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Abstract

Although Micro Grid technologies are still in the experimental phase, the po-
tential improvement of efficiency robustness and flexibility is significant. The
energy waste and the load swing can be greatly reduced, nonetheless an auto-
mated system that properly manages the resources is required to fully develop
the potential of the available resources. On purpose, an energy management
system approach, based on Mixed Integer Linear Programming technique has
been investigated, implemented and proposed. The dissertation covers the the-
oretical aspects of the problem, such as the MILP management approach, the
model of a Micro Grid for two of the most common scenarios, and the al-
gorithms that support the management system. The experimentations have
shown the effectiveness of the approach in terms of management efficiency and
robustness. To improve the management, the modelling of the behaviour of a
real life photovoltaic power plant has been deemed necessary . By taking into
account the effect of partial shading, the actual performance of a plant can be
evaluated and thus the accuracy of the forecast of solar energy production can
be improved. Additionally, to feed the state of the system back to the manager,
an algorithm that monitors the activity of each appliance within the system
through the analysis of the aggregated energy consumption has been investi-
gated. To support the management activity, also, a scheduling algorithm aimed
at ultra low power micro controllers has been proposed and implemented, as a
mean to develop sensor devices powered by renewable energy supply. This type
of sensor can be effectively used in automated meter reading systems to provide
the manager with the information relating water and gas consumption. Fur-
thermore, a leakage detection algorithm has been developed and investigated
to differentiate actual consumption from resource waste.
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Sommario

Nonostante le tecnologie Micro Grid siano ancora in fase sperimentale, il
potenziale miglioramento di efficienza, robustezza e flessibilità è significativo.
Lo spreco di energia e le fluttuazioni del carico possono essere notevolmente
ridotte, ciononostante un sistema automatico che gestisca correttamente le
risorse risulta necessario per sviluppare completamente il potenziale delle risorse
disponibili. Al riguardo, un approccio alla gestione dell’energia, basato su tec-
niche Mixed Integer Linear Programming è stato esaminato, implementato e
proposto. La dissertazione copre gli aspetti teorici del problema, quali le tec-
niche di gestione MILP, il modello di Micro Grid per due degli scenari più
comuni, e gli algoritmi a supporto del sistema di gestione. Le sperimen-
tazioni hanno evidenziato l’efficacia del metodo in termini di efficienza e ro-
bustezza. Per migliorare la gestione, si è ritenuto necessario modellare il com-
portamento di un impianto fotovoltaico reale. Prendendo in considerazione
l’effetto dell’ombreggiamento parziale, le performance dell’impianto possono
essere valutate, e l’accuratezza nella predizione della produzione di energia
solare migliorata. Inoltre, per fornire al gestore lo stato del sistema, un al-
goritmo capace di monitorare l’attività di ciascun carico a partire dall’analisi
del consumo aggregato di energia è stato esaminato. A supporto dell’attività
di gestione, inoltre, è stato implementato un algoritmo di schedulazione per
micro controllori a consumo ridotto, per lo sviluppo di sensori alimentati da
fonti rinnovabili impiegabili nei sistemi di lettura automatica dei contatori, così
da fornire al manager le informazioni relative al consumo di acqua e gas. A
complemento, un algoritmo per l’identificazione delle perdite, per distinguere
il consumo effettivo dallo spreco di risorse, è stato investigato.

ix
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Chapter 1

Introduction

Nowadays society heavily depends on electrical energy, and the widespread
of consumer electronics, air conditioning systems, and appliances has resulted
in a steady rise of the energy demand. At the same time however, power
distribution grids, based on old generation technology, have remained mostly
unchanged and thus are reaching their limits. Because of that, to prevent grid
failures, since they affect both availability and distribution of energy, the need
to revise the approach towards the energy distribution has arisen.
In fact, with the integration of new power plants within pre-existing grids,

even more so when renewable energy sources are used, the centralized topology,
at the basis of the pre-existing power distribution generation technology, has
begun to show its shortcomings, mostly pertaining flexibility, efficiency and
robustness of the distribution system.
In order to overcome these limitations, a new generation of power distribution

grids is being devised. At the core of the new design is the idea that a mesh
topology may provide the means to overcome the limitation of nowadays power
grids. Since in such a topology each energy production plant and each load
would be a node in the grid, adding a new power plant would not alter the
topology of the grid. At the same time the availability of many link among
the nodes provides additional robustness and efficiency, given the availability
of multiple paths that can be used to route the energy from the sources to the
loads.
The implementation of this new generation of grids, however, presents many

challenges. Among these two there is the need to coordinate the activity among
the nodes efficiently, and the need to replace the old generation grid without
hindrances or interruptions to the distribution services.
The first requirement implies that the nodes have to be smart, so that the a

centralised coordination may be unnecessary. Thus the grid has to be smart.
The second requirement, on the other hand, implies that the pre-existing grid
has to be replaced a small portion at a time, which can be done by means
of small scale Smart Grids, usually addressed to as Micro Grids, that can be
connected at a later time to form a larger grid.

1
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Chapter 1 Introduction

Given the complex nature of the problem, several topic are under research,
addressing novel infrastructures and management challenges.

1.1 Infrastructural novelties
Regarding the structure of future power grids, when addressing the energy dis-
tribution problem, among the novel solutions, the most commonly considered
are:

• Smart Grids;

• Smart Homes;

• Micro Grids.

1.1.1 Smart Grids

Smart Grids represent the future paradigm of large scale energy distribution
grids [2, 3]. To ease the coordination among many power plants, Smart Grids
are based on a mesh topology, whose main strong point redundancy.
Since the addition of new nodes does not alter the topology of the grid,

it is easier to connect a new plant, with respect to a centralized grid. As
such, even a distributed power plant, which can be regarded as a pool many
separated nodes, each corresponding to a small scale independent plant, can be
integrated without major issues. Since distributed power plants are more and
more common with the widespread of renewable energy power plants, it is clear
that a mesh topology greatly enhance the flexibility of a power distribution grid.
Although optimization is still under research [4, 5, 6], since low scale power

plants are smaller, they can be located closer to the loads, resulting in a shorter
distribution path and therefore in an improved efficiency.
Also, the redundant nature of mesh topologies provides the additional ben-

efits of fault tolerance and self healing abilities. In fact, whenever a link, or
a node, fails, the failing elements can be isolated and fixed, without halting
the power supply toward the customers, since the availability of multiple links
allows for many alternative routes to reach the customer.
With the availability of more advanced technologies, also, a diversity of so-

lution can be integrated in a Smart Grid further improving the performance
of the grids, varying from different energy sources such as fuel-cell and micro-
combined heat and power plants, to energy storages, usually in the form of
plug in electrical vehicles parking pools. Moreover, the smart nature of the
nodes, can be used to implement proactive control strategies such as demand
side management, to further lower the stress of the grid and its losses.

2
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1.1 Infrastructural novelties

At present however, given the complex nature of the problems at hand, most
of the solutions are currently under research, and experimental studies are
based only on small scale scenarios.

1.1.2 Smart Homes
Smart Homes represent the new paradigm of residential environments, aimed
to improve the comfort of the user, as well as the efficiency of the residential
environment itself[7]. In that, a Smart Home is devised not only to be efficient,
but also to improve the energy awareness of the user, thus guiding the user
towards the efficient use of energy.
In that, Smart Homes, are envisioned as technologically advanced buildings

that integrate monitoring systems and, depending on circumstances, some sys-
tems such local energy production from renewable sources, energy storages,
heat ventilation and air conditioning systems, or even plug-in electrical vehicle
charge systems, along with the means to allow the interaction among these.
Differently from home automation systems, that allows the user to remotely

control the environment, however, a Smart Home usually also provides the
means to actually manage the resources in order to improve the efficiency of
their use. In fact, in most cases, a proper management of the resources, requires
effort and time, thus an automated system that takes over the management in
place of the user is required.
In turn, an automated energy and resource manager can provide support

to further advanced technologies such as Demand Side management, which
requires, however, to interact with a Smart Grid. In fact, if the utility can
demote or promote the energy consumption exerted by the user, the burden
of the grid can be adjusted to lower the stress of the distribution system and
to improve its performance. In turn, the user can benefit from discounts by
purchasing energy during off-peak hours.
Although Demand Side management can be achieved even without an auto-

mated system, it will require additional care from the user with sub-optimal
performance, even more so when Dynamic pricing tariffs are used and the en-
ergy price changes hourly.
In other words, although Smart Homes can be regarded as a step closer

toward the Net Zero Energy Building design [8, 9], their potential can grow
further when they are integrated within a Smart Grid.

1.1.3 Micro Grids
Given the issues relating to the implementation of large scale Smart Grids, a
simpler approach to the problem is represented by Micro Grids, which are small
scale Smart Grids, that usually integrate a few Smart Homes, and additional

3
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Chapter 1 Introduction

resources such as small scale centralised plant for energy production, energy
storage or even thermal systems[10, 11].
Thanks to its small scale, a Micro Grid can be connected to traditional power

grids through a point of common coupling, thus appearing as a single load, and
since a Micro Grid can spread across a small residential area, its aggregated
energy consumption shows less swing, and thus is less prone to stress the main
grid, with respect to the many housed directly connected to the main grid.
Moreover, a Micro Grid has less redundant resources and a lower number of

subsystems, with respect to a full size Smart Grid, thus it is much easier to im-
plement, and therefore it is the most common experimental case study in Smart
Grid research. At the same time, it represents an intermediate step towards a
full fledged Smart Grid, in that several Micro Grids can be interconnected into
a Smart Grid at a later time.
Nonetheless, a Micro Grid, similarly to a Smart Home, also allows for central-

ized energy management, depending on the integrated subsystems. In addition,
since larger plants can be used in a Micro Grid, with respect to a single home,
such has micro-CHP, Vehicle-to-grid solutions for Plug-In Electrical Vehicles
(PHEV), the efficiency can be improved further with respect to the single Smart
Home.

1.2 Management challenges

Although Smart Homes and Micro Grid may possess the resources to improve
the overall efficiency of the structure, to achieve a proper energy management
it is mandatory to coordinate the use of energy and resources, while taking into
account many aspects of the environment. Thus the development of an energy
management system is required to automate the process [7, 12, 13], in order to
improve the efficiency of the grid or the residential environment.
Nonetheless, although energy efficiency is important, from the end user per-

spective the cost savings are most often considered, whereas to the utility
service a lower burden towards the grid is also important. Because of that, the
improvement of the energy efficiency should not disregard other aspects of the
problems such as the maintenance costs or the energy costs of the system. For
instance, if the optimization process strongly depends on energy storage, the
intense use may shorten the lifespan of the storage, leading to a more frequent
replacement of the battery and to an increase of the maintenance costs.
From this perspective, the most efficient management schedule may not nec-

essarily result in the lowest overall energy consumption, since it depend on the
structure of grid, its topology, the resources to be managed and so on.
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1.2 Management challenges

1.2.1 Energy Management

The aim of the energy management is the planning of the flow of energy from
the sources to the loads in order to improve the efficiency of the grid. As such,
not only the overall energy flow must not exceed the maximum capacity of
the system, but also, unforeseen events that may lead in that direction should
be addressed properly. In other words the manager has to detect external
events, such as unplanned user activity, in order to prevent the overload of the
system. On purpose, non invasive load monitoring techniques are mandatory
to correctly identify the appliances in use.
Generally speaking, to improve the efficiency of a device or a system implies

the reduction of the energy losses of the system, so that a given task can be
executed with less energy. Of course, in the case of a Micro Grid, to achieve
such a result would require to improve the efficiency of every device or system
integrated in the grid, which is not actually related to management.
From the standpoint of energy management, in fact, to improve the efficiency

of the system implies a reduction of the load that the Micro Grid exert towards
the main grid through the point of common coupling. In this perspective, if the
Micro Grid includes local energy production from renewable sources, the grid
activity can be managed to exploit the local production thus lowering amount
of energy that has to be purchased. On the other hand, if a dynamic pricing
tariff is available, so that a proper energy manager allows to purchase energy
when its price is at the lowest, although the energy amount may not change,
both the burden towards the grid and the overall cost of the energy are lowered.
Although not directly related to efficiency, these are also valuable benefits.
For instance, when demand side management is applied and the energy de-

mand is promoted, it means that the grid burden is far below the peak level,
thus a rise in the demand can be beneficial to the stability of the grid.
Clearly, energy management is most beneficial whenever it is possible to use

local energy production from renewable sources, in place of fuel powered energy
plant or the energy provided by the main grid. In most cases however, the
energy availability from renewable sources cannot be controlled, therefore the
amount of energy being purchased can be lowered effectively only by planning
the user activity, so that tasks are executed when energy is available or by
storing the energy and supplying it at a later time.
In a sense, then energy management is strongly bound to the management of

the resources. Even considering combined heat and power (CHP) micro plant,
whenever the heat production is not negligible, the waste of resources may be
not tolerable, thus the activity of a micro CHP may be bound to the actual
need of heat, and therefore the plant may fall in the more broad category of
resources, rather than in the one of the energy plants.
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Chapter 1 Introduction

1.2.2 Resources Management

Along with the management of energy, the management of resources is required
to properly improve the efficiency of the environment.
Other than dealing with the limits of the environment, the manager may be

required to properly prioritize the working cycles of the appliances, for instance
it may need to interrupt the working cycle of an appliance at the right time,
and to restart the appliance at a later time to let it complete its working cycle.
When dealing with the storage, the manager has to take into account its

losses due to power conversion, and the stress of the battery system in order
to avoid the need of an early replacement due to wear.
If the user comfort is being managed, the amount of energy required by

the HVAC system has to be computed. Thus a proper model of the thermal
behaviour of the building is required to evaluate the thermal needs. Moreover, if
the HVAC system provides alternative heat or chill sources, such as heat pumps
and gas boiler, the manager has to evaluate and use the most convenient one
for each given time frame.
Also, if water and gas resources are to be managed, real time monitoring

is required. In this case, also, novelty detection technologies to differentiate
leakages from actual use are required to act accordingly.

1.2.3 Forecasting

From a broader perspective, the management of energy and use of resources
focuses on planning the future activity of the Micro Grid environment. In
order to achieve an efficient management, thus, the knowledge about the future
conditions of the environment are required. In order to plan the use of the
storage, for instance, the knowledge regarding the availability of energy from
renewable source is required. If the tasks to be scheduled are not assigned,
the manager need the information concerning the electrical load. Similarly, to
properly plan the purchase, or the sale, of energy, the manager need to know
the future prices of energy, whereas, to evaluate the thermal needs of the user,
the future values of the outdoor temperature are needed.
Since each and every one quantity has its own characteristics and peculiarity,

many different forecasting solutions are required. Although most of these types
of information can be acquired, the acquisition process may be not straightfor-
ward and therefore at least some fall back solutions are needed nonetheless.

1.2.4 Additional models and algorithms

In addition to the issues relating to the management problem, also, the need
to correctly model the resources and to correctly analyse the behaviour of the
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system is to be considered.
For instance, with the widespread of local Photovoltaic Power (PV) plants, a

local power source is usually the most common target of an energy management
system. However, in a real life scenario dealing with PV plants, the partial
shading is a common occurrence that affects the performance of the local source.
Similarly, with regard to the management of the system, external factors can

interfere with the management planned by the system. An appliance may fail,
the user may turn on unmanaged appliances. In these circumstances, external
events have to be identified, so that the proper response can be issued. With
regard to this, the monitoring of the energy consumption and a Non Intrusive
Load Monitoring (NILM) support may be required, so that unexpected loads
can be identified on short notice.

1.3 Aims and outline
The effectiveness and efficiency of Micro Grid environments mostly depends
on the resources availability, nonetheless, an automated system that properly
manages the resources is required to fully develop the potential of the available
resources. On purpose, to address the problem of energy and resource man-
agement in Micro Grid environments, an energy management system approach
based on Mixed Integer Linear Programming (MILP) technique has been in-
vestigated, implemented and proposed. Further enhancements of the model,
aimed to photovoltaic power plant modelling, and non invasive monitoring of
the appliances, have been also proposed and investigated. Moreover, to inte-
grate the management of resources such as water and gas, along with electrical
energy and devices, a task scheduling algorithm aimed at ultra low powered de-
vices, and a leakage identification algorithm required to identify potential issues
based on the water and gas metering records has been proposed. The proposed
research, described in the current dissertation, is the groundwork that has been
carried out in order to develop an energy and resources management system
that can be implemented and deployed in real life Micro Grid environment.
The state of the art, presented in Chapter 2, regards the main aspects of

the management problem, that is energy management, thermal modelling of
the environment, and data forecasting. Chapter 3 discusses the theoretical
aspects of the problem, such as the theoretical basis of the MILP management
approach, the theoretical model of the managed environment for two of the
most common scenarios, and the additional algorithms that have been used to
complement the management problem. The experimentations are discussed in
Chapter 4 by presenting the experimental details of the case study scenarios
and the results of the simulation based on the proposed scenarios. Chapter 5
focuses on the enhancement of two of the main aspects management problem,

7



i
i

“PhDthesis” — 2016/11/30 — 18:06 — page 8 — #26 i
i

i
i

i
i

Chapter 1 Introduction

that is the partial shading effect on photovoltaic power plant and the NILM
algorithms. The first topic is aimed on the modelling of the behaviour of a real
life photovoltaic power plant to improve the forecast of solar energy production
by taking into account the effect of partial shading and the actual performance
of a real life photovoltaic power plant under different working condition. The
second one focuses on the ability to monitor the activity of each appliance of
the system through the analysis of the aggregated energy consumption, which
can be used to feed the state of the system back to the manager. In Chapter 6
additional contributions are proposed. A scheduling algorithm aimed at ultra
low power devices is proposed and implemented as a mean to develop sensor
devices powered by renewable energy supply, that can be used in automated
meter reading system to provide the manager with the information relating
water and gas consumption. A leakage detection algorithm is also proposed
to differentiate actual consumption from resource waste. Chapter 7 draws the
conclusion of this work.
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Chapter 2

State of the art

The management of Micro Grid or Smart Home environments, aimed at opti-
mizing the use of energy through the planning of local tasks and device activi-
ties, is a process that requires to model the energy flow within the environment.
Since the energy flow is bound to the devices, integrated within the system,
each and every device has to be modelled accordingly. Moreover, if the user
activity is to be planned along with the use of the energy, the tasks and their
priorities are to be included in the model.
Although in most cases only a limited number of devices is integrated in the

system, and thus the number of required models is limited, a general approach
to the problem, able to operate in different scenarios, is complex, due to the
diversity of potential subsystems to be included in the pool of models. The
management of tasks further increase the diversity of the models.

2.1 Energy management

Although several optimization approaches have been proposed to address the
problem of the energy management [14], most of them, such as Particle Swarm
Optimization (PSO) [15], Artificial Neural Networks [16], Fuzzy Logic [17],
Adaptive Dynamic Programming [18, 19, 20], but also Linear Programming
[21], are not very well suited to deal with the high degree of complexities in the
model that describes the flow of energy, which usually take the form of linear
equations or inequalities.
On the other hand, although Mixed Integer Non Linear Programming (MINLP)

[22, 23] proved to effective and rather general, since it can even use non lin-
ear equations to describe the systems, the inclusion of a non linear model can
greatly increase the complexity of the problem to be solved, thus preventing a
timely search of the optimal solution.
Therefore, in order to deal with a high degree of complexity, that is an high

number of variables and equations, MILP [24] has been deemed the most ef-
fective approach, in that the solution can be computed in a short time, so that
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the energy flow within the system can be modelled and the solution to the op-
timization problem can be used to plan an efficient use of the energy. Although
the main shortcoming of the MILP technique is that only linear models can
be used within the problem, non linear models can still be used separately, to
compute the input data of the problem. Moreover, linear approximation of non
linear equations is still a viable solution whenever a model based on non linear
equations must be used within a MILP problem.

2.2 Thermal modelling
One of the most important additions relating to the energy management issue is
the management of the user comfort which usually, from the user perspective,
can be regarded as the most important priority relating to any residential
environment.
Since the thermal needs that satisfy the user comfort requirements depend

on the thermal behaviour of the environment, the thermal flow within the
building are to be modelled so that the thermal needs can be computed. Since
the equation of the flow of the thermal energy are non linear, a non linear
model is usually required.
Even though the model can be directly integrated in the problem, which

requires a NILM programming approach [23], which is usually quite effective,
a linear approximation can be also used [25], so that the computational load
can be lowered, without significant accuracy loss. Nonetheless, since the tem-
perature target is given by the user as an input to the system, the thermal
comfort can be given higher priority with respect to other requirements, there-
fore the thermal needs can be computed separately altogether, with respect to
the MILP problem, thus lowering the size of the problem.
By computing the thermal needs separately in fact, not only the main prob-

lem of the energy management results comparatively smaller since the thermal
model of the environment is not present, but also the thermal need can be
computed much more accurately by means of dedicated tools or, depending on
circumstances, even obtained by monitoring the environment.

2.3 Forecasting
Since energy management focuses on planning the future activity of the system,
in addition to model the way energy flow within the system or its thermal
behaviour to compute the thermal needs, data forecasting is also of the utmost
importance.
In fact, to plan the best course of action in the management of the envi-

ronment, knowledge about the future energy availability, energy price, external
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temperature, or weather conditions, it is necessary to identify the right moment
to carry out specific activities. Moreover, depending on the configuration of
the system and on the complexity of the model, different types of information
may be necessary.
Depending on the local energy source solar irradiation, wind direction and

strength, or other quantities may be required. The forecast of the expected
energy yield could be used as well. In the case that task management is not
required, the future energy demand may be used.
Similarly, information on the weather conditions is required if the thermal

needs of the environment are to be computed. Nonetheless, if historical data
is available, the thermal needs can be forecast explicitly.
Regarding the demand side management, depending on circumstances, the

forecast may be focused on the demotion and promotion factors over time. If
a dynamic pricing approach is used, selling and purchase price may be forecast
if they are not disclosed to the user beforehand by the service utility.
Presently, the yield of the solar power plant has been computed, based on

the solar radiation that has been forecast by means of multilayer perceptrons
(MLP). Also, the yield of the solar power plant has been forecast directly by
means a direct forecast attempt by means of Radial Basis Function Networks
(RBFNs) [26] and an on-line learning algorithm based on the Extended Minimal
Resource Allocating Network (EMRAN) technique supported by an Adaptive
Extended Kalman Filter (AEKF) [27, 28].
Price forecasting has been based on Extreme Learning Machine technology

[29, 30], proven to be particularly effective and robust as a price classifier
[31]. In fact, although many forecasting techniques are available [32, 33, 34] in
literature, some of them may be not suited for residential users [35, 36], due
to data input requirements, i.e. the forecaster requires data not available to
the user, or because they may not target the needs of residential user, i.e. the
forecaster is able to predict the market prices while not accounting additional
costs and taxes.
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Chapter 3

Energy and resource management:
algorithms

The management of energy and resources, in a Micro Grid environment, aims
to improve the efficiency of the system. Therefore, in order to plan the course
of action that guarantee the most efficient use of both energy and resources, it
is mandatory to model flow of the energy within the system that results from
the activity of the system itself.
If a discrete time scale is used, the overall energy production, over a time

frame, can be described as the sum of the energy produced by each source in
each time slot within the time frame. The same consideration holds for the
overall energy consumption. As such, the energy balance within a Micro Grid
environment system can be described through an equation.
If the efficiency is regarded as an index, that describes the amount of energy

to be purchased from the main grid to execute a given activity, its value Eff
can be described as a function f(·) of the difference between the local energy
demand and the local energy production, that is:

Eff = f(
slots∑
t=1

[ loads∑
i=1

Edem(i, t)−
sources∑
j=1

Eprod(j, t)
]
), (3.1)

where slots is the number of time slots within the time frame under evaluation,
loads is the number of devices being supplied, sources is the number of the
devices providing energy, Edem(i, t) is the energy demand of the i-th device
at the t-th time slot, whereas Eprod(j, t) is the energy production of the j-th
device at the t-th time slot.
With regard to this, if the argument of the function f(·) is positive, the local

energy demand exceeds the local energy production, thus additional energy is
to be purchased, whereas if the argument of the function f(·) is negative, the
local energy production exceeds the local energy demand, thus there is a surplus
of energy to be sold. It is possible to conclude that the lower the argument of
the function, the more the grid is efficient.
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Chapter 3 Energy and resource management: algorithms

Henceforth, if the objective of the problem is to improve the efficiency of
the Micro Grid, rather than compute its actual value, the actual form of the
function f(·) can be disregarded, since the argument of the function f(·) is
sufficient to evaluate the degree of efficiency of the Micro Grid.
Since the argument of the function f(·) is the balance of the energy flow

within the Micro Grid, it can be described in the form of linear equations such
as: {

cT · x
lhs ≤ Ax ≤ rhs

(3.2)

where x = [x1, . . . , xn] is a vector whose each component represents a variable
of the Micro Grid model for a single time slot within the time frame of the
planning. The vector c = [c1, . . . , cn], on the other hand, is the vector of the
coefficient of the function being the object of optimization. Similarly, A is the
matrix of coefficients, that implement the model of the Micro Grid in the form
of linear constraints, whereas lhs and rhs are the left hand side and the right
and side of the inequalities that describe the linear constraints represented by
the matrix A.

3.1 MILP based approach
By means of a linear model of the Micro Grid energy flow, it is possible to find
the combination of values, of the component of the vector x, that corresponds
to the minimum amount of purchased energy, thus to the maximum theoretical
efficiency of the system. The optimal values of the vector x can be computed
by solving the set of linear inequalities by means of the simplex method and
the branch and bound algorithm.

3.1.1 The simplex method

The simplex algorithm [37] is a solving method meant to handle linear pro-
gramming problems. The main idea at the base of the algorithm is that, by
exploiting the linear system properties, it is possible to efficiently traverse the
solution space operating on a variable at a time. Every selection is carried out
so that the objective function decreases, or at least does not increase, at each
step.
It is possible to demonstrate that a linear programming problem can be

represented in standard form as follows:

Minimize cT · x
Subject to Ax = b, x ≥ 0 (3.3)
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where c and x are n-dimensional vectors, whereas b is a m-dimensional vector
and A is a m× n matrix.

Given the problem in standard form, a vector x̂ is a solution of the problem
if and only if the columns of A, that multiply the positive components of x̂, are
linearly independent. In this case x̂ is given the name of basic feasible solution
(BFS).

Since without loss of generality it is possible to assume that the rank of A
matches the number of rows, it can be noticed that the constraints Ax = b
of the problem depend only on the m components of the x̂ vector, which are
thus called basic variables. The remaining n − m variables do not belong to
the BFS and are thus given the name of nonbasic variables.

If the basic variables and non-basic variables are separated, it is possible
to define an m-dimensional vector xB composed of the basic variables and a
(n−m)-dimensional vector xN composed of the nonbasic variables. In a similar
fashion the A matrix can be decomposed in a m×m matrix B, whose columns
are related to the basic variables, and a (n−m)×m matrix N whose columns
are related to the nonbasic variables.

In this case it is possible to write:

xB = B−1 · b−B−1 ·N · xN. (3.4)

meaning that the xB depends on xN.

Therefore by replacing xB in the objective function, the problem can also be
rewritten as:

Minimize cB
T ·B−1 · b + ρT · xN (3.5)

Subject to xB = B−1 · b−B−1 ·N · xN, xB ≥ 0, xN ≥ 0

where ρ is called reduced costs vector, and is computed as:

ρ = cN − (B−1 ·N)T · cB (3.6)

The reduced cost vector is particularly meaningful because it is possible to
prove that if ρ ≥ 0 then the BFS is optimal whereas if ρ > 0 then the BFS is
the only optimal solution. Also if there exists a negative element of ρ, and also
the corresponding column of the B−1 ·N is entirely non positive, it is possible
to conclude that the problem is unbounded below.

If, for a given solution x̂, none of the two conditions are met, there exists
an index i so that ρi ≤ 0. Therefore given a scalar value ν and the (n-m)-
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dimensional unit vector ei, the vector

x =
[
B−1 · b− ν ·B−1 ·N · ei.

ν · ei

]
(3.7)

is also a BFS of the problem, and also cT · x ≤ cT · x̂. In addition if the
condition ρi < 0 is met then also cT · x < cT · x̂ is true.

While the latter condition provides that the optimal solution can be found in
a finite number of steps, the former is due to the fact that the same BFS can be
encountered multiple times. This event occurs if the objective function assumes
the same value for different BSF. In this case the algorithm stalls indefinitely
in a cycle and therefore an index selection rule is necessary to prevent cycling.
By dividing this process in two parts the simplex method is able to find the
optimal solution of the problem (if available) in a finite step number. In the
first part the feasibility of the problem is evaluated, a first BFS is found and
the B−1 matrix is computed. If the problem is feasible and the BFS is not
optimal the second part of the algorithm is executed. By properly selecting the
value of ν and the index of the non basic vector element to replace, a new BFS
is computed and evaluated. This process is repeated till a solution is found or
the infeasibility condition is met.

3.1.2 Branch and Bound
The branch and bound algorithm [38] is meant to handle the combinatorial
and the integer part of a MILP problem. In this case the solving procedure is
based on the idea that, by dividing the feasible region in complementary not
overlapping subregions, the main problem is replaced by multiple smaller sub
problems, each of them with reduced complexity in respect of the original one.

This procedure, called branching, is applied recursively to each subregion as
well, every time the related sub problem is too complex to be solved as it is.
As a result a search tree is generated as the feasible region is inspected. From
a theoretical point of view, the process may result in the inspection of every
feasible solution of the problem however, since in real life scenarios a feasible
space may be large, the inspection may be time consuming.
Clearly, since only one section of the feasible region contains the optimal

solution, the inspection of the remaining areas is often unnecessary, thus the
performance of the solution search may be improved. In fact if a meaningful
area can be located early in time, the branching process in the remaining areas
can be discarded (i.e., tree pruning). As a result only a limited part of the
original feasible region is thoroughly inspected and the search time is severely
reduced.
To sort out the unnecessary branches from the search tree, for each node
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generated by the branching procedure, an estimate of the best and the worst
performance of the objective function is made. By comparing the best and
worst results among the nodes, it is possible to select only the most promising
nodes while discarding those leading to suboptimal results.
For instance when a node is generated, if the best performance of the objec-

tive function on that node is worse than the current best solution, the node can
be discarded. Similarly, if the set being evaluated is dominated by a discarded
set, the corresponding node can be discarded as well. Also if the node is proven
not to lead to any feasible solution, or if the best solution related to the node
has been found, further inspections may be avoided and the node is discarded.
In conclusion, the branch an bound algorithm can be described in four steps

as follows:

• define a bound for the given problem.

• select a partition of the given set and the corresponding branching vari-
able.

• evaluate the obtained subset

• discard unnecessary subsets

3.2 MILP problems
From a theoretical standpoint, the balance between local energy production
and local energy consumption can be used to identify the Micro Grid activity
schedule that corresponds to the maximum efficiency of the system. In order
to implement a energy management system that can be deployed in a real life
environment however, a more pragmatical approach may be required. Although
energy efficiency is an important achievement, to the utility service a lower
swing in the load may be a much desired goal, since it correspond to a lower
burden to the grid in the peak hours. On the other hand, the end user may
desire a lower energy bill.
To that end, the balance between energy cost and energy revenue can be used

in place of the balance between energy consumption and energy consumption.
In this way, efficiency can still be achieved, although the energy is weighted by
the energy price, thus providing also more regard towards the interest of both
end user and utility services.
On purpose, the MILP problem has been devised by means of a model that

relies on a set of blocks and elements. The blocks model the structures within
the main energy management subsystem. The elements model the single de-
vices that compose each block. Elements can be arranged together to model
a block, that results in a set of constraints that bind the variables of chosen
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elements together. Depending on the arrangement of elements and blocks, dif-
ferent system topologies, and even different operating policies, can be evaluated
through simulation.
In order to investigate the modelling problem, two topologies have been

evaluated: a scenario including both task scheduling and thermal model, which
is used to evaluate the effect of data uncertainty, and a scenario based on a multi
apartment micro grid, where electrical and thermal loads have been assigned
directly as an input, which is used to investigate the effects of the grid topology
and the management time frame.
For instance, a real life microgrid is used as a reference, namely the Leaf

House, one of the six international case studies selected by the IEA Task
40/ECBCS Annex 52: "Towards Net Zero Energy Solar Buildings" [39, 40].
Based on the reference, several devices have been modelled, to be arranged

as a MILP problem. Through this approach it has been possible to describe
different topologies, by changing the arrangement of the models.

3.2.1 Task scheduling and thermal model

The first MILP problem that has been devised, has been aimed at the investi-
gation of data uncertainty, and its effect on the management process. In order
to investigate the effect of data uncertainty on different resources, the overall
topology has been simplified, whereas a set of task to be scheduled and the
management of the thermal needs have been included.

Notation

The list of used notation is reported as follows.
Indices:

t time slot index
i task index
j house index

Parameters:

∆ time slot duration (in hours)
slots number of temporal slots
houses number of houses
tasks number of tasks

tbj,i,t task activity bit: equal to 1 when task is on, 0 otherwise
τj,i task execution time (in time slots)

18



i
i

“PhDthesis” — 2016/11/30 — 18:06 — page 19 — #37 i
i

i
i

i
i

3.2 MILP problems

Pj,i task power demand (W )
Ej,i = ∆ · Pj,i task energy consumption over a single time slot (Wh)

Chlt electrical energy storage charge level at the t-th time slot (Wh)
ChlMIN

t electrical energy storage minimum charge level at the t-th time slot (Wh)
ChlMAX

t electrical energy storage maximum charge level at the t-th time slot (Wh)

ηc electrical storage charge efficiency
ηd electrical storage discharge efficiency

P ct electrical storage charge rate at the t-th time slot (W )
P dt electrical storage discharge rate at the t-th time slot(W )
P cMAX electrical storage maximum charge rate (W )
P dMAX electrical storage maximum discharge rate (W )
P cMIN electrical storage minimum charge rate (W )
P dMIN electrical storage minimum discharge rate (W )

Ect = ∆ · P ct electrical storage energy input at the t-th time slot (Wh)
Edt = ∆ · P dt electrical storage energy output at the t-th time slot(Wh)

Eret renewable electrical energy input at the t-th time slot(Wh)
Ehet electrical energy required by the heater at the t-th time slot(Wh)
Esot sold electrical energy at the t-th time slot(Wh)

Ct electrical energy cost at the t-th time slot ($cent/kWh)
Spricet electrical energy selling price at the t-th time slot(Wh)

Objective Function

To define the monetary balance, the amounts of energy respectively acquired
from, and sold to the grid, are accounted in order to evaluate the energy man-
agement. To achieve the thermal comfort of the user, the thermal management
of the building served by the smart grid is also included by means of a thermal
model of the building.
The monetary balance of the energy management can be expressed as follows:

Q =
slots∑
t=1

{[
houses∑
j=1

tasks∑
i=1

(
Ej,itbj,i,t

)
+
(
Ect − Edt

)
− Eret + Esot + Ehet

]
Ct+

−Esot S
price
t

}
(3.8)
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where tbj,i,t is the task binary variable that defines the activity state (ON/OFF)
of the i-th task of j-th building during the t-th time slot. The variable Ej,i
represents the energy demand of the i-th task of j-th building in each time
slot. Therefore the sum over i and j index returns the total energy demand of
the assigned tasks at the t-th time slot. The amount

(
Ect −Edt

)
represents the

energy transferred to or from the storage at the t-th time slot, while Eret is the
renewable energy production, Esot accounts the sold energy amount and Ehet
describes the heater energy demand. Therefore the quantity within brackets
accounts the net energy demand at each time slot. On the other hand, since Ct
represents the energy purchase price at the t-th time slot, the amount within
braces describes the total energy cost minus the total energy income at each
time slot, that is the energy balance at the t-th time slot.

Electrical Task Constraints

The binary variable assignment per task and per time slot maps the activity of
each task in each time slot. Based on this map, given the î-th task of the ĵ-th
building at the t̂-th time slot, the following conditions are available:

tbĵ,̂i(t̂) = 1 the task is executed at the t̂-th time slot (3.9)

tbĵ,̂i(t̂) = 0 the task will never be executed at the t̂-th time slot (3.10)

tbĵ,̂i(t̂) ≤ 1 the task may be executed at the t̂-th time slot (3.11)

For each task, the value of the binary bariable is left to the system to assign
however, by means of the proposed conditions, the user can mark each time slot
either as available, mandatory or forbidden to manipulate the task allocation
partially or entirely.

The duration of tasks may span over multiple time slots. If τj,i represents
the execution time length ( in time slots ) of the i-th task of the j-th house,
the following constraints are assigned:

• task uniqueness: the active time slots assigned to a task shall match the
length of the task

slots∑
t=1

tbj,i,t = τj,i ∀j, i (3.12)

• task continuity: the time slots assigned to a task cannot be apart more
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than the task length

∀j, i, t̂, t :
t̂ = 1, 2, . . . , slots− τj,i,

t = t̂+ τj,i, t̂+ τj,i + 1, . . . , slots
tbj,i(t̂) + tbj,i(t) ≤ 1 (3.13)

• in-order execution (optional): no time slot is to be assigned to the low
priority task if the high priority task has not been completed yet

∀t̂, t :
t̂ = 1, 2, . . . , slots
t = t̂, t̂+ 1, . . . , slots

tbj,high(t) + tbj,low(t̂) ≤ 1 (3.14)

• power constraint: in each building and in each time slot the power con-
sumption cannot exceed the building wiring power rating

∀t : t = 1, 2, . . . , time_slots
∀j : t = 1, 2, . . . , building
tasks∑
i=1

[
Pj,i · tbj,i(t)

]
≤ prj . (3.15)

where prj is the maximum power rating of the wiring of the j-th building.

Storage system constraints

• the charge level of the energy storage, at any given time slot, must not
exceed the assigned boundaries

ChlMIN
t ≤ Chlt ≤ ChlMAX

t ∀t : 1 ≤ t ≤ slots (3.16)

• the charger power must not exceed its own boundaries

0 ≤ P ct ≤ P cMAX ∀t : 1 ≤ t ≤ slots (3.17)

• the inverter power must not exceed its own boundaries

0 ≤ P dt ≤ P dMAX ∀t : 1 ≤ t ≤ slots (3.18)
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• the energy stored, at any given time slot, depends on the energy level of
the previous time slot plus the net energy income

Chlt+1 = Chlt + ∆P ct ηc −
∆P dt
ηd

∀t : 1 ≤ t ≤ slots− 1 (3.19)

Energy constraints

• At each time slot the energy input to the system shall not fall below zero
nor exceed the maximum available amount.

0 ≤
houses∑
j=1

tasks∑
i=1

(
Ej,itbj,i,t

)
+
(
Ect − Edt

)
− Eret +Esot + Ehet ≤ PMAX

t

t : 1 ≤ t ≤ slots (3.20)

Thermal Optimization Sub-Problem

The thermal model is presented apart since it is used separately to compute
the thermal needs which are then included in the main problem.
Notation

Indices:

t time slot index
j house index
k room index

Parameters

surf number of surfaces of the house thermal model

Ehet electrical energy demand at the t-th time slot
P thj,k,t thermal power at the t-th time slot to the k-th room of the j-th building
P tht thermal power at the t-th time slot (single room case)
∆ time slot duration (in hours)

θhp heat pump output temperature (◦C)
θi indoor temperature (◦C)
θo outdoor temperature (◦C)
θt(t) target temperature at the t-th time slot (◦C)
θ∗i = θt(t)+θi(0)

2 mean value of the indoor temperature (◦C)
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ε temperature tolerance (0.5) (◦C)
cp air heat capacity at NTP
Mair air mass in the house (Kg)
kl house heat loss factor (W/◦C)

Heat pump constraints

An heat pump is used for heating/cooling. At each time slot, the required
electrical energy can be computed as the sum of the ratio among the thermal
energy required by each room and the Coefficient of Performance (COP) of the
heat pump when heating. In place of the COP the Energy Efficiency Ratio
(EER) of the heat pump is used when cooling:

Ehet = 1
COP

houses∑
j=1

rooms∑
k=1

(
∆P thj,k,t

)
∀t : t = 1, . . . , slots. (3.21)

The thermal power P thj,k,t of the k-th room of the j-th building at the t-th
time slot is computed by the solving algorithm in order to satisfy the thermal
constraints. The thermal constraints are defined with the heat balance of the
buildings as a base [41, 42, 43]. The overdot notation can be used to represent
the time derivative, thus the heat fluxes can be defined as:

Q̇hp = P thcp(θhp − θi) (3.22)

Q̇loss = kl(θi − θo) (3.23)

where (3.22) expresses the thermal energy provided by the heat pump while
(3.23) represents the thermal energy escaping through the walls. On the other
hand the indoor temperature variation over time can be calculated as the net
heat flux on the thermal capacity of the air mass inside the room, which leads
to the following:

θ̇i = 1
Maircp

(
Q̇hp − Q̇loss

)
. (3.24)

Since the management process is based on a discrete time domain formula-
tion, from (3.24) a difference equation can be obtained, and thus the indoor
temperature can be defined as:
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θi(t+ 1) = θi(t)+

+ ∆
Maircp

·
[
P tht cp(θhp − θi(t))− kl(θi(t)− θo(t))

]
(3.25)

being t the discrete time variable. By algebraic manipulation the temperature
can then be expressed as:

θi(t+ 1) =θi(t)
[
1− P tht ∆

Mair
− kl∆
Maircp

]
+

+ P tht θhp
Mair

+ klθo(t)
Maircp

(3.26)

leading to a nonlinear constraint. On the other hand, by means of the approx-
imation

Q̇hp = P thcp(θhp − θ∗i ) (3.27)

the equation (3.25) could be written as

θi(t+ 1) =θi(t)
[
1− kl∆

Maircp

]
+

+ P tht (θhp − θ∗i )
Mair

+ klθo(t)
Maircp

(3.28)

and thus the linear constraint is obtained.

In either case, for each room of each building, the constraints set is obtained
by requiring that

∀t : t = 1, . . . , slots
θt(t)− ε ≤ θi(t) ≤ θt(t) + ε. (3.29)

The coefficients Mair and kl that appear in the equations represent, respec-
tively, the air mass within each room and the heat loss factor of each room.
Their value are obtained based on a simple building geometry accounting sev-
eral rooms. Regarding kl is worth to mention that its value is estimated in ac-
cordance to the EN 12831, EN ISO 13370, EN ISO 13789 standards [44, 45, 46].
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3.2.2 Multi apartment revamping model
The other MILP problem to be devised, models a multi apartment residential
environment. The proposed model aims to evaluate the performance of the
reference environment, and the effect of the topology as well as the management
time frame. In this case, task scheduling and thermal modelling have not been
included to simplify the evaluation process.
The objective function to be minimized has been revised as the sum of the

costs of the energy to be purchased and the energy surplus. The aim is to avoid
either unnecessary purchase and, at times, unnecessary sale of electricity, thus
promoting storage, since the sale price is usually much lower than the purchase
price. The variable modelling the energy fluxes within the environment can be
addressed as following:

• EPa: amount of energy purchased to supply the entire structure;

• ESa: amount of energy surplus resulting from the entire structure;

• Ep: the energy purchase price;

• EPi: energy required by the i− th electrical block with i = 1, 2, 3;

• Egi: energy required by the i − th electrical storage (to guard against
over discharge) with i = 1, 2;

• EPhw: electricity consumption of the water boiler;

• EPhe: electricity consumption of the heat pump during heating phases;

• EPre: electricity consumption of the heat pump during cooling phases;

• ESi: energy production surplus provided by the i − th electrical block
with i = 1, 2, 3.

• EPth: electricity demand of the thermal blocks not covered by the avail-
able electricity surplus;

• Capi(t+1): residual capacity level (of the i− th electrical storage) at the
end of the t-th time slot;

• Capi(t): residual capacity level (of the i − th electrical storage) at the
beginning of the t-th time slot;

• Chi(t): charged energy amount (of the i − th electrical storage) during
the t-th time slot;

• Dii(t): discharged energy amount (of the i− th electrical storage) during
the t-th time slot;
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• Dei: demanded energy amount (of the i− th electrical block);

• PVi: energy production of the photovoltaic panel (of the i− th electrical
block);

• Cheff : charge efficiency of each storage device;

• Dieff : discharge efficiency of each storage device;

• Sdi: self discharge of each storage device;

• Chg: hourly energy amount, provided by the main grid, to compensate
the self discharge;

• bgi: binary guard that equals zero if Capi(t) is higher than 30%;

• Ephw: heat production of the water boiler;

• Chhw: heat collected by the water tank;

• Dihw: heat lost as the water leave the tank;

• Shw: heat provided by the thermal solar panel;

• Dehw: heat demand corresponding to the hot water being used;

• Caphw(t+ 1): energy level of the water tank at the end of the t-th time
slot;

• Caphw(t): energy level of the water tank at the beginning of the t-th time
slot;

• Ephe: heat production of the heat pump;

• Chhe: heat collected by the heater storage;

• Dihe: heat output of the heater storage;

• Dehe: heat demand of the environment;

• Caphe(t+ 1): energy level of the heat storage at the end of the t-th time
slot;

• Caphe(t): energy level of the heat storage at the beginning of the t-th
time slot;

• Epre: chill production of the heat pump;

• Chre: chill collected by the chill storage;

• Dire: chill output of the chill storage;
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• Dere: chill demand of the environment;

• Capre(t+ 1): energy level of the chill storage at the end of the t-th time
slot;

• Capre(t): energy level of the chill storage at the beginning of the t-th
time slot.

Therefore the objective function can be written as:

Q = (EPa + ESa) · Ep (3.30)

meaning that either energy purchase and the sale of energy surplus are not
desirable, and thus they are accounted as a cost. In other words the objective
function is used to model a policy rather than the actual energy cost. Of course,
depending on the policy of choice, the objective function can be restricted not
to account the energy surplus as a cost.
Almost every configuration adopted in the current scenario is composed of

three electrical blocks and three thermal blocks. Since the thermal blocks
require electrical energy to provide the thermal management two alternatives
are possible.
On the one hand, if the model is configured not to supply the electricity

surplus to the thermal blocks, the energy amount to be purchased can be
computed as:

EPa = EP1 + EP2 + EP3 + Eg1 + Eg2 + EPhw + EPhe + EPre (3.31)

which results in the energy surplus, computed as:

ESa = ES1 + ES2 + ES3 (3.32)

being either stored or discarded.
On the other hand, if the model is configured to route the electricity surplus

to the thermal blocks, Eq. (3.31) and (3.32) can be revised in the following
manner:

EPa = EP1 + EP2 + EP3 + Eg1 + Eg2 + EPth. (3.33)

EPth − ESa = EPhw + EPhe + EPre − (ES1 + ES2 + ES3). (3.34)

In this case, the variable EPth has been introduced to account the electricity
demand of the thermal blocks that is not covered by the available electricity
surplus. Conversely, ESa represents the electricity surplus that still exceeds
the needs of the whole structure.
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Concerning the electrical blocks, the amount of electricity to be purchased,
and the electricity surplus, are bound to production and demand according to
the following:

EPi − ESi − Chi +Dii = Dei − PVi (3.35)

meaning that purchase or sale, while accounting the energy managed by the
storage, must match the difference among production and demand.

The electrical storage devices are modelled, each, by computing its residual
capacity level as:

Capi(t+ 1) = Capi(t) + Chi(t) · Cheff −Dii(t) ·Dieff+
− Sdi + Chg · Cheff · bgi(t) (3.36)

thus accounting charge and discharge efficiency as well as self discharge. Also,
the model includes a charge level guard. If the battery residual energy level
drops to 30%, a charger, that compensates for self discharge, is enabled so that
the battery depletion due to self discharge is prevented.

A few constraints have also been devised to model the original policy used
to manage the storage devices:

Chi(t) =
{

0, if PVi(t) ≤ Dei(t)
PVi(t)−Dei(t), if PVi(t) > Dei(t)

(3.37)

Dii(t) =


0, if Capi(t) < 65

0.9 · (Dei(t)− PVi(t)), if
{
PVi(t) < Dei(t)
Capi(t) ≥ 65% .

(3.38)

For instance, Eq. (3.37) prevents purchased electricity from being stored,
whereas Eq. (3.38) prevents storage device from being deeply discharged.
These constraints are intended to achieve a conservative management of the
storage, and they are paired with an explicit avoidance of energy sale. Thus
they are complemented with the objective function presented in Eq. (3.30).
Conversely, to adopt a more aggressive or, which is the same, a less conserva-
tive policy, said constrains are not applied. In this case, also, Eq. (3.30) does
not account the energy surplus amount.

Similarly to the electrical blocks, with regard to the hot water management,
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the balance between consumption and production has been modelled:

Ephw − Chhw +Dihw = Dehw − Shw, (3.39)

thus accounting hot water production and demand, and the management of
a hot water tank.
The energy capacity of the water tank can be computed as:

Caphw(t+ 1) = Caphw(t) + Chhw(t)−Dihw(t) (3.40)

assuming that heat loss over time from the storage is negligible.
In the case of the heating block and the refrigeration block, the model is

almost identical, the only exception being the lack of energy production from
renewable sources, and the use of the heat pump in place of the water boiler.
For instance, being the heat balance in the form Ephe −Chhe +Dihe = Dehe,
the integration of hot water and heat production has been modelled as a linear
combination of said balance with Eq.(3.39), in place of two separate equations.

3.3 Additional algorithms
In addition to the MILP problems described in the scenarios presented in Sec-
tions 3.2.1 and 3.2.2, additional algorithm have been implemented in order to
evaluate different aspects of the management problem.
In fact, since the thermal model has been devised as an Non Linear Pro-

gramming problem, a suitable solver is required to compute the necessary input
data.
Moreover, although a MILP problem can be used to model the energy flow

within the system, to plan the activity schedule that regulate the system in
the near future, much data is required beforehand. For instance in order to
decide if a task can be delayed or not, the manager needs to know if delaying
the execution of the task can lower the amount of energy to be purchase, which
may depend on the energy availability of the local power plant.
In other words, different kinds of information have to be forecast depending

on the resources to be managed. In addition, the forecasting process is prone
to error thus introducing uncertainty in the data.

3.3.1 Non Linear Programming - Genetic Algorithm
To solve the NLP problem resulting from the nonlinear thermal model described
in Section 3.2.1, a Genetic Algorithm solver, which is part of the MatLab Global
Optimization ToolBox1, is used. In this case the objective function and the

1http://www.mathworks.it/it/help/gads/index.html
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constraints are assigned in the form of function handles.
Differently from deterministic approaches, a Genetic Algorithm (GA) [47, 48]

searches for the optimal solution of the problem by emulating the evolutionary
process that characterizes living organisms. As evolutionary processes combine
diversification and selection, in a similar way a genetic algorithm generates
feasible solutions and selects the most fitting ones among the generated pool.
The solution space is represented in terms of genes, or chromosomes, while the
objective function, provided to the solver, is used to select the best candidates.
The first step of the algorithm consists in the characterization of the set of

variables as set of chromosomes. The second step purpose is the initialization
of the population of candidates. In the third step a selection of the parent
candidates is made so that, in the fourth step, the genetic procedures can be
applied in order to produce new candidates. In the fifth step the old popula-
tion is replaced by the new candidates. At this point the stop conditions are
evaluated. If none of them is met, the process returns to step three.
Concerning the feasible solution space, usually the solution candidates con-

tain information regarding the solution in the form of a binary string. However
different criteria can be applied and thus different representations may be pos-
sible, such as integer values, permutations or even floating point values.
The initialization procedure provides the first generation of the solution can-

didates. The candidates are often obtained through a pseudo random number
generation routine but, in this case as well, variations on the process can be
made. Usually the generation interval can be provided by the user so that a
promising area can be targeted. In other circumstances the population can be
assigned altogether, rather than generated randomly, in order to improve the
results of a previous optimization attempt.
The parent candidates selection is generally based on a random process

against the fitness function. The most common approach sees the generation of
two random numbers, that are used to discriminate the candidates, depending
on their fitness value. Depending on the problem and its fitness function, this
selection method may select only average performing solutions, thus removing
the best performing ones, or even select the most promising ones and affecting
the variety of the chromosome set. Since in either cases the space solution
inspection may be affected, different corrective measures can be applied. The
normalization of the population against the fitness function may help in bal-
ancing the chances of propagation of the chromosomes. On the other hand, the
elitism can be used to preserve the best performing candidates found at each
step.
The generation of new candidates is achieved by means of a crossover pro-

cedure and a mutation procedure. In the crossover procedure the chromosome
set of the parents is mixed to generate the offspring. Among the different
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techniques, the single point crossover selects a random point within the chro-
mosome. The part preceding the crossover point is provided by one parent, the
part following it is selected from the second parent. In a similar fashion multi-
ple crossover point can be selected. As an additional method, single elements
of the chromosome encoding can be randomly selected.
The mutation procedure, differently from the crossover approach, does not

involve the parents chromosomes but the offspring ones only. In this case
randomly selected bits, or values, of the chromosome can be altered to increase
the chromosome variety within the population and to better cover the space of
feasible solutions.
Since the generation of new candidates has stochastic nature, in case a con-

strained problem is evaluated, infeasible solutions may be generated. In this
case a corrective measure can be used to guide the evolution process. The in-
feasible solutions may be further impaired so that their chromosomes will not
propagate towards the next generation of candidates. As an alternate measure
the chromosomes can be mutated on purpose so that the constraints of the
problem are satisfied.
At the end of the generation process the old population may be replaced

completely, or partially, depending on the characteristics of the problem. At
this point the iteration can start anew with a selection of additional parent
candidates. Clearly, after consecutive iterations, the chromosome variety de-
creases, and therefore improvements in the fitness value of the candidates occur
less frequently. While this event is usually one of the stop conditions, since the
candidates can converge towards local minima, care is often required to avoid
the premature interruption of the process. To avoid this occurrence a corrective
measure to increase the chromosome variety can be applied. For instance the
stopping conditions may be used to check the number of candidate generations
reached, the number of consecutive candidate generations produced without
any improvement, the improvement of the average fitness value with respect of
a given reference value.

3.3.2 Forecasting algorithms

In order to investigate different aspect of the energy and resource management
process, different working conditions have been devised. On purpose, different
forecasting algorithms have been deemed necessary, and thus implemented, to
provide the required sets of input data.

Multi Layer Perceptron forecasting

To evaluate how the forecasting process affects the task scheduling and energy
resource management, based on the model proposed in Section 3.2.1, three
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forecasters have been devised. Since absolute prediction accuracy is paramount
to evaluate the management error, the implementation has been designed with
forecaster simplicity in mind.
In particular, by means of the Neural Network toolbox, provided by the

MathWorks MatLab2 2012a framework, three multi-layered perceptrons (MLP)
have been used as forecaster. The neural networks training is carried out over a
data set covering two years, namely 2009 and 2010. The National Climatic Data
Center3 (NCDC) has been selected for the meteorological records, whereas the
ISO of New England4 (ISO-NE) provided information about the energy price.
The three forecaster share the same MLP structure: 49 neurons are used in

the input layer, 48 in the hidden layer and 24 in the output layer. For every
neuron the hyperbolic tangent is used as activation function. A day ahead
prediction approach is used, thus 24 samples, one per hour, are generated at
a time from the samples of the previous day. The data normalization is left
to the toolbox and it maps the input to the interval [-1, 1]. The performance
function of choice is the Mean Absolute Error (MAE). To reduce the training
time, given the number of neurons, the gradient descent with momentum and
adaptive learning rate is used. To avoid a premature completion of the training
process, the number of validation check is fixed equal to 500, and the number
of epoch has been increased accordingly.
Concerning temperature and irradiation forecasting, for each predicted set,

the input data is represented by the 24 temperature hourly samples, the 24
solar irradiation hourly samples, and the day index within the year, which is
coded through the minus cosine function. Regarding the price forecast, on the
other hand, the energy price hourly samples are used as input in place of the
solar irradiation hourly samples. The temperature samples are still used as
input in this case. Clearly, since the output data is composed by 24 samples
representing the hourly data of the next day, recurring prediction and error
propagation have been avoided.
Given the simple structure of the network and its input set, the prediction

accuracy is usually high if little to no changes are recorded from a day to the
next. On the other hand, when highly variable conditions are encountered,
the prediction accuracy drops. In this regard, even though a deep analysis of
the results has not been carried out, a simple evaluation reveals that a proper
data preprocessing would greatly improve the performance of the forecaster.
Additionally, the nature of the forecast error appears to be systemic, and prob-
ably due to the lack of input data. As a result, the performance is not on par

2http://www.mathworks.com
3http://www1.ncdc.noaa.gov

http://www1.ncdc.noaa.gov/pub/data/nsrdb-solar/station-data-2010/
4http://www.iso-ne.com/aboutiso/index.html

http://www.iso-ne.com/markets/hstdata/hourly/index.html
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with the performance of the state of the art. Nonetheless the obtained forecast
provides an ample set of cases, that are more than adequate to test the error
propagation through the scheduler. In a real life scenario, an accurate predictor
would be mandatory. As such, the improvement of the forecaster issues will be
addressed in future works.

Solar Power Forecasting

To evaluate the effect of the topology on the energy management process, based
on the scenario modelled in Section 3.2.2, an on-line learning procedure is pro-
posed, to predict the PV output and the Solar Thermal power output. On
purpose, Radial Basis Function Networks (RBFNs) have been used. These
networks have been widely used for nonlinear system identification [26] be-
cause they have the ability both to approximate complex nonlinear mappings,
directly from input-output data, with a simple topological structure that avoids
lengthy calculations, and to reveal how learning proceeds in an explicit man-
ner [49]. The proposed on-line learning algorithm is based on the Extended
Minimal Resource Allocating Network (EMRAN) technique, that adds hidden
neurons to the network, based on the innovation of each new RBFN input
pattern which arrives sequentially. As stated in [26], to obtain a more parsimo-
nious network topology, a pruning strategy is introduced. This strategy detects
and removes, as learning progresses, those hidden neurons which provide little
contribution to the network output. If an observation has no novelty then, the
existing parameters of the network are adjusted by an Extended Kalman Filter
(EKF). In this paper the performance of the filter is improved by an on-line
adjustment of the noise statistics, obtained by a suitably defined estimation
algorithm; the proposed Adaptive Extended Kalman Filter (AEKF) is able
to adaptively estimate the unknown statistical parameters [27, 28]. To mini-
mize the computational effort, in real-time implementation, a “winner neuron”
strategy is incorporate in the learning algorithm [26, 28]. In this work the pro-
posed RBFN-based prediction algorithm is used, because it has the capability
to adapt on-line as operating conditions vary (i.e. night and day and season
succeed). Also these Networks do not need a training dataset and they can be
used in different case studies without a training stage. The EMRAN estimation
algorithm enhanced by the AEKF is called EMRANAEKF algorithm [27], and
is shown in Fig. 3.1. In this work the input data consists of a tapped delay line
of 10 samples of the past data, each sample corresponding to a one-hour time
interval. The forecast is aimed to predict external temperature, solar irradia-
tion and photovoltaic power data, so the input dimension is 10 · 3. The output
data is a “one-hour ahead” forecast of solar irradiation and photovoltaic power
production.
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Chapter 3 Energy and resource management: algorithms

Figure 3.1: Flow chart of the EMRANAEKF algorithm.

Price Forecasting: Extreme Learning Machines

To evaluate the effect of the management time frame, in dynamic pricing sce-
narios, based on the MILP problem described in Section 3.2.2, a day-ahead
forecaster has been implemented as Single Layer FeedForward network (SLFN)
with kernel based ELM training. In ELM, the input weights of SLFNs do not
need tuning and they can be randomly generated, whereas the output weights
are analytically determined using the least-square method, reducing the train-
ing time.
Consider a set of N labelled training samples {(x1, t1), . . . , (xN , tN )}, where

xi ∈ RI and ti ∈ {−1, 1}, and a SLFN with I input neurons and L hidden
neurons. The ELM decision function is the following:

fL(x) =
L∑
i=1

βihi(x) = h(x)β. (3.41)

In the equation, the vector β = [β1, . . . , βL]T contains the weights connect-
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ing hidden neurons and output ones, while h(x) = [h1(x), . . . , hL(x)] is the
output of the hidden layer with respect to the input x. In general, h(x) =
[G(a1, b1,x), . . . , G(aL, bL,x)], G(a, b,x) is a non linear piecewise continuous
function, that satisfies ELM universal approximation capability theorems, and
{ai, bi}Li=1 are randomly generated.

Defining the hidden-layer output matrix H as

H =


h1(x1) · · · hL(x1)

...
...

...
h1(xN ) · · · hL(xN )

 , (3.42)

training the ELM consists in minimizing ‖Hβ − T‖ and ‖β‖, where T =
[t1, t2, . . . , tN ]T . The solution to the problem can be calculated as the minimum
norm least-square solution of the linear system:

β̂ = H†T, (3.43)

where H† is the Moore-Penrose generalized inverse of matrix H. By computing
output weights analytically, ELM allows good generalization performance with
speedy training phase.
In kernel-based ELM, h(x) is unknown, and the output function can be

written as:

f(x) =


K(x,x1)

...
K(x,xN )


T (

I
C

+ Ω
)−1

T, (3.44)

where Ω is defined so that each element Ωi,j = h(xi)·h(xj) = K(xi,xj). K(·, ·)
is a kernel function as in SVM.
The Kernel based ELM solution has been used for price forecasting in our

experimentation.
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Chapter 4

Energy and resource management:
set-up configuration and test

Energy and resource management techniques are being devised to improve the
efficiency of an existing Micro Grid environment, nonetheless, given the com-
plex nature of the problem, many factors can affect the performance of the
system.
Among the many factors, the prediction error that affects the forecast data

may be responsible for a poor management. Also, the availability of resources
such as local energy sources or energy storages, or even the degree of integration
among the subsystems, may enhance or impair the performance of the micro
grid.
In order to investigate these issues, the scenarios proposed in Sections 3.2.1

and 3.2.2 have been implemented in and evaluated.

4.1 Task scheduling and thermal model

The most simple scenario, whose model is proposed in Sections 3.2.1 has been
used to focus on the effect of data uncertainty due to the forecast input. On
purpose, the MLP based forecasters presented in Section 3.3.2 have been used
in this case.

4.1.1 Solar production

The current simulation scenario assumes a solar power plant as part of the
domestic environment, its panel area being 20 squared meters, and its efficiency
index being equal to 20%. As previously stated, the energy production is
computed using the hourly solar irradiance as an input.
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Chapter 4 Energy and resource management: set-up configuration and test

4.1.2 Data forecasting
To evaluate the scheduling framework performance, a forecast data set is used
as an input to the scheduler. Although the forecast time frame spans over al-
most two years, which allowed several tests to be carried out, only the forecasts
corresponding to a few days are presented as a sample.
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Figure 4.1: Solar Energy Production: forecast against historical data
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Figure 4.2: Temperature Profile: forecast against historical data

Also, to evaluate the forecast accuracy in a normalized fashion, for each day,
the MAE of the forecast, against the corresponding historical data, is divided
by the absolute mean value of the historical data. This approach has been
devised to avoid the issues, due to negative and null values, that usually affect
the Mean Absolute Percentage Error (MAPE).
This characterization was used to select three forecast set of samples. The
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Figure 4.3: Energy Pricing Profile: forecast against historical data

set are referred to as “day 1” (02/05/2010), “day 2” (10/08/2010) and “day 3”
(24/09/2010). The normalized MAE for these forecasts lies, respectively in the
intervals [0, 0.1], (0.1, 0.2] and (0.2, 0.3].
In Figures 4.1, 4.2 and 4.3, the input data profiles corresponding, respec-

tively, to solar energy production, outdoor temperature and energy prices are
presented, comparing the forecast data against the historical counterpart for
each of the selected days.

4.1.3 Task scheduling and energy cost accounting

The management interval spans over a time frame of 24 hours, and requires
the scheduling of a set of appliances including a washing machine, a drying
machine, a oven and a dish washer. A TV, also, has been considered in the
scenario. The tasks are described in Table 4.1.

Table 4.1: Assigned tasks and their respective timings
Allowed

time window
Forbidden

time window
Tasks
Parts

Energy
Demand ID

Master
ID

Duration
(Hrs)

Begin End Begin End

Washing machine 8:00 22:00 14:00 16:00 3 800 task 1 - 1

1000 task 2 task 1 1

900 task 3 task 2 1

Drying Machine 8:00 22:00 14:00 16:00 1 2500 task 4 task 3 2

Oven 10:00 13:00 1 2000 task 5 - 2

Dishwasher 14:00 22:00 3 800 task 6 - 1

1000 task 7 task 6 1

500 task 8 task 7 1

TV 8:00 18:00 1 100 task 9 - 10
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Chapter 4 Energy and resource management: set-up configuration and test

Regarding the storage system, a single set of batteries is considered. The
parameters are reported in Table 4.2.

Table 4.2: Storage system parameters
ηc ηd ChlMIN ChlMAX P cMAX P dMAX

kWh kW

0.85 0.85 1 5 2 2

Concerning the energy rates, a dynamic pricing scheme is emulated by mean
of either historical or forecast market prices. On this regards, since the val-
ues refers to the wholesale locational marginal price, whereas the retail price
includes taxes and ancillary costs, to obtain a realistic retail price, a multi-
plicative factor of ten is also accounted. As a result, in the current scenario,
the retail energy price is assumed to be ten times the wholesale price. In the
same scenario, the energy selling price has been assumed equal to 1 $cent per
kWh.

4.1.4 Thermal model characterization
To properly evaluate the performance of the thermal regulation, a simple build-
ing structure has been employed as a target. While the structure is simplified
enough to reduce the complexity of the model, the characterization is based on
the European Standards EN 12831:2003, EN 13370:2007 and EN 13789:2007,
so that all the most important thermal loss contributions are included.
A schematic representation of the building is reported in Fig. 4.4.

Figure 4.4: Building model schematic representation

The building parameters are shown in Table 4.3.
The set of parameters and the air density at NTP (1.204 kg/m3) are used

to compute the air mass within each room, referred as Mair in the model
description in Section 3.2.1. The parameter referred as kl that is, the heat loss
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4.1 Task scheduling and thermal model

Table 4.3: Building geometry and parameters
Parameters Value Unit

Building’s length 25 m
Building’s width 10 m
Rooms’ length 12.2 m
Rooms’ width 4.7 m

Building’s height 4 m
Roof’s pitch 35 ◦

Windows’ count 4 -
Windows’ height 1 m
Windows’ width 1 m

Windows’ thickness 0.005 m
Walls’ thickness 0.2 m

Slab on grade thickness 0.3 m
Windows’ thermal conductivity 0.78 W/(m2 ·◦ C)
Walls’ thermal conductivity 0.30 W/(m2 ·◦ C)

Slab on grade thermal conductivity 0.82 W/(m2 ·◦ C)

factor, is computed accordingly to the procedure stated in the aforementioned
European Standards.

Concerning the heat pump, a 6 kW device is used. The COP factor is equal
to 3.4 whereas the EER factor is chosen equal to 3. In the current scenario
the outdoor temperature spans from about 15 ◦C to about 35 ◦C, thus no
additional adjustment to either the COP or the EER is deemed necessary. The
output temperature of the heat pump is assumed equal to 50 ◦C when heating,
and equal to 10 ◦C when cooling. The heat pump is assumed able to switch
from heating to cooling and vice versa depending on the outdoor temperature.

In order to compute the energy demand of the thermal regulation process, the
MatLab GA solver setup assumes a population size limited to 20 candidates,
a generation stall limited to 10, whereas the tolerance is set to 1E−10, the
mutation function is set to @mutationdadaptfeasible and the hybrid function
is set to @fmincon. The genetic algorithm is therefore used to locate the area
around the global minimum, whereas the fmincon operator locates the actual
minimum within that area, improving the convergence time of the algorithm.
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Chapter 4 Energy and resource management: set-up configuration and test

4.2 Multi apartment revamping model

The more complex scenario, whose model is described in Section 3.2.2, has
been used to evaluate the effects resulting from the structure of the system as
well as those resulting from the management time frame, and from dynamic
pricing.
The resulting framework is intended as a design aid, meant to evaluate the

performance of different alternative Micro Grid configurations. It follows that,
given the needs and habits of the user, the designer can identify the best per-
forming solution early in time, without the need of a detailed design of each
candidate solution. To evaluate the performance of the framework, a real life
Micro Grid environment has been analysed in order to identify its building
blocks. Thereafter the identified blocks have been modelled and thus 8 dif-
ferent configurations, with growing complexity, have been derived from the
original structure.
In the first configuration, only production and demand of electricity, hot

water, heating and cooling has been evaluated. In this case, therefore, no
storage device has been included. The set-up is composed of three electrical
blocks, a hot water block, a heating block and a cooling one, but none of them
is able to store energy. The second configuration differs from the first one, by
the addition of three thermal energy storage devices, which pertain hot water,
heating and cooling respectively. The third configuration, on the other hand,
differs from the first one by the addition of two electrical energy storage devices.
Thus, two electrical blocks are able to store energy, whereas the remaining
electrical block, and the three thermal ones do not provide any form of storage.
The fourth configuration includes two electrical energy storage devices and
three thermal energy storage devices. The four configurations already described
have, as common traits, that the building blocks are independent from each
other, meaning that the energy surplus from each block is not routed to the
others. Also, when the electrical storage is used, a management policy, based on
the constraints presented in Eq. (3.37) and (3.38), is used. As said, this policy
is meant to prevent the storage from being recharged from the main grid, and
from being discharged if the residual capacity is below 65%. Also, the fourth
configuration presented matches the actual set up of the real environment used
as a reference.
To evaluate additional improvements, few incremental changes have been

applied. From configuration 5 onwards, for instance, the constraints presented
in Eq. (3.37) and (3.38) have been removed. Thus, configuration 5 differs from
configuration 4 in the electrical storage management policy. In configuration
6, in addition, the management of hot water and heating has been integrated.
Then, in configuration 7, the integration of electrical and thermal manage-
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4.2 Multi apartment revamping model

ment is included, as presented in Eq. (3.34). Notably, the three electrical
blocks remain independent in each configuration. As such, the surplus from an
electrical block is never routed to another electrical block, therefore, even in
configuration 7 only the heat pump and the water boiler can take advantage of
the electricity surplus. Since in the configuration 7 each electrical block remain
independent from the others, as a mean to evaluate a further integrated design,
the configuration 8 is also proposed. In the case of configuration 8 the electri-
cal subsystem has been modelled as a single phase circuit, meaning that the
solar energy production is the sum of the production of the three panels, the
energy demand is the demand of the 6 apartments, and the electrical storages,
combined, support the whole demand and production of the building. As such,
in configuration 8, electricity demand and production are managed at building
level rather than at electrical block level.
The proposed configurations are briefly listed as follows.

Configurations under test

1. storage devices not used.

2. thermal storage

3. electrical storage with a conservative electrical storage management pol-
icy

4. thermal and electrical storage with a conservative electrical storage man-
agement policy

5. thermal and electrical storage

6. thermal and electrical storage with the integrated production of hot water
and heat

7. thermal and electrical storage with the integration of thermal and elec-
trical management

8. thermal and electrical storage with the integration of thermal and elec-
trical management at building level

The first test is based on historical data. The input is composed of the elec-
trical and thermal demand, the latter involving hot water, heating and cooling
needs. Additionally, photovoltaic energy production, thermal solar energy pro-
duction and residual stored energy are assigned to the system. For instance the
simulation covers an entire year spanning from 1 November 2012 to 31 October
2013. For each hour a simulation step is carried out.

Test 1 algorithm
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1. the simulation routine receives the input data for the t-th slot and simu-
lates the energy management;

2. the simulation routine computes the energy fluxes at the t-th time slot,
and the residual stored energy at the end of the same time slot;

3. the energy fluxes are recorded along with their costs and the residual
stored energy;

4. the input set of the (t+1)-th time slot is composed and a new simulation
step is carried out.

Also, at the beginning of the first step, the thermal storage devices are fully
charged, the electrical storage devices are at 50% of their nominal capacitance
level.
After the described simulation, to evaluate if the suggested framework is

also able to plan the activity of the storage early in time, an additional test
has been carried out. In this case the historical data, as regards photovoltaic
energy production and thermal solar energy production, has been replaced with
its forecast counterpart. For instance, since the forecast is “hour ahead” , the
test requires two simulations per hour.
According to what stated above, the same framework can be of use, not

only to evaluate the system performance ahead of time, but also to operate an
actual resource management. In the forecasting case study then, since an offline
planning is carried out, it is also possible to search for an optimal scheduling
scheme.

Test 2 algorithm

1. at the t-th time slot, the energy management, based on forecast data, is
carried out;

2. the planned storage activity (charge and discharge), at the t-th time slot,
is then recorded, along with the expected costs;

3. the recorded storage activity is assigned, as an input, along with historical
data, to execute the planned management;

4. the resulting energy cost, at the t-th time slot, is computed, and recorded
along with the residual stored energy;

5. the process is repeated for the next time slot.
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Notably, the distinction of the planning phase and the execution phase it
is not simply limited to the way the framework is used. In order to separate
properly the two phases, even the simulator configuration shall differ from the
manager set-up, so that planning and execution may not overlap. In regard
of this, it is possible to conclude that a policy is an essential element of a
decisional process, and thus its role, within the management process, is clear.
Conversely, however, its role during the execution process is dubious, since the
execution of a plan shall be carried out without question. If that is not the
case, in fact, the execution of the plan, and its management, overlap, leading
to management conflicts. For these reasons, in order to distinguish clearly
the management phase and the execution phase, the constraints presented in
Eqs. (3.37) and (3.38), are applied to the configurations 3 and 4 during the
management process, but they are removed during the execution phase.

In both tests, concerning the details of electrical configuration, three elec-
trical blocks have been modelled, each of them featuring a photovoltaic panel
of about 6 kW of peak power, and two of them including an electrical storage
device of 5.8 kWh each. Concerning the thermal configuration, a hot water
block has been modelled including a solar thermal panel, an electrical water
boiler of about 15 kW and a water tank of 1300 litres. The water tank has been
modelled assuming a ΔT of about 34℃ between the temperature of the out-
put water and the temperature of the input water, thus 50 kWh of maximum
stored energy has been assumed for the water tank. Relating to the heating
and cooling blocks, a heat pump of about 16.6 kW has been used. The water
storage, of about 400 litres, has been modelled assuming a ΔT of about 10℃,
leading to roughly 7 kWh of maximum stored energy. For simplicity sake, two
separated storage devices and heat pumps have been assumed, one set for heat-
ing and the other for cooling, thus separating the heating management from
the cooling management. As regards the electricity price, a two tiered tariff
has been assumed, distinguishing peak hours from 8 a.m. to 7 p.m., from off
peak hours. In particular the peak hours tariff amounts to 0.138 e , whereas
the off peak hours tariff amounts to 0.129 e .

4.2.1 Dynamic pricing
In the present work, along with the flat rate pricing scheme presented above,
a dynamic tariff is proposed to investigate the effect of dynamic pricing along
with the different management time frame.

Due to the lack of dynamic pricing offers from Italian service utilities, a
dynamic profile has been computed based on the Italian energy market prices1.

1https://www.mercatoelettrico.org/EN/Download/DownloadDati.aspx
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Dispatch costs, ancillary costs and taxes have been accounted based on the
information provided by the Italian Regulatory Authority for Electricity Gas
and Water2.

In particular, since the residential environment used as a reference has a
single point of common coupling (PCC), despite the six apartments, dispatch
costs, ancillary costs and taxes applied to business users have been used. This
choice has been also deemed consistent with the dynamic pricing scenario, since
to business users single tiered costs are applied, whereas to residential user three
tiered costs are applied.

Over the reference time frame the average of the two tiered tariff amounts
to 0.00013354e per Wh, whereas the average of the dynamic price amounts
to 0.00012988e per Wh.

To generate the dynamic price profile forecast, a day-ahead forecast has been
used. For instance, the value corresponding to the current hour of the current
day, has been forecast based on the values corresponding to the same hour of the
previous seven days in order to better catch the weekly periodicity. Specifically,
the price profile forecast, over the entire reference set, has been performed on
hourly basis.

The forecaster of choice is a Single Layer FeedForward network (SLFN). Its
training has been carried out by mean the kernel based ELM fast learning
algorithm, with a radial basis function (RBF) kernel. The number of hidden
neurons does not need to be known in advance. The implementation is based
on the code3 provided by Hong-Ming Zhou and Guang-Bin Huang4.

The two day ahead forecasters used as reference have been implemented as
Multilayer Perceptron (MLP) and NARX neural network respectively. Both
have been implemented, by means of the MatLab Neural Network Toolbox,
as a 2 layer networks, the hyperbolic tangent has been adopted as activation
function of the neurons, and the Levenberg-Marquardt algorithm has been used
in the training phase.

To set-up the forecasters, several test runs have been made, with each tech-
nique, in order to find the most performing configuration. For instance, since
the prepared data sets date back to 2010, a price profile from 1st November
2010 to 31st October 2011 has been used to train the neural networks, whereas
a price profile from 1st November 2011 to 31st October 2012 has been used to
validate the neural networks. Then the price profile from 1st November 2012 to
31st October 2013 has been used to generate the price forecasts and to evaluate
performance of the neural networks.

In the case of the SLFN forecaster, the best performance has been achieved

2http://www.autorita.energia.it/it/inglese/index.htm
3http://www.ntu.edu.sg/home/egbhuang/elm_kernel.html
4http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm
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assuming 0.082 as the value of the kernel parameter, which is referred to as
kernel parameter σ, in [29]. In regards to the MLP forecaster, in the best
performing configuration the neurons have amounted to 15 in the hidden layer
and to 1 in the output layer. In the case of the NARX neural network, the
best performing configuration has been obtained with 10 neurons in the hidden
layer and 1 neuron in the output layer. In this case, also, the delay time steps
amount to 0 in the case of the input, and to 24 in the case of the feedback.

4.3 Results
Based on the proposed scenarios and set-up, the evaluation of the manage-
ment process has been carried out by executing the management process to
compute the activity schedule of the Micro Grid environment and, then, using
the activity schedule as an additional input to the MILP problem, the activity
of the Micro Grid environment has been simulate to evaluate the Micro Grid
performance.

4.3.1 The task scheduling and thermal model

By means of the data forecast, a task time table is computed. Under these
circumstances, the expected energy demand of the heat pump is the amount
computed using the outdoor temperature forecast, whereas the expected energy
production is computed with the solar irradiance forecast as a basis. After the
time table is retrieved, the framework is used as a simulator. The returned
energy monetary balance, which results from the execution of the task, accounts
the actual energy demand of the heat pump, the actual energy production
and the actual prices, thus it provides the actual energy cost, rather than the
expected one. Since the forecast always include a prediction error, the result
is almost certainly sub optimal, thus said result will be addressed as “Sub
Optimal” in the reported plots and figures.
The performance reference is obtained from an ideal case that assumes that

an exact prediction is possible. Whenever the prediction error can be consid-
ered equal to zero, the data forecast will match the historical counterpart. In
this scenario, then, it is possible to search for the task time table using the
historical data rather than the forecast counterpart. As a result, the actual
energy monetary balance obtained through simulation will match the expected
cost, computed by the framework during the search of the task time table. As
such, since the algorithm will provide the time table that minimize the energy
cost, the optimal result is obtained. For this reason, the obtained result will
be referred to as “Optimal” in the reported plot and figures.
The comparison of optimal and sub optimal results will provide the means to
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evaluate the relationship, between prediction error and scheduling performance,
in term of energy net cost.
An additional reference case, addressed as “baseline scenario”, consists of

a domestic environment, without any energy management feature, nor energy
storage facility and without task scheduling abilities. In this environment the
energy produced by the solar power plant is sold directly to the main grid,
whereas the tasks are executed in the first available time slot. A time slot is
assumed to be available if it falls within the time frame given to the task and
if the task can be executed without exceeding the maximum power allowed by
the building wirings. For this scenario no plot will be presented.
Concerning the realism of the scenario two aspects shall be accounted. The

first one is related to the assumption that, within the environment, the thermal
regulation depends on a thermostat. The thermal model, provided by the
framework, is only meant to compute the energy demand. If historical data is
used an input, the actual energy demand will be obtained. If forecast data is
used instead, the expected energy demand is obtained.
The second aspect pertains the realism of the thermal regulation. In order

to evaluate the framework performance, a strict thermal regulation is used to
enforce the heat pump activity. In real life however, thermal regulation is
usually not used all year around, thus a certain degree of realism is discarded
in the current work.
The first test to be carried out is based on the data set referred to as “day

1”. The error prediction of the data forecast, within this set, is less then 10%.
As said, first the energy demand of the heat pump is computed. This routine
depends on the outdoor temperature, the thermal constraints and the building
thermal behaviour. For the optimal case, the temperature profile is reported
in Fig. 4.5, whereas for the sub-optimal case the resulting indoor profile is
reported in Fig. 4.6. By comparing the two, the effect of the prediction error
is clear. The difference becomes even more apparent if the energy demand,
reported in Fig. 4.7, is evaluated.
The comparison of the profiles highlights that the effects of the prediction er-

ror highly depend on the temperature constraints. Since no thermal regulation
is required without thermal constraints, the prediction error is unable to prop-
agate during the time slots where temperature requirements are not assigned.
Also, the indoor temperature is bound to follow the outdoor temperature, and
the thermal regulation is only required to maintain the indoor temperature
within the given range. Therefore, if both the outdoor temperature and the
corresponding forecast profile fall into the assigned range, no regulation will be
necessary, thus the prediction error will not propagate. In the current scenario,
a 1 ◦C temperature range was chosen, thus the error propagation occurs, if
a wider range where to be chosen, however a different situation may present
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Figure 4.5: Data set “day 1”: Room temperature profile against outdoor tem-
perature and constraints
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Figure 4.6: Data set “day 1”: Room temperature profile against forecast out-
door temperature and constraints

itself.
Recalling that the task scheduling process accounts the heat pump activity,

the energy price and local production, it is also possible to conclude that the
prediction error, originating from the outdoor temperature forecast, affects
the time table indirectly, whereas the prediction errors originating from both
the solar irradiation and electricity price forecasts operate directly. On this
subject, while a few educated guesses can be made in very specific cases, a
general model of the interaction among the prediction errors does not exists.
Due to their stochastic nature, in fact, it is not possible to assess beforehand the
error amount, moreover in each time slot. In turn then the interaction among
error, that is if the errors sum up or cancel each other out, is not known.
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Figure 4.7: Data set “day 1”: Hourly energy amount consumed by the heat
pump

Although, from a general point of view, the way the task time table is dis-
torted by the prediction errors is not predictable, it should also be noted that
the time slot allocation is also subject to the system constraints. The maximum
power allowed by the house wirings shall be accounted, and thus the fact that
the number of tasks that can be executed at once is limited. The sequential na-
ture of the task is also to be considered, and thus the fact that the tasks cannot
be executed in any order. In addition, it shall be noted that each task has a
given time frame. In other words, the robustness of the scheduling process, with
respect to prediction errors, may increase the more tasks are to be scheduled,
since the degrees of freedom of the allocation process are reduced. Nonetheless,
it shall also be observed that, when energy demanding tasks are involved, even
slightly distorted time schedule may lead to significant performance drop.
For instance, if the optimal time schedule, reported in Fig. 4.8, is to be

compared to the sub optimal time schedule, reported in Fig. 4.9, it is possible
to observe that only the entries marked as “Task 3” and “Task 8” are actually
affected by the forecast error.
By simulating the task execution using the computed task schedule, the

actual energy management profiles can be evaluated. Concerning the reference
case, being optimal, the energy allocation produce the minimum energy cost.
When the sub optimal case is considered, obviously, a less efficient result is
achieved. It may also worth to mention, in this case, that since the optimal case,
being optimal, guarantees the best achievable performance, the sub optimal
setup can, at most, achieve the same result. That is, under no circumstances
better performances can be achieved.
Concerning the energy costs, reported in Fig. 4.10, the “Optimal” entry
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Figure 4.8: Data set “day 1”: Optimal task scheduling activity
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Figure 4.9: Data set “day 1”: Sub Optimal task scheduling activity

produces a total energy cost of 0.21$, whereas the “Sub Optimal” counterpart
leads to a total energy cost of 0.29$. Concerning the energy income, reported
in Fig. 4.11, the total income of 0.1$ is obtained in both cases. The energy
minimum net cost (reference case) is thus 0.106$, the expected net cost for the
forecast case is 0.69$, whereas the actual net cost for the forecast case is 0.19$.
Also the stored energy level can be evaluated (Fig. 4.12), and a better insight

of the scheduling process can be gained. In particular, after 20.00 the battery
is fully charged, meaning that the different slope in the energy cost plots, after
20.00, only depends on the task allocation. Also, at 8.00 the optimal time
schedule allows the battery to recharge to full level, whereas the sub optimal
time table prevent the recharging phase till 10.00 and requires an additional
discharge at 13.00, thus increasing the battery stress.

51



i
i

“PhDthesis” — 2016/11/30 — 18:06 — page 52 — #70 i
i

i
i

i
i

Chapter 4 Energy and resource management: set-up configuration and test

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (hh)

M
on

et
ar

y 
In

co
m

e 
($

)

Cumulative Electricity Cost

 

 

Optimal Sub Optimal

Figure 4.10: Data set “day 1”: Energy cost over time
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Figure 4.11: Data set “day 1”: Energy production income over time

As a further mean of comparison, for a baseline scenario, the energy cost will
amount to 5.31$, whereas the energy income would amount to 0.34$. The net
energy cost will amount to 4.97$ meaning that the optimal case net cost will
amount to 2.1% of the baseline net cost, whereas the sub-optimal net energy
cost will amount to 3.8% of the baseline net cost.
By evaluating the scheduling process by means of the “day 3” set-up, a pre-

diction error higher than 20% and lower than 30% will be accounted. Similarly
to the previous case, concerning the heat pump expected energy demand, the
forecast case will differ from the reference case (Fig. 4.13). The difference will
be much more remarkable, since the prediction error is greater.
Pertaining the computed task schedules (Figs. 4.14 and 4.15), since the

prediction errors originating from both the irradiance and price forecast are
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Figure 4.12: Data set “day 1”: Battery energy level over time
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Figure 4.13: Data set “day 3”: Hourly energy amount consumed by the heat
pump

also greater than the previous case, the difference between the optimal case
and the sub optimal counter part are much more evident. This result, also,
suggests that the maximum and minimum errors, thus accounted with their
sign, may be a set of indexes much more meaningful, towards the distortion of
the task schedule, with respect to the MAE.
By simulating the task execution, based on each of the task schedule, the

cumulative energy costs, depicted in Fig. 4.16 are obtained. The energy income
amounts, on the other hand, are reported in Fig. 4.17, whereas the energy
storage level over time is presented in Fig. 4.18.
Although the involved values may differ from the previous case, the same

conclusion still holds. For instance, the net energy cost of the optimal case
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Figure 4.14: Data set “day 3”: Optimal task scheduling activity
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Figure 4.15: Data set “day 3”: Sub Optimal task scheduling activity

amounts to 1.07$, the expected net cost of the sub optimal case amounts,
on the other hand, to 11.718$, while the actual net cost of the sub optimal
scheduling amounts to 1.73$.
If the baseline scenario is taken into account, it is possible to observe that

the total energy cost amounts to 8.11$ and the total energy income amounts
to 0.21$. Since the net energy cost of the baseline scenario amounts to 7.9$,
the net cost of the optimal case amounts to 13.5% of the baseline net energy
cost. The net energy cost of the sub optimal case, on the other hand, equals
the 21% of the baseline net cost.
Based on the proposed evaluations, it appears that, while the prediction

errors may affect the scheduling process, thus impairing the allocation of the
tasks and the energy management, the performance loss is not directly related
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Figure 4.16: Data set “day 3”: Energy cost over time

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (hh)

M
on

et
ar

y 
In

co
m

e 
($

)

Cumulative Electricity Income

 

 

Optimal Sub Optimal

Figure 4.17: Data set “day 3”: Energy production income over time

to the amount of said errors nor their interaction. Clearly, the forecast values
used by the scheduler may promote or prevent the allocation of each time slot
to the given tasks.
In this perspective, of course, the prediction errors may alter the time slots

allocation in any way. However, if the optimal time slot for a given task can
be addressed as the i-th time slot, and if a sub-optimal time slot assigned
to the said task can be addressed as j-th time slot, it can be concluded that
the performance loss actually depends on the difference between the i-th price
and j-th price, that is the prices of the i-th time slot and the j-th time slot
respectively.
Also, since the sub-optimal task allocation depends on both constraints and

forecasts, due to the lack of correlation among the involved entities, it may be
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Figure 4.18: Data set “day 3”: Battery energy level over time

safe to assume that the sub-optimal allocation distortion is actually a random
process, at least if a prediction error exists. On this subject, the “day 2” case,
in which the prediction error is higher than 10% and lower than 20%, appears
to be particularly meaningful.
In fact, if the optimal task schedule (Fig. 4.19) is compared against the sub

optimal task schedule (Fig. 4.20), it is possible to notice that the “day 2” case
is quite similar to the “day 3” one. However, in the “day 2” case, the net energy
cost amounts to 32.218$ for the optimal and 32.235$ for the sub-optimal task
schedule, thus there no meaningful difference in terms of energy cost between
the optimal and the sub-optimal case.
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Figure 4.19: Data set “day 2”: Optimal task scheduling activity

This aspect may also be seen as the reason why the scheduling process seems
to be fairly robust against prediction error, in the sense that the entity of the
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Figure 4.20: Data set “day 2”: Sub Optimal task scheduling activity

performance loss does not seem directly bounded to the entity of the predic-
tion error. Moreover, even if the performance loss is to be accounted, the
improvement over a baseline scheme still remains remarkable.

4.3.2 Multi apartment revamping model with one hour ahead
management

By means of the multi apartment model, the performance of the energy man-
ager with a one-hour ahead management scheme has been investigated.

Table 4.4: Energy management, based on historical data, for all addressed sys-
tem configurations. The identification number is based on the entries
listed in Section 4.2.

Configurations

1 2 3 4 5 6 7 8

Energy cost due to electrical blocks (e) 618.85 618.85 488.50 488.50 493.42 493.42 493.03 441.08
Energy cost due to thermal blocks (e) 1356.69 1318.76 1356.69 1318.76 1318.76 830.59 585.25 594.30

Energy overall cost (e) 1975.54 1937.61 1845,15 1807,26 1812.18 1324.01 1078.28 1035.38

Purchased energy amount (kWh) 14663 14682 13964 13681 13715 9874 7426 7926
Surplus energy amount (kWh) 20630 20630 17778 17778 17396 14936 13666 11181

Residual electrical energy (Wh) 0 0 3334 3334 3396 3396 3396 6267
Residual thermal energy (Wh) 0 1750 0 1750 1750 1750 1750 1750
Residual refrigerating energy (Wh) 0 1750 0 1750 1750 1750 1750 1750
Residual hot water energy (Wh) 0 12500 0 12500 12500 12500 12500 12500

Electrical storage invest cost (e) 0 0 30740 30740 30740 30740 30740 30740
Thermal storage invest cost (e) 0 2000 0 2000 2000 2000 2000 2000

Total invest cost (e) 0 2000 30740 32740 32740 32740 32740 32740

Electrical storage maintenance yearly fee (e) 0 0 500 500 500 500 500 500
Thermal storage maintenance yearly fee (e) 0 100 0 100 100 100 100 100

Storage maintenance total yearly fee (e) 0 100 500 600 600 600 600 600

In the first test, the energy management is simulated, based on historical
data, for each of the proposed configurations. The performance is summarized
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in Table 4.4, which reports, in each column, the results of the corresponding
configurations.

The reported amounts present, in order, the cost of the energy purchased
to supply the electrical blocks and the cost of the energy purchased to supply
the thermal blocks. Next, the overall energy purchased amount, and surplus
are reported. At last, the residual energy stored within each storage device is
presented.

The comparison of the results, within the synoptic table is quite straightfor-
ward. In the 1st configuration, the storage devices are not included, therefore
the energy surplus is discarded immediately. As a consequence, the system
is forced to purchase additional energy in order to match the demand, either
electrical or thermal, each time the local production is lacking.

In the 2nd configuration, on the other hand, the availability of the thermal
storage grants the system the ability to preserve the thermal energy surplus
thus lowering the electrical needs of the thermal system. In this case, however,
since the solar collector only support the hot water production, the savings are
quite limited and amount to 38e per year.

In the 3rd configuration, the storage devices support the activity of two,
out of the three electrical blocks. Due to the higher energy demand and pro-
duction, therefore, an enhanced performance is possible, with respect to the
2nd configuration. In particular 130e can be saved with respect to the 1st

configuration.
Also, since each block operates independently from the others, when both

thermal and electrical storage devices are used, the saving from both the hot
water block and the electrical blocks concurs to reduce the overall energy bill,
as shown from the results obtained by the 4th configuration.

The 5th configuration proves to be a little less performing than the 4th one.
In this case, in fact, the savings provided by the addition of the electrical stor-
age amount to 125 e, with respect to the reference case, represented by the
1st configuration. This is likely due to the fact that, without accounting the
energy surplus in the objective function (Eq. (3.30)), the manager is not forced
to store the energy surplus, thus achieving a sub optimal management of the
energy surplus. On the other hand however, the absence of the constraints,
described in Eq. (3.37) and (3.38), also grants the energy manager with two
additional degree of freedom, thus improving the responsiveness of the storage
management. Additional tests, not shown here for the sake of conciseness, re-
veal in fact that, by accounting the energy surplus within the objective function,
an additional saving of about 20 e can be achieved.

The 6th configuration shows that the integration of hot water production and
heating can greatly enhance the efficiency of the system. In fact, while the solar
collector may support the heat production, thus reducing the energy required
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to heat the building, the heat pump can provide the extra heat required to
support hot water production in place of the water boiler. In results, roughly
488 e can be saved with respect to the 5th configuration due to a more efficient
management of thermal resources. The overall savings, therefore, rise up to
about 650 e if compared against the performance of the 1st configuration.

In the same perspective, the integration of electrical and thermal manage-
ment, with the ability to route the electricity surplus to the heat pump and the
water boiler, further improve the ability of the system to exploit the renewable
resources. For instance, the 7th configuration, achieves an additional reduction
of the overall bill, of about 245 e. If compared against the results of the 1st

configuration, the purchased energy amount is practically halved, whereas the
energy surplus is lowered to roughly the 60% of its original amount.Similar
results are achieved if the 8th configuration is used. When the electrical en-
ergy is managed from the building standpoint, a different allocation of the
resources may be possible. As such, with respect to the 7th configuration, a
further reduction of the energy cost due to the electrical block is achieved, sav-
ing about 52 e. At the same time however, since the energy surplus routed
to the heat pump is also lowered, the energy cost due to the thermal blocks
increase slightly, requiring an extra of about 9.05 e. The overall saving, there-
fore, amounts to 43 e. In this case, then, the algorithm is able to promote the
energy purchase during the off peak hours, thus achieving a lower energy bill in
spite of an increased amount of purchased energy. This management strategy
entails an enhanced self-consumption of the renewable energy produced by the
PV system, as confirmed by the decrease of the surplus energy amount.

While the results proposed in Table 4.4 are collected at the end of a simu-
lation that cover an entire year time span, partial results have been collected
during the entire simulation process. In Figs. 4.21 and 4.22 respectively, the
energy cost due to the electrical blocks and the energy cost due to the thermal
blocks are proposed.

At a glance, although the plots depict the same situation presented within
Table 4.4, they also reveal that the actual results are consistent through the
entire simulation. In addition, it is possible to assess in which way the costs
increase through the year, and thus the ability of each configuration to save
energy. As such, in Fig. 4.21 it is possible to observe that the energy demand of
the electrical blocks remains roughly the same through the year, and therefore
the cost increase, over time, is almost linear.

With respect to the energy demand of the thermal blocks in Fig. 4.22, in the
other hand, it is possible to observe four seasonal changes, since the simulated
time interval begins in November. In the first quarter of the plot, which roughly
correspond to the winter season, the energy cost and demand increase with a
sustained rate, due to the heat demand of the building. In the second quarter
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of the plot, that is the spring season, nor heating nor cooling are required, thus
the cost remains almost constant. In summer, again, the cost over time shows
a fast rate of growth that decreases in the last quarter. Also, the less efficient
the configuration, the higher the cost rise over time.

Figure 4.21: Energy cost due to the electrical blocks. The identification number
is based on the entries listed in Section 4.2.

Figure 4.22: Energy cost due to the thermal blocks. The identification number
is based on the entries listed in Section 4.2.

In relation to the case of the scheduling approach, the robustness to data
uncertainty has been also evaluated. In this case, in fact, the storage activity
is planned by means of the forecast data. This means that the prediction
error may affect the performance of the system, in the different addressed
configurations.
The performed tests, in particular, have shown two distinct trends in con-

nection with the management of electrical and thermal storage devices. In
relation to the energy demand due to the thermal blocks, in particular, only
minor changes, with respect to the previous test, can be highlighted. The
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Table 4.5: Energy management, based on forecast data, for all addressed sys-
tem configurations. The identification number is based on the entries
listed in Section 4.2.

Configurations

1 2 3 4 5 6 7 8

Energy cost due to electrical blocks (e) 618.85 618.85 623.99 623.99 620.38 620.38 655.20 614.93
Energy cost due to thermal blocks (e) 1356.69 1349.76 1356.69 1349.76 1349.76 830.59 588.25 616.87

Energy overall cost (e) 1975.54 1968.61 1980.68 1973,75 1970.14 1450.97 1243.45 1231.8

Purchased energy amount (kWh) 14946 14895 14979 14928 14891 10976 9470 9384
Surplus energy amount (kWh) 20630 20630 18791 18791 18382 18382 13453 11164

Residual electrical energy (Wh) 0 0 10455 10455 10455 10455 10441 13340
Residual thermal energy (Wh) 0 1750 0 1750 1750 1750 1750 1750
Residual refrigerating energy (Wh) 0 1750 0 1750 1750 1750 1750 1750
Residual hot water energy (Wh) 0 12500 0 12500 12500 12500 12500 12500

Electrical storage invest cost (e) 0 0 30740 30740 30740 30740 30740 30740
Thermal storage invest cost (e) 0 2000 0 2000 2000 2000 2000 2000

Total invest cost (e) 0 2000 30740 32740 32740 32740 32740 32740

Electrical storage maintenance yearly fee (e) 0 0 500 500 500 500 500 500
Thermal storage maintenance yearly fee (e) 0 100 0 100 100 100 100 100

Storage maintenance total yearly fee (e) 0 100 500 600 600 600 600 600

electrical management however has shown a significant difference.
The 1st configuration, since it lacks any form of storage, has achieved the

same results shown in the previous test. The 2nd configuration, although to
a smaller degree with respect to the previous test, is still able to improve its
performance with respect to the 1st one. The 3rd configuration, conversely not
only has not provided the expected benefits, but also worsened the situation
with respect to the reference case, although to a small degree.

As a result, in the 4th configuration, by integrating both electrical and ther-
mal storage, the overall performance remain almost unchanged with respect to
the reference case. In the 5th configuration, the adoption of a less conservative
management policy, partially ease the problems originating from the prediction
error.

In the 6th configuration, the cost, due to the energy demand of the thermal
block, remains almost unchanged with respect to the previous test, thus con-
firming that the thermal storage subsystem is fairly robust against prediction
errors. This result is likely connected to the fact that a negligible thermal loss
has been assumed to model the thermal storage, whereas a quite significant self
discharge has been applied to the electrical storage. As such, the prediction
uncertainty affects the activity time of the storage and therefore influences the
storage management strategy.

From this perspective, the results achieved by the 7th configuration appear
quite clear. The thermal blocks, in fact, remain almost unaffected by the
prediction error, and no significant difference, with respect to the previous
test, is present in relation to the energy cost due to the thermal blocks. The
energy cost due to the electrical blocks, on the other hand, shows a further
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increase with respect to the 6th configuration. Since the energy surplus is to be
routed towards the thermal blocks, the management of the electrical storage
requires an increased accuracy, and thus the process becomes less robust against
prediction errors.

On the other hand, the 8th configuration seems to be the most robust among
the others under test. Indeed, differently from the 7th configuration, the energy
cost saving due to the thermal blocks is not paired with an increased energy
cost due to the electrical blocks. Rather, although limited, even the energy cost
due to the electrical blocks is reduced. In the light of this, 8th configuration
allows achieving the best performance within the proposed set of tests.

In conclusion, from the first test set it is possible to observe that the ability
to store both the thermal and the electrical energy usually improves the per-
formance of the energy management, even more so if the inclusion of storage
devices is complemented with the integration of the different blocks within the
system. In particular, the comparison of the 7th and 8th configuration against
the 4th configuration, which is characterized by the same constraints for stor-
age activity actually adopted in the Leaf House, suggests that there is room for
new design choices within the energy management subsystem, and that these
choices are likely to improve the related efficiency. The second test set results
highlight that while the thermal energy management shows a fair amount of ro-
bustness against the error prediction, the management of the electrical storage
can be improved based on this perspective. Therefore, future efforts will be tar-
geted on this direction. For instance, the comparison of the 5th configuration
against the 4th one, suggests that an appropriate choice of the management
policy, in dependence on the expected liability of the forecaster on hourly ba-
sis, may solve the issue. Nevertheless, the last two configurations, proposing an
integrated management of the electrical and thermal storage capabilities, still
allow to achieve a significant reduction of the annual energy cost with respect
to other approaches.

4.3.3 Multi apartment revamping model with one day ahead
management

The multi apartment model, also, has been used to carry out an additional
evaluation test, based on an 1 day ahead management scheme. In this case,
also, a dynamic pricing scheme has been included.

In the current section the results of both forecasting techniques and energy
and resource scheduling are proposed.
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Table 4.6: Forecasting indices: back to back comparison

MLP model NARX model Kernel based ELM
model

MAPE Mean: 5.57 5.57 5.45
Variance: 0.002 0.01 0.00

RMSE Mean: 9.33 9.49 8.71
Variance: 0.02 0.04 0.00

Forecasting techniques

To compare the forecasters performance, 10 forecasts per technique have been
generated. Being the most common indices, the percentage MAPE (Mean
Absolute Percentage Error) and percentage RMSE (Root Mean Squared Error)
have been computed and their mean value and variance are proposed in Table
4.6.

For instance, percentage MAPE and percentage RMSE have been computed
as follows:

MAPE = 100 · 1
n

∑n
t=1

∣∣∣∣Pt−Ft

P

∣∣∣∣, RMSE = 100 · 1
n

√∑n
t=1

∣∣∣∣Pt−Ft

Pt

∣∣∣∣
2
,

where, within a year, n is the n-th hour, Pt is the t − th historical hourly price
value, Ft is the t − th forecast hourly price value and P is the average of the
historical hourly price.

The MLP and NARX forecasters show similar results, although the lower
variance of the MLP based forecasts reveals an increased robustness of this
method with respect to the NARX network. Most likely, the NARX model
has been affected by the lack of information about the weekly and seasonal
correlation of the prices. It must be remarked that, omitting the day of the
week and the day of the year, to adopt a simpler input set, may have resulted in
sub-optimal working conditions for the NARX model. The results of the ELM
based forecaster show that, with respect to MLP and NARX based forecasters,

Table 4.7: Energy cost for the 1-hour ahead management scheme, based on
historical data and two tiered tariff, for all addressed system config-
urations. The identification number is based on the entries listed in
Section 4.2.

Configurations

1 2 3 4 5 6 7 8

Hourly management
Cost due to electrical blocks (e) 618.85 618.85 488.50 488.50 493.42 493.42 493.03 441.08
Cost due to thermal blocks (e) 1356.69 1318.76 1356.69 1318.76 1318.76 830.59 585.25 594.30
Overall cost (e) 1975.54 1937.61 1845.15 1807.26 1812.18 1324.01 1078.28 1035.38
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the percentage MAPE index mean value is 2.15% lower, the percentage RMSE
index mean value is, respectively, 6.64% and 9.22% lower. The variability, also,
is null. Thus, the ELM based forecaster appears to be more accurate, and more
robust against the network random initialization.

Hourly management improvements

The first evaluation compares the hourly energy management results against
the performance of the previous implementation of the framework, based on the
overall cost of the purchased energy. Therefore a lower energy cost represents
a better performance.

The scheduling results of the 1 hour ahead management are reported in Table
4.7, whereas the results of the the 1 day ahead management are proposed in
Table 4.8. The set-up and parameters of the both implementation remain
unchanged.

Regarding the hourly manager, the comparison of the results, reported in
Tables 4.7 and 4.8 and labelled: Overall cost, reveals that with the exception
of configuration 2 and 4, the revised cost function improves the efficiency of
the energy management. If the thermal and the electrical contributions are
accounted, respectively shown by the entries labelled: Cost due to the thermal
blocks and Cost due to the electrical blocks, it can be observed that the revised
cost function does not interfere with the policy of the electrical storage (con-
figurations 3 and 4), it lowers the electrical needs when electrical and thermal
subsystems are apart (configurations 5 and 6), whereas it promotes the use of
the electrical storage to support the thermal subsystem. It should be reminded
that only the electrical storages of configuration 3 and 4 have a management
policy applied.

In the case of configuration 2 and 4, as said, the performance has worsened.
However, the performance drop affects only the thermal management, whereas
the electrical management remains unaffected. This behaviour is due to the

Table 4.8: Energy cost based on historical data and two tiered tariff (ideal
scenario with no prediction error), for all addressed system configu-
rations. The identification number is based on the entries listed in
Section 4.2.

Configurations

1 2 3 4 5 6 7 8

Hourly management
Cost due to electrical blocks (e) 618.85 618.85 488.50 488.50 429.27 429.27 599.02 562.96
Cost due to thermal blocks (e) 1356.69 1349.79 1356.69 1349.79 1349.79 830.59 430.56 443.86
Overall cost (e) 1975.54 1968.64 1845.19 1838.29 1779.06 1259.86 1029.58 1006.82

Daily management
Cost due to electrical blocks (e) 618.85 618.85 474.38 474.41 426.51 426.51 479.04 427.89
Cost due to thermal blocks (e) 1356.69 1354.73 1356.69 1306.28 1306.28 804.05 377.04 390.41
Overall cost (e) 1975.54 1973.58 1830.57 1780.69 1732.79 1230.56 856.08 818.30

Overall cost difference (e) - -4.94 14.62 57.60 46.27 29.30 173.5 188.52
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Table 4.9: Energy cost based on historical data and dynamic tariff (ideal sce-
nario with no prediction error), for all addressed system configura-
tions. The identification number is based on the entries listed in
Section 4.2.

Configurations

1 2 3 4 5 6 7 8

Hourly management
Cost due to electrical blocks (e) 631.08 631.08 486.05 486.05 424.13 424.13 596.73 557.45
Cost due to thermal blocks (e) 1367.62 1361.32 1367.62 1361.32 1361.32 824.26 425.30 438.78
Overall cost (e) 1998.70 1992.40 1853.67 1847.37 1785.45 1248.39 1022.03 996.23

Daily management
Cost due to electrical blocks (e) 631.08 631.08 470.35 470.42 403.41 403.41 449.53 388.59
Cost due to thermal blocks (e) 1367.62 1161.62 1367.62 1160.71 1160.71 717.23 335.58 350.63
Overall cost (e) 1998.70 1792.70 1837.97 1631.13 1564.12 1120.64 785.11 739.22

Overall cost difference (e) - 199.70 15.70 216.24 221.33 127.75 236.92 257.01

value assigned to the scaling factors, which is close to the difference between
the off peak price and the peak price. Due to that, whenever the heat pump is
used, due to the COP, shifting the thermal load is regarded as “not convenient”
by the energy manager.

In fact, by shifting the electrical load from peak hours to off-peak hours, a
saving can be achieved. The saving per electrical Wh amounts to the difference
between the peak-hour tariff and the off-peak tariff (about 9.73e-6e). Because
of the COP of the heat pump, however, the saving per thermal Wh is roughly
one third of the saving per electrical Wh. As such, since the storage activity has
a “value” per Wh, represented by the scaling factor, higher than the saving, the
storage activity is regarded as unnecessary and avoided by the manager. That
is to say that, within the framework, the user can define the threshold below
which the storage activity is “less convenient” than the savings it produces.

Table 4.10: Energy cost based on forecast data and dynamic tariff (real life
scenario with prediction error), for all addressed system configura-
tions. The identification number is based on the entries listed in
Section 4.2.

Configurations

1 2 3 4 5 6 7 8

Hourly management
Cost due to electrical blocks (e) 631.08 631.08 623.65 622.57 576.55 576.55 653.97 605.57
Cost due to thermal blocks (e) 1367.59 1361.14 1367.59 1361.14 1361.14 824.22 505.12 522.23
Overall cost (e) 1998.67 1992.22 1991.14 1983.71 1937.69 1400.77 1159.09 1127.80

Daily management
Cost due to electrical blocks (e) 631.08 631.08 553.10 550.30 544.01 543.80 572.24 365.04
Cost due to thermal blocks (e) 1367.59 1174.83 1367.59 1189.34 1189.34 726.64 410.74 431.43
Overall cost (e) 1998.67 1805.91 1920.69 1739.64 1733.35 1270.44 982.98 796.47

Overall cost difference (e) - 186.31 70.45 244.07 204.34 130.33 176.11 331.33

Since a different choice of the scaling factors would change the presented
behaviour, the framework can be used to evaluate different policies, depending
on the user needs.
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Daily management and hourly management

Regarding the daily energy management, comparing its performance, based on
the results presented in Table 4.8, against the performance of the previous im-
plementation (Table 4.7), shows that the configuration 1 does not provide the
means to improve the system efficiency. In the case of configuration 2 the un-
expected results are even worse than the revised hourly manager (shown above
in Table 4.8). On the other hand, in the case of configuration 4, the daily man-
ager achieves a lower cost even in the case of the thermal management, which
leads to the conclusion that a daily management allows a better coordination of
both thermal and electrical management. In fact, in every configuration from
3 onwards, the daily manager outperforms both the old and the revised hourly
managers.

While the already mentioned Table 4.8 refers to a scenario based on historical
data and a two tiered tariff, Table 4.9 presents the results corresponding to a
scenario based on historical data and the historical dynamic pricing profile. An
evaluation of the results reported in Table 4.9, for both configuration 2 and 4,
reveals that, since the price changes every hour, and also the price difference
is usually higher with respect to the two tiered tariff, the assigned policy does
not lead to an unexpected result. Hence, it is possible to conclude that the
daily manager outperforms the hourly one in every configurations, and that
the improvement grows with the increased degree of integration among the
subsystems.

Data uncertainty

Last but not least, the effect of data uncertainty over the energy management
has been investigated. In particular, Table 4.10 presents the results based on
a scenario that accounts forecast data for both solar production and dynamic
pricing. In this case, for each time step, the forecast data is used to compute
the schedule of the system activity, the activity of the residential environment
is then simulated by means of the same framework, and the environment per-

Table 4.11: Difference of energy cost between historical data based management
(Table 4.9) and forecast data based management (Table 4.10), for
all addressed system configurations. The identification number is
based on the entries listed in Section 4.2.

Configurations

1 2 3 4 5 6 7 8

Hourly management (e) 0.03 0.18 -137.47 -136.34 -152.24 -152.38 -137.07 -131.57

Daily management (e) 0.03 -13.21 -82.72 -108.51 -169.23 -149.80 -197.87 -57.25
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formance is computed. The simulation uses the historical data and the schedule
previously computed as inputs. In each Table the difference between the perfor-
mance of the hourly and the daily manager, for each configuration, is reported
as well.

In this case, the results presented in Table 4.10 are to be compared against
the ones presented in Table 4.9. The case of the hourly manager and the case
of the daily manager have been addressed separately. The difference between
the overall energy costs, for both cases, has been presented in Table 4.11.

Because of data uncertainty, the performance of the manager is sub optimal,
i.e. while it is possible to improve the efficiency of the residential environment,
it is usually not possible to achieve the minimum operating cost.

At a glance, with respect to the hourly management, the results proposed in
Table 4.11 reveal that the losses due to the forecasting errors are consistent,
spanning from about 131e to about 152e. Also, the fact that the losses
affect configuration 3, but not configuration 2, leads to the conclusion that
the electrical energy management is more exposed to the forecasting errors.
In this scenario, configuration 8 is the only non trivial set-up that suffers the
least drop in performance. In term of percentage with respect to the optimal
scheduling, the drop in saving ranges from 7.38%, of configuration 4, to 13.41%,
corresponding to configuration 7, suggesting that the high variability comes
from the increased saving of the configuration, rather than the variability of
the drop in performance.

Similar considerations, also, hold true in the case of the daily management,
although the saving losses have a wider spread, from about 57e to about 198e.
In term of percentage the value spans from 6.65% to 25.20%. Configuration 8
appears to be the most robust non trivial set-up, since the loss in performance,
is about 57e, which is half the drop with respect to configuration 4. That is to
say that highly integrated systems appear to be less affected by the forecasting
errors.

From a general point of view, in the case of the hourly management, the
storage activity is planned depending on the expected local production and the
local demand in the next hour. Once the activity is planned, the amount of
energy routed to or from the storage cannot be adjusted. Hence, if the energy
production exceeds the forecast value, the extra energy is not collected, ending
wasted. If the production is lower than expected, the energy to be stored will
be purchased.

In the case of the daily manager, on the other hand, the storage activity is
planned over a time window of 24 hours. Thus local demand and local expected
production are accounted for every hour within the time frame. Differently from
the hourly manager, however, the expected energy prices are also accounted.
In both cases, the cost function reaches its minimum when the storage activity
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is absent and, at the same time, the energy cost is at its minimum. However,
the hourly manager does no plan the energy purchase accounting the prices.
On the other hand, the daily manager, by means of the price forecast, can
compare the prices, and plan the purchase as to when the price is expected
hits its minimum as to lower the cost function. This behaviour, also, has been
observed in our earlier work [50].
In fact, the daily manager is affected by the position of the local minima of the

price forecasts, which in turn are affected by the forecasting error. In addition,
since the relative position of the minima does not depend on the absolute value
of the forecasting error, it is not possible to relate the scheduling performance
to the forecast accuracy. For instance, the results reported in Table 4.11 do
not reveal any obvious relationship.
Clearly, the results shown in Table 4.11 prove that, although sub-optimal, the

improvement of the efficiency of the environment is consistent. Nonetheless, in
order to assess the impact of the price forecasting error over the scheduling, an
index that takes into account the displacement of local minima may be more
effective than the widespread MAPE or RMSE.

4.4 Remarks
Based on the proposed evaluation tests, a MILP based energy management
approach shows effective results not only as an energy manager but also as a
Micro Grid design tool. The linear nature of the optimization problem can
support the management of both small and large environment, while the mod-
ular nature of the implementation ease the arrangement of the model elements
so that different topologies can be simulated and compared.
Although the approach shows an high degree of flexibility, the constrained

nature of the problem render the model robust against data uncertainty proving
that the proposed approach can be effectively used in a real life environment.

4.5 Future system developments
Although the management approach has proven to be effective in term of op-
timization abilities and flexibility, it is based on the MatLab environment and
therefore can be considered a research tool rather than a real life solution. In
order to manage a real life Micro Grid, in fact, several features are still required
to overcome the shortcomings of proposed implementation.
On purpose, the proposed approach is used as a basis to develop a framework

based the Python programming language. The new implementation is required
to integrate additional features such as the ability to automatically arrange the
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elements of the problem through the selection of the device models from a model
database. Thus the correct MILP problem can be generated automatically, for
a given topology, without the need to program the model arrangement. Also
the ability to collect the input data relating to the environment topology will
be included.
Another additional feature is the ability to manage external events, that are

generated by the feedback from the system. The model enhancements presented
in Chapter 5 are to be included to improve the accuracy of the management.
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Chapter 5

Energy and resource management:
additional models and algorithms

The ability to manage both the energy and the resources of a Micro Grid envi-
ronment provides a significant advantage in term of lower energy consumption
and overall energy costs, with respect to an unmanaged Micro Grid environ-
ment. However, the effectiveness of the manager depends on several factors.
Indeed, in addition to the resources, such as energy storage systems or local

power plants, and the integration among the subsystems, required to route
the energy among the devices, also the ability to correctly forecast the energy
availability and evaluate the system energy demand is required.
In fact, nowadays local energy production, based on photovoltaic panels, is

quite common in many residential buildings but, to exploit this resource fully,
the ability to forecast the energy availability is mandatory. With regard to
this, however, although the hourly energy yield can be forecast directly, the
accuracy of such a forecaster may be lacking.
On the other hand, the forecast of the solar irradiation can be more accurate,

even more so if the information is collected from a specialized service utility.
Based on the solar irradiation then, the energy yield must be computed.
Although the process may seem straightforward, the modelling of the pho-

tovoltaic plant has to be accurate to avoid significant computation errors. On
purpose, the model of a photovoltaic panel has been implemented to compute
the actual energy yield while accounting the common limitation of real life
power plants such as partial shading.
Regarding the energy demand of a Micro Grid environment, it should be

noted that, to correctly manage the electrical load, electrical faults and over-
loads should be prevented, therefore the actual consumption of the grid has to
be monitored. Nonetheless, monitoring the aggregate consumption level has
limited value. With the support of a NILM framework, in fact, the manager
can identify the critical device thus, having a better insight on the problem,
can respond correctly to the issue.
On purpose, a photovoltaic power plant model with support to partial shad-
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ing and a NILM algorithm to support the implementation of a energy manage-
ment system that can operate in a real life Micro Grid environment.

5.1 Photovoltaic power plant model with support
to partial shading

Small size photovoltaic power plants are commonly adopted as local energy
sources in Smart Homes and Micro Grid environments. Although these plants
can provide energy to supply the devices within the system, their performance
depends on several factors the intensity of solar radiation and, moreover, they
can be severely affected from partial shading.
In fact, in a plant the panels are usually connected in series, therefore, when-

ever a panel is shadowed not only its current output drops, causing a drop of
the current output of the whole series of panels. Although this shortcoming can
be partially prevented by means of bypass diodes, the controller responsible for
operating the panel series, which adjusts the power output and maximize the
energy yield, is not able to identify the optimal working conditions.
To overcome this issue, new algorithms are required to improve the abilities

of the controller and the performance of the plant. To investigate the problem
and devise a solution, a model of the plant has been proposed.

5.1.1 Circuital model

To simulate the energy production of each PV module, the mathematical model
of the I-V characteristic of P-N cells has been used, and it is reported in
Eq.(5.1):

I =IPV − I01 · [e
q(V +I·RS )

k·TC ·m1 − 1]+

− I02 · [e
q(V +IRS )
k·TC ·m2 − 1]− (V + I ·RS)

RP
, (5.1)

which is an evolution of the single diode PV cell model [51, 52], since the current
loss due to the recombination of charge carriers is modelled through two diodes
[53, 54, 55].
In particular I is the output current, IPV is the current generated by the

incident light, whereas I01 and I02 are the reverse saturation currents of the
diodes. The quantity kT/q is the thermal voltage of the P-N junction, where q
is the charge of the electron, k is the Bolzmann’s factor and T the temperature
of the junction (in Kelvin). Also, m1 and m2 are the ideality factors of the two
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diodes, RS is the series resistance and RP is the parallel resistance. Thus the
quantity (V + I ·RS)/RP is the shunt current loss.
The parallel resistance has been modelled, according to [53, 54, 55], by means

of Eq.(5.2):

RP =
(Vmp + Imp ·RS)

IPV − I0[e
Vmp+ImpRS

VT + e
Vmp+ImpRS

(p−1)VT − 2]− Pmp

Vmp

, (5.2)

where the quantities Vmp and Imp are, respectively, the voltage and the current
at the maximum power point, and VT is the thermal voltage of the P-N junction.
In this study, for instance, the computation of the resistances values Rp and
Rs is carried out iteratively [55], and it is assumed that the ideality factor of
the first diode is equal to 1 [51].
Based on this representation, each PV module has been modelled accounting

the actual number of the PV cells of the panel. In turn, the PV arrays have
been obtained as string of PV modules, each module having a bypass diode
connected in anti parallel.
Indeed, since the open circuit voltage of a single cell is usually too low for

actual power production, N cells are put in series forming a PV module, which
presents an open circuit voltage that is N time the output voltage of a single
cell, whereas the short circuit current is the same for every cell [55]. Because
of that, under partial shading conditions, the cell with the lowest output limits
the short circuit current of the entire module. To circumvent this issue a bypass
diode is paired to every cell. As such, under partial shading conditions, the
current is not limited anymore, but the P-V characteristic of the module now
can exhibit multiple local maxima.
In a real life power plant, in most cases, several PV modules are connected

in series, as well, thus forming a module string with the desired voltage output.
Several strings are then connected in parallel to achieved the desired current
output. In conditions of partial shading, every string can be considered as an
independent subsystem, whereas the current output of the array is the sum of
the currents of the strings [56].
For the sake of simplicity, it has been chosen to ignore the power losses due

to the bypass diodes, and thus their effect has been approximated by simply
disconnecting the modules affected by shadowing. Therefore, the characteristic
curves of the plant have been computed as the sum of the curves of the strings.
The curves of the strings, in turn, have been computed as the sum of the curves
of as many panel sub sets as many irradiation levels are present over a string.
In fact, if we assume 3 irradiation levels over a single string of PV model (Fig.
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(a) Heterogeneus irradiation of a PV panel string

(b) Resulting PV characteristic curve

Figure 5.1: Panel string and its PV curve in heterogeneous irradiation
conditions

5.1(a)), the characteristic curve can be assumed as the result of three curves
(Fig. 5.1(b)). If the drawn power level is below or equal to the output power
of the least irradiated panels, all the module are able to supply energy (Fig.
5.2(c)). If the drawn power level rises above the output power of the least
irradiated panels, the output voltage of the most shadowed modules drops,
and thus these modules are disconnected from the string by the bypass diodes
(Fig. 5.2(b)). In this case only the remaining modules can supply energy. If
the drawn power level rise again, only the most irradiated modules can still
contribute to energy production (Fig. 5.2(a)). In other words, as the output
voltage rises from 0 to its maximum, the point representing the overall power
output moves from one curve to the other (Fig. 5.2(d)) depending on how
many panels can supply energy tracing the plot reported in Fig. 5.1(b).
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(a) Most irradiated sub set

(b) Intermediate irradiated sub set

(c) Least irradiated sub set

(d) Each PV characteristic

Figure 5.2: Homogenously irradiated panel substrings and their contribution to
the overall PV curve

5.1.2 Maximum power point tracking

The output voltage of a PV module depends not only on the incident solar
irradiation and the working temperature, but also on the amount of current
being drawn. As such, in order to extract the maximum amount of energy
from the module, the load has to be controlled so that the working point
of the module matches the MPP of its P-V curve. Since the MPP tends to
drift depending on irradiation and temperature, a MPP tracking algorithm is
required to properly drive the power draw.

In partial shading conditions, however, due to the bypass diodes, the P-V
curve of a string of module can show multiple maxima, thus hindering the
work of the MPPT algorithms. To assess how this phenomenon affects the
performance of the plant, two MPPT algorithms, the Perturb and Observe (P
& O) [57, 58, 59] and the Incremental Conductance (IC) [60, 61, 62, 63, 64]
have been implemented.
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Figure 5.3: Implementation of the MPP with support to the Global Peak Track-
ing approach proposed in [1]

The P&O relies on the application of small disturbances to the output volt-
age, in the neighbourhood of the work point, in order to detect changes in the
power output and, consequently, adjust the system to work in the point that
provides greater power output. On the othe hand, the IC method is based on
the conductance, computed as the derivative of the current, supplied by the
system, with respect to the output voltage. This method relies on the fact that
the slope of the curve P-V is null at the MPP, positive to its left and negative
to its right.

As mentioned above, since those P&O and IC methods are not tailored to
manage multiple maxima, which appear in the P-V curve under partial shading
conditions, [65, 66], the Global Peak Tracking approach proposed in [1] has been
implemented (Figs. 5.3 and 5.4).

In fact, on the P-V curve, the value of a local maximum is the smaller, the
further it is from the global one. Hence, the GPT algorithm can move the
working point to one local maximum to the global one, detecting the closest
maximum by mean of a large perturbation.

Hence, by applying a large perturbation, either on a period-based scheme
or on a event-based scheme, every local maximum, rather than the whole P-V
curve, is evaluated.

76



�

�

“PhDthesis” — 2016/11/30 — 18:06 — page 77 — #95
�

�

�

�

�

�
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Figure 5.4: Implementation of the Global Peak Tracking subroutine based on
[1]

5.1.3 Simulation setup
The model has been complemented with data obtained from real life PV mod-
ules. In particular a plant based on 4160 CanadianSolar PV panels (model
CS6P-240P1) has been used as a reference. The overall surface of the panels
amounts to 6691.42 square meters, while the plant is able to provide a nominal
output power of 998.4 kWp. The panels are organized in strings made up of 20
modules each, for a total of 208 strings. Panel strings, in turn, are connected
among themselves, thus the plant results in 13 groups each of them counting
16 strings of panels. All panels face south and present at 30° tilt angle with
respect to the horizon. The distance among the panels is enough to prevent the
panels from shadowing one another. A simplified sketch of the plant surface is
presented in Fig.5.5.

Different scenarios have been evaluated based on different weather conditions:

a) single cloud shading;
1Online: http://www.solarelectricsupply.com/canadian-solar-cs6p-240-solar-panels-110
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b) cloudy or rainy day;

c) sunny day (partial shading may occur at down and dusk, since the plant is
located on sloped terrain).

The topology is investigated based on 3 configurations:

1) a centralized set-up has been modelled by assuming a dual inverter for the
entire plant (2 in total) [67, 68, 69];

2) a macro block set-up has been modelled by assuming the adoption of one
inverter for each subset of panel strings (13 in total);

3) a micro-block set-up has been modelled by assuming the adoption of one
inverter per panel string (208 in total).

While the information regarding the PV power plant has been collected from
a real life environment, the data on solar irradiation has been collected from
the italian repository on solar irradiation [70]. In the current work, the time
resolution of the simulation is of 1 minute, although its value can be adjusted
in accordance to the MPPT device in use.
The SW framework, which is made available upon request, is based on Mat-

Lab and the Parallel Computing Toolbox. In our experimentation it has been
running on a Windows 8.1 machine, based on an Intel Core i7-4700HQ CPU
and with 8 GB of RAM.
The simulation of power production, with a time resolution of 1 minute,

requires approximately 30 minutes for a single day, in the worst case. For the
shading conditions and the MPPT techniques in the simulated scenario, this
time resolution represents a good compromise between simulation’s accuracy
and processing time.

5.1.4 Results
Using a realistic model of solar irradiation (which varies in intensity in accor-
dance to both the time of the day and the day of the year) and a model of
shading, obtained on the basis of the three scenarios under analysis, the results
plotted in Figs. 5.6 and 5.7 are obtained. The graphs refer to a single day;
for the remaining days of the year it can expected a similar behavior although
different average values of output power are achieved, depending on lighting
conditions.
In the current experiments Configuration 3 is used as a reference. In fact,

because of the small size of PV module strings, these are not affected by partial
shading, thus operating in optimal conditions. Although it achieves a energy
yield of 100%, however, because of the great number of inverters, this topology
is extremely costly, and thus unpractical.
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In the proposed plots the blue line represents the maximum achievable power
output, whereas the black line describes the actual power output of the devised
power plant set-up.

Table 5.1: Yield loss of the proposed configurations with different MPPT strategies
Configurations

1 2

P&O (%) 33.5 20

IC (%) 33.85 20.5

P&O with GPT (%) 32.54 18

IC with GPT (%) 33.97 20.7

In Fig. 5.6 a centralized power plant is subject to Scenario a during a Scenario
c case. With respect to the case of Configuration 3, with Configuration 1 P&O
algorithm is subject to a yield loss of about 33.5%, whereas the IC algorithm
loss reach 33.85%. If the GPT subroutine [1] supports the MPPT tracking,
P&O is able to perform better, with a yield loss of about 32.54%. On the other
hand the performance of the IC algorithm worsens, with a loss of 33.97%. The
results are summarized in Column 1 of Table 5.1 for each MPPT approach.
In Fig. 5.7 a string-based power plant is subject to the same scenario of Fig.

5.6. The smaller size of PV module block achieves a better performance. For
instance while the standard P&O algorithm is affected by a yield loss of about
20%, whereas in the case of the standard IC algorithm the yield loss is of about
20.5%. If the GPT subroutine is integrated within the MPPT algorithm, P&O
yield loss can be lowered down to 18%, whereas the IC algorithm performance
still worsens with a loss of about 20.7%. The results of Configuration 2 are
summarized in Column 2 of Table 5.1.
On a yearly basis, the best performer is P&O with GPT support again

for both Configuration 1 and 2 with a yield loss of about 10.8% and 5.85%,
respectively. In absolute terms, the average daily energy yield of Configuration
2 is 225 kWh higher. Assuming a selling price of 38.9€/MWh, this corresponds
about 3200€ on a yearly basis.
Lastly, in Fig. 5.8 the micro-block power plant is subject to the same scenario

of Figs. 5.6 and 5.7. In this case, clearly, the setup is the best performer, with
the collection of the maximum power available. Consequently, there is no
benefit from the GPT subroutine, since the efficiency is already at its highest,
thus the corresponding plots are not shown.
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Figure 5.5: Power plant schematic configuration
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Figure 5.6: Simulation results for Configuration 1) with Scenarios a and c.

Figure 5.7: Simulation results for Configuration 2) with Scenarios a and c.

Figure 5.8: Simulation results for Configuration 3) with Scenarios a and c.
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5.2 Non Intrusive Load Monitoring algorithm

Non Intrusive Load Monitoring techniques are being proposed, in literature,
to identify the contribution of the domestic appliances within the aggregated
energy demand of the residential environment. In fact, with respect to the
monitoring of each appliance, that requires many sensor and therefore is po-
tentially costly and invasive, NILM techniques can operate by means of a single
sensor placed at the point of common coupling, providing a non invasive and
low cost solution.
When integrate with an energy and resource management approach, then,

NILM techniques represent the means to identify unplanned user activities,
faults and events that may affect the energy and resource management.
On purpose, the Additive Factorial Approximate MAP (AFAMAP) algo-

rithm has been extended, by means of a differential forward model, thus com-
plementing the existing differential backward model. Furthermore, an aggre-
gated data examination method has been employed, aimed to the detection
of inadmissible working state combinations of appliances, as well as the con-
straints setting based on the reactive power disaggregation feedback.

5.2.1 The AFAMAP algorithm

The theoretical approach towards disaggregation is based on the work of Kolter
and Jaakkola [71]. In this work the system is modelled relying on Additive Fac-
torial Hidden Markov Model (AFHMM), for which the value of each aggregated
power sample corresponds to a combination of working states of the appliances
into the system.
Also, in this approach, the assumption that at most one HMM may change

its state at any given time is made, which holds true if the sampling time is
reasonably short. In this case, the transition on the aggregate power, when
moving from a sample to the next, corresponds to the state change of a partic-
ular HMM.
Because of that, the differential signal, built from the aggregated power,

can be modelled as the result of a Differential Factorial Hidden Markov Model
(DFHMM), which relies on the same HMM models composing the AFHMM.
By combining the two models, the inference on the set of states of multiple

HMMs can be computed through the Maximum A Posteriori (MAP) technique,
which take the form of a Mixed Integer Quadratic Programming (MIQP) op-
timization problem.
One of the shortcomings of this approach is the non-convex nature of the

problem, because of the integer nature of the variables: in this case, a relax-
ation towards real values is taken into account, leading to a convex Quadratic
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Programming (QP) optimization problem. Thus, the Additive Factorial Ap-
proximate MAP (AFAMAP) approach is obtained.
In a real case scenario, the modelled output may not match with the observed

aggregated signal, due to electrical noises, very small loads, or leakages. In that
case, the issue is addressed by defining a robust mixture component in both
AFHMM and DFHMM, named zt and ∆zt, respectively. About this issue,
in this work, a denoised environment [72] has been considered, i.e., all the
contributions to the aggregated energy demand are known. Therefore, the
robust mixture component is missing in this dissertation.
In the reference work [71], the parameter n defines the problem dimension-

ality: in this work, it is assumed n = 1, because the algorithm uses only the
active power data to characterize the observed aggregated signal.
Specifically, the parameters of the problem follow:

• N ∈ Z+ is the number of HMMs in the system;

• yτ ∈ R is the observed aggregated output (in denoised environments
yτ =

∑N
i=1 y

(i)
τ , where y(i)

τ corresponds to the true appliance output);

• σ2 ∈ R is the observation variance.

The differential signal is referred to as ∆ybτ = yτ − yτ−1.
For the i-th HMM the parameters are:

• mi ∈ Z+ is the number of states;

• x
(i)
τ ∈ {1, . . . ,mi} is the HMM state at time instant τ (x(i)

τ ≡ mi corre-
sponds to the OFF state);

• µ
(i)
j ∈ R is the j-th state mean value;

• φ
(i)
b ∈ [0, 1]mi is the initial states distribution;

• P
(i)
b ∈ [0, 1]mi×mi is the transition matrix.

The aggregated signal yτ is analysed using a windowing technique, where
τ ∈ wf = [(f − 1)T + 1, . . . , fT ] for f = 1, 2, . . . , F . The window wf is the
timebase for the algorithm and, for convenience, a new temporal variable is
introduced by defining the relation t = τ − (f − 1)T , for t = 1, 2, . . . , T , with
T ∈ Z+. After the analysis of all the F windows, the disaggregated signals ŷ(i)

t

are recomposed using the inverse relation τ = t+ (f − 1)T .
In the optimization problem, the variables are defined as:

Q =
{
Q(x(i)

t ) ∈ Rmi ,Q(x(i)
t−1, x

(i)
t ) ∈ Rmi×mi

}
,
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Input: y1:T aggregated signal;
{
µ(1:N),P

(1:N)
b ,φ

(1:N)
b

}
parameters for

N HMMs; σ1
2, σ2

2, λ covariance and regularization parameters.

Minimize over {Q ∈ L ∩ O}

1
2σ12

T∑
t=1

E
(a)
t + 1

2σ22

T∑
t=2

E
(bc)
t + 1

2

T∑
t=2

E
(bnc)
t +

+
T∑
t=2

N∑
i=1

mi∑
j=1
k=1

{
Q(x(i)

t−1, x
(i)
t )j,k

(
− logPb(i)

k,j

)}
+

+
N∑
i=1

mi∑
j=1

{
Q(x(i)

1 )j(− log φb(i)
j )
}

(5.3)

Output : ŷ(1:N)
1:T , predicted individual HMM output

ŷ
(i)
t =

mi∑
j=1

µ
(i)
j Q(x(i)

t )j (5.4)

Figure 5.9: The AFAMAP algorithm.

for which the Q(x(i)
t )j variable is the indicator of the state assumed at time in-

stant t, while the Q(x(i)
t−1, x

(i)
t )j,k variable is the indicator of the state transition

from previous to actual time instant, for the i-th HMM.
The AFAMAP algorithm is shown in Figure 5.9.
In (5.3) the error terms are defined as:

E
(a)
t =

(
yt −

N∑
i=1

mi∑
j=1

{
µ

(i)
j Q(x(i)

t )j
})2

, (5.5)

E
(bc)
t =

N∑
i=1

mi∑
j=1
k=1
k 6=j

{(
∆ybt −∆µ(i)

k,j

)2
Q(x(i)

t−1, x
(i)
t )j,k

}
, (5.6)

E
(bnc)
t = D

(
∆ybt
σ2

, λ

)(
1−

N∑
i=1

mi∑
j=1
k=1
k 6=j

Q(x(i)
t−1, x

(i)
t )j,k

)
. (5.7)

The QP optimization problem is defined in the form:
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Minimize
1
2x

THx+ fTx, (5.8)

subjet to the constraint:

Aeqx = beq, (5.9)
lb ≤ x ≤ ub. (5.10)

The variables of the problem are represented by the vector x, which is com-
posed of several subsets, based on the time instant t and the appliance index (i):

x =


Θ1
...

ΘT

 , Θt =


Ψ(1)

t
...

Ψ(N)
t

 , Ψ(i)
t =

[
ξ

(i)
t

β
(i)
t

]
,

ξ
(i)
t =


Q(x(i)

t )1
...

Q(x(i)
t )mi

 , β
(i)
t =



Q(x(i)
t−1, x

(i)
t )1,1

...
Q(x(i)

t−1, x
(i)
t )1,mi

...
Q(x(i)

t−1, x
(i)
t )mi,1

...
Q(x(i)

t−1, x
(i)
t )mi,mi


,

where the variables for the state are represented in ξ(i)
t , and the variables

for the backward transition in β(i)
t .

The parameters of the problem fill up the elements ofH and f , according to
the structure of the x vector, whereas Aeq and beq are used to represent the
consistent constraints between the state and the transition variables. The vec-
tors lb and ub define the lower and upper boundaries of the solution: because
of the nature of the variables [71], the lower boundary is equal to 0, whereas
the upper boundary to 1, for all the elements in x.

5.2.2 Original contributions

In the reference approach, the DFHMMs are obtained as the difference, in term
of power consumption, between the current and the previous sample (referred
to as backward transition), so that a change in the state of an HMM can be
evaluated against the change in the aggregated power consumption. Similarly,
an additional evaluation, based on the next against the current sample (referred
to as forward transition), is carried out. Furthermore, a smarter employment
of the solver boundaries is evaluated, starting from a more accurate analysis
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Figure 5.10: The Forward Differential FHMM.

of the aggregated power or using heterogeneous information, as the reactive
power consumption of the electrical system.

Forward Differential Factorial Hidden Markov Model

Since the AFAMAP algorithm operates offline, it is possible to further extend
the model by taking into account the transition from the current to the next
state. The original DFHMM [71] is computed by looking backward from the
current sample to the previous one, and thus it can be addressed to as Backward
DFHMM. The new differential FHMM is computed by looking forward, as
showed in Figure 5.10, and thus is referred to as Forward FHMM.

The formulation of the new model, also, differs from the original one, only
in the index order. The new variables define the problem, as follow:

Q =
{
Q(x(i)

t ) ∈ Rmi ,Q(x(i)
t+1, x

(i)
t ) ∈ Rmi×mi

}
,

where the variables are indicators of the transition from the next to the current
state: Q(x(i)

t )j = 1 ⇔ x
(i)
t = j, and Q(x(i)

t+1, x
(i)
t )j,k = 1 ⇔ x

(i)
t+1 = j, x

(i)
t = k.

The consistent constraints between the state variables and transition variables
need to be satisfied:

L =


Q :

mi∑
j=1

Q(x(i)
t )j = 1

mi∑
k=1

Q(x(i)
t+1, x

(i)
t )j,k = Q(x(i)

t+1)j
mi∑
k=1

Q(x(i)
t+1, x

(i)
t )k,j = Q(x(i)

t )j

0 ≤ Q(x(i)
t )j , Q(x(i)

t+1, x
(i)
t )k,j ≤ 1


. (5.11)

Therefore, the new cost function is derived for the Forward DFHMM, based
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on the forward differential aggregated signal ∆yf t = yt − yt+1, as follow:

1
2σ32

T−1∑
t=1

E
(fc)
t + 1

2

T−1∑
t=1

E
(fnc)
t +

+
T−1∑
t=1

N∑
i=1

mi∑
j=1
k=1

{
Q(x(i)

t+1, x
(i)
t )j,k

(
− logPf (i)

k,j

)}
+

+
N∑
i=1

mi∑
j=1

{
Q(x(i)

T )j(− log φf (i)
j )
}
,

(5.12)

where the error terms in (5.12) are defined as:

E
(fc)
t =

N∑
i=1

mi∑
j=1
k=1
k 6=j

{(
∆yf t −∆µ(i)

k,j

)2
Q(x(i)

t+1, x
(i)
t )j,k

}
, (5.13)

E
(fnc)
t = D

(∆yf t
σ3

, λ

)(
1−

N∑
i=1

mi∑
j=1
k=1
k 6=j

Q(x(i)
t+1, x

(i)
t )j,k

)
. (5.14)

The transition matrix P (i)
f represents the probability of state change from

the next to the current time instant: this parameter is equivalent to the typical
representation of the transition matrix (i.e., the probability of state change
from the previous time instant to the actual) evaluated after flipping the signal,
thus it can be derived by using the available algorithm for HMM training. The
parameter φ(i)

f represents the final state distribution, that is the initial state
distribution starting from the end of the signal.

Since the duality in the forward and backward representation of the AFHMM
(i.e., it is derived from the same observed signal, but in opposite directions), the
problem definition using only one of the two versions of the DFHMM leads to
the already known performance. Considering simultaneously both versions of
DFHMM may lead to performance improvements: for this reason the forward
differential function (5.12) is added to the reference formulation (5.3), thus
leading to a new optimization problem. The variable vector x in the QP
problem accounts for the new terms, following the same structure introduced
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in Section 5.2.1:

Ψ(i)
t =

ξ
(i)
t

β
(i)
t

φ
(i)
t

 , φ
(i)
t =



Q(x(i)
t+1, x

(i)
t )1,1

...
Q(x(i)

t+1, x
(i)
t )1,mi

...
Q(x(i)

t+1, x
(i)
t )mi,1

...
Q(x(i)

t+1, x
(i)
t )mi,mi


,

where the new term φ
(i)
t represents the variables for the forward transition.

The introduction of the new variables leads to an alteration of the prob-
lem constraints, represented by the parameters Aeq and beq, and the variable
boundaries lb and ub.

Profile-based selection of the boundaries

In order to solve the optimization problem, different solutions, which satisfy the
constraints, need to be evaluated before the solver finds the optimal one. As
such, the values of x that are not compatible with the given set of samples can
be discarded, to restrict the search domain and improve the search efficiency.
On purpose, the lower and upper boundaries of the variable x are selected

beforehand in order to prevent that the solver investigates those combinations
of states that do not match the value of the aggregated power consumption.
The selection method is similar to the one proposed in [73].
If several runs of a single appliance are evaluated, although the same working

states are identified, the signature tends to differ from a run to the other. For
this reason, the appliance power consumption can be modelled as a stochastic
process and, therefore, the output value y(i)

t , relative to a working state x(i)
t

of an appliance, can be modelled as a gaussian variable, described by a mean
value and a variance value:

y
(i)
t |x

(i)
t ∼ N

(
µ

(i)
x

(i)
t

, σ
(i)
x

(i)
t

2
)
. (5.15)

Regard to this, the power signal is replaced by a simplified model that
presents a constant power consumption, corresponding to the mean value of
the working state power value, with a superimposed noisy contribution, de-
scribed by the variance value in the working state.
Since the aggregated data yt is assumed to correspond with the sum of the

power consumption of each appliance, it can be modelled as a gaussian variable,
described by a mean value and a variance value equivalent to the sum of the
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PDF

aggregate power
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  0           20                70         90   100         140         170

Figure 5.11: A sketch of the different probability density functions (PDF) for
each aggregated power value produced by the combination of all
appliances states power levels.

corresponding values of each appliance, under the assumption of statistical
independence between the appliances:

yt|x(1:N)
t ∼ N

(
N∑

i=1
μ

(i)
x

(i)
t

,
N∑

i=1
σ

(i)
x

(i)
t

2
)

. (5.16)

This simplified model results in a number of admissible combinations of work-
ing states equal to

∏N
i=1 mi. It allows to evaluate which combination of working

states fit the power value for each sample of the aggregated data, thus discard-
ing the incompatible ones. The effectiveness interval for each combination is
centred in mean value, and its width is twice the value of the standard devia-
tion. For some combinations, which have similar mean value or great variance,
the effectiveness intervals result overlapped: for those cases, if the power value
falls in this region, both the combinations are considered valid.

Based on this observation, it is possible to manipulate the boundaries of the
QP problem domain. For instance, if 2 HMMs are considered, M1 and M2,
whose power levels are, M1 = {70, 0} and M2 = {100, 20, 0} respectively,
the different combined power levels are {0, 20, 70, 90, 100, 170}, each one with
its own variance value. This example is represented in Figure 5.11. Considering
a few different values of aggregated power, e.g., yt = {20, 95, 140}, it can be
observed that yt = 20 is obtained as the combination (x(1)

t = 2, x
(2)
t = 2),

therefore the allowed constraints are defined as:

[
0
1

]
≤ ξ

(1)
t ≤

[
0
1

]
,

⎡
⎢⎣0

1
0

⎤
⎥⎦ ≤ ξ

(2)
t ≤

⎡
⎢⎣0

1
0

⎤
⎥⎦ .
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If yt = 95, the value falls in an overlapped interval, belonging to the combi-
nations (x(1)

t = 2, x(2)
t = 1) and (x(1)

t = 1, x(2)
t = 2), thus, the allowed

constraints are defined as:

[
0
0

]
≤ ξ(1)

t ≤

[
1
1

]
,

0
0
0

 ≤ ξ(2)
t ≤

1
1
0

 .
Whereas, if yt = 140, no combination is corresponding, thus the boundaries

remain as default.
Clearly, the same process can be applied to bound the β(i)

t and φ(i)
t . In

regard to this, however, since transitions are related to the steady states, the
evaluation of the steady states is enough to bound both kinds of variables.

Problem constraints through reactive power disaggregation

Even though disaggregation is aimed for the aggregated power consumption, in
most cases the focus is centred on the active power alone. Nonetheless, given
the generality of the AFAMAP algorithm, targeting the reactive aggregated
power is also possible. In regard to this, in the present work, the application of
the AFAMAP algorithm to the aggregated reactive power has been investigated
as well, based on the fact that reactive power is a common trait of the power
signature of a residential appliances subset.
In the current scenario, the disaggregation of the reactive power samples is

carried out, in order to collect additional information about the activity states
of the appliances. This information, in turn, is used to further define the lower
and the upper boundaries of the states in the active power disaggregation.
Similarly to the active power case, the HMMs are modelled for each appliances
starting from the signature in the reactive power and the AFAMAP algorithm
is run by using the aggregated reactive power signal as input.
Following the basic knowledge in circuit theory, an electrical load with a

reactive component (i.e., an appliance) which has a reactive power consumption
greater than 0 is necessary turned on, therefore the boundaries of the problem
in active power disaggregation are assigned as follows:0

0
0

 ≤ ξ(i)
t ≤

1
1
0

 .
Although, when the reactive power consumption is 0, the active component

could be both null or greater than 0, depending on whether the appliance
is turned off or only the load passive component is working. Therefore, the
boundaries of the problem in active power disaggregation are setted as default.
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5.2.3 Computer simulations

In this section different aspects of the experimentation are proposed. Among
these are the metrics used in the performance evaluation of the proposed disag-
gregation approach. Also, the simulation scenario and the parameter settings
used in the experiments are discussed, as well as the performance of the disag-
gregation algorithm.

Metrics

According to the study carried out by the authors [74], two metrics, that take
into account different aspects of disaggregation, are chosen.

The first one, namely state based, considers the ability of the system to infer
the exact state of evolution of each HMM in the model: for the i-th appliance,
the multiclass confusion matrix is built by comparing, for each time instant
t = 1, 2, . . . , T , the disaggregation variables ξ(i)

t value assumed in the problem
solution, with the exact evolution state x(i)

t , defined as the ground truth. Each
class corresponds to a state j = 1, . . . ,mi of the i-th HMM. Since that the
values in ξ(i)

t are not-integral, the computed confusion matrix is soft weighted,
similar to the fuzzy-logic [75]. For each class, the Precision P

(i)
j and Recall

R
(i)
j are computed, then the average between the classes evaluates the medium

performance for each HMM:

P
(i)
Sf

= 1
mi

mi∑
j=1

P
(i)
j , R

(i)
Sf

= 1
mi

mi∑
j=1

R
(i)
j . (5.17)

The second metric, namely energy based, deals with the comparison between
the disaggregated profiles and the power consumption at appliance level: as
defined by Kolter [71], Recall measures what part of the power consumption
has been correctly classified. Precision, on the other hand, measures how much
of the power assigned to an appliance truly belonged to that appliance. For
the i-th appliance, the output of the algorithm ŷ

(i)
1:T , and the true output y(i)

1:T ,
are used to compute the Precision and Recall as:

P
(i)
Ef

=

∑T
t=1 min

(
ŷ

(i)
t , y

(i)
t

)
∑T
t=1 ŷ

(i)
t

, R
(i)
Ef

=

∑T
t=1 min

(
ŷ

(i)
t , y

(i)
t

)
∑T
t=1 y

(i)
t

. (5.18)

Both metrics are evaluated for a signal window wf with f = 1, 2, . . . , F ,
therefore to evaluate the performance over the entire dataset the metrics are
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averaged over the windows:

P
(i)
{S,E} = 1

F

F∑
f=1

P
(i)
{Sf ,Ef}, R

(i)
{S,E} = 1

F

F∑
f=1

R
(i)
{Sf ,Ef}. (5.19)

Finally, in order to consider the total performance of the disaggregation
system, the average between the appliances is computed:

P{S,E} = 1
N

N∑
i=1

P
(i)
{S,E}, R{S,E} = 1

N

N∑
i=1

R
(i)
{S,E}. (5.20)

As unique evaluation metric, the F1 is chosen and it is calculated as the geo-
metric mean between Precision and Recall:

F1{S,E} = 2
P{S,E}R{S,E}

P{S,E} +R{S,E}
. (5.21)

Set up of the simulation scenario

The dataset used for the experiments is the Almanac of Minutely Power dataset
(AMPds) [76]: it contains recordings of consumption profiles belonging to a
single home in Canada for a period of two years at 1 minute sampling rate.
It provides active and reactive power at appliance level, unlike most of the
dataset in which only the active power is provided at appliance level [74]: this
information is crucial to test the new approach based on the reactive power
disaggregation as constraint.
Analysing the contents of the dataset, it can be noticed that the usage of the

appliances is homogeneous throughout the entire period, therefore the experi-
ments are evaluated on 6 months of data, which can be considered representa-
tive of the entire dataset.
To create the HMM models of the appliances, the training requires at least

one signature per appliance, although multiple signatures lead to a more gen-
eral model. In the proposed work, a subset of the data, spanning over 14 days,
has been deemed sufficient to collect all the signatures required to train all the
HMMs. The HMM are trained in accordance to the Baum-Welch algorithm,
after determining the ground truth state over the time: those are obtained
through a clustering procedure, in which every cluster represents a power con-
sumption level of the appliance, thus a state of the HMM. This process is
achieved using the k-means algorithm, in which the number of the cluster is
imposed in a supervised manner, starting from the knowledge of the operat-
ing states of the appliance. The power level mean and the variance values are
achieved by means of a gaussian variable fitting procedure over the samples
belonging to each cluster.
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To satisfy the condition of denoised system, the aggregated data is syntheti-
cally composed by summing the appliance level power signals. The experiments
are conducted by using the appliances at higher contribution, therefore 6 ap-
pliances have been chosen: dryer, washing machine, dishwasher, fridge, oven,
and heat pump.
The simulations are conducted in Matlab environment and the CPLEX solver

is used to solve the QP problem.
The value of starting probability φ(i)

b of the i-th HMM is imposed to assume
the certainty for the OFF state for f = 1, whereas for the consecutive windows,
1 < f ≤ F , it is imposed to assume the value of the last sample ξ(i)

T of the
previous window, in order to ensure the contiguity of the solution on the window
border. The value of the ending probability φ(i)

f , instead, is uniformly imposed
in every state, since no information from the consecutive window is available.
Different experiments are conducted varying the size of the windows between

the values T ∈ {10, 30, 60, 90, 120} minutes, and the effectiveness of the inno-
vative aspect is evaluated: the introduction of the forward term in the cost
function, the selection of the boundaries related to the aggregated power level
and to the disaggregation output of the reactive power.
The variance parameters are defined with σ1

2 = σ2
2 = σ3

2 = 0.01 accord-
ing to the variance of the experimental data and the regularization parameter
λ = 1.

Results evaluation

The results of the experiments, based on the scenario described in in Section
5.2.3, are presented in the current section.
In Figure 5.12, the AFAMAP disaggregated power consumption profiles of

the appliances are compared against the corresponding true outputs, provided
by the dataset: in the figure a time span of 10 hours, corresponding to 600
samples, is considered. At the bottom, the energy distribution over the same
period, expressed among the appliances in terms of percent value, is compared
between the reconstructed and the true appliances consumption.
The signals reveal that the appliances which show an high steady power con-

sumption are easily recognized, whereas the appliances with complex working
cycles, or with several power levels, are more difficult to detect. Indeed, when-
ever several appliances present similar consumption levels, many combinations
may satisfy the problem constraints, thus additional information is required
to identify the active appliances. For instance, in Figure 5.12, the oven and
the fridge are seldom recognised, whereas the detection of the dryer and the
washing machine are partially more successful.
The evaluation of the algorithm performance is carried out by means of the

metrics proposed in Section 5.2.3. Although the focus of the present work is
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the AFAMAP algorithm, the dataset being used and the proposed training
method are different with respect to [71], therefore a direct comparison against
the results proposed in the reference work is not possible. To overcome this
shortcoming, the baseline has been created anew, by means of the AFAMAP
algorithm, the AMPds dataset and the proposed training method.
The disaggregation results computed by means of the metrics are reported in

Figure 5.13: in Figure 5.13(a) the state based metric is presented, whereas the
energy based metric is proposed in Figure 5.13(b). The results are shown for
different values of the time window length. Clearly, since all the results exceed
0.5, the plots have been drawn from 0.5 onwards. Both plots show that the
best results are achieved using the shortest time window. On a different note,
however, not every configuration improves in the same way.
Focusing on the state based metrics, it is possible to observe that the AFAMAP

baseline shows a significant performance improvement with the decreasing of
the window length, except when passing from the 30 to 10 minutes window
size. On the contrary, the forward differential model gives an improvements at
the shorter window size, resulting in the best performance in the unbounded
problem solution, with a F1S of 0.738 and an improvement of 1% respect to
the baseline.
Fixing the boundaries of the problem, in every simulation case, gives the

benefit on the disaggregation results: the profile based method gives a con-
siderable performance improvements with every window size, but the highest
relative improvement can be noted at the smallest size, resulting to a F1S of
0.863 and a relative improvement of 18%.
Alternatively, the boundaries can be setted based on the reactive power dis-

aggregation feedback: the results, showed in Table 5.2, demonstrate that the
reactive power reaches high performance in disaggregation. This is due to the
high difference in the reactive components of each appliance, which involves
a strong distinction in the creation of the HMM, therefore allowing an highly
reliable disaggregation. The usage of this information results in a performance
improvement for every window size, more considerable at the smallest size: in
general, the usage of the reactive power feedback gives benefits to the disag-
gregation, with a F1S of 0.802 and a relative improvement of 9.7%, therefore
less than the profile based constraints.
Clearly, the same trends presented about the state based metrics still hold

true when evaluating with the energy based metrics. The most notably dif-
ference between the two plot, in fact, is that the rate of improvement of the
algorithms when decreasing the time window length: indeed, the forward differ-
ential model introduction results to a F1E of 0.771 and a relative improvement
of 1.2% respect to the baseline, whereas the profile based setting of the bound-
aries results to a F1E of 0.878 with a relative improvement of 15.2% and the
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reactive power based method to a F1E of 0.832 with an improvement of 9.2%.
The forward differential model seems to be beneficial only with the shortest

time window: it may be a direct consequence of the problem formulation al-
teration. Indeed, the introduction of additional variables increases the size of
the problem, therefore the computational burden, for which the solver demon-
strates worst performance, as it happens for the baseline approach with larger
window size. Despite this, the improvements achieved adding the differential
forward information to the model are restricted to the application scenario:
since the algorithm operates on a per-sample basis, for each appliance behaviour
two state changes unlikely happen across three contiguous samples, thus the
forward difference cannot provide a substantial support to the inference of the
actual working state.
The errors in the disaggregation phase are caused by the multiplicity of states

combinations which can correspond to the same value of the aggregated data:
for this reason the use of boundaries allows to exclude some solutions that
are not eligible, therefore facilitates the solver to find the exact solution to
the problem. Nevertheless, the variation over time of the power consumption
associated to a specific appliance working state, causes an unwanted variability,
i.e., a noise component, in the achieved solution.

Table 5.2: Disaggregation results on reactive power. The configuration used is:
AFAMAP + Forward differential.

window size
Metric 10 min 30 min 60 min 90 min 120 min

State based: F1S 0.922 0.877 0.869 0.867 0.865
Energy based: F1E 0.935 0.883 0.877 0.875 0.874
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Figure 5.12: Appliances consumption: estimated AFAMAP disaggregation out-
put against original signals.
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(a) State based metric: F1S

(b) Energy based metric: F1E

Figure 5.13: Disaggregation performance on AMPds dataset using 6 appliances,
with different algorithm configuration.
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Other contributions

The proposed management method focuses on improving the use of energy, and
resources, from the standpoint of both end users and utility services, rather
than on the basis of efficiency alone. However, the choice to improve the
efficiency through the optimization of the overall energy cost broadens the
potential and the generality of the method.
Indeed, since the residential activity lies on the use of electricity water and

gas, the management method can be focused on the overall cost of the residen-
tial activity, thus optimizing the use of energy water and gas.
However, the implementation of such a management scheme in a real life

Micro Grid environment requires the ability to monitor the water and gas con-
sumption at real time. Therefore automatic meter reading support is required.
In addition, since there is a chance that leakages can affect the water or gas
distribution system, the ability to identify leakages is also required.
Regarding the automatic meter reading problem, since a renewable energy

supply may lower the maintenance cost, an energy aware lazy scheduling algo-
rithm, aimed at ultra low power consumption micro devices, has been devised.
As such renewable energy power supply can effectively support an automatic
meter reading device.
Regarding the need to identify a leakage, a novelty detection algorithm has

been implemented to detect the occurrence of leakages through the analysis of
the timely meter records.

6.1 Implementation of the Energy Aware Lazy
Scheduling Algorithm

With the availability of ultra low power consumption micro devices, the de-
velopment of wireless sensors has grown considerably. In most cases, however,
the use of battery powered devices requires the periodic replacement of the
power supply, thus rising the maintenance costs. To overcome this issue, re-
newable energy powered supply can be used, but the energy availability cannot
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be guaranteed.
On purpose, a task scheduling algorithm, namely Energy Aware Lazy Schedul-

ing Algorithm (EA-LSA) [77, 78], has been developed so that the device can
adjust its activity depending on the energy availability. In order to evaluate
the effectiveness of the approach, the EA-LSA has been implemented in a ul-
tra low power micro controller, and the performance of the device has been
investigated.

6.1.1 Scheduler Theory
The proposed scheduling scheme is an improved implementation of the EA-
LSA [77, 78]. It adds to the original design the ability to adapt the device
workload to the actual harvested energy. EA-LSA also inherits the character-
istics of LSA [79, 80] which, in turn, is derived from the Earliest Deadline First
(EDF) scheduling algorithm [81, 82, 83].
The EDF operates by sorting the tasks depending on their deadlines, giving

higher priority to the tasks whose deadline is closer to the current time, and
executing the tasks immediately upon selection. In this scenario, the energy
assignment is affected mostly by the arrival time and the time spent by the
task in the waiting queue. Therefore a task whose arrival time fall close to the
task deadline is more prone to starving than a task with the same deadline
but an earlier arrival time. To prevent this behaviour and improve the energy
assignment, the LSA suggests a lazy approach meant to delay the task execution
and the energy consumption as much as possible. In this manner the energy
assignment depends only on the deadlines and it is not affected by the arrival
time.
By describing with the followings quantities the tasks of an assigned set:

• i: i-th task index;

• Q: index queue;

• Ji : i-th task;

• ai : arrival time of the i-th task;

• di : deadline of the i-th task;

• si : start time of the i-th task (full power execution);

• fi : completion time of the i-th task;

• PH(t) : power income at time t;

• PS(t) : CPU power consumption at time t;
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• pd : CPU maximum power consumption;

• Ei(t1, t2) : energy assigned to the i-th task over the [t1, t2] interval;

• EC(t) : residual energy at time t

the Lazy Scheduling Algorithm can be modelled as follows:

LSA Algorithm (Lazy Scheduling with pd = const)

Require: maintain a set of indices i ∈ Q of all ready but not finished tasks Ji
PS(t) ⇐ 0;
while(true)
dj ⇐ min di : i ∈ Q ;
calculate sj ;
process task Jj with power PS(t);
t ⇐ current time;
if (t == ak) then add index k to Q; endif ;
if (t == fj) then remove index j from Q; endif ;
if (EC(t) == C) then PS(t) ⇐ PH(t); endif ;
if (t ≥ sj) then PS(t) ⇐ pd; endif ;

endwhile;

This algorithm is meant to achieve the energy assignment optimality (and
thus the scheduling optimality) thanks to its lazy nature. Any task execution
is postponed until the available energy is sufficient to operate the CPU, with-
out interruption, from the start time to the corresponding deadline. The only
exception appears when the reservoir is full: in this case the harvested energy
is directly transferred to the task with the earliest deadline. The direct energy
transfer is modulated to match the harvested power and to avoid any unnec-
essary storage depletion. When energy is transferred directly to the task, the
start time, based on the deadline and the execution time at full power only, is
further delayed to account the corresponding executed work.
The energy starving is avoided if the total energy demand of the assigned task

set does not exceed, at each deadline, the available energy. The time starving
is avoided if the total energy demand of the assigned task set does not exceed,
at each deadline, the maximum workload that the CPU is capable of. Since
those two conditions assess if a task set can be completed without violating any
deadline, and since those depends on the energy amount over time only, the
evaluation can be carried out when the task set is devised, without any burden
for the device. In addition, given the constraints of both deadlines and energy
availability, the result of the test does not depend on the scheduling algorithm.
In other words, by proving that if LSA fails then these same conditions are

101



i
i

“PhDthesis” — 2016/11/30 — 18:06 — page 102 — #120 i
i

i
i

i
i

Chapter 6 Other contributions

not satisfied [80], it is proven that no algorithm can best LSA, that is the LSA
optimality.
Due to its optimality LSA qualifies as an ideal task scheduling algorithm.

Moreover, in [80], the admittance test is suggested as a tool also useful to select
the minimum reservoir capacity, necessary to avoid any deadline violation.
Indeed, from a theoretical point of view, LSA appears to be an interesting
solution but, regretfully, it requires an exact prediction ability impossible to
implement in a real life sensor node. To overcome this situation, rather than
relegate LSA to the realm of the reference models, it was chosen to evaluate
the algorithm, to point out the most relevant limits that may emerge in a real
case scenario, and eventually overcome them.
Concerning the admittance tests, while extremely useful to seek any deadline

violation, when used to tailor the task set energy demand may prevent the
available energy from being used in full. In fact, by using the lower bound
as the energy availability profile, the task set consumption never exceeds the
minimum energy availability. While in adverse condition this configuration may
help to avoid the deadline violations, it also limit the task set consumption in
favourable conditions. In other words the harvested energy that exceed the
minimum expected amount cannot be used, which means that a great amount
of energy may be left unused [84], and also that the harvester will not be fully
exploited.
From a different point of view, if the statistical nature of the energy profile is

taken into account, it is also apparent that the admittance test may not guaran-
tee the absolute deadline violation avoidance, and therefore a more restrictive
profile may be used. As a result, the task energy consumption may be further
constrained. Concerning the scheduling scheme itself, if task completion is not
an absolute requirement and a few violations may be allowed, meaning that
the LSA is operating in a non-ideal setup, it is possible to notice that LSA is
prone to waste energy by executing tasks that cannot be completed, since it
does not evaluate the tasks’ energy demand at run-time.
Based on these evaluation, it was deemed that a run-time selection of the

tasks to be executed, based on the available energy and the tasks’ energy de-
mand, might have improved the LSA performance, leading to the algorithm
known as Energy Aware LSA that can be described as follows:

EA-LSA Algorithm (Lazy Scheduling with pd = const)

Require: maintain a set of indices i ∈ Q of all ready but not finished tasks Ji
PS(t) ⇐ 0;
while(true)
dj ⇐ min di : i ∈ Q ;
if (ej > (EC(aj) + EH(aj , dj))) then remove index j from Q;
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else
calculate sj ;
process task Jj with power PS(t);
t ⇐ current time;
if (t == ak) then add index k to Q; endif ;
if (t == fj) then remove index j from Q; endif ;
if (EC(t) == C) then PS(t) ⇐ PH(t); endif ;
if (t ≥ sj) then PS(t) ⇐ pd; endif ;
endif ;

endwhile;

While maintaining the original approach of LSA, the new algorithm is able to
improve the energy efficiency of a sensor node by the moment that the starving
tasks are discarded upon selection and, as such, before they receive any energy.
The evaluation of EA-LSA [77, 78] focused on this subject proved that, in case
of deadline violations, the energy efficiency of LSA can be improved. At the
same time it also hinted at a further development of the conditional execution
concept. By evaluating the energy availability upon the tasks’ selection, it is
eventually possible to adapt the device workload to match the actual harvested
energy. In this manner it may be possible to exploit any energy surplus in
favourable condition, while still avoiding, or containing, the deadlines’ violation
problem in adverse situations.
In particular, in the test proposed in [77, 78], an energy shortage causes

the starving task to be discarded tout court, avoiding any energy waste but
not preventing the deadline violation itself. An improvement may be possible
forfeiting the task accuracy. In this case it may be possible to lower the task
energy demand to fit the energy amount, so that the task can be executed to
completion nonetheless and the deadline violation is avoided. In a dual manner
it is possible to increase the task accuracy exploiting any energy surplus.
Presently this suggestion has been integrated into the proposed implemen-

tation. Since the dynamic workload adaptation can be achieved with different
schemes, based on the EA-LSA selective execution, this feature can be consid-
ered an application of EA-LSA rather than a brand new algorithm.

6.1.2 Scheduler Implementation
An energy harvester has a major impact on the final cost of a sensor node
solution, while EA-LSA is meant to maximize the energy exploitation thus
improving the sensor node cost effectiveness. As such tailoring the energy
harvester output, while accounting the energy availability changes all over the
year, should be less critical and, eventually, a lower final cost may be achieved.
From this perspective a set up composed by the CBC-EVAL-09 universal energy
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harvester from Cymbet [85] and the Texas Instruments eZ430-RF2500T [86]
represents an interesting low cost solution sample.
The mote board is based on the TI MSP430F2274 [87] micro-controller and

hosts the CC2500 transceiver [88]. The CBC-EVAL-09, other than being com-
patible with the RF2500T board, is presently the sole harvester on the market
providing the facilities to monitor the power income and the stored energy level,
required by EA-LSA, through the CBC915EP controller [89].
By means of the Integrated Development Environment (IDE), provided by

Texas Instrument, namely Code Composer Studio V5 (CCSv5)1, the C++ is
used as programming language. Nonetheless, C++ advanced features, such as
the standard library, have been avoided to lower the memory needs.
The libraries provided as part of CCS are used to implement an hardware

abstraction layer (HAL), that provides the interfaces and the primitives re-
quired by the scheduling routines. Since within the MSP430F2274 IC almost
each peripheral device has its own set of control registers, the HAL is obtained
as a set of classes. The scheduling routine, in a similar fashion, is implemented
as a set of classes. The firmware structure is depicted in Fig. 6.1.

Hardware Abstraction Layer

For each peripheral device a class has been implemented to provide the inter-
faces, and the methods, required to manage the corresponding set of control
registers according to the datasheet [87]. A common structure for each of the
HAL modules has been adopted. Usually the member functions provide the
control interfaces, a constructor, if required, implements the proper set-up rou-
tine, whereas a static member function, if necessary, manages the associated
Interrupt Service Routine (ISR). To account different hardware configurations
alternate implementation of the classes have been used.
The modules have been validated prior to the scheduler development, the

correctness of the routines implementation and the absence of conflicts among
the modules themselves have been also verified. The current implementation
make use of five modules, within the source code, however, alternative versions
of some of them are provided.

• Analog to Digital Converter module Concerning the ADC, the required
facilities and registers are set-up upon initialization by the constructor.
Alternative blocking methods are provided to manage the sampling of
different channels. On this regard, since the internal voltage reference is
affected by the changes in the power supply voltage, an external voltage
reference has been used.

1http://www.ti.com/tool/ccstudio
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Figure 6.1: RF2500T hw/sw framework block diagram

• Serial Peripheral Interface Bus module An SPI module hosts the routines
that implement the SPI protocol over the Universal Serial Communication
Interface B (USCI_B) port and controls the communication toward the
CC2500 transceiver. Bidirectional communication is provided by means
of multiple routines due to the different communication schemes provided
by the bus. The code is based on the material provided by TI such as the
SLAA325a [90] and TI SimpliciTI libraries [91], the SWRA112B DN503
design note [92] and the SWRA141 NO49 application note [93] among
others.

• Networking module A networking module, integrating the SPI one, has
been developed although it has been actually used only in the preliminary
test phase. In the evaluation of the scheduling algorithm performance, in
fact, data transmission and acknowledgement (ACK) reception are em-
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ployed as a mean to emulate a load, since no Access Point (AP) is present
at the other hand of the wireless channel. The module is extensively based
on the SWRS040C CC2500 user manual [88], the TI SimpliciTI libraries
[91], the SLAA325A [90], the SLAA365 [94] among others.

The module has been validated by inspecting the data over the SPI bus
during transmissions and receptions in a dual board setup. Regretfully,
being the CC2500 transceiver an integral part of the board, it is in-
compatible with the SmartRF Studio tool, thus its set-up has yet to be
optimized.

• Universal Asynchronous Receiver-Transmitter modules The communica-
tion over the Universal Serial Communication Interface A (USCI_A) has
been used with different hardware set-ups. Multiple modules have been
created from on a single model, thus they implements different primitives
while sharing the same structure.

A module provides the interface to interact with the Cymbet harvester.
An additional module monitors the activity of the device through the
USB dongle. A third one hosts both features to support an emulated
harvester.

• Watchdog module A watchdog module is responsible of the regulation
of the scheduling process. It relies on the watchdog interrupts to gen-
erate periodical events (local clock). Due to hardware clock limitations,
the current implementation presents consistent overhead, heavily increas-
ing the overall device consumption. These issues may be solved through
by means of an autonomous local clock. The module reimplements the
watchdog facility to integrate a serial port supervisor, required to de-
tect serial communications time-outs. A block diagram of the routine is
proposed in Fig. 6.2.

• Power Management module A power management module provides the
facilities to manage the CPU activity according to the needs of EA-LSA
that is, the primitives required to compute the start-time, and those to
check the condition whether the task execution should be carried out
or not, depending on the available energy and the current time. Since
the task execution is carried out in steps, while the CPU is turned off
altogether when not needed, the power manager is able to match energy
production and energy consumption, as per the EA-LSA scheme, with a
fixed CPU clock.

Concerning the Dynamic Power Management (DPM), in idle phases, the
device operates mostly in low power mode (LPM3), thus, although a Dy-
namic Frequency Scaling (DFS) scheme has been also programmed, its
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Figure 6.2: Watchdog ISR block diagram

actual use is deemed ineffective because of several hardware limitations.
First and foremost, the RF2500T does not provide any Dynamic Volt-
age Scaling (DVS) facility, thus the device efficiency remain unchanged
at best, as highlighted in [95]. Secondly, according to [87] and [86], in
the current scenario the frequency of the Digitally Controller Oscillator
(DCO), required to drive the USCI ports, is fixed, thus conflicting with
the DFS.

As such, the current implementation of the DFS is based on the clock
divider alone and, being said divider rather coarse, neither the enhance-
ment of the energy saving ability of the algorithm nor the adaptation
of the power consumption of the device to the power production of the
harvester can be properly supported. In addition, if a finer DFS is to
be implemented, the concurrent access to the DCO has to be managed,
resulting in increased computational activity and increased energy con-
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sumption, therefore even an enhanced DFS would hardly provide any
gain over the coarse version.

• Scheduling Routine Layer The completion and validation of the HAL, pro-
vided the tools to manage the hardware and implement the task scheduler.
As said the purpose of the current work is the evaluation of the perfor-
mance of EA-LSA. For this reason the implementation is quite close to
a proof of concept, rather than a ready to market product. Thus, the
guidelines of the development phase have been robustness and flexibil-
ity, whereas the optimization of the code and the coverage of long term
scheduling have been discarded at present, and left to deal with at a later
time. The scheduler in itself is quite simple, requiring a task queue, the
scheduling routine itself, and the implementation tasks to be executed.

• Task queue To account the task management, the need of pre-emption
and the resources constraints, a distinction between assigned tasks and
active tasks has been made. The assigned tasks, whose execution is yet
to begin, are managed through place holders so that the memory require-
ments per task are kept to a minimum. The active tasks, which are being
executed, are implemented as state-machines entities. As such, the inter-
nal state of the active tasks is kept in RAM, whereas the actual code is
stored in flash memory.

To manage the scheduling, two separated ordered linked lists have been
used. Insertion and removal policies have been designed so that the task
with the earliest deadline is always at the top of the active tasks’ queue,
and the corresponding place holder is at the top of the assigned tasks’
queue. This structure has been chosen so that the queues are traversed
only once per task assignment, rather than once per time unit.

Concerning the memory allocation policy, lacking a target application,
flexibility has been chosen over robustness, thus a dynamic allocation
scheme has been adopted. Memory leaks and saturation have been avoided
implementing insertion and removal primitives.

• Scheduling Routine To implement a pre-emptive scheduling algorithm
such as EA-LSA, to fit the limited RAM of the MSP430F2274, a coop-
erative multitasking scheme, based on a super-loop structure, has been
chosen, in conjunction with state-machine like tasks. The proposed ap-
proach prevents the need of context-switches, since the state of each active
task is kept in ram. To avoid concurrency, blocking primitives are used
to access HAL and hardware.

Each task is a compound of self contained subtasks, or steps, that are
executed to completion. At the end of each step, the state of the task is
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Figure 6.3: Scheduling routine state diagram

updated and the CPU control is returned to the scheduler. The scheduler
checks if pending events are to be managed and, in case, it updates the
scheduler state. If no pending events are present, and no task is ready to
be executed, the Low Power Mode 3 (LPM3) is used as waiting condition
till the next time unit. If a task ready to be executed is present, the CPU
control returns to the task, that resume its execution from its last known
state.

The communication needs between scheduler tasks are meet through the
task main routine exit status. Presently interprocess communication is
not used. The diagram state of the scheduling routine is represented in
Fig. 6.3.

• Task implementation As anticipated, task implementation has been car-
ried out as a state machine entity. Each task has only one main routine
and several subroutines. The main routine selects a subtask depending
on the internal state of the main task and a set of given conditions. The
subroutines provide the facilities required by the subtasks. When the
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main routine is invoked a subtask is selected and it is executed to com-
pletion. Then the CPU control is returned to the scheduler along with an
exit status providing information on the computational process occurred.

Although the tasks have been implemented solely to provide a load to
the scheduler, they may be used as templates, implementing a sensing
routine, a simple computation routine and the transmission routine.

All the tasks data types are obtained through inheritance from a common
task data type. The common task data type provides the data member
and the member function required to manage the tasks instances. Also
the primitives required to access the underlying HAL are present. Each
specific task data type provides the data members and function members
required by the specific task alone, along with the conditions required to
execute the assigned subtasks. Each task instance is instantiated upon
execution and removed in consequence of either completion or starvation
(deadline violation). Since the information needed to resume the task
activity is contained within the instance itself, context switches are not
required to suspend the task activity.

To evaluate the performance of the scheduler a set of five task types is
created. Each task type collects and transmits a specific kind of informa-
tion.

6.1.3 Energy harvesting
To properly evaluate the effectiveness of EA-LSA, an harvester providing infor-
mation concerning the power income and the stored energy is required. How-
ever, collecting such information is rather difficult. Not only currents and
voltages to be sensed are quite low in amplitude but also, depending on the
energy availability and the sensing process consumption, the sensing process
may be inaccurate or even incomplete. Furthermore, in most cases, sensing
devices current demand amounts to tens of µA at the very least, thus being
not negligible in the present scenario [96].
Since addressing such issues, and developing an harvester ad hoc, would fall

outside the scope of the current work, a ready to market solution is searched.
Among the available solutions the Cymbet Energy Harvesting Evaluation Kit
09 [85], being the only one able to provide the necessary information, is picked.
Alternatives are evaluated as well, but none seems to provide the means to
monitor both the power income and the stored energy.
Concerning the support to EA-LSA, the set-up is well suited, since the

adopted harvester is designed to interact with the RF2500T. In fact, the En-
ergy Processor CBC915EP [89] not only monitors the harvesting process, but
also supports serial communication to provide the scheduler with information
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on both power income and residual energy. The main drawback, since the serial
port is the only way to access the RF2500T controller, is the lack of control
over the scheduler activity.
In particular, while be the wireless link can be used to retrieve informa-

tion concerning the scheduling status, the additional data transmission would
cause unaccounted consumption, affecting the scheduling activity. Addition-
ally, packet losses would prevent the correct assessment of tasks’ completion
and starving. In a dual manner, direct access to the sensor node, requiring
the EZ430 USB dongle, would prevent any additional data and power connec-
tion towards the RF2500T. To circumvent these issues, an emulated energy
harvester has been devised, providing the scheduler with information concern-
ing both power income and energy via a serial interface, while monitoring the
scheduling process at the same time.
Therefore, while during the development phase and the preliminary test

phase, the Cymbet harvester is used, to evaluate the performance of EA-LSA
the implemented emulator, developed with the Cymbet Energy Harvesting
Evaluation Kit 09 as a reference, is used. The emulator runs on the 64-bit
version of the MathWorks MatLab 2011a 2 computing environment. The soft-
ware was hosted on a notebook PC based on the Intel Core i7 CPU series, with
8GB of RAM and Microsoft Windows Seven 64-bit OS on board.
As a result, the evaluation process is deemed to be not dependent on the

actual harvester measurement accuracy, nor on the test bench measurement
accuracy. The former, in particular provides information concerning the stored
energy in addition to the power income, as such an inaccurate measurement
can affect the scheduling performance. The latter on the other hand, is used
to measure the energy consumption of each subtask, information required to
foresee if a task will starve or not. In the latter case, then, an inaccurate
measurement can affect the scheduler performance as well.
By computing the residual storage energy, based on the measured energy

demand of the subtasks, the measurement error is kept out of the equation
thus improving the reliability of the evaluation test.

6.1.4 Tasks characterization

To program the sub task execution conditions, the energy demand of each
subtask is required so that, at each task step, the residual energy demand to
complete a task can be evaluated. The energy demand can also be used to
compute the residual stored energy within the harvester emulator. To measure
the device consumption a test bench has been developed based on the Texas
Instruments SLAA378B application note [97]. An instrumentation amplifier is

2http://www.mathworks.com
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used in accordance to the WisarLab reference [95].
The schematics of the measurement testbench is presented in Fig. 6.4.

Figure 6.4: RF2500T testbench

The circuit hosts the AD621 instrumentation amplifier [98], which provides
a 100 V/V gain, an external voltage reference, required by the ADC within the
MSP430, the connection headers between the test bench and the RF2500T. Also
a signal, driven by a switch, is used to toggle the firmware activity replacing
the push button on the RF2500T. A series of two 5 Ω resistors, each paired
with a bypass jumper, is used to sense the supplied current so that gains of 500
V/A and 1000 V/A are obtained. As a result, a dynamic range up to 30mA
is available when the transceiver is used. At the same time the oscilloscope
readings can be improved when low power configurations are inspected. A
Tektronix TPS2024B oscilloscope3 is used to read the output of the amplifier.
For test purpose only, the filter capacitors, applied between the shield and the
amplifier output, are enabled. The power supply of the AD621 is provided
through a ±17 V linear stabilized regulator, while the RF2500T is powered
by a 3V stabilized switching power supply. A preliminary test is conducted
by replacing the RF2500T board with a 1MΩ resistor in order to draw a 3μA
current. The 1000V/A gain is used and the filter capacitors are not enabled.
A value of about 3.90 mV is registered at the output of the amplifier by the
instrument as shown in Fig. 6.5.

The Low Power Modes (LPM) 4, 3 and 0 are evaluated using the 1000 V/A
gain configuration, with and without the filter capacitors. During the LPM3

3http://www.tek.com/datasheet/oscilloscope/tps2000-digital-storage-oscilloscopes
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Figure 6.5: Testbench preliminary check

mode test, also, the watchdog ISR consumption is measured. On the other
hand the CPU consumption is measured during the LPM 0. An endless loop
executing a sum is used to evaluate the CPU demand. The results are reported
in Table 6.1.

Table 6.1: CPU and watchdog power consumption
Routine type Measured Voltage (mV) Power (µW)

Cpu 1MHz (no filtercap) 426 1328.86
Cpu 1MHz (filtercap) 401 1250.08
Noise contribution 25 77.88

LPM3 (no filtercap) 9.69 30.27
LPM3 (filtercap) 1.46 4.56

LPM4 (no filtercap) 9.52 29.74
LPM4 (filtercap) 1.10 3.44

The profiling process is completed by the evaluation of the consumption of
the hardware accessing routines. The RSSI measurement and the transmission
require the 500 V/A gain configuration, while in the others cases the 1000 V/A
gain configuration is used. The consumption profiling of the intended routines
provides several traces, recorded by the oscilloscope, such the one in Fig. 6.6
that refers to the RSSI measurement (or sampling) routine.
For each trace, the intervals corresponding to a constant voltage level are

measured and the values noted along with the corresponding voltage level.
The pool of data is presented in Table 6.2. In the RSSI measurement case a
trace is provided in Fig. 6.6, the different intervals are numbered accordingly
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to the Table 6.2 entries.
In the reception routine case, two implementations have been evaluated.

The two differ only in regards to the fact that one does not receive any packet
and thus ends after a timeout is reached. The other one is interrupted after
the packet reception. Since the receiver power demand does not depend on
actual data reception, only one profile is presented. The receiver consumption
contribution is described in the “RX part 4” entry of Table 6.2.
At the end of the profiling process, the collected data are used to calculate

the energy consumption of each task step. In fact, within a task step only two
causes to energy consumption exist, that is the access to peripheral devices and
the access to the CPU. The consumption and duration of the primitives used
to access the peripheral devices are known, and since task steps are executed
to completion, no concurrent access to the devices is possible. During the
remaining time within the sub task, the CPU is used at full capacity. Then,
measuring the duration of each task step, the CPU activity time during each
sub task can be computed. To measure the duration of a task step, an internal
timer that provides a µs time resolution is used. The resulting consumption
values are presented in Table 6.3 on a per step basis.
A similar approach, with a few adjustment, is used to assess the energy con-

sumption of the scheduler routine. To account changes of each state duration,
that may occur depending on the required operations, the cyclic nature of the
scheduling process is exploited. For each state of the scheduling routine, the
average value of the state duration is measured over several scheduling periods.
Then, by calculating the consumption and the number of occurrences of each

Figure 6.6: RSSI consumption profile
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Table 6.2: Hardware access routines energy consumption

Routine type
Measured
Voltage
(mV)

Elapsed Time
(µs)

Current
(µA)

Power
(µW)

Energy
(µJ)

Temp part 1 640 2900 640 1994.92 5.78
Temp part 2 460 340 460 1434.75 0.49
Temp part 3 1410 100 1410 4383.30 0.44
Temp total 3340 6.71

Volt part 1 450 750 450 1403.61 1.05
Volt part 2 856 80 856 2666.21 0.21
Volt total 830 1.27

RSSI part 1 100 450 200 624.57 0.28
RSSI part 2 1200 150 2.4 75.00 1.12
RSSI part 3 400 100 800 2495.47 0.25
RSSI part 4 800 850 1600 4983.47 4.23
RSSI part 5 4300 825 8600 26434.97 21.81
RSSI part 6 10000 475 20000 60146.67 28.57
RSSI total 2850 56.26

TX part 1 200 500 400 1248.67 0.62
TX part 2 1500 250 3000 9319.50 2.33
TX part 3 1000 2500 2000 6224.67 15.56
TX part 4 4400 800 8800 27039.47 21.63
TX part 5 11900 750 23800 71046.97 53.28
TX total 4800 93.43

RX part 1 250 125 500 1560.75 0.19
RX part 2 500 1350 1000 3119.01 4.21
RX part 3 4000 750 8000 24672.64 10.50
RX part 4 9560 2125-10000 19120 57906.66 123.05-579.07
RX total 4350-11225 137.95-593.97

state, the average demand of the scheduling routine is computed. The results
are reported in Table 6.4.

6.1.5 Task scheduling and execution

To evaluate the performance of EA-LSA, a test under simplified conditions is
proposed. As a reference, the previously presented LSA and EDF are used. The
tests are meant to compare the behaviour of the algorithms under optimal and
sub optimal energy availability conditions, accounting that EDF and LSA are
usually meant to manage a fixed workload, whereas EALSA is able to support
the dynamic adaptation of the workload depending on energy availability.
On purpose a set of five fictional tasks has been created, based on the RF200T

ability to retrieve data on temperature, supply voltage, RSSI, residual stored
energy and power income. In the case of LSA and EDF, each task collects 50
samples of the mentioned quantities. In the case of EA-LSA, each task can
collect a variable amount of samples, from a minimum of 20 to maximum of
80, depending on energy availability and power income. Each task, also, is
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Table 6.3: Task steps energy consumption

Task step
type

Task step
duration

(timer
measurement)

(µs)

Subroutine
duration

(µs)

CPU time
(1 Mhz)

(µs)

Subroutine
energy

consumption
(µJ)

CPU energy
consumption

(µJ)

Task step
consumption

(µJ)

Volt
measurement
step (#04)

1025 830 195 1.27 0.26 1.53

Temp
measurement
step (#05)

3545 3340 205 6.71 0.27 6.98

RSSI
measurement
step (#06)

3164 2850 314 56.26 0.42 56.68

Power
measurement
step (#07)

630 0 630 0 0.84 0.84

Charge
measurement
step (#08)

328 0 328 0 0.43 0.43

Transmission
and ACK

reception step
(#03) (best

case)

10800 9150 1650 231.38 2.19 233.57

Transmission
and ACK

reception step
(#03) (worst

case)

17675 16025 1650 687.4 2.19 689.59

Table 6.4: Scheduler energy consumption

Scheduler Step Type Duration
Consumption

(µJ)

Step 1 51 ms 67.77
Step4 56 ms 74.42

Watchdog ISR 125 µs 0.1661
LPM3 ˜7 s 31.93

Scheduling routine (10 tasks) 256 time units 27443.24
Scheduling routine cycle (10 tasks) ˜7 s 109.77
Scheduling routine mean (10 tasks) 1 s 15.68

required to send a data packet and wait for the transmission to be ACK by the
AP. If the ACK is not received an optional retransmission may occur
The values in Table 6.3 have been rounded, with the exception of the ex-

ception of the best case of transmission and ACK reception, which has been
increased to account the delay that the AP may introduce. The resulting en-
ergy demand of each step is reported in Table 6.5. Also the values of Table 6.5
are used by the harvester emulator, to account the energy consumption of the
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Table 6.5: Energy consumption values (rounded) for each task step type (µJ)
Volt

measurement
step (#04)

Temp
measurement
step (#05)

RSSI
measurement
step (#06)

Power
measurement
step (#07)

Charge
measurement
step (#08)

Transmission
step (#03)
best case

Transmission
step (#03)
worst case

2 7 57 1 1 300 690

Table 6.6: Energy consumption values (rounded) for each task type (µJ)

Task type
Minimum energy
demand of tasks

(EA-LSA)

Maximum energy
demand of tasks

(EA-LSA)

Energy demand of
tasks (LSA and EDF)

Volt measurements 730 850 790

Temp measurements 830 1250 1040

RSSI measurements 1830 5250 3540

Power measurements 710 770 740

Charge measurements 710 770 740

device at each subtask completion.
The scheduling cycle spans over an interval of 256 time units, each being 7

seconds long. At its beginning, two instances of the designated set are allocated
to the scheduler. The deadlines fall within the cycle, they are 50 time units
apart and depend on the task type. The scheduling process is restricted to two
scheduling cycles to maintain plots intelligibility.
Regarding the energy management within the scheduling routines, a few

assumptions have been made. Concerning EA-LSA and LSA, the prediction
routine assumes that the power income remains constant in the near future,
based on the fact that a deadline fall every about 350 s.
Also, in order to simplify the comparison of the results, the event of a device

reset has been prevented, since it also reset the scheduling process. On purpose,
LSA and EDF have been implemented so that the execution of a task step is
postponed whenever the demand exceed the available energy. In particular
while LSA relies on the expected energy production, EDF only relies on the
stored energy. As a consequence, in the form EDF has been implemented, it
may be addressed as earliest deadline as soon as possible [83].
Each task consumption is presented in Table 6.6 and it has been computed

by accounting the data collection and a single transmission assuming the time
out of the ACK. To address the case of an unforeseen retransmission request,
an optional retransmission is allowed. In particular the scheduler expects the
energy demand of the transmission worst case, whereas the actual demand is
computed by the harvester emulator based on the best case.
The energy demand of the scheduling routine equals to 16 µJ per second,

whereas about 24 µW are required to complete the fixed workload including
the optional retransmissions. Therefore, in the first part of the test the energy
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production is assumed to be constant. In this case also, a power output of
about 24 µW is suggested to evaluate the algorithm performance under ideal
conditions, a power output of about 21 µW is used to emulate harvesting
adverse conditions, and a power output of about 27 µW is used to evaluate the
scheduling under favourable conditions. In the second part of the test, on the
other hand, a variable production profile is used.

Test Results

The data collected during a scheduling instance is presented in two graphs.
The first plot, in the upper side, reports the execution of each completed task
step over time. Each different task step is coded with its own stem length. The
retransmission on the other hand is marked by a crossed stem. The second
plot, in the lower side, shows the amount of the energy stored on the capacitor
over time.
The test routine spans over two scheduling cycles. In each cycle two in-

stances of the assigned task set are scheduled. In the first test, the emulated
harvester power output has been assumed equal to 24 µW. That amount is
enough to complete all of the task, including the optional retransmission. The
performance of EDF, LSA and EA-LSA is reported in Figs. 6.7, 6.8 and 6.9,
respectively.
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Figure 6.7: EDF algorithm. Energy harvester simulated power output: 24 µW

Every algorithm under test is able to collect fifty samples per task, and
complete both transmission and also retransmission. In this particular case, in
fact, the execution conditions implemented in EA-LSA are meant to maximize
the number of completed task, rather than the number of collected samples,
thus promoting the completion of multiple the task set instances. Different
conditions, however can also be assigned depending on circumstances.
The main difference concerns the energy management carried out by EDF,

with respect to the energy management of LSA and EA-LSA. While EDF
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Figure 6.8: LSA algorithm. Energy harvester simulated power output: 24 µW
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Figure 6.9: EA-LSA algorithm. Energy harvester simulated power output: 24
µW

executes a task step whenever the stored energy is sufficient to complete said
step, which results in the stored energy being kept to its minimum, both LSA
and EA-LSA are able to preserve as much energy as possible.
Adverse conditions are emulated assuming a power output equal to 21 µW.

Again the performance of EDF, LSA and EA-LSA is reported in Figs. 6.10,
6.11 and 6.12 respectively.
In the current test, the lack of energy does not permit the completion of

the intended workload. In fact, the RSSI sample collection task can be exe-
cuted only once per scheduling cycle, rather than twice, notwithstanding the
scheduling algorithm. Nonetheless different results are achieved with regards
to transmissions and retransmission within said task. In particular, EDF and
LSA are not able to transmit at all in the second scheduling cycle. On the other
hand, EA-LSA completes transmission and retransmission in both scheduling
cycles, since it lowers the number of collected samples in order to save the
energy required to transmit.
As such, the dynamic workload adaptation granted by EA-LSA improves
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Figure 6.10: EDF algorithm. Energy harvester simulated power output: 21
µW
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Figure 6.11: LSA algorithm. Energy harvester simulated power output: 21 µW
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Figure 6.12: EA-LSA algorithm. Energy harvester simulated power output: 21
µW

the device efficiency and throughput, with respect to fixed workload scheduling
algorithms. The ability to execute the assigned task to completion, although
through a simplified routine, may prevents the waste of collected energy. If the
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assigned tasks do not depend on one another, is either executed to completion
or not executed at all, thus no energy is usually wasted. If the tasks are
interdependent, that is a task set is of use only if it is executed in its entirety,
energy is still wasted if only a subset of tasks is completed. In this case, a proper
design of tasks and their execution policy, which depend on the application,
may be required to avoid such an event.
Favourable conditions are emulated assuming a power output equal to 27

µW. In this case the performance of EDF, LSA and EA-LSA is reported in
Figs. 6.13, 6.14 and 6.15 respectively.
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Figure 6.13: EDF algorithm. Energy harvester simulated power output: 27
µW
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Figure 6.14: LSA algorithm. Energy harvester simulated power output: 27 µW

Similarly to the ideal case, the algorithms under test are able to complete
all the assigned tasks. In this case, however, EA-LSA is able to increase the
workload by collecting additional samples thus exploiting the energy surplus.
At the end of each scheduling cycle, the energy storage remains at full charge,
meaning that the renewable energy collected by the harvester cannot be stored,
and thus is lost. On purpose, EA-LSA increases the device workload, so that
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Figure 6.15: EA-LSA algorithm. Energy harvester simulated power output: 27
µW

the energy loss can be contained by completing the tasks with enhanced results.
To model a variable level power output, the profile presented in Fig. 6.16

has been used. As done before the performance of EDF, LSA and EA-LSA is
reported in Figs. 6.17, 6.18 and 6.19 respectively.
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Figure 6.16: Energy harvester simulated power output profile
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Figure 6.17: EDF algorithm. Energy harvester variable power production.

In the current test, the average power output spans from about 17 to about

122



i
i

“PhDthesis” — 2016/11/30 — 18:06 — page 123 — #141 i
i

i
i

i
i

6.1 Implementation of the Energy Aware Lazy Scheduling Algorithm

50 100 150 200 250 306 356 406 456 506

V measure  
T measure  

RSSI measure  
P measure  
C measure  

Transmission  

Device Time (device unit time: 7s)

R
ec

or
de

d 
Ev

en
t

 Step Type Execution VS Time 

50 100 150 200 250 306 356 406 456 506
0%

50%

100%

Device Time (device unit time: 7s)

C
ha

rg
e 

Le
ve

l

 Capacitor Energy Level Vs Time 

 

 

Capacitor Energy Level
Charge level reference

Figure 6.18: LSA algorithm. Energy harvester variable power production.

50 100 150 200 250 306 356 406 456 506

V measure  
T measure  

RSSI measure  
P measure  
C measure  

Transmission  

Device Time (device unit time: 7s)

R
ec

or
de

d 
Ev

en
t

 Step Type Execution VS Time 

50 100 150 200 250 306 356 406 456 506
0%

50%

100%

Device Time (device unit time: 7s)

C
ha

rg
e 

Le
ve

l

 Capacitor Energy Level Vs Time 

 

 

Capacitor Energy Level
Charge level reference

Figure 6.19: EA-LSA algorithm. Energy harvester variable power production.

23 µW, therefore the available energy amount is not enough to execute all the
assigned tasks to completion. As a major consequence, the three algorithms fail
to complete any set of tasks in the second scheduling cycle. A difference can be
highlighted, however, in the behaviour of EA-LSA with respect to the behaviour
of EDF and LSA. For instance, both EDF and LSA collect several temperature
samples and RSSI samples. In both cases, however, the lack of energy prevent
the device form transmitting the collected information. Additionally, in the
second scheduling cycle, this behaviour prevent the device from retransmiting
the information after the collection of power samples.
EA-LSA on the other hand, can lower the workload reducing the number of

collected the temperature samples, thus completing the task. Regarding the
RSSI samples, on the other hand, in the first scheduling cycle the available
energy allows for the completion of the RSSI task, including both transmis-
sion and retransmission. In the second scheduling cycle, however, the lack of
energy prevents the device from collecting the minimum number of samples
and transmitting the related information, therefore the task is discarded alto-
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gether. The spare energy, however, can be used to complete the following task,
retransmitting the data packet.
The results are briefly resumed in Table 6.7, in particular, the first three rows

report the number of completed tasks, whereas the values between parentheses
refer the completed set of tasks. In the last three rows, on the other hand,
the number of collected samples has been reported. In this case, the amounts
between parentheses account the collected samples that belong to incomplete
tasks.

Table 6.7: Performance of scheduling algorithms
21 µW 24 µW 27 µW Variable power

output

Completed tasks (and sets)

EDF 17 (1) 20 (2) 20 (2) 13 (0)
LSA 17(1) 20 (2) 20 (2) 13 (0)

EA-LSA 18 (2) 20 (2) 20 (2) 15 (1)

Collected samples (and unused ones)
EDF 908 (58) 1000 (0) 1000 (0) 808 (158)
LSA 908 (58) 1000 (0) 1000 (0) 807 (157)

EA-LSA 881 (0) 1000 (0) 1600 (0) 598 (0)

In the proposed tests EA-LSA has provided a more efficient use of the avail-
able energy with respect to either EDF and LSA. In particular we can observe
that:

• in adverse conditions, no energy has been spent in infeasible tasks;

• in favourable conditions, part of the energy surplus has been used to
increase the device workload.

6.2 Leakage detection
In water and gas distribution systems, leakages can cause of resource waste and
damages, thus the ability to identify leakages can shorten the time required to
repair the problem lowering the amount of wasted resources and the amount
of damages.
However, although several leakage detection technique have been devised and

implemented, most of them are invasive and can be applied effectively only to
large distribution systems, in that the aggregated flow show a limited and slow
paced swing over time.
On the other hand, in residential environments, the water flow shows a large

and fast paced swing, and moreover the implementation of traditional moni-
toring systems are costly and invasive.
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With the availability of automatic meter reading systems, real time water
consumption monitoring has become possible, therefore a single point monitor-
ing system can be used. By means of the collected information, then, Novelty
Detection can be used to detect abnormalities in the trend of water consump-
tions, and therefore leakages.

6.2.1 Literature background and proposed approach
A recent application for leakage detection with household consumption has
been addressed by Nasir et al. [99]. In their method, Artificial Neural Network
(ANN) and Support Vector Regression (SVR) have been adopted to estimate
the leakage size and location. The domestic network has been modelled and
simulated with EPANET4, acquiring the simulated data with 2 pressure sen-
sors, 2 differential pressure sensors, and 2 flow sensors. Over 3, 600 scenarios
have been realized (equally subdivided in training and test), producing leak-
ages with different sizes and locations. The ANN has been realized assuming
6 input nodes, one hidden layer with 20 nodes, and two output nodes. The
ε-regression with Radial Basis Function (RBF) kernel has been adopted for
the SVM model. The prediction performance has been evaluated in terms of
Mean Square Error (MSE) and Squared Correlation Error coefficient (R). The
proposed quasi-static analysis confirmed the good behaviour of the SVM and
its resilience to sensor measurement errors.
Leakage detection in domestic water systems has been also addressed by Oren
and Stroch [100] and a mathematical model, based on the deviation from the
average consumption, has been developed. Two thresholds, a minimum one
and a maximum one, have been set for the deviation level. The leakage is
detected when the following conditions are both true: C(T1) > MDT1 and
C(T2) > MDT2 , where MDt denotes the threshold for the time instant t and
C(t) is the corresponding consumption. Statistical hypotheses, from the average
domestic water usage of Israel, U.S., and Germany5, have been extracted and
used to compute the threshold values. Therefore, the statistical information
has not been obtained from the sequence itself. To evaluate the approach, a
consumption sequence with a minimum resolution of 15 minutes has been con-
sidered, and 2 leakages have been separately induced: a burst (cracked pipe)
and a steady consumption. No further leakages have been tested and no eval-
uation criteria have been presented.
A novel change-detection test (CDT) has been developed by Boracchi and
Roveri [101]. The approach has been developed in order to detect structural
changes in time series and it has been tested with time series of flow measure-
ments. The data was collected from the Barcelona water distribution network,

4www.epa.gov/nrmrl/wswrd/dw/epanet.html
5www.water.gov.il - www.waterrf.org - www.umweltbundesamt.de
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over a time window of 82 days and with a resolution of 10 minutes. The se-
ries have been manipulated to simulate different types of alterations: leakage,
sensor degradation, source change, and stack-at (constant measurements after
a fixed time instant). Concerning the leakage, an offset proportional to the
average flow during the normal phase is added. The detection performance
has been evaluated in terms of False Positive Rate (FPR), False Negative Rate
(FNR) and Detection Delay (DD). Two offset values have been tested, that is
25% and 50% of the mean flow, achieving a FPR of 0.1 and a FNR of 0.0. The
detection of the greater leakage presents a lower delay than the smaller one,
that is 156.4 and 914.2 samples respectively. The decision of the detection has
been based on the whole test set.
In order to identify the onset of a leakage, Gamboa-Medina et al. [102] investi-
gated a set of features extracted from a water network. Energy (ENE), entropy
(ENT), zero crossing count (ZCC), and distribution of energy in the compo-
nents of wavelet decomposition (WDE) are the adopted features. They have
been computed from the pressure data collected by 15 sensors, that have been
connected to an experimental circuit with a total length of 200m. A total of
620 scenarios, 310 with losses and 310 without losses, have been collected with
1 minute recordings at 4 sample per second. The features distributions have
been analyzed, and a patter recognition system, based on a binary classifier,
has been employed for the detection. The best result has been achieved by the
vector composed of all the features, and the WDE has been shown the best
result among the single features.
A different approach, based on the Minimum Night Flow (MNF), has been
widely used to detect leakages in monitored district metered areas (DMAs).
In order to determinate the factors that affects the MNF, Jaber et al. [103]
adopted a method based on multiple linear regressions. The study has been
conducted with the data collected over 361 DMAs, monitoring flow and pres-
sure for 24h every 15 minutes. The MNF was modelled in order to estimate
the water loss in the DMAs, and linear correlations between loss and number of
connections, total length of pipe, and weighted mean age pipe were explicated.
In order to detect and localize leakages in water network, Sanz et al. [104]
proposed a Fuzzy Inductive Reasoning (FIR) approach. The method is com-
posed of four stages: fuzzification, qualitative modelling, qualitative simulation,
and defuzzification. The leakages-free data has been collected by two pressure
sensors located in the District Metered Area, Nova Icària, in Barcelona and
applied to the EPANET1 model of the network. Over 30 days of data have
been simulated, and split in training set (non-faulty) and test set (faulty). A
loss of approximately 6.3L/s has been artificially introduced in the test set.

As seen so far, the literature thrives with applications developed to deal with
the water leakage detection, specifically devised for district-sized networks or
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even larger ones. The bottleneck to the development of innovative approaches
is surely due to the lack of suitable databases, as highlighted by Fagiani et al.
[105], because of either the incoherent data in the database, or the unavail-
ability of the database altogether. Furthermore, among the state-of-the-art
approaches, many of them have been developed using different sets of measure-
ments, such as flow and pressure data, or both data collected from multiple
sensing point in the network [104, 103, 99, 102]. In this way, these methods
result unsuitable for household scenarios, which present a single flow sensing
point. In the end, only two studies addressed the leakage detection problem
using single flow measurements, [100] and [101]. Both approaches are based on
statistical characterization, but, as discussed above, in the former the detec-
tion thresholds have been sized based on unrelated references, that is, unrelated
customers, resulting in the detection of only two leakages in the presented val-
idation. The latter presents a CDT method suited for domestic consumption,
unfortunately this method has been tested only against sequences collected in
DMA, that present a smoother pace than the domestic consumption.
In this work the authors propose a leakage detection approach based on

statistical modelling, meant for residential distribution of both water and nat-
ural gas. The method is inspired by the audio novelty detector presented by
Ntalampiras et al. [106], and recently revised for a real-time implementation
by Principi et al. [107]. The approach aims at the detection of leakages in
household environments, and for this reason it has been evaluated using the
Almanac of Minutely Power Dataset (AMPds) [108]. The dataset is a publicly
available multi-year data record6. Currently, the data spans over 2 years and
addresses a single house. Electricity, water, and natural gas consumption have
been recorded, with a sampling rate of one sample for minute, and a total
of 1, 051, 200 readings for each resource. The tests have been conducted with
1 and 10 minutes resolution data. The sets have been divided in overlapped
frames, and a collection of features, partially selected from the ones presented
in [102], has been extracted. The features extracted form the training set, have
been exploited to model the normality background, with both Gaussian Mix-
ture Model (GMM) and Hidden Markov Model (HMM). During the evaluation
phase, the models have been used to compute the likelihood of each frame and
a threshold has established the presence of leakage. A variation of the Sequen-
tial Forward Selection (SFS) [109] has been executed in order to find the best
features combination.
The sets have been manipulated assuming a leakage size between 25% and
50% of the average consumption in the train set, accordingly to Boracchi and
Roveri [101]. In order to verify the realistic behaviour of the artificial leak-
age, the considerations reported by Britton et al. [110], have been taken into

6ampds.org
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account. They collected the behaviour of over 22, 000 residential households
in Hervey Bay, between March and May 2009, and discovered that the most
common leakage rate was 20 L/h followed by 10 L/h. In general, over 49% of
leakages are 20 L/h or less. So, considering water consumption in the adopted
dataset (AMPds), 25% and 50% of the average consumption correspond to
0.13 L/m and 0.26 L/m, respectively. Therefore, they are equivalent to leak-
ages in L/h of 7.76 and 15.53, respectively, confirming the reliability of the
adopted sizes.
Up to the authors’ knowledge, no other works have addressed the proposed nov-
elty detection approach for leakage identification. In particular, it seems that
a suitable collection of features has never been investigated on purpose. There-
fore, a set of features has been studied for the present problem and proposed as
a valid starting point for future developments. Furthermore, differently from
the state-of-the-art methods, probabilistic models, i.e., GMM and HMM, have
been employed and the proposed approach executes an on-line frame-based de-
tection, or a frames sequence-based detection. So, being the network constantly
tracked, both abnormal and normal states are detected, and the leakage start
and end points are obtained, allowing a real-time monitoring, in agreement
with [107].
The true detection rate (TDR) and the false detection rate (FDR) with a
frame-based evaluation, for the GMM, and with a frames sequence evaluation,
for the HMM, have been computed. Finally, executing the detection deci-
sion, leakage/no-leakage, for different threshold values, the Receiver Operating
Characteristic (ROC) has been created, and the best features combinations
have been evaluated in terms of Area Under Curve (AUC).

6.2.2 The novelty detection algorithm
The algorithm consists of two main stages: the creation of the normality model
and the leakage detection. In the former, a normal scenario, that is leakage-
free, is analyzed, and a representative background is created. In the latter, the
decision process is accomplished, over a faulty set, evaluating the likelihood of
the normality model.

Training Set Feature
Extraction

Training
Algorithm

Normality
Model λ

Figure 6.20: Block diagram of the normality model creation stage.

The background creation, as depicted in Figure 6.20, is characterized by
two phases: the feature extraction and the training phases. In the former, the
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training dataset is opportunely elaborated, frame partitioning, and the selected
features are extracted from each frame and arranged in a vector. In the latter,
all feature vectors are processed in order to compute the statistical model of the
normality behaviour. Two different statistical models have been evaluated in
the presented approach: Gaussian Mixture Model (GMM) and Hidden Markov
Model (HMM).

Test Set Feature
Extraction

Normality
Model λ

Likelihood
Computation

Thresholds ε

Decision

Figure 6.21: Block diagram of the leakage detection stage.

In the second stage, depicted in Figure 6.21, the features extraction process
is replicated with the test set, that has been altered by the introduction of
a leakage, that is, an abnormal event. Employing the features vectors into
the normality models, likelihood values are computed, and a frame-based or a
sequence-based decision is taken.

Features

Input data (DATA), moving average (MA), energy (ENE), distribution of en-
ergy in the components of wavelet decomposition (WDE), and logarithmic en-
ergy in the components of wavelet decomposition (LWE) are the adopted fea-
tures. Specifically, in order to have a consistent evaluation, the data “as is” and
the moving average of the set have been also taken into account. Furthermore,
even the first order positive differences have been evaluated, for an overall total
of 10 features.
The DATA feature is composed by the whole set of frame samples. On the
other hand, the average value of the frame samples is addressed to as MA. The
collection of the MA values, computed for the whole set, corresponds to the
moving average of the set for a window equal to the frame length. The frame
energy, ENE, is computed as:

ENE =
N∑

i=1
xi

2 , (6.1)

where N is the number of samples in the frame, and xi denotes the value
of the i-th sample. The WDE feature has been presented in [102], and it
is computed using the wavelet decomposition of order 3 with the function
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Daubechies 2 (db2 ). One approximation sequence (A3) and three detail se-
quences (D3,D2,D1) are obtained as result of the decomposition. The energy
is computed for each sequence, as in equation (6.1), with N denoting the num-
ber of elements in the sequence. Then, the feature is composed by reporting
the percentage value of the energy of each sequence respect to the total energy
of the sequences. Therefore, for each frame a vector of 4 elements is obtained.
Let C be a vector, given by the concatenation of the wavelet decomposition
coefficients:

C = [A3, D3, D2, D1] , (6.2)

then, the i-th element of the WDE feature is defined as:

WDEi = 100 · Ei
ET

, (6.3)

where Ei denotes the energy of the corresponding i-th wavelet coefficient, and
ET is the sum of the energies of the sequences. Adopting the component energy
Ei, the i-th element of the LWE feature is achieved by applying the following:

LWEi = log(Ei + 1) . (6.4)

The first order positive differences are indicated with the name of the feature
preceded by ∆. They are computed, for n = 1, 2, . . . , N and l = 1, 2, . . . , L, as:

∆F (n, l) =
{
F (n, l)− F (n− 2, l), if n ≥ 2
F (n, l). otherwise

(6.5)

where F represents the features matrix, that is composed of N features vectors
of length L, L is the number of the features elements in the vector, and N is
the number of frames for the evaluated set.
Except for DATA and its first order positive difference (∆DATA), which lengths
depend on the number of frame samples, the remaining features have a fixed
length that is independent from the dataset resolution and the frame length.
Specifically, MA, ENE, WDE and LWE present a feature length of 1, 1, 4 and
4, respectively.

Normality Models: GMM and HMM

The features extracted from the training set represent the normality scenario,
and its statistical behaviour, the background model, has been represented using
both the GMM and the HMM. For the background modelled with the GMM,
the multivariate normal distribution is obtained as:

g(x|µ,Σ) = 1
(2π) D

2 |Σ| 12
exp{−[(x−µ)TΣ−1(x−µ)]/[2]}, (6.6)
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Figure 6.22: The figure reports 10 days of data recorded in the AMPds dataset,
and their alteration due to the leakage introduction for the test
phase.

where x denotes the features vector, µ is the mean values vector, and Σ repre-
sents the covariance matrix. Finally, the GMM is obtained by a weighted sum
of (6.6), as:

p(x|λ) =
Ng∑
j=1

wjg(x|µy, Σj), (6.7)

where wj ∈ [0, 1],
∑Ng

j=1 wj = 1, and λ = {µj , Σj , wj}Ng

y=1. Ng denotes the num-
ber of Gaussians adopted for the GMM. During the training phase, the GMM
parameters are initialized by the k-means algorithm, that splits the data in
a number of clusters equal to the number of adopted Gaussian components.
Then, a final model is achieved applying the Expectation-Maximisation (EM)
algorithm [111], that estimates the parameters and the weight of the compo-
nents guaranteeing a monotonous increase of the GMM likelihood. All GMMs
have a diagonal covariance matrix.
With regard to HMM modelling process, the left-right structure, commonly
used in speech recognition problems [112], has been adopted. Considering a
general structure, the i-th state is characterized by a transition probability
from itself to the state j, denoted with the discrete probability aij . In ad-
dition, let O = {o1, o2, · · · , oN} be an observations sequence, the same i-th
state is characterized by an emission probability of the observation on, at the
instant n, given by the probability density bi(on). Therefore, the likelihood of
the observations sequence, for the whole Markov chain, is given by:

p(O,M) =
∑
X

ax(0)(1)

N∏
n=1

bx(n)(on)ax(n)x(n+1). (6.8)

where M is the assumed Markov model, and X is the states sequence. The
emitting states are modelled by a diagonal GMMs, and each relation between
the states are trained by means of the Baum-Welch algorithm.
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(a) Natural Gas, 1 minute resolution.
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(b) Natural Gas, 10 minutes resolution.
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(c) Water, 1 minute resolution.
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(d) Water, 10 minutes resolution.

Figure 6.23: Features selection steps for all the evaluated cases.

132



i
i

“PhDthesis” — 2016/11/30 — 18:06 — page 133 — #151 i
i

i
i

i
i

6.2 Leakage detection

Decision

In the decision phase, the likelihood of the extracted features vector is com-
puted adopting the normality model. Then, the likelihood is compared against
a threshold, in order to detect the leakage presence. Specifically, for the GMM
background, a frame-by-frame decision is performed. For each input frame,
the likelihood is obtained as result of the computation of the equation (6.7),
assuming as input the corresponding features vector. If the obtained likeli-
hood exceeds the threshold, the event represented by the frame is marked as
leakage/abnormal event, otherwise it is considered a normal event. Being the
HMM based on a sequence of observations, consecutive frames are dragged in
the decision process. In particular, the number of frames involved is equal
to the states number of the normality background. Each frames sequence is
considered as a single event, and if the majority of the frames are detected as
leakage occurrences, the event is marked accordingly.

6.2.3 Computer simulations and result analysis

Experiments have been conducted for both water and natural gas, using a fixed
frame length, 5 hours, and two dataset resolutions: 1 minute and 10 minutes.
Consequently, each frame is composed of 300 and 30 samples, respectively, with
an overlap equal to 2/3 of the frame length. A label vector is created for the
test set, the normal frames are marked as “0”, conversely the abnormal frames
are indexed as “1”. For the HMM, the label vector has been adequately modi-
fied to accomplish a sequence-based evaluation.
In order to properly evaluate the slight changes due to the random initial condi-
tions, 10 background models have been trained. Furthermore, each background
model has been used to identify 10 random leakages, therefore, an overall of
100 losses have been evaluated in total. Specifically, the random parameters
of the artificial leakage are the size, the starting sample, and the length. The
sequences have been manipulated following the solution adopted in Boracchi
and Roveri [101]. So, the test set s(n) has been altered as:

s(n) =
{
s(n) + α · lk, if n ≥ N∗

s(n), otherwise
(6.9)

where α ∈ [0.25, 0.50], lk is the average consumption computed from the train-
ing sequence, and N∗ denotes the leakage start sample. As discussed in Sec-
tion 6.2.1, the range of the flow loss, α · lk, is conformed to a real-cases leakage
[110]. Being the first sample and the length of the leakage randomly selected,
the start and end sample may not match with the beginning and the end of a
frame. Therefore, a border frame is marked as novelty occurrence, in the refer-
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ence labels vector, if the majority of its samples result manipulated, according
to the condition expressed in (6.9). The leakage length is randomly selected
between 5 and 10 hours, that corresponds to 300 and 600 samples, respectively,
for 1 minute resolution, and to 30 and 60 samples, respectively, for 10 minutes
resolution. Moreover, the initial point of the leakage is randomly selected over
a span between 10% and 90% of the set length. A partial sequence (10 days)
extracted from the dataset, that shows the effect of the leakage introduction,
is illustrated in Figure 6.22.
The GMMs have been tested varying the number of adopted Gaussian com-
ponents as: Ng = {2, 4, 8, 16, 32, 64, 128, 256}. For the HMMs, in addition to
the Gaussian components, the states number has been varied as well, from
1 to 4 (excluding the start and end states). The datasets have been split in
training and test sets, composed of 70% and 30% of the data, respectively.
The training sets have been used to create the background models, whereas
the test sets have been adopted to evaluate the system detection performance.
The data preparation, the feature extraction and the decision stages have been
developed in MATLAB®. The GMM and HMM training algorithms, and the
likelihood computation have been implemented in C++ using the Torch37 li-
brary.
The system performance has been evaluated in terms of true detection rate
(TDR), false detection rate (FDR), and Area Under Curve (AUC). The true
detection rate is defined as the conditional probability of correctly detect an
anomaly. The false detection rate defines the probability of detect a normal
event as anomaly. Specifically, they are computed from the detections achieved
over the test set, as:

TDR =no. of abnormal events detected as abnormal
no. of abnormal events , (6.10)

FDR =no. of normal events detected as abnormal
no. of normal events . (6.11)

where, for the GMM, one event corresponds to one frame, whereas, for the
HMM, one event corresponds to a sequence of frames, that is equal to the
number of tested states. The number of occurrences considered as true pos-
itive (abnormal events detected as abnormal) or false positive (normal event
detected as abnormal) are computed comparing the reference labels with the
labels obtained after the decision process.
The Receiver Operating Characteristics have been obtained varying the de-
tection threshold between the minimum and the maximum value of likelihood
returned by the test data. Specifically, setting a threshold value lower than
the minimum likelihood, the system is having a TDR and a FDR equal to 0%.

7torch.ch/torch3/
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Each normal event is correctly detected, but all the abnormal events are clas-
sified as normal as well. On the contrary, setting the a threshold value higher
than the maximum likelihood, both the TDR and the FDR reach a 100% rate.
This means that each sequence, abnormal or not, is recognized always as ab-
normal. In the features selection experiments, the tested combinations have
been evaluated in terms of AUCs, computed from the respective ROCs.

Selection of the best features combination

The pursuit of the best features combination is a time-consuming task, and a
full-search is an unaffordable process. In fact, let m be the number of all the
available features, and l the number of features for each vector combination,
the overall number of tests is given by the binomial coefficient: m!/l! (m− l)!.
For this reason, several suboptimal searching techniques have been proposed,
and the adopted methods is based on the Sequential Forward Selection (SFS)
[109]. In the SFS, the first step consists on the evaluation of each feature. After
that, an ex novo set of features vectors is created coupling the “winner” feature,
i.e. the one whose performance is the greatest, with each other feature. This
procedure is repeated by selecting the “winner” vector, instead of the “winner”
feature, but adopting the same criterion, and using it to create the new set of
vectors. In this way, each new iteration reduces the number of the evaluated
vectors by one, increasing the features in the vectors. So, applying this strat-
egy, the required iterations are reduced to: lm − l(l − 1)/2. Unfortunately,
due to the low performance achieved for the first iteration, partially depicted
in Figure 6.23, the chances of missing a good combination are considerably
increased.
For these reasons, a slight variation has been introduced in the SFS. At the
first step, instead of creating a new set of vectors from one winning feature,
three new sets are created. The features that achieved the three better results
are selected, and each of them is used to create the new combinations. The
three best results achieved, at the first step, are reported with the labels 1a,
1b, and 1c in Table 6.23. The proposed selection remains a suboptimal search
method, but clearly requires less computational resources than the full-search
method.
In the selection experiments, the AUC averaged over all the tested back-

grounds and leakages has been used as evaluation criterion. The best result
of each step is reported in Figure 6.23. For the natural gas at 1 minute reso-
lution, the best performance at the first step, for both GMM and HMM, has
been achieved by DATA, ∆DATA, and MA features. At 10 minutes resolu-
tion, DATA, ∆DATA, and MA reached the best results for the GMM, whereas
DATA, MA, and LWE for the HMM. For the water, DATA, ∆LWE, and LWE
represented the best features at 1 minute resolution for the GMM, and MA,
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Table 6.8: Best results and corresponding features combination achieved for
each resource and resolution. The “Parm.” column reports the num-
ber of Gaussians adopted for the GMM, and the states and Gaussians
number for the HMM, respectively.

Res. R. Features comb. AUC (%) Model Param.
AVG BEST BG BEST

G 1 MA+ENE+∆MA 80.87 87.52(7) 97.43(10/8) GMM 64
G 1 MA+ENE+LWE 85.60 92.61(7) 99.24(2/2) HMM 3-256
G 10 MA+ENE+∆MA 72.37 79.96(7) 96.13(8/2) GMM 64
G 10 LWE+MA+ENE 80.93 89.79(7) 99.68(1/8) HMM 4-32
W 1 LWE+MA+

ENE+∆MA
77.85 82.50(2) 97.73(1/2) GMM 256

W 1 MA+ENE+
LWE+∆MA

87.97 93.90(6) 99.87(1/8) HMM 4-64

W 10 DATA+∆ENE+
∆LWE+LWE+
ENE+WDE

68.41 73.27(8) 93.75(2/5) GMM 256

W 10 MA+LWE+ENE 80.63 89.82(1) 99.87(5/1) HMM 4-256

DATA, and LWE for the HMM. At 10 minutes resolution, DATA, ∆DATA,
and LWE are the best features for the GMM, and DATA, MA, and LWE for
the HMM.
The best combinations for each tested scenario and the corresponding model

parameters are reported in Table 6.8, together with average AUC in the col-
umn “AVG”. For each resolution, the HMM approach has achieved better re-
sults than the GMM. In both water and natural gas cases, a slight worsening
of the detection has been observed at lower resolution. Among the consid-
ered features, the best results have been reached, mainly, by the MA - ENE
pair combined with LWE or ∆MA features. Finally, the selected combinations
confirmed that using only the average consumption, MA, it is not possible to
correctly detect leakages in the addressed scenario. Among the tested com-
binations, for both water and natural gas cases, the worst feature has been
∆DATA. Specifically, it has been always the feature added last to each vector
in the selection process.

Additional considerations

In order to have a better insight of the detection performance, in Table 6.8 are
also reported the best AUCs achieved among the background models (column
“BEST BG”), and the overall best AUC (column “BEST”). The former refers
to the best result achieved as average of the AUCs, obtained for all the tested
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Figure 6.24: ROC for the best achieved result with each Background HMM
model. The red dotted line represents the overall mean curve.

leakages within the same background model. The latter shows the best AUC
achieved among the detected leakages, regardless of the adopted background
model. The background number, for the “BEST BG”, and the background and
the leakage number, for the “BEST”, that have achieved the reported result,
are indicated in brackets. The ROCs concerning the average AUCs achieved for
each HMM background model, among all the tested leakages and the overall
averages, are depicted in Figure 6.24.

Furthermore, the better behaviour for the HMMs, with respect to GMMs, is
confirmed by the FDR reported in Table 6.9. The values are obtained from the
respective ROCs, whose AUCs are reported in Table 6.8. Each FDR has been
computed for the lowest likelihood value that achieves a TDR of 100%. Note
that, the FDRs reported in Table 6.9 can not to be compared to the points
for TDRs of 100% in the curves depicted in Figure 6.24. Differently from the
ROCs, where the average curves have been computed considering both TDR
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Table 6.9: TDR and FDR values achieved with the best models.
Resource Res. TDR (%) FDR (%) Model

AVG BEST BG BEST

G 1 100 33.36 24.19 3.27 GMM
G 1 100 17.11 9.06 < 0.01 HMM
G 10 100 46.23 33.90 7.40 GMM
G 10 100 20.80 11.10 0.13 HMM
W 1 100 44.31 31.91 1.37 GMM
W 1 100 13.79 7.69 < 0.01 HMM
W 10 100 50.60 48.04 13.06 GMM
W 10 100 21.37 11.66 < 0.01 HMM

and FDR points, the results in Table 6.9 have been achieved performing the
average of the FDR components only.

Table 6.10: Further features combinations.
Resource Res. Features comb. AUC (%) Model
W 1 MA+ENE+∆LWE 80.55% GMM
W 1 MA+LWE+∆WDE+LWE 88.73% HMM
W 10 MA+ENE+∆LWE+∆MA+LWE 69.49% GMM
W 10 MA+LWE+ENE 80.63% HMM

In order to evaluate the goodness of the revised SFS, further features combina-
tions have been evaluated, among those features considered better-promising,
which are: MA, ENE, LWE, ∆LWE, and ∆MA. For the natural gas case, none
of the combination, at both resolutions, achieved better results than the ones
already achieved. Conversely, the water results exhibited a perceptible gap
from the original results in Table 6.8. The results achieved by the new combi-
nations are reported in Table 6.10. Among these combinations, the one used
for the water case, with 1 minute resolution and adopting the GMM, denotes
a significant improvement. For this combination, in addition to the reported
AUC, the BEST BG and BEST AUCs rose to 88.69% and 99.17%, respectively.
For the HMM at 10 minutes resolution, the best features combinations remains
the one selected during the original feature selection. Moreover, concerning the
water case at 10 minutes resolution with GMM, the new combination does not
shown a clear improvement, which is slightly greater than 1%, but its features
number is lower than the original one. Specifically, even if the new vector has
lost one component only, this is the heavier one, DATA, resulting in a drastic
reduction in the number of components in the features vector. Finally, this
last test confirmed the effectiveness of the adopted SFS procedure. Indeed,
only for one condition, water at 1 minute resolution with GMM, a noteworthy
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improvement has been achieved for a combination not evaluated in the original
features selection.
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Chapter 7

Conclusions

In this work, the issues relating to the management of energy and resources in
Micro Grid environments have been investigated, and the basis for the imple-
mentation of an energy and resource manager have been laid.
Through the analysis of the literature, the MILP technique has been deemed

the most suitable approach to implement an energy and resource manager
in a real life Micro Grid environment. By exploiting the linear nature of the
technique, the objective function and the matrix of constraints, representing the
main management problem, has been decomposed in blocks, each corresponding
to the model of a device in the system. This result has allowed to implement the
optimization problem as an arrangement of models, whose configuration has
been defined in order to match the topology of a given Micro Grid environment.
Once the general approach has been defined, two topologies have been chosen
to investigate the main issues of the optimization problem.
The task scheduling and thermal model scenario presented in Section 3.2.1

has been used to evaluate the effect of data uncertainty on the management
performance. On purpose, several feature have been implemented, such as task
scheduling and thermal energy management, along with local energy produc-
tion and storage. To limit the complexity of the study, a simplified Micro Grid
topology has been used. On purpose, also, a Radial Basis Function Network
based forecaster has been used to predict the solar irradiation and then the
solar energy production. A genetic algorithm based solver, on the other hand,
has been used to compute the thermal needs based on the thermal model of
the environment.
The multi apartment revamping model scenario 3.2.2 has been proposed to

evaluate how the availability of resources and the topology of the system affects
the system performance. On purpose, with respect to the previous scenario, a
more complex structure has been devised to model different Micro Grid con-
figurations. In this case, a long term analysis has been carried out to limit the
effect of seasonality. Nonetheless, to limit the complexity of the simulation,
some features such as task scheduling and thermal energy management has
been discarded, also a 1-hour ahead management approach has been used.
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Furthermore, the multi apartment revamping model scenario 3.2.2 has been
also used to investigate the performance of the management process for different
time frame length. In this case both 1-hour ahead and 1-day ahead management
have been evaluated and compared. Additionally, the effect of dynamic pricing
has been evaluated as well.
The results of the simulations provided several insight on the management

problem. The study based on the task scheduling and thermal model scenario
revealed that data uncertainty affect the management process indirectly. The
data uncertainty of the temperature forecast can affect the computation of the
thermal needs through the expected internal temperature value, thus its effect
appear only if a temperature target has been assigned by the user. The task
scheduling and energy management, on the other hand, are affected by the data
uncertainty on energy availability and price forecast. However, rather than the
absolute value of the forecast error, what affects the management is the relative
value of the forecast error. In fact the data uncertainty can alter the position of
the local maxima of the energy availability and the local minima of the energy
price, thus leading the manager to select the wrong time slot. On the other
hand, a constant, systematic error, would not affect the management process.
The task scheduling, however, is fairly robust against this issue, because the
constraints on the task limits the width of the active time window in which the
task execution take place.
The evaluation based on the multi apartment revamping model scenario with

a 1-hour ahead management scheme, revealed that the the topology of the sys-
tem can greatly affect the management performance. Although the availability
of an energy storage system play a major role in the improvement of the Micro
Grid efficiency, actually the integration of the subsystems is important as well.
In fact, the ability to route the electrical energy surplus towards the thermal
subsystem can lower the energy waste. Similarly, the ability to route the energy
surplus from the solar thermal collector for hot water production toward the
thermal system can greatly lower the energy waste.
With regard to the multi apartment revamping model scenario with a 1-

day ahead management scheme, the analysis revealed that not only it can
achieve greater saving with respect to the 1-hour ahead management scheme
counterpart. It is also less affected by data uncertainty, even more so when the
degree of integration among the subsystems is high.
To further improve the energy management process, a model of real life solar

power plant, that can take into account the effects the maximum power point
tracking algorithm and the effects of partial shading, has been devised and
implemented. The model can provide a more accurate computation of the
energy yield with respect to more simplified models, thus it can be used with
solar irradiation forecast to provide a better estimation of the energy yield.
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Moreover, the evaluation process has revealed that novel MPPT algorithm can
be implemented, so that the performance of the plant can be improved with
respect to nowadays technology.
To support the integration of the model in a real life Micro Grid environment,

a NILM algorithm has been investigated and further developed, as a mean to
provide a feedback from the system to the manager. Different configurations of
the algorithm have been evaluated under different time window sizes, revealing
improvement with respect to the state of the art, as well as room for further
enhancement.
Lastly, to expand the resource management abilities so that water and gas

can be subject to automated management, a scheduling algorithm aimed at
ultra low power micro devices has been devised. The goal is to improve the
performance of renewable energy supplied wireless sensors to be used in auto-
mated meter reading systems. The algorithm, namely EA-LSA has proven the
ability to improve the reliability of the devices by enhancing the use of energy
and adapting the device activity to the energy availability.
To the same end, a novelty detection algorithm has been investigated and

improved to operate as a leakage detection algorithm. Combined with an auto-
mated meter reading system, the meter records can be investigated to identify
the occurrence of leakages, so that the user can be notified of the problem, and
the resource manager can process the information to correctly assess the actual
resource consumption.

7.1 Future research topics
Smart and Micro Grids are regarded as the next generation power grids tech-
nology, and are currently being researched on to improve the efficiency of power
distribution. Although the research has reached the experimental stage much
effort is still required in order to achieved the necessary maturity level. To that
end, the work described in this dissertation represents the groundwork towards
an energy and resource manager that can effectively be implemented in a real
life Micro Grid environment.
To proceed further in the implementation, however, a more suitable frame-

work is required, and the technologies discussed in this dissertation must be
further developed and enhanced.
On purpose, the approach described in this work is being used as a reference

to develop an energy and resource manager by means of the Python program-
ming language. The development of the new framework aims to enhance and
integrate many of the feature proposed.
Although the management approach is based on a MILP problem obtained

as the arrangement of the device models, the arrangement process is not auto-
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mated yet, thus further research is required to overcome this limitation. Also,
the availability of specialized tools aimed at thermal modelling, can be inte-
grated to improve the management of the user comfort. Regarding the task
scheduling, although supported by the energy and resource manager, it shows
many limitations since the manager cannot interact with the controller of the
appliances.
On the other hand, the photovoltaic power plant model with support to par-

tial shading and the Non Invasive Load Monitoring approach, although not
fully developed yet, can be integrated in the manager. Nonetheless, the pho-
tovoltaic power plant model still requires many refinement, whereas the NILM
approach has to be extended to fully exploit the potential of the information
regarding the reactive energy consumption.
Similarly, even though the EA-LSA and the leakage detection algorithms

have proven their effectiveness, they are still in the experimental phase and
thus additional refinements and testing are required.
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