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ABSTRACT 
 

The use of piles to stabilise active landslides or to prevent future instabilities has 

been successfully applied in the past and is nowadays a widely accepted technique.  

 

However, while the stabilising piles are usually designed with the aim of reducing 

the soil displacement rate, the design strategies commonly adopted in engineering 

practice apply to the ultimate state only, not taking into account any realistic 

interaction mechanism between pile and soil, and are not capable of predicting the 

effectiveness of the pile and soil displacement magnitude. 

 

The goal of the present investigation is to propose a practical displacement-based 

numerical methodology for the analysis and design of passive rigid piles in 

different ground conditions. The developed method considers both a free-head and 

an unrotated-head rigid pile, embedded in a Winkler type soil and subjected to the 

sliding of a surrounding soil. The Winkler approach allows to consider a layered 

soil stratigraphy and to use the horizontal displacement of the surrounding soil as 

an input to evaluate the associated lateral deflection of the pile as well as the acting 

shear forces and bending moments in function of the external ground displacement. 

A FORTRAN computer program has been written to implement the numerical 

procedure. 

 

The proposed method seems to be suitable for being implemented in traditional 

Limit Equilibrium Methods or more in general in any decoupled approach method. 

Moreover, non-dimensional design charts have been developed for simplified soil 

stratigraphies, in which the required shear force offered by the pile is plotted over 

the sliding surface depth, as a function of the pile head deflection, the maximum 

bending moment and the external soil displacement.  
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NOTATION 
 

N = normal force 

T = shear force 

M  = bending moment 

D = pile diameter 

Fd = total of the disturbing actions along a slip surface 

Fr = total of the resisting actions along a slip surface 

MR = total of the resisting bending moments along a slip surface 

Md = total of the disturbing bending moments along a slip surface 

SF = factor of safety of a unreinforced slope 

SFT = factor of safety of a pile-reinforced slope 

SFtarget = target factor of safety for a pile-reinforced slope 

RF = slope stabilising contribution provided by the piles 

Np = ultimate undrained lateral bearing capacity factor 

s  = centre-to-centre pile spacing in a row  

d  = clear spacing between the piles in a row 

 = pile-soil adhesion factor  

s1  = critical pile spacing  

Np1 = ultimate undrained lateral bearing capacity factor 

py = yielding soil-pile pressure [FL-2] 

p(z) = elastic force per unit length of the pile at the depth z [FL-1] 

pu = ultimate force per unit length of the pile [FL-1] 

Kp  = Rankine passive pressure coefficient 

φ’  = internal friction angle of the soil 

c’ = effective cohesion of the soil 

φR  = reduced internal friction angle of the soil 

cR = reduced cohesion of the soil 

Su = undrained shear strength of soil �′   = initial vertical effective stress 

  = total unit weight of the soil 

’ = effective soil unit weight of the soil 

h  = load transfer reduction factor 
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kh  = coefficient of subgrade reaction of a soil mass [FL
−3

 ] 

Es  = subgrade reaction modulus  or elastic spring modulus [FL
−2

 ] 

L = pile length 

Ls, L1 = sliding surface depth (βL) 

L0 = first layer thickness (λL) 

L2 = firm layer thickness 

β = ratio between sliding depth and pile length Ls/L 

 = ratio between first layer thickness and pile length L0/L  

Ep = Young’s modulus of the pile 

Jp = Moment of inertia of the pile section 

I = characteristic pile length [L] 

z,zn = depth and the normalised depth z/L, respectively 

yp(z) = pile deflection at the depth z 

y0  = pile head’s deflection at ground level  

y0n  = normalised pile head’s deflection at ground level Y0/L 

ω = pile rotation angle  

M0 = bending moment on pile head for the unrotated head fixity condition 

M0n = normalised bending moment on pile head for the unrotated head fixity 

condition 

T = shear force 

Tn,Tm = normalised shear force  

M = bending moment 

Mn = normalised bending moment 

My = yielding moment of the pile section 

ys(z)  = soil movement at the depth z 

ys0  = soil free-field movement at ground surface 

ys0  = normalised soil free-field movement at ground surface  Ys0 /L 

  = angle of linear variation of the free-field soil movement  

 = ratio between soil displacement at ground level and at Ls 

Y(z) = relative soil-pile displacement at a generic depth of z ∆  = relative soil-pile displacement at ground level ∆  = normalised relative soil-pile displacement at ground level ∆ �   = relative soil-pile tangent of rotation angle  
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k = ratio between Es or pu of stable and unstable soils 

α0 = ratio between modulus of subgrade reaction at ground level and at Ls or 

L0 when linearly varying with depth 

k0 = ratio between pu at ground surface and stable and at z=L0 

m = gradient of the ultimate force per unit length of the pile (FL
-2

)  

m1,m2 = gradient of pu for unstable and stable layer 

X = ratio of gradients of pu  (X = m1/m2) 

n = gradient of the horizontal subgrade reaction modulus (FL
-3

)  

Ny  = Proportionality constants in the elastic solutions 

Nt = Proportionality constants in the elastic solutions 

NΔy = Proportionality constants in the elastic solutions 

NΔt  = Proportionality constants in the elastic solutions 

NM  = Proportionality constants in the elastic solutions 

D = Proportionality constants in the elastic solutions 

a = coefficients of a six order governing equations for failure mode B, B1, 

BY and B2 
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1. Introduction 

When subjected to a lateral force due to the horizontal movements of the 

surrounding soil, piles are defined as passive piles, in opposition to active piles, i.e. 

being part of piled walls, subjected to applied forces. Obviously, both kinds of 

situations are governed by the same series of parameters as the deformability of the 

pile and the soil and the ultimate soil resistance, all governed by the interaction 

soil-pile. 

Anyway, active piles transmit lateral loads to the soil due to a horizontal load 

applied on it, being the horizontal soil movements the consequence of their action. 

They are frequently used for supporting axial and lateral loads for different 

structures, cases in which the horizontal loads governs the design of the piles. The 

problem of active piles either in clay or sand has already been treated by several 

authors (Broms [1], Matlock and Reese [2], Zhang L. [3]), by using different 

approaches. 

 

On the contrary, piles which are subjected to lateral loading along their length 

caused by horizontal movements of the surrounding soil are instead defined as 

passive piles. Passive load on the piles may occur every time changes in the 

surrounding soil stress state provoke a movement in the soil mass, for example 

those installed close to embankments, tunnels or earthworks. Typical cases are 

piles solicited by the installation of adjacent others or crossing liquefying layers 

subjected to earthquakes.  

Another common example is the use of shaft in unstable slopes to prevent or 

reduce the occurrence of slope failures. The use of piles to stabilise active 

landslides or to prevent future events has been successfully applied in the past, due 

to the easy installation in slopes which does not disturb or compromise the 

equilibrium of the land.  

However, there remain uncertainties on the design of passive piles, and an 

agreement on how to model passive piles has still to be reached, due to the 

complex phenomena ruling the soil-pile interaction and the several factors affecting 

it.  
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The presented research work has the primary goal of developing a reliable and 

representative design method that accounts for the effect of the soil and pile 

properties on the performance of passive piles based on the soil-pile interaction.  

The method results to be capable to analysis and design passive piles, estimating 

the pile reaction as a function of the external soil displacement acting on it as well 

as predicting the complete pile deflection and stress state. 

In particular, several different soil stratigraphy and pile boundary conditions are 

analysed and relative elastic or elasto-plastic solutions of the soil-pile system are 

developed. The proposed design approach was also compiled into a computer 

program for the analysis of pile-soil system. 

In addition, examples of practical design charts are also shown as results of the 

implemented methodology. 
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2. Analysis methods of passive piles 

 

The definition of active piles refers to a pile subjected to an external horizontal 

force and, eventually, a bending moment applied on its head. On the other hand, if 

subjected to a soil movement, piles are known as passive piles (Figure 2-1). 

 

 
Figure 2-1:Schematic sections of : a) Active pile with length L, diameter D. b) Passive pile 

embedded in a surrounding sliding soil 

 

Driven or drilled piles work as passive piles whenever they are installed to prevent 

or at least reduce the likelihood of slope failure or are subjected to a lateral force 

due to the horizontal movements of the surrounding soil if changes in the stress 

state provoke a movement in the soil mass. 

Soil movement is also encountered in practice when piles are placed in an unstable 

slope, landslides, adjacent to deep excavation, tunnel operation, marginally stable 

riverbank with high fluctuating water level and also in piles supporting bridge 

abutment adjacent to approach embankments.  

This chapter attempts to present an overview mainly for single pile in different 

topics: pile-supported embankment, piles adjacent to deep excavation, pile 
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subjected to horizontal soil movement as used for slope stabilisation. It aims to be 

only an overview and brief description of the contributions given by various 

researchers and to present the discussion mainly to emphasise the significance of 

past researches on passive piles used as stabilising system. 

 

2.1. Pile-supported embankments 

 

The consolidation of embankments on clay can produce significant vertical and 

horizontal movements of the adjacent soil. Piles supporting bridge abutments might 

then be axially and laterally loaded by these soil movements. The assessment of the 

resulting axial force and movement, bending moment and lateral deflection 

developed in the piles are then fundamental for the design of the piles. Figure 2-2 

shows a schematic section through such a structure, illustrating the forms of 

interaction which tend to increase lateral structural loading and displacement, and 

hence may result in unserviceable behaviour of the abutment or bridge deck. 

 

 
Figure 2-2: Schematic section through a full-height piled bridge abutment constructed on 

soft clay [4] 
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De Beer & Wallays [5] proposed a simple semi-empirical method to estimate the 

maximum bending moment for piles subjected to asymmetrical surcharges. They 

assumed that a constant lateral pressure distribution acted on the pile in the soft 

layer and assessed the magnitude of this lateral pressure as a function of the total 

vertical lithostatic pressure, friction angle and the slope of a fictitious embankment 

of material. They suggested that the lateral loading was caused by horizontal 

consolidation and creep, involving that their method was primarily intended to 

design piles in the long term. Otherwise, the method cannot be used to calculate the 

variation of bending moment with depth along the pile. Therefore, they 

conservatively recommended that the piles should be reinforced over their whole 

length to carry the maximum calculated bending moment. After calibrating the 

method against a few case studies, they demonstrated that the method is only 

suitable if a large margin of safety is provided against the overall instability of the 

soil mass. 

 

The effects of vertical drains in the clay layer within embankments was 

investigated by Ellis [6] through a series of geotechnical centrifuge tests of full-

height piled bridge abutments examining the effect of soft clay layer depth and the 

rate of embankment construction. The results confirmed the existence of 

established interaction effects due to lateral displacement of clay past piles.  

 

Following this, Ellis and Springman [4] presented an accompanying series of plane 

strain finite element analyses for the same series of geotechnical centrifuge tests to 

study the soil-structure interaction effects. Although some aspects of the structure 

do not conform to a plane strain analysis (most notably the piles), success of the 

method is illustrated by good comparison with the centrifuge test results. 

 

For piles to support a retaining wall, the recommendations of Terzaghi et al. [7] 

embodied in charts, are based on the use of the equivalent-fluid method and show 

the importance of the selection of an appropriate material for the backfill. A 

comparison of values from theory with values from the charts shows that the charts 

are close to those from Rankine’s theory for active earth pressure. Therefore, the 

assumption is implicit in the Terzaghi charts that the wall is capable of some 
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movement without distress if the pressures from the backfill were greater than the 

chart values.  

 

Finally, it is worth to be noticed the work made by Poulos [8], who reviewed some 

available design methods of piles through embankment and presented comparison 

between these methods for maximum bending moment in the piles, lateral pile 

head deflection, maximum axial force in pile and axial pile head settlement. Some 

of the methods being reviewed are the method of De Beer and Wallays [9], an 

approach used by a road authority in Australia, a simplified analysis of pile 

downdrag and design charts developed from boundary element analyses of pile-soil 

interaction. It is interesting that the author concludes that none of the previously 

available methods appears able to provide a consistent means of estimating the 

lateral response of piled embankment. 

 

2.2. Piles adjacent to deep excavation 

In dense urban environment where buildings are closely spaced, deep excavation 

for basement construction and other underground facilities is unavoidable. These 

deep excavations would cause lateral soil movement behind the excavation, which 

would in turn induce lateral loading on adjacent pile foundations and consequently 

additional bending moment and deflection. 

 

For example, Finno et al. [10] reported the analyses of performance of groups of 

piles located adjacent to a 50-ft-deep tieback excavation. Evaluation of effects of 

movements on the adjacent piles was then carried out using a plane strain finite 

element code. However, accuracy of the approach could not be clearly verified due 

to less certainty with the selection of soil parameters, especially the soil’s modulus 
because of the lack of detailed laboratory or in situ testing.The uncertainty of 

modelling the equivalent bending stiffness of the pile group in plane strain resulted 

in lower and upper bound solution.  
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Poulos & Chen [11] did a two stage analysis by use of the finite-element method 

and the boundary-element method to analyse the response of piles due to 

unsupported excavation-induced lateral soil movement in clay. Initially, a plane 

strain finite element method was used to simulate the excavation procedure and to 

generate free-field soil movements, that is the soil movement that would occur. 

These generated soil movements are then used as input into a boundary element 

method to analyse the pile’s response. 
 

On the contrary, Goh et al. [12] presented the results of an actual full-scale 

instrumented study carried out to examine the behaviour of an existing pile due to 

nearby excavation of a 16m deep excavation with an in-soil inclinometer installed 

about 6m away . The instrumented existing pile was discretized into a finite 

number of discrete (linear elastic) beam elements. The interaction between the soil 

and the pile is modelled by a series of non-linear horizontal springs represented by 

a hyperbolic equation.  

 

Recent efforts in centrifuge modelling of passive piles adjacent to unsupported 

excavation were done by Leung et al. [13] who presented the results of centrifuge 

tests of a single pile behind a stable and failed wall of a deep excavation in dense 

sand. The research also investigates the influence of head fixity and shows that 

behind the stable wall, the pile head deflection and maximum bending moment for 

the free-headed pile decrease exponentially with increasing distance from the wall. 

Subsequently, he  extended the centrifuge test to pile groups, incorporating the 

effects of interaction factors between the piles with different head fixities [14]. 

Further investigation was done for single pile behind stable wall [15] and unstable 

wall [16] in clay. It is concluded that calculated pile response is in good agreement 

with the measured data if correct shear strength obtained from post-excavation was 

used in numerical analysis. The numerical analysis was based on a simplified 

model and was used to back-analysed the responses of single pile subjected to 

lateral soil movements in clay. In this model, the pile is modelled as a series of 

linear elastic beam elements and the soil is idealised using the modulus of subgrade 

reaction. This numerical method has been also adopted successfully to back-

analyse the centrifuge model tests on a single pile in sand.  
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2.3. Passive piles to increase slope stability 

At present, simplified methods based on crude assumptions are used to design the 

driven or drilled piles needed to stabilise the slopes of embankments or to reduce 

the potential for landslides from one season to another. The major challenge lies in 

the evaluation of lateral loads (pressure) acting on the piles/pile groups by the 

moving soil and in the development of a representative model for the soil-pile 

interaction above and below the failure surface, both required to reflect and 

describe the actual distribution of the soil-pile pressure along the length of the pile. 

 

The different mechanisms of failure and factors can be considered in the evaluation 

of the resistance contribution a pile can transmit implicate a distinction between 

two groups of methods used to describe soil-pile interaction: analytical methods, 

like pressure or displacement-based ones, and numerical methods, such as finite 

elements and finite differences. Nevertheless, it is important to highlight that a 

similarity of the applicability of method of analysis by using plane strain finite 

element method, subgrade reaction or elastic continuum formulation is that a 

specified free-field soil movement have to be inputted in the numerical method to 

analyse the response of the piles in terms of deflection. 

2.3.1. Numerical methods 

Over the last few years, the progress in computing and software power led to a 

wide application of the finite-element (FE) and finite differences (FD) methods, 

which provide the ability to model complex three-dimensional geometries and to 

run coupled analysis of soil-structure interaction such as pile group effects (Chow 

[17]; Cai and Ugai [18]; Won et al.[19]; Wei and Cheng [20];) as 2D analysis do 

not capture some aspect of the problem as soil arching. However, the applications 

of numerical methods in three dimensions are rather unattractive for practitioners 

as they are complex, computationally expensive and time-consuming. 

 

Among all, Chow [17] presented a numerical approach in which the piles are 

modelled using beam elements and the surrounding soil using an average modulus 
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of subgrade reaction. The theory of elasticity is therefore used to simulate the soil-

pile-soil interaction while the sliding soil movement profile is assumed according 

to field measurements. The same method has been used later by Cai and Ugai [18] 

for the same scope. 

 

More recently, Kourkoulis et al. 2011 [21], [22] developed a hybrid methodology 

for the design of slope-stabilizing piles aimed at reducing the amount of 

computational effort usually associated with 3D soil-structure interaction analyses. 

This method involves all the steps for evaluating the required lateral resisting force 

per unit length of the slope, needed to increase the safety factor to the desired value 

by using the results of a conventional slope stability analysis, and for estimating the 

pile configuration that offers the required force for a prescribed deformation level 

using a 3D finite element analysis. This approach computes the lateral capacity of 

the piles by numerically three-dimensionally simulating only a limited region of 

soil around the piles and imposing a uniform displacement profile into the model 

boundary. 

2.3.2. Analytical methods  

The analytical methods used for the analysis of passive piles can generally be 

classified into two different types: pressure-based methods and displacement-based 

methods.  

 

The pressure-based methods (Broms [1]; Viggiani[23]; Randolph and Houlsby, 

[24]; Ito and Matsui [25]) are centred on the analysis of passive piles that are 

subjected to the ultimate lateral soil pressure. The most notable limitation of 

pressure-based methods is that they apply to the ultimate state only (providing 

ultimate soil-pile pressure) and do not give any indication of the development of 

pile resistance with soil movement (mobilised soil-pile pressure). Therefore, their 

application should be limited to already stable soil configurations, in which piles 

are called to give a contribution to reach a mandatory higher factor of safety. 

 

In displacement-based methods (Poulos [26]; Lee et al. [27]), the lateral soil 

movement above the failure surface is used as an input to evaluate the associated 
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lateral response of the pile. These methods are superior to the pressure-based ones 

as they can provide the mobilised pile resistance by considering the soil external 

movement as the input of the calculation. In addition, they reflect the true 

mechanism of soil-pile interaction. For this reason, this kind of methods better fit 

with analysis of slopes where a soil movements are already acting: the free-field 

soil movements that can be evaluated by monitoring the landslide or by modelling 

the slope behaviour can be used as an input for the calculation of the piles 

response, making possible to optimise their design according to the admissible 

displacements of the retaining piles wall or of the ground.  

 

Due to this advantages, the analytical displacement-based approach has been 

chosen for the development of the method object of the present dissertation.  

However, in the following paragraph a list of the more interesting methods is given 

in order to provide a review of the methods available in literature 

 

2.3.3. Pressure-based methods 

Analysing different soil-pile failure modes with depth, Broms [1] suggested the 

several equations to calculate the ultimate soil-pile pressure pu for a single pile both 

in sand, as a function of the Rankine passive pressure coefficient Kp, and in 

cohesive soils, as function of the undrained shear strength Su and of a bearing 

capacity factor Np varying with depth. 

Viggiani [23] proposed a simplified method in which the maximum shear force 

provided by a single unrestrained pile is derived assuming that soil movements are 

great enough to fully mobilise the limiting soil pressure above and/or below the 

sliding surface. With this assumption, Viggiani derived dimensionless solutions for 

the ultimate lateral resistance of a pile in a two-layer purely cohesive soil profile. 

These solutions provide the pile shear force at the slip surface and the maximum 

pile bending moment as a function of the pile length and the ultimate soil-pile 

pressure pu in stable and unstable soil layers. With this assumption, six failure 

modes were analysed and dimensionless solutions for shear force and maximum 

bending moment are derived for each potential failure mechanism (Chmoulian  

[28]). The solution of Viggiani is applicable only to soil in undrained condition 
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with an ultimate lateral pressure constant with depth in the stable and unstable 

layer. 

 

Among all, Guo [29] proposed pressure-based pile–soil models and developed their 

associated solutions to capture response of rigid piles subjected to soil movement. 

The impact of soil movement was schematized as a fixed distributed loading over a 

sliding depth, and load transfer model was adopted to mimic the pile–soil 

interaction. The soil is modelled according to a Winkler approach with an 

assumption of a constant subgrade reaction modulus with depth. The solutions are 

presented in explicit expressions and can be readily obtained. It should be noticed 

that, along the length subjected to the soil displacement, both the fixed distributed 

external loading and the reaction pressure due to the soil-pile interaction are acting 

on the pile at the same time. 

 

2.3.4. Displacement-based methods  

In displacement-based methods (Poulos, [26]; Lee et al., [27]), the lateral soil 

movement above the failure surface is used as an input to evaluate the associated 

lateral response of the pile. The superiority of these methods over pressure-based 

methods is that they can provide mobilised pile resistance by soil movement. In 

addition, they reflect the true mechanism of soil-pile interaction.  

Poulos [26] in particular presented a method of analysis of a row of passive piles 

practically as improvement of the solutions already provided by Viggiani [23], 

aiming to describe the full soil-pile interaction and not only the ultimate lateral 

state. For this reason, the pile is modelled as an elastic beam and the soil as an 

elastic continuum  and the calculation carried out by using a finite-difference 

method (Figure 2-3), so that the model can evaluate the maximum shear force that 

each pile can provide based on an assumed free-field soil movement input and also 

compute the associated lateral response of the pile. Poulos assumes that a large 

volume of soil (the upper portion) moves downslope as a block over a relatively 

thin zone undergoing intense shearing in the “drag” zone (Figure 2-4). It is 

assumed an elasto-plastic model for both the pile and the soil: the soil close to the 

pile interface can undergo elastic strains until the limit pressure is reached (both the 



12 

 

elastic modulus and the limit pressure of the soil are assumed as varying along pile 

length).   

 
Figure 2-3: Model for piles in soil undergoing lateral movement [26] 

It should be noticed that, while the pile and soil strength and stiffness properties are 

taken into account to obtain the soil-pile pressure, the group effects, namely pile 

spacing, are not considered in the analysis of the soil-pile interaction. 

 
Figure 2-4: Free-field soil movement [26] 

The analysis revealed the following failure modes, basically the same found by 

Viggiani [23]: 
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-The “flow mode” (or Mode C), when the depth of the failure surface is shallow 

and the sliding soil mass becomes plastic and flows around the pile (see Figure 

2-5a). In this case, the pile deflection is considerably less than the soil movement.  

-The “intermediate mode” (or Mode B), when the depth of the failure surface is 
relatively deep and the soil strength along the pile length in both unstable and 

stable layers is fully mobilised (see Figure 2-5b). In this mode, the pile deflection 

at the upper portion exceeds the soil movement and a resisting force is applied 

from downslope to this upper portion of the pile. 

-The “short pile mode” – when the pile length embedded in stable soil is shallow 

and the pile will experience excessive displacement due to soil failure in the stable 

layer (Figure 2-5c). 

-The “long pile failure” – when the maximum bending moment of the pile reaches 

the yields moment (the plastic moment) of the pile section and the pile structural 

failure takes place (Mmax = My).This mechanism can be associated  with any of the 

others, even if experience suggests that it is most likely to occur with the 

intermediate mode. 

 

What it is worth to be highlighted is that the maximum shear force in the pile is 

always developed at the level of the slip surface; its maximum value occurs when 

the soil slide depth is about 0.5-0.6 times the pile length. Moreover, For practical 

uses, the author endorsed the flow mode as it creates the least damage from soil 

movement on the pile. Otherwise, as maximum shear forces and bending moments 

are developed under the intermediate mode, slope stabilising piles should be 

designed so that this mode of behaviour occurs. 
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Figure 2-5: Pile behaviour characteristics for various modes with the hypothesis of 

constant soil movement in the slide zone, no “drag” zone, pile length of 15m and diameter 
0.5m. Sliding soil with Su=30kPa and firm soil with Su=60kPa [26] 
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3. Passive pile in a linear elastic soil: a 

displacement-based model for passive 

pile in a linear elastic soil  

Elastic solutions for laterally loaded piles are utilised successfully to predict the 

behaviour of passive piles. Recent studies suggest that the response of rigid passive 

piles is dominated by elastic pile–soil interaction [30]. They reveal that about one-

third of limiting pressure on passive piles is induced by an elastic interaction. 

According to Chen and Poulos [31], relatively small soil movements, generally of 

the order of 5% of the pile diameter, are sufficient to fully mobilise the pile 

response obtained by mean of an elastic soil behaviour.  

 

For this reason, the present work proposes a displacement-based model for the 

design of stabilising piles and develops their associated elastic solutions targeting 

the response in terms of shear force and bending moment along a rigid pile 

subjected to horizontal soil movement. Therefore, in comparison with available 

solutions for the ultimate state, the research aims at the development of a general 

framework focusing on the response of a pile to free-field soil movements, based 

on purely elastic soil behaviour and considering any stage of ground movement. 

The only static response is deemed. The analysis is designed to be subsequently 

improved to incorporate the nonlinear stress-strain relationships of soils and 

ultimate states, as described in next chapters. 

 

More in particular, the analysing method considers a single rigid pile embedded in 

a sliding mass. Avoiding an initial assumption on the soil impact pressure on the 

shafts, the lateral displacement of the moving soil interesting the shaft is used as an 

input to evaluate the associated lateral deflection and strain state of the pile, 

according to the sliding depth and the ground and pile strengths. The method can 

consider a general linear free field soil movement with extreme cases represented 

by a uniform and an inverse triangular variation with depth. In light of a Winkler 

model [32], the pile-soil reaction is given by the coefficient of subgrade Es and is 

represented by force per unit length. The solutions of the equilibrium equations 
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between the soil-pile pressures calculated both above and below the sliding surface 

are developed in explicit expressions for calculating bending moments, shear 

forces and deflection.  

Different soil stratigraphies and pile boundary conditions are analysed to 

encompass the more common design configurations, as the presented result seems 

to be suitable for being implemented in traditional Limit Equilibrium Methods or 

more in general in any decoupled approach method, whenever the analysed slope 

presents an active landslide.  
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3.1. Overview of the Winkler model 

Research on analysis of passive piles started more than five decades ago.   As a 

consequence of such sustained research, several analysis methods have been 

developed and can be used for the design (an account of the salient available 

methods has been provided in chapter 2). While solutions for the ultimate lateral 

resistance of a pile do not give any indication of the development of pile resistance 

with soil movement and take into account only the limiting soil pressure, in a 

displacement based analysis the soil strain and stress levels are linked to the 

relative soil-pile displacement through an appropriate constitutive model. 

In the presented research work, the governing equations for the deflection of 

passive rigid piles are obtained by using a beam-on-elastic-foundation (or Winkler) 

approach. It illustrates how simple idealisations of the pile-soil interaction can be 

used to derive the equations for layered, elastic foundations and to develop the 

analytical equations.  

 

According to the Winkler approach [32], the resistance of a subgrade against 

external forces can be assumed to be proportional to the ground deflection. In other 

words, the ground can be represented by a set of elastic springs so that the 

compression (or extension) of the springs (which is the same as the deflection of 

the ground) is proportional to the displacement of a beam (or a pile) under an 

applied load (Figure 3-1).  

 
Figure 3-1: a) A beam on an elastic foundation; b) A pile on a bed of springs 
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The springs coefficient represents the stiffness of the ground (foundation) against 

the applied loads. It is important here to specify that the spring coefficient unit for a 

soil-pile system, in which the resistance is expressed per unit pile length, is [FL
−2

] 

(F = force, L = length), while the spring coefficient unit of a conventional spring is 

[FL
−1

].  

The Winkler approach is also called subgrade-reaction approach as the foundation 

springs coefficient can be related to the coefficient of subgrade reaction of a soil 

mass kh [FL
−3

] (Terzaghi [33]): if the pressure at a point between the ground and 

the beam is p and if, because of p, the deflection of the point is y, then the modulus 

of subgrade reaction is given by p/y and has a unit of FL
−3 

(see Figure 3-2). 

 

 
Figure 3-2: Soil reaction p and pile displacement y relationship 

 

If kh is multiplied by the width of the pile, gives the subgrade modulus Es [FL
−2

], 

considered as the spring modulus that multiplied by the spring deflection produces 

the resistive force of the soil per unit pile length.  = ℎ ∙     [ − ]     ( 3-1 ) 

Therefore, the spring modulus Es is often estimated directly by experimental test, 

e.g. by performing a plate load test, or through correlations with soil strength 

parameters (a deeper explanation is given in Paragraph 3.3). 

The solution provided in the present chapter only consider a linear elastic 

behaviour of the soil-pile interaction. Anyway, it has to be considered that the soil 

reaction (p) and pile displacement relation is nonlinear (Figure 3-2), particularly 
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near the top part of the pile. In order to simplify the problem, the soil can be 

assumed to be linear elastic-perfectly plastic [34]. In this case the empirical 

modulus of horizontal subgrade reaction Es has to be estimated as a secant value in 

order to represent the real decreasing trend with increasing pile displacement.  

In addition, as the pile movement increases to a certain level, the limit soil 

resistance pu [FL
-1

] will be reached: the pu value is related to the limit yield 

pressure of the soil and to the relative pile-soil interaction.  

 

The input parameters required are the elastic modulus and geometry of the beam, 

the spring modulus of the foundation (soil) and the magnitude and distribution of 

the soil movement. As a result, the beam deflection, bending moment and shear 

force along the length of the pile can be determined. 
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3.2. Problem definition and model hypotheses 

The presence of a sliding mass over a firm stratum represents a typical and 

generalised condition for a passive loading on a pile, i.e. if used as a stabilising 

system. 

The developed methods models the problem by considering a single rigid pile of 

length L and diameter D embedded in a moving soil to a depth of Ls=βL (Figure 

3-3). For simplicity, the ground and the slip surface are assumed to be horizontal. 

 
Figure 3-3: A Free—Head rigid and a unrotated-head pile subjected to a soil  movement 

with a generic profile 

 

Two cases for fixity condition of the pile head have been considered, namely: the 

free-head (rotation and displacement, Figure 3-3a), unrotated-head (displacement 

without rotation, tan � = , Figure 3-3b). In the second case, the fixity condition is 

represented by the bending moment M0 applied on the pile head. 

More specifically, the presented displacement-based pile–soil interaction model, 

also based on the Winkler approach, is underpinned by the following hypotheses: 

 The soil movement ys(z) has a magnitude of ys0 at the ground surface and 

follows a linear inverse decreasing with depth. It is defined through parameters Ys0 

and the angle  (Figure 3-4): ys0 represents the soil displacement at ground surface 

while its variation with depth is expressed by the  angle, as described in the 
following formulation: 
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zyzy ss  tan)( 0

   
0 < z < Ls    ( 3-2 ) 

0sy     
 Ls < z < L     ( 3-3 ) 

With: 

 
s

s

L

y
tan 01  

        ( 3-4 ) 

in which the ratio  is defined as: 

 
0s

ss

y

Lzy 


        ( 3-5 ) 

The soil movement distribution can vary from an inverse triangular variation with 

depth when no displacement occurs in correspondence of the slip surface (h=0) to 

a uniform distribution of the displacement when the unstable soil layers slide down 

as a single mass block (h=1). Intermediate values of  describe a generic 
trapezoidal profile of the soil movement. 

 
Figure 3-4:Distribution of the soil movement: a) generic distribution; b) inverse triangular 

variation with depth h=0; c)uniform distribution with depth h=1 

ys0 

ys0 

 

L 

ys0 

= 0 

 Ls 

ys0 

= 1 

 

Ls 



22 

 

 The kinematics of passive piles is complex and vary depending on its type.  

Since piles subjected to soil movement are transversely loaded, the pile may rotate, 

bend or translate (Viggiani [35]), depending on the interaction between the pile and 

the soil.  If the pile is long and slender, then it bends because of the applied load. 

These piles are called flexible piles.  If the pile is short and stubby, it will not bend 

much but will rotate or even translate, and they are called rigid piles or shafts 

(Figure 3-5).   

 

 

 
Figure 3-5: Kinematics of rigid piles 

 

The proposed method is only applicable to rigid piles or shafts. This assumption 

results to be particularly suitable since the passive piles used as slope stabilising 

systems are generally rigid, with a big diameter in comparison to their length. 

 

Several methods are available for determining whether a pile would behave as a 

rigid pile or not, including those by Broms [1], Matlock & Reese [2], Davisson and 

Gill [36]. Usually, to behave as a rigid one, the pile embedment length to diameter 

ratio should be smaller than 6. For a pile in a soil with a constant subgrade reaction 

modulus Es, it can be considered to be rigid for practical purposes if the following 

condition is satisfied: 

 

�          ( 3-6 ) 
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in which  =  √ / , L is the length of the pile, and EpJp is the bending 

stiffness of the pile [35]. 

For soils with a modulus of horizontal subgrade reaction Es which vary linearly 

with depth, a different formulation is available: 

  =  √ / ℎ         ( 3-7 ) 

where nh is the gradient of the modulus of horizontal subgrade reaction =ℎ  . 

In the case of different moduli within the sliding layer, an average value over the 

sliding layer thickness can be calculated and used in the formulation. 

 Being the pile considered to be rigid, so that the yield moment of its 

section is higher than the bending moments acting upon it. It results that the 

displacement of the pile at the ground surface is a consequence of its head 

movement and its rotation around a point located at some depth below the ground 

surface. This assumption let fully describe his deflection yp(z) with depth by using 

two parameters y0 and tanω: 

tan)( 0 zyzyp          ( 3-8) 

where y0 is the pile head’s movement and ω his angle of rotation around a generic 
point (Figure 3-3) 

 The pile–soil interaction is modelled by a series of elastic springs along the 

pile length (note shear force at the bottom of the pile is ignored). Each spring has a 

constant coefficient of subgrade reaction Es, depending on the soil stratigraphy and 

properties under consideration. 

 

The pile has a displacement-dependent on-pile force profile (with a specific upper 

limit) and similarly is derived the impact of the moving soil on the piles. The soil 

strain above and below the slip surface is linked to the relative soil-pile 
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displacement y(z); based on the assumed lateral soil movement, the relative soil-pile 

displacement  at a generic depth of z above the slip surface is calculated as follows  

 ∆ =  −         ( 3-9) 

 

where yp(z) is the pile deflection at a generic depth of z. Below the slip surface, in 

the firm soil, the relative soil-pile displacement is considered to be the same as the 

pile deflection: 

 ∆ =          ( 3-10) 

The relative soil pile displacement is also expressed as: 

 ∆ =  − =  − − � � − � = ∆ − ∆ �  ( 3-11) 

Where 

 ∆ = −         ( 3-12 ) 

 

is the relative soil-pile displacement at ground level and 

 ∆ �  = � � − �        ( 3-13 ) 

 

the difference between the soil-pile tangents of the respective rotation angle. 

 

 According to the Winkler model assumed, the soil pressure p(z) per unit 

length is: = −  ∙ [ −  ]      ( 3-14 ) 
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The integral of the pressures along the pile length gives the equilibrium equations 

system. 

 A major advantage of the model is that the solutions of the equilibrium 

equations system are then derived in a normalised explicit form for calculating 

bending moments, shear forces and pile deflection.  

 

In particular, the normalised external soil displacement = ⁄  results to be 

proportional to the pile deflection parameters, through several specific 

proportionality constants, determined separately for every single case under 

investigation, as function of non-dimensional coefficients which describe the soil 

stratigraphy. 

Different expressions are derived for the boundary conditions of free-head pile and 

unrotated-head pile and reported in the tables below. In addition, also the shear 

forces and bending moments profiles are expressed in an explicit normalised form, 

once again as a function of the same proportionality constants and coefficients. 
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Normalised  relative 
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Table 3-1: General normalised expressions for the calculation of a free-head pile deflection 
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Table 3-2:General normalised expressions for the calculation of an unrotated-head pile 

deflection 

 

  Five different soil stratigraphy profiles have been analysed by means of 

the presented method. They differ each other for the distribution of the subgrade 

reaction modulus, as showed in Figure 3-6. For every single case, both the free-

head and the unrotated-head are investigated. 

 
Figure 3-6: Analysed cases: Type-1) Two-layered soil with a constant subgrade reaction 

modulus. Type 2) Two layered soil with subgrade reaction modulus varying with depth. 

Type 3) Two layered soil with subgrade reaction modulus varying with depth. Type 4) 

Three layered soil. Type 5) Homogeneous soil with subgrade reaction modulus increasing 

with depth 
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3.3. Estimation of elastic soil parameters  

The Winkler approach requests the assessment of Es for the soil, properly defined 

as  the product of the coefficient of subgrade reaction kh  and the width of the pile 

 = ℎ ∙     [ − ]         ( 3-15 ) 

 

Whenever in-situ test measurements or pile load tests for the evaluation of  kh  are 

not available, Es is often estimated on the basis of correlations with soil strength 

parameters. 

One of the most accepted distribution law for Es is the one proposed by Palmer & 

Thompson [37] in the form of: =           ( 3-16) 

Where: 

EsL = the value of Es at pile toe (z = L) 

f = a coefficient greater or equal to zero  

For overconsolidated clays, f is commonly taken as zero, so that Es is constant with 

depth; in this case, Es is typically correlated with Su as: = �          ( 3-17) 

where the value of � typically lies between 150 and 400 ([38], [39]). 

 

For sands and for normally consolidated clays under long-term loading, it is 

reasonable to assume that the modulus of horizontal subgrade reaction, Es, varies 

linearly with depth ( it means f is taken as unity). However, the most commonly 

used formulation for this case is: = ℎ          ( 3-18 ) 

where: 

nh = gradient of the horizontal subgrade reaction modulus [FL
-3

]  
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This applies to cohesionless soils and normally consolidated clays where these 

soils indicate an increasing strength with depth due to the overburden pressure 

rising. 

 

Soil Type nh (kN/m3) Reference 

Soft NC Clay 163-3447 

271-543 

Reese and Matlock (1956) 

Davisson and Prakash (1963) 

NC Organic Clay 179-271 

179-814 

Peck and Davisson (1962) 

Davisson (1970) 

Peat 54 

27-109 

Davisson (1970) 

Wilson and Hilts (1967) 

Loess 7872-10858 Bowles (1968) 

Table 3-3: Typical values of nh for cohesive soil 

 

Table 3-3 summarises the typical values of nh for cohesive soils by various authors, 

whereas typical values of nh for saturated loose, medium and dense sands are 1.5, 

5.0 and 12.5 MPa/m respectively (Decourt 1991 [40]). However, as nh value for 

sand has been found to decrease with the increasing displacement of the pile, 

Bhushan K. et al. [41] proposed a nh versus normalised pile displacement at ground 

surface relations for different sand relative density values (Figure 3-7). Their 

correlation has been later modified by Zhang L. [3] , who expressed the secant 

value nh with the formulation: ℎℎ, � = . − .
        ( 3-19 ) 

Where nh,max is the maximum value determined at low strain in correspondence of 

the initial portion of the p–y curve (Figure 3-7). 
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Figure 3-7: Variation of gradient nh, with normalised pile head displacement y0/D, 

according to Bhushan et al. [41]  and Zhang L. [3] 
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3.4. Elastic solutions for a passive rigid pile in a two-

layered cohesive soil with a constant subgrade reaction 

modulus 

The presence of a sliding cohesive mass over a stiffer stratum represents a typical 

slope instability condition and is the same problem already investigated by 

Viggiani [23] by means of a simplified pressure-method for only the ultimate 

lateral resistance of a pile in a two-layer purely cohesive soil profile.  

In the present paragraph, the same problem is investigated. In particular, it has 

been modelled a layer of soil of thickness Ls=βL, sliding on a firm underlying soil 

along a slip surface. Both soils are assumed to be saturated clays in undrained 

conditions, with a shear strength equals to Su1 above and to Su2 below the slip 

surface. A free-head rigid pile of length L crosses the sliding surface and is 

embedded in the stable underlying bed (Figure 3-8). 

 

 
Figure 3-8: Soil profile and pile displacement geometry for a rigid pile in a  two-layered 

cohesive soil 
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3.4.1. Estimation of elastic soil parameters  

A different and constant value of the modulus of subgrade Es is assigned to every 

soil layer (Figure 3-9), ideally correlated to their assumed constant shear strength, 

regardless of depth (cf. Paragraph 3.3 for over-consolidated cohesive soils): Es1 for 

the sliding stratum (through ground level to Ls) and Es2 for the stable layer : 

   =       [FL
-2

]     0 < z <Ls   ( 3-20 )    =   =  ∗       [FL
-2

]    Ls < z < L   ( 3-21 ) 

 

where k is a constant parameter defined as : 

1

2

s

s

E

E
k 

        ( 3-22 ) 

 

 
Figure 3-9: (a) A rigid pile; (b) Variation of Es with depth 

 

The ratio k allow to parametrically vary the soil stiffness in order to obtain 

practical non-dimensional solutions. In particular, by imposing k=1 , the derived 

non-dimensional solutions can be adopted for a homogeneous soil with a constant 

Es2 = kEs1 

L 

L 

y0 

a 

 

Es1 
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modulus of subgrade reaction. However, its value is assumed to be greater than 

unit; this is in agreement with Davisson [39] who suggested, in order to better 

model the plastic behaviour of the shallower soil, to consider a two layered 

stratigraphy, where the bottom layer is characterized by a modulus at least double 

than the top layer’s one ([5], [23]).  

3.4.2. Elastic solutions for the free-head condition 

With the above assumptions and assuming there is no soil-yielding, the soil 

reactions along the whole length L of the pile can be expressed as: 

 z = − ( − =  − [ − − � � − � ] [FL
-1

]     0 < z <Ls ( 3-23 ) 

 = − [ − � � ]  [FL
-1

]    Ls < z < L ( 3-24 ) 

 

The global equations of the problem are obtained by imposing the horizontal force 

equilibrium and moment equilibrium around the head of the pile: 

 

0
)(2

0

)(1   dzpdzp
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Ls

z

Ls

z        ( 3-25 ) 

0
)(2

0

)(1   zdzpzdzp

L

Ls

z

Ls

z        ( 3-26 ) 

By substituting the expressions of the pressure p(z), the following two non-

dimensional equations can be obtained: ∆ − ∆ � + − − � � − =    ( 3-27 ) 

∆ − ∆ � + − − � � − =    ( 3-28 )  
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What is interesting about the results in this paragraph is that they can be expressed 

in an explicit and normalised form; referring to Table 3-1 the profiles of pile 

displacement are expressed as function of the proportionality constants summarised 

in Table 3-4. 
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Table 3-4: Proportionality constants for a passive free-head rigid pile in a two-layered 

cohesive soil 

 

By means of the same constants and coefficients, shear forces and bending 

moments profiles at unstable and stable zones are deduced. Together with the 

maximum bending moment Mmax and its depth zn in both stable and unstable zones, 

they are provided in Table 3-5. 

 

 

 

 



35 

 

Depth 

(zn) 
Expressions  

0 – β 

(unstable 

zone) 

2

02

1 2

1
nnn

s

ztanzy
LE

T


 

 

 
32

03

1 6

1

2

1
nn

s

ztanzy
LE

M


 

 

 
tan

2 0




 n
nM

y
z

 

 

 
2

3

0

3

1

max

3

2

t

y

nss DN

N

yLE

M






 

 

zn = β 

(slip 

surface) 

     nsty

s

yNN
D

k

LE

T
02

1

12
2

1  



 

 

 
     nsty

s

yNN
D

k

LE

M
0

2

3

1

23
6

1  



 

 

β – 1 

(stable 

zone) 

   1tan
2

1
1

2

02

1

 nnn

s

zkzky
LE

T 
 

 

 





 






 

3

2

3

1
tan

2

1

2

1

2

1 32

03

1

nnnnn

s

zzkzzky
LE

M 
 

 

 1
tan

2 0 

n

nM

y
z

 

 



36 

 

 
 

ns

t

yt

s

y
DN

NNk

LE

M
02

3

3

1

max

3

2 


 

 

Table 3-5: Elastic solutions for a passive free-head rigid pile in a two-layered cohesive soil 

 

In each zone, the expression of the maximum bending moment is valid only if its 

depth zn is within the relative interval. As a consequence, the maximum bending 

moment acting on the pile is: 
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  ( 3-29 ) 

 

All the solutions provided highlight the proportionality between the soil movement 

and pile response. But by combining the expressions of T and Mmax , it is possible 

to obtain the following expressions: 
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  ( 3-31 ) 

 

which demonstrates that even pile stresses are directly proportional to each other 

through a proportionality constant that is depending only on the geometry and soil 

stiffness. 

 

The distribution profile of the pile shear forces and bending moments can then be 

obtained with the new solutions, concerning the depth of the sliding surface. The 
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normalised shear force = /   and bending moment =/  are plotted in Figure 3-10, Figure 3-11, Figure 3-12 and Figure 

3-13, for  equal to 1 and 0 and for a fixed k = 2.  

It is evident that the normalised stress profiles shift with the normalised depth of 

the sliding surface β. 
The case  = 1 corresponds to higher stress states on the pile, with Tn profile that 

has its maximum value in correspondence of the sliding surface, with a value 

almost identical for the different values of β. The case  = 0 corresponds to lower 

values of Tn,max , with two local extreme values which occur close to the pile’s top 
and bottom (the latter with a negative value).  

Mn generally has its maximum value for depths close to the middle of the pile, for 

both configurations. It has to be noticed that, while for  = 0 the bending moment 
on the pile is always positive, for  = 1 it is negative if β  6. 

 

 
Figure 3-10: Normalised shear force with depth  for k=2 and η=1 
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Figure 3-11: Normalised shear force with depth for k=2 and η=0 
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Figure 3-12: Normalised bending moment with depth for k=2 and η=1 
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Figure 3-13: Normalised bending moment with depth for k=2 and η=0 
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3.4.3. Elastic solutions for the unrotated-head condition 

The presence of a pile cap or a framing connecting the piles in a row, rigid enough 

to block the piles head rotation, changes the geometry and the behaviour of the 

problem, representing a different problem in the soil-pile interaction analysis. 

While the ground is assumed to have the same stratigraphy and properties than the 

previous case of the free-head pile, as consequence of the applied constrain the 

rigid pile cannot rotate and the angle ω is equal to zero, i.e. Nt =0 (Figure 3-14).  

 

 
Figure 3-14: Soil profile and pile displacement geometry for a unrotated-head rigid pile in 

a  two-layered cohesive soil 

 

This assumption let adequately describe pile deflection yp(z) with depth by using 

the head’s movement parameter y0  

0)( yzyp 
         ( 3-32 ) 
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With the above assumptions, the soil reactions along the whole length L of the pile 

can be expressed as: 

 =  − [ − +  � ]   [FL
-1

]    0 < z <Ls  ( 3-33 ) 

 = −     [FL
-1

]   Ls < z < L  ( 3-34 ) 

 

The equations of the horizontal force equilibrium and moment equilibrium around 

the head of the pile, in a normalised form, are: 
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      ( 3-36 ) 

 

The proportionally constants defining the profile of the pile deflection and the 

bending moment M0 acting on its head are provided in Table 3-6  
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Table 3-6: Proportionality constants for a passive unrotated-head rigid pile in a two-

layered cohesive soil 

 

Shear forces and bending moments profiles, maximum bending moment Mmax and 

its depth zn in both loading and non-loading zones are provided in Table 3-7 
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Table 3-7: Elastic solutions for a passive unrotated-head rigid pile in a two-layered 

cohesive soil 

The maximum bending moment on the pile correspond to M0 (acting on its head): 

n

s

max M
LE

M
03

1


         ( 3-37 ) 

 

The distribution profile of the pile response can then be obtained with the new 

solutions, at varying of the depth of the sliding surface. The normalised shear force = /   and bending moment = /  are plotted in 

the following figures, for  equal to 1 and 0 and for a fixed k = 2.  

 

It is evident that the uniform soil movement distribution leads to a higher stress 

state acting on the pile; in particular Tn has its maximum value again in 

correspondence of the sliding surface and β values from 0.4 to 0.θ are those 

obtaining the higher response of the pile in terms of shear force.  

The case  = 0 presents lower values of Tn,max, with peaks which occur at zn 

generally upper than β.  
Mn shows the same profile for both  = 0 and  = 1, with always negative values. 

As expected, the condition  = 1 results to give slightly higher values of Mn,ma. 

Comparing these results with those relative to the free-head condition, it is evident 

that the unrotated-head pile condition corresponds to higher stresses acting on the 

pile. It leads to consider the restrained pile head condition as recommended 

whenever a high pile resistance at the sliding depth is preferable, as in case of pile 

used as stabilising systems, if the pile’s stress state is verified. 
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Figure 3-15: Normalised shear force with depth for k=2 and η=1 
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Figure 3-16: Normalised shear force with depth for k=2 and η=0 
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Figure 3-17: Normalised bending moment with depth for k=2 and η=1 
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Figure 3-18: Normalised bending moment with depth for k=2 and η=0 
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3.4.4. Parametric analysis 

The solution provided have been implemented in spreadsheets to carry out a 

parametric analysis of the problem. 

The elastic solutions for a passive rigid pile in a two-layered cohesive soil with a 

constant subgrade reaction modulus are governed by the parameter k that 

represents the ratio between Es values Es2 and Es1 respectively of the stable and 

unstable soils: 

 =          ( 3-38) 

 

And the parameter  that represents between soil displacement at ground level and 

at the sliding depth: 

 = =�
        ( 3-39) 

 

The parametric analysis focuses on their effects on the normalised pile shear 

resistance at z=Ls: 

 , = =� ,          ( 3-40 ) 

 

Normalised bending moment at z=Ls: 

 , = =� ,          ( 3-41 ) 

 

Normalised maximum bending moment acting on the pile: , = � ,         ( 3-42 ) 
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Normalised pile head displacement: 

 =         ( 3-43 ) 

In every chart, values are plotted against the normalised depth of the sliding 

surface. The analysis concerns both the boundary conditions of free-head (Figure 

3-19 through Figure 3-21) and unrotated-head (Figure 3-22 through Figure 3-24).  

Several considerations can be done on the showed results: 

 

- The pile-head boundary condition considerably affects the pile response. The 

free-head piles present two local maximum values in the shear forces and 

bending moments profiles, where those corresponding to shallower sliding 

depth are the highers. The unrotated-head instead presents stress state profiles 

having only a global extrema. Moreover, it corresponds to higher stress states 

on the pile, with shear forces and bending moments at the sliding depth 

sensibly higher than those developed by the free-head condition, even 

associated to a lower pile head deflection. It leads to consider the restrained 

pile head condition as recommended in case low pile displacements are 

requested, or whenever a high pile resistance at the sliding depth is preferable, 

as in the case of pile used as stabilising systems, if the pile’s stress state is 
verified. Both the boundary conditions, as reasonably expected, presents a pile 

head deflection proportionally increasing with β. 

- Lateral soil movement profiles have been assessed as triangular 

(,rectangular (and trapezoidal (. The rectangular 

shape results in the largest stress state on the pile, followed in order by the 

trapezoidal and the triangular. Similarly, higher pile head deflection occurs for 

higher values of . This result appears reasonable as the rectangular profile 

corresponds to a higher total soil displacement and consequently loading on the 

pile. It is worth to be noticed that the condition is the only one which 

corresponds to a negative shear force at the sliding surface for high values of β 
for the free-head condition. 

- By varying k from 1 (corresponding to a homogeneous soil) to 10, several 

ratios between subgrade modulus of the stable and unstable soils have been 
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considered. This parameter has a scale effect on the pile stress state: the higher 

is assumed the k value, the higher results the value of shear forces and bending 

moments acting on the pile. However, a higher value of k corresponds to lower 

pile deflection, (except for some high β values if η=1) reasonably due to the 

stronger embedment given to the pile. Moreover, the extreme values of Tn and 

Mn occur in correspondence of deeper β if k is increased. 
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FREE-HEAD PILE 

 

Effect of different  values: 

 
Figure 3-19: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 
moment and pile head displacement versus Ls/L, for k=2 and different values. Free-head 

condition 
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Effect of different k values: 
 

 
Figure 3-20: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 
moment and pile head displacement versus Ls/L, for η=0 and different k values. Free-head 

condition 
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Effect of different k values: 

 

 
Figure 3-21: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 
moment and pile head displacement versus Ls/L, for η=  and different k values. Free-head 

condition 
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UNROTATED-HEAD PILE 

 

Effect of different  values: 
 

 
Figure 3-22: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 
moment and pile head displacement versus Ls/L, for k=2 and different η values. Unrotated-

head condition 
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Effect of different k values (=0): 

 
Figure 3-23: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 
moment and pile head displacement versus Ls/L for η=  and different k values. Unrotated-

head condition 
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Effect of different k values: 

 
Figure 3-24: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 
moment and pile head displacement versus Ls/L, for η=  and different k values. Unrotated-

head condition 
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3.5. Elastic solutions for a passive rigid pile in a two-

layered soil with subgrade modulus varying with depth 

3.5.1. Free-head condition 

For some cohesive soil, the assumption of constant subgrade cannot be always 

appropriate. In this paragraph a linear variation of Es with depth is assumed for the 

unstable layer: so that, if the sliding cohesive mass presents an undrained shear 

strength increasing with depth (i.e. a normally consolidated clay, see paragraph 

3.3), the corresponding Es modulus follows the same profile, with a linear trend 

from a value Es0 = (α0 Es1) at ground level to Es1 at the bottom of the layer. At the 

same time, the underlying firm layer is assumed to have its own constant subgrade 

modulus Es2, as k-ratio with Es1 (Figure 3-25). 

 

 

 
Figure 3-25:Variation of Es with depth for a free-head passive rigid pile in a normal 

consolidated cohesive soil 

 

Similarly to the previous case investigated, it has been modelled a layer of soil of 

thickness Ls=βL, sliding on a firm underlying soil along a slip surface. Both soils 

are assumed to be saturated clays in undrained conditions, with a shear strength 

equals to Su1(z) increasing with depth above and to Su2 below the slip surface. A 

Es0 = 0Es1 

Es2 = kEs1 

Es1 
 βL 
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free-head rigid pile of length L crosses the sliding surface and is embedded in the 

stable underlying soil (Figure 3-26). 

 

 
Figure 3-26: Soil profile and pile displacement geometry for a unrotated-head rigid pile in 

a  two-layered cohesive soil 

 

With the above assumptions, the soil reactions along the whole length L of the pile 

can be expressed as: 

 = − + ℎ [∆ − ∆ � ∙ ]   [FL
-1

]   0 < z <Ls  ( 3-44 ) 

= − − � �    [FL
-1

]   Ls < z < L  ( 3-45 ) 

 

The global equations of the problem are obtained by imposing the horizontal force 

equilibrium and moment equilibrium around the head of the pile; in an explicit 

non-dimensional form, they are expressed as:         

    



tan
2

1
1

6

1
1

2

1

tan1
2

1

2

1
1

6

1
11

2

1

2

0

2

00

22

0

2

00





 



 





 



 

ns

n

y

kyk      ( 3-46 ) 



60 

 

       

    



tan
3

1
1

12

1

2

1
1

6

1

tan1
3

1

3

1
1

12

1
1

2

1

2

1
1

6

1

3

0

3

0

2

0

2

33

0

3

0

22

0

2





 



 





 



 

ns

n

y

kyk
    ( 3-47 ) 

 

The profile of the pile deflection is expressed as a function of the proportionally 

constants summarised in Table 3-8. 

 

 

 Proportionality constants  

 

   

    2221

141
6

1

2

0

2

422

00

4









k

kD

 
 

 

ns

y

n y
D

N
y 00 

 

      

    







2211
3

2

511
6

1
41

6

1

0

0

222

00

4

k

kN y

 

 

ns
t y

D

N
tan 0

 

           2211411
6

1
0

2

00

3 kNt

 
 

Table 3-8: Proportionality constants for a free-head passive rigid pile in a normal-

consolidated cohesive soil sliding on a firm layer 

 

Shear forces and bending moments profiles, maximum bending moment Mmax and 

its depth zn in both loading and non-loading zones are provided in Table 3-9. 
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Table 3-9: Elastic solutions for a free-head passive rigid pile in a normal-consolidated 

cohesive soil sliding on a firm layer 

 

Once again, it has to be noticed that, in every zone, the expression of the maximum 

bending moment is only valid if its depth is within the relative interval.  

The maximum bending moment all along the pile is clearly obtained as: 
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     ( 3-48 ) 

The distribution profile of the pile response can then be obtained with the new 

solutions, concerning the depth of the sliding surface. The normalised shear force = /   and bending moment = /  are plotted in 

Figure 3-27, Figure 3-28, Figure 3-29, Figure 3-30, for  equal to 1 and 0 and for a 

fixed k = 2 and α0=0.5.  

The normalised stresses on the pile show similar trends than those showed for the 

previous case of a constant Es value in the top layer: the shear force profiles present 

two local extrema, a positive one at upper parts of the piles and a negative at 

deeper depths. 

In particular, for  = 1 Tn has its maximum value in correspondence of the sliding 

surface, once again with a value almost identical for the different values of β. The 

case  = 0 presents lower values of Tn,max, with peaks which occur closer to the 

pile’s top and bottom. An almost null Tn at sliding depth corresponds to β=0.6, 

while a negative value occurs for higher β values. 
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Mn generally has its maximum value for depths close to the middle of the pile, for 

both configurations; anyway, while for  = 0 the bending moment on the pile is 
always positive, for  = 1 it is negative for β  6. 

 

 

 
Figure 3-27: : Normalised shear force with depth  for k=2, η=1 and α0=0.5 
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Figure 3-28: : Normalised shear force with depth for k=2 ,η=0 and α0=0.5 
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Figure 3-29: Normalised bending moment with depth for k=2, η=1 and α0=0.5 
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Figure 3-30: Normalised bending moment with depth for k=2, η=0 and α0=0.5 
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3.5.2. Unrotated head condition 

It is here investigated the case showed in Figure 3-31: a rigid unrotated-head pile is 

embedded in a two-layered soil where a shallow layer with a subgrade modulus 

varying with depth slides over a firm stratum having a constant Es. As already 

explained, the fixity condition is represented by the bending moment M0 applied on 

the pile head . 

 

 
Figure 3-31:Soil profile and pile displacement geometry for a unrotated-head passive rigid 

pile in a normal-consolidated sliding cohesive soil over a firm layer 

 

 

This assumption let adequately describe pile deflection yp(z) with depth by using 

the head’s movement parameter y0: 

 

0)( yzyp 
         ( 3-49 ) 

 

With the above assumptions, the soil reactions along the whole length L of the pile 

can be expressed as: 
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= − + [∆ + � ∙ ]   [FL
-1

]  0 < z <Ls  ( 3-50 ) 

 = −     [FL
-1

]   Ls < z < L  ( 3-51 ) 

 

The horizontal force equilibrium and moment equilibrium around the head of the 

pile are expressed by the following normalised equations: 
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The profile of the pile deflection and the bending moment M0 acting on its head are 

provided in Table 3-10 while shear forces and bending moments profiles, 

maximum bending moment Mmax and its depth zn in both unstable and stable zones 

are provided in Table 3-11. 
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Table 3-10: Proportionality constants for a passive unrotated-head rigid pile in a normal-

consolidated sliding cohesive soil over a firm layer 
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Table 3-11: Elastic solutions for a passive unrotated-head rigid pile in a normal-

consolidated sliding cohesive soil over a firm layer 

 

 

The distribution profiles of the pile response can then be obtained with the new 

solutions, concerning the depth of the sliding surface. The normalised shear force = /   and bending moment = /  are plotted in 

the following pictures, for  equal to 1 and 0 and for a fixed k = 2 and α0=0.5.  

It is evident, as for the free-head pile, that the normalised stresses shift with the 

normalised depth of the sliding surface β.  
Shear forces and bending moments are respectively positive and negative along the 

whole pile length. The max Tn value, for  = 1, occurs at zn=β, with values of Tn 

obtained in correspondence of β values ranging between 0.4 and 0.6 . 

On the contrary, the case  = 0 presents lower values of Tn,max. Mn shows the same 

profile for both  = 0 and  = 1, with always negative values. Once again, the 

condition  = 1 results to give slightly higher values of Mn,ma. 
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Figure 3-32: Normalised shear force with depth for an unrotated pile and  for k=2, η=1 

and α0=0.5 
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Figure 3-33: Normalised shear force with depth for an unrotated pile and  for k=2, η=0 
and α0=0.5 
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Figure 3-34: Normalised bending moment with depth for an unrotated pile and   for k=2, 

η=1 and α0=0.5 
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Figure 3-35: Normalised bending moment with depth for an unrotated pile and  for k=2, 

η=0 and α0=0.5 
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3.5.3. Parametric analysis 

The solution provided have been implemented in spreadsheets to carry out a 

parametric analysis of the problem. 

The elastic solutions for a passive rigid pile in a two-layered soil with subgrade 

modulus varying with depth as the sliding cohesive mass presents an undrained 

shear strength increasing with depth, are governed by the parameter k that 

represents the ratio between Es values Es2 and Es1 respectively of the stable and 

unstable soils: 

 =          ( 3-54) 

 

the parameter  that represents between soil displacement at ground level and at 

the sliding depth: 

 = =�
        ( 3-55) 

the parameter α0 that represents the ratio between modulus of subgrade reaction at 

ground level and at Ls : 

 =          ( 3-56) 

 

The parametric analysis focuses on their effects on the normalised pile shear 

resistance at z=Ls: 

 , = =� ,          ( 3-57 ) 

 

Normalised bending moment at z=Ls: 
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, = =� ,          ( 3-58 ) 

 

Normalised maximum bending moment acting on the pile: , = � ,         ( 3-59 ) 

Normalised pile head displacement: 

 =         ( 3-60 ) 

In every chart, values are plotted against the normalised depth of the sliding 

surface. The analysis concerns both the boundary conditions of free-head (Figure 

3-36 through Figure 3-39) and unrotated-head (Figure 3-40 through Figure 3-43). 

 

Several considerations can be done on the presented results: 

 

- The ratio between modulus of subgrade reaction at ground level and at Ls is 

represented by the parameter α0: when assumed equal to 1, the configuration 

coincides to the case of two-layered soil with a constant modulus. The graphs 

show that the higher is the value of this parameter, the higher is the stress state 

acting on the pile; in other words, a sliding soil subgrade modulus varying with 

depth (α0<1) leads to lower pile reactions than those relative to a constant 

profile (α0=1). It is reasonable result as a lower modulus implicates lower force 

per unit length available on the pile and consequently lower stress state. The 

only exception is the shear force on a free-head pile with =0, where the 

parameter α0 does not seem to be really effective. 

 

- With regard to the lateral soil movement distribution, higher pile head 

deflection and stress states are expected for higher values of . This result 

appears reasonable as, with the same maximum value at the soil surface, the 

rectangular profile corresponds to a higher total soil displacement and 

consequently higher loading on the pile. It is worth to be noticed that the 
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condition is the only one which corresponds to a negative shear force at 

the sliding surface for high values of β in the free-head condition. 

 

- Several ratios between subgrade modulus of the stable and unstable soils have 

been considered, by varying k from 1 to 10. This parameter has a scale effect 

on the pile stress state: higher the k value, higher the value of shear forces and 

bending moments acting on the pile. However, a higher value of k corresponds 

to lower pile deflection, reasonably due to the stronger embedment given to the 

pile. Moreover, as k increases, the maximum value of Tn and Mn tend to occur 

at deeper sliding depths. 

 

- With attention to the two boundary condition analysed, the unrotated-head 

condition corresponds to higher stress states on the pile, with shear forces and 

bending moments at the sliding depth sensibly higher than those developed by 

the free-head condition, at the same time associated lower pile head deflection. 

The free-head condition presents two local maximum values in both the shear 

force and the bending moment profiles. Finally, both the boundary conditions, 

as reasonably expected, presents a pile head deflection proportionally 

increasing with β. 
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FREE-HEAD PILE 

 

Effect of different  values (: 

 
Figure 3-36: Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for η=0,k=2 and different α0 values. Free-

head condition 
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Effect of different k values (: 

 
Figure 3-37: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for η=0, α0=0.5 and different k values. 

Free-head condition 
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Effect of different k values (: 

 
Figure 3-38: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for η=1, α0=0.5 and different k values. 

Free-head condition 
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Effect of different  values: 

 
Figure 3-39: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for k=2, α0=0.5 and different η values. 
Free-head condition 
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UNROTATED-HEAD PILE 

 

Effect of different k values (: 

 
Figure 3-40: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for η=0, α0=0.5 and different k values. 

Unrotated-head condition 
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Effect of different k values (: 

 
Figure 3-41: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for η=1, α0=0.5 and different k values. 

Unrotated-head condition 
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Effect of different  values: 

 
Figure 3-42: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for k=2, α0=0.5 and different η values. 
Unrotated-head condition 
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Effect of different  values (: 

 

 
Figure 3-43: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for k=2, η=0 and different α0 values. 

Unrotated-head condition 
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3.6. Elastic solutions for a passive rigid pile in a two-

layered profile with subgrade modulus linearly increasing 

with depth 

3.6.1. Free-head condition 

For a non-cohesive soil, the assumption of a non-null subgrade constant at ground 

level may not be always appropriate. For this reason, the case of a cohesionless soil 

mass having a linearly increasing with depth subgrade modulus, sliding on a 

cohesive firm layer, is here investigated.  

 

 

 
Figure 3-44: Soil profile and pile displacement geometry for a unrotated-head passive rigid 

pile in a cohesionless sliding soil over a cohesive firm layer 

 

 

The Es modulus of the sliding layer has a linear variation with depth, from a zero 

value at ground level to Es1 at its bottom (see paragraph 3.4 for a sandy soil). At the 

same time, the underlying firm layer (ideally a cohesive material with a constant 

undrained shear strength) has a constant modulus (Es2 = k Es1) (Figure 3-45).  
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Figure 3-45: Variation of Es with depth for a free-head passive rigid pile in a cohesionless 

sliding soil over a cohesive firm layer 

 

With the above assumptions, the soil reactions acting on the pile can be expressed 

as: 

 � � = − �ℎ [∆ − ∆ ��� ∙ ]    [FL
-1

]   0 < z <Ls  ( 3-61 ) 

 � � = −�� − ��� �    [FL
-1

]   Ls < z < L  ( 3-62 ) 

 

Where 
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       ( 3-63 ) 

 

Pile deflection can be obtained by imposing the horizontal force equilibrium and 

moment equilibrium around the head of the pile: 
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As for the previous cases investigated, the pile deflection is found to be directly 

proportional to the soil free field movement through proportionally constants 

(expressed in Table 3-12).  
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Table 3-12: Proportionality constants for a passive unrotated-head rigid pile in a 

cohesionless sliding soil over a cohesive firm layer 
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Shear forces and bending moments profiles, maximum bending moment Mmax and 

its depth zn in both loading and non-loading zones are provided in the following 

table. 
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Table 3-13: Elastic solutions for a passive unrotated-head rigid pile in a cohesionless 

sliding soil over a cohesive firm layer 

 

The distribution profile of the pile response can then be obtained with the new 

solutions, concerning the depth of the sliding surface. The normalised shear force = /   and bending moment = /  are plotted in 

Figure 3-46, Figure 3-47, Figure 3-48 and Figure 3-49, for  equal to 1 and 0 and 

for a fixed k = 2.  

It is evident that the normalised stresses shift with the normalised depth of the 

sliding surface β, with similar trends than those showed for the previous case of a 

constant Es value in the top layer, where Tn profiles have two local extrema, a 

positive one close to the pile head and a negative one. 

In particular, for  = 1, Tn has its maximum value in correspondence of the sliding 

surface, once again with a value almost identical for the different values of β. The 

case  = 0 presents lower values of Tn,max, with peaks which occur at zn values 

closer to the pile’s top and bottom (with a negative value) than the sliding depth.  

Mn generally has its maximum value at depths closer to the middle of the pile, for 

both configurations, while for  = 0 the bending moment on the pile is always 
positive, for  = 1 it is negative if β  7. Anyway, if compared to the previous case 
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with a constant subgrade modulus, the obtained Tn and Mn values are considerably 

lower, due to the minor stiffness available. 

 

 

 
Figure 3-46: : Normalised shear force with depth for k=2, η=1 
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Figure 3-47: Normalised shear force with depth for k=2, η=0 
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Figure 3-48: Normalised bending moment with depth for k=2, η=1 
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Figure 3-49: Normalised bending moment with depth for k=2, η=1 
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3.6.2. Unrotated head condition 

It is here investigated the case showed in Figure 3-50: a rigid unrotated-head pile is 

embedded in a two-layered soil where a shallow layer, assumed as a cohesionless 

soil, with a subgrade modulus increasing with depth from a null value at ground 

level, slides over a firm stratum having a constant Es. As already explained, the 

fixity condition is represented by the bending moment M0 applied on the pile head. 

 

 
Figure 3-50: Soil profile and pile displacement geometry for a unrotated-head passive rigid 

pile in a cohesionless sliding soil over a cohesive firm layer 

 

The soil reactions along the whole length L of the pile can be expressed as: 

 z = − [∆ + tan ∙ ]   [FL
-1

]   0 < z <Ls  ( 3-66 ) 

 = −     [FL
-1

]   Ls < z < L  ( 3-67 ) 
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The global equations of the problem are obtained by imposing the horizontal force 

equilibrium and moment equilibrium around the head of the pile; in an explicit 

non-dimensional form, they are expressed as: 

 

   tanyyk nsn 
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The profile of the pile deflection and the bending moment M0 acting on its head are 

provided in Table 3-14 while shear forces and bending moments profiles, 

maximum bending moment Mmax and its depth zn in both unstable and stable zones 

are provided in Table 3-14: Proportionality constants for a passive unrotated-head 

rigid pile in a cohesionless sliding soil over a cohesive firm layer 
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Table 3-14: Proportionality constants for a passive unrotated-head rigid pile in a 

cohesionless sliding soil over a cohesive firm layer 
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Table 3-15: Elastic solutions for a passive unrotated-head rigid pile in a cohesionless 

sliding soil over a cohesive firm layer 
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The distribution profiles of the pile response can then be obtained with the new 

solutions, concerning the depth of the sliding surface. The normalised shear force = /   and bending moment = /  are plotted in 

Figure 3-51, Figure 3-52, Figure 3-53, Figure 3-54, for  equal to 1 and 0 and for a 
fixed k = 2.  

Once again, it is evident that the normalised stresses shift with the normalised 

depth of the sliding surface β, with similar profiles than the previous 
configurations. 

Tn profiles present one only global maximum value that, for  = 1, occurs in 

correspondence of the sliding surface, and in general for β values from 0.5 to 0.8. 

The case  = 0 presents lower values of Tn,max, with peaks which occur at zn slightly 

upper than β.  
Mn shows a similar profile for both  = 0 and  = 1, with always negative values. 

The condition  = 1 results to give slightly higher values of Mn,ma. 

 

 
Figure 3-51: Normalised shear force with depth for k=2, η=1 
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Figure 3-52: Normalised shear force with depth for k=2, η=0 
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Figure 3-53: Normalised bending moment with depth for k=2, η=1 
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Figure 3-54: Normalised bending moment with depth for k=2, η=0 
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3.6.3. Parametric analysis 

 

The solution provided have been implemented in spreadsheets to carry out a 

parametric analysis of the problem. 

The elastic solutions for a passive rigid pile in a two-layered cohesive soil with a 

sliding cohesionless soil having a constant subgrade reaction modulus increasing 

with depth are governed by the parameter k that represents the ratio between Es 

values Es2 and Es1 respectively of the stable and unstable soils: 

 =          ( 3-70) 

 

the parameter  that represents between soil displacement at ground level and at 

the sliding depth: 

 = =�
        ( 3-71) 

The parametric analysis focuses on their effects on the normalised pile shear 

resistance at z=Ls: 

 , = =� ,          ( 3-72 ) 

 

Normalised bending moment at z=Ls: 

 , = =� ,          ( 3-73 ) 

 

Normalised maximum bending moment acting on the pile: , = � ,         ( 3-74 ) 
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Normalised pile head displacement: 

 =         ( 3-75 ) 

In every chart, values are plotted against the normalised depth of the sliding 

surface. The analysis concerns both the boundary conditions of free-head (Figure 

3-55 through Figure 3-57) and unrotated-head (Figure 3-58 through Figure 3-60).  

Several considerations can be done on the shown results: 

 

- The parameter k that represents the ratio between Es values Es2 and Es1 

respectively of the stable and unstable soils has an important scale effect on the 

pile stress state as it is the only parameter ruling the distribution of Es: it 

obviously results that the higher is the k value, the higher is the value of shear 

forces and bending moments acting on the pile.  

However, a higher value of k corresponds to lower pile deflection, reasonably 

due to the stronger embedment given to the pile, except for the condition η=1 

where the trend is reversed at deeper sliding depths. 

- Lateral soil movements have been assessed as triangular (,rectangular 

(and trapezoidal ( profiles. The rectangular shape results 
in the largest stress state on the pile, followed in order by the trapezoidal and 

triangular soil profiles. Similarly, higher pile head deflection has to be 
expected for higher values of . This result appears reasonable as, with the 

same maximum value at the soil surface, the rectangular profile corresponds to 

a higher total soil displacement and consequently loading on the pile. It is 

worth to be noticed that the condition is the only one which corresponds to 

a negative shear force at the sliding surface for high values of β for the free-

head condition. 

- The pile head boundary condition considerably affects the pile response. The 

unrotated-head  condition corresponds to higher stress states on the pile, with 

shear forces and bending moments at the sliding depth sensibly higher than 

those developed by the free-head condition. However, this comes with an 

associated lower pile head deflection. Both the boundary conditions, as 
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reasonably expected, presents a pile head deflection proportionally increasing 

with β. 
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FREE-HEAD PILE 

 

Effect of different  values: 

 
Figure 3-55: Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for k=2 and different η values. Free-head 

condition 
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Effect of different k values (: 

 
Figure 3-56: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for η =0 and different k values. Free-head 

condition 
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Effect of different k values (: 

 
Figure 3-57: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for η =1 and different k values. Free-head 

condition 
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UNROTATED-HEAD PILE 

 

Effect of different  values : 

 
Figure 3-58: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for k=2 and different η values. Unrotated-

head condition 
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Effect of different k values (: 

 
Figure 3-59: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for η =0 and different k values. Unrotated-

head condition 
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Effect of different k values (: 

 
Figure 3-60: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for η =1 and different k values. Unrotated-

head condition 
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3.7. Elastic solutions for a passive rigid pile in a three-

layered soil  

3.7.1. Free-head condition 

 

A single free-head passive pile is embedded in a three-layered soil (Figure 3-61). It 

represents a more general case in which the sliding mass presents different 

characteristics at shallower depths or a weathered layer. 

 

 
Figure 3-61: Soil profile and pile displacement geometry for a free-head passive rigid pile 

in a three-layered cohesive soil 

 

A different value of the modulus of subgrade Es is assigned to every soil layer; in 

particular, the values of soil stiffness assumed within the firm soil below the slip 

surface exceeds the values of the sliding layers, according to different schemes of 

the pile-soil interaction ([5], [23]). The distribution of the modulus of subgrade 

reaction with depth is showed in Figure 3-62. In the first layer, Es varies linearly 
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between Es0 (= α0 Es1) and Es1 . In the second and third layer Es is constant with a 

value of Es1 and Es2, respectively. 

 

 

Es (z) = Es0 + nz = α0 Es1+ nz  [FL
-2

]      0 < z <L  ( 3-76 9 

Es (z) = Es1    [FL
-2

]     L< z <L  ( 3-77 ) 

Es (z) = Es2 = kEs1       [FL-2]    L < z < L  ( 3-78 ) 

 

Where k and n are defined as : 
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Figure 3-62: Variation of Es with depth for a free-head passive rigid pile in a three-layered 

soil 

Es0 = 0Es1 

Es2 = kEs1 

Es1 

L L 
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Interestingly, the parametric nature of the model makes it adaptable to a variety of 

different configurations. In particular, by varying the geometric parameters and the 

soil stiffness ratios, it is possible to adapt this more complex configuration 

regarding a three-layer to the previous ones already investigated. Specifically: 

 the case of a two-layered cohesive soil if α0=1 and/or =0 is imposed 

 the case of a normal-consolidated cohesive soil sliding on a firm one if =β 

is imposed 

 the case of a cohesionless soil sliding on a cohesive firm layer if =β a d 
α0=0 are imposed 

The three layer configuration can be considered as a general model, which includes 

all the others already developed and discussed more in detail in the previous 

paragraphs.  

 

According to the geometry and soil parameters distribution, the soil reactions along 

the whole length L of the pile can be expressed as: 

 = − + [∆ + ∆ � ∙ ]   [FL
-1

]     0 < z <L0  ( 3-79 ) 

 = − [∆ + ∆ � ∙ ]   [FL
-1

]   L0 < z <Ls  ( 3-80 ) 

 = − − � �     [FL
-1

]   Ls < z < L  ( 3-81 ) 

 

 

Pile deflection of the head and the pile rotation can be obtained by imposing the 

horizontal force equilibrium and moment equilibrium around the head of the pile; 

in an explicit non-dimensional form, they are expressed as 
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As for the previous cases investigated, the pile deflection is found to be directly 

proportional to the soil free field movement 
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Table 3-16: Proportionality constants for a passive unrotated-head rigid pile in a three-

layered soil 

 

Shear forces and bending moments profiles, maximum bending moment Mmax and 

its depth zn in both loading and non-loading zones are provided in the following 

table. 
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Table 3-17: Elastic solutions for a passive unrotated-head rigid pile in a three-layered soil 

 

The pile response is evaluated in terms of shear stress and bending moment along 

the pile at varying value of the sliding surface depth. The normalised shear force = /   and bending moment = /  are plotted in 

Figure 3-63, Figure 3-64, Figure 3-65 and Figure 3-66, for  equal to 1 and 0 and 
for fixed k = 2, =0.3 and α0=0.25.  

Since the previous cases can be considered as particular configurations of the more 

complex three-layered soil model here under investigation, the same expected 

trends are confirmed.  

For  = 1, Tn has its maximum value in correspondence of the sliding surface, with 

a value almost identical for the different values of β and a second negative local 

maximum in the opposite part of the pile. The case  = 0 shows two local extrema 

with opposite signs in Tn profile. An almost null Tn at sliding depth corresponds to 

β=0.6 while a negative value occurs in correspondence of higher β. 

Mn has its maximum value at depths closer to the middle of the pile, for both 

configurations. The bending moment on the pile is always positive if  = 0 and it is 

negative if  =1 and β  7. 

The weathered shallower layer has the effect of reducing the pile response if 

compared to the results related to a constant Es value on the sliding soils. 
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Figure 3-63: Normalised shear force with depth for k=2, η=1, λ=0.3 and α0=0.25 
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Figure 3-64: Normalised shear force with depth for k=2, η=0, λ=0.3 and α0=0.25 
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Figure 3-65: Normalised bending moment with depth  for k=2, η=1, λ=0.3 and α0=0.25 
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Figure 3-66: Normalised bending moment with depth  for k=2, η=0, λ=0.3 and α0=0.25 
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3.7.2. Elastic solutions for unrotated-head condition 

In the present paragraph, it is investigated the same case of a three-layered soil, 

where the soil mass presents a weaker shallow layer, but for the fixity condition of 

unrotated head (displacement without rotation). 

 

 
Figure 3-67: Soil profile and pile displacement geometry for a unrotated-head passive rigid 

pile in a cohesionless sliding soil over a cohesive firm layer 

 

The soil reactions along the whole length L of the pile can be expressed as: 

 = − + [∆ + � ∙ ]   [FL
-1

]     0 < z <L0 ( 3-84 ) 

 = − [∆ + � ∙ ]   [FL
-1

]   L0 < z <Ls  ( 3-85 ) 

 = −     [FL
-1

]   Ls < z < L  ( 3-86 ) 
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Pile deflection of the head and the pile rotation can be obtained by imposing the 

horizontal force equilibrium and moment equilibrium around the head of the pile; 

in an explicit non-dimensional form, they are expressed as: 
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The profile of the pile deflection and the bending moment M0 acting on its head are 

provided in Table 3-18 while shear forces and bending moments profiles, 

maximum bending moment Mmax and its depth zn in both unstable and stable zones 

are provided in Table 3-19. 
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Table 3-18: Proportionality constants for a unrotated-head passive rigid pile in a three-

layered cohesive soil 
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Table 3-19: Elastic solutions for a passive unrotated-head rigid pile in a three-layered soil 

 

 

The distribution profile of the pile response can then be obtained with the new 

solutions, at varying of the depth of the sliding surface. The normalised shear force = /   and bending moment = /  are plotted in 

the following figures, for  equal to 1 and 0 and for  fixed k=2, =1, =0.3 and 
α0=0.25.  

The Figure 3-68 through Figure 3-71 show that the higher pile stiffness given by 

the unrotated-head condition corresponds to higher Tn and Mn, if compared to the 

free-head condition. 
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For  = 1, Tn has its maximum value again in correspondence of the sliding 

surface, while the case  = 0 presents lower values of Tn,max, with peaks which 

occur at zn generally slightly upper than β.  
Mn shows the same profile for both  = 0 and  = 1, with always negative values 

and lightly higher values of Mn if  = 1. 

 

 

 
Figure 3-68: Normalised shear force with depth for k=2, η=1, λ=0.3 and α0=0.25 
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Figure 3-69: Normalised shear force with depth  for k=2, η=0, λ=0.3 and α0=0.25 
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Figure 3-70: Normalised bending moment with depth  for k=2, η=1, λ=0.3 and α0=0.25 
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Figure 3-71: Normalised bending moment with depth  for k=2, η=0, λ=0.3 and α0=0.25 
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3.7.3. Parametric analysis 

The solution provided have been implemented in spreadsheets to carry out a 

parametric analysis of the problem. 

The elastic solutions for a passive rigid pile in a three-layered soil are governed by 

the parameter k that represents the ratio between Es values Es2 and Es1 respectively 

of the stable and unstable soils: 

 =          ( 3-89) 

 

the parameter  that represents between soil displacement at ground level and at 

the sliding depth: 

 = =�
        ( 3-90) 

the parameter α0 that represents the ratio between modulus of subgrade reaction at 

ground level and at L0 : 

 =          ( 3-91) 

 

the parameter   that represents  the ratio between first layer thickness and pile 

length L0/L  

 =          ( 3-92) 

 

The parametric analysis focuses on their effects on the normalised pile shear 

resistance at z=Ls: 

 , = =� ,          ( 3-93 ) 
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Normalised bending moment at z=Ls: 

 , = =� ,          ( 3-94 ) 

 

Normalised maximum bending moment acting on the pile: , = � ,         ( 3-95 ) 

Normalised pile head displacement: 

 =         ( 3-96 ) 

In every chart, values are plotted against the normalised depth of the sliding 

surface. The analysis concerns both the boundary conditions of free-head (Figure 

3-72 through Figure 3-76) and unrotated-head (Figure 3-77 through Figure 3-81). 

Several considerations can be done on the showed results: 

 

- The parameter  represents the ratio between first layer thickness and pile 
length L0/L. If =0 is imposed, the case of a two-layered soil with constant Es 

will be reproduced, while if =β, the case of a modulus increasing with depth is 
obtained. It is more effective for the more superficial sliding depth where the  

shallow layer’s low parameters are more effective. In fact, lower pile reactions 

result for higher values of the parameter . In other words, the presence of a 

weathered sliding superficial layer leads to lower stress states and deflection on 

the pile. 

- The unrotated-head  condition corresponds to stress states on the pile sensibly 

higher than those developed by the free-head condition and at the same time  to 

lower pile head deflection. This lead to consider the restrained pile head 

condition as recommended in case low pile displacements are requested, or 

whenever a high pile resistance at the sliding depth is preferable, as in the case 

of pile used as stabilising systems, if the pile’s stress state is verified. 
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- Lateral soil movements have been assessed as triangular (,rectangular 

(and trapezoidal ( profiles. The rectangular shape results 
in the largest stress state on the pile, followed in order by the trapezoidal and 

triangular soil profiles. Similarly, higher pile head deflection has to be 
expected for higher values of . This result appears reasonable as, with the 

same maximum value at the soil surface, the rectangular profile corresponds to 

a higher total soil displacement and consequently loading on the pile. 

Moreover, the condition is the only one which corresponds to a negative 

shear force at the sliding surface for high values of β for the free-head 

condition. 

- Several ratios between subgrade modulus of the stable and unstable soils have 

been considered, by varying k from 1 (corresponding to a uniform soil) to 10. 

This parameter has a scale effect on the pile stress state: higher the k value, 

higher the value of shear forces and bending moments acting on the pile. 

However, a higher value of k correspond to lower pile deflection, reasonably 

due to the stronger embedment given to the pile, and maximum values of Tn 

and Mn tend to shift to deeper depths if k is increased. 
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FREE-HEAD PILE 
 

Effect of different  values (: 
 

 
Figure 3-72: Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for η=0, α0=0.5,k=2 and different λ 
values. Free-head condition 
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Effect of different  values: 

 
Figure 3-73: Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for λ =0.3, α0=0.5,k=2 and different η 
values. Free-head condition 
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Effect of different k values (: 

 
Figure 3-74: Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for λ =0.3, α0=0.5, η=0 and different k 
values. Free-head condition 
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Effect of different k values (: 

 
Figure 3-75: Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for λ =0.3, α0=0.5, η=1 and different k 
values. Free-head condition 
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Effect of different  values (: 

 
Figure 3-76:  Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for λ =0.3,k =2, η=0 and different α0 

values. Free-head condition 
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UNROTATED-HEAD PILE 

Effect of different k values (: 

 
Figure 3-77: Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for λ =0.3, α0=0.5, η=0 and different k 
values. Unrotated-head condition 
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Effect of different k values (: 

 
Figure 3-78: Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for λ =0.3, α0=0.5, η=1 and different k 

values. Unrotated-head condition 
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Effect of different  values: 

 
Figure 3-79: Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for λ =0.3, α0=0.5, k=2 and different η 
values. Unrotated-head condition 
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Effect of different  values (: 

 
Figure 3-80: Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for η=0, α0=0.5, k=2 and different λ 
values. Unrotated-head condition 
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Effect of different  values (: 

 

 
Figure 3-81: Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for λ=0.3,k =2, η=0 and different α0 
values. Unrotated-head condition 
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3.8. Elastic solutions for a passive rigid pile on a soil with 

Es linearly increasing with depth 

3.8.1. Free-head condition 

For sands and for normally consolidated clays under long-term loading, it is 

reasonable to assume that the modulus of subgrade reaction varies linearly with 

depth. Es  may be hence written as  

 =           ( 3-97 ) 

referred to as Gibson approach hereinafter and where: 

n= gradient of the horizontal subgrade reaction modulus [FL
-3

]  

 

 
Figure 3-82: Soil profile and pile displacement geometry for a rigid pile in cohesionless 

soil 

In particular, the problem under consideration in the present paragraph is 

represented in Figure 3-82; a single rigid pile of length L and diameter D is 

embedded in a homogeneous soil with Es linearly increasing with depth; a sliding 

surface crosses the pile at depth Ls=βL. With the above assumptions and assuming 

there is no soil-yielding, the on-pile force (per unit length), pe(z), at any depth, is 
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proportional to the local displacement, Δy(z), and to the modulus of subgrade 

reaction, Es [FL
–2

] along the whole length L of the pile and can be expressed as: 

 z = −nz( − =  − [∆ −  ∆ � ]  [FL
-1

]     0 < z <Ls   ( 3-98 ) = − [ −  � �] [FL
-1

]    Ls < z < L   ( 3-99 ) 

 

 

The profile of the pile deflection and the bending moment M0 acting on its head are 

provided in Table 3-20 while shear forces and bending moments profiles, 

maximum bending moment Mmax and its depth zn in both loading and non-loading 

zones are provided in Table 3-21.  

 

 

 Proportionality constants  

nsyn yNy 00 
       16232

yN
 

 

nst yNtan 0       98342 tN
 

 

Table 3-20: Proportionality constants for a passive rigid pile on a cohesionless soil 
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Table 3-21: Elastic solutions for a passive rigid pile on a cohesionless soil 

 

The distribution profile of the pile response can then be obtained with the new 

solutions, concerning the depth of the sliding surface. The normalised shear force = /   and bending moment = /  are plotted in 

Figure 3-83 through Figure 3-86.  

In agreement with the solution presented by Poulos [26], for  = 1 the shear force 

profile has its maximum value in correspondence of the sliding depth, with a value 

slightly higher for higher values of β.  
The case  = 0 instead presents lower values of Tn,max , with two local extrema 

having opposite signs in the upper and lower part of the pile.  

Mn generally has its maximum value for depths close to the middle of the pile in 

both the considered free-field soil movement rate. It has to be noticed that, while 

for  = 0 the bending moment on the pile is always positive, for  = 1 it is negative 
for β  6. 
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Figure 3-83: Normalised shear force with depth for η=1 
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Figure 3-84: Normalised shear force with depth for η=0 
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Figure 3-85: Normalised bending moment with depth  for η=1 
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Figure 3-86: Normalised bending moment with depth for η=0 
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3.8.2.  Elastic solutions for an unrotated-head passive rigid pile on a 

cohesionless soil  

The problem shown in Figure 3-87 regards the same soil stratigraphy and 

properties than the previous case of a free-head pile in a cohesionless soil, but as 

consequence of an applied constrain the rigid pile is assumed not to rotate and the 

angle ω is equal to zero, i.e. Nt = 0. 

 
Figure 3-87: Soil profile and pile displacement geometry for a unrotated-head rigid pile in 

a  cohesionless soil 

 

While the ground is assumed to have the same stratigraphy and properties than the 

previous case of free-head pile, as consequence of the applied constrain the rigid 

pile cannot rotate . 

This assumption let adequately describe pile deflection yp(z) with depth by using 

the head’s movement parameter y0  

0)( yzyp 
         ( 3-100 ) 
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With the above assumptions, the soil reactions along the whole length L of the pile 

can be expressed as: 

 

 = − ( −  = − [∆ + � ]     [FL-1]    0 < z <Ls  ( 3-101 ) 

 = −       [FL
-1

]   Ls < z < L  ( 3-102 ) 

 

The expression to calculate pile deflection and bending moment M0 are provided in 

Table 3-22 while shear forces and bending moments profiles, maximum bending 

moment Mmax and its depth zn in both stable and non-stable zones are provided in 

Table 3-23. 
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Table 3-22: Proportionality constants for a unrotated-head passive rigid pile on a 

cohesionless soil 

 

 

 



153 

 

Depth 

(zn) 
Expressions  

0 – β 

(unstabl

e zone) 

32

03 3

1

2

1
nnn ztanzy

nL

T


 
 

 
43

004 12

1

6

1
nnnn ztanzyM

nL

M


 
 

 n

max M
nL

M
04


 

 

zn = β 

(slip 

surface) 

 1
2

1 2

03
 

ny
nL

T

 

 

    21
6

1 2

0

4
 

y

ns

N
ynL

M

 

 

β – 1 

(stable 

zone) 

 1
2

1 2

03
 nn zy

nL

T

 
 

 
 23

6

1 3

04
 nnn zzy

nL

M

 
 

 

Table 3-23: Elastic solutions for a unrotated-head passive rigid pile on a cohesionless soil 

 

The distribution profile of the shear stresses and bending moments along the pile 

length can then be obtained with the developed, at varying of the depth of the 

sliding surface. The normalised shear force = /   and bending 

moment = /  are plotted in the Figure 3-88 through Figure 3-91, 
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for  equal to 1 and 0. It is evident also in case of an homogeneous soil that the 

normalised stresses shift with the normalised depth of the sliding surface β. 

For  = 1, Tn has its maximum value again in correspondence of the sliding 

surface; β values from 0.6 to 0.8 are the ones obtaining the higher response of the 

pile in terms of shear force. The case  = 0 presents lower values of Tn,max, with 

peaks occurring at zn generally upper than β.  
Even the case of homogeneous soil shows the same Mn profile for both  = 0 and  
= 1, always occurring with a negative value. The inverse triangular free-field soil 

displacement confirms slightly lower values of Mn,max, reasonably because lower 

total load affects the pile. 

 

 
Figure 3-88: Normalised shear force with depth for η=1 
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Figure 3-89: Normalised shear force with depth  for η=0 
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Figure 3-90: Normalised bending moment with depth  for η=1 
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Figure 3-91: Normalised bending moment with depth for η=0 
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3.8.3. Parametric analysis 

The solution provided have been implemented in spreadsheets to carry out a 

parametric analysis of the problem. 

The normalised elastic solutions for a passive rigid pile on a soil with Es linearly 

increasing with depth are only governed by the parameter  that represents 

between soil displacement at ground level and at the sliding depth: 

 = =�
        ( 3-103) 

The parametric analysis focuses on their effects on the normalised pile shear 

resistance at z=Ls: 

 , = =� ,          ( 3-104 ) 

 

Normalised bending moment at z=Ls: 

 , = =� ,          ( 3-105 ) 

 

Normalised maximum bending moment acting on the pile: , = � ,         ( 3-106 ) 

Normalised pile head displacement: 

 =         ( 3-107 ) 

In every chart, values are plotted against the normalised depth of the sliding 

surface. The analysis concerns both the boundary conditions of free-head (Figure 

3-92) and unrotated-head (Figure 3-93). 
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Several considerations can be done on the showed results: 

- Lateral soil movements have been assessed as triangular (,rectangular 

(and trapezoidal ( profiles. The rectangular shape results 
in the largest stress state on the pile and higher pile head deflection, followed 

in order by the trapezoidal and triangular soil profiles. This result appears 

reasonable as, with the same maximum value at the soil surface, the 

rectangular profile corresponds to a higher total soil displacement and 

consequently loading on the pile. It is worth to be noticed also that the 

condition is the only one which corresponds to a negative shear force at 

the sliding surface for high values of β for the free-head condition. 

- The free-head pile boundary condition leads to shear force and bending 

moment profiles having two local maximum values, higher in correspondence 

of deeper sliding depths. The unrotated-head  condition corresponds to higher 

stress states on the pile, with shear forces and bending moments at the sliding 

depth sensibly higher than those developed by the free-head condition. 

However, this comes with an associated lower pile head deflection. This lead 

to consider the restrained pile head condition as recommended in case low pile 

displacements are requested, or whenever a high pile resistance at the sliding 

depth is preferable, as in the case of pile used as stabilising systems, if the 

pile’s stress state is verified. 
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FREE-HEAD PILE 

 

Effect of different  values: 

 

 
Figure 3-92: Normalised shear force at zn=, bending moment at zn= , maximum bending 

moment and pile head displacement versus Ls/L, for different η values and free-head 

condition  
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UNROTATED-HEAD PILE 

Effect of different  values: 

 
Figure 3-93: Normalised shear force at zn=β, bending moment at zn=β , maximum bending 

moment and pile head displacement versus Ls/L, for different η values and unrotated-head 

condition 
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4. Elasto-plastic analysis of passive rigid 

piles in cohesive soils 

 

The relation between soil reaction and pile displacement is non-linear and presents 

an upper value represented by the ultimate force per unit pile length pu [FL
-1

]; as 

the pile movement increases, the pressure on the soil grows until the limit yielding 

value is reached. After a fully elastic condition associated with small free-field soil 

movements (and therefore with small pile deflections), the soil-pile pressure profile 

starts developing one or more regions in which the yield has been reached. 

Although to the detriment of high soil and pile displacement, the soil-pile system 

achieves its limit reaction value as soon as the on-pile force (per unit length) p(z) 

attains the ultimate plastic pressure pu all along the yielded regions and a failure 

mode is activated. The upper limit of the pile reactions is represented by the 

solutions that Viggiani [23] developed for a double layered cohesive soil, where it 

is assumed that the pile-soil displacement is such to fully mobilize the yield value 

pu all along the whole pile length, ideally for a complete rotation of the pile to the 

horizontal.  

While the elastic solutions provided in the previous chapter only regard a full 

elastic behaviour of the soil-pile system and do not consider the occurring of the 

yielding state on the soil, the elasto-plastic method aims to consider the 

development of soil resistance with shaft deflection, developing complete solutions 

for the intermediate states between the elastic and the ultimate ones, as they are 

determined in function of the external free-field soil displacement and of the 

associated pile deflection. For this reason, the previous model only concerning an 

elastic behaviour of the soil has been modified and enhanced in order to account 

for the soil reaction distribution with yielding in one or more regions.  

In particular, two of the elastic cases already investigated have been implemented 

into the elasto-plastic method: the one concerning a two-layered soil with constant 

values of the subgrade reaction modulus and the homogeneous soil with Es linearly 

increasing with depth. 
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The same hypotheses expressed for the elastic model in paragraph 3.2 are still 

valid; anyway, in order to simplify the problem, in here the soil non-linearity is 

schematized by a linear elastic-perfectly plastic constitutive law [34]. The 

mobilised soil strain varies along the pile length due to the increasing soil-pile 

relative displacement and to the distribution of the modulus of reaction (Es), until 

the limiting soil pressure pu is reached. 

An iterative process has been implemented in a computer program written in 

FORTRAN, in order to numerically solve the system and to track all the different 

configurations reached as the soil movement is increased or the sliding depth 

varies. 

The developing of the soil-pile system’s failure modes is investigated and finally, 

examples of non-dimensional design charts have been developed. 
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4.1. Limiting soil resistance pu 

4.1.1.  Limiting soil resistance a single passive pile 

Upon reaching plastic state, the interaction force between pile and soil interface 

attains a maximum. But the pile-soil-pile interaction is quite complicated due to the 

non-linear soil properties and the group effects interesting the piles in a row. 

On the basis of observations in the field and in the laboratory, it is well established 

that soil failure around a laterally loaded pile can be distinguished into two failure 

conditions. A passive wedge-failure occurs near the ground surface and a wedge of 

soil is moved up and away from the pile. In addition, failure surfaces are generated 

by the pile several diameters below the ground surface. Here the soils are limited to 

plane-strain behaviour and are forced to move in a flow-around manner. As a 

consequence, for a homogeneous soil, the limit force per unit length of the soil pu is 

assumed to increase with depth in the upper part of the pile up to a maximum value 

and remains constant in the lower part. 

Anyway, as noteworthy uncertainties still exist around this topic and given its 

importance, a basic understanding of pu dependencies is essential in order to allow 

a complete and proper fruition of the charts by evaluating the most suitable 

parameters for piles in cohesive soils.  

 

By assuming a three-dimensional wedge-type soil-pile failure modes for small z/D 

ratios and a two-dimensional one for higher depths, Broms [1] suggested the 

following equations to calculate the ultimate soil-pile pressure pu in sand, for a 

single pile: 

 =  ∙ ∙ ∙ �′   [FL
-1

]      ( 4-1 ) 

where Kp is the Rankine passive pressure coefficient, = � + �′
        ( 4-2 ) 

and φ’ is the internal friction angle of the soil, �′  is the initial vertical effective 

stress.  
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For cohesive soils, Broms suggested to consider the ultimate value of soil-pile 

lateral force per unit length pu for a saturated clay as proportional to its undrained 

shear strength Su and given by the nowadays usual expression: 

 = ∙ ∙          ( 4-3 ) 

 

where Su is the undrained shear strength, D is the pile diameter. Np is the ultimate 

undrained lateral bearing capacity factor varying with depth, for a single pile 

regardless of the pile spacing and the group effect.  

With these assumptions, Poulos suggested that Np can be assumed to increase 

linearly from 2 at the ground surface to the limiting value of Np=9 at a depth of 3.5 

pile diameters or width D and beyond [42],[26]: 

 =  + /         ( 4-4 ) 
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4.1.2.  Limiting soil resistance for a row of piles 

 

Aiming to improve the methods based on the analysis of an isolated pile, Ito et al. 

[43] calculated the lateral force acting on a row of piles due to soil movement using 

the theoretical equations, derived previously by Ito and Matsui [25] and based on 

the theory of plastic deformation as well as a consideration of the plastic flow of 

the soil through the piles. This model was developed for rigid piles with infinite 

lengths, and it is assumed that only the soil around the piles is in a state of plastic 

equilibrium, satisfying the Mohr–Coulomb yield criterion. The ultimate soil 

pressure on the pile segment, which is induced by flowing soil, depends on the 

strength properties of the soil, diameters and spacing between the piles.  

For a cohesive soil in undrained conditions and shear strength Su, Ito and Matsui 

derived the relation: 

 = { � + − � � − − } + −    ( 4-5 ) 

Where s is the centre-to-centre pile spacing in a row; d is the clear spacing between 

the piles, g is the unit weight of the soil; z is an arbitrary depth from the ground 

surface, Kp is the Rankine passive pressure coefficient. 

For cohesionless soils, authors derived the relation: 

 = { � �′ + −∙ − � � � � + � − }    ( 4-6) 

where s is the centre-to-centre pile spacing in a row; d is the clear spacing between 

the piles. 

 

The method is only valid over a limited range of spacing since, at large or at very 

close spacing, the mechanism of soil flow through the piles postulated by Ito and 

Matsui (1975) is not the critical mode (Poulos, 1995). Finally, it has to be noticed 
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that a significant increase in the value of the soil-pile pressure can be observed by 

reducing the clear spacing between piles. 

 

A general formulation has been suggested by Wang and Reese [44] for a pile in 

clay soil, computing the ultimate soil resistance both for the wedge-type failure and 

the flow-around failure. In particular, for a drilled shaft wall, they suggest a critical 

spacing to evaluate if a group effect has to be considered. In particular, to calculate 

the ultimate soil resistance for a wedge-type failure per unit length of the drilled 

shaft in clay from the equations: 

 =  +  + .    d > dcr    ( 4-7 ) 

and to use the following formulation to take into account the shadowing effect if 

the clear spacing is smaller than the critical: 

 =  + +  + +  d < dcr    ( 4-8 ) 

Where dcr is the critical clear spacing calculated as: 

 = .  /[ + ]       ( 4-9 ) 

The ultimate soil resistance of flow-around failure is instead 

 =          ( 4-10 ) 

Developed for a single pile and modified with a factor taking account of group 

effect which increases as pile spacing decreases. The global ultimate soil resistance 

is selected as the smaller value between the wedge-type failure and flow-around 

failure. It has to be noticed that, in opposition to what suggested by Ito et al. [43], 

the soil-pile pressure pu increases as the pile clear spacing in increased. 

 

More recently, Georgiadis et al.  [45] combined a displacement finite element 

(FEM), lower and upper bound finite element limit analysis (LE) and an analytical 

upper bound plasticity methods to investigate the undrained limiting lateral 
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resistance of piles in a pile row, for various pile spacing and pile-soil adhesion 

factors (=limiting interface shear stress/undrained shear strength). The obtained 

results by FEM and LE show an excellent agreement and have been used as the 

basis for developing an empirical equation for the determination of a single-pile 

ultimate undrained lateral bearing capacity factor Np. In particular, they observed 

that the effect of the pile-soil adhesion factor is more significant than the pile 

spacing over the practical range of s/D values (i.e. . ). For pile spacing 

beyond the critical spacing s1 

 = . + .        ( 4-11 ) 

They suggest the formulation of Np1 proposed by Randolph and Houlsby [24] 

 = = � + sin− + cos sin− + [cos i − � + sin i − � ]  
( 4-12 ) 

where Su is the undrained shear strength, pu the ultimate force per unit length of the 

pile, D is the pile diameter and  is the pile-soil adhesion factor, while for 

normalised pile spacing greater than s1/D: 

 = [ + . −− + . − . −− ]   ( 4-13 ) 

Figure 4-1 shows the variation of the undrained lateral bearing capacity factor with 

the normalised pile spacing for adhesion factors = 0, 0.25, 0.5, 0.75 and 1, 

demonstrating that the adhesion factor significantly affects the value of Np. As a 

result, the ultimate soil pressure increases as both pile centre-to-centre spacing or 

are increased. 
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Figure 4-1: Variation of Np with s/D for a = 0, 0.25, 0.5, 0.75 and 1 as proposed by 

Georgiadis K. et al. [45] 

 

Kourkoulis et al. [22] suggested that a centre to centre pile spacing of 3-4 diameter 

can be considered reasonable to both neglect the group effect in terms of pu and to 

allow the development of soil arching between the piles. 

Finally, as pointed out by Poulos [27], it is important to reaffirm that the selection 

of an appropriate value of pu for passive pile is a crucial step for realistic elasto-

plastic analysis.  
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4.2. Modes of failure for a passive pile 

The limit lateral resistance a passive pile can develop depends on which failure 

mechanism is reached by the soil-pile system. In other words, depending on the 

soil-pile geometry and materials properties, the system can go to different failure 

modes, which consequently affects the limit lateral resistance it can furnish. 

By developing a limit equilibrium method for evaluating the ultimate lateral 

resistance of piles used to stabilise landslides in a two-layer purely cohesive soil, 

Viggiani [23] identified six modes of failure for a single passive pile in undrained 

conditions, either within the soil or in pile; the mechanism that occurs have been 

found to depend on the length and diameter of the pile together with the yield 

moment of its section, the strengths of the stable and sliding soil layers and the 

depth of the sliding soil mass. Dimensionless solutions for the ultimate lateral 

resistance exerted by the pile on the sliding plane and the maximum bending 

moment on the pile for each failure mode have been developed, by assuming that: 

 

- the ground has only two layers of soil, with the top layer of thickness βL moving 

uniformly over the underlying material; 

- the shear strength of the soil remains constant with depth, but not necessarily 

equal, in the sliding and stable layers, and it is evaluated according to the 

formulation presented by Broms [1] for cohesive soil  

 = ∙ ∙          ( 4-14 ) 

-  the ultimate lateral force per unit length pu is uniform with depth in each layer, 

except eventually for a reduction to zero over the top 1.5D (where D is the pile 

diameter) in the sliding layer to account for ground surface effects. 

- the pile is unrestrained, i.e. the pile head is not fixed, connected to or restrained 

against a structure or piles.  

- pile-soil interaction along the pile attains the ultimate state so that the limiting 

force between the pile and soil is achieved. 
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The solutions were subsequently amended by Chmoulian [28] and are summarised 

in Table 4-1. Kanagasabai et al. [46] also identified the same failure modes by 

using a finite-difference method to study a single pile embedded in stable strata to 

stabilise the slipping mass of the soil. Poulos [26] also, by developing a method of 

analysis of a row of passive piles basically as improvement of the solutions already 

provided by Viggiani [23], revealed the same failure modes (cf. paragraph 2.3.4). 

 

In particular, three main modes of failure within the soil have been identified as 

possible for a rigid pile, as shown in Figure 4-2, with full mobilisation of the soil 

resistance either in the sliding layer, or in the stable layer, or in both layers 

simultaneously. They are: 

 

- Mechanism A, “translational” failure mode or “short pile mode”μ it occurs 

when the pile length embedded in the stable soil is shallow and the pile will 

experience excessive displacement due to soil failure in the stable layer; the firm 

layer fails and is ripped by the pile that translates together with the sliding mass  

 

- Mechanism B, “rotational” failure mode or “intermediate mode”: it occurs 

when the depth of the slip surface is relatively deep and the soil strength along the 

pile length in both unstable and stable layers is fully mobilised. According to the 

models presented by Viggiani [23] ( and later by Poulos [26] and Kanagasabai et 

al. [46]),  in this mode, the pile deflection at the upper portion exceeds the soil 

movement.  

 

- Mechanism C, or “flow mode”: it occurs when the depth of the slip surface 

is shallow and the soil strength of the sliding mass is fully mobilised; the pile 

results to be fixed in the stable layer while the sliding soil mass becomes plastic 

and flows around the pile. The pile deflection is considerably less than the soil 

movement. It is also the same failure mode analysed by Kourkoulis et al. 

([22],[21]) 

 

Similar generalised failure mechanisms are expected to be revealed by the 

implemented analysis method.  
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Anyway, it is worth to highlight that within the ‘rotational’ failure mode, Viggiani 

identified three additional sub-failure modes of pile itself by developing plastic 

hinges in correspondence of the local largest bending moments. These correspond 

to the “long-pile” failure mode where the pile itself yields and could be associated 

with the previous three modes of soil failure.  

 

 

 
Figure 4-2: Pile failure modes: (a) failure mechanism A; (b) failure mechanism B; (c) 

failure mechanism C [23], [28], [46] 
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Failure 

Mode 
Ultimate lateral load and Maximum bending moment 

Mode A = −  

Mode B 

= [   
  √( − ) ++ + + ( − )+ ) − + −

+ ]   
  
 

= [ − ]  = [( − ) − ]  

Mode C =  

Table 4-1: Equations for calculating ultimate lateral load for piles in a two-layer cohesive 

soil (after Viggiani [23] and Chmoulian [28]) for a pile of length L; pu2 and pu1 are the 

limit soil resistance in the stable and sliding layers, k=pu2/pu1, βL is the pile length in the 

sliding layer   
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4.3. Elasto-plastic analysis of passive rigid piles in 

cohesive soils 

4.3.1. Soil profile and geometry of the problem 

The presence of a sliding cohesive mass over a stiffer stratum is a typical slope 

instability condition. The corresponding problem under consideration is 

represented in Figure 4-3 and presents the same soil stratigraphy already 

investigated in the case of the elastic solutions for a free-head passive rigid pile in a 

two-layered cohesive soil (Paragraph 3.4); moreover, it corresponds to that 

analysed by Viggiani.  

A soil mass of thickness Ls=L slides on a stable underlying soil along a defined 

slip surface. Each layer is assumed to be a saturated cohesive soil in undrained 

conditions, each one with a constant shear strength Su (the case of a cohesionless 

soil presents some peculiarity and is analysed in the next chapter). 

A free-head rigid pile of length L and diameter D crosses the slip surface and 

penetrates the firm soil layer. For simplicity, the ground and the slip surface are 

assumed to be horizontal.  

 

 
Figure 4-3: Soil profile and pile displacement geometry 
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Once again, the distribution of the soil movement along Ls is assumed to be linear 

with depth and defined through the soil top displacement parameters ys0 and the 

ratio , varying from a triangular variation with depth when no displacement 

occurs in correspondence of the slip surface (=0) to a uniform distribution, when 

the unstable soil layer slides down as a unique mass block (=1). Intermediate 

values of  describe a generic trapezoidal profile of the soil movement. 

 

 
Figure 4-4:Distribution of the soil movement: a) generic distribution; b) inverse triangular 

variation with depth h=0; c)uniform distribution with depth h=1 
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4.3.2. Constitutive model and ultimate soil resistance pu 

The soil is modelled according to a Winkler approach [32] in which the ground is 

modelled as a set of elastic springs distributed along the pile shaft. Despite the 

assumption of a linear elastic soil made in the previous models, the problem is 

more complex because soils in real field situations behave nonlinearly. In order to 

simplify the problem, the soil is assumed to be linear elastic up to the yielding 

point and perfectly plastic beyond it [34]; the pile–soil interaction is characterised 

by a series of springs which operates within the elastic state. In the elastic-plastic 

model, the soil pressure is limited by its ultimate value. If less than the limiting 

value pu, the on-pile force per unit length p, at any depth, is proportional to the 

local pile displacement through the modulus of subgrade reaction Es [FL
–2

]. 

 

 
Figure 4-5:(a) Rigid pile deflection; (b) Variation of Es with depth; (c) Variation of pu with 

depth 

As shown in Figure 4-5b, a different value of the modulus of subgrade Es is 

assigned to every soil layer. The springs of each layer have a constant modulus of 

subgrade reaction, regardless of depth: Es1 for the first sliding layer and Es2 =k*Es1 

for the stable layer: 

 

Es (z) = Es1    [FL
-2

]     0< z <L  ( 4-15 ) 

Es (z) = Es2 = kEs1   [FL-2]    L < z < L  ( 4-16 ) 
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Where k is defined as : 

1

2

s

s

E

E
k 

        ( 4-17 ) 

The method implements a generalised linear relationship between the ultimate 

value of lateral pressure pu acting on the pile and depth; pu in assumed to increase 

linearly from ground level to a depth of 3D, where D is the diameter of the pile, 

and to assume a constant value at depths below, ideally proportional to their Su 

value. This assumption let account for ground surface effects on pu values close to 

pile head. 

The profile of pu is then showed in Figure 4-5c, and schematized by the following 

expressions: 

   mzpzp uu  0    0 < z < L   ( 4-18 ) 

   1uu pzp      L < z < L    ( 4-19 ) 

 
  12 uuu pkpzp 

    L < z < L    ( 4-20 ) 

Where 

 

 
L

kp

L
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m uuu
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       ( 4-21 ) 
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         ( 4-22 ) 

and 
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2

u

u

p

p
k 

         ( 4-23 ) 

The use of parametric ratios between stiffness and resistance parameters of each 

soil layer allow adapting the model to several different real situations which can be 

similarly modelled. At the same time, it is important to notice that, as the method 
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gives normalised solution, the values attributed to pu and Es do not enter into the 

developed solutions, and their evaluation is not directly considered inside the 

proposed method.  
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4.3.3. Method of analysis 

Similarly to the solutions developed for the elastic case, the non-linear analysis 

method solves the equation of the soil-pile system with the soil represented as 

linear springs providing resisting forces that increase with the relative lateral 

deflection. Once again, by considering horizontal force and moment equilibrium 

along the pile length, a system of two equations in two variables y0 and tanis 

derived.  

The program considers the external soil movement as an input for the definition of 

the soil-pile pressure profile and the building of the equation system. This is made 

in order to follow the progressive pile deflection which occurs at the same time 

with the progression of the external soil sliding: as ys increases, the pile rotates and 

pressures pe(z) along it develops. In a first step, soil reaction all along the pile 

length is small enough not to reach the ultimate resistance pu. In this case, the 

whole system soil-pile is in an elastic condition and no yielding affects the soil. 

Such a configuration represents the elastic case, the starting point for the iterating 

process and corresponds to the configuration presented in paragraph 3.4. Explicit 

solutions are available. 

From the elastic field, the progressive increment of soil and pile movements lead 

the soil-pile system to enter the plastic fields and the pressures to reach a first 

yielding point at a certain depth or region of the soil-pile interface.  

Due to different geometries, stiffness and resistances that the model can consider, 

different first yielding regions may be reached. In particular, for the soil model 

under investigation it has been found ten singular first yielding regions, equivalent 

likewise to the same number of cases. Moreover, by imposing proper boundary 

conditions for each configuration, it is possible to calculate the soil threshold 

displacement ys0 that, if reached, leads to the respective first yielding cases.  

Based on the different zone where plasticization occurs first and progressively with 

the increasing of soil external movement ys, different configurations or cases may 

occur next. In fact, after the first case encountered, other configurations follow in 

cascade as soon as new yielding points are reached by the pressures along the pile, 

while the already yielded regions expand. The new successive configurations can 

be considered as made of the combination of several singular yielded regions.  
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The equilibrium equations system for a soil reaction distribution with yielding in 

one or more regions generally needs to be numerically solved: an iterative process 

has been implemented in a computer program written in FORTRAN, in order to 

numerically solve the system and track all the different configurations coming in 

succession as the soil movement is increased. The implemented procedure applies 

the bisection root-finding method for numerically solving the equations of the 

shear forces and bending moments equilibrium for the real variable y0 and tanω. 

Moreover, the iterative procedure implements a control over the pressures to check 

if new yielding regions had developed. In that case, it moves to the next soil 

reaction configuration subroutine.  

Although all the different cases are linked each other by the increasing value of ys 

and y0, they have been implemented singularly in the FORTRAN code as singular 

subroutines in order to solve singularly every corresponding equilibrium equations 

system. The program stops when a failure mode is reached. With regard to the 

mode B, the soil-pile interaction tends only asymptotically toward it; for this 

reason, in the software, these limit states have been implemented separately from 

the others, as a final step the process tends to. 
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4.3.4. First yielding cases and threshold soil displacements 

The particular distribution of Es and of the ultimate soil pressure lead to several 

different first yielding cases: due to the assumed geometry (in particular ,   and β 
parameters) and of the stiffness and resistance ratios ( k, k0), a different first 

yielding case is expected. 

In particular, ten different singular yielding regions have been identified and 

developed, occurring in correspondence of likewise points in the ultimate soil 

pressure profile: they are located at depth  = / =  (cases P1 and P5), =   

(cases P6), =  (cases P2, P3 and P32=P2
-
), =  (case P4) and at a depth 

into the interval < <  (case P8). A scheme is stated in the Figure 4-6. 

 

 
Figure 4-6: First yielding points and corresponding first yielding case 

 

 

Every case is also associated to a characteristic threshold soil displacement ys0 that, 

if passed, drive the elastic system to one of the first yielding cases. 
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They are estimated by imposing the proper boundary condition into the elastic 

solutions developed for the case of a two-layered soil analysed in the paragraph 

3.4:  

 z = − ( − =  − [ − − � � − � ] [FL
-1

]     0 < z <Ls ( 4-24 ) 

 = − [ − � � ]  [FL
-1

]    Ls < z < L ( 4-25 ) 

 

Table 4-2 presents the so evaluated threshold soil displacements as a function of 

the elastic proportionality constants D, Ny, Nt, NΔy and NΔt for a passive free-head 

rigid pile in a two-layered soil with constant values of the subgrade reaction 

modulus presented in Table 3-5. 

It has to be noticed as pile-soil pressures on the pile are assumed positive if acting 

in the same direction of the soil displacement. Otherwise, they are considered 

negative. 

 

 

First yielding case Threshold soil displacement 

Case P1 (positive yielding at 
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183 

 

Case P2- 
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CASE P4 (yielding at z=L) 
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Case P6 (yielding at z=L) 
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Case P8 (yielding at zn=c, 

with 0<c<L0) 
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Table 4-2: Threshold soil displacements for all the first yielding cases 
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Table 4-3: Yielded regions for the first yielding cases 
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The yielding regions so identified (Figure 4-7) can be considered as basic 

components of a more complex cases that occur with the increasing of the imposed 

free-field soil displacement. For this reason, hereafter their nomenclature is used to 

describe and mention the successive complex cases. In example, case P23 indicates 

that both region 2 and 3 are yielded, while the rest of the pressure profile is still 

elastic. 

 

 
Figure 4-7: Identified yielded region and their nomenclature 

 

 

As mentioned, the minimum of all threshold displacements identifies which case is 

the first occurring for that particular geometry and soil properties configuration.  , � =min{ , � , , � , , � − , , � , , � , , � , , � , , � , }  
 

Nevertheless, all the described threshold soil displacements ys0lim can be plotted 

over Ls=βL in order to understand which is the case that has to be expected to 

occur and approximately which ones will follow even later as ys increases (Figure 

4-8). For example, considering a β=Ls/L value of 0.5, the pile is in the elastic field 

since the soil displacement is less than the yielding threshold value. As this value is 

reached, the pile-soil limit pressure extends along the negative region 5 and the 

pile-soil system enters into the cases P5.  

7

3

4

51

9

6

8

2-2
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As ys0n increases more, soil pressure will reach the yield also in the region 3, and 

the system the configuration P53. Similarly, the pile is expected to arrive, in the 

end, to the configuration P56234, corresponding to a failure mode B1 

 

 
Figure 4-8: Example of first yielding non-dimensional displacement Ys0n diagram over 

Ls/L 

All the listed simple configurations are followed by more complex cases in which 

soil reaction distribution has reached the ultimate resistance pu in more than one 

region. According to all possible combinations of the different ten regions, more 

than sixty different cases have been identified. For each one, similarly to what 

showed for the elastic case, the equilibrium equations have to be solved in order to 

obtain pile deflection and strain state. Since those equations are nonlinear, a 

numerical procedure has been developed to solve the systems; moreover,  to follow 

the cases path by checking soil reaction distribution to find if yielding has been 

reached until one of the possible limit states is achieved.  
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4.3.5. Iterative numerical procedure and cases 

The first step in the analysis of a given configuration is to calculate all the yielding 

threshold displacement ys0; lately, the procedures tracks and controls the whole soil 

reaction profile in order to control if new yield regions have been developed and to 

follow the cases succession path.  

As equations systems are nonlinear, an iterative numerical procedure has been 

developed to solve them and a computer program in FORTRAN code has been 

written to implement and run the procedure. 

The transition from a case to another is ruled by the check of the pressure value at 

the specific depth of the yielding regions: 

 � = = �
          ( 4-26 ) 

for each one of the five identified first yielding depth: 

 = == = −          ( 4-27 ) 

 = =� −=� −           ( 4-28 ) 

 = =� +=� +           ( 4-29 ) 

 = =�=�           ( 4-30 ) 

 = =�=� = −         ( 4-31 ) 
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Similarly, it has been defined the parameter IP which is regulated by a subroutine 

that checks if the pu value is reached at depth ranging between 0 and L0 (cases P9 

and P8). 

Whenever one of the above exceeds the unity, it means a new region of the 

pressure profile has reached the yield. The pressure is then fixed as equal to pu and 

the iteration process make the transition to the new successive case. 

As an example, considering the case P1, a ratio r2 reaching the unity implicates the 

transition to the case P12, where the ultimate pressure is mobilized, positively,  in 

the region 1 close to the pile’s head ( P1 case) and above the slip surface at z=Ls 
(proper of the case P2). 

 

In order to reduce the analysed cases,  all analysed and implemented cases can be 

derived from 8 more complex cases, all named following the nomenclature used 

for the single configurations. Their formulation is presented in Appendix A. 

The several combinations of yield in the different zones include over 60 possible 

cases ( showed in Appendix A). In order to optimise the FORTRAN code, the 

possible cases are all analysed by 8 generalised cases.  
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4.3.6. Failure modes 

The analysis carried out by applying the developed soil-pile interaction model 

revealed three main failure modes, basically the same found by Viggiani [23]. 

Anyway, the particular hypothesis of the pu profile along the pile length taking care 

of ground surface effects by varying linearly with depth instead of being assumed 

as zero, have implicated some differences in the resulting failure modes.  

These cases here considered are involved when the pile is assumed not to reach its 

limiting tension (i.e. the bending moment acting on the pile is lower than its yield 

moment My); it is so assumed that failure occurs only in the soil: 

 

- For low values of  the Mechanism C, or “flow mode”, governs the 
problem: when the depth of the slip surface is shallow and the soil strength of the 

sliding mass is fully mobilised, the pile results to be fixed in the stable layer while 

the sliding soil mass becomes plastic and flows around the pile. The pile deflection 

is considerably less than the soil movement. The shear stress at the sliding surface 

is available in explicit form: 

 = − −        ( 4-32) 

 

It is worth to be noticed that the value of TC takes care of the assumed pu 

distribution close to the pile head. The same values suggested by Viggiani for a 

two-layered cohesive soil with constants pu values are obtained if k0 is imposed 

equal to 1. 

Moreover, the so described Mode C refers to three sub-configurations, named 

C1(also named 16200), C2 (16230) and C3 (16234), different each-other for the 

pile-soil pressure distribution below the sliding surface: C1 refers to a fully elastic 

pressure distribution, while C2 occurs when the limit soil resistance has been 

reached into the zone 3 and finally C3 where pu is reached into both 3 and 4 zones 

(Figure 4-9). 
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Should be noted also that, as the mode C is reached, for higher value of the free-

field soil the pile does not deflect anymore while the soil flows around it and the 

stress state on the pile does not change either.  

 
Figure 4-9: Soil pressure distribution for the different cases C1, C2 and C3. The dashed 

line represents the limit soil resistance distribution while the blue line the pile-soil reaction 

- The mechanism A, or “short pile mode” occurs when the pile length embedded 

in the stable soil is shallow and the pile experiences excessive displacement 

due to soil failure in the stable layer; the firm layer fails and is ripped by the 

pile that translates together with the sliding mass: its rotation and the relative 

soil-pile displacement remain constant (together with its stress state) while the 

pile translates as a block together with the soil.  

In analogy with the previous Mode C, several different configurations have 

been found to be related to the mode A, and divided in groups A1 (when the 

soil pressure is fully elastic above the sliding surface), A2 ( when pu is reached 

in only one zone above the slip surface) and A3 (when pu is reached in two 

different zones above the slip surface). 

Finally, the value of the shear force at the depth of the sliding surface coincides 

with the value found by Viggiani:  

 = −         ( 4-33) 
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- The Mechanism B, or “intermediate mode”, becomes the most critical when 

the depth of the slip surface is relatively deep and the soil strength along the 

pile length in both unstable and stable layers is fully mobilised. According to 

the models presented by Viggiani [23] and Poulos [26], in this mode, the pile 

deflection at the upper portion exceeds the soil movement. Thanks to the soil-

pile relative displacement evaluated in the model and the displacement 

approach used, the presented model can also take into account two groups of 

sub-modes, named as B1 and B2, respectively when the pile head displacement 

is greater or smaller than the soil one. This implicates that all the 

configurations B1 will include the plasticised zone 5, while for B1 is 

considered the zone 1. This is an improvement with regards to the solutions 

provided by Viggiani as they considered only the corresponding mechanism 

B1. 

Contrary to the mechanism A and C that are reached by the pile-soil system for 

a finite (and computable) free-field soil displacement, the limit states 

corresponding to the modes B1 and B2 are reached only asymptotically as it is 

considered that the pile-soil interaction along the full length of the pile attains 

the limiting force between the pile and soil. This ultimate state corresponds to 

an infinite pile deflection ( the pile reclines horizontally). Four limit states are 

so defined and called B1-L1 and B2-L1, B1-L2 and B2-L2, respectively when 

the change between positive and negative pressure is above or below z=λL. 

They are solved numerically. 

 

 
Figure 4-10: Soil pressure distribution for the different cases B1-L1, B1-L2, B2-L1 and B2-

L2. The dashed line represents the limit soil resistance distribution while the continue line 

the pile-soil reaction 
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The complete formulation of the several failure modes is presented in Appendix A, 

where for each configuration the equations of shear forces and bending moments 

along the pile are expressed. 

 

Since all the different mechanisms are defined, the lateral resistance of passive pile 

in  a two-layered cohesive soil corresponds to the smaller of the three associated 

shear forces at the depth of the slip surface: 

 = �  , ,         ( 4-34) 

 

Figure 4-11 shows the dimensionless shear force offered by a pile in a two-layered 

cohesive soil at the depth of sliding, for different configurations.  

In particular, it is noticeable that the results presented by Viggiani are the same 

obtained by considering a constant limit soil resistance within the first layer. 

Moreover, it is worth to highlight the influence of the ground surface effects on pu: 

the relative values of the shear force are noticeable lower than those obtained for a 

constant value as a lower resistance is offered by the soil. The solutions provided 

by Viggiani also concern a larger range for the failure mode B. 

Finally, in case the soil slides with a triangular distribution over depth 

(corresponding to =0), for sliding depth deeper than about 0.65L, the shear force 

values becomes negative: it is an important result as, if the pile is used as a slope 

stabilising system, its contribution has to be considered null. 
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Figure 4-11: Dimensionless shear force induced in a two-layered cohesive soil at sliding 

depth as a function of the normalized sliding depth at the ultimate state for soil sliding with 

both a triangular and uniform distribution over depth (fixed L0/L=0.35, k0=2/9, k=2.0, 

eta=1. Only values for Ls>L0 are shown)and the solutions as presented by Viggiani [23].  
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4.3.7. Design charts 

As a design expedient, when it is not possible to carry out a complete site-specific 

analysis, useful design charts can be derived not only for the ultimate pile response 

to lateral movements ( as suggested by Viggiani in 1981) but also for the maximum 

shear force the pile can provide in correspondence of different soil movements. 

Moreover, the maximum shear force given by the pile can be related to its head 

displacement or to the maximum bending moment. 

A series of design charts are presented as example of the available output the code 

can develop. They give dimensionless curves for the normalised shear resistance Tn 

occurring at the depth of the slip surface for two cases, different each other only for 

the soil movement distribution shape: the first case considers a uniform distribution 

of the displacement, corresponding to =1, while the second refers to =0. 

In each case, the following dimensionless quantities are indicated: 

 

Dimensionless pile shear resistance at z=Ls: 

 = =�
         ( 4-35 ) 

Dimensionless depth of the sliding surface: =           ( 4-36 ) 

Dimensionless maximum bending moment: = �
         ( 4-37 ) 

Dimensionless pile head displacement: = �
         ( 4-38 ) 

Dimensionless soil movement: = �
         ( 4-39 ) 
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Other assumed parameters are: 

 = /  =  .         ( 4-40 ) 

 = = =          ( 4-41 ) 

 = =  /         ( 4-42 ) 

The normalised shear force and moment for non-yielding piles are plotted against 

the normalised depth of the sliding surface for =1 and =0. For an assigned value 

of , normalised shear force is calculated  by the implemented code and is plotted 

in the graphs showed from the Figure 4-12 to the Figure 4-17. Tn is plotted also 

with reference to the relative external soil displacement ys, the maximum 

normalised bending moment acting on the pile or the pile head deflection y0n. 

 

In all the charts, the dashed line represents the boundary of the elastic zone, 

corresponding to an external soil displacement equal to the threshold value. Within 

it, the relationships between shear forces, bending moments, pile and free-field soil 

displacements are linear. The equations correspond to those presented in the elastic 

method ( and reported in Table 4-4). 

The upper boundaries in all the charts represent the limit values of the shear force 

at the depth of the sliding surface. It is obtained by considering the minimum value 

among those obtained by implementing the different failure modes A, B and C at 

varying of β. 

 , � � = �  , ,        ( 4-43) 

 

Negative Tn values are not plotted as their contribution, in case the pile is used as a 

slope stabilising system, hast to be considered null. 
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Table 4-4: Proportionality constants and elastic solutions for shear forces and bending 

moments for a passive free-head rigid pile in a two-layered cohesive soil 
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Results for η=1 case: 

 
Figure 4-12: Design curves for piles in two layered cohesive soil; L0/L=0.35, k0=2/9, 

k=2.0, eta=1; non-dimensional shear force Tn over  and ysn. Dotted line represents the 

limit elastic solutions and the red one the ultimate pile resistance  
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Figure 4-13: Design curves for piles in two layered cohesive soil; L0/L=0.35, k0=2/9, 

k=2.0, eta=1; non-dimensional shear force Tn over and y0n. Dot line represents the limit 

elastic solutions and the red one the ultimate pile resistance  
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Figure 4-14: Design curves for piles in two layered cohesive soil; L0/L=0.35, k0=2/9, 

k=2.0, eta=1; non-dimensional shear force Tn over and Mn. Dot line represents the limit 

elastic solutions and the red one the ultimate pile resistance  
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Results for η=0 case 

 
Figure 4-15: Design curves for piles in two layered cohesive soil; L0/L=0.35, k0=2/9, 

k=2.0, eta=0; non-dimensional shear force Tn over β and Y0n. To be noticed the negative 

values of Tn for ys>0.57. Dot line represents the limit elastic solutions and the red one the 

ultimate pile resistance  
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Figure 4-16: Design curves for piles in two layered cohesive soil; L0/L=0.35, k0=2/9, 

k=2.0, eta=0; non-dimensional shear force Tn over β and ysn. Dot line represents the limit 

elastic solutions and the red one the ultimate pile resistance  
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Figure 4-17: Design curves for piles in three layered cohesive soil; L0/L=0.35, k0=2/9, 

k=2.0, eta=0; non-dimensional shear force Tn over β and Mn. Dot line represents the limit 

elastic solutions and the red one the ultimate pile resistance  
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4.3.8. Results and discussion 

Depending on both the geometry of the problem , the stiffness and strength of the 

stable and sliding soils, the result presented in the confirm the three main failure 

mechanisms. This is in agreement with results obtained by Viggiani [23] and 

Poulos [26] in their analysis of pile-stabilized slopes: 

 

- For low values of  the Mechanism C, or “flow mode”, governs the 

problem: in this case the pile deflection is considerably less than the soil 

movement. For practical uses, Poulos endorsed the flow mode that creates the least 

damage from soil movement on the pile. It is also the same failure mode analysed 

by Kourkoulis et al. ([22][21]) . 

- At increasing  there is a first threshold value of  above which the 

Mechanism B, or “intermediate mode”, becomes the most critical. According to the 

models presented by Viggiani [23] and Poulos [26], in this mode, the pile 

deflection at the upper portion exceeds the soil movement. Thanks to the soil-pile 

relative displacement evaluated in the model and the displacement approach used, 

the presented model can also take into account two sub-modes B1 and B2, 

respectively when the pile head displacement is greater or smaller than the soil one.  

 

- Finally, there is the Mechanism A, or “short pile mode”μ when the pile 
length embedded in the stable soil is shallow and the pile will experience excessive 

displacement due to soil failure in the stable layer; the firm layer fails and is ripped 

by the pile that translates together with the sliding mass  

 

Over these three modes of soil failure, there is the hypothesis of the finite strength 

of the pile. The “long pile failure” occurs when, in one or more point along the pile 
length, the maximum bending moment of the pile reaches the yields moment (the 

yielding moment My) of the pile section and the pile structural failure takes place 

(Mmax = My), developing plastic hinges, generally even without fully mobilising the 

soil resistance. It is left to singular case to check that the stress state acting on the 

pile is compatible with the structural resistance of the pile: as the normalised shear 

force is presented in function of the maximum bending moment ( Figure 4-14 and 
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Figure 4-17 ), it is possible to compare it with the plastic moment My and verify the 

compatibility of the stresses on the designed pile. 

 

What is interesting about the data showed in the charts is that the ultimate lateral 

pile load is associated with the relative soil free-pile external displacement ys0 

necessary to mobilise it and to the pile head deflection y0, in order to verify if 

specific service requirements are satisfied. 

In particular, for the mechanism A and C the model can evaluate the exact values 

of both ys0 and y0. This is an improvement in the results suggested in the literature, 

where these failure mechanisms are derived from the assumption of full 

mobilisation of the soil resistance without any information about the pile and soil 

displacements. 

For what concerns the B mechanism, the relative ultimate lateral pile load is, by 

definition, associated with an infinite displacement of the pile and is reached only 

asymptotically by the soil-pile system. Nevertheless, the model is able to furnish an 

esteem of real ys0 and y0  values, associated to pile reactions close in magnitude to 

the limit ones. 

 

Analysing more in particular the results presented from the Figure 4-12 to the 

Figure 4-17, it is noticeable how the case of a soil sliding as a block mass ( =1), all 

the three failure mechanism are activated at varying of the sliding surface depth 

(the mechanism B becomes predominant for β higher than 0.45 while the 

mechanism A is activated when β passes 0.85). In the case of a triangular inverse 

distribution of the soil free-field displacement, the mechanism A does not occur 

and the pile is not able to furnish a positive reaction in term of shear force for 

values of β higher than about 0.65.  

 

For both the configurations, the maximum contribute in terms of shear force in 

correspondence of the limit state is provided for β values close to 0.45 ( i.e. when 

the pile is embedded for almost half of its length in the firm layer), in 

correspondence to the transition from the mechanism C to the mechanism B.  
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In both cases, the maximum normalised shear force is close to 0.3, associated with 

a maximum normalised bending moment of about 0.06-0.075 and to a normalised 

pile head deflection equal to 10. 

Instead, the relative soil displacement at ground level is different in size between 

the two cases: y0n is equal to 10 in case of =1 and it increases to 150 for =0, 

where, due to the soil distribution shape, a higher top value is necessary to deflect 

the pile and mobilise its resistance. 
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4.4. Elasto-plastic analysis of passive rigid piles in a 

homogeneous non-cohesive soil 

Similarly to the nonlinear method developed for a two-layered soil with a constant 

modulus of subgrade reaction, the present chapter shows a nonlinear method 

concerning a homogeneous soil modelled according to a Gibson model,  having 

then both the modulus of subgrade reaction and the ultimate lateral pressure 

increasing with depth. It is the case of sands and normally consolidated clays under 

long-term loading, for which it is reasonable to assume that the modulus of 

subgrade reaction varies linearly with depth. 

Solutions for an active pile embedded in an analogue soil stratigraphy are already 

been found by Zhang [3] who developed a computational method for predicting the 

displacement of an active laterally loaded rigid pile in cohesionless soil that, for 

small displacements, were assumed to rotate about a single point.  

 

The soil stratigraphy here investigated also coincides with the one analysed in 

paragraph 3.8. As improvement of the elastic solutions there presented, this method 

aims to consider the development of soil resistance with the shaft deflection, 

elaborating complete solutions for the intermediate states between the elastic and 

the ultimate ones, as they are determined in function of the external free-field soil 

displacement and of the associated pile deflection.  

For this reason, the previous model only concerning an elastic behaviour of the soil 

has been modified and enhanced in order to account for the soil reaction 

distribution with yielding in one or more regions. 
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4.4.1. Geometry, constitutive model and ultimate soil resistance pu 

The investigated problem concern a single rigid pile of length L and diameter D is 

embedded in a homogeneous soil, moving along a slip surface located at a depth of 

Ls=βL. The Figure 4-18 shows the problem under consideration in the present 

paragraph. 

 

 
Figure 4-18: Soil displacement distribution, pile displacement geometry, distributions of 

the subgrade reaction modulus and of the ultimate soil pressure for a rigid pile in 

cohesionless soil 

Once again, the distribution of the soil movement along Ls is assumed to be linear 

with depth and defined through the soil top displacement parameters ys0 and the 

ratio , varying from a triangular variation with depth when no displacement 

occurs in correspondence of the slip surface (=0) to a uniform distribution, when 

the unstable soil layer slides down as a unique mass block (=1). Intermediate 

values of  describe a generic trapezoidal profile of the soil movement. 

 

The on-pile force (per unit length), pe(z), at any depth is proportional to the local 

displacement of the soil-pile interface, Δy(z), and to the modulus of subgrade 

reaction. For sands and for normally consolidated clays under long-term loading, it 

is reasonable to assume that the modulus of subgrade reaction varies linearly with 

depth, so that Es [FL
–2

] can be expressed as  
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 =           ( 4-44 ) 

where: 

n= gradient of the horizontal subgrade reaction modulus (FL
-3

)  

 

With the above assumptions and assuming there is no soil-yielding, the elastic soil 

reactions along the whole length L of the pile can be expressed as: 

 z = −nz( − = − [ − − � � − � ] = − ∆ − ∆    [FL-1]   0<z <Ls  ( 4-45 ) 

 = − [ − � �]  [FL-1]   Ls<z <L  ( 4-46 ) 

 

Several expressions have been proposed in the literature to describe the variation of 

limiting soil pressure pu with depth (Brinch Hansen [47], Reese et al [48]) for a 

cohesionless soil.   

As shown in Figure 4-18, in the present model it is assumed that soil resistance pu 

varies proportionally with depth [42]:  

 =     [FL
-1

]       ( 4-47 ) 

No complete agreement has been reached yet on the analytical expression of m ( cf. 

paragraph 4.1); even if a deeper investigation is left to what already mentioned, for 

a good fruition of the results, it can be considered what suggested by Broms [1] 

who expressed the gradient of the average ultimate pressure across the width of a 

pile as:  

 =  ∙ ∙ ∙ ′   [FL
-1

]     ( 4-48 ) 

where Kp is the Rankine passive pressure coefficient, = � + �′
        ( 4-49 ) 
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’ the effective soil unit weight and D the pile diameter. As the formulation 

presented resulted in giving underestimated values when compared to field test, 

other authors [42] found that the data from lateral pile tests could be matched 

sufficiently by the simple variation given by 

 =  ∙ ∙ ′   [FL
-1

]     ( 4-50 ) 

It has to be noticed that for almost all naturally occurring sand, Kp
2
 will be greater 

than 3. 
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4.4.2. Method of analysis, first yielding cases and threshold soil displacements 

Similarly to the solutions developed for the elastic case, the non-linear analysis 

method solves the equations of the soil-pile system with the soil represented as 

linear springs providing resisting forces that increase with lateral deflection. Once 

again, by considering horizontal force and moment equilibrium along the pile 

length, a system of two equations in two variables y0 and tanis derived.  

From the elastic field, the progressive increment of soil and pile movements lead 

the soil-pile system to enter the plastic fields and the pressures to reach a first 

yielding point at a certain depth or region of the soil-pile interface. The non-linear 

system of the relative to soil reaction distribution with yielding in one or more 

regions are numerically solved by an implemented FORTRAN code, similar to the 

one presented for the case of a two-layered cohesive soil, which applies the 

bisection method for solving the equilibrium equations until the variables y0 and 

tanω are obtained. 

 

Due to the assumed geometry ( in particular  and β parameters), the stiffness and 

resistance ratios (n,m), a different first yielding case is expected.In particular, five 

different singular yielding regions have been identified and developed, occurring in 

correspondence of likewise points in the ultimate soil pressure profile: they are 

located at depth  zn=0 (cases P1 and P5),  zn=β (cases P2, P3),  zn=1 (case P4).  

Starting from the elastic solution and imposing the yielding criterion at the relative 

depth, the threshold soil displacement can be found. 

In example, for the zone 1 ( located at depth zn=0 and with a positive yielding 

pressure at pile head) and introducing the elastic proportionality constants: = =        ( 4-51) 

∆ = ∆ = ∆        ( 4-52) 

the threshold soil displacement is calculated as follow (c<Ls): = = =        ( 4-53) − ∆ − ∆ =        ( 4-54) 
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− ∆ − ∆ =        ( 4-55) ∆ − ∆ = −        ( 4-56) 

By imposing z=0: ∆ = −         ( 4-57) 

∆ = −         ( 4-58) 

= − ∆         ( 4-59) 

� = − ∆        ( 4-60) 

 

The Table 4-5 presents the characteristic normalised threshold soil displacement, 

expressed as function of the elastic proportionality constants D, Ny, Nt, NΔy and NΔt 

for a free-head rigid pile in a Gibson soil model as presented in Table 3-20. 

As already mentioned, the pile-soil pressures on the pile are assumed positive if 

acting in the same direction of the soil displacement. 

 

 

CASE Threshold soil displacement 

CASE P1 (positive yielding at z = 0 ) 
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CASE P3 (negative yielding at z = ) 

 tylim

s
NNm

n
y









 1
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0

 

CASE P4 (positive yielding at z =1 ) 

 
ytlim
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 1

4

0

 

Table 4-5: Threshold soil displacements for a homogeneous  Gibson soil 

The yielding regions so identified can be considered as basic components of the 

more complex cases that occur with the increasing of the imposed free-field soil 

displacement and their nomenclature is used to describe and mention the 

successive complex cases (Figure 4-19). 

 

 

Figure 4-19: Identified yielded region and their nomenclature 

For the purpose of calculation and presentation, all analysed and implemented 

cases can be derived from two more complex cases, all named following the 

nomenclature used for the single configurations.  

The formulation of the 24 identified cases is presented in Appendix B. 
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4.4.3. Failure modes 

The analysis carried out by applying the developed soil-pile interaction model to a 

homogeneous soil revealed the same three main failure modes presented for a two-

layered cohesive soil:  

 

- For low values of  the Mechanism C, or “flow mode”, governs the 
problem: when the depth of the slip surface is shallow and the soil strength of the 

sliding mass is fully mobilised, the pile results to be fixed in the stable layer while 

the sliding soil mass becomes plastic and flows around the pile. The pile deflection 

is considerably less than the soil movement. The shear stress at the sliding surface 

can be expressed in explicit form: 

 , = =        ( 4-61) 

 

The so described Mode C refers to three sub-configurations, named C1, C2 and C3 

different each-other for the pile-soil reaction distribution below the sliding surface: 

C1 refers to a fully elastic pressure distribution, while C2 considers that the limit 

soil resistance has been reached into the zone 3 and finally C3 where pu is reached 

into both 3 and 4 zones (Figure 4-9). 

Should be noted also that, as the mode C is reached, for higher value of the free-

field soil the pile does not deflect anymore while the soil flows around it and the 

stress state on the pile does not change either.  

 
Figure 4-20: Soil pressure distribution for the different cases C1, C2 and C3. The dashed 

line represents the limit soil resistance distribution while the continue one the pile-soil 

profile 
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- The mechanism A, or “short pile mode” is involved when the pile has a 

shallow embedment in the stable soil and experiences excessive displacement 

due to soil failure in the stable layer; the firm layer fails and is ripped by the 

pile that translates together with the sliding mass: the pile maintains constant 

rotation and relative soil-pile displacement (together with its stress state) while 

it translates as a block together with the soil.  

In analogy with the previous Mode C, several different configurations have 

been found to be related to the mode A, and divided in groups A1 (when the 

soil pressure is fully elastic above the sliding surface), A2 ( when pu is reached 

in also in the zone 5 above the slip surface) and A3 (when pu is reached in 

zones 5 and 2 above the slip surface). 

 

 
Figure 4-21: Soil pressure distribution for the different cases A1, A2 and A3. The dashed 

line represents the limit soil resistance distribution while the continue one the pile-soil 

reaction 

For the mode A, the value of the shear force at the depth of the sliding surface 

coincides with the value found by Viggiani:  

 , = = −       ( 4-62) 

  

- The Mechanism B, or “intermediate mode”, becomes the most critical when 

the depth of the slip surface is relatively deep and the soil strength along the 

pile length in both unstable and stable layers is fully mobilised. The solutions 

presented by Viggiani [23] and Poulos [26] for cohesive soils recognise that 
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the pile deflection at the upper portion exceeds the soil movement. The 

presented model can also take into account two groups of sub-modes, named as 

B1 and B2, respectively when the pile head displacement is greater or smaller 

than the soil one. This implicates that all the configurations B1 will include the 

plasticised zone 5, while for B1 is considered the zone 1. 

 

Contrary to the mechanism A and C that are reached by the pile-soil system for 

a finite (and computable) free-field soil displacements value, the limit states 

corresponding to the modes B1 and B2 are reached only asymptotically as it is 

considered that the pile-soil interaction along the full length of the pile attains 

the limiting force between the pile and soil. This ultimate state corresponds to 

infinite pile deflection ( the pile reclines horizontally). Two limit states are so 

associated with the modes B1 and B2.  

 

For the limit case B1 the normalised shear force is: 

 = −       ( 4-63) 

 

where xn and yn depend on and their solution is admissible if  

 < <        ( 4-64) 

and < <        ( 4-65) 

 

In the appendix B, values of xn and yn are listed for different values of 
Similarly, for the limit case B2 : 

 = −       ( 4-66) 
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where xn and yn do not depend on β and are: 

xn ≈ 0.4η4η  
yn ≈ 0.84 

 

their solution is admissible if  < <        ( 4-67) 

 

 

 
Figure 4-22: Soil pressure distribution for the different cases B1 B2-L2. The dashed line 

represents the limit soil resistance distribution while the continue line the pile-soil reaction 

 

The complete formulation of the several failure modes is presented in Appendix B, 

where for each configuration the equations of shear forces and bending moments 

along the pile are expressed. 

 

Lateral resistance of passive pile in  a two-layered cohesive soil corresponds to the 

smaller of the three shear forces associated with the respectively defined 

mechanism, evaluated at the depth of the slip surface: 

 = �  , ,        ( 4-68) 

 

Figure 4-23 shows the dimensionless shear force offered by a pile in a non-

cohesive soil at the depth of sliding, for different configurations. In case the soil 

slides with a triangular distribution over depth (corresponding to =0), for sliding 
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depth deeper than about 0.65L, the shear force values becomes negative: it is an 

important result as, if the pile is used as a slope stabilising system, its contribution 

has to be considered null. 

 

Figure 4-23: Dimensionless shear force Tm=T/(mL
2
) offered by a pile in a non-cohesive soil 

at the sliding depth for different configurations: soil sliding with a triangular distribution 

over depth, soil sliding with a uniform distribution over depth  
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4.4.4. Design charts 

A series of design charts is presented as result of the analysis.  

They give dimensionless curves for the normalised shear resistance Tm occurring at 

the depth of the slip surface for two distinct cases, different each other only for the 

soil movement distribution shape: the first case considers a uniform distribution of 

the soil displacement, corresponding to =1, while the second refers to =0. 

In each case, the following dimensionless quantities are indicated: 

Dimensionless pile shear resistance at z=Ls: = =�
         ( 4-69 ) 

Dimensionless depth of the sliding surface: =           ( 4-70 ) 

Dimensionless maximum bending moment: , = �
        ( 4-71 ) 

Dimensionless pile head displacement: = �  
         ( 4-72 ) 

Dimensionless soil movement: = �
         ( 4-73 ) 

The normalised shear force and moment for non-yielding piles are plotted against 

the normalised depth of the sliding surface for =1 and =0. For an assigned value 
of β, normalised shear force is calculated by the implemented code and is plotted in 

the charts. Tn is plotted also with reference to the relative external soil 

displacement ys, the maximum normalised bending moment acting on the pile or 

the pile head deflection y0n. 

 

In all the charts, the dashed line represents the boundary of the elastic zone, 

corresponding to an external soil displacement equal to the threshold value. Within 
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it, the relationships between shear forces, bending moments, pile and free-field soil 

displacements are linear. The equations correspond to those presented in the elastic 

method ( and reported in Table 4-6). 

The upper boundaries in all the charts represent the limit values of the shear force 

at the depth of the sliding surface. It is obtained by considering the minimum value 

among those obtained by implementing the different failure modes A, B and C at 

varying of β. 
 , � � = �  , ,        ( 4-74) 

Negative Tn values are not plotted as their contribution, in case the pile is used as a 

slope stabilising system, hast to be considered null.  

It is worth to be noticed that due to the normalisation made on the parameters, they 

result to be applicable to every case that corresponds to the assumed geometry and 

in which the soil can be modelled according to the Gibson model. 
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Table 4-6: Proportionality constants and elastic solutions for shear forces and bending 

moments for a passive free-head rigid pile in a non-cohesive soil 
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CHARTS FOR Tm OVER β AND Ys0n 

 

 
Figure 4-24: Curves of normalised shear force Tm over Ls/L for =1. Numbers indicates the 

external normalised soil displacement ys0*m/n. Dashed line represents the limit elastic 

solutions 
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Figure 4-25: Curves of normalised shear force Tm over Ls/L for = 0. Numbers indicates 

the external normalised soil displacement ys0*m/n. Dashed line represents the limit elastic 

solutions 
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CHARTS FOR Tm OVER β AND Y0n 

 

 
Figure 4-26: Curves of normalised shear force Tm over Ls/L for =1. Numbers indicates 

the external normalised pile head displacement y0*m/n. Dashed line represents the limit 

elastic solutions 
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Figure 4-27: Curves of normalised shear force Tm over Ls/L for =0. Numbers indicates  

the external normalised pile head displacement y0*m/n. Dashed line represents the limit 

elastic solutions  
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CHARTS FOR Tm OVER β AND Mmax,m 

 

 
Figure 4-28: Curves of normalised shear force Tm over Ls/L for =1. Numbers indicates 

the normalised maximum bending moment Mmax/(mL
3
). Dashed line represents the limit 

elastic solutions 
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Figure 4-29: Curves of normalised shear force Tm over Ls/L for =0. Numbers indicates 

the normalised maximum bending moment Mmax/(mL
3
). Dashed line represents the limit 

elastic solutions 
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4.4.5. Results and discussion 

The analysis of a passive pile embedded in a homogeneous soil modelled 

according to a Gibson model shows similar results to those obtained for a two-

layered soil with constant values of strength and resistance.  

In particular, the same failure mechanism A,B and C have been identified (cf. 

paragraph 4.3.8). 

Once again, the peculiarity of the model is that the ultimate lateral pile load is 

associated with the relative soil free-pile external displacement ys0 necessary to 

mobilise it and to the pile head deflection y0; it is then possible to verify if specific 

service requirements are satisfied if a certain resistance contribute is requested to 

the pile. 

 

With regard to the case of a soil sliding as a block mass ( =1), all the three failure 

mechanism are activated at varying of the sliding surface depth (the mechanism B 

becomes predominant for β higher than 0.4η while the mechanism A is activated 
when β passes 0.8η). In the case of a triangular inverse distribution of the soil free-

field displacement, the mechanism A does not occur and the pile is not able to 

furnish a positive reaction in term of shear force for values of β higher than about 
0.65.  

 

Similarly to the results for a two-layered soil, for the case of a triangular inverse 

distribution of the soil free-field displacement ( =0),  the maximum contribute in 

terms of shear force is provided for β values close to 0.4η ( i.e. when the pile is 
embedded for almost half of its length in the firm layer), in correspondence to the 

transition from the mechanism C to the mechanism B. Instead, the case of a soil 

sliding as a block mass ( =1) shows a maximum value of Tm.  

In both cases, the maximum normalised shear force is close to 0.3, associated with 

a maximum normalised bending moment of about 0.06-0.075 and to a normalised 

pile head deflection equal to 10. 

Instead, the relative soil displacement at ground level is different in size between 

the two cases: y0n is equal to 10 in case of =1 and it increases to 1η0 for =0, 
where, due to the soil distribution shape, a higher top value is necessary to deflect 

the pile and mobilise its resistance. 
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5. Lateral resistance of passive piles in  a 

double-layered non-cohesive soil 

Viggiani [23] suggested the results of his evaluation of the ultimate resistance of 

passive piles in cohesive soils.  

In the present chapter, a similar approach is developed for a two-layered non-

cohesive soil in which both the modulus of subgrade reaction and the ultimate 

lateral pressure are expected to increase with depth.  

 

5.1. Geometry 

The geometry of the problem is represented in Figure 5-1. A pile of length L and 

diameter D is embedded in a two-layered soil made by a sliding layer of thickness 

Ls=L1 with a limiting soil pressure pu1=m1z and a stable layer of thickness L2 with 

pu2=m2z. For simplicity, the ground surface and the slip surface are assumed 

horizontal. 

 

In the following analysis dimensionless expressions for shear and moment at z = L1 

are derived as a function of two dimensionless parameters:  

 = ⁄         ( 5-1 ) 

 = ⁄         ( 5-2 ) 
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Figure 5-1: Soil profile used in the analysis 
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5.2. Limiting soil pressure 

Similarly to Viggiani (1981) the force and moment provided by pile at the depth of 

sliding surface are obtained assuming that the soil has reached its ultimate state. In 

this study refers to a pu linearly varying with depth (Fleming et al. [42]):  

 

 =  [FL
-1

]       ( 5-3 ) 

The gradient m depends on Rankine coefficient of passive resistance Kp and 

effective soil unit weight ’, as well as the pile diameter. Some studies (e.g. Poulos 

[26]; Kourkoulis et al. [22]) follow the recommendation of Broms [1] assuming    

 = ÷  ′          ( 5-4 ) 

elsewhere it is assumed  (e.g. Zhang, [3]; Ellis et al [49]; Fleming et al. [42]): 

 = ′           ( 5-5 ) 

It can be observed that the above expressions are valid for an isolated pile, whereas 

for a row of pile pu is expected to vary with pile spacing (Georgiadis et al. [45]; 

Rollins et al. [50]) .  

A centre to centre pile spacing of 3-4 diameter can be considered reasonable to 

both neglect the group effect in terms of pu and to allow the development of soil 

arching between the piles (Kourkoulis et al. [22]) 

A deeper analysis regarding the evaluation of the gradient m has also been made in 

paragraph 4.1 . 
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5.3. Failure modes for non-yielding piles 

Similarly to the case of cohesive soils presented by Viggiani, six different failure 

modes can be found. Three cases are involved when the pile is assumed not to 

reach its limiting tension (i.e. the bending moment acting on the pile is lower than 

its yield moment My); it is so assumed that failure occurs only in the soil: 

 

Mode A – short pile mode 

 

In this case, the ultimate lateral pressure is achieved in the stable layer (Figure 

5-2a). The shear force T and the bending moment M at depth z = L1 can be easily 

obtained as: 

XLm

T
T A

An
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1 2
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        ( 5-6 ) 
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       ( 5-7 ) 

 

Mode B – intermediate mode 

 

Soil failure occurs both above and below the slip surface (Figure 5-2b). The sign of 

the ultimate soil pressure change along the pile at depth z1, L1=Ls and z2.  

 

The horizontal force equilibrium and bending moment equilibrium about pile head, 

can be written as: 
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The value of z1n is calculated by solving a six order equation: 
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whose  expressions of coefficients a are listed in Table 5-1. 

 

Shear and moment at the depth L1 can be expressed as a function of z1n, i.e. the 

normalized depth z1/L at which the first pressure inversion occurs. 
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The maximum moment in the unstable and stable layer are respectively: 
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Where 

   2

1

22

2 50150 nn z.X.z  
    ( 5-15 ) 

 

Mode C – flow mode 

 

In this case, the ultimate lateral pressure is fully mobilised only in the unstable 

layer (Figure 5-2c).  The shear force and the bending moment at depth L1 can be 

easily obtained as: 
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Table 5-1: Expressions for the coefficients of governing equations for failure mode B, B1, 

BY and B2 
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Figure 5-2: Failure mechanisms for non-yielding piles: (a) failure mechanism A; (b) failure 

mechanism B; (c) failure mechanism C 
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5.4. Failure modes for yielding piles 

When pile failure is considered in the analysis, one or two plastic hinges are 

assumed to develop along pile shaft in which bending moment is equal to yield 

moment. The yield moment of the pile can be conveniently expressed in 

dimensionless form: 

 = ⁄         ( 5-18 ) 

 

Mode B1 

 

A plastic hinge develops at depth p1 in the unstable layer (Figure 5-3a). 

The shear force and bending moment at depth L1 are given by:  

 = = .  −       ( 5-19 ) 

= = − +      ( 5-20 ) 

 

The maximum moment in the stable zone can be calculated by (5-6)  with: 
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The horizontal force equilibrium and bending moment equilibrium about pile head, 

of the part of pile below the plastic hinge can be written as: 
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The value of p1n (= p1/L) , obtained by imposing horizontal and rotational 

equilibrium, is the solution of the following six order equation:  
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   ( 5-24 ) 

 

Expressions for coefficients of (5-19) are in Table 5-1. 

 

Mode BY 

 

This failure mode includes two plastic hinges at depth p1 and p2 (Figure 5-3b). 

The shear and moment at the sliding surface can be calculated by (5-18) and (5-

19), respectively. The horizontal force equilibrium and bending moment 

equilibrium about pile head, of the part of pile between the plastic hinges can be 

written as: 
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The value of p1n (= p1/L), obtained by combining equilibrium conditions, is the 

solution of the following equation:  
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Details of the coefficients a are provided in Table 1. 
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Mode B2 

 

A plastic hinge is developed at depth p2 in the stable layer (Figure 5-3c). Shear and 

moment at the depth of sliding surface can be calculated by (5-10) and (5-11) 

whereas the maximum moment in the unstable layer is calculated by (5-12,5-13). 

The horizontal force equilibrium and bending moment equilibrium about pile head 

of the part of pile above the plastic hinge can be written as: 
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The value of z1n (=z1/L), obtained by imposing horizontal and rotational, is the 

solution of the following six order equation:  
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    ( 5-30 ) 

The coefficients a are listed in Table 5-1. 
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Figure 5-3: Failure mechanisms for yielding piles: (a) failure mechanism B1; (b) failure 

mechanism BY; (c) failure mechanism B2 
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5.5. Results and discussion 

In Figure 5-4 the normalised shear force and moment for non-yielding piles are 

plotted against the normalised depth of the sliding surface for X=1 and X=0.5. For 

an assigned value of , normalised shear force is calculated by (5-5), (5-10) and (5-

15) and the minimum value is plotted in the graph. 

 
Figure 5-4: Dimensionless resistance offered by non-yielding piles at the depth of sliding 

(a) shear (b) bending moment 

Three different zones can be distinguished. For low values of  the mode C 

governs the problem. In this range the curve is unique regardless of the value of X. 

At increasing  there is a first threshold value of   (1) above which the mode B 
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becomes the most critical. Finally there is a second threshold value (2) over which 

the critical mode becomes the mode A. The threshold values are found to increase 

at decreasing the ratio X.  

 

The maximum contribute in terms of shear is provided for   > 0.8, (i.e. when a 

relatively little embedment in the stable layer). However, this solution is of doubt 

efficacy in designing piles for stabilise an active landslide when a greater 

embedment is requested (Kourkoulis et al. 2011  [21], [22]). As far as the bending 

moment is concerned, the contribute is generally negative for LEM analysis, as the 

sign is opposite to that of soil shear stresses along the sliding surface. Only for high 

values of  the contribute is positive. 

 

Figure 5-5 and Figure 5-6 show normalised shear force and moment for yielding 

piles. For assigned values of , X and Myn shear force is calculated according to all 

six failure modes and then the minimum value is plotted in the graph as a function 

of . 

 

For Myn greater than 0.04 the trend of Tn coincides with that of nonyielding piles. 

As expected, the normalised shear force is found to generally decrease at 

decreasing Myn. Regardless of the value of Myn the mode C is more critical for low 

values of , whereas the mode A is the more critical for high value of . Threshold 

values 1 and 2 depend on both Myn and X.  

 

In the intermediate range of  shear force is governed by mode B2 and B1. For 

Myn=0.02 a very narrow range of  is found where the mode B is the more critical. 

For Myn ≤ 0.01 the mode B disappears and a range of  exists in which mode BY 

becomes more critical.  
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Figure 5-5:Dimensionless shear offered by yielding piles at the depth of sliding; (a) X=1;  

(b) X= 0.5 

 
Figure 5-6: Dimensionless bending moment offered by yielding piles at the depth of sliding; 

(a) X=1;  (b) X= 0.5 
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5.6. Final considerations 

This chapter has examined the behaviour of pile in a sliding cohesionless soils. 

Assuming a linear distribution of the limiting soil pressure with depth in both 

stable and unstable layer,  shear force and bending moment at the depth of the 

sliding surface are obtained in non-dimensional form. Six failure modes have been 

analysed, the occurrence of which depend on the depth of sliding surface, yield 

moment of the pile section and strength gradient ratio (m2/m1). 

The proposed solution can be useful in stability analyses made by Limit 

Equilibrium Methods in which the contribute of pile is considered as an additional 

resistance. Similarly to the original solution proposed by Viggiani for cohesive 

soils, the proposed approach refers only to ultimate state of soil and pile and no 

information on pile and soil displacements are provided. For these reasons this 

approach seems to be more applicable for a stable slope than for a slope with an 

active landslide. In such a case, a suitable constitutive model is necessary as pile 

stability and displacement should be checked on the basis of the actual soil 

pressure distribution instead of an idealised distribution relevant to soil ultimate 

state. 
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6. Stability analysis of slopes reinforced 

with piles  

6.1. Stability analysis of a pile-reinforced slope 

Among all the different situations where a pile acts as passive, one of the most 

common and at the same time studied in literature is the case of passive piles for 

slope stabilization: the use of piles is nowadays one of the most important and 

innovative slope reinforcement technique used to stabilise active landslides or to 

forestall instability in stable slopes. 

 

This is carried out by installing piles in one or more rows crossing the slope 

declivity. Experimental tests demonstrated that an arching effect between piles and 

soil underlies the interaction soil-pile, and through that the pile row works as a 

continuum retaining system absorbing soil strains [51].  However, the arching 

effect is established only after a sufficient soil movement around the piles, 

necessary to mobilise their reaction; Figure 6-1 shows a common scheme of a pile-

reinforced slope in which the pile transfers the loading due to unstable mass in the 

stable underlying bed and that can be represented as generalised forces (T, M, N) 

provided by the lower part of the pile embedded in the stable soil (Figure 6-2). 

 

 
Figure 6-1: Schematic cross section of a pile reinforced slope 
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For these reasons, the study of a pile-reinforced slope must take into account the 

pile stabilising contribution and at the same time compute the stability analysis of 

the pile-slope system. 

 

 
Figure 6-2: Theoretical forces due to a pile row to include in slope stability analyses 

In practical applications, the study of pile reinforced slopes is usually carried out 

by applying the same methods commonly used in the stability analysis of natural 

slopes [52], in which it has been incorporated the stabilising contributions provided 

by the piles. The available approaches can traditionally be divided into limit 

analysis methods, numerical methods (finite-element FEM or the finite-difference 

methods FDM) and limit equilibrium methods. However, depending on how the 

pile reaction is evaluated and implemented, these methods can be further divided 

into two categories: coupled and uncoupled.  

Numerical methods allow analysing the whole piles-slope system in a coupled 

approach, in which the contribution of the piles and the global stability analysis are 

implemented in the same calculation. In a decoupled approach, instead, the 

contribution of pile rows is calculated separately than the global safety factor of the 

reinforced slope. While being used also in the limit analyses, to date, the limit 

equilibrium method is the most widely used into decoupled slope stability analysis 

due to its simplicity of use and to its formulation that can be easily modified to 

include piles effect [21], [27], [43], [53], [54]. 

Moreover, the different approach used affects the evaluation of the slope stability. 

Slope stability is in fact generally assessed by determining the safety factor SF, in 
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both numerical and decoupled methods. The most general definition of this factor 

can be written : 

 = �  ��  �       ( 6-1) 

For slopes, SF is also traditionally defined as the ratio of the actual soil shear 

strength to the minimum shear strength required to prevent failure [55]. SF is then 

the factor by which the soil shear strength must be divided to bring the slope to the 

verge of failure. In other words, when the factor of safety is 1.0, the slope is in a 

state of limiting equilibrium. This definition of the global safety factor is identical 

for both numerical and limit equilibrium methods. 

6.1.1. Numerical methods 

Numerical methods allow to model the pile–slope system as a continuous elastic or 

elasto-plastic medium and provide coupled solutions in which the pile response and 

slope stability are considered simultaneously and, consequently, the pile or the 

slope failures do not request any assumptions to be determined.  

Since SF is defined as a shear strength reduction factor, a clear way of computing it 

with a finite element or finite difference program is simply to reduce the soil shear 

strength until collapse occurs. The resulting factor of safety is the ratio of the soil’s 

actual shear strength to the reduced shear strength at failure [18], [19]. The reduced 

shear strength parameters cR and φR are defined as 

 �  = � − � 
       ( 6-2 ) 

=          ( 6-3 ) 

The reduced shear strength parameters replace those of Mohr-Coulomb’s failure 
criterion in the elasto-plastic analysis of the soil-pile system. The factor SF is 

initially selected to be so small that materials of the slope are under elastic 

conditions. It is then increased incrementally until the global failure is achieved 

and the calculation diverges. For a slope with piles, the slope completely consists 
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of the soil when the shear strength reduction SF is less than unit and the material of 

the solid elements within the extent of the pile is changed from soil into the pile 

material only when SF reaches unity (the stresses in the pile are assumed to be zero 

when the material is changed). Then, the factor increases once again, step by step 

until failure occurs.  

One of the main advantages of the shear strength reduction numerical method is 

that the safety factor emerges naturally from the analysis without the user having to 

commit any particular assumption a priori on the slope failure geometry or pile 

contribution.  

Ugai [18] and Won et al. [19] gave interesting examples of the application of 

numerical methods: Cai and Ugai [18] in particular have considered the effects of a 

row of piles on the stability of a slope by a three-dimensional finite-element 

analysis using the SRM and analysing the effects of pile spacings, pile head 

conditions, bending stiffness and pile positions on the SF. Won et al. [19] and Wei 

and Cheng [20] have also analysed the same slope as by Cai and Ugai using a 

three-dimensional finite-difference code by the SRM. Their results together give 

important information on the shape of the critical surface as identified 

automatically by the numerical method: it is claimed that, when the pile spacing is 

small, the critical slip surface is shallow and is nearly divided into two parts. With 

the increase in the pile spacing, the critical slip surface becomes deeper and the two 

parts of the critical slip surface more connected. When the pile spacing is large 

enough, the two parts of the critical slip surface gradually turn into a clear single 

critical slip surface which is nearly the same as the critical slip surface with no pile. 

This means that the critical slip surface of a piled slope is usually shallower than 

that of a slope with no pile. With the placement of a pile, the two smaller slip 

surfaces will control the slope failure while the original overall critical slip surface 

will no longer control the failure as there is an obstruction to the failure by the pile. 

Moreover, the location for the maximum shear force in the pile seems not to 

correspond to the location of the maximum shear strain in soil.  

 

Wei and Cheng [20]  finally conclude that a detailed 3D piled slope analysis is 

extremely time-consuming to carry out; they suggests a practical analysis and 

design, stating that the upper and lower bounds of the factor of safety can be 
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determined easily by a 2D analysis (either SRM or limit equilibrium analysis) and 

they are useful for the preliminary design before conducting a detailed 3D analysis.  

This proves how the applications of numerical methods in three dimensions may 

result unattractive for practitioners as they are complex, computationally expensive 

and time-consuming. For this reason, several decoupled approaches have been 

proposed and nowadays accepted in the practice [20]–[22]. 

 

6.1.2. Limit analysis 

A similar iterative procedure in which the resistance parameters of the soil are 

progressively changed according to equations ( 6-2) and ( 6-3), is applied in the 

methods using the kinematic approach of limit analysis. It states that a slope will 

collapse if the rate of work done by external loads as well as body forces exceeds 

the energy dissipation rate for any assumed kinematically admissible failure 

mechanism. The pile resistance contribution is taken into account as an additional 

energy dissipation along the potential sliding surface. 

The value of the FS is reached as soon as the critical height evaluated with the 

reduced parameters is equal to the actual height of the slope. When piles are 

installed on the slope, their contributions is taken into account in terms of energy 

dissipation. The method considers that, when the retaining structure is inserted in 

the slope, the slope safety factor and/or the potential failure mechanism, with 

respect to the case without piles, may change. The new most critical surface is that 

for which the highest value of the stabilising contribution provided by the piles RF 

is required to increase the safety factor to the desired value. This lets automatically 

identify the range of positions where the piles have to be placed for increasing 

effectively the slope stability. 

An example of application of the method can be found in  the work of Ausilio et al. 

[56]: it is first considered the case of a slope without piles (where the sliding 

surface is described by a log-spiral equation) and therefore a solution is proposed 

to determine the safety factor of the slope, which is defined as a reduction 

coefficient for the strength parameters of the soil. Then, the stability of a slope 

containing piles is analysed. In order to account for the presence of the piles, a 

lateral force and a moment are applied at the depth of the potential sliding surface. 
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To evaluate the resisting actions which must be provided by the piles in a row to 

achieve the desired value of the safety factor of the slope, an iterative procedure is 

used to solve the equation obtained by equating the rate of external work due to 

soil weight and surcharge boundary loads to the rate of energy dissipation along the 

potential sliding surface.  

Nian et al. [57] developed a similar approach, to analyse the stability of a slope 

with reinforcing piles in nonhomogeneous and anisotropic soils.  

 

6.1.3.  Limit Equilibrium methods 

Being valid the same definition for numerical and limit analysis methods, for limit 

equilibrium methods SF is usually expressed as the ratio between the resisting Fr 

and the driving Fd actions along the slip surface (Figure 6-1), calculated using one 

of the widely accepted limit equilibrium based techniques ( the friction circle 

method [58], [59] or the more common and applied methods of slices [55], [60]–
[62]):  

 = ⁄         ( 6-4)           

If the actual safety factor, SF, is smaller than the requested value, the piles (if 

intersected by the considered slip surface) have to furnish a contribution in order to 

obtain a higher SFT for the piled slope, which is evaluated separately using or a 

numerical or an analytical method.  

It is a critical aspect of the approach as an incorrect evaluation of the pile 

contribution has different effects on the stability and on the structural local 

analysis: while an overestimation of the stabilising contribute offered by the pile 

leads to a structural analysis which errs on the side of safety, in the stability 

analysis also the factor of safety is going to be overestimated. 

It is worth to be noted that when the factor of safety is defined in terms of moments 

along the potential failure surface it is reasonable to consider not only the shear 

force but also the bending moment provided by a pile at the depth of the sliding 

surface (Lee et al. [27] ; Jeong et al. [54]). For a single row of passive piles, the 

influence of axial force can be considered negligible, but it becomes crucial for two 
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parallel rows of piles connected by a rigid cap (Kourkoulis et al. [22]). Finally, it 

should be stressed that in engineering practice LEM are generally 2D; therefore the 

contribute of the pile in terms of shear, expressed for example in kN, must be 

transformed into a force per unit length (kN/m), as a function of the pile spacing. 

 

Past studies of several authors, and among all Wright et al. [63] and Tavenas et al. 

[64], have proved that, whereas in most equilibrium analyses the factor of safety is 

assumed to be constant, it actually varies from place to place along the slip surface: 

it is reasonably expected a lower SF value on the upper part of the surface and a 

higher close to the toe. However, it is interesting to note that the average value of 

SF is the same for all practical purposes, even if its local value is assumed to vary 

along the slip surface [65]. This leads to consider the average value of the factor of 

safety as insensitive to the assumption of being constant, or not, for every slice. 

The conventional limit-equilibrium calculation of the driving and resisting forces, 

of course, does not consider the three-dimensional nature of the problem. In 

addition, major criticism of the limit equilibrium method is that it is generally 

based on simplified assumptions and the results obtained from this method are, in 

the light of limit analysis, neither upper bounds nor lower bounds on the true 

solution (Ausilio et al., [56]). Otherwise, the adoption of the conventional limit-

equilibrium methods is, of course, leading to a conservative estimation of the 

required pile resistance force as the safety factor so calculated is generally lower 

than that evaluated by using numerical methods.  

Moreover, it does not consider that the slip surface after the installation of the piles 

may differ from the one characterising the unreinforced slope. It may happen that a 

new deeper slip surface takes origin from the effects of piles which, rotating, 

modify the sliding surface locally. In addition, the new surface may be so deep not 

to involve piles. In a different situation, shallower new sliding surfaces may take 

place behind or down the retaining system. For all these cases, new stability 

analyses are requested in order to investigate the new geometries. 

 

Anyway a critical aspect in the use of the limit equilibrium methods for reinforced 

slopes is the effect of the piles on the evaluation of the factor of safety.  

No agreement has even been reached on how pile stabilising contribution has to be 

considered in the method for the definition of the slope factor of safety as it can be 
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considered as a reduction of driving forces so that the factory of safety can be 

formulated as: 

 = −⁄         ( 6-5 ) 

or as an additional resistance: 

 = � + ⁄         ( 6-6) 

 

When the passive piles are assumed to decrease the global driving forces, a 

reduction factor is generally determined and applied to the interslice forces 

transferred across the pile. According to this approach, Zeng and Liang [66] 

proposed a mathematical formulation based on interslice force equilibrium 

allowing for not only the determination of the safety factor of the reinforced slope, 

but also the forces acting on the piles. As the soil mass moves through the piles, the 

driving force transmitted to the soil mass behind the piles is reduced by a reduction 

factor (R), obtained by a two-dimensional finite element analysis by the same 

authors [67], leading to a higher stability of the slope as a result of soil arching. 

The cross-section of piled slope is illustrated in Figure 6-3. 

 

 
Figure 6-3:Cross section of slope stabilizing pile [66] 

The forces acting on the slice are Wi, the weight of the slice; Pi-1, Pi, the resultant 

interslice forces on the (i-1)th and ith interfaces, respectively; Ni, the normal force 
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reaction on the base of the slice; and Ti, the shear force reaction on the base of the 

slices. Also, αi-1 and αi are the average slopes of the bases of the slices i-1 and i, 

respectively. The resultant interslice force is assumed to be parallel to the base of 

the previous up-slope slice, with the point of application located at one third from 

the bottom of the interface (Figure 6-4). 

 �� = � � � − [ � � + � � − � � ��] + � ��−   ( 6-7) 

Where, � = �− − � − � �− − � ��
    ( 6-8) 

 
Figure 6-4: Forces acting on a typical slice [66] 

 

Pi depends on the safety factor (SFT), thus an iterative computational scheme is 

required: convergence is reached when the calculated Pn at the toe slice matches 

zero. The development of soil arching was assessed by the degree to which the 

driving force was transferred to the piles. The soil pressure acting on the soil mass 

between the piles due to soil arching was calculated and normalized with respect to 

the initial pressure to obtain a percentage factor (Rp) and given in Figure 6-5. 
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Figure 6-5: Effect of variation in internal friction angle on Rp[67]  

 

If the value of Rp is 100%, it means that no arching effect develops and the total of 

the soil pressure would be fully transmitted to the soil mass downslope. The 

stronger the soil arching effects (the smaller Rp), the more net force would act on 

the pile. Reduction factor (R) is given below in the expression with pile spacing (s) 

and Rp. 

 = / + − /        ( 6-9) 

The net load acting on one pile is: 

 � � = − ��−/        ( 6-10) 

What it is interesting is that, if there is no relative movement between soil mass 

and the piles, then there would be no arching effect and no net force acting on the 

piles. In addition, through the analysis of several case histories, the authors 

investigated the influence of pile rows location and spacing into unstable slopes 

(Figure 6-6) 
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Figure 6-6: Optimisation of pile spacing and pile row location[66] 

 

The contribution of the retaining system finds a maximum value, in terms of factor 

of safety, when the pile row is located at about 2/3 from the upper end of the slip 

surface. At the same time, as expected, the contribution of the retaining pile wall 

increases as the ratio of spacing to diameter decreases. 

 

A similar approach presented by Yamin and Liang [68] uses a limit equilibrium 

method of slices in which an interrelationship among the drilled shaft location 

along the slope, the load transfer factor and the global security factor of the slope-

shaft system are derived based on a numerical solution. Furthermore, design charts 

developed on the basis of a three-dimensional finite element analysis carried out by 

the same authors [69] are used to get the required configurations of a single row of 

drilled shafts to achieve the necessary reduction in the driving forces. 

 

More recently, Li et Liang [70] developed an analysis and design approach based 

on limit equilibrium method of slices for the use of multiple rows of drilled shafts 

to stabilise an unstable slope. As for the method previously presented, it considers 

the soil arching effect to reduction the driving force between shafts and slides 

through a semi-empirical load transfer factor h, function of the soil properties and 

of the geometry of the problem and computed using a regression analysis technique 

on several three-dimensional finite element simulation results (Figure 6-7). 
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Figure 6-7: Method of slices using two rows of drilled shafts [70] 

A parametric study on shaft location, diameters, spacings over the global factor of 

safety and shaft net force, using one or more row of drilled shafts (Figure 6-8). 

Results  show that, as compared to one row of drilled shafts, multiple rows are 

effective at increasing the global factor of safety of unstable slopes and reducing 

the net force on the shafts. In addition, they make the reinforcement design more 

constructible and meeting the service limit. 

Moreover, authors suggest that, regardless of shaft diameter, shaft spacing, and 

shaft location effects on the global factor of safety, the final design 

recommendation should follow the principle of using the least amount of 

reinforcement, as well as minimising the amount of total concrete volume. 
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Figure 6-8: Shaft force versus shaft location for different (S, D) combinations using one 

row of drilled shafts [70] 

 

When the passive piles are assumed to increase the global resistance, Viggiani [23] 

suggested a design approach ( later adopted also by Poulos, [26]; Kourkoulis et al. 

[21]) requiring three steps (Figure 6-9):   

1. Evaluation of the additional resistance needed to increase the safety factor 

to the desired value, based on analysis of the unreinforced slope carried out 

by using one of the widely accepted limit equilibrium methods (e.g., 

Spencer, Bishop, or Janbu). The possible failure slip surface is divided by 

vertical or inclined planes into a series of slices (Figure 6-9a); integrating 

the forces along all the slices the slope is divided into, it is possible to 

obtain the total of the disturbing Fd and resisting forces Fr along the slip 

surface acting on the unreinforced slope and, consequently, the additional 

resistance force RF the piles have to furnish so that the target factory of 

safety can be reached 

2. Evaluation of the bending moment and the normal and shear forces, that a 

single pile can provide in correspondence of an admissible displacement 

(T,M,N) and satisfying the requested value RF in order to obtain the target 

factor of safety for the slope 
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3. Selection of the optimal spacing and location of piles in the slope 

 
Figure 6-9: Schematic illustration of the two steps of the decoupled methodology: (a) limit 

equilibrium slope stability analysis to compute the additional required resistance force RF; 

(b) estimate pile configuration capable of providing the required RF at prescribed 

displacement [21] 

Consequently, stability analysis by LEM must include the generalised forces (T, 

M, N) provided by the part of the pile embedded in the stable soil.  

 

The dimensionless solutions for the ultimate lateral resistance of a pile in a two-

layer purely cohesive soil profile derived by Viggiani [23] are an attempt to solve 

the second step of the decoupled design approach proposed by himself. These 

solutions provide the pile shear force at the slip surface and the maximum pile 

bending moment as a function of the pile length and the ultimate soil-pile pressure 

in stable and unstable soil layers, assuming that soil movements are great enough to 

fully mobilise the limiting soil pressure above and/or below the sliding surface. 

The solution of Viggiani is applicable only to soil in undrained condition with an 

ultimate lateral pressure constant with depth in the stable and unstable layer, and no 

mention is made on if new slip surfaces have to be considered after the installation 

of the piles.  

Poulos [26] followed the same approach proposed by Viggiani, but improved his 

solution by introducing a displacement-based method for the evaluation of the pile 

resistance by implementing a finite-difference model of a pile embedded in an 

elastic continuum material. The author also suggests that, in case the SF of the 
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unreinforced slope is lower than the target, the requested pile resistance 

contribution RF along the slip surface can be evaluated as:  

 ∆ = = ( −         ( 6-11)  

even if it is not specified if RF should be considered in terms of bending moment 

or only shear forces and if it should be divided for any factor of safety either. 

Poulos also faced the problem of considering that the slip surface after the 

installation of the piles may differ from the one characterising the unreinforced 

slope. To avoid this kind of situations, Poulos [26] suggested: 

- To realise piles rigid enough to prevent structural failure and the 

consequent formation of plastic hinges around which the pile may rotate 

and establish new sliding surfaces 

- In case of a well defined slip surface, to design the pile with a sufficient 

embedment on the firm layer, approximately equal to the thickness of the 

sliding mass, in order to avoid surfaces deeper than the pile length 

- To install the piles at the centre of the sliding surface, to avoid the 

establishing of new surfaces behind or down the pile row 

 

Ito et al. [43], [53] proposed a limit equilibrium method to deal with the problem of 

the stability of slopes containing one or multi rows of piles. The lateral force acting 

on a row of piles due to soil movement is evaluated using the theoretical equations 

derived previously by Ito and Matsui [25] based on the theory of plastic 

deformation and considering plastic flow of the soil through the piles. The ultimate 

soil pressure on the pile segment which is induced by flowing soil depends on the 

strength properties of the soil, overburden pressure, and spacing between the piles 

and is independent of pile stiffness as a rigid pile with infinite length. It has to be 

noticed how the authors suggest a factor of safety for the pile equal to one and 

defined as the ratio between the allowable bending  stress and the maximum 

induced one, while expressing the SF target for the slope as 1.2. The authors also 

endorse that Fr and Fd can be obtained by any traditional slice method and that no 

large error is involved by considering the shearing resistance along the sliding 

surface located down the pile AD (Figure 6-10) as part of the resisting forces Fr, 

since the soil masses at the both sides of the position of pile’s row will deform as 
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one body in the region between piles, while only the soil just around the piles in 

arrow will reach a plastic state. Moreover, they suggest that in case the shear 

failure of pile occurs, RF should be obtained by the shearing resistance of piles at 

the sliding surface and used in the SF evaluation. 

 
Figure 6-10: Geometry of a pile-reinforced slope [43] 

Hassiotis et al. [59] have extended the friction circle method by defining new 

expressions for the stability factor incorporating the pile resistance. The ultimate 

soil– pile pressure is calculated based on the equations proposed by Ito and Matsui 

[25] assuming a rigid pile. However, the safety factor of the slope after inserting 

the piles is obtained based on the new critical failure surface, which is not 

necessarily the one before pile installation. 

As an overestimation of RF may lead to relevant error on the evaluation of SF, The 

authors suggest to consider, in their formulation, only the mobilised part of the pile 

total contribution, by dividing the RF by the factor of safety of the unreinforced 

slope calculated by considering only the cohesive resistance of the soil, until the 

target SF is gained. This means that the mobilised RF reaches its total value only 

when the slope is in a limiting equilibrium, and decreases for higher SF. in 

addition, the authors highlight that the stability of the reinforced slope involves 

also the verifying of the single piles: the structural design of the pile has to be 

carried out by considering the total stress RF and not only the mobilised one. For 

this purpose, the finite difference method is used to analyse the pile section below 

the critical surface as a beam on elastic foundations.  
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Jeong et al. [54] report an uncoupled analysis in which the conventional Bishop 

simplified method is employed to determine the critical circular sliding surface, 

resisting moment MR and disturbing moment Md. The resisting moment generated 

by the pile is then obtained from the pile shear force and bending moment 

developed at the depth of the sliding surface analysed, evaluated separately by 

using a load transfer approach. Based on this, the safety factor of the reinforced 

slope with respect to circular sliding is calculated as: 

 = + cos − + ℎ ℎ     ( 6-12)  

 

where Mcr is bending moment developed at critical surface; Vcr is shear force 

developed at critical surface; Vhead is shear force at pile head; R is radius of the 

sliding surface; and  is the angle between a line perpendicular to the pile and the 

failure surface. It is not explained if Vhead can be always inserted or only when the 

pile’s head is anchored in the stable soil. 

 
Figure 6-11: Slope geometry and pile contribution according to Jeong et al.[54] 

More recently, Kourkoulis et al. [21], [22] developed a hybrid methodology for the 

design of slope-stabilizing piles aimed at reducing the amount of computational 

effort usually associated with 3D soil-structure interaction analyses. This method 

involves all the steps for evaluating the required lateral resisting force per unit 

length of the slope, needed to increase the safety factor to the desired value by 
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using the results of a conventional slope stability analysis, and for estimating the 

pile configuration that offers the required RF for a prescribed deformation level 

using a 3D finite element analysis. This approach computes the lateral capacity of 

the piles by numerically three-dimensionally simulating only a limited region of 

soil around the piles and imposing a uniform displacement profile into the model 

boundary. It is interesting to notice that the authors suggest a target SFT equal to 

the unity to be used for the evaluation of the RF, and do not apply any additional 

reducing factor to the pile resistance. 

 

Ashour and Ardalan [71] proposed an interesting hybrid approach in which the pile 

contribution is considered both as an additional resistance for the upper (or 

supported) part of the slope and as a reduction of the driving actions for the lower 

(or unsupported). On the basis of a previous work [72], they firstly proposed the 

assessment of the response of a laterally loaded pile group based on soil-pile 

interaction (Strain Wedge Model Approach), suggesting that the interaction among 

the piles grows with the increase in lateral loading, and the increasing depth and 

angle of the developing wedge. The authors also recommend to calculate the safety 

factor of the whole pile-stabilised slope by including the total resistance provided 

by piles for one unit length of the slope RF as follows: 

 = ∑ + ⁄       ( 6-13) 

 

In addition, they introduce two different factor of safety for the supported and 

unsupported portions of the stabilised slope, as follows: 

 = ∑ +
     ( 6-14) 

 S�T unsupported = ∑F+[( − − ] ( 6-15) 

 

where Fr (supported) is the resisting force and Fd (supported) is the driving force of 

the soil mass along the supported portion of the critical failure surface. The 

resisting and driving forces of the soil mass along the unsupported portion of the 
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critical failure surface, Fr(unsupported) and Fd(unsupported), respectively, are also 

calculated using a slope stability method of slices. In Equations (6-13) and (6-15), 

RF is calculated from Equation (6-14) after the desired safety factor of the 

supported portion of the slope SFT(supported) is identified. By calculating RF, the 

targeted load carried by each pile in the pile row can be evaluated based on the 

assumed pile spacing.  

 
Figure 6-12: Forces acting on a pile-stabilised slope[71] 

Moreover, the authors claim that SFT(supported) needs to be identified with a minimum 

value of unity. Achieving the minimum safety factor (SFT(supported) = 1) indicates 

that the stabilizing pile is able to provide enough interaction with the sliding mass 

of soil to take a force equal to the difference between the driving and resisting 

forces along the slip surface of the supported portion of the slope. As a result, the 

second term of the denominator in Equation (6-15) would be zero. At this point, the 

authors have considered that, if the minimum SF indicated is not achieved by 

reaching the ultimate soil-pile interaction, the rest of the driving force will be 

delivered to the lower unsupported part of the slope. At the same time, the safety 

factor of the unsupported portion of the slope should not be less than the desired 

safety factor of the whole slope. Such a scenario could take place when the 

stabilizing pile is installed close to the crest of the slope. Finally, to reach the 

ultimate safety factor of the reinforced slope, an increasing value of the safety 

factor of the supported portion of the slope should be used (it means to transfer 

more soil pressure through the piles) until maximum interaction between the piles 

and surrounding soil is reached.  
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6.2. Discussion and application of the proposed method 

As above explained, in a decoupled approach the soil-pile interaction is modelled 

and carried out separately to the global stability analysis which is generally made 

by using the more traditional limit equilibrium methods. For this reason, the 

developed method of analysis for a passive pile subjected to the surrounding soil 

displacement along a defined slip surface, results to be suitable for being 

implemented in a decoupled approach for the evaluation of the factor of safety of a 

pile reinforced slope. 

Taking into account this hypothesis of a decoupled approach, after the stability 

analysis of the un-reinforced slope has been carried out, the developed methods can 

be seen as a simplified methodology for the calculation of pile lateral capacity (i.e., 

the ultimate pile resistance) assuming the same slope geometry (the effect of which 

has already been included in the calculation of the demand; i.e., the sought lateral 

resisting force) and analysing the pile as subjected to lateral soil movement 

simulating the movement of the sliding mass. The pile load evaluation at this stage 

depends primarily on the depth of the interface and the mechanical properties of 

the soil. 

Since the requested pile stabilising contribution (i.e. in terms of shear force at the 

sliding surface) is known, as well as the position of the slip surface along the slope 

and the soil mechanical properties, the developed design charts or even the explicit 

formulations expressing the shear forces and bending moments on the pile can be 

used to derive the design of the stabilizing pile, by evaluating also its deflection.  

 

Anyway, the loading on a stabilising passive pile supposes a movement of the 

surrounding soil along a sliding surface crossing the pile length. This happens 

whenever the piles have already been installed in the slope when the soil 

movement occurs or when they are installed properly to block a failure mechanism 

already ongoing. If piles are placed in stable slopes, actually not presenting any 

failure mechanism due to instability, they will not be undergoing any loading 

(eventually due only to occasional local phenomena if the stress state of the soil 

changes locally) and will not act as passive piles. It is this relationship between the 

pile stabilising contribution and the soil movement that makes it necessary to 
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identify two different cases of stability evaluation for stable and unstable slopes, as 

this affects also how the contribution of the piles is evaluated and considered in the 

estimation of the factor of safety SF. 

 

6.2.1. Stable slopes 

In case of a stable slope, the factor of safety of the unreinforced configuration is 

already higher than unity. Inclinometers eventually located in the slope would not 

indicate any soil sliding phenomena as no free-field soil movements are even 

expected to occur. Generally, in this situation, piles are only used to reach an even 

higher target safety factor in order to satisfy regulatory requirements.  

 

Without any loading from the sliding soil, the supposed row of piles would not be 

subjected to load for the entire life, and their virtual contribution difficult to 

evaluate as depending on the lack of input parameters. Anyway, it's reasonable to 

expect an higher slope SF after their realisation and at the same time to consider 

the piles contribution as an additional potential resistance. As consequence, the 

piles have to furnish an additional resistance force RF: 

 =  −         ( 6-16) 

where SFT is the target safety factor of the reinforced slope, SF the safety factor of 

the un-reinforced slope and Fd the total of the disturbing actions along the whole 

considered slip surface. 

the application of the methods requests come considerations: 

- Since no failure mechanism are already ongoing in the slope, no slip 

surfaces can be identified and assumed a priori. This makes necessary to 

identify all the “critical” surfaces from the initial stability analyses on the 
un-reinforced slope and analyse them singularly 

- As consequence of having several possible sliding geometries, the piles 

can be crossed at different depth by the slip surfaces. This affects both the 

design of the single pile and the choice of their position. It is worth here to 

remember that it is more advisable to install the piles close to the crest or 
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the centre of the sliding surface, to guarantee a sufficient embedment on 

the stable layer in order to avoid surfaces deeper than the pile length (and 

eventually to lead the piles into failure mechanisms type C as it creates the 

least damage from soil movement on the pile), and to avoid the 

establishing of new surfaces behind or down the pile row 

 

- No data are available regarding the sliding rate and shape, which has to be 

virtually assumed then in the application of the analysis. For this purpose, 

Poulos [73] proposed a reasonable validity of uniformity of the 

displacement distribution as an appealing simplification so that the 

displacement imposed on the piles by the sliding mass can be assumed to 

be uniformly distributed with depth within the sliding block 

(corresponding to the case of η=1; cf. paragraph 3.2). 

 

Having the above mentioned guidelines been accomplished, the value of RF can be 

evaluated for every identified sliding surface and used, in the model, for the design 

of the pile.  

In particular, for a stable slope, as no loading is expected on the pile, the contribute 

of passive piles can be considered on the basis of the limiting force, in analogy to 

the approach proposed by Viggiani (and here extended also to a two-layered 

cohesionless soil).  

In case the only horizontal force equilibrium is imposed (i.e. applying the Janbu’s 
simplified analysis method [61] ), RF corresponds to the shear force at the depth of 

the sliding surface. Its value can then be evaluated by applying one of the 

developed formulations of the limit states as presented in paragraph 4.3 for a two-

layered cohesive soil, in paragraph 4.4for a homogeneous cohesion-less soil and in 

paragraph 5.3 for a two-layered cohesionless soil, or in addition by using one of the 

corresponding design charts presented. 

 

In example, let consider that a stability analysis on the two-layered slope presented 

in Figure 6-13a (the soil properties are summarised in the Table 6-1) gave a safety 

factor higher than unity but still lower than the target value which can be reached 

by applying an additional resistance contribution RF of  240 kN/m.  
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By assuming a centre-to-centre pile spacing of 3D (supposed to be enough to 

establish a soil arching effect between the piles [22]), it corresponds to a shear 

force on each pile of 720 kN at the depth of the sliding surface, by designing a pile 

diameter D=1m. Even if actually stable, for the purpose of calculation it is possible 

to assume the pile as subjected to soil displacements along a potential surface and 

uniformly distributed with depth (Figure 6-13b). 

At this point, let consider a pile of length L=10m, embedded in the stable two-

layered slope. The normalised shear force requested to the pile is: 

 , = � = ∗ = .   

 

Depending on the position of the pile on the slope, a different depth of the slip 

surface can be assumed. It is then necessary to evaluated the pile response for 

every different β. The design chart presented in Figure 4-12 (valid for the 

considered case in which  k0=pu0/pu1=2/9 and k=pu2/pu1=2) shows the shear force 

induced at sliding depth as a function of the normalized sliding depth by the pile 

length. The design of the pile can be then carried out by choosing a β value 

corresponding to a normalised shear force higher than the requested value 0.20. 

The chart in Figure 4-12 shows that this is possible for any β lying within the 

interval 0.35-0.9.   

In example, let chose a sliding depth Ls=βL=4m that, according to the formulation 

presented for mechanism C which prevails for β=0.4, corresponds to the value of 

limit shear stress on the pile: 

  0.2641
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Which, in dimensional form, corresponds to 

  kN 950.43600*0.264)](1
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[ 10  LpkT u  

The so evaluated value of shear stress result in fact higher than the requested value 

to obtain the target safety factor. 
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Once the pile position is fixed, it is possible to assess the dimensionless maximum 

bending moment corresponding to the considered limit state by mean of the design 

charts presented in Figure 4-14,: 

 = � = .          

so that: = .  =         

 

Anyway, as no load is expected to act on the pile, no stress state or deflection along 

the pile are expected to be developed either, so that a structural analysis could not 

be necessary. It is nevertheless reasonable to design the pile in order to be 

compatible with the evaluated shear force and the relative maximum bending 

moment associated to the limit state considered. 

 

 

Parameters Sliding layer Firm layer 

Su [kPa] 40 80 

Es [kPa] 9000 18000 

pu0 [kN/m] 80 - 

pu1 [kN/m] 360 - 

pu2 [kN/m] - 720 

Table 6-1: Soil properties as assumed in the example 

 
Figure 6-13: Slope geometry as considered in the example 
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6.2.2. Unstable slope 

In case of an unstable slope, the factor of safety of the unreinforced configuration 

is lower than unity. Also for soils with a residual shear strength lower than the peak 

strength, the factor of safety can be even less than unity. 

In this case, inclinometers eventually located in the slope would indicate the 

presence of sliding phenomena inside the ground. A surveying campaign on the 

unstable slope carried out by the use of inclinometers may result to be important as 

it can lead to a better understanding of the sliding mechanism, its magnitude and 

overall the shape of the soil displacement distribution, in order to better model the 

gravitational phenomena in the method. Moreover, the so identified sliding surface 

may result to be characterised by lower mechanical soil parameters with respect to 

the adjacent soil and so to be considered as the critical one also after the pile’s 

installation. 

 

Contrary to what expected for the previous case of stable slope, if a gravitational 

phenomenon is already ongoing or is incipient, the pile can be subjected to the 

surrounding soil movement and therefore be loaded and deflected until a new 

equilibrium is reached. The factor of safety of the slope, in such a situation, is 

essentially equal to 1 (as assumed also by Kourkulis et al. [21]), while that of the 

pile corresponds to the ratio between its flexural and shear strength and its actual 

stress state.  

In other words, it is reasonable to consider a maximum factor of safety equal to 1  

while the pile stabilising contribution is put at the denominator into the SF 

evaluation as the pile contrasts and absorb the driving forces until a new 

equilibrium is reached: = =  −         ( 6-17 ) 

and therefore =   −        ( 6-18) 

This particular condition should be considered in order to evaluate the effective 

and real pile stress state and to verify its serviceability by evaluating its deflection 
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and the associated free-field soil displacement by means of the developed analysis 

method for passive piles. Being valid the same general consideration made for a 

stable slope, the lateral capacity of the stabilization piles to soil movements in fact 

may be assessed using the developed method, which provides the ability to 

identified the corresponding surrounding soil displacement together which pile 

deflection and bending moments.  

 

In example, let assume that the equilibrium on the slope is reached by developing a 

pile contribution  RF of  265 kN/m, which assuming a centre-to-centre pile spacing 

of 3D corresponds to a shear force on each pile of 795 kN at the depth of the 

sliding surface. By considering the same soil stratigraphy of the previous example, 

the normalised shear force is:   

2208.0
10*360

795

1
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T
T

u
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According to the design chart presented in Figure 4-12 through Figure 4-14, it is 

possible to assess the dimensionless maximum bending moment: = � = .          

so that: = .  =         

 

The dimensionless pile head displacement: = � = .    

and pile head displacement:   = . = .       

The correspondent dimensionless soil movement: = � = .    

which in meters is: = . = . m       

 

This is reasonably the right procedure to analyse the pile stress state and deflection, 

and so a procedure to carry its structural analysis. 
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Anyway, an higher FS than unity is usually demanded by guideline requirements: it 

can be reached only by considering the further increase in potential resistance the 

pile gives to the slope. At this point, not an agreement is easy to be reached and 

basically two different scenarios can be formulated: 

 

For the purpose of the stability of the whole slope system, the pile acts only as an 

additional resistance and only its limit lateral load has to be considered in the 

assessment of the factor of safety: 

 =  F +
         ( 6-19) 

 

in analogy to what expressed in the case of a stable slope. This is essentially in 

accordance with the assumptions of the most part of authors ( i.e. [21], [23], [27], 

[54]). 

 

Nevertheless, in case the reduction carried by the pile to the driving actions cannot 

be neglected, both the contributions could be considered: 

 = ∑∑ =  + � �− �        ( 6-20 ) 

This assumption seems consistent since, at numerator the additional resistance of 

the pile (here named as RFlimit as represented by the limit lateral load on the pile) 

contributes to the total amount of resistance available along the slip surface. At the 

same time, pile’s reductive contribution at denominator takes into account the 

reduced amount of driving actions as a lower mobilisation of soil strength due to 

the pile presence until the equilibrium is reached is expected.  
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7. Conclusion and Recommendations 

7.1. Summary 

The presented displacement- based methods allow for the prediction of passive 

piles behaviour, based on the interaction between the piles and the surrounding 

soils.  

The mobilised lateral soil-pile pressure acting on the pile segment above the slip 

surface is determined as a function of the relative soil and pile displacements (i.e., 

the soil-pile interaction ) used as an input. 

 

As recent studies suggest that the response of rigid passive piles is dominated by 

elastic pile–soil interaction, linear elastic solutions for five different soil 

stratigraphy conditions have been developed according to a Winkler soil model 

used to describe the soil behaviour. These solutions result to be suitable to the 

analysis of passive piles in general conditions whenever small displacement are 

expected as pile-supported embankments or piles adjacent to excavations. 

 

Moreover, solutions for linear elastic-perfectly plastic models have been presented 

for the cases of a two-layered soil with a constant distribution of the subgrade 

reaction modulus and of a homogeneous soil modelled as a Gibson soil type. In 

addition, the lateral resistance of a passive pile in  a double-layered non-cohesive 

soil has been derived.  

A computer software was written in FORTRAN and developed to implement the 

presented technique  and numerically solve the soil-pile interaction problem. 

As a design expedient, when it is not possible to carry out a complete site-specific 

analysis, useful design charts have been derived not only for the ultimate pile 

response to lateral movements ( as suggested by Viggiani ) but also for the 

maximum shear force the pile can furnish in correspondence of different soil 

movements. Moreover, the maximum shear force given by the pile can be related 

to its head displacement or to the maximum bending moment. 
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Finally, the presented methods result adequate to be used in a decoupled approach 

for the stability analysis of a pile-reinforced slopes, especially for unstable slopes 

in which, on the basis of the required stabilising force, the method allows to 

calculate pile deflection and maximum bending moment.  

For stable slope, the contribute of passive piles can be considered on the basis of 

the limiting force evaluated similarity to the approach proposed by Viggiani (and 

here extended also to a two-layered cohesionless soil). 

The following conclusions were obtained as a result of the work of this 

dissertation: 

 The technique presented has the ability to predict the relative soil-pile 

displacement: it reflects the true mechanism of the soil-pile interaction and 

gives the proposed method the capacity to predict different modes of 

failure in pile-stabilized slopes.  

 

 The study also shows that the depth of the failure surface at the pile 

position, the soil type, the pile diameter, and the pile spacings have a 

combined effect on the driving force that the pile can transfer to the stable 

soil. It provides the deflection, moment, shear force, and soil- pile reaction 

along the length of the installed piles. It makes possible to design the piles 

on the basis of the maximum shear force they must provide in order to 

stabilise the slope, in according to the results obtained in a previous 

stability analysis. In addition, the proposed model allow designing the pile 

also on the basis of the soil or pile head displacements in order to satisfy 

also specific service requirements.  

 

 The current method detects how the external soil displacement distribution 

shape  and the pile boundary conditions may effect the different failure 

modes that can occur. 

 

 The presented method allows for the calculation of the post-pile 

installation safety factor (i.e., the stability improvement) for the whole 

stabilised slope if implemented in a decoupled approach for the evaluation 

of the factor of safety. 
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7.2. Future Researches 

The presented research work on the passive pile concerned the analysis of rigid 

piles and suggested the use of the results in a decouples slope stability analysis 

method. Within these perspectives, further studies on the following areas are 

planned: 

 

- Development of a program implementing both the FORTRAN code already 

implemented for the analysis of a single pile and a slope stability analysis for the 

reinforced and unreinforced slope in order to implement a complete stability 

analysis tool 

 

- To extend the elasto-plastic analysis to different boundary condition of the pile, in 

particular the unrotated-head condition 

 

- Development of a new analysis method for flexible passive piles based on a 

finite-differences model of the pile 
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APPENDIX A 

Cases for the elasto-plastic analysis of passive rigid 

piles in cohesive soils 
 

Since there exist several possible cases for given geometry and pile-soil properties, all analysed and 

implemented cases concerning the nonlinear analysis method for passive rigid piles in cohesive soils 

are presented as derived from eight more complex cases, all named following the nomenclature used 

for the single configurations. Limit cases B1 and B2 are also presented. 
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Figure A-1: Basic cases used to derive all others configurations and their yielding zone with regards to the 

ultimate soil pressure distribution assumed in the model 
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The following tables describes the main cases dependencies and the values to assign to the parameters 

of the system in order to obtain every particular case. (Case 17324 does not have any dependencies). 

 

Case b1 b2 c f g 

7234 b1 b2 c f g 

57234 0 b c f g 

5723 0 b c f L 

723 b1 b2 c f L 

572 0 b c LS L 

57 0 b LS LS L 

30570 0 b LS L L 

30572 0 b c L L 

30072 b1 b2 c L L 

Table A-1: Cases derived from the case 7234E 

 

Case c1 c2 b f g 

8324 c1 c2 b f g 

10324 0 c b f g 

324 0 0 b f g 

832 c1 c2 b f L 

132 0 c b f L 

32 0 0 b f L 

134 0 c LS f g 

13 0 c LS f L 

14 0 c LS LS g 

83 c1 c2 LS f L 

8 c1 c2 LS LS L 

1 0 c LS LS L 

834 c1 c2 LS f g 

Table A-2: Cases derived from the case 8324E 
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Case b c f g 

56234 b c f g 

5623 b c f L 

562 b c LS L 

2634 0 c f g 

263 0 c f L 

26 0 c LS L 

30260 0 c L L 

30562 b c L L 

Table A-3: Cases derived from the case 56234E 

 

Case c1 c2 b f g 

86324 c1 c2 b f g 

16324 0 c b f g 

1632 0 c b f L 

1634 0 c LS f g 

863 c1 c2 LS f L 

86 c1 c2 LS LS L 

8634 c1 c2 LS f g 

8632 c1 c2 b f L 

163 0 c LS f L 

16 0 c LS LS L 

Table A-4: Cases derived from the case 86324E 

 

Case c1 c2 f g 

12634 c1 c2 f g 

1263 c1 c2 f L 

126 c1 c2 LS L 

Table A-5: Cases derived from the case 12634E 
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Case b1 b2 c f g 

9234 b1 b2 c f g 

50234 0 b c f g 

923 b1 b2 c f L 

523 0 b c f L 

53 0 b LS f L 

52 0 b c LS L 

5 0 b LS LS L 

234 0 0 c f g 

23 0 0 c f L 

34 0 0 LS f g 

2 0 0 c LS L 

3 0 0 LS f L 

4 0 0 LS LS g 

30000 0 0 LS L L 

30200 0 0 c L L 

30500 0 b LS L L 

30502 0 b c L L 

30092 b1 b2 c L L 

Table A-6: Cases derived from the case 9234E 
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Case c1 c2 f g 

16200 (C1) L0 L0 LS L 

16230 (C2) L0 L0 f L 

16234 (C3) L0 L0 f g 

1234 c1 c2 f g 

123 c1 c2 f L 

12 c1 c2 LS L 

1 c LS LS L 

2 0 c LS L 

3 0 LS LS L 

4 0 LS     

Table A-7: Cases derived from the case 1234E 
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The eight generalised cases are described as follow: 

 

CASE 8324E 
Soil pressure distribution: 

  tzynzEp s  00
  0 < z < c1 

mzpp u  0
    c1 < z < c2 

  tzynzEp s  00
  c2< z < L 

  tzyEp s  01    L < z < b 

1upp      b < z < L 

2upp      L < z < f 
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CASE 86324E 
 

Soil pressure distribution: 
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CASE 9234E 
Soil pressure distribution: 

  tzynzEp s  00
  0 < z < b1 
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1upp       c < z < L 

2upp      L< z < f 

  tanzyEp s  02    f < zg 
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CASE 7234E 
Soil pressure distribution: 

  tzynzEp s  00
  0 < z < b1 
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1upp      L < z < b2 
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1upp       c < z < L 

2upp      L < zf 
  tanzyEp s  02    f < zg

2upp       g < z < L 
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CASE 12634E 
Soil pressure distribution: 
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CASO P1234 
Soil pressure distribution: 
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Bending moments 
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CASE 56234E (Corresponding to B1C) 

 
Soil pressure distribution: 
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CASE 17324E (Corresponding to B2C) 

 
Soil pressure distribution: 
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Below, the four possible limit case type B1 and B2 are described:  

LIMIT CASE B1-L1 
Soil pressure distribution: 
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Numerical solution procedure: 

fn is derived from the Shear force equilibrium 
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And the expression is put into the momentum equilibrium until convergence is reached 
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i.e. : if  =0.5, =0.1, k0=0.5, k=2, =1, it is obtained: 

bn=0.1111495  fn=0.825675 
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CASE LIMIT B1-L2 
Soil pressure distribution: 
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Numerical solution procedure: 

fn is derived from the Shear force equilibrium 
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And the expression is put into the momentum equilibrium until convergence is reached 
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i.e., if =0.6, =0.2, k0=0.2, k=5, =1 

bn=0.090442  fn=0.84511 
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CASE LIMIT B2-L1 
Soil pressure distribution: 
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Numerical solution procedure: 

fn is derived from the Shear force equilibrium 
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And the expression is put into the momentum equilibrium until convergence is reached 
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i.e. : if =0.7, =0.1, k0=0.5, k=2, =0, it is obtained: 

bn=0.293719  fn=0.815609 
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LIMIT CASE B2-L2 
Soil pressure distribution: 
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Numerical solution procedure (if exists): 

Assumed a b < L, fn is derived from the Shear force equilibrium 
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And the expression is put into the momentum equilibrium until convergence is reached 
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i.e. : if  =0.7 =0.4 k0=0.5 k=2 =0 

bn=0.34044  fn=0.821329 
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ANALYSED CASES AND RELATIVE SOIL REACTION 

DISTRIBUTION 
 

The following figures show the soil reaction distribution of all the different cases implemented into the 

model (blue line) in comparison with the ultimate soil pressure profile (dotted line). 
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APPENDIX B 

Cases for the elasto-plastic analysis of passive rigid 

piles in a homogeneous cohesionless soil 
 

 

Since there exist several possible cases for given geometry and pile-soil properties, all analysed and 

implemented cases concerning the nonlinear analysis method for passive rigid piles in cohesive soils 

are presented as derived from two generalised cases, all named following the nomenclature used for 

the single configurations. Limit cases B1 and B2 are also presented. 

Ls

b

f
g

c

Ls
b

f
g

c

5234E
1324E

 

Figure B-1: Generalised cases used to derive all others configurations and their yielding zone with regards to 

the ultimate soil pressure distribution assumed in the model 

The following tables describes the several main cases dependencies and the values to assign to the 

several parameters of the system in order to obtain every particular case. 

 

Case  b c f g Case  

5 b Ls Ls L 5 

2 0 c Ls L 2 

52 b c Ls L 52 

53 b Ls f L 53 

23 0 c f L 23 

523 b c f L 523 

234 0 c f g 234 

B1 b c f g B1 

A1 0 Ls L L A1 

A2 b Ls L L A2 

A3 b c L L A3 
Table B-1: Cases derived from the case 5234E (Corresponding to B1) 
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Case  b c f g Case  

1 Ls c Ls L 1 

32 b 0 f L 32 

3 Ls 0 f L 3 

4 Ls 0 Ls g 4 

13 Ls c f L 13 

14 Ls c Ls g 14 

34 Ls 0 f g 34 

132 b c f L 132 

134 Ls c f g 134 

B2 b c f g B2 

C1 Ls Ls Ls L C1 

C2 Ls Ls f L C2 

C3 Ls Ls f g C3 

Table B-2: Cases derived from the case 1324E (Corresponding to B2) 
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The two generalised cases and their associated limit state are described as follow: 

 

CASE 5234E (corresponding to B1) 
 (yielding in the regions between 0 and b; c and Ls,  Ls and f; g and L)  
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Normalised bending Moment 
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Maximum Bending Moment evaluation 
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Positive Bending Moment ( < zn < gn) 
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LIMIT CASE B1  
This limit case occurs for an infinite eternal displacement:  b = c = x e f = g = y 

Shear force equilibrium 
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Bending momentum equilibrium 
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Normalised:  
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By combining the two equations the following equation is obtained: 
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xn e yn depend on .  

The solution is admissible if 0 < xn <  and  < yn < 1
The normalised shear force is: 
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2
50 nx.
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In the following table, values of xn e yn over are listed.  
 

 xn yn Tnm 

0.455 0.01560 0.84070 0.103269 

0.460 0.04921 0.84213 0.103378 

0.470 0.08343 0.84495 0.103490 

0.480 0.10799 0.84778 0.103537 

0.490 0.12845 0.85065 0.103552 

0.500 0.14644 0.85355 0.103555 

0.510 0.16277 0.85651 0.103556 

0.520 0.17785 0.85952 0.103568 

0.530 0.19197 0.86258 0.103598 

0.540 0.20529 0.86571 0.103656 

0.550 0.21795 0.86891 0.103748 

0.560 0.23005 0.87217 0.103879 

0.570 0.24164 0.87551 0.104060 

0.580 0.25280 0.87892 0.104293 

0.590 0.26356 0.88240 0.104585 

0.600 0.27396 0.88597 0.104945 

0.610 0.28404 0.88962 0.105374 

0.620 0.29380 0.89335 0.105880 

0.630 0.30329 0.89717 0.106468 

0.640 0.31250 0.90108 0.107144 
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0.650 0.32146 0.90508 0.107916 

0.660 0.33018 0.90917 0.108783 

0.670 0.33867 0.91335 0.109754 

0.680 0.34694 0.91763 0.110836 

0.690 0.35499 0.92200 0.112031 

0.700 0.36284 0.92647 0.113344 

0.710 0.37050 0.93104 0.114781 

0.720 0.37796 0.93571 0.116347 

0.730 0.38523 0.94048 0.118045 

0.740 0.39233 0.94535 0.119880 

0.750 0.39924 0.95032 0.121855 

0.760 0.40599 0.95539 0.123975 

0.770 0.41256 0.96057 0.126244 

0.780 0.41897 0.96585 0.128667 

0.790 0.42521 0.97123 0.131242 

0.800 0.43130 0.97672 0.133978 

0.810 0.43723 0.98231 0.136876 

0.820 0.44302 0.98800 0.139937 

0.830 0.44865 0.99379 0.143166 

0.840 0.45413 0.99968 0.146563 
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CASE 1324 E 
(yieldng in regions between 0 and c; b and f ; g and L)  

 

Shear force equilibrium 
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Bending momentum equilibrium 
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Congruence in z = b; z = c; z = f e z = g 
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Non-linear system of 6 equations in 6 variables (y0, tanb, c, f, g) 
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Bending Moment 
4nL

M
Mn   

3

1
6

1
nnn zmM            0 < zn < cn 

        434323

0

2

2 34
12

1
23

6

1
23

6

1
nnnnnnnnnnnnnn czcztanczczyczcmM    cn < z < bn

  

       
    4433

3322

0

33223

3

334
12

1

223
6

1
223

6

1

nnnnn

nnnnnnnnnnnnnn

cbzcbtan

cbzcbycbzcbzmM




   bn < zn < fn 


     2233

6

1
34

12

1
23

6

1 32434323

04  nnnnnnnnnnnnnnn gzzgmgzgztangzgzyM   fn  < zn < gn 

 

 23
6

1 3

5  nnnn zzmM          gn  < zn < 1 

 

 

 

Maximum Bending Moment evaluation 
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LIMIT CASE B2  
This limit case occurs for an infinite eternal displacement:  b = c = x e f = g = y 

Shear force equilibrium 

  022
2
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Bending momentum equilibrium 
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Normalised:  
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By combining the two equations the following equation is obtained: 
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And then: 
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xn e yn do not depend on : xn ≈ 0.4545 yn ≈ 0.84 

The solution is admissible if xn < < yn 
The normalised shear force, at  zn= is: 
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ANALYSED CASES AND RELATIVE SOIL REACTION 

DISTRIBUTION 
 

The following figures show the soil reaction distribution of all the different cases implemented into the 

model (blue line) in comparison with the ultimate soil pressure profile (dotted line). 
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