/a′(1) the value of the relative elasticity of the utilization costs of capital in steady
state, and log-linearize (D.19) as follows

ln
[

a′ (ut)
]

= ln

[

ρt − η
φt

λt

(

δt − δ̄
)

eσvtu−1
t + τ

ςt
λt

]

a′′(1)

a′(1)
ût =

1

a′(u)

{

ρρ̂t − η
φ

λ

(

δ − δ̄
)

eσγv
[

φ̂t − λ̂t − ût + σv̂t
]

− η
φ

λ
δeσγv δ̂t + τ

ς

λ

(

ς̂t − λ̂t

)

}

{

χ
{

ρ− η
φ

λ

(

δ − δ̄
)

eσγv + τ

[

σ
φ

λ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv − 1

]

}

− η
φ

λ

(

δ − δ̄
)

eσγv

}

ût =

= ρρ̂t − η
φ

λ

(

δ − δ̄
)

eσγv
[

φ̂t − λ̂t + σv̂t
]

− η
φ

λ
δeσγv δ̂t+

+ τ

[

σ
φ

λ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv − 1

]

(

ς̂t − λ̂t

)

Recalling that, in steady state, λ = φ, the latter expression becomes

ρt =

{

χ

ρ

[

ρ− B̄ + τ
(

Ā− 1
)]

−
B̄

ρ

}

ût +
σ

ρ
B̄v̂t +

B̄

ρ

(

φ̂t − λ̂t

)

−
τ

ρ

(

Ā− 1
)

(

ς̂t − λ̂t

)

+
δ

ρ
(

δ − δ̄
) B̄δ̂t (E.12)

where the constant B̄ = ηeσγv
(

δ − δ̄
)

is the steady state first order condition of capital depreciation with
respect to utilization rate, that is δueσγv .

The detrended optimal demand for capital stock in (D.21), using its steady state expression (D.22),
is log-linearized below

lnφt = ln

{

βEt

{

λt+1 [ρt+1ut+1 − a (ut+1)] e
−(zt+1+( α

1−α
+1)vt+1)+

+ φt+1 (1− δt+1e
σvt+1) e−(zt+1+( α

1−α
+1)vt+1) + τςt+1ut+1e

−(zt+1+( α
1−α

+1)vt+1)+

− σφt+1

(

δt+1 − δ̄
)

eσvt+1e−(zt+1+( α
1−α

+1)vt+1)
}

}

φ̂t =
1

φ

{

βe−(γz+(
α

1−α
+1)γv) [λρ+ φ (1− δeσγv )− φσ

(

δ − δ̄
)

eσγv + τς
]

[

−ẑt+1 −

(

α

1− α
+ 1

)

v̂t+1

]

+

+ βλρe−(γz+(
α

1−α
+1)γv)

[

λ̂t+1 + ρ̂t+1 + ût+1

]

− βλa′(1)e−(γz+(
α

1−α
+1)γv)ût+1+

+ βφ (1− δeσγv ) e−(γz+(
α

1−α
+1)γv)φ̂t+1 − βφδeσγve−(γz+(

α
1−α

+1)γv)
[

δ̂t+1 + σv̂t+1

]

+

− βσφδeσγve−(γz+(
α

1−α
+1)γv)δ̂t+1 − βσφ

(

δ − δ̄
)

eσγve−(γz+(
α

1−α
+1)γv)

(

φ̂t+1 + σv̂t+1

)

+

+ βτςe−(γz+(
α

1−α
+1)γv) [ς̂t+1 + ût+1]

}
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φ̂t = −ẑt+1 −

[(

α

1− α
+ 1

)

+ βδσeσγve−(γz+(
α

1−α
+1)γv) + βσ2 (δ − δ̄

)

eσγve−(γz+(
α

1−α
+1)γv)

]

v̂t+1+

+
ρ

ρ− τ

{

1− βe−γz−( α
1−α

+1)γv (1− δeσγv )+

+βe−(γz+(
α

1−α
+1)γv)σ

(

δ − δ̄
)

eσγv

[

1− τ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
]

} [

λ̂t+1 + ρ̂t+1

]

+

+ βe−(γz+(
α

1−α
+1)γv) [(1− δeσγv )− σ

(

δ − δ̄
)

eσγv
]

φ̂t+1+

− βe−(γz+(
α

1−α
+1)γv) [δeσγv + σδeσγv ] δ̂t+1+

+ βe−(γz+(
α

1−α
+1)γv)τ

[

σ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv −
λ

φ

]

ς̂t+1+

+ βe−(γz+(
α

1−α
+1)γv)

{

η
(

δ − δ̄
)

eσγv − τ

[

σ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv −
λ

φ

]

}

ût+1

+ βe−(γz+(
α

1−α
+1)γv)τ

[

σ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv −
λ

φ

]

ût+1

Rearranging the latter expression we obtain the following log-linear optimal capital stock condition

φ̂t = φ̂t+1 − ρz ẑt −

[

α

1− α
+ 1 + βe−(γz+(

α
1−α

+1)γv)σC̄

]

ρv v̂t + βe−(γz+(
α

1−α
+1)γv)B̄ût+1 +

ρ

ρ− τ
D̄ρ̂t+1

− βe−(γz+(
α

1−α
+1)γv) (C̄ + eσγvσδ̄

)

δ̂t+1 −
[

D̄ + βe−(γz+(
α

1−α
+1)γv)τĀ

] (

φ̂t+1 − λ̂t+1

)

+ (E.13)

+

[

τ

ρ− τ
D̄ − βe−(γz+(

α
1−α

+1)γv)τĀ

]

(

ς̂t+1 − λ̂t+1

)

where the constants have been defined as follows

C̄ = eσγv
[

δ + σ
(

δ − δ̄
)]

D̄ = 1− βe−(γz+(
α

1−α
+1)γv) (1− eσγvδ) + βe−(γz+(

α
1−α

+1)γv) σ

η
B̄ − βe−(γz+(

α
1−α

+1)γv)τĀ

The detrended optimal wage setting condition (D.23) is log-linearized as follows

ln

{

Et

∞
∑

s=0

ξswβ
sλt+sL̃t+s(j)w̃t(j)π̃

w
t,t+s

}

= ln

{

Et

∞
∑

s=0

ξswβ
sλt+sL̃t+s(j)bt+sϕ (1 + λw,t+s)

L̃t+s(j)
ν

λt+s

}

ln

{

Et

∞
∑

s=0

ξswβ
sw̃t(j)π̃

w
t,t+s

}

= ln

{

Et

∞
∑

s=0

ξswβ
sbt+sϕ (1 + λw,t+s)

L̃t+s(j)
ν

λt+s

}

Et

∞
∑

s=0

ξswβ
s
[

ln w̃t(j) + ln π̃w
t,t+s

]

= Et

∞
∑

s=0

ξswβ
s
[

ln bt+s + lnϕ+ ln (1 + λw,t+s) + ln L̃t+s(j)
ν − lnλt+s

]

obtaining



Appendix E xxxvii

1

1− ξwβ
ˆ̃wt(j) = Et

∞
∑

s=0

ξswβ
s
[

b̂t+s + λ̂w,t+s + ν ˆ̃Lt+s(j)− λ̂t+s − ˆ̃πw
t,t+s

]

(E.14)

Next, we log-linearize as follows the definition of wage inflation

ln π̃w
t,t+s = ln

{

s
∏

k=0

[(

πt+k−1e
zt+k−1+

α
1−α

vt+k−1

πeγz+
α

1−α
γv

)ιw
(

πt+ke
zt+k+

α
1−α

vt+k

πeγz+
α

1−α
γv

)

−1]}

ln π̃w
t,t+s =

s
∑

k=0

{

ιw lnπt+k−1 + ιw

(

zt+k−1 +
α

1− α
vt+k−1

)

− ιw ln π − ιw

(

γz +
α

1− α
γv

)

+

−

(

zt+k +
α

1− α
vt+k

)

+ ln π +

(

γz +
α

1− α
γv

)

− ln πt+k

}

which gives

ˆ̃πw
t,t+s =

s
∑

k=0

[

ιw

(

π̂t+k−1 + ẑt+k−1 +
α

1− α
v̂t+k−1

)

−

(

π̂t+k + ẑt+k +
α

1− α
v̂t+k

)]

(E.15)

The log-linearized detrended labor demand, (D.25), becomes

lnLt+s(j) = ln

{

[

wt(j)

wt+s
π̃w
t,t+s

]

−

1+λw,t+s
λw,t+s

Lt+s

}

lnLt+s(j) = −
1 + λw,t+s

λw,t+s
ln

[

wt(j)

wt+s
π̃w
t,t+s

]

+ lnLt+s

therefore,

L̂t+s(j) = −
1 + λw

λw

[

ˆ̃wt(j) − ŵt+s + ˆ̃πw
t,t+s

]

+ L̂t+s (E.16)

Now, combine equations (E.14) and (E.16) as follows

1

1− ξwβ
ˆ̃wt(j) = Et

∞
∑

s=0

ξswβ
s

{

b̂t+s + λ̂w,t+s − λ̂t+s − ˆ̃πw
t,t+s + ν

[

L̂t+s −
1 + λw

λw

(

ˆ̃wt(j) − ŵt+s + ˆ̃πw
t,t+s

)

]

}

1

1− ξwβ

(

1 + ν
1 + λw

λw

)

ˆ̃wt(j) = Et

∞
∑

s=0

ξswβ
s
[

νL̂t+s + ν
1 + λw

λw
ŵt+s + b̂t+s + λ̂w,t+s − λ̂t+s+

−

(

1 + ν
1 + λw

λw

)

ˆ̃πw
t,t+s

]

=

= ξ0wβ
0

[

νL̂t + ν
1 + λw

λw
ŵt + b̂t + λ̂w,t − λ̂t −

(

1 + ν
1 + λw

λw

)

ˆ̃πw
t,t

]

+
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+ Et

∞
∑

s=1

ξswβ
s
[

νL̂t+s + ν
1 + λw

λw
ŵt+s + b̂t+s + λ̂w,t+s − λ̂t+s −

(

1 + ν
1 + λw

λw

)

ˆ̃πw
t,t+s

]

=

= νL̂t + ν
1 + λw

λw
ŵt + b̂t + λ̂w,t − λ̂t + ξwβEt

∞
∑

s=0

ξswβ
s
[

νL̂t+s+1 + ν
1 + λw

λw
ŵt+s+1 + b̂t+s+1 + λ̂w,t+s+1+

− λ̂t+s+1 −

(

1 + ν
1 + λw

λw

)

ˆ̃πw
t+1,t+s+1

]

− ξwβEt

∞
∑

s=0

ξswβ
s

(

1 + ν
1 + λw

λw

)

ˆ̃πw
t,t+1 =

= νL̂t + ν
1 + λw

λw
ŵt + b̂t + λ̂w,t − λ̂t +

ξwβ

1− ξwβ

(

1 + ν
1 + λw

λw

)

ˆ̃wt+1(j) −
ξwβ

1− ξwβ

(

1 + ν
1 + λw

λw

)

ˆ̃πw
t,t+1

which gives

1

1− ξwβ

(

1 + ν
1 + λw

λw

)

ˆ̃wt(j) =
ξwβ

1− ξwβ

(

1 + ν
1 + λw

λw

)

(

ˆ̃wt+1(j) − ˆ̃πw
t,t+1

)

+

+νL̂t + ν
1 + λw

λw
ŵt + b̂t + λ̂w,t − λ̂t (E.17)

The latter expression characterizes the optimal wage setting in terms of the optimal demand for
labor.

The log-linearized aggregate wage index in (D.26) is given by

−
1

λw
lnwt = ln

{

ξw

[

wt−1

(

πt−1e
zt−1+

α
1−α

vt−1

πeγz+
α

1−α
γv

)ιw
(

πte
zt+

α
1−α

vt

πeγz+
α

1−α
γv

)

−1]−
1

λw,t

+ (1− ξw) w̃t(j)
−

1
λw,t

}

−
1

λw
ŵt =

1

w−1/λw

{

− ξw
1

λw
w−

1
λw

−1
[

(wt−1 − w) +wιw
πt−1 − π

π
− w

πt − π

π
+ wιw (zt−1 − γz)+

− w (zt − γz) + wιw
α

1− α
(vt−1 − γv)− w

α

1− α
(vt − γv)

]

−
1

λw
(1− ξw)w

−
1

λw
−1 [w̃t(j)− w]

}

ŵt = (1− ξw) ˆ̃wt(j) + ξw

[

ŵt−1 − π̂t − ẑt −
α

1− α
v̂t + ιwπ̂t−1 + ιw ẑt−1 + ιw

α

1− α
v̂t−1

]

(E.18)

Combine the above expression with the log-linearized wage inflation given in (E.15) in order to
obtain the following log-linearized aggregate wage index in terms of wage inflation

ŵt = (1− ξw) ˆ̃wt(j) + ξw
[

ŵt−1 + ˆ̃πw
t−1,t

]

(E.19)

Next, combine equation (E.17) with equation (E.19) expressed both in current period and forward
one period, as follows
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1

1− ξwβ

(

1 + ν
1 + λw

λw

)[

1

1− ξw
ŵt −

ξw
1− ξw

ŵt−1 −
ξw

1− ξw
ˆ̃πw
t−1,t

]

=

=
ξwβ

1− ξwβ

(

1 + ν
1 + λw

λw

)[

1

1− ξw
ŵt+1 −

ξw
1− ξw

ŵt −
ξw

1− ξw
ˆ̃πw
t,t+1 − ˆ̃πw

t,t+1

]

+

+ νL̂t + ν
1 + λw

λw
ŵt + b̂t + λ̂w,t − λ̂t

Collect the terms, and add −ŵt on both the sides of the above equation
(

1 + ν
1 + λw

λw

)[

1

(1− ξwβ) (1− ξw)
+

ξ2wβ

(1− ξwβ) (1− ξw)

]

ŵt − ν
1 + λw

λw
ŵt − ŵt =

= −ŵt +

(

1 + ν
1 + λw

λw

)

ξw
(1− ξwβ) (1− ξw)

ŵt−1 +

(

1 + ν
1 + λw

λw

)

ξwβ

(1− ξwβ) (1− ξw)
ŵt+1+

+

(

1 + ν
1 + λw

λw

)

ξw
(1− ξwβ) (1− ξw)

ˆ̃πw
t−1,t −

(

1 + ν
1 + λw

λw

)

ξwβ

1− ξwβ

(

ξw
1− ξw

+ 1

)

ˆ̃πw
t,t+1+

+
(

νL̂t + b̂t − λ̂t

)

+ λ̂w,t

(

1 + ν
1 + λw

λw

)

ξw (1 + β)

(1− ξwβ) (1− ξw)
ŵt = −

[

ŵt −
(

νL̂t + b̂t − λ̂t

)]

+ λ̂w,t+

+

(

1 + ν
1 + λw

λw

)

ξw
(1− ξwβ) (1− ξw)

[

ŵt−1 + βŵt+1 + ˆ̃πw
t−1,t − β ˆ̃πw

t,t+1

]

ŵt =
1

1 + β

(

ŵt−1 + ˆ̃πw
t−1,t

)

+
β

1 + β

(

ŵt+1 − ˆ̃πw
t,t+1

)

+

−
1

1 + ν 1+λw

λw

(1− ξwβ) (1− ξw)

ξw (1 + β)

[

ŵt −
(

νL̂t + b̂t − λ̂t

)

− λ̂w,t

]

Substitute in the above expression equation (E.15) for log-linearized wage inflation, so that

ŵt =
1

1 + β
ŵt−1 +

ιw
1 + β

(

π̂t−1 + ẑt−1 +
α

1− α
v̂t−1

)

−
1

1 + β

(

π̂t + ẑt +
α

1− α
v̂t

)

+

+
β

1 + β
ŵt+1 −

βιw
1 + β

(

π̂t + ẑt +
α

1− α
v̂t

)

+
β

1 + β

(

π̂t+1 + ẑt+1 +
α

1− α
v̂t+1

)

+

−
1

1 + ν 1+λw

λw

(1− ξwβ) (1− ξw)

ξw (1 + β)

[

ŵt −
(

νL̂t + b̂t − λ̂t

)

− λ̂w,t

]

Rearranging the terms we obtain

ŵt =
1

1 + β
ŵt−1 +

β

1 + β
ŵt+1 −

1

1 + ν 1+λw

λw

(1− ξwβ) (1− ξw)

ξw (1 + β)

[

ŵt −
(

νL̂t + b̂t − λ̂t

)]

+
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+
ιw

1 + β
π̂t−1 +

β

1 + β
π̂t+1 −

1 + βιw
1 + β

π̂t +
ιw

1 + β
ẑt−1 −

1 + βιw − βρz
1 + β

ẑt+ (E.20)

+
ιw

1 + β

α

1− α
v̂t−1 −

1 + βιw − βρv
1 + β

α

1− α
v̂t +

1

1 + ν 1+λw

λw

(1− ξwβ) (1− ξw)

ξw (1 + β)
λ̂w,t

The above expression represents the log-linearized wage Phillips curve, and the term ŵt−
(

νL̂t + b̂t − λ̂t

)

is the log-linearized marginal utility of labor.

We are know going to re-express the wage Phillips curve in terms of the optimally chosen wage, w̃t,
by the households. For this purpose, combine equations (E.17) and (E.15) and rearrange the terms

1

1− ξwβ

(

1 + ν
1 + λw

λw

)

ˆ̃wt(j) = ν
1 + λw

λw
ŵt + νL̂t + b̂t − λ̂t + λ̂w,t+

+
ξwβ

1− ξwβ

(

1 + ν
1 + λw

λw

)(

ˆ̃wt+1(j)− ιwπ̂t − ιw ẑt − ιw
α

1− α
v̂t + π̂t+1 + ẑt+1 +

α

1− α
v̂t+1

)

in order to obtain

ˆ̃wt(j) = ξwβ ˆ̃wt+1(j) − ξwβιwπ̂t + ξwβπ̂t+1 + ξwβ (ρz − ιw) ẑt + ξwβ (ρv − ιw)
α

1− α
v̂t+

+
1− ξwβ

1 + ν 1+λw

λw

(

ν
1 + λw

λw
ŵt + νL̂t + b̂t − λ̂t + λ̂w,t

)

(E.21)

Given the definition of detrended capital utilization, (D.27), and its steady state (D.28), we log-
linearize it as follows

ln kt = ln
[

utk̄t−1e
−(zt+( α

1−α
+1)vt)

]

k̂t =
eγz+(

α
1−α

+1)γv

k̄

[ k̄

eγz+(
α

1−α
+1)γv

(ut − 1) +
1

eγz+(
α

1−α
+1)γv

(

k̄t−1 − k̄
)

−
k̄

eγz+(
α

1−α
+1)γv

(zt − γz)+

−
k̄

eγz+(
α

1−α
+1)γv

(

α

1− α
+ 1

)

(vt − γv)
]

which gives

k̂t = ût +
ˆ̄kt−1 − ẑt −

(

α

1− α
+ 1

)

v̂t (E.22)

Given equations (D.29) and (D.30), and the relations m̂t = ˆ̃mt+d̂t, andm = m̃, capital depreciation
rate is log-linearized as follows

ln δt = ln

[

ζuη
t

(

mt

k̄t−1
ezt+(

α
1−α

+1)vt
)

−σ

+ δ̄

]
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δ̂t =

(

m̃
k̄
eγz+(

α
1−α

+1)
)σ

ζ + δ̄
(

m̃
k̄
eγz+(

α
1−α

+1)
)σ

{

ζη

(

m̃

k̄
eγz+(

α
1−α

+1)
)

−σ

ût+

− ζσ

(

m̃

k̄
eγz+(

α
1−α

+1)
)

−σ−1(
m̃

k̄
eγz+(

α
1−α

+1)
)[

m̂t −
ˆ̄kt−1 + ẑt +

(

α

1− α
+ 1

)

v̂t

]

which gives

δ̂t =
ζ

ζ + δ̄
(

m̃
k̄
eγz+(

α
1−α

+1)
)σ

[

σˆ̄kt−1 − σ ˆ̃mt − σd̂t − σẑt − σ

(

α

1− α
+ 1

)

v̂t + ηût

]

The definition of maintenance costs given in (D.31), using (D.32), is log-linearized as follows

lnmt = ln
[

τutk̄t−1e
−(zt+( α

1−α
+1)vt) + M̄

]

m̂t =
1

m̃
τ k̄e−(γz+(

α
1−α

+1)γv)
[

ût +
ˆ̄kt−1 − ẑt −

(

α

1− α
+ 1

)

v̂t

]

Rearranging and recalling that m̂t = ˆ̃mt + d̂t, we obtain

ˆ̃mt = −d̂t + τ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1 [

ût +
ˆ̄kt−1 − ẑt −

(

α

1− α
+ 1

)

v̂t

]

(E.23)

Next, we log-linearize the law of motion of capital, given (D.33) and (D.34), as follows

ln k̄t = ln

{

(1− δte
σvt) k̄t−1e

−(zt+( α
1−α

+1)vt) + µt

[

1− S

(

it
it−1

ezt+(
α

1−α
+1)vt

)]
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}

ˆ̄kt =
1

k̄

{

(1− δeσγv) k̄e−(γz+(
α

1−α
+1)γv)

[
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(

α

1− α
+ 1

)

v̂t

]

+

− δeσγvk̄e−(γz+(
α

1−α
+1)γv)

[

δ̂t + σv̂t
]

+ i
(

µ̂t + ît
)

}

ˆ̄kt = (1− δeσγv) e−(γz+(
α

1−α
+1)γv)

[

ˆ̄kt−1 − ẑt −

(

α

1− α
+ 1

)

v̂t

]

− δeσγve−(γz+(
α

1−α
+1)γv)

[

δ̂t + σv̂t
]

+

+
[

1− (1− δeσγv ) e−(γz+(
α

1−α
+1)γv)

] (

µ̂t + ît
)

ˆ̄kt = (1− δeσγv) e−(γz+(
α

1−α
+1)γv)ˆ̄kt−1 − δeσγve−(γz+(

α
1−α

+1)γv)δ̂t+
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+
[

1− (1− δeσγv ) e−(γz+(
α

1−α
+1)γv)

] (

µ̂t + ît
)

− (1− δeσγv) e−(γz+(
α

1−α
+1)γv)ẑt+ (E.24)

−

[

(1− δeσγv)

(

α

1− α
+ 1

)

+ σδeσγv

]

e−(γz+(
α

1−α
+1)γv)v̂t

We log-linearize the aggregate resource constraint, given (D.35) and (D.36), as follows

ln
[

ct + it + a (ut) k̄t−1e
−(zt+( α

1−α
+1)vt) + m̃t

]

= ln [(1/gt) yt]

ŷt − ĝt =
g

y

[

cĉt + îit + m̃ ˆ̃mt + a′(1)k̄e−(γz+(
α

1−α
+1)γv)ût

]

Substituting the expression for the steady state of the optimal capital utilization rate given in
(E.11), and rearranging, the latter expression becomes

1

g
ŷt −

1

g
ĝt =

c

y
ĉt +

i

y
ît +

m̃

y
ˆ̃mt+

+

{

ρ− η
(

δ − δ̄
)

eσγv + τ

[

σ

(

m̃

k̄
eγz+(

α
1−α

+1)γv
)

−1
(

δ − δ̄
)

eσγv − 1

]}

k̄

y
e−(γz+(

α
1−α

+1)γv)ût (E.25)

Before log-linearizing the definition of actual GDP, combine equations (D.35) and (D.37) in order
to obtain the following expressions

xt = (1− 1/gt) yt +
yt
gt

− a (ut) k̄t−1e
−(zt+( α

1−α
+1)vt)

xt = yt − a (ut) k̄t−1e
−(zt+( α

1−α
+1)vt)

In steady state, the latter one becomes

x = y

which, recalling (E.11), will be used for the log-linearization computations as follows

lnxt = ln
[

yt − a (ut) k̄t−1e
−(zt+( α

1−α
+1)vt)

]

x̂t =
1

y

[

yŷ − a′(1)k̄e−(γz+(
α

1−α
+1)γv)ût

]

x̂t = ŷ − a′(1)
k̄

y
e−(γz+(

α
1−α

+1)γv)ût

x̂t = ŷ −

{

ρ− η
(

δ − δ̄
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eσγv + τ

[

σ

(

m̃

k̄
eγz+(

α
1−α
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)
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(

δ − δ̄
)

eσγv − 1

]}

k̄

y
e−(γz+(

α
1−α

+1)γv)ût (E.26)

Finally, denoting by x⋆ the stationary GDP gap, the nominal interest rate rule is log-linearized as
follows

ln

(

Rt

R

)

= ln

{

(

Rt−1

R

)ρR
[

(πt

π

)φπ

(

xt

x⋆
t

)φX

]1−ρR (
xt/xt−1

x⋆
t /x

⋆
t−1

)φdX

εmp,t

}
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lnRt − lnR = ρR (lnRt−1 − lnR) + (1− ρR) [φπ (ln πt − lnπ) + φX (ln xt − ln x⋆
t )]+

+ φdX (ln xt − ln xt−1 − ln x⋆
t + lnx⋆

t−1) + ln εmp,t

R̂t = ρRR̂t−1 + (1− ρR) (φππ̂t + φX x̂t − φX x̂
⋆
t ) + φdX (x̂t − x̂t−1 − x̂⋆

t + x̂⋆
t−1) + ε̂mp,t

obtaining, finally

R̂t = ρRR̂t−1 + (1− ρR)φππ̂t + [(1− ρR)φX + φdX ] x̂t+

− [(1− ρR)φX + φdX ] x̂⋆
t − φdX x̂t−1 + φdX x̂

⋆
t−1 + ε̂mp,t (E.27)
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F APPENDIX: Data construction

For the construction of our database we have used the series available on the CANSIM database of
Canadian Statistics. For the estimation of our model we use eight observables, which are

[

∆ logXt ∆ logCt ∆log Ĩt logLt ∆ log Wt

Pt
πt Rt ∆log

P I
t

Pt

]

The above variables are defined as follows

• Output: logXt=ln(GDP/POPindex)×100

• Consumption: logCt=ln[(CONS/IMPC)/POPindex]×100

• Investment: log Ĩt=ln[(INV /IMPC)/POPindex]×100

• Hours: logLt=ln[(H×EMPindex/100)/POPindex]×100

• Real wage: logWt/Pt=ln(COMPH/IMPC)×100

• Inflation: πt=[ln(IMPC/IMPC(−1))]×100

• Nominal rate: Rt=NOMR/4

• Relative price of investment: log(P I
t /Pt)=ln(IMPI/IMPC)×100

The terminology on the left-hand side of the above expressions is explained below.

GDP : Real Gross Domestic Product, billions of chained 2007 dollars, seasonally adjusted

CONS: Households final consumption expenditure in goods (non-durables and semi-durables) and
services, billions of dollars at current prices, seasonally adjusted

INV : Households final consumption expenditure in durable goods plus business gross fixed capital
formation, billions of dollars at current prices, seasonally adjusted

IMPC: GDP implicit price index (2007Q3=100), average of non-durables, semi-durables and
services, seasonally adjusted

IMPI: GDP implicit price index (2007Q3=100), average of durables and business gross fixed capital
formation, seasonally adjusted

POP : Labor force 15 years and over, number in thousands of civilian, non-institutionalized persons,
seasonally adjusted
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POPindex: POP (2007Q3)=1

EMP : Civilian employment 15 years and over, thousands, seasonally adjusted

EMPindex: 100×EMP (2007Q3)=1

H: Average of hours worked (2007Q3=100), business sector, seasonally adjusted

COMPH: Total compensation per hour worked (2007Q3=100), business sector, seasonally adjusted

NOMR: 3-month treasury bills, percent of seven-day average
Source: Financial market statistics, Bank of Canada
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G APPENDIX: Univariate convergence diagnostics

Fig. G.1: Univariate convergence diagnostics: maintenance model

...continue
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H APPENDIX: Impulse response functions

Fig. H.1: Impulse response functions to one standard deviation shock to labor augmenting technology

Fig. H.2: Impulse response functions to one standard deviation shock to monetary policy
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Fig. H.3: Impulse response functions to one standard deviation shock to government spending
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Fig. H.4: Impulse response functions to one standard deviation shock to intertemporal preferences
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Fig. H.5: Impulse response functions to one standard deviation shock to price mark-up

Fig. H.6: Impulse response functions to one standard deviation shock to wage mark-up


