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Abstract

The objective of this dissertation is to understand the physics of a spilling

breaker and the validation of a simplified mathematical model. Such a model

is based on a three-layer structure: an underlying potential flow, a thin, turbu-

lent single-phase layer in the middle and a turbulent two-phase layer (air-water)

on the upper part (see Brocchini (1996)). The analysis relies on the data ob-

tained from dedicated laboratory experiments on a spilling breaker. One major

challenge was to reproduce an unsteady spilling breaker with high repeatability

and, at the same time, with a good accuracy in the measurement of mean and

turbulent physical quantities. A large part of this work was the design, con-

struction and building of the experimental setup. A sloshing wave was used for

the generation of the breaker. A 3m long, 0.6m deep and 0.10m wide tank was

built in Plexiglass and forced through an hexapode system, which allows a high

accuracy of the motion. To ensure repeatability of the phenomenon, a suitable

breaker event was generated to occur during the first two oscillation cycles of

the tank. The tank motion was suitably designed using a potential Harmonic

Polynomials Cell and a Navier-Stokes solver. The latter, was useful to under-

stand the dimension of the area of interest for the measurements. An accurate

analysis of the breaker inception and its evolution inside the tank, was done

in order to evaluate the geometric characteristics of the wave and, in particu-

lar, the definition of the water depth condition, for the definition of the length

scale to use for make dimensionless time and the quantities to evaluate. Mean

and turbulent kinematic quantities were measured using the Particle Image

Velocimetry (PIV) method. The evolution of the breaker is described in terms

of both global and local properties. Wave height and steepness show that after

an initial growth, the height immediately decays after peaking, while the wave

steepness remains constant around 0.25. The evolution of the local properties,

like vorticity and turbulence, vortical and turbulent flows displays the most in-

teresting dynamics. Two main stages characterise such evolution. In stage (1),

regarded as a “build-up” stage, vorticity and Turbulent Kinetic Energy rapidly

reach their maximum intensity and longitudinal extension. During such stage

the thickness of the single-phase turbulent region remains almost constant.

Stage (2), is regarded as a “relaxation” stage, characterised by some significant

flow pulsation till the wave attains a quasi-steady shape. In support to the an-

alytical, three-layer model of Brocchini and co-workers it is demonstrated that
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the cross-flow profile of the mean streamwise velocity U inside the single-phase

turbulent layer is well represented by a cubic polynomial. However, differently

from available steady-state models the coefficient of the leading-order term is

function of time: A = A(s, t). During stage (1) a fairly streamwise-uniform

distribution of U is characterized by A(s, t) ≈ 1, while during stage (2) U is

less uniform and A varies over a much larger range.
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Chapter 1

Introduction

Wave breaking plays an important role for the dissipation of wave energy and

momentum and for heat and mass transfer at the air-sea interface. It is also

responsible, in conjunction with currents, for the erosion of beaches, the trans-

port of seabed sediments and the interaction with ships and structures.

Wave breaking is, generally, associated with steep waves and the phenomenon

of breaking cannot be ignored in the statistical prediction of wave height, which

is of great importance for ocean engineers.

The breaker is characterized by turbulent dissipative processes that involve

air-entrainment and the generation of a two-phase flow. Thus, the intrinsic

difficulty of studying a breaker from theoretical, experimental and numerical

viewpoints.

The goal of this work is to understand the physics of a spilling breaker and

support and validate a simplified mathematical model by Brocchini (1996).

One major challenge of the present study, was the generation of an unsteady

spilling breaker, with high repeatability, PIV measurements very close to the

free surface and good accuracy of measured mean and turbulent physical quan-

tities, which requires an ensemble average. Experimental data was used both

to study the geometric characteristics of the wave along with its kinematics

and for the validation of the analytical model by Brocchini (1996).

With the main objective of fulfil the above mentioned requirements, a gentle

breaker is generated. This ensures an almost 2D flow in the vertical plane and

a weak turbulence level in the turbulent layer. Although this is not common in

nature, it is well suited to the validation of the analytical model by Brocchini

(1996) where the details and the theoretical issues of the free-surface flow are

taken into account.

1.1 Description of wave breaking inception

A breaking event at a beach or in the open sea is easily detectable watching

the generation of foam and noise. Alternatively, breaking may be regarded to

start when the wave becomes too energetic and unstable. A wave can contain
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Chapter 1 Introduction

a maximum amount of energy and when this limit is exceeded, the wave starts

to release, through breaking, some of its excess energy.

When breaking occurs, the motion of the wave changes rapidly, the flow evolves

into a turbulent and unpredictable form. Viscous forces become important and

energy is dissipated into heat.

In nature different types of breaking occur: spilling, plunging, surging, etc.

(see Fig.1.1).

Figure 1.1: Different types of breaking waves.

In this thesis an unsteady spilling breaking wave is considered and it is the

most common type of breaker in deep water. Spillers in the open sea, essentially

forced by the wind friction on the sea surface, or, to a more limited extent, by

steepness limitation, are also defined whitecaps (see Fig. 1.2). In deep-water

spillers the turbulence is confined in a region near the crest of the wave, with

white water spilling down the front face, starting from the wave crest.

Important observations of the wave crest-profile in the vicinity of breaking

and its evolution, were performed by Duncan et al. (1994). They observed in

detail the wave crest evolution of unsteady spilling breakers, induced through

dispersive focusing, using a high-speed camera with a resolution of 500 fps.

They reported on the generation of a bulge, parasitic capillary waves and the

subsequent breakdown of the bulge into turbulence in the forward face of the

crest. Hence, according to Duncan breaking is essentially connected with the

injection of vorticity into the flow, largely through parasitic capillaries as pro-

posed by Longuet-Higgins (1992). In a subsequent study, Duncan et al. (1999)

measured the maximum surface elevation, the length and thickness of the bulge,

8



1.1 Description of wave breaking inception

Figure 1.2: Evolution of a spilling breaker.

the position of the toe and the capillary waves. This was done in order to

describe the crest shape deformation. Testing multiple breaking waves, they

observed the same behaviour of the crest front face. This was also confirmed

by Diorio et al. (2009) using three different breaking modalities: dispersive

focusing, modulation instability and wind forcing. They generated unsteady

spilling breakers with lengths ranging from 10 to 120 cm and observed that,

independently of the method used for wave breaking generation, bulge and cap-

illary waves always occur on the crest-front face (See Fig. 1.3). This similarity

✁

✂

Figure 1.3: Crest profiles of spilling breakers generated by three different meth-
ods and their geometric similarity. Adapted from Diorio et al.
(2009).

was attributed to the crest flow being dominated by both surface tension and

9



Chapter 1 Introduction

gravity (Duncan, 2001; Diorio et al., 2009).

The deformation of the wave crest approaching breaking can also be influenced

by surface tension. The relative importance of buoyancy to that of surface

tension, γ, is measured by the Bond number Bo = ∆ρgλ2

γ where λ is the wave-

lenght, ∆ρ the water-air density difference and g gravity acceleration. Being

Bo ≈ λ2, surface tension matters for short wavelengths. Duncan (2001) anal-

ysed in detail the important role of surface tension for decreasing wavelenght

and breaking intensity. In particular, for large wavelengths and negligible sur-

face tension effects, breaking occurs through a jet-like crest deformation (very

locally in case of a gentle breaker) which impinges the wave face, inducing a

turbulent spilling process (see left panel of Fig.1.4) with formation of air bub-

bles and droplets downstream the toe. Conversely, for a shorter wave and for

a weaker breaker, the local jet flow is strongly affected by the surface tension

and then replaced by a surface tension-dominated ripple pattern, with the for-

mation of a bulge on the wave crest and capillary wave upstream the toe (see

right panel of Fig. 1.4). The toe moves upstream inducing a turbulent flow

without formation of bubbles. Although Duncan and co-workers largely fo-

cussed on surface-tension dominated breakers, i.e. on specific breaking modes,

their investigation of the role of surface tension is of interest for the overall

understanding of breaking inception. These aspects have been evaluated for

Figure 1.4: Three different phases of spilling breaking for weak and strong sur-
face tension effects. Figure adapted from Duncan (2001).

many years, in order to understand better what mechanisms govern the in-

ception of wave breaking. Such mechanisms have been described in terms of

various breaking criteria. Among them, we can mention criteria based on: 1)

the air entrainment (see Monahan and Mac Niocaill (2012)), used at first to

study the wave in real scale, 2) the steepness of the wave front (Duncan et al.,

1999; Diorio et al., 2009; Oh et al., 2005; Tian et al., 2008), 3) the velocity of

the near-crest flow (Oh et al., 2005; Tian et al., 2008), 4) the acceleration of

10



1.1 Description of wave breaking inception

the near-crest flow (Phillips, 1958; Longuet-Higgins, 1963; Snyder et al., 1983;

Longuet-Higgins, 1985), 5) the vorticity injection at the free surface (Duncan

et al., 1994; Hornung et al., 1995; Dabiri and Gharib, 1997; Qiao and Duncan,

2001), and criteria that refer to the wave energy content (Banner and Peirson,

2007; Tian et al., 2008, 2010). All these criteria have had their merits in the

understanding and modelling of this complex phenomenon and are still used in

various fashions in various models. Hence, breaking criteria might be regarded

as dependent on the type of breaking. However, it is arguable that one single

mechanism is at the roots of all types of wave breaking. Like for all breakers,

various breaking criteria have been used also for spilling breakers. However,

recent studies have focussed on the details of the mechanics underlying break-

ing inception at spillers.

With regards to geometric characteristics of the wave, Nepf et al. (1998); Wu

and Nepf (2002) and Oh et al. (2005), proposed an accurate study of the wave

steepness which was used as a critical parameter to predict the breaking on-

set. From laboratory experiments, the value of this parameter ranges between

0.15 and 0.44. Such large range of variation renders it improbable its universal

application to predict the onset of breaking. Babanin et al. (2007, 2010) intro-

duced on the basis of numerical simulations and experimental measurements,

a modulation instability that leads to wave breaking. They defined an Initial

Monochromatic Steepness (IMS) to predict the breaking onset. They showed

that for IMS > 0.44 wave breaking occurs immediately and for IMS < 0.08

the wave breaks only in presence of wind forcing. Alternatively, Rapp and

Melville (1990) proposed a global steepness, S = kc(Σan) associated with the

wave group. kc is the wave number of the central wave in the wave group, and

an is the amplitude of the n-th wave component. They found that S0 = 0.25,

where S0 is the critical wave steepness above which the breaking onset occurs,

worked well for their specific waves. Later, it was shown that S0 can be af-

fected by the spectral shape: Chaplin et al. (1996) reported S0 = 0.25 and 0.30

for wave groups of constant-amplitude and constant-steepness spectra, respec-

tively. Subsequently Drazen et al. (2008) proposed S = (Σkcan) and reported

that the breaking onset due to dispersive focusing is in the range 0.32 − 0.36.

Overall the definition of the parameters used in geometric criteria is simple but,

at the some time does not allow for a universally-applicable criterion. Geomet-

ric criteria can not give a good prediction of the wave breaking onset because

a breaking wave can be generated in different modes, such as dispersive focus-

ing, modulation instability, wind forcing and wave-current interaction. These

different mechanisms can influence the breaking wave geometry at onset. Fur-

thermore, the wave can break with different intensity at the some length-scale.

This implies that the geometric criteria is destined to fail.

Kinematic criteria relate the horizontal velocity of the crest particle Uc with
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Chapter 1 Introduction

the wave phase speed C, and wave breaking is taken to occur when Uc/C ≥ 1

so Uc ≥ C. Determination of the crest particle velocity can be facilitated by

PIV measurements. In their Annual Review of Fluid Mechanics paper (Per-

lin et al., 2013), Perlin contributed to the scientific debate on the kinematic

breaking criterium. Many authors indeed, found in their investigation, that

Uc/C ≥ 1 is a sufficient, but not necessary, condition for the onset of the

breaking. In particular, from numerical simulations of modulating waves, con-

firmed also by experimental observations, Tulin and Landrini (2001) found that

a well-defined criterion in deep water for the onset of the initial wave deforma-

tion is Uc/C = 1. Note that the last criterion confirms that Uc = C is only a

sufficient but not necessary condition for the wave breaking occurrence. With

reference to the acceleration of the near-crest profile and the energy variation

of higher-frequency wave components, we focus our attention on the local en-

ergy growth rate like dynamic breaking criterion. Schultz et al. (1994) reported

one of the earliest numerical studies of this type and demonstrated that the

energy associated with the root-mean-square wave height can be used to define

a breaking criterion for regular 2D deep-water waves. The critical condition is

that the potential energy exceeds 52% of the total energy of a limiting Stokes

wave. Barthelemy et al. (2015) focused their attention, through a numerical

study, on a unified criteria for predicting breaking onset, valid for 2D and 3D

gravity water waves propagating over flat topography, for water depth ranging

from intermediate to deep. After reviewing the criteria available in the litera-

ture, they proposed a new breaking criteria based on the ratio between the local

energy flux F and the local energy density E. Because F/E is the local energy

flux speed or advection speed associated with the scalar field E, they defined

the breaking threshold as the ratio B = F/EC, with C local crest velocity. On

the free surface B is equal to Uc/C with Uc particle speed. Barthelemy et al.

(2015) found that on the crest it is B = 0.84 at the onset of breaking (for non

breaking waves B < 0.84). This criterion comes from the analyses made in

the works of Fedele (2014a). Fedele (2014b) indicates that as the wave crest

approaches the onset of breaking, it steepness causing a decrease of the crest

slowdown due to nonlinear dispersive effects. In particular, preliminary studies

(Fedele, Personal communication) suggest that gently focusing wave crests slow

down more than steeper crests (see also Fedele (2014a,b)). Thus, the threshold

B = 0.84 is attained faster as wave crests steepen while the associated particle

speed Uc increases as the focusing point is attained (fluid particles tend to ac-

celerate as focusing is approached while crests slowdown less as they steepen

because of nonlinear dispersion, Fedele (2014b)). More detail about this study

will be presented in Chapter 3. However, at present, the energetic criterion is

the most used.
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1.2 Problems related to the representation of the breaker

1.2 Problems related to the representation of the

breaker

The first conceptual models of a breaking wave regarded it as characterized

by a roller residing over the front face of a non-breaking wave or an extensive

turbulent region beneath the free surface or in same interpretation of a combi-

nation of both.

In the case of the occurrence of a roller region, the breaker is regarded as a

closed recirculating region of aerated water in contact with the underlying wave

from the crest, downward over the wave face to its leading edge. The flow is

studied in a reference frame fixed with the wave and the turbulent velocities

are of the same order of magnitude of the wave velocity. The fluid contained

in the “roller” is continually mixing with the rest of the turbulent fluid in the

wave.

Later studies (Banner and Phillips, 1974; Peregrine and Svendsen, 1978) have

shown that the flow just below the breaker is not a roller, but a thin turbulent

region. Peregrine (1992) and Banner and Peregrine (1993) provide overview of

the principal features about spilling breakers and indicate the formation of an

initial mixing layer region leading to a turbulent region beneath the wave crest

and Cointe and Tulin (1994) model recirculating eddy sustained by turbulent

stresses acting in the shear zone, i.e. mixing layer region.

The onset of the breaking process involves relatively small-scale events in the

form of capillary waves, as described by Longuet-Higgins (1973), Longuet-

Higgins (1990), Longuet-Higgins (1992), Longuet-Higgins (1994), whereas the

final state of breaking exhibits irregular distortion of the free surface in con-

junction with large-scale separate flow beneath it, as addressed for example by

Peregrine and Svendsen (1978) and Hoyt and Sellin (1989).

On the basis of Duncan et al. (1994) observations, Longuet-Higgins (1994) pro-

posed that the longer capillary wave are unstable waves which occur in a shear

layer immediately beneath the free surface. Lin and Rockwell (1994, 1995),

showed that a rapid distortion, along the free surface of the flow, occurs at this

location leading to a flow separation and, as a consequence, giving rise to a

mixing layer with an important concentration of vorticity. Particular attention

was put in the interaction between distributed and concentrated vorticity with

a free surface. Some of this interactions are important for the vorticity gen-

eration and the free surface distortion. A roller-type motion, in the form of a

strong, large-scale (single) vortex does not exist, at least in an instantaneous

sense, between the free-surface and the mixing layer.

Dabiri and Gharib (1997)(see Fig. 1.5) evaluated the vorticity generation

reproducing a spilling breaking wave in laboratory through two different ex-

periments based on different Froude (Fr = U/
√

gh) and Reynolds number

13



Chapter 1 Introduction

(Re = Uh/ν).

Figure 1.5: Breaking evolution at three differents temporal and spatial stages
with a high Froude and Reynols number. From top to bottom, in-
stantaneous velocity and vorticity (dashed lines for negative values
and solid lines for positive values) fields are shown (adapted from
Dabiri and Gharib (1997)).

In the first case (see Fig. 1.5, left-top panel), for high Froude and Reynolds

numbers, they found an initial fast layer of flow which is generated at the

surface and behaves like a hydraulic jump. At a more downstream (see Fig.

1.5, left-middle panel), they observed the generation of some surface-parallel

vorticity due to the deceleration (−Us∂Us/∂s) of a thin layer of the surface

fluid (see Fig. 1.6).

Figure 1.6: The free surface velocity and flow deceleration of the high-Froude
number case. The vorticy flux is shown on the left ordinate axis,
while the velocity scale is shown on the right ordinate axis; (a)
shows the position of the maximum deceleration, and the flux of
vorticity into the flow; (b) shows the stagnation point of the free
surface fluid and (c) the initiation of wave breaking observed visu-
ally (adapted from Dabiri and Gharib (1997)).

14



1.2 Problems related to the representation of the breaker

This deceleration induces a separation of the turbulent layer that can be

regarded as a roller. It was concluded that the source of vorticity was not due

to the surface curvature or from a stagnation point, which could be useful to

indicate the breaking, but solely due to the flow deceleration. At the most

downstream section 3 (see Fig. 1.5, right-top panel and right-bottom panel),

the vorticity field in the shear layer is greater than the vorticity in the layer

beneath the breaker. In the second case (see Fig. 1.7), for low Froude and

Reynolds numbers, no breaking occurs.

Figure 1.7: Breaking evolution at low Froude and Reynols number. From top
to bottom, instantaneous velocity and vorticity (dashed lines for
negative values and solid lines for positive values) fields are shown
(adapted from Dabiri and Gharib (1997)).

The capillary curvature provide a negligible contribution to the gravity term
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for the vorticity flux (see 1.1). The vortical flow is influenced by the deceleration

term as the flow passes through the capillary waves. The vorticity flux at the

free surface, can be evaluated by the following equation:

ν

(

∂ωz

∂r

)

r=0

= −∂Us

∂t
− g cos θ − Us

∂Us

∂s
(1.1)

where ν is the kinematic viscosity, ωz the vorticity, Us the velocity parallel to

the free surface, (r, s) represent curvilinear orthogonal coordinates, r measuring

distances in the normal-to-surface direction and s in the parallel-to-surface

direction. For short-wavelenghts and quasi-steady flows, Dabiri and Gharib

used the above equation neglecting the first term on the right-hand side.

Similar results were achieved by Misra et al. (2008), for the case of a classic

hydraulic jump as shown in Fig. 1.8. They observed, from the analysis of the

mean horizontal velocity, that at the jump toe, the adverse pressure gradient

induces a rapid axial deceleration. A thin concentrated region of negative

vorticity in the breaker shear layer is generated and the change in slope of the

free surface plays a central role in determining the maximum vorticity. Near

the toe, the value of vorticity decays rapidly away from the mean surface.

Figure 1.8: Top panel: instantaneous vorticity (1/s). Bottom panel:
the ensemble-averaged surface-parallel convective acceleration
Ûs∂Û/∂s (m/s2) (adapted from Misra et al. (2008)).

This brief description about the wave shape evolution during breaking, the
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1.3 Analytical models

vorticity generation and its evolution related to the velocity field, provides the

basis for a comparative analysis of similar dynamics induced at an unsteady

breaker. This will be widely discussed in Chapter 3.

1.3 Analytical models

Over the past 20 years there has been a huge development of numerical models

dedicated to the description of breaking waves. Particular attention has been

put on the characterization of the free surface and on the bubble structure, on

the wave breaking onset and on the dissipation of energy during breaking.

These models can provide useful information on kinematic and dynamic char-

acteristics of a breaking wave , but with the drawback of very large computa-

tional costs. For this reasons, in a parallel way, analytical models have been

developed, in order to simplify the comprehension and the representation of the

breaking wave structure, this also allowing for new numerical models that, ben-

efitting from the extra knowledge available, require a reduced computational

effort.

In this section, a chronological summary is given of the models available for

an analytical description of the breaker region in fully-formed spilling breakers.

Longuet-Higgins (1973) proposed the first simple model for the local tur-

bulent flow near the forward edge of a steady spilling breaker or a hydraulic

jump. The particularity of this model is the different description of the re-

gions of laminar flow and those of turbulent flow. In the equation of motion

for the mean flow, gravity was put in balance with Reynolds stresses and near

the toe a non-hydrostatic pressure was assumed. The effect of air entrainment

was also accounted for in the solution for the surface profile in the turbulent

wedge originating from the point of discontinuity. Banner and Phillips (1974)

on the basis of experimental studies, suggested that the breaker region did not

include a stagnation point, but there was an intermittent zone where a low

velocity water was tumbling down the front of the crest.

Longuet-Higgins and Turner (1974) proposed an entraining plume model

where the spilling breaker was approximated as a turbulent gravity current

riding down the forward face of a wave while laminar flow would entrain from

below. The entrainment was modelled by a finite tangential stress at the bound-

ary between the turbulent and laminar flows. For the first time, the role of the

air-water mixing and the unsteady motion of the toe front was included; how-

ever, turbulence was confined within the surface roller. The steady, part of the

whitecap would entrain water from below and air from above, at such a rate

that the density of the air-water mixture would remain constant (see Fig. 1.9).

At the front of the layer fluid would be fed into a circulating region similar to a

half of a vortex pair. Extra entrainment of both air and water would certainly
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occur in this case, and the penetration of the surface of the wave below would

be greater than it is in the steady part of the flow (see Fig. 1.10).

From experimental investigations they found that the density of the mixture

near the front could be taken as constant. This results is better applicable to

the front rather than the flow behind the wave crest.

Although this theory was formulated for steady motion, it was shown to ap-

proximately describe both the acceleration of the front of an unsteady spilling

breaker, as well as the geometry of the breaking region,prompting its use as

possible model describing the geometry and kinematic of an unsteady spilling

breaking wave.

Figure 1.9: Sketch of a spilling breaker. The wave is moving from right to left
and has a whitecap on its forward face. The velocities in both the
wave and whitecap are measured relative to the wave crest, with
positive direction downwards. Adapted from Longuet-Higgins and
Turner (1974).

Figure 1.10: Sketch of the "starting plume" interpretation of an advancing
whitecap. Adapted from Longuet-Higgins and Turner (1974).

In Madsen and Svendsen (1983) the turbulent region of a bore or hydraulic

jump was modeled as a liquid wedge spreading from the toe front downward in

the water body (see Fig. 1.11). Completely different from the previous works,
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1.3 Analytical models

motivated by the observation by Peregrine and Svendsen (1978), the present

model was based on depth-integrated equations. This in combination with the

assumption of static pressure. A simplified k − ǫ turbulence model was used in

the turbulent region to properly describe the local hydrodynamics. Although

the turbulence generated at the breaker toe is realistic, the model does not take

into account the air phase, flow unsteadiness, flow rotation and local curvature.

Further, an infinite cross-flow velocity gradient at the toe front induces a toe

singularity. Also neglected were the bottom boundary layer and shear stresses,

which are natural dynamics in a bore. By restricting the analysis to such flow,

they also avoided the problem of separation of the bottom boundary layer due

to the adverse pressure gradient under the jump and the eventual formation of

a standing vortex near the bottom, which may occur in cases of “fully devel-

oped” flow.

The major differences with the analytical model of Longuet-Higgins (1973) and

Longuet-Higgins and Turner (1974), are that Longuet-Higgins (1973) suggested

that: i) the toe was a stagnation point and ii) the velocity in the turbulent and

irrotational region, were finite at the toe and much smaller than the phase

speed. More recently Cointe and Tulin (1994), proposed a theory where the

Figure 1.11: Schematic representation of the hydraulic jump/bore of Madsen
and Svendsen. Adapted from Madsen and Svendsen (1983).

spilling breaker is approximated as a stationary vortex placed on the forward

face of the wave, sustained by the turbulent shear stresses between the eddy

and underlying flow (see Fig. 1.12). The turbulence generated at the toe re-

sembles that of a mixing layer and the pressure is hydrostatic. This simple

model provides a reasonable description of the incipient breaking conditions;

however, it is valid only for quasi-steady breakers. Based on the physical ob-

servation that the time scale for the evolution of a breaker is longer than the

one relative to the transport of the fluid elements through it, Peregrine (1992)

defined a spilling breaker as a quasi-steady breaker in the frame moving with

the wave. Conversely the event is taken to be unsteady when the time scale of

the evolution of the breaker is smaller than the underlying wave motion. For

an unsteady, fully-formed spilling breaker, which is the focus of this work, some

analytical studies of specific interest for the present thesis are briefly described
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Figure 1.12: Sketch of Cointe and Tulin’s analytical model. Adapted from
Cointe and Tulin (1994).

in the following.

1.4 Recent analytical models

The summary outlined above, shows that the available analytical models are

not fully adequate to reproduce a rapidly evolving, air-water mixing spilling

breaker, e.g. turbulence concentrated only in the surface roller; simplified tur-

bulence modeling; no air-water mixing modelling, no flow unsteadiness, no

detailed representation of rotation and curvature of the free surface; singular-

ity at the toe i.e. infinite cross-flow velocity gradient at toe. Virtually all

“bulk” models, rely on concepts like that of: 1) a “roller” or a “stagnation

eddy” near the crest, 2) a turbulent wedge in the form of a breaker shear layer/

mixing layer that originates at the toe because of flow separation, 3) a wake

downstream. The roller model can be regarded only as a partial solution for

the natural dynamics because it is evident that the fluid in a breaking wave

actually mixes with the rest of the turbulent flow. It is, therefore clear that the

intermittency of the fluctuating/disrupted air-water surface and the unsteadi-

ness of the breaking process should be properly accounted for. To this purpose

recently, Brocchini and co-workers (Brocchini, 1996; Brocchini and Peregrine,

2001a,b) and Brocchini (2002) focused on the effects due to strong turbulence

at the water free surface and of the various different dynamics evolving in a

breaker, with the aim of improving the modelling of breaking waves and apply-

ing it to a wider range of flow conditions. The main finding consists in suitable

surface boundary conditions for the turbulent air-water mixture at the front

and on the crest of a spilling breaker. The boundary conditions (kinematic

and dynamic) are achieved by both Reynolds averaging and, then, integrating

across the surface layer (in the region where air and water are present). The

mentioned results on the dynamics of an turbulence-disrupted air-water inter-

face have been implemented into the, the analytical model of Brocchini (1996),

which somehow similar to that of Madsen and Svendsen (1983), is not limited

to shallow-water conditions and quasi-steady flows. Brocchini (1996)’s model

introduces, major improvements in representing the mean flow unsteadiness,
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the stretching, local curvature and rotation of the turbulent region. In this

theory, the spilling breaker is represented through a three-layers system (see

Fig.1.13): a top layer, called two-phase flow, which is an air-water mixture; a

middle layer characterized by a turbulent, single-phase water flow, which rides

on the underling irrotational potential wave body (lowest layer).

The equations of motion were achieved on the basis of curvilinear tensor anal-

ysis because it provides the most direct method by which the equations valid

for curvilinear coordinate system can be derived (see also Moore (1978)).

The mass conservation equation for an incompressible fluid with constant den-

sity ρ and the Euler’s equation (conservation of linear momentum), were written

in physical variables.

An appropriate coordinate system (s, n) was chosen on the curve Υ(t) (see Fig.

1.13) which represents either the continuous wave free surface,(DΥ/Dt = 0), or,

in the case of breaking, a non-material interface between the irrotational flow

region below and the region containing turbulent flow above and, therefore, the

lower bound of the one phase-turbulent thin layer. Although, turbulence would

penetrate below the Υ interface, for simplicity, such dynamics is disregarded.

This can also be seen as a case in which the turbulence penetrating down the

Υ interface is isotropic and passively decaying. Applying, then, the Reynolds

averaging technique 〈.〉 to conservation equations, the continuity equation, for

both mean and turbulent flow, was found:

∂U

∂s
+

∂

∂n
[(1− κn)V ] = n

∂Ω

∂s
,

∂u

∂s
+

∂

∂n
[(1− κn) v] = 0 (1.2)

n and s are, respectively, crossflow and streamwise local coordinates, U and

u are the mean and turbulent streamwise velocity components, respectively,

while V and v are the mean and turbulent cross-flow velocity components,

respectively. Ω(s, t) is the angular velocity of the local frame of reference (̂s, n̂)

and κ is the local curvature. Is possible to see how the angular velocity (Ω)

influences only the mean flow while the curvature (κ) influences both the mean

flow and the turbulent velocity. These two parameters were defined as follows:

κ = n̂ · ∂ŝ

∂s
, Ω = n̂ · ∂ŝ

∂t
(1.3)

The momentum equation was decomposed into streamwise and crossflow

components:

(1− κn)
∂U

∂t
+ (1− κn)

[(

V + n̂ · ∂R

∂t

)

∂U

∂n
+

∂〈uv〉
∂n

]

+
∂〈u2〉

∂s
− 2κ〈uv〉+
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Figure 1.13: Schematic view of the theoretical model of Brocchini (1996).

(

U+ŝ · ∂R

∂t
−nΩ

)(

∂U

∂s
−n

∂Ω

∂s
−κV

)

=(1−κn)

(

V Ω+
∂ (nΩ)

∂t
+ŝ · ǵ

)

− 1

ρ

∂P

∂s
(1.4)

∂V

∂t
+n̂ · ∂R

∂t

∂V

∂n
+
1

2

∂V 2

∂n
+

∂〈v2〉
∂n

+
1

(1−κn)
ŝ· ∂R

∂t

(

∂V

∂s
+κU

)

+

(U −κn)

(1−κn)

(

∂V

∂s
+κU

)

+
1

(1−κn)

∂〈uv〉
∂s

+
κ

(

〈u2〉−〈v2〉
)

(1−κn)
=nΩ2−UΩ+n̂ · ǵ− 1

ρ

∂P

∂n
(1.5)

In these equations the Reynolds’ stress terms 〈uiuj〉 are responsible for mo-
mentum exchanges between turbulence and the mean flow. The contribution of

curvature and local rotation like in the continuity equation, make these equa-

tions very complex, though similar to those of Bradshaw (1973) for an unsteady

turbulent layer.

In order to obtain an analytically feasible solution, a simple turbulent clo-

sure model was chosen. A transport equation for the turbulent kinetic energy

was also used when non-equilibrium conditions were to be reproduced. Fur-

thermore, geometric and kinematic (1.6) scaling arguments were introduced

to simplify the above equations and to analyse the “leading edge of breaker”

(µ = O(1)), “mixing layer” (µ = O(
√

ǫ)) and “wake” regimes (µ = O(ǫ)):

ǫ =
b

L
, µ =

u

U
(1.6)

where b is the thickness of the single-phase turbulent layer and L the length of

Υ, while µ is the ratio of the scales for turbulent velocities and mean velocities.

The finally form of the dimensionless equation is:
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• continuity equation for the mean flow:

∂U

∂s
+

∂V

∂n
= ǫ

[

κ
∂ (nV )

∂n
+ n

∂Ω

∂s

]

(1.7)

• streamwise component of momentum equation:

[

µ2
∂〈uv〉

∂n
+ n̂ · ∂R

∂t

∂U

∂n

]

+ǫ

[

∂U

∂t
+ V

∂U

∂n
+

(

U + ŝ · ∂R

∂t

)

∂U

∂s
− κnn̂ · ∂R

∂t

∂U

∂n

−µ2
(

κn
∂〈uv〉

∂n
− ∂〈u2〉

∂s
+ 2κ〈uv〉

)]

− ǫ2
[

κn

(

∂U

∂t
+ V

∂U

∂n

)

+
∂U

∂s
nΩ+

(

U + ŝ · ∂R

∂t

) (

n
∂Ω

∂s
+ κV

)]

+ ǫ3
[

nΩ

(

n
∂Ω

∂s
+ κV

)]

= ǫ

[

ŝ · ǵ − ∂P

∂s

]

+

ǫ2
[

V Ω+
∂ (nΩ)

∂t
− κnŝ · ǵ

]

− ǫ3κn

[

V Ω+
∂ (nΩ)

∂t

]

(1.8)

• crossflow component of momentum equation:

µ2
∂〈v2〉

∂n
+ ǫ

[

n̂ · ∂R

∂t

∂V

∂n
− µ2κn

∂〈v2〉
∂n

+ κU ŝ · ∂R

∂t
+ κU2

]

+

+ǫ2
[

∂V

∂t
− κnn̂ · ∂R

∂t

∂V

∂n
+
1

2

∂V 2

∂n
+

(

ŝ · ∂R

∂t
+ U

)

∂V

∂s
− nΩκU

]

−ǫ3n

[

κ
∂V

∂t
+ κ

1

2

∂V 2

∂n
+Ω

∂V

∂s

]

= −∂P

∂n
− ǫ

[

UΩ− n · ǵ − κn
∂P

∂n

]

+

+ǫ2n
[

Ω2 + κUΩ− κn · ǵ
]

− ǫ3κn2Ω2 (1.9)

• turbulent kinetic energy equation:

n̂ · ∂R

∂t

∂k

∂n
+ ǫ

[

∂k

∂t
+

(

U+ŝ · ∂R

∂t

)

∂k

∂s
+

(

V −2κnn̂ · ∂R

∂t

)

∂k

∂n

]

−ǫ2n

[

2κ
∂k

∂t
+

(

κU+κŝ · ∂R

∂t
+Ω

)

∂k

∂s
+κ

(

2V −κn̂ · ∂R

∂t

)

∂k

∂n

]

−ǫ3κn2
[

κ
∂k

∂t
+Ω

∂k

∂s
+κV

∂k

∂n

]

=µ
∂

∂n

(

νt
∂k

∂n

)

−〈uv〉∂U

∂n
−µε+ ǫ

[

2κnµ
∂

∂n

(

νt
∂k

∂n

)

−
(

〈u2〉−〈v2〉
) ∂V

∂n

−2〈uv〉κn
∂U

∂n
+〈uv〉κU − 2κnµε

]

+ǫ2
[

µ
∂

∂s

(

νt
∂k

∂s

)

+κ2n2µ
∂

∂n

(

νt
∂k

∂n

)
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−2κn
(

〈u2〉 − 〈v2〉
) ∂V

∂n
−〈uv〉

(

κ2n2
∂U

∂n
+

∂V

∂s
−κ2nU

)

−κ2n2µε

]

+

ǫ3κn

[

κn
(

〈u2〉−〈v2〉
) ∂V

∂n
+〈uv〉∂V

∂s

]

(1.10)

Finally, the following closure equations for the Reynold’s stresses, were used:

〈uv〉+ǫκn〈uv〉= νt

µ

∂U

∂n
+ǫ

νt

µ
κ

(

U −n
∂U

∂n

)

+ǫ2
νt

µ

∂V

∂s
(1.11)

〈u2〉=2C1κ+ǫ
2νt

µ

∂V

∂n
, 〈v2〉=2C3κ−ǫ

2νt

µ

∂V

∂n
(1.12)

where νt is the eddy viscosity related to the turbulent kinetic energy and its

rate of dissipation ε by:

νt = Cµ
k2

ε
(1.13)

while Cµ is a constant of the model and was found to be of order of Cµ ≈ 0.09.

The rate of dissipation, instead, was related to the total thickness of the mixing

turbulent layer and the kinetic energy:

ε = Cε
k3/2

b
(1.14)

with Cε ≈ 0.08.

The above model, complete at the various orders of ǫ and µ, will be investigated

in its O(1) form in the present work.

Experimental data from Misra et al. (2006) supported some of the findings

and suggestions by Brocchini and co-workers. Further works by Brocchini and

Misra, detailed in the following, helped clarify various aspects of the theoretical

model under analysis, in order to gain information on turbulence inception at

the leading edge of the breaker.

In Misra et al. (2004) the attention was focused on the importance of extra

strain rates for the turbulent structure. According to the theoretical model,

extra strain rate effects due to the geometric and streamline curvature, should

be smaller than the simple shear strain rate. However, Misra et al. (2004)

found, on the basis of data obtained from dedicated PIV experiments for an

air-entraining weakly turbulent hydraulic jump that the effects of such terms

are higher than the mean simple shear. Subsequently, Misra et al. (2006),
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using the same data of Misra et al. (2004), attempted at explaining some of

the dynamics entailed in the model of Brocchini (1996); Brocchini and Peregrine

(2001a,b); Brocchini (2002). Particular attention was put in the description of:

i) the mean flow profile within the single-phase turbulent layer and ii) the O(1),

in layer thickness, streamwise momentum equation. A good agreement was

found between a cubic fit of the experimental velocity and the theoretical mean

velocity. The latter is represented by a cubic polynomial, like in Madsen and

Svendsen (1983) but with the difference that in the present case the coefficients

of the cubic are functions of both time and streamwise coordinate s.

We close this Introduction by providing a short overview of the rest of the thesis.

Chapter 2 of the present dissertation shown in detail an accurate laboratory

experiments, using PIV technique. Chapter 3 focuses on an overall description

of the dynamics of a breaker, specific focus being given to the geometry and

kinematic characteristics of the breaker. Validation of the analytical model

of Brocchini and co-workers, in particular the behaviour of the O(1) model,

are shown in Chapter 4. Particular attention was also put in the extra strain

induced by streamline curvature and on the study of the breaker like a flapping

foil. Discussion and conclusion are presented in Chapter 5.
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Chapter 2

Laboratory experiments

In previous experimental studies, a spilling breaker was analysed in similarity

to either hydraulic jumps (Misra et al., 2008) or a hydrofoil-generated turbulent

region (Battjes and Sakai, 1980; Duncan and Dimas, 1996; Mossa, 2008). In

both cases a steady spilling breaker was generated and most often was charac-

terized by a small curvature of the free surface with an almost vanishing local

rotation. In particular, Misra et al. (2008) proposed an interesting study of a

steady breaker (see Fig. 2.1) with good accuracy measurements of the statisti-

cal kinematic quantities. Thanks to the high repeatability of the phenomenon,

they were able to define the characteristics of the air-water mixing layer and the

kinematic quantities of the turbulent shear layer just below the turbulent free

surface. Due to the realization of a large number of tests, an ensemble-average

of the instantaneous velocity fields was done in order to evaluate the mean and

turbulent flow structure. For example, analysing the vorticity, they found that

the peak of vorticity is upstream the breaking location and in good agreement

with the experimental results of Dabiri and Gharib (1997).

Figure 2.1: Hydraulic jump by Misra et al. (2008).

Using a conceptually different experiment, Duncan and Dimas (1996) pro-

posed a steady breaking wave generated by a two-dimensional hydrofoil moving

near the free surface with constant speed, angle attack and depth of submer-

gence. They measured the mean and fluctuating shape of a breaking wave, the
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Chapter 2 Laboratory experiments

surface ripples downstream of the breaker and the vertical distribution of verti-

cal and horizontal velocity fluctuations at a single station behind the breaking

wave (see Fig. 2.2). Similar studies were also proposed by Battjes and Sakai

(1980) and Mossa (2008). In order to analyse the flow, using a hydrofoil, Bat-

tjes and Sakai (1980), observed that this solution enables the simulation of a

breaker characterized by an unsteady first phase and a second phase when a

quasi-steady bore is present, to which the results of a spilling type breaking

downstream of a hydrofoil can be applied.

Mossa (2008) proposed an experimental work on a spiller produced by a hydro-

foil positioned in a uniform current. The use of the Laser Doppler Anemometer

technique, allowed to find two different regions downstream of the hydrofoil:

(i) a flow field similar to a mixing layer, close to the breaking zone, and (ii) a

flow field similar to a wake.

In this dissertation, we want to bring in some innovation related with both the

Figure 2.2: Schematic showing the configuration of the tank, carriage, optics
and hydrofoil for photographing the breaker region. Adapted from
Duncan and Dimas (1996).

generation mechanism of the breaker and the nature of observed phenomena.

Being the aim of this work that of studying, with a very high temporal and

spatial resolution and good repeatability, a rapidly-evolving spilling breaker,

we have decided to resort to an impulsive generation of the breaker (see Fig.

2.3). Furthermore, the choice of a sloshing tank allows for a high repeatability

of the phenomenon and a good accuracy of measurement. All these aspects are
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2.1 PIV technique

detailed in the following and more details about the comparison between the

results of a steady (previous literature studies) and unsteady breakers (current

study) will be shown in the next chapter.

Figure 2.3: Left panel: a flume for the generation of a hydraulic jump. Right
panel: Hexapode System for the generation of an unsteady spilling
breaker.

2.1 PIV technique

Several methods for measuring the fluid velocity of phenomena of interest have

been developed and in this case a Particle Image Velocimetry (PIV) technique

was used.

The Particle Image Velocimetry is a branch of the Particle Image Technique

and all use image analysis to measure velocity.

Common to all of them is that small particles are introduced in the flow and

a camera captures images of the tracer particles as they follow the flow. The

velocity field is, then, computed from an analysis of the images.

The image acquisition consists in the capture of the light scattered from the

particles, its recording through a digital camera and its storage into a dedicated

computer, used for all the needed analyses. There exist PIV systems that can

measure a 3D velocity field, but for our work only a 2D velocity field is analysed.

Fig. 2.4 shows the principle at the base of the PIV. Using two different images,

it is possible to evaluate the distance ∆s of the seeding particles in the fluid

that move during a time interval ∆t. The velocity is, thus, evaluated as:

V =
∆s

∆t

It is assumed that the tracer particles follow the flow and that the velocity
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Chapter 2 Laboratory experiments

of the particle is equal to the velocity of the fluid. This only occurs for “non-

massive particles”, i.e. for particles with a very small Stokes number, i.e. St < 1

(see for example Soldati and Marchioli (2009)).

Figure 2.4: Example of the experimental arrangement for a PIV experiment.

The water volume is illuminated with a light source and one or more cameras

are used to capture the fluid with the illuminated particles.

∆t is equal to the time between each light pulse and the cameras records the

particles position for each light pulse. ∆s is the distance between the position

occupied by the same particle in two successive recordings.

Two different methods exist to record/analyse the image: auto-correlation and

the cross-correlation (see Fig. 2.5). In the first case the camera, records multi-

ple exposures of the same image, while in the second case the camera records

two images with one exposure on each. In this work only the cross-correlation

method is used (see Fig.2.6).

Even though the PIV is, in principle, a very simple method, its implementa-

tion and usage are not simple. A wide variety of parameters, such as particles

diameter, light source, aperture and shutter speed, can influence the result.

The characteristics of the tracer particles, like the density, diameter and weight

are very important because they can influence the performance of the PIV and,

thus, the results. The choice of the particle diameter depends on the flow ve-

locity. For high-speed flows (> 50 m/s), the particle diameter should not be

larger than 0.5µm, while for flows of about 1 m/s, the diameter of the particles

could even be in the range 50 − 70µm. The surface of the particles should
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2.1 PIV technique

Figure 2.5: Recording mode in PIV.

Figure 2.6: Cross-correlation mode: two images are recorded with only one
laser pulse in each.

reflect enough light to be recorded by the camera. In this study hollow glass

particles were used with an average diameter of about 10µm. They offer a good

scattering efficiency and a sufficiently small velocity lag. In most cases, like the

present one, the mixing of the particles in the water is very important in order

to get a homogeneous distribution.

The choice of the illuminating source is also very important because if inade-

quate, nothing will be measured. For the measurements of 2D velocity fields it

is necessary to generate a 2D light sheet that must respect several requirements:
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• the sheet must be pulsed at a prescribed frequency, because otherwise

errors can occurs in the measurement of the velocity;

• the light intensity must be sufficiently high, because the light that each
particle receives is only a part that will be scattered in the direction of

the camera and such light must be sufficient to record it;

• the sheet must be thin in order to “filter out” unwanted 3D flows.

The most common instrument used in PIV for the generation of the light

sheet is a laser, because it is able to concentrate the light in a narrow beam.

In order to generate a light sheet, a cylindrical lens is used or a combination

of this with a spherical lens. The laser beam has a Gaussian profile and the

laser sheet intensity is variable. This can be a problem when a large area is to

be illuminated. In the present study a combination of cylindrical and spherical

lenses was used.

Important is also the optics. The resolution of the image acquisition process

must be sufficient to resolve the position of each particle in the image. Two are

the main resolution issues:

• spatial resolution, i.e. the number of pixels in the image;

• gray-scale resolution, i.e. each pixel records a grey-scale value. The
gray scale resolution is the number of levels that each pixel is capable of

resolving.

A grey-scale value ranges from zero to one, representing zero density

(black) and full density (white), respectively.

The accuracy of determination of the particle position increases with in-

creasing resolution. In our experiments the grey-scale resolution was of 16 bit

(216 = 65536 levels) and the pixel number per mm was of about 9. This was

evaluated as the relationship between the object size and the image size. This

means that each pixel in the image is about 0.11mm2 in the physical scale.

Since the seeding particles have a diameter of about 10µm, this should yield a

particle diameter in the image of dpi = 0.09 px. This is sufficient to resolve the

particles.

2.2 Design of the experiments

The experiments were conducted at the Sloshing Laboratory of CNR-INSEAN

(Marine Technology Research Institute).

The spilling breaker was reproduced into a 3 m long, 0.6 m deep and 0.1 m wide
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2.2 Design of the experiments

Figure 2.7: Hexapode System.

tank made of Plexiglass. A “Symetrie Mistral” Hexapode system was used to

force the motion of the tank and ensured a high accuracy of the motion with a

resolution of the order of 0.1 mm (see Fig. 2.7).

The design of the experiments at hand required the tackling of several chal-

lenges, first, a reliable measurement of the turbulent flow field, which character-

izes the breaker in the region surrounding the wave crest, requires a statistical

analysis, i.e. a large number of independent events, each given by a single run.

The capability to generate a spilling breaker with high repeatability becomes,

then, a crucial issue for the reliability of the statistical analysis. In similarity to

previous studies on the evolution of breaking waves induced by shallow sloshing

flows (Antuono et al., 2014; Lugni et al., 2014), a suitable spilling breaker was

designed to evolve in a sloshing tank by means of a combination of numeri-

cal solutions. An efficient HPC (Harmonic Polynomials Cell) solver (Shao and

Faltinsen, 2012, 2014), for the solution of a potential flow, was first used to

reproduce the flow evolving in a 3 m long, 0.6 m deep and 0.1 m wide tank

with a water depth of 0.2 m, where the temporal evolution of the free surface

was evaluated in terms of fully Lagrangian, nonlinear kinematic and dynamic

(free surface) boundary conditions. The results of the simulations enable the

determination of the motion time history, velocity and acceleration of the tank.

Because the HPC solver is extremely efficient and fourth-order accurate, i.e.

requires a reduced computational time, it was used to check several time his-
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tories on a grid with 81 × 10 stencils, in order to find the most suited for the

generation of the gentle spilling breaker of our interest. However, HPC is a

potential solver and, thus, it is unable to follow the complete evolution of the

spilling breaker inside the tank. For this reason, the tank motion time history

found with the HPC solver, was used to force the tank acceleration within a

Navier-Stokes solver (Colicchio, 2004), second order accurate in space and time.

This unable the estimation of the size region of interest for the measurement of

the kinematic quantities. A convergence analysis on three grids was performed

for the Navier-Stokes solution. The coarsest grid is 480 × 96 cells; the other

two are two and three times finer than the first one.

To avoid vibrations and mechanical noise, the motion was generated as smoothly

as possible, at least during the acquisition of the kinematic flow field. This is

shown in Fig. 2.8, indicated by the red and blue line.

The wave breaker generation occurs within the first interval, i.e. for 0s ≤ t ≤
1.195s, denoted by the red dashed line. Then, from t = t1 = 1.195s up to

t = t2 = 2.5s the tank moves with a constant velocity for the whole evolution

of the breaker. Finally, the tank smoothly goes to its initial position.

The time history of the tank position, velocity and acceleration, for 0 ≤ t ≤
4.0708 is:

x(t) = A(1−cos(ωt))−0.335(t−t1)+0.084−0.335 sin(t−t2)−0.353 (2.1)

v(t) = ωA(sin(ωt))−0.335−0.335 cos(t−t2) (2.2)

a(t) = ω2A(cos(ωt))+0.335 sin(t−t2) (2.3)

with:

A = 0.075m, the oscillation amplitude;

ω = 3.9517rad/s, the angular velocity.

Obviously, the values of displacement, velocity and acceleration achieved with

the above-mentioned equations, must fall within the motion limits of the Hexapode

system, which are:

Rx = ±0.47m

Ry = ±0.47m

v = 1m/s

a = 10m/s2

where Rx and Ry are the maximum displacements in the horizontal plane, v

is velocity and a is the acceleration. Fig. 2.8 shows that these limits were

respected.

Care was put in the realization of the breaking event during the first oscilla-

tion of the tank. According to Lugni et al. (2006, 2010a,b, 2014) the technique
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2.2 Design of the experiments

Figure 2.8: Time history of the motion (orange dash-dot line), velocity (orange
continuous line) and acceleration (blue dashed line) of the tank.

in use allows for a high repeatability of the sloshing flows, where large non-

linear local effects can make the event highly chaotic in the successive cycles.

Further, the capability to control the flow features during the first oscillation

(mainly governed by the initial conditions) enables the realization of an un-

steady, strongly nonlinear breaking event, i.e. close to the sought physical

breaker.

Fig. 2.9 (left panel) shows that the HPC solver allows to follow the wave gen-

eration and the wave steepening up to the breaking onset; then the potential

solution blows up. In order to estimate the size of the region of interest for the

Figure 2.9: Evolution of the free surface before (left column: HPC solver) and
after the breaker generation (right column: NS solver).

breaker evolution, the right column of Fig. 2.9, shows the free-surface configu-

ration estimated by the Navier-Stokes solver. Although the latter one is used

to reproduce the whole time history of the tank, the free surface deformation
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until breaking onset is almost identical to the HPC solution and, therefore, is

not shown. From these results we can estimate the size of the region where

the breaker would initiate and evolve, this region having a length of about 1.80

m and a height variable according to the evolution of the breaker, but with a

maximum extension of about 0.35 m. The large extent of the region of interest

and the need to undertake detailed flow measurements with a good spatial and

temporal resolution suitable to accurately resolve the evolution of the turbu-

lent flow structures in the spilling breaker, required the implementation of an

ad-hoc camera arrangement and acquisition strategies.

2.3 Repeatability analysis

The repeatability analysis is an activity essential to verify the accuracy of the

present experimental study, whose results may also be used in future numerical

investigations.

The tank motion designed by the HPC solver, was used in the laboratory to

reproduce the phenomenon.

The repeatability of the global features was first assessed through the analysis of

the recorded images, with particular attention to some geometrical parameters:

horizontal position of the wave crest, horizontal position of the breaker toe and

horizontal position of the tank.

The main reference geometrical point was the wave crest horizontal position.

More in detail, a set of 32 runs of the same event were investigated. This was

performed using a simplified configuration with two digital cameras (frame rate

= 100 fps and resolution 1920×1088) and diffused light.

The repeatability analysis, based on the horizontal position of the wave crest,

provides an error estimate within 10mm, which is of the same order of the

camera resolution.

Figure 2.10 gives the horizontal position of the wave crest in time. The small

size of the errorbars (red line and circles), confirms the high repeatability of

the phenomenon at least until the occurrence of breaking (at t ≈ 0.6s and,

therefore, the possibility to proceed to the definition of the experimental setup.

Noticeable is the increase in the data scattering with the evolution of the wave

from the onset of the breaking (between t = 0.4s and t = 0.6s) up to the

steady-state condition. The reduced repeatability might be associated with

the return flow in the crest region, which should characterize the evolution of

the average velocity field of a breaker.
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Figure 2.10: Horizontal position of the wave crest (mm).

2.4 Experimental setup

A 2-D Particle Image Velocimetry was used for the measurement of the in-

stantaneous velocity field. The water depth was of 0.20 m and it was seeded

with hollow glass particles of a mean diameter of about 10 µm. As previously

mentioned, the large extension of the region of interest, suggested to divide

this area into two different zones, in order to reach a good spatial and tempo-

ral resolution as shown in Fig. 2.11 (bottom). For each zone a multi-camera

simultaneous recoding system with 4 cameras arranged side by side was used

to acquire a large flow extent at a spatial resolution, adequate to resolve flow

eddies as small as 2mm. With this arrangement, the field of view of the cam-

era system allowed us to cover about half of the region of interest and, thus,

created the need to split it in two regions. Namely:

• an upstream region, indicated with the black rectangles in the bottom

panel of Fig. 2.11, which covers the formation and evolution of the breaker

until an almost steady state is reached. As a consequence, the evolution

of the wave profile required to arrange the cameras at different vertical

positions. This was achieved inclining the cameras by 7 deg in the vertical

plane (see image A of Fig. 2.11).

• a downstream region, indicated by the red rectangles in the bottom panel

of Fig. 2.11, which covers the rest of the breaker evolution.

The 4 cameras used for the PIV image recording were Imager sCMOS models

by LaVision (i.e. 16 bits, 2560 × 2160 pixel resolution, 6.5 µm pixel size, 50

frames/s maximum frame rate). Each camera was equipped with a 50 mm
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Figure 2.11: Experimental set-up: Exapode System, tank, laser and cameras
(top-left panel); cameras in the upstream region inclined by 7 deg
in the vertical plane (top-right panel, image A) and laser with
cylindrical and spherical lenses (top-right panel, image B); region
of interest for the PIV measurements (bottom panel).

lens and positioned at the distance of 800 mm from the laser sheet, pointing

normally to the laser sheet itself. It gave a magnification factor of about 9

pix/mm that allow to evaluate the relative overlapping between two subsequent

Fields of View of the cameras. The illumination was provided by a double

cavity Nd-Yag laser (2 × 200 mJ/pulse @ 12.5 Hz by Quantel) positioned on

the sidewall of the tank. In this way, the laser sheet crosses the whole body of

the wave before meeting the air phase. The laser beam was expanded through

a set of one cylindrical (i.e. -15mm focal length) and one spherical (i.e. 1000

mm focal length) lenses to obtain an illumination domain extended over the

whole region of interest and 1mm thick (see Fig. 2.11, Image B).

A frame rate of 8 fps is the maximum value compatible between the laser source

frequency and the camera frame rate. In order to increase the frame rate from 8

to 16 fps, the laser trigger was shifted by 1/2dt, where dt is the sampling period

of the PIV system. This implies that the PIV snapshots were recorded at the

instants ti = t0+idt during the first phase and at ti = t0+0.5dt+idt during the

second phase, with i = 1, . . ., T/dt, and T indicating the total acquisition time.

In particular, the sampling period dt was 1/8s and the acquisition time was
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Figure 2.12: Schematic representation of the two different temporal configura-
tion of cameras recording.

T = 1.5sec. The value of dt was found by the simple relation: ∆x/V where

V (1.2m/s) is the wave crest velocity evaluated by the NS solver simulation

and ∆x (10 pixel) are the pixel corresponding to 1 cm and calculated through

the magnification factor. For each zone of each temporal configuration 512

realizations were run, for a total number of 1,024 realizations. Considering

both temporal configurations, 2,048 realizations were run (see Fig. 2.12).

For the whole experimental campaign, the PIV images were processed by

the La Vision software DaVIS 8.2, which uses a multi-pass cross-correlation

image algorithm with windows deformation (Scarano, 2002). PIV images were

pre-processed masking the image region over the water surface and subtracting

the minimum background value. The final size of the interrogation windows

was 24 × 24 pixels with an overlap of 75%.

The the range of velocities that can be measured, with this spatial discretiza-

tion, goes from a minimum of 9cm/s to a maximum value of 1.5m/s. The

subimage within the interrogation window was then cross correlated with the

corresponding subimage in the subsequent image. The position of the peak

in the cross correlation result provides a measure of the displacement of the

structure in the second subimage with respect to the first. In this way, an ac-

curate estimation of the instantaneous velocity field was achieved and the large

number of repetitions has supported an accurate statistical analysis, which is

very important for the characterization of the flow structure.

This aspect will be analysed in detail in the next chapter.
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Chapter 3

Problem phenomenology

The dataset made available by the experimental investigation described in the

previous chapter allows for useful insight both in the overall dynamics of the

breaker and in the details of dynamics of the single-phase, turbulent layer of

the model of Brocchini (1996).

The present chapter aims at characterizing the main flow features of our sloshing-

breaker, also with reference to similar available literature on hydraulic jump

and spilling breakers. Specific emphasis is put in highlighting the differences

between dynamics of a steady breaker, like an hydraulic jump, and a rapidly-

evolving breaker, like the breaker of interest here.

Hence, the following aspects are investigated in detail: i) the near-surface

breaker topology, ii) the injection/generation of vorticity at the free surface, iii)

the overall turbulent kinetic energy field and the detection of the single-phase

turbulent region, iv) the geometry of the single-phase turbulent region.

Maps of each quantity of interest are superposed to the related underlying flow

image and, both, are the result of the mean of 512 realizations. The statistical

data have been cropped with a numerical mask, applying a grey scale filtering,

in order to remove the from the image the air-water mixing regions.

As mentioned in Chapter 2, we only focus on the first zone (see Fig. 2.12)

where the flow is characterized by the highest curvature and rotation. These,

clearly, highlight the non-stationarity of the phenomenon, confirmed by Pere-

grine’s criterion (Peregrine, 1992): comparing the time needed for the crest

deformation, about 0.65s, to the time needed for a particle to cross in the

streamwise direction the single-phase turbulent region, about 0.75 s, we find

the fairly rapid crest deformation typical of an unsteady breaker.

3.1 Overall evolution

A first question may arise about the mechanism here used to generate a re-

peatable breaking event: sloshing flow is not commonly adopted to induce a

breaker. However, it is recognized as the onset and the evolution of a breaker

is almost independent of the physical mechanism used to generate it. Slosh-
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ing flow in tank was successful to get high repeatable wave event during the

first cycles of oscillation of the tank (Lugni et al., 2006, 2010b,a, 2014; Abra-

hamsen, 2011). The capability to ensure high repeatability in the wave body

approaching the breaking condition is essential for the following reasons:

i) the flow evolution close to the air-water interface can be properly studied

within a statistical approach in the ensemble domain, which enables a

reliable interpretation of the turbulent flow at the interface;

ii) the measured dataset is certified for validation and verification of numer-

ical solvers.

These arguments motivated the proper design of the tank motion (see § 2) in

order to realize an unsteady spilling breaker during the first tank oscillation.

Fig. 3.1 shows the global scenario during the generation and evolution of the

event. The time increases from top to bottom and from right to left; top

image corresponds to t = 1.64 s, bottom to t = 2 s, with t = 0 identifying

the start of the tank motion (t = 0); a time step ∆t = 0.04 s between two

consecutive images has been chosen. During the first 4 instants (Fig.3.1), the

tank moves leftward with constant speed and zero acceleration (linear motion,

see Fig. 2.8). The wave profile moves in the same direction of the tank and the

local wave steepness increases. Initiated by the tank motion, i.e. the right wall

pushes the water (first two images), this is further emphasized by the crest

slowdown Barthelemy et al. (2015). The latter, indeed, causes some energy

transfer from kinetic (i.e. the velocity is decreasing) to potential inducing an

increase of the wave height and, then, of the wave steepness. According to the

linear wave theory, this mechanism could continue to really small slowdown

values; however, because of the nonlinear wave dispersion, the crest slowdown

decreases (Fedele (2014a) for linear narrowband waves) causing a limiting wave

steepness and then leading the wave crest to break. In our case the breaker is

identified by a whitecap, that is a two-phase flow (see air-water mixture starting

at t = 1.72s) in the wave front. Note that this is the easiest criteria to visually

identify the occurrence of a breaker from global images of the phenomenon.

Although at this stage we refer just at a sequence of images, i.e. no local

geometrical measurements are given, we can qualitatively observe as the local

curvature at the crest increases until t = 1.8 s (see fifth panel from top to

bottom in Fig. 3.1) and, then, progressively decreases to reach an almost

steady value at t = 1.92 s (see third panel from bottom to top of Fig. 3.1).

A second question concerns the scaling of the phenomenon, which is strictly

related to the sloshing flow existing in the tank. Several sloshing scenarios are

identified in literature (Colagrossi et al., 2004; Bouscasse et al., 2013; Faltinsen

and Timokha, 2009); they depends on the filling depth h0 and on the nondi-

mensional forcing period T/T0 (nondimensionalized with respect to the largest
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Figure 3.1: Image sequence of the generation and evolution of the spilling
breaker in the sloshing tank. The time increases from top to bottom
with a time step of 1/25s.

natural period T0 of the tank). In particular for shallow water condition, i.e.

for d/L ≤ 0.1, an unsteady breaker evolving to a steady breaker is commonly

identified for T/T0 ≃ 1 Bouscasse et al. (2013). In the present case, the motion

of the tank is not explicitly excited at a period close to T0 = 4.3 s; then we

cannot a priori assess that the breaker is in shallow water condition.

To better understand the flow conditions governing the evolution of the pre-

scribed event, Fig. 3.2 shows the time history of the wave steepness, wave

height and wavelength measured from the images shown in Fig. 3.1. Fig. 3.3

shows the definition of the measured geometrical quantities, as well as the com-

parison with the free-surface configuration achieved from the numerical solver

used in § 2 to design the experiment. The wavelength is estimated as twice the

horizontal distance between the maximum and the minimum elevation of the

free surface (see vertical, white dashed lines in Fig. 3.1); wave height is the

vertical distance between the some points (see horizontal, white dashed lines

in Fig. 3.1).

According to the above observations, Fig. 3.2 confirms the growth of the wave

height until t = t1 + 0.16 s = 1.8 s, then it decreases. Conversely, the wave-

length decreases almost linearly; this behaviour causes an increase of the wave

steepness (kH/2) until the breaker occurrence(t = 1.84 s); then it keeps con-

stant around a value 0.23 − 0.25. The wavelength varying between 2 and 3.6
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Figure 3.2: Evolution of the wave steepness, wave height and wavelength in
time where t1 = 1.64 s is the time of the first image with respect to
the starting of the tank motion.

m, i.e. h0/λ < 0.1, indicates that shallow water condition governs the flow

evolution in the tank.

This is further confirmed by the instantaneous period dominating the flow,

shown in Fig. 3.4, and calculated through the wavelet analysis of the wave

elevation at 5 cm from the right (left panel) and left wall (right panel) of the

tank, respectively. First (dash-dotted line), second (dotted line) and third

(dashed line) natural sloshing periods are also indicated.

The wave period that governs the flow evolution is almost equal to the largest

natural period T0 of the tank. This means that the corresponding wavelength

is twice the length of the tank, that is h0/λ < 0.1. Noticeable is the larger

variation of the energy level around the sloshing natural period for t > 2.5s.

This seems to be associated to the thickening of the turbulent flow as the

breaker approaches a steady condition. However, to definitely assess the oc-

currence of shallow water condition, circle symbols in Fig. 3.5 shows the ratio

H/h0 as function of λ/h0 during the experimental evolution of the breaker

from t = 1.64 s to t = 2 s. Several limiting curves are also reported. Con-

tinuous line represents the limiting curve for the application of cnoidal wave,

i.e. Ur = Hλ2/h30 > 40, while for lower values Stokes theory should be used.
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Figure 3.3: Definition of the geometrical quantities measured from the image
analysis. Red dashed line represents the free-surface configuration
calculated through the numerical solver used in the design of the
experimental tank motion.

Figure 3.4: Time evolution of the wave elevation (blue lines) and corresponding
wavelet analysis in two probes at 5 cm from the right wall (left
panel), and at 5 cm from the left wall (right panel) of the tank,
respectively. t1 = 1.64 s is the time of the first image with respect
to the starting of the tank motion.

The dash-dotted line indicates the highest waves determined by computational

studies according to the results of Williams (1981). The dotted line bounds

the deep-water breaking limit, while the dashed line is the corresponding limit

in shallow water. The present experimental data are, at least after the onset

of the breaking, larger than the shallow-water breaking limit, and in any case,

larger than the shallow-water limit λ/h0 = 10. Then, shallow water conditions

can be definitely assumed, which implies that the still water level h0 can be

taken as suitable reference length scale. The time scale is T =
√

h0/g with g

indicating the gravity acceleration, therefore in the following the dimensionless

time t∗ = t
√

g/h0 is used. At this point we are able to make dimensionless the

evolution of the wave height and wavelength. This is shown in Fig. 3.6, where

starred symbols give dimensionless variables. A last question arises about the

possible influence of the capillary waves on the onset of the breaker and on its

successive evolution. Although the observation of the images does not empha-
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3.1 Overall evolution

Figure 3.5: Literature limiting curves and our experimental data (empty
circles).

size the occurrence of capillary waves at the forward face of the crest, in the

following a more physically-oriented analysis is done. This bears on the fact

that the radius of curvature in the crest region is large and, consequently its

curvature is small. This implies that surface tension effects are negligible and

do not influence the breaking process.

In Fig. 3.2 local measurements from the wave images were done in order to

estimate the geometrical parameters of the wave: wave steepness (kH/2), wave

height (H), wavelength (λ). They enable the estimation of the Bond number

(Bo):

Bo =
∆ρg

γk2

where ∆ρ the density difference between water and air, γ the water surface

tension and k the wave number. It measures the importance of the surface

tension with respect to the buoyancy effects. Moreover, table 3.1, summarises

the main wave geometric characteristics of the wave in both dimensional and

dimensionless form:
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Figure 3.6: Dimensionless time evolution of the wave steepness, wave height
and wavelength. The latter one is scaled by a factor 50.

t(image) H(m) λ(m) kH/2 Bo t∗ H∗ λ∗

1.64 s 0.1646 3.6013 0.1435 44137 11.486 0.823 18.0065
1.68 s 0.1812 3.4724 0.1639 41035 11.766 0.906 17.362
1.72 s 0.1870 3.2621 0.18 36215 12.046 0.935 16.310
1.76 s 0.1979 2.923 0.2126 29078 12.326 0.989 14.615
1.80 s 0.2042 2.7362 0.2343 25480 12.606 1.021 13.681
1.84 s 0.2000 2.512 0.25 21475 12.886 1.000 12.56
1.88 s 0.1854 2.4108 0.2415 19780 13.167 0.927 12.054
1.92 s 0.1708 2.1699 0.2472 16025 13.447 0.854 10.849
1.96 s 0.1500 2.0363 0.2313 14112 13.727 0.750 10.181
2.00 s 0.1500 1.903 0.2475 12325 14.007 0.750 9.515

Table 3.1: Temporal evolution of the main geometrical characteristics of the
wave in dimensional and dimensionless form.
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3.1 Overall evolution

The measured wavelengths in the present study are much larger than the

typical wavelength of capillary waves, that is O(∞) cm; the same for the Bond

number (Bo ≫ 100).

These two parameters confirm that surface tension does not influence the break-

ing process investigated.

Fig. 3.7 summarises the results the of the DNS numerical study performed by

Deike et al. (2015) to characterize the breaking regimes and the possible influ-

ence of the capillary waves. In this figure, the experimental results existing in

literature and detailed in the table of Fig. 3.8 are also reported.

Figure 3.7: Wave state diagram, compares the regimes obtained through the
simulation. (Adapted from Deike et al. (2015). Slope means wave
steepness).

Symbols represent the results of the experimental data existing in literature,

lines indicate the boundaries of the wave breaking regimes identified through

the DNS simulations. They are: PB zone, which represents the plunging

breaker regime; SB zone, which is the spilling breaker area; PCW zone which

indicates the presence of parasitic capillary waves and NB zone which is the

non-breaking gravity wave region. The red line is the limiting curve between

plunging and spilling breakers. The horizontal solid line (black line), coinci-

dent with the critical steepness kH/2 = 0.32 line, is the boundary between

non breaking and plunging breakers. It is coincident also with the numeri-
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cal occurrence of spilling breaker, i.e. it is an extension of the red line. The

black dashed line bounds the region between spilling and parasitic capillary

waves. Finally, the dot-dashed line at Bo = 67, is the critical Bond number

for the appearence of parasitic capillaries. The consistent quantity of filled

circles around kH/2 = 0.32, even in the NB region testifies the presence of ex-

perimental data available in literature with the occurrence of spilling breaker

generated with different physical mechanisms. This is in reasonable agreement

with our data: breaking evolution occurs for a steepness ranging from 0.18 to

0.25 and a Bond number around or larger than 104. Results very similar were

achieved from Tulin and Waseda (1999) (see stars in Fig. 3.5).

Figure 3.8: Experimental parameters of observed parasistic capillary waves,
spilling and plunging breakers observed in the literature. Adapted
from Deike et al. (2015)

3.1.1 Onset of the breaker

Several researchers investigated the wave evolution in the stage preceding the

occurrence of the breaker in order to identify the ultimate condition leading

the wave to break. Different criteria have been proposed, based on geometric,

kinematic and energetic considerations, as already discussed in section (1.1).

Recently a new criterion for the breaker onset (Fig. 3.1, 1st frame), have

been proposed by Prof. Banner group (Barthelemy et al., 2015), based on the

following insight: “the onset of the breaker occurs when the wave crest celerity

reveals a deceleration”. Through an extensive numerical investigation, authors

found that the irreversible condition for the breaker occurs when the ratio

between flux energy speed (i.e. the ratio between the local energy flux and the
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3.1 Overall evolution

local energy density) and the local crest velocity c is larger than a threshold

value. This is the dynamical breaking parameter B; it coincides with the u/c

ratio on the free surface, as u the particle velocity. They found that the onset

of the breaking occurs for B = 0.84. Although this criterion is based on a

physical insight, previous work of Fedele (2014a), Fedele (2014b) shows that

the wave crest steepens as the onset of the breaking is approached. This causes

a crest slowdown due to the nonlinear dispersive effects. Preliminary studies

(Fedele, Personal communication) show that the gentle focusing wave crests

slow down more than steeper crests (see also Fedele (2014a), Fedele (2014b)).

This causes the threshold B = 0.84 is attained faster as wave crest steepens;

the associated particle speed u increases as the focusing point is attained.

During a recent symposium, Prof Banner invited us to verify the criterion and

in particular the wave crest slowdown insight. Although the large time step

used in the PIV analysis (i.e. dt = 1/16s) does not allow a time resolved

estimation of the wave crest speed, we have used the images from a digital

camera with 25 fps and spatial resolution 1920 × 1088px, relatively to the

evolution of the whole tank, to evaluate the wave crest slowdown. To do that,

from the images we measured the horizontal wave crest position, as shown in

Fig. 3.9 (top panel): dashed line represents the average value of the horizontal

position of the wave crest determined through the 7 repetitions of the same run;

the corresponding standard deviation is represented by the errorbar. Because

the measurement was done manually, an under sampling technique was used to

reduce the effort; this means 8 fps, i.e. 0.125s as time step. This preliminary

analysis enables an estimation of the wave crest celerity, whose results are

reported in the bottom panel of Fig. 3.9; a minimum value occurs around

t∗ = 13. The large dt used does not ensure an accurate evaluation of the wave

crest speed. Then, we increase the time resolution (frame by frame, i.e. dt =

0.04 s) in a window around the predetermined minimum value and, however,

around the time instant of the frame where, for the first time, we observed a

whitecap event. Note that at this stage, because of the global images available,

the whitecap is the only criterion to be used for the breaker occurrence. The

videos of two different runs were analysed and the results are shown in the top

panel of Fig. 3.9 by means of the green and blue symbols. Such measurement

is within the errorbar of the previous one obtained as the mean of 7 runs,

testifying the repeatability of the phenomenon. However, by looking at the

horizontal component of the velocity of the wave crest (i.e. time derivative

of the horizontal position) reported on the bottom panel of Fig. 3.9 (green

and blue symbols), we observe significant deviations from the red line. In

particular, the minimum value of the horizontal component of the crest celerity,

corresponds to the instant t∗ = 12.046, i.e at the onset of breaking.
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Figure 3.9: Evolution of the wave toe displacement (top panel), Velocity of the
wave crest (bottom panel).
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Moreover, according to Barthelemy et al. (2015), breaking onset commences

when the breaking crest “whitecap” commences at a significantly lower initial

velocity than expected. The images shown in Fig. 3.10, support their obser-

vation: first image, at t∗ = 11.77, shows the free surface configuration just

before the inception of the breaker; t∗ = 12.046 is the instant when the celerity

assumes the minimum value; t∗ = 12.32 represents the following instant.

Figure 3.10: Visual observation of the wave crest evolution at three different
time instants.

3.2 Mean velocity field

The mean and turbulent flow components were obtained through an ensemble-

average of the instantaneous velocity. The mean velocity was calculated as

〈v〉 =
∑N

i=1 v

N
(3.1)

where v = (u, v) are the components of the instantaneous velocity in the (X, Y )

coordinate system and 〈v〉 = (U, V ) are the related mean components.

The turbulent velocity components were evaluated as:

v’ = v − 〈v〉 (3.2)

In the present study, we focused on the single-phase turbulent region. There-

fore, the mean average was done neglecting the air-water region close to the

free surface, where the accuracy of the average algorithm could be strongly
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Figure 3.11: Time history of the motion (black bold line), velocity (dotted red
line) and acceleration (dotted green line) of the tank. The contin-
uous lines correspond to the times of the images of interest.

Figure 3.12: Image sequence of the velocity field evolution by the HPC solver.

affected by the two phase flow. For a proper understanding of the kinematic

field in the wave body, we refer to the prescribed motion of the tank, which is

shown in Fig. 3.11 with the black bold lines, along with its velocity (dotted red

line) and acceleration (dotted green line).

In the same figure, the times corresponding to the experimental images are

indicated by the continuous lines. Because the main focus of the present analy-

sis is on the turbulent layer evolution, only the images between t∗ = 11.21 and

t∗ = 16.67 (magenta continuous lines in Fig. 3.11) have been analysed. How-

ever, the initial evolution of the kinematic field is essential to fully understand

the onset and the evolution of the breaking wave. Hence, we use the results

of the HPC numerical solver; the chosen times are indicated by the magenta

dashed lines in the tank motion history (see Fig. 3.11), while the corresponding

images of the internal velocity field are shown in Fig 3.12.

At the beginning the tank is moved rightward, inducing a runup on the left

wall and a rundown on the right side as a consequence of the standing wave

connected with the highest sloshing natural period of the tank (see t∗ = 2 in
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3.2 Mean velocity field

Fig. 3.12). Due to the impulsive start of the tank and to the shallow-water

condition, higher modes are quickly excited. This is testified by the velocity

field shown at t∗ = 4.38 in Fig. 3.12, which highlights a convergent line on the

left side (x∗ ≈ −1) and a divergent line on the right side (approximately at

x∗ ≈ 1) of the tank, distinctive of the third sloshing mode. A rightward propa-

gating wave is generated at t∗ = 5.57, corresponding to the time of the reverse

tank motion; such flow counteracts the wave generated at the right wall by the

reverse motion of the tank and propagating leftward (see t∗ = 6.86 − 8.05).

The interaction between the reverse waves causes, first, a stagnation region at

the right wall (see panel at t∗ = 10.02 in Fig. 3.12) and, then, the onset of

breaking.

The following evolution of the mean velocity is shown on the left column of

Fig. 3.13, through the results of the experimental analysis. The related stream-

lines are also reported on the right column of the same figure. Because of the

light saturation of the two-phase turbulent layer, such layer has been removed

through a gray-scale filtering of the images. The dashed lines on each panel of

the right column represent the upper boundary of the two-phase layer, while

the continuous line provides the single-phase free-surface. At these instants,

corresponding to the magenta continuous lines of Fig. 3.11, the tank is moving

leftward with a uniform motion. A first visual inspection of the velocity field,

shows that the tank motion, along with the interaction of the two reverse waves,

causes an upward flow with a steepening of the free surface from t∗ = 11.21

(top panels of Fig. 3.13) to t∗ = 12.47 (fourth row of the same figure).

However, the reverse flow interaction of the two waves governs the onset and

the kinematics of the breaking wave, with a portion of the leftward wave which

rides on top of an underlying “return flow” from the rightward propagating

wave, this leading to an oblique divergent flow (see t∗ = 12.05 of Fig. 3.13).

In more detail, for 11.21 ≤ t∗ ≤ 12.05, the flow just at the lee and below the

crest of the wave is largely upward, fed by the incoming opposite waves, and

induces a slowdown and steepening of the wave crest. Then, breaking occurs

(i.e. t∗ = 12.05, see the previous section) and at t∗ = 12.47, the still active wave

interaction originates the splitting of the flow in four rotating flow regions: i)

a lower flux moving clockwise and ii) an upward counterclockwise flow, both

consequence of the wave propagating from left to right, iii) a downward coun-

terclockwise and iv) an upper clockwise flow regions as consequence of the wave

generated at the right wall and moving leftwards. These regions originate two

flow lines, convergent and divergent, respectively (see Fig. 3.15), intersecting

one another and generating a quadrupolar structure with a central saddle point.

Very similar structures have been observed in numerical calculations of spiller

and plungers (Watanabe et al., 2005).
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Figure 3.13: continue
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Figure 3.14: Image sequence of the evolution of the internal mean velocity field.

Figure 3.15: Sketch of the saddle-point at a quadrupole.
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The saddle-point structure evolves towards the front of the wave, its center

deepening of about 0.2h0 below the crest at t∗ = 12.47 and of about 0.4h0
below the aerated breaker surface at t∗ = 12.89. Over this period the wave

steepness (kH/2) increases to reach its maximum of 0.25 at t∗ = 12.89. It,

thus, seems that the energy-based breaking occurs sometime before the largest

wave height (12.47 ≤ t∗ ≤ 12.89, see Fig. 3.6) and steepness (see also Fig.

3.6) are reached, such lags providing some measure of the wave inertia in its

shoaling and steepening processes.

The mentioned flow structure, moves downward and in both the horizontal

directions (see t∗ = 12.89 of Fig. 3.13). In particular, it presses down region

i), squeezing it, from t∗ = 12.89 to t∗ = 14.15, to the tank bottom. The

consequent weakening of the quadrupole induces a flattening of the free-surface

after t∗ = 14.57, which preludes to the evolution of a quasi-steady breaker. In

this second stage of evolution, the following main dynamics: evolve the near-

surface flow of the breaker, part of the upper portion of a quadrupole and moves

in the direction of the crest motion; the quadrupole deepens and weakens, its

center moving towards the bottom of the tank and the front of the wave; the

wave slowly flattens preluding to a quasi-steady evolution, as a consequence of

the slow weakening of the quadrupolar structure. With the aim to understand

the physical mechanisms governing the turbulent flow field below the wave

crest, hereafter we discuss the spatial and temporal variation of the kinematic

statistical quantities.

3.3 Characteristics of the vorticity at the free

surface

Notwithstanding the evolution of the flow structures described in the previous

section, a detailed analysis of the mean vorticity (i.e. associated with the mean

flow) reveals that the body of the wave is almost irrotational, the vorticity

being confined to the near-surface region (see Fig. 3.17). The flow related with

the two-phase flow region has been removed by applying a gray scale filtering

of the images. At the first instant that we consider useful for the analysis, is

t
√

g/h0 = 11.21, a layer of counterclockwise (positive) vortical flow is evident

far upstream of the wave crest, the lee side of the crest being characterized

by some very small counterclockwise vorticity. At t∗ = 11.63 much stronger

vorticity (20 ≤ ω∗ = ω
√

h0/g ≤ 25) is observed exactly at the wave crest and

using a vorticity-injection-based criterion this would be the time of breaking

inception. However, in view of the fairly coarse temporal resolution available

(∆t∗ = 0.4375), it is possible that the actual vorticity-based breaking onset

occurs in the interval 11.21 ≤ t∗ ≤ 11.63.
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Figure 3.16: continue
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Figure 3.17: Image sequence of the generation and evolution of the vorticity in
the shear layer for an unsteady spilling breaker.
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It is noted that these times are in fairly good agreement with the break-

ing onset time, t∗ = 12.046, given by the energy criterion illustrated in the

previous section. At later times the vortical layer lengthens down the front

face of the wave, increases in intensity and thickness (because of diffusion), till

time t∗ = 12.89 when the maximum wave steepness is reached and the peak of

positive vorticity is well ahead of the wave crest. At the same time the crest de-

forms to assume a non-monotonic shape, made of two bumps, (i) crest and (ii)

location of maximum vorticity upstream of the crest, and a small intermediate

dip. The interface bump characterized the maximum vorticity stays ahead of

the crest of a fairly constant distance (about 2h0) till the end of the observation

(t∗ = 16.25) and, in view of the common knowledge on wave breaking, might

be regarded as the toe of the breaker.

From what above, the mechanism of generation of vorticity seems more con-

nected to the local deformations of the free-surface (i.e. increase of its cur-

vature) rather than to the global steepening of the wave crest. The vorticity

that we analysed is due to the mean velocity field and probably, we are unable

to identify a vortical structures because they are present in a smaller spatial

scales, while, in this case we are in a more larger spatial scales.

3.4 The turbulent kinetic energy

The temporal evolution of the specific (per unit mass) turbulent kinetic en-

ergy (TKE) (see Fig. 3.18), highlights the generation of an intense shear layer

formed below the free surface of a fully-formed unsteady spilling breaker, which

spreads upward from the toe of the breaker.

A small fraction of the maximum turbulent kinetic energy (5%), has been cho-

sen as a threshold to define the lower spatial boundary (pink dashed line) of

the turbulent region which in the analytical model gives Υ(t). It is noted

that the TKE is here made dimensionless with the velocity scale gh0, i.e.

TKE∗ = TKE/gh0. The upper boundary of the thin single-phase turbu-

lent layer, instead, has been determined through gray scale filtering of images

and excludes the two-phase turbulent layer.

The spatial and temporal evolution of the TKE (shown in Fig. 3.18) have been

analysed from t
√

g/h0 = 11.21.

However, it is only at time t∗ = 11.63 that some intense turbulence is visible at

the front face of the wave, slightly downward, more upstream (about h0/3) of

the peak of vorticity (generation of TKE, labelled as “phase a”). This instant

exactly coincides with the vorticity-based onset of breaking and almost exactly

with the onset predicted through the energy-based criterion (at time 12.046,

see previous section).
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Figure 3.18: continue
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Figure 3.19: Image sequence of the generation and evolution of the TKE in the
shear layer of an unsteady spilling breaker.
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Like for the vorticity, the patch of TKE is seen to slide and lengthen down

the front face of the wave, its peak (TKE∗ ∼ 0.020 − 0.025) being still more

upstream than the peak of vorticity and reaching the toe of the breaker at

t∗ = 13.31 (downward slide of turbulence, labelled as “phase b”). Also, simi-

larly to the vorticity, the TKE peak is placed below the more upstream of the

two local bumps visible at the wave crest (i.e. bump (ii)). All the events here

described evolve during stage (1) of evolution of the TKE. Such coherent stage

of evolution is also reflected in the analysis of the geometry of the turbulent

layer (see the subsequent section).

Later, during stage (2), which begins at t∗ ≥ 13.73, similarly to the vorticity,

the TKE, though steadily diffusing in the lower region of the flow, is character-

ized by an intensity pulsation made of sudden decays (t∗ = 13.73, 14.15, 16.25)

and growths (t∗ = 14.57, 14.99, 15.41) of its peak values. Moreover, the region

over which the TKE diffuses is slightly smaller than that over which the vortic-

ity diffuses. We believe that the above effects, pulsation and reduced diffusion,

are due to some centrifugal action related with the curvature and local rotation

of the single-phase turbulent layer, here measured with κ and Ω, respectively.

These aspects will be analysed in detail in a dedicated work.

In other words, the gradual decrease of wave steepness, which occurs for t∗ =

13.73 is accompanied by unsteady local effects related with the pulsation of the

local flow curvature, rotation and thickness of the turbulent layer. Hence, like

for the vorticity, also the TKE seems to be more significantly affected by local

rather than global dynamics. During the final stages of interest (t∗ ≥ 16.25)

the Υ interface becomes almost parallel to the tank bottom with the turbulent

region closely resembling that evolving into a quasi-steady hydraulic jump.

3.5 Geometry of the single-phase turbulent region

In this section, the attention was focused on the geometric characteristics

(thickness (b), streamwise length (L) and ǫ) of the single-phase turbulent layer,

as described in the theoretical model by Brocchini (1996) (see Fig. 3.20).

The analysis is similar to that of Misra et al. Misra et al. (2008), who used

their experimental data for a hydraulic jump (steady phenomenon) to provide

estimates of the geometry of the shear layer as a proxy for the single-phase tur-

bulent region of a spilling breaker. In that case, the shear layer, being caused

by a quasi-steady hydraulic jump, was characterized by one single value of ǫ,

independent of time. On the opposite, our unsteady breaker is characterized

by thicknesses and length that are functions of time and also of the position

downstream of the breaker toe. Fig. 3.21 illustrates the evolution in time of the

single-phase layer thickness (b) and length (Ls). Such thickness has been eval-

uated through the intersection of the limit curves that define the shear layer.
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The red dashed line visible in each plot, represents the maximum possible ex-

perimental error (2px/mm). The first point, located at zero abscissa, is at the

toe of the breaker, here taken as the most upstream point of the single-phase

turbulent region.

Two main stages of evolution are here visible. Stage (1), goes from t∗ = 11.63 to

t∗ = 13.73 and it is characterized by an almost constant maximum thickness of

about 0.03 and length pulsation around the value of 1. This first stage includes

both phases of (a) generation of TKE and (b) downward slide and lengthening

of the single-phase turbulent region, described in the previous section.

The second stage, (2), begins at t∗ = 14.15 when the layer thickness rapidly

and unsteadily increases from 0.05 to the maximum value of about 0.1 at time

t∗ = 15.41, settling to about the same value for longer times. During the same

stage the length of the single-phase turbulent region oscillates between 1.5 and

2. These behaviours are well evident in Fig. 3.22 and 3.23, which, respectively,

give the evolution in time of the maximum layer thickness and length. The

blue circles and the dashed line give, respectively, the effective measures of the

maximum shear layer thickness and the interpolating polynomial, fourth-order

for b and third-order for Ls. Hence, this second stage coincides with the vor-

ticity and TKE pulsation stage described in the previous sections.

The above clear subdivision seems to occur at the time when the crest steep-

ness significantly decreases and the pulsation in thickness observed during the

second stage seems to be related with the pulsation of local curvature and ro-

tation of the turbulent layer.

Figure 3.20: Schematic view of the theoretical model of Brocchini (1996)
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Figure 3.21: Evolution in time of the single-phase layer thickness plotted
against normalised curvilinear abscissa: the time is increasing from
left to right, from top to bottom.

Attempting at a comparison with the literature, we find that in Misra et al.

Misra et al. (2008), the dimensionless streamwise variation of the width of the

layer, increased linearly until 0.29, after which it becomes constant and the flow

resembles a wake. In any case, the thickness of the turbulent region observed

by Misra et al. Misra et al. (2008) is very large compared with our results.

Finally, the thickness parameter ǫ, is shown in Fig. 3.24. Also this function

has been interpolated with a fourth-order polynomial, like b. The maximum

value achieved is about 0.06, which is the same of that observed by Tennekes

and Lumley (1972) for jets and mixing layers (values of order 0.06). In Misra

et al. Misra et al. (2008), values of ǫ averaged over the breaker shear layer were

of the order 0.03, which is slightly smaller compared with our results and those

of Tennekes and Lumley Tennekes and Lumley (1972). These values are small

enough to justify use of the “thin layer” approximation.

Fig. 3.24 also highlights the clear separation of stages (1) and (2), this

occurring around t∗ = 14.15.
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Figure 3.22: Evolution of the maximum thickness of the single-phase layer in
time.

Figure 3.23: Evolution of the interface length in time.
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Figure 3.24: Evolution of thickness parameter in time.
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Chapter 4

Validation of the theoretical model

by Brocchini and Peregrine

The experimental data set collected in the present work will help validate the

analytical model proposed by Brocchini (1996), limiting to the case of a gentle

spilling breaker. Only the experimental mean velocity profile in the shear layer

is here used as preliminary validation of the analytical model. Other physical

quantities defined in the analytical model will be inspected in future studies.

4.1 Mean velocity profile in the shear layer

Following the idea of Madsen and Svendsen (1983) for a steady breaker, a cubic

polynomial profile was defined by Brocchini (1996) for the mean velocity profile

in the shear layer below an unsteady breaker, in correspondence of the single-

phase layer below the crest. They get a quantitative description of the flow by

forcing a solution which obeys one single physical constraint, i.e. an inflection

point for the velocity within the thin single-phase turbulent layer.

In physical component it is of type:

〈u (1)〉 (s, n, t) = 〈u (1)〉 (s, 0, t) + f (s, t) g (σ)

with g (σ) = −Aσ3 + Bσ2 + Cσ + D and σ =
n

b(s, t)
(4.1)

where 〈u (1)〉 is the streamwise component of the mean velocity, b (s, t) is the

local thickness of the single-phase turbulent layer.

Lastly, 〈u (1)〉 (s, 0, t) = ∂φ
∂s (s, 0, t) is the velocity at the lower limit of the layer

(n = 0), on the Υ(t).

The coefficients of g (σ), differently to that used in the model of Madsen and

Svendsen (1983), are not constant but functions of (s, t).

These coefficients and f (s, t) are found through an appropriate matching condi-

tions at n = 0 or σ = 0 (i.e. at the interface between the single-phase turbulent
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layer and the irrotational flow region below), and at n = b or σ = 1 (i.e. at the

top of the single-phase turbulent layer).

The two phase surface layer contributions were taken into account by enforcing

the kinematic free surface boundary condition at the top of the single-phase

shear layer, using the results of Brocchini and Peregrine (2001b) and Brocchini

(2002).

Assuming the vanishing of the shear stresses at the interface with the un-

derneath irrotational flow and the continuity of the mean velocity across the

single-phase turbulent layer, the mean streamwise velocity, is equal to:

U (s, σ, t) = Û +
(

Ub + Û
)

σ2 + A
[

Ub − Û − b (s, t) Ω
]

σ2 (1 − σ) (4.2)

Considering Ω = 0, the mean flow profile becomes:

U (s, σ, t) = Û +
(

Ub + Û
)

σ2 + A
[

Ub − Û
]

σ2 (1 − σ) (4.3)

Through our experimental data, we are able to check the analytical solution

(4.3) for the mean velocity profile (Fig. 4.1). By approximating Û and Ub

with the mean streamwise velocity values at the bottom and top of the shear

layer, respectively, the cross-flow profile of the mean streamwise velocity at each

vertical location was calculated. The assumption is that in the local frame of

reference, Û = 0. Furthermore, a cubic polynomial (continuous magenta line)

has been fit to the measured value of U(s, σ, t), all the streamwise locations

were treated and for each instant t0, the value of the parameter A(s, t0) is

shown with relative errorbar (Fig. 4.1).

In Misra et al. (2006), the same procedure was adopted, but because of the

small thickness of the shear layer near the toe, few data points were available

for a robust fit of the profile. Therefore they chose the streamwise location in

the middle part of the shear layer.

In the present case, considering Û = 0 and dividing each term for Ub, the

equation 4.3, becomes:

U(s, σ, t)

Ub(s, t)
= σ2 + A(s, t)(1 − σ)σ2 (4.4)

The unsteady flow of the present breaker leads to A = A(s, t), differently from

the case Misra et al. (2006) (steady phenomenon) where A = A(s).

Though at this preliminary stage, it is not possible to explicitely relate the

variation of A(s, t) with the physical quantity involved, it is expected that

future analyses of the data will enable the modelling of A(s, t).
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4.1 Mean velocity profile in the shear layer

Analysing in time the cross-flow profile of the mean streamwise velocity and the

behaviour of the parameter A(s, t), we can identify three main stages. The first

one, that goes from t∗ = 11.63 to t∗ = 12.47, where the value of A is influenced

by the nonstationarity of the phenomenon and a fairly small mean velocities

are observed to occur within a fairly thin single-phase turbulent layer. The

second one, from t∗ = 12.89 to t∗ = 14.57, shows how, the parameter A(s, t) is

characterised by fairly streamwise-uniform distribution with mean A(s, t) = 1.

This mean that, assuming Ω = 0, the shear stress at the top boundary of the

single-phase turbulent region is:

∂U

∂n
≈ Ub

b
> 0.

Noticeable is the small size of the errorbar, testifying an excellent fit of the

experimental data. The situation changes in the third stage (from t∗ = 14.89

to t∗ = 16.67), where the rotation and curvature of the shear layer decrease and

the thickness of the single-phase turbulent region increase. The maximum of

the streamwise velocity is located in the middle of the layer while the streamwise

distribution of A(s, t) is less uniform and tends to increase till 6 ÷ 7 from the

leading edge to its trailing edge. This means that, assuming Ω = 0, the shear

stress at the top boundary of the single-phase turbulent region is:

∂U

∂n
≈ −C

Ub

b
< 0, with C ∼ 4− 5.

This negative shear depends on the value of Ub that decrease and the cubic

profile is very evident.
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Figure 4.1: Evolution in time of the mean velocity profile in the thin single-
phase turbulent layer.
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Chapter 5

Discussion and conclusions

The objective of this thesis has been to experimentally study an unsteady gentle

spilling breaking wave and to analyse in details the geometric and kinematic

characteristics of the thin single-phase turbulent layer. A sloshing wave has

been used for the generation of the breaker. A 3m long, 0.60 depth and 0.10m

wide tank has been built in Plexiglass and forced through an hexapode system.

The tank motion has been designed by two different numerical solver: HPC

(potential solver) and Navier-Stokes solver. Thanks to the last one, we have

been able to define the area of interest (1.80m) for our analysis and choice the

equipment for measurements. For a good temporal and spatial resolution of

each camera, the area of interest has been divided into two different zones and

only the first one (upstream zone) has been analysed because it is there that

flow unsteadiness, curvature and rotation are more evident.

A repeatability analysis of 32 runs of the same event has been done, considering

the horizontal position of the wave crest profile, providing an error estimation

within 10mm.

The high repeatability of the phenomenon it has been an essential condition for

the accuracy of the present experimental study and of future numerical inves-

tigation. For the measurements of the kinematic quantities, the Particle Image

Velocimetry (PIV) method has been used. A number of 2048 realizations have

been done in order to obtain a good statistical analysis.

The gentle breaker here studied evolves in shallow water, hence the use of scal-

ing typical of shallow water flows (i.e. still-water depth h0 for the lengths and
√

g/h0 for the times). All results have been given in dimensionless form for

portability.

The evolution of the breaker is described in terms of both global and local

features. Global characteristics, like wave height and wave steepness describe

a flow characterized by an initial growth until the maxima of H and steepness

are achieved at the times t∗ = 12.47 and 12.89 after the start of the motion,

respectively. However, while the wave height immediately and rapidly decays

after peaking, the wave steepness remains constant at about 0.25 till t∗ = 14.15

before decreasing.
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The times of peaking of H and steepness are larger than the onset times for

breaking based on various criteria. In summary, breaking is predicted to oc-

cur: at the earliest, t∗ = 11.63, by the appearance of significant levels of both

vorticity (at crest) and turbulence (slightly upstream of crest); slightly later

by the novel criterion of Banner and co-workers (at t∗ = 12.05), when also air

entrainment is seen to start and somehow later by the attainment of maxima

wave height and steepness.

The mean flow in the tank motion reference frame is characterized by a quadrupo-

lar vortical structure connected by a saddle point, which at breaking onset is

near the free surface at the lee of the crest. Later on the saddle point is seen

to move upstream and downward of the wave crest. The mentioned flow struc-

ture has significant similarities with those observed in the numerical simulations

by Watanabe et al. (2005). However, a more detailed analysis is needed for a

thorough comparison.

The most interesting dynamics are those related with the evolution of the vor-

tical and turbulent flows. Two main stages characterize such evolution.

Stage (1) goes from the onset of breaking (t∗ = 11.63) and includes the genera-

tion of vorticity and TKE (phase a) and their lengthening down the front face

of the wave (phase b), till t∗ = 13.31 − 13.73. At the end of this stage: a) the

peaks of vorticity and TKE have reached their most upstream location, which

can be regarded as the toe of the breaker, b) the whole crest has deformed,

being it made of two bumps, one coinciding with the top of the crest (bump

(i)) and one just downstream of the toe of the breaker (bump (ii)). During this

stage the thickness and downstream length of the single-phase turbulent region

remain almost constant (b ≈ 0.03, Ls ≈ 1). Fitting of the crossflow profiles of

the mean streamwise velocities with cubic power laws is excellent and reveals

a positive mean shear at the top of the layer.

Stage (2) goes from the peaks of vorticity and TKE reaching their most up-

stream location (t∗ = 13.31 − 13.73) till the wave attains a quasi-steady shape

(t∗ = 16.25). This stage is characterized by a pulsation in intensity of both

vorticity and TKE for which their peak values may increase/decrease of about

100%. This stage closes when the lower edge of the single-phase turbulent

region Υ becomes almost horizontal and the wave undergoes a quasi-steady

evolution. Fitting of the crossflow profiles of the mean streamwise velocities

with cubic power laws suggests a negative mean shear at the top of the layer.

Because of the above, stage (1) can be regarded as “build-up” stage where

vorticity and TKE rapidly grow to their maxima in intensity and extension,

while stage (2) can be seen as a “relaxation” stage from the build-up to the

following quasi-steady evolution, such a relaxation being characterized by some

significant flow pulsation. The analysis of the flow evolving over the above two

stages suggests that vorticity and TKE are more influenced by local dynamics
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associated with the flow curvature and rotation than by global dynamics like

the wave steepening, this is particularly visible during stage (1).
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