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Abstract

This dissertation presents tools and methodologies to support the research commu-
nities, as well as industrial entities and policy makers, understanding the role that
flexibility assets and aggregators will play in the future Smart Grid.

A Virtual power plant framework for aggregators of flexibility resources is intro-
duced, based on two operation levels: the "Local assets level", where the aggregator
interacts with the end users collecting data to estimate and control their flexibility,
and the "Flexibility Aggregator level", where it interacts with the energy market
to buy/sell energy and provide different services. For each level, the aggregators
objectives are presented , together with a list of the main open questions/challenges
from both the research and industry communities.

A generalized modeling methodology is defined to describe and control the dif-
ferent flexibility assets as an equivalent energy storage. Using this formulation it is
possible to aggregate the contribution of thousands of heterogeneous assets by eval-
uating the single time-variant parameters and summing their relative contribution.

A simulation methodology to test the impact of integrating a thermal energy
storage with an existing HVAC system is presented, using the School of Art, Design
and Media building, located within the NTU campus in Singapore, as case study.
Results show how the extra flexibility granted by the energy storage can sensibly im-
prove a building performances, reducing reducing operational costs while improving
the cooling system efficiency.

The concept of equivalent storage model is introduced and applied to simulate
a heterogeneous population of 1000 thermostatically controlled loads. The study
demonstrates how moving from a dynamic setpoint strategy towards a dynamic
deadband one, consumers could trade energy saving potential to increase their load
flexibility. Relaxing the thermostats control deadband, aggregators can replace
more storage capacity integrating the same number of residential costumers. Using
the same simulation platform, a study on the impact of different climate areas on
the aggregated flexibility is presented. Results show how temperate climates get
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the most benefits from a dynamic deadband strategy, giving us precious indications
to build targeting recommendations.

A novel modeling approach is defined to describe an aggregation of Electric
Vehicles System Equipments (EVSEs) as an equivalent energy storage. The model is
based on five parameters that can be estimated using historical charging data. These
parameters depend on arrival and departure time, the energy consumed driving and
the charging frequency. They should be evaluated for each single EVSE and summed
up to aggregate their contribution.

Following our studies on flexibility assets modeling, the results from some exper-
imental tests performed in an industrial microgrid are presented. A sensible heat
thermal energy storage and the existing HVAC system are integrated to reduce the
peak load during critical hours. Results show that, when the strategy is revoked
and the original temperature setpoint is restored, a new peak is generated in terms
of power demand. Also, data show that sampling the electricity consumption with a
15 minutes time granularity is adequate to identify the activation of a load shedding
strategy.

The last part of the dissertation focuses on how to optimally manage the aggre-
gated capacity gathered from an heterogeneous portfolio of flexibility assets.
A methodology is presented to address the optimal portfolio management problem
for flexibility aggregators. The methodology integrates the equivalent storage mod-
els for flexibility assets in a convex optimization. The goal of the formulation is
to optimally manage the available flexibility resources, leveraging the energy price
variability to reduce operational costs, while producing valuable services for the
national grid. The methodology is tested in two alternative scenarios. Results show
that integrating controllable thermostatically controlled loads and electric vehicles
in an urban district, we can reduce aggregators need for extra storage capacity by
up to 30%, while providing the same level of service. Results highlight how inte-
grating EVSEs can have a positive, negative or neutral effect depending on mobility
schedules and the required service.

Finally, a multi-agent based control architecture is introduced with the scope of
managing the flexibility assets of an industrial microgrid. The control architecture
is tested using real data from an Italian industrial facility, simulating the inter-
ests of an aggregator which seek to optimally control the different flexibility assets
of the microgrid to reduce operational costs and limit consumption peaks during
critical hours. Different comparison metrics are introduced to highlight how the
effectiveness of the control architecture is affected by the energy price variability.
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Chapter 1

Introduction

The way we generate, control and distribute energy has always been one of the
pivotal problems for the human race. Men in caves used fire to generate heat and
satisfy their primary demands: heating their caves and cooking their food. Along
the centuries we evolved, together with our lifestyle and the nature of our neces-
sities: we need light to work and study at night; cooling energy to maintain food
for longer periods; mechanical power to move complex machineries. The industrial
revolutions first, and the discovery of electricity later, represented a paradigm shift
that change the way we thought about energy generation and consumption. These
pivotal moments set the cornerstones of the XX century society. All over the world,
countries started investing in fossil fuel power plants, in transmission and distribu-
tion networks to sustain the growth of energy demand coming from industries and
the new cities.

The XX century power grids requirements are quite simple: deliver cheap, reli-
able electrical power to everyone. XX century power grids are mostly based on
big thermal power plants, powered by fossil fuels, and unidirectional transmis-
sion/distribution networks, designed to reliably transmit power from generation
sites towards final users [87]. This paradigm, that worked fine for over a century,
is now challenged by a new set of requirements. The future power grids need to
deliver clean, cheap and reliable electrical power to everyone [56]. To make human
presence in this planet sustainable, we need our power generation and distribution
systems to be sustainable. This means shifting from fossil fuels towards alternative,
clean source of energy.

In the last two decades we have seen renewable generation technologies, such
as PV solar and wind turbines, getting introduced into every nation’s energy mix,
in both centralized, large power plants in the order of decades of mega-Watts, and
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distributed way, rooftops solar in the order of decades of kilo-Watts. This trend is
now stronger than ever, thanks to the ambitious goals that many countries of the
world are posing to reduce GHG emissions and record low auction prices, which are
making renewable generation every day more competitive. A recent report from the
International Energy Agency shows how solar PV installed capacity grew by 50%,
about 74 GW, in 2016 alone [55].

The 2016 Paris agreement goes towards this direction, committing industrialized
nations to reduce GHG emissions 80% below 1990 levels by 2050. A recent study
from E3 indicates a possible pathway to achieve these goals, highlighting how we
need to decarbonize the energy generation mix and push for the electrification of
our services, from the residential to the mobility sector [86]. Our services’ demand
is already becoming more and more dependent from the electrical grid, due to novel
technologies which are gradually being introduced. Highly efficient Heat pumps
use electricity to generate both cooling and heating energy, substituting natural
gas that was used for heating purposes. Plug-in electric vehicles aim to contribute
to the electrification of both private and commercial mobility sector, reducing our
dependency from fossil fuels while affecting the air quality in our cities. These
transformations, which are widely recognized as positive first steps towards our path
to decarbonization and a more sustainable future, also represent serious challenges
for the energy distribution network. They are forcing us to rethink the way we
design and operate power grids, which as today are not ready to cope with many
of these new technologies.

Power grids are designed to work under balanced supply and demand at all times.
This hard constraint is increasingly challenged by uncertain and intermittent renew-
able generation sources. Historically, grid balance was maintained by operating the
controllable thermal generators, dispatching the so called peaker plants which can
be ramped up and down at will. These power plants, which remain idle for the
majority of the time, are used to balance the demand, sustain power reliability,
compensate for grid’s frequency and voltage oscillations. This is what we call a
"demand following" paradigm: we operate the available peaker plants to cope with
the energy demand variance at all time. If the peak demand grows, we build new
peaker plants to cope with it.

This paradigm is being challenged by the growth of the peak demand to respect
with the average demand. The combined effect of residential loads electrification
and the adoption of distributed PV generation, generate a stiff ramp in the national
net-load demand during late afternoons, when people goes home from work and
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PV production start decreasing. We can see this happening around the world. In
California this issue is referred as the Duck Curve problem: CAISO (Californian In-
dependent System Operator) estimated that California’s late afternoon ramp needs
will increase up to 13 GW by 2020 [18]. Therefore, the system requires a flexible
resource mix that can react quickly and balance the fast changes in electricity net
demand, avoiding reliability issues. However, an MIT study, based on 2005-2009
data, demonstrates how peaker plants are not anymore a sustainable solution. The
study shows how in the states of New England and Washington, the national de-
mand of energy exceeded 70% of its peak for only about 1000 hours per year, so that
more then 30% of the installed capacity was in use less then 12% of the time [73].
Leaving aside the environmental standpoint, this trend makes peaker plants less
and less appealing also from the economic perspective.

The Smart Grid paradigm offers an alternative solution to this problem by shift-
ing part of the control burden from the generation to the demand side. The Smart
Grid combines advancement in information technology, power systems, energy sys-
tems engineering and data analysis to increase the power grid reliability. It works
by leveraging data to better manage grids’ resources, remotely controlling a port-
folio of distributed technologies so that they can actively respond to changing grid
conditions [58].
The Smart Grid implies a Copernican revolution from the perspective of the old
paradigm: we operate on the energy demand to cope with the variability of our
energy mix. Technically, we move part of the control burden from the centralized
generation systems to end users, incentivizing a diverse use of energy to reduce the
need for extra peaker plants. In this new paradigm, consumers play a more active
role, which is now possible thanks to the diffusion of low cost advanced metering
infrastructure and distributed technologies, such as remotely controllable inverter,
rooftop PV solar and electric energy storage systems.

Demand response programs were designed to engage end users and promote this
new paradigm. They aim to increase the distribution network flexibility using a bot-
tom up approach, aggregating distributed energy resources (DER) to maintain the
grid balance during critical hours. In exchange for using their resources, end users
get rewarded with economic benefits or services [82]. In this dissertation, we use the
term "Flexibility assets" to indicate DERs which can be coordinated and controlled
to reshape the energy demand at distribution level, providing extra flexibility and
services to the national grid (e.g. electric energy storage systems (EES), distributed
generation plants, as well as interruptible residential and industrial loads).

3
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These flexibility assets are characterized by their relative small capacities with re-
spect to the centralized generation, and they are connected to low and medium
voltage electricity distribution grids. Thus, while they have huge untapped poten-
tial, they need to be aggregated to functionally replace peaker plants in delivering
valuable electricity services. The Aggregation process is defined as the effort of
grouping distinct agents in a power system (i.e. consumers, producers, storage as-
sets) to act as a single entity when interacting with an energy market [15]. This
effort is coordinate by a new player in the energy market, the aggregator. Aggre-
gators are companies who act intermediary between end users and DER owners
that are willing to offer their capacity in exchange for benefits, and the power grid
participants which are willing to pay for the extra capacity [51].

Throughout this dissertation we will talk about flexibility assets, developing
models, methodologies and tools that can help us imagine their role in the future
energy distribution system. We will look at the problems from the prospective of
an aggregator, addressing some of the open questions that must be answered before
the Smart Grid vision becomes a reality.

1.1 Goals and main contributions

The main goal of this dissertation is to introduce tools and methods to
support the research community, as well as industrial entities and policy
makers, understanding the role that flexibility assets and aggregators
will play in the future Smart Grid.
This research field, while being in constant expansion and evolution, is already
extremely wide and complex. For this reason we decided to narrow the scope of this
work, defining our own vision for flexibility aggregators and focusing on three specific
types of flexibility assets: energy storage systems, thermostatically controlled loads
(TCLs) and electric vehicles (EVs).
The aggregator we envisioned is interested in the direct load control approach to
demand response, as opposed to the indirect one. The Direct load control paradigm
sees the aggregator as a central entity developing and enforcing automated con-
trol strategies to dispatch the distributed assets which are part of its portfolio of
resources; on the other hand, the indirect control approach wants to trigger behav-
ioral changes in the end users by setting an exogenous stimulus, e.g. a new energy
price tariff that penalizes specific hours of the day. We believe the former approach
to be more interesting due to its characteristics, which make it suitable for a wide
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range of grid services and demand side management applications, from slow ones
(e.g. price arbitrage in the day ahead market) to really fast one (e.g. grid primary
regulation) [59].
Our main contributions to the state of the art are the following:

• We introduce a Virtual Power Plant architecture for Aggregators interested
in performing direct load control of flexibility assets.

• By simulating an heterogeneous population of 1000 TCLs, we demonstrate
how a control strategy based on deadbands relaxation can significantly in-
crease the aggregated demand flexibility at the expense of energy efficiency.

• We define a modeling approach to describe and control an aggregate of EVs
charging stations as an equivalent energy storage.

• By performing tests in an industrial microgrid, we demonstrate that it is
possible to identify the activation of a peak reduction strategy using electricity
consumption data collected with a 15 minutes time granularity

• We define a methodology to solve the optimal portfolio management problem
for flexibility aggregators, using the equivalent energy storage models devel-
oped for the different flexibility assets within a convex formulation

• We present a multi-agent based control mechanism tailored over the necessities
of an industrial microgrid.

1.2 Dissertation Overview

In chapter 2, we introduce the Virtual Flexibility Plant framework for aggregators.
We distinguish between two operation layers for the aggregator. Each layer brings
its own open questions to be answered and challenges to be handled. Also, in this
chapter we present four different categories of flexibility assets, highlighting the
importance of introducing a general modeling formulation.
In chapter 3, we present a study on the effect of a thermal energy storage when
coupled with an existing Heating Ventilating and Cooling (HVAC) system. In par-
ticular we show how we can use the extra system flexibility to better manage the
heat pumps and increase the overall system efficiency.
In chapter 4, we implement a methodology to estimate the technical potential of an
aggregation of heterogeneous TCLs in providing demand response (DR) services.
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We use this methodology to assess the effect of different control strategies, and
different climate conditions, on the flexibility estimation.
In chapter 5, we focus on EV. We first discuss about risks and opportunities related
to a potential shift from fossil fuel based mobility towards EV. Then we introduce
an equivalent storage model for aggregations of EV charging stations.
In Chapter 6, we present some preliminary results obtained by introducing some
advanced demand management strategies in an industrial building. These strategies
aim to control the HVAC system and the local thermal energy storage to reduce
the building load during peak hours of the day.
In chapter 7, we introduce an optimal portoflio management strategy for flexibility
aggregators. We use it to optimally size the flexibility assets in the portfolio or,
given a fixed portfolio, to obtain the optimal dispatch profile. The framework uses
an equivalent energy storage approach to model the different assets of a potential
portfolio (Energy storages, EVs, TCLs). We present a general convex formulation
to address the optimal dispatch problem.
In chapter 8, we introduce a multi-agent based control architecture to efficiently
dispatch the flexibility assets of an industrial microgrid, based on DER availability
and time-of-use rates (TOU). We use actual consumption and generation data from
an Italian industrial microgrid and energy prices from different markets. The study
aims at highlighting the potential of such a control architecture and the impact of
the energy price.
In chapter 9, we conclude discussing the results we obtained and the impact we
expect for our research. We also suggest some future research path that can poten-
tially develop from our work.
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Chapter 2

The Virtual Flexibility Plant for
Aggregators

2.1 Preface to Chapter 2

In this chapter we introduce the Virtual Flexibility Plant framework for aggregators
of flexibility assets. We first present the related literature on the topic, then we
introduce the framework to describe the different tasks that the aggregator faces at
both the end users and aggregate levels. We use the last portion of the chapter to
introduce the general idea of equivalent storage formulation, explaining its crucial
role when modeling the different flexibility assets. Many of the concepts introduced
here will be referenced later throughout the thesis.

2.2 Introduction

The electrical distribution system is facing significant changes from both the gen-
eration and the demand prospectives. From the generation side we introduced new
distributed generation capabilities, intermittent renewable sources and new, more
and more affordable, ways to store energy. From the demand side we are seeing
a new electric loads coming from the residential, industrial and even the mobility
sector. Distributed energy sources (DERs) are connected to the low and medium
voltage distribution grids and are characterized by smaller capacity with respect to
the centralized units. Their primary goal is to provide reliable, stable, power to
local users, however their distributed nature enables a new set of services towards
both the final user and, once aggregated and coordinately controlled, the entire
distribution grid. Many studies from recent literature focus on the technical po-
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tential of DERs, energy storage systems and demand response strategies that, once
aggregated, can generate benefits for the distribution grid and value streams for
the end user. In [71] authors describe a method to estimate the technical potential
that California could leverage aggregating residential TCLs to provide frequency
regulation and spinning/nonspinning reserve. In [61] authors estimate the poten-
tial benefits of aggregating large numbers of electric vehicles charging stations to
optimally coordinate their charging strategy based on a time of use (TOU) rate
structure. To untap the full potential of these controllable distributed resources, to
make them observable and controllable, we must integrate them with smart sensors
and information technologies. Aggregators play a critical role as enablers, being
both the technology providers and the ones interested in using the untapped po-
tential to contract services with the grid. Aggregators are service and technology
providers, facilitating an active participation of end users and DER owners with
the energy market. They form a portfolio of consumers, distributed generation sys-
tems and controllable assets (e.g. DERs, energy storage) that must be optimally
managed with respect to an energy market. In [15] authors explore the value of
aggregation, distinguishing among different categories of them, showing how differ-
ent regulatory and market frameworks can be leveraged by aggregators to generate
value for them-self, for end-users and the entire distribution system. For example,
they can assume the basic role of retailers for their end users, while creating a value
stream for all the flexible assets and prosumers who wants to act as distributed
grid resources [14]. From the national grid prospective, the aggregator portfolio of
consumers, generators and storage represents a virtual power plant: an additional
backup resource that can be dispatched for a price. Virtual power plant (VPP)
aggregate distributed generation units, consumers and energy storage systems cre-
ating an ICT infrastructure to allow the continuous exchange of data. VPP main
goal is to optimally manage the distributed resources by trading the overall capac-
ity in an energy exchange platform. In recent years this vision of Virtual Power
Plants made by the aggregated contribution of many distributed assets have been
garnering interest in the research community. We suggest the interested reader to
refer to the work of Nosratabadi et al. [79]. They present a comprehensive review
of the concept of virtual power plant in relation to the one of microgrid and dis-
tributed resources. They also study the optimal scheduling problem, analyzing the
state of the art in all its aspects: modeling techniques, solving methods, objectives.
In this chapter we introduce a VPP framework for flexibility aggregators. We refer
to it as the Virtual Flexibility Plant (VFP). The VFP represents the aggregation

8



Chapter 2. The Virtual Flexibility Plant for Aggregators

mechanism we envisioned. We distinguish between two operational layers for the
aggregator, Each one with its own open questions to be answered and challenges to
be handled. Also, in this chapter we present four different categories of flexibility
assets, highlighting the importance of introducing a general modeling formulation.

2.3 Framework description

Figure 2.1 shows our framework for aggregators of flexibility assets, we call it Vir-
tual Flexibility Plant (VFP). We need to introduce four entities to describe it. The
aggregator has a central lore. It represents the company, or institution, which works
as facilitator between the distributed flexibility assets, that can provide distributed
flexibility increasing/reducing the consumption capacity, and the energy market
which requires such extra capacity. We refer here to energy market as a generic
entity which is representative of one or more market frameworks. The aggregator
can interact with all of them to buy energy, bid its virtual capacity and price its ser-
vices. The Minimum flexibility units represent grid nodes over which the aggregator
has observability and, in specific cases, direct control. These nodes represent point
of connection between the end users and the main grid. Each Minimum flexibility
unit is associated to one smart meter. The aggregator has no observability over
anything that happens behind this meter. The flexibility assets represent the differ-
ent kinds of resources that can provide extra flexibility to the end user demand and,
through the aggregator, to the distribution network. Throughout this dissertation
we are going to focus on three kinds of flexibility assets: energy storage systems,
controllable TCLs and electric vehicles. The VFP is a combination of distributed
generation units, controllable load and energy storage systems that are aggregated
to trade their flexibility for money and reduce their cost of operation. The ag-
gregator, which control the VFP, can coordinate its assets to arbitrage the energy
price, by buying more energy during low price hours and bidding its extra capacity
during peak hours. Alternatively, it can use its resources to sell specific services to
the grid. For example, the fast reactive assets of the portfolio (such as TCLs and
energy storage) can be dispatched to provide frequency regulation services. The
aggregator we envision operates at two distinguished levels: the "Local assets level",
where it interacts with the end users collecting data to estimate and control their
flexibility, and the "Flexibility Aggregator level", where it interacts with the energy
market to buy/sell energy and provide different services.
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Figure 2.1: The Virtual Flexibility Plant architecture for aggregators

2.3.1 Local assets level

At the "local assets level", the aggregator establish a peer-to-peer communication
channel with each Minimum flexibility unit. From the aggregator prospective each
Minimum flexibility unit corresponds to an asset of its portfolio of resources. The
aggregator needs observability and controllability over these nodes of its network,
thus each of them requires an appropriate advanced metering and communication
infrastructure. At any given time, the aggregator needs data on nodes’ net-load,
which represents the amount of power exchanged with the grid through the metering
points. Throughout this work we consider positive net-load when the power is
flowing from the main grid towards the end user, which means that behind the
meter the demand is greater then the local generation; we consider negative net-
load when the power is flowing from the end user towards the main grid, which
means that local generation is exceeding the demand. The "Minimum flexibility
unit" is an abstraction that represents different types of resources as nodes of the
aggregator’s portfolio. The Minimum flexibility unit is always associated to a single
meter but, depending on the aggregation level, it can be representative of a single
flexibility asset (e.g. an energy storage system, a cogeneration plant), a single end
user (e.g. an household), multiple end users (e.g. an urban district) or an industrial
microgrid. With the "minimum flexibility unit" abstraction, the aggregator is not
interested in how complex is the energy network behind a specific meter. Using
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historical data, the aggregator evaluates the natural behavior, the baseline, of each
node. The baseline is then used as a reference to estimate nodes’ flexibility in terms
of how much they can variate their power consumption with respect to their natural
behavior.

At the Local assets level the aggregator is interested in the following actions:

1. Enable the different Minimum flexibility units by providing the necessary ad-
vanced metering infrastructure to ensure observability and control

2. Estimate the baseline behaviour of each Minimum flexibility unit

3. Estimate the flexibility that each Minimum flexibility unit can provide

Both the academic and industrial research communities are working on solving a se-
ries of challenges in relation to these services. To begin with, aggregators need data
from the Minimum Flexibility Units. It is critical to define standards and protocols
to install the appropriate advanced metering infrastructure at the local level. This
problem involves different fields. The required set of sensors and communication
devices should be advanced enough to ensure observability and control, while being
affordable to allow aggregators to build a business model out of their services [57].
Moreover, it is crucial to define safety protocols and communication standards to
ensure end users privacy and cyber-security [64].
Once data is obtained, aggregators can move further and estimate, for each min-
imum flexibility unit, the baseline behavior and the potential flexibility that can
be provided. This process involves a modeling effort to transform, for each node,
historical and real time data into flexibility insights. All these modeling tasks are
necessary to build simulations, define and tests management strategies at both the
local assets’ and aggregator’s levels. These simulations can also be used for tar-
geting purposes, analyzing alternative sets of locations and end users to find the
optimal location for the aggregator to invest and propose its services. In this dis-
sertation we choose to focus on the modeling and simulation tasks, defining specific
methodologies to study the impact of different flexibility assets at both local and
aggregate level. To limit the scope of the research we choose to focus on three
kinds of flexibility assets. Chapter 3 is dedicated to energy storage systems, chap-
ter 4 to thermostatically controlled loads and chapter 5 to electric vehicles. We
briefly introduce the topic of the metering infrastructure in chapter 6, when we talk
about data granularity in demand side management applications, referring to some
experimental tests we performed in an industrial microgrid.
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2.3.2 Aggregator level

At the "Flexibility Aggregator level", the aggregator exchanges data with all the
"Minimum flexibility units" of its portfolio to estimate the available flexibility, send
control signals and observe the assets response. At the same time, it interacts
with the energy market to buy/sell energy and value its aggregated flexibility. The
aggregator final goal is to generate value for itself and to the end users which are
part of its portfolio by optimally managing their flexibility resources. Aggregating
multiple controllable assets, the aggregator accumulates flexibility which can be
leveraged to change its market position and provide different kind of services to
the national grid. For example, in the case of a residential district, by asking
the final users to reduce their net-loads the aggregator dispatches virtual positive
capacity; from the national grid prospective the overall energy demand decreases
momentarily. By asking to the final users to reduce their net-load the aggregator
dispatches virtual negative capacity; from the national grid prospective the overall
energy demand increases momentarily. At the Local assets level the aggregator is
interested in the following actions:

1. Estimate the aggregated flexibility that its portfolio of assets can provide

2. Identifie the optimal portfolio management strategy using energy price and
resource availability forecast to make inform decisions

3. Once identified the optimal strategy, send control signals to the single Mini-
mum flexibility units to dispatch them

4. Verify that each Minimum flexibility unit is actually able to follow the control
strategy using real time data and the baseline model

Also at this operational level, there are many challenges that need to be addressed
to enable the vision we have for large scale aggregators. Research need to de-
fine the necessary data infrastructure, which mean a generalizable data model, data
exchange protocols and a functional, scalable and secure database architecture. Ag-
gregators are also interested in how to build and optimally manage their resource
portfolios depending on the aggregation scale, market conditions, technical con-
straints and required services. Another interesting series of problems are related
to the development of business strategies to generate value for the end users, while
providing a service for the national grid and ensuring a profit for the aggregator.
Here, researcher in the field of multi-agent programming and game theory are work-
ing to simulate how different remunerative strategies could work to incentivize the
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aggregation of end users in coalition, so that they could be willing to offer their
flexibility in exchange for money or extra services. For example, Chalkiadakis et
al. adopted a similar approach to design a pricing mechanism to incentive fair and
efficient cooperative Virtual Power Plants [22].
In this dissertation we focus on how to optimally manage a portfolio of flexibility
assets. In particular we introduce and apply two alternative approaches, tailoring
them over the requirements of different aggregation levels. In chapter 7, we define a
convex formulation to solve the optimal portfolio management problem, applying it
to an urban district. In chapter 8, we present a multi-agent based control mechanism
to manage the assets of an industrial microgrid.

2.4 The equivalent storage formulation

As we discussed in the previous paragraphs, Aggregators want to observe the status,
aggregate and control the different flexibility assets of its portfolio. The nature
of aggregator’s portfolios could be extremely heterogeneous, integrating together
different kinds of flexibility assets: office loads through smart plugs, air conditioners
through thermostats, EVs through the relative charging stations. Furthermore,
depending on the aggregation level the portofolio could refer to the aggregated
resources of a local microgrid with a single point of connection with the national
grid, an urban district or a regional area with lots of points of connection. For
each asset of the portfolio, the aggregator needs to evaluate the relative flexibility,
in terms of how much the energy demand of the asset can increase/decrease in
respect with the baseline, and the associated cost for the resource dispatch. The
Virtual Flexibility Plant Framework introduces an higher abstraction layer in order
to model different flexibility assets, and refer to different aggregation levels, using
the same formulation. An energy storage system is a machine which stores energy
in different forms to increase the level of control over a system. From the grid
prospective, it can be considered as a flexibility generator. We can completely
define its behavior by knowing its state of charge (the internal energy content to
respect with its maximum capacity), its dissipation rate and the amount of power
which is being charged/discharged (figure 2.2).
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Figure 2.2: The equivalent energy storage model.

It seems natural to imagine every other flexibility asset as a particular case of an
energy storage system, described by the same parameters while constrained to follow
different sets of physical rules. Our Virtual Flexibility Framework uses a general
equivalent energy storage formulation to model the contributions of all the different
flexibility assets. In doing so we extend the generalized battery concept presented
in [49]. Our equivalent storage model is defined by a set of signals U(t) that satisfy
the following equations:

− η− <= U(t) <= η+ ẋt = −αxt − U(t) |x(t)| <= C (2.1)

Where η+ and η− represent respectively the maximum charging and discharging
rates of the equivalent energy storage system; the state variable x represents the in-
ternal energy of the system; α is the dissipation rate, the amount of energy naturally
lost due to storage inefficiencies, and C the total energy capacity of the equivalent
system. We can use this formulation to model and control a generic flexibility re-
source as a storage. To describe a generic flexibility resource using its equivalent
storage form, we need to define how to extrapolate the four equivalent storage pa-
rameters (energy capacity, maximum charging/discharging power, dissipation rate)
using real time and historical data. This task can be more or less straightforward
depending on the flexibility resource nature. As an example, in the case of residen-
tial air conditioners the equivalent storage capacity is related to the thermal mass
within the thermostat deadband; the state of charge can be associated to the rela-
tive distance between the indoor temperature and the comfort limits; the maximum
charging rate is equivalent to the maximum cooling capacity of the machine; the
dissipation rate is related to internal and external heat gains. Using this formu-
lation, we can aggregate the contribution of thousands of heterogeneous assets by
simply summing the equivalent storage parameters. Thus, we are able to describe
and control radically different kinds of portfolio using the same set of modeling
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and optimization tools. Later in this dissertation we are going to present how to
estimate the equivalent storage parameters for an aggregation of controllable TCLs
and EVs, respectively chapters 4 and 5.

2.5 Conclusion

In this chapter, we introduced the virtual flexibility plant framework for aggregators.
The framework is based on two operation levels: the "Local assets level", where the
aggregator interacts with the end users collecting data to estimate and control their
flexibility, and the "Flexibility Aggregator level", where it interacts with the energy
market to buy/sell energy and provide different services. For each level we presented
the aggregators objectives, its activities and a list of open questions/challenges
from both the research and industry worlds. We explained the reasons behind the
need for a generalized modeling methodology and presented the equivalent storage
formulation for flexibility assets. Using this formulation, we can aggregate the
contribution of thousands of heterogeneous assets by simply summing the equivalent
storage parameters. Thus, we are able to describe and control radically different
kinds of portfolio using the same set of modeling and optimization tools. In the
next chapters we will talk about different flexibility assets, showing how they can
be integrated at different levels of the distribution grid and provide different kinds
of services.
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Chapter 3

Energy storage systems as
flexibility resources

3.1 Preface to Chapter 3

In the last chapter we talked about the Virtual Flexibility Plant framework for ag-
gregators. We used the framework to introduce the main research questions that
we will face throughout this dissertation. With this chapter we begin discussing
about the different flexibility assets. Specifically, we focus on energy storage sys-
tems, showing how they can be integrated with existing HVAC plants to increase
the flexibility of the system and produce economic benefits. This chapter has been
published as follows: "G.Comodi, F.Carducci, N.Balamurugan, A.Romagnoli; Ap-
plication of Cold Thermal Energy Storage (CTES) for building demand management
in hot climates. Applied Thermal Engineering (2016), V. 103 pp. 1186-1195". I
undertook the majority of work related to this chapter, including all the modeling
tasks, the development of a simulation platform and the interpretation of results.
Mr. Balamurugan provided some preliminary analysis on the dataset. Assistant
professors Comodi and Romagnoli contributed with comments on the ideas pre-
sented and editorial assistance.

3.2 Introduction

Climate change is unequivocal. Each of the last three decades has been successively
warmer than any preceding decade since 1850, and the concentration of Greenhouse
Gases have increased. Society can reduce the carbon intensity of energy services,
pushing the transition toward low-carbon and/or carbon-neutral technologies [39].
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Buildings will play an important role since they represent around 40 percent of
world energy demand and 25 percent of global water demand, while producing one
third of total GHG emissions [36]. Energy demand for building cooling will be one
the main causes of the growing energy consumption of developing countries located
in hot/tropical climates, hence major efforts are necessary to limit their energy de-
mand. Demand Side Management is a mean to increase the efficiency of an entire
power system, from generation to the end use, optimizing resources allocation, lim-
iting the peak demand, shaping the loads depending on the necessity of the grid [94].
In this context, Thermal Energy Storage (TES) is becoming more and more inter-
esting, since it currently represents one of the most cost-effective solutions to enable
demand management strategies [4]; TES enables storing thermal energy (either heat
or cold) through a storage medium capable to release the required amount of energy
when needed [34]. Several studies demonstrated the effectiveness of such systems
in different contexts. Cabeza et al. [16] showed the CO2 mitigation potential of
TES systems for different applications (refrigeration, solar power plants, passive
system in buildings, greenhouses, dishwashers) and countries. They emphasize the
importance of analysing each scenario separately, since different applications impact
the energy system in different ways and the results can be heavily affected by the
energy mix of the reference country. Arteconi et al. [5] described an existing instal-
lation of TES in Italy and performed simulations to prove the potential of different
Demand Side Management strategies. Their results showed that the use of TES
leads to an increase in energy demand, while costs decrease proportionally with the
difference between peak and off-peak energy rates. Schreiber et al. [90] reported
the performance of absorption thermal energy storage combined with cogeneration
for industrial applications: they proved that, when appropriately integrated with
low grade heat sources, TES has the potential to increase the energy efficiency
of the industrial process, reducing the primary energy consumption up to 25%.
Chvala [25] presented a technical assessment of TES technology to investigate the
potential in U.S. federal buildings sector, concluding that TES is a feasible solution
for this category of buildings: thus, TES should be taken into consideration when
retrofitting and/or replacement of chillers is carried out. Ora et al. [80] proved the
benefits, both energetic and economical, of using a combination of TES and direct
air free cooling to satisfy the energy demand of a 1250 kW data centre. The use
of direct free cooling is shown to be feasible by itself, however, when using TES in
combination with an off-peak electricity tariff, the operational cooling cost can be
further reduced. Deforest et al. [32] investigated the economic benefits of sensible
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heat thermal energy storage by simulating its application, for an office building,
in four different locations spread across the world (Miami, Lisbon, Shanghai and
Mumbai). Their results showed the potential of TES systems in reducing the an-
nual electricity costs (5-15%) and peak electricity consumption (13-33%). All these
studies concur to establish that the feasibility of TES applications is related to eco-
nomic and climatic conditions such as electricity rates/regulations and duration of
cold/hot seasons respectively. In this chapter we focus only on cold thermal energy
storage (CTES) applied in hot climate. In particular, we propose a techno-economic
methodology to size CTES according to different management strategies: peak load
management, price arbitrage and replacement of chillers’ partial load operations.
The last strategy is particularly interesting since it demonstrates how, under certain
conditions, CTES can be used to increase the overall efficiency of the cooling system.
We investigate the viability of CTES for building demand management purposes in
hot climates. We propose a case study using data from the School of Art, Design
and Media (SADM), located within the Nanyang Technological University (NTU)
campus in Singapore. We develop and apply a deterministic model to evaluate the
impact of integrating the CTES with the existing cooling system. In the first part of
the chapter, we outline the case study, describing the building, cooling plant, energy
demand and enhancement opportunities in terms of cooling system efficiency. In the
second part, we describe the sizing methodology, the modeling technique, and the
different scenarios of interest. Finally, we discuss the results of the techno-economic
analysis.

3.3 Materials and Methods

3.3.1 Energy audit

The climate in Singapore

Singapore lies just north of the Equator near Latitude 1.5 deg N and Longitude 104
deg E. Due to its geographical location and maritime exposure, Singapore climate
is characterized by uniform temperature and pressure, high humidity and abundant
rainfall. There is not a distinct wet or dry season: maximum rainfall occurs in
December and April, while the drier months are usually February and July. Daily
temperature usually ranges between a minimum of 23-26C and a maximum of 31-
34C with extremes of minimum of 19.4C and maximum of 36C. With regards to
ambient relative humidity (R.H.), the daily R.H. spans between 90% (and above) in
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Figure 3.1: Model of the building’s cooling system

the early morning and 60% in the mid-afternoon; the mean value is 84% but during
prolonged heavy rain, relative humidity often reaches 100%.

Cooling system description

The School of Art, Design and Media (SADM) was built in 2007 as an institutional
building with offices, laboratories, libraries, studios and lecture theaters. The build-
ing is located inside the Nanyang Technological University campus. Air condition-
ing for the building is provided by three water chillers, as represented in figure 3.1.
Chillers (CH) A and B are fitted with centrifugal compressors, using R-123 refrig-
erant, having a cooling capacity of 1582 kW each. Chiller C is fitted with a screw
compressor, using R-134a refrigerant, having a cooling capacity of 1055 kW. Each
chiller has its own dedicated chilled water pump, condenser water pump and cooling
tower. Each pump and cooling tower are fitted with a variable speed drive. The
speed of the chilled water pumps (CHWP) and cooling towers (CT) varies from 30
to 50 Hz, while the condenser water pumps (CWP) are operated with fixed speed
at 31Hz. All the air handling units are fitted with electronic air filter and CO2
sensor. A building management system (BMS) is in place to monitor and control
the systems operation. During weekdays, Chiller C is in operation from 7.30 am to
10.30 pm and from 7.30 am to 1.30 pm on Saturdays. Chiller B usually provides
the cooling energy demand exceeding the capacity of chiller C. Chiller A is usually
used as backup unit. The building is closed on Sundays and Public Holidays (PH),
therefore none of the chillers operates during these periods.
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Table 3.1: Chillers specs

Parameter CH (A-B) CH(C)
Refrigerant R-123 R-134A

Cooling Capacity 1582 kWc 1055 kWc
Year of Manufacture 2006 2003

Chiller related electric power 270 kW 169 kW
Chilled water supply temperature 6.7 °C 6.7 °C

Chilled water mass flow 68.5 l/s 45.2 l/s
Condenser water supply temperature 29.5 °C 29.4 °C
Condenser water return temperature 35.0 °C 34.6 °C

Condenser water mass flow 85.7 l/s 56.78 l/s
Rated COP 5.8 6.2

Table 3.2: Chilled water pumps specs

Parameter CHWP A - B CHWP C
Design flow rate 68.5 l/s 45.5 l/s

Design pump head 28.1 m 35.0 m
Design motor power 37.0 kW 30.0 kW

Table 3.3: Cooling towers specs

Parameter CHP A - B CHP C
Design flow rate 85.7 l/s 58.3 l/s

Design pump head 27.0 m 25.0 m
Design motor power 37.0 kW 30.0 kW

Table 3.4: Cooling towers specs

Parameter CT
Cooling capacity 1973kW
Design flow rate 85.71 l/s

Design condenser water supply temperature 29.5 °C
Design condenser water return temperature 35.0 °C

Design wet bulb temperature 26.7 °C
Design motor power 3x7.5 kW
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Cooling load and compressor operating efficiency

The present study utilizes real data obtained by monitoring the chillers system over
4 months. Since there is no real alternation in climate between summer and winter
in Singapore, the measured cooling load is almost steady throughout the year. Thus,
the behavior of the building over 4 months can be considered representative of a
whole year cooling demand. Data were collected with a 1-minute time-step and then
aggregated to obtain 15-minute cooling load and COP profiles. Figures 3.2 to 3.5
show both the variability and the non-elasticity of the daily cooling load profile of
each month. Figures highlight a regular pattern for the cooling load during the
four monitored months: the compressors starts operating at 07:00 and turns off at
23:00. Three different operating phases can be identified for the cooling system. A
peak-load phase in the morning between 07:00 and 09:00, due mostly to the high
quantity of cooling energy necessary to overcome the rise of building temperature
occurring during nights and week-ends. Indeed, since the BMS is programmed
to switch-off during both night time and week-ends, the indoor temperature of
the building increases because of the high minimum outside temperature (usually
around 26C). A maintaining phase, between 09:00 and 19:00, when the cooling load
ranges between 1000-1200 kWc. A partial load phase, between 19:00 and 23:00, in
which there is a reduction of cooling demand due to both the lower occupancy of
the building and, to a lesser extent, to the lower outside temperature. Figure 3.6
shows the measured coefficient of performance of the system as a function of the
cooling demand. The average COP of the chiller system is 5.3 (during office hours
between 08.30 and 17:30).

Figure 3.2: Cooling load profiles in March 2015
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Figure 3.3: Cooling load profiles in April 2015

Figure 3.4: Cooling load profiles in May 2015

Figure 3.5: Cooling load profiles in June 2015
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Figure 3.6: Coefficient of Performance of the cooling system

Opportunities for demand side management

The energy audit highlights some opportunities to improve the cooling systems
techno-economic performance. In particular, starting from the data presented in
Figures 3.2 to 3.5, three area of intervention have been identified. Figure 3.7 shows
the cooling load profile for a typical working day as measured over the 4 months
monitoring period.

Figure 3.7: Cooling load profile for a normal operative day

First area of intervention, Partial load operation (red area)
The audit showed that Chiller C has the highest rated COP (refer to Table 3.2);

the datum is confirmed by the experimental data (refer to figure 3.6) which show
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that the cooling system performs better (COP around 5.5) in the range of 1000-1100
kWc, whereas its performance decreases at partial load with COP dropping down
to 4.9 at around 700 kWc. A possible intervention, hence, consists of exploiting
storage technologies to avoid chiller partial load operations.

Second area of intervention, Peak-load management (yellow area)
At the present time, the BMS automatically manages the three chillers (refer

to Table 3.1) to supply the exact quantity of cooling energy required. As already
emphasized, the cooling system works most of the time in the maintaining phase
supplying around 1000-1200 kWc of cooling energy which is very close to the 1050
kWc cooling capacity of chiller C ( refer table 3.1). Hence, a second possible area of
intervention should address the opportunity of exploiting demand side management
in order to reduce the peak load so that only the most performing chiller (chiller C,
Table 3.1) is operated, with the two others serving as backup units.

Third area of intervention, Price arbitrage
This intervention is strictly economic and relates to the exploitation of the price

arbitrage potential due to the difference between peak and off-peak electricity tariff
in Singapore. The larger the spread between the peak and off-peak electricity tariff,
the larger could be the economic benefit. In Singapore, the off-peak energy tariff
is about 65% of the peak one. The peak period is between 07:00 and 23:00, which
matches the daytime working schedule of the SADM building. Hence, the third area
of intervention is to evaluate the techno-economic opportunity of shifting most of
the cooling load from peak to off-peak hours.

The goal of this work is to assess the viability of using Cold Thermal Energy
Storages (CTES) to implement demand side management strategies in order to in-
crease the overall efficiency of the whole cooling system. In particular, the following
actions are assessed:

3.3.2 Energy storage Modeling and design methodology

Energy Storage Model

For the techno-economic analysis, a deterministic model is adopted to simulate
the behavior of the storage. The purpose of the model is to evaluate the amount
of electrical energy consumed to charge the storage when in operation. The first
step consists in defining the amount of cooling energy to be shifted by means of
the storage depending on the type of action to be implemented. Once defined
the amount of energy to be shifted, the amount of cooling Energy-To-Charge is
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Figure 3.8: Energy storage model

calculated. The Energy-To-Charge can be easily calculated as:

ECharge = EShift

η
(3.1)

Where is the charge/discharge efficiency of the storage, also called round trip
efficiency. The storage efficiency is approximated as a constant parameter, evaluated
considering the average charging, discharging and storing losses. The steady-state
model does not account for the change in external conditions (e.g. temperature,
humidity) which, in the real case, would affect the storage efficiency. This simplified
model is particularly suited for a preliminary techno-economic feasibility study in
Singapores climate characterized by almost steady ambient conditions along the day
and across the year.

Cooling energy demand of the building

The assessment of the cooling energy demand of the building is essential for the
techno-economic analysis of a CTES. Table 3.5 shows a list of parameters used
to define the daily cooling energy demand of the building. For each month, the
daily average cooling energy consumption of the building, the daily average COP
(COPDA) of the chillers, the daily AVG electricity consumption (Daily AVG Elec-
tricity Consumption) and the monthly cooling energy consumption (Monthly load)
were calculated referring to the real load profiles, obtained by monitoring the cooling
system for four months. In order to assess the effect of CTES on the performance
of the cooling system, the COP of the system was also calculated for three different
periods of the day: the Daily AVG COP, the Daily AVG COP between 07:00-18:00
and the Daily AVG COP between 19:00-23:00. Table 3.5 also reports the monthly
surplus and the daily average surplus calculated from real acquired data. These
values were calculated in order to address Action 2 (yellow area in Figure 3.7) in
which only the most efficient chiller (chiller C) is operated during peak hours. The
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Table 3.5: Cooling energy demand of the building

Month Monthly
load
(kWhc)

Daily
AVG
load
(kWhc)

Daily
AVG
elec
load
(kWhe)

Daily
AVG
load
19-23
(kWhc)

Daily
AVG
COP

Daily
AVG
COP
19-23

Monthly
sur-
plus
(kWhc)

Daily
AVG
sur-
plus
(kWhc)

March 344801 12771 2425 2714 5 5.2 4.3 9242
April 390061 14447 2744 2742 5.4 5.5 5.1 18273
May 359861 12409 2357 2547 5.3 5.4 5.1 6941
June 344000 11862 2253 2559 5.4 5.4 4.9 7332

Figure 3.9: Typical CTES system’s configuration

monthly surplus represents the sum of all the hourly surplus of a specific month.
The daily average surplus is calculated as the Monthly Surplus divided by the num-
ber of operative days. The hourly surplus (Esurplus) is defined as the difference
between the hourly energy demand and the rated capacity of chiller C (CchillerC,i)
and it is calculated for the ith hour as:

Esurplus,i = Edemand,i − CchillerC,i (3.2)

Storage technology and charge/discharge management

The medium considered in the CTES system is water (sensible heat storage) at
atmospheric pressure operating with a temperature of 5°C (temperature range be-
tween 7°C when fully charged and 12 °C when fully discharged). Figure 3.9 shows
the proposed schematic diagram of the CTES.

The storage efficiency of the CTES system depends on its components such as the
insulation material, the water diffusion mechanism inside the vessel, the auxiliary
systems (pumps, heat exchanger). The thermal energy storage technology review
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from Irena, indicates that TES systems have an efficiency which spans between
50% and 90% [108]. However, specific tests and experimental analysis carried out
by some of the authors of this paper on a real sensible heat thermal energy storage
located in Italy, have ascertained a storage efficiency of 85% [5]. The capital cost
for the whole system was also calculated as 212 US$/m3, including the cost for
vessel, hydraulic system, compact heat exchanger and civil works. With regard
to the operating strategies, TES system usually operates in full storage or partial
storage mode. Full storage systems are designed to cover the whole energy demand
during peak hours. On the contrary, partial storage systems shift the excess demand
from a pre established threshold and can be used to shave the peaks, to stabilize the
variable load of the energy demand or to partially replace the chillers system. CTES
operating in full storage mode results in a larger and more expensive design since
it aims to completely replace the cooling system during peak hours; this operating
mode is usually suitable for large peak/off-peak spreads.

Comparison metrics

The main parameters utilized to assess costs and potential benefits of each proposed
solution are the following: storage size, electricity to charge, percentage of electricity
saved, economic savings, savings per energy unit (specific savings), estimated capital
costs and payback period. The Storage size is calculated using the following relation:

Q = mcpδT (3.3)

Where Q represents the daily energy quantity to shift (based on the average
working day and on the type of action addressed), expressed in kJ; m is the total
mass of water stored in the vessel in kg; cp is specific heat of water at constant
pressure, expressed in kJ/kgK; is the maximum temperature difference to which the
storage medium is subjected. The Daily Electricity to Charge (kWh/day) represents
the amount of electricity consumed to charge the storage. It is related to the Energy
to Charge (Equation 3.1) and the chillers average COP during charge (COPcharge).
As an example, when addressing the first area of intervention, the charge operations
occurs during off-peak hours, with chillers operating at rated capacity and rated
COP (see Table 3.1).

Echarge_daily = Echarge

COPcharge
(3.4)

The new Daily Electricity Consumption (Edaily_cons)after the CTES introduc-
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tion is calculated according to Equation 3.5, being a function of the Daily Electric-
ity to Charge (Echarge_daily), the Daily Energy to Shift (Eshift_daily) and the COP
(COPphase) of the chillers in the phase considered (peak load, maintaining, partial
load).

Edaily_cons = Edaily_con − Eshift_daily

COPphase
+ Echarge_daily (3.5)

The performance of the chillers can be represented by the Daily AVG COP,
either the Daily AVG COP 7-18 or the Daily AVG COP 19-23, depending on which
portion of the energy demand is being shifted. As an example, when addressing
the first area of intervention, shifting the energy to avoid partial load operations
(red area, figure 3.7), the average COP considered is the Daily AVG COP 19-23.
The Annual electricity savings (Savingsele), measured in kWh, are calculated as the
difference between the Daily electricity consumption of the cooling system before
and after the CTES introduction, multiplied by the Number of Operative Days per
Year (Nd).

Savingsele = (Edaily_cons − Edaily_charge) ∗ Nd (3.6)

The Economic savings (Savingseco), measured in US dollars, are calculated as
the difference between the yearly operative costs before and after the introduction of
the energy storage. When evaluating the yearly operative costs the Energy-to-Shift
per day, the Energy-To-Charge per day, the spread between peak (PT) and offpeak
tariffs (OPT) and the number of operative days per year are taken into account.

Savingseco = (Eshift_daily

COPavg
− Edaily_charge)(PT − OPT ) ∗ Nd (3.7)

The Savings per energy unit (US$/kWhc) is obtained by dividing the economic
savings by the energy capacity of the storage. This is a measure of the overall
effectiveness of the solution. The Payback period (PBP ) (years) represents the
main parameter to assess the economic feasibility of an investment: it is evaluated
considering the capital costs (Capex) and the annual Economic savings.

PBP = Capex

Savingseco
(3.8)
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Figure 3.10: The new cooling system integrating the CTES

3.4 Results and considerations

This section presents the main results of the techno-economic study carried out in
order to find the optimal sizing of the CTES according to its use in the cooling
system management strategy. It was assumed that the new cooling system (Fig-
ure 3.10), integrating the cold storage and the present chillers, had to satisfy a daily
average cooling energy demand of 12872 kWhc , considering 275 operative days per
year. In particular, 12872 kWhc was calculated as the average cooling energy de-
mand in the four monitored months and it represents the 100% of the design daily
average cooling energy demand. Figure 3.10 shows the simplified scheme of the new
cooling system integrating CTES.

3.4.1 Integrating a storage to avoid partial load operations

In this case, the storage was sized to manage the average cooling energy demand
of the SADM building between 7 and 23 period, which corresponds to 2800 kWhc
(Energy-to-shift) of cooling energy during an average working day. The cold storage
works in total storage mode: during off-peak hours the most efficient chiller (chiller
C, Table 3.1) charges the storage; from 8 to 19 the existing chillers supply the
cooling energy required, with an average COP of 5.4; from 19 to 23 the energy
demand is completely satisfied by the cold storage (Figure 3.11). Indeed, without
the CTES, the chillers worked during peak hours in the red zone of Figure 3.11,
with an average COP of 4.8. Using the CTES, 2800 kWh of cooling energy can
be shifted in off-peak hours, with chillers operating at rated capacity with a higher
average COP of 6.2. The new cooling system does achieve more than 11 MWh of
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Figure 3.11: New cooling load obtained ntegrating a storage to avoid partial load
operations

electricity savings per year. In order to store 2800 kWh of cooling energy a 482m3

vessel is necessary. The investment cost can be estimated as 212US$/m3 while
the economic savings are calculated as 11480 US$ (that is a 4.1 US$/kWh). The
estimated payback period is 8.9 years (Table 3.6).

3.4.2 Integrating a storage to replace the backup chillers

In this case, the storage was designed to shift the daily average surplus in the
average working day. In this scenario CTES works in partial storage mode: during

Table 3.6: Main results obtained using a storage to avoid partial load operations

Parameter Value
Energy To Shift 2800 kWh
Annual electricity savings 11520 kWh
% of the daily demand stored 21.7%
Storage size 482 m3
Economic Savings 11480 US$/year
Savings per energy unit 4.1 US$/kWh
Estimated cost 102184 US$
Payback 8.9 years
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Figure 3.12: New cooling load obtained using a storage to replace the backup
chillers

off-peak hours chiller C charges the storage at rated capacity, with a COP of 6.2;
from 8 to 19 chiller C supplies the cooling energy required to the building at its
maximum capacity (1050 kW); whenever the energy demand exceeds the 1050 kW
limit, the cold storage provides the surplus energy required (Figure 3.12). The
improvements in the overall cooling system efficiency are limited: the benefits of
charging the storage during night, at rated COP, are almost completely lost in the
storing process. Under the economic point of view this scenario entails a shifting of
731 kWh of cooling energy for a volume of the storage of 126m3 and an estimated
investment cost of 102184 US$. The yearly Economic savings are calculated as 1660
US$ (2.27 $/kWh), for a payback period of 16 years.

3.4.3 Integrating a storage to arbitrage the energy price

This sizing scenario is meant to exploit the price arbitrage potential due to the
difference between peak and offpeak electricity tariffs in Singapore. The proposed
operating schedule is a sort of hybrid storage mode, which is a combination of the
two previous operating strategies: during off-peak hours the chillers work to charge
the storage; from 08 to 19 the storage works in partial storage mode, using the stored
energy to compensate the daily average surplus (yellow area in Figure 3.13); from
19 to 23 the storage works in total storage mode so that the cooling energy demand
relies uniquely on the cold storage (red area in Figure 3.13). This scenario was
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Table 3.7: Main results obtained ntegrating a storage to replace the backup chillers

Parameter Value
Energy To Shift 731 kWh
Annual electricity savings 20 kWh
% of the daily demand stored 5.7%
Storage size 126 m3
Economic Savings 1660 US$/year
Savings per energy unit 2.27 US$/kWh
Estimated cost 26653 US$
Payback 16 years

evaluated for four different percentage of the daily energy demand: 27%, 50%, 75%
and 100%. The 27% of the total energy demand represents the minimum storage
capacity necessary to address both the first and the second area of intervention (red
and yellow areas in Figure 3.11). Regardless of the percentage of the daily energy
demand being shifted, priority is always given to the period between 19 and 23 to
avoid the chillers working at lower COP (red area in Figure 3.13). Using the hybrid
storage operating strategy, shifting the 100% of the daily demand, 32180 US$ of
savings per year were estimated, with a 2.5US$/kWh rate. To shift this quantity
of cooling energy a 2214m3 vessel is necessary for an estimated investment cost
of 469371US$. Table 3.8 shows the model outputs related to the other suggested
designs.

3.4.4 Results discussion

The results, showed in Table 3.6 to 3.8, demonstrate that the introduction of
CTES entails a reduction of the electricity consumption of the cooling system for
most of the suggested scenarios. At a first sight, this result could be unexpected
since the energy storage introduces an inefficiency in the whole cooling system.
This result is explained by the fact that, in these two scenarios, the CTES allows
the optimal management of the cooling system achieving a higher average COP
able to compensate the inefficiency introduced by the storage itself. In the 75%
and 100% scenarios, Chillers A, B and C have to work together, thus the AVG
COPcharge is much lower (Daily AVG COP between 7 and 18, table 3.5) than in
the other scenarios in which the cooling system can work with the COP of the most
performing chillers. The Savings per energy unit gives an indication of which design
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Figure 3.13: New cooling load obtained Integrating a storage to arbitrage the
energy price

Table 3.8: Main results obtained integrating a storage to arbitrage the energy
price

Parameter 27%
daily
demand

50%
daily
demand

75%
daily
demand

100%
daily
demand

Energy To Shift (kWh) 3531 6436 9654 12872
Annual electricity savings
(kWh)

10505 6932 -72144 -101092

Storage size (m3) 608 1107 1661 2214
Economic Savings (US$/year) 14124 23427 24811 31180
Savings per energy unit
(US$/kWh)

4 3.64 2.57 2.5

Estimated cost (US$ ) 128896 234685 352132 46937
Payback (years) 9.1 10 14.2 14.6
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is the most effective. The sizing scenario described in Table 3.6 is the best with
savings of 4.1 US$/kWh. In this case the whole amount of Energy-To-Shift exploits
both the peak/off-peak price spread and the cooling efficiency enhancement moving
from the lower COP value due to partial load operations (Daily average COP 19-
23, table 3.5), to the rated COP of chiller C (6.2). Table 3.7 describes the suitable
CTES size to replace chillers A and B in addressing the demand surplus from 7 to
19; the results show that the Savings per energy unit (2.27 US$/kWh) and Annual
electricity savings are negligible. Indeed, this scenario is the only one that does not
address the partial load operations, thus offering much less potential improvement
of the cooling system performances. However, it still manages to produce savings
and once the existing system starts getting older or less efficient, such a design
can be taken into consideration to replace the chillers, downsizing the installed
equipment. The 27% case is of particular interest since it represents the minimum
investment to address both the first and second area of intervention described in
Section 3.3.1. This design is able to exploit both the profitable aspects discussed
before, proving itself extremely effective (2.76 US$/kWh of savings per energy unit).
The 75% and 100% cases, as already mentioned, are the most inefficient designs,
since they need the three chillers to work together to charge the storage, resulting in
a lower average COP: the introduction of the storage actually increases the energy
consumption of the cooling system which leads lower Savings per energy unit (2.57
and 2.50 US$/kWh). From a purely economic point of view, the results shown in
Tables 3.6, 3.7 and 3.8 demonstrate the viability of the suggested solutions. The
payback periods stand between a minimum of 8.9 years and a maximum of 16 years.
An expected good result considering that the case study presents some of the ideal
conditions for CTES applications: a large, steady, cooling demand throughout the
year. Moreover, the cooling demand profiles perfectly match with the peak period
of Singapore electricity tariff. On the other hand, the spread between peak and off-
peak tariff is not particularly large and it does not represent an adequate economic
incentive to shift the loads to off-peak hours. All considered, CTES applications
seem appealing in Singapore. The main limit of CTES technology with sensible heat
is the low energy density value, which results in large amount of space requirements.
This work showed that the storage volume ranges from 482 m3 to 2214 m3 in the
case of complete day-night shifting of the cooling energy demand. A large amount
of space in direct proximity of the building is necessary and, especially in highly
populated cities like Singapore, is not always available.
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3.5 Conclusions

This work has demonstrated the feasibility of CTES for building demand manage-
ment in hot climate. The School of Art, Design and Media building, located within
NTU campus in Singapore, served as case study. In the first part, the building char-
acteristics and the demand profiles were analyzed to search for energy efficiency im-
provement opportunities. Three possible areas of intervention were identified: (i) to
reduce/remove partial load operations; (ii) to exploit demand management strate-
gies in order to reduce peak loads, so that only the most performing chiller needs
to operate; (iii) to perform price arbitrage, exploiting the difference between peak
and off-peak electricity rate in Singapore. Six scenarios were described, addressing
different percentage of the average daily demand. For each scenario the appropriate
size of CTES and the key performance indicators were evaluated. Results indicate
that it is possible to enhance the efficiency of the whole system, achieving, for most
of the cases, both energy and economic savings. In particular, the most effective
solution is that with the CTES replacing the cooling system partial load operation.
The payback periods of the different scenarios stand between a minimum of 8.9 years
and a maximum of 16 years. All these aspects make CTES applications appealing.
However, sensible heat technology is characterized by a low energy density value,
which results in large amount of space requirements. For the case study, the storage
volume ranges from 482m3 to 2214m3, thus a lot of space in direct proximity to the
building is necessary and, especially in highly populated cities like Singapore, is not
always available.
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Chapter 4

Thermostatically controlled
loads as flexibility resources

4.1 Preface to Chapter 4

In the last chapter we talked about energy storage systems showing how, when
correctly integrated with an existing plant, they can provide extra flexibility to the
system and value to the final user. In this chapter we introduce another category
of flexibility assets, the thermostatically controlled loads (TCLs). Specifically we
focus on the intrinsic flexibility of the residential cooling energy demand. The aim
of this chapter is to introduce a new methodology to evaluate the impact of end
users’ comfort preferences in their demand flexibility. The proposed methodology is
designed from the prospective of an aggregator which seeks to evaluate the flexibility
potential, and eventually control, an aggregate of residential air conditioner units.
We also present, and test, a new thermostat control strategy based on deadband
relaxation, highlighting its impact on the aggregate demand response potential.
I undertook the majority of work related to this chapter, including part of the
modeling tasks, the development of a simulation platform and the interpretation of
results. Dr. Emre Can Kara, Dr. Michaelangelo Tabone and Sila Kiliccote provided
help with technical support, ideas and editorial assistance.

4.2 Introduction

Many nations have set ambitious goals to increase energy production from renewable
sources. The European Union (EU) set a target of 33% share of renewable electric-
ity by 2020 among its member states [81]. In the U.S., 29 states committed to some
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form of Renewable Portfolio Standards (RPS). These combined RPSs require an
additional 60 GW of renewable capacity by 2030 [9]. This trend poses a challenge
to power distribution systems in terms of reliability, maintenance costs, and service
quality. Power grids are designed to work under balanced supply and demand. In-
termittent generation disturbs this balance, making it more challenging to operate
the system reliably, maintain service quality, and reduce costs [56] [76]. Specifically,
the state of California is concerned with balancing supply and demand in evening
hours, when solar generation is decreasing and residential loads are increasing (i.e.
the duck curve problem) [18]. Demand response (DR) offers a solution to mitigate
some of these issues, by controlling the demand. Thermostatically controlled loads
(TCL) in residential buildings, such as refrigerators, air conditioners, heat pumps
and electrical boilers, are among most studied DR resources [62]. Often, these loads
operate via hysteresis, modulating the indoor air temperature between upper and
lower bounds around a setpoint, which are defined by users’ preferences. By chang-
ing these bounds and controlling the setpoints, TCLs are able to rapidly adjust their
demand. These characteristics make them ideal candidates to provide fast respond-
ing ancillary services [12]. TCLs have been studied extensively in literature and we
refer the interested reader to [19]. Recent studies focus on new methods to model
an aggregation of TCLs and evaluate their DR potential. In [60], authors suggest
an autoregressive method to quantify the potential of an aggregation of TCLs in
supplying automated DR services. They use lagged values of setpoint adjustments,
outdoor air temperature, solar insulation and auxiliary power as regressors to pre-
dict the cumulative shed capability during a DR event. In [49], authors describe
the flexibility of an aggregation of TCls as a stochastic battery. The model key
parameters, such as power limits, energy capacity and dissipation rate, are defined
by TCLs characteristics, outdoor air temperature and end user setpoint preferences.
In [24], authors introduce a new control strategy for residential TCls, designed to
provide fast DR resources. The discomfort degree hour method is used to estimate
the DR strategy impact over end users comfort. In [71] authors describe a method
to estimate the energy storage capabilities, and the associated revenue potential
of an aggregation of residential TCLs. They estimate that the technical resource
potential of residential TCLs in CA is in the order of 10-40 GW and 8-12 GWh,
and it would alone satisfy the 2020 statewide energy storage mandate [71]. In [102],
the authors use a large set of simulated buildings to develop a new framework to
estimate TCLs’ DR potential using Energy Plus and two-state models. In [43] the
authors explore the flexibility of heat pumps, accounting for different energy de-
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mands, heat sources and distribution systems. Their results show that flexibility is
strongly dependent on ambient temperature and system size. Most of these works
analyze the impact of a limited set of exogenous variables on TCLs flexibility, such
as buildings’ physical characteristics and the weather. Furthermore, these works
often report a trade-off between energy savings and flexibility. However, with the
increasing penetration of renewables, wind and solar generation are likely to be
curtailed at times when they exceed consumer demand. At these times, it becomes
appropriate to use this excess energy at the expense of efficiency in order to en-
able flexibility [99]. In addition, the role of user behavior on DR potential is often
overlooked, partly because it is hard to accurately model user behavior in physical
models used in these papers. Nevertheless, it is critical to define the boundaries
within which TCls flexibility can be stretched. In [83], the authors demonstrate the
importance of having accurate models to capture users’ occupancy patterns and
avoid energy savings over-estimations, stressing the need for further research about
user behavior. In this study, we investigate the impact of human behavior on the
DR potential of residential cooling load estimates and flexibility. Specifically, we
focus our attention to regulation and load shifting flexibility. Regulation is an ancil-
lary service that accounts for the short-term variability in supply and demand that
might affect the stability of the power system control area. It is a service that is
provided throughout the day. The providing load and generation units adjust their
load or generation based on a 4 second signal. We define load shifting flexibility to
address the afternoon ramping problem facing California under increased renewable
generation scenarios. We estimate the potential of residential cooling loads to shift
their consumption to less critical times of the day. In both cases, we analyze the
changes in DR potential estimates when human behavior is incorporated as tem-
perature setpoint schedules and temperature deadband width adjustments. We use
the TCL model suggested in [71] to simulate the cooling load of a heterogeneous
population of air conditioners in three different climate zones. We test several sim-
ulation setups. Specifically, we incorporate dynamic deadband width and dynamic
setpoint adjustment scenarios to assess the impact of each parameter on the DR
potential estimates for regulation services and addressing the duck curve problem.
Finally, we present insights for customer targeting.
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4.3 Methodology

4.3.1 Individual TCL model and flexibility

In this work, we build a simulation framework from the discrete-time model pre-
sented in [71]. We believe that his model represents a good trade-off between es-
timation accuracy and computational complexity. Indoor temperature θ of each
household i is calculated for each time step k using:

θi
k+1 = aiθi

k + (1 − ai)(θi
a,k − qi

kθi
g). (4.1)

where θi
a,k represents the outdoor air temperature; θi

g is the temperature heat gain,
which depends on the household thermal resistance R and the air conditioning
machine characteristics (rated power P and coefficient of performance η). a is
a non-dimensional parameter regulating the sensitivity of the model to an inter-
nal/external heat gain. We implement the thermostatic hysteresis using the binary
activation variable q to maintain the internal temperature within the upper θ+,k

and lower θ−,k comfort boundaries as follows:

θi
g = RiP iηi (4.2)

It is given as follows:
ai = e(−h/RiCi) (4.3)

We assume a constant coefficient of performance (η), while in reality it should
change in relation to the outdoor air temperature. Comfort boundaries are defined
by the user’s indoor temperature setpoint and thermostat deadband width. We use
them to implement different preferences and behavior in our model. For default
users we use constant setpoint (CS) and deadband preferences θdefS and δdefD. We
then implement two different control strategies using θadjS and δadjD. We change
the setpoint and deadband width with respect to default users, as given in 4.4 for
the lower boundary. A similar formulation can be given for θ+,k.

θ−,k = (θdefS + θadjS,k) − (δdefD + δadjD,k)
2 (4.4)

θ+,k = (θdefS + θadjS,k) + (δdefD + δadjD,k)
2 (4.5)

These two control strategies are dynamic setpoint (DS) and dynamic deadband
(DD). The DS case represents users with defined setpoint schedules based on their
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daily routine, relaxing the setpoint constraints when they are away, thus reducing
the daily energy requirement. The DD case maximizes the cooling load flexibility
by enlarging the deadband when the users are away. The constant setpoint case
represents the user which is unable, or does not care, to adjust the setpoint tem-
perature when is not home. While this profile is obviously bad from the point of
view of the consumer, which is going to pay a higher bill for the extra energy con-
sumption, the aggregator has guaranteed a certain amount of flexible load. During
the day, when nobody is home, load variability is completely dependant on exter-
nal heat gain sources. The dynamic setpoint case represents the commonly-used,
energy-saving control strategy based on thermostat’s setback. The end-user defines
a setpoint schedule based on his daily routine, relaxing the setpoint constraints
when nobody is home, thus reducing the daily cooling energy requirement. From
the prospective of the aggregator, this strategy reduces the amount of curtailable
load in certain hours of the day, reducing the potential for down regulation services.
The dynamic deadband case is designed to maximize the cooling load flexibility. We
assume that DR will not violate the user’s comfort settings. Thus no DR is avail-
able if the indoor temperature is outside of temperature deadband. As in [71], we
quantify the DR potential by modeling air conditioners as a virtual energy storage,
constrained by aggregated energy capacity Ecap and power capacity Pcap. Ecap,k

represents the additional amount of additional energy required by all (Na avail-
able air conditioning systems to traverse their deadbands in ON mode compared
to the expected energy use under normal operation. Mathieu et al. define Ecap as
Ecap,k =

∑Na
i=1 P ihi

p,k(1 − Di
k).

Di
k =

hi
p,k

hi
p,k + hi

u,k

. (4.6)

hp represents the amount of time it takes for the air conditioner to traverse the
deadband in ON mode and is given as follows:

hi
p,k

= −RiCi ln
θi

−,k − θi
a,k

+ θi
g

θi
+ − θi

a,k
+ θi

g

. (4.7)

The amount of time required in OFF mode,hu, is evaluated using a similar for-
mulation. In our model, both hp and hu are time dependent, since they are sub-
jected to comfort boundaries and outdoor temperature variations. The duty cy-
cle D is the faction of time the air conditioner is on, which is the ratio of hp to
hp + hu. The power capacity Pcap represents the maximum charging and/or dis-
charging rate of the virtual energy storage and can be evaluated as Pcap,k =

∑Na
i=1 P i.
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Pm is the average power consumption of the aggregation and can be estimated as
Pm,k =

∑N
i=1 P iDi

k. We use these parameters to quantify the potential of our ag-
gregation to provide frequency regulation services or load shifting services. In both
cases, we assume that θi is equal to the expected indoor temperature value (i.e.
halfway between θi

−,k and θi
+,k). In CAISO, the regulation market clears every

15-minutes [17] and the aggregator bids the maximum power capacity it is able to
sustain. For each 15-minute block, we calculate the aggregated regulation potential
as Preg,k = min(Ecap,k

2×3 , Pcap,k −Pm, Pm). Preg is constrained by energy and capacity
limits. Ecap is divided by 2 because the expected indoor temperature is halfway be-
tween the deadband limits, and divided by 3 to account for the difference between
the simulation timestep and the market clearing timestep (i.e. 5 minutes vs. 15
minutes). Furthermore, Preg is constrained by the up and down power capacity of
the equivalent virtual storage.

Preg,k = min(Ecap,k

2 × 3 , Pcap,k − Pm, Pm) (4.8)

For the load shifting problem, we are interested in evaluating the amount of en-
ergy that the AC population can shift from evening to less critical hours of the
day, Eshift,k. For this purpose, we evaluate the load shifting potential starting at
6pm, when the power grid starts requiring more capacity to balance between the
increasing residential demand and the decreasing renewable generation. The energy
shifting potential represents the amount of energy that the aggregator is able to
curtail for three straight hours, from 6pm to 9pm, using cooling load flexibility.
Similar to Preg, Eshift,k could be written using a set of constraints:

Eshift,k = min( Ecap,k

2 × 12 , 3Pm) (4.9)

In (4.9), Ecap is divided by 12 to convert the energy value from the simulation time
step of 5 minutes to an hourly time step; i.e., kWh.

4.3.2 TCLs characteristics

We simulate a population of 1000 households. The characteristics of each household
are defined by R, C, P and η. For each household in the population, we sample
these parameters from the distributions given in [71]. For the CS case, the indoor
temperature setpoint is 22.5 C and the constant deadband width is 0.5 C. When
assessing the regulation potential using the DS and DD cases, we assume that
the users are away from home between 7am and 6pm. For the evening shifting
problem, we extend the flexible range to 7am and 9pm. Figure 4.1 shows the
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Figure 4.1: The boxplots represent the parameters distribution for the simulated
population of households.

resulting parameters distribution from our population of households. Another set
of assumptions is related to the thermostat setpoint temperature and the relative
deadband width. We arbitrarily choose the indoor temperature setpoint to be 22.5C
for the entire population of simulated households, considering a deadband width of
0.5 C. We refer to these values as "default temperature" and "default deadband",
since in our simulations they represent the comfort boundaries for the constant
setpoint case, or whenever the end user is home. We also define the daily schedule
of the consumers living the simulated households. We want their schedule to be
representative of a typical working day, thus we arbitrarily assume that nobody is
home from 7am until 6pm.

4.3.3 Simulation setup

Using hourly outdoor air temperature data from 2016 [44], we evaluated the median
temperatures for each hour in summer for three cities that represent different climate
zones: Sacramento, Los Angeles and Las Vegas. We use these temperature profiles,
depicted in Figure 4.2, as an input to the TCL model. For each city, we assess the
impact of the different control strategies in terms of both daily regulation potential
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Figure 4.2: Median temperature profiles for Sacramento, Los Angeles and Las
Vegas

and load shifting potential. We use the CS case (identical to [71]) as a benchmark
for all the other cases, we then simulate different DS and DD scenarios, testing a
range of θadjS and δadjD values between 0.5C and 3C .

Specifically, for dynamic setpoint we increase the setpoint by 0.5, 1,1.5,2 and 2.5
C and for dynamic deadband we increase the deadband width by 0.5, 1,1.5,2 and
2.5 C, respectively.

4.3.4 Thermostat control strategies

TCLs operate maintaining the indoor temperature between upper and lower bounds
which are defined by consumer’s setpoint preferences and the control deadband area.
A deadband area is necessary to guarantee some hysteresis to the control loop.
Without it, TCLs would be switching their on/off state as soon as the established
setpoint temperature is crossed. For an aggregation of TCLs, the control strategy
represents the way to translate consumer’s behavior into action. In this work, we
investigate the overall impact of different control strategies on flexible cooling loads,
while analyzing the implications for both aggregator and end users.

• The constant setpoint case represents the user which is unable, or does not
care, to adjust the setpoint temperature when is not home. While this profile
is obviously bad from the point of view of the consumer, which is going to pay
a higher bill for the extra energy consumption, the aggregator has guaranteed
a certain amount of flexible load. During the day, when nobody is home, load
variability is completely dependant on external heat gain sources.

• The dynamic setpoint case represents the commonly-used, energy-saving con-
trol strategy based on thermostat’s setback. The end-user defines a setpoint
schedule based on his daily routine, relaxing the setpoint constraints when no-
body is home, thus reducing the daily cooling energy requirement. From the
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Figure 4.3: Power and indoor air temperature profiles generated using different
thermostat control strategies.

prospective of the aggregator, this strategy reduces the amount of curtailable
load in certain hours of the day, reducing the potential for down regulation
services.

• The dynamic deadband case is designed to maximize the cooling load flexibil-
ity. The consumer is still defining a schedule to modify his comfort constraints
when nobody is home. However, instead of setting back the internal tempera-
ture setpoints, it relaxes the dead band width around the same setpoint. As a
result, the dead band area increases, which means that the TCL has a larger
energy buffer to consume before switching to a new state.

4.4 Results

Figure 4.3 shows sample air conditioning load profiles and the respective indoor air
temperatures for a single household, generated using the different control strategies
presented in this chapter.The CS and DS cases have similar power consumption
patterns in terms of switching frequency and periodicity. The DD strategy has a
significant effect on the load. The main difference is represented by the longer sig-
nal period, which is the direct consequence of an increased deadband. The larger
the deadband, the longer it takes for the indoor temperature to reach the com-
fort boundaries. While the end user is in the house the three curves are perfectly
superimposed. During working hours, the indoor temperature profiles diverge con-
siderably. With the DS, after a transition period in which the air conditioning

44



Chapter 4. Thermostatically controlled loads as flexibility resources

system is not available, the indoor temperature starts modulating around the new
setpoint. This strategy produces considerable cooling energy savings in all cities
as depicted in the left panel of Figure 4.5. However, as shown in the middle panel
of Figure 4.5, the regulation flexibility is impacted negatively. In the DD scenario,
the air conditioners modulates around the same temperature, even during working
hours. However, the expanded deadband width allows the system to maintain the
operating status for a longer period. This increases the regulation flexibility in
all the cities and the model seems to be sensitive to the outdoor air temperature
conditions. Specifically, we observe that the added value of an expanded deadband
width is more pronounced in milder climates. The DD increases the average regu-
lation flexibility per day per household by almost 11 kWh (600%) in Sacramento,
by 12 kWh (250%) in Las Vegas and by 3 kWh (260%) in Los Angeles (Figure 4.5).
Sacramento and Las Vegas show comparable results in absolute terms, however, in
Sacramento, the DD control strategy is able to increase the available flexibility by
almost six times with respect to the DS case. Indeed, in milder climates households
are subjected to lower heat gains, which means that it takes more time for the in-
door temperature to cross the deadband and reach its upper limit with a relaxed
duty cycle. As a result, we obtain more capacity to dispatch DR services. On
the downside, the DD strategy increases the average daily energy consumption per
household by around 5 kWh (75%) in Sacramento, 6 kWh (15%) in Las Vegas and
0.6 kWh (80%) in Los Angeles. (Figure 4.5). From the load shifting perspective,
there is no flexibility in Los Angeles regardless of the control strategy adopted. In
the CS case, we observe the same level of flexibility for both Sacramento and Las
Vegas. However, when switching to a DS, Sacramento’s potential is largely reduced,
while Las Vegas’ remains unaltered. This reduction is driven by the outside tem-
perature when thermostat setback occurs, making cooling already unnecessary for
6 pm at Sacramento. The DD strategy increases the flexibility potential in both
Sacramento and Las Vegas. Figure 4.5 shows that all homes under CS shift about
0.2 kWh of cooling away from evening hours into afternoon hours. Our study shows
that if consumers were to be able to do DD instead of DS, they could shift an extra
1 kWh of cooling load during the same period. Overall, our results highlight the
importance of capturing human behavior and preferences when estimating demand
response potential. These preferences impact the model’s response to the same set
of inputs significanly. Using the dynamic setpoint strategy, consumers can achieve
a substantial reduction in terms of cooling energy consumption, however, the ag-
gregator who would be interested in selling grid services, find itself with a scarcer
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Figure 4.4: The effect of different control strategies over 1000 simulated house-
holds in terms of cooling load.

share of controllable loads. Relaxing the deadband width, we trade energy savings
potential for a boost in terms of cooling load flexibility. Depending on how valuable
this flexibility become in the future, one or the other strategy could become more
or less interesting to pursuit from the aggregator’s prospective. The impact of these
control strategies is amplified in certain climate conditions. Specifically, temper-
ate climates get both the most benefits out of the dynamic deadband strategy, in
terms of a flexibility boost, and drawbacks, in terms of increased cooling energy
consumption. Thus, aggregator companies which are willing to build a portfolio of
flexible cooling loads portfolio, should take into account in their evaluations both
the climate conditions and consumers preferences, considering the full range of im-
plementable control strategies, to avoid a misleading representation of the actual
potential of their assets. They should target costumers in specific locations and
implement different control strategies depending on the kind of service they want
to provide, taking into account all the possible value streams. It is worthy to note
that, a house in Las Vegas provides more cooling load flexibility than the same house
in Sacramento if both use dynamic or constant setpoint control strategy. However,
if we implement a dynamic deadband control in Sacramento, the relative benefit is
much larger than a house in Las Vegas.

4.5 Conclusions and next steps

In this work, we used a well-studied TCL model to simulate the cooling load of
1000 residential air conditioner units and analyze the impact of human behavior
on their DR potential. Specifically, we tested three different control strategies to
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Figure 4.5: The impact of different control strategies on cooling load, regulation
flexibility, and shifting flexibility.

capture human behavior and preferences: the thermostat is not programmed at all
and a constant setpoint temperature is maintained throughout the day (constant
setpoint strategy); the setpoint temperature is set back during working hours (dy-
namic setpoint strategy); instead of setting back the setpoint during unoccupied
times, we expand the deadband around the setpoint (dynamic deadband strategy).
Specifically, the dynamic deadband strategy increased the average regulation flexi-
bility per day per household in Sacramento by 10.8 kWh (591%) and by 11.9 kWh
(247%) in Las Vegas. On the downside, it also increased the average daily en-
ergy consumption by 5.3 kWh (76.5%) and 6.0 kWh (14%) per day per household
respectively. Results showed the same trend when addressing the ramping prob-
lem: households using the dynamic deadband strategy were able to shift extra 1
kWh of cooling load away from evening hours, into afternoon hours. We modeled
a heterogeneous population of 1000 households using a specific set of parameters
sampled from uniform distributions. Using this population, we ran 33 different sim-
ulations, testing the effect of different climate conditions and setpoint/deadband
variations. We observed that human behavior, expressed through thermostat con-
trol preferences, has a critical effect on the estimated demand response potential.
Using the dynamic setpoint strategy, consumers achieve substantial cooling energy
savings while sacrificing a share of their load flexibility. On the other hand, by
relaxing the deadband, consumers trade energy savings potential for an increase in
flexibility. While the trading efficiency for flexibility may seem wasteful, models of
high penetration renewable energy systems suggest that significant curtailment of
PV generation may be required during daytime [99]. Thus consuming excess energy
during the day to prevent consumption in the evening may be very beneficial. The
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impact of the different control strategies is amplified in certain climate conditions.
Specifically, temperate climates get the most benefits from a dynamic deadband
strategy in terms of flexibility. A house in Las Vegas provides more load flexibil-
ity than the same house in Sacramento if both use a DS or CS control strategy.
However, the relative benefit of implementing DD in Sacramento is much larger
than in Las Vegas. Future strategies for enabling DR will benefit from focusing on
human behavior. Aggregators can target specific combinations of costumers and
locations to maximize flexibility. They may also encourage consumers to alter their
comfort limits instead of their set points, and then offer to optimize cooling energy
consumption to either reduce costs or to best support the integration of renewables.
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Chapter 5

Electric vehicles as flexibility
resources

5.1 Preface to chapter 5

In the last two chapters we analyzed two kinds of flexibility assets, respectively ther-
mal energy storage and thermostatically controlled loads, that can be integrated
in residential or commercial buildings to enable advanced energy demand control
strategies. In this chapter we talk about electric vehicles (EVs) as a distributed
flexibility resource. As our main contribution, we present a modeling approach
to describe an aggregation of Electric Vehicles System Equipments (EVSEs) as
an equivalent energy storage. We describe the different parameters governing the
model, explaining how they can be estimated from historical charging patterns. Fi-
nally, we talk about the importance of mobility patterns and EVSEs characteristics,
as they influence the aggregate ability to shift the energy demand and provide extra
flexibility. The equivalent energy storage model we present here is part of a study
on EVs flexibility and Aggregation, lead by Mr. Michael Pertl, PhD candidate at
Denkmark Technishe University (DTU). I undertook the majority of work related
to this chapter, including the definition of an equivalent energy storage model. Mr.
Pertl contributed to the modeling tasks and realizing the use case in section 5.4.1.
Doctors Emre Can Kara, Michaelangelo Tabone, Mattia Marinelli and Sila Kiliccote
provided help with technical support and ideas.
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5.2 Introduction

The progressive rollout of electric vehicles (EV), which is concurrent with the decar-
bonization of the power sector, can bring environmental benefits in terms of global
CO2 emissions reduction and air quality in our urban centers [54]. For such reasons,
many international institutions and governments are setting ambitious targets to
foster a rapid growth for this technology. By the end of 2015, 1.26 million electric
cars were on the road worldwide. The Paris declaration on Electro-Mobility and
Climate Change sets a global goal of 100 million electric cars by 2030 [53]. The
European Union aims at achieving by 2050 a 60% reduction in its GHG emissions
levels compared with those of 1990 [27]. At the same time, California set its own
target to deploy 1.5 million electric vehicles on the road by 2025 [96]. These are
ambitious goal that will force people to reconsider the very idea of mobility, having
an impact not only on the environment but on our day-to-day lives too. Such a
rapid growth for this technology introduces a number of challenges from the infras-
tructural point of view. The mass diffusion of EVs will affect the way we design
parking lots and gas stations, modify urban mobility patterns and considerably af-
fect the electricity demand of our cities. Martinenas et al. [69] study the effects of
uncontrolled EV charging at distribution level, analyzing the risks for obsolete elec-
trical infrastructures. This latter aspect its particularly critical since todays power
system is already under stress due to the combined effect of residential electrifica-
tion and distributed renewable generation, which is increasing the peak demand in
late afternoons, pushing the system to invest massive resources to match the de-
mand ramp [18]. Research is focusing on ways to model and simulate the effect of
EV charging at both transmission and distribution levels, to develop guidelines and
strategies to have a smoother integration between EVs and power grids. Many re-
cent studies have focused on the potential benefits of controlled charging as oppose
to uncontrolled charging. Specifically, these studies demonstrate how aggregated
Electric Vehicles charge offer some degrees of flexibility that could potentially be
leveraged to increase districts resiliency, redistribute part of the energy demand
towards convenient periods of the day and even offer ancillary services to the grid,
such as frequency regulation [63]. This flexibility can be leveraged by installing
an appropriate Electric Vehicle System Equipment (EVSE) which enables remote
visibility and control of a charging station. Thus, an aggregator, which can be a
third party organization or the owner of the EVSEs, is able to cluster an control a
large number of charging stations, implementing either a direct and centralized, or
indirect and fully decentralized, smart charging strategy [45]. Many studies have
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proposed alternative approaches to model an aggregate of EV, tailored over the
needs of specific applications. Saber et al. designed a methodology to leverage
EVs flexibility to participate in the wholesale market with the purpose of maxi-
mizing the utilization of RES, reducing operational costs and emissions [88]. Bessa
et al. formulated an optimization problem for EV aggregators which are willing
to participate in the day-ahead and secondary reserve market sessions [13]. Their
methodology is based on a a centralized aggregator which, for each of the aggre-
gated final users, has information related to the preferred state-of-charge for up to
the following day. Their results highlight the impact of variables uncertainties on the
optimal strategy. Kara et al. [61] developed a methodology to study the potential
benefits of centralized smart charging from the perspective of different stakehold-
ers. Their model assume that, for each EVSE, arrival times, departure times and
the energy demand profile is known by the aggregator. Their results show that
optimizing charging schedules over both energy and demand charge it is possible
to achieve a reduction of almost 25% in the aggregated monthly bills. Daina et al.
defined a model to integrate activity-based demand modeling systems for the anal-
ysis of integrated transport and energy systems‘[31]. Specifically they suggested
a methodology to empirically capture end users behavioral choices in smart grid
contexts. Their results show significant heterogeneity in end users behavior which
implies that fixed charging behavioral scenarios could be misrepresentative of the
reality. furthermore, heterogeneity could represent an opportunity for DSO and
service providers to incentivize more flexible charging choices with targeted actions
for the so called "inflexible drivers". In this chapter, we talk about how EVs can
be considered as flexibility resources. We present the potential benefits and chal-
lenges related to EV integration, using real data from the PecanStreet dataset [72]
to show the impact of EV penetration in urban districts. We introduce a new,
general purpose, modeling approach to represent EV’s flexibility as an equivalent
energy storage. We define 9 time-varying parameters that fully characterized the
equivalent storage model and that can be inferred from available historical charging
patterns. In the last section of the chapter, we discuss about mobility patterns and
EVSEs characteristics, highlighting how they affect the aggregate ability to shift
the energy demand and provide extra flexibility to the grid.
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5.3 Controlled vs uncontrolled charge

In this section, we use data from the Pecan Street open dataset to give context
and introduce the need for a modeling strategy to enable EV charging stations
aggregation and centralized control. Pecan Street Dataset consists of 1000, fully
monitored, residential households in Austin, Texas. Many of these households have
smart thermostats, distributed generation sources, EV charging stations and ad-
vanced metering infrastructures to collect high granularity data for each load and
generation source. Figures 5.1 to 5.3 show data from a single household within
the dataset. Figure 5.1 shows the original load of the household which consists of
classic appliances (eg. freezer, TVs, coffee machine) as well as the air conditioning.
The figure is a good representation of a typical residential load profile. Besides the
baseline load, we can distinguish two peaks: the first pick in correspondence with
the morning routine (from 6 to 9 am), and a higher one in the late afternoon when
people arrive home from work. Figure 5.2 adds a second curve which represents the
households net-load, obtained by subtracting the PV generation from the energy
consumption. Due to the effect of PV generation, the households find itself self-
consuming energy and selling portion of it back to the grid during the central hours
of the day, when the PV production is maximum and consumption is limited to the
baseline loads. The updated net-load shape highlights even more the importance of
late afternoon peak, when the building starts importing energy from the national
grid again, after being a generator for hours. The mass rollout of EVs is going to
further accentuate this problem. Figure 5.3 adds a third curve which represents the
actual household net-load, obtained by adding to the previous curve the consump-
tion monitored from the level-2 charging station. The EV start charging as soon as
the resident arrives home and plug the car, at around 6 pm. The figure shows how
this effects the household net-load by further increasing the late afternoon peak by
a large margin. In this specific case, the peak power increases up to 200% after the
integration of an electric vehicles.
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Figure 5.1: Net-load profile from Pecan Street Dataset

Figure 5.2: Net-load profile from Pecan Street Dataset considering PV generation

Figure 5.3: Net-load profile from Pecan Street Dataset considering PV generation
and EV charge

These figures demonstrate how a sudden paradigm shift from fossil fuel based to-
wards electric mobility, would drastically change the load profile of our districts.
Due to the limited heterogeneity of residential patterns, which are based on work-
ing people habits, the aggregated demand peak during late afternoon becomes a
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serious issue for the national grid which has to ramp its generation capabilities,
tapping into expensive, and pollutant, peaker plants [33] [18]. Thus, a mass inte-
gration of uncontrolled EVs could create a series of issues at both distribution and
transmission grid levels. However, as shown in the literature, EVs demand inher-
ently has some degrees of flexibility that can be leveraged to control the charging
profile. EV charging can be controlled, slow down or shifted in time, to provide
services to the grid while taking into account users preferences and operational con-
straints. In this case, the load flexibility can be defined as the ratio between the
time a car is plugged but not charging to the overall session duration [61]. The
bigger the difference between the actual charging duration and the overall session
duration, the higher the potential flexibility that that specific EV is bringing to
the system. To evaluate these quantities we need to know, or estimate, the arrival
and departure times, which make the session duration, as well as the initial and
expected final state-of-charge of the vehicle’s battery.

5.4 EV equivalent energy storage model

In chapter 2, we introduced the general equivalent energy storage model, showing
how every flexibility asset can be described as a particular case of an energy storage
system, defined by the same parameters while constrained to follow different sets of
physical rules. We already introduced equation 5.1, which describes the equivalent
energy storage model, based on the work of Hao et al. [49]. The equivalent storage
model is defined by a set of signals U(t) that satisfy the following equations:

− η− <= U(t) <= η+ ẋt = −αxt − U(t) |x(t)| <= C (5.1)

Where η+ and η− represent the maximum charging and discharging rates of the
equivalent energy storage system respectively. The state variable x represents the
internal energy of the system; α is the dissipation rate, the amount of energy natu-
rally lost due to storage inefficiencies, and C the total energy capacity of the equiv-
alent system. For the EV equivalent energy storage model, the flexibility signal U ev

is defined as the overall charging requirements of a collection of electrical vehicles
supply equipment (EVSE). For each EVSE, the flexibility is achieved by redistribut-
ing the charging schedule. By default, EVSEs use a constant power charge strategy
that aim at fully charge the battery as fast as possible. By knowing the expected
final user’s departure time, EVSE can delay the completion of the charging process
acting on the charging schedule, still ensuring that the battery is fully charged by
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the expected departure time. The flexibility signal U ev is obtained by the sum of the
rescheduled charging profile of each of the EVSEs of the collection. It is function of
a series of 5 parameters which can be predicted by studying the historical charging
sessions of the aggregated EVSEs collection U ev = f(Eev, δev

a , δev
d , P ev

+ , P ev
− ) Equa-

tions 5.2 to 5.5 show how these parameters are related to each other and to historical
charging patterns.

Cev(t) = Cev(t − 1) + αev
E (t) + βev

E (t) (5.2)

ηev
+ (t) = ηev

+ (t − 1) +
∑M

i=1 P ev
+,i · δa,i(t) +

∑M
i=1 −P ev

+,i · δd,i(t) (5.3)

αev
E (t) =

∑M
i=1 Eev

i · δa,i(t) (5.4)

βev
E (t) =

∑M
i=1 −Eev

i · δd,i(t) (5.5)

The storage capacity Cev represents, at each time step, the amount of energy that
should be collectively delivered by the distributed EVSEs to satisfy the charging
requirements of all the EVs plugged into the system (equation 5.2). ηev

+ and ηev
− are

the equivalent storage maximum charging and discharging rates, they are estimated
summing the maximum charging rates P ev

+ and discharging rates P ev
− over each

active EVSE. Equation 5.3 shows how to estimate the maximum charging rate; a
similar expression can be derived for the the maximum discharging rate substituting
P ev

+ with P ev
− . Using this formulation a non-zero ηev

− value assumes a EVSE with
vehicle-to-grid (V2G) capabilities. While this storage model can be applied to
study V2G interactions, we consider V2G applications and value discussion beyond
the scope of this work. αev

E and βev
E are respectively the capacity boosting and

dissipation rate (equations 5.4 and 5.5). αev
E is the amount of capacity added to

the equivalent storage at time t. This capacity represents the sum of the energy
requested during the whole session by each EV plugged into the system at time
t. βev

E is the amount of capacity removed from the equivalent storage at time t,
representative of the amount of energy leaving the system when a car is unplugged.
For each EVSE, Eev represents the amount of energy to charge during each charging
session. δa (equation 5.6) and δd (equation 5.7) are Kronecker impulse functions
respectively centered at the EV arrival and departure times.

δa,i(t) =

⎧⎨⎩ 1 at arrival time of EV i
0 otherwise

(5.6)

δd,i(t) =

⎧⎨⎩ 1 at departure time of EV i
0 otherwise

(5.7)
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The state-of-charge (SOC) is defined as the ration between the instantaneous energy
content of the equivalent storage Cev(t) divided by its total capacity C(t), calculated
summing the capacity of each plugged vehicle’s battery 5.8. In the case that the
total capacity drops to zero, then the SOC is also considered to be zero.

SOC(t) =

⎧⎨⎩
Cev(t)
C(t) · 100 % for C(t) ̸= 0

0 else
(5.8)

This equivalent energy storage model is extremely flexible and can be applied to
different market context and any aggregation level. The parameters of an aggregate
of heterogeneous EVSEs can be estimated by summing the parameters evaluated
for the single EVSEs. These parameters can be estimated through conventional
methods such as autoregressive models, trained using historical EVSEs sessions
data (e.g. arrival times, departure times, session energy).

5.4.1 Using the equivalent energy storage model

In this section, we use a trivial case to explain how the equivalent storage model
can be implemented to describe an aggregation of EVSEs. Figure 5.4 shows the
storage parameters evolution over a 24 hour period for two EVSEs. The example is
taken from original measurement data and presents current practice of uncontrolled
charging. The top subplot shows the evolution of the total/instantaneous storage
capacity as new EVs approach and leave the system. At t = 5.45 the first EV arrives
and adds about 20 kWh to the system, i.e. the total storage capacity at that time
is equal to αE as the capacity is a function of the previous capacity plus αE and
βE as shown in (5.2). At the same time the maximum charging rate of the storage
increases from zero to 6.6 kW (level 2 EVSE) as seen in the middle subplot. The
two EVSEs do not have vehicle-to-grid (V2G) capability, hence, no discharging is
possible and the minimum charging power is 0. At 06.45 a second EV arrives and
plugs to the second EVSE. The second EV adds extra capacity αE to the system, the
total capacity increases as well as the maximum charging power. Also the second
car starts immediately to charge and Pact, which represent the equivalent storage
instantaneous charging power, increases up to 10 kW. As the second EV connect
the equivalent storage SOC drops due to the sudden increase in the total storage
capacity. At 13.30 the first EV leaves and the total storage capacity is reduced by
the same amount that was added at 05.45. From this point on, no charging happens
anymore as the plugged EV is fully charged. The second EV leaves at 17.30 and all
parameters drop to zero since the two EVSEs are now vacant.
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Figure 5.4: Storage parameter evolution for two EVSEs over 24 h period.

5.5 The impact of mobility patterns on the aggregate
flexibility

As we saw in the last chapter, the EV equivalent storage parameters, which allow us
to describe and control the flexibility granted by an aggregation of EVSEs, depend
on the characteristics of the charging sessions (e.g. arrival times, departure times,
energy demand). Therefore, end users behavioral patterns, as well as their mobil-
ity schedules, affect the ability of EVs to offer flexibility by altering their charging
profiles. Specifically, the flexibility associated with each EV driver depend on ar-
rival and departure time, the energy consumed driving and the charging frequency.
Hence, mobility patterns and EVSEs positioning matters. Figure 5.5 reports three
charging patterns. Top subplots show the charging rates in terms of power, while the
session length is highlighted by the pink area. Bottom subplots show the evolution
of the equivalent storage parameters: the black line indicated the evolution of the
equivalent storage instantaneous capacity, while the grey area represents the energy
that can be stored in the system, its flexibility. The Intermittent charging pattern
is typical of an EVSE which is visited by cars throughout the whole day, which can
be representative of a charging station located in the parking lot of a shopping mall
or along the highway. The Workplace charging pattern is characterized by a long
session, lasting from the beginning of the working day until the end of it. Due to the
non-perfect homogeneity in employees schedule, we expect the equivalent storage
parameters to change a lot throughout the day. This pattern is typical of EVSEs
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which are installed directly at the workplace, thus sessions characteristics (begin,
end, charge frequency, demand) are extremely related to exogenous variables such
as working schedules, facility position, number of employees or shifts. The Evening
charging pattern is characterized by a long session, lasting from late afternoon, at
the end of the working day, until the next morning, before the beginning of the
new working day. This pattern is typical of residential EVSEs. Again, aggregat-
ing different residential EVSEs we expect the resulting equivalent storage capacity
to change a lot depending on EVs arrivals/departures distribution. For this rea-
son, EVs integration in a virtual resource portfolio can have either positive, neutral
or even negative effect depending on the smart charging strategy and the kind of
service we seek to provide. Given EVSEs characteristics, inferred from historical
charging patterns, the aggregator can seek to create a perfect portfolio of EVSEs
by selecting and clustering them depending on the service it seeks to provide. For
example, if the aggregator aims to play in the balancing market and sell capacity
in the peak hours of the morning, it should integrate controllable workplace EVSEs
in its portfolio and delay the charging schedule playing with employees flexibility.

Figure 5.5: Mobility patterns and storage parameters

5.6 Conclusions

In this chapter, we talked about how EVs can be considered as flexibility resources.
We presented the challenges and the potential opportunities related to a mass EV
rollout, using real data from the Pecan street dataset to show the effect of EV
integration in a urban district. We introduced a new, general purpose, modeling
approach to represent EV’s flexibility as an equivalent energy storage. We defined
the different parameters showing how they can be estimated from historical charg-
ing data. We explained how the model can be used by referring to a trivial case of
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an aggregation of two EVSEs. In the last section, we discussed about the impact
of mobility patterns and EVSEs positioning in the aggregate flexibility, highlight-
ing how aggregators should build their portfolios of resources, clustering different
kinds of EVSEs, depending on their necessity and the kind of services they want to
provide. With the next chapter, we move from the modeling tasks to the optimal
management of a portfolio of heterogeneous flexibility assets. We will see how the
equivalent storage model we presented can be used to model and capitalize EVs
flexibility.
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Chapter 6

Flexibility resources in an
industrial microgrid

6.1 Preface to chapter 6

In the last chapters, we defined methodologies to model and simulate different
flexibility assets, showing how they can be integrated to provide demand response
services and, in general, to acquire a better control over the energy demand. In
this chapter, we show some preliminary results obtained by integrating controllable
TCLs and energy storage in an industrial microgrid. Specifically, we test a peak
reduction strategy in an industrial microgrid, leveraging a sensible heat thermal en-
ergy storage and the existing HVAC system. This chapter allow us to discuss some
of the challenges related to the actual implementation of a demand side management
in an industrial environment, using off the shelf components and 15-minutes gran-
ularity data. This chapter has been presented in the 9th International Conference
of Applied Energy, in Cardiff, as follows: "F.Carducci, Antonio Giovannelli, Mas-
similiano Renzi, G.Comodi; Improving flexibility of industrial microgrids through
thermal storage and HVAC management strategies". I undertook the majority of
work related to this chapter, including the design of experiments, data collecting
and analysis and the interpretation of results. Mr. Giovannelli, Dr. Renzi and Dr.
Comodi contributed with comments on the ideas presented and editorial assistance.

6.2 Introduction

In many countries, a large share of the national energy portfolio is now made from
non-programmable renewable energy sources, thus is becoming harder to assure
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the balance between the national energy demand and the offer given todays grid
flexibility. Demand side management (DSM) programs are going to play a role in
enhancing grids capability to cope with this problem, shifting part of the burden
from control to demand [40]. Due to the nature of their loads, and the interest
in investing in distributed generation, industrial microgrids are perfect candidates
to provide services to the grid or actively playing in balancing the electricity mar-
ket [7]. In [92], authors presented a methodology to identify interesting industrial
applications for demand response. Alcazar-Ortega et al. [3] investigated the de-
mand response potential in a meat industry in Spain, finding that the peak power
demand in certain periods could be reduced by 50Having in mind these possibil-
ities, research is focusing on new ways to assess how much power can be shifted,
or cut, with respect to the traditional electric consumption patterns and for how
long. Energy storage systems (ESS), thermostatically controlled loads (TCL) and
Electric vehicles (EV) can be all used to enhance a microgrid flexibility and its
potential in providing grid services. Thermal energy storage is a key technology to
improve flexibility of final users. Several studies have demonstrated their potential
in reducing peak loads or arbitraging price [29] [28] [6]. Thermostatically controlled
loads (TCL), from residential refrigerators up to complex industrial scale heat pump
units, can be managed to shift their electricity consumption away from peak times.
Mathieu et al. [71] estimated that the technical resource potential for Californian
residential TCLs is approximately 10-40 GW/8-12 GWh. In this chapter, we present
the results achieved by implementing a set of load management strategies in an Ital-
ian microgrids. A thermal energy storage and the building HVAC system are used
to leverage the thermal inertia of the industrial building and the synergy with the
microgrids renewable generation. This studys central contributions are a set of indi-
cations on how these assets can be individually exploited to increase the microgrid
flexibility in terms of net-load management, and a discussion over the limits of a
metering infrastructure sampling with a 15-minutes granularity.

6.3 Methodology

In this section we present the industrial microgrid, the different flexibility assets
and the demand side management strategies implemented.
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6.3.1 The industrial microgrid

Our testbed is the industrial microgrid of Loccioni in Angeli di Rosora, Italy. In par-
ticular, we perform tests using both the thermal energy storage and HVAC system
of one of the industrial buildings connected to the microgrid, the Leaf lab. It is a
two storey building consisting of two distinct areas: the factory (total area of about
2400 m2) in the inner part of the building and the offices (total area of about 5200
m2) in the outer parts. The building is equipped with PV generation, with a nomi-
nal power of 236.5 kW. The cooling and heating demands are satisfied by three heat
pumps, for a total capacity of 430 kW. A thermal energy storage is integrated with
the HVAC system to store the excess of PV production during weekends. When the
factory electricity demand is negligible and PV production is available, the thermal
energy storage is charged by means of heat pumps. This thermal energy is then
used during weekdays to reduce the peak load consumption. An advanced metering
infrastructure is present in the building, collecting data on the electricity consump-
tion, as well as internal comfort parameters (e.g. internal/external temperature)
with a 15 minutes granularity.

6.3.2 The HVAC system

The HVAC system consists of chilled beams and air handling units as emission
systems and of three water-to-water heat pumps (HP1, HP2, HP3) as production
units. The AHUs are used for the whole building, including factory and offices,
while the chilled beams are used for the offices only. These two systems can work
together or separately. Two of the heat pumps (HP2, HP3), which have a nominal
cooling capacity of 280 kW each (when supplying water at 7°C), are used for the
AHUs. The smaller heat pump (HP1) has a cooling capacity of 150 kW (when
supplying water at 15°C) and is used for the chilled beams only. Their capacity can
be regulated according to the cooling demand by partializing the compressors usage
between 20% and 100% of the total capacity and varying the supply temperature
between 5°C and 15°C. The water source for the heat pumps is represented by a well
at a constant year-round temperature of about 13°C. The water from the well can
also supply the chilled beams directly in passive cooling mode for reduced cooling
demands.
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6.3.3 The thermal storage

The thermal energy storage consists of an insulated concrete water tank of 460m3.
It has a rectangular base and its dimensions are 12.3 × 11 × 3.4m. Each wall has
a thickness of 0.25 m and is insulated by means of 0.16 m of xps polyfoam c350
(thermal conductivity 0.032 W/m K). The tank is buried below the ground to reduce
heat losses as much as possible. In summer the storage tank can be charged by the
heat pumps (HP2, HP3) outside the working hours (when PV electricity is available
or during off peak hours, as better explained in the following) and it can supply
then cold water to the AHUs when cooling is required during the working hours.

6.3.4 Demand side management strategies

We test two demand side management strategies. The first strategy aims to enhance
the microgrid flexibility by the coordinated use of PV, heat pumps and thermal en-
ergy storage. During weekdays, PV generation is almost entirely absorbed by the
building demand. On the other hand, during weekends PV generation exceeds the
building energy demand: we can use this excess of energy to drive the electric com-
pressors of the heat pumps and charge the thermal storage; then, during weekdays,
we can discharge the thermal storage to reduce the electricity consumption during
peak hours. The second strategy aims to enhance the microgrid flexibility by con-
trolling the HVAC system. In particular, we regulate the heat pumps temperature
set point in order to reduce the electricity demand during peak hours of the day,
exploiting the thermal inertia of the building to maintain the internal comfort. This
can be referred as a load shedding strategy. After we change the set point, the heat
pumps shut down until the temperature reaches the new one.

6.4 Results

In this section we report the main results obtained implementing the DSM strategies
described in the previous paragraph. Figure 6.2 shows the effect on the electricity
demand of using the thermal energy storage for two weeks, in April 2017. Figure 6.1
shows the building net-load with 15 minutes granularity. The net-load becomes
negative when the rooftop PV generation exceeds the energy demand of the building.
The PV production is mostly self-consumed during working days, while it largely
exceeds the energy demand during week-ends (9th and 16th of April). When this
happens, the produced electricity is fed back into the main grid. Thanks to the
thermal energy storage part of the electricity produced by the PV plant can be used
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Figure 6.1: Building net-load with 15 minutes granularity

Figure 6.2: Effect of the thermal energy storage on the electricity demand

to drive the heat pumps and accumulate thermal energy. Figure 6.2 shows in blu
the electricity demand from heat pumps, and in orange the thermal energy storage
dispatch profile. We can abstract more insights from figures 6.1 and 6.2. First,
the thermal energy storage is indeed charging during week-ends, using the PV over
production. Nevertheless, part of the PV production is still exceeding and sold to
the grid. The monitored period showed in Figure 6.1 includes the Easter weekend:
Saturday (15th of April), Easter Sunday (16th of April)and Easter Monday (17th
of April). As in other weekends, the energy produced by the PV plant drives the
heat pump until the thermal energy storage is fully charged. The thermal energy
storage discharging phase usually starts on Monday, during regular working hours,
however on the Easter Monday it does not happen. Due to the festivities there is
no cooling energy demand from the building. At the same time, the thermal energy
storage is fully charged and the HVAC system is not operating, therefore all the PV
production flows to the national grid. During working days, the energy discharged
from the thermal energy storage allows us to reduce the power consumption during
critical hours. Considering the thermal energy that can potentially be accumulated
in the storage and the average measured heat pumps COP, which is set around 2.8,
the thermal energy storage can help shred up to 40 kWe of power for three hours.
We tested the load shedding strategy the 16th of November during a working day,
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Figure 6.3: Heat pumps’ consumption profile during five working days

between 16:45 and 17:45. Figure 6.3 shows the heat pumps consumption time series
of five different working days. We highlight in black the one relative to November
16. Figure 6.4 windows the consumption time series around the testing time. In this
case, the time series are all showed in gray except for the one relative to November
16, highlighted in black. The load shedding test started at 16:30. Figure 6.4 shows
that the heat pumps electricity demand is indeed reduced by a sensible margin until
17:45, when the new set point is reached and the heat pumps starts working again
(Figure 6.4). The consumption pattern showed during the test is noticeably different
from the rest of the week: the on-off cycle, typical of thermostatically controlled
loads, is clearly recognizable in gray curves. However, the black curve shows that
during our test the cycle is interrupted by a longer off period. As expected, we
register a high consumption peak after the heat pumps start working again. This
peak is noticeably higher that the ones registered during the other days, over normal
operation regimes. This recovery phase is well known in the literature: after a load
shedding period, heat pumps are forced to work extra hard to maintain the desired
thermal comfort ending up creating a new peak in electricity consumption. Thus,
while the load shedding strategy provides a temporary reduction of around 20 kW
in power consumption, it also generate a new higher consumption peak (57 kW at
18:15) and increase the overall energy consumption. Figure 6.4 shows a similar
consumption peak the 14th of November (48 kW at 18:30). However, looking at
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Figure 6.4: Heat pumps’ consumption profile windowed around the testing time

Table 6.1: Data from November tests

Day Electricity consump-
tion 16-18.30 [kWh]

Peak Demand 16-
18.30 [kW]

Daily Avg External
Temperature [°C]

12-Nov 31 30 8
13-Nov 32 28 6
14-Nov 62 48 5
15-Nov 49 30 8
16-Nov 51 57 8

the daily average external temperature values in Table 6.1, where peak demand and
total energy consumption data are reported for each analyzed weekday, we notice
how the 14th of November was in average a much colder day, a 3 °C difference in
terms of daily average, which directly results in extra effort for the heat pumps,
hence extra consumption.

These results confirm that load shedding strategies can contribute to provide a
sudden reduction in power absorption and potentially enable a wide range of grid
services. However, their effect at the building level is to shift part of the energy de-
mand, generating new consumption peak and causing overall worst performances in
terms of energy efficiency. This test also proves that sampling electricity consump-
tion data with a 15 minutes time granularity is sufficient to identify the activation
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of a load shedding strategy and, given a consumption baseline, to analyze its im-
pact in terms of energy consumption. However, if the nature of the application
requires precise estimates over the power consumption, higher granularity would be
necessary to capture the actual consumption peaks within the on-off cycles.

6.5 Conclusions

In this study we showed how the HVAC system and a thermal energy storage can
be used as flexibility assets in an industrial microgrid. Two demand side manage-
ment strategies were implemented using a thermal energy storage and the HVAC
system. Tests were carried in the industrial microgrid of Loccioni group, in Italy.
The first strategy aimed at assessing the reserve of power that could be achieved
by the integrated use of PV, heat pumps and thermal energy storage: the excess of
PV generation during weekends was used to drive electric heat pumps and charge
the thermal energy storage then, during weekdays, the same storage was discharged
reducing the electricity consumption during critical hours. Results showed that
thermal energy storage can, in mild seasons, contribute to curtail the peak load
consumption by up to 40 kWe for three hours. The second strategy aimed at assess-
ing the reserve of power that can be controlled using the HVAC system. Heat pumps
temperature set points were regulated to reduce the electricity demand during peak
hours of the day, exploiting the thermal inertia of the building to maintain the in-
ternal comfort. Results showed that load shedding via HVAC control can provide a
temporary reduction in power consumption by up to 20 kWe, while a new consump-
tion peak is generated right after the tests. When the strategy is revoked, and the
original temperature setpoint is restored, the chillers turn on again at maximum
power to push the temperature within the acceptable deadband, generating a new
peak in terms of energy demand. The data we collected also proves that sampling
electricity consumption with a 15 minutes time granularity is adequate to identify
the activation of a load shedding strategy, giving us an important feedback when
it comes to choose the appropriate metering infrastructure for such applications.
Future studies will focus on how to evaluate the potential flexibility granted by the
combination of all available micro grids assets, while exploring the integration of
new assets and different demand management strategies.
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Chapter 7

An Optimal Portfolio
Management Framework for
Flexibility Assets Aggregators

7.1 Preface to chapter 7

In chapter 5, we introduced a modeling approach to describe the behavior of an
aggregate of electric vehicles charging stations as an equivalent energy storage sys-
tem. Electric vehicles, battery energy storage systems and thermostatically con-
trolled loads are different assets that aggregators can use to form their portfolio of
flexibility resources. With this chapter, we move our attention from the modeling
tasks, to the optimal management of a portfolio of flexibility resources. Specifically,
we define a methodology to i) integrate the equivalent storage models we introduced
in the previous chapters to estimate the aggregate flexibility resources available in a
generic urban district; and ii) produce an optimal portfolio management strategy for
flexibility aggregators that aim to optimally manage these resources, leveraging the
energy price variability while producing valuable services for the national grid. The
optimal portfolio management task is modeled and solved as a convex optimization
problem, using the Python CVXopt library [75]. We apply the methodology in two
alternative scenarios. The first scenario is related to aggregators bidding problem,
while the second suggests a distributed approach to address national grid’s ramping
problems in critical hours of the day. I undertook the majority of work related
to this chapter, including all the modeling tasks, the development of a simulation
platform and the interpretation of results. Mr. Bennet Mayers contributed to the
convex formulation. Dr. Michaelangelo Tabone, Dr. Emre Can Kara, Sila Kilic-
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cote and professor Gabriele Comodi contributed with comments on the ideas and
editorial assistance.

7.2 Introduction

Power grids are designed to work under balanced supply and demand at all times.
This hard constraint is increasingly challenged by uncertain and intermittent re-
newable generation sources. Historically, grid balance was maintained by operating
controllable thermal generators that relied on fossils fuels, which could be ramped
up and down at will, within mechanical system constraints. However, the inter-
mittent nature of renewable generation, such as wind and solar energy, puts an
increase amount of stress in terms of power balance, system stability and ramp
requirements [84]. Therefore, increasing the power system flexibility becomes a
priority if we want to pursue our renewable integration goals towards a more sus-
tainable future [8]. Many nations have set ambitious goals to increase the share
of renewable resources in their energy mix [81], thus we are facing a future where
it will be more difficult to maintain balance between supply and demand and thus
maintain service quality [1]. Information technology with the grid (often referred to
as the “Smart Grid”) addresses some of these issues by collecting data and remotely
controlling distributed technologies such that they can observe and actively respond
to changing grid conditions [58]. The Smart Grid implies a Copernican revolution to
the current electricity system: placing distributed infrastructure (some owned and
operated by consumers) at the center of the control paradigm instead of generators.
In this new paradigm, consumers must play a more active role, which will be facili-
tated by demand response and behind-the-meter resources like distributed solar and
energy storage. Energy storage systems are machines designed to provide flexibility,
given the ability to store energy under different forms and through different conver-
sion system depending on the adopted technology [30]. Energy storage systems can
be integrated at different scales and locations: in a distributed manner behind the
meter, up to bulk applications at generation level. Depending on their scale and
positioning they can be used for different kind of applications: frequency regulation,
capacity deferral, intermittent generation integration, peak-shaving, demand man-
agement and price arbitrage [105]. Through Demand response (DR) final users can
actively participate to the system balance using their flexibility, modulating their
loads to provide services to the grid. Depending on the nature of the final user,
different kind of flexible loads can be integrated with the grid. Thermostatically
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controlled loads (TCL) in residential buildings, such as refrigerators, air condition-
ers, heat pumps and electrical boilers, are among most studied DR resources [62].
TCLs operate via thermostats based hysteresis control, modulating the indoor air
temperature between upper and lower bounds around a setpoint. By controlling
the setpoint, TCLs can be operated to rapidly adjust their demand. These char-
acteristics make them ideal candidates to provide ancillary services [12].TCLs have
been studied extensively in literature and we refer the interested reader to [19].
Electric vehicles (EV) can be valuable flexible assets too. Studies show how EV
can provide a range of services by controlling their charging rate. EV charging
stations can be integrated in a district to reduce local congestion problems or to
implement distributed voltage control [63]. In [61] authors estimate the potential
benefits of performing price arbitrage using a smart charging strategy based on a
time of use (TOU) rate structure. Aggregators play a critical role as enablers of
these technologies. Aggregators are service and technology providers, facilitating
an active participation of end users and DER owners with the energy market. They
can assume the basic role of retailers for their end users, while creating a value
stream for all the flexible assets and prosumers who wants to act as distributed grid
resources [14]. In [15] authors explore the value of aggregation showing how differ-
ent regulatory and market frameworks can be leveraged by aggregators to generate
value for them-self, for end-users and the entire electricity system.It is in the best
interests of aggregators to optimally act on the energy market either when trading
at the whole sale level or deciding how to dispatch their flexibility resources. In this
work we refer to this as the optimal portfolio management problem. Depending on
the level of aggregation and the range of services that the aggregator is interested
in, both the definition of optimal and problem’s constraints can be different. An
aggregator interested in managing an individual industrial microgrid has to face a
different set of challenges from one who wants to use the flexibility from California’s
residential TCLs as a virtual power plant. In this chapter, we present a framework
for the optimal management of aggregators’ flexible assets portfolio, focusing on
three main sources of flexibility: thermostatically controlled loads, electrical vehi-
cles charging, and battery energy storage systems. We model the different flexibility
assets as equivalent energy storage, mapping their behaviour into a set of convex
and affine constraints. We demonstrate the capabilities of the framework proposing
two different case studies. In the first, that we call the ramp rate management prob-
lem, we want to optimally reshape the district net-load to reduce the aggregated
ramp rate below a predetermined threshold. In the second one, that we call the
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aggregator bidding problem, we we want the real time district net-load to track a
profile bid by the aggregator in the day-ahead market. Many recent studies have
focused on how to estimate the technical potential and optimally dispatch aggregate
resources, targeting different levels of aggregation and specific service requirements.
In [20] authors suggest a mixed-integer linear programming optimization model to
maximize the profit of an aggregator which has to manage a portfolio of DER, solv-
ing for both planning and operation schedule. They explore both a stochastic and
deterministic approach to the problem formulation and assess how the former one
is more robust to price change and results in different strategic choices. In [48] au-
thors suggest an near-optimum heuristic framework to perform an economic based
optimization of the consumption schedule for 5555 residential costumers and more
then 55 thousands schedulable loads. Their results show how such methods could
benefits all the involved stakeholders: the aggregator can make profit by arbitraging
in the spot market, costumers enjoy reduced bills, while at system level peak loads
are lowered.In [103] a method based on linear programming for optimal scheduling
and operation of a load aggregator’s electric energy storage (EES) is presented. The
flexibility granted by the energy storage capabilities is used to optimally bid into
the day-ahead market. During real-time operation, the discrepancy between the bid
capacity and the actual load requirements are compensated in a balancing market.
Reported results show that it is possible to achieve energy cost savings, even if they
are not enough to justify investing in EES. In [47] authors model the problem of
an aggregator participating in the day-ahead market to optimally bid the energy
requirements of a fleet of plugin electric vehicles as a MPEC (mathematical problem
with equilibrium constraints), using a bilevel optimization approach: the upper level
problem aims at minimizing operational costs, while the lower level represents the
market clearing process.Reported results obtained using realistic driving patterns
show that, for a relatively large aggregation of EV, the uncertainty related to drivers
schedule has only a minor impact on the optimal solution. Moreover, even at low
aggregation level, the aggregator can have a significant impact on market clearing
prices depending on the EV population charging schedule. In [98] a robust mixed
integer linear programming model is proposed to solve to optimal dispatch problem
for microgrids, given the opportunity to work in both the energy and ancillary ser-
vices markets. The formulation take into consideration aggregate loads, DER and
energy storage, which can be leveraged as flexible ramping resources. With respect
to the cited works our framework is able to manage an heterogeneous portfolio
of flexible assets, integrating TCLs and EVs as equivalent energy storage systems.
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We also propose a convex formulation to solve the flexible assets optimal dispatch
problem which ensure reliability, high performance and potential for scalability. We
use this framework to analyze the role of flexible loads in an aggregator portfolio,
showing how this could change depending on the type of asset, the deliverable ser-
vices and the technical requirements. We want to define an approach to optimally
build and manage a portfolio of flexible loads depending on the services we want to
provide and the technical potential of the different assets. The main contributions
of this work are:

1. A general framework to build and manage a portfolio of flexible loads de-
pending on the services to provide, the aggregation scale and the technical
potential of the different assets

2. A convex formulation to solve the optimal dispatch problem, modelling EES,
TCls and EVs as equivalent energy storage systems

3. A methodology to assess the economic value of flexible loads

The rest of the chapter is organized as follows. Section 7.3 is dedicated to
the methodology: Section 7.3.1 describes the portfolio management framework,
the modeling approach pursued for the different flexibility assets; Section 7.3.2
presents the convex formulation, analyzing the cost function and the general set of
constraints; Section 7.3.3 is dedicated to an in depth description of the data-set and
Section 7.3.4 describes the different case studies we implemented. Finally, Section
7.4 includes the results obtained in the two case studies and a discussion of future
research objectives.

7.3 Methodology

7.3.1 The portfolio management framework

The flexible assets portfolio management framework for aggregators consists of three
main components (Figure 7.1). The input module consists of a set of functions that
pre-process inputs before the analysis, performing checks for dimension consistency
and missing value detection. The flexibility estimation modules evaluate the equiv-
alent energy storage parameters for both the EVs and TCLs assets. The optimal
resource dispatch module consists of the convex optimization problem that uses
the time series inputs to build the constraints. The final outputs of the framework
are the time series related to the optimal dispatch of the single available asset. In
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Figure 7.1: The Flexible Assets Portfolio Management Framework in its three
main components.

the following sections, we are going to describe in details how the modeling and
optimization components work.

7.3.2 Flexibility estimation

An energy storage system is a machine which stores energy in different forms to
increase the level of control over a system. For this reason, it comes natural to
imagine every other flexibility asset as a particular case of an energy storage sys-
tem, described by the same parameters while constrained to follow different sets of
physical rules. In this work, we follow the definition of generalized battery model
presented in [49]. Our equivalent battery models are set of signals U(t) that satisfy
the following set of equations:

− η− <= U(t) <= η+ ẋt = −αxt − U(t) |x(t)| <= C (7.1)

Where η+ and η− represent respectively the maximum charging and discharging rate
of the equivalent energy storage system; the state variable x represents the internal
energy of the system; α is the dissipation rate and C the total energy capacity of
the equivalent system. In the next two paragraphs we are going to describe how
these equivalent storage parameters can be evaluated for aggregations of TCLs and
EVs.

TCL equivalent storage model

To model and control the aggregate flexibility of a collection of TCLs we use the
formulation described in [49]. The flexibility signal U tcl is defined as the sum of
the perturbations that each of the N TCL of the collection can accept around
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Figure 7.2: The equivalent energy storage model.

the nominal power consumption P0 while still meeting the user specified comfort
requirements.Equation 7.2 shows how to estimate the equivalent storage parameters
using TCLs parameters.

Ctcl =
N∑

i=0

δtcl

btcl
i

, ηtcl
− =

N∑
i=0

P tcl
0,i , ηtcl

+ =
N∑

i=0
Pm,i − P tcl

0,i (7.2)

atcl = 1
RthCth

, btcl = cop

Cth
, P tcl

0 = atcl(θa − θr)
btcl

For each controllable TCL: δtcl represents the relative deadband width,Pm the rated
power,Cth and Rth represent the household thermal capacitance and resistance,
finally θa and θr represent respectively the outdoor air and setpoint temperatures.
The dissipation rate α is equivalent to the time constant atcl. Therefore, recalling
the relations from equations 7.1, the flexibility signal is function of 7 parameters:
U tcl = f(δtcl, Pm, P tcl

0 , Rth, Cth, Θa, Θr). To estimate the parameters described in
equation 7.2 we need actual data for each TCL of the aggregation. In this work,
we obtain this data building a simulation from the discrete-time model presented
in [71]. We believe that this model represents a good trade-off between estimation
accuracy and computational complexity. Indoor temperature θ of each household
i is calculated for each time step k using equation (7.3), where θi

a,k represents the
outdoor air temperature; θi

g is the temperature heat gain, which depends on the
household thermal resistance R and the air conditioning machine characteristics
(rated power P and coefficient of performance. We assume a constant coefficient
of performance, while in reality it should change in relation to the outdoor air
temperature. a is a non-dimensional parameter regulating the sensitivity of the
model to an internal/external heat gain.

θi
k+1 = aiθi

k + (1 − ai)(θi
a,k − qi

kθi
g). (7.3)
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We implement the thermostatic hysteresis control using equation (7.4): the binary
activation variable q control the system to maintain the internal temperature within
the upper θ+,k and lower θ−,k comfort boundaries.

qi
k+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, θi

k+1 < θ−,k

1, θi
k+1 > θ+,k

qi
k, otherwisee

(7.4)

Comfort boundaries are defined by the user’s indoor temperature setpoint and ther-
mostat deadband width. The lower boundary is defined as θ−,k = (θr) − δ

2 . A
symmetric formulation can be derived for the upper boundary θ+,k. The simulation
procedure requires local outdoor temperature data in time series format and a set
of parameters for each TCL to work: machines’ rated power, users’ preferences in
terms of indoor temperature set points and deadband width, thermal capacitance
and thermal resistance of the households. At the end of the simulation, we ob-
tain the nominal power time series to estimate the equivalent storage parameters in
equations (7.2).

EV equivalent storage model

For the EV equivalent energy storage model, the flexibility signal U ev is defined
as the overall charging requirements of a collection of electrical vehicles supply
equipment (EVSE). For each EVSE, the flexibility is achieved by redistributing the
charging schedule. By default EVSEs use a constant power charge strategy that aim
at fully charge the battery as fast as possible. By knowing the expected final user’s
departure time, EVSE can delay the completion of the charging process acting on
the charging schedule, still ensuring that the battery is fully charged by the expected
departure time. The flexibility signal U ev is obtained by the sum of the rescheduled
charging profile of each of the EVSEs of the collection. It is function of a series of
5 parameters which can be predicted by studying the historical charging sessions
of the aggregated EVSEs collection U ev = f(Eev, δev

a , δev
d , P ev

+ , P ev
− ) Equations (7.5)

to (7.8) show how these parameters are related to each other and to historical
charging patterns.

Cev(t) = Cev(t − 1) + αev
E (t) + βev

E (t) (7.5)

ηev
+ (t) = ηev

+ (t − 1) +
∑M

i=1 P ev
+,i · δa,i(t) +

∑M
i=1 −P ev

+,i · δd,i(t) (7.6)
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αev
E (t) =

∑M
i=1 Eev

i · δa,i(t) (7.7)

βev
E (t) =

∑M
i=1 −Eev

i · δd,i(t) (7.8)

The storage capacity Cev represents, at each time step, the amount of energy that
should be collectively delivered by the distributed EVSEs to satisfy the charging
requirements of all the EVs plugged into the system (equation 7.5). ηev

+ and ηev
− are

the equivalent storage maximum charging and discharging rates, they are estimated
summing the maximum charging rates P ev

+ and discharging rates P ev
− over each

active EVSE. Equation 7.6 shows how to estimate the maximum charging rate; a
similar expression can be derived for the the maximum discharging rate substituting
P ev

+ with P ev
− . Using this formulation a non-zero ηev

− value assumes a EVSE with
vehicle-to-grid (V2G) capabilities. While this storage model can be applied to
study V2G interactions, we consider V2G applications and value discussion beyond
the scope of this work. αev

E and βev
E are respectively the capacity boosting and

dissipation rate (equations (7.7) and (7.8)). αev
E is the amount of capacity added

to the equivalent storage at time t. This capacity represents the sum of the energy
requested during the whole session by each EV plugged into the system at time
t. βev

E is the amount of capacity removed from the equivalent storage at time t,
representative of the amount of energy leaving the system when a car is unplugged.
For each EVSE, Eev represents the amount of energy to charge during each charging
session. δa and δd are Kronecker impulse functions respectively centered at the EV
arrival and departure times.

7.3.3 Convex formulation for flexibility assets optimal dispatch
problem

In this section we show how to formulate the flexible asset’s optimal dispatch prob-
lem in convex form. We first present a general formulation for the objective function
and the constraints set, highlighting the rationale behind it. Then, we present two
different aggregators’ problems that can be addressed as particular cases of the
general convex formulation. We define the problem as a standard form convex opti-
mization problem, in which the cost function is convex, inequalities constraints are
convex and equality constraints are affine.

Objective

The aggregator goal is to enforce a specific behaviour to the aggregate portfolio
net-load in order to satisfy the requirements for a specific service. At any given
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time, we define the portfolio net-load as the algebraic sum of the aggregate Load
(L), generation (G) and all the flexible assets available in the portfolio (7.9). This
definition of the net-load can be stretched to assume different meaning depending
on the level of aggregation. For a microgrid, it represents the actual net-load at the
point of connection with the main grid. For a zone aggregator, it represents the
regional balance and it is not necessarily related to a a specific feeder/sub-station.

net-load(t) = L(t) + G(t) +
∑

k

Uk
(t) (7.9)

Equation (7.10) represents the general formulation of the convex optimization prob-
lem’s cost function. It consists of three components that aim at penalizing different
aspects of the problem. In this general form, the decision variables are the flexibility
dispatch signal U and the equivalent storage capacity C of each flexibility asset.

minimize
Uk,Ck

f1(net-load(t), p(t)) +
∑

k

f2(∥Uk∥1, pk
ope) (7.10)

+
∑

k

f3(Ck, pk
ena, fk

amo)

The first component attributes a value to the usage of the portfolio flexible
assets. It is a function of the net-load and of a penalizing price vector p that can be
representative of an actual market or be fabricated to enforce specific behaviours.
Depending on how we define f1, we can use the flexibility assets to correct the
net-load and unlock different kind of service. The second component attributes a
cost to the usage of the k different kind of flexibility assets of the portfolio. We use
an l1-norm to quantify the usage of each asset during the simulated time frame.
This component penalizes the different assets associating different operative costs
pk

ope, in $/kWh of throughput, to their usage. The third component attributes
an enablement cost pk

ena to each flexibility asset. The larger the equivalent storage
capacity selected by the optimization, the higher the relative enablement costs. The
enablement cost can assume different meanings depending on the kind of flexibility
asset and the available data. For a Li-ion EES it simply represents the investment
cost in $/kWh of storage capacity. For TCLs and EVSE it can represent the cost
of enabling a single unit. The amortization factor famo scales the enablement cost
depending on the expected asset lifetime and the simulated period. We need the
second and third components to enforce an optimal trade-off between the value
of the service we want to provide, evaluated by the first component, and the cost
of using the flexibility assets. It is worth noticing that we define the cost factors
(p, pope, pena) to convert the cost function to US dollars.
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Constraints set

In this paragraph, we present the general constraints set that, together with the gen-
eral cost function, completes the convex formulation. Constraints (7.11) to (7.20)
model the behaviour of a Li-ion EES. The first three constraints, (7.11) to (7.13)
allow us to split the control signal for the electrical energy storage into positive semi-
definite charging and discharging signals. This is necessary to accurately model the
impact of the storage efficiency during both charging and discharging phases. The
second component of the cost function (7.10) penalizes both the charge and dis-
charge signal, so that, at any given time, only one of the two variables are different
from zero: the storage can either charge or discharge. Constraint (7.14) is the state-
equation. At every given time, the internal energy of the storage is effected by the
current charging/discharging signal and the relative efficiency. Constraints (7.15)
and (7.16) bound respectively the charging and discharging signal between the stor-
age maximum charging/discharging rate. Constraint (7.17) bound the internal en-
ergy between two values. The maximum is represented by the total storage capacity,
while the minimum is usually related to the characteristics of the batteries and can
vary from one producer to another. Constraint (7.18) allow the problem to dy-
namically set the maximum charging/discharging rate depending on the selected
storage capacity. Depending on the characteristics of the storage, the ratio (Cratio)
between the maximum charging/discharging rate and the capacity can vary: we can
use lower ratio for energy intensive applications (Cratio of 0.5,1) and higher ratio for
power intensive applications (Cratio of 2,3). Constraints (7.19) and (7.20) directly
control the shape of the resulting net-load profile.The former uses the first derivative
of the final net-load to limit the ramp rate under a predetermined threshold Lramp

(t) .
The latter uses the second derivative of the final net-load to limit the curvature and
enforce an overall smoother, easier, profile to follow. Constraints (7.21) to (7.26)
model the behavior of the equivalent energy storage for TCLs and EV assets, using
parameters and definitions introduced in section 7.3.2. Constraints (7.21) and (7.24)
represent the state-equations respectively for TCLs and EV assets. They track the
internal energy of the equivalent energy storage systems. Constraints (7.22) and
(7.25) bound the relative flexibility control signals between the maximum discharg-
ing (P tcl

min,P ev
min) and charging (P tcl

max,P ev
max) rates. Constraints (7.23) and (7.26)

limit the internal energy of the equivalent storage between zero and the maximum
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available capacity.

U st = U st
c − U st

d (7.11)

U st
c ≥ 0 (7.12)

U st
d ≥ 0 (7.13)

xst(t) = xst
(t−1) + ηstU st

c (t)dt − U st
d (t)dt

ηst
(7.14)

0 ≤ U st
c ≤ P st

max (7.15)

0 ≤ U st
d ≤ P st

max (7.16)

cminCst ≤ xst ≤ Cst (7.17)

P st
max = cratioCst (7.18)

d(net-load(t))
dt

≤ Lramp
(t) (7.19)

d2(net-load(t))
dt2 ≤ Lcurv

(t) (7.20)

xtcl(t + 1) = xtcl
(t) − αtclxtcl

(t) − U tcl
(t) dt (7.21)

P tcl
min(t) ≤ U tcl

(t) ≤ P tcl
max(t) (7.22)

0 ≤ xtcl
(t) ≤ Ctcl

(t) (7.23)

xev(t) = xev
(t−1) − U ev

(t)dtαev
t−1 (7.24)

P ev
min(t) ≤ U ev

(t) ≤ P ev
max(t) (7.25)

0 ≤ xev
(t) ≤ Cev

(t) (7.26)

The aggregator bidding problem

We show the capabilities of our framework by addressing the aggregator bidding
problem. An aggregator is an entity that buys energy in the day ahead market for a
portfolio of clients. The aggregation of the energy assets of these clients is modeled
as a virtual power plant and it is not necessarily limited to a specific feeder or a single
district area. The aggregator aims at minimizing its cost of operation by optimally
bidding in the day ahead market according to its load and generation forecasts. In
this work, we refer to the optimal bid profile as the tracking signal Tr, because
the aggregator portfolio is committed to follow it during real time operations. Due
to the uncertain nature of both load and generation, day ahead predictions and
commitments can be erroneous. Therefore, in real time operations the aggregator
have to adjust its position bidding in the real time market, where energy tend to be
more expensive. Such an aggregator can use its available flexibility assets to adjust
the aggregate net-load and reduce the gap with the tracking signal. Aggregators
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can apply our optimal portfolio management formulation with historical data to
optimally size an EES that will serve as their main flexibility asset to correct the
portfolio net-load during real time operations. They can also estimate the value of
integrating more TCLs and EVs in their portfolio, assessing how the optimal EES
capacity vary for different penetration levels. To address this problem we define
a specific objective function (equation 7.27 extending the formulation presented in
the previous chapter.

minimize
Utcl,Uev ,Ust,Cst

pT
(t)|net-load(t) − Tr(t)| + pst

ope∥U st
c ∥1 + pst

ope∥U st
d ∥1 (7.27)

+pst
enafst

amoCst

The first component penalizes the absolute value of the difference between the
portfolio net-load and the tracking signal. The price vector p is a function of time
and penalizes the bidding error differently depending on the hour of the day, fol-
lowing the real time market trend. The second and third components penalize the
l1-norm of the EES charging and discharging control vectors using the EES oper-
ative cost pst

ope as a regularization coefficient. Their effect is two-folds. First, they
limit the usage of the EES so that the optimization strategy treat it as a scarce
resource and choose to dispatch the other available flexibility assets first: in this
study TCLs and EVs are considered free to enable and dispatch. We assess their
value by quantifying how much we reduce the EES size by integrating them in the
portfolio. Second, they act as an implicit constraint that limit the search space to
cases where Uc or Ud cannot be different from zero simultaneously.

The ramp rate control problem

In this case we want to show how an aggregator can use the same formulation to
address a different problem related to ramp rate control. Specifically we aim to
limit net-load ramp rates under a predetermined threshold. We know that during
spring afternoons solar generation decreases and residential demand increases co-
incidentally, creating a steep ramp that is difficult, thus expensive, to follow with
conventional generators. This problem is also known as the duck curve problem
due to the shape of the resulting net-load. This problem at the national grid level
can start being addressed locally forcing districts and microgrids to use their flex-
ibility assets to control their net-load and reduce the ramp rates as a new class
of grid service. We simulate this scenario for a district level aggregator, using our
optimal portfolio management formulation to obtain the optimal flexibility resource
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allocation and the optimal EES capacity to limit the portfolio ramp rate under a
predetermined threshold. With respect to the first case study, the objective func-
tion (equation (7.28) looses the first component, which means that the net-load
behaviour is enforced only by the set of constraints. Specifically constraints (7.19)
and (7.20) limit the net-load ramp rate and ensure a easier to follow profile.

minimize
Utcl,Uev ,Ust,Cst

pT
(t)∥U st

c ∥1 + pst
ope∥U st

d ∥1 + pst
enafst

amoCst (7.28)

We apply a sensitivity analysis over the penetration level of flexible loads, both
TCLs and EVs, to study their impact on the optimal EES sizing. Using this method-
ology we are also able to assign an economic value to the flexible loads, assessing
how much money the aggregator can save by avoiding extra EES capacity. We
also establish a limit to the necessary enabling costs for TCLs and EVs to become
economically competitive to battery energy storage systems.

7.3.4 Dataset description

In this study we simulate the prospective of a residential district aggregator, simu-
lating an urban district of 233 households. In the next few sections we describe the
dataset and the main set of assumptions used to study both the aggregator bidding
and the ramp rate control problems.

Residential district data

We use the publicly available Pecan Street dataset to retrieve 15 minutes consump-
tion and generation data for the 233 households. The Pecan Street dataset consists
of 1000 residences, including single houses, apartments, small commercial proper-
ties and three public schools. These residences include home energy monitoring
systems, distributed generation, electric vehicles with level 2 charge systems, smart
thermostats, smart water and smart gas meters [72]. We pick all the 233 houses of
the dataset for which both load and generation data are available. Figure 7.3 shows
4 days of 15 minutes aggregated load, generation and net-load data for our district.

TCL data

As discussed in section 7.3.2, we build a simulation to estimate the necessary TCL
equivalent storage parameters. The characteristics of each simulated TCL are de-
fined by a set of five parameters: the initial temperature, the thermal resistance,
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Figure 7.3: The simulated district original Net-load

thermal capacitance, air conditioning system rated power and their coefficient of
performance. In order to simulate the behavior of an heterogeneous group of TCLs,
we simulate a population of 233 households and we sample the required parameters
from uniform distributions, using the approach and values presented in [71]. Us-
ing hourly outdoor air temperature data from 2016 [44], we evaluated the median
temperatures for each hour in summer for the city of Austin, Texas. We use the
temperature profile of the resulting median day as an input to the TCL model.

EV data

We use a dataset provided by ChargePoint to extract data from residential charg-
ing sessions and estimate the relative equivalent energy storage parameters. This
dataset includes 1341 EVSEs throughout 75 zip code regions in Northern California
with 451.999 charging sessions covering the full year of 2013. We use the charging
sessions data from this Northern California dataset even if the rest of the district
data we use is from Austin, Texas. Doing this we hypothesize that the charging
pattern obtained from residential EVSEs installed in different areas must be simi-
lar. For each charging session the following data is reported: plug-in and departure
time stamps, average and peak power every 15 min, charged energy every 15 min,
Charging port type, zip code and the building category. More than 99 % of the
charging sessions in the dataset are from Level 2 EVSEs with a capacity between
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Figure 7.4: Price vector from the ERCOT Real-time energy market

4 - 7 kW unidirectional. About two thirds of the EVSEs are located at workplaces
and the rest is distributed over hospitals, parking areas, universities, airports and a
residential areas. A more detailed description of the dataset is available in [61]. For
each EVSE, the 15 minutes averaged power consumption profile is used to estimate
the equivalent storage parameters. From the power consumption profile, we can in-
fer the arrival and departure times that are required to use the model we described
in section 7.3.2. We use 233 home data sampled from Chargepoint data.

Storage cost and energy market assumptions

For the aggregator bidding problem, we need a mechanism to penalize the erro-
neous day ahead bid. We introduce a dynamic price vector that penalizes this
error differently during the day depending on almost real time evaluated grid con-
straints and resources availability. This mechanism is representative of real time
markets, sometimes called imbalance markets. In this study, we use one day of
energy price data from the real-time market managed by the Electric Reliability
Council of Texas [38]. Figure 7.4 shows the price profile we use in all our simu-
lations. Another set of assumptions are related to both investment and operative
costs of running a Li-Ion EES. These assumptions are particularly critical since they
directly impact the objective function trade-off between the benefits of integrating

83



Chapter 7. An Optimal Portfolio Management Framework for
Flexibility Assets Aggregators

more EES and the relative enabling costs. In this work we use data from a recent
report published by the Energy Transition Lab (University of Minnesota), where
they perform a techno-economic analysis of storage integration in Minnesota’s grid
using. First they analyze the all-in cost for a 100MW/4hours EES considering
the storage medium, power conversion system, engineering, procurement and con-
struction costs. Then they present three coefficients that are linear function of the
installed EES energy and power capabilities: installed cost 1600$/kW , Fixed O&M
16$/kW per year and variable O&M 4$/MWh. We use these coefficients in our
simulations, assuming a 4 year project duration to evaluate fixed O&M cost and
the amortization factor in the objective function.

7.4 Results

In this section we present the main set of results obtained applying the optimal
portfolio management framework to the aggregator bidding and ramp rate manage-
ment problems. We also present the effect of a sensitivity analysis over two of the
critical assumptions we made: EES price and flexibility assets’ penetration level.

7.4.1 The aggregator bidding problem

Figure 7.5 shows the effect of the optimal flexibility assets dispatch strategy on
the district net-load, considering two different set of assumptions. Figures 7.5.a
and 7.5.c use the assumptions presented in 7.3.4, while figures 7.5.b and 7.5.d
assume reduced cost for the EES. Figure 7.6 shows how, for the reduced cost case,
the equivalent storage internal energy varies during the simulation for the different
flexibility assets. We obtain the results assuming penetration levels of 80% and 30%
for controllable TCLs and EVs. Results show how the optimal dispatch algorithm
tries to use the available flexibility assets to correct the net-load and approach the
tracking signal. In certain hours of the simulation the two profiles are perfectly
superimposed, while in others the final net-load is still identical to the original one.
This behavior derives from the problem objective function which implicitly enforces
a trade-off between the cost of installing an EES and the benefits derived by reducing
the gap with the reference signal. Since flexibility assets represent a scarce resource,
way scarcer then what the simulated district would need to follow the reference
signal at all time, the optimal dispatch logic chooses to use them when the energy
price p in the real time market is higher. With the original set of assumptions the
optimal portfolio management strategy chooses not to install an EES and uses the
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other available flexibility assets to correct the net-load. Figures 7.5.b and 7.5.d
show how the optimal dispatch changes along with the EES cost assumptions. In
this case, capital and operative EES costs are reduced by 4 times and the optimal
portfolio management strategy chooses to install a 732 kWh EES. Due to the cost
reduction is now convenient for the system to reduce the gap with the tracking
signal using an EES, instead of adjusting the bidding in the real time market. The
EES installation adds flexibility to the portfolio, therefore the final district net-load
is able to better track the reference signal. It is worth noticing that TCLs and EVs
flexibility usage seems to be affected by the EES cost reduction.

Since the EES cost plays such an important role in the optimal portofolio build-
ing and management, we further study its effect on the optimal sizing of the EES
by performing a sensitivity analysis over the assumptions presented in section 7.3.4.
We simulate multiple scenario reducing both capital and operative costs of EES
while keeping the rest of the assumptions set valid. Figure 7.7 shows the effect of
the cost reduction on the selected storage capacity. We notice that the storage is
introduced in the portfolio after a 30% discount over today’s cost. Using this results
we can estimate how much today’s cost should drop or how much the technology
should be subsidized to make it viable, this assuming that the simulated period is
able to represent the service we want to provide and the value of using the EES ap-
propriately. The optimal EES size keep increasing with the discount rate, following
a piece-wise linear trend. As shown in figure 7.5, an increase in the EES capacity
corresponds to better performances in terms of how much we are able to close the
gap between the district net-load and the tracking signal.

7.4.2 The district’s ramp rate control problem

Figure 7.8.a shows the effect of the optimal flexibility assets dispatch strategy on
the district net-load, assuming penetration levels of respectively 80% and 30% for
controllable TCls and EVs. Due to the effect constraints (7.19) and (7.20) the
final net-load is smoother and ramp rates are visibly reduced. Specifically, in this
case we limit the net-load ramp rate to 20 kW/s and the second derivative, that
control the curve smoothness, to 4 kW/s2. Figure 7.8.b shows how the different
flexibility assets are dispatched to effectively control the district net-load within
these thresholds. Using the selected portfolio of flexibility assets, we are able to
reduce the district ramp rate by up to 9 times, considering that the original Net-load
ramp rate reach peaks of 180 kW/s. Figure 7.9 highlight this result reporting the
ramp rate distribution for both original and final net-loads. The objective function
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Figure 7.5: (a) and (b) shows the original and final net-load, together with the
tracking profile. (c) and (d) the relative optimal flexibility assets dispatch profile.
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Figure 7.6: Internal energy trend for the EES (a), TCL equivalent energy storage
(b) and EV equivalent energy storage (c)
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Figure 7.7: Sensitivity Analysis over EES cost

penalizes the EES capacity and the EES charging/discharging variables to ensure
that the other available assets (TCLs and EVs) are dispatched first and that the
algorithm selects the minimum EES capacity to achieve the ramp rate limitation
goal. However the regularization coefficients (pst

ena, pst
ope) are not relevant to the

final result: regardless of how hard we penalize it, the algorithm is still going to
select the right capacity to enforce the constraints set. For this reason, this problem
setup is appropriate when we want to simulate a strategy and estimate the optimal
assets capacity regardless of its economic viability. We further study the effect
of the flexible loads on the optimal dispatch problem, by performing a sensitivity
analysis over both TCLs and EVs penetration. Figure 7.10 highlights their effect
on the optimal sizing of the EES. It shows how integrating more flexible loads can
reduce the required EES capacity while enforcing the same service quality.TCLs’
flexibility have a positive effect on the storage capacity and considerably reduces
the required EES capacity. As shown in Figure 7.10.a, this reduction follows a
monotonically decreasing piece-wise linear function with respect to the increase in
TCLs penetration. EVs’s flexibility have a slightly positive effect until we reach
a penetration level of 40%, after that we end up increasing the storage capacity
requirements. The EVSEs we are studying does not allow vehicle-to-grid interaction,
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Figure 7.8: (a) shows the original and final net-load. (b) shows the relative
optimal flexibility assets dispatch profile.

Figure 7.9: The two histograms highlight the effect of the flexible loads in limiting
the ramp rates
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thus the benefits related to EVs integration are limited to the requests of positive
flexibility during the charging sessions. The 40% penetration level is a threshold
above which the positive effect of integrating EVs are discouraged by the new loads
end up increasing the ramp rates and has to be managed by installing a bigger EES.
The integration of controllable EVs in the district can have positive or negative
effects depending on the characteristics of the service we want to provide. The
timing and magnitude at which the flexibility is required are key aspects that can
offset the impact of EVs in the portfolio. Also the charging sessions schedule is
critical. For example residential and office/commercial EVSEs have complementary
schedules, and they are more effective when integrated to provide different services
that require flexibility in different portions of the day. Using these results we can
estimate the value of integrating extra TCLs and EVs units in the portfolio in terms
of how much we can reduce the required EES capacity to deliver the same level of
service. For example increasing from 0 to 60 percent the penetration level of TCLs,
which for our 233 houses districts means to integrate almost 140 units, we estimate
a reduction of about 250kWh in the required storage capacity. From here we can
estimate how much money the aggregator should invest to enable each TCL unit or,
depending on the aggregator prospective, how much should this technology should
be subsidized to make the integration of flexible loads economically attractive.
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Figure 7.10: Sensitivity analysis plots showing how the optimal storage size varies
with controllable TCLs (a) and EVs (b) penetration level

7.5 Conclusions

In this chapter we presented a framework for the optimal management of a portfolio
of flexibility assets, from the perspective of an aggregator of urban districts. The
framework can be used to build and optimally manage a portfolio of flexibility loads
depending on the service to provide, the aggregation scale and their technical po-
tential. We focused on three main sources of flexibility: thermostatically controlled
loads, electrical vehicles and energy storage systems.We introduced a modeling ap-
proach to analyze and control each of these flexibility assets as equivalent energy
storage, mapping their behaviour into a set of convex and affine constraints. These
constraints are part of a convex formulation we developed to solve the optimal port-
folio management problem. The convex cost function consists, in its general form,
of three components which aim at balancing the benefits achieved by reshaping the
net-load of the aggregator’s portfolio and the cost of enabling and dispatching the
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different assets. We built two case studies to showcase the capabilities of the frame-
work, using historical data from private and publicly available datasets to simulate a
residential district. The first case study is related to the aggregator bidding problem
and the flexibility assets are used to improve the bidding strategy of an aggregator
in a real time market. The second case study offers a distributed approach to solve
the californian’s grid ramp rate problem, using the available flexibility assets to
control the district’s net-load and reduce the late afternoon ramp. Results show
that the framework is capable to cope with the characteristics of both problems,
enabling several layers of analysis. For each case study, we indicate the optimal
size of energy storage to install and, for each of the flexibility assets, the optimal
dispatch profile. Furthermore, through a sensitivity analysis, we are able to define
the impact on the optimal storage sizing of both the technology expected price
point and the penetration level of each of the alternative flexibility assets (TCLs
and EVs). Results show that the storage is introduced in the portfolio after a 30%
discount over today’s cost. Using this results we can estimate how much today’s
cost should drop or how much the technology should be subsidized to make it viable,
this assuming that the simulated period is able to represent the service we want to
provide and the value of using the EES appropriately. In relation to the alternative
assets penetration level, results show that TCLs flexibility have a positive effect on
the optimal portfolio since it considerably reduce the required EES capacity. On the
other hand, the integration of controllable EVs in the district can have positive or
negative effects depending on the characteristics of the service we want to provide.
The timing and magnitude at which the flexibility is required are key aspects that
can offset the impact of EVs in the portfolio. Residential and office/commercial
EVSEs have complementary schedules, and they are more effective when integrated
to provide different services that require flexibility in different portions of the day.
Future studies will be dedicated to explore different kinds of interaction between
the flexibility assets and the distribution grid. We will polish, expand and use
the framework to support such studies. We plan to integrate a model to consider
TCLs and EVs enabling costs as part of the optimal portfolio building problem. We
also plan to improve the modeling capabilities of the framework by using stochastic
programming and probabilistic constraints to model the uncertain nature of several
variables of interested for the optimal portfolio management problem, such as user’s
load, RES generation or EVs charging patterns.
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Chapter 8

A multi-agent based control
architecture for flexibility assets
in industrial microgrids

8.1 Preface to chapter 8

In the last chapter we talked about the optimal portfolio management problem for
aggregators of flexibility assets. We introduced a convex formulation to model and
solve the problem from the prospective of an aggregator which is capable of taking
centralized optimal decisions, having access to perfect information related to the as-
sets of its portfolio. In this chapter we discuss an alternative, distributed, approach
to the control of flexibility assets. We introduce a multi-agent based control archi-
tecture designed to manage the flexibility assets of an industrial microgrid. In this
case the aggregation level is limited to a single industrial microgrid and the aggre-
gator is interested in the optimal control of the different flexibility assets to reduce
operational costs and limit consumption peaks during critical hours. Together with
eng. Stefano Longo and Dr. Paolo Sernani which implemented the control archi-
tecture using Jade, i contributed to the modeling tasks, the design of the control
architecture, the definition of the different case studies, the simulation scenarios and
of appropriate comparison metrics. Professors Gabriele Comodi and Aldo Franco
Dragoni provided help with technical support, ideas and editorial assistance.
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8.2 Introduction

Many countries are pursuing ambitious goals in terms of renewable shares in their
energy portfolio. The intermittent, uncontrollable, nature of renewable generation
is making harder to balance energy demand and offer at grids level. This trend will
eventually pose new challenges to the entire distribution system in terms of reliabil-
ity, costs and service quality. Demand response (DR) represents an opportunity for
end users to play an active role in mitigating these effects [10]. End users can make
available their own assets, a set of thermostatically controlled loads, a residential
energy storage system and/or electric vehicle, to dispatch services to the grid.

Microgrids will play an important role in this transition. Microgrids are small
scale distribution systems formed by the interconnection of distributed generation,
both traditional and renewable, loads and energy storage systems. A microgrid
is such that all its entities are coupled with the distribution grid through a single
point of common coupling. An intelligence ensures that all the assets are coor-
dinated to deliver power in the most efficient and reliable way. Exploiting their
inherent controllable and flexible nature, microgrids can be designed to provide de-
mand response services (e.g. frequency regulation using electrical energy storages
systems), to maximize local renewable self-consumption and, in case of grid fault or
voltage fluctuation, to operate in islanded mode [78]. Microgrids can be classified,
depending on the application, in utility microgrids, industrial/commercial micro-
grids and remote/isolated microgrids [35]. Each category has its own motivation,
benefits and challenges. They are significantly different in terms of consumption
magnitude, variance and periodicity. Different kind of microgrids can be used to
provide different kind of services to the grid, or aggregated to form a more relevant
portfolio of controllable loads to leverage [104].

Industrial microgrids are driven by the potential reduction in operational cost
due to self-generation and the promise of higher power quality and reliability. Due
to the magnitude and nature of their loads, and the ability to invest in distributed
generation and storage, industrial microgrids are perfect candidate to work as Vir-
tual Power Plant (VPP), providing services to the distribution grid or actively
playing in balancing electricity markets or day-ahead planning [7]. On the other
hand, the flexibility associated with industrial controllable loads is usually more
complex to predict, requiring deep knowledge of the specific production processes,
and more constrained to high reliability and safety standards. Studies and projects
are now focusing on how to quantify the potential benefits of flexible loads in indus-
trial sites, tackling the problem from both the technical (flexible load assessment)
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and economic (development of business model and policy recommendation) point
of views. As an example, IndustRE is a project financed by the Horizon 2020 pro-
gram which aims at developing a framework to study the technical potential of
different industrial facilities in providing flexibility, proposing a modular approach
based on specific case studies and simulation techniques[52]. In [89], the interested
reader can find an extended overview of Smart Grid technologies for the industrial
sector, with a special focus on automatic demand response applications in specific
industries. In [101], authors describe and test a methodology to optimally operate
a demand-side management strategy, using the flexibility granted by an industrial
air-separation plan to reduce operational costs and provide power reserve to the
national grid. In [106], authors develop resource task network models to optimally
reschedule the activities of steel plants to minimize operational costs leveraging en-
ergy price variability: different models are tested and results show how operational
costs can be reduced even if the computational burden of the optimization tasks
can be heavy.

Multi-Agent Systems (MASs) are emerging as a promising tool in a wide range of
applications in the microgrid, such as decentralizing the infrastructure, giving more
weight to society wishes, as well as facilitating maintenance, reducing costs and
opening doors for the development of low-cost devices embedded with AI tools [41].
In the scientific literature, autonomous agents and Multi-Agent Systems have been
used to support humans, for example controlling home heating by managing un-
certainty and user preferences [91], using mathematical modeling [85] to incentivize
agents (representing home consumers) to shift their loads when green energy is
available and proposing gamified and economic incentives [2] to incentivize users to
accept such shifts and promote renewable energy usage. Differently from these tra-
ditional approaches, the multi-agent control architecture proposed in this chapter
has a different main goal, and is applied and tested into a different scenario: the
systems aim at reducing the operational cost of an industrial microgrid, modeling
the available assets and their flexibility with autonomous software agents which
schedule and regulate the power exchange with the national Distributor System
Operator.

Centralized control has been feasible in grids with limited numbers of control-
lable components, but it becomes increasingly complicated, costly, and computa-
tionally intensive, as the quantity and complexity of grid elements grows [26]. In
fact, distributed control architecture based on agents, being able to operate with-
out external intervention, communicating through messages, and acting via goal-
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directed behaviors [100], are ideal to model and regulate the autonomous physical
elements and components of power systems [65]. The agent-based architecture pro-
posed here is composed of multiple agents, as usual for agent-based systems [11],
being a Multi-Agent System (MAS): the implemented agents interact with each
other via communication, composing a cooperative society to achieve a mutual
benefit, i.e. lower operational costs of the microgrid.

This chapter presents a multi agent control architecture designed for industrial
microgrids. The control mechanism aims to reduce operational costs while main-
taining the same production goals. To do so, it leverages the flexible assets in the
microgrid, optimally scheduling the power exchange with the national grid, based
on a 24 hours-ahead price signal. A threshold based peak shaving is implemented
to allow advanced control strategies and more complex interactions among micro-
grids assets. The architecture effectiveness is tested using real data coming from
Loccioni Leaf Community, an industrial microgrid comprising controllable loads, re-
newable distributed generation and energy storages. Two different electricity market
frameworks are simulated to test the sensitivity and the robustness of the control
architecture to different conditions. The main contributions of this work are the
followings:

• A new multi agent control mechanism is designed over the needs of future
industrial microgrid, robust to different microgrids topology and assets avail-
ability;

• New metrics to analyze the effectiveness of a control mechanism are suggested;

• The impact of electricity price variance is analyzed, using the control mecha-
nism effectiveness as a metric.

The rest of this chapter is organized as follows: Section 8.3 contains the method-
ology; in Subsection 8.3.1, the multi agent control mechanism is described; in Sub-
section 8.3.2, the industrial microgrid is presented; in Subsection 8.3.3, the test
case scenarios, the set of assumptions and the electricity market of reference are
presented; in Subsection 8.3.4 the metrics to assess the proposed control mecha-
nism are described. In Section 8.4, simulation results are discussed in terms of
algorithm effectiveness and the impact of electricity price over its performances;
Subsection 8.4.1 is left to discuss actual implementation related concerns, possible
improvements and future research steps. Finally, Section 8.5 draws the conclusions
of the chapter.
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8.3 Methodology

A multi-agent control architecture is designed to respond to the needs of indus-
trial microgrids in terms of varying topology, assets availability, and integration
with existing systems. In addition to mapping a microgrid, composed of multiple
distributed components, with a distributed architecture, the multi-agent control en-
sures the modularity of the microgrid: thanks to the standards of the Foundation
for Intelligent Physical Agents (FIPA) [42] simply adding new agents in the architec-
ture (registering their services) is enough to wrap different kinds of components and
extend the capabilities of the system. Moreover, designing wrapping agents for any
instance of the legacy information systems of the microgrid makes the architecture
a fully interoperable software layer.

The multi-agent control architecture proposed in this work consists of several
agents modeling the available assets of an industrial microgrid, cooperating to re-
duce day-ahead operational costs, given one day ahead perfect information over the
expected load consumption, renewable generation and market energy price. To test
the control architecture an actual Italian industrial microgrid serves as test case
using real consumption and generation data in simulation scenarios. To study the
control mechanism sensitivity to different energy markets, in terms of price mag-
nitude and volatility, two different scenarios are simulated. Simulation are carried
out using historical data from different reference markets.

8.3.1 The Multi-agent based control architecture

Figure 8.1 depicts the multi-agent control architecture for the microgrid. The DSO
Agent represents the Distribution System Operator (DSO): it is not an actual part
of the microgrid, but, during the simulations, it allowed sending messages to the
microgrid, in order to test the designed architecture. In particular, the proposed
architecture assumed that the message sent by the DSO agent to the microgrid is
composed by three information: < $, P, T >; where $ is the price of electricity in a
certain time frame P defined by contract, under a power threshold T , after which
the peak-price is used.

Five agents are implemented to model every kind of microgrid, independently
from the topology and the specific components available. Such agents model the
basic structure of the system:

Grid Agent. It is the interface of the microgrid with the DSO. It receives the
message sent by the DSO agent and elaborates the < $, P, T > triple for all the
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future calendar day’s hours. Depending on the application and the reference energy
market, these values can be either deterministic or stochastic. In the latter case the
Grid Agent uses the updated information it receives to predict the future states of
the < $, P, T > triple. This data is sent to all the microgrid agents via the control
agent and the aggregators, waiting for the response with the electric power (kWh)
requested to the national grid for that period. The Grid Agent is then responsible
to communicate to the DSO the final decision of the control architecture for the P

time frame, sending the amount of electric power that the microgrid will need in P .
Control Agent. It covers the role of the supervisor of the microgrid, forwarding

to all the nodes, via the Aggregator Agents, the price of electricity for the given
time-frame and the power threshold. The Control Agent is responsible to process
the replies from all the nodes: it collects the requests, in terms of needed power,
from all the agents of the microgrid, processing the received data and taking the
final decision, informing the Grid Agent as well as the entire microgrid. The single
agents can also reject his decision if it goes outside the limits (to prevent cases of
error).

DER Aggregator Agent. It acts as the interface between the Control Agent
and all the Distributed Energy Resources (DERs) of the microgrid, aggregating all
the data related to the energy production of each available resource, represented by
a DER Agent. The DER aggregator makes the Control Agent and the architecture
independent from the actual number of DERs of the microgrid.

Battery Aggregator Agent. As it happens with the DER Aggregator, the
Battery Aggregator Agent collects the data related to Battery Agent requests (in
terms of needing to recharge or discharge), making the Control Agent independent
from the actual numbers of Batteries available.

Load Aggregator Agent. It aggregates the data of the energy loads of the
microgrid, making the Control Agent independent from the number of loads. In
addition, since each Load Agent representing a load can perform its loads shifting
without being aware of the choices of the other Load Agent, the Load Aggregator is
responsible to check each agent’s shifting proposal, in order to avoid consumption
peaks due to the shifting.

In addition, the DERs, batteries or loads available in the microgrid are modeled
by three types of agents:

DER Agent. It models a single Distributed Energy Resource in the microgrid.
Its goal is to produce the amount of energy that allows reducing the production
costs. For example, in case an agent models a diesel generator, the goal would be
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to work at the point of maximum efficiency (e.g. 80% of the maximum workload).
Battery Agent. It models a single battery in the microgrid. Its goal is to keep

the battery at the desired State of Charge (SOC).
Load Agent. It is the agent that represents a consumption source. For ex-

ample, it could be the thermal load of a department or an entire building, as well
as single light in a room, depending on the granularity desired in the multi-agent
architecture. The consumption profile associated with the each Load Agent con-
sists of critical and non-critical loads. Critical loads cannot be shifted, offering no
flexibility to the system (e.g. a test bench that have to run to keep up with a
production schedule). On the other hand, non-critical loads can be shifted, offering
some flexibility to the control system (e.g. HVAC system in a office space)

The number of DER, Battery, and Load Agents depends on the number of
components available in the microgrid.

Figure 8.1: Multi-agent based control architecture.

The workflow to schedule the consumption and production of the microgrid is
as follow.

Step 1. Once the Grid Agent receives the price valid in a specific time frame
from the DSO, it will add such price to a data structure. If necessary it will forecast
the energy price values and the power thresholds for all the remaining time-frames
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of the day, producing an array of data for the control agent:

[< $, P, T >, < $1, P1, T1 >, < $2, P2, T2 >, ...] (8.1)

Step 2. The Control Agent forwards such message to all the Aggregator Agents,
which forward the message to all the available Loads, Battery, and DER Agents.

Step 2.a Processing such data, each Load Agent sends to the Load Aggregator
Agent, for each time frame, the minimum amount of power needed for critical, non-
deferrable , activities, the maximum amount of power it could use in that time
frame in case no loads are shifted, and the desired choice for the requested power,
moving some of the non-critical loads in other time frames. In fact, when the
minimum and maximum value of power differ, the Load Agent decided to shift its
load consumption in the future, since a more convenient price is expected based
on the data received from the Grid Agent. In such case, the requested power
will be enclosed between the minimum and maximum power needed. By receiving
such data for all the future time-frames in the day by the Load Agents, the Load
Aggregator Agents is responsible to check whether the load shift can cause an energy
consumption peak in the future: in fact, all the agents might decide to shift their
loads in a more economically convenient time frame. To perform such check, the
Load Aggregator Agent monitor the messages it receives from Load Agents as soon
as they send it, summing up the amount of requested power for each time frame. In
case in one or more time frame the peak threshold is reached, the Load Aggregator
Agent asks to all the agent who sent their message after the peak was reached, to
send their second best choice. This process continues until the peak is smoothed, or
the minimum power, the maximum power and the desired power of the Load Agents
are equal, which means that nothing is shifted. Once a schedule with no peaks or no
shifts is agreed, the Load Aggregator Agent aggregate all the data to have a unique
minimum consumption, maximum consumption, and desired consumption for each
time frame, to send such information to the Control Agent.

Step 2.b Once DER Agents receive the message containing the price infor-
mation for the future time frames, they send to the DER Aggregator Agent, for
each time frame, the minimum amount of energy they will produce, the maximum
amount of energy they can produce and the amount of energy they want to produce
to achieve their own production goal, based on the prices received from the Grid
Agent. In addition, the DER Agents send to their Aggregator the average cost for
the production of 1 kWh. The DER Aggregator Agent aggregates such data to
provide the control agent a unique value for the minimum production, maximum
production, and desired production for each time frame.
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Step 2.c After receiving the price information from the Grid Agent, Battery
Agents send to the Battery Aggregator Agent, for each time frame, the maximum
amount of power they can distributed to the microgrid, the maximum amount of
energy batteries can absorb during charging, and their desired power (the amount of
energy Battery Agents are willing to give or to take from the microgrid depending
on the sign). In addition, Battery Agents send to their Aggregator the cost of
providing 1 kWh to the microgrid, evaluated considering battery’s cost per cycle.
The Battery Aggregator Agent aggregates such data, to send it back to the Control
Agent.

Step 3. The Control Agent collects the aggregated data from the Load Aggre-
gator, the DER Aggregator, and the Battery Aggregator, to take the final decision
of the microgrid on how much energy should be bought from the DSO in the time
frame P in order to satisfy loads request from Load Agents. Three cases can occur:

1. The energy price is among the 30% lowest price of the past week (i.e. price is
low). Hence, the Control Agent asks to DER to produce the minimum power
they can, communicating to the DER Aggregator that the minimum produc-
tion is chosen. The energy from the batteries of the microgrid is not needed as
well, hence the Control Agents communicates to the Battery Aggregator that
Battery Agents that expressed the willing to recharge (through the desired
power value) can do so.

2. The energy price is among the 30% highest price of the past week (i.e. price
is high). The Control Agent asks to DER Agents, via their Aggregator, to
go for the maximum production. Available Battery agents are used to supply
energy to the Load Agents, minimizing the energy purchase from the main
grid.

3. The price is in between historical high and low prices. The Control Agent
make a comparison between the DSO’s price for energy, and the production
cost of DERs and batteries, and decides if to ask for maximum production
from DER and batteries (usual choice, since is almost always more convenient
than buy from the network) or not, to satisfy Load agents’ requests.

Step 4. Once the Control Agent takes the final decision, it might happen that,
if price is low or average, the amount of energy requested would exceed the power
threshold T indicated by the DSO. In such cases the Control Agent tries to perform
a peak shaving action, executing the following steps:
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1. DERs are forced to maximize their power output;

2. If the peak is not eliminated yet, all the available Battery Loads are used to
discharge energy;

3. If the peak is not eliminated yet, the Control Agent asks to the Load Agents
to shift some or all the non-critical loads even if it is not convenient for them,
asking for the minimum power consumption.

Step 5. After this process is complete, the Control Agent sends a message to
the Grid Agent confirming the amount of kWh requested for the time frame P. The
Grid Agent communicates such information to the DSO.

8.3.2 Test case: the industrial microgrid

The case study considered in this work is the Loccioni’s industrial grid-connected
microgrid located along the Esino river in Angeli di Rosora (AN). The microgrid is
a living lab dedicated to applied research in the energy field. Controllable and non-
controllable loads, renewable generation and storage systems are interconnected in
low voltage, behind a single meter. The microgrid runs only on electricity, even the
HVAC system has been revamped with high efficient heat pumps.

Five buildings are connected to the microgrid: two of them are dedicated to
light industrial activities, one to office activities; one to electrical and thermal en-
gine testing; the last one is residential. The resulting load profiles are representative
of such a variety of uses, each of them characterized by their own magnitude and
periodicity. The overall microgrid consumption profile (Figure 8.2.a) shows a sta-
tionary behavior, with strong daily and weekly seasonality. It reflects the periodicity
of the working schedule: the company is active 5 days a week, from 8 am until 18
pm.

Only the HVAC share of the overall load is deferrable, considering that heat
pumps can be regulated to accommodate different demand management strategies.
Almost 60% of the energy consumed along the year is produced by microgrid’s
DERs. The renewable generation mix consists of multiple rooftop photovoltaic
systems (> 400 kWp) and four micro-hydro electric plants (> 200kW). Figures 8.2.b
and 8.2.c show the micro-hydro and pv systems production profiles, respectively.
Some additional degrees of freedom are granted by two energy storage systems:
a 224 kWh li-ion EES and a 450 m3, water based, sensible heat thermal energy
storage.
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All these assets are managed by a proprietary EMS, whose main functions are
the balance of local consumption and generation, the actuation of DSM strategies
(e.g. peak shaving) and constant monitoring of systems status.

Figure 8.2: Loccioni’s microgrid consumption (a) and generation profiles (b,c),
May 2016.

8.3.3 Simulation setup

Three different scenarios are simulated to stress the characteristics of the control
mechanism, while testing performance and robustness in different conditions. The
period to simulate has been arbitrarily set to May 2016, with hourly time steps. A
primary set of constraints and assumptions are shared by all scenarios, being depen-
dent from the microgrid characteristics: the energy demand and local generation
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Table 8.1: Batteries specifications.

Battery Capacity Type Maximum Power Round Trip
Agent (kWh) output (kW) Efficiency
Batt1 250 Li-ion 80 0.85
Batt2 250 Li-ion 80 0.85

profiles, the share of critical/non-critical loads and the available energy storage
Figures 8.3.a, 8.3.b and 8.3.c show the given consumption profile for the different

load agents. For each agent both the critical and non-critical loads are reported.
The Leaf Lab agent represents the consumption profile of the most advanced smart
building of the microgrid, the Leaf Lab, for which a fixed-share of non-critical,
deferrable, loads are available. This non-critical share of the total load is constant
during working hours and zero during outside of them. This agent considers just
the production related loads: office equipment, illumination, working machines and
test benches. On the other hand, the Thermal Mass agent represents the Leaf
Lab HVAC system consumption profile. In this case, the whole load is considered
non-critical but only in specific hours of the day, for which the HVAC system can
potentially be shut down to shift loads ahead. The “Rest of the Microgrid” agent
includes all the other buildings with offices and laboratories. This latter agent
does not have access to non-critical loads. Table 8.1 reports the available energy
storages’ characteristics which are used to define the behavior of the battery agents:
maximum charging/discharging rate, maximum/minimum state of charge, round
trip efficiency and capital cost. The first parameters are used to enforce operational
constraints related to the machine characteristics, the latter is necessary to the
control mechanism to evaluate when is convenient to use the energy storage.

A second set of assumptions is used to characterized the different scenarios.
These assumptions are related to different energy price input vectors and, for sce-
nario 2, to the forcing of a peak shaving strategy (Table 8.2). The energy price
vectors considered are representative of two different markets. Figure 8.4.a shows
the Italian “Prezzo Unico Nazionale” (PUN). PUN is calculated as the day-ahead
wholesale market, zonal demand weighted, price. PUN data can be retrieved from
GME’s, “Gestore mercati energetici”, website [46].

Usually, PUN is not directly applied to end users, which rather sign contract with
an energy providing companies: these companies trade their daily capacity in the
wholesale market while guaranteeing to the end users a constant tariff. Depending
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Figure 8.3: The Leaf Lab (a), Thermal Mass (b) and Rest of the microgrid (c)
agents’ consumption profiles. Figure shows both critical (in red) and non-critical
(in yellow) share of loads.

on the nature of the end user, the contracted tariff can have different characteristics.
For the sake of this study, end user’s tariffs are not taken into consideration. Indeed,
due to the limited spread between peak and off peak prices, they are not able to
incentivize energy arbitrage strategies, neither to highlight the characteristics of the
presented control strategy.

Figure 8.4.b shows the Czech Balancing market (BM) trend in May 2016. This
market trades electricity used to maintain the balance within the Czech power grid.
It is a short-term market, operating in 30 minutes long sessions, opening one hour
before the required time of delivery. Balancing market data can be retrieved from
CEPS website [21]. These price vectors have been selected to represent two different
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market schemas. The PUN comes from day-ahead trades, its nature is reflected in
less variance and a more stationary behavior. On the other hand, the BM is a faster
regulation framework, characterized by high variance and wide daily price swings.
Price values showed in figures 4 are the final ones used in the analysis. They reflect
the actual PUN and BM trends in terms of variability, while magnitude has been
adjusted to account for fees and make the two markets comparable.

As described in Subsection 8.3.1, the grid agent is in charge to receive the
updated data from the market and forecast the future energy prices for the next 24
hours’ block. To test the effectiveness of the control mechanism, this study assumes
perfect information over energy market data. This means that the price forecasts
are substituted with the actual energy price vectors.

In scenario 2, peak shaving is activated every day from 15 pm to 17 pm. This
means that the control mechanism will try to reduce the microgrid’s power con-
sumption down to a predetermined threshold, which, in this study, is arbitrarily set
to 100 kW.

Table 8.2: Scenarios definition.

Input price vector Peak shaving status
Scenario 1 PUN OFF
Scenario 2 PUN ON
Scenario 3 BM OFF

8.3.4 Comparison metrics

This study aims to assess the capabilities of the proposed control mechanism and
its response to different sets of input conditions. For this reason, results in terms of
absolute values are not quite interesting, neither significant. A series of assumptions
were made to simplify assets models, knowing that an actual economic is beyond
the scope of this work. Two comparison metrics are defined to highlight the relative
effectiveness of the control mechanism when facing different scenarios.

Operating Costs Reduction (OCR) is defined as the percentage ratio between
the simulated scenarios operating costs and the Baseline’s ones (Equation 8.2).
The Baseline scenario represents the “business as usual” case, operating costs are
evaluated using the actual consumption profile of the microgrid (P b

i ), considering the
PUN as price vector (PrP UN

i ). OCR is a measure of the economic saving potential
of the control mechanism. Shifted Energy Ratio (SER) is defined as the percentage

106



Chapter 8. A multi-agent based control architecture for flexibility
assets in industrial microgrids

Figure 8.4: Energy price input vectors representing the PUN (a) and the BM (b)
in May 2016.

ratio between the scenario’s shifted energy and the Baseline energy consumption
(Equation 8.3). Positive definite, it is a measure of how active, how effective, the
control mechanism is under specific simulated conditions.

OCR = 100 ·

744∑
i=1

Pi · pri

744∑
i=1

P b
i · PrP UN

i

(8.2)

SER = 100 ·

744∑
i=1

|Pi − P b
i |

744∑
i=1

P b
i

(8.3)
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8.4 Results and discussion

Results, obtained simulating the different scenarios, confirm the ability of the pro-
posed control method to adjust the microgrid consumption profile in accordance
with an external price vector.

Figure 8.5 highlights this aspect, showing the control mechanism response to
BM’s trend (Shifted load), the original microgrid consumption profile (Baseline
load) and BM’s price vector. It is possible to distinguish three peak moments in
the daily price vector (dashed red curve), to which the control mechanism responds
reducing part of the power consumption using the available flexible assets of the
microgrid. Loads are shifted to the end of the day (after time step 330), when BM
values approach a local minimum.

Figure 8.5: Focus on the control mechanisms response to a dynamic price vector

Figures 8.6 graphically capture the control mechanism effect on microgrid’s con-
sumption profile, reporting three, arbitrarily chosen, simulated days. Figures 8.6.a,
8.6.c and 8.6.e show the microgrid load profile for the different simulated scenarios
(see table 8.2), in red, against the baseline profile, in yellow. Figures 8.6.b, 8.6.d and
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8.6.f report the input energy prices which forced the control system to shift the con-
sumption. It is easy to appreciate how the control mechanisms impact is different
depending on the simulated scenario. Before exploring each of these scenarios, it is
worth noting how there is almost no difference in terms of Total Energy Consump-
tion between the Baseline and the different scenarios (0̃.01%, data in Table 8.3).
This proves that the control mechanism is merely reshaping the microgrid’s load
profile.

In Scenario 1 (figure 8.6.a) the shifted load profile is, for the most part, super-
imposed with the baseline one, which means that the control mechanism cannot
find arbitrage opportunities. This aspect is reflected in Table 8.3 results: Scenario
1 got the lowest shifting capabilities (SER of 4.2%) and non-significant savings op-
portunities (OCR 0.04%). Part of the daily load from peak hours is consistently
shifted in the late evening using the available storage capacity. This shifting pattern
exploits the daily seasonality of PUN values, which are consistently higher during
specific hours of the day and lower in the night (figure 8.6.b).

Figures 8.6.c and 8.6.d are related to Scenario 2. As in Scenario 1, PUN is
used as energy price input vector, however the activation of a peak shaving strategy
forces a reduction in the microgrid power consumption every day, between 15 pm
to 17 pm. The adopted control mechanism can consistently shred up to 100 kW
during peak hours using a combination of electrical storage and deferrable loads.
The shredded loads are recovered later in the afternoon, this aspect is visible as
the red line start diverging from the yellow one in the descending section of the
daily curves (Figure 8.6.c). Results in Table 8.3 prove how the control mechanism
is forced to shift a relevant portion of the load (7% of SER) regardless of PUN
price, due to the peak shaving strategy. OCR goes negative, which means that,
for Scenario 2, the control mechanism increases microgrid’s operational costs. This
result was to be expected considering that the peak shaving strategy was enforced
without considering any form of economic incentive.

Figures 8.6.e and 8.6.f are related to Scenario 3. The BM is used as price input
vector of reference, no additional demand management strategies are enforced. The
effects of the highly volatile BM are demonstrated by the Shifted load curve which
shows an irregular pattern, way divergent from the baseline one. This irregular
pattern is shaped by the control mechanism which tries to follow, and exploit, the
BM.
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Figure 8.6: Baseline power, shifted power and energy price profiles for scenario 1
(a, b), scenario 2 (c,d) and scenario 3 (e, f)).

8.4.1 Possible improvements and future steps

The software developed in this study can be further improved under several aspects.
When it was designed, many assumptions were done to create a first version of the
software that can be always improved with the addition of new functions and the
enhancement of the existing ones.

Load-shifting functions can be designed to enable different demand-response
programs. For this reason, a basic version of the load-shifting method was imple-
mented and embedded in both the Leaf Lab and Thermal Mass agents. It permits
the shift of loads only in the future hours of the day. It is not possible to shift back-
wards, operating more complex strategies (e.g. offices pre-cooling). Future work
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could implement more advanced models to capture the behavior of thermostatically
controlled loads and their ability to increase the flexibility of a building. This fea-
ture would add more degrees of freedom to the shifting algorithm, enabling more
complex and cost-effective decisions.

The control mechanism implemented in the load aggregator agent can be further
improved. In the current version, once the loads communicate to the aggregator
when they would like to shift the actual amount of power, the aggregator elaborates
the new schedule and run a check to avoid the creation of new consumption peaks.
When a new consumption peak is generated, the aggregator prioritizes the loads
which answered first, allowing them to shift their consumption, while the last ones
are forced to re-evaluate their schedule. This mechanism makes the aggregator
prioritize always certain loads. To overcome this limit different ranking mechanisms,
based on load’s value or some comfort criteria, can be implemented to evaluate the
schedule after all messages are received.

The battery agents can be improved by adding machine learning capabilities to
learn their optimal usage pattern from historical time series. The battery agents
can change their objective state of charge at every time step to maintain the reserve
of energy necessary to regulate the power stability of the microgrid during the day
and to enable highly cost-effective load management strategies.

Finally, in the current version of the software the control mechanism works
having “perfect information” regarding the future energy prices: for each day of the
simulation, and for each hour of the day, it knows in advance what the energy price
will exactly be. Due to this assumption, results from Table 8.2 can be considered
ideal, since they do not take into account the uncertainty related to energy price
forecasts. In the real case, it is safe to assume that there will be a trade-off between
higher margins, achievable in a more volatile market, and the rise in prediction
complexity, which would result in the algorithm re-scheduling the load in a sub-
optimal way. Future studies will explore this trade-off, while also modelling the
impact of the uncertainty related to all the other stochastic variables involved,
DER production and microgrid’s consumption.

8.5 Conclusions

This chapter presented a multi agent control architecture designed for advanced
energy management in industrial microgrids. The control mechanism uses the avail-
able flexibility assets available in a microgrids (distributed generation, energy stor-
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Table 8.3: Simulation results.

Total energy Total
consumption operating OCR (%) SER (%)

(kWh) costs (EUR)
Baseline 190220.9 32734.7 - -

Scenario 1 190200.9 32721.2 0.04 4.2
Scenario 2 190220.9 32736.1 -0.004 7
Scenario 3 190205.2 31126.1 1.26 6.4

age systems and non-critical loads) to reduce operational costs while maintaining
the same production goals. Operational costs are reduced optimally scheduling the
power exchange with the national grid, based on a 24 hours-ahead price signal. More
complex control strategies are possible enforcing a peak shaving regime while main-
taining the price arbitrage capabilities. Two comparison metrics were introduced to
analyze the results and quantify the effectiveness of the control mechanism under
different scenarios. The architecture effectiveness was tested using real data coming
from Loccioni’s Leaf Community, an industrial microgrids comprising controllable
loads, renewable distributed generation and energy storages. Two different electric-
ity market frameworks were simulated to test the sensitivity and the robustness of
the control architecture to different conditions.

Results confirm the ability of the proposed control method to adjust the mi-
crogrid consumption profile, reducing operating costs while trying to maintain the
consumption peak under a specified level. The effectiveness of the control mecha-
nisms is strongly related to the input energy price vectors used to run the simulation.
Specifically, the higher the variance in the input energy price vector, the higher the
margin for arbitraging and the ability of the control mechanism to create value.
All the results collected seem to point towards this general rule. In future studies,
different market frameworks should be tested to further validate this hypothesis and
identify the optimal market conditions to deploy this kind of control mechanisms.
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Conlusions

9.1 Key findings and impact

In this dissertation, we developed models, methodologies and tools that now con-
tribute to the state of the art, helping us imagine the role that flexibility assets and
aggregators will have in the future energy distribution network.

In chapter 2, we introduced the virtual flexibility plant framework for aggrega-
tors. The framework can be adapted for aggregators which are interested in either
direct and indirect control strategies. The framework we presented is based on two
operation levels: the "Local assets level", where the aggregator interacts with the
end users collecting data to estimate and control their flexibility, and the "Flexibility
Aggregator level", where it interacts with the energy market to buy/sell energy and
provide different services. For each level we presented the aggregators objectives, its
activities and we listed the main open questions/challenges from both the research
and industry worlds. We explained the reasons behind the need for a generalized
modeling methodology to describe and control the flexibility assets, presenting a
suitable equivalent storage formulation. This formulation allow us to aggregate the
contribution of thousands of heterogeneous assets by simply summing the equivalent
storage parameters. Thus, we are able to describe and control radically different
kinds of portfolio using the same set of modeling and optimization tools.

In chapter 3, we talked about energy storage systems. Specifically, we presented
a simulation methodology to test the impact of integrating a thermal energy storage
with an existing HVAC system. As a case study we used the School of Art, Design
and Media building located within the NTU campus in Singapore. We designed dif-
ferent management strategies to address different area of interventions. The storage
was used to reduce/remove partial load operations, to reduce peaks loads prioritiz-
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ing the usage of the most efficient chillers and to perform price arbitrage, exploiting
the difference between peak and off-peak electricity rates in Singapore. Results we
obtained indicate how the extra flexibility introduced by a thermal energy storage
can sensibly improve the building performances, reducing operational costs while
improving the cooling system efficiency. The technology seems to be particularly
effective when used to remove partial load operations by shifting part of the energy
demand.

In chapter 4, we talked about the intrinsic flexibility of the residential cooling
energy demand and introduced thermostatically controlled loads. We modeled a
heterogeneous population of 1000 households using a specific set of parameters sam-
pled from uniform distributions. Using this population, we ran several simulations
testing the effect of different climate conditions and setpoint/deadband variations.
We observed that human behavior, expressed through thermostat control prefer-
ences, has a critical effect on the estimated demand response potential. Specifically,
we demonstrated how moving from a dynamic setpoint strategy towards a dynamic
deadband one, consumers could trade energy saving potential to increase their load
flexibility. Relaxing the thermostats control’s deadband, aggregators can replace
more storage capacity integrating the same number of residential costumers. Re-
sults show how temperate climates get the most benefits from a dynamic deadband
strategy, giving us precious indications to build targeting recommendations: given a
fixed number of households that we can aggregate in our portfolio, we get more flex-
ibility in Sacramento than in Los Angeles. To the best of our knowledge, this is the
first work that perform a direct comparison between these two strategy simulating
their impact on both demand efficiency and flexibility.

In chapter 5, we introduced a modeling approach to describe an aggregation of
Electric Vehicles System Equipments (EVSEs) as an equivalent energy storage. The
model is based on five parameters that can be estimated using historical charging
data. These parameters should be evaluated for each single EVSE and summed
up to aggregate their contribution. We explained how the model can be used by
referring to a trivial case of an aggregation of two EVSEs. We also discussed
about the impact of mobility patterns on the aggregate flexibility. Specifically,
the flexibility associated with each EV driver depend on arrival and departure time,
the energy consumed driving and the charging frequency. EVs integration in a
flexibility resource portfolio can have either positive, neutral or even negative effect
depending on the smart charging strategy and the kind of service the aggregator
seeks to provide.
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In chapter 6, we talked about the challenges related to the actual implementa-
tion of a demand side management strategy in an industrial microgrid. We reported
data collected during a test campaign showing how we can exploit the existing flex-
ibility assets to implement simple strategy and reshape the energy demand profile.
Specifically, we used a sensible heat thermal energy storage and the existing HVAC
system, proving that the peak load can be substantially reduced. However, when
the strategy is revoked and the original temperature setpoint is restored, the chillers
turn on again at maximum power to push the temperature within the acceptable
deadband, generating a new peak in terms of energy demand. The data we collected
also proves that sampling electricity consumption with a 15 minutes time granular-
ity is adequate to identify the activation of a load shedding strategy, giving us an
important feedback when it comes to choose the appropriate metering infrastructure
for such applications.

In chapter 7, we defined a methodology to address the optimal portfolio man-
agement problem for flexibility aggregators. Using this methodology we can esti-
mate the flexibility portfolio of a generic urban district by describing the different
flexibility resources using the equivalent storage models. We presented a convex
formulation that is designed to solve the optimal portfolio management problem
for flexibility aggregators. The goal of this formulation is to optimally manage the
available flexibility resources, leveraging the energy price variability to reduce op-
erational costs, while producing valuable services for the national grid. We tested
the methodology in two alternative scenarios, simulating the characteristics of an
urban district which has access to controllable residential TCLs, controllable EVSEs
and energy storage systems. Both scenarios aimed to show how aggregators could
enhance their control over the aggregated energy demand by optimally using the
available flexibility resources, while integrating extra storage capacity to supply
specific services to the national grid. Results show how enabling residential TCLs
can reduce aggregators investment in extra storage capacity by up to 30%, while
providing the same level of services to the end users and the national grid. On the
other hand, EVs integration can have a positive or neutral effect depending on the
smart charging strategy and the required services.

In chapter 8, we introduced a multi-agent based control architecture designed
to manage the flexibility assets of an industrial microgrid. In this case the aggrega-
tion level is limited to a single industrial microgrid and the aggregator is interested
in the optimal control of the different flexibility assets to reduce operational costs
and limit consumption peaks during critical hours. Two comparison metrics were
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introduced to analyze the results and quantify the effectiveness of the control mech-
anism under different conditions: the operating cost reduction is an economic index
that compares the operative costs before and after the introduction of the control
strategy; the Shifted energy ratio is an energy index that measures how active,
effective, the control mechanism is, regardless of the economic benefits. The con-
trol mechanism effectiveness was tested using real data coming from an industrial
microgrids comprising controllable loads, renewable distributed generation and en-
ergy storages. Results confirm the ability of the proposed control method to adjust
the microgrid consumption profile, reducing operating costs while operating a peak
shaving strategy. The potential of the control mechanisms is strongly related to the
input energy price vectors used to run the simulation. Specifically, the higher the
variance in the input energy price vector, the higher the margin for arbitraging and
the ability of the control mechanism to create value.

9.2 Future research topics

We believe the methods introduced and the results discussed in this dissertation to
represent a starting point for several others research opportunities, including:

• Starting from the Virtual Flexibility Plant architecture developed in chapter
2, to define the necessary data infrastructure, the data exchange protocols
and a functional, scalable and secure database architecture

• To demonstrate how aggregators can coordinate large numbers of TCLs and
EVSEs implementing different DR services and smart strategies in an urban
scale pilot

• To identify targeting metrics for households and areas with the highest value
flexibility

• To identify optimal targeting strategy for investing in EVSEs given the mo-
bility patterns of a population

• To integrate the flexibility estimates and modeling techniques introduced in
this dissertation with models of future grid emissions

• To implement and test the optimal portfolio management method, presented
in chapter 7, in an urban scale pilot
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• To implement and test the multi-agent based control architecture, presented
in chapter 8, in a microgrid pilot

• To explore how blockchain technologies can facilitate the vision for Smart
Grids and aggregators of distributed flexibility resources

• To further analyze the potential social role and the business opportunities for
aggregators of distributed flexibility resources
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