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Abstract

The work developed in this thesis results from a research project carried out during
my PhD Program that aimed at the development of tools and techniques to support the
execution of industrial tasks in the automation field. Nowadays, the use of industrial
robots in new Flexible Manufacturing Systems (FMS) is increasingly popular because
of their versatility. Frequently, these manipulators have a full ability to position and
to orient their moving platform so as to cover a more varied range of tasks to be per-
formed. However, there is a large class of industrial tasks in which the orientation of
the robot terminal in one direction has no influence to the accomplishment of a task;
for example, in a milling process, a further rotation along the tool axis in addition
to that of the spindle is not required. Clearly this implies a redundancy between the
manipulator and the task at hand, leading to the following question: what orientation
along this axis should the moving platform take during the task? What posture, corre-
sponding to this moving platform pose, should the manipulator assume?
Redundancy provides alternatives, but often the problem is neglected in practical ap-
plications and the choice of the convenient orientation is casual. The need of better
performance has recently driven research toward the formulation of questions about
optimization problems and their subsequent solution by means of specific algorithms.
In the definition of the problem, we entrust to an objective function, often related to
indices that quantify the robot kinematic/static or dynamic performance, that depend
on the posture assumed by the manipulator. The main topic of the present thesis is
thus redundancy, called specifically functional redundancy that has been recently un-
earthed but that has involved serial manipulators so far; although the extension of
some theories to the parallel robot class is often deducted, a comprehensive study
about parallel manipulators is missing. Parallel kinematics machines are known to
have strengths like higher rigidity, accuracy and load capacity if compared with serial
robots, features that make them more attractive for machining purposes. Drawbacks
for their implementation reside in the complexity of their kinematics and in the high
number of singular postures they usually have, inherent in the multi-limb architecture.
This thesis addresses the optimization problem of finding the best posture of parallel
manipulators when they perform tasks in functional redundancy conditions. The op-
timization problem is dealt with in terms of formulation and numerical solution. The
work is focused on a particular class of parallel robots, namely robots that provide
motions of pure rotation of their mobile platform. Such choice allowed us to highlight
some advantages related to a particular architecture that they share. The mentioned

xiii
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study of finding the best posture is then extended to an optimal planning of pointing
trajectories, with special emphasis on manufacturing tasks.
The approach followed in this research project required the integration of various dis-
ciplines: the theory of kinematic chains, trajectory planning and dynamics of multi-
body systems. The research methodology combines theoretical study, assisted by
mathematical programming software, and virtual simulations to verify results, per-
formed by dynamic multi-body software. Unfortunately, the validation of results on
physical prototypes is postponed to future works.
This thesis is organized as follows. Chapter 1 presents the research project and pro-
vides an up-to-date review of six-axis parallel kinematics machines used in manufac-
turing, as well as common industrial tasks that employ axially symmetric tools. A
unified redundancy analysis for both serial and parallel manipulators is developed in
Chapter 2. In order to reduce the complexity of the kinematics of these machines,
the convenient idea of dividing a six-axis robot in two separate machines with lower
mobility is introduced. Thereby, the positioning problem is neglected, since the func-
tional redundancy that arises is associated with a rotational degree of freedom, and the
study in Chapter 3 focuses on a class of spherical parallel machines. In Chapters 4 and
5 kineto-static and dynamic analyses of parallel robots are respectively addressed with
the purpose of evaluating their performance by means of suitable indices. The study
of singular configurations is reported in Chapter 6 with emphasis on the singularity-
surface representation in the space of Euler-Rodrigues parameters. Then, the posture
optimization is used for redundancy solution in Chapter 7. Robot dexterity, dynamic
manipulability and swiftness for a prescribed pointing direction of the tool were max-
imized. The optimal postures are then found for the overall machine workspace and
comments about the analogies of the results for the class of manipulators were made.
A further optimization problem, with a level more complex than the previous one,
uses an average value of the indices to draw a pointing trajectory by means of recent
techniques for creating Bézier curves on a sphere. In this way the trajectory follows
attractive regions around points of kinematic and dynamic isotropy (Chapter 8). The
last Chapter 9 gathers the obtained results and leaves room for comments and future
insights.
Finally, the topic of this dissertation is the optimization of tasks of functionally re-
dundant parallel manipulators. The functional redundancy of these robots is exploited
with respect to the task to be performed. this is the case of a task that requires a fewer
number of degrees of freedom than those available by the manipulator. The objective
function of the optimization problem refers to indices aimed at the improvement ei-
ther the accuracy of the mobile platform orientation or the dynamic performance that
plays an important role when the tool accelerations are not negligible. Numeric results
show the same isotropy directions for both kinematic and dynamic optimization, even
among all the considered classes of robots. They reveal a bond with the geometry
of the manipulators, as it can be deduced from the dependency of the indices from

xiv
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the posture. Moreover, the proposed methods for posture optimization and for opti-
mum trajectory planning ensure computational efficiency while avoiding singularity
representation.
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0.1 List of Notation and Acronyms
In this dissertation vectors will be indicated with lower cases, while matrices with
upper cases; both vectors and matrices have a bold font. e corresponds to a unit vector
and the hat over a vector â indicates its versor. The foregoing acronyms are often used:

KC: kinematic chain

PKM: parallel kinematics machine

SPM: spherical parallel manipulator

BP: base platform

MP: mobile platform

EE: end-effector

dof: degrees of freedom

IKP: Inverse Kinematics Problem
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Chapter 1

Introduction

This work is focused on the functional kinematic redundancy of parallel kinematics
machines in the execution of industrial tasks. After a brief overview of the research
project, this chapter addresses two subjects: the first is about parallel manipulators
currently used in industrial processes and the second is about common manufacturing
tasks that do not require a full mobility of the robot moving platform.

1.1 Overview of the Research Project
The evolution of production systems generates changing demands that are increas-
ingly satisfied by the industrial robotics. Looking with a future perspective the major
challenges that begin to take shape, they are aimed towards the improvement of per-
formance of robotic devices which, depending on the need, may be facing either the
increase of productivity by the reduction of time and energy consumption, or the ac-
curacy improvement for the assigned task. To achieve these goals, some key enablers
have been defined within the robotics research in favor of innovative design princi-
ples of manipulators and combined with advanced control concepts. In conjunction
with these, the guidelines of the new cells for mechanical machining require versatile
manipulators that are used in the most recent flexible manufacturing systems (FMS)
which are capable to automatically change the product productions. To meet the re-
quirements of flexibility and versatility in the manufacturing processes, the choice of
the robot employed often falls in manipulators of the more generic type, i.e. robots
capable to position their moving platform with six degrees of freedom (dof).
Most of the tasks of high industrial relevance such as milling, welding, additive man-
ufacturing and plasma, water and laser cutting are characterized by five degrees of
freedom because they require the use of an axially symmetric device whose orienta-
tion with respect to the axis of symmetry is irrelevant to the task to be performed.
Therefore, with respect to the full-mobility manipulator used, i.e. a manipulator with
six-dof, there is a redundant degree of freedom. This redundancy takes more specifi-
cally the name of functional redundancy. It constitutes a potentiality that is exploited
for optimization purposes in the research project carried out.
Although these situations of functional redundancy are very common in manufactur-
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Chapter 1 Introduction

ing processes, they have been ignored in industrial applications over the years and only
recent studies have devised algorithms for its exploitation, highlighting the advantages
of such optimization. The most widespread robots employed in manufacturing are se-
rial manipulators due to their superior versatility and large workspace. Serial robots
are currently used to perform tasks in the most recent manufacturing cells, mainly be-
cause they possess greater versatility and affordability when compared with five-axis
numerical control machines at the expense of a lower stiffness. In machining opera-
tions the stiffness is often a key factor due to the stringent demands on the dimensional
tolerances of the machined pieces therefore parallel kinematics machines (PKM) carry
the potentiality to satisfy the stated needs, because they usually offer a greater rigidity
than serial robots.
The reason behind the lower stiffness of serial robots is inherent in the supporting ar-
chitecture of the end-effector, as their outboard links are supported by their proximal
counterparts. The serial-robot stiffness is, thus, equivalent to a serial array of springs,
whose compliance is additive: the larger the number of springs connected in series,
the more compliant the array becomes. On the contrary, the moving plate or the mo-
bile platform of a PKM is supported in parallel by all its limbs, thus its stiffness is
additive: the more limbs the PKM carries, the larger its stiffness is.
The optimization problems associated to functional redundancy situations have been
already solved for serial robots [1], while this work is focused on parallel manipula-
tors. Parallel kinematics machines are not widespread at the industrial level due to
their smaller workspace. However, compared to serial robots, they offer better dy-
namic performance due to actuators fixed to the frame instead of the movable arms
and, as already said, increased stiffness of the structure. Therefore, when they are
used for mechanical machining, they allow the products to achieve more stringent ac-
curacy specifications. Since the accuracy of such manipulators fits in well with the
functional redundancy optimization, the algorithms developed so far for serial manip-
ulators will be reviewed in this thesis for applications to parallel manipulators.
The functionally redundant motions, i.e. the movements that a robot can perform
without affecting the assigned task, are often exploited for optimization purposes of
parameters such as the dexterity or the swiftness of the manipulator. More in details,
the robots are considered functionally redundant because the dimension of the oper-
ational space (Cartesian space accessible by the moving platform) is larger than the
dimension of the task space (Cartesian space of the task). The application of this con-
cept for the optimization of parallel manipulators has not been exhaustively addressed
in the literature yet, therefore it represents a fascinating topic of research.
One of the issues in the analysis of parallel manipulators with six-degrees of free-
dom is the complexity of their kinematic model, which can adversely affect the path
planning. What is sometimes done in conventional processes is to separate the full-
mobility task in sub-elementary tasks performed by separate machines with lower
mobility. The mobility decomposition allows even the control algorithms to be split
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1.1 Overview of the Research Project

and the most common division is made up of two three-dof machines where one has
3 degrees of freedom for the translation of its moving platform (EE) while the other
executes motions of pure rotations (three-dof). Obviously, in this case, the functional
redundancy is owned by the spherical robot which can perform rotational redundant
motions around the symmetry axis of the tool. In this thesis a class of spherical par-
allel robots (3-dof of spherical motion about a fixed point) is taken into account. All
the considered SPMs are isostatic and have three identical legs: the machines of this
class have different topology, i.e. different sequence of the joints in the leg. This study
aims at the formalization of the optimization problem and at the partial generalization
of the problem. In fact, the presented approach is applicable to every spherical robotic
manipulator with a single degree of functional redundancy and no degree of intrin-
sic redundancy. In other words, to parallel kinematics machines characterized by a
single dof difference between the operational and the task spaces, while the joint and
operational space dimensions are equal.

1.1.1 Initial objective
At Machine Mechanics Laboratory, a novel architecture for an assembly cell has been
developed decomposing the full mobility of a single manipulator in two PKMs with
lower mobility: a spherical PKM and a translational one. Although the manufacturing
cell has been widely used to assemble various mechanical parts, other manufacturing
operations are not excluded. Acknowledging that the majority of the industrial tasks
require a low number of degrees of freedom, the problem of exploiting the degree of
functional redundancy of the spherical manipulator has emerged. Although functional
redundancy can be used to increase the accuracy of the manipulator above what is
currently available, as reported by Léger and Angeles [2] for serial robots, a compre-
hensive study has not been yet provided for parallel manipulators. Hence, the aim of
the thesis is the optimization of tasks performed by functionally redundant parallel
robots. This work, in the framework of maximizing robot performance, consists of
devising optimum five-dof machining operations with the PKMs mentioned above. A
motivation of this work is that the exploitation of functional redundancy to improve
performance of PKMs may be a key factor for their wider use in manufacturing appli-
cations and beyond.

1.1.2 Methodology and tools
This work has made extensive use of screw algebra to describe the behavior of robots.
The mathematical framework of this theory was firstly developed by Sir Robert Stawell
Ball [3] and then recovered by Hunt [4], who applied screw theory to study the kine-
matics of spatial mechanisms, with special emphasis on the analysis of singularities.
Although PKMs are known to posses a higher complexity of the kinematics and dy-
namic relationships, the application of this tool brings advantages in terms of analy-
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Chapter 1 Introduction

sis and synthesis and a more compact representation of equations. The mathemati-
cal relationships have been verified and implemented with computer algebra both for
symbolic computation and the numerical solution of optimization problems. Virtual
models of the mechanical systems have been build inside a CAD environment, while
a CAE software has been used for mobility verification and for animation purposes.
The project methodology is directed towards finding the optimum posture at an in-
completely specified posture, i.e. out of the six scalar quantities (three Cartesian point
coordinates and three independent orientation variables) defining a rigid-body pose,
only five are specified in machining operations using a turning tool (the orientation of
the tool about its axis of rotation is left unspecified). This unused dof is exploited to
maximize robot performance.

1.1.3 Publications arising from the research
Part of the work on the posture optimization exploiting functional redundancy, which
will be developed in Chapter 5, has been applied to a practical case study of a spherical
PKM performing an assembly task. This project was presented at the Advances in
Robot Kinematics (ARK) conference and it is available in a open source version. The
reference of the printed version of the paper is

• D. Corinaldi, J. Angeles and M. Callegari, "Posture Optimization of a Function-
ally Redundant Parallel Robot", in Springer Proceedings on Advanced Robotics
(SPAR). Springer, 2017.

1.2 Industrial Parallel Robots
Among the wide range of programmable robotic mechanical systems, this thesis deals
with the industrial types of robots called manipulators. A manipulator, in general, is
a mechanical system aimed at object manipulation. They deserve special attention for
various reasons: the arm is the simplest robotic form and hence, appears as building
blocks of other, more complex robotic mechanical systems. Two types of industrial
manipulators can be distinguished: serial and parallel. The serial manipulators have
an open chain architecture like an human arm, while, from Merlet’s book [5] a paral-
lel mechanism is defined as a multi-degree-of-freedom (multi-DOF) mechanism com-
posed of one moving platform (MP) and one base platform (BP)connected by at least
two serial KCs in parallel. These serial KCs are called legs (or limbs). Because of the
closed-loop architecture, not all of the joints can be independently actuated and usu-
ally the number of actuated joints is selected to be equal to the number of degrees of
freedom of the manipulator. Parallel manipulators whose number of chains is strictly
equal to the number of d.o.f. of the moving platform are called full-parallel kinemat-
ics machines. Similarly, they are called full-mobility parallel manipulator when they
can position and orient its mobile platform with six-dof. From a constructive point
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1.2 Industrial Parallel Robots

of view there are many choices regarding the type of legs, joints and numbers of at-
tached legs to the platform which can be significant factors when the workspace and
actuation requirements are determined. When the legs of the parallel manipulator are
identical the robot is called symmetrical. The discussion will focus on symmetrical
parallel manipulators.

1.2.1 Characteristics of PKMs
The first prototypes of parallel kinematics machines were enthusiastically welcomed
in 1994 as the new generation of machine tools thanks to their specific characteristics
that guarantee better performance [6], namely:

• simpler solution of the inverse kinematics problem IKP;

• noncumulative joint error;

• higher structural rigidity: the load is carried by the parallel links, and in some
structures there are only compression-tension modes;

• modularity: each kinematic chain is composed of the same physical modules.

• Locating the actuated joint adjacent to the fixed base, rather than attaching it
midway in an articulated leg like the traditional Stewart-Gough platform 2.2, is
considered advantageous [7].Such architectures proved to be beneficial based
on the following factors [8]:

– absorption of major portion of reaction forces by the ground resulting in
almost vibration-free operation with light-weight mobile components;

– reduced effect of inertia due to the elimination of actuator’s weight;

– absence of interference of actuators and routing cables due to base location
of actuators;

– further, by selecting the base actuated joint to be prismatic, the proximal
links are not subjected to the bending moments and the corresponding
stresses.

Contrary to serial robots, where all joints are actuated, parallel robots are supplied
with unactuated joints, which brings about a substantial difference between the two
types. The presence of unactuated joints makes the analysis of parallel manipulators,
in general, more complex when compared to serial robots. However, PKMs suffer
from

• singular configurations, a well-known problem in the robotics field;

• a low workspace-to-footprint ratio;

• a complicated solution of the direct or forward kinematics problem (DKP);
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• more difficult control techniques.

The kinematics and dynamics behavior of the physical machine is strongly influenced
by manufacturing tolerances and assembly errors, and so, especially for machining
applications, calibration strategies must be defined and consolidated. Functional op-
timization may further increase the performance of these manipulators. To this aim,
this research could be a stimulus to their spread in the manufacturing field. In fact,
once PKM performance as a machine tool reaches high level, economy of scale will
solve any cost issues due to their production.

1.2.2 PKM machining centers (1960-2000)

Despite a wide range of PKM architectures have been proposed, nowadays the most
popular implementation on a commercial scale is the Stewart-Gough platform born
from the early days of the parallel robotics [9].
Jaime Gallardo-Alvarado [10] reveals that the first attempts in parallel machine de-
sign have been made for cinematography industry in 1931 by Gwinnet. He proposed
a spherical parallel manipulator as a cinema motion simulator. Several years later, a
more practical application of a parallel manipulator was introduced by Willard I.V.
Pollard (1940): a spray painting machine consisting on a five-dof three-branched par-
allel robot. Unfortunately, both those two parallel robots were never built. A couple
of years later, in 1947, the nowadays called Stewart-Gough platform was invented,
i.e. the variable-length-strut octahedral hexapod. This parallel robot became the most
popular, because it changed industry, and was replicated over a thousand times. Dr.
Eric Gough was the person who built this machine in the early 1950s, as a universal
tire-testing machine. However, it was Klaus Cappel who later designed independently
the very similar hexapod. He patented it, licensed it to the first flight simulator com-
panies, and made the first commercial octahedral hexapod motion simulators. Yet, it
was Stewart in 1965 who, unintentionally, made Gough’s concept popular and pro-
posed the idea for flight simulators, this time to academia.
In 1966 Tindales [11] proposed the use of parallel kinematics machining for manufac-
turing processes; however, a great interest grown for the application of these mech-
anisms in the metalworking field only in the 90s [6]. The first CNC-type hexapod
machine tool prototypes (Variax from Giddings & Lewis Fig. 1.1 a) and the Octahe-
dral Hexapod from Ingersoll Fig. 1.1b and c) were presented at the 1994 International
Machine Tool Show (IMTS) in Chicago. These prototypes were enthusiastically wel-
comed as the new generation of machine tools due to their specific characteristics
that should guarantee better performance, as described in the previous subsection.
All of these advantages induced machine tool builders and researchers to investigate
the applications of parallel kinematics machines for six-axis machining, a field where
traditional machine tools had not gained the hoped-for success yet. Since the 1994
debut, several other prototypes of parallel kinematics machines have been built and
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a)

b)

e)

c)

d)c)

Figure 1.1: six-axis PKM machining centers. a) Variax (Giddings & Lewis), b) Oc-
tahedral Hexapod HOH-600 and c) VOH-1000 (Ingersoll), d) Tornado
(Hexel), e) HexaM (Toyoda). Video by clicking on the figure: G&L Variax
advertisement.

commercialized: Fig.s 1.1 and 1.2 show an a non-exhaustive list of six-axis PKM ma-
chining centers between the years 1960 and 2000. A chronological list of European
key patents was presented by Pritschow [12] during the 1st European-American Forum
on Parallel Kinematics Machines held in Milan in 1998. Other prototypes of PKMs
for machining operations were presented during the EM0 in Paris, and it was claimed
that this exhibition might mark the rebirth of PKMs. According to Tonhoff, more than
90% of existing PKM prototypes in the 2000s and employed in the machine tool sec-
tor where high stiffness is required, are fully parallel. Moreover, most of them belong
to the Stewart-Gough type even though the technology of joint manufacturing allows
rotations of the mobile platform to be limited to 30 degrees. Nevertheless, as high-
lighted at the 1999 EM0 in Paris, many new prototypes with different architectures
from the Stewart platform are appearing.

1.2.3 Advances on PKM

Today, the research stream on PKM is still active and requested, as evidenced for
example in Europe by the Robotic Roadmap for financial support of the H2020 pro-
gram. According to these guidelines, the goals for mechanical systems design can be
summed up as smaller, lighter, faster, stronger. In this framework, a relevant technol-

9
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a) b)

c) d)

Figure 1.2: Other six-axis PKM machining centers. a) HEXAPODE CMW 300
(CMW), b) SEYANKA (Tekniker), c) Eclipse-RP (Daeyoung Machin-
ery), d) Cosmo Center PM-600 (Okuma). Video by clicking on the figure:
Okuma PM-600 six-axis milling machine.

ogy target is redundancy optimization: new control paradigms with constraint-based
optimisation and the use of task redundancy for best trade-off among different objec-
tives (e.g. productivity, manipulability, safety, ergonomics, etc.). By way of example,
a very active research center for Research and Innovation in the field of PKM manu-
facturing is the Nuclear Advanced Manufacturing Research Centre (Nuclear AMRC)
at the University of Sheffield. The ARMC receives significant investments by the Eu-
ropean Commission to innovate manufacturing processes in particular in civil nuclear
field. A Research involving the Nuclear AMRC’s innovative robotic machining cell
with a PKM has been presented at a high-profile engineering conference in Toulouse,
France (2011). The project aims to develop a single automated system which can
carry out a range of processes such as machining, welding, dressing and inspection
over a large area to very high precisions. The robot cell is based around a hexapod
PKM from Fanuc Robotics which can carry a variety of tool heads, e.g. in Fig. 1.3
the PKM carries a milling spindle. The FANUC F200iB parallel robot which has been
implemented is engineered for applications requiring extreme rigidity and exceptional
repeatability. The robot’s position is tracked by an indoor GPS system and in trials,
accuracies of 0.2mm have been achieved. However, further improvements could be
done with the solution of the optimization problem to find the best posture due to
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Figure 1.3: AMRC’s innovative robotic machining with FANUC F200iB PKM. The
video by clicking the figure shows the flexibility and accuracy of move-
ment of the robotic system.

functional redundancy, as evidenced by recent research developments. In fact, their
research is still active in the field of advanced machining and surfacing for the New
Nuclear Manufacturing (NNUMAN) project [13, 14]. NNUMAN researchers report
that future designs for large nuclear vessels and components will require more efficient
machining techniques for both existing and future reactor materials. The research
center is leading research to develop and characterize optimised cutting techniques,
which include key aspects of machine dynamics. This research explores highly inno-
vative approaches for machining very large components, for example using deep-hole
drilling and using machining robots with indoor positioning systems, together with
assisted machining techniques.

1.3 Industrial relevance of five-dof tasks
Parallel robots have left academic laboratories and have found their way in an increas-
ingly larger number of application fields, such as telescopes, fine positioning devices,
fast packaging, medical and machine tool. A wide range of industrial applications do
not require to fully position the robot EE in the Cartesian space, i.e usually the dimen-
sions of the task space have a dimension lower than six, i.e. lower than the complete
dimension of Cartesian space. This is because the moving platform holds a tool for
the manufacturing task, e.g. a spindle for milling, that has an axial-symmetry. The
rotation of the MP along this axis is irrelevant for the task. Only five dof are speci-
fied in machining operations using a turning tool: the orientation of the tool about its
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axis of rotation is left unspecified and optimization strategies should be used to find
the best robot posture to maximize robot performance. In this section, a research was
tackled on industrial processes that requires five dof: milling, tape laying, additive
manufacturing and plasma, water jet and laser cutting are five-dof task common in
manufacturing operations. A non-exhaustive list of these task is proposed, offering to
the reader reflections on possible advantages provided by redundancy exploitation.

1.3.1 Machining with PKMs

Compared to a milling machine or a lathe, serial robots possess much less stiffness
(by a factor of 20–50 times), but much greater dexterity. A widely accepted definition
states that the dexterity of a robotic moving platform is a measure of its capability
to change the manipulated object configuration from an initial configuration to a fi-
nal one, arbitrarily chosen within the device workspace. A serial robot’s stiffness is
usually very anisotropic throughout its workspace and may vary for a typical heavy
duty model in the range 200−700N/mm. Therefore, robots can machine workpieces
(grinding, fettling, polishing etc.) provided that tool forces can be reduced to accept-
able values for a given robot manipulator. This incremental approach to machining,
particularly for cutting and forming, can produce good results. The choice of mecha-
nism, its kinematic properties, the computation methods used to determine joint mo-
tions, and the intended application of a robot manipulator are all closely related. With
advances in the state of the art in kinematic algorithms and computer hardware pro-
cessing capabilities, computation is much less of a constraint on mechanism choice
than it was for early robot designers. For this reasons, the use of PKM can be a great
compromise ensuring high forces but generally reducing the work space. The choice
of mechanical structure of the PKM depends mostly on fundamental mechanical re-
quirements such as payload and workspace size. Considering a given level of cost,
there is usually a tradeoff between workspace size and stiffness.

Milling

The milling machine is one of the most important tool used in today’s manufactur-
ing industry, mostly used to cut special mechanical parts. The diffusion of parallel
robots, instead of conventional gantry CNC machines for machining operation, arises
from the need to obviate the low rigidity of the cantilever-link structure and the posi-
tioning errors of the cutting tool due to the actuator error accumulations. Despite the
low workspace and dexterity, a PKM possesses high stiffness, high accuracy, higher
load-carrying and lower inertia. To this aim six-dof hexapod PKMs are generally
used, because they support the tool from six different directions. The stiffness of the
structure is well conciliated with the choice of leaving the motors to the base to have
a relatively light structure and thereby low inertia, features that improve the perfor-
mance for the high-speed machining.
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a) b)

Figure 1.4: a) P2000 OKM designed by Mikrolar for milling application and b) Fanuc
200iB with a milling spindle.

Functional redundancy optimization could outperform the machine competition, feed-
ing the demand on high quantities of dimensionally accurate and inexpensive parts that
has increased as a result of technological progress. The optimal motion could offer
better cutting efficiency and improve surface finish as well as machinability, pursuing
the current research trend driven by the increasing requirements for cost competitions,
process chain reduction and for developing economical and efficient manufacturing
processes.

Welding: Friction Stir Welding (FSW)

Friction Stir Welding (FSW) represents one of the latest innovative techniques in the
area of welding for its advantages over conventional fusion joining technology. As a
matter of fact, typical drawbacks associated with conventional fusion welding, such as
shrinkage, porosity and distortions, are eliminated to a great extent by FSW since it is a
solid state process. Therefore, materials considered difficult to be fusion welded, such
as aluminium and magnesium alloys, can be successfully friction stir welded [15,16].
Friction stir welding can be applied in many industrial field, such as automotive, ship-
building, aerospace and railway industries [17].
However, in some of these applications, FSW could be scarcely competitive since the
high welding forces require expensive customised machines that, in turn, also cause
relatively high productivity losses due to the inability to achieve high duty cycles. The
large axial force to be maintained between the welding tool and workpiece is the pri-
mary requirement of FSW process, which has also been a great obstacle to the design
and application of FSW in manufacturing. Further complicating the issue is the need
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to perform FSW over three-dimensional contours, which requires a mechanism dex-
terous enough to set the stir pin used in welding to track a predefined trajectory with
prescribed poses. Unlike common computer numerical control machining centers,
often provided with only three motion axes, industrial robots have a high degree of
mobility, which gives them an intrinsic versatility in accomplishing welding of com-
plex geometries, also with tight radii of curvature.
Such drawback can be overcome by developing robotic FSW [18]. However a force
feedback control, which is mandatory for compensating the reduced machine struc-
tural stiffness, often it is not sufficient for a serial robotic arm to ensure a high axial
force. Therefore, in order to overcome the low-stiffness issues of serial robots, re-
searchers at Polytechnic University of Marche proposes to employ a six-axis robot
with a hybrid structure [19], characterised by an arm with parallel kinematics and a
roll-pitch-roll wrist with serial kinematics, as illustrated in Fig. 1.5a). Shi et al. [20]

a) b)

Figure 1.5: Picture and video of COMAU Tricept HP1 robot used for FSW at UnivPM
a) and b) Shi’s prototype of the PKM tool head for friction stir welding.

proposed the application of a 3-PRS parallel mechanism (tripod PKM with a pris-
matic, a revolute and a spherical joint in each limb) as a welding tool head and em-
ployed it to form a five-axis welding machine tool for FSW. The optimal design of
the PKM was carried out by the authors, and the kinematic dexterity is estimated over
the whole orientation workspace for optimization purposes. In the author’s opinion,
the full potentiality of parallel robotic for FSW has not been sufficiently investigated
notwithstanding this system provides a very high flexibility and requires relatively low
investments. Even for this application the functional redundancy that emerges from
the use of a six-axis parallel robot, could further increase performance parameters.

Water jet cutting

Water jets are applied in nearly all areas of modern industry, such as automotive indus-
try, aerospace industry, construction engineering, environmental technology, chemical
process engineering, and industrial maintenance [21]. In the past, water jet applica-
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tions have mostly been three-axis tasks: this fact has limited the number of parts that
can be cut with a water jet, even if sometimes this technology would be better, faster
and cheaper. Multi-axis surfaces, tapered edges or accurate non-tapered edges, cast-
ing flash removal and many other parts can be completed with the use of a six-axis
PKM as a waterjet machine. An interesting commercial application of PKM for water
jet cutting comes from Mikrolar company, that designed and produced high precision
positioning systems. Mikrolar has also addressed significant issues in the manufactur-
ing area and as a result has developed and patented a six-dof PKM system for rapid
measuring, programming and water jet cutting of complicated or irregular parts called
Hexa-A-Jet and showed in Fig. 1.6. The device is purpose-built to allow an operator

a) b)

Figure 1.6: Hex-A-Jet (Mikrolar) for water-jet cutting: a) machining center and b)
detail of the hexapod PKM. Video by clicking the figure of a water-cut
task.

to measure each individual part and then transfer that part directly to the water jet
system for rapid material removal. The inherent design of the hexapod contributes to
a high mechanical stiffness while the exploiting of functional redundancy could allow
the workpiece to achieve the most stringent dimensional specifications.
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Chapter 2

Kinematic Redundancy
The core concept of this dissertation is the functional redundancy, which represents a
particular class of kinematic redundancy of a robot with respect to a particular task. In
the past, such kind of redundancy found several appellations so that literature can lead
to ambiguous definitions or even misunderstandings. In this chapter, the definitions of
redundancy are reported as they were established for serial robots, and are extended
to parallel manipulators. In the remainder of the section, the redundancy analysis of a
class of parallel manipulators is performed by means of screw theory with the aim of
quantifying their degree of kinematic redundancy.

2.1 Definitions
The kinematic redundancy is not an intrinsic feature of a machine, but rather a con-
cept related to both manipulator and the task to be performed. In other words, if a
manipulator is redundant for a specific task, it may not be redundant for another one.
To properly define the redundancies, three spaces have to be identified:

• the joint-space J is the space of the independent actively controlled joint vari-
ables or actuated joint variables;

• the operational-space O is the Cartesian space reachable by the moving plat-
form, whether a serial robot or a parallel robot is considered;

• the task-space T is the Cartesian space of the task.

Obviously, each space, that more precisely is a submanifold of SE(3), is characterized
by a dimension. For the robot to be able to accomplish a task, the relations below
should always be satisfied, even if redundancy is not available.

• dim(T )≤ 6, task space dimension cannot exceed the maximum number of de-
grees of freedom of a rigid body in the space (3 translational dof and 3 rotational
dof);

• T ⊆ O , the task-space is totally included into the operational space of the
manipulator, otherwise the task cannot be performed by the robot. Hence,
dim(O)≥ dim(T ).
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Chapter 2 Kinematic Redundancy

• dim(T ) ≤ dim(O) ≤ dim(J ), the dimension of the operational-space is be-
tween the two other space dimensions. dim(J ) has the greatest value and
represents the global mobility of the robot.

At first sight, a simple comparison of the number of actuated joint variables and the
number of degrees of freedom by the task indicates whether a given kinematic struc-
ture can be considered redundant or not.

Definition 2.1.1. A pair made of a manipulator and a task is said to be kinematically
redundant when the dimension of the joint-space J , is greater than the dimension of
the task-space T .

dim(J )> dim(T )⇔ kinematic redundancyofrobot− task (2.1)

In other words, a kinematic redundant mechanism is a mechanism with more ac-
tuators than the number of controlled degrees of freedom required by the task. The
degree of kinematic redundancy of a pair manipulator-task, namely rk, is computed as

rk = dim(J )−dim(T ) (2.2)

However, definition 2.1.1 does not take into account the operational space. A more
rigorous definition distinguishes among functional and intrinsic redundancy.

Definition 2.1.2. A manipulator is said to be intrinsically redundant when the dimen-
sion of the joint-space is greater that the dimension of the resulting operational space.

dim(J )> dim(O)⇔ intrinsically redundancyrobot (2.3)

Definition 2.1.3. A pair made of a manipulator and a task is said to be functionally
redundant when the operational-space dimension is greater than the dimension of the
task-space.

dim(O)> dim(T )⇔ functional redundancyofrobot− task (2.4)

From these two definitions 2.1.2 and 2.1.3, the degree of intrinsic and functional
redundancy for a manipulator and a task, named respectively rI and rF are computed
as

ri = dim(J )−dim(O) (2.5)

r f = dim(O)−dim(T ) (2.6)

Clearly, from Eq.s (2.5) and (2.6) the total degree of kinematic redundancy of Eq. (2.2)
can be rewritten as

rk = ri + r f (2.7)
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which makes clear that kinematic redundancy comes from two different sources: the
functional and the intrinsic redundancy.

2.2 Redundancy Analysis

Redundancy analysis of robots and tasks aims to determine their degree of kinematic
redundancy. Since the dimensions of the various spaces are required, the analysis
is usually based on the mobility criterion of a mechanism which can take different
forms. The general or full-cycle mobility of the manipulator of degree m = dim(J ),
i.e. the number of independent variables needed to specify any configuration of the
manipulator, may be determined from the well known Chebychev-Grübler-Kutzbach’
formula:

m = 6(l−n−1)+
n∑

i=1

di (2.8)

where l is the total number of members (including the base), n the total number of
joints and di the number of degrees of freedom of the joints of the ith chain. It is
well known that the classical Chebychev-Grübler-Kutzbach mobility criterion 2.8,
which is based solely on topology, fails to provide the correct mobility in many in-
stances. In order to clarify such issue, the analysis of the kinematic chains mobility
is carried out by employing the concept of screw, which allows linear/angular veloci-
ties or torques/forces to be represented in six-dimensional vectors, namely twists and
wrenches. In kinetostatics, a body’s instantaneous motion is represented by a twist,
while a system of forces acting on the body is given by a wrench. Screws are classes
of twists (or wrenches) that are scalar multiples of each other. In classical geometrical
terms, the finite-pitch screw of a twist is given by a line, i.e. the screw axis, and a
metric quantity, i.e. the pitch. Infinite-pitch screws are pure directions (free vectors
corresponding to instantaneous translations or force couples), obtained as a limit case
when either the screw axis or the pitch goes to infinity [22]. The mobility analysis
developed by Kong and Gosselin [23] is taken up and adapted for the determination
of the kinematic redundancy. The approach, based on screw theory, allows the instan-
taneous mobility of the machine to be detected, however, it can be extended to the
full-cycle mobility.
The instantaneous motion of the moving platform, whether it is held by a single or
multiple kinematic chains, is represented by its twist system. A system that requires
a minimum of t linearly independent screws for its description is called a t-system.
The constraints on the EE provided by the links of a serial KCs, by means of the KC
joints, can be expressed as the screw system reciprocal to the twist system, which is
usually called the wrench system of the KC. The wrench system of a KC is a w-system,
and for the reciprocity bond w = 6− t. Twist and wrench systems, whose order is re-
spectively t and w, are screw systems obtained by associating a scalar, i.e. the twist
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Chapter 2 Kinematic Redundancy

amplitude (or the wrench intensity), to a screw. A screw system of order n (0≤ n≤ 6)
comprises all the screws that are linearly dependent on n given linearly independent
screws. According to the definitions of the spaces of the previous subsection, if the
twist system does not change order when the moving platform undergoes a small dis-
placement from a general configuration, the order of twist system of the EE t is equal
to the dimension of the operational space, i.e. t = dim(O). The mobility m or global
mobility of a manipulator is the sum of

• the number of independent parameters required to determine the relative con-
figuration of the moving platform and

• the number of independent parameters required to determine the configuration
of all the links in all the legs with the relative configuration of the moving plat-
form specified.

For an m-dof mechanism, m is equal to the dimension of the joint space, m= dim(J )

and it is also the number of the actuated joints whenever the robot is not intrinsically
redundant.

2.2.1 Serial Kinematic Chains

In a serial manipulator the moving platform is connected to the ground by a single
kinematic chain. The algorithm for the determination of the degree of functional re-
dundancy is divided into the following steps:

Step 1. The mobility m of a serial KC is equal to the sum of the degrees of
freedom of all its joints. Revolute joints (R), prismatic joints (P) are one-dof
joints, universal joints (U) and cylindrical joints (C) leave two-dof, while, the
spherical joints (S) three-dof. Joints with more than one-dof can be substituted
in the kinematic chain with a series of one-dof joints that are kinematically
equivalent.

Step 2. The twist system T or the wrench system W of the KC must be de-
termined. In a serial manipulator these systems coincide for the MP and for the
KC. The output twist of the moving platform T is the summation of the twists
of the j joints Tc of the KC.

T =
m∑

j=1

Tc (2.9)

Due to the reciprocal bond between twists and wrenches, it is possible to assert
that the wrench system of the KC W coincides with the intersection of the
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wrench spaces Wc that are reciprocal to each joint twist:

W =
m⋂

j=1

Wc (2.10)

Identifying a wrench space reciprocal to a given twist system is a simple linear
operation. A non-exhaustive list of rules aimed at identifying wrench systems
composed by zero-pitch and infinite-pitch screws was proposed by Kong and
Gosselin. As already said, every joint with more than one dof in the kinematic
chain is kinematically equivalent to a series of revolute (R) and prismatic joints
(P) allowing the KC to be decompose as a series of R and P joints. In a KC with
R and P joints, the following rules can be followed based on the reciprocity
condition of screws:

– There is a 0-pitch wrench in the wrench system, which represents a force
constraint exerted by the chain on the terminal, if its direction is coplanar
to the axes of any R joint in the KC and it is perpendicular to the direction
of any P joint in the KC.

– There is ∞-pitch wrench in the wrench system, which represents a torque
exerted by the KC on the terminal, if its axis is perpendicular to the axis
of any R joints in the KC.

The mobility obtained using twists and wrenches is an instantaneous character-
istic of the chain. When t and w are the same in different general configurations,
the mobility m is said to be full-cycle.

Step 3. With this assumption, the degree of intrinsic redundancy ri of the serial
chain, is the difference between the dof of the serial chain m and the order of
the twist system of the KC t. By using Eq. (2.9) to determine the twist system
of the EE, the Eq. (2.5) with a different notation becomes:

ri = m− t (2.11)

Given n t-system, there is a unique reciprocal screw system of order (6− n)
which comprises all the screws reciprocal to the original screw system. There-
fore, we have

t = 6−w (2.12)

Eq. (2.11) can be rewritten in term of the wrench system order w instead of t

r f = m−6+w (2.13)

which is more useful if the wrench system is obtained using the rules defined.

Step 4. The number of the dof requires by the task allows the degree of func-
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Chapter 2 Kinematic Redundancy

tional redundancy r f to be calculated through the formula Eq. (2.20):

r f = t−dim(K ) (2.14)

Step 5. Finally the degree of kinematic redundancy rk could be calculated with
Eq. (2.7).

Following this line of reasoning, to create an intrinsically redundant dof there will be
a linear dependence between the joint twists in the KC. The conditions for the twists
of the joints within the same leg to be linearly dependent are not difficult to address
if the KC is composed of only R and P joints. For brevity, such conditions are listed
below without explanation [23]:

1. there are no coaxial R joints;

2. there are no P joints along the same direction;

3. the direction of at most one P joint is parallel to the axis of an R joints;

4. at most three R joints have parallel axes;

5. the axes of at most three R joints pass through the same point;

6. the directions of at most two P joints are parallel to the same plane;

7. the sum of the number of R joints with parallel axes and the number of P joints
is not greater than four;

8. if the directions of nP P joints are perpendicular to the axes of nR R joints with
parallel axes, then nP+nR≤ 3;

9. There are at most six R joints in the KC.

Example: 7R Canadarm2

The Canadarm2 used on the International Space Station is a 7R serial manipulator.
The algorithm to determine its degree of kinematic redundancy is applied:

Step 1. The total number of dof of the joints is m = 7, because there are seven
R joints in the KC with one-dof.

Step 2. The wrench system of the EE is a 0-system (w = 0) because no screw
can be found that respect the rules 2.2.1, i.e. it is coplanar with any R joint axes
or perpendicular to any of them. Therefore, t = 6−w = 6, i.e. the twist system
attains its maximum order and the EE can be relatively positioned with six-dof.

Step 3. The degree of intrinsic redundancy is equal to one ri = m− t = 1, in
fact, the limit imposed by point 9 of the previous list 2.2.1 is exceeded.

22



i
i

“PhDthesis” — 2017/2/15 — 18:09 — page 23 — #47 i
i

i
i

i
i

2.2 Redundancy Analysis

R

R

R

R

R
R

R

Figure 2.1: Picture of Canadarm2 on the left and the scheme of its architecture on the
right. Video by clicking the picture shows the mobility of the Canadarm2.

Step 4. If the task is to position and orient the astronaut in the entrance to the
space station, it is a six-dof task, therefore the degree of functional redundancy
is r f = 0.

Step 5. The total degree of kinematic redundancy is rk = 1.

2.2.2 Parallel Kinematics Machines

A parallel manipulator is constituted by more than one serial kinematic chains which
connect the base platform (BP) to the moving platform (MP). The redundancy anal-
ysis resumes the analysis for the serial chain because steps 1-3 are first performed
to each kinematic chains of the parallel kinematics machine PKM, disconnected from
the platforms. Their contribution is then extended to the mobile platform. The method
is here proposed:

Step 1. First of all, each leg of the parallel mechanism should be considered and
treated as a serial kinematic chain. Due to this, steps from 1 to 3 of the previous
method have to be performed for each kinematic chain indicated with the sub-
script c. As a consequence, ric degrees will be found of intrinsic redundancy,
with c = 1, ..., p.

Step 2. The number of independent parameters needed to determine the config-
uration of all the links in all legs with the relative configuration of the moving
platform specified is the intrinsic redundancy degrees of the PKM and it is the
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sum of the intrinsic redundant dof of all the legs:

ri =

p∑
c=1

ric (2.15)

where ri is the degree of intrinsic redundancy of the PKM.

Step 3. Once the twist-system of each leg of order tc is found, the mobility of the
MP, i.e. the number of independent parameters to determine the configuration
of the moving platform is equal to order t of the twist system of the PKM.
Therefore, t is equal to the order of the operational space of the PKM and it is
also called the connectivity of the moving platform. The twist system K of the
MP is the intersection of the twist systems K i of all its legs

K =

p⋂
c=1

Kc (2.16)

Contrary to what happens for the serial chains, the output wrench-system W of
order w of the moving platform is the linear combination of the wrench systems
W i of all its legs:

W =

p∑
c=1

Wc (2.17)

Even in this case, Eq. (2.12) is valid . The instantaneous analysis is extended to
the full-cycle mobility if the order of the system screws involved are the same
for others general configurations of the PKM.
In addition to the order of the twist system of the MP, another important index
of a PKM is defined as

∆ =

p∑
c=1

wc−w (2.18)

where ∆ is called the number of over-constraints (also passive constraints) if
∆ > 0.

Step 4. The mobility m of the PKM, i.e. the number of independent parameters
to determine the configuration of the manipulator is the sum of the mobility of
the MP t and the degree of intrinsic redundancy ri.

m = t + ri = 6−w+

p∑
c=1

ric (2.19)

m is also the number of the actuated joints or active joints of the parallel robot
and it is equal to the dimension of the joint space. Clearly, unlike a serial robot,
in a parallel robot there are usually passive joints.
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Step 5. The number of dof required by the task allows the degree of functional
redundancy r f to be calculated through the formula:

r f = t−dim(K ) (2.20)

Step 6. Finally the degree of kinematic redundacy rk could be calculated with
Eq. (2.7).

This redundancy analysis will be illustrated using an example of a PKM performing a
task.

Example: 6-UPS PKM Stewart-Gough platform

U

R

S

MP

BP

Figure 2.2: A Stewart-Gough commercial platform: PI H-811.S11 six-axis motion
hexapod a) and its advertisement on the video by clicking the figure. The
architecture scheme of a classical Stewart-Gough platform is illustrated in
b).

Consider a Stewart-Gough platform, a six-legged PKM, shown in Fig. 2.2a. From
the architecture scheme Fig. 2.2b, the direction of the P joint of each leg intersects the
center of both the universal and the spherical joints, located at the BP and at the MP
respectively. The parallel robot has six identical legs and so it is called symmetrical
parallel manipulator with URS topology.

Step 1. For each KC mc = 6 (two dof for the universal joint, one dof for the
prismatic joint and three dof for the spherical joint), while the order of the twist
system is tc = 6, no one screw can be found that respects the previous conditions.
Thus, ric = 6−6 = 0 for c = 1, ...,6. These parameters do not change when the
moving platform undergoes a small displacement from a general configuration,
therefore the mobility is full-cycle.
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Step 2. The degree of intrinsic redundancy of the PKM is ri = 0.

Step 3. Since no constraint is imposed by the legs on the MP, it has full mo-
bility t = 6: the number of independent parameters to determine the relative
configuration of the moving platform is six. The number of over-constraints is
∆ =

∑6
c=1 0−0 = 0.

Step 4. The mobility m of the PKM is m = t + ri = 6+0 = 6 and it is also the
number of the actuated joints. Usually they are the six prismatic joints.

Step 5. The task to be performed requires to position and point the MP: the
rotation around the axis of pointing does not affect the purpose of the task, thus
the required degrees of freedom are 5. r f = t−dim(K ) = 6−5 = 1.

Step 6. The degree of kinematic redundancy rk could be calculated as rk =

ri + r f = 1.

2.2.3 Global mobility inspection
The redundancy analysis of a PKM obtained using the foregoing method is instan-
taneous. A systematic approach for the determination whether the robot has global
mobility or not is provided by Kong and Gosselin in Appendix B of [23]. For terse-
ness the methodology is not given here, however a sufficient condition to prove that
the instantaneous mobility may be extended to the global mobility is that ∆ = 0 i.e.
the PKM is isostatic. Then, the instantaneous mobility analysis of the isostatic PKM
can be extended to the global mobility and inspection ends, otherwise other controls
have to be made to extend this concept.
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A class of tripod SPMs

One of the issues in the analysis of parallel kinematics machines with six-dof is the
complexity of their kinematics, which can adversely affect the path-planning. In con-
ventional processes, full-mobility operations are commonly decomposed into elemen-
tary sub-tasks, to be performed by separate machines with lower mobility. A case
study is described by Carbonari et al. [24] and it has been developed until the prototy-
pal stage, decomposing the architecture of a mechatronic system with six-dof, in two
parallel robots cooperating while performing a five-dof task. This idea is described in
this chapter and the PKM that belongs to the functional redundancy is identified and
investigated. Since its MP undergoes a three-dof spherical motion (or rotates about a
fixed point), it is called spherical parallel manipulator (SPM). After a classification of
this type of manipulators, the chapter examines a particular class of isostatic SPMs.
The class under study is interesting because the manipulators may work even when
precise geometrical conditions are not accurately satisfied. A convenient architecture
for the class of robots that maximizes the workspace and grants optimal manipulabil-
ity is also proposed. Kinematics relations and reciprocal screws systems are found by
means of screw theory. The study allows us to expand the scope of investigation and
to attempt a generalization of the theory to be developed. However, despite only a ma-
nipulators class is considered, the application to a generic parallel manipulator with
six-dof is still possible. The functional redundancy is always related to the rotational
behavior when an axially symmetric tool is used and it can be separately studied from
the positioning problem of the moving platform.

3.1 Decomposition in minor-mobility PKMs
Parallel kinematics machines are known to be characterized by many advantages like
a lightweight construction and high stiffness but also present some drawbacks, like a
limited workspace, a great number of joints of the mechanical structure and a com-
plex kinematics, especially for six-dof machines. To obviate the last problem, Tsai
and Joshi [25] first introduced the idea of cooperation which derives from the con-
cept of hybrid machines. They proposed to decompose full-mobility operations into
elementary sub-tasks to be performed by separate minor mobility machines, as it is
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commonly done in conventional machining operations. Although this solution re-
quires a more sophisticated controller, it would lead to the design of simpler machines
that could be used also in stand-alone applications for three-dof tasks and would also
increase the modularity and reconfigurability of the robotized industrial process. It
is remarked that this solution allows us to exploit the well-known benefits of parallel
kinematics machines, but at the same time it overcomes many typical drawbacks.
To this aim the researchers at the Machine Mechanics Laboratory at the Polytechnic
University of Marche, Ancona, envisaged the architecture of a mechatronic system
where two parallel robots cooperate in order to perform a complex task, see Fig. 3.1.
The kinematics of both machines is based upon the same 3-CPU topology but the

Figure 3.1: The minor-mobility PKM prototypes developed at the Machine Mechanics
Laboratory: the upper is I.Ca.Ro while the lower, Sphe.I.Ro.

joints are differently assembled so as to obtain a translating parallel machine (TPM)
with one mechanism and a spherical parallel machine (SPM) with the other. The
two parallel robots have been developed till the prototypal stage: Fig. 3.2 shows the
translating manipulator, called I.Ca.Ro. [26, 27] and the kinematics of the orienting
manipulator, which has been called Sphe.I.Ro. [28]. By looking at the two machines,
it appears clear that both are composed of three identical legs with the same joint
sequence: cylindrical (C), prismatic (P) and then universal (U) joints, usually called
3-CPU topology. In Sphe.I.Ro, however, the axes of the cylindrical joints and those of
the outer revolute pairs in the universal joints all intersect at a common point, which is
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Figure 3.2: Virtual system architecture of a machining cell based on two cooperating
three-dof parallel robots conceptualized at UnivPM.

the centre of the spherical motion of the mobile platform. By taking into consideration
that both machines share the same 3-CPU topology, a more recent research looked for
the possibility to obtain at a common structure that would be able to yield both kinds
of motions [29], the kinematotripic 3-CPU.
When this decomposition is performed for a task that has a tool with a rotational axis,
e.g. a milling operation, the functionally redundant manipulator is the spherical one
as shown in Fig. 3.2. Then, this redundancy is exploited to orient the axis of the spin-
dle while the manipulator is assuming a posture that maximizes performance. Since

X0 Z0

F0

center of moving 
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U

robot base
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F0

Y0

spherical motion platform

Figure 3.3: Virtual model (a) and prototype (b) of the spherical 3-CPU manipulator
Sphe.I.Ro.
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spherical parallel manipulators are of great industrial interest, their classification is
proposed in the next section.

3.2 A classification of SPMs
According to Kong and Gosselin [23], a three-dof spherical parallel manipulator (SPM)
is a parallel manipulator where the moving platform undergoes a three-dof spherical
motion or rotates about a fixed point. It is also called three-dof orientational paral-
lel manipulator (Karouia and Hervé [30]) or rotational parallel manipulator (Li and
Huang [31]). SPMs have a wide range of applications including orienting devices and
wrists. The research on SPMs has received much attention from many researchers,
and many types of SPMs have been proposed.
Following the classification made by Kong and Gosselin [23] SPMs fall into two
classes: overconstrained or hyperstatic SPMs and non-overconstrained or isostatic
SPMs. According to the definitions given in Chapter 2, the condition of overcon-
strained PKM is reached when ∆ > 0, otherwise the PKM is isostatic when ∆ = 0.
Three-legged overconstrained (hyperstatic) SPMs include:

O.1) 3-RRR SPMs in which each leg is composed of three R joints whose axes pass
through the center of spherical motion ( [32], [33], [34]);

O.2) SPMs in which each leg is composed of three R joints whose axes pass through
the center of spherical motion as well as one inactive joint ( [23]).

Another grouping may be done for the three-legged isostatic SPMs:

NO.1) SPMs in which each leg is composed of an R joint, a planar parallelogram joint,
and an S joint ( [35]);

NO.2) SPMs in which each leg is composed of two R joints whose axes pass through
the center of spherical motion and three successive joints which are equivalent
to a planar joint or a spherical joint ( [30], [36], [37], [23], [38]);

NO.3) SPMs in which each leg is composed of three R joints whose axes pass through
the center of spherical motion and two inactive joints ( [39]; [23]; [40]; [31]).

The main advantage of the isostatic architecture is that it avoids the strict dimensional
and geometric tolerances needed by overconstrained machines during manufacturing
and assembly phases. Moreover, modular solutions characterised by three identical
legs (symmetrical PKM) are preferred for economic reasons. It must be said that these
advantages are usually paid with a more complex structure and the possible presence
of singular configurations (translation singularities) in which the spherical constraint
between platform and base fails [41]. The 3-CPU topology of Sphe.I.Ro falls into the
NO.2) class that is studied in the next section.

30



i
i

“PhDthesis” — 2017/2/15 — 18:09 — page 31 — #55 i
i

i
i

i
i

3.3 An isostatic SPM class

3.3 An isostatic SPM class

Sphe.I.Ro. is a minor mobility parallel robot based on the 3-CPU architecture which
provides the mobile platform with a spherical motion, driven by 3 linear induction
motors. The center of the moving platform spherical motion coincides with the in-
tersection point of the three axes of the cylindrical joints, as shown in figure 3.3.
According to the classification of the previous section Sphe.I.Ro has an isostatic limb
mechanism of the N.O2) type. In this section this class is studied in details to obtain
the relevant screws of its leg joint. The planar motion of the three joint in the middle of
the two revolute joints can be generated by a planar pair and it is kinematically equiv-
alent to following sequences of prismatic joint and revolute pairs: PRR, RPR, PPR,
PRP and RRR. However, the prismatic and revolute joints must respect the following
rules to produce planar motion: P directions must be parallel to the plane of motion
while R axes remain perpendicular to this plane. The combinations of these sequences
with the other two revolute joints give the five leg topologies: (RP)R(RR)=CRU,
(RR)P(RR)=UPU, (RP)P(RR)=CPU, (RP)R(PR)=CRC and (RR)R(RR)=URU, as il-
lustrated in Fig. 3.4.
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R
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MP
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d) e)
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Figure 3.4: Limb architectures of the three legged isostatic SPMs class: a) CPU, b)
CRC, c) CRU, d) URU and e) UPU SPMs.
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3.3.1 Redundancy Analysis
The redundancy analysis is here applied for the class of manipulator under study.

Step 1. Each limb consists of four links and five revolute (R) or prismatic (P)
joints. Since these joints leaves one-dof of relative motion between the links
that they connect, the three limbs have connectivity equal to five mc = 5.
Looking at Fig. 3.4, the reader could verify that there is a zero-pitch screw in the
wrench system of each leg that is perpendicular to the plane of the leg and passes
through the center of the spherical motion. The minimum order of the wrench
system for each leg is therefore wc = 1, thus, ric = 5− 5 = 0 for c = 1,2,3.
These parameters do not change when the moving platform undergoes a small
displacement from a general configuration so the mobility obtained is full-cycle.

Step 2. The degree of intrinsic redundancy is ri = 5−5 = 0.

Step 3. The architecture of the manipulator should be chosen in such a way
that the three wrenches compose a three-system, allowing the mobile platform
to translate. This could be achieved if the three screw are linearly independent:
to this aim, in the next section a particular arrangement of the limb planes will
be defined. In any general configuration, the wrench system of a SPM is a
three-system whose center is at the center of rotation of the moving platform.
The mobile platform has lower-mobility t = 3, i.e. the number of independent
parameters necessary to determine the relative configuration of the moving plat-
form is equal to three. The number of over-constraints is ∆ =

∑3
c=1 0− 0 = 0

in fact the class is called isostatic.

Step 4. The mobility m of the PKM is m = t + ri = 3 and three is also the
number of the actuated joints: in order to reduce inertia, they are usually the
joints at the base.

Step 5. If the task to be performed is a pointing task, two dof are required and
the degree of functional redundancy is r f = t−dim(K ) = 3−2 = 1.

Step 6. The degree of kinematic redundancy rk could be calculated as rk =

ri + r f = 1.

3.3.2 Relevant joints screws
The screws associated to each joint and the reciprocal screws to a set of joints are
required to define the indices which quantify the performance of the manipulator.
First of all, the screws associated to a revolute and to a prismatic joint are defined. A
zero-pitch screw s0 is associate to a revolute joint and it is defined by a unit vector
e, which defines the direction of the axis of rotation, and a vector n, that quantifies
the moment about the origin of the reference frame. This moment n determines its
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3.3 An isostatic SPM class

location by means of a vector p that is the position vector of any point of the screw.
Thus, the screw coordinates of the zero-pitch screws s0 can be expressed as

s0 =

ñ
e
n

ô
=

ñ
e

p× e

ô
(3.1)

A screw with infinite pitch s∞ is described only by its axis e and it is associated with a
prismatic joint

s∞ =

ñ
0
e

ô
(3.2)

A 3-UPU PKM is taken into consideration. In the previous section, the topology of
the limb has been defined; however, the three leg planes should be built in such a
way that the three wrenches compose a three-system, thus they have to be linearly
independent. The simplest possible setting of the limbs is that they all lie within
vertical planes, while the three screws result linearly dependent, allowing the platform
to translate along the vertical direction. Among all the possible setting of these normal
axes in space that grant them to be linearly independent, it has been chosen to tilt
the limbs’ planes so that they are mutually orthogonal in the initial configuration, as
already done by for the 3-CPU PKM by Callegari [41]. This arrangement greatly
simplifies the kinematics relations that will be worked out later on; moreover, even
if this arrangement changes during the machine operation, this configuration is the
farthest from the singular setting, granting a better kinematic manipulability of the
wrist. Fig. 3.5 shows this setting in a general configuration of the manipulator and
the video confirms its mobility. Using the nomenclature indicated in the figure, the
screws associated with each joints are written and collected in the first row of Table
3.1. The reader should pay attention that only for these tables the subscript on the right
corner of the screws indicates its pitch, otherwise, it always indicates the reference
system. Moreover, a feasible choice for the screws reciprocal to all the joints of the
leg except for the joint considered is represented in the second row. These screws are
useful because they allow the influence on the velocity relationships of the joint rates
reciprocal to them to be eliminated, as we will see in the next chapter.
These screws can be written as a function of the parameters describing the pose of the
MP through the rotation matrix. To this end, the vectors in Table 3.1 are expressed
in terms of the rotation matrix Q, represented in the reference system F0 that maps
a vector from the mobile frame F1 fixed to the MP to the frame F0 fixed to the
ground. The versors of the reference frame fixed to the ground are indicated with i0,
j0, k0 while the versors of the reference frame fixed to the MP are indicated with the
subscript 1. For the leg highlighted in Fig. 3.5 the relevance vectors could be expressed
as function of the rotation matrix using Table 3.2. These relationships express the
articular coordinates for a given pose of the moving platform pose as the results of
the inverse kinematics problem. These relationships can be easily obtained from the
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ena
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d

X1

Z1

Y1

F1

X0Y0

F0

Z0

Figure 3.5: 3-UPU SPM in a general configuration. Video by clicking the figure: mo-
bility verification through a spiral pointing trajectory of the MP.

R R P R R

s
ï
â
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ï
en
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ò
0
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0
ĉ

ò
∞

ï
en

−d× en

ò
0

ï
d̂
0

ò
∞
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ï

en
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ò
0

ï
ĉ

−d× ĉ
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d+a
‖d+a‖

−d× d+a
‖d+a‖


0

ï
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a× c

ò
0

ï
en

a× en

ò
0

Table 3.1: 3-UPU joint screws of the first limb: the screw s of each joint and the screw
s⊥ reciprocal to all the joint in the chain except for the considered joint.

study of the robot in some generic configurations. For example if we want to express
these vectors in the reference frame F0, [i0]0 = [1 0 0]T and [k1]0 = Q[k1]1. Therefore
a = [a 0 0]T and d =−dQ[0 1 0]T , where the parameters a and d are fixed geometrical
parameters chosen during the design of the machine. These data of the others SPMs
of the class are collected in the following tables.
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a d en b c

•̂ i0 −k1
−d×a
‖−d×a‖

â× en

‖â× en‖
b̂× en

‖b̂× en‖

‖•‖ a d 1
√

a2 +d2− c2 +2i0i1 c

Table 3.2: 3-UPU IKP: unit vectors and magnitudes of the relevant vectors in the first
leg.

3.3.3 Global Mobility Verification

The global mobility of the SPM class under study can be verified by using different
approaches. It has been already used the screw theory for the instantaneous mobility
analysis. The class of PKM is isotatic and this is a sufficient condition to extend the
redundancy analysis to the global mobility, according to subsection 2.2.3. Also Hervé
has already proven the mobility of this class of SPM in [42] by the means of Lie al-
gebra. However, this subsection is dedicated at formally demonstrating the mobility
of the SPM class using algebraic geometry and the Study’s parameters to describe the
MP pose. It allows us to write the polynomials of the bound equation of the single leg
in a generic configuration.
In order to fully represent the attitude of the mobile platform, the Study’s param-
eters are chosen for the parametrization of its kinematics. This well known nota-
tion [43, 44] was introduced by Study in (3.4)-(3.6) who used a superabundant set
of eigh parameters in the projective space of dimension 7 (P7) to describe the Eu-
clidean transformations. The 8 parameters [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3] are related
through a quadric polynomial equation (namely the Study’s quadric) and through a
metric equation which ensures that the transformations actually represent rigid body
motions. Thus, the key idea is to map the Euclidean space through a one to one repre-
sentation x in the projective space P7:

x : 0T1 ∈ SE (3) 7→ x ∈ P7 (3.3)

If the homogeneous notation is used, the transformation 0T1 describing the pose of
the mobile platform with respect to the base platform looks like:

T =

ñ
Q p
0 x2

0 + x2
1 + x2

2 + x2
3

ô
(3.4)
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π1

en
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Figure 3.6: Kinematics of the i-th leg for the class architectures.

where Q describes the orientation between the two frames and it is

Q =

x2
0 + x2

1− x2
2− x2

3 2(x1x2− x0x3) 2(x1x3 + x0x2)

2(x1x2 + x0x3) x2
0− x2

1 + x2
2− x2

3 2(x2x3− x0x1)

2(x1x3− x0x2) 2(x2x3 + x0x1) x2
0− x2

1− x2
2 + x2

3

 (3.5)

while p is the position vector between the two origins as shown in Fig. 3.6

p =

2(−x0y1 + x1y0− x2y3 + x3y2)

2(−x0y2 + x1y3 + x2y0− x3y1)

2(−x0y3− x1y2 + x2y1 + x3y0)

 (3.6)

A set of such parameters corresponds to only one transformation in the Euclidean
space and allows to uniquely define the configuration of a rigid body, e.g. the mobile
platform, when the Study’s quadric equations are satisfied:

x0y0 + x1y1 + x2y2 + x3y3 = 0
x2

0 + x2
1 + x2

2 + x2
3 6= 0

(3.7)

If the inequality in (3.7) is assumed equal to an arbitrary constant, the expression
becomes a normalizing equation that ensures that matrix (3.4) is effectively a non
singular transformation matrix; typically it is assumed x2

0 + x2
1 + x2

2 + x2
3 = 1. Thus,

equations (3.7) yields the two polynomials:

σ1 : x0y0 + x1y1 + x2y2 + x3y3, σ1 = 0
σ2 : x2

0 + x2
1 + x2

2 + x2
3−1, σ2 = 0

(3.8)
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The vanishing sets of polynomials σ1 and σ2 relate the eight Study’s parameters and
represent an intrinsic characteristic that the parameters set must fulfill. It is then nec-
essary to provide a complete algebraic description of the kinematics of the parallel
platform taking advantage of the constraints imposed by the architecture of each joints
arrangement. As shown in the following, a distinction can be made among the con-
straint equations that compose the kinematic model of the moving platform based on
their dependency on the robot actuation parameters. Some equations, in fact, can be
directly gathered by legs kinematic architecture. Other ones, instead, take into consid-
eration the effect of the motion of actuated joints on the whole robot.

In order to obtain a complete description of robot kinematics, Study’s quadric equa-
tions (3.7) must be put together to the algebraic relations which are characteristic of
the specific platform. Firstly, the relations which are peculiar of the legs architecture
are introduced. This procedure is also useful to formally demonstrate the mobility of
the platform within its workspace.

As visible in Fig. 3.6, the limb is built so as to constrain the axes of the first and the
last revolute joint on the plane πi. Equivalently, one can say that the line li , identified
by the axis of such joint, has an intersection point with all the lines that lie on the plane
πi, for example the axis of the first revolute here called mi. The two revolute joints are
connected through a planar joint that allows them to move with a relative planar mo-
tion. This joint bound the two axes to lie in the same plane for all the configurations.
The two lines can be parametrized through their direction plus a passage point, as:

li : αid̂i +p mi : βiâi (3.9)

with αi,βi ∈ R. For the leg constraint to be fulfilled it might be:

li = mi → αid̂i +p = βiâi (3.10)

or, in matrix form and expressing all the terms with respect the frame F0î
[Q]0[d̂i]1 −[âi]0 [p]0

óî
αi βi 1

óT
= 0 (3.11)

A non trivial solution of this last homogeneous equation can be found only letting the
determinant of the respective matrix vanish. Substituting (3.5) and (3.6) for Q and p
in (3.11), three polynomials in the Study’s parameters can be found, one for each leg.
After simplification [45], the three constraints can be expressed by the varieties of the
following polynomials:

g1 : x0y2 + x1y3 + x2y0 + x3y1 g1 = 0
g2 : x0y3 + x1y2 + x2y1 + x3y0 g2 = 0
g3 : x0y1 + x1y0 + x2y3 + x3y2 g3 = 0

(3.12)

37



i
i

“PhDthesis” — 2017/2/15 — 18:09 — page 38 — #62 i
i

i
i

i
i

Chapter 3 A class of tripod SPMs

The vanishing set of polynomials g1, g2, and g3, together with Study’s quadric equa-
tions (3.8) are still not sufficient to fully describe the kinematics of the PKM class
since a set of actuation dependent equations can still be written. Nonetheless, such
relations provide all the needed information about the mobility of the MP [44, 46].
With the aim of performing a complete kinematics analysis of the robot it is possible
to decompose the polynomial ideal in its primary components. Each primary com-
ponent, then, is peculiar of a particular branch of robot mobility [29]. In any case,
the main target of this section is to demonstrate the ability of the class to perform
motions of pure rotations and, to this aim, it is sufficient to ensure that the conditions
provided by such mobility are compatible with the constraints provided by the three
legs. In particular, it can be easily verified that the general transformation matrix T
describes a pure rotation when the four Study’s parameters y0, y1, y2, and y3 are null.
In this case the translation vector p vanishes, denoting a pure rotational behaviour of
the end-effector. Also, it is as much easy to verify that such condition fulfils both
the constraints expressed by equations (3.12), and the Study’s quadric σ1 = 0. The
homogeneous transformation matrix can be simplified consequently as:

T =

ñ
Q 0
0T 1

ô
(3.13)
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‖â× d̂‖
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Table 3.3: 3-CPU SPM screw joints, reciprocal screw joints and IKP of the first limb.
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Table 3.4: 3-CRU SPM screw joints, reciprocal screw joints and IKP of the first limb.
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Table 3.5: 3-URU SPM screw joints, reciprocal screw joints and IKP of the first limb.
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Table 3.6: 3-CRC SPM screw joints, reciprocal screw joints and IKP of the first limb.
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Chapter 4

Kinetostatic Performance Index

When the pair robot-task is functionally redundant more dof are available than needed;
therefore robots can be exploited to accomplish a secondary task. Functional redun-
dancy can be used to increase the accuracy of the manipulator above what is currently
available, as reported by Léger and Angeles [2] for serial robots. A strategy to in-
crease the accuracy of the task is to minimize the condition number of the Jacobian
matrix which depends on the robot posture. In this chapter the same concept is applied
to parallel manipulators. The relationship which relates the velocities of the actuators
with the kinematic velocity of the mobile platform are obtained and then used to ex-
tract the condition number. This local dexterity index will be an objective function of
the optimization problem.

4.1 General Velocity Analysis
To calculate the condition number we need to determine the Jacobian matrix of the
PKM. The Jacobian matrix formulation can be easily obtained by means of the rele-
vant screws of the kinematic chains, which have been already found in the foregoing
chapter for a SPM class. Following the procedure developed by [47] and then by
Tsai [48], the manipulator velocity vector can be written for all robot limbs as a linear
combination of the velocities that each joint in the kinematic chain provides. Thus,
for the cth leg, the hexa-dimensional vector t = [ωT vT ]T representing the moving
platform twist is:

t =
î
s1c s2c . . . smc

ó
q̇c (4.1)

The MP twist does not depend on any point of the body, since it is an instantaneous
property of the rigid body (identified by Mozzi’s axis, the linear velocity along this
axis, and the angular velocity magnitude). However, the twist representation is point-
dependent because it depends on the (arbitrary) reference point that is chosen to com-
pute moments (namely, the point with respect to which the location of Mozzi’s axis in
space is specified). Moreover, s jc denotes the unit screw relative to the jth joint of cth

limb and q̇c is the vector collecting both actuated and non actuated joints rates of the
cth limb. For terseness, it is considered that each limb only owns one actuated joint,
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placed at the first position of the vector appearing at the right side of Eq. (4.1). The
manipulator velocity expression can be usefully simplified by introducing the screws
reciprocal to all non actuated joints screws, as derived in Section 3.3.2 for the studied
SPMs: the corresponding table shows the reciprocal screw to the first joint s⊥1c. A unit
screw is said to be reciprocal to another if it happens that (Γs⊥)T s = (s⊥)T Γs = 0
having introduced the 6×6 symmetrical array to reverse the first three rows of one of
them with the last three of a screw.

Γ =

ñ
O 1
1 O

ô
(4.2)

where O and 1 denote, respectively, the 3×3 zero and identity matrices.
If the unit screw reciprocal to all non actuated joints s⊥1c of the cth leg is detected,
Eq. (4.1) can be simplified by multiplication of both left and right sides by (Γs⊥1c)

T . By
doing so, the non actuated joints rates influence on the moving platform is eliminated:

(Γs⊥1c)
T t =

î
(Γs⊥1c)

T s1c 0 . . . 0
ó

q̇1c = (Γs⊥1c)
T s1cq̇1c (4.3)

where q̇1c is the velocity of joint 1 of the cth leg, thus representing the actuation rate
of the respective leg. This approach really simplifies the expressions however, by
doing so, it is lost the possibility to spot singular behaviors that involve non-actuated
variables and reaction forces transmitted within the kinematic chain [49, 50] . By
collecting into a single expression the p equations arising from (4.3), having indicated
with p the total number of limbs, it is obtained:

(s⊥11)
T

(s⊥12)
T

...

(s⊥1p)
T

Γt =


(Γs⊥11)

T s11 0 0 0
0 (Γs⊥12)

T s12 0 0
0 0 ... 0
0 0 0 (Γs⊥1p)

T s1p




q̇11

q̇12

...

q̇1p

 (4.4)

which is the usual velocity mapping in the form

JdΓt = Jiq̇1 (4.5)

where Jd and Ji are respectively the forward and inverse geometrical Jacobian matrix
and q̇1 is the time rate vector of actuated joints. The subscript 1 indicates that the
PKM has three actuated joints placed at the first position from the BP of each limb.
However this procedure is general and can be applied to any parallel robot.
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4.1.1 SPM Jacobian Matrices

Due to moving platform reduced mobility of the SPM, the twist t of the moving plat-
form with respect to the center of spherical motion is

t = [ωT 0T ]T (4.6)

Due to this fact, the influence of Jd , i.e. the forward geometrical Jacobian matrix,
on Eq. (4.5) is limited to a 3× 3 sub-matrix that is constituted, in case of spherical
motions, by its last three columns. Moreover, three actuated joint fixed to the base
are chosen, since non-intrinsically redundant SPMs have three-dof, and their inverse
kinematics Jacobian matrix Ji becomes a 3×3 matrix.
The Jacobian matrices of the considered SPM class can be derived using the screws
in the foregoing tables. The relationships of the inverse kinematics are also provided,
allowing the Jacobian matrices to be directly expressed in terms of the rotation matrix
Q between the fixed and mobile reference frame.
Two examples of spherical parallel robot are considered: they are the 3-CPU and the
3-UPU SPMs.

3-CPU

By replacing the screws of the 3-CPU SPM of Table 3.3 inside Eq. (4.10), the diagonal
entries of the inverse kinematics Jacobian matrix Ji become

s⊥1cΓs1c =

ñ
ĉc

−dc× ĉc

ôT ñ
O 1
1 O

ôñ
0
âc

ô
= ĉT

c âc (4.7)

The mobility analysis of the 3-CPU reveals that versors cc and ac on the same c leg
are anti-parallel for every posture of the manipulator. This implies that

ĉT
c âc =−1 (4.8)

and that the inverse kinematics Jacobian matrix Ji is

Ji =−1 (4.9)

where 1(3×3) is the 3 by 3 identity matrix.
On the left side of Eq. (4.10)(s⊥11)

T

(s⊥12)
T

(s⊥13)
T

Γt =

ĉT
1 (−d1× ĉ1)

T

ĉT
2 (−d2× ĉ2)

T

ĉT
3 (−d3× ĉ3)

T

ñO 1
1 O

ôñ
ω

0

ô
=

(−d1× ĉ1)
T

(−d2× ĉ2)
T

(−d3× ĉ3)
T

ω (4.10)
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The velocity analysis gives the following equation relating the velocities of the actua-
tors to the kinematic velocity of the mobile platform .(d1× ĉ1)

T

(d2× ĉ2)
T

(d3× ĉ3)
T


ω1

ω2

ω3

=

q̇1,1

q̇1,2

q̇1,3

→ Jd ω = q̇1 (4.11)

The 3-CPU manipulator shows a particular property of the velocity relationship con-
sisting in the independence of the inverse kinematics Jacobian matrix from the posture
of the manipulator. A more general case is provided by the 3-UPU parallel manipula-
tor and, for this reason, it is studied as next example.
The direct Jacobian matrix can be written in terms of the rotation matrix between the
two frames using the inverse kinematic relationships. In this way Jd becomes

Jd = d

([i0]0×Q[k1]1)
T

([j0]0×Q[i1]1)T

([k0]0×Q[j1]1)
T

 (4.12)

where [i0]0 = [i1]1 = [1 0 0]T , [j0]0 = [k1]1 = [0 1 0]T and [k0]0 = [k1]1 = [0 0 1]T . This
equation points out that computation of moving platform Jacobian matrix requires an
explicit knowledge of the pose of the manipulator which, for PKMs with no intrinsic
redundancy, corresponds to a posture of the manipulator.

3-UPU

A more general case is given by the 3-UPU architecture because both the direct and
the inverse kinematic Jacobian matrices are not constant. In fact,

s⊥1cΓs1c =

ñ
enc

−dc× enc

ôT ñ
O 1
1 O

ôñ
âc

0

ô
= (−dc× enc)

T âc (4.13)

and the inverse kinematics Jacobian matrix is equal to

Ji = diag
Ä
(−d1× en1)

T â1, (−d2× en2)
T â2, (−d3× en3)

T â3

ä
(4.14)

while the direct Jacobian matrix becomes

Jd =

(−d1× en1)
T

(−d2× en2)
T

(−d3× en3)
T

 (4.15)
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4.2 Condition Number

The condition number is commonly calculated multiplying both sides of the velocity
equation by the inverse of the matrix Ji.

Jdω = Ji q̇1 ⇒ J−1
i Jdω = q̇1 (4.16)

Ji can be easily inverted because it is a diagonal matrix but this step can be done only
if Ji is not singular. It leads to this result

J−1
i Jd = J =



(−d1× en1)
T

(−d1× en1)
T â1

(−d2× en2)
T

(−d2× en2)
T â2

(−d3× en3)
T

(−d3× en3)
T â3

 (4.17)

Once again we can write the Jacobian matrix as a function of the rotation matrix Q
using Table 3.2, however for terseness this is not reported.

4.2 Condition Number

The condition number is a local dexterity index which quantifies the error amplifi-
cation between the joints and the EE relative errors [51]: by lowering the condition
number value, the propagation of joint errors to the EE pose is reduced, thus increas-
ing accuracy. This index will be used as the objective function of the optimization
problem to further improve the accuracy of the manipulator above what is currently
available.
The discussion to obtain an explicit expression of the condition number in terms of
the EE pose parameters is presented considering a SPM; however an extension to a
general case is easily deductible. The velocity analysis of an SPM gives the following
general relationship by doing the inversion of the inverse kinematic Jacobian matrixnT

1
nT

2
nT

3


︸ ︷︷ ︸

J

ω1

ω2

ω3


︸ ︷︷ ︸

ω

=

q̇1

q̇2

q̇3


︸ ︷︷ ︸

q̇

(4.18)

where nT
c indicates the row vectors of the Jacobian matrix J for c = 1,2,3.

The general formula to calculate the condition number of the Jacobian matrix J is

κ(J) = ‖J‖‖J−1‖ (4.19)
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Chapter 4 Kinetostatic Performance Index

where it is required the calculation of the matrix norm ‖ • ‖. The choice falls on the
Frobenius norm because it is the only matrix norm that gives an analytic function of
the condition number everywhere, i.e. for any real value of its scalar arguments. Here,
we recall that a function is analytic at a point if the function admits a series expansion
at that point. This requires that the function, first and foremost, have all its derivatives
with respect to the arguments continuous. Compared to the classical 2-norm condition
number, which is the rate between the largest and the smallest singular values of the
matrix, the Frobenius based condition number is the product of the rms of the singular
values of the matrix by the rms value of their reciprocal, namely

κF(J) =

Ã(
1
n

n∑
i=1

σ2
i

)(
1
n

n∑
i=1

1
σ2

i

)
(4.20)

In particular in the 2-norm condition number, discontinuities are due to the switch in
its formula of the intermediate singular values with one of the extreme values: this
point is well discussed by Khan and Angeles [52]. This does not happen for the
Frobenius based norm since it is the only matrix norm that is infinitely differentiable
with respect to its arguments and it allows the minimum search to be straightforwardly
achieved by virtue of its smoothness properties.
Based on the Frobenius norm of the 3× 3 Jacobian J, the square of the condition
number κF(J) becomes

κ
2
F(J) = ‖J‖2

F‖J−1‖2
F =

1
n2 tr(JJT )tr(J−1J−T ) (4.21)

where ‖J‖ is obtained as the positive square root of ‖J‖2
F = tr(JJT )/n. The factor 1/n

accounts for a weighted norm, which equals the rms of the Jacobian matrix singular
values. Each trace of this expression is then expanded, to express it as function of the
row vectors of the Jacobian matrix, namely,

tr(JJT ) = tr
(î

n1 n2 n3

óT î
n1 n2 n3

ó)
=

3∑
i=1

‖ni‖2 (4.22)

Regarding the other term tr(J−1J−T ), the inverse of JT can be expressed in terms of its
columns explicitly, without introducing any components, if the concept of reciprocal
bases is recalled [53].

J−T = (JT )−1 =
1
∆

î
n2×n3 n3×n1 n1×n2

óT
, ∆≡ n1×n2 ·n3 (4.23)
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4.2 Condition Number

By transposing this matrix J−1 is obtained and the trace can be written as before.
Hence, the square of the condition number of a 3×3 Jacobian matrix is

κ
2
F(J) =

(
‖n1‖2 +‖n2‖2 +‖n3‖2)(‖n2×n3‖2 +‖n3×n1‖2 +‖n1×n2‖2)

9(n1×n2 ·n3)2 (4.24)

The condition number can attain values from unity to infinity. It attains its minimum
value of unity for matrices with identical singular values and in this case the matrix is
called isotropic. On the other hand, a singular matrix condition number is infinite due
to the vanishing of its smallest singular value; therefore, the matrix is said singular.

4.2.1 Global Condition Number
The condition number is a local indication for the dexterity of a manipulator. To eval-
uate the dexterity of a robot over a given workspace W , Gosselin [54] has introduced
the global conditioning index (GCI) as

GCI =

∫
W

1
κ

dW∫
W

dW
(4.25)

which corresponds to the average value of 1/κ . This concept is mainly used for the
optimal design of robots for which the extremal and average value of any performance
are important design factors. In this thesis, the GCI will be used to evaluate the im-
provement of performance due to the exploitation of functional redundancy through-
out the workspace. The reader should note that the GCI must rely on a numerical
evaluation consisting of the discretization of the workspace using regular grid, the
computation of 1/κi at every node, and the approximation of the GCI: the sum of
the 1/κi is divided by the number of nodes and by the workspace size as handled by
Merlet [51].

4.2.2 Example: 3-CPU Condition Number
The condition number can be expressed as a function of the rotation matrix Q describ-
ing the orientation of the MP with respect to the BP. From Eq. (4.12) the row vector
associated to the first leg of the Jacobian matrix is

n1 = [i0]0×Q[i1]1 (4.26)

and it is used to calculate the square of the condition number using Eq. (4.24).
A condition number can be obtained in terms of the rotation matrix Q which needs
a proper parametrization to describe the orientation of the mobile platform: among
the various representations that describe the rotation, we choose the one based on the
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Chapter 4 Kinetostatic Performance Index

rotation invariants, and in particular, the Euler-Rodrigues Parameters (ERPs), i.e., the
four scalars r and r0 [55]:

Q = (r2
0− rT r)1+2rrT +2r0R, R = CPM(r) (4.27)

where CPM(r) denotes the cross-product matrix1 of r≡ esin(φ/2). Let e be the unit
vector of the rotation axis and θ its axis of rotation, r0 is defined as r0 = cos(θ/2).
This representation is more robust than the others because it does not entail any sin-
gularity; therefore, smoother trajectories can be obtained. Moreover the reader should
note that these four parameters correspond to the first four Study’s parameters. The
array of unknowns becomes x = [rT r0]

T , which are not independent, for they obey
the constraint ‖r‖2 + r2

0 = 1.
A symbolic computation with computer algebra leads to an expression for κ2

F(J) on
the form

κ
2
F(J) =

1
9

N1N2

D
(4.28)

where

N1 = ‖n1‖2 +‖n2‖2 +‖n3‖2 = d2

(3r4
0 +2r2

0r2
1 +2r2

0r2
2 +2r2

0r2
3 +24r0r1r2r3 +3r4

1 +2r2
1r2

2 +2r2
1r2

3 +3r4
2 +2r2

2r2
3 +3r4

3)

(4.29)

N2 = ‖n2×n3‖2 +‖n3×n1‖2 +‖n1×n2‖2 =

d4(4(r0r1 + r2r3)
2(r2

0− r2
1− r2

2 + r2
3)

2 +4(r0r2 + r1r3)
2(r2

0 + r2
1− r2

2− r2
3)

2+

4(r0r3 + r1r2)
2(r2

0− r2
1 + r2

2− r2
3)

2 +(r2
0− r2

1− r2
2 + r2

3)
2(r2

0− r2
1 + r2

2− r2
3)

2+

(r2
0− r2

1− r2
2 + r2

3)
2(r2

0 + r2
1− r2

2− r2
3)

2 +(r2
0− r2

1 + r2
2− r2

3)
2(r2

0 + r2
1− r2

2− r2
3)

2

+16(r0r1 + r2r3)
2(r0r2 + r1r3)

2 +16(r0r1 + r2r3)
2(r0r3 + r1r2)

2

+16(r0r2 + r1r3)
2(r0r3 + r1r2)

2)

(4.30)

D = (n1×n2 ·n3)
2 =

(d3(r1 + r2 + r3− r0)(r1− r2− r3− r0)(−r1 + r2− r3− r0)(−r1− r2 + r3− r0))
2

(4.31)

1That is, CPM(r) = ∂ (r×v)/∂v, ∀v, x ∈ R3
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Chapter 5

Dynamic Performance Indices

In order to increase the efficiency of industrial processes, i.e. to decrease the cycle
time of manufacturing operations, the dynamic behavior of the machine should be
taken into consideration. In this chapter, the optimization of the functional redun-
dancy will also consider the dynamic performance of the manipulator for fast motion
and high-precision manipulator tasks. To such aim, three indices, related to the inertia
matrix, that quantify the dynamic performance of three-dof parallel manipulators are
considered [56]. Two of them represent the dynamic manipulability, i.e. the manipu-
lating ability of the robot in positioning and orienting the mobile platform, while the
third one identifies the robot’s swiftness, i.e. its skill to produce EE accelerations due
to the same variation of the actuation forces. All of them can be expressed as func-
tions of the parameters that describe the pose of the MP, the inertial properties and
the geometrical parameters of the links. They are used as objective functions for the
optimization along each pointing direction, once the properties of the parallel manipu-
lator are given. When the accelerations are not negligible the dynamic behavior of the
manipulator depends on its generalized inertia matrix and this matrix can be derived
from the expression of the kinetic energy of the manipulator reduced to the mobile
platform. The screw theory is used to write the equations in a compact form and de-
rive the eigenvalues of the inertia matrix. These eigenvalues are then used to quantify
the dynamic manipulability through the concept of dynamic manipulability ellipsoids,
whose semi-axes own a length equal to the eigenvalues of the matrix. An ellipsoid
with equal eigenvalues is obviously a sphere and it indicates a dynamically isotropic
configuration of the robot. The swiftness of the mobile platform is quantified by the
arithmetic mean of the eigenvalues: the higher their average value is, the smaller the
acceleration that the MP can reach from the considered configuration becomes.

5.1 Manipulator Inertia Matrix
The dynamic performance indices are computed from the inertia matrix reduced to the
end-effector. This matrix can be derived from the total kinetic energy of the robot, that
is the summation of the kinetic energies of all its r bodies. Thus, for a parallel manip-
ulator, it is the sum of the end-effector kinetic energy Tee plus the kinetic energies of
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Chapter 5 Dynamic Performance Indices

all the links. Tlc indicates the kinetic energy of the link l on the leg c: the total number
of links in a limb is h, while the total number of legs is p. It is:

T =
r∑

b=1

Tb =
1
2

tT
eeMeetee +

p∑
c=1

h∑
l=1

1
2

tT
lcMlctlc (5.1)

In previous equation, we denoted by Mlc the inertia dyad of the body lc [55]:

Mlc =

ñ
Ilc O
O mlc1

ô
(5.2)

where 1 and O are the 3× 3 identity and zero matrices respectively, while Ilc is the
inertia matrix of the body which is defined with respect to the center of mass Clc of
that body. Moreover, its mass is denoted by mlc, whereas ρlc and ρ̇lc indicate the
position and the velocity vectors of Clc in an inertial frame. Furthermore, tlc denotes
the twist of the same body, defined in terms of the angular velocity vector ωlc and
the velocity of Ci. The inertia tensor of the link lc referred to its center of gravity is
indicated as [Ilc]

lc and it is expressed in the reference system fixed to the link lc, thus
with constant entries. In order to express Mlc in a reference frame system fixed to the
ground, the following relation is used:

[Ilc]
0 = Qlc[Ilc]

lcQT
lc (5.3)

where Qlc is the rotation matrix between reference frames Flc and F0. Provided that
singular configurations are excluded, the inverse velocity analysis of the manipulator
allows the following relationships to be determined in an explicit form:

tlc = Zlcω tee = Zeeω (5.4)

Since a spherical parallel manipulator is studied, ω is the angular velocity of the mo-
bile platform, while Zlc and Zee are 6× 3 matrices depending on parameters x de-
scribing the pose of the MP and on the manipulator link geometry. In general, these
expressions are linear in the manipulator generalized coordinates rates. Taking into
account Eq. 5.4, Eq. 5.1 becomes:

T =
r∑
1

Ti =
1
2
ωT ZT

eeMeeZeeω+

p∑
c=1

h∑
l=1

1
2
ωT ZT

lcMlcZlcω (5.5)

This expression could be rewritten as:

T =
1
2
ωT Nω, N(x) = ZT

eeMeeZee +

p∑
c=1

h∑
l

ZT
lcMlcZlc (5.6)
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5.2 Determination of the Z matrices

The matrix N is the inertia matrix referred to the end-effector of the manipulator. It
is a symmetric and positive-definite matrix depending both on x, the parameters used
to describe the pose of the manipulator, and on the inertial and geometric parameters
of the links. The problem to determine the Z matrices of this equation is addressed in
the next section.

5.2 Determination of the Z matrices
A procedure for the determination of the Z matrices of Eq. (5.6) is applied to the 3-
CPU SPM; however, a generalization to other 3-dof parallel kinematic machines can
be straightforwardly achieved. All the data needed to the reader to implement the sim-
plified model of the robot are given in Tables 5.1 and 5.2.
Let F0 be a reference system fixed to the ground whose unit axes i0, j0 and k0 are
coaxial with the cylindrical joints indicated with ac, and let F1 be a reference sys-
tem fixed to the mobile platform, whose axes are directed along the vectors −dc.
Moreover, ec represents the unit vector perpendicular to the cth leg plane. Using the
expressions indicated in Table 3.3, it is possible to calculate the vectors ac, bc, cc, dc,
ec of the leg c as a function of the rotation matrix Q in terms of the pose of the MP.
After that, the screw joints s jc can be computed, where j indicates again the joint in
the cth limb. Such screws are expressed with respect to the center of the spherical
motion and, after substitutions, they will be written in terms of the end-effector pose.
The Jacobian matrices can be obtained through such screw vectors as:

K0c =
î
s1c s2c s3c s4c s5c

ó
c = 1, ..., p (5.7)

Since screws are defined with respect to the center of the spherical motion, it is the
same also for the Jacobian matrices K0 jc and the subscript 0 points up this fact. How-
ever, these Jacobian matrices have to be expressed with respect to the center of gravity
of the mobile platform, better than the center of spherical motion. To this end, the
twist-transfer formula, which relates the twists of the same rigid body at two differ-
ent points, is defined. Being A and P two arbitrary points of a rigid body, the tansfer
formula is:

tP = U(a,p)tA, U(a,p) =
ñ

1 O
A−P 1

ô
, tA =

ñ
ω

vA

ô
, tP =

ñ
ω

vP

ô
(5.8)

where a and p are the position vectors of the two points with respect to the origin of
the reference system and A = CPM(a) and P = CPM(p) 1. Therefore, the Jacobian
matrices with respect to the center of gravity of the EE are:

Kc = U(0,ρ5)K0c (5.9)

1CPM denotes the cross-product matrix, that is, CPM(x) = ∂ (x×v)/∂v, ∀v, v ∈ R3
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Chapter 5 Dynamic Performance Indices

with 0= [0 0 0]T and ρ5 the position vector of the end-effector center of gravity. When
a SPM is taken into account, the mobile platform can only perform angular velocities
with respect to the center of spherical motion, so its twist with respect to this point
becomes t0 = [ωT 0T ]T . The twist tranfer formula is applied to it:

t = U(0,ρ5)t0 (5.10)

The three contributions of each kinematic chain to the mobile platform are

t = Kcq̇c (5.11)

where q̇c is the vector of both active and passive joint rates of the cth limb.
According to Table 3.3, screws s⊥jc are calculated. The screw s⊥jc is reciprocal to any
joint of the c leg except for the considered jth joint. Such screws may be usefully
employed to eliminate the contribution of the joints screws reciprocal to it on the
previous expression. The goal is to find the explicit relations of the joint rates as
function of the pose parameters x. Multiplying Eq.s 5.11 by each reciprocal screw
written with respect to the EE center of gravity, any term associated to a joint screw
reciprocal to that is eliminated. This is done for each joint on the kinematic chain and
for any leg, i.e. we multiply Eq.s 5.11 by (ΓUs⊥jc)T (where U replaces U(0,ρ5) for
the sake of conciseness):

(ΓUs⊥jc)
T t = (ΓUs⊥jc)

T Kcq̇c (5.12)

The s⊥jc screw leaves only the contribution of s jc in Eq. 5.12:

(ΓUs⊥jc)
T t =

î
((ΓUs⊥jc)T Us jc 0 . . . 0

ó
q̇c (5.13)

By grouping the expressions for all the legs (c = 1,2,3) and considering each joint j,
we will obtain m expressions, where m is the total number of joints in a limb:(ΓUs⊥j1)

T

(ΓUs⊥j2)
T

(ΓUs⊥j3)
T

Γt =

((ΓUs⊥j1)
T Us j1 0 0

0 ((ΓUs⊥j2)
T Us j2 0

0 0 ((ΓUs⊥j3)
T Us j3


q̇ j1

q̇ j2

q̇ j3


(5.14)

In order to obtain the joint rates relationships, the diagonal matrix can be easily in-
verted and multiplied by both sides of the equation:

q̇ j =

(ΓUs⊥j1)
T/((ΓUs⊥j1)

T Us j1)

(ΓUs⊥j2)
T/((ΓUs⊥j2)

T Us j2)

(ΓUs⊥j3)
T/((ΓUs⊥j3)

T Us j3)

Γt j = 1, ...,m (5.15)
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5.3 Local Dynamic Indices

The joint rates vectors q̇ j are expressed in terms of the pose parameters x and of the
angular velocity of the end effector ω.
The twist of each link l of the limb c is obtained from c = 1 to p as:

t1c = U(0,ρ1c)s1cq̇1c

t2c = U(0,ρ2c)
î
s1c s2c

óî
q̇1c q̇2c

óT
...

thc = U(0,ρhc)
î
s1c s2c s3c s4c s5c

óî
q̇1c q̇2c q̇3c q̇4c q̇5c

óT (5.16)

The substitution of the Eq.s 5.15 into Eq.s 5.16 allows to write each twist tlc in the
form of a linear system of equations by collecting the components of ω in a vector:
in this way the form of Eq. 5.4 is reached. This step can be readily done by means of
computer algebra.
The derived Z matrices can then be used for the determination of the inertia matrix
N in a symbolic form and in terms of the pose of the mobile platform. The previous
analysis has neglected the contribution of the Coriolis and centrifugal effects that are
non-linear in pose parameters rates, the terms related to gravity and dissipation forces.
These effects are relevant for the dynamic behavior of the manipulator and, in general,
they must be considered. However, Callegari [41] showed that Coriolis and centrifu-
gal effects and the terms related to gravity and dissipation forces do not affect the
dynamic indices based on the inertia matrix eigenvalues, because they merely cause a
translation of the manipulability ellipsoid. Hence, the proposed dynamic indices that
only depend from robot pose can be used without neglecting these effects; by virtue
of this fact they greatly simplify the optimization problem, therefore, they should be
preferred when a reduced number of variables is desired.

5.3 Local Dynamic Indices

Some dynamic indices have been proposed in the literature for parallel manipulators.
In particular, referring to an inertia matrix of the EE obtained in the Cartesian space,
Yoshikawa [57] presented the dynamic manipulability ellipsoid and an index for the
dynamic manipulability measurement. These indices could lead the optimum design
of parallel manipulator architecture as addressed by Ma and Angeles in [58], however
they assumed that only the mobile platform has a significant inertia with respect to the
other links. Di Gregorio and Parenti-Castelli in [56] proposed to obtain the generalized
inertia matrix reduced to the end-effector by means of the kinetic energy, as derived
in the previous section, and they used its eigenvalues to define dynamic indices.
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Chapter 5 Dynamic Performance Indices

5.3.1 Index of Dynamic Manipulability

The dynamic manipulability represents the capacity of the robot to perform acceler-
ations in any direction of the Cartesian workspace. It is quantified through the con-
cept of dynamic manipulability ellipsoids, whose semi-axes own a length equal to the
eigenvalues of the inertia matrix. An ellipsoid with equal eigenvalues is obviously a
sphere and indicates a dynamically isotropic configuration of the robot. A three-dof
manipulator configuration is dynamically isotropic when the eigenvalues of the in-
ertia matrix λi(x) for i = 1,2,3 in that posture are all equal, which implies that the
following index assumes the unit value:

κd =
27λ1λ2λ3

(λ1 +λ2 +λ3)3 (5.17)

This is true because N is a symmetric and positive-semidefinite matrix: its singular
values and eigenvalues coincide. The index κd quantifies the dynamic manipulability
so it is called index of dynamic manipulability of a robot because the product of three
scalar quantities, whose sum is assigned, is maximum only if they are all equal. It is
equal to one only for dynamically isotropic configurations and it is less than one for
all the other configurations (0≤ κd ≤ 0).

5.3.2 Condition number based on the Frobenius norm

Another index that is studied in this paper is the condition number of the inertia matrix.
The condition number is based on the norm of the matrix and in order to obtain an
analytic function, as it was for the previous index, the Frobenius norm is chosen:

κF(N) = ‖N‖F‖N−1‖F =
1
n

»
tr
(
NNT ) tr

(
N−1N−T ) (5.18)

The Frobenius norm has the peculiarity to be infinitely differentiable with respect
to its arguments. This choice allows a straightforward minimum search by virtue
of its smoothness properties. A simple formula of the condition number is based
on singular values of the considered matrix; being the inertia matrix symmetric and
positive-semidefinite, its singular values and eigenvalues coincide. So the condition
number based on the Frobenius norm takes the form:

κF =
1
3

√
(λ 2

1 +λ 2
2 +λ 2

3 )

Ç
1

λ 2
1
+

1
λ 2

2
+

1
λ 2

3

å
(5.19)

It is often used as a dexterity index when applied to the Jacobian matrix; the applica-
tion to the matrix of inertia keeps the features of assuming the unity value when its
eigenvalues are all equal, hence, it can be used to indicate of dynamic manipulability
as in the previous case.
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5.4 Example: 3-CPU

5.3.3 Manipulator swiftness
The manipulator swiftness is the attitude to cause end-effector acceleration for the
same variation of the active forces. Like acceleration, swiftness depends on the manip-
ulator configuration. In particular, the greater the arithmetic average of the eigenvalues
of the matrix N(x) corresponding to a manipulator configuration is, the lower is the ac-
celeration achievable by the end-effector starting from that configuration. Therefore,
the value of the index κs which quantify the robot swiftness, is defined as

κs =
3

λ1 +λ2 +λ3
(5.20)

and it is called index of manipulator swiftness. The weakness of this index is that it is
dimensional, thus it is difficult to manage when different manipulators are compared.

5.4 Example: 3-CPU
The proposed algorithm in Section 5.2 has been implemented using a simplified model
of the 3-CPU SPM. The inertial and geometric parameters of the links assumed for the
manipulator are reported in Tables 5.1 and 5.2. The inertia matrices of each link are
easily written according to a reference system fixed to the corresponding link: the en-
tries of this matrix are constant not being dependent on the configuration of the robot.
Such inertia matrices in order to computer the total kinetic energy of the manipulator
must be expressed in the fixed reference system F0. To this aim, the rotation matri-
ces between each local reference system of the link and the fixed reference frame are
defined according to the parameters of the manipulator pose.
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Chapter 5 Dynamic Performance Indices

aj

X0

Y0

F0

Z0

ej

bj

F1j

ρ1j

[IC]1 j = diag [1.830,0.396,1.830]
·10−6 kg m2

Q1 j =

bT
c a1 aT

c a1 eT
c a1

bT
c a2 aT

c a2 eT
c a2

bT
c a3 aT

c a3 eT
c a3


ρ1 j = a

m1 j = 0.024kg

aj X0 Y0

F0

Z0

ej

bj F2j ρ2j

[IC]2 j = diag [0.01,18.57,18.57]
·10−6 kg m2

Q2 j = Q1 j

ρ2 j = a+ c2b̂

m2 j = 0.022kg

aj

X0 Y0

F0

Z0

ej

bj

F3j

ρ3j

[IC]3 j = diag [52.57,3.138,54.89]
·10−6 kg m2

Q3 j = Q1i

ρ3 j = a+b+ c3ĉ

m3 j = 0.055kg

Table 5.1: 3-CPU: Inertia matrix, rotation matrix, center of mass position vector and
mass of the members 1,2 and 3 composing each leg j.
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dj×ej

X0 Y0

F0

Z0

ej

F4j

ρ4j

dj

[IC]4 j = diag [1.448,1.448,2.258]
·10−6 kg m2

Q4 j =

dT
c a1 eT

c a1 (Dcec)
T a1

dT
i a2 eT

c a2 (Dcec)
T a2

dT
i a3 eT

c a3 (Dcec)
T a3


ρ4 j =−c4d

m1 j = 0.034kg

X0 Y0

F0

Z0

F1

ρ5j

Z1

X1 Y1
[IC]5 j =

 254 −63.4 −63.4
−63.4 254 −63.4
−63.4 −63.4 254


·10−6 kg m2

Q5 j = Q

ρ5 j = g

m1 j = 0.258kg

Other data:
d = 0.100 m
c = 0.100 m
c2 = 0.5 m
c3 = 0.5 m
c4 = 0
g =−1/30 m[1 1 1]T

Table 5.2: 3-CPU: Inertia matrix, rotation matrix, center of mass position vector and
mass of the members 4 and 5 composing each leg j.
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Chapter 6

Singularity analysis with ERPs

Singular configurations are important in the analysis of manipulators because they
should generally be avoided and because they limit the workspace of the machine. The
topic is widely studied in the literature, then without going into too much detail on the
description of singularities, this chapter emphasizes the representation of singularity
surfaces by means of parameters used to describe the manipulator pose, i.e. the ERP.
The 3-CPU robot is taken as example: the relationships between the parameters of
the moving platform pose corresponding to the different singularity configurations are
established and plotted. The aim of this chapter is to study the singularity surfaces
with the parameters also used to write the objective function, so these equations could
be used as additional constraint conditions to bond the research of the minimum.

6.1 Singular configurations

Jacobian matrices represent the mapping of both velocities and forces between the
actuators and the moving platform and when one of them become singular we are not
able to perform the inverse computations. Chapter 4.1 has shown how the determi-
nation of reciprocal screw s⊥ allows a particular form of the velocity problem to be
obtained (Eq. (4.5)). Another way to introduce singular configuration is to examine
the relations obtained from inverse kinematics [5]. For both serial and parallel robots,
there will usually be a relation of the following type:

f(q,x) = 0 (6.1)

where q represent the actuated joint variables and x the generalized coordinates. We
differentiate both terms of this equation to obtain a more general relation,

Jd ẋ = Jiq̇ (6.2)

This is a linear relation between the moving platform velocity vector x and the actua-
tors velocity vector q̇. From Eq. (4.1) or (6.2) we can distinguish three singular cases:
Jd is singular, Ji is singular, both Jd and Ji are singular. For serial manipulators, Jd is
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Chapter 6 Singularity analysis with ERPs

the identity matrix, while for many parallel manipulators, including the 3-CPU robot,
Ji is the identity matrix. Thus, the Jacobian matrix for a parallel manipulator for which
Ji = 1 is usually defined in an inverse sense with respect to the Jacobian for a serial
manipulator. For manipulator designs for which neither Ji, nor Jd become the identity
matrix, a single Jacobian can be defined as either J−1

i Jd , or J−1
d Ji, provided Jd , or Ji

is invertible, the difference being the direction (from actuators to moving platform or
vice versa) in which the Jacobian is defined.

• If Ji is singular, there will be a non-zero velocity vector q̇ for which the platform
does not move. This singularity correspond to a pose located on the boundary
of the workspace. This is a structural limit that is not related to constraint on
the articular coordinates.

• If Jd is singular, there will then be a non-zero twist t for which the actuator
velocities are zero. In the neighborhood of such a configuration, the robot will
be able to have an infinitesimal motion without any change the link positions.
As a consequence, certain degrees of freedom become uncontrollable.

• If Ji and Jd are singular, there is a singularity where the moving platform may
be moved while the actuators are locked, and vice versa.

When reciprocal screws are identified, they represent the rows of the direct Jacobian
matrix Jd as shown in Eq. (4.5). The linear dependence between these screws deter-
mines a singularity condition and analytically it corresponds to

n1×n2 ·n3 = 0 (6.3)

because in general this relationship between the rows a, b, c and the determinant of a
3×3 matrix A subsists

a×b · c = det(A) (6.4)

The inverse kinematics Jacobian matrix Ji, being a diagonal matrix, becomes singular
if one or more diagonal values vanish.

The singularity analysis through the Jacobian matrices, in which the contribution
of passive joints is neglected multiplying reciprocal screws to them, is in general non-
exhaustive. The avoidance of passive-constraint singularities [50] cannot be guaran-
teed using these matrices. This type of singularity is not addressed in this manuscript
but they should be identified and appropriately avoided.

6.2 Rendering workspace with ERP
To describe the orientation of the MP three independent parameters are necessary.
However, to avoid representation singularities, the four parameters representation with
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6.3 Example: 3-CPU

ERPs has been chosen. The four scalar ERPs r and r0 are dependent because their
norm is bound to be unitary

rT r+ r2
0 = 1 (6.5)

This relationship represents a surface of a four-dimensional sphere. Therefore, a ro-
tation, or an EE pose, can be represented on a four-dimensional space as a point
in a spherical surface centered at the origin of the space. The appearance of such
spherical surface in a three-dimensional space can be carried out by projecting a four-
dimensional object in a three-dimensional subspace. A possible option is to represent
a rotation matrix as a point in a three dimensional sphere whose position vector is
equal to the vector r associated with that rotation.

‖r‖ ≤ 1 (6.6)

This point collects both information of rotation axis e and angle of rotation θ because
r = esin(θ/2). For example, the point at the origin of the reference frame represents
all the poses of the manipulator in the reference relative position between the mobile
and the fixed frames, or initial pose, because it corresponds to a null rotation around
any directions. In our case the initial configuration corresponds to coaxial axes of the
two frames. The point p =

√
3/3[1 1 1]T identifies instead a rotation of π around p̂

of the two frames. Singularity configurations are found and plotted for the 3-CPU
manipulator using this 3D representation in the ERPs space. Nevertheless, the reader
should note that the shape of the singularity surfaces depends on the invariants of
the rotation matrix used to represent it, e.g. the use of linear invariants q = esin(θ)
provides different shapes. However, parametrization with ERPs is known not to suffer
of singularities of representation: this is the reason why the rendering of the workspace
with these parameters is convenient.

6.3 Example: 3-CPU

The singularity condition of the Jacobian matrix J corresponds to a MP pose whose
condition number attains an infinite value. In fact the condition number gives an indi-
cation of how much close a pose is from a singularity configuration. For this reason
we begin our research of singulaties from the denominator of the 3-CPU condition
number of the inverse Jacobian matrix written in Eq. (4.31) in terms of the ERPs:

n1×n2 ·n3 = det(Jd) = d3(r1 + r2 + r3− r0)(−r1− r2 + r3− r0)

·(r1− r2− r3− r0)(−r1 + r2− r3− r0)
(6.7)
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Chapter 6 Singularity analysis with ERPs

Clearly, the determinant vanishes when one of its factors vanishes, i.e. when an ERPs
set respects one of these equations:

det(Jd) = 0 ⇔ π1 = 0∨π2 = 0∨π3 = 0∨π4 = 0 (6.8)

having defined
π1 :r1 + r2 + r3− r0

π2 :− r1− r2 + r3− r0

π3 :− r1 + r2− r3− r0

π4 :r1− r2− r3− r0

(6.9)

The geometrical parameter d is a constant value defined at the design stage and it is
assumed different from zero. It is pointed out that π1 = 0, π2 = 0, π3 = 0 and π4 = 0
represent four affine hyperplanes in the four-dimensional space of ERP. Such equa-
tions are associated with four dimensional geometric entities that identify the borders
of the robot workspace. We may illustrate them in a three-dimensional space using the
representation with ERPs by removing from such equations the explicit dependence
on r0. To this aim we calculate the square of Eq. (6.9) to replace r2

0 into Eq. (6.5). In
this way, we obtain for the four equations

π1 :2(r2
1 + r2

2 + r2
3 + r1r2 + r2r3 + r1r3)−1

π2 :2(r2
1 + r2

2 + r2
3 + r1r2− r2r3− r1r3)−1

π3 :2(r2
1 + r2

2 + r2
3− r1r2− r2r3 + r1r3)−1

π4 :2(r2
1 + r2

2 + r2
3− r1r2 + r2r3− r1r3)−1

(6.10)

which can be rewritten in the quadratic form

rT Air = 1 i = 1,2,3,4 (6.11)

where

A1 = 2

1 0 1
1 1 0
0 1 1

 , A2 = 2

1 0 −1
1 1 0
0 −1 1


A3 = 2

 1 0 1
−1 1 0
0 −1 1

 , A4 = 2

 1 0 −1
−1 1 0
0 1 1


(6.12)

It’s interesting to note that these quadratics forms represent analytical expressions of
ellipsoid surfaces centered at the origin. Each ellipsoid surface is shown in Fig. 6.1.
Carbonari et al. [59] have already identified and studied these geometric entities for
the 3-CPU in the space of the actuator displacement where they assume the shape of
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ev= -√3/3[1 1 1]

π1=0

rTr=1

π2=0

π3=0 π4=0

Y0
X0

Z0

F0

Y0
X0

Z0

F0

Y0
X0

Z0

F0

Y0
X0

Z0

F0

a) b)

c) d)

Figure 6.1: Renderings of the singularity ellipsoid surfaces with the ERPs 3D repre-
sentation of the 3-CPU SPM: a) π1 = 0, b)π2 = 0, c) π3 = 0 and d) π4 = 0.
Lines indicate the intersection with the unit sphere.

planes. They showed that, when the EE pose reaches these surfaces, the robot can
change its own working mode: in particular, the transition of the robot configurations
between them corresponds to transition between pure rotational and hybrid behav-
ior (translational and rotational) of the SPM. Whatever the space of representation is,
these geometric entities identify the limits of the robot workspace. The four ellipsoid
surfaces are illustrated together in Fig. 6.2. The eigenvectors of Ai define the principal
axes of the ellipsoid, while the eigenvalues of Ai are the reciprocals of the squares of
lengths of the semi-axes. As we can see from Fig.s 6.1 and 6.2 two of the ellipsoid
semi-axes are equal to one thus their intersections with unit sphere are the circumfer-
ences which are drawn in the Figures. The intersection of the ellipsoid volume gives
us the singularity-free region of the workspace.
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Chapter 6 Singularity analysis with ERPs

X0
Y0

Z0

F0
Y0 X0

Z0

F0

a) b)

ev= -√3/3[1 1 1]

Figure 6.2: Renderings with ERPs representation of the singularity ellipsoid surfaces
of the 3-CPU SPM: a) isometric view and b) upper view. Lines indicate
the intersections with the unit sphere.

The visualization of the axis of rotation between the fixed and mobile frames and
its magnitude depending on the angle of rotation does not give an easy information
about the pointing direction that the mobile platform attains after this transformation.
A more intuitive representation is given by substituting the axis of rotation with a
pointing direction ev of the mobile platform after the application of the rotation, in
mathematical terms

p = Q(r,r0)ev sin(θ/2) (6.13)

where p is a point inside the unit sphere having chosen [ev]1 = −
√

3/3[1 1 1]T as a
reference vector fixed with the mobile reference system. In the home configuration the
two reference systems are coincident and the vector [ev]0 = −

√
3/3[1 1 1]T indicates

the vertical direction also in the fixed reference frame F0.
The singularity surfaces with this representation εi assume a more complex shape:

Fig. 6.3 shows these entities from the same point of view, while they assume different
orientations as in the case of ellipsoids. One more time, the intersection volume be-
tween these surfaces enclosures the pointing workspace of the 3-CPU. The assembly
of the four entities ε (Fig. 6.4) reveals a symmetry with respect to planes shifted 120
degrees one from the other deriving from the tripod architecture of the SPM. These
surfaces are linked to particular poses of the MP where the robot changes its working
modes; they represent singular points of the robot workspace in which the legs can
change their configuration independently from the actuation. Verifing exactly that a
trajectory is singularity-free is not a trivial problem, however, the equations of these
surfaces can be considered in the constraint equations of optimization problems to
limit the manipulator workspace. Moreover, for a real robot also the limits imposed
by the joints must be added to the constraint equations system. This problem has not
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ev= -√3/3[1 1 1]

ε1=0

rTr=1

ε2=0

ε3=0 ε4=0

Y0
X0

Z0

F0

Y0
X0

Z0

F0

X0
Y0

Z0

F0

X0
Y0

Z0

F0

a) b)

c) d)

Figure 6.3: The four singularities surfaces for the 3-CPU SPM; Renderings with ERPs
representation of the pointing direction of the moving platform.

been addressed in this work but it could be part of future developments.
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Y0
X0

Z0

F0
X0 Y0

Z0

F0

a) b)

ev= -√3/3[1 1 1]

Figure 6.4: Renderings with a pointing ERPs representation of the moving platform
singularity surfaces of the 3-CPU SPM: a) isometric view and upper view
b).
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Chapter 7

Posture Optimization

This chapter addresses the posture optimization of a redundant spherical robot with
one dof of functional redundancy and no intrinsic redundancy. The functional re-
dundancy that arises when a spherical PKM performs a pointing task is exploited to
maximize the machine performance using indices that have been already proposed in
the dissertation. As an example, the minimization of the condition number of the Jaco-
bian matrix is addressed to reach higher dexterity performance of the PKM avoiding
singularities. Different case studies of spherical manipulators performing a point-
ing task are reported, in order to show how posture-optimization can be used as a
redundancy-solution for functionally redundant PKMs. The indices will be the objec-
tive function of the problem, while the orientation of the pointing task is used to build
the constraint equations using ERPs. Sequential Quadratic Programming is conducted
to numerically solve the nonlinear constrained optimization problem and to find the
moving platform pose corresponding to the robot posture of maximum performance
for a given pointing direction of the MP. Lastly, the constrained problem is rewritten
as an unconstrained optimization problem with an objective function in one design
variable. The optimization problems are then extended to every pointing direction.

7.1 Formulation of the Optimization Problem
The problem of the functional redundancy of a SPM performing a pointing two-dof
task can be formulated as a constrained optimization. The constraints are imposed by
the pointing specification, while the objective function can be defined as the square of
the condition number κ2

F(x) as shown in Eq. (4.28) for the dexterity optimization of
the 3-CPU manipulator. Thus, the problem takes the form:

f (x)≡ κ(x)→min
x
, s.t. h(x) = 0 (7.1)

where h is a vector of constraints and x the array of unknowns. The constrained
problem can be formulated by means of points lying on a sphere with unit radius.
Choosing this approach, a rotation about the hole axis that passes through the center
of the spherical manipulator is the functional redundancy. The constraint is then the
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Chapter 7 Posture Optimization

coincidence of the vertical unit vector ev, taken as reference vector and mapped by the
rotation matrix, and the prescribed unit vector eh, both expressed in the same reference
frame, i.e. the fixed frame F0:

h(x) = Qev− eh = 0 ⇒ h(x) = [Q(x)]0[ev]0− [eh]0 = 0 (7.2)

According to the two reference systems that have been chosen, [ev]0Ê=[eh]1 =−
√

3/3
î
1 1 1

óT
.

7.2 Pointing Constraint Equations with ERP

So far the constraint equation has been written in terms of the rotation matrix Q that
needs a proper parametrization to describe the orientation of the mobile platform. We
use the same representation already used in the previous chapter to describe rotations,
i.e. the Euler-Rodrigues Parameters (ERPs) consisting in the four scalars r and r0 [55].
This representation, shown in Eq. (4.27), is free of singularities. Such property is
significant when the attitude of a body must be controlled in 3D space: in this case
both the information of orientation and angular velocity are used in order to plan the
motion, and smoother trajectories can therefore be obtained. The kinematics of rigid-
body rotations is well documented in the literature [55], although most of the time
analyses based on coordinates are found. A coordinate-free discussion is invoked
here, with the purpose of stressing the invariant properties of rotations, i.e. those
quantities r and r0 that, if scalar, remain immutable under a change of the coordinate
frame. In general, the scalar function f ([p]) is said to be frame invariant, or invariant
for brevity, if

f ([p]B) = f ([p]A ) (7.3)

where A and B are two different reference frames. However, the invariance concept
can be extended also to vectors and matrices. The vector quantity f is said to be
invariant if

[f]A = [Q]A [f]B (7.4)

Let the proper orthogonal matrix [Q]A denote the rotation of coordinate frame A into
B. Finally, the matrix quantity F is said to be invariant if

[F]A = [Q]A [F]B[QT ]A (7.5)

The array of unknowns becomes x =
î
rT r0

óT
, which are dependent, holding the

constraint
‖r‖2 + r2

0 = 1 (7.6)
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A non-linear system of four algebraic equations in four unknowns is thus obtained:

h(x) = 0→

{
Qev− eh = 0

rT r+ r2
0 = 1

(7.7)

If the rotation matrix Q is written as function of the Euler-Rodrigues parameters r and
r0, previous equations becomes

h(x) = 0→

{
r2

0ev− rT rev +2rT evr−2r0Evr− eh = 0

rT r+ r2
0 = 1

(7.8)

We obtain a system of four equations in four unknowns, that seems to leave no room
for optimization. To find whether the system of equations hides a dependency between
the variables we study the gradient of the constraint equations, that is

∇h(x) =
ñ
−2evrT +2reT

v +2rT ev1−2r0Ev (2r01+2R)ev

2rT 2r0

ô
(7.9)

Actually, the system conceals a nonlinear dependency between the variables [53],
since the 4×4 gradient of the system of equations is singular. The proof of this result
is reported.

Proof: ∇h(x) is singular

∇h(x) is written as a block matrix. It can be decomposed (block-LU-decomposition)
when A can be inverted in order to find a simplified expression of its determi-
nant.

∇h =

ñ
A b
cT d

ô
=

ñ
A 0
cT 1

ôñ
1 A−1b

0T d− cT A−1b

ô
(7.10)

It follows that
det(∇h) = det(A)(d− cT A−1b) (7.11)

where, in our case, it is cT A−1b = 2r0 = d. The determinant of A is difficult to
handle, therefore an alternative decomposition of the matrix, when d 6= 0, leads
to

det(∇h) = d det(A− 1
d

bcT )

= d det
Å
−2evrT +2reT

v +2rT ev1−2r0Ev−
2
r0
(r01+R)evrT

ã
(7.12)
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After simplification we obtain

det(∇h) = 16r0 det
Å

reT
v − r0Ev−

1
r0
(2r01+R)evrT + rT ev1

ã
(7.13)

If there exists a vector v ∈ R, different to the null vector, that lies in the null
space of the matrix inside the parenthesis, then its determinant must be zero.
We first try ev Å

reT
v − r0Ev−

1
r0
(2r01+R)evrT + rT ev1

ã
ev

= r− rT ev

r0
(2r01+R)ev + rT evev

(7.14)

If r = ev, then
ev−2ev + ev = 0 (7.15)

This proves that the determinant of the matrix is zero and , as a consequence,
∇h is singular.

As a matter of fact, the 4th equation of the system naturally comes out from the Eu-
clidean norm of the two sides of Eq. (7.2) by imposing that ev and eh are unit vectors.

Proof

The vector constraint equation Qev = eh is manipulated by means of its Eu-
clidean norm

eT
v QT Qev = eT

h eh (7.16)

and introducing
Q = (r2

0− rT r)1+2rrT +2r0R (7.17)

it becomes

QT Q = ((r2
0− rT r)1+2rrT +2r0R)T ((r2

0− rT r)1+2rrT +2r0R) (7.18)

The first two terms of Eq. (7.16) are symmetrical matrices, while the third one
is a skew-symmetric matrix; thus the transpose matrix becomes

QT Q = ((r2
0− rT r)1+2rrT −2r0R)((r2

0− rT r)1+2rrT +2r0R) (7.19)

Many terms vanish expanding the equation:

QT Q =(r2
0− rT r)21+2(r2

0− rT r)rrT +2r0(r2
0− rT r)R+2(r2

0− rT r)rrT

+4rT rrrT −2r0(r2
0− rT r)R−4r2

0R2

(7.20)
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So we obtain
QT Q = (r2

0− rT r)21+4r2
0rrT −4r2

0R2 (7.21)

Being R = CPM(r), it can be proven that R2 =−rT r1+ rrT .

QT Q = (r2
0− rT r)21+4r2

0rrT +4r2
0rT r1−4r2

0rrT (7.22)

QT Q = (r2
0 + rT r)21 (7.23)

By substituting this expression into Eq. (7.16) we obtain

(r2
0 + rT r)2eT

v ev = eT
h eh (7.24)

If we impose that eh and eh are unit vectors it follows

r2
0 + rT r =±1 (7.25)

This leads to the ambiguity of proper-improper orthogonality of the rotation
matrix, because det(Q) = (r2

0 + rT r)3). Isometry preservation of the Euclidean
vector norm of the Q mapping for this form of the rotation matrix leads to have
the single solution. What will eliminate the ambiguity is the invariant form of a
reflection R = 1−nnT . A reflection in R3 is necessarily symmetric; given that
Q has a skew-symmetric component, this disqualifies Q from being a reflection,
thereby eliminating the ambiguity. In conclusion, since r0 ∈ R and r ∈ R3, we
obtain

r2
0 + rT r = 1 (7.26)

This demonstrates that the unit norm equation is redundant; furthermore, the system
provided by the first three equations outputs an ERPs set of values with unit norm.
This equation, as we will see later on, will be removed from the system of constraint
equations in order to reach a better computational efficiency.

Projection of the constraint equations

In order to provide the system with a straightforward physical interpretation, a projec-
tion of Eqs. 7.2 is operated along known directions. In fact, the constraint vector can
be rewritten expanding the first equation

r2
0ev− rT rev +2rrT ev +2r0Rev− eh = 0 (7.27)

and multiplying all terms by rT

(r2
0 + rT r)rT ev +2r0rT Rev− rT eh = 0 (7.28)

73



i
i

“PhDthesis” — 2017/2/15 — 18:09 — page 74 — #98 i
i

i
i

i
i

Chapter 7 Posture Optimization

Being rT Rev = eT
v Rr = 0 and r2

0 + rT r = 1, it results

rT ev = rT eh (7.29)

Multiplying all terms of the Eq. (7.27) by Ev we obtain

r2
0Evev− rT rEvev +2rT evEvr+2r0EvRev−Eveh = 0 (7.30)

The first two terms vanish while the triple vector product can be rewritten as ABc =
aT cb−aT bc, thus

2rT evEvr+2r0(r− rT evev)−Eveh = 0 (7.31)

Multiplying by rT

2rT evrT Evr+2r0(rT r− (rT ev)
2)− rT Eveh = 0 (7.32)

we obtain another equation

rT Eveh = 2r0(rT r− (rT ev)
2) (7.33)

Finally we multiply Eq. (7.27) by eT
v

eT
v eh = r2

0− rT r+2(rT ev)
2 (7.34)

or
eT

v eh = 1−2rT r+2(rT ev)
2 (7.35)

These three equality constraint equations are collected in the following system:

h(x) = 0→


rT ev = rT eh

rT Eveh = 2r0(rT r− (rT ev)
2)

eT
v eh = 2(r2

0 +(rT ev)
2)−1

‖r‖2 + r2
0 = 1

(7.36)

From the first scalar equation it results that the angle between the vector r and the two
unit vectors ev and eh of the vertical and hole axes must be equal: this vector is bound
to lie on the bisecting plane defined by to the two unit vectors ev and eh. Vector r can
sweep this plane by rotating around the origin of the frames. Within this set of vectors
r that brings ev to overlay with eh, the solution of the problem is the one that optimally
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orients the EE in the eh pointing direction. The gradient of these equations is

∇h(x) =


eT

h − eT
v 0

−eT
v Eh−4r0(rT − rT eheT

h ) −2(rT r− (rT eh)
2)

4rT −4rT eheT
h 0

2rT 2r0

 (7.37)

Constraint equation with Natural Invariants

For the sake of completeness, it should be also provided the relations of constraint
equations using linear invariant as defined by Angeles [55]. The rotation matrix Q
can be written as a function of its natural invariants:, i.e. the axis of rotation e and the
angle of rotation φ .

Q = eeT + cosφ(1− eeT )+ sinφE (7.38)

A fourth equation can be introduced, that is the constraint

‖e‖2 = 1 (7.39)

Thus the equality constraints are

h(x) = 0→

{
(eeT + cosφ(1− eeT )+ sinφE)ev− eh = 0

‖e‖= 1
(7.40)

that can be rewritten as

h(x) = 0→


eT ev = eT eh

eT Eveh = sinφ(1− (eT
v e)2)

eT
v eh = (1− cosφ)(eT ev)

2 + cosφ

‖e‖2 = 1

(7.41)

The gradient of this system is

∇h(x) =


(ev− eh)

T 0
(Eveh +2sinφ(eT evev))

T cosφ(1− (eT
v e)2)

(2(1− cosφ)(eT evev))
T sinφ(1− (eT

v e)2)

2eT 0

 (7.42)

7.3 Unconstrained Optimization Problem
The constrained optimization can be rewritten as an unconstrained problem by de-
composing the Q matrix into two rotation matrices, namely, Q = Q1Q2. For the sake
of simplicity, the two factors are described here in terms of their linear invariants
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Chapter 7 Posture Optimization

Qi(ei,ϑi), even though ERPs were used for practical implementation. The first ro-
tation is determined by imposing the coincidence of the two given vectors: among
the infinite number of rotation matrices, the geodesic one that minimizes the angle of
rotation ϑ1 is chosen [60]

Q1 = Q1

Å
ev× eh

‖ev× eh‖
,atan2

(
‖ev× eh‖,eT

v eh
)ã

(7.43)

In this notation the parenthesis includes the arguments of Q1, namely, the unit vector
in the direction of the axis of rotation and the angle of rotation. The matrix Q2(eh,ϑ2)

describes a rotation around the unit vector eh of an angle ϑ2. Then, the whole rotation
Q can be used to compute the square of the condition number κ2

F as a function of
ϑ2, which represents the only unknown. Such manipulations allow the writing down
of the problem as an unconstrained optimization of the objective function κ2

F in the
single design variable ϑ2.

Compound Rotation with ERPs

The unconstrained optimization problem can be written in terms of ERP using the
relation introduced in this section. Given the ERPs of two rotations Q1(r1,r01) and
Q2(r2,r02) the compound rotation matrix Q(r f ,r0 f ) =Q2Q1 is described by the ERPs

r f = r01r2 + r02r1 +R2r1 (7.44)

r0 f = r01r02− rT
1 r2 (7.45)

The two sets of ERPs can be written as a function of the unit vectors:

r1 = e1 sin
φ1

2
=

Eveh

‖Eveh‖

 
1− eT

v eh

2
(7.46)

r01 =

 
1+ eT

v eh

2
; (7.47)

r2 = e2 sin
φ2

2
= eh sin

φ2

2
(7.48)

r02 = cos
φ2

2
(7.49)

Being r1 ⊥ r2, thus rT
1 r2 = 0. We obtain

r0 f = r01r02 =

 
1+ eT

v eh

2
cos

φ2

2
(7.50)
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Figure 7.1: Sphe.I.Ro under trajectory-following: (a) at the initial posture; and (b)
evolution of 1/κ f (opt) along the trajectory, with the time-histories (qi) of
the joint-coordinates, for i = 1,2,3.

r f = r01r2 + r02r1 +R2r1

=

 
1+ eT

v eh

2
eh sin

φ2

2
+ cos

φ2

2
Eveh

‖Eveh‖

 
1− eT

v eh

2
+Eh sin

φ2

2
Eveh

‖Eveh‖

 
1− eT

v eh

2
(7.51)

The computation of these expressions fails when the two vectors are parallel, so there
must be a special case to be considered in the optimization algorithm that is it not easy
to implement. To overcome this problem the constrained optimization problem will
be implemented in the following pages.

7.4 Numerical solution

The constrained optimization problem written so far with ERPs has been implemented
with computer algebra and then numerically solved to find the optimum pose of the
manipulator for a specific pointing direction of the mobile platform. Moreover, the
SPMs that have been considered so far have no intrinsically redundant dof: to each
pose it corresponds to a single configuration of the active and passive joints, i.e. a
manipulator posture. Two examples show the results of the optimization of the 3-CPU
performing pointing trajectories.
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Chapter 7 Posture Optimization

7.4.1 A practical case: 3-CPU Sphe.I.Ro

The 3-CPU prototype called Sphe.I.Ro has to perform a pointing task while keep-
ing the Frobenius condition number of its Jacobian matrix at a minimum. In order

to prove the effectiveness of the procedure, an arbitrary array of ERPs
î
rT r0

óT
=î

0.140 0.210 0.280 0.926
óT

is chosen to reproduce a geometric path for the EE.
In practical cases instead, such path is given by the task. The geodesic rotation be-
tween the chosen orientation and the vertical vector ev is taken as the pointing path of
the MP, represented by ehi: a total of 100 path points on the unit sphere are used to
describe the axis path, keeping fixed the axis of rotation while decreasing the angle of
rotation ϕ by ∆ϕ , as shown in Fig. 7.1a). For each prescribed direction of the hole
axis an optimization problem is solved in order to find the EE orientation that min-
imizes the Jacobian condition number. To solve the optimization problem of a non-
linear function with nonlinear constraint equations we use the Sequential Quadratic
Programming (SQP) algorithm. After having found the first point of the optimum
joint trajectory, the remainder of the path follows in a similar way, using the previ-
ous trajectory point as an initial guess. The next posture is, consequently, the closest
minimizer at the current posture. By doing this the result is a trajectory that keeps con-
tinuity in the series of postures. To verify the results of the SQP method, the condition
number is evaluated at each iteration upon varying the angle of rotation ϑ2 about the
axis eh of the unconstrained problem: the plots in Figs. 7.2a) and b) show the evalu-
ation for a full rotation of 2π , in the middle and final point of the path. In Fig. 7.2b)
the reciprocal of the condition number indicates the existence of an isotropic and a
singular configuration; moreover, the plot rightfully appears as 2π− periodic. From
the first results of the optimization problem we can conclude that the implementation
of Eq. (7.2) together with ‖r‖2 + r2

0 = 1, leads to an excessive number of iterations,
often without reaching a minimum. The exclusion of the unit norm equation from the
system makes the dof of the functional redundancy explicit, thereby leading to a faster
convergence. The comparison of the history of the condition number along the path
for the optimization problem, Fig. 7.1b), vs. the unconstrained function evaluation,
shows the same results; hence, the solver is capable of finding the local minimum.
In Figs. 7.1 and 7.2 the histories of the actuated joints qi(t) are also plotted, for the
respective condition number obtained using the inverse kinematics relationships. The
pointing-path was verified looking for potential problems such as joint-limit violation
and singular postures. No such problems were found for this particular path. For ev-
ery practical purpose, this result shows that the optimization scheme led to a constant
condition number, at a remarkably low level. It is noteworthy that the optimization
problem avoids singularities only if at least one non-singular posture is available for
a particular pointing direction; since this is not ensured for every pointing direction,
it can happen that the solution of the problem is a pose either singular or close to a
singular configuration. In any case, the proposed procedure is not aimed at seeking
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Figure 7.2: Reciprocal of the condition number and joint values (a) time-histories for
the middle (50th); and (b) final (100th) trajectory point.

a singularity-free trajectory, but at optimizing a path that should be generated a pri-
ori and verified for singularity avoidance. In particular, for each path it should be
guaranteed that the condition number is lower than a safe threshold.

7.4.2 2-dof Vs. 3-dof Pointing PKM

Let us consider another case. In a laboratory it is required to perform a tool point-
ing task and a spherical parallel manipulator is available, e.g. the Sphe.I.Ro PKM.
The rotation of the tool around the symmetry axis is irrelevant for the task to be ac-
complished, thus the operator could evaluate, for energy-saving purposes, whether
deactivate one of the three actuator or solve the optimization problem to exploit the
functional redundancy. A spiral pointing trajectory is given as shown in Fig. 7.3 and
the results of the numerical solution of the two problems are plotted in Fig. 7.4.

From the figure Fig. 7.4a) the reciprocal of the condition number of the function-
ally optimal 3-CPU has always higher values than the two-dof case. As regards the
time histories of the actuated parameters Fig. 7.4b), the stroke amplitudes of the two
actuators are higher than the three-dof case. The performance of the robot is clearly
better due to the solution of the optimization problem since several poses for a single
pointing direction are available and the algorithm is aimed at choosing the best one.
Nevertheless, the improvement of performance is low: the average value of the recip-
rocal of the condition number along the trajectory is 0.996 vs. 0.986. The main reason
is that the starting point of the trajectory is an isotropy posture of the robot and the
spiral trajectory remains in a small neighborhood of such point. The improvement of
performance is not too evident for this particular trajectory of the robot, thus the user
can choice to lock an actuator if strict robot performance is not required.
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Chapter 7 Posture Optimization

Figure 7.3: 3-CPU with a locked actuator to avoid functional redundancy under spiral
trajectory-following. The video shows first the task of the 2-dof 3-CPU
and then the trajectory of the functionally optimal 3-dof machine.
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Figure 7.4: Reciprocal value of the condition number a) and joint values time-histories
b) under spiral trajectory-following. Bold lines indicate the optimal 3-dof
PKM while fine lines are the result for the 2-dof 3-CPU.

7.5 Extended Optimization

The optimization algorithm which exploits the functional redundancy allows the pos-
ture of the robot to be obtained with respect to the direction that maximizes the pa-
rameter taken into consideration. In this section, the algorithm is extended to each
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pointing direction and the results are plotted on a spherical surface. The maps are then
used for trajectory planning purposes in the next chapter.

3-CPU dexterity index

Within the infinite set of ERPs that bring ev to overlay with eh, the solution of the
problem is the one that optimally orients the EE in the eh pointing direction. The op-
timization problem that involves the dynamic indices is then solved at each pointing
direction and the results are plotted on sphere surfaces. The results obtained for the
robot 3-CPU, searching the maximum value of the condition number based on the
Frobenius norm of its direct Jacobian matrix, are shown in figure 7.5 on a spherical
surface. Each point is associated to the robot posture that maximizes the dynamic
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F0

a) b)

10.90.80.70.60.50.40.30.20.10

ev= -√3/3[1 1 1] 1/κFmax=1min=0.04

X0 Y0

Z0

F0

e1= √3/3[1 -1 1] e3= √3/3[-1 1 1]e2= √3/3[1 1 -1]e3= √3/3[-1 -1 1]

e3= √3/3[1 -1 -1]
ev= -√3/3[1 1 1]

e3= √3/3[-1 1 -1]

Figure 7.5: 3-CPU optimization map of the condition number values: upper view a)
and isometric view b); directions of minimum and maximum values are
indicated.

index in that pointing direction of the vertical axis ev and the grey-scale map indi-
cates this maximum value. First of all, four points of kinetostatic isotropy appear:
the condition number attains the unitary value. These points lie on the vertices of
a tetrahedron inscribed to the sphere whose coordinates are shown according to the
fixed reference system. Around these points there are regions of the sphere where
the condition number has a symmetrical decreasing trend, accordingly to symmetry
planes coplanar with the coordinated axis. This trend decreases continuously until a
limit: the reader should note that the triangular area (the one that can be seen from an
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upper point of view) is very similar to the one shown in the singularity analysis. This
is probably due to the limit on range of possible poses in a given pointing direction
by the singularity surfaces. The discontinuity between these areas is due to the ini-
tial guess of the optimization problem: in fact, the initial guess is set to be the closest
isotropic points from the actual pointing direction. This criterion was adopted because
the trajectory will extend within the upper region around the initial configuration of the
robot; outputs from this area are not expected because these poses are characterized
by very low condition numbers. In opposition to the isotropic point, we can distin-
guish other four points of minimum condition number value which are very close to
the singularity condition. During the planning of the 3-CPU pointing trajectory these
dark areas must be avoided since the manipulator attains singular postures.

3-UPU: Jd Vs. Ji condition number

The same work has been done for the 3-UPU manipulator, that represents a more
general case because it is characterized by two Jacobian matrices which relate the
velocities of the actuators with the angular velocity of the mobile platform. The opti-
mal values of condition number related to the direct Jacobian matrix Jd are shown in
Fig. 7.6a). The results of the optimization of the inverse kinematics Jacobian matrix
condition number are always very close to the isotropic condition of this matrix for all
the pointing trajectory (the plot is not shown): the upper and the lower limits of the
1/κF range are respectively 1 and 0.975. We can conclude that the inverse kinematics
Jacobian matrix has no influence for optimization purposes: as illustrated in Fig. 7.6b)
the optimization of the condition number of the single Jacobian matrix J−1

i Jd gives an
almost identical result with respect to the Jd condition number optimization. For this
reason this second optimization map related to the single Jacobian J−1

i Jd will be used
for the 3-UPU trajectory planning. Readers are warned that this could be a special case
in the chosen class of isostatic manipulators whose inverse matrices differ very little
from the isotropy condition. In the author opinion, the particular PKM at hand should
reserve a special study of its Jacobian matrices when the optimization is the goal and
the comparison of the two optimizations provides a good help. If the influence of the
two matrices is comparable one can think also to write an optimization problem with
two objective functions.

3-UPU Vs. 3-CPU

The comparison of the two optimization maps of the 3-UPU and 3-CPU (Fig. 7.7)
reveals the same arrangement of areas. Isotropic points occupy the position of the
vertices of the same tetrahedron and the same happens to the darker regions with a
rotated tetrahedron. The main difference is that the darker regions for the 3-CPU are
related to poses very close to singularity condition while for the 3-UPU the values are
considerable less burdensome (0.66 Vs. 0.04). The geometric arrangements of the
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Figure 7.6: 3-UPU optimization map of the condition number values: direct Jacobian
matrix Jd optimization a) Vs. single Jacobian matrix J−1

i Jd optimal values
b).
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Figure 7.7: 3-UPU a) Vs. 3-CPU b) optimization maps of the Jacobian condition
number.

links of the SPM class considered determines an important isotropy area for a verti-
cal pointing direction of the MP albeit they have a different topology. This behavior
is also expected for the others manipulators of the non-constrained SPM class. The
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3-CPU 3-UPU
GCI 0.54 0.61 +13%
GCIopt 0.80 0.85 +6%

+48% +39%

Table 7.1: Comparison between the 3-CPU and 3-UPU GCI, both before and after
functional redundancy optimization.

particular setting of the legs planes in space not only grants that its reciprocal screws
are linearly independent, but also greatly improves robot performance because, even
if this arrangement changes during operation of the machine, this configuration is the
most far from the singular configuration, therefore granting a better kinematic manip-
ulability of the wrist.
The calculation of the global condition number (GCI) using the ERP space allows a
comparison of the performance improvements of the two architectures, both before
and after the optimization. In the second case a global condition index (GCIopt ) is
used: it takes into account only the optimal manipulator poses for any pointing di-
rection (surface integral). The results of Table 7.1 quantify the better performance of
the 3-UPU compared to the 3-CPU in both cases; however the dexterity improvement
thanks to optimization for the 3-CPU is higher than 3-UPU.

3-CPU: Dynamics Performance indices

In this paragraph, the optimization involves the dynamic performance indices defined
in Chapter 5. Once the inertia matrix is obtained we can also calculate its condition
number based on the Frobenius norm of the matrix whose proprieties are already dis-
cussed. The optimization of this value over the sphere is shown in Fig. 7.8. The figure
shows a similar trend of the optimal values with respect to the dexterity performance
index. These results should not surprising the reader because both Jacobians and in-
ertia matrix are function of the robot posture. For example in the home configuration
(with a vertical ev) the robot assumes a symmetric posture and both condition numbers
are equal to unit. A rotation from this configuration ensures the same performance, in-
dependently from the direction and the performance index considered. The condition
number based on the Frobenius norm is correlated with the dynamic manipulability
index d1 according to [56]: Fig. 7.9 shows their comparison and reveals a strong anal-
ogy. Thanks to the properties of the Frobenius norm, the condition number based on
this index is preferred and will be used in the trajectory planning. Instead, a com-
parison between d1 and d2 indices, that describe the robot swiftness, is illustrated in
Fig. 7.10. The d2 dynamic index has the main drawback to be dimensional, thus a dif-
ferent scale is required for its plot. The overall map keeps the same trend for the three
indices. In conclusion, the plotted results reveal a similar trend of the dynamic indices
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Figure 7.8: Reciprocal value of the Condition Number 1/κF based on the Frobenius
norm for some views of the sphere: a) is an upper view while b) an iso-
metric view.
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Figure 7.9: Reciprocal value of the dynamics indices of the inertia matrix; dynamic
isotropy index a) and condition number based on the Frobenius norm b).

with respect to the kinematic indices and an independence from the specific topology
of the robot limbs. The condition number based on the Frobenius norm of the gen-
eralized inertia matrix allows the computational time to be reduced for the search for
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Figure 7.10: Reciprocal value of the dynamics indices of the inertia matrix. Dynamic
isotropy index d1 a) and swiftness b).

the minimum, thanks to properties of the matrix norm.
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Chapter 8

Optimal Pointing Trajectory
Planning

One of the robotics research target in Europe is to devise robust strategies for motion
planning of multiple degrees of freedom mechanical systems. Robots need to plan
the path in order to move the EE from one place to another. Complex mechanical
systems may have multiple paths to reach a destination but each with a different cost:
optimization strategies are called to find the best solution for complex motion plan-
ning. In this chapter, the maps obtained by solving posture optimization problems for
all pointing directions are used to plan the pointing trajectories of spherical manip-
ulators. For each direction of the trajectory, the terminal will assumes the optimum
posture that is the solution of the previous problem, while the definition of the trajec-
tory will be formalized in a second optimization problem at a higher level; it aims to
minimize an index associated to the particular trajectory, such as the average value of
the condition number. This type of problem may be of industrial interest when the
initial and final orientation are known and a trajectory that ensures a high degree of
accuracy is requested. Recent studies of Wu et al. [61] have turned to build point-
ing paths with Bézier curves constructed on spheres and based on the real projective
plane geometry. The geometric properties of this space allow geodesic curves to be
created using the exponential mapping to define the orientation of the platform. These
curves of minimum distance between two points on the spherical surface are then
used for the construction of Bézier curves using the De Casteljau algorithm. Recently,
new applications of this tool for the optimal control problems have arisen, because
the exponential coordinates are often convenient for their greater computational speed
compared to other representation systems.

8.1 Bézier Curves lying on spheres
The Bézier curve is a parametric curve frequently used in computer graphics and it
is also used in the robotic field for trajectory planning. A Bézier curve can be drawn
using a recursive method called De Casteljau’s algorithm. Although the algorithm is
slower for most architectures when compared to the direct approach, it is more numer-
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Chapter 8 Optimal Pointing Trajectory Planning

ically stable. The geometric interpretation of De Casteljau’s algorithm is straightfor-
ward and can be described as follows:

1. Consider n control points of the curve P1
1 ,P

1
2 , ...,P

1
n .

2. Connect the consecutive control points to create the control polygon of the
curve.

3. Multiply each line segment of this polygon by t ∈ [0,1] and connect the points:
we obtain a new polygon that has one fewer segment.

4. Repeat the process until you arrive at the single point: this is the point of the
curve corresponding to the parameter t.

Fig. 8.2 shows this process for a cubic Bézier curve. The algorithm can also be ex-

P1

1

P2

1

P3

1

P4

1

P1(t)
2

P2(t)
2

P3(t)
2

P1(0.7)
2

P2(0.7)
2

P3(0.7)
2

P1

1

P2

1

P3

P4

P1(t)
2

P2(t)
2

P3(t)

Figure 8.1: Steps of the De Casteljau’s algorithm to determine the point of the Bézier
curve corresponding to t = 0,7.

tended to the planning of Bézier curves which lie on a sphere. With this aim, the
polygon, rather than be made by segments, will consist of geodesics, that are a gen-
eralization of the notion of straight lines to curved spaces. A geodesic between two
points is the shortest arc between them on the sphere surface. The construction of the
Bézier curves on a sphere is a recent topic of research and it is used in this thesis for
the definition of optimal pointing trajectories.

8.1.1 Exponential Mapping
Wu et al. [61] proposed a novel construction of Bézier curves for pointing tasks, using
the geometry of real projective plane. They showed that this space has interesting
features, as the one to generate any geodesics using the representation of rotations with
exponential mapping. The exponential representation allows to express the rotation
matrix in terms of its natural invariants, i.e. the unit vector of the axis of rotation
e and the angle of rotation θ . These four scalar parameters are termed invariants
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8.1 Bézier Curves lying on spheres

because they are indipendent to the coordinate axes chosen to represent the rotation
under study. The relatioships to pass from natural invariants to ERPs and vice versa
are reported in [55]. The proper orthogonal matrix representing a rotation around an
unit axis e with angle θ is

Q = eEθ , E = CPM(e) (8.1)

For the inverse problem it is

e =
vect(Q)

‖vect(Q)‖
(8.2)

and

θ = ‖vect(logQ)‖, vect(Q)≡ q≡

q32−q23

q13−q31

q21−q12

 (8.3)

having defined the vector operator on a matrix. The geodesic between two orientations
Qi = eEi and Q f = eE f is explicitly given by [62]

Qg(Qi,Q f ,s) = exp
(
s log(Q f QT

i )
)

Qi s ∈ [0,1] (8.4)

Defining a vector of values s, the geodesic curve will be discretized and the points
of the geodesic are revealed by Eq. 8.2. Eq. 8.4 allows us to apply the De Casteljau
algorithm: the following treatment closely follows that in [63]. Given n+ 1 control
points Q1

i = eEi ∈RP2, 1≤ i≤ n+1 and a parameter value t ∈ [0,1], the De Casteljau
algorithm computes a point Q(s) ∈ RP2 on the nth order Bézier curve in a recursive
manner:

Qk
c(s) = Qg(Qk−1

c (s),Qk−1
j+1(s),s)

2≤ k ≤ n+1 1≤ j ≤ n+2− k
(8.5)

The points of the Bézier curve can be found using Eq. 8.2 with

Q(s) = Qn+1
1 (s) (8.6)

8.1.2 Natural Invariants

In this section, an alternative construction of Bézier curves of two-dimensional ori-
entations using ERPs is formulated. There is an infinite number of rotation matrices
such that eh = Qev, i.e. rotation matrices characterized by an axis of rotation e which
is located in the bisector plane between the two unit vectors eh and ev. However, the
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Figure 8.2: Cubic Bézier curve on RP2. e1 = [0,0,1]T , e2 = [−1,0,0]T , e3 =
[0,−1,0]T , e4 =−1/

√
3[1,1,1]T .

only rotation matrix Qg(e⊥,θg) that gives a rotation with a minimum angle is

e⊥ =
ei× e f

‖ei× e f ‖
(8.7)

and the angle of rotation θ associated to this rotation matrix is

θg = atan2(‖ei× e f ‖,eT
i e f )) (8.8)

Parameterizing the angle of rotation θ with the parameter t we can obtain all the points
of the geodesic lying in a unit sphere

Qg(t) = e⊥eT
⊥+ cos(tθ)(1− e⊥eT

⊥)+ sin(tθ)E⊥ (8.9)
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8.2 Optimization Problem

The unit vectors that indicate the geodesic points will be

eg(t) = Qg(t)ei (8.10)

This algorithm can be collected in a function called geo(•)

eg(t) = geo(ei,e f , t) (8.11)

As in the previous section, given n+ 1 control points e1,e2, ...,en+1 and a parameter
value t ∈ [0,1], the De Casteljau algorithm computes a point eB(t) on the nth order
Bézier curve:

ek
c(t) = geo(ek−1

c (t),ek−1
j+1(t), t); 2≤ k ≤ n+1, 1≤ j ≤ n+2− k (8.12)

The points of the Bézier curve can be found using Eq. (8.2) with

eB(t) = en+1
1 (t) (8.13)

8.2 Optimization Problem
The construction of Bézier curves with the De Casteljau algorithm can be used for the
planning of optimal trajectories. The algorithm allows to find a curve of a degree n
with n+1 control points and, if one of them is free to move on the unit sphere surface,
an optimization problem can detect its position minimizing an objective function. As
an example, a typical manufacturing problem is to find the best pointing path having
fixed the initial and the final point. Being a pointing trajectory, the best posture of
the SPM for each direction could be the solution the posture optimization problem to
exploit the functional redundancy. The optimal trajectory can be found employing the
foregoing optimal maps to define an objective function. To this aim, an average index
related to the trajectory is computed using the local dynamic indices already defined.
Equivalently to the global condition index (GCI) defined by Angeles and Gosselin
in [64], an index related to the trajectory can be defined as follows

TCI =

∫
s

1
κF

ds∫
s
ds

(8.14)

where s indicates the curvilinear coordinates of the trajectory. The problem can be
formulated as a constrained optimization where the constraint equation bounds the
free control point e f to lie on a sphere with unit radius. Then the problem takes the
form

f (e f )≡
1

TCI
→min

x
, s.t. eT

f e f = 1 (8.15)
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Chapter 8 Optimal Pointing Trajectory Planning

where the objective function to maximize is the TCI.

8.3 Problem solution
A numerical solution algorithm is applied to the optimization problem to find the
direction of the free control point. Three types of problems have been implemented
and solved to determine the optimal Bézier curve: in all of them the initial and the
final pointing directions are fixed.

• In the first problem, the intermediate control point that optimizes the TCI of a
quadratic Bézier curve is found.

• In the second problem, the angular velocity of the final control point is given
and a cubic Bézier curve is obtained.

• The last problem considers a 4th-degree Bézier curve where both angular veloc-
ity and angular acceleration of the first point are given. The algorithm detects
the fourth control point.

The figures are accompanied by videos that prove the feasibility of the trajectory.

8.3.1 Quadratic Bézier curve: two-points boundary value
problem

As a first example of trajectory planning, a quadratic Bézier curve is chosen. It is
uniquely defined by three control points e1, e2 and e3. The initial and the final pointing
directions are fixed, while the intermediate point e2 represents the degree of freedom
for the optimization problem. Moreover, this free point is bound to lie in the unit
sphere surface eT

2 e2 = 1 and the objective function is the TCI based on the foregoing
indices. The optimization problem subject to this constraint equation is solved to find
the optimal direction e2opt : Fig. 8.3 compares the results for the 3-CPU and the 3-
UPU using the dexterity index based on the Frobenius norm. From this figure one can
see that the optimal TCI attains a higher value for the 3-UPU PKM than the 3-CPU
because the starting point is close to a singularity condition for the 3-CPU manipulator.
Moreover the trajectory of the 3-UPU is more flattened to the origin since the 3-CPU
has a more pronounced triangular symmetry of the gray-scale map. Moreover, in both
cases the trajectory is flattened to the origin, but without reaching the final direction
with a minimum distance trajectory; this because the highest average value of the
dexterity index is obtained with motions around the point of isotropy than the geodesic
path. This is due to the definition of the objective function that does not depend on the
length of the trajectory.

With the aim of verifying the optimal pointing trajectory with the dynamic index, an
inverse dynamic simulation is performed with a multi-body software. The simulation
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e3= √3/3[-1 -1 1]e1= [-0.65 -0.69 0.39]

e2opt= [0.18 0.44 -0.87]
TCI=0.93

e2opt= [0.09 0.08 -0.99]
TCI=0.95

Figure 8.3: Optimal quadratic Bézier curve: 3-CPU a) Vs. 3-UPU b) dexterity index.

allows us to obtain the actuators forces time-histories, once motion law is defined; in
fact, up to now the path does not contain time information. A symmetrical-triangular
velocity law is imposed to the optimal trajectory and to the geodetic path to reach the
final trajectory point in 2 seconds, as shown in Fig. 8.4a). The root mean square values
of the force time-history for the geodetic is Frms

g = 5.63,N against Frms
opt = 5.33N for

the optimal trajectory. Obviously, a higher acceleration is imposed to the optimum
path, however, the mean force decreases ( −0.53%). In general, this is not always
true: the trajectory determines the directions of the motion, while the index follows
way-points that overall give better acceleration when equal forces are given, regardless
of the direction of motion. For this reason a trajectory index which takes into account
this fact would be more appropriate, despite the optimization problem will assumes a
greater complexity.

Fig. 8.5 illustrates the differences for the 3-CPU between the use of kinematic and
dynamic performance indices, both based on the Frobenius norm. The trajectory asso-
ciated to the 3-CPU dynamic index guarantees better performance than the dexterity
index.

8.3.2 Cubic Bézier curve: two-points and one-velocity
boundary value problem

This second problem uses a cubic Bézier curve which is defined with four control
points. In addition to the definition of the initial e1 and final directions e4 of the
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Figure 8.4: Inverse dynamics simulations of the geodesic and the optimal trajectories.
Symmetric-triangular velocity profiles on the top and the actuator force
time histories on the bottom.

trajectory, the final geometrical angular velocity vector ω34 is provided. It defines the
initial tangent to the trajectory. This geometrical angular velocity defines the position
of the third control point e3 that can be computed using Eq. 8.2 once Q1

3 is calculated
from

Q1
3 = exp(CPM(exp(−Ω34e4)), Ω34 = CPM(ω34)/3 (8.16)

Otherwise, if the initial angular velocity vector is defined instead of the final one, the
second control point could be derived from the same Eq.s 8.16 but omitting the minus
sign. The data of the problem are shown in Fig. 8.6 together with the optimal con-
trol point, i.e. the pointing direction e2opt that maximizes the TCI of the cubic Bézier
curve. In this case, the geodesic between the initial and the final trajectory points is far
away from the isotropic configuration. Moreover, the final velocity obliges the curve
to be tangent to a direction that does not indicate that point. However, the solutions
shown in Fig. 8.6 are trajectories that pass close to the kinematic isotropic configura-
tion, both for the 3-CPU and the 3-UPU. Fig. 8.7 shows a comparison between the use
of kinetostatic and dynamic optimum maps of the 3-CPU PKM.
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Figure 8.5: Optimal quadratic Bézier curve: 3-CPU dexterity index a) and dynamic
condition number b).
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Figure 8.6: Optimal cubic Bézier curve: 3-CPU a) Vs. 3-UPU b) dexterity index.
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Figure 8.7: Optimal cubic Bézier curve: 3-CPU dexterity index a) and dynamic con-
dition number b).

8.3.3 4th-degree Bézier curve: two-points, one-velocity and
one-acceleration boundary value problem

The fourth control point of a 4th-degree Bézier curve is determined given the initial
and final pointing directions of the path (e1 and e5), the initial angular velocity vector
ω12, which defines the second control points e2 and the initial geometrical angular
acceleration α0, that gives us information on the initial curvature of the path and
defines the third control point e4. According to Eq. 8.16 the unit vector e2 is computed,
while e3 comes from

ω22 = ω12 +
1
6

∫ 1

0
exp(uω12)CPM(α12)du (8.17)

Q1
3 = exp(CPM(ω22))Q1

2 (8.18)

Fig.s 8.7 and 8.9 show a comparison between the case studies. Whatever is the map
or the employed manipulator, the final trajectories are very similar each other, because
less freedom is left to the trajectory than the previous problems.
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Figure 8.8: Optimal 4th-degree Bézier curve: 3-CPU a) Vs. 3-UPU b) dexterity index.
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Figure 8.9: Optimal 4th-degree Bézier curve: 3-CPU dexterity index a) and dynamic
condition number b).
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Chapter 9

Concluding remarks and future
works

The research project aims to take advantage of the functional redundancy between a
parallel manipulator and the task at hand. This situation arises in the industry when a
generic manipulator with six-dof is chosen to ensure flexibility and the task requires
the use of an axially symmetric tool. A particular case study is taken into account
where a six-dof parallel robot is decomposed into two lower mobility machines. Since
the functional redundancy belongs to the spherical parallel machine, a class of these
robots is considered and studied in order to show the advantages of a special arrange-
ment of the limb planes that maximizes the kinetostatic and dynamic performance.
However, the thesis presents analysis methods which can be applied to any parallel
machine:

1. A comprehensive and general redundancy analysis is presented to quantify the
degrees of kinematic redundancy: the method is valid for both serial and parallel
kinematics machines.

2. A general procedure is developed to identify kinetostatic and dynamic perfor-
mance indices by means of the screw algebra.

3. Workspace analysis of the 3-CPU is addressed to represent the singularity sur-
faces in the Euler Rodrigues Parameters space.

4. Formulation and numerical solution of the posture optimization problem for
functionally redundant PKMs. The problem is extended to any pointing direc-
tion of the MP to create maps of optimum postures.

5. Pointing trajectory planning with Bézier curves using optimum maps: exponen-
tial mapping is use to ensure computational efficiency.

The optimization problem could be extended to a general case of a six-dof parallel
manipulator using the orientation kinematics that has been developed and introduc-
ing that of positioning, while a more complex expression will result for the chosen
indices. The generalization of the method might involve the Stewart-Gough platform
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already introduced that represents a widespread example of parallel machine for man-
ufacturing.

The optimization problem does not take into account the physical limitations of the
joints and this is a limit of the method. The planned trajectory is maintained within
the area near the vertical isotropic point that assures best manipulator’s performance.
A possible choice of the variation range of active and passive joints in the design stage
may be made so as to ensure this workspace area. For the practical case of Sphe.I.Ro
the verification of the joint limit space are carried downstream of the optimization
problem, however these limits should be embedded in the constraint equations at the
expense of a greater computation time. The condition for singularities avoidance is
instead inherent in the objective function of the kinematic dexterity index, so it can be
avoided.

Another future development of this work could involve the validation of results.
Although the PKM prototypes I.Ca.Ro and Sphe.I.Ro are available, their accidental
failure did not allow the implementation of the resulting trajectories. This gap was
partly offset by kinematic simulations that show a continuity in the postures assumed
by the manipulator for different pointing directions of the MP. For this reason, the
author believes that the implementation of the trajectory, having solved the off-line
problem is feasible. The reader might think to implement the optimal posture maps
in the control algorithm so that the robot knows in advance which postures it had to
assume for a particular orientation of the terminal.

In trajectory planning the solution is usually distant from the one that minimizes the
distance of the trajectory since the objective function aims to the only optimization of
the condition number average value. An idea would be to combine more objective
functions in order that the optimization problem could find a good compromise solu-
tion.

Another fact to note is that this dissertation does not elaborate on the topic of the
solution algorithm but uses the SQP algorithm as a closed box. A future work could
cover this study. Furthermore, the author has attempted a solution in closed form of
the problem but without success due to the non-linearity equations of the optimization
problem. However, qualitatively the author observed that the optimization problem
guarantees excellent computational performance, indicating that the numerical solu-
tion is a great approach.

This work, in addition to the trajectory planning, could be employed for the func-
tional design of manipulators. The kineto-static indices of Sphe.I.Ro do not depend on
the geometric parameters but this represents a special case. In general, these param-
eters are used as unknowns in a optimization problems to lead the optimal design of
machines. Furthermore, the average value of the condition number of the functional
redundant optimization could guide the choice of a machine rather than another as a
catalog parameter.
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