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Abstract

Historically, robots have focused on high volume and highly repetitive tasks,

exploiting their precision for those tasks that were boring and/or difficult for

humans. But there is a big number of repetitive tasks which is still done by op-

erators, which standard industrial robots are not able to do, due to their lack of

flexibility and adaptation to new and different contexts. The robot industry is

now changing through the introduction of collaborative robots, which are more

flexible respect to traditional industrial robots and can work alongside with

human operators. This complementarity between industrial robots and collab-

orative robots opens many new possibilities both in industrial context and in

new fields like service robotics. Moreover, with the coming of Industry 4.0 and

Cyber-Physical Systems, the need of having flexible and reconfigurable systems

is increasing. To increase the flexibility of industrial robots (collaborative or

not) it is needed to develop open source software for robotics programming, to

enhance the flexibility and interchangeability of robots. The contribution of

this Ph.D. thesis is an analysis of the current state of collaborative robotics,

including safety aspects. In addition, this work provides tools that simplify the

task of robot programming, making it time-saving and user-friendly, so that

no particular knowledge in robotics is required to achieve that. In particular

the work is focused on finding sound solutions that can fit the needs of indus-

trial contest. Thus, this work proposes innovative methods, validated through

experimental results and proposing realistic use-cases, to improve and simplify

the robot programming, so to make robots more flexible and well-suited to new

needs of Industry 4.0.

ix



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page x — #10
✐

✐

✐

✐

✐

✐



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page xi — #11
✐

✐

✐

✐

✐

✐

Contents

1 Introduction 1

2 Collaborative Robotics 7

2.1 Safety in human-robot interaction . . . . . . . . . . . . . . . . 8

2.2 Collaborative robots on the market . . . . . . . . . . . . . . . . 12

3 Enabling Programming by Demonstration 17

3.1 Manual Guidance State of Art . . . . . . . . . . . . . . . . . . 18

3.2 Manual Guidance implementation . . . . . . . . . . . . . . . . 19

3.2.1 Gravity compensation . . . . . . . . . . . . . . . . . . . 19

3.2.2 Virtual Tool Controller . . . . . . . . . . . . . . . . . . 20

3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Use-Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Simplifying Robot Programming Through Haptic Learning 33

4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Demonstration . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 Haptic trajectory exploration / learning phase . . . . . 42

4.1.3 Shared adaptation . . . . . . . . . . . . . . . . . . . . . 45

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Open Source Robotics 55

5.1 The manual guidance algorithm applied to an industrial robot . 56

6 Conclusion 61

xi



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page xii — #12
✐

✐

✐

✐

✐

✐



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page xiii — #13
✐

✐

✐

✐

✐

✐

List of Figures

1.1 Industrial robots market in the last years. . . . . . . . . . . . . 1

1.2 Robotics and automation evolution during industrial revolutions. 2

1.3 Cyber-Physical System representation. . . . . . . . . . . . . . . 3

2.1 Safety devices: . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Collaborative robots on the market. . . . . . . . . . . . . . . . 15

3.1 Overall scheme of the control. . . . . . . . . . . . . . . . . . . . 20

3.2 Schunk Powerball robotic arm during manual guidance control.

The blue, green and red arrows represents respectively x, y and

z axis of reference frame. . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Robot guided through an orientation singularity. Above: Force

applied by the human along x, y and z axis (respectively in blue,

green and red), the black lines represent the threshold; bottom:

The resulting end-effector translational velocity. . . . . . . . . . 25

3.4 Robot guided through an orientation singularity. Above: Torque

applied by the human around x, y and z axis (respectively in

blue, green and red), the black lines represent the threshold;

bottom: The resulting end-effector angular velocity. . . . . . . 26

3.5 Robot guided through an orientation singularity. Above: trans-

lational position of the end-effector along x, y and z axis (re-

spectively in blue, green and red); bottom: RPY-orientation of

the end-effector. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Robot guided through a rectangle in the x-y plane. Green dot

and red cross represents start and end positions respectively. . 28

3.7 Schunk Powerball robotic arm testing a front panel. The blue,

green and red arrows represents respectively x, y and z axis of

reference frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.8 Teaching to the robot the positions of nine buttons to press.

Above: Force applied by the human along x, y and z axis (re-

spectively in blue, green and red), the black lines represent the

threshold; bottom: The resulting end-effector translational ve-

locity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xiii



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page xiv — #14
✐

✐

✐

✐

✐

✐

List of Figures

3.9 Teaching to the robot the positions of nine buttons to press.

Translational position of the end-effector along x, y and z axis

(respectively in blue, green and red); the red arrows show the

positions of the nine points that are saved for the reproduction. 30

3.10 Testing a single button. Above: external forces sensed along x,

y, and z axis (respectively in blue, green and red); bottom: total

end-effector velocity resulting from equation (3.11). . . . . . . . 31

4.1 Experimental evaluation of new haptic trajectory exploration for

the force-based PbD approach with a robot arm, force sensor and

test work-pieces. . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Hardware scheme of the work: the robot controller communi-

cates with the URScript programming language with the exter-

nal hardware, sending to it the encoders feedback. . . . . . . . 37

4.3 Characterization of a timing law with trapezoidal velocity profile

in terms of position, velocity and acceleration. . . . . . . . . . . 38

4.4 Representation and functioning of the used commercial ball trans-

fer unit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 Overall work-flow scheme. Under each box is indicated who is

involved in the action; the red arrows represent the work-flow

direction, while the yellow arrows point to the phases which are

influenced by the force control. . . . . . . . . . . . . . . . . . . 41

4.6 Example of task: the operator takes two initial support points,

in this case start (P1) and end point (P2). . . . . . . . . . . . . 41

4.7 Example of task: the robot will try to go in straight direction

from the starting point (P1) to the ending point (P2), but it will

actually adapt to the surface it finds; the operator can help the

robot in this part correcting the tool orientation as desired. . . 42

4.8 Computation of Task Frame. . . . . . . . . . . . . . . . . . . . 43

4.9 Logic of orientation control: applying a force on the x axis of

the end-effector frame, will produce a movement around the y

axis; vice-versa, a force on the y axis will produce a movement

around the x axis. . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.10 Example of task: the robot executes the trajectory learned in

the previous phase; this time the operator can apply forces on

the end-effector to modify the path. . . . . . . . . . . . . . . . 45

4.11 Task execution example. The table on the right represents an

example of task configuration, while the picture on the left rep-

resents the movements the robot will do accordingly to that. . 47

xiv



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page xv — #15
✐

✐

✐

✐

✐

✐

List of Figures

4.12 Box task with 4 support points in contact. The superimposed

trajectory is the resulting spline fitting after the first learning

phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.13 Force signal during first learning phase of the box task, along X,

Y and Z axis of task frame, respectively in blue, green and red.

The thin dashed lines represent the raw signal obtained from

the force sensor, while the thick lines represent the filtered force

signal used for the control. . . . . . . . . . . . . . . . . . . . . . 48

4.14 3D plots of the second learning phase (left) and reproduction

(right) of the box task, viewed from above. . . . . . . . . . . . 49

4.15 Force signal during second learning phase of the box task, along

X, Y and Z axis of task frame, respectively in blue, green and

red. The thin dashed lines represent the raw signal obtained

from the force sensor, while the thick lines represent the filtered

force signal used for the control. . . . . . . . . . . . . . . . . . 49

4.16 Position error during reproduction of task. The error is com-

puted as the norm of the difference between the expected posi-

tion (computed from the spline fitting) and the actual one during

reproduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.17 Force signal during reproduction phase of the box task, along X,

Y and Z axis of task frame, respectively in blue, green and red.

The thin dashed lines represent the raw signal obtained from

the force sensor, while the thick lines represent the filtered force

signal used for the control. . . . . . . . . . . . . . . . . . . . . . 50

4.18 Door task with 4 support points. The superimposed trajectory

is the resulting spline fitting after the first learning trajectory. . 51

4.19 Force signal during first learning phase of the box task, along X,

Y and Z axis of task frame, respectively in blue, green and red.

The thin dashed lines represent the raw signal obtained from

the force sensor, while the thick lines represent the filtered force

signal used for the control. . . . . . . . . . . . . . . . . . . . . . 52

4.20 3D plots of the second learning phase (left) and reproduction

(right) of the door task, frontal view. . . . . . . . . . . . . . . . 52

4.21 Force signal during second learning phase of the door task, along

X, Y and Z axis of task frame, respectively in blue, green and

red. The thin dashed lines represent the raw signal obtained

from the force sensor, while the thick lines represent the filtered

force signal used for the control. . . . . . . . . . . . . . . . . . 53

xv



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page xvi — #16
✐

✐

✐

✐

✐

✐

List of Figures

4.22 Force signal during reproduction phase of the door task, along

X, Y and Z axis of task frame, respectively in blue, green and

red. The thin dashed lines represent the raw signal obtained

from the force sensor, while the thick lines represent the filtered

force signal used for the control. . . . . . . . . . . . . . . . . . 54

5.1 Hardware architecture for open software robotics application. . 55

5.2 Denso industrial robot in manual guidance control. . . . . . . . 56

5.3 b-CAP protocol slave mode functioning. Above: normal func-

tioning, the interpolation of trajectory is executed inside the

RC8 Denso controller. Below: slave mode, the interpolation of

trajectory is executed outside the RC8 Denso controller. Source:

Denso manual. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Hardware configuration for manual guidance experiments with

Denso VS-087 robot. . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Robot guided through a circle. 3D plot of the end-effector motion. 58

5.6 Robot guided through a circle. Above: Force applied by the

human along x, y and z axis (respectively in blue, green and red),

the black lines represent the threshold; bottom: The resulting

end-effector translational velocity. . . . . . . . . . . . . . . . . . 59

5.7 Robot guided through a spherical movement. Above: Torque

applied by the human around x, y and z axis (respectively in

blue, green and red), the black lines represent the threshold;

bottom: The resulting end-effector rotational velocity. . . . . . 60

xvi



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page 1 — #17
✐

✐

✐

✐

✐

✐

Chapter 1

Introduction

In the recent years industrial robotics is having a new spread after the finan-

cial crisis of 2009. In 2015 248,000 units were sold worldwide, with a rise of 12

percent respect to the previous year; according to the International Federation

of Robotics (IFR) in 2018, about 2.3 millions units will be deployed in fac-

tory floors [1]. Nowadays robots used for industrial applications still represents

about the 90 percent of the overall robotics market, while service robotics ac-

counts for the remaining 10 percent. Speaking of sales, in 2014 the worldwide

market value for robots increased to a new peak of 10.7 billions US$, which gets

to 32 billions US$ considering the cost of software, peripherals and systems en-

gineering. This highlights how the market is fertile both for robot constructors

and for system integrators.

Figure 1.1: Industrial robots market in the last years.

The modern robotics industry has its roots with automotive customers.

Robots were first used by General Motors in the 1960s and are now ubiqui-

1



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page 2 — #18
✐

✐

✐

✐

✐

✐

Chapter 1 Introduction

tous in auto assembly plants globally – penetration of robots in automotive

welding for example is now greater than 90 percent. The other big market for

industrial robotics is the electrical/electronics industry, which together with the

automotive industry constitutes the 65 percent of the overall industrial market

for robotics; Figure 1.1 shows the market distribution for industrial robotics in

the last years.

Historically, robots have focused on high volume and highly repetitive tasks,

exploiting their precision for those tasks that were boring and/or difficult for

humans. But there is a big number of repetitive tasks which is still done by

operators, which standard industrial robots are not able to do, due to their lack

of flexibility and adaptation to new and different contexts. The robot industry

is now changing through the introduction of collaborative robots, which are

more flexible respect to traditional industrial robots and can work alongside

with human operators. This complementarity between industrial robots and

collaborative robots, opens a lot of new possibilities both in industrial context

and in new fields like service robotics.

Currently collaborative robotics represents just a 5 percent of the overall

robotics market, but it is expected to grow tenfold until 2020 (considering both

industrial and non-industrial applications), becoming a fundamental actor of

the new industrial revolution, Industry 4.0.

Figure 1.2: Robotics and automation evolution during industrial revolutions.

The Industry 4.0 concept has born thanks to the rise of autonomous robots,

contemporary automation, cyber-physical systems, the internet of things, the

internet of services, and so on.

2
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Cyber-Physical Systems (CPSs) are the new generation of engineered sys-

tems, born from the union of physical devices with networking computing.

CPSs are systems featuring a tight combination and integration of computa-

tional and physical elements [2]: they are based on computational elements

hosted in stand-alone devices, thus extending the concept of embedded sys-

tems (see Fig. 1.3). This new kind of systems is at the base of the Industry 4.0

concept [3] and is expected to bring changes not only in the industrial sphere,

but also in the society and our everyday life.

Figure 1.3: Cyber-Physical System representation.

Key features of a CPS are flexibility and adaptability, modularity, autonomy

and reliability, safety and efficiency [4]. Cyber-Physical Systems must be able

to reconfigure in automatic (or semi-automatic) way and self-organize to change

task when needed; in that sense they are modular, meaning that they allow

their combination and organization in order to build a more complex system

made up by different modules (the single CPS components) communicating

between them through the network, exchanging information to accomplish the

final overall task. So the spread of CPSs leads to a distributed network of

independent but interconnected intelligent autonomous modules, able to com-

municate, compute and collaborate. Despite their nature and characteristics

make CPSs appear as intrinsically complex systems, they way they interface

with humans must be as user-friendly as possible, using mobile devices such as

smartphones, tablets and other intuitive equipment [5].

The flexibility and easiness of use of collaborative robots, make them strictly

connected to CPS: the objective is to create an intelligent system able to per-

3
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Chapter 1 Introduction

form dynamic and adaptable movements and to exploit sensor fusion to per-

form tasks and collect data, and which is able to collaborate together with

other complex systems and with humans.

Until now robot software in the control interface has been mainly proprietary,

due to the narrow suite of robot applications – such as material handling and

welding - and a relatively concentrated number of suppliers. However, in the

last years, the spread of robotics outside of factories and the much wider variety

of uses, is leading to the development of open source software for robots control.

This means that the software is distributed at source code level and can be re-

distributed to others unrestrictedly. The main benefits of this trend are both

for developer and for users: open source software leads in fact to collaborative

development and to more standardized robotic interfaces, which means both

easiness of use, both re-usability of competences and knowledge among different

kind of robots. On the other hand open source software would mean a lost of

income for providers of proprietary software.

Speaking of academic results, a significant help comes also from the well

known software framework ROS (Robot Operating System) [6]. The Robot

Operating System is a flexible framework for writing robot software. It is a

collection of tools, libraries, and conventions that aim to simplify the task of

creating complex and robust robot behavior across a wide variety of robotic

platforms and allows to test and reuse works of other researchers in a simple

and time-saving way. This also means that algorithms used for one kind of

robot can easily be extended and reused for a similar one. As said, this is a

need coming directly from the evolution of the new Industry 4.0: ROS is in fact

also moving in that direction with ROS-Industrial (ROS-I) [7]. The consortium

of ROS-I is made up by both of research institutes and robot constructors and

the aim is to extend advanced capabilities of ROS to industrial robots and

bring them to manufacturing.

The aim of this Ph.D. thesis is to analyse the current state of collaborative

robotics and to provide tools that simplify the task of robot programming,

making it time-saving and user-friendly, so that no particular knowledge in

robotics is required to achieve that.

Therefore, the second chapter will explain why collaborative robotics is

emerging and which are the key functionalities of a collaborative robot, analysing

also the safety aspects related to ISO standards. The third chapter will propose

a method to implement a manual guidance algorithm using a force/torque sen-

sor and will provide experimental results and a use-case. The fourth chapter

will focus on those tasks which need the integration of external sensors on the

robot, making it difficult to use the basic simplified programming methods that

come along with collaborative robots. Thus is here proposed a new method to

teach those task in a quick and easy way through few steps. Finally in the fifth

4
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chapter the importance of open source software is highlighted and discussed,

and further experimental results are provided.

5
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Chapter 2

Collaborative Robotics

The more extensive usage of robots nowadays is still in big companies and

enterprises. The needs of small and medium enterprises (SMEs) can be very

different and thus it is difficult for them to put money into traditional industrial

robots, as the benefits and the income coming from having an industrial robot

would not be enough to pay back the initial cost.

Typically SMEs can have a wide range of products which are constantly

changing and for each new product the robot would need to be re-programmed

accordingly, which is a time-expensive operation. Moreover traditional robotic

cells, for safety reasons, must be isolated and closed with physical barriers,

which means big amount of space required and low flexibility.

On the other hand, new collaborative robots, i.e. robots intended to phys-

ically interact with humans in a shared workspace, have several advantages

which can satisfy the needs of SMEs production:

• they are easy to program, which means also spared time for that opera-

tion.

• they do not need physical barriers, which means less space is needed.

• they are intrinsically safe, thus they can work alongside and with human

operators.

• they can be moved quickly where an increase of production is needed.

For those reasons, in the very last years, the usage of collaborative robots is

increasing in the SMEs contest, enabling the automation of some repetitive

tasks that were still done by humans.

A robot shall be counted as ’Collaborative’ if at least one of the following

three conditions is met:

• Manufactured as a ’Collaborative Robot’ - Robot designed for direct in-

teraction with a human within a defined collaborative workspace.

• Deployed in a ’Collaborative Operation’ - State in which a purposely de-

signed robot system and an operator work within a collaborative workspace.

7
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Chapter 2 Collaborative Robotics

• Installed in a ’Collaborative Workspace’ - Space within the operating

space where the robot system (including the workpiece) and a human

can perform tasks concurrently during production operation.

The traditional and still most diffused method for robot programming is

through the robot specific teach pendant. Task trajectories are taught to the

robot specifying a set of points which the robot must pass through. However,

teaching trajectories to the robot in this way turns out to be very slow and

must be done over and over again each time there is a little change in the task.

More recently, the availability of more performing hardware and advanced CAE

(Computer Aided Engineering) tools promoted the use of off-line programming,

which allows to check the feasibility of an industrial operation and even to

program a task through the use of a Personal Computer, without the need to

stop the production system. In this way the availability of kinematic models

of the robot and of the corresponding simulation packages, opens a new range

of capabilities, but on the other side an expert Engineer is needed to program

the robot.

The necessity of easy programming in industrial context is also urged by

the needs of the final customers; industry calls for robotic cells that are more

and more flexible, modular and adaptable to different production requirements.

The demand for an increasingly high productivity level in industrial manufac-

turing scenarios requires both shorter task execution times and faster robotic

systems programming cycles. Moreover, the operator often is not a robotics

expert, and teach-pendant programming has become a time-consuming and

demanding task to be performed.

New collaborative robots on the other hand, can all be programmed in an

easy and intuitive way. The operator can in fact take the robot by hand, thanks

to different methods of manual guidance, and move it to the desired positions

needed for the task, record the positions and subsequently use them for task

programming. Moreover some collaborative robots have also some templates

that can be used to program simple tasks (i.e. pick and place) even faster.

2.1 Safety in human-robot interaction

This new way of approaching robot programming brings with it a significant

problem: the safety in physical human-robot interaction [8], which is a fun-

damental aspect of manual guidance. The main standards for granting a safe

operation of industrial robots in factories are given by ISO 10218-1/2 [9, 10];

other safety norms, regarding the safe distance to be maintained between hu-

man and robots are contained in ISO 13855 [11]. In addition, since the inter-

action between humans and robots is now a very relevant argument inside the
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2.1 Safety in human-robot interaction

robotics community, a new Technical specification (ISO/TS 15066 [12]) about

this topic has been recently developed.

(a) Sick Laser Scanner (b) Safety Light Curtains

(c) Pilz SafetyEYE (d) SafetyEYE functioning

Figure 2.1: Safety devices: .

Accordingly to ISO standards, in order to use a non-collaborative industrial

robot without physical barriers, some safety sensors can be used to monitor

the area around the robot: if someone gets too close to the working area of

the robot, then the robot is stopped with a safety stop function. Some safety

sensors are showed in Figure 2.1 The computation of the minimum distance

between human and robot below which the robot must stop [11], takes into

account: the maximum speed of the robot, the theoretical maximum speed

of the human, stopping time of the robot and the parameters. This distance

could result often in a quite big distance if only horizontal sensors are used

(it can easily reach 2 meters), which could mean frequent stops of the robot

or big free space around the robot required. A way to reduce this minimum

distance is to use both horizontal and vertical safety sensors, in order to create a

virtual barrier around the robot, while also monitoring if someone approaches.

Finally some robots controllers have the possibility to reduce in a safe way the

maximum speed of the robot. In that way, two (or more, depending on the

9
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Chapter 2 Collaborative Robotics

controller and on the safety sensors) distances can be computed: the bigger

one at which the robot does not stop, but reduces in a safe way its speed; the

smaller one at which the robot stops. In that way the distance at which the

robot stops is reduced even more.

The new technical specification ISO/TS 15066 specifies 4 different kinds of

collaborative operations, which represent the only ways in which is possible to

interact with a robot in a safe way:

• Safety-rated monitored stop

• Hand guiding

• Speed and separation monitoring

• Power and force limiting

The safety-rated monitored stop is the most basic collaborative operation:

when the human operator enters the collaborative workspace (which should

be monitored with some safety sensor as described above), the robot stops in

a safe way. Once the operator exits the collaborative workspace, the robot can

resume its work automatically, without the need of additional intervention by

the user. Despite being very simple this function permits to share a workspace

between human and robot.

Through the hand guiding (or manual guidance) collaborative operation, an

operator can use a hand-operated device to transmit motion commands to the

robot. The robot must move using a safety-rated monitored speed function

to limit the maximum speed of the robot. The hand-operated device must be

equipped with a enabling device and an emergency stop, usually mounted on

the teach pendant or directly on the end-effector of the robot. This method also

permits to integrate the hand guiding operation with some additional features,

such as force amplification, virtual safety zones or tracking technologies, in

order to improve the manual guidance experience for the operator and/or to

prevent the operator from guiding the robot in some areas where he is not

supposed to. Ideally, manual guidance methods can be implemented on any

industrial robot which is complying with the specification of having a safety-

rated monitored speed function and which is having a proper hand-operated

device.

With the speed and separation monitoring collaborative operation, the robot

and the operator may move concurrently in the collaborative workspace. The

risk reduction is achieved by maintaining at least the protective separation

distance between operator and robot at all times as described as follows:

Sp(t0) = Sh + Sr + Ss + C + Zd + Zr,

10
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2.1 Safety in human-robot interaction

where Sp(t0) is the protective separation distance at time t0, Sh Sr and Ss are

the contribution to the separation distance attributable respectively to: the

operator’s change in location, the robot reaction time and the robot’s stopping

distance. C is the intrusion distance, as defined in ISO 13855, which is the

distance that a part of the body can intrude into the sensing field before it

is detected. Finally Zd and Zr are the position uncertainties of the operator

and of the robot respectively. The intrusion distance C can be reduced if both

horizontal and vertical safety sensors are used, as the body of the operator

is detected as soon as it enters the sensing field. During robot motion, the

robot never gets closer to the operator than the protective separation distance

and when the separation distance decreases to a value below the protective

separation distance, the robot system stops with a safety-rated stop function.

When the operator moves away from the robot system, the robot can resume

motion automatically, while maintaining the protective separation distance.

When the robot system reduces its speed, the protective separation distance

decreases correspondingly. In that way the robot and the operator can share

part of the collaborative workspace, without the need to completely stop the

robot motion.

Finally the last collaborative operation, the power and force limiting, is prob-

ably the most important one, as describes the specification for robot manufac-

turers to build collaborative robots. The ISO/TS 15066 specifies 3 contact

situations:

• intended contact situations that are part of the application sequence;

• incidental contact situations, which can be a consequence of not following

working procedures, but without a technical failure;

• failure modes that lead to contact situations;

it also divides the types of contacts into two categories:

• Quasi-static contact: This includes clamping or crushing situations in

which a person’s body part is trapped between a moving part of the robot

and another fixed or moving part of the work cell. In such a situation,

the robot would apply a pressure or force to the trapped body part for

an extended time interval until the condition can be alleviated.

• Transient contact (or dynamic impact): This describes a situation

in which a person’s body part is impacted by a moving part of the robot

and can recoil or retract from the robot without clamping or trapping

the contacted body area, thus making for a short duration of the actual

contact.

11
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Chapter 2 Collaborative Robotics

So, one the main reasons why collaborative robots can work alongside humans

without physical barriers and without safety sensors is their capability of sens-

ing collisions and properly react to them. There are different ways with which

robot can sense collisions: the most precise one (but also the most expensive)

is to have joint torque sensors mounted at each joint of the robot. Knowing the

planned torque which has been commanded to the robot and making a com-

parison with the actual one measured from the sensors, some residual can be

computed in order to detect collisions [13]. Clearly such an approach requires

the robot to react very quickly when a collision occurs in order to be safe. Fi-

nally the ISO/TS 15066 establish also the maximum amount of force/pressure

that the robot should not exceed, so that the robot cannot injury the human

operators in a severe way. That’s why most of collaborative robots have also

a round and ergonomic shape, without edges and sometimes also with some

soft covers, in order to reduce the impact force of the robot during unexpected

collisions.

However having a collaborative robot, does not necessarily means that it can

always be used alongside human operators. In fact if the robot is carrying an

end-effector (or handling some components) that can be potentially danger-

ous for humans (sharp edges, heavy and rigid components, etc.), the overall

solution could not be any more considered safe and collaborative. In order to

understand the potential risks of an application, just like for other machines, a

risk assessment must be done, in order to prevent and/or limit possible hazards

for humans.

2.2 Collaborative robots on the market

Today, a wide range of collaborative robots (Figure 2.2) which are compliant

to ISO safety standards can be found on the market, differing for technical

specification (like speed, repeatability, payload), but also for cost.

The ABB YuMi is a collaborative dual-arm robot targeted for electronic

assembly market, or in general to handle small and light parts. The two arms

have soft components to prevent dangerous collisions; moreover the robot comes

with a special wrist mechanism to prevent crush injuries, thanks to which if

the robot senses elevated forces applied at the end-effector it puts the last two

joints of that arm in a completely passive behaviour and stops the task it was

performing. The YuMi is very compact and quite light robot (38 kg, including

the controller which is in the "torso"), and the two 7-DOF arms give great

flexibility to perform the most challenging manipulation tasks. On the other

side the very low payload (0.5 kg per arm; 0.25 kg per arm, if it mounts one

of its default grippers, which can include a vacuum cup and a smart camera)

limits the possible uses.

12
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2.2 Collaborative robots on the market

Recently, ABB bought another company (Gomtec), which realized the col-

laborative robot Roberta. There were three versions of Roberta, differing for

payload (4 kg, 8 kg and 12 kg) and for reach(600 mm, 800 mm and 1200 mm).

A peculiarity of this robot was the very intuitive programming, which could

also memorize and reproduce whole trajectories; all the different modes were

selectable rotating a ring on the end-effector, so it was possible to teach a task

without using any teach-pendant, but just interacting with the robot. Soon

ABB should release a new version of the Roberta robot.

The APAS collaborative solution from Bosch consists of a standard industrial

robot with a tactile soft skin to detect unexpected collisions, giving instant

feedback to the controller which stops the robot. To use this solution the

robot controller must have the safety-rated monitored stop and safety-rated

monitored velocity functions. The robotic arm is mounted on a mobile platform

that can be moved manually, so to be able to quickly move the robot where

needed. Moreover the area around the robot is also monitored and the robot

slows down its task when someone gets too close. Finally the APAS robot

comes with a 3-finger gripper and with integrated cameras (2D or 3D).

The new green robot from Fanuc (CR-35iA), is the collaborative robot that

is closest to traditional industrial robots, speaking of repeatability, reach and

payload. The CR-35iA is able to carry weights up to 35 kg with a repeatability

of ±0.08mm and has 1813 mm of reach. With this specifications the robot is

able to do tasks that other collaborative robots could not be able to do, still

being safe thanks to the soft cover and the torque sensors mounted at each

joint. On the other hand the robot from Fanuc is less flexible, as it is quite

heavy and its pedestal is designed to be fixed to the ground, so it can not be

moved easily from one place to another like the other collaborative robots.

The 7-DOF robotic arm Kuka IIWA (Intelligent Industrial Work Assistant)

is the evolution of the LWR 4+ in terms of physical features: the robot is in

fact equipped with torque sensors on each joint, has high-performance collision

detection algorithms and has an incredibly good ratio between weight and

payload. The controller (the Kuka Sunrise) is instead quite different from the

previous version, as it uses Java as programming language, offering a library

containing a lot of high-level functions.

The Baxter robot from Rethink Robotics is a very versatile and easy to use

robot. In fact in order to use the Baxter robot no programming knowledge

is needed and can be trained in few minutes. Moreover Baxter is a complete

system, comprehensive of different sensors, so for simple tasks no integration

with other hardware is needed. Finally it has a very low price (the starting

price is around 20 k$), considering the number of DOFs that the Baxter has

and the various sensors and end-effector that can be mounted on it. On the

other hand the Baxter robot has a very low precision and repeatability (due to
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Chapter 2 Collaborative Robotics

mechanical elasticity of joints), which clearly limits the range of applications

in which it can be applied.

Sawyer is the more recent collaborative robot from Rethink Robotics. Unlike

Baxter, it is made to work in fixed position and it is not mounted on a mobile

base. Moreover it is more repeatable respect to the Baxter robot, but still quite

far from other collaborative robots. Finally Sawyer mounts a Cognex camera

for a more precise vision system and has also force sensing embedded at each

joint.

Finally, the robots from Universal Robot consist of six-axis arms of different

dimensions: the UR10 can carry up to 10 kg and has a reach of 1600 mm, the

UR5 has a 5 kg payload and a reach of 900 mm; finally the newest UR3 has

a payload of 3 kg and a reach of 500 mm. All UR robots are quite precise

and lightweight, but also quite cheap. As all collaborative robots, they can be

moved by hand for a fast teaching. The Universal Robots are probably the

collaborative robots that are currently most diffused, especially in industrial

context, thanks to their good price (the most expensive one, the UR10 is below

30ke) and their good capabilities.
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2.2 Collaborative robots on the market

(a) ABB YuMi (b) Gomtec Roberta

(c) Bosch APAS (d) Fanuc CR-35iA

(e) Kuka IIWA (f) UR3, UR5 and UR10

(g) Baxter Robot (h) Sawyer robot

Figure 2.2: Collaborative robots on the market.
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Chapter 3

Enabling Programming by

Demonstration

The new promising way for robot programming is the Programming by Demon-

stration (PbD) [14, 15], which allows the operator to teach to the robot a

generalized version of a task in an easy and natural way, thus requiring no

experience in robot programming. In the teaching process, apart from the

joints position, several measurements can be taken into account and integrated

together, such as force profiles or voice commands [16]. These methods can

then be customized, depending on the task, in order to handle exceptions us-

ing different strategies [17]. An ideal solution would be a scenario where the

operator’s movements are tracked while he is doing the task and then, using

machine learning methods, the capability of reproducing the task is taught to

the robot. This is a challenging topic of research of recent years; in addition,

from an industrial point of view these methods are still not robust enough.

Moreover, if during the task execution lifting heavy weights is required, the

operator could not have enough physical strength to perform the task. As a

consequence of this, a method that is more robust and that could manage tasks

with heavy weights lifting is the manual guidance (or walk-through). This type

of control lets the user move physically the robot by hand in a free way, instead

of moving it using the teach pendant; these movements can then be encoded

and used for learning a generalized version of the task or for reproduction.

Another way to teach a task to a robot is using haptic devices, which can

be used to command velocities to the robot, while giving a force feedback to

the user; in this way also force tasks can be taught to the robot. Such devices

are very expensive and for this reason at the moment they cannot be adopted

in industrial contexts; on the other hand, they are mostly used in medical or

rehabilitation robotic applications.

17



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page 18 — #34
✐

✐

✐

✐

✐

✐

Chapter 3 Enabling Programming by Demonstration

3.1 Manual Guidance State of Art

In order to achieve robot manual guidance, several control approaches that use

different kinds of sensors, or more in general hardware, can be implemented.

Most types of control schemes make use of a force/torque sensor mounted at

the wrist of the robot; the use of such sensors allows the design of control

schemes that grant a very precise motion of the end-effector, such as admit-

tance/impedance control [18–20] or force control [21]. The main drawback of

the majority of these methods is that, apart from the cost of the force/torque

sensor, they rely on the availability of a robust dynamic model of the robotic

arm. Other researchers propose advanced variants of both types of control,

such as variable impedance control [22], adaptive admittance control [23] or

admittance control based on virtual fixtures [24]: these are software-generated

motion guidance, based on a vision system that extrapolates the geometry of

the robot and of the workspace needed to compute the motion constraints.

The hybrid force/motion control, that can be achieved both at kinematic [25]

and dynamic level [21], describes the task constraints combining a force control

and a velocity control, through selection matrices. Since few years, some new

lightweight robots come with an implementation of compliance control, as for

example the Kuka LWR IV [26] or its evolution, the Kuka iiwa. Again, this

is a clear sign that the whole robotic community is moving towards the robot

co-worker concept.

In order to make the operator feel like he/she is moving a tool of reduced mass

(instead of an heavy and stiff robot), the dynamics of the robot motion can

be described as a “virtual tool”: the end-effector is modelled as a virtual point

of chosen mass which can be placed arbitrarily in a free space environment.

Then the robot can be controlled using admittance control [27] or a simple

kinematic control [28]. Another interesting approach is to mix up the feedback

from the force/torque sensor with visual information [29]. Here the maximum

end-effector velocity allowed is proportional to the distance between the robot

and surrounding obstacles; in that way the robot prevents collisions. Other

works have developed a force control without using force sensors, by using

observation methods [30] or seeing the external force as a disturbance [31].

Another way to achieve manual guidance is using fault detection and iden-

tification (FDI) methods to sense external forces [13]: in this case, external

forces can be detected defining a residual that observes and measures differ-

ences between the commanded torque and the actual torque. This method has

the drawback that the operator must move the joints one by one, thus resulting

in an unnatural feeling of motion; moreover the dynamic model of the robot

must be available; in the end, this approach is mainly suited for unexpected

collisions detection and reaction.
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3.2 Manual Guidance implementation

Other works try to use the currents of motors to estimate the torque at each

joint [32]: the torque estimation can then be used to achieve manual guidance.

In particular, in [33] low-pass and high-pass filters are applied to motors cur-

rents to detect human intentional interaction. Despite the innovation of these

methods, they are not suited for industrial use, both in terms of robustness

and precision of movements. Moreover, the friction of the motor reductor af-

fects the readings of the currents, and its effect can change during time and in

different temperature conditions [34].

Finally, a more recent way to perform kinesthetic movements is through back-

drivability, like the Barret WAM [35], which allows robots with backdrivable

motors to be guided by the user keeping them in zero-gravity control mode;

these robots are used especially to test learning algorithms [15]. The draw-

back of backdrivability is that it is suited only for lightweight or small robots,

because of the robot inertia; thus it can not be applied to industrial robots.

Moreover, in this case the user must move the joints one by one, which makes

it difficult (especially for robots with many degrees of freedom) to perform

natural and smooth movements.

3.2 Manual Guidance implementation

In this section, an implementation of manual guidance based on the use of

a force/torque sensor is presented. The sensor is mounted between the wrist

and the end-effector of the robot, so a gravity compensation of the weight of

the tool is needed. in the following subsections the gravity compensation and

control algorithms will be explained.

3.2.1 Gravity compensation

In order to distinguish the input force of the user from the gravity force on

the end-effector, a static model of the robotic system (i.e. the robotic arm,

the force/torque sensor and the end-effector) must be developed. Since the

manual guidance application is here considered as semi-static (accelerations

applied by the operator are considered to be very small), a full dynamic model

is not necessary. Starting from the forces and torques measured by the sensor,

respectively sfm and sτ m we have:

sfm = sfh +
sg (3.1)

sτ m = sτ h +
sτ g, (3.2)

where sfh and sτ h are respectively the force and torque applied by the human

operator to the end-effector in sensor frame, while sg and sτ g are the gravity
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Chapter 3 Enabling Programming by Demonstration

Figure 3.1: Overall scheme of the control.

force and torque acting at the center of mass of the end-effector expressed in

sensor frame. Expressing these equations into world frame leads to:

wRs
sfm = wfh +

wg (3.3)

wRs
sτ m = wτ h +

wτ g, (3.4)

where now wfh,
wτ h,

wg and wτ g are expressed in world frame; wRs is

the rotation matrix from sensor frame to world frame, computed as wRs =
wRee

eeRs, where
wRee is obtained from direct kinematics and eeRs represents

the rotation matrix from the sensor frame to end-effector frame (which is con-

stant). Equations (3.3-3.4) can be resolved to find out the force/torque applied

by human:

wfh = wRs
sfm − wg (3.5)

wτ h = wRs
sτ m − wr × wg, (3.6)

with

wτ g = −wr × wg,

where wg is the weight of the end-effector in world frame, wr is the position

vector of the center of mass of the end-effector with reference to the origin of the

sensor frame, expressed in world frame. In such a way the gravity-compensated

force and torque applied by human can be considered in the control loop. For

simplicity, in the next subsection wfh and wτ h will be referred to as f and τ .

3.2.2 Virtual Tool Controller

The gravity compensated forces and torques, obtained as described in the pre-

vious subsection, are fed to a virtual tool controller: it has been reckoned that

in comparison with a proportional controller, it would yield a more natural feel-

ing for the operator when moving the end-effector. The virtual tool controller
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3.2 Manual Guidance implementation

basically commands an acceleration to the robot end-effector that is propor-

tional to the force/torque applied by the human and adds a damping factor

to decelerate the robot and make it stop fast when the external force is not

applied any more. In this way, the dynamics of the end-effector is modelled as

a virtual point whose lumped mass is located at the center of mass of the end-

effector. Since the gravity of the real mass of the robot end-effector has been

compensated as described in the above subsection, it has not been considered

in the controller.

Since the robot is controlled in the velocity domain, the desired translation

and rotation end-effector velocities at time t are defined as:

vt
t =

{

(K1(f ± tf )− K2vt
t−1
)∆t+ vt

t−1
, if|f | > tf

−K3vt
t−1
∆t+ vt

t−1
, if|f | < tf

(3.7)

vr
t =

{

(K1(τ ± tτ )− K2vr
t−1
)∆t+ vr

t−1
, if|τ | > tτ

−K3vr
t−1
∆t+ vr

t−1
, if|τ | < tτ

(3.8)

Equations (3.7) and (3.8) represent the implementation of the virtual tool

controller: tf and tτ are threshold vectors for noise filtering, K1, K2 and

K3 are positive diagonal gain matrices and ∆t is the control loop cycle time.

Signs in equations (3.7) and (3.8) depend on the sign of f and τ respectively.

Analysing the virtual tool controller, it can be noticed that there is a first term

which is proportional to the force and torque applied by the human, and a

damping factor which is needed to provide resistance. In particular, when the

absolute value of force/torque is smaller than the threshold, the damping factor

is needed to decelerate the motion of the robot. This is why two different gain

matrices (K2 and K3) are used for the two cases: because when no forces are

sensed, the robot needs to decelerate faster. For this reason the elements of

K3 are chosen much bigger than the ones of K2.

Finally the end-effector velocities are transformed in joint velocities:

q̇ = J†v, (3.9)

where q̇ is the vector of joint velocities, J† is the pseudo-inverse of the Jacobian

(concerning both position and rotation) and v = [vtvr]′. It is noted that when

the Jacobian is square and non-singular (i.e. the number of joints is equal to the

number of degrees of freedom of the task), a simple inversion of the Jacobian

could be used instead.

Figure 3.1 illustrates the overall control scheme used in the proposed ap-
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proach: forces and torques measured from the sensor are first gravity compen-

sated as described in previous section, then used by the virtual tool controller

to obtain a velocity reference for the end-effector. This reference is finally

mapped on robot’s joints using the pseudo-inverse of the Jacobian.

If the end-effector gets in contact with the environment, the sensor will sense

a normal force and will promptly move away from the touch point: such motion

will be just a transient effect, characterized by a velocity proportional to the

approaching speed and thus to the force sensed by the sensor. If it is needed to

interact with the environment (e.g. to follow a profile which has to be deburred)

one could manually disable the command along that direction (i.e. probably

the end-effector normal axis). However, in the chosen application domain, that

is quality control, it is uncommon to need such solution; most of the tasks

which need interaction with the environment, can be programmed offline and

then the robot must only know “where” to execute the task (e.g. the proposed

approach in section 3.4).

Even though robot kinematic singularities are easily avoidable by the user,

a solution consists in using a damped pseudo-inverse of the Jacobian, defined

as:

J
†
λ = JT

(

JJT + λ2I
)−1

, (3.10)

with damping factor λ << 1; using the SVD decomposition J = UΣV T ,

equation (3.10) leads to:

J
†
λ = V Σ

†
λUT ,

where Σ†
λ is a diagonal matrix, with elements:

σ̃i =
σi

σ2

i + λ2
,

where σi is the ith singular value of the Jacobian matrix. This means that

J
†
λ has singular values σ̃i, with σ̃i → 1/σi for λ → 0. In this way the robot

can pass through singularities, even though obviously only velocities in the

manipulability ellipsoid can be accomplished.

3.3 Experimental results

Experiments have been carried out using the Schunk Powerball robotic arm.

As Figure 3.2 shows, the Schunk Powerball consists of three modules, each

one containing two motors, for a total of six joints. The robotic arm is con-

trolled with a personal computer in the velocity domain using the ROS packages

schunk_lwa4p and ipa_canopen. No ROS tools for kinematics or planning

are used, joint velocities are commanded to the robot each 10 milliseconds and
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3.3 Experimental results

Figure 3.2: Schunk Powerball robotic arm during manual guidance control. The
blue, green and red arrows represents respectively x, y and z axis
of reference frame.

these commands are then executed by the internal controller of each module;

thus the proposed approach is applicable to any industrial robot, provided that

the power needed to control the robot complies with the maximum allowed by

ISO standards, which is the case of the Powerball robot. Thus, in order to

make the experimental set-up fully compatible with ISO standards, an emer-

gency stop and an enabling device to start guiding the robot should be added

near the end-effector. The force/torque sensor (KMS40 from Weiss Robotics)

is mounted between the sixth joint and the end-effector and communicates

with the pc using an ethernet protocol, updating the force and torque signals

at a frequency of 500 Hz. So in that case the bottleneck for the algorithm

implementation is the robot control frequency (100 Hz), which is the actual

frequency at which the algorithm will run. Of course, having an higher control
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Chapter 3 Enabling Programming by Demonstration

frequency would make the control algorithm more reactive to external inputs;

anyhow for a manual guidance algorithm, were the inputs come from a human

operator (usually at low frequencies), a control loop of 100 Hz brings satisfying

results.

The experiments made using the proposed approach resulted in smooth and

natural motions of the robot.

Parameters of (3.7) and (3.8) were chosen as follows:

K1 =







0.05 0 0

0 0.05 0

0 0 0.05






K2 =







2 0 0

0 2 0

0 0 2







K3 =







8 0 0

0 8 0

0 0 8






,

for both the force and torque equations. For the thresholds, the values chosen

are the following:

tf =







2

2

2






tτ =







0.65

0.65

0.65






,

meaning that all forces below 2N and all torques below 0.65Nm are considered

as noise. All those parameters where chosen experimentally.

The small value of K2 gain makes the robot lighter to the user, while the

high value ofK3 makes the robot stop almost instantly when no external forces

are sensed. This resulted in a both smooth and precise motion of the robot,

achieving the expected result. Experimental results are shown in the remainder

of the section.

In the first test the robot is moved through an orientation singularity; in

particular the 4th and 6th joints are aligned. As showed in the plots of Fig-

ure 3.5, the transition through the singularity results in a smooth movement.

Notice that, as Figures 3.3 and 3.4 show, the resulting end-effector velocity is

a low-pass filtered version of the force and torque signals; this is fundamental,

because a simple proportional controller would be otherwise affected by the

noise of the sensor.

The second experiment is carried out to test the precision of movements. In

order to make the robot more precise (but also stiffer) the elements of matrix

K1 are lowered. The plots in Figure 3.6 show how the operator is able to move

around the robot in a precise way, being able to describe a small rectangle in

the x-y plane, while keeping constant the orientation and the position along

the z axis. This means that the maximum precision that is achievable is the

operator’s precision. Actually the precision could be increased even more, rising
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Figure 3.3: Robot guided through an orientation singularity. Above: Force
applied by the human along x, y and z axis (respectively in blue,
green and red), the black lines represent the threshold; bottom:
The resulting end-effector translational velocity.

the threshold values in equations (3.7) and (3.8); in this way the operator

should use more force to move a little the robot and the precision would be the

robot’s one. On the other hand this would result in an unnatural feeling for

the operator and in a very stiff motion, so should be used only when strictly

necessary.

3.4 Use-Case

The implementation of the robot manual guidance described in the above sec-

tions can be used to teach a task to the robot. The chosen application domain

is the quality control of front panels of electronic devices (Figure 3.7). A useful

task that can be taught to the robot is the test of buttons on panels in order

to check how much force is needed to press the buttons. The test of panels is a

simple task, but due to the continuous changing of the models it is difficult to
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Chapter 3 Enabling Programming by Demonstration

Figure 3.4: Robot guided through an orientation singularity. Above: Torque
applied by the human around x, y and z axis (respectively in blue,
green and red), the black lines represent the threshold; bottom:
The resulting end-effector angular velocity.

automatize; with the proposed approach, each time a new kind of panel must

be tested, teaching the new task to the robot can be done in an easy and time-

saving way. The user can teach the positions of the buttons by simply bringing

the robot’s end-effector above them (so without pressing them) and saving the

joint configurations through the user interface. The end-effector of the robot

has been designed on purpose: it has the double advantage of making the man-

ual guidance algorithm ergonomic and of being able to press buttons for that

specific application. In the reproduction of the task, the robot will first move

through the saved positions using a simple kinematic control for positioning;

when the robot reaches the saved positions, it will then go down along the Z

axis direction using an impedance control, implemented as follows:

v = vh + vI , (3.11)
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Figure 3.5: Robot guided through an orientation singularity. Above: transla-
tional position of the end-effector along x, y and z axis (respec-
tively in blue, green and red); bottom: RPY-orientation of the
end-effector.

where vh is exactly the velocity obtained from equations (3.7) and (3.8), using a

K1 with very low coefficients; the vI is a velocity resulting from the impedance

control, computed as:

vI =Kimp (pr − pEE) , (3.12)

where Kimp is a positive diagonal matrix representing the spring stiffness,

while pr and pEE are respectively the rest position of the virtual spring and

the actual position of the end-effector of the robot; a damping factor is not

considered in equation (3.12), since the vh already includes one. Notice that,

in order to make the robot move along the z axis, the point pr is moving.

Moreover, since the robot is desired to be compliant along z-axis and rigid

along all other directions, equation (3.11) in practice is only implemented for

the z-axis component, while the other components are equal to zero. After the

force sensed along the z axis exceeds a maximum value admitted (in this case
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Chapter 3 Enabling Programming by Demonstration

Figure 3.6: Robot guided through a rectangle in the x-y plane. Green dot and
red cross represents start and end positions respectively.

15N), the impedance control is stopped (v = vh), so that the pushing force

does not increase too much. After the robot has pressed a button, it will first

go back to the current approach position and then it will move to the next

approach position ready to test the next button.

Figures 3.8 and 3.9 respectively show the forces (and the resulting velocities)

along the 3 cartesian axis, and the position of the end-effector of the robot

during the teaching process of a task. In this task 9 positions (taken above

9 buttons to test) are taught, showed by the red arrows in Figure 3.9; the

operator is communicating to the program user interface (pressing a button on

a keyboard) that the current position must be saved for reproduction, that is

why in these instants the position of the end-effector keeps constant. Again,

it can be noticed how the proposed approach results in a smooth and precise

movement of the end-effector.

Regarding the reproduction, to make better understand what happens when

the robot presses a button, in the plots it is only reported the first of the nine
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Figure 3.7: Schunk Powerball robotic arm testing a front panel. The blue, green
and red arrows represents respectively x, y and z axis of reference
frame.

taught positions in Figures 3.8 and 3.9. During the reproduction phase the

robot first moves with kinematic control to a taught position, and then (Figure

3.10) it will start moving along the negative direction of Z axis in impedance

control; the performed experiments show that at the instant when the button

is pressed, a small peak of the external force is sensed (see Figure 3.10). In

this way the value of the force needed to press the button can be easily found

out. It is noted that in the bottom plot of Figure 3.10 the resulting end-effector

velocity is only made up of the impedance control effort until the force sensed

exceeds the black threshold (top plot of Figure 3.10).
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Chapter 3 Enabling Programming by Demonstration

Figure 3.8: Teaching to the robot the positions of nine buttons to press. Above:
Force applied by the human along x, y and z axis (respectively
in blue, green and red), the black lines represent the threshold;
bottom: The resulting end-effector translational velocity.

Figure 3.9: Teaching to the robot the positions of nine buttons to press. Trans-
lational position of the end-effector along x, y and z axis (respec-
tively in blue, green and red); the red arrows show the positions of
the nine points that are saved for the reproduction.
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Figure 3.10: Testing a single button. Above: external forces sensed along x,
y, and z axis (respectively in blue, green and red); bottom: total
end-effector velocity resulting from equation (3.11).
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Chapter 4

Simplifying Robot Programming

Through Haptic Learning

Without robots, many products of today would not be possible, as their preci-

sion, speed and ability to repeat tasks without deviation is an absolutely essen-

tial feature for today’s production lines. While initially only large companies

could afford expensive robots to scale up mass production of goods, they are

finally becoming affordable even for small and medium sized businesses. But

there is still a major problem with the use of robots in SMEs: Programming

robots is very hard, time consuming and expensive [36]

To fulfill the hard requirements of SMEs modern production robots need to

be able to work together with the human workers, and adapt quickly to new

and complex tasks. Most importantly, the time needed to program these new

tasks and the expertise required, needs to be significantly reduced to enable

cost effective usage of these complicated tools, as currently the costs for the

software outweighs those of the hardware.

As discussed in Chapter 2, new collaborative robots are easier to use and the

teaching time is less time-expensive. But what if the task to be taught needs the

integration of one or more sensors external to the robot? For example it could

be needed a vision system that identifies the work-piece, or the integration of

a force sensor for a task where the robot must apply some specified forces.

Depending on the task, the easy teaching methods that come out of the box

with collaborative robots could not be enough.

One approach to achieve easy robot programming is Programming by Demon-

stration (PbD) as previously discussed in chapter 3. Robots are programmed

by letting the user demonstrate the task to the robot rather than programming

it explicitly, therefore reducing the required robotics knowledge significantly,

especially for inexperienced users. After observing the user, the robot adapts

the observed movements to its own constraints (like number of joints) and re-

produces them. This allows not only to skip calibration and knowledge issues

but also allows the robot to learn from user experience which can be very

important in the productions of specialized goods where small differences in
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Chapter 4 Simplifying Robot Programming Through Haptic Learning

handling will result in a superior product. But to create a good application

and actually harness the power of this approach, the PbD process needs to be

well designed, easy to use and most importantly has to reproduce the intended

task as accurately as possible. While the idea behind PbD is simple, many

Figure 4.1: Experimental evaluation of new haptic trajectory exploration for
the force-based PbD approach with a robot arm, force sensor and
test work-pieces.

implementations currently available often lack important features that enable

a wide range use or are still time consuming when teaching non trivial tasks.

To be successful in real world applications there are some key challenges that

a robotic system needs to address:

• Self-adaptation of trajectories: As it is difficult to teach a perfect trajec-

tory, the robot should assist the user by adapting to imperfections and

work-piece structure.

• Surface Exploration of trajectory: It should be sufficient to just show the

basic task and let the robot explore unknown objects and how to execute

the trajectory by itself.

• Online user modification: It must be possible to adapt the work-flow

easily and change a robot program in an intuitive way and without the

need to re-teach everything.
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• Force-based tasks: Facilitating a force control on a standard robot arm

increases the number of possible tasks, making the robot more flexible

and valuable.

• Intuitive shared programming: Programming a robot needs to combine

the benefits of human skill and robotic precision in the most intuitive

way to be successful.

Therefore it is here proposed a new approach for haptic trajectory exploration

for force-based programming by demonstration consisting of a three step teach

in process:

• Demonstration of the desired trajectory is done in an easy and fast way.

By teaching a few initial support points above the object, the overall path

is defined.

• Haptic trajectory exploration: the robot quickly explores the surface of

the object in an automated way, without the need to manually teach

additional support points.

• Shared adaptation: creates an executable trajectory along the path for the

robot, which the user can easily refine to fit the needs of the applications

and assist with very complex parts.

This novel force-based approach is implemented using an off the shelve low

cost, light weight robot arm with an attached force sensor, making it transfer-

able to almost any robot arm that offers a low level control interface (see Fig.

4.1). Enabling force-based execution and haptic exploration not only provides

a much easier teaching experience that can be used with almost no training but

also allows to perform complex robot tasks that are impossible with classical

teach-pendant programming. The proposed system can be easily added to new

or existing set-ups and could greatly lower the time and therefore costs it takes

to use robots in difficult tasks.

As explained in Chapter 2, the most obvious and common way of teaching

something to a robot is using its dedicated teach-pendant; this allows the op-

erator to teach either segments of a path or support points which are to be

followed. This method is less complex than programming but still requires

some expertise of the operator making it a specialist job that is very time con-

suming. Complex paths that follow surfaces closely need a very high number

of support points and can take several hours to days to produce good results.

Generating the paths from CAD models [37] is a very good way to produce ac-

curate paths, even along complex surfaces. Exporting from CAD programs and

using it on robots however, is far from a standard procedure. But, even if it is

possible, it will usually require fine tuning and calibration by an expert, as the
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Chapter 4 Simplifying Robot Programming Through Haptic Learning

real scenario of the application always presents some small differences from the

CAD model. New industrial controllers have the capability of integrating some

sensors, like a force/torque sensor, to close the inner control loop [38]. In this

way the operator can move the robot along the whole trajectory using a robot

lead-through approach, while the robot is constrained on the work surface with

some force/impedance control. This approach is still very constrained on the

kind of robot used and the operator must manually move the robot through

the whole trajectory.

Probabilistic PbD is able to memorize and encode also force profiles [15],

but probabilistic approaches are working well especially for tasks where low

precision is required. Other approaches [39] are based on programming the

robot through some movement primitives and make use of kinesthetic teaching

which extends the capabilities of new collaborative robots. While the current

approaches are promising, they still have many issues that inhibit widespread

use.

Teaching itself is often counter intuitive, as the worker has to move the

robot arm precisely along the desired path while respecting the robots needs

for orientation or movement range. Different approaches where the worker is

observed with a camera lower these restrictions but introduce the complexity of

interpretation which leads to very few use cases where it can be used effectively.

Finally, almost all approaches are relying on position based control. While this

is sufficient for simple pick&place tasks, they are reaching their limit when the

task becomes more demanding as it is the case in SME productions.

4.1 Approach

The only thing needed to build up such an application is a robot arm with

low level control capabilities and a force torque sensor: in this case a Universal

Robot UR5 [40] and a Robotiq Force/Torque sensor [41] have been used. Fig.

4.2 represents the hardware scheme of the project: the application is running

on an external hardware which is communicating at low level with the robot

controller using a wrapper of the URScript programming language [42]. Even

though real-time capabilities would improve the determinism of the commu-

nication between the robot controller and the external hardware, there is no

strict need of that, and the external hardware used for the project is a standard

PC, which sends the target joint velocity to the controller each 8 milliseconds.

The force/torque sensor communicates too with the PC, updating the force

signals each 10 milliseconds.

The communications between the PC and the controller and between the

PC and the sensor are managed using the ROS (Robot Operating System)

middle-ware [6]. From a software point of view, 3 ROS nodes are running on
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Figure 4.2: Hardware scheme of the work: the robot controller communicates
with the URScript programming language with the external hard-
ware, sending to it the encoders feedback.

the PC:

• FT_sensor: this node is in charge of communicating through USB with

the Force/Torque sensor, reading the signals of the sensor at a frequency

of 100 Hz and publishing all data on a topic, making the signals available

for the other nodes.

• UR_client: this node contains the wrapper of the URScript program-

ming language and runs the UR Client which communicates with the UR

Server which is running on the controller. This node receives the joint

positions from the encoders of the robot and publishes them on a topic;

moreover the node reads from another topic the commanded joint veloc-

ity to send to the robot and communicates it to the controller using a

URScript command.

• HL_application: the main application, comprehensive of the user in-

terface from keyboard. This node implements the robot direct and in-

verse kinematics (using the standard convention of Denavit-Hartenberg)

and all the control laws, trajectory interpolation and motion planning

functions. The node reads the force/torque sensor and the encoders feed-

backs respectively published by the FT_sensor and UR_client nodes and

publishes the command velocity for the robot controller.
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Regarding the motion planning and control of the robot, the main application

node is running two loops on two different threads: the control loop and the

planning loop. The first one is in charge of continuously publish the command

joint velocity at a frequency of 125 Hz, even when the robot stands still. In this

way the robot controller is always receiving a command at a precise frequency,

without delays that could come from the motion planning, depending on the

performances of the PC which is used. In order to use the built-in Universal

Robot manual guidance from the robot’s teach pendant, the user can disable

the control loop from the user interface: otherwise the zero-velocity command

would prevail on the UR manual guidance. Once the user has finished to use

the robot manual guidance, it can activate again the control loop through the

user-interface.

The planning loop is instead in charge of computing the command joint

velocity deriving from the control laws or from the trajectory planning (in case

of a point-to-point movement) and to update the control loop accordingly. For

a point-to-point movement a trapezoidal velocity profile is used, as described

in [43] and show in Fig. 4.3.

Figure 4.3: Characterization of a timing law with trapezoidal velocity profile
in terms of position, velocity and acceleration.

Usually, traditional teaching of trajectories is done by setting the robot in a
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learning mode and moving it along the desired path. Collaborative robots can

be moved freely by the operator, but still it is a very challenging task to follow

a desired path exactly. The task of keeping in contact with the workpiece,

especially if it is curved or oddly shaped, i. e. for gluing applications, is nearly

impossible with current techniques. To solve this issue it is here used a different

approach: let the robot determine the surface structure of the object by itself.

By learning the surface of the object, trajectories can be created for complex

shapes while keeping constant contact with almost no effort.

Force control of robots has been studied for many years [44] and many algo-

rithms and solutions have been developed [21]. Many of these approaches make

use of the dynamic model of the robot, which is, speaking of industrial robots,

usually difficult to obtain, even if some methods allow to identify it [45]; even

more they are difficult to use, since most of industrial robots are position or

velocity controlled. However it is possible to implement force control closing

the loop at kinematic level [46], obtaining reasonable results. Force control

implemented at kinematic level has though some drawbacks: in order to obtain

a stable behaviour of the control, the loop must be closed at an high frequency

(preferably something more than 100 Hz). Due to the fact that a robot is a

rigid and non-compliant system, it means that during contact a small displace-

ment of the robot end-effector creates a big displacement of force, which can

simply modelled as:

∆F = Ke∆x,

where F is the force, x is the robot end-effector position and Ke is the impedance

of the robot, here simplified as a spring. The impedance of a robot is usually

very high as it is depending on the internal control parameters and on the

mechanical impedance of the robot arm. On the other hand using a compliant

end-effector would mean a loss of precision.

In most tasks it is necessary to move the robot end-effector using force control

along some directions and position control along other directions, resulting in

a hybrid position/force control [25]; this approach can also be used to realize

surface exploration [47]. Haptic exploration to discover object surface and

shape has been used mostly in combination with robotic hands, in order to

make the robot aware of the manipulated objects [48]. Other approaches make

use of some visual feedback to have knowledge of the surface in advance [49], or

make use of particular end-effectors developed for surface exploration like in [50]

and [51]. In the presented approach a rigid but almost frictionless teaching

end-effector has been designed and used, mounted on the force/torque sensor

which is on the robot wrist. The end-effector terminates with a commercial

ball transfer unit (see Fig. 4.4), which lowers the friction contribution. The

shape and the size of the end-effector has been designed so to make ergonomic

the human-robot interaction.
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Figure 4.4: Representation and functioning of the used commercial ball transfer
unit.

The learning process of the proposed approach can be divided into three main

phases: Demonstration, Haptic Trajectory Exploration and Shared Adaptation.

Fig. 4.5 shows the overall work-flow of the process. During the demonstration

phase the operator guides the robot through some support points of the task

and subsequently configures the task through a user interface, specifying the

constraints that the robot must keep between a point and another. During the

second phase the robot executes the task for the first time; it is assisted by

the user and collects information about the trajectory. In the third phase the

surface knowledge gathered in the second phase is used and the operator can

further adjust the trajectory of the robot interacting physically with it, while

it is executing the task. After those three phases the final task is learned and

ready to be executed. This approach guarantees that the operator must have

knowledge about the task, i.e. he/she must be able to know relevant / key

points to teach to the robot. On the other hand, no knowledge in robotics or

programming is needed.

4.1.1 Demonstration

In the first phase of the learning process the operator takes the robot and moves

it to the support points of the trajectory using a manual guidance approach.

It doesn’t make a difference if the operator uses the teach panel, a collabora-

tive robot or a custom implementation using the force/torque sensor signals as

input, as described in Chapter 3 [52]. The operator can subsequently configure

the task to specify the kind of interaction that the robot must have with the en-
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Figure 4.5: Overall work-flow scheme. Under each box is indicated who is in-
volved in the action; the red arrows represent the work-flow direc-
tion, while the yellow arrows point to the phases which are influ-
enced by the force control.

Figure 4.6: Example of task: the operator takes two initial support points, in
this case start (P1) and end point (P2).

vironment. The following parameters have to be configured for each “trajectory

segment” (i.e. the trajectory between two support points):

• Force: the force that the robot should push with the end-effector. If

this is set to zero, the movement will just be a point-to-point movement

without force control.
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• Time: the execution time for the movement in the task reproduction.

The time constraint will not be used during teaching steps, but only

during the final reproduction of the task.

• X/Y orientation: specifies if the robot should adjust the orientation

or keep constant orientation around X/Y axis during the first learning

phase. For some kind of tasks it could be useful to fix the orientation

around a certain axis, if it is known a-priori that the orientation must be

kept constant.

At this point the robot is ready to learn the task, discovering by itself the

trajectory to execute.

4.1.2 Haptic trajectory exploration / learning phase

In this phase the robot explores the task for the first time: the end-effector

will move at a constant velocity in a direction computed as the tangent to the

object surface, which is laying in the plane composed by the normal vector to

the surface and the straight direction to the final position, defining the task

frame as in Fig. 4.8.

Figure 4.7: Example of task: the robot will try to go in straight direction from
the starting point (P1) to the ending point (P2), but it will actually
adapt to the surface it finds; the operator can help the robot in this
part correcting the tool orientation as desired.

The raw force signal must be gravity-compensated and filtered, in order to

make the robot aware of the surface contact and of the user inputs. Thus, the

force used in all computations is a low-pass filtered version of the sensor signal,

42



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page 43 — #59
✐

✐

✐

✐

✐

✐

4.1 Approach

Figure 4.8: Computation of Task Frame.

in order to have a more stable behaviour:

Flowk
= Flowk−1

+Kf (Frawk
− Flowk−1

)δt, (4.1)

where Frawk
is the raw force signal of the sensor at the time instant k, Kf is

a positive gain and δt is the control loop time. The gravity compensation is

implemented as described in section 3.2.1.

Along the z direction of the task frame the robot will move according to

a force control which keeps the robot end-effector in contact with the object

surface. The force control is implemented as follows:

vk = vk−1 − (Ka(Fdes − Flowk
) +Ksvk−1)δt, (4.2)

where v is the end-effector velocity, Fdes is the desired force specified in the

configuration step, Flow is the filtered force signal and Ka and Ks are two

positive gains. The end-effector of the robot will move along the z direction

accelerating and decelerating accordingly to the force error, while the term

proportional to the velocity will act as a damping, giving as a result a more

stable control behaviour.

During the first surface exploration, while the robot is moving, the user can

adjust the orientation applying forces directly to the robot end-effector. The-

oretically the torque signals of the sensor could be used for the same purpose,

but the easiest way to apply a torque respect to the sensor it to apply forces

on the robot TCP, which could result unnatural. It is thus preferable to use

the force signal, so that the user can apply forces on the whole end-effector,

instead that just on the TCP, making it easier for the user to move the robot
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Figure 4.9: Logic of orientation control: applying a force on the x axis of the
end-effector frame, will produce a movement around the y axis;
vice-versa, a force on the y axis will produce a movement around
the x axis.

accordingly to his/her will. In order to accomplish that, a force along x axis

will move the end-effector around y axis and vice-versa, as showed in Fig. 4.9.

Depending on the configuration parameters X orientation and Y orientation,

the control around the corresponding axis will be activated and the orientation

will change according to the following control law:

ωk = ωk−1 + (KaFlowk
− Ksωk−1)δt, (4.3)

where ω is the end-effector orientation velocity and the other symbols have

known meaning. Of course this kind of control allows the user to also apply

forces along a direction which has components both along x and y axis.

Another advantage of using the force signals to control the robot orientation

is the following: supposing to have a perfect force sensor and a control loop

fast enough, in absence of external inputs, this control would maintain the

end-effector always normal to the work surface. Since the force signal must

be filtered as in equation (4.1) and the control loop is quite slow (100 Hz),

this control would not be able to keep up with all surface changes. Thus,

the user is able to modify the end-effector orientation applying forces to the

end-effector itself. Finally, the designed end-effector which ends with a ball

transfer unit, makes the friction negligible, which would otherwise interfere

with the orientation control during the learning phase.

After the work-piece exploration is complete, the robot data acquired is used

to estimate the trajectory surface profile. A b-spline fitting is used, obtaining a

smooth trajectory which also filters the high frequency noise of the robot data.

The spline fitting is then used as a feed-forward for the following step, giving

44



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page 45 — #61
✐

✐

✐

✐

✐

✐

4.1 Approach

more stability to the force control. In order to compute the spline fitting the

ALGLIB open source library has been used [53].

4.1.3 Shared adaptation

For complex tasks where irregular contours should be followed, it would be an-

noying to take many points to adapt to the surface. In this final step the user

can adjust the end-effector position on the plane tangent to the surface with an

impedance control. Moreover, in this learning phase the robot executes again

the task at a constant end-effector speed, but now using the spline generated

at the end of the previous step as a feed-forward both for position and orien-

tation. Regarding the force control along the normal direction, equation (4.2)

is adapted to use the feed-forward:

vk = vffk
− (Ka(Fdes − Flowk

) +Ksvk−1)δt, (4.4)

where vffk
is the velocity feed-forward at time instant k computed from the

spline fitting. In other words the robot will now repeat what it learned during

the previous phase, but always mantling the desired contact force using the

force control with velocity feed-forward above.

Figure 4.10: Example of task: the robot executes the trajectory learned in the
previous phase; this time the operator can apply forces on the
end-effector to modify the path.

The user can now also use the force signal input to modify with an impedance

control the end-effector position:

vk = vffk
+ (KaFlowk

+Kp(xdes − xk)− Ksvk−1)δt, (4.5)
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where xdes is the nominal end-effector position for time instant k coming from

the spline feed-forward, x is the end-effector actual position and Kp is a pro-

portional gain.

This control will be active only on the y axis of the task frame (Fig. 4.8),

while on the forward direction (x axis of the task frame) the user can apply

a force in order to temporarily stop the robot progress. Once the robot tem-

porarily stops to move in the forward direction, the user is still able to modify

the robot path using the above impedance control: in that way it is possible

to modify the robot path also with squared angles.

At the end of this learning phase a new spline fitting of the robot path is done,

incorporating the modifications that the user applied during the last phase. At

this point one could iteratively continue to refine the path in position and

orientation repeating the previous steps, but for most tasks a single iteration

is usually sufficient. In the reproduction the robot will not move any more

at a constant speed along the forward direction, but the trajectory generated

using the spline fitting, which will incorporate all the modification done by the

user, will be computed with a trapezoidal velocity profile and accordingly to

the time parameter specified by the user. Along the normal axis the robot will

always move according to the force control of equation (4.4), so to adapt to

the small imperfections of the surface without losing the contact or applying

a force different from the desired one. Even though the robot end-effector will

move faster during reproduction the feed-forward computed from the spline

fitting will maintain the force control always stable.

4.2 Results

All the experiments that have been done, were made taking (and configuring)

the first point and the last point of the task not in contact, while all the

other points in between where taken in contact. In these cases the robot will

first move with a point to point motion from the starting point to a position

which is 5 mm detached from the first contact point (the direction normal

to the surface is computed considering the end-effector position in the first

contact point); after that, the robot will execute the contact part of task with

a force control motion and at the end of the task it will move up in the normal

direction before moving to the end position, in order to avoid to scratch the

working surface while moving. Fig. 4.11 shows this concept: this strategy for

approaching/detaching is always used, regardless of if it is a learning phase or

a reproduction phase. For the first learning phase, the end-effecor moves in the

X direction of the task frame (Fig. 4.8) with a constant speed of 5 mm/s.

The plots that are presented in this section concern only the force control

motion part of Fig. 4.11, i.e. the contact part of the task. As said before, the
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Figure 4.11: Task execution example. The table on the right represents an ex-
ample of task configuration, while the picture on the left represents
the movements the robot will do accordingly to that.

bottleneck for this application is the control loop frequency: in particular the

force/torque sensor that is here used has an update rate of 100 Hz. Of course

this application would benefit from an higher control frequency, which would

make the force and impedance controls more stable. Anyhow, it is not always

possible to obtain access to high-frequency control of a robot (such as 1 kHz);

moreover the human-robot interaction strategies exploited in this application

make that prerequisite not strictly mandatory.

As for the manual guidance algorithm, the tuning of the parameters and of

the gains has been done experimentally. The first experiment which is here

presented is a task on a plastic box, which is quite a challenging material due

to its irregular surface. Fig. 4.12 shows the support points which were taken

on the box for the task.

The challenging part of this task consists of both the irregular surface and

the two uphill and downhill steps that the robot end-effector must face. During

the first learning phase, the orientation of the robot end-effector is adjusted by

the user to maintain it normal to the surface. Fig. 4.13 shows the force signal

acquired by the force sensor and the filtered version used for the control.

The desired force that the robot should press while in contact is F = 17.5N :

if the robot could stabilize on a still-standing position the force would get to

that precise value and remain constant at steady-state, but since the robot

end-effector keeps moving along the forward direction, the force control is not

able to totally stabilize the signal. Still it is able to keep the force error limited,

despite the disturbances coming from the surface and the user. In the first 15

seconds of the plot it can be noticed that the user pushes along the forward

direction in order to adapt the end-effector orientation to the surface, while
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Figure 4.12: Box task with 4 support points in contact. The superimposed tra-
jectory is the resulting spline fitting after the first learning phase.
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Figure 4.13: Force signal during first learning phase of the box task, along X,
Y and Z axis of task frame, respectively in blue, green and red.
The thin dashed lines represent the raw signal obtained from the
force sensor, while the thick lines represent the filtered force signal
used for the control.

after 30 seconds it can be noticed that the robot end-effector encounters the

resistance of the uphill step, and is helped again by the user to climb it with

the right orientation.

During the second learning phase the user modifies the path executed by the

robot applying some forces to the end-effector and trying to do some squared
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path. Fig. 4.14 shows the result obtained during the second learning phase and

the reproduction, which is smoothed thanks to the effect of the spline fitting,

filtering the imprecise movements of the user.
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Figure 4.14: 3D plots of the second learning phase (left) and reproduction
(right) of the box task, viewed from above.
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Figure 4.15: Force signal during second learning phase of the box task, along
X, Y and Z axis of task frame, respectively in blue, green and red.
The thin dashed lines represent the raw signal obtained from the
force sensor, while the thick lines represent the filtered force signal
used for the control.

Fig. 4.15 shows that the force keeps stable also during the second learning

phase. Moreover the final time is greater respect to the first learning phase,

because the user extends the path that the robot must do. Finally in Fig. 4.17

it can be noticed that the final time is now shorter, i.e. the robot is using for

the reproduction the time specified by the user during the configuration phase.
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Figure 4.16: Position error during reproduction of task. The error is com-
puted as the norm of the difference between the expected posi-
tion (computed from the spline fitting) and the actual one during
reproduction.

Fig. 4.16 represents the position error between the end-effector position during

reproduction phase and the spline fitting generated after the second learning

phase: it can be noticed that the error is always smaller than 1 mm, meaning

that the robot is following accurately the new path generated, while always

keeping the force constraint.
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Figure 4.17: Force signal during reproduction phase of the box task, along X,
Y and Z axis of task frame, respectively in blue, green and red.
The thin dashed lines represent the raw signal obtained from the
force sensor, while the thick lines represent the filtered force signal
used for the control.

The second learning phase can be very useful for certain tasks where irregular
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contours must be followed. Fig. 4.18 is an example where it is needed to push

the end-effector of the robot in order to make it follow the real contour of the

object, while without this feature the robot would move just in straight line as

in the figure.

Figure 4.18: Door task with 4 support points. The superimposed trajectory is
the resulting spline fitting after the first learning trajectory.

This second task that is here presented is an example of application, where

e.g. a gluing task could be needed on a car door. Here the objective is to make

the robot follow the contour of the inner part of the door, using 4 support

points. Again, the desired force that the robot should press while in contact

is F = 17.5N . In that case, during the first learning phase, no big changes

in orientation is needed, so the user can let the robot adjust its orientation

automatically. This is showed in Fig. 4.19, where the force along x and y

directions is always quite small, except for the discontinuity that is present at

time 15 seconds, which is generated by an imperfection of the surface.
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Figure 4.19: Force signal during first learning phase of the box task, along X,
Y and Z axis of task frame, respectively in blue, green and red.
The thin dashed lines represent the raw signal obtained from the
force sensor, while the thick lines represent the filtered force signal
used for the control.

During the second learning phase the user interacts with the robot, pushing

the end-effector towards the border of the inner part of the door, modifying

the trajectory between points P2 and P3 and between points P3 and P4. Fig.

4.20 shows the 3D path of the trajectory during the second learning phase and

during the reproduction phase. Again it can be noticed that the path during

the reproduction is smoother, thanks to the spline fitting.
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Figure 4.20: 3D plots of the second learning phase (left) and reproduction
(right) of the door task, frontal view.

Fig. 4.21 shows the corresponding forces of the second learning phase. Again,

52



✐

✐

“PhDthesis” — 2017/2/8 — 21:15 — page 53 — #69
✐

✐

✐

✐

✐

✐

4.2 Results

it is important to underline how this phase enables the user to easily teach a

complex surface to the robot, which would otherwise result in a big number of

support points.
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Figure 4.21: Force signal during second learning phase of the door task, along
X, Y and Z axis of task frame, respectively in blue, green and red.
The thin dashed lines represent the raw signal obtained from the
force sensor, while the thick lines represent the filtered force signal
used for the control.

Finally Fig. 4.22 shows the forces during the final reproduction of the task.

Here the force along the z axis is less stable than during the learning phases,

as the robot is now moving faster to respect the time constraint imposed by

the user. Anyway the force control is able to keep the force error quite lim-

ited, so that the task can be performed successfully. The discontinuity due to

the imperfection of the surface, during the reproduction moves at t=10 sec-

onds (instead of t=15 seconds), as the end-effector is moving faster during the

reproduction phase.
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Figure 4.22: Force signal during reproduction phase of the door task, along X,
Y and Z axis of task frame, respectively in blue, green and red.
The thin dashed lines represent the raw signal obtained from the
force sensor, while the thick lines represent the filtered force signal
used for the control.
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Open Source Robotics

Proprietary software is nowadays still the standard in industrial robotic appli-

cations. However, the spread of robotics to other application fields like medical

field, service robotics and others, is now leading to the development of open

source software for robotic applications. While the main benefits are clear, to

put open source robotics into practice usually needs some effort.

The work presented in Chapters 3 and 4 has been developed keeping that

in mind. Both the manual guidance approach and the haptic learning ap-

proach are designed so that they can be deployed to any robot with certain

characteristics with low effort. In particular what is needed is the possibility

to communicate at low level with the robot controller using an external hard-

ware, so to be able to have access to robot parameters and to control at high

frequencies (up to 1 kHz) the robot motion from the external hardware.

Figure 5.1: Hardware architecture for open software robotics application.

Fig. 5.1 shows this concept: the robot controller takes care of robot low

level control, setting the joint currents so that the position task is respected.

Moreover all the safety aspects are managed by the controller. The external

hardware (which can be a standard pc or an embedded device) is instead in

charge of the motion planning and the high level control of the robot. The
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robot controller shall communicate in real-time to the external hardware the

joint position and other parameters or signals (such as the joint currents) that

may be needed for motion planning. The external hardware can in that way

communicate (always in real-time) the target joint position to the robot con-

troller.

Figure 5.2: Denso industrial robot in manual guidance control.

While the concept is simple and clear, to put into practice that kind of control

it means to communicate with each robot controller in a different way, as each

one has its own proprietary communication software. But once that it is done

once, that approach can be used for any kind of application, and moreover,

what is more important, is that any application can be used on any robot

that fulfils those requirements, without the need of changing anything on the

application side, as the generation of the trajectory is in that way independent

from the robot model.

5.1 The manual guidance algorithm applied to an

industrial robot

In order to demonstrate that concept, further experiments of the manual guid-

ance algorithms have been carried out using a Denso 6-axis industrial robot

(Denso VS-087) as in Figure 5.2. The b-CAP protocol [54] has been used to

interface the controller of the robot with an external hardware. The b-CAP

protocol is based on TCP/IP communication protocol and permits to control

the robot using a "slave mode", i.e. the controller reads from the ethernet port
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5.1 The manual guidance algorithm applied to an industrial robot

Figure 5.3: b-CAP protocol slave mode functioning. Above: normal function-
ing, the interpolation of trajectory is executed inside the RC8 Denso
controller. Below: slave mode, the interpolation of trajectory is ex-
ecuted outside the RC8 Denso controller. Source: Denso manual.

a joint position each 2 milliseconds and moves the robot to that position; the

controller gives the robot joint position as feedback.

Fig. 5.3 shows the functioning of b-CAP slave mode. In normal robot motion

commands, RC8 controls the robot by means of generating trajectory in real

time in order to achieve the target posture designated by client application. In

Slave Mode instead, client specifies the robot posture in order to control robot

motion in real time (real-time trajectory control by client application).

A cRIO 9068 from National Instrument running a linux realt-time OS has

been used to implement the manual guidance algorithm and to send position

commands to the robot controller. In this case, the joint velocity resulting from

(3.9) is integrated with Euler method and sent to the controller. The aim of

these experiments is to show that the method presented can be easily adapted to

any kind of anthropomorphic robot. Fig. 5.4 shows the hardware configuration

for those experiments: the cRio is communicating with the force/torque sensor,

using the signals to generate a robot trajectory which is then communicated in

real-time to the robot controller using the b-CAP protocol.

In the first experiment, the user tries to draw a circle in the xy plane, while

keeping the end-effector orientation constant. Figure 5.6 shows the force ap-

plied by the operator while moving the robot and the resulting end-effector

velocity, while Figure 5.5 shows the end-effector motion.

This experiment shows that the robot end-effector is easy to move also along

“diagonal” directions. This depends mainly on two parameters: the threshold,
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Figure 5.4: Hardware configuration for manual guidance experiments with
Denso VS-087 robot.

which has to be as low as possible in order to be able to move the robot using

low forces; and the K2 damping parameter (see equations 3.7 and 3.8), which

has to be high enough, so to have an accelerated motion of the end-effector

and not a instant velocity proportional to the force. The same is true also for

the rotational part of the control, as showed by the experiment in Figure 5.7.

This second experiment is the complementary of the previous one: here the

user tries to do a spherical movement of the end-effector without moving the

end-effector tip.

Figure 5.5: Robot guided through a circle. 3D plot of the end-effector motion.
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Figure 5.6: Robot guided through a circle. Above: Force applied by the human
along x, y and z axis (respectively in blue, green and red), the black
lines represent the threshold; bottom: The resulting end-effector
translational velocity.

The results obtained with the Denso robot show how the manual guidance

algorithm can be quickly deployed to other robots without big efforts. More-

over, having a control loop which runs on a real-time Operating system and

at an higher frequency respect to the schunk robot (500 Hz instead of 100 Hz)

makes the robot more reactive to user inputs, improving the quality of the

manual guidance.
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Figure 5.7: Robot guided through a spherical movement. Above: Torque ap-
plied by the human around x, y and z axis (respectively in blue,
green and red), the black lines represent the threshold; bottom:
The resulting end-effector rotational velocity.
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Chapter 6

Conclusion

The work presented in this Ph.D. thesis shows how the new collaborative

robotics is changing and is going to change the automation world and the

concept of robotics itself. In the introduction a picture of the contemporary

situation of robotics in industrial contest and the evolution of Industry 4.0

are presented. Furthermore the premises and the motivation of the work are

explained. The second chapter introduce the innovations that collaborative

robots are bringing. Besides the possibility of working sharing their workspace

with humans, they can also be deployed easily and in a fast way in production

line. Furthermore the programming of collaborative robots is made simple and

intuitive, exploiting manual guidance methods, making them very flexible and

easy adaptable for new tasks. The safety aspects deriving from ISO standards

are explained and analysed. Finally an exhaustive list of the collaborative

robots that are present on the market with pro and cons has been presented.

Chapter 3 proposes an algorithm for manual guidance based on the usage of

a force/torque sensor, which can be applied to any robotic arm. A SoA of other

methods for robot manual guidance is presented, highlighting the differences

and the advantages of each on. Experimental results have been carried out to

prove the stability and the functioning of the presented algorithm; moreover a

realistic use case has also been presented, showing how the manual guidance can

be used to teach in easy and quick way a simple task to a robot. This highlights

how the manual guidance can simplify the programming, especially for those

tasks which require to be adjusted or updated often, due to for example new

models to be tested.

The fourth chapter addresses the problem of teaching complex tasks that

require the integration of external sensors with the robot (like a force/torque

sensors), keeping the programming of the task simple and time-saving. The

innovative proposed approach consists of three phases:

• Demonstration of the trajectory support points using manual guidance (or

other methods) and definition of the constraint through the user interface.

• Learning phase, where the robot discovers itself the task, based on the
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Chapter 6 Conclusion

inputs that the user gave it during the demonstration. While the robot is

moving along the task, the user can modify the orientation or the position

of the robot end-effector to adjust the task to his will. To that purpose,

this phase can be repeated more than once.

• Reproduction of task, where the robot executes in autonomous way what

learned in the previous phases.

With such an approach task along complex surfaces can be taught easily and

quickly as demonstrated with the experiment presented in this work.

Finally in the last chapter, the importance of open source software for robotics

has been highlighted. As the Cyber-Physical Systems are spreading thanks to

Industry 4.0, the need of having reconfigurable and interchangeable modules is

growing. One of the characteristics of collaborative robots is to be flexible and

easily physically interchangeable, as they can be mounted quickly and without

the need to have physical barriers specifically designed. But in order to be

really interchangeable there is the need to make robots flexible also speaking

of software. All the work here presented has been done keeping in mind that

concept, i.e. all the proposed approaches where realized independently from

the robot used. To demonstrate that other experiments of the manual guid-

ance algorithm have been presented, using a Denso industrial robot arm. This

Ph.D. work proposes new methods and programming strategies to enable and

improve Programming by Demonstration techniques, taking care of all aspects

which are relevant to industrial contest: how to consider safety aspects in the

integration of a collaborative robot, flexibility of the solution and easiness of

programming and usage. In addition, all the presented concept were supported

by experimental results taking in consideration set-ups for realistic use-cases.

The results obtained and here presented were recognized as valid and sound

internationally as confirmed by tow publications. [52] presents the manual guid-

ance approach, while [55] shows how open source software techniques can be

used to integrate a robot into a more complex system like a CPS, making an

industrial robot arm flexible and adaptable on software side.
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