
i

Università Politecnica delle Marche
Scuola di Dottorato di Ricerca in Scienze dell’Ingegneria

Curriculum in Ingegneria Informatica, Gestionale e dell’ Automazione

Kinematic Control Algorithms for
Cooperative Dual-arm Systems via

Redundancy Resolution

Ph.D. Dissertation of:
dott. Davide Ortenzi

Advisor:
Chiar.mo Prof. Sauro Longhi

Coadvisor:
dott. Andrea Monteriù
dott. Alessandro Freddi

Curriculum Supervisor:
Prof. Claudia Diamantini

XV edition - new series

Università Politecnica delle Marche
Scuola di Dottorato di Ricerca in Scienze dell’Ingegneria

Curriculum in Ingegneria Informatica, Gestionale e dell’ Automazione

Kinematic Control Algorithms for
Cooperative Dual-arm Systems via

Redundancy Resolution

Ph.D. Dissertation of:
dott. Davide Ortenzi

Advisor:
Chiar.mo Prof. Sauro Longhi

Coadvisor:
dott. Andrea Monteriù
dott. Alessandro Freddi

Curriculum Supervisor:
Prof. Claudia Diamantini

XV edition - new series

Università Politecnica delle Marche
Scuola di Dottorato di Ricerca in Scienze dell’Ingegneria

Facoltà di Ingegneria
Via Brecce Bianche – 60131 Ancona (AN), Italy

"Fatti non foste a viver come bruti,
ma per seguir virtute e canoscenza”

Divina Commedia,
Dante Alighieri.

To my girlfriend Chiara,
because she has encouraged me to overcome my limits.

Acknowledgments

The present study has been supported by several people, who have helped to
improve important skills.

First of all, I would thank my tutor, Prof. Sauro Longhi, for giving me the
opportunity to carry out my research also at a prestigious foreign university,
such as Aalto University of Helsinky.

Moreover, all my results obtained during the research activity have been
made possible thanks to two fundamental people as my supervisors: Andrea
and Alessandro. I would like to thank them for all their precious and tireless
help for everything, especially during the writing of our publications, many of
which completed together late at night. However, the most important thing
that I received from their research activities concerns the passion for this work,
which often requires a lot of sacrifice and motivation.

I would thank Prof. Ville Kyrki, who welcomed me into his research group
and supported my research during my visiting time in Finland. From this ex-
perience, I have learned the organization and methodology that he has always
demonstrated in his work. Moreover, I would thank Raj, with whom I pleas-
antly collaborated and all the colleagues in the office, as Mattia and Roel, who
made my period in Finland really pleasant.

A great thank to Patrizia and her talent, because her illustrations help to
clarify the basic concepts of my research topics.

I thank my colleagues of department, which have become also my friends.
They have always supported me, with their professional experience in order to
improve the quality of my research activity, especially at the beginning of this
PhD course. I think that my research results would not be so pleasant, without
the enthusiasm of (in alphabetic order) Francesco, Giovanni, both Luca, Lucia,
Lucio, Luigi and Sabrina.

For last one, but most important one, I thank my girlfriend Chiara, because,
in spite of the big distance that separates us, she still continues to support me
tirelessly in all my changes, of today and tomorrow...

Ancona, Marzo 2017
dott. Davide Ortenzi

ix

Abstract

This thesis tackles the problem of kinematic control for cooperative dual-arm
systems via redundancy resolution. First the redundancy analysis of two co-
operative manipulators is presented, which shows how they can be considered
as a single redundant manipulator, through the use of the relative Jacobian
matrix. Then the Jacobian null space technique is considered: in this way the
kinematic redundancy can be resolved by applying the principal local optimiza-
tion techniques used for the single manipulator case; moreover several tasks
with different execution priority levels can be performed at the same time (e.g.
obstacle avoidance, manipulability index maximization or joint position con-
straints satisfaction). The kinematic resolution is then specifically addressed
to both prevent and take into account possible faults. In detail, since violation
of joint position constraints may damage a manipulator, a joint position limit
avoidance strategy is proposed. This strategy is able to satisfy all joint limits
even when the number of redundant motions are no longer sufficient to ensure
them with a classical approach, by locally and temporary changing the desired
end-effectors motion when redundant motions are not available. Finally, a fault
tolerance algorithm is proposed, which use the degree of redundancy both to
maximize the local optimum fault tolerance configuration, and to overcome
the loss of the end effector velocity due to fault occurrence, by use of the sat-
uration null space method. Several simulated and experimental examples are
illustrated, which demonstrate the high flexibility of the proposed algorithms,
which can implemented on different kind of cooperative manipulators.

xi

Sommario

Questa tesi affronta il problema del controllo cinematico di due manipolatori
cooperanti, attraverso la risoluzione della ridondanza cinematica. In primo lu-
ogo, la tesi propone una descrizione dell’analisi della ridondanza dovuta alla
cooperazione dei manipolatori, poichè essi possono essere considerati come
un unico manipolatore ridondante, mediante il metodo dello Jacobiano rela-
tivo. Successivamente, viene studiata la tecnica di risoluzione della ridondanza
basata sulla proiezione di diversi compiti nello spazio nullo dello Jacobian, in
modo da eseguire contemporaneamente diversi compiti, aventi differenti livelli
di priorità. Tali compiti possono migliorare la cooperazione dei due manipo-
latori, come ad esempio, evitare gli ostacoli posti in prossimità, massimizzare
l’indice di manipolabilità o rispettare i vincoli di posizione presenti nei giunti.
In particolare, la violazione di vincoli di posizione dei giunti è dettagliatamente
studiata, poichè tale condizione può indurre a molteplici criticità, fra le quali
il danneggiamento del sistema stesso. Pertanto, é proposta una strategia di
controllo che permette di rispettare tutti i limiti dei giunti, anche qualora il
numero di movimenti ridondanti non fosse più sufficiente a garantirli mediante
un approccio classico. Tale tecnica degrada, parzialmente e temporaneamente,
le prestazioni del movimento assegnato ai due terminali, al fine di rispettare
tutti i vincoli di giunto, anche quando i moti ridondanti non sono disponibili.
Infine, viene proposto un algoritmo di tolleranza del guasto, che impiega il
grado di ridondanza del sistema sia per ottimizzare localmente una configu-
razione dei manipolatori robusta al guasto, che per limitarne i suoi effetti sulle
loro prestazioni. Alcuni esempi di possibili applicazioni sono stati realizzati sia
in simulazione che sperimentalmente. Essi dimostrano l’elevata flessibilità degli
algoritmi proposti che possono essere adeguatamente implementati su diverse
tipologie di manipolatori.

xiii

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Literature review . 3
1.3 Contributions . 5
1.4 Thesis structure . 5

2 Kinematic redundant manipulators 7
2.1 Manipulator mobility . 7
2.2 Spaces definition . 9

2.2.1 Joint space . 9
2.2.2 Cartesian space . 9
2.2.3 Workspace . 10
2.2.4 Task space . 10

2.3 Kinematic redundancy definition 10
2.4 Differential kinematics . 12

2.4.1 Geometric Jacobian . 13
2.4.2 Analytical Jacobian . 15
2.4.3 Inverse differential kinematics 17

3 Redundancy resolution via local optimization 21
3.1 Jacobian pseudo-inverse method 21
3.2 Jacobian null space method . 24

3.2.1 Jacobian null space projection matrix 24
3.2.2 Gradient projection method 26
3.2.3 Objective functions . 27
3.2.4 Saturation in the null space method 27
3.2.5 Hierarchical priority execution task 29

4 Kinematic modelling of cooperative manipulators 33
4.1 Relative Jacobian method . 33
4.2 Inverse kinematics solution for cooperative manipulators 36

xv

Contents

5 Proposed kinematic control algorithms for obstacle and joint limits
avoidance 39
5.1 Control algorithm for obstacle avoidance 39

5.1.1 Case study . 39
5.1.2 Task Description . 39
5.1.3 Simulation results . 43

5.2 Control algorithm for joint limits avoidance 46
5.2.1 Proposed joint position limits avoidance strategy 47
5.2.2 First case study . 49
5.2.3 Second study case . 53
5.2.4 Supervisor controller for redundancy management . . . 58
5.2.5 Third study case . 60

6 Proposed fault tolerant algorithms 65
6.1 Relative manipulability index 65
6.2 Optimization of fault tolerant configuration 67
6.3 Proposed fault tolerant configuration algorithm 68
6.4 Joint fault management with the SNS method 69
6.5 Case study . 70

6.5.1 Results . 71
6.5.2 Discussion . 73

7 Conclusions and future works 75
7.1 Conclusions . 75
7.2 Future works . 76

xvi

List of Figures

2.1 Three-link planar arm (revised version of Figure 2.20 from [55]) 8
2.2 Calculation of i−th joint velocity contribution to the end-effector

velocity (revised version of Figure 3.2 from [55]) 14
2.3 Block diagram of the close loop inverse kinematics (partial re-

production of Figure 3.11 from [55]) 18

3.1 Example of non-repeatable motion in the joint space 23
3.2 Relation between joint velocity space and end-effector velocity

space . 24
3.3 Geometric view on Jacobian null space 25
3.4 Example of SNS application . 29
3.5 Example of hierarchical priority execution task 30

4.1 Two cooperative manipulators (partial reproduction of Figure 1
from [26]) . 34

4.2 Block diagram of the relative Jacobian pseudo-inverse algorithm 37

5.1 Concept of the wheelchair with two manipulators within an AAL
scenario . 40

5.2 Top view of the system (a) and initial planar manipulators con-
figuration (b) . 40

5.3 Block diagram of two cooperative manipulators 43
5.4 Final manipulators configuration without (a) and with (b) ob-

stacle avoidance task. 44
5.5 Joint angle position without (a) and with (b) obstacle avoidance

task . 44
5.6 Relative end-effectors position error (a) and orientation error (b) 45
5.7 End-effector A position along the path (a) and the path following

error (b) . 45
5.8 Minimum distance between manipulators and obstacle 46
5.9 Activation function for one component wi of W matrix. 48
5.10 Operating principle of the joint limits avoidance strategy. . . . 49
5.11 Manipulator configurations: (a) initial, (b) Case I and III final

configuration, (c) Case II final configuration.) 50

xvii

List of Figures

5.12 A (B) manipulator joint position space relative to qA1-qA2 (a)
(qB1-qB2 (b)). 52

5.13 A and B manipulators Cartesian path for the three considered
simulation cases. 53

5.14 Joint velocity space with repulsive velocity for A manipulator
and B manipulator. 54

5.15 Two robot manipulators holding a woodblock to perform tightly
coordinated cooperative operations. 55

5.16 Heterogeneous two-robot system: coordinate frame transforma-
tion for the relative Jacobian formulation. 55

5.17 Coordinated manipulation results of tightly-coupled manipula-
tors under joint constraints (Case B and C). 56

5.18 Cooperative performance of tightly-coupled manipulators for the
Cases (Case A-C), refer to Table5.3. 57

5.19 Controller treats joint limits enforced in manipulators. 58
5.20 Operating principle of the supervisor controller. 59
5.21 Operating principle of the joints avoidance strategy. 60
5.22 Study case setup (a) and coordinate transformation of the Bax-

ter arms (b) . 61
5.23 Controller treats joint limits enforced in manipulators. 63
5.24 Coordinated manipulation results. 63
5.25 Cooperative performance of tightly-coupled manipulators. . . . 64

6.1 3 DoF planar manipulator with fault tolerant configuration with
respect to joint one (q1) (revised version of Figure 2 from [52]) 66

6.2 Starting configuration of the dual arm system 70
6.3 Relative manipulability indices for 50% reduction of maximum

joint velocity . 71
6.4 Relative manipulability indices for 80% reduction of maximum

joint velocity . 71
6.5 Joint velocity when the maximum q̇1 velocity is reduced of 50%

at t=5s . 72
6.6 Joint velocity when the maximum q̇3 velocity is reduced of 50%

at t=5s . 72
6.7 Final manipulators configuration, when a 80% maximum veloc-

ity loss on (a) q̇1 and (b) q̇3 occurs at t=5s 73

xviii

List of Tables

5.1 Joint limits. 50
5.2 Decomposition of the task into prioritized subtasks. 51
5.3 Experimental cases. 53
5.4 Joint limit parameters. 56
5.5 Description of the experimental considered cases. 62
5.6 Parameters used for the experimental cases. 62

xix

Chapter 1

Introduction

Dual-arm manipulation systems have been attracting a growing from the sci-
entific community over the last few years. Although a universal accepted def-
inition does not exist, a good starting point is provided [1], where dual arm
manipulation is presented as the cooperation of two robotic systems physi-
cally interacting with an object, moving or reshaping it. The use of multiple
cooperative manipulators offers several advantages in many different contexts
[2]. Potential applications for cooperative manipulation include, but are not
limited to, the manufacturing industry [3, 4, 5], hazardous environments such
as nuclear sites [6, 7, 8], underwater [9, 10] and space [11, 12]. Cooperation
can bring economical benefits since a wide range of tasks can be accomplished
through the use of multiple simpler and less expensive heterogeneous robots
[13].

The dual-arm manipulation system was firstly introduced to replace workers
in dangerous manufacturing processes. Early robotic manipulators were con-
structed by Goertz in the 1940s for handling radioactive goods [14]. Later, they
were employed for marine and space exploration, where the dual arm manipu-
lators were noticeably improved. In 1969, the NASA’s Johnson Space Center
introduced anthropomorphic dual arm teleoperators, due to the analogies with
human operations [15].

Today, the modern technological progress and the increasing acceptance of
technology by users have encouraged the scientific community to focus on the
development of dual-arm manipulators able to work in user centered envi-
ronments, such as surgery[16] and Ambient Assisted Living (AAL) applica-
tions [17]. An example of AAL application consists in dual-arm manipulators
mounted on a wheelchair, which can assist disabled people to reach and handle
objects, or to perform more complex tasks [18, 19, 20].

1.1 Motivations
Cooperation between two robotic arms manipulating an object is a challeng-
ing task from an engineering perspective, since their relative motions have to

1

Chapter 1 Introduction

be properly controlled in order to perform the desired operations. Moreover,
the two arms and the object realize a closed kinematic where the degrees of
motion of the system are greater than those which are generally required to
perform the task, therefore the inverse kinematics problem admits an infinite
number of solutions [21]. For this reason the dual-arm manipulation context,
the redundant variables can be employed to perform tasks, such as collision
avoidance [22], or satisfy specific performance criteria, such as singularities
avoidance [23], mechanical joint limits avoidance [24] or improvement of ma-
nipulability along a chosen direction [25]. Since the control of cooperative
manipulators is more complex than the control of a single manipulator, I de-
cided to employ a method based on the relative Jacobian matrix. This method
permits to consider two redundant manipulators like a unique redundant ma-
nipulator, whose number of joints is equal to the sum of each manipulator’s
joints, while the end-effector motion variables correspond to the relative mo-
tion between the two end-effectors. This method presents several advantages
with respect to the individual control of each manipulator. Firstly, a dual-arm
system modelled according to the relative Jacobian method can be controlled
by the same algorithms used for controlling single manipulators. Secondly, the
compact expression of the relative Jacobian matrix [26] is simple to calculate
when Jacobians of the individual manipulators are known and, if a manipula-
tor is replaced with another one, it is sufficient to change its Jacobian without
the need of complex calculus. Therefore the research activity presented in this
thesis is focused on this method. In particular the main objective of this the-
sis is to extend the classical redundancy resolution algorithms for controlling
dual-arm system, composed by homogeneous and heterogeneous manipulators.

Moreover, since some cooperative dual-arm manipulators have been designed
to perform tasks in harsh environments, they have to complete an assigned task
even in presence of faults. In such a scenario, a dual-arm system can be defined
as fault tolerant [27]. There are several sources of faults that can compromise
the correct motion of manipulators. The main faults can be classified into
five categories: Free-Swinging Joint Faults (FSJFs) [28], Locked Joint Faults
(LJFs) or joint failure [29], Partial Loss of Joint Torque Faults (PLJTFs) [30],
incorrectly measured Joint Position Faults (JPFs) and incorrectly measured
Joint Velocity Faults (JVFs) [31]. The first three categories consist in a partial
or total loss of joints motion, while the other two comprises joint sensors faults.
The probability of occurrence of one of these faults on a robot is inversely
related to the reliability of its components [32]. For this reason, a first fault
tolerant approach consists in using high quality components, i.e. perfectness
[33], which dramatically increase the system cost. Regarding to the PLJTFs, a
low-cost fault tolerant system is proposed in this thesis. The basic idea consists
of designing a kinematic controller based on redundancy resolution algorithm,

2

1.2 Literature review

which allows both to maximizes the local optimum fault tolerance configuration
(before joint fault) and to overcome the loss of the end effector velocity due to
fault occurrence (after joint fault).

1.2 Literature review
Although only a few works focused on inverse kinematic control of dual arms
motion, such problem has been addressed extensively in literature for the sin-
gle manipulator case. The related research is mainly based on global and local
optimization of a specific objective function. In particular, the global opti-
mization permits to calculate the optimal path which satisfies a performance
criteria (off-line mode) [34], like avoiding obstacles whose positions are known
a priori, while the local optimization permits to calculate the current desired
joints velocity in order to locally satisfy the performance criteria (real time
mode) [35].

The simplest local optimization technique is represented by the pseudo-
inverse solution [36], which provides the joint velocity with the minimum norm
among those satisfying the task constraint. This techniques do not permit to
use the redundant joints for any secondary task, which is instead possible by
adopting the so called task augmentation method [37]. The task augmentation
method consists in augmenting the task vector to tackle additional objectives
by implementing two different methods: extended Jacobian [38, 39] and aug-
mented Jacobian [40]. The disadvantage of these two techniques is due to
occurrence of singularities when the Jacobians associated with the additional
objectives are linearly dependant [38, 41]. In order to overcome these problems,
the Jacobian null space technique was proposed in [42]. This method consists of
projecting a specific objective function (secondary task) into the Jacobian null
space of another task with higher execution priority, in order to obtain a hierar-
chical task priority structure, as described in [43, 44]. Since the joint velocities
required by secondary tasks generate self-motions in the robot (changing the
current manipulator configuration), they do not affect the performance of the
task with highest priority, namely primary task.

A widely used technique of Jacobian null space is the Gradient Projection
Method (GPM), which projects the gradient of a specific objective function
in the null space of Jacobian associated with the desired task, in order to
maximize/minimize it. The main drawback of GPM is the redundant motion
needed to optimize the objective function (e.g. in the joint limits avoidance
task, all joint positions are kept close to the mid-range joint position). In order
to limit the number of redundant motions, other approaches operate only on
those joints whose positions are close to the respective limits [45]. A recent work
[46] projects a joint limit avoidance function based on Prescribed Performance

3

Chapter 1 Introduction

Control methodology (PPC) into the Jacobian null space of the desired task.
However, since the dimension of the Jacobian null space depends on the number
of the available redundant motions, PPC generally does not guarantee the
execution of the secondary task. On the other hand, some algorithms based on
Jacobian null space method ensure this execution by degrading the performance
of primary task. One of these algorithms is described in [47] and consists of
the division of the main task into several subtasks. Single subtasks can be
removed and recovered by a supervisor controller in order to ensure a sufficient
number of redundant motion to the secondary task. A different algorithm is
the Saturation in the Null Space (SNS) algorithm [48], which considers the
joint velocity limits avoidance as secondary task. In particular, this technique
projects the exceeded joint velocity into the null space of the main task Jacobian
matrix, namely partial Jacobian matrix, composed by the not-saturated joints
velocity. When there are not sufficient redundant motions to guarantee the joint
velocity constraints, the desired primary task velocity is reduced. Recently this
algorithm was applied in the context of two cooperative manipulators affected
by joint constraints [49]. The study involves the cooperation of two KUKA
lightweight manipulators based on relative Jacobian method.

Focusing on the joint fault tolerance study, several method can be considered
in the literature. In particular, a widely applied method consists in transform-
ing a FSJF into a LJF, so that they are managed in the same way [50, 51],
while the PLJTFs is kinematically modelled as a reduction of the maximum
joints velocity due to a partial torque loss of its servomotor [30]. An efficient
approach to compensate these types of faults in the end effector consists in the
use of redundant degrees.

The manipulators’ configuration during a fault is crucial in fault tolerant
applications. In fact, the degradation of the system performances depends on
which joint of the manipulators is affected by the fault [51]. If the joint that
provides the greater contribution to the end effector motion is faulty, then the
performance will heavily drop. A classical example is the human arm which
has to execute the task “drink”. It is clearly a redundant system because it
has 7 DoF, but it is not fault tolerant respect to an elbow joint failure, since
it is the only joint that can reduce the distance between the shoulder and the
wrist. These critical configurations can be avoided by projecting the gradient
of a suitable objective function into the Jacobian null space, in order to avoid
bad joint positions before a fault/failure occurs [34]. Another approach is to
maximize the manipulability index by calculating a proper objective function
[25]. This method allows to obtain a local optimum configuration, because it
involves a minimal reduction of the manipulability index for any joint failure.
A possible way to know the amount of manipulability after a failure is to
compute the relative manipulability index [52] which is the ratio between the

4

1.3 Contributions

manipulability index after and before a failure. The research activity of this
thesis about the fault tolerant applications is based on this last approach.

1.3 Contributions
Although several works focusing on the motion constraints and fault tolerant
applications have been performed by several redundancy resolution algorithms
in single manipulator case, only few works considered them in a cooperative
manipulation scenario. Therefore the proposed research activity allowed to con-
sider such methods for cooperative manipulators by using the relative Jacobian
method.

Therefore, the research activity described in this thesis have led the following
innovative contributions with respect to the state of the art:

• Implementation of the hierarchical execution task architecture based on
relative Jacobian method [53];

• Analysis and development of a kinematic controller that provides coordi-
nated motions and joint limit avoidance during the cooperation between
a redundant and non-redundant manipulators;

• Development of a novel joint position limits avoidance strategy, which is
able to satisfy all joint limits of homogeneous redundant manipulators,
even when there are not available redundant motions;

• Development of a joint fault tolerance algorithm, which is able to guar-
antee the correct cooperation of two planar manipulators when the max-
imum velocity of a joint is reduced [54].

1.4 Thesis structure
The thesis has the following structure: Chapter II presents the knowledge
about the kinematic redundancy with the introduction of the inverse differen-
tial kinematics problem; Chapter III summarizes the theoretical background
about the redundancy resolution algorithm that are subsequently used in the
proposed kinematic controller. The derivation of the compact relative Jaco-
bian formulation and its implementation in the kinematic control is proposed
in Chapter IV, while the proposed algorithms with respect to the motion con-
straints cases are described in Chapter V. Chapter VI describes the proposed
fault tolerance algorithm, which has been tested on two planar cooperative
manipulators. Conclusions and future works complete the thesis in Chapter
VII.

5

Chapter 2

Kinematic redundant manipulators

This chapter focuses on some fundamental definitions necessary to well un-
derstand the kinematic redundancy problem in the cooperative manipulation
control framework.

2.1 Manipulator mobility
The kinematically redundant manipulators are particular mechanical structures
that possess more motion variables then those required to perform the specific
task. This requires to first it is firstly necessary to analyse the manipulator
mobility.

In robotics, the number of independent variables necessary to determine
completely the system configuration in space is defined as Degrees of Freedom
DoFs (or Degrees of Motion DoMs). This definition is different from that used
to describe the pose of a rigid body (space’s DoF) in a space n-dimensional, by
means of independent coordinates. In order to calculate the DoFs of a generic
mechanism, namely F , it is possible to implement the formula in (2.1), which
depends on several kinematic parameters:

F = λ(j − 1) −
n∑

i=1
ci (2.1)

where ci is the imposed kinematic constraints of the i − th joint, n and j are
the number of joints and rigid links possessed by the mechanism (base link
enclosed), while λ is the number of space’s DoFs.

Since for each joint, the sum of the number of constraints ci and permitted
degree of freedom fi have to be equal to the space’s DoF (λ = ci + fi), it is
possible to obtain the total number of system constraints as:

n∑
i=1

ci =
n∑

i=1
(λ − fi) = jλ −

n∑
i=1

fi (2.2)

from which it is possible to obtain the Kutzbach formula (when λ = 6) or

7

Chapter 2 Kinematic redundant manipulators

𝑝�

𝑝�

𝑦₀

𝑦

𝑦₁

𝑦₂

𝑦₃

𝑥₀ 𝑥

𝑥₁

𝑥₂

𝑥₃
𝑃

𝑞�

𝑞�

𝑞�

𝛼�

𝛼�

𝛼�

Figure 2.1: Three-link planar arm (revised version of Figure 2.20 from [55])

Grubler formula (when λ = 3):

F = λ(j − n − 1) +
n∑

i=1
fi (2.3)

A possible application about (2.3) is to calculate the DoF of the planar
manipulator shown in Figure 2.1 in accordance with Grubler formulation

The planar manipulator in Figure 2.1 is composed by j = 3 links and n = 3
joints placed on a planar space (λ = 3). Since all joints are rotative, they allow
only the relative rotation between two consecutive links fi = 1, but not their
relative translation ci = 2, so that the manipulator DoFs is equals to three,
F = 3.

This result implies an important property about the mobility of manipulators
having open-chain structure. In fact, for open chain manipulators, the DoFs
are equal to the number of joints n (F = n), hence in the following chapters
the DoF of a manipulator will be implicitly expressed by its number of joints
n.

8

2.2 Spaces definition

A system composed by two planar cooperative manipulators having the same
structure shown in Figure 2.1 has a DoF equals to six, (F = 2∗n = 6). However
when they cooperate on a same object, a closed chain is realized and the DoF
is smaller then the total number of joints, F < n. A possible demonstration
can be given by applying (2.3) for a specific cooperation, in which the two end-
effectors can change their relative orientation but not their relative positions.
This type of cooperation can be kinematically modelled as a revolute joint
belonging to the closed chain.

Therefore, the obtained structure has n = 7 but its DoF is equal to four,
because 3 joint positions (passive joints) depend on the other 4 joints (active
joints). Therefore, it is possible to assert that the loss of DoFs obtained during
the cooperation depends on the number of kinematic constraints that are intro-
duced from it. The motion of two cooperative manipulators will be examined
in details in chapter 4.

2.2 Spaces definition

2.2.1 Joint space
The joint space (also called the configuration space) denotes the the space in
which the n-dimensional vector of joint variables, q, is defined as [55]:

q⃗ =

⎡⎢⎢⎢⎢⎣
q1

q2
...

qn

⎤⎥⎥⎥⎥⎦ (2.4)

where the i-th component qi of the vector q corresponds to the angular position
of i-th joint θi, qi = θi. Since the dimension of q is equal to the total number
of joints that are present in the structure, it is also equal to the DoFs of a
open chair manipulator as discussed in the previous section. The joint space
allows to obtain a unique description of the current configuration assumed by a
manipulator and thus of its end effector pose via direct kinematics calculation.

2.2.2 Cartesian space
The Cartesian space is the space in which is defined the m-dimensional vector
xe (with m ≤ 6), in which are reported the variables that describe the position
and the orientation of the end-effector [55]:

x⃗e =
[
p⃗e

φ⃗e

]
(2.5)

9

Chapter 2 Kinematic redundant manipulators

where p⃗e and φ⃗e indicate the Cartesian coordinate and minimum orientation
representation (i.e. Euler angles) of the end-effector respect to the base frame.

The Cartesian space is very useful for trajectory planning (path and execu-
tion time) in the space, because the task variables are defined in this space,
rather than joint space. However the end effector pose expressed in Carte-
sian space depends on joint positions (Joint space) via the direct kinematics
relation, which can be expressed as

x⃗e = k⃗(q⃗) (2.6)

where the vectorial function k⃗, which is generally not linear, allows to calculate
the end effector pose in Cartesian space from the knowledge of joints position.

2.2.3 Workspace
When the joints position are varied across their entire operational range, the
origin of the end-effector frame [55] describes a points region on the Cartesian
space, which is called the workspace. Generally the workspace can be classified
in reachable space and dexterous space. The latter defines the points region
that the origin of the end effector frame can reach by several orientations,
while the former is the region that the end effector frame can reach by at least
orientation. Therefore the reachable space coincides with workspace, while the
dexterous space is a subset of the previous one.

The workspace of a single manipulator depends on its geometry and joint
position limits. However when two cooperative manipulators makes a closed
kinematic chain the workspace is smaller than without cooperation, because it
also depends on the type of cooperation and the distance between two manip-
ulator bases.

2.2.4 Task space
The task space is the space in which is defined a r-dimensional vector x⃗r, that
is composed by the variables that are necessary to describe the end effector pose
in order to perform the desired task [55]. The maximum number of variables is
equal to the number of the Cartesian space variables (r ≤ m). This definition
is very important to determine when a manipulator is redundant, as described
in the next section.

2.3 Kinematic redundancy definition
Given the previous definitions, it is now possible to define formally the kine-
matic redundancy of a robotic manipulator, as well as defined in [55].

10

2.3 Kinematic redundancy definition

Kinematic Redundancy A open-chain manipulator is kinematically redundant
when the number of DoFs n is greater than the number of variables r

that are necessary to describe a given task (dimension of the task space),
n ≥ r.

Intrinsic Redundancy A manipulator is defined as intrinsically redundant when
the number of DoFs n is greater than the number of variables m relative
to the Cartesian space in which the manipulator operates, n > m.

Functional Redundancy A manipulator is functionally redundant when the
number of DoFs n is equal to the dimension of the Cartesian space m

(n = m), but the dimension of task space r is smaller than that of the
Cartesian Space m, (from which it follows n > r).

The first is the main definition of redundancy, which demonstrates the de-
pendence of the redundancy on the dimension of the specific task. Therefore
the same manipulator can be redundant with respect to a specific task and
non-redundant with respect to another task. This definition can be classified
in two sub-categories: intrinsic and functional redundancy. In detail, the in-
trinsic redundancy definition does not depend on the dimension of the task
space, which can be equal or less than that of the Cartesian space, since it is
sufficient that kinematic structure of the robot has a number of DoFs grater
than those request from Cartesian. On the other hand, the functional redun-
dancy definition refers to the specific case where the kinematic structure of the
robot has a number of possible motions equal to the number of the Cartesian
space variables, but some of these are not necessary to perform the specific
task. The following example provides a better understanding of the differences
among the three redundancies. Considering the planar manipulator in figure
2.1 with 3 joints, which has to only translate and rotate an object (r = 3) on
a plane (m = 3). Such manipulator is neither intrinsically redundant (n = m)
nor functionally redundant (m = r), but it can become functional redundant
by obtaining (m > r). A possible way to consider the manipulator like re-
dundant consists of specifying only the translation of the object on the plane
and not its orientation. Therefore, the planar manipulator is not intrinsically
redundant, because its kinematic structure is not changed (n = m), but since
the specific task requires only two variable of the Cartesian Space (r < m),
then the manipulator becomes functional redundant with respect to this task
(n > r). This propriety is able to make a manipulator redundant by reducing
the number of task variables, permits to satisfy other secondary tasks (e.g.
objective function) and it will be used in the following chapter. Finally, it is
possible to define the Degree of redundancy of a redundant manipulator as the
number of redundant motions dr that are possessed by the system, which is

11

Chapter 2 Kinematic redundant manipulators

calculated as shown in (2.7).

dr = n − r. (2.7)

2.4 Differential kinematics

The inverse of the kinematic equation in (2.6) is very useful to determine the
joint positions of a manipulator from the desired end-effector poses. Therefore,
the resolution of the inverse kinematic problem is very important to translate
a desired trajectory defined in the Cartesian space to motions defined in joint
space, in order to actualize the desired motion. However, while the direct
kinematic equation permits to obtain uniquely the end-effector pose by joint
position variables, the inverse kinematic problem admits a closed form solution
only for manipulators having simple kinematic structure. In fact, since the
direct kinematic in (2.6) is not linear, it introduces some limitations when:

• The end effector assumes a particular position and orientation in the
Cartesian space;

• It is not possible to combine the end-effector position and orientation to
several joint variables set;

• The manipulator is redundant.

A possible solution concerns of introducing a linear transformation matrix
that permits to project the joint velocity space into the Cartesian velocity
space (direct differential kinematics) and vice-versa (inverse differential kine-
matics). Such linear transformation is a r × n dimensional matrix, which is
called Jacobian, J , and it depends on the current configuration q⃗ assumed by
the manipulator. The Jacobian is of two different types:

Geometric Jacobian When the end effector velocity vector ˙⃗xe(t) is defined in
terms of linear velocity ˙⃗pe(t) and angular velocity ω⃗(t), the transforma-
tion matrix is called geometric Jacobian, J(q⃗(t)) [55].

Analytic Jacobian When the end effector orientation velocity ˙⃗
φ(t) is expressed

as the time derivative of the Euler angles, the transformation matrix is
called analytic Jacobian JA(q⃗(t)) [55].

12

2.4 Differential kinematics

2.4.1 Geometric Jacobian

The direct differential kinematics can be calculated by geometric Jacobian ma-
trix as shown in (2.8):

˙⃗xe(t) =
[

˙⃗pe(t)
ω⃗e(t)

]
=
[
JP (q⃗(t))
JO(q⃗(t))

]
˙⃗q(t) = J(q⃗(t)) ˙⃗q(t) (2.8)

where JP is the (dim(˙⃗pe) × n) - dimensional matrix relative to the joint ve-
locity vector contribution to the translation velocity vector ˙⃗pe, while JO is the
(dim(˙⃗ωe) × n) - dimensional matrix mapping the joint velocity vector into the
angular velocity vector ω⃗e.

Since J depends on the kind of joints constituting the manipulators (revolute,
prismatic, etc...), it is first of all necessary to choose them. In this study the
joints considered are of revolute type, because the manipulators that will be
described have only revolute joints.

In order to calculate the geometric Jacobian, it possible to considerate sepa-
rately the linear velocity contribution JP and the angular velocity contribution
JO. The first one can be obtained by differentiating the end effector position
p⃗e with respect to time as shown below:

˙⃗pe =
n∑

i=1

∂p⃗e

∂qi
q̇i =

n∑
i=1

JPi q̇i = JP
˙⃗q(t) (2.9)

where the subscript i indicates the i − th joint. Therefore, (2.9) shows how
˙⃗pe is obtained as sum of the JPi q̇i terms, each of which represents the linear
velocity contribution given by i − th joint to the end-effector.

In accordance with Figure 2.2, the linear velocity contribution of each revo-
lute joint, JPi q̇i, can be obtained by following expression:

JPi q̇i = ω⃗i−1,i × r⃗i−1,e = q̇iz⃗i−1 × (p⃗e − p⃗i−1) (2.10)

where the subscript i − 1, i indicates a coordinate transformation from i − th

link frame to (i−1)− th link frame. Finally, from (2.10) it is possible to obtain
the final JPi expression:

JPi = z⃗i−1 × (p⃗e − p⃗i−1) (2.11)

where zi indicates the versor relating to the i − th revolute joint axes.
The calculation of angular velocity contribution JO can be obtained by ex-

pressing the end-effector angular velocity as:

ωe =
n∑

i=1
ωi−1,i =

n∑
i=1

JOi q̇i = JO
˙⃗q(t) (2.12)

13

Chapter 2 Kinematic redundant manipulators

𝑧𝑧₀

𝑥𝑥₀ 𝑦𝑦₀

�⃗�𝑝𝑖𝑖−1 𝑟𝑟𝑖𝑖−1,𝑒𝑒

�⃗�𝑝𝑒𝑒

𝑧𝑧𝑒𝑒

𝑧𝑧𝑖𝑖−1

𝑂𝑂�⃗ 𝑖𝑖−1

Figure 2.2: Calculation of i − th joint velocity contribution to the end-effector
velocity (revised version of Figure 3.2 from [55])

from which it is possible to characterize the angular velocity contribution JOi q̇i

by using of simple kinematic relation from the rigid body motion theory in [55]

JOi q̇i = q̇iz⃗i−1 (2.13)

and thus:

JOi = z⃗i−1 (2.14)

Geometric Jacobian of a 3-DoFs planar manipulator

As practical example of (2.11) and (2.14), the geometric Jacobian of the three-
links planar manipulator (Figure 2.1) is reported in below in accordance with
[55]

J(q) =
[
z⃗0 × (p⃗3 − p⃗0) z⃗1 × (p⃗3 − p⃗2) z⃗2 × (p⃗3 − p⃗2)

z⃗0 z⃗1 z⃗2

]
(2.15)

where the position vectors of each link are obtained by direct kinematic equa-

14

2.4 Differential kinematics

tion and they result to be:

p⃗0 =

⎡⎢⎣0
0
0

⎤⎥⎦ p⃗1 =

⎡⎢⎣a1cos(q1)
a1sin(q1)

0

⎤⎥⎦ p⃗2 =

⎡⎢⎣a1cos(q1) + a2cos(q1 + q2)
a1sin(q1) + a2sin(q1 + q2)

0

⎤⎥⎦
p⃗3 =

⎡⎢⎣a1cos(q1) + a2cos(q1 + q2) + a3cos(q1 + q2 + q3)
a1sin(q1) + a2sin(q1 + q2) + a3sin(q1 + q2 + q3)

0

⎤⎥⎦ ,

(2.16)

while the versors of the revolute joint axes are equal to:

z⃗0 = z⃗1 = z⃗2 =
[
0 0 1

]T

(2.17)

Therefore it is possible to obtain the geometric Jacobian as1:

J =

⎡⎢⎣−a1s1 − a2s12 − a3s123 −a2s12 − a3s123 −a3s123

a1c1 + a2c12 + a3c123 a2c12 + a3c123 a3c123

1 1 1

⎤⎥⎦ (2.18)

which is a (3 × 3)-dimensional matrix, because the manipulator has 3 joints,
n = 3, while its end-effector on the plane has 2 translation motion variables
along X, Y axes and 1 angular motion variable with respect to the revolute
joint z-axis joint, so that m = 3.

If the end-effector orientation is not of interest for the specific task, it is
possible to consider only the positional part JP , which is obtained from the J
matrix by extracting the first two rows.

J = JP =
[

−a1s1 − a2s12 − a3s123 −a2s12 − a3s123 −a3s123

a1c1 + a2c12 + a3c123 a2c12 + a3c123 a3c123

]
(2.19)

Therefore J in (2.19) is a lower rectangular matrix with dimension equals to
(2 × 3) and the manipulator becomes functional redundant in accordance with
the definition stated in section 2.3.

2.4.2 Analytical Jacobian

The calculation method of the previous Jacobian J is based on a geometric
procedure that determinates the velocity contribution of each joint to the linear

1where the notations ci...j and si...j represent cos(qi + . . . + qj) and sin(qi + . . . + qj),
respectively.

15

Chapter 2 Kinematic redundant manipulators

and angular velocity components of the end-effector.
However, when the end-effector orientation is defined by a minimum number

of parameters (Euler angles) φ⃗e, it is very advantageous to calculate the Jaco-
bian matrix by differentiating the direct kinematic relation k(q⃗) with respect
to the joint variable, as shown below

JA(q⃗) = ∂k(q⃗)
∂q⃗

(2.20)

where JA(q⃗) is called the Analytical Jacobian. Therefore the direct differential
kinematics in (2.8) can be rewritten as

˙⃗xe(t) =
[˙⃗pe(t)

˙⃗
φe(t)

]
=
[
JP (q⃗(t))
Jφ(q⃗(t))

]
˙⃗q(t) = JA(q⃗(t)) ˙⃗q(t) (2.21)

where JP and Jφ are the Jacobian that provide the linear and angular velocities
contribution to end effector, respectively.

JP = ∂p⃗e

∂q
Jφ = ∂φ⃗e

∂q
(2.22)

From 2.22, it is possible to affirm that the JA is generally different from J ,
because ˙⃗

φe, that represents the rotation velocity vector of end-effector frame,
does not coincides with the angular velocity vector ω⃗e. However the Jφ(q⃗) is
not easy to calculate because φ⃗e is not directly accessible, but it is extracted
from the rotation matrix of end-effector orientation frame with respect to ma-
nipulator base frame.

Therefore it is possible to establish the transformation matrix T between the
geometric Jacobian JP and analytic Jacobian JA as shown in (2.23)

J = TA(φ⃗e)JA with TA(φ⃗e) =
[
I 0
0 T (φ⃗e)

]
(2.23)

where T (φ⃗e) is the transformation matrix between angular velocity and the
time derivative of the Euler angles as shown in (2.24).

ωe = T (φ⃗e) ˙⃗
φe (2.24)

The transformation matrix T is affected by a representation singularity if
the end-effector orientation angles make the determinant of T equals to zero,
so that the matrix cannot be inverted. In other words, some angular velocity
ωe cannot be expressed by means of ˙⃗

φe, when the orientation of end effector

16

2.4 Differential kinematics

assumes critical Euler angles.
However there are some type of manipulators for which the geometric and

analytical Jacobians are completely equivalent. Such equivalence depends on
the manipulator’s geometry, and in detail, when the DoFs of the structure can
assign rotation to the end-effector only respect to a unique fixed axes in the
space. A typical example is the planar manipulator shown in Figure 2.1, whose
geometry allows the end-effector to solely rotate with respect to z0.

In general the analytical Jacobian should be adopted whenever it is nec-
essary to refer to differential quantities of variables defined in the Cartesian
space, while geometric Jacobian should be used when it is necessary to refer to
quantities of clear physical meaning.

2.4.3 Inverse differential kinematics

Since generally the task motion variables are defined in the operative space
desired by using the r − dimensional end-effector vector ˙⃗xd, kinematic inverse
algorithms are necessary to obtain the manipulator joints velocity vector, which
represents the reference input of the manipulator. If the manipulator is not
redundant (n = r), the joints velocity vector ˙⃗q(t) can be calculated by inverting
the Jacobian (note that the present study is focused on the analytic Jacobian,
but it can be repeated similarly for the geometric Jacobian)

˙⃗q(t) = JA
−1(q⃗(t)) ˙⃗xd(t) (2.25)

If the initial joint position q⃗(0) is known, it is possible to calculate the new
manipulator configuration q⃗(t) by time integration of the joint velocity

q⃗(t) =
∫ t

0
˙⃗q(s)ds + q⃗(0) (2.26)

Since the inverse kinematic algorithms generally run on digital processors, the
joint position is discretized into q⃗(tk) (where k indicates the k-th discrete time
instant) by discrete-time numerical approximation of the continuous-time inte-
gral shown in (2.26). In the following the mathematical approach will be based
on discrete-time. In order to obtain an accurate discrete-time approximation of
(2.26), an high-order algorithm is required. However, an high-order algorithm
implicates an undesired large finite time delay in real time applications, which
can be reduced by shortening the time step ∆t [40]. A good choice consists in a
first order algorithm as the Euler forward rectangular method, which can give
an acceptable accuracy of the numerical integration with suitable ∆t value.
The Euler forward rectangular method is used to transform the integral shown

17

Chapter 2 Kinematic redundant manipulators

in (2.26) in the following recursive form

q⃗k ≈ q⃗k−1 + JA
−1(q⃗k−1) ˙⃗xdk−1∆t (2.27)

where q⃗k indicates the calculated joints position at the time instant k, while
˙⃗xdk−1 is the desired end-effector motion at the time instant k − 1. In spite
of the kind of implemented interpolation, the obtained end effector pose x⃗ek

,
by direct kinematic functions, is different from the desired end-effector pose
x⃗dk

, because any numerical integration is mainly affected by two sources of
error. The first consists in an unavoidable drifting error, which increases at
each numerical integration step, while the second depends on the uncertainty
in the initial value of the joints position. Thus, the pose error e⃗k can be defined
as

e⃗k = x⃗dk
− x⃗ek

(2.28)

Defining the joint velocity vector as a function of the error of the end-effector
pose ˙⃗qk(e⃗k), it is possible to ensure the convergence of the pose error to zero.
This choice permits to find several inverse kinematics algorithms which are
based on the use of a feedback correction term called Closed-Loop Inverse
Kinematics (CLIK) [56]. A well known first-order kinematic algorithm is the
Jacobian inverse, which permits to calculate ˙⃗qk as formally defined in [53, 55]

˙⃗qk = JA
−1(q⃗k)(˙⃗xdk

+Ke⃗k) (2.29)

therefore, (2.29) can be inserted in the control algorithm, whose block diagram
representation is shown in Figure 2.3.

Inverse
JacobianK

Direct
Kinematics

̇�

� � � ̇ �+

-
+
+

�̇⃗�𝑥𝑑𝑑

�⃗�𝑥𝑑𝑑 �⃗�𝑞 �̇⃗�𝑞 𝑒𝑒

�⃗�𝑥𝑒𝑒

Figure 2.3: Block diagram of the close loop inverse kinematics (partial repro-
duction of Figure 3.11 from [55])

in whichK is a constant positive-define gain matrix. Since ˙⃗qk = JA
−1(q⃗k) ˙⃗xk,

18

2.4 Differential kinematics

(2.29) can be rewritten as follows

JA
−1(q⃗k)(˙⃗ek +Ke⃗k) = 0 → lim

k→∞
∥e⃗k∥ = 0 (2.30)

where the velocity of the pose error convergence depends on the eigenvalues
of matrix K, so that larger eigenvalues values correspond to faster pose error
convergence. However, the convergence velocity cannot be chosen arbitrarily
due to the limitations imposed by the ∆t. Finally, if the initial error pose is
equal to zero, i.e., e⃗k=0 = 0, then the feed-forward action ensures a zero error
along the whole trajectory.

When the manipulator is redundant, the inverse differential kinematics in
(2.29) cannot be implemented, because the Jacobian matrix is a lower rectan-
gular matrix (its dimension is r ×n with r < n). Therefore its inversion admits
multiple solutions and a criteria of solution choice should be adopted, as it is
described in the next chapter.

19

Chapter 3

Redundancy resolution via local
optimization

This chapter presents the redundancy resolution methods that were considered
during my research activity to solve the inverse differential kinematic problems
of the redundant manipulator. Indeed when a manipulator is redundant, its
Jacobian matrix JA has more columns than rows (r < n) and thus infinite
solutions exist to (2.29), hence a chosen solution criteria is required. The
redundancy resolution methods allows to obtain the desired solution among all
those possible, via local optimization of a performance criterion or other tasks
having lower priority execution than the main task (or primary tasks).

The great advantage of local optimization methods consists in their sim-
ple redundancy resolution form, which permits the real-time calculation of the
k − th desired joint velocity vector ˙⃗qk in order to optimize locally a function
objective w(q⃗k). Since the solutions obtained are based only on current manip-
ulator information, such as configuration and desired end-effector velocity, the
local optimal solution is not guaranteed over long tasks (e.g., if the performance
criterion is based on the manipulability measure, the singularity avoidance is
not guaranteed along the whole manipulator motion). However, the local op-
timization methods have a low computational effort that permits their use in
the inverse differential kinematic scheme of real-time application.

3.1 Jacobian pseudo-inverse method

The first local redundancy resolution method consists of finding the solution
that locally minimize the norm of joint velocity vector, ∥ ˙⃗q∥. The reason of
this choice is due to high joint velocity values that occur when a manipulator
assumes a configuration close to the singularity. In accordance with [55], it
is possible to find a particular solution ˙⃗qk, which minimizes a quadratic cost
functional of joint velocities g(˙⃗q) in (3.1) by using the end-effector velocity ˙⃗xd

21

Chapter 3 Redundancy resolution via local optimization

and analytic Jacobian JA associated with a given manipulator configuration.

g(˙⃗q) = 1
2

˙⃗q
T
W ˙⃗q (3.1)

In particular, the (3.1) shows a suitable (n × n) weighting matrix, which
is a symmetric positive definite matrix. The (3.1) can be solved by using of
Lagrange multipliers method, by introducing the following modified cost func-
tional

g(˙⃗q, λ⃗) = 1
2

˙⃗q
T
W ˙⃗q + λ⃗

T
(˙⃗xd − JA

˙⃗q) (3.2)

where λ⃗ is a unknown (r × 1) vector of multipliers that includes the constraint
(2.29) in the functional to minimize. Therefore the desired solution has to
satisfy the following conditions:

(
∂g

∂ ˙⃗q

)T

= 0
(

∂g

λ⃗

)T

= 0. (3.3)

The solution obtained from the first condition is equal to W ˙⃗q − JT λ⃗ = 0,
which can be rewritten as

˙⃗q = W−1JA
T λ⃗ (3.4)

because W is invertible. From (3.4), it is possible observe that this solution is
a minimum, indeed ∂2g

∂2 ˙⃗q
= W is positive definite. On the other side, the second

condition in (3.3) provides the following constraint:

˙⃗xd = JA
˙⃗q (3.5)

which corresponds to direct kinematics. Combining the two solutions, it is
possible to obtain the following relation:

˙⃗xd = JAWJA
T λ⃗ (3.6)

By assuming that analytical Jacobian JA has full rank, the JAWJA
T is an

square matrix with dimension equals to (r × r) and rank r, so that, it is invert-
ible. Finally, by solving the (3.6) respect with λ⃗, it is possible to determine
the expression shown in (3.7).

λ⃗ = (JAWJA
T)−1 ˙⃗xd (3.7)

Therefore, the desired optimal solution is obtained by replacing the 3.7 into

22

3.1 Jacobian pseudo-inverse method

�𝒒𝒒�⃗ 𝒇𝒇𝒇𝒇𝒇𝒇 ≠ �𝒒𝒒�⃗ 𝒇𝒇𝒇𝒇 �𝒒𝒒�⃗ 𝒇𝒇𝒇𝒇

Figure 3.1: Example of non-repeatable motion in the joint space

(3.4) as shown bellow:

˙⃗q = W−1JA
T (JAWJA

T)−1 ˙⃗xd. (3.8)

Pre-multiplying both sides of (3.8) by JA, it is possible to demonstrate that
it satisfies the differential kinematics defined in (2.29). In order to locally
minimize the norm of solution, ∥ ˙⃗q∥, it is possible to impose the weighting
matrix W equals to the identity matrix I:

˙⃗q = JA
† ˙⃗xd (3.9)

As shown in (3.9), the minimum solution is obtained by JA
† matrix, which is

defined as the right pseudo-inverse of JA in accordance with Moore-Penrose
properties. It is obtained as follows

JA
† = JA

T (JAJA
T)−1 (3.10)

However the pseudo-inverse of the Jacobian can be computed only when the
matrix has full rank, so that, it becomes meaningless when the manipulator is
at a singular configuration (the Jacobian matrix contains linearly dependent
equations) or also in the neighbourhood of a singularity. Indeed, since it is
well known that the computation of the inverse Jacobian matrix requires the
determinant matrix value, it becomes a relatively small value in the neighbour-
hood of a singular configuration, so that, the joint velocity take high velocity
values. In this case, the Singular Value Decomposition (SVD) of JA can be a
valid approach to overcome the problem above described in [55]. An alternative
method consists of calculating the Damped Least-Squares (DLS) inverse of the
Jacobian matrix JA

#, as following defined:

23

Chapter 3 Redundancy resolution via local optimization

JA
= JA

T (JAJA
T + k2I)−1 (3.11)

where k is a damping factor. However, even when the Jacobian has full rank,
the (3.10) does not guarantee the repeatability of the end-effector motion. In
particular, the example shown in Figure 3.1) demonstrates the loss of motion
repeatability (in the joint space) of a planar manipulator, whose final manip-
ulator configuration qfin assumed after one tour is different from the initial
manipulator configuration qin. Moreover, it is yet affected by drift error due to
Euler integration (it is directly proportional to simple time value δt). For this
reason it is possible to introduce the Jacobian pseudo-inverse JA

†(q⃗k) into the
(2.29) in order to obtain the following CLIK expression based on the Jacobian
pseudo inverse formulation.

˙⃗qk = JA
†(q⃗k)(˙⃗xdk

+Ke⃗k) (3.12)

3.2 Jacobian null space method

3.2.1 Jacobian null space projection matrix

The simple CLIK pseudo-inverse in (3.12) does not allow to manage the redun-
dant joint motions (motion variables that are not required by the task), which
could be used to perform some performance criteria (or secondary tasks), such
as: joint limits avoidance, obstacle avoidance and manipulability index opti-
mization.

In order to ensure the performance of the primary task, a possible strategy
consists in projecting the redundant joints velocity vector requested by the
secondary tasks, namely ˙⃗q

+
k , in the Jacobian null space, N(JA), which is a

subspace of JA having a dimension equals to the degree of redundancy dr, as
defined in (2.7). Since the Jacobian null space is an orthogonal space of the

�̇⃗�𝑥𝑑𝑑 ∈ 𝑅𝑅𝑟𝑟�̇⃗�𝑞 ∈ 𝑅𝑅𝑛𝑛

𝐽𝐽𝐴𝐴

𝑵𝑵(𝑱𝑱𝑨𝑨)
𝑹𝑹(𝐽𝐽𝐴𝐴)

0

Figure 3.2: Relation between joint velocity space and end-effector velocity space

24

3.2 Jacobian null space method

�̇⃗�𝑥 = 𝐽𝐽𝐴𝐴�̇⃗�𝑞

𝐽𝐽𝐴𝐴†�̇⃗�𝑥𝑑𝑑

�̇⃗�𝑞∗

�̇⃗�𝑞0

𝑃𝑃�̇⃗�𝑞0

�̇⃗�𝑥 = 𝟎𝟎

�̇�𝑞1

�̇�𝑞2

Figure 3.3: Geometric view on Jacobian null space

Jacobian image space, namely R(JA), the joint velocities in Jacobian null space
do not produce any velocity on the end-effector. Indeed these joint velocities
are linearly mapped by the analytical Jacobian to the end-effector velocity
value equals to zero in the Jacobian image space (or Jacobian rank space), as
demonstrated in Figure 3.2.

In order to project a secondary task defined by ˙⃗q
+
k vector into the Jacobian

null space of the primary task, it is possible to use the n × n dimensional
projector matrix P , such that

JA(q⃗k)P k
˙⃗q
+
k = 0 (3.13)

In particular the P can be obtained at each time instant by:

P k = I − JA
†(q⃗k)JA(q⃗k) (3.14)

where I indicates the identity matrix of suitable dimensions, while the rank of
the P matrix is equal to the redundancy degree dr.

The P matrix possesses several properties, as being symmetric (pji = pij),
idempotent (P 2 = P) and Hermitian (P−1 = P).

By adding the orthogonal projection of ˙⃗q0 in (3.12), it is possible to obtain
the new CLIK expression

˙⃗q
∗
k = JA

†(q⃗k)(˙⃗xdk
+Ke⃗k) + P k

˙⃗q0k
(3.15)

where the ˙⃗q
∗
k solution is different from the one obtained from (3.12), because

now it is the minimal norm joints velocity solution that satisfies both the pri-

25

Chapter 3 Redundancy resolution via local optimization

mary task and the secondary tasks. In particular, a better understanding of
(3.12) can be given by the geometric representation in Figure 3.3 (where the
JA

† is replaced with J#). In detail, the Figure 3.3 shows a 2-dimensional Joint
space, in which the final solution ˙⃗q

∗
(red vector) is obtained by the vectorial

sum of two vector: the first one is the joint velocity vector with minimum
norm (orange vector), while the second one is the orthogonal projection of the
secondary task velocity into the Jacobian null space (green vector). Therefore,
it is possible to note that the final solution is closest to ˙⃗q0.

3.2.2 Gradient projection method

In the previous section, the ˙⃗q0 vector has been assumed to be arbitrary. A
typical choice of ˙⃗q

+
0k

value is based on the Gradient Projection Method (GPM)
[42]. In detail, this method permits of projecting the gradient of a specific
objective function w(q⃗k) (in the joints space), into the Jacobian null space
relative to the primary task. Therefore the ˙⃗q0 results to be equal to:

˙⃗q
+
0k

= ka∇w(q⃗k) = ka

(
∂w(q⃗k)

∂q⃗

)T

(3.16)

where ka is a real scalar value which indicates the gain, and it is a positive
value when w(q⃗k) has to be maximized, otherwise is a negative value if w(q⃗k)
has to be minimized [42]. However, the choice of the ka is critical for the
performance of the redundancy resolution. In particular, a small value of the
step size may slow down the minimization of the performance criteria w(q⃗k),
while a its large value may even lead to an increase it. An appropriate value of
ka could be chosen by using of in a simplified line search technique as described
in [57].

By replacing the (3.16) in (3.15), the complete GPM expression is obtained:

˙⃗q
∗
k = JA

†(q⃗k)(˙⃗xdk
+Ke⃗k) + P k(ka∇qw(q⃗k)) (3.17)

However the Jacobian pseudo-inverse JA
† is yet present in (3.17), hence the

GPM can be computationally intensive, because the SVD has to be generally
used. In case the rank of the Jacobian is equal to the task dimension, an
alternative method for solving the (3.17) is based on the observation that the
redundancy degree is dr. Therefore, the search of the optimum solution ˙⃗q

∗
k

can be more efficiently performed within a reduced space of the joint variables,
which lead to the Reduced Gradient Method RGM ([58]), when rank(JA) =
r. The great advantage of RGM is the use of the simple Jacobian inversion
JA

−1 that makes it analytically simpler and numerically faster than GPM, but
requires the search for a non-singular minor of the robot Jacobian.

26

3.2 Jacobian null space method

3.2.3 Objective functions
Typical objective functions w(q⃗k) that can be locally optimized in (3.17) are
now presented in accordance with the definition reported in [55]

Manipulability measure

The manipulability measure can be defined as:

w(q⃗k) =
√

det(JA(q⃗k)JA(q⃗k)T) (3.18)

which measures the distance between the current manipulator configuration
and its singular configuration. Therefore, it is possible to maximize this mea-
sure in order to move it away from singular configurations.

Joint limits avoidance

The maximum (or minimum) joint limits qiM (qim) represents critical motion
constraints for any type of robotic application, because they can degrade the
performance of the system and also damage it. Hence the joint limits can be
avoided by minimizing the distance w(q⃗k) between the current joint positions
and their middle value of the joint position range (q̄i) .

w(q⃗k) = − 1
2n

n∑
i=1

(
qi − q̄i

qiM − qim

)2
(3.19)

The particular solution ˙⃗q
+
0k

that minimize the measure w(q⃗k) is obtained by
setting a negative value to ka gain.

Obstacle avoidance

Finally, the obstacle avoidance task is very important for those applications
that are executed in unstructured environment, because it permits to avoid
accidental collision with obstacle placed into the workspace. This task is ob-
tained by maximizing the distance w(q⃗k) between the position vector of any
point on the obstacle, defined as o⃗, and the position vector of a generic point
on the manipulator, namely p⃗.

w(q⃗k) = min∥p⃗(q⃗) − o⃗∥ (3.20)

3.2.4 Saturation in the null space method
The kinematic inversion obtained by means of pseudo-inverse does not explicitly
take into account the limits of the joint, such as speed and acceleration limits.

27

Chapter 3 Redundancy resolution via local optimization

Therefore the considered assumption is that the assigned task is compatible
with the robot limits. Indeed the redundancy resolution with optimization
tasks (typically with the GPM algorithm) does permit to guarantee the robots
limits, because they are considered as secondary task, and thus, they have
a lower execution priority than the main task. Therefore it is necessary to
examine whether there are alternative motions of the joints that do not violate
the joints limits and, at the same time, can perform correctly the specified task.

A possible solution concerns the algorithm proposed in ([48]),which is called
Saturation Null Space algorithms (SNS). In detail the saturation of l ≤ (n −
r) joints that exceed their limits is compensated as far as possible from the
remaining joint still not saturated. In particular, the unperformed velocity of
the most critical joint is projected into the reduced relative Jacobian null space,
which is composed by the healthy joints. The new obtained manipulator pose
allows to complete the task without affecting the relative end effectors motion.

Therefore the Jacobian pseudo-inverse based on SNS method can be so ex-
pressed:

˙⃗q
∗
k = s(JAW)†(˙⃗xdk

+Ke⃗k) + (I − (JAW)†JA) ˙⃗qfk
(3.21)

where W ∈ [0; 1] is a diagonal binary matrix, which is used for zeroing the
column of the Jacobian associated to the saturated joint presents in ˙⃗qfk

vector.
Moreover, s ∈ [0, 1] is the trajectory scaling factor, which is used to reduce the
end-effector velocity when the number of healthy joints is no longer sufficient
to compensate the saturated joints velocity. Therefore, the scaling factor to be
kept equal to 1 in order to preserve the desired end-effector motion, otherwise
it is reduced just enough to make the task feasible considering the limitations.
The following is an illustrative example of the operation of the algorithm with
velocity saturation in the null-space.

Let consider the planar manipulator shown in Figure 3.4 having equal links
of unitary length, that has to perform a task specified by a desired end-effector
linear velocity, ˙⃗x = [2.5, −1]T (with r = 2). Since the dimension of the joint
velocity vector ˙⃗q is equal n = 4, the planar manipulator results to have a degree
of redundancy equals to dr = n − r = 2.

By supposing that the joint velocities are bounded as |q̇i| ≤ Vi, i = 1, . . . , 4
with V1 = V 3 = 1, V2 = V4 = 4[rad/s], and that the current configuration is
equal to q⃗ = [π/2, −π/4, −π/3, π/4]T , the joint velocity vector calculated by
simple Jacobian pseudo-inverse (see 3.12), results to be:

˙⃗qP S = [−1.6, 0.4, 1.2, −0.2]T [rad/s] (3.22)

The (3.22) shows that the first and third joint are saturated. A better solu-
tion can be found by applying the SNS algorithm, in which is saturated only

28

3.2 Jacobian null space method

-2 -1 0 1 2 3 4

X [m]

0

1

2

3

4

Y
 [m

]

Y

X

q1

q3 q4
q2

Figure 3.4: Example of SNS application

the most violating joint velocity, in this case q̇f = [V1, 0, 0, 0], therefore it is
possible to calculate the joint velocity vector based on SNS method, ˙⃗qSNS , by
using (3.21):

˙⃗qSNS = [−1, −0.5, 2.1, −1.1]T [rad/s] (3.23)

in this case the third joint velocity is increased so that its limit results to be
violated yet. Since the system has two redundant motions, it is possible to
guarantee the third joint limit, yet. Therefore it is necessary to set the q̇f

vector as q̇f = [V1, 0, V3, 0], so that, the new solution is equal to:

˙⃗qSNS = [−1, 1.2, 1, −3.9]T [rad/s] (3.24)

Now all joints respect their limits. However, the forth joint velocity is much
increased, so that, it is close to its limit. Since now the number of violated
joints is equal to the degree of redundancy, an another violated joint could not
be guaranteed. In this case, the sns method permits to scale the original task
velocity by using the scaling factor s.

3.2.5 Hierarchical priority execution task

Redundancy can be exploited to perform one or more secondary tasks, which
possess lower execution priority with respect to the main task. The maximum
number of tasks l that can be simultaneously executed by a robot, depends
on the DoF possessed by manipulator n and from rank rk of the Jacobian
associated with each task ([43]). Therefore, when choosing tasks in a non-

29

Chapter 3 Redundancy resolution via local optimization

conflicting way, it is possible to add tasks until

l∑
i=1

rki = n (3.25)

In order to avoid task conflicts, [44] introduced a hierarchic prioritized task
architecture, in which lower priority tasks are directly projected on the null
space of the higher priority ones. In this way, the lower priority tasks do
not affect performance of the higher priority tasks and the performance of the
highest priority task is always guaranteed. Moreover this architecture is a
singularity-robust approach, because the singularity are limited to secondary
tasks (with consequently degradation of their performance) without affect the
primary task, as long as the sole primary-task Jacobian matrix is full rank.

Task 1: follow
Task 2: horizonal third link

WITHOUT
TASK

PRIORITY

WITH
TASK

PRIORITY

Figure 3.5: Example of hierarchical priority execution task

Therefore, given three generic prioritized tasks ẋ1, ẋ2 and ẋ3 (where the
subscript having highest value indicates the highest priority task), it is possible
to obtain the following desired joint velocity vector ˙⃗qdes

˙⃗qdes = J3
†ẋ3 + P 3

(
J2

†ẋ2 + P 2J1
†ẋ1

)
(3.26)

where J i
† (i = 1, 2, 3) is the pseudo inverse of each task Jacobian, while P k

(k = 2, 3) indicates the orthogonal projector on the null space Nk, that is
obtained by I − J†

kJk (where I indicates the identity matrix).
In order to have a better understanding about the priority execution task,

the following simple example is described. In particular, a 3-DoF planar ma-
nipulator has to follow a specific path by keeping the third link in horizontal
orientation. Therefore, this task could be divided in two sub-tasks with differ-
ent priory execution level. In detail, the path-following is considered as primary

30

3.2 Jacobian null space method

task, while the orientation of the third link is considered as secondary task, and
it is projected in the Jacobian null space of the primary task. Therefore, the
Figure 3.5 shows two cases illustrating the end-effector motion without and
with task priority architecture, respectively. In particular, when the assigned
path does not permit physically to obtain an horizontal orientation of the third
link, the manipulator is not able to track correctly the path in the first case.
On the other hand, the priority task architecture decomposes the task into
two separate sub-tasks, in order to guarantee the performance of the highest
priority task, even when the lowest task cannot be performed.

31

Chapter 4

Kinematic modelling of cooperative
manipulators

When two manipulators interact on an object at the same time, they make
a closed-chain among the three parts, so that generally this task requires less
motion variables respect to those provided by two independent manipulators.
Therefore the two cooperative manipulators can be seen as a single redundant
manipulator having the same degree of motion of the dual-arm and the same
number of end-effector motion variables required by the task. In this way,
it is possible to implement the same control algorithm adopted in the single
redundant manipulator case, as discussed in the previous chapter, with the
only difference of redefining the Jacobian matrix. The Jacobian matrix associ-
ated with the equivalent manipulator depends on the two individual analytic
Jacobians possessed by each manipulator, and it is call relative Jacobian.

This chapter presents a the derivation of a compact relative Jacobian for-
mulation and the inverse kinematic solution based on the projection into the
relative Jacobian null space.

4.1 Relative Jacobian method
This section describes the derivation of the Relative Jacobian method in ac-
cordance with the compact expression introduced by ([26]). In detail, it is
possible to consider two generic cooperative manipulators shown in Figure 4.1
[53], namely A and B. They posses a number of joints respectively equal to na

and nb, with corresponding Jacobians JA = [JpA, JoA]T and JB = [JpB , JoB]T ,
that are expressed in terms of the position and orientation velocity components.

The manipulator A possesses the role of master, thus all coordination frames
have to be expressed with respect to end-effector A, which is denoted as Ae.
In detail the coordinate transformations of the frame bases, Ab and Bb, are
performed by the rotation matrices RAe

Ab
and RAe

Bb
, in accordance with the

generic notation Rj
i that defines the rotation matrix of the frame i with respect

to frame j. Regarding the frame of the end-effector B (denoted as Be), it is

33

Chapter 4 Kinematic modelling of cooperative manipulators

𝑷𝑹
→

Digitare l'equazione qui.

dv

c

𝝓𝑹
→

Digitare l'equazione qui.

dv

c

𝐴𝑏
𝐵𝑏

𝐴𝑒

𝑹𝐴𝑏
𝐴𝑒

Digitare l'equazione qui.

dv

c

𝑹𝐵𝑏
𝐴𝑒

Digitare l'equazione qui.

dv

c
𝒅𝑨𝑩
→

Digitare l'equazione qui.

dv

c

�̇�𝑨
→

Digitare l'equazione qui.

dv

c

�̇�𝑩
→

Digitare l'equazione qui.

dv

c

𝐴
𝐵

B𝑒

Figure 4.1: Two cooperative manipulators (partial reproduction of Figure 1
from [26])

expressed with respect to the Ae frame by vectors P⃗R and φ⃗R, which define the
end effectors’ relative position by using the Cartesian coordinates and relative
orientation by using a minimum orientation representation, respectively.

Differentiating these two vectors with respect to time, it is possible to de-
fine a column vector ˙⃗xRdk

, which contains the end-effectors’ relative velocity
components at time instant k:

˙⃗xRdk
=
[˙⃗
PR

˙⃗
φR

]
(4.1)

where ˙⃗xRdk
has a dimension equals to rab (where rab ≤ 6 in a three dimensional

space).

In order to obtain the differential kinematics, ˙⃗x = JA
˙⃗q (see 2.21), it is

possible to define an equivalent manipulator having a number of joints equal
to nab = na + nb and end-effector motion variables defined by the ˙⃗xRdk

vector.

At this point, it is necessary to define the Jacobian matrix associated to the
equivalent manipulator. A possible solution consists of expressing the relative
end-effectors motions vectors, ˙⃗

PR and ˙⃗
φA, as a function of the joint velocity

vectors, ˙⃗qa and ˙⃗qb.

In detail, the ˙⃗
PR is obtained as the difference between the two independent

end-effector velocity ˙⃗xAk and ˙⃗xBk , which are referred to Ae frame, by means
of the two rotation matrices RAe

Ab
and RAe

Bb
. Moreover, it is present a term that

permits of compensating the linear velocity contribution due to the Ae frame
orientation velocity ˙⃗

φA, which is obtained by the cross product of ˙⃗
φA with P⃗R

34

4.1 Relative Jacobian method

vector.

˙⃗
PR = RAe

Bb

˙⃗xBk −RAe

Ab

˙⃗xAk + P⃗R ×RAe

Ab

˙⃗
φA. (4.2)

Since a cross product of a vector can be expressed as a skew-symmetric matrix
with input the same vector, it is possible to define the following skew-symmetric
matrix S(P⃗R):

S(P⃗R) =

⎡⎢⎣ 0 −PRz PRy

PRz
0 −PRx

−PRy
PRx

0

⎤⎥⎦ . (4.3)

Regarding the relative end-effector orientation velocity ˙⃗
φR, it is obtained

by the difference between the two single end-effectors orientation velocities
expressed with respect to Ae frame:

˙⃗
φR = RAe

Bb

˙⃗
φB −RAe

Ab

˙⃗
φA. (4.4)

Inserting the (4.2) and (4.4) in (4.1) and explicating the joint velocity vectors,
˙⃗qa and ˙⃗qb, it is possible to obtain the differential kinematics in the compact
matrix formulation, as shown in [26]:

˙⃗xRdk
=
[˙⃗
PR

˙⃗
φR

]
=
[

−RAe

Ab
JpA

˙⃗qak + S(P⃗R)RAe

Ab
JoA

˙⃗qak +RAe

Bb
JpB

˙⃗qbk

−RAe

Ab
JoA

˙⃗qak +RAe

Bb
JoB

˙⃗qbk

]

=
[

−RAe

Ab
JpA + S(P⃗R)RAe

Ab
JoA +RAe

Bb
JpB

−RAe

Ab
JoA

˙⃗qak +RAe

Bb
JoB

][
˙⃗qak

˙⃗qbk

]

=
[[
I −S(P⃗R)
0 I

][
−RAe

Ab
0

0 −RAe

Ab

][
JpA

JoA

] [
RAe

Bb
0

0 RAe

Bb

][
JpB

JoB

]]

×

[
˙⃗qak

˙⃗qbk

]
(4.5)

Therefore the final differential kinematic relation between the end-effector
motion variables ˙⃗xRdk

and the joints velocity indicated by the nab - dimensional
column vector ˙⃗qabk

= [˙⃗qak
, ˙⃗qbk

]T , can be defined as:

˙⃗xRdk
= JR

†(q⃗abk
) ˙⃗qabk

(4.6)

where the JR
†(q⃗abk

) matrix is the relative Jacobian matrix, which possesses a

35

Chapter 4 Kinematic modelling of cooperative manipulators

dimension equals to (nab × rab) and presents the following structure:

JR(q⃗abk
) =

[
−ψAe

Be
ΩAe

Ab
JA(q⃗ak

) ΩAe

Bb
JB(q⃗bk

)
]

(4.7)

where ψAe

Be
is the wrench transformation matrix that takes into account the

skew-symmetric matrix S(P⃗R), while the ΩAe

Ab
and ΩAe

Bb
are diagonal matrices,

which include the rotation matrices RAe

Ab
and RAe

Bb
evaluated at time k:

ψAe

Be
=
[
I −S(P⃗R)
0 I

]
Ωi

j =
[
Ri

j 0
0 Ri

j

]
. (4.8)

The novelty of this innovative relative Jacobian formulations concerns the
presence ofψAe

Be
, which did not appear in the previous expressions of the relative

Jacobian. This term is normally present in parallel mechanisms, (e.g., the dual-
arm system). In particular, high values of ˙⃗

φA increase the relative end effectors
position error, as demonstrated in [26]. When ˙⃗

φA is low, its contribution to
the relative translational velocity is negligible, and the wrench transformation
matrix is approximated with the identity matrix, as commonly assumed in the
literature [59, 60].

The relative Jacobian matrix JR expressed in (4.7) presents several advan-
tages. First of all, a dual-arm system can be controlled by the same algorithms
used for controlling single manipulators. Moreover it is simple to obtain from
the Jacobians of the individual manipulators, so that, in case a manipulator
is replaced with another one, it is sufficient to change the respective Jacobian
without recalculating the entire relative Jacobian matrix. Finally this formu-
lation shows that the relative Jacobian is not rank deficient even if one of the
individual Jacobian loses ranks. Therefore, the dual-arm robot can work even
if one robotic arm becomes singular.

4.2 Inverse kinematics solution for cooperative
manipulators

Since the equivalent manipulator possesses a higher number of jointsnab than
the end-effector variables rab, (nab > rab), it results to be kinematic redundant
with respect to the relative motion task. Therefore, the relative Jacobian is a
low rectangular matrix, and in accordance with the CLIK algorithm based on
(3.12), the inverse differential kinematics is calculated by the Jacobian pseudo-
inverse method, as shown in (4.9).

˙⃗qabk
= JR

†(q⃗abk
)(˙⃗xRdk

+Ke⃗Rk
) (4.9)

36

4.2 Inverse kinematics solution for cooperative manipulators

𝐽𝐽𝐴𝐴
†(�⃗�𝑞𝐴𝐴)

𝐽𝐽𝑅𝑅
†(�⃗�𝑞𝐴𝐴, �⃗�𝑞𝐵𝐵)

-

- + 𝐾𝐾𝑅𝑅

𝐾𝐾

MANIPULATOR A

MANIPULATOR B

direct kinematics

direct kinematics

+

+ 𝑃𝑃𝑅𝑅

-

�⃗�𝑥𝐴𝐴𝑑𝑑

�̇⃗�𝑥𝐴𝐴𝑑𝑑

�⃗�𝑥𝑅𝑅𝑑𝑑

�̇⃗�𝑥𝑅𝑅𝑑𝑑
𝑒𝑒𝑅𝑅

�⃗�𝑥𝑅𝑅𝑚𝑚

𝑒𝑒

�⃗�𝑥𝐵𝐵𝑚𝑚

�⃗�𝑥𝐴𝐴𝑚𝑚

�⃗�𝑞𝑏𝑏

�⃗�𝑞𝑎𝑎 �̇⃗�𝑞𝑎𝑎

�̇⃗�𝑞𝑏𝑏

�̇⃗�𝑞𝑎𝑎𝑏𝑏

Figure 4.2: Block diagram of the relative Jacobian pseudo-inverse algorithm

where JA
† has been replaced with JR

†, and eRk
indicates the error between

the desired relative end effectors position xRdk
and the relative end effectors

position x⃗Rk

e⃗Rk
= x⃗Rdk

− x⃗Rk
(4.10)

Since, the relative Jacobian possesses a null space with dimension equals to
nab −rab, it is possible to projects a secondary task in this space, in accordance
with (3.15):

˙⃗qabk
= JR

†(q⃗abk
)(˙⃗xRdk

+KRe⃗Rk
) + PRk

˙⃗q
+
0 (4.11)

where PRk
= I − JR

†JR is the (nab × nab) -dimensional orthogonal projector
matrix into the relative Jacobian null space, while KR is the gain matrix that
converges to zero the relative end effectors pose error e⃗R.

Since, the (4.9) does not consider the end-effector motion of each manipula-
tor in the operative space (i.e., m ≤ 6 in a three dimensional space) but only
their relative motions, it is possible to consider the translational and rotational
motion of each end-effector in the space as a desired secondary task. In partic-
ular, it is sufficient to consider only the motion of the end-effector master A,
˙⃗xd, because the motion of both end-effectors is constrained by ˙⃗xRdk

.
Therefore it is possible to rewrite the (4.11) with JA = [JA(q⃗ak

),JA(q⃗bk
)]:

˙⃗qabk
= JR

†(q⃗abk
)(˙⃗xRdk

+KRe⃗Rk
) + PRk

(JA
†(q⃗ak

, q⃗bk
) ˙⃗xdk

) (4.12)

Since the end-effector motion A is the secondary task, in accordance with
Jacobian null space theory, the relative end-effector motion performance (pri-

37

Chapter 4 Kinematic modelling of cooperative manipulators

mary task) is not affected from it. Finally, the block diagram representation
about the CLIK algorithm based on (4.12) is shown in Figure (4.2).

Since the equivalent manipulator obtained by the relative Jacobian method
can be considered as a generic redundant manipulator, its redundancy can be
exploited to perform multiple tasks in accordance with the hierarchical priority
execution task, as described in the previous chapter.

Therefore it is possible to reconsider the condition expressed in (3.25) and
adapt it according to the nab joints possessed by the equivalent manipulator:

l∑
i=1

rki = nab (4.13)

As previously introduced, a task for a dual-arm is composed generally by two
kinds of motions: relative end-effectors motion and absolute system motion
(motion of whole system in the space). Therefore, possible objective functions
can be satisfied only when there are yet available redundant motions for execut-
ing a third task. In order to calculate this number, the (4.13) can be rewritten
as the following inequality:

nab − (rkab + rka) > 0 (4.14)

where sab and sa indicates the rank of the Jacobian associated to first task (rela-
tive end-effector motion) and second task (absolute system motion). Therefore,
if the inequality is valid, it is possible to add other lower priority tasks hav-
ing maximum rank value equal to s∗ = nab − (sab + s), in order to obtain a
hierarchical structure of the tasks.

Generally, given several secondary tasks with different priority levels, it is
possible to obtain the ˙⃗q

∗
abk

vector by projecting joints velocity vector ˙⃗q
+
i of the

i-th task into the null space relative to the higher priority task.
Defining ˙⃗q2

+
= JA

†(q⃗ak
, q⃗bk

) ˙⃗xdk
and a generic joints velocity task ˙⃗q1

+

(having dimensions equal to nab), the general expression for the execution of
three tasks can be obtained in accordance with [61]:

˙⃗q
∗
abk

= JR
†(q⃗abk

) ˙⃗xRdk
+ PRk

(˙⃗q2
+

+ P abk
˙⃗q1

+
) (4.15)

where P abk
is a nab × nab dimensional matrix that contains the orthogonal

projectors into the null spaces of the manipulators A and B.

P abk
=
[
P ak

0
0 P bk

]
(4.16)

Several examples of hierarchical priority task applications will be discussed in
the next chapter.

38

Chapter 5

Proposed kinematic control
algorithms for obstacle and joint
limits avoidance

This chapter presents the redundancy resolutions based on the relative Ja-
cobians, which have been studied and implemented for controlling different
dual-arm systems in several scenarios. The main contributions concerns the
management of the redundant motions and the use of hierarchical priority task
architecture in order to satisfy both primary task and the desired performance
criteria. In detail the proposed performance criteria are: obstacle avoidance,
joint limits avoidance and fault joint tolerance.

5.1 Control algorithm for obstacle avoidance

5.1.1 Case study

As illustrative example this section presents a case study consisting of two Jaco
manipulators [62] mounted on both sides of a smart wheelchair, whose degrees
of redundancy are employed to move an object along a predefined path, while
avoiding an obstacle in the manipulator’s workspace at the same time.

5.1.2 Task Description

The study case consists in the development of a kinematic control based on
the relative Jacobian matrix of two cooperative Jaco manipulators, namely A

and B, mounted on the left and right sides of a smart wheelchair, as shown in
Figure 5.1. In this scenario, the user can reach autonomously any indoor point
by using the smart wheelchair, thanks to a Simultaneous Localization And Map
building algorithm (SLAM) [63, 64, 65]. The two cooperative manipulators add
manipulation capability to the wheelchair in order to transport objects along a
predefined path. Since the aim of this section is focused on the analysis of the

39

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

Figure 5.1: Concept of the wheelchair with two manipulators within an AAL
scenario

kinematic performance of a dual-manipulation system, the wheelchair motion
is not considered during the execution of the manipulation tasks. Moreover the
case study is faced in the planar case. The reader can refer to the concluding
section for an explanation of possible future works which can take into account
for a cooperation between the wheelchair and the manipulators, and for the
possible extension to the three-dimensional case.

Y

X

(a)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
X [m]

0

0.5

1

1.5

Y
 [m

]

YeYe

 Robot B Robot A

XeXe

ZeZe

J1A

J2A

J3A

J2B

J3B

J1B

(b)

Figure 5.2: Top view of the system (a) and initial planar manipulators config-
uration (b)

The considered task is common in a daily scenario: during a meal the
wheelchair user commands the two manipulators to move his/her dish from
point p⃗1 to point p⃗2 of the table. Moreover, the manipulators must avoid a
near object (e.g., a bottle placed between the start and end positions).

40

5.1 Control algorithm for obstacle avoidance

The task is modelled in the XY -plane:

• the motion of the dish is along a straight line in the XY -plane, which is
a common path to choose in order to reduce both the time of the task
execution and the motor energy consumption;

• the dish is represented by a circle of radius r1;

• the bottle is represented by a circle of radius r2;

• the two anthropomorphic manipulators (Figure 5.2(a)) are modelled as
two planar manipulators having three joints each (na = nb = 3), which
grasp the dish so that the Cartesian distance between the two end effec-
tors is equal to the diameter of the dish (Figure 5.2(b));

• the end-effector A has a low orientation velocity, thus the wrench trans-
formation is approximated by the identity matrix.

According to the hierarchical priority task architecture, the proposed scenario
could be decomposed in two tasks of different tasks: the higher priority task
(primary task) and the lower priority task (secondary task). In particular, the
primary task ensures the grasping of the dish throughout the motion time,
i.e., the distance ∥p⃗R∥ has to be maintained constant and, consequently, its
derivative with respect to time has to be equal to zero, ˙⃗pR = [0, 0]T , so as
the desired relative end effectors orientation velocity ˙⃗

φR = 0. Therefore, the
relative end effectors velocity vector ˙⃗xRdk

can be defined as:

˙⃗xRdk
=
[
0 0 0

]T

(5.1)

where dim[˙⃗xRdk
] = sab = 3. Hence, it is possible to achieve an equivalent

manipulator which possesses nab = na + nb = 6 joints and sab = 3 end-effector
motion variables, thus the degree of redundancy is drab = nab − sab = 3.

The degree of redundancy is used to execute the secondary task, which defines
the translation of the dish between two points. It is obtained by projecting a
desired Cartesian velocity ˙⃗xdk

relative to end-effector A (or equivalently to
end-effector B) in the relative Jacobian null space. In fact, since the relative
motion between end effectors is established by ˙⃗pR = [0, 0]T , the motion of only
one end-effector implies the motion of the whole dual arms system. Since the
rotation of both end effectors is not important for the correct execution of the
this task, it is left unspecified, in order to have dim[˙⃗xdk

] = sa = 2. If the
end-effector A is chosen, then the analytic Jacobian associated to it, is a lower
rectangular matrix JA (dim[JA] = 2 × 3, with rank[JA] = sa = 2).

Therefore, it is possible to obtain the 6-dimensional joints velocity vector
˙⃗q2

+
relative to secondary task by using of CLICK pseudo-inverse expression

41

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

as described in (4.9):

˙⃗q
+
2k

= JA
†(q⃗ak

, q⃗bk
)(˙⃗xdk

+Ke⃗k) (5.2)

where JA
†(q⃗ak

, q⃗bk
) =

[
JA(q⃗ak

) 0
]†

, due to the fact that the manipulator
A has been chosen.

The final degree of redundancy of the dual arms system drab results

drab = nab − sab − sa = 1 (5.3)

From (5.3) it results that the dual arm system has still one degree of redun-
dancy, which can be used to execute a third secondary task, such as obstacle
avoidance. In particular, the dual arms system is able to avoid an obstacle
of unknown position, which could be detected, for instance, by using a vision
system.

The obstacle avoidance task is obtained by using a projecting gradient method
[42]. This method permits to increase the distance between the obstacle and
the nearest manipulator by projecting the joint space velocity relative to the
third task in the null space of the secondary task. Since sa = 2, the third task
does not affect the translation of the end effectors, but only their orientation
that is not important for the correct execution of the higher priority task. The
third task can be performed by an algorithm that operates in two steps. In the
first step, the algorithm detects the arm closest to the obstacle, by calculating
iteratively the minimum distance vector w⃗ between a⃗(q⃗ak

) and a⃗(q⃗bk
) which

are the position vectors of two generic points along the both structure manip-
ulators, and b⃗ that is the position vector of a suitable point on the obstacle

w⃗ik
= min∥a⃗(q⃗ik

) − b⃗∥2 (5.4)

where the subscript i = a, b indicates the two manipulators A and B. Suppose
now that A is the arm closest to the obstacle (the same applies if B is the
closest), the second step consists in maximizing the distance by calculating
the gradient ∇|w⃗a| in the joints space. Therefore, it is possible to obtain the
6-dimensional joints velocity vector ˙⃗q1

+
(s∗ = 1) relative to manipulator A

˙⃗q
+
1k

= ka[∇q|w⃗ak
| 0]T (5.5)

where the obstacle avoidance gain ka is defined as{
ka = (1 − (|w⃗a|/dT))k∗

a |w⃗a| < dT

ka = 0 |w⃗a| ≥ dT

(5.6)

42

5.1 Control algorithm for obstacle avoidance

Task 1

Cartesian end effectors distance

control

Keeping Cartesian distance

between the end-effectors

Task 2

End effector A motion along

straight line

Keeping Cartesian distance

between the end-effectors

Task 3

Obstacle avoidance algorithm

Keeping Cartesian distance

between the end-effectors

+

+

Object translation along a

pre-defined path

Dual arms manipulation

system

�̇�1
+

�̇�2
+

�̇�𝑅
+ �̇�𝑎𝑏

∗

Visual sensors data

�̇�𝑅

�̇�𝑑
𝐽𝐴
†

𝐽𝑅
†

𝑃𝑎𝑏

𝑃𝑅

Higher Priority Task

Lower Priority Tasks

Figure 5.3: Block diagram of two cooperative manipulators

with k∗
a being the nominal gain value and dT is the threshold distance where

the the obstacle avoidance task is active. Finally, it is possible to calculate the
final joints velocity vector of the equivalent manipulator by inserting (5.2) and
(5.5) into (4.15)

˙⃗qabk
= JR

†(˙⃗xRdk
+KRe⃗Rk

) + PRk
(
[
JA(q⃗ak

) 0
]†

(˙⃗xdk
+Ke⃗k) + P abk

ka[∇q|w⃗ak
| 0]T)

(5.7)

Equation (5.7) presents a hierarchical task structure, which is summarized in
the block digram shown in Figure 5.3. Thus, the final degree of redundancy
of the system is

drab = nab − sab − sa − s∗ = 0 (5.8)

5.1.3 Simulation results
In this section we simulated the movement of a dish of radius r1 = 0.2m and
centre coordinates pc = [0.2m, 1m] along a straight line between the points
p⃗1 = [0m, 1m]T and p⃗2 = [0.25m, 1m]T . Moreover, a bottle centred in c⃗ =
[0.21m, 0.74m]T and of radius r2 = 0.05m is placed in the dual manipulation
workspace [66, 67], so that an obstacle avoidance algorithm is implemented
and assigned to the manipulator nearest to the obstacle. This simulation is
composed by three different priority level tasks

1. maintaining a relative distance between the two end effectors ∥p⃗R∥ =
0.4m;

2. moving the manipulator A along the defined path;

3. avoiding an obstacle (i.e., a bottle).

43

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X [m]

0

0.5

1

1.5

Y
 [m

]

YeYe

 Robot A Robot B

XeXe

Ze Ze

J1A

J2A J2B

J3B

J1B

J3A

(a)

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X [m]

0

0.5

1

1.5

Y
 [m

]

 Robot A Robot B

Ye Ye

XeXe

Ze Ze

J1A

J2A

J3A

J2B

J3B

J1B

(b)

Figure 5.4: Final manipulators configuration without (a) and with (b) obstacle
avoidance task.

In order to keep a constant end effectors distance, the relative Cartesian ve-
locity vector ˙⃗xRd is imposed in accordance with [53], while the desired Carte-
sian velocity is assigned to be ˙⃗xd = [0.05m, 0m]T . Finally, the obstacle avoiding
velocity is obtained in the joints velocity space by ka∇q|w⃗|, when the distance
between obstacle and manipulators is less than a threshold distance dT which
is imposed to 0.20m.

The start pose of the dual-arm system is shown in Figure 5.2(b), where
the starting A manipulator pose is x⃗ea = [0m, 1m, π/2rad]T , the starting B

manipulator pose is x⃗eb = [0.4m, 1m, π/2rad]T , while the distance between
the manipulator bases dAB is equal to 0.50m in accordance with the width of
the wheelchair. The black circle and the red circle represent the section of the
dish and bottle in the XY -plane, respectively; while the blue line represents

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Jo
in

t a
ng

le
s

[r
ad

]

J1A J2A J3A J1B J2B J3B

(a)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Jo
in

t a
ng

le
s

[r
ad

]

J1A J2A J3A J1B J2B J3B

(b)

Figure 5.5: Joint angle position without (a) and with (b) obstacle avoidance
task

44

5.1 Control algorithm for obstacle avoidance

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

0

0.5

1

1.5
R

el
at

iv
e

en
d

ef
fe

ct
or

s
po

si
tio

n
er

ro
r

[m
]

×10-5

Without obstacle avoidance
With obstacle avoidance

(a)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

-1.5

-1

-0.5

0

0.5

1

1.5

R
el

at
iv

e
en

d
ef

fe
ct

or
s

or
ie

nt
at

io
n

er
ro

r
[r

ad
] ×10-7

Without obstacle avoidance
With obstacle avoidance

(b)

Figure 5.6: Relative end-effectors position error (a) and orientation error (b)

the minimal distance between the obstacle point b⃗ and the nearest manipulator
point a⃗(q⃗ik

) at time k. Figure 5.4(a) and (b) show the final pose of the dual-
arm system, without and with the obstacle avoidance task, while the purple
line indicates the path tracked by manipulator A. It is worth noting that, since
the end effectors orientations are not specified by the task, they can arbitrary
change during the motion when the obstacle avoidance task is not applied.
However, the relative end effectors orientation value is kept constant by the
primary task.

The variations of joints angles without and with obstacle avoidance task are
shown in Figure 5.5(a) and (b), respectively.

The performances of the first task are shown in Figure 5.6(a) and (b), where
the relative end effectors pose error and the relative end effectors orientation
error are reported. The obtained results indicate that the primary task is
independent from the other secondary tasks.

The performances of the second task are shown in Figure 5.7(a) and (b),
which indicate respectively the end-effector A position along the reference path
and the relative error. Because no specification on the end effectors orientation
is assigned, it can be calculated in order to maximize the distance between
obstacle and manipulators in accordance with the obstacle avoidance task.

0 0.05 0.1 0.15 0.2 0.25
X [m]

0.9998

1

1.0002

1.0004

1.0006

1.0008

Y
 [m

]

Reference path
Path without obstacle avoidance
Path with obstacle avoidance

(a)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

0

2

4

6

8

P
at

h
fo

llo
w

in
g

er
ro

r
[m

]

×10-4

Without obstacle avoidance
With obstacle avoidance

(b)

Figure 5.7: End-effector A position along the path (a) and the path following
error (b)

45

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

time [s]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

M
an

ip
ul

at
or

s
-

O
bs

ta
cl

e
di

st
an

ce
 [m

]

0

0.1

0.2

0.3

0.4

0.5
A manipulator with obstacle avoidance task
B manipulator with obstacle avoidance task
A manipulator without obstacle avoidance task
B manipulator without obstacle avoidance task
Safety distance

Figure 5.8: Minimum distance between manipulators and obstacle

In particular, Figure 5.8 shows the minimum distance between the two ma-
nipulators and obstacle, so that it is possible to note how the obstacle avoid-
ance algorithm permits to keep the minimum distance value higher than safety
distance. Since the primary task imposes the same relative end-effectors orien-
tation value during the motion, the B manipulator remains near the obstacle
when the obstacle avoidance task is executed.

Discussion

The obtained results show that the lower priority tasks do not affect the per-
formance of the higher priority task. Note that, due to the presence of the
Jacobian pseudo-inverse, the Jacobian null space technique used in this para-
graph may present a relevant computing effort, and thus a less computationally
demanding control scheme, should be considered for implementation on a real
controller of two anthropomorphic manipulators (most suitable in the AAL
scenarios).

5.2 Control algorithm for joint limits avoidance
This section proposes a kinematic controller for dual-arm cooperative manipu-
lation that ensures safety by providing coordinated motion as highest priority
task and joint limit avoidance and trajectory following at a lower priority.
The coordination of motions is based on a relative Jacobian formulation. The
approach is applicable to systems composed of redundant or not-redundant
manipulators. Experiments in simulation demonstrate the behaviour of the
approach under different redundancy configurations. Experiments on physical
hardware with mixed redundancy demonstrate the applicability of the approach
to cooperative manipulation under joint limit constraints. Finally, a supervisor

46

5.2 Control algorithm for joint limits avoidance

controller is proposed, which is able to guarantee all joint position limits of two
cooperative redundant manipulators, even when the only redundant motions
are no longer sufficient to make ensure them.

5.2.1 Proposed joint position limits avoidance strategy

A classical approach to avoid joint limits is to define the gradient of a cost
function as the lowest priority task [55]. This approach guides each joint to-
wards the middle of its range, regardless of the joint position’s closeness to
the limit. In order to optimize the number of redundant motions that are em-
ployed in the joint limit avoidance task, a repulsive joint velocity is used in
order to move only the critical joints away from their limits [68]. In particu-
lar, a joint is defined as a critical joint when its distance α from its nearest
limit qL = [qLmin , qLmax] is less than distance β between qL and the activation
threshold qT = [qTmin

, qTmax
] of the joint limit avoidance task. For the dual

arm system composed of two manipulators, it is possible to obtain a repulsive
joint velocity vector for each manipulator, ˙⃗qA

+
and ˙⃗qB

+
, respectively as

˙⃗qA
+

= HAWA(q⃗T A − q⃗A) (5.9)

˙⃗qB
+

= HBWB(q⃗T B − q⃗B) (5.10)

where q⃗T A and q⃗T B are two na and nb dimensional column vectors, which con-
tain the joint threshold positions closest to the current joint position. HA and
HB are (nA × nA) and (nB × nB) dimensional diagonal matrices representing
the gains of the control law of this task. However, these gains are weighted by
the two smooth activation diagonal matrices WA and WB, whose components
wi depend on α according to

wi(α) = 1
2

[
1 − tanh

(
1

1 − α
β

− β

α

)]
, ∀α ∈ [0, β] (5.11)

giving wi ∈ [0, 1] as shown in Figure 5.9. The smooth transition allows to
reduce the discontinuities in the joint velocity signals compared to a binary
activation matrix [45].

Finally, setting ˙⃗qk
+

= [˙⃗qA
+

, ˙⃗qB
+

]T in (4.15), it is possible to obtain the
following final compact matrix equation

˙⃗qab =JR
†(˙⃗xRd +KRe⃗R) + PR

(
[JA 0]†(˙⃗xAd +Ke)+

PABHABWAB(q⃗TAB − q⃗AB)) (5.12)

47

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

0.2

0.4

0.8

0.6

1

β β

𝒒𝒒𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒𝑳𝑳𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒𝑳𝑳𝒎𝒎𝒎𝒎𝒎𝒎

𝒘𝒘𝒎𝒎

𝒒𝒒𝒎𝒎
0

Figure 5.9: Activation function for one component wi of W matrix.

where q⃗TAB = [q⃗TA

+, q⃗TB

+]T , while HAB and WAB are defined as

HAB =
[
HA 0

0 HB

]
WAB =

[
WA 0

0 WB

]
. (5.13)

Note that the joint limit avoidance task has lower priority than trajectory
following. This can appear counter-intuitive. However, if the system is redun-
dant, the lower priority of the task avoids losing trajectory tracking perfor-
mance while still using the redundancy to avoid joint limits. In the case of a
non-redundant system, the null-space projector PAB needs to be modified so
that the trajectory tracking and joint limit avoidance have the same priority.

Joint limit avoidance is not ensured when the manipulators possess more
critical joints than redundant motions [68]. To ensure that the joint limits are
satisfied, we let the trajectory performance related to ˙⃗xAd degrade gradually
and temporarily by having same priority for trajectory tracking and joint limit
avoidance. To keep this specific to the non-redundant manipulator, (5.12) is
adapted by replacing the null-space projection matrix of the non-redundant
manipulator with an identity matrix I having the same dimension. In other
words, PAB in (5.12) can be replaced with one of the orthogonal projectors

PIB =
[
I 0
0 PB

]
PIA =

[
PA 0
0 I

]
(5.14)

where PIX is the projector matrix when the manipulator X is non-redundant.
Finally, if both manipulators are non-redundant, PAB matrix is replaced by
an identity matrix IAB.

Figure 5.10 shows an example of the joint limit avoidance. Given a generic
critical joint q1, it will converge to an equilibrium where two opposite velocity

48

5.2 Control algorithm for joint limits avoidance

𝒒𝒒𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎

�̇�𝑞𝑑𝑑𝑖𝑖=𝑘𝑘𝑖𝑖(𝑞𝑞𝑑𝑑𝑖𝑖−𝑞𝑞𝑖𝑖)

𝒒𝒒𝟏𝟏

�̇�𝑞𝑇𝑇𝑖𝑖=ℎ𝑖𝑖𝑤𝑤𝑖𝑖(𝑞𝑞𝑇𝑇𝑖𝑖−𝑞𝑞𝑖𝑖)

𝒒𝒒𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒𝑳𝑳𝒎𝒎𝒎𝒎𝒎𝒎 𝒒𝒒𝑳𝑳𝒎𝒎𝒎𝒎𝒎𝒎

𝒒𝒒𝟐𝟐

𝒒𝒒𝒅𝒅𝟏𝟏

𝒒𝒒𝒅𝒅𝟐𝟐

Figure 5.10: Operating principle of the joint limits avoidance strategy.

components are balanced: the first velocity (red arrow) depends on the gain
matrix K and pushes q1 towards its desired position qd1 , while the second one
(violet arrow), which depends on the product of h1 and w1, pushes q1 towards
the minimum threshold position qTmin

. On the other hand, a non-critical joint
q2 is not affected by the second velocity signal (w2 = 0), therefore it will
converge to its desired position qd2 .

5.2.2 First case study

The following simulations show how to use the proposed methodology to en-
sure that joint limits are preserved (i.e., there is no violation of joint position
constraints) in a dual-arm system performing a desired task. In detail, two
identical planar manipulators with 3-DOF are involved in three different cases:

Case I both manipulators are non-redundant;

Case II both manipulators have one redundant motion;

Case III manipulator A has no redundant motions, while manipulator B has
one redundant motion.

The manipulators considered in the simulation study are functionally redun-
dant, as described in chapter II. Therefore, the number of redundant motions
(or degree of redundancy) drA and drB can be calculated by applying the
rank-nullity theorem [55] as n − s = dr.

nA − sA = drA nB − sB = drB (5.15)

49

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

-1 0 1 2 3 4

X [m]

-1

0

1

2

3

Y
 [m

] A B

Y

XY

X

qA2 qB3

qA3

qB1qA1

qB2

(a)

-1 0 1 2 3 4

X [m]

-1

0

1

2

3

Y
 [m

]

 A
 B

Y

Y X

XZ Z
qA2

qB2

qB3

qA3

qB1

qA1

(b)

-1 0 1 2 3 4

X [m]

-1

0

1

2

3

Y
 [m

]

 B A

Y

XY

X
qA2

qB3

qA3

qB1

qA1 qB2

(c)

Figure 5.11: Manipulator configurations: (a) initial, (b) Case I and III final
configuration, (c) Case II final configuration.)

Since both manipulators have the same number of joints (nA = nB = 3),
the degree of redundancy of each manipulator can be changed by assigning
different number of task variables to each end effector (functional redundancy
definition, see 2.3). Hence, the tasks proposed in Case I are defined by three
variables sA = sB = 3, so that the degree of redundancy is equal to zero
for both manipulator drA = drB = 0. Case II presents two tasks described
by only two motion variables sA = sB = 2 (translation motions along x and
y axes), so that the degree of redundancy is equal to one, drA = drB = 1.
Finally, Case III presents the cooperation of manipulators having different
degree of redundancy. The task of Case I is assigned to manipulator A, while
the task of Case II is assigned to manipulator B. Therefore, the degrees of
redundancy are drA = 0 and drB = 1.

The proposed task consists of translating the dual arm system from position
P1 = [1, 1.5] m to position P2 = [2, 1.5] m, while keeping the relative pose
constant. Moreover, two joint limits qA2 and qB1 are enforced using (5.9)
and (5.10) with the values reported in Table 5.1, which have been Empirically
tuned.

Table 5.1: Joint limits.
Critical Joint qL[min,max] qT[min,max] β ki hi

qA2 [−1.7, 3.14] [−1.5, 3.04] 0.1 10 20
qB1 [−0.7, 3.14] [−0.5, 2.94] 0.2 10 20

The proposed task is decomposed into prioritized sub-tasks according to
(5.12). Since the execution of the joint limit avoidance depends on drA and
drB , their execution priority changes for each cooperation case, as reported in
Table5.2.

50

5.2 Control algorithm for joint limits avoidance

Table 5.2: Decomposition of the task into prioritized subtasks.
Case Priority Sub-task description dimension

I 3 ˙⃗xRd = [0 m/s, 0 m/s, 0 rad/s]T 3
2 ˙⃗xAd = [0.01 m/s, 0.01 m/s, 0 rad/s]T 3
2 ˙⃗xBd = [0.01 m/s, 0.01 m/s, 0 rad/s]T 3
2 q̇+

A2 = 20wA2(−1.5 rad − qA2) 1
2 q̇+

B1 = 20wB1(−0.5 rad − qB1) 1
II 3 ˙⃗xRd = [0 m/s, 0 m/s, 0 rad/s]T 3

2 ˙⃗xAd = [0.01 m/s, 0.01 m/s]T 2
2 ˙⃗xBd = [0.01 m/s, 0.01 m/s]T 2
1 q̇+

A2 = 20wA2(−1.5 rad − qA2) 1
1 q̇+

B1 = 20wB1(−0.5 rad − qB1) 1
III 3 ˙⃗xRd = [0 m/s, 0 m/s, 0 rad/s]T 3

2 ˙⃗xAd = [0.01 m/s, 0.01 m/s, 0 rad/s]T 3
2 ˙⃗xBd = [0.01 m/s, 0.01 m/s]T 2
2 q̇+

A2 = 20wA2(−1.5 rad − qA2) 1
1 q̇+

B1 = 20wB1(−0.5 rad − qB1) 1

Case I: in this case both manipulators have no degree of redundancy avail-
able for the execution of the joint limit avoidance, drA = drB = 0. Therefore,
it is possible to assign to this task the priority of the higher priority task ˙⃗xAd,
by replacing the PAB in (5.12) with an identity matrix IAB. Figure 5.12 shows
the joint position space relative to the first two joints of each manipulator. In
particular, the difference between the joint trajectory without the proposed
joint limit avoidance strategy (blue line) and with it (violet line). The figure
shows that the joint limit avoidance works correctly, pushing both joints away
from their limits when qA2 and qB1 exceed their threshold limits (green dotted
line). Due to the joint limit avoidance, the trajectory tracking accuracy is de-
graded temporarily for both end-effectors, as shown in Figure 5.13. Moreover,
Figure 5.11(b) shows that the final end effector orientations assumed by both
manipulators are equal to the initial ones (see Figure 5.11(a)), enforced by the
relative motion task ˙⃗xRd.

Case II: in this case each manipulator possesses one degree of redundancy,
because both end effector orientation velocities are not specified. Therefore,
(5.12) is applied directly. Since a redundant manipulator admits an infinite
number of solutions for the inverse kinematic problem, it is possible to note
in Figure 5.12 that the joint trajectories obtained (sky blue) are completely
different from the trajectories tracked without joint limit avoidance (blue).
However, the repulsive joint velocities generate self-motions in each manipula-
tor not affecting their relative pose or their translation task . Therefore, the

51

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

qA1 [rad]

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

qA
2

[r
ad

]

Manipulator A Joint space

No joints limits avoidance
Case I
Case II
Case III
Threshold
Joint limits
start position
final position

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

qB1 [rad]

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

qB
2

[r
ad

]

Manipulator B Joint space

No joints limits avoidance
Case I
Case II
Case III
Threshold
Joint limits
start position
final position

(b)

Figure 5.12: A (B) manipulator joint position space relative to qA1-qA2 (a)
(qB1-qB2 (b)).

final configurations of the manipulators obtained (Figure 5.11(c)) are differ-
ent from the starting ones (Figure 5.11(a)), and the path following error is
negligible (green line in Figure 5.13).

Case III: in this last case is a combination of the previous ones. Since
manipulator A is non-redundant (φ̇A is assigned), it is necessary to replace the
PAB in (5.12) with the matrix PIB defined in (5.14). In this way, q̇A2 has
the execution priority of ˙⃗xAd, while q̇B1 has lower priority (see Table5.2). It is
interesting to note that while the joint limit of qA2 is satisfied (see red line in
Figure 5.12(a)), the joint limit of qB1 is violated (see red line in Figure 5.12(b)).
In fact, although the φ̇B is not assigned, φB must be kept constant respect to φA

as specified from highest priority task ˙⃗xRd. Therefore, φ̇B depends on φ̇A, and
consequently the B manipulator loses its degree of redundancy, so that the ˙⃗qB

+

52

5.2 Control algorithm for joint limits avoidance

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
X [m]

1.2

1.3

1.4

1.5
Y

 [m
]

Cartesian Space

A desired path B desired path I case II case III case start position final position

Figure 5.13: A and B manipulators Cartesian path for the three considered
simulation cases.

can not be performed. In order to satisfy the joint limit of qB1, it is necessary to
assign to q+

B1 the same priority execution level of the higher priority task ˙⃗xBd

as demonstrated in Case I. Therefore, the trajectory tracking performances
of both manipulators are temporary degraded as described in Case I, and the
final end effector orientations are equal to those shown in Figure 5.11(b).

Joint velocities during motion are illustrated in Figure 5.14. This shows that
unlike the existing method proposed in [49], the proposed controller strategy
and the smooth activation function eliminate discontinuities in joint velocity
commands.

5.2.3 Second study case
The experimental setup is composed of two different manipulators holding a
woodblock using their end effectors (Figure 5.15). The coordinate framed for
the set-up are depicted in Figure 5.16, which are expressed in accordance with
relative Jacobian formulation (see Figure 4.1).

Using the set-up, these experimental test are based on four cases (Cases A–
D) of cooperative manipulation, with joint position constraints shown in Table
5.3. The goal of the experiment is to analyse how the proposed controller
handles the task and joint constraints in the practical setting with different
sources of error and uncertainty.

Table 5.3: Experimental cases.

Case Kinova Jaco
(non-redundant)

Kuka LWR
(redundant) Controller

Case A — — Predefined path
Case B Joint Limit — Online path change
Case C — Joint Limit Similar to Case A
Case D Joint Limit Joint Limit Similar to Case B

53

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

0 1 2 3 4 5 6 7 8 9 10
time [s]

-0.02

-0.01

0

0.01

0.02

0.03

[r
ad

/s
]

Manipulator A: desired joint velocity (dqA) and joints limits avoidance velocity (dqA+

dqA1 dqA2 dqA3 dqA1+ dqA2+ dqA3+

(a)

0 1 2 3 4 5 6 7 8 9 10
time [s]

-0.04

-0.02

0

0.02

0.04

[r
ad

/s
]

Manipulator B: desired joint velocity (dqB) and joints limits avoidance velocity (dqB+

dqB1 dqB2 dqB3 dqB1+ dqB2+ dqB3+

(b)

Figure 5.14: Joint velocity space with repulsive velocity for A manipulator and
B manipulator.

The manipulators adopted in the experimental set-up are a 6-DOF Kinova
Jaco (non-redundant) [62] and a 7-DOF KUKA LWR4+ (intrinsically redun-
dant) [69] placed opposite and parallel to each other with a distance of 1.48m.
Their task is to cooperatively manipulate a woodblock of 0.9kg. The task
priorities are similar to earlier:

1. Task 1 (highest priority): maintaining relative position and orientation
of the end effectors such that P⃗R = [0, 0.5, 0]T m.

2. Task 2: moving the Jaco end effector Ae along the predefined path.

3. Task 3: joint limit avoidance for cooperative manipulators (see Table
5.3).

The target trajectory is a circle with radius 0.04 m, as illustrated in Fig-
ure 5.17(a). Jaco starts from initial position Ao

e = [0.262, −0.258, 0.388]T m.
In this case, the Joint limits has been enforced by using the coefficient shown
in Table 5.4), which has been tuned by experimental mode.

Figure 5.18 illustrates the Cartesian tracking errors and the relative pose
error for Cases A-C. Case D is not shown as its behaviour is almost identical to
Case B. Case A (without joint limits) serves as a reference for the achievable
performance due to limitations of the hardware, in particular Kinova Jaco.

54

5.2 Control algorithm for joint limits avoidance

Kinova Jaco Arm

6DOF

I
Woodblock

KUKALWR4+

7DOF

Figure 5.15: Two robot manipulators holding a woodblock to perform tightly
coordinated cooperative operations.

𝐴𝐴𝑒𝑒
𝜙𝜙𝑅𝑅�����⃗𝑃𝑃𝑅𝑅����⃗ 𝐴𝐴

𝐵𝐵
𝐵𝐵𝑒𝑒

𝐵𝐵𝑏𝑏

𝐴𝐴𝑏𝑏 𝑅𝑅𝐵𝐵𝑏𝑏
𝐴𝐴𝑏𝑏

𝑅𝑅𝐵𝐵𝑏𝑏
𝐴𝐴𝑒𝑒

𝑅𝑅𝐴𝐴𝑏𝑏
𝐴𝐴𝑒𝑒

𝐽𝐽𝐵𝐵
𝐽𝐽𝐴𝐴

𝑞𝑞𝐵𝐵

𝑞𝑞𝐴𝐴

𝑑𝑑𝐴𝐴𝐵𝐵������⃗

Figure 5.16: Heterogeneous two-robot system: coordinate frame transforma-
tion for the relative Jacobian formulation.

In Case B with joint limit in the non-redundant robot (Jaco), the joint limit
is avoided as shown in Figure 5.19(a). During joint limit avoidance, path
following accuracy is temporarily sacrificed to up to 15 mm position error
(shown by the red line in Figure 5.18(a–b). The coordination of motion (Task
1) is kept enforced as the relative motion error is not increased over baseline
(Figure 5.18c). The same behavior is illustrated in the Cartesian space in
Figs. 5.17(a-b).

In Case C with joint limit in the redundant robot (KUKA LWR), the pro-
posed controller is able to avoid the joint limit as illustrated in Figure 5.19b.
Due to the redundancy, the accuracy of Cartesian trajectory or relative position
are not deteriorated as shown in Figs. 5.17 and 5.18.

Even though KUKA can use its redundancy to avoid conflicts in joint and
task space, this extra degree of freedom does not solve the problem of joint
limit occurring on Jaco. Therefore the cooperative behaviour in Case D (joint

55

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

Table 5.4: Joint limit parameters.
Critical Joint qL[min,max] qT[min,max] β ki hi

qA3 [0.1, 0.59] [0.1, 0.54,] 0.1 10 20
qB1 [0.1, 0.88] [0.1, 0.83] 0.2 10 20

limits for both) is similar to Case B (Jaco joint limit).
Looking more closely at the relative position errors in Figure 5.18(c), the

errors remain small in all cases. In Case B the cooperative manipulators need
to change Cartesian path to avoid joint limits, increasing the path following
error temporarily but the limited relative motion error is maintained. This
demonstrates the ability of the proposed approach to handle cooperative ma-
nipulation in a safe manner.

Finally, cooperation between intrinsically redundant and non-redundant cou-
pled robots demonstrates the proposed controller ability to take advantage of
redundancy, as well as to temporarily sacrifice the Cartesian trajectory accu-
racy to comply with joint limits.

Discussion

The experimental results indicate one interesting observation for heterogeneous
systems: the lower performance robot sets the performance limit for the en-
tire system. This has a significant consequence for the system design in that
the lower performance robot should be used as the master, whose trajectory
tracking error is used as feedback. That is, in the context of this experiment
the lower performance robot should be manipulator A whose trajectory error,
e⃗, should be used as the trajectory feedback. This ensures that the perfor-
mance of the highest priority coordinated motion task will not depend on the

(a) (b)

Figure 5.17: Coordinated manipulation results of tightly-coupled manipulators
under joint constraints (Case B and C).

56

5.2 Control algorithm for joint limits avoidance

(a)

(b)

(c)

Figure 5.18: Cooperative performance of tightly-coupled manipulators for the
Cases (Case A-C), refer to Table5.3.

performance of the lower performance robot.
Experimental implementation of a controller for heterogeneous robots is chal-

lenging because the access to hardware is usually not uniform. To implement
the controller, the hardware plug in compatible with ROS (Robotic Operat-
ing System)-control framework has been adopted in order to abstract the two
systems as a single robot. The implemented controller communicated with
robot-specific native low-level controllers at 100 Hz. The low-level controller
of Kinova Jaco was fixed and did not allow tuning. The performance of the
low-level controllers differed significantly. To address this, the gains of the pro-
posed controller were tuned manually. Nevertheless, the performance of the
low-level controller for Jaco was limited which can be seen in Figure 5.18(a–b)
as tracking errors even for the baseline Case A without joint limits. Despite
this limitation, the experiments indicated no increase in tracking error unless

57

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

(a) (b)

Figure 5.19: Controller treats joint limits enforced in manipulators.

forced by the joint limit avoidance.
The relative position errors were below 5 mm in all configurations. Thus the

proposed approach is applicable in practice to collaborative manipulation. The
remaining position errors were due to limitations in the performance of native
low-level controllers. Applications requiring higher performance would likely
need an integrated custom low-level controller controlling both manipulators.

5.2.4 Supervisor controller for redundancy management
As previously introduced in the hierarchical priority task paragraph (see 4.2.1)
and demonstrated in the last experiments, the joint limit avoidance task has
lower priority than trajectory following task. This can appear counter-intuitive.
However, if the system is redundant, the lower priority of the task does not
affect the trajectory tracking performance, and at the same time, it ensures
the joint limits. However, when the manipulators possess more critical joints
than redundant motions, joint limit avoidance is not ensured ([68]).

In order to ensure the joint limits that cannot be satisfied by the redundant
motions, it is possible to assign the second execution priority level to joint limit
avoidance task, which has the same priority level of the trajectory following
task. The proposed solution is based on a supervisory control system, which
decides if the i-th critical joint velocity has to be projected into the Jacobian
null space associated to the specific robotic arm or if it has to be summed
algebraically to the joint velocity contribution due to the trajectory tracking.
The chosen criteria depends on the number of critical joints n that have been
detected in a specific time instant, and in particular, when it is higher than
the degree of redundancy dr (which can be obtained by calculating the rank
of PAB matrix), the supervisory controller assigns to the last detected critical
joint the same priority execution level of the trajectory tracking (level equals to
two), as shown in Figure 5.20. The disadvantage of this method concerns the
lost of performance about the pre-defined trajectory tracking accuracy, because

58

5.2 Control algorithm for joint limits avoidance

Joint limit avoidance task
of i-th Critical Joint

Priority execution level
2

Priority execution level
1

𝑛𝑛 > 𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟(𝑃𝑃𝐴𝐴𝐴𝐴)
True False

Detection of
i-th Critical Joint

Pa
th

-fo
llo

w
in

g
gr

ad
ua

lly
 a

nd
 te

m
po

ra
ry

 sa
cr

ifi
ce

d
to

en

su
re

 sa
fe

ty
 c

rit
ic

al
 jo

in
ts

 n
ot

 to
 v

io
la

te
 c

on
st

ra
in

ts

ta
sk

w
ith

ou
t

Redundancy used to achieve secondary task w
ithout

affecting end-effector m
otion

Figure 5.20: Operating principle of the supervisor controller.

the path following error is locally higher, but it is gradual and temporary.
In order to introduce the supervisory controller system, (5.12) can be modi-

fied as reported in the following:

q̇ab = J†
R(ẋRd

+KReR) + PR([JA 0]†(ẋAd
+Ke)+

+(CAB +BABPAB)HABWAB(qTAB
− qAB))

(5.16)

where the CAB and BAB matrices having a dimension equals to (nab ×
nab), modify the column of PAB matrix relative to the critical joints q+

i when
the corresponding manipulator does not have available degrees of redundancy.
Therefore, these matrices can be defined as

BAB =
[
BA 0
0 BB

]
CAB =

[
CA 0
0 CB

]
(5.17)

where the matrices Bi and Ci (with i = A, B) are diagonal matrices, whose
components can assume the following values:

59

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

Figure 5.21: Operating principle of the joints avoidance strategy.

bAii =
{

1, na ≤ rank(PA)
0, na > rank(PA)

bBii =
{

1, nb ≤ rank(PB)
0, nb > rank(PB)

cAii =
{

0, na ≤ rank(PA)
1, na > rank(PA)

cBii =
{

0, nb ≤ rank(PB)
1, nb > rank(PB)

Therefore, the component values assigned by the supervisory controller de-
pend on the na and nb, which indicate the number of critical joint possessed
by each manipulator in a specific time instant.

In detail, this chosen criteria can be implemented by using the example shown
in Figure 5.21, which is focused on two joints: the first one is initially a critical
joint q+

1 , while the second one starts as a not critical joint position q2, but then
becomes a critical joint when it overcomes the qTmin

position in order to reach
its desired final position qd2 (which is out from the joint position interval).

Therefore, if a generic cooperative manipulator (i.e., A manipulator) has a
degree of redundancy equals to one, the q+

1 is managed by using redundancy,
because n = rank(PA) = 1, while the BAB matrix is equal to the identity
matrix and CAB is a null matrix. Contrary, when the second joint becomes
a critical joint, q+

2 , no degrees of redundancy are available and q+
2 is managed

by increasing the priority of the relative joint limit avoidance task. Therefore
the bA22 and cA22 coefficients of BA and CA are switched to zero and one
respectively, in order to properly modify the PAB matrix.

5.2.5 Third study case

This section proposes an example of application of the joint limit strategy
previously described. Since the Baxter robot possesses two homogeneous arms,
the critical joints that have been considered in the study belong to the arm A

60

5.2 Control algorithm for joint limits avoidance

(left arm). However, the experiment can be repeated considering the joints of
the arm B.

𝒒𝒒𝑨𝑨𝑨𝑨𝟎𝟎

𝒒𝒒𝑨𝑨𝑨𝑨𝟏𝟏

X

Y

Z

80 cm

A B

(a)

𝑱𝑱𝐵𝐵
𝑱𝑱𝐴𝐴

𝐵𝐵 𝐴𝐴

𝑇𝑇𝑓𝑓
𝐴𝐴𝑒𝑒
𝑇𝑇𝑓𝑓

x𝑅𝑅d
𝐴𝐴𝑒𝑒

𝐵𝐵𝑒𝑒

𝑹𝑹
𝑥𝑥�𝐴𝐴

𝑥𝑥�𝐵𝐵
𝑦𝑦�𝐵𝐵

�̂�𝑧𝑓𝑓

𝑥𝑥�𝑓𝑓
𝑦𝑦�𝑓𝑓

𝑦𝑦�𝐴𝐴

�̂�𝑧𝐴𝐴

�̂�𝑧𝐵𝐵

(b)

Figure 5.22: Study case setup (a) and coordinate transformation of the Baxter
arms (b)

The proposed task can be considered as a typical manufacturing application,
in which a dual-arm robot has to pick and move a large object by using both
arms as shown in Figure 5.22(a). Therefore, this task requires a synchronized
arms motion and respect of all joint position constraints. In order to apply the
relative Jacobian method, the coordinate transformation of the Baxter arms is
shown in Figure 5.22(b).

The motion assigned to the Baxter arms consists in a circle path with radius
r = 0.13m on the X − Y plane, which has to be completed with an execution
time tex = 35s. In order to ensure the gripping of the object during the whole
path, the relative end-effectors distance must remain equal to its initial value
P⃗R = 0.8m. During the execution of the task, two joints, respectively qAw0

and qAw1 , violate their maximum joint limits, which are respectively placed at
0.16rad and 0.95rad. In order to show the efficacy of the proposed strategy, the
task has been repeated three times in accordance with the three cases described
in Table 5.5, while the controller parameters that have been used for all three
cases, are reported in Table 5.6. In particular, the gain matrix coefficients ki

and hi have been empirically tuned, and their values depend on β values and
the desired joint positions.

Case I shows the motion of the end effector A has been performed without
the imposition of any limit on its joints. The position values obtained for the
considered joints, are shown in Figure 5.23. In particular, qAw0 is a critical joint

61

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

Case Controller Supervisor
I Relative Jacobian without joint limit

avoidance (see (4.12))
Off

II Relative Jacobian with joint limit avoid-
ance (see (5.12))

Off

III Relative Jacobian with joint limit avoid-
ance (see (5.12))

On

Table 5.5: Description of the experimental considered cases.

Critic. joint qL[min,max] qT[min,max] β ki hi

qAw0 [−3, 0.16] [−2.96, 0.12] 0.04 100 10
qAw1 [−1.57, 0.95] [−1.47, 0.85] 0.1 100 50

Table 5.6: Parameters used for the experimental cases.

for the whole duration task as shown in Figure 5.23(a), while qAw1 becomes a
critical joint only inside the time interval [13s, 24s] (see Figure 5.23(b)). Since
no joint position limit avoidance is considered in this case, both joints violate
their maximum position limits.

Case II is based on the use of redundant motion possessed by the manipu-
lator A. Since it has only a degree of redundancy, qAw0 is able to avoid its limit
and it becomes a not critical joint after t = 14s. Moreover, the degree of redun-
dancy permits to track correctly the desired path, as shown in Figure 5.24(a).
However, when qAw1 becomes a critical joint, it cannot use any redundant mo-
tion because the unique redundant degree is yet employed by qAw0 . For this
reason, qAw1 is not able to satisfy its limit, as shown Figure 5.23(b).

Case III allows to overcome the problem described in Case II by turning
on the supervisor. In fact, when the supervisory controller recognizes qAw1 like
a critical joint, the controller assigns a higher priority execution level to the
joint limit avoidance task of qAw1 , such that, this possesses the same priority
level of the path following task. Therefore, in this case both qAw0 and qAw1

are able to avoid their limits. The disadvantage of this strategy concerns the
partial and temporary path following error due to the limitation of qAw1 , as
shown in Figure 5.24(a) and Figure 5.25(a). However, the path following
error does not affect the desired relative end-effectors motion as demonstrated
in Figure 5.25(b), because it has the highest priority execution level.

Discussion

The proposed supervisory kinematic controller is able to ensure the joint posi-
tion constraints in cooperative manipulation even when the number of redun-

62

5.2 Control algorithm for joint limits avoidance

0 10 20 30
Time [sec]

-0.05

0

0.05

0.1

0.15

0.2
Jo

in
t A

w
0 [r

ad
]

Joint Limit (JL)
Threshold
Case I
Case II
Case III

(a)

0 10 20 30
Time [sec]

0.4

0.6

0.8

1

Jo
in

t A
w

1 [r
ad

]

Joint Limit (JL)
Threshold
Case I
Case II
Case III

(b)

Figure 5.23: Controller treats joint limits enforced in manipulators.

dant system motions are not sufficient to guarantee them. This is achieved by
a hierarchical execution priority which is dynamically assigned to each joint
the first time that it becomes critical; when the number of redundant motion
is no longer sufficient, then the joint limit avoidance task receives the same
priority level of the path following task. This causes a gradual and temporary
reduction of the path following performances, but ensures that safety critical
joint constraints are not violated. The experimental results show that the ap-
proach avoids correctly the limits of the critical joints, while the path following
error, which depends on the motion of those joints that cannot be managed
via redundancy, remains small. The study has been performed on a Baxter
dual-arm system, but the proposed strategy can be easily extended to hetero-
geneous cooperative manipulators, as long as their application does not require
high path tracking accuracy. At the present state, the supervisory controller
assigns the priority dynamically when a joint becomes critical. However the

0.5 0.6 0.7 0.8
X [m]

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Y
 [m

]

Case I
Case II
Case III

(a)

0.5 0.6 0.7 0.8
X [m]

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

Y
 [m

]

Case I
Case II
Case III

(b)

Figure 5.24: Coordinated manipulation results.

63

Chapter 5 Proposed kinematic control algorithms for obstacle and joint limits avoidance

0 5 10 15 20 25 30 35
Time [s]

0

0.01

0.02

0.03

0.04

0.05

0.06

Pa
th

 fo
llo

w
in

g
er

ro
r

[m
]

Case I
Case II
Case III

(a)

0 5 10 15 20 25 30 35
Time [s]

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

R
el

at
iv

e
en

d
ef

fe
ct

or
s

po
si

tio
n

er
ro

r
[m

]

Case I
Case II
Case III

(b)

Figure 5.25: Cooperative performance of tightly-coupled manipulators.

assigned priority level does not change any-more with time (e.g., when a joint
is no more critical, or a new redundancy degree becomes available). Therefore
an appealing topic for further research concerns in time-variant assignment of
priority execution levels.

64

Chapter 6

Proposed fault tolerant algorithms

6.1 Relative manipulability index
As it has been introduced in the Chapter I, a desired propriety of a dual
arm system consists of being fault tolerant with respect to one or more faults,
therefore this last Chapter is focused on the analysis of dual cooperative arms
when a Partial Loss of Joint Torque Faults (PLJTF) [29] is occured.

The basic idea of this study consists of implementing a kinematic controller,
which uses the degree of redundancy both to maximize the local optimum fault
tolerance configuration and to overcome the loss of the end effector velocity
due to fault occurrence by using of the SNS method as shown in [54].

The optimal fault tolerant configuration is the one that maximizes the resid-
ual manipulability of the manipulator affected by a joint fault [52]. As it has
been shown in section 3.2.3, the manipulability w(q⃗) of a robotic arm is a
kinematic index that quantifies the performance of the manipulator [70]. It
depends on the joint positions q⃗ which describes the current configuration of
the manipulator. The manipulability value is calculated through the objective
function

w(q⃗) =
√

det(J(q⃗)J(q⃗)T) (6.1)

where J(q⃗) represents the Jacobian (geometrical or analytical) [55].
The manipulability index is a non-negative value that is equal to zero at

the singular configurations of the manipulator. Therefore, the manipulator
performance is directly dependent on the manipulability index, where higher
w(q⃗) values correspond to higher performance levels of the manipulator and
vice-versa.

The loss of performance level due to a faulty joint can be measured by cal-
culating the relative manipulability index ri(q⃗) [52, 71], which is the ratio
between the manipulability index after the fault wi(q⃗) and the manipulability
index before the fault w(q⃗)

ri(q⃗) = wi(q⃗)
w(q⃗) (6.2)

65

Chapter 6 Proposed fault tolerant algorithms

𝑞𝑞1

𝑞𝑞2 𝑞𝑞3

Figure 6.1: 3 DoF planar manipulator with fault tolerant configuration with
respect to joint one (q1) (revised version of Figure 2 from [52])

where the subscript i denotes the i-th faulty joint. The relative manipulability
index, as well as the manipulability index, depends on the current configuration
of the robot q⃗. As proven in [52], if all joint faults are equally likely, the
following property holds for the relative manipulability index

N∑
i=1

r2
i = n − m (6.3)

where n is the number of joints and m is the degree of motion required by
the task, and their difference represents the degree of the redundancy. If the
manipulator has three joints and only one degree of redundancy, then (6.3) can
be rewritten as

r2
1 + r2

2 + r2
3 = 1 (6.4)

which shows the level of fault tolerance for each joint in a given configuration
assumed by the manipulator.

For example, if r1 = 1, for a specific configuration the end effector motion
is fault tolerant respect to the fault on the first joint. A practical explanation
is that, in the considered configuration, the first joint gives no contribution to
the end effector motion, as shown in Fig6.1.

On the other hand, Fig6.1 shows that the manipulator’s configuration is not
fault tolerant with respect to any of the other joints (r2 = r3 = 0). It is there-
fore desirable to find those configurations which ensure a uniform distribution
of the relative manipulability indices, i.e., the configurations for which the rel-
ative indices have the same value with respect to each joint fault. Without a
priori knowledge of the fault distribution, these configurations provide the best
fault tolerant capabilities.

66

6.2 Optimization of fault tolerant configuration

6.2 Optimization of fault tolerant configuration
The relative manipulability index is strictly related to the null space of the
Jacobian. For a manipulator with one degree of redundancy, relative manipu-
lability index can be obtained by calculating the null vector n⃗J of the Jacobian
J . In detail, it holds that

ni = (−1)i+1det(J i) i = 1 . . . n (6.5)

where ni is the i-th component of n⃗J . (6.5) has been obtained by using of the
Laplace expansion of the determinant [72], which for a rectangular Jacobian
matrix of dimensions 2 × 3, it results to be the cross product of the two rows
of J . By considering only the absolute value of both sides of (6.5), we obtain

|ni| = |det(J i)| = wi(q⃗) (6.6)

from which follows
w(q⃗) = |n⃗J | (6.7)

For each manipulator considered in this chapter (i.e., see the manipulator A

in Figure 6.2), the Jacobian null vector n⃗J has the form shown in 6.8, as
demonstrated in [52].

n⃗J =

⎡⎢⎣ sin(q3)
−sin(q3) − sin(q2 + q3)
sin(q2) + sin(q2 + q3)

⎤⎥⎦ (6.8)

By considering the unit length null vector of the Jacobian ˆ⃗nJ as

ˆ⃗nJ = n⃗J

|n⃗J |
(6.9)

it is possible to obtain

wi(q⃗) = |ni| = |n̂i|w(q⃗) (6.10)

where n̂i is the i-th component of ˆ⃗nJ . From Eqs.(6.2) and (6.10), the relative
manipulability index results

ri = |n̂i| (6.11)

This expression is very important to find the optimal fault tolerance configura-
tion. In fact, it is possible to obtain the same value of relative manipulability
indexes respect to several joint faults, by imposing an equal magnitude to the
Jacobian null space components |n̂i| in (6.8) (when q2 + q3 = kπ), as demon-
strated in [52].

67

Chapter 6 Proposed fault tolerant algorithms

Therefore, it is possible to derive a scalar objective function H, which defines
the distance between the configuration assumed by the manipulator (q⃗) and
the optimal fault tolerant configuration (q⃗0):

H(q⃗) = −1
2(q⃗ − q⃗0)T (q⃗ − q⃗0) (6.12)

It is possible to minimize such distance in the joint space by using of the
gradient, which is projected into the Jacobian null space of the manipulator
affected by the fault [42].

6.3 Proposed fault tolerant configuration algorithm

The joints velocity vector ˙⃗qabk
can be calculated by the right pseudo-inverse

of Jacobian matrix JA
†

˙⃗qab = JR
† ˙⃗xR + PR([JA 0]† ˙⃗xA) (6.13)

where PR = (I − JR
†JR) is the orthogonal projector matrix which projects

the absolute end-effector velocity A related to manipulator A into the JR null
space. Note that in order to simplify the notation, in (6.13) and from now on,
the dependencies of the Jacobian matrices on the joint position vectors and on
sample time, are removed unless otherwise specified.

Since, the study is focused on two planar manipulators having a degree of
redundancy, such that it is possible to solve their redundancy by optimizing
the fault tolerant configuration function (6.12) through the Gradient Projector
method

˙⃗qH = kq

[
∇q|H(q⃗a)|
∇q|H(q⃗b)|

]
(6.14)

where ˙⃗qH is a nab dimensional vector and kq is the gain of the gradient. The
objective function H is projected into the manipulators Jacobian null space, so
that, (6.13) can be rewritten in the following form

˙⃗q
∗
ab = JR

† ˙⃗xR + PR([JA 0]† ˙⃗xA + P ab
˙⃗qH) (6.15)

where P ab = [P a P b] is a nab × nab dimensional matrix that contains the
orthogonal projectors into the null spaces of the manipulators A and B which
dimension is different from zero. The (6.15) presents a hierarchical task struc-
ture [61], where ˙⃗xR is the task having the higher execution priority, while ˙⃗qH

is the lower task priority. In particular, this last one operates on the current
configuration of the individual manipulators, without influencing the end ef-
fectors motions defined by ˙⃗xR and ˙⃗xA. In turn, ˙⃗xA does not influence the

68

6.4 Joint fault management with the SNS method

relative effectors motion, which possesses the higher execution priority. There-
fore, if the three tasks conflict with each other, the performance of ˙⃗xR motion
is protected at the expense of the other two tasks.

6.4 Joint fault management with the SNS method

When a PLJTF occurs, it is treated like a joint having a reduction of its velocity
bound. In this scenario, it is possible to compensate the degradation of the
system performance by using the SNS method [48]. As described in Chapter 3
(see 3.2.4), this method allows to find an efficient solution to the pseudo-inverse
problem for each kind of joint constraint, such as joint position bound q⃗f , joint
velocity bound ˙⃗qf and joint acceleration bound ¨⃗qf . Therefore, it is possible
to introduce the SNS expression relative to ˙⃗qf described in 3.21, in order to
obtain a new joints velocity vector ˙⃗q

∗
SNS :

˙⃗q
∗
SNS = (JRWR)†s ˙⃗xR + P ∗

R([JAWA 0]† ˙⃗xA + P ∗
ab(˙⃗qH + ˙⃗qf)) (6.16)

where s is the task scaling factor (s ∈ [0, 1]), while WR, PR
∗ and P ∗

ab are
defined as

WR =
[
WA 0

0 WB

]
(6.17)

PR
∗ = (I − (JRWR)†JR) (6.18)

P ∗
ab =

[
I − (JAWA)†JA 0

0 I − (JBWB)†JB

]
(6.19)

and WB, WA are diagonal matrices used for zeroing the columns of the two
Jacobian manipulators JA and JB, respectively.

Since each manipulator possesses only one degree of redundancy, it is not
sufficient to project both ˙⃗qH and ˙⃗qf into the Jacobian null space in the same
time. Hence if the manipulators are affected by the fault, the controller sets the
gradient gain kq to 0 in order to switch from current fault tolerant configuration
to a new configuration due to SNS method. Moreover, the controller ensures
that the column ofWR relative to the position of the faulty joint becomes zero,
in order to obtain the reduced form of the relative Jacobian. In this way, the i-th
faulty joint keeps the maximum permitted velocity q̇fi

, while the unperformed
velocity is mapped into healthy joints by projecting into the reduced relative
Jacobian null space. The new obtained manipulator pose allows to complete
the task without affecting the relative end effectors motion.

69

Chapter 6 Proposed fault tolerant algorithms

6.5 Case study

Description of the task

-1 0 1 2

X[m]

-0.5

0

0.5

1

1.5

2

Y
[m

]

 robotB robotA

Y

XX

Y

Z Zq3

q2 q1 q4 q5

q6

Figure 6.2: Starting configuration of the dual arm system

The case study is focused on the cooperation of two planar manipulators,
namely A and B, having three degrees of motion (na = nb = 3) and the
same geometry. The joint velocity bounds in normal working is defined by
˙⃗qM = [±0.25, ±0.1, ±0.1, ±0.1, ±0.15, ±0.1]T rad/s.

The specific task consists in the translation of the end effectors along a pre-
defined straight line between p⃗1 = [0, 1]T m, the starting end effector position,
and p⃗2 = [1, 1]T m, the ending end effector position, while the relative end
effectors distance and orientation remain constant during the whole motion.

In order to execute this task, two reference velocity paths are fixed, namely
the desired relative end effectors motion ˙⃗xR = [0, 0, 0]T m/s, and the abso-
lute end effector trajectory ˙⃗xA = [0.01, 0]T m/s. In order to implement the
condition of the optimal fault tolerant configuration shown in (6.12), the two
manipulators are made kinematically redundant by excluding the absolute end
effector orientation velocity from the task specifications. Figure 6.2 shows
the starting pose of the two manipulators. This is an optimal fault tolerance
configuration because the two n⃗J vectors relative to both manipulators, posses
the components n̂i with magnitude equal to 0.577.

Moreover, since the starting manipulator pose is the same for both manip-
ulators and the relative end effectors orientation is kept constant during the
motion, it is possible to obtain the fault tolerant configurations of both ma-
nipulators by limiting the minimization of the objective function ˙⃗qH for the

70

6.5 Case study

manipulator A, and thus (6.14) can be rewritten as

˙⃗qH = kq

[
∇q|H(q⃗a)|

0

]
(6.20)

Several tests have been performed, imposing different fault magnitudes to one
joint at a time. Two levels of maximum rotation velocity reduction have been
verified, namely 50% and 80%. Moreover, the performance of the system has
been simulated in four different fault instant times, i.e., 5s, 6s, 7s and 8s.

6.5.1 Results

Figures (6.3)-(6.4) show the relative manipulability indices obtained for the
two different fault magnitudes, such as 50% and 80% reduction of maximum
joint velocity, at the mentioned fault instant times.

5 6 7 8

Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
in

im
um

 r
el

at
iv

e
m

an
ip

ul
ab

ili
ty

 in
de

x

q1 q2 q3 q4 q5 q6

Figure 6.3: Relative manipulability indices for 50% reduction of maximum joint
velocity

5 6 7 8
Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
in

im
um

 re
la

tiv
e

m
an

ip
ul

ab
ilit

y
in

de
x

q1 q2 q3 q4 q5 q6

Figure 6.4: Relative manipulability indices for 80% reduction of maximum joint
velocity

71

Chapter 6 Proposed fault tolerant algorithms

It is possible to note how the six relative manipulability values are very similar
for both considered faults. The results show how ri indices are more dependent
on the time of the fault occurrence rather than the fault magnitude. Moreover,
the ri indices relative to the manipulator A (namely q1, q2 and q3) increase when
the fault occurs towards the end of the task, contrary to the ri indices relative
to the manipulator B. This depends on the specific task motion, where the
whole system translate towards the manipulator B position in order to affect
its manipulability index. Moreover, it is possible to note that q1 possesses the
lower ri index, and thus provides the main motion contribute to the task. On
the other hand, the ri index of q3 is equal to one after t = 7 s (see Figure 6.3),
because the fault does not affect the desired velocity required by q3 to complete
the task.

0 1 2 3 4 5 6 7 8 9 10
Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

V
el

oc
ity

 [r
ad

/s
]

Joints velocity profle

q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

q̇1

Figure 6.5: Joint velocity when the maximum q̇1 velocity is reduced of 50% at
t=5s

Figures 6.5 and 6.6 show the joints velocity when the reduction of velocity of
q̇1 and q̇3 is equal to 50% and occurs at t = 5 s. The unperformed velocity

0 1 2 3 4 5 6 7 8 9 10
Time [s]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

V
el

oc
ity

 [r
ad

/s
]

Joints velocity profle

q̇1 q̇2 q̇3 q̇4 q̇5 q̇6

Figure 6.6: Joint velocity when the maximum q̇3 velocity is reduced of 50% at
t=5s

72

6.5 Case study

is projected into the two reduced Jacobian null space. The last one increases
the velocity of the healthy joints, which change the current configuration of the
manipulators without influencing the task motion. However, when a fault oc-
curs on q̇3, the velocity of q̇1 tends to its maximum value (0.25 rad/s). In order
to avoid the saturation of the healthy joints velocity, it is possible to reduce the
task velocity by choosing an appropriate value of s in (6.16). Moreover some
joint velocities, such as q̇1, q̇2 and q̇5 show high chattering behaviours due to
the switching controller, when q̇3 is close to its fault bound. These could involve
several discontinuities into the acceleration levels, which can be eliminated by
implementing a second order kinematic algorithm. Finally, Figure 6.7 shows
the final configurations of the dual arm system, when a fault of 80% occurs on
q̇1 or q̇3 at t = 5 s.

-1 -0.5 0 0.5 1 1.5 2 2.5 3

X

-0.5

0

0.5

1

1.5

2

Y

 robotA robotB
Y

X

Y

X

Z Z

(a)

-1 -0.5 0 0.5 1 1.5 2 2.5 3

X

-0.5

0

0.5

1

1.5

2

Y

 robotB robotA

Y

X

X

Y

Z Z

(b)

Figure 6.7: Final manipulators configuration, when a 80% maximum velocity
loss on (a) q̇1 and (b) q̇3 occurs at t=5s

6.5.2 Discussion
This method changes the current configuration of both manipulators without
affecting the desired relative end effectors distance. The results have shown
that, in case of joint faults, the proposed method permits to correctly complete
the assigned task. In this study, the faulty joint should be isolated and the fault
magnitude is required to be known; this is typically achieved by implementing
a fault diagnosis module. When a fault occurs, several discontinuities appear
in the acceleration level. In order to solve this problem, the proposed controller
can be replaced by a second order kinematic controller.

73

Chapter 7

Conclusions and future works

7.1 Conclusions
This thesis tackles the problem of kinematic control for cooperative dual-arm
systems via redundancy resolution. The main contribution is the development
of a kinematic controller for cooperative manipulation based on the relative
Jacobian method, in order to treat two cooperative manipulators as a unique
redundant manipulator, while achieving a secondary task as well. In detail, in
this thesis the redundancy resolution algorithm based on Jacobian null space
method with hierarchical prioritized task architecture has been developed, in
order to satisfy some important secondary tasks: obstacle avoidance, joints
position limits avoidance, and the relative manipulability index.

The obtained results have demonstrated the efficiency of the proposed re-
dundancy resolution algorithms, because their performance were compatible
with those of the single manipulator case. However, the low execution priority
of the secondary task did not permit to guarantee the execution of secondary
tasks, when the system did not have a sufficient number of redundant motions.
The proposed solution is based on increasing the priority level relative to the
secondary tasks, which degrades partially and temporary the performance of
primary tasks. This technique has been studied during the cooperation between
a non redundant manipulator with a redundant manipulator and successively
implemented in a supervisor controller, in order to manage the temporary un-
availability of redundant motions in the cooperation of two homogeneous re-
dundant manipulators. Therefore this technique results to be flexible, because
it is easily implementable on several types of manipulators, whose tasks do not
require high path tracking accuracy.

An additional contribution of this thesis is the application of the proposed
redundancy resolution algorithm for tolerating joint faults. The fault has been
modelled like a reduction of the maximum joint velocity due to partial torque
loss of a servomotor. The system has been made locally fault tolerant by ex-
ploiting its redundancy degrees via two different methods. The first method
has permitted to reduce the manipulators’ manipulability loss in case of fault

75

Chapter 7 Conclusions and future works

occurrence, by imposing an optimal fault tolerant configuration to both manip-
ulators; this was directly obtained from optimization of relative manipulability
index. The second method has permitted to compensate the loss of the end
effectors motion by using the saturation null space approach. The feasibil-
ity of the proposed joint fault tolerant control has been shown in a case study,
whose results have demonstrated that the efficacy depends on two factors: fault
intensity and the fault time instants.

7.2 Future works
Future works should focuses on improving the proposed kinematic controllers
in the cooperative manipulation field. First of all, the relative Jacobian method
can be extended on cooperative manipulators mounted on different mobile
bases, in order to increase the number of redundant motions possessed by each
system. Secondary, the redundancy resolution can be extended to grasping
motion control, when a robotic hand with multi-fingers (e.g., anthropomorphic
hand model) is used to grasp a large and heavy object.

Regarding to the proposed fault tolerance algorithm, the stability of the
switching controller should be proved, and experimental tests should be per-
formed as well. Since in the considered study case the position and intensity
of joint fault is known a priory, an interesting improvement of this algorithm
concerns the integration of a fault detection and diagnosis algorithm, which
allows to detect the presence of faults on multiple joints and evaluate the type
of faults.

Finally, others redundancy resolution technique different from Jacobian null
space (i.e., General-weighted least-norm method) can be implemented, in order
to compare the different cooperation performances obtained by using different
techniques.

76

Bibliography

[1] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Di-
marogonas, and D. Kragic, “Dual arm manipulation—a survey,” Robot.
Auton. syst., vol. 60, no. 10, pp. 1340 – 1353, 2012.

[2] J. F. Liu and K. Abdel-Malek, “Robust control of planar dual-arm coop-
erative manipulators,” Robotics and Computer-Integrated Manufacturing,
vol. 16, no. 2, pp. 109–119, 2000.

[3] P. Tsarouchi, S. Makris, G. Michalos, M. Stefos, K. Fourtakas, K. Kalt-
soukalas, D. Kontovrakis, and C. Chryssolouris, “Robotized assembly
process using dual arm robot,” Procedia CIRP, vol. 23, pp. 47 – 52, 2014.

[4] J. Krüger, G. Schreck, and D. Surdilovic, “Dual arm robot for flexible and
cooperative assembly,” CIRP Annals-Manufacturing Technology, vol. 60,
no. 1, pp. 5–8, 2011.

[5] V. Lippiello, L. Villani, and B. Siciliano, “An open architecture for sensory
feedback control of a dualarm industrial robotic cell,” Industrial Robot:
An International Journal, vol. 34, no. 1, pp. 46–53, 2007.

[6] D. J. Cox, “Mock-up of hazardous material handling tasks using a dual-
arm robotic system,” in Automation Congress, 2002 Proceedings of the
5th Biannual World, 2002, vol. 14, pp. 527–532.

[7] D. W. Seward and M .J Bakari, “The use of robotics and automation in
nuclear decommissioning,” in 22nd International Symposium on Automa-
tion and Robotics in Construction ISARC, 2005, pp. 11–14.

[8] M. J. Bakari, K. M. Zied, and D. W. Seward, “Development of a multi-arm
mobile robot for nuclear decommissioning tasks,” International Journal
of Advanced Robotic Systems, vol. 4, no. 4, pp. 502–524, 2007.

[9] E. Simetti, G. Casalino, N. Manerikar, A. Sperindé, S. Torelli, and F. Wan-
derlingh, “Cooperation between autonomous underwater vehicle manipu-
lations systems with minimal information exchange,” in OCEANS 2015 -
Genova, May 2015, pp. 1–6.

77

Bibliography

[10] H. Farivarnejad and S Ali A Moosavian, “Multiple impedance control
for object manipulation by a dual arm underwater vehicle–manipulator
system,” Ocean Engineering, vol. 89, pp. 82–98, 2014.

[11] A. Stroupe, A. Okon, M Robinson, T. Huntsberger, H. Aghazarian, and
E. Baumgartner, “Sustainable cooperative robotic technologies for human
and robotic outpost infrastructure construction and maintenance,” Auton.
Robots, vol. 20, no. 2, pp. 113–123, Mar. 2006.

[12] E. Zereik, A. Sorbara, G. Casalino, and F. Didot, “Autonomous dual-arm
mobile manipulator crew assistant for surface operations: Force/vision-
guided grasping,” in Int. Conf. Recent Advances in Space Tech., June
2009, pp. 710–715.

[13] R. Simmons, S. Singh, D. Hershberger, J. Ramos, and T. Smith, “First re-
sults in the coordination of heterogeneous robots for large-scale assembly,”
in Proc. Int. Symp. Experimental Robotics, 2000.

[14] R.C. Goert, “Fundamentals of general-purpose remote manipulators,” Nu-
cleonics (U.S.) Ceased publication, vol. Vol: 10, No. 11, Nov 1952.

[15] R. O. Ambrose, H. Aldridge, R. S. Askew, R. R. Burridge, W. Bluethmann,
M. Diftler, C. Lovchik, D. Magruder, and F. Rehnmark, “Robonaut:
Nasa’s space humanoid,” IEEE Intelligent Systems and their Applications,
vol. 15, no. 4, pp. 57–63, Jul 2000.

[16] P. Hynes, G. I. Dodds, and A.J.Wilkinson, “Uncalibrated visual-servoing
of a dual-arm robot for mis suturing,” in The First IEEE/RAS-EMBS
International Conference on Biomedical Robotics and Biomechatronics,
2006. BioRob 2006. IEEE, 2006, pp. 420–425.

[17] F. Benetazzo, F. Ferraacuti, A. Freddi, A. Giantomassi, S. Iarlori,
S. Longhi, A. Monteriù, and D. Ortenzi, AAL Technologies for Inde-
pendent Life of Elderly People, pp. 329–343, Springer International Pub-
lishing, 2015.

[18] J. Xu, G. G. Grindle, B. Salatin, J. J. Vazquez, H. Wang, D. Ding, and
R. A. Cooper, “Enhanced bimanual manipulation assistance with the
personal mobility and manipulation appliance (permma),” in Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on. IEEE, 2010, pp. 5042–5047.

[19] C. S. Chung, H. Wang, and R. A. Cooper, “Autonomous function of
wheelchair-mounted robotic manipulators to perform daily activities,”
in 2013 IEEE 13th International Conference on Rehabilitation Robotics
(ICORR), June 2013, pp. 1–6.

78

Bibliography

[20] A. Cunningham, W. Keddy-Hector, U. Sinha, D. Whalen, D. Kruse,
J. Braasch, and J. T. Wen, “Jamster: A mobile dual-arm assistive robot
with jamboxx control,” in 2014 IEEE International Conference on Au-
tomation Science and Engineering (CASE), Aug 2014, pp. 509–514.

[21] F. Aghili and K. Parsa, “A reconfigurable robot with lockable cylindrical
joints,” IEEE Transactions on Robotics, vol. 25, no. 4, pp. 785–797, 2009.

[22] L.Zlajpah and B. Nemec, “Kinematic control algorithms for on-line obsta-
cle avoidance for redundant manipulators,” in Intelligent Robots and Sys-
tems, 2002. IEEE/RSJ International Conference on. IEEE, 2002, vol. 2,
pp. 1898–1903.

[23] M. B. Hong, “On the robot singularity: A novel geometric approach,”
International Journal of Advanced Robotic Systems, vol. 9, 2012.

[24] I. Iossifidis and G. Schoner, “Dynamical systems approach for the au-
tonomous avoidance of obstacles and joint-limits for an redundant robot
arm,” in 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, 2006, pp. 580–585.

[25] J. F. O’Brien and J. T. Wen, “Redundant actuation for improving kine-
matic manipulability,” in Robotics and Automation, 1999. Proceedings.
1999 IEEE International Conference on. IEEE, 1999, vol. 2, pp. 1520–
1525.

[26] R. S. Jamisola Jr and R. G. Roberts, “A more compact expression of rel-
ative jacobian based on individual manipulator jacobians,” Robot. Auton.
syst., vol. 63, pp. 158 – 164, 2015.

[27] I. Koren and C. M. Krishna, Fault-tolerant systems, Morgan Kaufmann,
2010.

[28] J. D. English and A. A. Maciejewski, “Fault tolerance for kinematically
redundant manipulators: Anticipating free-swinging joint failures,” IEEE
Transactions on Robotics and Automation, vol. 14, no. 4, pp. 566–575,
1998.

[29] C. L. Lewis and A. A. Maciejewski, “Fault tolerant operation of kinemati-
cally redundant manipulators for locked joint failures,” IEEE Transactions
on Robotics and Automation, vol. 13, no. 4, pp. 622–629, 1997.

[30] Y. Zeng, Y. R. Xing, H.J. Ma, and G. H. Yang, “Adaptive fault diagnosis
for robot manipulators with multiple actuator and sensor faults,” in The
27th Chinese Control and Decision Conference (2015 CCDC). IEEE, 2015,
pp. 6569–6574.

79

Bibliography

[31] A. A. Siqueira, M. H. Terra, and M. Bergerman, Robust control of robots:
fault tolerant approaches, Springer Science & Business Media, 2011.

[32] C. Paredis, J. J . Christiaan, and P. K. Khosla, “Designing fault-tolerant
manipulators: How many degrees of freedom?,” The international journal
of robotics research, vol. 15, no. 6, pp. 611–628, 1996.

[33] R. Isermann, Fault-diagnosis systems: an introduction from fault detection
to fault tolerance, Springer Science & Business Media, 2006.

[34] Z. Shiller and S. Dubowsky, “On computing the global time-optimal mo-
tions of robotic manipulators in the presence of obstacles,” IEEE Trans-
actions on Robotics and Automation, vol. 7, no. 6, pp. 785–797, 1991.

[35] Z. Shiller, S. Sharma, I. Stern, and A. Stern, “Online obstacle avoidance
at high speeds,” The International Journal of Robotics Research, vol. 32,
no. 9-10, pp. 1030–1047, 2013.

[36] A. Ben-Israel and T. N. Greville, Generalized inverses: theory and appli-
cations, vol. 15, Springer Science & Business Media, 2003.

[37] G. H. Golub and C. Reinsch, “Singular value decomposition and least
squares solutions,” Numerische mathematik, vol. 14, no. 5, pp. 403–420,
1970.

[38] J. Baillieul, “Kinematic programming alternatives for redundant manip-
ulators,” in Robotics and Automation. Proceedings. 1985 IEEE Interna-
tional Conference on. IEEE, 1985, vol. 2, pp. 722–728.

[39] P. H. Chang, “A closed-form solution for inverse kinematics of robot
manipulators with redundancy,” 1987.

[40] L. Sciavicco and B. Siciliano, “A solution algorithm to the inverse kine-
matic problem for redundant manipulators,” IEEE Journal on Robotics
and Automation, vol. 4, no. 4, pp. 403–410, 1988.

[41] B. Siciliano and O. Khatib, Springer handbook of robotics, Springer Science
& Business Media, 2008.

[42] R. V. Dubey, J. A. Euler, and S. M. Babcock, “An efficient gradient
projection optimization scheme for a seven-degree-of-freedom redundant
robot with spherical wrist,” in Proc. IEEE Int. Conf. Robot. Autom.,
1988, vol. 1, pp. 28–36.

[43] G. Antonelli, F. Arrichiello, and S. Chiaverini, “The null-space-based
behavioral control for autonomous robotic systems,” Intell. Serv. Robot.,
vol. 1, no. 1, pp. 27–39, 2008.

80

Bibliography

[44] S. Chiaverini, “Singularity-robust task-priority redundancy resolution for
real-time kinematic control of robot manipulators,” IEEE Trans. Robot.
Autom., vol. 13, no. 3, pp. 398–410, 1997.

[45] N. Mansard, O. Khatib, and A. Kheddar, “A unified approach to integrate
unilateral constraints in the stack of tasks,” IEEE Trans. Robot., vol. 25,
no. 3, pp. 670–685, 2009.

[46] A. Atawnih, D. Papageorgiou, and Z. Doulgeri, “Kinematic control of
redundant robots with guaranteed joint limit avoidance,” Robot. Auton.
syst., vol. 79, pp. 122 – 131, 2016.

[47] N. Mansard and F. Chaumete, “Task sequencing for high-level sensor-
based control,” IEEE Tran. on Robotics, vol. 23, no. 1, pp. 60–72, 2007.

[48] F. Flacco, A. De Luca, and O. Khatib, “Motion control of redundant
robots under joint constraints: Saturation in the null space,” in Proc.
IEEE Int. Conf. Robot. Autom., 2012, pp. 285–292.

[49] Y. Hu, B. Huang, and G. Z. Yang, “Task-priority redundancy resolution
for co-operative control under task conflicts and joint constraints,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2015, pp. 2398–2405.

[50] H.Abdi, A. A. Maciejewski, and S. Nahavandi, “A probabilistic approach
for measuring the fault tolerance of robotic manipulators,” in Robotics
and Automation (ICRA), 2013 IEEE International Conference on. IEEE,
2013, pp. 1995–2001.

[51] Y. She, W. Xu, H. Su, B. Liang, and H. Shi, “Fault-tolerant analysis
and control of ssrms-type manipulators with single-joint failure,” Acta
Astronautica, vol. 120, pp. 270–286, 2016.

[52] R. G. Roberts and A. A. Maciejewski, “A local measure of fault toler-
ance for kinematically redundant manipulators,” IEEE Transactions on
Robotics and Automation, vol. 12, no. 4, pp. 543–552, 1996.

[53] A. Freddi, S. Longhi, A. Monteriù, and D. Ortenzi, “Redundancy analysis
of cooperative dual-arm manipulators,” International Journal of Advanced
Robotic Systems, vol. 13, no. 5, 2016.

[54] A. Freddi, S. Longhi, A. Monteriù, and D. Ortenzi, “A kinematic joint
fault tolerant control based on relative jacobian method for dual arm ma-
nipulation systems,” in IEEE Conference on Control and Fault-Tolerant
Systems (SysTol), Barcelona, Spain, 2016.

[55] S. Bruno, S. Lorenzo, V. Luigi, and O. Giuseppe, Robotics: Modelling,
Planning and Control, Springer Publishing Company, 1st edition, 2008.

81

Bibliography

[56] A. Colomé and C. Torras, “Closed-loop inverse kinematics for redundant
robots: Comparative assessment and two enhancements,” IEEE/ASME
Trans. Mechat., vol. 20, no. 2, pp. 944–955, 2015.

[57] D.G. Luenberger and Y. YeL, Linear and nonlinear programming, Springer
Science & Business Media, 2008.

[58] A. De Luca and G. Oriolo, “Reduced gradient method for solving redun-
dancy in robot arms,” Robotersysteme, vol. 7, no. 2, pp. 117–122, 1991.

[59] J. Lee, P. H. Chang, and R. S. Jamisola, “Relative impedance control for
dual-arm robots performing asymmetric bimanual tasks,” IEEE transac-
tions on industrial electronics, vol. 61, no. 7, pp. 3786–3796, 2014.

[60] B. Cao, G. I. Dodds, and G. W. Irwin, “Redundancy resolution and
obstacle avoidance for cooperative industrial robots,” Journal of Robotic
Systems, vol. 16, no. 7, pp. 405–417, 1999.

[61] A. Freddi, S. Longhi, A. Monteriù, and D. Ortenzi, “Redundancy analysis
of cooperative dual-arm manipulators,” International Journal of Advanced
Robotic Systems, vol. 13, no. 5, pp. 1729881416657754, 2016.

[62] V. Maheu, P. S. Archambault, J. Frappier, and F. Routhier, “Evaluation
of the jaco robotic arm: Clinico-economic study for powered wheelchair
users with upper-extremity disabilities,” in IEEE Int. Conf. Rehab. Robot.,
2011, pp. 1–5.

[63] L. Cavanini, F. Benetazzo, A. Freddi, S. Longhi, and A. Monteriù, “Slam-
based autonomous wheelchair navigation system for aal scenarios,” in 2014
IEEE/ASME 10th International Conference on Mechatronic and Embed-
ded Systems and Applications (MESA), Sept 2014, pp. 1–5.

[64] C. Gionatai, F. Francesco, A. Freddi, S. Iarlori, and A. Monteriù, An
Inertial and QR Code Landmarks-Based Navigation System for Impaired
Wheelchair Users, Springer International Publishing, 2014.

[65] G. Ippoliti, A. Monteriu, L. Jetto, and S. Longhi, Comparative Anal-
ysis of Mobile Robot Localization Methods Based On Proprioceptive and
Exteroceptive Sensors, INTECH Open Access Publisher, 2007.

[66] M. Z. Huang and J. L. Thebert, “A study of workspace and singularity
characteristics for design of 3-dof planar parallel robots,” The Interna-
tional Journal of Advanced Manufacturing Technology, vol. 51, no. 5-8,
pp. 789–797, 2010.

82

Bibliography

[67] M. Z. Huang, “Design of a planar parallel robot for optimal workspace
and dexterity,” International Journal of Advanced Robotic Systems, vol.
8, no. 4, pp. 176–183, 2011.

[68] F. Chaumette and E. Marchand, “A redundancy-based iterative approach
for avoiding joint limits: application to visual servoing,” IEEE Trans.
Robot. Autom., vol. 17, no. 5, pp. 719–730, 2001.

[69] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schaeffer,
A. Beyer, O. Eiberger, S. Haddadin, A. Stemmer, G. Grunwald, and
G. Hirzinger, “The kuka-dlr lightweight robot arm - a new reference
platform for robotics research and manufacturing,” in Int. Sym. Robot.
(ROBOTIK), 2010, pp. 1–8.

[70] C. S. Ukidve, J. E. McInroy, and F. Jafari, “Using redundancy to opti-
mize manipulability of stewart platforms,” IEEE/ASME Transactions on
Mechatronics, vol. 13, no. 4, pp. 475–479, 2008.

[71] R. g. Roberts, H. G. Yu, and A. A. Maciejewski, “Fundamental lim-
itations on designing optimally fault-tolerant redundant manipulators,”
IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1224–1237, 2008.

[72] P. Lancaster and M. Tismenetsky, The theory of matrices: with applica-
tions, Elsevier, 1985.

83

	Hardcover
	Softcover
	Dedication
	Acknowledgments
	Abstract
	Sommario
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivations
	Literature review
	Contributions
	Thesis structure

	Kinematic redundant manipulators
	Manipulator mobility
	Spaces definition
	Joint space
	Cartesian space
	Workspace
	Task space

	Kinematic redundancy definition
	Differential kinematics
	Geometric Jacobian
	Analytical Jacobian
	Inverse differential kinematics

	Redundancy resolution via local optimization
	Jacobian pseudo-inverse method
	Jacobian null space method
	Jacobian null space projection matrix
	Gradient projection method
	Objective functions
	Saturation in the null space method
	Hierarchical priority execution task

	Kinematic modelling of cooperative manipulators
	Relative Jacobian method
	Inverse kinematics solution for cooperative manipulators

	Proposed kinematic control algorithms for obstacle and joint limits avoidance
	Control algorithm for obstacle avoidance
	Case study
	Task Description
	Simulation results

	Control algorithm for joint limits avoidance
	Proposed joint position limits avoidance strategy
	First case study
	Second study case
	Supervisor controller for redundancy management
	Third study case

	Proposed fault tolerant algorithms
	Relative manipulability index
	Optimization of fault tolerant configuration
	Proposed fault tolerant configuration algorithm
	Joint fault management with the SNS method
	Case study
	Results
	Discussion

	Conclusions and future works
	Conclusions
	Future works

