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Abstract

Model Predictive Control (MPC) is experiencing an ever growing suc-
cess in multivariable embedded control, thanks to the optimized per-
formance and the effective handling of system’s constraints. However,
the high computational burden to solve online the optimization prob-
lem is an issue of paramount importance, especially when paired with
the low computational power and the fast sampling frequency typical of
embedded control. Specifically, the difficulties of guaranteeing that the
online optimization problem converges in a prescribed amount of time,
without compromising optimality and feasibility, is severely limiting the
spread of embedded MPC. This thesis proposes a certification algorithm
for dual active-set methods, which is able to certify exactly the worst-
case time needed by the solver to reach the optimal solution, given a
parametric Quadratic Programming (QP) problem like those that arise
in linear MPC. The certification algorithm is therefore used to establish
if the MPC problem will be always solved in the allocated time slot on
a specific computational unit.
In order to soften the computational issue, several accelerating meth-

ods for MPC have been proposed in the past few years. However, they
have suffered the lack of a complexity certification as well, because they
are shown to improve the average case performance without any guaran-
tee on the worst-case behavior. This thesis presents two novel accelerat-
ing methodologies for which the worst-case improvement can be exactly
certified. The first is a semi-explicit MPC, combining an online solver
with the explicit solution of those polyhedral regions that affect more
the worst-case complexity. An algorithm to select the best trade-off be-
tween memory and performance improvement is also proposed, which is
a further novelty for semi-explicit MPC. The second acceleration method
consists in an alternative selection strategy for the violated constraint
to add to the active set at each iteration. By exploiting the particu-
lar structure of QP problems coming from MPC formulations, the new
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strategy brings a certifiable improvement in both the worst-case number
of iterations and also the complexity of the single iteration.
Electrical motors and power electronics are some of the most flourish-

ing fields for embedded MPC application. The aforementioned certifica-
tion and acceleration techniques, are tested here experimentally for the
control of a permanent magnet synchronous motor, and the control of
several DC-DC converters. The online solution of the MPC problem is
demonstrated to be effective even with scarce computational resources
and high sampling frequency. Additionally, embedded MPC for pre-
compensated DC-DC converters is also presented and experimentally
tested to overcome the issue of a non-modifiable primal controller, very
common in power converters. Finally, the issue of estimating the state
for multiple DC-DC converters on the same power supply is addressed.
A unified nonlinear robust observer for six different converters’ topolo-
gies is derived and experimentally validated.
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Chapter 1

Introduction

Model Predictive Control (MPC) is an advanced control technique that
was proposed in the process industry already in the late sixties [1, 2],
and received a lot of attention since then [3,4]. What makes MPC suc-
cessful in many engineering fields is the capability to optimally handle
constrained multivariable systems, by making explicit use of a prediction
model of the system. MPC derives the input sequence by solving a finite-
time, open-loop, optimal control problem, and applies only the inputs
corresponding to the actual time step, discarding the rest of the input
sequence. This procedure is then repeated at each time step, in the so-
called receding horizon fashion. Despite its long history, MPC is still one
of the most flourishing fields in the control community, [5], and embed-
ded MPC has seen an ever growing interest in the very last years [6,7].
Automotive, aerospace and electrical power systems are just some of the
areas where the research in embedded MPC is very active, and these
fields are particularly pushing towards more and more computationally
efficient algorithms [8–14]. The necessity to solve online an optimiza-
tion problem makes the computational burden of MPC way higher than
many other control algorithms, therefore its application to embedded
systems is still a challenge. Indeed, the fast sampling frequency typi-
cal of embedded control is usually paired with reduced computational
power, imposing severe limits to the diffusion of embedded MPC. In
some applications, the use of more powerful computational units, e.g.
Field Programmable Gate Arrays (FPGAs), is tolerated, softening the
complexity issue [10, 15, 16]. Anyhow, their cost, lack of flexibility and
finite precision arithmetic do not make FPGAs the preferred choice for
embedding an MPC algorithm [17–19]. For this reason, this thesis will
deal with theoretical aspects and applications of embedded MPC imple-
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mented on resource-constrained platforms, such as cheap Digital Signal
Processors (DSPs), and here follows a brief literature review of the last
advances in the topic.
Explicit MPC could be a possible solution for embedded control [20].

The standard formulation of MPC, based on a linear time-invariant pre-
diction model, a quadratic cost function, and affine constraints, can be
cast into a Quadratic Programming (QP) problem, whose linear term of
the cost function and right hand side of the constraints depend linearly
on a vector of parameters. In this case the optimization problem can be
pre-solved offline by means of multiparametric Quadratic Programming
(mpQP), converting the MPC law into a continuous and piecewise affine
(PWA) function of the parameter vector [20, 21]. This off-line explicit
solution, made by the polyhedral partitions and gains of the control law,
is then stored and used as a look up table in real-time. Therefore, the
computational load can be drastically reduced with respect to solve the
problem online. However, despite of the efforts in looking for faster and
more memory efficient search methods, [22,23], explicit MPC can be ap-
plied only when the QP is small enough. Indeed, the logarithmic search
time (i.e. when a binary search tree is used [23]), and the polynomial
memory occupancy make it a way to go only with few inputs and very
short control horizon.
When the complexity of explicit MPC is prohibitive, the only solu-

tion is implicit MPC, where the optimization problem is solved online
at each time step. For linear MPC, this means embedding a QP solver
in the control unit, which has to be fast, memory efficient and simple
to code. The recent advances in convex optimization and the increasing
power of control units, have favored an unrivaled interest for embedded
QP solvers in the very last years [24–27]. The literature on the topic
is extremely rich, and among several popular approaches, we mention
interior-point methods [28,29], gradient projection methods [24,30], the
alternating directions method of multipliers (ADMM) [31], and active-
set methods [32–35]. For the small-size QP problems that arise in em-
bedded MPC, active-set methods are often considered outperforming in
terms of speed and accuracy with respect to other solvers [26, 36–38].
Moreover, the solution can be achieved with very high accuracy and in a
finite number of iterations, even in the case of ill-conditioned problems,
single-precision arithmetics and without preconditioning [39].
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With the purpose to increase the throughput of implicit MPC, sev-
eral methods to accelerate the QP solvers have been proposed in the
last few years. Many of them are closely related to the explicit solution.
For instance, qpOASES [34, 40] improves the standard warm-start, by
considering the underlying explicit solution, and moving on a straight
line in the parametric space between successive QPs. The Phase I,
typical of primal active-set methods, is avoided by moving on an homo-
topy path. The number of iterations can be therefore reduced when the
successive QPs are related, that is if their solutions are close enough.
Partial enumeration is gaining popularity as well to accelerate the on-
line optimization. It lies in the middle between explicit and implicit
MPC [41–43], as a subset of the explicit solution is stored in a fixed
dimensional table, and updated online. The table contains the polyhe-
dral partitions and gains of the most recent used control laws, and the
performance improvement depends on the amount of data stored. An-
other popular semi-explicit method consists in using a partial explicit
solution to warm start an online solvers. For instance, in [44], a primal
active-set algorithm runs for a fixed number of iterations, allowing for
possible sub-optimality. Another method to improve implicit MPC has
been recently proposed in [45]. At each time step, a set of the so-called
regions of activity, containing an incomplete information about the in-
active constraints, is identified. They are then used to build a lower
dimensional QP, solved faster.
Unfortunately, despite of all the efforts in developing more and more

efficient solvers and acceleration techniques, the use of embedded MPC
solved online is still limited, especially in those applications with very
fast sampling frequencies. For instance, electrical motors and power
systems are showing an unattainable interest in MPC, thanks to the
intuitive design and tuning of the controller, the enhanced performance,
the possibility to include safety constraints and the availability of rel-
atively accurate models for electrical devices [11, 12, 46]. However, em-
bedded MPC is far to become a technology in those fields [12, 47]. The
literature splits into two branches when transistor-based systems are ad-
dressed. Continuous Control Set (CCS)-MPC involves modulation, and
takes control actions in a continuous set that usually corresponds to the
duty-cycle of the modulation [48]. On the other hand, Finite Control Set
(FCS)-MPC exploits the discrete nature of the switches and manipulates

3



directly their position with a binary control signal [49–51]. FCS-MPC
provides a faster response time, and can reduce switching losses, how-
ever the optimization problem has a combinatorial nature, and scales
exponentially with the prediction horizon [52,53]. Furthermore, an high
control frequency is required (e.g., 40µs in [54]). CCS-MPC performs
better with a lower sampling frequency, and drives the inverter at a fixed
frequency, possibly higher than the control one [50, 51, 55]. These key
factors for embedded implementation make CCS-MPC still the primal
choice for industrial applications, however the computational burden of
the online optimization is typically considered unmanageable, due to
the low-cost platforms and to the sampling frequency that ranges from
1kHz to 10kHz. Successful implementation of explicit MPC exist for
electrical motors [56,57], and for power converters [58–61], even though
these results are often achieved for simplified MPC formulations, with
one-step prediction and/or approximated constraints [56].

1.1 Motivations and contribution
Besides the high computational load, the need to solve online an opti-
mization problem poses another cumbersome limitation for embedded
MPC implementation: the iterative nature of the algorithm and the
consequent time-varying complexity. Indeed, for a successful implemen-
tation of MPC, the optimization problem must be always solved in a
prescribed amount of time, usually corresponding to the sampling pe-
riod or even shorter in multi-purpose control units [62]. While this is
trivial to verify in a non iterative control routine, the possibility of fail-
ure into providing the input sequence in time can be a decisive factor in
preventing the use of MPC. As far as embedded MPC, this issue is even
sharper. In fact, by considering the state of the art of the QP solvers’
speed and the computational power of cheap control units, the average
time to solve an embedded QP problem is often in the same order of
magnitude of the maximum time allowed [37]. Therefore, even though
extensive simulation campaign can reveal an average time always below
the hard constraint, the possibility that a non tested worst-case exceeds
it is not remote. This failure in the control routine can be critical for the
system if no countermeasures are taken. A fixed amount of iterations
is one of the most common solutions, but it can cause infeasibility and
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sub-optimality [44]. For this reason, the topic of complexity certifica-
tion of online solvers is an urgent problem to solve, in order to favor the
spread of embedded MPC [62, 63]. This thesis proposes an algorithm
that is able to compute exactly the worst-case number of iterations and
flops, given the parametric QP formulation of an MPC problem. The
algorithm can be therefore used to clearly assess if the embedded MPC
controller will be always solved within the prescribed time. The algo-
rithm certifies the complexity of dual active-set methods, which outper-
form very often other solvers given the problem size typical of embedded
MPC [26, 37, 38]. This new algorithm is the first exact certification for
QP solvers, as far as we know, and has a twofold contribution. Be-
sides the obvious benefit for embedded MPC implementation, it fills
the lack in the literature regarding tight bounds on active-set methods
complexity [64]. Indeed, only simulation or probabilistic-based analysis
are available for estimating those bounds, and consequently active-set
methods are currently considered polynomial algorithms on average but
without any tight bound on the worst-case behavior [65–67].
The second part of the thesis proposes two novel acceleration tech-

niques for embedded MPC, which both share the unique feature of hav-
ing a certifiable improvement in terms of computational complexity.
Indeed, for a lot of embedded MPC applications, the improvement in
the worst-case is the leading factor, if not the sole one, to assess the
effectiveness of an online acceleration. However, due to their theoreti-
cal foundations, the methods introduced in the above literature review
can improve the average behavior without any guarantee on the worst-
case, e.g. [40, 43, 44, 68]. This thesis first presents a novel semi-explicit
MPC that is linked with the results provided by the complexity certi-
fication algorithm. It differs from the semi-explicit techniques already
discussed because the partial explicit control law is not updated online
and contains only those regions that are verified to improve the worst-
case behavior. Furthermore, the trade-off between memory and speed,
difficult to be selected in other methods, can be easily chosen in this
case. The lack of a certified improvement is certainly the biggest draw-
back in the state of the art of acceleration techniques, but not the only
one. Indeed, the additional memory occupation and the dependence
from the previous QP solution can undermine their implementability on
certain applications. Therefore, this thesis proposes another accelera-
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tion strategy , which consists in a novel method to select the constraints
added to the active set at each iteration. By exploiting the nature of
a QP problem derived from MPC, this new selection rule can reduce
both the complexity of the single iteration and the number of iterations
needed to find the optimal solution. More importantly these improve-
ments can be exactly calculated by means of the certification algorithm.
The memory occupation is not affected, and the approach relies only on
the current time-step information.
The last part of the thesis presents theoretical advances and exper-

imental results for the control of electrical motors and power convert-
ers [37, 69]. In the specific, embedded CCS-MPC solved online on a
cheap DSP is addressed for the control of a permanent magnet syn-
chronous motor. Despite the common trend of considering CCS-MPC a
solution on cheap boards only if it is solved with offline multiparamet-
ric programming, this thesis shows that the online solution is feasible
and certifiable. This can shed light on CCS-MPC for electrical motors,
which recently has been partially abandoned in this field because consid-
ered too computationally demanding, in favor of FCS-MPC [50,70,71].
Moreover, the corresponding explicit version of the implemented con-
troller is shown to require too much memory to be implementable on
the selected control board. The concept of MPC for pre-compensated
systems is then introduced for the control of power supplies, with an
hard link to Reference Governor (RG) technique, [72, 73], which has
been already successfully used in other engineering fields, e.g. automo-
tive and robotics [74–76]. The performance of standard Voltage Mode
Control (VMC) for a DC-DC buck converter is enhanced by an external
MPC loop that steers its output voltage reference. The experimental
results show the reliability and feasibility of the method for those embed-
ded systems where the primal controller cannot be changed for several
reasons, i.e. hard-coded/hardware-based algorithm. The research in
control algorithms for power supplies suffers the wide differentiation of
converters topologies and configurations, especially in those power sup-
plies composed by several DC-DC converters. Indeed, they are generally
nonlinear systems, and advanced controllers require a dedicated function
for each converter [77–80]. Using different algorithms on the same com-
putational unit worsen the memory occupation of the controller code,
affects its verification and maintenance, and forces the designer to learn
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different tuning processes. Therefore, a unified algorithmic environment
can be substantially beneficial [81, 82], but it has not been investigated
for sensorless control yet [83–85]. The thesis presents a unified current
observer suitable for Pulse Width Modulation (PWM)-based algorithms,
that can be applied to buck, boost and buck-boost DC-DC converters
in both synchronous and asynchronous configuration [86]. The so de-
signed nonlinear observer is unique for its versatility compared to the
converter-based approaches present in the literature [87–89], takes par-
asitics components into consideration and it is robust against unknown
load variations. Experimental tests on different DC-DC converters con-
firm its validity for embedded applications, and it can be valuable tool
for improving the embedded implementation of the state observer used
in MPC.
The thesis is structured as follows. Chapter 2 presents the nota-

tion used throughout the thesis, and some mathematical preliminaries.
The linear MPC formulation and the corresponding QP problem are
described in Chapter 3. The basics on convex optimization and in par-
ticular the operation of a dual active-set method are detailed in Chap-
ter 4. Chapter 5 presents the novel complexity certification algorithm,
together with results on well-known MPC problems. Chapter 6 is ded-
icated to the acceleration techniques, it describes first the novel semi-
explicit MPC and then the novel constraints selection strategy for dual
active-set solvers. Chapter 7 shows the experimental results regarding
the application of embedded MPC and complexity certification for the
control of an electrical motor. MPC for power converters is then ad-
dressed in Chapter 8, where first MPC for pre-compensated systems and
then the novel unified current observer are detailed and tested. Chap-
ter 9 concludes the thesis with a summary of what has been presented,
together with possible future developments of the thesis.
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Chapter 2

Preliminaries
For the ease of the reader, this chapter goes over some basic mathe-
matical preliminaries that will be used in the rest of the thesis. For a
detailed discussion on them, please refer to textbooks on convex opti-
mization [90–92].

2.1 Notation
Let Rn denote the set of real vectors of dimension n and N the set of
natural integers, respectively. Let I ⊂ N be a finite set of integers and
denote by # I its cardinality. For a vector a ∈ Rn, ai denotes the i-th
entry of a, aI the subvector obtained by collecting the entries ai for all
i ∈ I. For a matrix A ∈ Rn×m, A′ denotes its transpose, Ai denotes
the i-th row of A, AI the submatrix of A obtained by collecting the
rows Ai for all i ∈ I. We denote by M0,0 the empty matrix (n = 0,
m = 0). For a square matrix A ∈ Rn×n, A−1 denotes the inverse of
A (if it exists). Given a set Θ ∈ Rn, Θ̊ denotes its interior. Given a
function f(x) : Rn → Rm, dom f denotes its domain.

2.2 Definitions
Definition 2.1 (Convex set). A set S ∈ Rn is convex if for any x1, x2 ∈
S, and any ξ such that 0 ≤ ξ ≤ 1, the following equation holds:

ξx1 + (1− ξ)x2 ∈ S, (2.1)

that is, the line segment between any two points of the set belongs to
the set itself. �
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Definition 2.2 (Affine set). A set S ∈ Rn is affine if for any x1, x2 ∈ S,
and any ξ ∈ R, the following relation holds:

ξx1 + (1− ξ)x2 ∈ S, (2.2)

that is, the line through any two points of the set belongs to the set
itself. Every affine set is also convex. �

Definition 2.3 (Polyhedron). A polyhedron is the set of solutions x ∈
Rn to a system of linear equalities and inequalities, such as:

P = {x | Gx ≤ b, Gex = be}, (2.3)

with G ∈ Rm×n, b ∈ Rm, Ge ∈ Rme×n and be ∈ Rme . Polyhedra are
convex sets. �

Definition 2.4 (Convex function). A function f : Rn → R is convex if
dom f is a convex set and for any x1, x2 ∈ dom f , and any ξ such that
0 ≤ ξ ≤ 1, the following equation holds:

f(ξx1 + (1− ξ)x2) ≤ ξf(x1) + (1− ξ)f(x2). (2.4)

If −f is convex, then f is concave. �

Definition 2.5 (Affine function). A function f : Rn → Rm is affine if
it is of the form f(x) = Gx + b, with G ∈ Rm×n and b ∈ Rm. In other
words, an affine function is a sum of a linear function and a constant.
All affine functions are both convex and concave. �

Definition 2.6 (Quadratic function). A function f : Rn → R is quadratic
if it can be written in the form:

f(x) : 1
2x
′Hx+ h′x+ k (2.5)

with H ∈ Rn×n a symmetric matrix, h ∈ Rn and k ∈ R. A quadratic
function is convex if and only if H ≥ 0. In the rest of the thesis k = 0
holds, therefore the constant term k will be omitted. �

Definition 2.7 (Convex optimization). A convex optimization problem
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is of the form
min.
x

f0(x)

s.t. fi(x) ≤ bi, i = 1, . . . ,m,
(2.6)

where f0, . . . , fm : Rn → R are convex functions. �

Definition 2.8 (Quadratic programming). A quadratic programming
(QP) problem minimizes a convex quadratic function over a polyhedron.
A QP problem can be written in the following form:

min.
x

1
2x
′Hx+ h′x

s.t. Gx ≤ b
Gex ≤ be

(2.7)

where H ∈ Rn×n is symmetric, H ≥ 0, h ∈ Rn, G ∈ Rm×n, b ∈ Rm,
Ge ∈ Rme×n and be ∈ Rme . �

Definition 2.9 (Active constraint). Given the QP problem (2.7) and
x̄ ∈ Rn, the constraint Gix ≤ bi is active at x̄ if the equality Gix̄ = bi
holds, otherwise it is inactive. �

Definition 2.10 (Active set). Given the QP problem (2.7) and x̄ ∈ Rn,
the active set A(x̄) is

A(x̄) = {i ∈ K |Gix̄ = bi} (2.8)

where K = {1, . . . ,m} is the set of constraint indexes. The active-set
at the optimal solution x∗ of the QP problem (2.7) is called optimal
active-set and it is be denoted by A∗. �

Definition 2.11 (Inactive set). Given the QP problem (2.7) and x̄ ∈
Rn, the inactive set I(x̄) is

I(x̄) = {i ∈ K |Gix̄ < bi}, (2.9)

and the relation I = K \ A holds. �

Definition 2.12 (Polyhedral partition). Given a polyhedron Θ ⊆ Rnθ ,
the collection of sets {Θ1, . . . ,Θs} is said a polyhedral partition of Θ if Θi

is a polyhedron, Θi ⊆ Rnθ , ∀i = 1, . . . , s, ∪si=1Θi = Θ, and Θ̊i ∩ Θ̊j = ∅,
∀i, j = 1, . . . , s, i 6= j. �
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Definition 2.13 (Integer piecewise constant function). A function n :
Θ→ N, Θ ⊆ Rnθ , is integer piecewise constant (IPWC) if there exist a
polyhedral partition Θ1, . . . ,Θs of Θ and a set of integers {n1, . . . , ns} ⊂
N such that

n(θ) = min
i∈{1,...,s}: θ∈Θi

{ni} (2.10)

for all θ ∈ Θ. Note that the “min” in (2.10) avoids possible multiple
definition of n(θ) on overalapping boundaries Θi ∩Θj 6= ∅. �

Definition 2.14 (Piecewise affine function). A function h : Θ → Rn,
Θ ⊆ Rnθ , is said piecewise affine (PWA) if there exist an IPWC function
n : Θ → {n1, . . . , ns} defined over a polyhedral partition Θ1, . . . ,Θs of
Θ and s pairs (Fi, fi), Fi ∈ Rn×nθ , fi ∈ Rn, i ∈ {n1, . . . , ns}, such that

h(θ) = Fn(θ)θ + fn(θ) (2.11)

for all θ ∈ Θ. It is said piecewise constant if Fi = 0, ∀i ∈ {n1, . . . , ns}.
�
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Chapter 3

Model predictive control

MPC has been addressed as the most impactful methodology for pro-
cess control in the recent history, as confirmed by the survey paper [93].
In the refining, chemical and petrochemical industry it is now consid-
ered a technology. MPC owes this success to its conceptual simplicity,
and the ability to effectively handle multivariable systems with input
and output constraints. MPC is more a control idea than a specific
controller. Indeed, with MPC it is meant the family of controllers that
make explicit use of the system model to predict its future behavior and
generate the input sequence by applying the receding horizon technique.
For this reason there are several and much different extensions of the
classical MPC, each one with its own open questions and challenges.
For a comprehensive overview on the recent achievements and future
developments of MPC, please refer to the survey paper [5]. Among
many active areas of research, embedded MPC is seen as one of the
more impactful future promises, because of the interest in several engi-
neering areas. The most important open challenge for embedded MPC
is controlling those systems with high sampling rates, when running
on control units with scarce memory and computational power. This
chapter covers the most common formulation used for embedded MPC,
with a Linear Time Invariant (LTI) model of the system, whose inputs
and outputs are constrained in a polyhedral space. This formulation is
widely used because it leads to a QP problem, for which several mem-
ory and computationally efficient solvers exist. Formulations based on
linear parameter varying systems are common as well, but due to the
need to build the QP problem at each iteration, they are more difficult
to be used in embedded control [14, 94].
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Figure 3.1: The open-loop optimization problem solved by MPC at each
the sampling instant k.

3.1 Problem formulation

This section covers briefly the standard LTI-MPC problem. For classic
reference textbooks, please refer to [3, 4]. Consider a tracking problem
for the discrete-time LTI system in the state-space form:

xk+1 = Axk +Buuk (3.1a)
yk = Cxk (3.1b)

with x ∈ Rnx the state vector, u ∈ Rnu the input vector, y ∈ Rny the
output vector and A, Bu, and C the dynamics matrices of appropriate
dimension. The objective of the controller is to steer the outputs y to
track the references yref. Figure 3.1 shows the operation of MPC at
time step k. The set of future inputs is computed by optimizing a cost
function of the control performances, such as the tracking error and the
control effort. The cost function is minimized subject to the constraints
imposed by the dynamics of the system, i.e. the LTI model (3.1), and
constraints on both inputs and outputs. Only the inputs at time-step k
are actually applied to the system, discarding the rest of the sequence.
The procedure is repeated again at the next sampling time, shifting the
horizon by one step (receding horizon). The number of future steps
for which MPC computes the prediction at time k, is called prediction
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horizon and it is denoted by Np. On the other hand, the number of “free
moves” of the inputs to be optimized is called control horizon, denoted
by Nu, and it is chosen such that 1 ≤ Nu ≤ Np. As shown in the figure,
for the prediction instants greater then k + Nu, the last free move is
“frozen” to the past value. This is done to reduce the computational
effort required to solve the optimization problem, because the size of
the primal vector depends on Nu. Therefore, the optimization problem
solved by MPC at each sampling instant is:

min.
∆u

Np−1∑

i=0

(
‖Wy(yk+i+1|k − yref

k+i+1|k)‖22+‖Wu(uk+i|k − uref
k+i|k)‖22

)
+

+
Nu−1∑

h=0
‖W∆u∆uk+h|k‖22 (3.2a)

s.t. xk|k = xk, (3.2b)
xk+i+1|k = Axk+i|k +Buuk+i|k, (3.2c)
yk+i+1|k = Cxk+i+1|k, (3.2d)
∆uk+i|k = uk+i|k − uk+i−1|k (3.2e)
∆uk+Nu+j|k = 0, j = 0, . . . , Np −Nu − 1, (3.2f)
∆uk+h|k ∈ D, (3.2g)
uk+i|k ∈ U, (3.2h)
yk+i+1|k ∈ Y, (3.2i)
i = 0, . . . , Np − 1, (3.2j)
h = 0, . . . , Nu − 1, (3.2k)

where Wy, Wu, and W∆u are square weight matrices, with W∆u invert-
ible, xk+i|k denotes the prediction of the variable x at time k + i based
on the information available at time k, xk is the current state, ∆uk+i|k
is the vector of the input increments, with uk−1|k = u(k − 1), yref

k+i+1|k
and uref

k+i|k are the previewed references for the outputs and the inputs,
respectively, and D, U, and Y are polyhedral sets of constraints on input
increments, inputs, and outputs, respectively.
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3.2 Condensed Optimization Problem

Problem (3.2) can be cast in a standard QP problem, by arranging the
cost function and the constraints such that only the vector of the in-
put increments prediction appears explicitly in the formulation. This
is the so-called condensed form, and it is usually the preferred one in
linear MPC because many QP solvers exist to solve efficiently that op-
timization problem. In the next, the main steps to derive a condensed
formulation starting from the original problem (3.2) are presented. The
use of the input increments as optimization variables, eases the design
of a cost function for tracking purposes and allows one to weight and
constrain also the rate of change of the inputs [3,4]. Define the different
predictions on outputs, inputs, and references, relative to time k, in a
compact form such as:

∆uk =
[
∆uk|k, . . . ,∆uk+Nu−1|k

]′ (3.3a)

uk =
[
uk|k, . . . , uk+Np−1|k

]′ (3.3b)

uref
k =

[
uref
k|k, . . . , u

ref
k+Np−1|k

]′
(3.3c)

yk =
[
yk+1|k, . . . , yk+Np|k

]′ (3.3d)

yref
k =

[
yref
k+1|k, . . . , y

ref
k+Np|k

]′
(3.3e)

and let the output prediction performed at time k, and relative to the
future time instant k + i, be defined as:

yk+i|k = C


Ak+ixk +

k+i∑

h=k
Ak+i−1Bu


uk−1 +

h∑

j=k
∆uj|k




 . (3.4)

The vector of predicted outputs (3.3d) can be therefore computed as:

yk = Su∆uk + Su1uk−1 + Sxxk (3.5)
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where

Su =




CBu 0 . . . 0

CBu + CABu CBu
. . . ...

...
... . . . 0

Np−1∑
j=0

CAjBu
Np−2∑
j=0

CAjBu . . .
Np−Nu∑
j=0

CAjBu




Su1 =




CBu
CBu + CABu

...
Np−1∑
j=0

CAjBu



, Sx =




A

A2

...
ANp



.

(3.6)

Let us denote the cost function of problem (3.2) by J . This cost function
can be rewritten in a condensed form as:

J =
(
yk − yref

k

)′
W̄y

(
yk − yref

k

)
+
(
uk − uref

k

)′
W̄u

(
uk − uref

k

)
+

+ ∆u′kW̄∆u∆uk, (3.7)

with W̄∆u, W̄u and W̄y extended weight matrices of appropriate dimen-
sion, in a block-diagonal form, such as:

W̄∆u =




W∆u 0 . . . 0

0 W∆u
. . . ...

... . . . . . . 0
0 . . . 0 W∆u




(3.8a)

W̄u =




Wu 0 . . . 0

0 Wu
. . . ...

... . . . . . . 0
0 . . . 0 Wu




(3.8b)
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W̄y =




Wy 0 . . . 0

0 Wy
. . . ...

... . . . . . . 0
0 . . . 0 Wy



. (3.8c)

In order to eliminate the inputs from the cost function, the following
transformation, based on the definition of input increment, is intro-
duced:




uk|k
uk+1|k

...
uk+Nu−1|k

...
uk+Np−1|k




=




I 0 . . . 0

I I
. . . ...

...
... . . . 0

I . . . . . . I
... . . . . . . ...
I . . . . . . I




︸ ︷︷ ︸
Tu




∆uk|k
∆uk+1|k

...
∆uk+Nu|k




+




I
...
...
...
...
I




︸︷︷︸
tu

u(k − 1). (3.9)

Therefore, by replacing equation (3.5) and the transformation (3.9) into
J defined as in (3.7), after some manipulations and discarding those
terms that do not depend from the optimization variables ∆uk, the
cost function can be rewritten as:

J = 1
2∆u′k 2(S′uW̄ySu + T ′uW̄uTu + W̄∆u)︸ ︷︷ ︸

H

∆uk + ∆u′k


−2S′uW̄y︸ ︷︷ ︸

h1

yref
k +

+ 2S′uW̄ySx︸ ︷︷ ︸
h2

xk + 2(S′uW̄ySu1 + T ′uW̄utu)︸ ︷︷ ︸
h3

uk−1 + 2T ′uW̄u︸ ︷︷ ︸
h4

uref
k




(3.10)

that is obviously a quadratic function in the optimization variables ∆uk.
It is worth noticing that, in the case the use of input increments as op-
timization variables is not required, e.g. stabilization problem, a similar
procedure can be followed to obtain a quadratic cost function of uk.

As far as the constraints, the three polyhedral sets D, U and Y can be
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written considering the definition of a polyhedron, as in the following:

D = {∆u | L∆u∆u ≤ l∆u} (3.11a)
U = {u | Luu ≤ lu} (3.11b)
Y = {y | Ly∆u ≤ ly}. (3.11c)

These constraints have to be enforced for the corresponding prediction
and control horizons, such as:

L∆u∆u(i) ≤ l∆u ∀i = k, . . . , k +Nu (3.12a)
Luu(i) ≤ lu ∀i = k, . . . , k +Np − 1 (3.12b)
Lyy(i) ≤ ly ∀i = k + 1, . . . , k +Np. (3.12c)

Similarly to the derivation of cost function, all the constraints must be
written with respect to the optimization variables ∆u, exploiting equa-
tions (3.5) and (3.9). Therefore, the constraints (3.12) can be collected
in the equivalent form:



G1
G2
G3


∆uk ≤




b1
b2 + s1uk−1 + s2xk
b3 + s3u(k − 1)


 , (3.13)

where the first set of inequalities regards the constraints on the inputs
increments, the second the constraints on the inputs and the third those
on the outputs. After some manipulations, the matrices that compose
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the inequality (3.13) are found to be:

G1 =




L∆u 0 . . . 0

0 . . . . . . ...
... . . . . . . 0
0 . . . 0 L∆u



, b1 =




l∆u
...
l∆u


 , b2 =




lu
...
lu


 ,

G2 =




Lu 0 . . . 0
... . . . . . . ...
... . . . 0
Lu . . . . . . Lu



, s1 =




−Lu
...
−Lu


 , s2 =




−LyCBu
−LyC(Bu +ABu)

...

−
Np−1∑
j=0

LyCA
jBu



,

G3 =




LyCBu 0 . . . 0
LyCBu + LyCABu LyCBu . . . 0

...
... . . . . . .

Np−1∑
j=0

LyCA
jBu

Np−2∑
j=0

LyCA
jBu . . .

Np−Nu∑
j=0

LyCA
jBu



,

s3 =




−LyA
−LyA2

...
−LyANp



, b3 =




ly
...
ly


 .

(3.14)

Given all the previous assumptions, the optimization problem (3.2) can
be cast into the following, equivalent, parametric QP problem:

min.
z

f(zk) : 1
2z
′
kHzk + z′kFθk

s.t. g(zk) : Gzk −Wθk − w ≤ 0
(3.15)

where θk ∈ Θ is the vector of parameters defined as

θk = [uk−1, xk|k,y
ref
k ,uref

k ]′, (3.16)

where Θ ⊂ Rnθ is a bounded set of interest, zk ∈ Rnz is the vector of
optimization variables, with zk = [∆uk, ρk]′ and ρk the slack variable
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Algorithm 1 MPC controller routine at time-step k
Input: Matrices H,F,G,W,w defining problem (3.15), matrices
A,Bu, C defining model (3.1), gains M,L defining Kalman filter (3.17),
yk, uk−1,y

ref
k ,uref

k , x̂k|k−1.

1: yk ← collect the measures from the plant;
2: x̂k|k ← x̂k|k−1 +M(yk − Cx̂k|k−1);
3: θk ← [uk−1, xk|k,y

ref
k ,uref

k ]′;
4: zk ← solve min.

z
0.5z′kHzk + z′kFθk

s.t. Gzk −Wθk − w ≤ 0

5: ∆uk ← extract the first nu components from zk;
6: uk ← uk−1 + ∆uk;
7: x̂k+1|k ← Ax̂k|k−1 +Buuk + L(yk − Cxk|k−1);

Output: The control signal uk to apply to the system, and the estima-
tion x̂k|k−1 for the next time step.

for the soft constraints on the outputs, [3], H ∈ Rnz×nz is a symmetric
and positive definite matrix, F ∈ Rnz×nθ , G ∈ Rm×nz , W ∈ Rm×nθ ,
w ∈ Rm. For the rest of the thesis, unless differently specified, the
solution of the MPC problem will be obtained by solving the parametric
QP problem (3.15). However, even though this section has provided
the guidelines to build the parametric QP problem starting from the
original problem (3.2), many other features can be included to enrich
the formulation, e.g. measured disturbances or blocking moves. Indeed,
regardless of the particular setup, as long as the model is linear, the
cost function is quadratic and the constraints are affine, the original
formulation can be always cast into a parametric QP problem.

When controlling a system, the QP problems at different time steps
k differs from each other in the vector of parameters θk, as the other
matrices remain unaltered (this holds true for LTI systems). All the
elements of θk are commonly available, except for the real state xk|k of
the plant, which has to be estimated from the available measures. The
standard choice to accomplish this task is a Kalman filter. Let L be the
estimator gain, andM the innovation gain, the estimated state x̂k|k can
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be computed by implementing the following well-known equations:

x̂k|k = x̂k|k−1 +M(yk − Cx̂k|k−1) (3.17a)
x̂k+1|k = Ax̂k|k−1 +Buuk + L(yk − Cxk|k−1). (3.17b)

Clearly x̂k|k replaces xk|k into the parameters’ vector θk (3.16). The
complete routine to implement an MPC controller online is detailed in
Algorithm 1. The conditions for the stability of this control scheme
have been formalized in [95], where it is shown that nominal stability
of MPC for linear systems is achieved either by adding a terminal cost
and constraint, or by extending the prediction horizon.
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Chapter 4

Online Optimization

The complexity of solving QP problem (3.15) online, in order to compute
the optimal control move uk for a given θk, can limit the use of MPC.
In particular, this is a crucial issue for embedded MPC as already antic-
ipated [6, 34]. In the last years, many solutions have been proposed to
mitigate this computational burden. Explicit MPC can be used to pre-
solve offline the optimization problem, through mpQP [20, 21], but its
memory requirements grow exponentially with the number of imposed
linear constraints limiting the approach to small MPC problems (few
inputs and short control horizon, few constraints). If the problem is not
small enough, the alternative is solving online the optimization, which
requires to embed a QP solver in the real-time control board [6]. The
QP solver have to be fast and easy to code, require little memory and
provide tight bounds on the worst-case execution time [26,62,96]. In the
case their cost and lack of flexibility are affordable for the specific appli-
cation, FPGAs with their fast clock rate and parallelized computations
can make the speed of the solver a less crucial issue [27,97,98]. However,
even in that case, the optimization algorithm must be carefully chosen.
The literature for QP solvers is very rich, and the recent advances in
convex optimization are contributing to its fast development [37, 99].
In addition, the last years have seen a flourishing of toolkits, some of
which commercialized, for the rapid prototypation of algorithms tailored
to solve embedded MPC problems [25, 40, 100]. Some popular meth-
ods have been compared in [101], highlighting their speed and mem-
ory occupancy in the case of a control unit with on-board volatile and
non-volatile memory. As far as embedded MPC, active-set methods
are usually considered outperforming in terms of speed [26, 37, 38, 102].
Moreover, they provide a very accurate solution without the need of
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preconditioning when the problem is ill-conditioned [39]. A valuable
alternative are interior-point methods, which are less affected by the
problem’s dimension with respect to active-set methods. However, the
overhead for a single iteration is higher, due to the larger number of
variables necessary, and therefore, for the size of QP problems arising
in embedded applications, active-set algorithms are usually considered
faster [103,104]. The rest of the thesis will be focusing on novel results
regarding active-set methods, and their use for embedded MPC. There-
fore, in Section 4.1 we recall the generalities of dual active-set methods
for solving strictly convex QP’s of the form (3.15). In Section 4.2 a
well known dual active-set solver, i.e. the Goldfarb-Idnani (GI) algo-
rithm [32], is reconsidered in a parametric formulation that will be useful
for the derivation of the complexity certification algorithm of Chapter 5.

4.1 Dual active-set algorithms

In order to find the optimizer of the QP problem (3.15), active-set meth-
ods solve a sequence of equality constrained subproblems. The idea is to
iteratively make steps towards the solution by solving a reduced prob-
lem with only the equality constraints in the current active set, which
we indicate as Aq for the q-th iteration of the solver. The optimal so-
lution is reached when the current active set equals the optimal one,
i.e. Aq ≡ A∗. The reason is that the inactive constraints do not affect
the optimal solution, thus the original QP and the reduced equality-
constrained QP with share the same optimizer. At every iteration q of
the solver, a violated constraint p is added to the active set, and all
the blocking constraints are removed from it. A constraint is said to
be blocking if it belongs to Aq−1 and prevents p to be active without
violating primal or dual feasibility. The constraint p is selected such
that:

p←
{

0 if gi(zq) ≤ 0, ∀i ∈ I
h ∈ I | gh(zq) > 0 otherwise.

(4.1)

that is, p is equal to 0 if there are no violated constraints, otherwise
it assumes the index of a violated constraint. Let Vq−1 be the set of
violated constraints at the previous iteration q − 1. After selecting a
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new violated constraint p ∈ Vq ⊆ Iq, the step size and direction are
derived by solving the following equality constrained QP problem:

min.
z

1
2z

q ′Hzq + θ′F ′zq

s.t. GAqz
q = WAqθ + wAq

(4.2)

where the updated working set is Aq = {Aq−1 \Bq}∪ p, with Bq the set
of blocking constraints removed at iteration q from Aq−1. The primal-
dual pair (zq, πq), with π the vector of dual variables, is the solution of
problem (4.2), if and only if it is the solution of the Karush-Kuhn-Tucker
(KKT) system:

[
H G′Aq

GAq 0

]

︸ ︷︷ ︸
KKT(Aq)

[
zq

πq

]
=
[

−Fθk
WAqθk + wAq

]
(4.3)

where KKT(Aq) the so called KKT-matrix. Active-set algorithms can
be categorized in two big families: primal and dual feasible methods.
The first start from a primal feasible optimizer z0 and solve iteratively
the KKT system (4.3) until dual feasibility is reached [35,91], maintain-
ing the primal feasibility in the sub-iterates. A Phase I is needed to find
a primal feasible z0, that translates into solving a linear programming
problem. On the contrary, dual feasible active-set solvers start from a
dual feasible point, which is readily available (i.e. the unconstrained
solution) and iterate (4.3) to reach primal feasibility, maintaining dual
feasibility in the sub-iterates [32,33]. This means that dual active-set al-
gorithms produce an infeasible solution if they are stopped prematurely,
e.g. if the time slot available to compute the control action is termi-
nated. However, despite this drawback, dual active-set methods are
sensibly faster than primal ones because they usually require less itera-
tions, and do not need Phase I, saving also the memory to code the linear
programming solver [32]. Finally, thanks to the possibility to choose the
constraint to add to the active set at each iteration, dual methods are
much less affected by the cycling problem, that can arise in degeneracy
cases [105]. For all these reasons, dual methods are the preferred choice
in embedded MPC. Active-set slovers are further categorized depending
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on how they solve the KKT system (4.3). As far as the direct solution
of KKT matrix is concerned, range-space or null-space methods are the
most common strategies, which refer to the subspaces updated during
the iterations. The range-space is defined by vectors that are linear
combinations of the rows of G [32,35]. The null-space is defined by vec-
tors orthogonal to the rows of G [34]. Range-space algorithms performs
better when few constraints are in the active set, whereas null-space
methods take advantage from a large number of active constraints. The
computational load of each iteration is often directly proportional to the
dimension of either the null-space or the range-space [35]. Algorithm 2
describes the general steps shared by all dual active-set methods that
add the violated constraints one by one. Even if this aspect will not
be covered in this thesis, dual active-set algorithms are receiving lot of
attention also in the fields of mixed integer quadratic programing, and
sequential quadratic programming, thanks to their ability to be easily
warm-started. These results are of utmost interest for non-linear and
hybrid MPC [106–110].

4.2 Goldfarb-Idnani parametric algorithm

In this section we briefly recall the GI algorithm, which is an efficient and
numerically stable dual active-set solver for positive definite quadratic
programming [32]. In the specific, the GI algorithm is reconsidered here
in a parametric version, so to analyze later in Chapter 5 how its itera-
tions for solving (3.15) depend on θk. Being a dual range-space solver,
it is particularly suited for quadratic programs that arise from MPC
problems, where typically m > nz. Range-space approaches solve (4.3)
by the explicit inversion of KKT(A). Step (4.3) is iteratively solved
starting from Aq−1 and dropping the blocking constraints one-by-one,
until the constraint p can be added to the active set without violating
the dual feasibility.

Remark 1. We denote by q the number of the solver’s iterations, which
is increased each time a constraint is added to the active set, cf. Algo-
rithm 2. Then, we denote by j the index that is increased each time
a constraint is either added or dropped from the active set, therefore
accounting also for sub-iterations of the algorithm, where clearly j ≥ q.
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Algorithm 2 Generic dual active-set solver
Input: Matrices H,F,G,W,w, θk defining problem (3.15).

1: Set z0 ← −H−1Fθk, A0 ←M0,0, I0 ← K, q ← 0;
2: V0 ← {i ∈ I0 |Giz0 > bi};
3: choose

p←
{

0 if gi(zq) ≤ 0, ∀i ∈ Iq
h ∈ Iq | gh(zq) > 0 otherwise;

4: if p = 0 return z∗ ← zq; end if ;
5: q ← q + 1;
6: Find the set of blocking constraints Bq;
7: Aq ← {Aq−1 \ Bq} ∪ {p};
8: Iq ← {Iq−1 \ p} ∪ {Bq};
9: Solve [

H G′Aq

GAq 0

][
zq

πq

]
=
[

−Fθk
WAqθk + wAq

]
;

10: if Step 9 has no solution then return infeasible;
11: else go to Step 3;
12: end if
Output: The optimal solution z∗ or infeasibility codition.

The explicit inversion KKT(Aj)−1 of system (4.3) is:

KKT(Aj)−1=
[
I −H−1G′Aj
0 I

] [
H−1 0

0 S−1
H

] [
I 0

−GAjH−1 I

]
(4.5)

where SH = −GAjH−1G′Aj is the Schur complement of H. From (4.5)
we define the two operators:

G∗Aj =
(
GAjH

−1G′Aj
)−1

GAjH
−1 (4.6a)

Hj = H−1 (I −G′AjG∗Aj ) (4.6b)

where G∗Aj is the Moore-Penrose pseudoinverse of GAj under the trans-
formation y = H1/2x and H is the inverse Hessian operator in the active
set space. The GI solver operation is summarized in Algorithm 3, where
at each sub-iteration a new vector zj and a set of active constraints Aj
are found starting from zj−1, Aj−1 and a violated constraint p. The
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primal-dual update (zj , πj) is defined so to make the constraint p active
while maintaining dual feasibility. This is done by setting zj and πj as:

zj = zj−1 + αj∆zj (4.7a)

πj =
[
πj−1

πj−1
p

]
+ αj

[
∆πj

1

]
(4.7b)

where αj ∈ R+ is the step size, and ∆zj , ∆πj are the update direc-
tions in the primal and dual space, respectively. The primal and dual
directions are computed as:

∆zj = −Hj−1G′p (4.8a)
∆πj = −G∗Aj−1G′p (4.8b)

and the step size αj = min{αj1, αj2}, with

αj1 = min
{

min
l∈{1,...,#Aj−1}

{
−π

j−1
l

∆πjl

∣∣∣∣∣∆π
j
l < 0

}
,∞
}

(4.9a)

αj2 = Wpθ + wp −Gpzj−1

Gp∆zj
, (4.9b)

is chosen such that πj ≥ 0 and, if possible, the p-th constraint becomes
active, i.e. gp(zj) = 0.
Remark 2. Thedual step length α1 is the maximum step that can be
taken without violating dual feasibility, and the primal step length α2
is the step required to make the p-th constraint active.
Equations (4.9) guarantee that αj > 0. In [32] the authors prove that,

being gp(zj) the violated constraint, the following relations hold

gp(zj) > gp(zj+1) > gp(zj+h) = 0 (4.10a)
f(zj) < f(zj+1) < f(zj+h) (4.10b)

between two iterations j and j+h of Algorithm 3 in which constraints are
dropped for h sub-iterations, that is αj+i = αj+i1 <∞, ∀i = 0, . . . , h−1,
and constraint gp(zj) is added at sub-iteration j + h, that is αj+h =
αj+h2 <∞. The blocking constraint k dropped during one sub-iteration
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is selected according to:

k = min arg min
l=1,...,#Aj−1

(
−π

j−1
l

∆πjl

∣∣∣∆πjl < 0
)
. (4.11)

Three different situations can occur during the j-th sub-iteration:

• if αj ≡ αj1 the k-th constraint is blocking and it must be dropped,
therefore only a partial step can be taken;

• if αj ≡ αj2 a full step can be taken, that is Aj = Aj−1 ∪ {pj};

• if αj ≡ ∞ the original QP problem is infeasible.

Computing H and G∗A from scratch at each iteration can be too com-
putationally demanding, therefore the Cholesky factorization of H and
the QR factorization of G∗A are iteratively built by Algorithm 3. Let
H = LL′ be the Cholesky factorization of the primal Hessian and define:

L−1GAj =
[
Qj1 Qj2

] [Rj
0

]
(4.12a)

Jj =
[
Jj1 Jj2

]
=
[
L−TQj1 L−TQj2

]
. (4.12b)

Then the two operators Hj , GAj can be written calculated as:

Hj = Jj2J
j
2
′ (4.13a)

G∗Aj = R−1,jJj1
′, (4.13b)

where Jj1 ∈ Rnz×#Aj , J2 ∈ Rnz×# Ij , and J0 = L−T , R0 = M0,0.
Therefore, the GI algorithm only needs to iteratively update Jj and Rj ,
so to compute the primal and dual directions as:

∆zj = −Jj2Jj2 ′G′p (4.14a)
∆πj = −R−1,jJj1

′G′p. (4.14b)

The factorizations updates (4.14) can be performed through House-
holder reflections, or Givens rotations. The latter has been used in
the next.
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In contrast with primal methods, dual active-set solvers have the de-
gree of freedom to select which constraint becomes active at each itera-
tion, see Step 3 of Algorithm 3. The order the constraints are added to
the active set changes the number of iterations, although it does not af-
fect the convergence [111]. As long as the added constraints is violated,
condition (4.10) guarantees convergence no matter how gp(zj) > 0 is
selected. In the literature two techniques are commonly used to choose
p: the most-violated constraint selection rule

p←
{

0 if gi(zj) ≤ 0, ∀i ∈ I
min arg maxi: gi(zj)>0{gi(zj)} otherwise,

(4.15a)

and the first-violated constraint selection rule

p←
{

0 if gi(zj) ≤ 0, ∀i ∈ I
mini∈K{i| gi(zj) > 0} otherwise. (4.15b)

In (4.15a), the “min” before the “arg max” imposes to select the smallest
index in case of multiple maximizers (the same rule is adopted in (4.11)
for choosing the index k in case of multiple minima). Chapter 6 will
detail the aspect of the selection rules for violated constraints, and will
present a novel rule which improves the computationally efficiency with
respect to the standard ones.
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Algorithm 3 Goldfarb-Idnani (GI) QP solver
Input: Matrices H,F,G,W,w, θk defining problem (3.15).

1: Compute Cholesky factorization LL′ = H; J0
2 ← L−T ;

2: z0 ← −J0
2J

0
2
′Fθ , A0 ← ∅, q ← 0, j ← 0;

3: choose

p←
{

0 if gi(zj) ≤ 0, ∀i ∈ I
h ∈ I | gh(zj) > 0 otherwise;

4: if p = 0 then return A∗ ← Aj ; end if ;
5: q ← q + 1, πjp ← 0;
6: j ← j + 1, ∆zj ← −Jj2 (Jj2 )′G′p;
7: if #Aj > 0 then ∆πj ← −R−1,j(Jj1 )′G′p; end if ;
8: if (∆πj ≥ 0 or #Aj = 0) then αj1 ←∞;
9: else

k ← min arg min
l=1,...,#Aj−1

(
−π

j−1
l

∆πjl

∣∣∣∆πjl < 0
)
, αj1 ← −

πj−1
k

∆πjk
;

10: end if ;
11: if ∆zj = 0 then αj2 ←∞;

12: else αj2 ←
Wpθ + wp −Gpzj−1

Gp∆zj
;

13: end if ;
14: αj ← min(αj1, α

j
2);

15: if αj =∞ then return infeasible; end if ;
16: if (αj2 =∞) then
17: πj ← πj−1 + αj∆πj ;
18: Aj ← Aj−1 \ {k}, update Jj1 , Jj2 , Rj , go to Step 6;
19: end if ;
20: Set

zj ← zj−1 + αj∆zj ;

πj ←
[
πj−1

πj−1
p

]
+ αj

[
∆πj

1

]
;

21: if αj = αj2 then
22: Aj ← Aj−1 ∪ {p}, update Jj1 , Jj2 , Rj , go to Step 3;
23: else if αj = αj1 then
24: Aj ← Aj−1 \ {k}, update Jj1 , Jj2 , Rj , go to Step 6;
25: end if.
Output: Primal solution z∗ = zj , dual solution π∗ = πj , and optimal active
set A∗ = Aj , or infeasibility; number N = q of iterations.
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Chapter 5

Complexity certification for
active-set solvers

In embedded MPC, it is of utmost importance to certify that the QP
solver always provides the input sequence within a certain execution
time, which must be lower than the sampling interval or lower than
the task time reserved in a multi-purpose control unit. Even if this
holds true in every situation, embedded MPC is more affected by the
issue due to the low computational power and high sampling frequency
which make the available time to solve the problem really short. The
topic of the complexity certification is being addressed by the very re-
cent literature, as it can be a reason that prevents MPC implementation
in real applications [62, 63, 112, 113]. A solution could be to interrupt
the solver after a fixed amount of iterations which are known to fit
within the prescribed time, [44, 114]. However, the consequent subop-
timal or even infeasible solution is not acceptable in lot of situations.
Furthermore, fixing a maximum number of iterations is equal to know
the worst-case time only with solvers whose iterations have the same
complexity. Unfortunately, this does not hold for active-set methods,
where the computational load of a single iteration depends on the size of
the current active set, and the number of sub-iterations necessary to re-
move the blocking constraints. Therefore, this chapter presents a novel
algorithm able to exactly calculate the computational complexity of a
dual active-set method, which translates into knowing the worst-case
number of iterations and FLOPs [115]. Besides the needs of embedded
MPC, the algorithm has an important role in optimization field as well.
Indeed, in spite of the empirical evidence of their efficiency, a theoretical
computational complexity of active-set methods that is useful in prac-
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tice is not available yet [64,66,67]. They are considered, by experience,
algorithms that exhibit a polynomial behavior on average [64, 66], but,
as shown in the famous Klee-Minty problem, they can even display ex-
ponential worst-case number of iterations on contrived problems [65].
This aspect could prevent their use in embedded applications, e.g. in
favor of interior-point methods, for which a theoretical polynomial it-
eration bound is available [28, 116], or gradient projection methods, for
which tight worst-case bounds have been derived [24]. The algorithm
presented in this chapter builds upon the machinery employed in mpQP
to get explicit MPC solutions, where the parameter space is divided into
polyhedral regions that share the same optimal active set, and is close
in spirit with the multiparametric solution approach developed in [117]
for linear programs. Here we consider how “parametric” steps of the GI
algorithm propagate in the parameter space during iterations. Even if
the algorithm is derived starting from the parametric version of the GI
solver, all dual active-set algorithms that add the violated constraints
one-by-one into the active set can be certified by the same algorithm.
Indeed, as long as the selection rule for the violated constraint to add is
the same [118], they perform the same number of iterations. The differ-
ence is how they solve (4.3), that translates into a different complexity
per iteration. To the best of the author knowledge, this is the first con-
tribution that proposes the exact computation of worst-case flops and
iterations for QP solvers. Section 5.1 details the certification algorithm,
and Section 5.2 provides results of its application to well known MPC
problems.

5.1 Complexity certification algorithm

Given a set Θ of parameters that perturb the QP problem (3.15), the
algorithm here derived allows to characterize exactly the worst-case be-
havior of Algorithm 3 parametrically with respect to θ, in the case
the violated constraints are selected according to one of the standard
rules (4.15a) or (4.15b).

Theorem 5.1.1. Let Θ ⊆ Rnθ be a polyhedron. Then a finite number
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Nmax, exists such that

Nmax = max
θ∈Θ

N(θ), (5.1)

that is Algorithm 3 terminates in at most Nmax steps for all θ ∈ Θ.

Proof. Convergence of Algorithm 3 for each given θ ∈ Θ is proved in [32,
Th. 3]: because of (4.10), the same combination of active constraints
Aj−1 cannot occur during the iterations of the algorithm; since q ≤ j

and the number NA of active set combinations is finite, the algorithm
finds the solution in at most Nmax = maxθ∈Θ{N(θ)} ≤ NA iterations
for all θ ∈ Θ.

The question is, how large this Nmax can be. Theorem 5.1.1 proves
only the existence of such an Nmax, but in most of the cases its value is
much smaller than the number of all the possible combinations of active
constraints NA, i.e. a polynomial complexity is observed experimentally
on average [64, 66,67].

Lemma 5.1.2. Let f, g : Θ → R be PWA functions over a polyhedron
Θ ⊆ Rn. Then h = min{f, g} is also PWA.

Proof. Let {Θ1, . . . ,Θs} and {Φ1, . . . ,Φt} be the polyhedral partitions
associated with f and g, respectively, and {p1, . . . , ps}, {k1, . . . , kt} de-
fine the corresponding IPWC functions n and m. Let Fi, fi, i = 1, . . . , s
and Gj , gj , j = 1, . . . , t, define f and g, respectively. Consider the
polyhedra

Ψf
ij = {θ ∈ Θ : θ ∈ Θi ∩ Φj , (Fi −Gj)θ ≤ gj − fi} (5.2a)

Ψg
ij = {θ ∈ Θ : θ ∈ Θi ∩ Φj , (Gi − Fj)θ ≤ fj − gi} (5.2b)

and let {Ψ1, . . . ,Ψv} be the set of all polyhedra Ψf
ij , Ψg

ij having a
nonempty interior. It is easy to show that {Ψ1, . . . ,Ψv} defines a poly-
hedral partition of Θ. By letting `i = i, i = 1, . . . , v the IPWC function
` : Θ ∈ {1, . . . , v} such that

`(θ) = min
i∈{1,...,v}: θ∈Ψi

{i}
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we have that

h(θ) =
{

Fiθ + fi if θ ∈ Ψ`(θ) = Ψf
ij for some j ∈ {1, . . . , t}

Gjθ + gj if θ ∈ Ψ`(θ) = Ψg
ij for some i ∈ {1, . . . , s}

and therefore that h is PWA.

The following Theorem 5.1.3 characterizes the behavior of one sub-
iteration j of Algorithm 3 as a function of the parameters θ.

Theorem 5.1.3. Let zj−1 : Θj → Rn and πj−1 : Θj → Rm be affine
functions on a polyhedron Θj ⊆ Rnθ , and let Aj−1 ⊆ K, Vj−1 ⊆ K \
Aj−1. The following properties hold:

i) By letting p(θ) = 0 if no constraint is violated (Vq−1 = ∅), the
index p : Θj → N ∪ {0} selected according to (4.15a) or (4.15b) is
IPWC;

ii) The step directions ∆zj, ∆πj obtained from (4.8) are PWC;

iii) the index k : Θj → N selected according to (4.11) is IPWC.

iv) the step-size αj : Θj → R ∪ {+∞} defined in (4.9) is PWA;

v) the functions zj : Θj → Nn, πj : Θj → Rm defined by (4.7) are
PWA.

Proof. i) Let zj(θ) = Azθ + bz define the affine function zj over Θj .
Then, g`(zj) = G`z

j −W`θ − w` = (G`Az −W`)θ + G`bz − w` is also
affine, ∀` ∈ I. Let Ḡ` = G`Az −W`, w̄` = w` −G`bz and

Θ1
` ={θ ∈ Θj : (Ḡ` − Ḡh)θ ≥ w̄h − w̄`, Ḡ`θ ≥ w̄`, ∀h ∈ I, h 6= `}

(5.3a)

Θ2
` ={θ ∈ Θj : Ḡhθ ≤ w̄h, Ḡ`θ ≥ w̄`∀h ∈ I ∩ {1, . . . , `− 1}}. (5.3b)

Consider the polyhedra

Θ0 = {θ ∈ Θj : Ḡ`θ ≤ w̄`, ∀` ∈ I}

Θ` =
{

Θ1
j if p = arg max{Ḡ`θ − w̄`}

Θ2
j if p = mini∈K{i| gi(zj) > 0}.

(5.4)
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The polyhedra {Θ`}m`=0 define a polyhedral partition of Θj as: (i) they
are included in Θj by construction, (ii) each θ ∈ Θp(θ), where p(θ) = 0
if Ḡ`θ ≥ w̄`, ∀` ∈ I, or p = arg max{Ḡ`θ− w̄`} if rule (4.15a) is used, or
p = mini∈K{i| gi(zj) > 0} in case (4.15b) is adopted, (iii) the interiors
Θ̊` are obtained by changing “≥” to “>” in (5.4), so no θ can belong
simultaneously to two different interiors of polyhedra. Since both rules
in (4.15) are equivalent to setting

p(θ) = min
`∈{0,...,m}: θ∈Θ`

{`}, (5.5)

function p is IPWC.
ii) From (4.6) we have that Hj−1 and G∗Aj−1 are independent from

θ, so the same holds for Jj1 , J
j
2 and R−1,j . Since Gp depends on p

that by (5.5) is IPWC, the step directions obtained from (4.8) are PWC
functions.
iii) Since πj−1 is an affine function of θ, say πj−1(θ) = Aπθ+ bπ, and

∆πj is PWC, their negative ratio −π
j−1(θ)
∆πj

l

is PWC over the partition
of Θj defined by (5.4), for all l ∈ Pj−1 = {k1, . . . , kt} = {l ∈ Aj−1 :
∆πjl < 0}, where t = #Pj−1. Let (Cl,1, dl,1), . . ., (Cl,s, dl,s) define the
corresponding affine terms of the PWC ratios and consider the polyhedra

Φi,` = {θ ∈ Θ` : (Cki,` − Ckh,`)θ ≤ dkh,` − dki,`,
∀h = 1, . . . , t, h 6= i, ` = 1, . . . , s}. (5.6)

Each set of polyhedra {Φi,`}ti=1 also defines a polyhedral partition of
Θ`, for all ` = 1, . . . , s. Since (4.11) is equivalent to setting

k(θ) = min
i∈{1,...,t}: θ∈∪`∈Pj−1Φi,`

{ki} (5.7)

k is also an IPWC function on Θj .
iv) If #Aj−1 = 0 or ∆πj ≥ 0 then αj1(θ) = +∞ for all θ ∈ Θj , cf.

Step 8 of Algorithm 3. Otherwise,

αj1(θ) = Ck(θ)θ + dk(θ) (5.8)

and therefore αj1 is PWA. Similarly, since zj−1 is affine, we have that

αj2(θ) = Ch(θ)θ + dh(θ) (5.9)
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with

Ch(θ) =
Wp(θ) −Gp(θ)Az

Gp(θ)∆zj
(5.10a)

dh(θ) =
wp(θ) −Gp(θ)bz
Gp(θ)∆zj

(5.10b)

is also PWA. If αj1(θ) = +∞ then αj(θ) = αj2(θ) for all θ ∈ Θj and so
αj is PWA. Otherwise, Lemma 5.1.2 proves that αj = min{αj1, αj2} is
PWA. As a result, we consider the set of polyhedra

Φ̃0,` = {θ ∈ Θ` : Ckj ,` − Ch,` ≤ dh,` − dkj ,`, ∀j = 1, . . . , t} (5.11a)
Φ̃i,` = Φi,` \ Φ̃0,`, ∀i = 1, . . . , t (5.11b)

such that {Φ̃i,l}ti=0 defines a polyhedral partition of Θ`. v) The functions
zj and πj defined in (4.7) are the sum of an affine and PWA function,
and are therefore PWA.

Theorem 5.1.4. Let Θ ⊆ Rnθ and z0, π0 be affine functions of θ on Θ.
Then each iterate zj, πj defined in (4.7) is PWA for all j ∈ N such that
Algorithm 3 is executed. Moreover, N : Θ→ {0, . . . , Nmax} is IPWC.

Proof. Theorem is proven by induction. Since z0, π0 are affine, they
are also PWA. Assume zj−1, πj−1 are PWA functions defined over a
polyhedral partition {Θj−1

i }sj−1

i=1 of Θ. Therefore, zj−1 and πj−1 are
affine on each polyhedron Θj−1

i , and by property (v) of Theorem 5.1.3 we
have that zj , πj are PWA functions defined over a polyhedral partition
{Θj−1

ih }
tj−1
i

h=1 of Θj−1
i . As the collection of sets

{
Ψj
i

}Lj
i=1

=
{

Θj−1
1h

}tj−1
1

h=1
∪ . . . ∪

{
Θj−1
sj−1h

}tj−1
sj−1

h=1
,

where Lj =
∑sj−1

i=1 tj−1
i , is a polyhedral partition of Θj−1, it follows that

zj , πj are PWA over Θj−1.
Since by Theorem 5.1.1 the number of recursive partitioning is finite,

Θ gets partitioned in a finite number of polyhedral sets Ψ1, . . . ,ΨM .
Each polyhedron Ψi is characterized by either Vj = ∅ (optimal solution
found) or αj = αj1 = ∞ (infeasibility) and by the number Ni ≤ Nmax
of recursive splitting it took to get defining Ψj . Then, the function N
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such that N(θ) = Ni if θ ∈ Ψi, i = 1, . . . ,M is IPWC.

The following corollary confirms a well known property of the opti-
mizer z∗ proved in [20, Theorem 4].

Corollary 5.1.5. The multiparametric QP solution vector z∗ of (3.15)
is PWA with respect to θ over a subset of Θ.

Proof. Easily follows since, for each i = 1, . . . ,M , either z∗(θ) = zNi(θ)
or the problem is infeasible, for all θ ∈ Ψi.

Thanks to all the previous results, we detail next the certification
algorithm for active-set methods (3.15). Let Th be the h-th tuple defined
by the following arguments:

Th = (Θh,Ah, Ahz , bhz , Ahπ, bhπ, Jh1 , Jh2 , Rh, qh) (5.12)

where Θh are polyhedra where each tuple is defined, and provide a
partition of Θ. The algorithm iteratively constructs two lists of tuples
corresponding to parameters θ ∈ Θ for which the QP (3.15) has an
optimal solution or is infeasible, called T and T̄ respectively. These lists
are build by partitioning Θ in polyhedra depending on the behavior of
each consecutive iteration q made by the GI Algorithm 3. The core
of the certification algorithm is the way to split a given polyhedron
Θ`, obtained as in (5.4) for the iteration q, in all the possible polyhedra
that are either feasible, with constraint p(θ) active at q+1, or infeasible.
Given Θ`, let Γi` and Γ̄j` define the i-th feasible and the j-th infeasible
polyhedra. From Theorem 5.1.4 it follows that {Γi`}

nγ
i=1∪{Γ̄j`}

nγ̄
j=1 define

a polyhedral partition of Θ`, where different polyhedra mean different
sequence of constraints dropped before adding the violated constraint
p(θ) to the current active set, or before verifying the QP infeasibility.
Therefore, each tuple that describes the status of the solver at q in
the particular polyhedron Θq is iteratively split into two sets of tuples
{T iΓ,`}

m, nγ,`
`=1,i=1 and {T jΓ̄,`}

m, nγ̄,`
`=1,j=1, associated with the sets of polyhedra

{Γi`}
m, nγ,`
`=1,i=1 and {Γ̄j`}

m, nγ̄,`
`=1,j=1. Let the following equations hold

(C̃, d̃) =
{

(Ck, dk) if αj ≡ αj1
(Ch, dh) if αj ≡ αj2,

(5.13)
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Algorithm 4 Parametric GI’s dual QP iteration
Input: T q=(Θq ,Aq , Aqz , bqz , Aqπ , bqπ , Jq1 , J

q
2 , R

q , q), G,W,w

1: Define {Θ`}m`=0 as in (5.4) and p as in (5.5);
2: if Θ̊0 6= ∅ then
3: To = (Θ0,Aq , Aqz , bqz , Aqπ , bqπ , Jq1 , J

q
2 , R

q , q);
4: end if
5: for ` = 1, . . . ,m such that Θ̊` 6= ∅ do
6: T` ← {T q}, TΓ,` ← ∅, TΓ̄,` ← ∅;
7: while T` 6= ∅ do
8: extract from T` a tuple

T j
`
← (Θj

`
,Aj

`
, Aj

z,`
, bj
z,`
, Aj

π,`
, bj
π,`
, Jj1,`, J

j
2,`, R

j
`
, q);

9: ∆zj
`
← −Jj2,`(J

j
2,`)
′Gp, ∆πj

`
← −R−1,j

`
(Jj1,`)

′G′p;
10: if (∆πj

`
≥ 0 or #Aj = 0) then αj1,` ←∞;

11: if ∆zj
`

= 0 then TΓ̄,` ← TΓ̄,` ∪ {T
j
`
}; else

12: Update Aj+1
z,`

, bj+1
z,`

, Aj+1
π,`

, bj+1
π,`

as in (5.14)–(5.15);
13: Update Jj+1

1,` , J
j+1
2,` , R

j+1
`

,Aj+1
`

adding constraint p;
14: Set the tuple

T j+1
1,` ← (Θj

`
,Aj+1

`
, Aj+1

z,`
, bj+1
z,`

, Aj+1
π,`

, bj+1
π,`

, Jj+1
1,` , J

j+1
2,` , R

j+1
`

, q+1);
15: TΓ,` ← TΓ,` ∪ {T j+1

1,` };
16: end if ;
17: else
18: partition Θ` as in (5.11), with k as in (5.7);
19: if ∆zj

`
> 0 then

20: Update Aj+1
z,`

, bj+1
z,`

, Aj+1
π,`

, bj+1
π,`

as in (5.14)–(5.15);
21: Update Jj+1

1,` , J
j+1
2,` , R

j+1
`

,Aj+1
`

adding constraint p;
22: Set the tuple

T j+1
1,` ← (Φ̃j0,`,A

j+1
`

, Aj+1
z,`

, bj+1
z,`

, Aj+1
π,`

, bj+1
π,`

, Jj+1
1,` , J

j+1
2,` , R

j+1
`

, q+1);
23: TΓ,` ← TΓ,` ∪ {T j+1

1,` };
24: end if ;
25: for i = 1, . . . , t with Φ̊i,` 6= ∅ do
26: Update Aj+1

π,`
, bj+1
π,`

as in (5.15);
27: Update Jj+1

1,` , J
j+1
2,` , R

j+1
`

,Aj+1
`

removing constraint p;
28: if ∆zj

`
= 0 then

29: Set the tuple
T j+1

2,` ← (Φ̃j
i,`
,Aj+1

`
, Aj

z,`
, bj
z,`
, Aj+1

π,`
, bj+1
π,`

, Jj+1
1,` , J

j+1
2,` , R

j+1
`

, q);
30: else
31: Update Aj+1

z,`
, bj+1
z,`

as in (5.14);
32: Set the tuple

T j+1
2,` ← (Φ̃j

i,`
,Aj+1

`
, Aj+1

z,`
, bj+1
z,`

, Aj+1
π,`

, bj+1
π,`

, Jj+1
1,` , J

j+1
2,` , R

j+1
`

, q);
33: end if ;
34: T` = T` ∪ {T j+1

2,` };
35: end for;
36: end if ;
37: end while
38: end for.

Output: Tuple To; sets of tuples {T iΓ,`}
m, nγ,`
`=1,i=1 , {T

j

Γ̄,`}
m, nγ̄,`
`=1,j=1.
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then, for each new tuples derived from T j−1, the following parametric
primal update is performed:

Ajz = Aj−1
z + C̃∆zj

bjz = bj−1
z + d̃∆zj ,

(5.14)

and the parametric dual update is defined by:

Ajπ =





[
Aj−1
π

0

]
+ C̃

[
∆πj

1

]
, if constraint is added;

Aj−1
π + C̃∆πj , if constraint is dropped;

bjπ =





[
bj−1
π

0

]
+ d̃

[
∆πj

1

]
, if constraint is added;

bj−1
π + d̃∆πj , if constraint is dropped.

(5.15)

Algorithm 4 characterizes the steps to split a given polyhedron Θq at
a generic iteration q, and Algorithm 5 iterates Algorithm 4 in order to
characterize the entire parameter set Θ. This provides the complete
list of optimal and infeasible tuples that partition the Θ into polyhedra
characterized by different steps of a dual active-set algorithm to reach
the optimal solution, or to detect infeasibility. Therefore the following
result holds,

Result 1. Consider the QP problem (3.15) for θ ∈ Θ and let T, T̄ be
the lists of tuples generated by Algorithm 5. Then the dual active-set
method of Algorithm 3 takes no more than

Nmax = max
T∈T∪T̄

{q(T )} (5.16)

iterations to solve (3.15) or detect infeasibility for any θ ∈ Θ, and exactly
Nmax iterations for all θ ∈ Θ(T ) such that q(T ) = Nmax, where q(T ) and
Θ(T ) denote the value q and set Θ associated with tuple T , respectively.

Even though the bound Nmax is derived analyzing the parametric
behavior of the GI algorithm, the same Nmax applies to all dual active-
set methods that add violated constraints one-by-one, and select p with
the same rule used for generating {Θ`}m`=0 in (5.4). Indeed, once p is
chosen, no matter how system (4.3) is solved the solution of the reduced
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equality QP problem remains the same.
Taking a step forward, what really counts in embedded MPC is the

worst-case CPU run-time, rather than the number of iterations. This is
of particular interest in active-set methods, where the solver iterations
have different execution time, and therefore the worst-case number of
iterations does not necessarily correspond to the worst-case time. In
order to address this issue, the certification algorithm provides also the
exact number of flops nimp required to reach the optimal solution in
each tuple Th defined as:

Th = (Θh,Ah, Ahz , bhz , Ahπ, bhπ, Jh1 , Jh2 , Rh, qh, nhimp). (5.17)

where nimp is incrementally updated at every sub-iteration j, and may
be even further differentiated into the number of atomic and non-atomic
operations, like square-roots. Additionally, multiple nimp can be simul-
taneously computed, extending immediately the certification algorithm
to other dual active-set methods for QP’s, including range-space or null-
space based methods [35,107], so that one can choose the best solver for
a given MPC controller based on the one that has the least worst-case
execution time. The use of information on nimp allows to exactly certify
the worst-case, by computing

nmax
imp = max

T∈T∪T̄
{nimp(T )} (5.18)

where nimp(T ) associates the value nimp with tuple T . The value nmax
imp

can be then used to derive the worst-case time, given a particular hard-
ware architecture. Additionally, the following result holds.

Result 2. The certification algorithm also provides the multiparametric
solution of (3.15) as a by-product. The convex polyhedra associated
with each optimal active set A, corresponding to the union of the regions
θ(T ), T ∈ T, such that A(T ) = A, can be immediately computed as
in [20], by imposing the primal and dual feasibility conditions:

(GAz(T )−W )θ ≤ w −Gbz(T ) (5.19a)
−Aπ(T )θ ≤ bπ(T ) (5.19b)

for some T such that A(T ) = A.
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Given the output of the certification algorithm, Result 2 allows to
compute the explicit solution of the MPC problem, so that one can op-
timally decide whether implicit or explicit MPC should be chosen for the
implementation, given the certified complexity and memory occupancy
of both the solutions.

Algorithm 5 GI’s QP solver certification
Input: Matrices H,F,G,W,w defining problem (3.15) and polyhedral
set Θ of parameters.

1: Compute Cholesky factorization LL′ = H, J0
2 ← L−T ;

2: T← ∅, T̄← ∅;
3: C ← {(Θ, ∅,−H−1F, 0,M0,0,M0,0,M0,0, J

0
2 ,M0,0, 0)};

4: while C 6= ∅ do
5: T q ← extract tuple from C;
6: Execute Algorithm 4 with input data from T q;
7: T← T ∪ {To};
8: T̄← T̄ ∪ {T iΓ̄,`}

m, nγ̄,`
`=1,i=1;

9: C ← {T iΓ,`}
m, nγ,`
`=1,i=1;

10: end while
Output: List of optimal tuples T, list of infeasible tuples T̄.

5.2 Examples

The certification Algorithm 5 is tested on four well known MPC prob-
lems taken from the Model Predictive Control Toolbox for MATLAB R©

demos library: an inverted pendulum control problem, consisting of con-
trolling a single-input-multi-output inverted pendulum on a cart, with
a measured disturbance and input constraints; the DC motor control
problem, concerning the control of a DC servomechanism under voltage
and shaft torque constraints [119]; the nonlinear demo control prob-
lem, consisting of controlling a multi-input multi-output nonlinear plant
with a linear MPC formulation; and the multivariable AFTI-16 aircraft
control problem, characterized by an open-loop unstable pole and con-
straints on both inputs and outputs [120]. We use here exactly the
same settings used in the toolbox, so that the results are reproducible.
Table 5.1 collects the dimension of the problems.
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Figure 5.1: Results of the explicit certification algorithm: Partition of
the parameter set Θ based on the number of iterations re-
quired by the GI QP solver (same color = same number of
QP iterations).

To better clarify the operation of Algorithm 5, Figure 5.2 shows a sam-
ple 2D section of the polyhedra associated with optimal tuples {T i}#T

i=1
for each tested control problem, where regions corresponding to nodes
that share the same number of iterations have the same color. As ex-
pected, {T̄ i}# T̄

i=1 = ∅ for all the problems, that is the GI algorithm
applied to the four examples is always feasible in the set of interest (all
output constraints are treated as soft constraints in the toolbox). In-
stead by merging the regions that share the same optimal active-set, we
get the explicit MPC solution, for which Figure 5.2 shows the same 2D
section considered before. Therefore, the final goal of the certification
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Figure 5.2: Results of the explicit certification algorithm: Partition of
the parameter set Θ based on the explicit solution (same
color = same optimal active set).

algorithm is to have results on MPC problems, like those collected in
Table 5.2. In the specific, the worst-case number of iterations Nmax, the
single and double precision memory allocation mimp, and the worst-case
number of flops nmax

imp are reported for implicit MPC solved with the GI
algorithm (selecting p as in (4.15a)). The table also collects information
on explicit MPC, namely the number of regions of the explicit solution
nr, its memory occupancy mexp in single and double precision, and the
worst case number of flops nmax

exp .

In order to obtain the results on explicit MPC, let the explicit optimal
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Table 5.1: Dimensions of MPC problems for complexity certification
algorithm
inv. pend. DC motor nonlinear demo AFTI 16

nx 5 4 5 6
nu 1 1 3 2
ny 2 2 2 2
Np 50 10 5 10
Nu 5 2 2 2
n 5 3 6 5
m 10 10 18 12
nθ 9 6 10 10

Table 5.2: Results from the complexity certification algorithm of GI
solver (max violated selection rule (4.15a)).

inv. pend. DC motor nonlin. demo AFTI 16

Explicit MPC
nr 87 67 215 417
nmax

exp (±, ∗) 3382 1689 9184 16434
mexp 16|32 bit (kb) 28.2|55.4 15.7|30.3 148.8|296.6 215.0|430.0

Implicit MPC
Nmax 11 9 13 16
nmax

imp (±, ∗,÷)|sqrt 3809|27 2082|9 7747|37 7807|33
mimp 16|32 bit (kb) 12.2|15.4 10.9|12.9 14.3|19.7 12.5|16.0

control law be the PWA function:

u∗exp(θ) = {Kiθ + ci, ∀θ ∈ Pi, i = 1, . . . , nr} (5.20)

with Ki ∈ Rnu×nθ , ci ∈ Rnu , {Pi}nri=1 a polyhedral partition of Θ such
that Pi = {θ ∈ Rnθ |Eiθ ≤ ei,∀i = 1, . . . , nr}, where Ei ∈ Rnie×θ,
ei ∈ Rnie are a minimal polyhedral representation of (5.19). The worst-
case number of flops nmax

exp , needed to find and apply the optimal solution
through explicit MPC, and the memory occupancy mexp in kilobytes
to store the PWA control law and the needed information for point
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location, can be calculated as:

nmax
exp = 2nθ(nu + nr) +

nr∑

i=1
nie (5.21a)

mexp = ((nθ + 1)nu + nθ + 1)nr
pf

(5.21b)

with pf = 32 for double precision and pf = 64 for single precision, un-
der the assumption of using the explicit algorithm presented in [22]. For
both implicit and explicit MPC, memory allocation also comprises the
solver code, that, in the case of explicit MPC, is negligible (< 1 kB),
whereas our implementation in C -code of Algorithm 3 takes approxi-
mately 8 kB. We count square roots separately from other arithmetic
operations, as the associated computation time depends on the archi-
tecture. In conclusion, Table 5.2 allows the designer to certify for each
problem if implicit MPC will be faster or not with respect to explicit
MPC, and to select whether to use one or the other solution in terms of
speed and memory occupancy.
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Chapter 6

Certified fast embedded MPC

The research in convex optimization led to a set of new efficient solvers
with appealing features for embedded MPC, like those covered in Chap-
ter 5. However, in order to favor the spread of MPC in embedded
applications, accelerating techniques have been developed as well, and
last years count several methods to accelerate online QP solvers. A wide
portion of them is closely related to the explicit solution. An example
is qpOASES [34, 40], which reduces the number of iterations when the
solutions of two successive QP problems are close enough. The Phase
I of primal active-set method is therefore avoided by moving on an ho-
motopy path in the parameter space. Another well-known solution is
partial enumeration, or semi-explicit MPC, which combines a subset
of the underlying explicit solution with an online solver [41–43]. Only
some of the polyhedral partitions and gains (usually the ones at the
most recent time steps) are stored in a fixed dimensional table, and
before running the online solver, a point location is performed in this
partial explicit solution. If it is successful, the computation time can
be drastically reduced because the online optimization is not performed.
The consequent drawback, is the direct dependence of performance from
the memory allocated for the look-up table. Recently, the idea of ex-
ploiting an incomplete information of inactive constraints by saving a
set of regions of activity has been proposed [45]. A number of regions
equal to the constraints cardinality is needed in that case. The method
has been further improved by showing that, if the cost function is a
Lyapunov function for the closed-loop system, the inactive constraints
can be derived without storing explicit regions [68]. Another different
approach that can be classified as trade-off between explicit and implicit
optimization has been presented in [44]. Here a PWA approximation of
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the optimal control law is computed offline and used to warm start a
primal active-set method with a limit on the maximum number of iter-
ations. The direct drawback is the sub-optimal solution obtained when
more iterations are needed.
However, all the aforementioned methods share some disadvantages

that can be crucial for embedded applications. First, the trade-off be-
tween the stored data and the performance improvement is not usually
clear, or even better certifiable [41,44]. Indeed, searching into the partial
explicit solution takes time, and with many regions this point location
procedure can be too costly to be beneficial. The second, and most
important, limitation is the impossibility to guarantee improvements in
the worst-case, unless opting for a sub-optimal solutions, e.g. [44]. This
is due to the underlying concept of warm-start that is the base of most
of the acceleration methods. In the worst-case, such as after a sudden
change in the reference or in the measure disturbance, the solutions of
successive QP problems can be arbitrary different [40, 68]. Therefore,
even if these methods are viable options to reduce the average number
of iterations, the behavior in the worst-case can be, potentially, even
worse. If there is no guarantee with respect to the worst-case time,
the usefulness of an accelerating technique in embedded MPC is very
questionable.
By making use of some of the results obtained in Chapter 5, we

present in the next two novel accelerating methods for MPC, which
overcome the drawbacks discussed above. In Section 6.1 we propose
a novel technique that combines implicit and explicit MPC, and that
we refer to as Worst Case Partial Enumeration (WCPE)-MPC. As sug-
gested by the name, WCPE-MPC certifies exactly the worst-case time
improvement, contrarily to other semi-explicit techniques. Furthermore
it provides always the optimal solution, and allows one to optimally se-
lect the trade-off between memory occupancy and speed enhancement,
difficult in other cases. Then, in Section 6.2 we present a simple yet
powerful method to accelerate implicit MPC that exploits the partic-
ular structure of the constraints derived from an MPC problem [111].
The developed technique consists of an heuristics-based priority rule for
the selection of a violated constraint in dual active-set methods. It can
reduce both the number of iterations and the computational demand
of the single iteration. One of the advantages with respect to the state
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of the art is that this technique relies only on the information com-
ing from the solver at iteration q, therefore it does not depend neither
from the explicit solution or the warm-start concept. This degree of
freedom allows to combine it with other well known techniques, even
WCPE-MPC. However, the main advantage of the method that makes
it shining for embedded MPC is the possibility to be exactly certified,
by exploiting the tools developed in Chapter 5. Therefore, even though
it is an heuristic approach, the eventual improvement for the worst-case
can be exactly verified before implementing it.

6.1 Worst-case partial enumeration MPC
Chapter 5 has described how to evaluate when there is a certified im-
provement into adopting an online solver or the explicit solution, being
the memory occupancy and the flops needed to obtain the solution in
the worst-case exactly computable. However, in some cases a solution
that combines both the strategies can be outperforming. This is the
main idea of partial enumeration, where a portion of the multipara-
metric solution is stored as a table and used in conjunction with an
online solver [41]. The WCPE-MPC here proposed builds upon the
complexity certification of Algorithm 5, in order to identify those re-
gions that, if stored as explicit solution, will help improving the worst-
case number of flops of an implicit approach. Being interested in the
worst-case improvement, the partial solution that must be stored is of
fixed dimensions, and not updated online, in contrast to what done
in [41]. The basic idea of the proposed WCPE-MPC approach is to first
search the optimal solution in the partial explicit PWA law, and, if the
search fails, an online dual active-set solver is executed. The reason to
use the a dual active-set method is the possibility to certify its execu-
tion time in those regions where the PWA law is not stored. Define
P̄ = P({1, . . . , nr})\ (∅, {1, . . . , nr}), with P(X) the power-set of X, and
consider the partial explicit control law u∗exp,N (θ) derived from (5.20):

u∗exp,N (θ) = {Kjθ + cj , ∀θ ∈ Pj , ∀j ∈ N} (6.1)

with N ∈ P̄ the set of indexes corresponding to the affine functions of
u∗exp(θ) to be included in the partial explicit solution, where #N < nr
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and ∪j∈N {Pj} ⊂ Θ.
For each polyhedron Pj that defines the partial PWA function (6.1),

let Cj be the list of “neighboring” polyhedra of Pj , such as:

Cj = {h |Ph is a neighbor ofPj , h = 1, . . . , nr} (6.2)

where Cj ∈ N
ncj
+ , and Ph is a neighbor of Pj if they share a facet.

Consider the set of indexesM, such as:

M = {h | h ∈ Cj , ∀j ∈ N} (6.3)

and define the scalar PWA descriptor function r(θ) : Rnθ → R

r(θ) = {ri(θ) = K̄iθ + c̄i | θ ∈ Pi, i ∈M} (6.4)

where K̄i ∈ Rnθ , c̄i ∈ R and K̄j 6= K̄h, ∀h ∈ Cj , j ∈ N . The
PWA descriptor function r(θ) is derived from the PWA optimal con-
trol law (5.20), cf. [121]. For each Pj , consider the ordering function
Oj(θ) = {oji (θ) | i ∈ Cj}, such that:

oji (θ) =
{

+1 if rj(θ) ≥ ri(θ)
−1 if rj(θ) < ri(θ),

(6.5)

with j ∈ N and i ∈ M, and let Sj = Cj(θ̄), with θ̄ ∈ P̊j , ∀j ∈ N be
pre-calculated set. Given u∗exp,N (θ), r(θ) and Sj , ∀j ∈ N , Algorithm 6
presents the steps of the proposed WCPE-MPC.
The procedure is very similar to standard semi-explicit MPC, however

what makes the difference is how u∗exp,N (θ) is selected, so to guarantee an
improvement of the worst-case number of flops nmax

imp . Given nr explicit
regions, a total of 2nr − 2 partial explicit solutions exist. Definition 6.1
and Theorem 6.1.1 allow to reduce the entire set to only those regions
that can improve the implicit worst-case nmax

imp .

Definition 6.1. Given a set of indexes N ∈ P̄, let nmax
N be the worst-

case number of flops of WCPE-MPC Algorithm 6 with input argument
the partial explicit solution u∗exp,N , such that

nmax
N = nmax

exp,N + nmax
imp,N , (6.6)
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Algorithm 6 WCPE-MPC Algorithm
Input: Matrices H,F,G,W,w, θ defining problem (3.15). u∗exp,N (θ) =
{Kjθ+cj , ∀θ ∈ Pj , ∀j ∈ N}, r(θ) = {ri(θ) = K̄iθ+c̄i | θ ∈ Pi, i ∈
M}, and {Sj}j∈N
1: j ← 1, f ← true;
2: while f or j ≤ #N do

3: Oj(θ)← {oji (θ) | oji (θ) =
{

+1 if rj(θ) ≥ ri(θ)
−1 if rj(θ) < ri(θ)

, i ∈ Cj};

4: if Oj(θ) = Sj then
5: f ← false;
6: else
7: j ← j + 1;
8: end if
9: end while
10: if f =false then
11: return u∗ ← Kjθ + cj ;
12: else
13: z∗ ← execute Algorithm 3 with inputs H,F,G,W,w, θ;
14: return u∗ ← first nu rows of z∗;
15: end if
Output: Optimal control input u∗.

where nmax
exp,N is the required number of flops, in the worst-case, for

the point location in the partially explicit solution, and nmax
imp,N is the

worst-case number of flops for the online solver. �

Lemma 6.1.1. Given P̄ the collection of all the possible sets of in-
dexes to build the partial explicit solution (6.1), let {Ni}nr−1

i=1 , with
Ni ∈ P̄,∀ i ∈ {1, . . . , nr − 1}, be the reduced collection of sets of in-
dexes defined such that

Nj = Ni ∪ h, ∀j > i, h ∈ {1, . . . , nr} \ Ni (6.7a)
nmax

imp,Nj ≤ nmax
imp,Ni , ∀j > i (6.7b)

with i ∈ {1, . . . , nr − 2} and j ∈ {2, . . . , nr − 1} . Then {Ni}nr−1
i=1 are

the only set of indexes for which the corresponding set of partial explicit
solutions u∗exp,Ni(θ) can guarantee that nmax

Ni ≤ nmax
imp hold true.

Proof. Consider the v-th set of indexes Nv that defines the partial ex-
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plicit solution u∗exp,Nv (θ). Let nmax
Nv = nmax

exp,Nv + nmax
imp,Nv be the worst-

case number of flops of Algorithm 6 with u∗exp,Nv (θ) as the input argu-
ment, and define the list of tuples TNv = {T iNv}

#TNv
i=1 , such that

TNv = {T i ∈ T |Θ(T i) ∩ {Pj}j∈Nv = ∅, ∀i = 1, . . . ,#T}, (6.8)

with T the list of optimal tuples obtained from Algorithm 5. The flops
contribution of the implicit solver to the worst-case nmax

Nv is

nmax
imp,Nv = max{nimp(T iNv )| i = 1, . . . ,#TNv} (6.9)

with nmax
imp,Nv = nimp(T sNv ). Consider then Nh = Nv ∪{h}, with h an in-

dex to be chosen, and the corresponding partial explicit law u∗exp,Nh(θ).
The relation nmax

exp,Nh > nmax
exp,Nv holds by construction for every h. There-

fore, the necessary condition to meet the requirement nmax
Nh < nmax

Nv is
that nmax

imp,Nh < nmax
imp,Nv and h is selected such that T sNv ⊂ Ph.

Theorem 6.1.1 only provides the necessary condition for u∗exp,Nj (θ)
to be a partial explicit solution improving the MPC worst-case. This
allows to reduce the set of interest for implementing Algorithm 6 from
2nr − 2 to nr − 1. However, the “best” partial PWA law among these
nr−1 depends on the particular problem, and more specifically the given
computational and memory limits. Therefore, Algorithm 7 is proposed
in oder to compute the worst-case number of flops {nmax

Ni }
nr−1
i=1 and

memory allocation {mNi}nr−1
i=1 of all the nr−1 partial explicit laws. This

list of the possible implementations of WCPE-MPC can be used by the
designer to select the one that provides the best worst-case improvement,
given a certain limit to the memory allocation. The worst-case number
of flops and occupancy of each partial PWA law is found to be:

nmax
exp,N = 2nθnu + 2nθ #N +

∑

i∈N
nie (6.10a)

mexp,N = (nθ + 1) #M+ (nunθ + nu) #N
pf

. (6.10b)

Result 3. Let mNi being the memory requirements for WCPE-MPC,
when implemented with the i-th partial PWA function of {Ni}nr−1

i=1 .
Then mNi > mNj , ∀i > j. Let m̄ be the memory allocation to store the
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entire WCPE-MPC, i.e. Algorithm 6 code, GI solver code and matrices,
then mNi = m̄+mexp,Ni follows.

Algorithm 7 WCPE Reduction Algorithm
Input: List of optimal tuples T = {T i}#T

i=1 from Algorithm 5, u∗exp(θ) =
{Kiθ + ci, ∀θ ∈ Pi, i = 1, . . . , nr} from (5.20), r(θ) = {ri(θ) = K̄iθ +
c̄i | θ ∈ Pi, i ∈ M}, and the memory occupancy of implicit MPC
mimp

1: N ← ∅, u∗exp,N ← ∅, nmax
N ← ∅, mN ← ∅, i← 0, t← ∅;

2: while i < nr do
3: s = arg maxh={1,...,#T}{nimp(Th)}
4: Extract from T the tuple

T s = (Θs,As, Asz, bsz, Asπ, bsπ, Js1 , Js2 , Rs, qs, nsimp);
5: Remove tuple T s from T;
6: for v = 1, . . . ,#P do
7: if Θs ∩ Pv 6= ∅ then
8: i← i+ 1, t← ∅;
9: Ni ← Ni−1 ∪ {v};
10: for j = 1, . . . ,#T do
11: Extract from T the tuple

T j = (Θj ,Aj , Ajz, bjz, Ajπ, bjπ, Jj1 , Jj2 , Rj , qj , njimp);
12: if Aj = As then
13: t← t ∪ j;
14: end if
15: end for
16: Remove from T all the tuples indexed by t;
17: u∗exp,Ni(θ) = {Kjθ + cj , ∀θ ∈ Pj , ∀j ∈ Ni};
18: Compute nmax

exp,Ni , mexp,Ni as in (6.10);
19: l = arg maxh={1,...,#T}{nimp(Th)}
20: Extract from T the tuple

T l = (Θl,Al, Alz, blz, Alπ, blπ, J l1, J l2, Rl, ql, nlimp);
21: nmax

Ni ← nmax
exp,Ni + nlimp;

22: mNh ← mimp +mexp,Ni ;
23: go to Step 2
24: end if
25: end for
26: end while
Output: List of partial explicit optimal solutions {u∗exp,Ni(θ)}

nr−1
i=1 and

corresponding {nmax
Ni }

nr−1
i=1 and memory allocation {mNi}

¯nr−1
i=1
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6.1.1 Results
In order to show its effectiveness, WCPE-MPC has been tested on the
inverted pendulum and nonlinear demo examples introduced in Sec-
tion 5.2. Figure 6.1 compares the memory occupancy and worst-case
flops of WCPE-MPC, implicit and explicit MPC. For both the exam-
ples the partial PWA law u∗exp,Nj (θ), with Nj ∈ {Ni}

nr−1
i=1 , is obtained

running offline Algorithm 7. The worst case number of flops for WCPE-
MPC has been represented as a function of the increasing memory
occupancy mNi . In the inverted pendulum example (top figure) the
complexity of implicit MPC and of all the possible implementations of
WCPE-MPC is greater than explicit MPC, which would be the pre-
ferred solution with enough memory space, i.e. 55.4 kB in the case
of double precision. However, if this occupied memory is a concern,
WCPE-MPC implemented with the partial PWA law corresponding to
the point labeled p1, guarantees a memory reduction of 50.07% while
worsening the worst-case number of flops only by 7.3%, instead of the
12.6% worsening with the implicit MPC alternative. The results for the
nonlinear demo follow the opposite trend. Implicit MPC outperforms
explicit MPC not only in memory requirements but also in computa-
tional complexity. In this case, the use of WCPE-MPC allows one to
further reduce the worst-case execution time, at the price of storing ad-
ditional data. Indeed, the WCPE-MPC implemented according to the
point labeled p2, guarantees a reduction of 15.4% of the worst-case, by
allocating 21.5kB of memory in addition to those required by implicit
MPC, in a double precision implementation. The examples show two
different scenarios where WCPE-MPC can be successfully used, with ex-
actly computable improvements in memory and complexity that other
semi-explicit methods cannot guarantee.

6.2 Efficient constraints selection for
dual-active set methods

This section presents another novel method to accelerate online MPC
solved by dual active-set algorithm. The idea is to exploit the degree
of freedom, offered by dual algorithms, when choosing the violated con-
straint to add to the active set. As discussed in Chapter 5, two strategies
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Figure 6.1: Results of the WCPE-MPC approach for inverted pendulum
problem (top) and nonlinear demo problem (bottom). Com-
putational complexity (yellow line) of WCPE-MPC is plot-
ted as function of the memory occupancy required to store
an increasing number of regions, from 1 to nr−1, along with
the complexity of implicit (blue line) and explicit (red line)
MPC, and the corresponding memory requirements stored
in brackets. The best tradeoff points between memory and
worst-case execution time are circled.
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Algorithm 8 Heuristics-based constraint selection
Input: Aq ∈ NnA and primal variables zq at iteration q of Algorithm 3,
G, W , θk and w from QP (3.15), and the set of indexes Ku, Ky.
1: Cq ← ∅;
2: Iq ← K \ Aq;
3: for i = 1 : nA do
4: if Aq(i) ∈ {K0

u, . . . ,KNu−2
u } then

5: Cq ← Cq ∪ K(Aq(i) +Nu);
6: end if
7: if Aq(i) ∈ {K0

y, . . . ,K
Ny−2
y } then

8: Cq ← Cq ∪ K(Aq(i) +Np);
9: end if
10: end for
11: Cq ← Cq \ Aq
12: V1 ← {i ∈ Cq |Gizj,i −Wiθk − wi > 0};
13: if V1 6= ∅ then
14: return p← arg maxi∈V1

{Gizj,i −Wiθk − wi};
15: else
16: V2 ← {i ∈ Iq \ Cq |Gizj,i −Wiθk − wi > 0};
17: if V2 6= ∅ then
18: return p← arg maxi∈V2

{Gizj,i −Wiθk − wi};
19: else
20: return z∗ ← zq;
21: end if
22: end if
Output: Violated constraint p to add to the active-set, or optimality
condition and z∗.

are commonly used to select the violated constraint p: the most violated
(4.15a), and the first violated (4.15b). Between the two, the most vi-
olated is usually preferred, because it turns into fewer iterations (on
average) and it is less prone to incur into degeneracy cases [32]. How-
ever, checking all the violated constraints at each iteration is costly,
especially in those problems derived from MPC where m > nz, and
therefore the first violated rule, which is computationally cheaper in the
single iteration, could be faster in some cases. Chapter 5 has shown
how the two strategies can be both certified, and therefore given an
MPC problem it can be exactly computed which one is the best. How-
ever, as long as the index p remains IPWC, any selection rule can be
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certified. The idea of modifying the strategy to choose the violated con-
straints is not new. Indeed, it has been used to limit the infeasibility
effect of solver interruption, by first searching for p in the most recent
prediction horizon [103]. However, the authors are not aware of results
regarding the improvement in computational efficiency by using differ-
ent rules than the standard ones. To this end, here we pursue the idea,
and the experimental observation, that the optimal active set A∗ can
follow a specific pattern when the QP problem comes from an MPC
formulation. Specifically, A∗ is usually composed by input and output
constraints that are consecutive in time, that is, given the QP problem
instance at time k, if a constraint is violated at prediction step i, it will
have an high probability to be violated also at prediction step i + 1.
Under this assumption, the set of constraints from where p is selected
at each iteration can be dynamically divided into two subsets with dif-
ferent “activation probability”. Consider the set of constraints indexes
K, partitioned as in the follows:

K = [ 1, . . . , (ncu ·Nu)︸ ︷︷ ︸
Ku

, (ncu ·Nu + 1), . . . ,m︸ ︷︷ ︸
Ky

]. (6.11)

where the set Ku contains the indexes of K that regard the input con-
straints, whereas Ky contains the indexes of K that regard the output
constraints, and ncu, ncy are the cardinality of constraints imposed on
inputs and outputs, respectively. To simplify the notation we are not
considering the presence of constraints on input rates ∆uk+i|k, although
the extension to this case is straightforward. The sets Ku and Ky are
further divided into Nu and Np subsets respectively, such that:

Kiu = {Ku(q) | q ∈ {(i− 1) · ncu + 1, . . . , i ·Nu}}, (6.12a)
Kjy = {Ky(q) | q ∈ {(j − 1) · ncy + 1, . . . , j ·Np}}, (6.12b)
i = 0, . . . , Nu − 1, j = 0, . . . , Np − 1

The subset Kiu represents the input constraints at the i-th step of the
prediction, whereas Kjy contains the output constraints at j-th step. The
ordering of the constraints within these subsets is preserved to guarantee
the correspondence of constraints for different prediction instants. As an
example, the elements [Ku(1),Ku(nu + 1),Ku(2nu + 1), . . . ] correspond
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to the same input constraint at different prediction steps. This means
that when Ku(1) is added to the working-set, we consider Ku(nu + 1)
as a constraint with higher priority then others.
Let us assume the set of constraints indexes is partitioned as in

Eqs. (6.11), (6.12a) and (6.12b). The steps for the proposed constraint
selection are summarized in Algorithm 8. At each iteration of the dual
active-set, the algorithm extract the subset C ⊆ I which represents a
set of constraints that must be evaluated with higher priority. Thus a
violated constraint is firstly searched into C. If a violated constraint
is found, the remaining constraints C \ K are not evaluated. When
searching into these two different priority sets, a selection rule is still
needed. In this case the most violated criterion is used, but performed
on a reduced set. The proposed strategy is very simple to code, and
can be employed in any dual active-set solver. Furthermore it does not
require additional memory storage, and i) it can reduce the number
of iterations, as constraints that are mostly likely to be active at A∗
are added to the current active set, ii) it can reduce the time spent
to solve the iteration when a violated constraint is found into C, and
moreover for the iterations where this does not happen the time is not
increased. Being the method based only on the constraints structure, it
easily follows that worst-case can benefit from the above advantages as
well. Therefore, similarly to WCPE-MPC, this acceleration technique
is particularly suited for embedded MPC, and overcomes the limit of
well known acceleration methods for which only an improvement of the
average case is demonstrated [34,43,68]. Moreover, it is straightforward
to verify that the index p, selected accordingly to the proposed rule is
IPWC, and therefore the complexity of the algorithm can be certified.

6.2.1 Results

A large collection of random MPC problems has been used to demon-
strate the good performance of the novel selection strategy, applied to
the GI algorithm presented in Chapter 4. However, the improvement
in terms of number of iterations and execution time provided by the
algorithm are independent from the chosen dual active-set solver. The
results have been compared to those obtained with the standard most-
violated selection rule.
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Figure 6.2: Comparison of most-violated and heuristics-based constraint
selection strategies, tested with the GI solver. For each pre-
diction horizon Np, 1000 QP’s arising from random MPC
problems are evaluated, with nx= 6, nu= 3.

Figures 6.2 and 6.3 collect the results, showing the number of iter-
ations and the time to solve a collection of random QPs coming from
MPC problems. The computational environment consists of a PC with
an Intel R©Core i7-4710MQ CPU @ 2.50GHz. Figure 6.2 refer to prob-
lems where nx = ny = 6 and nu = 3 hold, whereas for figure6.3 the
problems have dimensions nx = ny = 12 and nu = 6. The figure shows
the behavior incrementing the prediction horizon, and for each value on
the x-axis, a set of 1000 random MPC problems is solved. The results
show that the iterations and the computation time are improved with
respect to the most violated rule. Table 6.2.1 collects a summary of the
relevant results shown by the figures. For instance, the proposed se-
lection strategy guarantees improvements up to 29.57% for the number
of iterations, and up to 46.83% for the time required to compute the
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Figure 6.3: Comparison of most-violated and heuristics-based constraint
selection strategies, tested with the GI solver. For each pre-
diction horizon Np, 1000 QP’s arising from random MPC
problems are evaluated, with nx= 12, nu= 6.

optimal solution.

Table 6.1: Improvements of the proposed algorithm respect to the stan-
dard “most violated” rule (4.15a)

Min [%] Mean [%] Max [%]

Experiment 1
Iterations 16.27 18.06 19.86
Time 14.41 32.49 43.48

Experiment 2
Iterations 24.03 25.91 29.57
Time 25.64 39.43 46.83
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Chapter 7

Model predictive control for
electrical motors

Electrical systems are one of the fields where embedded MPC has been
widely studied in the very last years. In particular, this chapter will
deal with embedded MPC applied to electrical motors [46,47,122,123].
This interest is motivated by the relatively accurate models available for
electrical devices, the straightforward tuning, and the need to impose
voltage and current constraints for safety and durability reasons [11,
124, 125]. MPC performance are therefore widely appreciated for the
control of electrical motors, as confirmed by the recent literature [49,52,
57,126]. Hot topics which moved this interest are energy efficiency, fast
response, and safety and reliability of the equipments, see for example
[127–130] and references therein. Secondly, the International Energy
Agency recognized electric motors as the single biggest consumer of
electricity [131].
Different electrical motors exist, and this thesis focus on the con-

trol of Permanent Magnet Synchronous Motors (PMSMs), which are
interesting for their power density, fast torque response and long life
spans [12]. As anticipated by the introduction, CCS-MPC and FCS-
MPC are the two common strategies used when controlling transistor-
based systems [48–50,132]. Both of them have been widely investigated,
highlighting their pros and cons [52,53,133]. CCS-MPC is still the pri-
mal choice for applications oriented towards industrial use because it
drives the switches at a fixed frequency, and decouples sampling and
switching frequencies. This translates into less stress for electrical com-
ponents, i.e. the inverter, that are driven by a modulated signal, such
as Pulse Width Modulation (PWM). Moreover, the control frequency
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can be slowed down if the response time is satisfactory without affecting
steady state ripple.
For these reasons, the control of PMSM drives with implicit CCS-

MPC is addressed in this chapter. The results are of particular interest
because the computational burden of such controller is typically con-
sidered unmanageable in this field, due to the cheap boards and the
sampling frequency which ranges from 1kHz to 10kHz. Several con-
tributions have analyzed the use of explicit MPC for electrical motors
control, see e.g. [56, 57, 134], however such results hold for simplified
MPC formulations, with one-step prediction and/or approximated con-
straints [56]. Implicit MPC has been demonstrated to be a valid alterna-
tive if powerful boards are available, like FPGAs. However, a part from
the author’s contribution [37], implicit MPC solved on a cheap board for
motor control has been rarely addressed in the recent literature. The
only contribution this author is aware is [114], where however input
constraints are not considered, and sub-optimality and infeasibility are
allowed by stopping the solver after a fixed amount of iterations.
The control objective addressed in this chapter is the torque tracking

of a PMSM, that we refer to as Model Predictive Torque Control (MP-
TC), and the results here proposed enrich those obtained in [37]. The
main goal is to demonstrate that an efficient implementation of online
QP solvers, like those proposed in the previous part of the thesis, al-
lows one to consider online CCS-MPC as a valuable solution, although
it has been almost abandoned in this field, in favor of explicit MPC or
FCS-MPC, because considered unmanageable. In the specific, the com-
plexity certification plays a unrivaled role in raising up the interest in
CCS-MPC, as its computational feasibility can be exactly demonstrated
offline. This aspect is an important novelty with respect to the present
state of the art.
The proposed MP-TC has been tested on a commercially available

PMSM, controlled by a Texas Instruments DSP, used for power elec-
tronics and electrical drives control. The results show that, as expected,
MP-TC deeply reduces the memory occupation when compared to ex-
plicit MPC. Furthermore, the complexity certification analysis reveals
that, for the particular application, the proposed online solver is cheaper
also in terms of worst-case number of flops, respect to the explicit coun-
terpart. Section 7.1 describes the mathematical model of a PMSM,
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Section 7.2 presents the implementation details of the proposed MP-TC
and finally the experimental results on a commercially available brush-
less motor are shown in Section 7.3.

7.1 Mathematical model

Those control algorithms that rely on the so-called (d, q) reference frame
belong the family of Field Oriented Control (FOC) schemes. The ap-
proach consists in controlling the stator currents represented by a vector,
obtained applying the Park coordinate transformation, which allows for
the decoupling and linearization of the dynamics [135–137]. In the spe-
cific, FOC-based schemes exploit the fact that in the (d, q) reference
frame, synchronously rotating with the rotor, the torque and the flux
dynamics are linear and decoupled, and two independent torque and
flux control loops can be implemented to drive the motor. Therefore,
the electrical model of a PMSM in the (d, q) frame can be expressed by
the following equations:

i̇d(t) = − R

Ld
id(t) + Lq

Ld
ω(t)iq(t) + 1

Ld
ud(t) (7.1a)

i̇q(t) = − R

Lq
iq(t)−

(
Ld
Lq
id(t) + λ

Lq

)
ω(t) + 1

Lq
uq(t), (7.1b)

where d and q are the subscripts for direct and quadrature quantities,
respectively, L, R, i and u are the stator inductance [H], resistance [Ω],
current [A] and voltage [V], respectively. On the other hand, the me-
chanical dynamics is represented by:

ω̇(t) = B

J
ω(t) + p

J
τ(t)− p

J
τl(t) (7.2a)

τ(t) = 3
2p (λiq(t) + (Ld − Lq)id(t)iq(t)) , (7.2b)

where ω(t) is the electrical rotor speed [rad/s], τ(t) is the electrical
torque [Nm], J is the inertia coefficient [kg·m2], λ is the motor flux
leakage [Wb], τl(t) is the load torque [Nm], and p is the number of pole
pairs. In conclusion, the complete mathematical model of an isotropic
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motor, i.e. Ld ≡ Lq ≡ L, is:

i̇d(t) = −R
L
id(t) + ω(t)iq(t) + 1

L
ud(t) (7.3a)

i̇q(t) = −R
L
iq(t)− ω(t)id(t) + 1

L
uq(t)−

λ

L
ω(t) (7.3b)

ω̇(t) = B

J
ω(t) + p

J
Ktiq(t)−

p

J
τl(t), (7.3c)

where Kt = 3
2pλ is the torque constant. Please note that in the rest

of the chapter, the assumption of a single pole pair motor holds, i.e.
p = 1, as for the motor used in experimental results this holds true.
Model (7.3) exhibits a nonlinear behavior in the electrical sub-system,
due to the coupling between currents and speed. In order to obtain an
LTI model to be used in the linear MPC formulation presented in Chap-
ter 3, one can impose a nominal speed ω(t) = ω0 in the bilinear terms
ω(t)iq(t) and ω(t)id(t). Under this assumption, a linearized version of
the equations (7.3a)-(7.3b) is derived in the form:

ẋ(t) = Acx(t) +Bcuu(t) +Bcvv(t) (7.4a)
y(t) = Ccx(t) (7.4b)

where x(t) = [id(t), iq(t)]′ are the states, u(t) = [ud(t), uq(t)]′ are the
manipulated inputs, y(t) = [id(t), τ(t)]′ are the outputs, v(t) = ω(t) is
the measured disturbance, and the c-apex stands for a continuous-time
matrix, with

Ac =



−R
L

ω0

−ω0 −R
L


 , Bcu =




1
L

0

0 1
L


 , Bcv =




0

−λ
L


 , Cc =

[
1 0
0 Kt

]
.

(7.5)

The use of a measured disturbance improves the model accuracy by
modeling part of the time-varying behavior in the affine term v(t), while
still having an LTI model for control purposes. This is an improvement
with respect to more conservative solutions where the effect of the speed
is completely linearized around a steady-state point [138].
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Figure 7.1: Standard field oriented control scheme for a PMSM. Both
the speed loop and the two stator currents loops are con-
trolled by linear regulators.

7.2 Control Design

The standard PI-FOC consists of a cascaded scheme with an outer loop
regulating the rotor speed (or position), and an inner loop regulating
the stator (d, q) currents. The two loops can be considered dynamically
decoupled as the electrical dynamics can be up to one order of magni-
tude faster than the mechanical ones [56]. Therefore, given a reference
trajectory ωref for the rotor speed, the outer loop track it by changing
the torque reference signal τ ref for the inner loop. Figure 7.1 shows
the control architecture of a standard PI-FOC. When the motor is not
supposed to work in flux weakening operation, the direct current com-
ponent id is stabilized at 0, whereas the quadrature component iq tracks
the reference profile iref

q , obtained by scaling the torque reference τ ref by
the torque constant Kt. This control scheme is the most common for
isotropic machines where maximum current implies maximum torque,
i.e. no field weakening operation. To deal also with this aspect, Maxi-
mum Torque per Ampere (MTPA) could be a valid option [55,138], but
this is out of the scope of the work in this thesis.

67



Starting from Figure 7.1, the MP-TC scheme is obtained by replacing
the controller for the electrical subsystem and keeping unchanged the
external loop, that results into the control scheme of Figure 7.2. The
reason to focus the performance enhancement on the inner loop is its
the faster dynamics, and the necessity to impose safety constraints on
stator voltages and currents. Given the MPC formulation of Chapter 3,
the LTI prediction model for the optimization problem is obtained by
the discretization of model (7.4), given sampling time Ts, which results
into the discrete time model:

xk+1 = Axk +Buuk +Bvvk (7.6a)
yk = Cxk (7.6b)

with A = eA
cTs , Bu =

∫ Ts
0 eA

cτdτBcu, Bv =
∫ Ts

0 eA
cτdτBcv, and C = Cc,

which differs from the one used in Chapter 3 only for the measured
disturbance. In the specific, the general formulation (3.2) is slightly
modified to obtain the optimization problem solved at each time step
for MP-TC, such as:

min.
∆u

Np−1∑

i=0
‖Wy(yk+i+1|k − yref

k )‖22+
Nu−1∑

h=0
‖W∆u∆uk+h|k‖22 (7.7a)

s.t. xk|k = xk, (7.7b)
xk+i+1|k = Axk+i|k +Buuk+i|k +Bvvk+i|k, (7.7c)
yk+i+1|k = Cxk+i+1|k, (7.7d)
∆uk+i|k = uk+i|k − uk+i−1|k (7.7e)
∆uk+Nu+j|k = 0, j = 0, . . . , Np −Nu − 1 (7.7f)
vk+i|k = vk, (7.7g)
uk+i|k ∈ U, (7.7h)
yk+i+1|k ∈ Y, (7.7i)
i = 0, . . . , Np − 1, (7.7j)
h = 0, . . . , Nu − 1. (7.7k)

which differs from (3.2) because i) the cost function does not weight the
error on input tracking, ii) there is no preview on the outputs reference
iii) the constraints on ∆u are not needed, iv) and the linear model
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Figure 7.2: The proposed control scheme for PMSM. The speed loop is
controlled by a standard regulator, the inner loop is imple-
ments the model predictive torque control here introduced.

comprises the measured disturbance. By following similar construction
steps of the condensed formulation in Section 3.2, problem (7.7) can be
cast in the QP problem (3.15), with the parameters vector θk equal to:

θk = [uk−1, xk|k, y
ref
k , vk]′. (7.8)

Constraints on stator voltages and currents need to be imposed for
safety reasons, related to the electrical characteristics of the compo-
nents [139]. Specifically, the inverter imposes the phase voltage limit,
depending on the modulation technique. Given a DC-bus voltage VDC,
the limit is found to be:

Vmax = VDC√
3
, (7.9)

for both space vector and pulse-width modulations [138]. Whereas,
constraints on the current Imax are imposed to prevent overheating,
therefore their violation for short periods of time, eventually caused
by constraints’ softening, is allowed. Even though current and voltage
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Figure 7.3: Inputs and outputs constraints imposed by the MPC con-
troller. The blue circles represent the original norm con-
straints of Eq. (7.10). The green regions represent their ap-
proximations, and are the polyhedra described by the sets
U and Y, respectively.

limits are bound constraints in the main frame, they get transformed
into norm constraints in the (d, q) axis, namely:

u ∈ Ũ = {u ∈ R2 : ‖u‖2 ≤ Vmax}, (7.10a)
x ∈ X̃ = {x ∈ R2 : ‖x‖2 ≤ Imax}. (7.10b)

In order to retain the QP formulation, the quadratic constraints (7.10)
are replaced by polytopic approximations, which give the possibility to
exploit all the theoretical results obtained in the previous chapters of this
thesis for QP problems [56,138]. Hexagons can reasonably approximate
the feasible region (7.10), resulting into an acceptable trade-off between
the accuracy and number of inequality constraints. Figure 7.3 shows
such polytopic approximations.

The state vector of the system is fully available, however the use of an
observer is usually suggested in MPC to reduce the impact of measure-
ments noise, e.g. due to transistor switching. Furthermore, in embedded
MPC is common to have a worst-case solution time for the QP problem
that is comparable in order of magnitude to the sampling interval, even
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Figure 7.4: Speed tracking performance for the MP-TC controller.

though always feasible. This holds true also for the application here
presented, as will be confirmed by the experimental results. Therefore,
a delay of one time step is preferably applied to the inputs. This results
into a delayed Kalman filter implementation, where the state estimate
fed to the MPC problem is obtained as:

x̂k+1|k = (A− LC)x̂k|k−1 +Buk−1 +Gvvk + Lyk (7.11)

with L the Kalman gain. Another shrewdness for the MPC implemen-
tation,ì regards the minimization of the tracking error in the presence
of model uncertainty and noise. Several methods have been proposed in
the literature to deal with this issue, and in this work the integral action
on the reference vector has been used [140]. The output reference after
integral action, denoted by ỹref = [̃iref

d , τ̃ ref]′, is obtained as:

ĩref
d (k) = ĩref

d (k − 1) + k1(iref
d (k)− id(k)) (7.12a)

τ̃ ref(k) = τ̃ ref(k − 1) + k2(τ ref(k)− τ(k)) (7.12b)

where k1, k2 are scalar parameters tuned in calibration.
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Table 7.1: Technosoft MBE.300.E500 PMSM specifications
Parameter Units Value

Coil dependent parameters
Phase-phase resistance ohm 8.61
Phase-phase inductance mH 7.13
Back-EMF constant V/1000 rpm 3.86
Torque constant mNm/A 36.8
Pole pairs – 1

Dynamic parameters
Rated voltage V 36
Max. voltage V 58
No-load current mA 73.2
No-load speed rpm 9170
Max. cont. current (at 5000 rpm) mA 913
Max. cont. torque (at 5000 rpm) mNm 30
Max. permissible speed rpm 15000
Peak torque (stall) mNm 154

Mechanical parameters
Rotor inertia kgm2 · 10−7 11
Mechanical time constant ms 7

7.3 Experimental Results
The implicit MP-TC for PMSMs has been tested on a commercially
available device provided by Technosoft SA, namely the MBE.300.E500
motor, whose specifications are collected in Table 7.2. For this appli-
cation the available control board is an F28335 Delfino DSP by Texas
Instruments (TI). This DSP belongs to the TI C2000 series, has a 32-
bit, 150 MHz CPU (6.67ns cycle time) and an IEEE-754 single-precision
Floating-Point Unit (FPU), and a single hardware multiplier (32x32
bit). This computational unit is commonly used for electrical motors
control, and has been chosen to demonstrate the feasibility and cer-
tification of implicit MPC on a cheap board. Two interrupts levels
manage the controller scheduling: (i) a faster loop for current control
with 0.3 ms sampling time, and (ii) a slow loop for speed control with
1.2 ms sampling time. Therefore, the online QP solver must guarantee
that the optimization problem is solved within the 0.3 ms limit, even
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Table 7.2: Design parameters for MP-TC applied to Technosoft
MBE.300.E500 PMSM
Prediction horizon N 3
Control horizon Nu 1
Voltage limit Vmax 24/

√
3 V

Current limit Imax 1 A

Output weights Wy and P
[
1 0
0 1

]

Input increments weights W∆u

[
0.01 0

0 0.01

]

Sampling time Ts 0.3 ms

Table 7.3: Certification of different MP-TC algorithms to control the
Technosoft MBE.300.E500 PMSM

memory
16|32 bit (kB)

flops
(±, ∗,÷)|sqrt nr Nmax

MP-TC 12.7 | 16.4 kB 2431|13 – 5
eMP-TC1 50.9 | 100.8 kB 3868 133 –
eMP-TC2 36.6 | 72.3 kB 2737 95 –

in the worst-case. The parameters used for the design of the MP-TC
controller are collected in Table 7.2. Table 7.3 shows instead the certi-
fication results of the implicit MP-TC, and compare it to an eventual
explicit version of the controller, referred to as eMP-TC, in order to val-
idate which one of the two approaches is better to use. With eMP-TC1
we refer to the explicit version of the implicit MP-TC, i.e. with exactly
the same setup. Whereas eMP-TC2 denotes a simpler version of the
controller, that sacrifices the accuracy into constraints’ approximations
by replacing the polyhedral constraints in Figure 7.3 with simple box
constraints in the (d, q) reference frame, such as:

id ∈ [−εImax, εImax] (7.13a)
iq ∈ [Imax, Imax], (7.13b)

which is similar to what done in [56]. The F28335 DSP has a single-
access RAM block of 34 kB, therefore the results of Table 7.3 shows that
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an eventual implementation of explicit MPC on such board would be
infeasible for the lack of memory, even if implemented in single arith-
metics and in the simplified and less accurate eMP-TC2 version. On
the other hand, implicit MPC-TC fits into the selected board in both
single and double precision arithmetics. Moreover, the flops needed in
the worst-case to solve the QP problem with implicit MPC are less
than those needed by any implementation of explicit MPC. Please note
that without the novel results on the certification procedure presented in
Chapter 5, the choice between explicit or implicit MPC would have been
driven by experience, or extended simulation campaigns. On the con-
trary, running Algorithm 5 allows to easily select the best option. When
none of the solutions is feasible for the selected board, one can check
if the acceleration techniques proposed in Chapter 6 make the problem
feasible, by certifying exactly the corresponding worst-case time run.

The control algorithm in Figure 7.2, together with an implicit MPC
featuring the GI solver presented in Chapter 4, have been implemented
in C -language on the control board. The control objective is to track
a rotor speed trajectory ωref while minimizing the control effort and
imposing input/output constraints.
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Figure 7.5: Stator voltages for the MP-TC controller when tracking the
speed profile of Figure 7.4. From top to bottom: i) di-
rect component, ii) quadrature component, iii) sinusoidal
voltages.

The speed tracking results are shown in Figure 7.4, where abrupt
changes of reference are requested to the motor in order to operate the
system close to the constraints. Figures 7.5 and 7.6 show the stator
voltages and currents measured when controlling the motor to track
ωref. The variables are presented both in their original frame, with a
sinusoidal behavior, and in the (d, q) coordinates. It is evident that
both the current and voltage constraints are correctly imposed by the
MP-TC.
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Finally, figure 7.7 shows the control task timing on the DSP obtained
through a high precision internal clock, and the number of iterations
needed by the solver to obtain the optimal control sequence. To con-
firm what verified offline with the certification algorithm, the optimal
solution is always obtained within the time limit of 0.3 ms. Please note
that this measured time refers to the entire control routine, which in-
clude Analogic Digital Converter (ADC) sampling, state estimation and
the QP solver.
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Chapter 8

Model predictive control for
DC-DC converters

MPC is being widely investigated for the control of Switching Mode
Power Supplies (SMPS) [12, 141–143], thanks to the continuously in-
creasing tightening of efficiency and performance requirements (EN-
ERGY STAR R©), [11, 58, 144–146]. The development and motivations
of MPC in this field share lot of similarities with that discussed in
Chapter 7 for electrical motors. Indeed, the distinction between FCS-
and CCS-MPC holds for SMPS as well, being transistor-based devices
where the discrete nature of the switches can be exploited to optimize
between the finite combinations of predicted switches’ states [11, 49].
However, despite the possibly improved dynamics, the resulting variable
switching frequency and the required high sampling frequency are still a
matter of discussion. Therefore, currently industrial applications prefer
CCS-MPC, thanks also to decoupling between switching and sampling
frequencies which are usually higher in SMPS with respect to electri-
cal motors control. Therefore, here the computational requirements and
scarce resources impose more sever limits to the spread of MPC. FPGAs
can be a costly alternative also in this field [147]. However, contrarily
to electrical motors, explicit MPC is a much more appreciated technol-
ogy for power converters [58–61], because the mathematical models are
usually smaller (e.g. 1 input for lot of converters), allowing a resource
efficient implementation as confirmed in [148]. Therefore the direct use
of implicit MPC in the field is perceived as less appealing, especially
for single-ended supplies [149,150]. The work of this thesis for MPC in
power converters covers two different aspects: the first is CCS-MPC for
pre-compensated DC-DC converters, and the second is a unified formu-
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lation for current estimation.
Following the idea of RG [72, 73, 120], we introduce an MPC loop

that regulates a DC-DC converter by manipulating the reference of the
actual controller [151]. A variety of engineering fields experimented the
use of RG, e.g. automotive and robotics [74–76]. Only few attempts to
improve the control dynamics by modifying the reference can be found
in the recent literature regarding DC-DC converters [152, 153]. Nev-
ertheless, power conversion seems to be a area where the control of
pre-compensated systems can have an important role. In fact, it is com-
mon that the native controller cannot be changed, either because it is
hard coded or even hardware based [154]. Designers could also have the
necessity to retain the primal controller due to stability and robustness
certification procedures [155]. Furthermore, the double and possibly
multi-rate controller permits to have the benefits of MPC with a sensi-
bly smaller impact on the computational cost, with respect to its direct
application. This thesis presents the design and experimental results of
MPC applied to a converter pre-compensated with VMC, which is the
simplest of the standard controllers used for power converters. Com-
pared to the state-of-the-art of controllers for such devices [152, 153],
the algorithm does not need any current sensor, leaving unaltered the
hardware and software setup of standard VMC, and the use of the MPC
framework opens the door to all the useful features widely discussed in
the previous chapters.
The continuous research for performance improvement in power con-

verters, moved recently the focus on Current Mode Control (CMC),
which allows for faster transient response and limited over-current pro-
tection [58, 156–159], and the use of MPC for CMC pre-compensated
converters has been preliminary investigated by the author in [69]. As
already discussed, an MPC framework is almost always based on a state
estimator. Even more important, as far as CMC, what gained attention
in both academy and industrial applications is sensorless control [83].
Therefore the design of such current observer is the focus of the second
part of this chapter. Sensorless CMC (SCMS) improves the reliabil-
ity of the system, the miniaturization of the device, its efficiency and
its cost [84, 144, 160, 161]. However, power converters have a bilinear
dynamics, requiring a dedicated nonlinear observer for each configura-
tion. The number of different observers scales easily in this field due
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to the combination of different converters’ topologies. The literature
on current observers for DC-DC converters is huge [85, 87–89,162,163],
and among them we cite integral state reconstructors [164], extended
Kalman filter [59], duty cycle perturbation [88] or input voltage based
observers [84, 85, 162]. Despite the strengths and weaknesses of each
method, they all have the drawback to be converter’s dependent. Here
we address the need for an unified current observer for the most com-
mon topologies of DC-DC converters. A similar need, on the control
side, was recently tackled in [81]. Embedding different control codes,
and learning how to tune all of them is a costly operation, which makes
extremely helpful having a unified control code. Buck, boost and buck-
boost configurations are addressed by the unified observer, in both their
synchronous and asynchronous version [165]. The unified observer guar-
antees the application to Pulse Width Modulated (PWM) converters,
an accurate modeling and robustness with respect to load variations,
which are required features for SCMC geared towards the industrial
use [81, 87, 165, 166]. Industry benefits from such a unified observer be-
cause, especially in a single power supply with many different converters,
i) the time and the memory needed to code different observers is saved,
ii) calibrators have to learn the tuning of one single algorithm, iii) code
certification is easier, iv) code freezing, e.g. due to a software release,
does not represent an issue for hardware changes.
Section 8.1 discusses the modeling of power converters and the ba-

sics of standard linear control. Section 8.2 presents the MPC for pre-
compensated VMC converter and Section 8.3 deals with the unified
current observer. Both the techniques have been experimentally tested
on commercially available hardware from Texas Instruments c©.

8.1 Mathematical models and linear control
This section briefly covers the modeling for the converters of interest,
and presents the basics of the standard VMC and CMC. The electrical
schemes are shown in Figures 8.1 and 8.2 in asynchronous and syn-
chronous version, respectively. Synchronous rectification is a step for-
ward into efficiency optimization, with respect to standard asynchronous
converters [167–169]. If the converter is controlled by a PWM gating
signal, as in most of the cases, its dynamics can be reasonably approx-
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imated by average modeling [165]. For control purposes, an equivalent
low-frequency model with variables averaged over one switching time
Ts is used. The mathematical models of the converters presented in
figures 8.1 and 8.2 can be collected in a bilinear notation, [170], such as:

ẋ(t) = Ax(t) +
(
Bu +

p∑

i=1
Fixi(t)

)
u(t) +Bv (8.1a)

y(t) = x(t) (8.1b)

where x ∈ Rnx is the state vector, with xi its i-th element, u ∈ Rnu is
the input vector, y ∈ Rny is the output vector and A, Bu, Fi, Bv are
matrices of appropriate dimensions. The index p ≤ nx is the cardinality
of the bilinear terms. In the specific, x1 ≡ il, x2 ≡ v and u ≡ d, with il
the inductor current, v the output voltage and d the duty-cycle of the
PWM. The main parameters of the models are the input voltage Vg,
the inductance L, the capacitance C and the supplied load R. Parasitic
effects are also considered, with Rl is the inductor series resistance,
Ron is the drain-to-source resistance of the switches, Vd is the voltage
drop of the diode and Rd is its series resistance. As far as the load,
it is the most variable component for a DC-DC converter [171], and
the equation R ≡ R̂ + ∆R holds, with R̂ ∈ R+ the nominal value and
∆R ∈ R the unknown perturbation, such that:

∆min
R ≤ ∆R ≤ ∆max

R , (8.2)

where ∆min
R < ∆max

R are known bounds on the minimum and maximum
variations of the load with respect to the nominal value. Under all the
previous assumptions, the dynamics of the six converters is reflected by
the following nonlinear system:

ẋ(t) = Ax(t) +Buu(t) + F1x1(t)u(t) + F2x2(t)u(t) +Bv, (8.3)

where the different matrices are parametrized according to the Ta-
ble 8.1. Converters’ control has to guarantee the regulation of the
output power at a desired value. VMC and CMC are the standard con-
trollers for power converters, and nowadays they are considered a tech-
nology [87,165,172]. The first is the simplest, with a single loop driven
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by output voltage error, while the second presents a cascaded structure
with inner current and outer voltage control loops. In some applica-
tions VMC is preferred in for its simplicity, whereas the faster dynamics
makes CMC more suitable for high performance supplies, even though a
current sensor (or observer) is required. Anyway, both of them usually
rely on linear PI regulators for driving voltage and current loops. The
tuning of the PI regulators follows the well known small signal anal-
ysis [173], designing the bandwidth and stability margins in order to
obtain a satisfactory performance. As a rule of thumb, a controller that
exhibits a gain margin of about 10dB and a phase margin greater than
45 degrees is desirable [165, 173], and to mitigate the effect of right-
half-plane zeros for some converter topologies, the crossover frequency
is kept below 1/3 of the zero frequency [165]. For synchronous con-
verters, where two switches must be actuated, master-slave technique is
commonly used, by driving the secondary switch with a complementary
signal with respect to the primal one.

8.2 MPC for VMC pre-compensated converter
Even though the literature assessed MPC as one of the leading technol-
ogy for the future controllers in power electronics [12], two motivations
can prevent the direct use of MPC as a primal controller:

• a primal controller is already embedded into the physical system,
either software or hardware, and cannot be modified;

• the dynamics of the system are too fast and a primal MPC is not
feasible, thus a double, multi-rate, loop is preferred.

An MPC regulator for a pre-compensated power converter can overcome
the above limits, by enhancing the performance of the primal controller,
without substituting it. It is worth noticing that results of this section
are based on a simple formulation, that can be the ground for a richer
investigation in the field. Indeed, the considered converter is a syn-
chronous DC-DC buck, which exhibits an LTI behavior. However, others
DC-DC converter can be studied by applying the small-signal analysis
which allows to derive an LTI model around the operative point from the
bilinear model 8.1. In order to design this external MPC controller, the
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Figure 8.3: Block scheme of the standard VMC 8.3(a), and the MPC
applied to the pre-compensated system 8.3(b). The external
loop for MPC-VMC is highlighted in green, while the rest of
the scheme remains unchanged.

mathematical model of the pre-compensated closed-loop system must
be known. It is assumed that MPC is applied to a converter for which
a primal VMC is available, as discussed in Section 8.1. This new con-
trol scheme is referred to as MPC-VMC. The standard VMC, and the
MPC-VMC block schemes are shown in Figures 8.3(a) and 8.3(b), re-
spectively. The derivation of the closed-loop model considers a VMC
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implemented with a PID regulator, in the form

uk =
(
Kp +KiTs

z

z − 1 +Kd
δ

1 + δTs
z
z−1

)
ek, (8.4)

whereKp, Ki andKd are the proportional, integral and derivative gains,
Ts is the sampling frequency, δ = 1

tf
is the derivative filtering term and

ek is the tracking error. The discrete-time state-space model of (8.4) is:

xp(k+1) =
[

1 0
0 α

]

︸ ︷︷ ︸
Ap

xpk +
[

K̃i

−K̃d(1− α)

]

︸ ︷︷ ︸
Bp

upk (8.5a)

yp(k) =
[
1 1

]

︸ ︷︷ ︸
Cp

xpk +
[
Kp + K̃i + K̃d

]

︸ ︷︷ ︸
Dp

upk, (8.5b)

where the p-superscript stands for primal controller and

K̃i = KiTs, K̃d = Kd

Ts + tf
, α = tf

tf + Ts
. (8.6)

One can trivially verify that ypk ≡ uk and e(k) ≡ upk ≡ yref
k − yk where

yref
k ∈ Rny is the reference signal for the controlled system, that is the
output voltage reference.

Consider a DC-DC synchronous buck converter, as the one in figure
8.2(a), and let yck ≡ yk and xck ∈ Rnxc be the output and the state vector
of the extended system, such that xck = [xpk xk]′, then the extended
open-loop system in state-space form is found to be:

xck+1 =
[
Ap 0
BCp A

]

︸ ︷︷ ︸
Ac

xck +
[
Bp

BDp

]

︸ ︷︷ ︸
Bc

upk (8.7a)

yck =
[
DCp Cd

]

︸ ︷︷ ︸
Cc

xck +
[
DDp

]

︸ ︷︷ ︸
Dc

upk, (8.7b)

with the tracking error ek ≡ upk as its only input. Considering that
D = M0,0 implies Df = M0,0, the closed-loop model derived from (8.7)
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is:

xc(k + 1) = Afxck +Bfyref
k (8.8a)

yc(k) = Cfxck (8.8b)

where, by setting d , (Dc + 1)−1, the following equations hold

Af = Ac −BcCcd (8.9a)
Bf = Bc −BcDcd (8.9b)
Cf = Ccd (8.9c)

(8.9d)

Model (8.8), with matrices defined as in (8.9), represents the closed-
loop system of controlled by a linear PID regulator. With the above
derivation, the MPC problem is formulated as:

min
∆yref

Np−1∑

i=0
‖Wy(yck+i+1|k − ȳref

k )‖22+
Nu−1∑

j=0
‖W∆u∆yref

k+h|k‖22 (8.10a)

s.t. xc,k|k = xck, (8.10b)
xck+i+1|k = Afxck+i|k +Bfyref

k+i|k, (8.10c)

yck+i+1|k = Cfxck+i+1|k, (8.10d)

∆yref
k+Nu+j|k = 0, j = 0, . . . , Np −Nu − 1, (8.10e)

i = 0, . . . , Np − 1,
h = 0, . . . , Nu − 1.

As already discussed, problem (8.10) can be casted into a parametric
QP problem 3.15, with parameter vector:

θk = [yref
k−1 x̂c(k) ȳref

k ]T . (8.11)

The solution z∗ of the unconstrained QP problem is analytic in this
case, and equal to:

z∗ = H−1Fθk. (8.12)
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Table 8.2: Hardware and control specifications for experimental VMC-
MPC tests
Parameter Value Units
DC-DC Buck Converter
Input Voltage Range 4.75-14 V
Output Voltage Range 0.7-3.6 V
Switching Frequency 400 kHz
L 0.9 µH
Rl 2.2 mΩ
C 470 µF
Ron 3.6 mΩ
R 1 Ω
Controllers’ Parameters
Switching Frequency 400 kHz
Primal Control Frequency 400 kHz
MPC Control Frequency 100 kHz
Kp 0.0195
Ki 350
Prediction horizon 10
Control horizon 5
Measured output weight 5
Manipulated variable rate weight 0.1

Being z∗ the optimal sequence of input increments, only the first
nu components are considered and applied to the system. Thus, the
solution of the unconstrained MPC problem reduces to a matrix vector
product, where the first nu rows of H−1F are computed offline and
stored. However, for such high speed problems as power converters,
even the unconstrained solution does not represent a negligible cost for
low-power embedded boards. The advantage of the double, multi-rate,
loop is the possibility to run MPC in a slower task respect to the primal
controller. Considering both the solution time of the QP problem and
the computation of the estimated state through a delayed Kalman, the
complexity c of the control algorithm can be explicitly computed as

c = (2np − 1)nu + (2ny + 2nu + 2nxc − 1)nxc . (8.13)
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VMC. From top to bottom: the output voltage; the inductor
current.

With a very similar procedure MPC for a CMC pre-compensated DC-
DC converter can be obtained, and preliminary results about its appli-
cation can be found in [69].

8.2.1 Experimental results

MPC-VMC has been experimentally tested, and compared to the stan-
dard VMC. The PTD08A010WAD 10 A synchronous buck converter
has been used, which is commercially available by Texas Instruments c©.
The values of its main components are listed in Table 8.2. The control
scenario consists into supplying a 1 Ω-4 W load with 1 V and 2 V DC
voltage. The input supply is 9 V, and the switching frequency is set to
400 kHz. Preliminary simulation tests on rapid prototyping software,
in the specific PSIM by Powersim c© Inc [128, 174], ease the controller
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tuning, whose design parameters are collected in the second part of
Table 8.2. PSIM allows for the design of accurate circuitry models,
including parasitic effects, and digital control algorithms. The primal
controller runs at 400 kHz, and has been tuned according to small-signal
analysis, cf. Section8.1. The MPC applied to the pre-compensated sys-
tem is running at 100 kHz, to demonstrate the advantages obtained even
when the reference is changed at a slower frequency respect to the pri-
mal controller one. Two different tests have been proposed. The first
consists in a positive step in the reference voltage from 1 V to 2 V. The
second one consists in a negative step from 2 V to 1 V. For both tests the
MPC-VMC performance are compared to standard VMC. Obviously, for
both VMC and MPC-VMC, the primal controller is the same, namely
a PI regulator with the same design parameters. Test acquisitions are
collected with a Tektronix DPO3014 Digital Phosphor Oscilloscope, and
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Table 8.3: Experimental Improvements of MPC-VMC respect to stan-
dard VMC under step variations

VMC MPC-VMC

Positive Step τr[ms] 0.735 0.3024
τs[ms] 0.917 0.3683

Negative Step τr[ms] 0.725 0.3928
τs[ms] 0.995 0.4482

Table 8.4: Performance Comparison of VMC and MPC-VMC Under
Unknown Load Variations for a Positive Reference Step

Load VMC MPC-VMC
R[Ω] τr[ms] τs[ms] τr[ms] τs[ms]
0.2 0.51 0.65 0.31 0.39
0.6 0.67 0.84 0.38 0.49
1 0.72 0.91 0.41 0.53

1.4 0.74 0.93 0.42 0.55
1.8 0.76 0.96 0.44 0.56

the entire control routine has been coded on the F28335 Delfino DSP
by Texas Instruments c©, whose specifications have been already intro-
duced in Section 7.3. Two control interrupts regulate the execution of
the primal controller and the MPC loop. Figures 8.4 and 8.5 present
the experimental results for the increasing and decreasing step in the
output voltage reference, respectively. The quantitative comparison of
the results is detailed in Table 8.3. During the positive step signal MPC-
VMC guarantees a reduction of 58.86% and 59.84% of the rise time and
the settling time, respectively. During the negative step, the rise time
and the settling time are reduced by 45.82% and 54.95% respectively.
Fig. 8.4 and Fig. 8.5 show also the inductor current which has a faster
dynamics in MPC based control, but still keeping the transient peak
restrained as expected.
To verify the sensitivity to parameters uncertainties, the two algo-
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rithms have been tested under load variations. The tuning of the two
controllers is the same of the above experiment, namely Table 8.2, but
the load value has been changed from a minimum of 0.2 Ω to a maximum
of 1.8 Ω. Table 8.4 collects the results when comparing the standard
VMC and MPC-VMC in several perturbed scenarios, during a positive
voltage reference step. It is evident that MPC-VMC is always able to
improve the performance, even when the load R is significantly changed
with respect to the nominal value used for controller tuning.

8.3 Unified robust current observer
This section shows that it is possible to unify the formulation of nonlin-
ear observers for synchronous and asynchronous buck, boost, and buck-
boost converters. A single observer which can be used on the same
control unit to estimate the currents of six different types of convert-
ers is obtained. Code efficiency and its memory occupation, calibration
and certification are facilitated. These advantages are of utmost impor-
tance in MPC framework, especially when sensorless control is required.
Without any restriction, the observer is proposed for a standard CMC
algorithm, as shown in Figure 8.6, but it can be directly used in any
CMC-based control scheme. The yellow block in the figure represents
a current observer, which is designed according to results presented in
the following theorem.

Theorem 8.3.1. Consider the asynchronous and synchronous buck,
boost and buck-boost converters and their bilinear mathematical repre-
sentation as in Equation (8.1), parametrized with Table 8.1. Let the
observed current x̂1 and the observed voltage x̂2 have an estimation er-
ror x̃1 and x̃2, respectively, defined as follows:

x̃1 = x̂1 − x1 (8.14a)
x̃2 = x̂2 − x2 (8.14b)

being x2 the measurable output voltage, and x1 the unmeasurable cur-
rent. Denote with Â the nominal dynamics matrix, i.e. :

Â ≡ A|∆R=0. (8.15)
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Define

ρ (∆R) = − ∆R

(R̂+ ∆R)R̂
(8.16)

and ρ̄ = max (ρ(∆min
R ), ρ(∆max

R )). Given K and α two strictly positive
gains, the nonlinear observer

˙̂x = Âx̂+Bu+ F1x̂1u+ F2x̂2u+Bv +W (x2, x̃2) (8.17)

with x̂ the estimated state vector, and

W (x2, x̃2) =
[

0
−Kx̃2 + η (x2, x̃2)

]
(8.18)

where η (x2, x̃2) ≡ C−1 sgn(x̃2)(ρ̄|x2|+α), is asymptotically convergent
to the real state, and robust with respect to bounded variations ∆min

r ≤
∆R ≤ ∆max

R .

Proof. The error dynamics, obtained by replacing the observer’s func-
tion (8.17) into the error equation (8.14), is found to be

˙̃x(t) = Âx̃+ F1x̃1u+ F2x̃2u+W +
[
0 C−1ρ(∆R)

]T
x2. (8.19)

Let u′ ≡ 1− u, and consider the Lyapunov function

V = 1
2
(
Lx̃2

1 + Cx̃2
2
)

(8.20)

which is used for each converter. For all the asynchronous converters the
derivative of Equation (8.20) along the solution of the error dynamics
is equivalent, namely:

V̇ = −(RL + uRon + u′Rd)x̃2
1 − R̂−1x̃2

2 + ρ(∆R)x2x̃2+
−CKx̃2

2 + Cη (x2, x̃2) x̃2.
(8.21)

Similarly, all the synchronous converters share the same Lyapunov deriva-

95



tive along the solution of the error dynamics, that is

V̇ = − (RL +Ron) x̃2
1 − R̂−1x̃2

2 + ρ(∆R)x2x̃2 − CKx̃2
2 + Cη (x2, x̃2) x̃2.

(8.22)

For both the Lyapunov derivatives in (8.21) and (8.22), the following
relation holds:

V̇ < ρ(∆R)x2x̃2 + Cx̃2η ≤ ρ̄x2|x̃2|+Cx̃2η = −α|x̃2|, (8.23)

which proves the Theorem 8.3.1.

In brief, the robust nonlinear observer (8.17) can be used for any of
the six converters’ topologies presented in Section 8.1. They have been
found to have a Lyapunov derivative along the errors’ dynamics that
can be enforced to be strictly negative by the same nonlinear observer
function. Equations (8.17) and (8.18), parametrized with the values in
Table 8.1, are used for the observer’s implementation. The code is sim-
ple, and it requires only sums, products and if-then operations, therefore
the computational burden of the observer can be exactly computed. In
the worst-case, that is with all non-empty matrices in Equation (8.17),
35 flops are required to estimate the current. Compared with respect
to a well known non-robust observer, based on averaging model, the
computational requirements increase only by 7 flops [135]. The digi-
tal implementation of the observer requires an approximated discrete
time version of Equations (8.17) and (8.18). The backward difference
equation ˙̂x(t) ≈ x̂(k)−x̂(k−1)

Tc
can be used to accomplish the task, where

Tc ≥ Ts stands for the control period. When dealing with very high
sampling frequency, the approximation of continuous time control law
with backward difference guarantees satisfactory performance, [84]. The
observer requires the design of ∆max

R , α and K in Eqs. (8.17) and (8.18).
The selection of ∆max

R is a straightforward step, as it represents the max-
imal variation allowed for the load to be supplied. This value is used
to derive ρ̄ and consequently the W matrix of the observer, as in Equa-
tion (8.18). α ∝ 1

ts
where ts is the rising time of the current estimation,

and K is the weight for the estimation error. For both α and K a trial
and error campaign is necessary. Generally, a greater value is better for
performance improvement, but it may cause overshoots and oscillations
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˙̂x = Âx̂(t) + Bu(t) + F1x̂1(t)u(t)+
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Figure 8.6: Sensorless control scheme. x2 is the output voltage, x1 is
the inductor current and u is the duty cycle of the PWM.

around the steady state value. For this reason, the design phase can be
carried out in a simulation environment, as it is clarified in Section 8.3.1.

8.3.1 Experimental results

The performances of the nonlinear robust current observer have been
widely tested in both simulation (PSIM software) and experimental se-
tups, and please refer to [78,86,127] for a more detailed analysis of the
results. The parameters of the designed power converters are collected
in Table 8.1. As far as simulation results, an asynchronous buck, an
asynchronous boost and a synchronous buck-boost (in step-up mode),
have been used to assess the observer’s performance. The control and
the switching frequencies have been set both to 350 kHz. All the param-
eters are collected in Table 8.5. The control scheme in Figure 8.6 is used
to regulate the output voltage of the converters. The outer and inner
loops implement linear PI-regulators, which have been tuned with the
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Figure 8.7: Simulation results for the proposed SCMC on output volt-
age and comparison between real and estimated current are
presented. From top to bottom: i) asynchronous buck, ii)
asynchronous boost and iii) synchronous buck-boost in step-
up mode.
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Table 8.5: Parameters of the DC-DC converters, for both asynchronous
and synchronous topologies.
Variable Units Buck Boost Buck-Boost
Vg [V] 9 24 12
vref [V] 1 36 24
L [µH] 0.9 750 150
Rl [Ω] 0.002 0.2 0.2
Ron [Ω] 0.004 0.09 0.09
C [µF] 460 40 20
Vd [V] 0.7 0.7 0.7
Rd [Ω] 0.3 0.3 0.3
R̂ [Ω] 2 40 40
∆R [Ω] 1 20 30

well known small-signal analysis, cf. Section 8.1, in order to guarantee
a 10 dB gain margin and more than 50◦ phase margin. The simulation
scenario consists of a voltage tracking starting from a quiescent condi-
tion. The tests include unknown step changes in the load value, in order
to confirm the robustness of the observer. The only measure available is
the output voltage, which is sensed synchronously with the beginning of
the PWM period. Figure 8.7 shows the output voltage tracking, and the
comparison between real and estimated current for the three converters
tested. From 0.01 s to 0.02 s a step change in the load value is applied,
according to the quantities in Table 8.1. The figures show that the sen-
sorless control correctly steers the output voltage to the desired value
and, the stabilization is minimally affected by the load change. More
importantly, the observer correctly estimates the real current value, even
under an unknown load change. It is worth mentioning that this step
variation on the load is high, being the 50% of the nominal value.
For what concern the experimental tests, the setup is the same used

to show the MPC-VMC operation in of Section8.2.1, namely the Digital
Power Experimenter Kit (TMDSDCDC2KIT) with a PTD08A010WAD
10-A synchronous buck converter. The experimental test consists again
in supplying a 1-Ω@4-W load with 1-V and 2-V DC voltage, with a
9 V supply. The synchronous buck converter is switched by a PWM at
a frequency of 350 kHz, which is equal to the control frequency. The
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Figure 8.8: Experimental results for voltage step change. From up to
bottom, the output voltage and the current. Real current
(cyan) and estimated current (black) are shown in the bot-
tom figure.

development control unit is the F28335 Delfino DSP. In order to test
the robustness of the proposed observer, a disturbance load of 1 Ω@5 W
is connected in parallel to the nominal load R̂ and actuated by a digital
switch. In this configuration, a variation of the 50% of the nominal
load is applied when the switch is turned on/off. The observer design
parameters have been derived through simulation analysis, and they
guarantee a fast response of the observer, without causing transient
overshoots and steady state oscillations. In the specific, K = 1, α =
10−4 and ∆max

R = 1 (corresponding to a robustness against a variation
of 100% of the load value) have been set.
Another key factor for a successful implementation is the computa-

tional complexity. The sum of ADC acquisition, control and observer
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Figure 8.9: Experimental results for load step change. From up to
bottom, the output voltage and the current. Real current
(cyan) and estimated current (black) are shown in the bot-
tom figure.

times must be less than the sampling interval for a feasible implemen-
tation. The run time at each step was measured with an high precision
internal clock of the TI-F28335 device, and it is less than 0.5 µs. Fig-
ures 8.8 and 8.9 show the oscilloscope acquisitions of the voltage and
load step-changes. Output voltage and input current have been acquired
with a Tektronik DPO3014 oscilloscope. The voltage reference perform
a step from 1V to 2V in Figure 8.8, and the load variation is the 50% of
the nominal value in Figure 8.9 from 0.3 ms to 0.7 ms. In order to verify
the correct estimation of the inductor current, îl digital value is acquired
from the DSP through a serial communication with an host PC. The
simulation results obtained in the first part of the section are confirmed
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by experimental test, as the voltage is successfully regulated and the
estimation of the load current is correct even under load variations of
50% of the nominal value.
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Chapter 9

Conclusions

This thesis has laid the foundations of exact complexity certification
for embedded MPC applications, by proposing an algorithm to exactly
calculate the worst-case time needed to solve a Quadratic Programming
(QP) problem. Hopefully, the solver certification and the novel acceler-
ation techniques here proposed will help the spread of Model Predictive
Control (MPC) in embedded systems, by making the safe implementa-
tion in terms of maximum computational time a reality. The thesis has
presented novel theoretical results and algorithms for embedded MPC,
as well as the experimental application for the control of electrical drives
and power converters, two fields that would certainly benefit from cer-
tifiable and efficient MPC implementation. The following sections sum-
marize the main contributions of the thesis, and propose possible future
developments.

9.1 Summary and Impact of the thesis

After covering the basics of MPC and embedded optimization in the first
chapters, Chapter 5 has proposed the exact complexity certification of
dual active-set solvers for parametric QP problems. By iteratively par-
titioning the parameter space in polyhedral regions that share the same
number of iterations, the worst-case complexity in terms of maximum
number of iterations and flops can be computed. This result fulfills the
lack of tight bounds for active-set algorithms, for which only average
and probabilistic results were available before in the literature. More-
over, having a QP solver for which the worst-case number of flops can
be exactly computed is crucial for promoting MPC in embedded appli-

103



cations. Indeed, certifying the impossibility to incur in a QP instance
which solution takes more than the available time is paramount for pro-
duction oriented controllers, and it has chance to favor the growth in
popularity of MPC for embedded systems in the next future. In addi-
tion, the certification algorithm helps choosing the fastest solver among
the family of dual active-set methods and explicit MPC. This exact
comparison in terms of flops changes for the better the controller design
procedure, which currently relies on experience or extensive simulation
campaigns to select the best solver. The chapter has detailed the theo-
retical foundations and the algorithm steps, verified on well-known QP
problems.
Two novel acceleration techniques for MPC have been then presented

in Chapter 6. With the aim of being impactful for embedded MPC, the
focus of the two methods is having a certified complexity and, more
importantly, improving the worst-case time needed to solve the QP
problem. Indeed, in embedded MPC the usefulness of algorithms that
improve the average case is questionable, as if the worst-case exceeds
the time bound, the controller cannot be implemented no matter im-
provements in the average time. Therefore, a semi-explicit MPC with
partial enumeration and a constraint selection strategy for dual active-
set methods have been proposed, with the unique feature of both having
a certifiable improvement in the worst-case, contrarily to the current lit-
erature. The particular semi-explicit MPC here presented differs from
other semi-explicit algorithms also because the trade-off between mem-
ory occupancy and performance improvement can be optimally chosen.
On the other hand, the acceleration by a different selection of active
constraints is independent from the explicit solution and from the opti-
mizer at the previous time step, making it usable in parallel with other
acceleration methods.
The second part of the thesis is focused on experimental applications.

In Chapter 7, some of the above mentioned algorithms have been used
to control a permanent magnet synchronous motor, proposing a model
predictive torque control solved online on a cheap computational unit.
Contrarily to the trend of considering MPC for electrical motors doable
only if it is solved by finite control set MPC or offline multiparametric
programming, the thesis has shown that MPC with an online QP solver
is feasible on a board commonly used for motor control. The certification
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algorithm has also demonstrated that, for the particular application, the
MPC solved online is even faster (and obviously memory cheaper) than
the corresponding multiparametric version. This result can shed light on
online MPC for electrical motors, which is not currently receiving much
interest in the field because considered unmanageable. Even though
its implementation is not easy due to the high sampling frequency, the
availability of the exact certification can clear all the doubts about an
eventual complexity out of the time bounds.
Finally, Chapter 8 has addressed some of the issues in the application

of MPC for DC-DC power converters. Being systems with very high
sampling frequencies and cheap computational boards, implicit MPC
can be rarely used as the primal controller. Therefore the thesis has
proposed the application of MPC to a pre-compensated system, regu-
lated in the specific by the standard voltage mode control. Besides the
obvious computational advantages obtained by a multi-rate controller,
the proposed control architecture overcomes the common issue, in power
converters, of having an hardware-based primal controller that cannot
be changed. Additionally, the problem of multiple DC-DC converters on
the same board has been addressed, from the point of view of algorithm
complexity. In particular, the thesis has focused on sensorless control
which is becoming very popular in the field to avoid the use of a current
observer. Many types and configurations of converters usually coexist in
power supplies, and therefore multiple non-linear observers are required,
one for each converter. A unified nonlinear observer, robust to bounded
load variations, has been therefore proposed and experimentally tested.

9.2 Future developments
Given the novelty of the topics discussed in the thesis, many extensions
to the work are possible. In a first stage, the complexity certification of
primal active-set methods can be investigated. Even though dual solvers
are faster and more suited for embedded MPC, some applications may
prefer the use of primal algorithms because their execution can be in-
terrupted without incurring in infeasible sub-iterations. Nonetheless,
warm-start techniques are easier to be implemented for primal algo-
rithms. In some particular MPC formulations the corresponding QP
problem does not have general constraints, that is when only inputs
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or input rates are weighted in the cost function. Efficient solvers ex-
ploit the box-constrained structure of these cases, sensibly improving
the computational cost. Therefore, the worst-case certification of such
solvers would be of much interest.
For what concerns the experimental results presented in Chapter 7,

the mechanical subsystem of the electrical motor can benefit from em-
bedded MPC application as well, allowing for the optimization of the
whole motor dynamics and the preview on the speed (or position) profile.
The objective may be to investigate if, even with a more complex MPC
formulation accounting for the whole dynamics, the online solution is
still a successful option in cheap control units.
The use of MPC for DC-DC converters is another open topic where

the results here presented can be used as a starting point for future re-
search. As an example, the MPC for pre-compensated systems is a valid
idea that can be used to control more complex power converters, and
account for different types of primal controllers. Moreover, the unified
current observer can be reformulated in the case of direct actuation of
the switches, which is becoming popular for its fast transient response.
Those algorithms exploiting the discrete nature of the transistors, such
as finite control set MPC, can benefit of such a unified observer code to
lower the memory and ease the design.
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